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Foreword

Looking back over the past three decades of work on

neural development (approximately the period about

which I have some personal knowledge), it is fair to

say that in the early 1970s a book like this on model-

ing would have been di‰cult to imagine. ‘‘Model-

ing’’ was not a word often heard in the laboratories

in which I was then a postdoc (Steve Ku¿er’s lab at

Harvard and subsequently Bernard Katz and Ricardo

Miledi’s Department of Biophysics at University

College London). In both formal and informal dis-

cussions, our mentors made it plain that the proper

course for a young neurobiologist interested in devel-

opment was simply to explore the relevant phenom-

enology, with the expectation that the important

principles would in due course become clear.

Despite the obvious success of the Hodgkin-

Huxley ‘‘model’’ of the action potential, it was

understood that these equations had not preceded this

remarkable body of labor-intensive work, but were

rather a post hoc rationalization of a mechanism of

neural signaling that had long been understood in

general terms. By the same token, the ‘‘model’’ of

chemical synaptic transmission based on Poisson sta-

tistics was understood to be a theoretical afterthought

used to support the obvious experimental facts. What,

then, has changed in the intervening period to make

modeling not only an acceptable enterprise, but an

approach to neural development that is attracting a

rapidly growing number of adherents?

Several factors have no doubt combined to e¤ect

this cultural shift, all of them apparent in the present

volume. First has been the gradual recognition that

acquiring an understanding of development is not a

problem that falls into the same category as under-

standing the basis of the action potential or synaptic

transmission. A major di¤erence is simply the degree

of complexity. The number of causal steps required to

generate an action potential or to appropriately con-

vey information by synaptic transmission is clearly

finite, as evidenced by the fact that these linkages are

now understood in detail. Generating the nervous

system on the other hand, involves a causal chain

many orders of magnitude greater, in which no par-

ticular step provides a key to deciphering the process,

and in which epigenetic factors exert a pervasive and

poorly understood influence at every turn.

Given the complexity of neural development and

the uncertain definition of the problems that need to

be solved, it is not surprising that neurobiologists have

increasingly sought to understand this process in terms

of general principles that subsume a significant subset

of the causal chain between the neural plate and the

adult nervous system. Witness here the chapters on

modeling dendritic and axonal growth and neural

wiring generally, and the influence of neural activity

on these events.

A second contributor to the rise of modeling as a

legitimate enterprise in developmental neuroscience

is the enormous success (and universal influence) of

molecular genetics. The rapid increase of knowledge

in this area has meant that causal linkages that only a

few years ago were relegated to a ‘‘black box’’ can

now be unraveled. As a result, a very large number of

relevant causal steps are now available for incorpora-

tion into conceptual models and/or simulations of

what development entails. The chapters here on early



neural development and neural models of gene net-

works provide examples.

A third contributor is the growth of computational

neuroscience. Thirty years ago, it was unusual to see

neurobiologists wrestling with the awkward and rela-

tively ine¤ectual computers that were then beginning

to populate some laboratories. Nowadays, of course, it

would be di‰cult to find a lab in which one of the

preeminent tools is not a powerful computer system

with access to databases and the ability to create simu-

lations that were until recently beyond possibility.

It may, of course, be several more decades before

any of these e¤orts generate the received wisdom in

this field. Nevertheless, it is surely only a matter of

time before generally accepted principles emerge as a

result of these modeling e¤orts. In the meantime, the

present volume serves as an important progress report

in the continuing quest to understand neural devel-

opment in an increasingly deep way.

Dale Purves

viii Dale Purves



Introduction

Modeling Neural Development

The focus of most modeling studies in neuroscience

is on information processing in the mature nervous

system, at the level of ion channels, neurons, or

neuronal networks. Relatively few modeling studies

are directed at understanding how the nervous sys-

tem develops—for example, how neurons attain their

characteristic morphology, or how they are assembled

into functional networks. Just as models are needed to

help to understand the functioning of the nervous

system, they are also needed in order to obtain a bet-

ter understanding of its development. The develop-

ment of the nervous system is an extremely complex

dynamical process, spanning many levels of organiza-

tion, from the molecular and cellular to the system

level, and involving an overwhelming number of

interactions and feedback loops within and between

each level. To obtain insight into such a complex

process, human intuition and commonsense argu-

ments are not su‰cient, and we need the guidance of

appropriate mathematical and simulation models.

The present volume brings together examples from

di¤erent levels of organization (from molecule to sys-

tem) and from di¤erent phases of development (from

neurulation to cognition) that demonstrate the power

of modeling for investigating the development of the

nervous system. In most cases, each chapter contains

an overview of the biology of the topic in question, a

brief review of the modeling e¤orts in the field, a dis-

cussion in more detail of some of the models, and

some perspectives on future theoretical and experi-

mental work.

This book is intended primarily for computational

and experimental neuroscientists, but it will also be of

interest to anyone interested in developmental biol-

ogy. We hope that it will stimulate further research in

developmental neurobiology, both theoretical and

experimental. Not only is development fascinating in

its own right, but its study may lead to new insights

into the functioning of the mature nervous system

(e.g., learning and memory), since many mechanisms

that operate during development remain operative in

later life.

In the following section, I summarize why model-

ing is an integral part of neuroscience. Before describ-

ing the structure of the book in the last section, I

present a brief overview of the development of the

nervous system in order for the reader to be able to

see where each chapter fits into the overall scheme of

neural development, and thus to be better able to ap-

preciate the choice of topics.

Modeling

All neuroscientists, not only theoretical and com-

putational neuroscientists, make models. An experi-

mentalist’s verbal description of how a system works

already constitutes a model. Such a verbal model,

however, works satisfactorily only when the system

under consideration is simple. When several interact-

ing elements and feedback loops are involved, the



system rapidly becomes too complex to be under-

stood without the help of mathematical or simulation

models.

Given that the nervous system is one of the most

complex systems that exists, formal models are an es-

sential research tool in neuroscience (see, e.g., Jen-

nings and Aamodt, 2000; McCollum, 2000):

1. Formal models—in terms of mathematical equa-

tions or computer programs—provide precise and

exact ways of expression. Without formal models,

complex systems and their dynamics cannot be pre-

cisely described and analyzed. Constructing formal

models (e.g., by translating a verbal model into a

mathematical or simulation model) therefore often

identifies inconsistencies, hidden assumptions, and

missing pieces of empirical data. In addition, trans-

lating hypotheses and theories into formal representa-

tions makes it possible to communicate them to other

researchers in an unambiguous way.

2. Models can lead to the generation of new hypoth-

eses and give structure and meaning to empirical data.

Underlying links between data can become clear, and

seemingly unrelated observations or phenomena may

be shown to be aspects of the same process (integra-

tion and unification). Similarly, models can highlight

the overlaps among disparate fields of research or

among alternative hypotheses. Finally, models may

show that our intuition about the system under in-

vestigation is wrong; counterintuitive or unexpected

dynamics and patterns can easily arise as the result of

even simple interactions.

3. Models enable us to study how phenomena at

higher levels of organization arise from processes

at lower levels of organization. Even for biological

systems in which the components are completely

known, it is seldom understood precisely how they

interact to make the system work. Using only the tra-

ditional intuitive approach, a system’s collective be-

havior (the dynamics and the patterns it can generate,

or in other words, the working of the system) is very

di‰cult to deduce from knowledge of its constituent

parts. Models can provide unique insights because

they allow us to explore the consequences of postu-

lated interactions among a system’s components and

to test the plausibility of hypothetical mechanisms.

4. Model studies can help guide experimental re-

search. The insights and predictions obtained by

modeling can alter our outlook and suggest new

experiments, which in turn may lead to new models.

A comparison between model and experiment will

sometimes be qualitative and sometimes quantitative.

It is important to realize that often the aim of model-

ing is not just to build a quantitative replica and to do

‘‘mere’’ computation, which would assume that the

principles of how the system works are already fully

known. In addition to quantification, mathematical

and simulation models provide precise aids to con-

ceptualization and to deepening structural and bio-

logical insights.

Neural Development

In order for the reader to see where each chapter fits

into the overall scheme of neural development, this

section briefly summarizes the development of the

vertebrate nervous system. More detailed accounts

can be found in, for example, Slack (1991), Cowan et

al. (1997), Zigmond et al. (1999), Sanes et al. (2000),

and Price and Willshaw (2000).

During the first rounds of cell division, the fertil-

ized egg generates a ball of cells with an internal cavity

(the blastula stage). Through invagination of tissues

the embryo is converted into a three-layered structure

with ectoderm on the outside, mesoderm in the mid-

dle, and endoderm on the inside (the gastrula stage).

In response to molecules secreted by a region of the

x Arjen van Ooyen



mesoderm called the organizer, a portion of the ecto-

derm on the dorsal surface of the embryo becomes

specified as neural tissue (neural induction) rather than

as epidermis. From this flat, one cell-thick sheet of

neuroectoderm cells (called the neural plate) the ner-

vous system develops.

During the next phase of embryogenesis (called

neurulation), the lateral edges of the neural plate ele-

vate, appose each other, and later fuse at the dorsal

midline to form a hollow cylinder (the neural tube)

inside the embryo. Neural tube formation involves

cell movements, changes in cell shape, and di¤erential

cell adhesion. As the tube forms, some cells along the

edges of the neural plate (called neural crest cells) are

pinched o¤. Guided by attractive and repulsive cues

in the extracellular matrix, neural crest cells migrate

away from the closing tube and eventually give rise to

the peripheral nervous system. The central nervous

system derives from the neural tube. Molecules ema-

nating from the underlying mesoderm (and, earlier

in development, from the organizer) create gradients,

enabling cells in the neural tube to sense their position

and express their genes di¤erentially. As a result, the

neural tube becomes specified along the rostrocaudal

and dorsoventral axes into distinct domains (neural

patterning), which later become the various areas of

the di¤erentiated nervous system. The neural tube

develops three rostrocaudally arranged vesicles: the

forebrain, midbrain, and hindbrain vesicles. The area

of the tube caudal to the hindbrain is the prospective

spinal cord. Later, the forebrain vesicle divides into

two telencephalic vesicles and a diencephalic vesicle.

At the level of the diencephalon, a bilateral evagina-

tion forms the optic vesicles, which subsequently

transform into cups, whose inner walls eventually give

rise to the retina of each eye.

During the next stage of development, the wall of

the neural tube begins to thicken as newly generated

neurons migrate away from the zone of proliferation

(near the inside surface of the tube) toward the outer

surface of the tube, to form new zones. Neurons mi-

grate radially through the wall, but also tangentially

(i.e., parallel to the surface of the tube). In some

regions, the movements of neurons away from the

proliferation zone lead to layered structures—for ex-

ample, in the cerebral cortex, which emerges from the

telencephalon. In the developing retina, tangential

movements of cells within their destination layer help

to create regular distributions of cells (retinal mosaics).

During migration and at the site of their final desti-

nation, neurons gradually become specified into many

di¤erent cellular types. The determination of type

involves di¤erential gene expression and is controlled

by both intrinsic and extrinsic factors. Intrinsic factors

include proteins that are inherited from the neuron’s

precursors. Extrinsic factors are provided by other

cells in the form of di¤usible molecules, membrane-

bound molecules, and molecules bound on the

extracellular matrix (ECM); upon binding to recep-

tors on the recipient cell, these molecules influence

the proteins that regulate the expression of genes.

During or after migration, neurons begin to grow

out by projecting many broad, sheetlike extensions,

which subsequently condense into a number of small,

undi¤erentiated neurites. Eventually one of the neu-

rites increases its length and di¤erentiates into an

axon, while the remaining neurites later di¤erentiate

into dendrites. By way of the dynamic behavior of

growth cones—specialized structures at the terminal

ends of outgrowing neurites that mediate neurite

elongation and branching—dendrites branch exten-

sively and gradually form their characteristic mor-

phologies. Axons continue growing out and migrate

to their targets. One of the mechanisms by which they

are guided is the di¤usion of chemoattractant mole-

cules from the target. This creates a gradient of

increasing concentration, which the growth cone at

the tip of a migrating axon can sense and follow. The
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actions of the growth cone (axon guidance, neurite

elongation and branching) are influenced by the con-

centration of calcium within the growth cone; as a

consequence, all the factors that can change this con-

centration, such as neuronal electrical activity, can

modulate neurite outgrowth. Intracellular calcium

constitutes an important signal for many aspects of

neuronal development, not only for neuronal mor-

phogenesis but also, for example, for the activity-

dependent development of intrinsic and synaptic

conductances.

Once arrived in their target region, axons may

branch considerably before terminating to form initial

synaptic connections with permanent and transient

target structures. In many parts of the nervous system,

large numbers of neurons die at the time that their

synaptic connections are being formed, but they also

die at earlier phases of development, during prolifera-

tion and migration. During the period when initial

connections are being formed, the survival of individ-

ual neurons depends on anterograde signals received

through their input connections as well as on retro-

grade, target-derived signals received through their

output connections. Both types of signals involve

neurotrophic factors (growth- and survival-promoting

substances) and both include a component that de-

pends on electrical activity.

Once the initial connections are well established,

neuronal cell death becomes rare. Further refinement

of connections occurs by retraction of axonal branches

that project to the wrong targets and elaboration of

branches that project to the correct targets, and thus

involves both synapse elimination and continued

synapse formation. In some cases, such as in the

innervation of skeletal muscle fibers, retraction of

connections continues until the target remains inner-

vated by just a single axon. Remodeling of axonal

arborizations, as well as axon guidance cues, also

underlies the formation of topographic maps (e.g., the

retinotopic map; neighboring ganglion cells in the

retina project to neighboring neurons in the visual

cortex) and ocular dominance stripes (i.e., alternating

stripes of visual cortical cells that respond prefereren-

tially to input from either the left or the right eye).

Refinement of connectivity is influenced by patterns

of neuronal electrical activity and involves competi-

tion among innervating axons for target-derived neu-

rotrophic factors, which a¤ect axonal arborization.

In adulthood, further fine tuning of connectivity,

in the form of activity-dependent changes in the sig-

nal strength of synapses, participates in learning and

memory.

Structure of the Book

The order of the chapters follows loosely the chro-

nology of development as described in the preceding

section. Chapters 1 and 2 discuss the very early devel-

opment of the nervous system. Chapter 1 first shows

how, as a result of smooth gradients of transcription

factors, sharp boundaries in gene expression can be-

come established between cellular regions—a first

step in the way in which areas become specified into

distinct regions. It then shows how interactions

among transcription factors, cell adhesion, cell divi-

sion, and cell movement can account for neural tube

formation (in vertebrates) and neural cord formation

(in insects). Chapter 2 introduces a general framework

for modeling molecular-level interactions—for ex-

ample, gene expression—coupled to cell-cell inter-

actions and changes in the number and properties of

cells. The framework is used to examine how, in Dro-

sophila, cells become specified as neural cells.

Chapters 3 through 5 cover neuronal morpho-

genesis and neurite outgrowth. Chapter 3 describes

early morphogenesis and shows how positive feed-

back loops—involving calcium and active axonal

xii Arjen van Ooyen



transport—may underlie the formation of neuritic

structures from intitally spherical cells, and the di¤er-

entiation of one of the neurites into the axon. Chap-

ter 4 then further discusses dendritic outgrowth and

describes how the actions of the growth cone and the

underlying cellular and molecular mechanisms give

rise to characteristic branching patterns. Chapter 5

looks further at axonal outgrowth, exploring quanti-

tative constraints on axon guidance by target-derived

di¤usible factors.

Chapters 6 through 8 focus on di¤erent aspects

of the self-organization of neurons into networks.

Chapter 6 explores the consequences for neuronal

morphology and network development when neu-

rons self-assemble into networks by means of activity-

dependent neurite outgrowth. Chapter 7 examines

several mechanisms by which cells in the retina can

organize themselves into regular spatial patterns, or

mosaics. Chapter 8 explores how single neurons

and networks can self-assemble by means of activity-

dependent modification of conductances to produce

desired activity patterns.

Chapters 9 through 12 discuss the refinement of

connectivity and the development of specific con-

nectivity patterns, involving neuronal death (chapter

9) and remodeling of axonal arborizations and changes

in synaptic strength (chapters 10 through 12). Chapter

9 describes models that show how the many neuron-

to-neuron signals controlling neuronal death combine

to a¤ect development at the network level. Chapter

10 describes models of the competitive phenomena

involved in the refinement of connectivity (e.g., in

the visual and neuromuscular systems). Chapter 11

examines the various models that have been put for-

ward for the generation of topographically ordered

connections, or maps, between two discrete neural

structures (e.g., between the retina and the visual

cortex). Chapter 12 describes models for the genera-

tion of the connectivity patterns that underlie ocular

dominance and orientation selectivity in the visual

cortex.

While chapters 1 through 12 are concerned with

how neuronal morphology and networks develop,

the last two chapters of this book concentrate more

on the functional implications of morphology and

development. Chapter 13 focuses on the hypothesis

that the development of connections and learning in

the mature brain depend critically on structural plas-

ticity at the axodendritic interface, assuming an im-

portant role for individual dendrites in computation.

Chapter 14 discusses the link between developmental

processes at the cellular level and those at the systems

level and explores how structural brain development

relates to cognitive development.
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1Molecular Models of Early Neural Development

Michel Kerszberg and Jean-Pierre Changeux

During morphogenesis, boundaries are first estab-

lished among cellular territories characterized by per-

sistent di¤erences in gene transcription; meanwhile

and afterward, cell division and movement generate

embryonic form. In this chapter we present mathe-

matical and computer models for the control of gene

transcription during development. In the context of

the developing muscle fiber, we first show how a sin-

gle transcription factor, di¤using among nuclei and

acting nonlinearly on nuclear transcriptional switches,

su‰ces to create a sharp transcription boundary. We

then study the case where several transcription factors

are present, as in Drosophila syncytial blastoderm, and

show that oligomerization of transcription factors cre-

ates combinatorial complexity, resulting in the sharp

specification of multiple territories, which coincide,

for example, with various ranges of concentration in a

morphogen gradient. We then propose a model that

describes in minimal molecular terms the early steps in

the formation of the central nervous system (CNS).

The formalism is based on the interaction of two

transcriptional switches, a membrane receptor and its

ligand, and two morphogens and incorporates cell

adhesion, cell division, and cell motion. It accounts

for the di¤erence between vertebrates (which possess

a neural tube) and insects (which possess a neural

cord) on the basis of a few determining events in a

common developmental program.

1.1 Introduction

Can the development of living forms be described

mathematically? The first modern attempt to answer

this question was made by Alan Turing (1952). In

his landmark paper, Turing introduced a ‘‘reaction-

di¤usion’’ formalism in which at least two substances

(‘‘morphogens’’) were di¤using at di¤erent rates in

the embryo and reacting among themselves, one of

the morphogens being an ‘‘activator’’ and the other an

‘‘inhibitor’’ (see also chapters 2 and 3). He found that

such a system was able to account for important

aspects of morphogenesis. In particular, starting from a

homogeneous configuration, a stable spatial pattern

could develop, owing to the amplification of random

disturbances by dynamic nonlinear instabilities. While

this approach was revolutionary, at the time too little

was known of the cellular and molecular bases of

morphogenesis for an actual experimental demonstra-

tion to be possible.

Following in Turing’s steps, Meinhardt and Gierer

(1974; see also Gierer, 1981; Meinhardt, 1986; and

Meinhardt and Gierer, 2000) generalized the theory

and applied it to new animal models, proposing, for

example, to explain the development of polarity in

Xenopus embryos on the basis of a short-range auto-

catalytic activation and longer-range inhibition. The

nonlinear kinetics of chemical interactions were also

fundamental to the chemical ‘‘dissipative structures’’

defined and analyzed by Prigogine and co-workers

(Prigogine and Glansdor¤, 1971). However, it is fair

to say that in all these instances, the precise chemical

nature of the ‘‘morphogens’’ supposed to be involved

in natural systems remained enigmatic.

Monod and Jacob (1962) were the first to draw,

from the revolution of molecular biology, the impor-

tant experimental and theoretical conclusion that the



regulatory mechanisms operating during di¤erentia-

tion and development must be sought primarily

(although not exclusively) at the level of gene tran-

scription. While the nuclei of all the cells in an organ-

ism share identical DNA, not all the genes carried by

this DNA are expressed in all the organism’s nuclei

(e.g., Alberts et al., 1999). In the nucleus of each dif-

ferentiated cell, a selected subset of genes is tran-

scribed into messenger RNA, and these RNAs are

then processed and translated in the cell cytoplasm

into functional proteins. Considerable experimental

evidence indicates that a major cellular control point

lies at the transcriptional level. The logic of transcrip-

tion control was taken up in the theoretical models of

Thomas and D’Ari (1990) and of Kau¤man (1993),

and the subject has blossomed since (for a review, see

Smolen et al., 2000; see also chapter 2).

One of our goals over the past 10 years has been to

achieve a synthesis of the reaction-di¤usion scheme

with the regulation of gene transcription. This at-

tempt was driven by the experimental progress in

molecular developmental biology, which has brought

such a unified approach within reach by providing

molecular candidates for previously ill-defined entities

and by demonstrating their surprising degree of uni-

versality.

Thus we now realize that the reaction component

of the Turing scheme is largely implemented by the

molecular mechanisms that regulate gene transcrip-

tion, while the di¤usion component can be related

to a variety of cell-cell communication systems, such

as direct chemical interactions at cell contacts and

intercellular transport of molecular signals, that act on

cells in a concentration-dependent way just like the

morphogens hypothesized by Child (1929), Morgan

(1904), and Wolpert (1969). How the e¤ects of those

interactions are ultimately transduced into transcrip-

tion patterns at the cell nucleus has been the subject of

a vast amount of experimental work.

Experiment has revealed, in addition, that the mo-

lecular components used in morphogenesis display

striking homologies that span the entire animal king-

dom; i.e., they compose molecular building blocks

that are used repeatedly within a given organism and

that exhibit a remarkable conservation from one spe-

cies to another (see also chapter 2). Notch, for in-

stance, which is a cell membrane receptor, and Delta,

a ligand able to activate it when presented on the

membrane of neighboring cells (Artavanis-Tsakonas

et al., 1995), were first discovered in the Drosophila

peripheral nervous system. Today their homologs for

example, are also known to be important in certain

forms of Alzheimer’s disease in humans. The Notch-

Delta couple seems to constitute a universal ‘‘mod-

ule’’ implementing lateral inhibition, the fundamental

process that amplifies di¤erences in genetic function

among neighbors so that these neighbors are forced to

adopt sharply di¤erent patterns of gene transcription.

The process of establishing boundaries in gene

expression between territories is critical in embryo-

genesis, but it is only the first step. Discrete cellular

identities specified in sharply delineated territories

will underlie di¤erential growth patterns and thus

shape the embryonic tissues, mainly by regulating cell

division and motion. Starting with gastrulation and

neurulation, embryonic morphogenesis, at least in

animals, is indeed largely a story of cells, groups of

cells, and tissues moving with respect to one an-

other in a concerted fashion (Gilbert, 1995; Jacobson,

1991).

Mechanical models of cell motion in development

have been introduced (see also chapter 2), particularly

with respect to the formation of the neural tube

( Jacobson et al., 1986). Clearly, however, embryo-

genesis is ultimately powered by the coupling of me-

chanical e¤ects to cell-cell communication processes

and gene transcription control. What is called for,

then, is a further merging of molecular genetic net-
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works with the mechanical e¤ects that have been

extensively studied by classical embryology. Laying

the foundations for such a global theoretical construct

has been our second long-term goal, and in this chap-

ter we describe some of the elements of this synthesis

in their first and still very hypothetical form.

We begin with a formal model of boundary forma-

tion within the context of a relatively simple system,

the muscle fiber (Kerszberg and Changeux, 1993).

The muscle fiber is composed of many nuclei (it is

called a syncytium), which initially are all identical from

the point of view of transcription, but which mature

in sharply di¤erent fashion according to their position

relative to the synaptic nerve ending on the fiber.

A second model (Kerszberg and Changeux, 1994a)

then deals with the question of how various bounda-

ries can be established in a coordinated fashion, owing

to the action of morphogens. We first extend the

syncytial scheme to Drosophila syncytial blastoderm,

where about a thousand nuclei sharing the same cyto-

plasm acquire di¤erent identities under the influence

of several morphogens. We then mention briefly the

patterning of a cellularized system in a gradient of ret-

inoic acid (vitamin A), a morphogen that is common

to many vertebrates and that may well play a major

role in patterning the nervous system along the head-

to-tail (rostrocaudal, or anteroposterior) axis (Ker-

szberg, 1996).

The last model we introduce (Kerszberg and

Changeux, 1998) includes cell movement and cell di-

vision (coupled to gene transcription) and describes

the formation and dorsoventral patterning of the CNS

(a process called neurulation). To our knowledge, it is

the first time that a formalism is proposed that o¤ers a

unified framework for CNS formation across evolu-

tionary phyla. On the basis of this framework, we

propose that the di¤erence between the CNS of

insects, which consists of a set of discrete ganglia

organized by segments, and the CNS of vertebrates,

which consists of a continuous neural tube, arises pri-

marily from changes in the control of cell motions.

This provides an experimentally testable answer to the

question of how similar gene networks may give rise

to sharp morphogenetic divergences.

1.2 Transcriptional Switches and Embryonic

Boundaries

As an example of boundary formation, we consider

the developing muscle fiber, or myotube. At the con-

nection between vertebrate motor nerve and skeletal

muscle fiber (this connection is called the neuro-

muscular junction, NMJ), the neurotransmitter ace-

tylcholine (ACh), released in the synaptic cleft by the

nerve ending, binds the nicotinic acetylcholine recep-

tor molecules (nAChR) located on the muscle, where

it elicits a change in conformation (termed an allos-

teric transition) that leads to the opening of the asso-

ciated ion channel. The receptor protein subunits are

synthesized in the muscle fiber. The developing mus-

cle fiber results from the regulated fusion of single

cells, or myoblasts. Initially, nearly all nuclei in this

syncytium express the genes for the various subunits

composing the receptor. Progressively, however, fol-

lowing the first contact with the motor nerve ending,

subunit gene transcription becomes restricted until in

the adult it concerns only the nuclei lying directly

under the stabilized motor nerve ending (Duclert and

Changeux, 1995; Sanes and Lichtman, 1999). We have

proposed a very simple model of such compartmental-

ized transcription (Kerszberg and Changeux, 1993).

1.2.1 The Model

Transcription of eukaryotic genes is under the con-

trol of so-called promoter elements, which include en-

hancers, short DNA sequences (often located upstream
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of the genes themselves) to which transcription factors

(TF) bind to either enhance or inhibit the activity of

RNA polymerase (the enzyme that transcribes DNA

to RNA). The genes coding for TFs are, of course,

also controlled by TFs. The promoters of acetylcho-

line receptor subunit genes have been identified

(Klarsfeld et al., 1991; Schae¤er et al., 1998), and this

will form the basis of our model.

In a sense, the model consists of the simplest genetic

network, using a single TF that is produced in all-or-

none fashion. The basic units are switches Si ¼ 0; 1

determining the off/on state of gene transcription in

each fiber nucleus. A simple biochemical mechanism

for such switches consists of a single gene m and its

protein product M, itself a TF controlling the activity

of m, thus creating a positive feedback loop. If the

loop gain is greater than 1, the system forms a genetic

‘‘flip-flop’’ with two stable states, one in which the

activity of m and concentration of M are high and one

in which they are low. In addition, we assume that M

also turns on a genetic cascade (Britten and Davidson,

1969) leading to transcription of AChR subunit genes

at the nucleus. M might stand for one or several myo-

genic factors, such as those of the MyoD family,

which cause di¤erentiation of mesenchyme cells into

myoblasts (Weintraub et al., 1991) and AChR syn-

thesis. The myogenic genes have indeed been shown

to exhibit positive autoregulation controlled at the

level of their promoters (Thayer et al., 1989).

The activity of the switches is assumed to be regu-

lated by several e¤ectors. Electrical activity of the

nerve fiber, perhaps because of the accompanying in-

flux of Ca2þ, represses transcription (Klarsfeld et al.,

1989); i.e., in the present context, it reduces the e‰-

ciency of M. As a consequence, the autocatalytic ef-

fect of M is lowered and the probability of going (or

staying) in the high-M state is diminished. In contrast,

we postulate that anterograde factors originating pre-

synaptically, such as agrin (Meier et al., 1998) or ace-

tylcholine receptor-inducing activity (ARIA) (Harris

et al., 1991), which are present in the immediate vi-

cinity of the NMJ and elicit the di¤erentiation of the

postsynaptic domain, exert an enhancing e¤ect on the

switches’ activity.

The myogenic factors of the MyoD family are

known to di¤use within the fiber cytoplasm (Blau et

al., 1983). We therefore posit that nuclei can establish

communication by di¤usion of M; M may thus e¤ec-

tively act as a cytoplasmic morphogen, synthesized

near a nucleus but able to penetrate other nuclei and

become trapped there as an active TF.

Two sets of equations are written to define the

model, one for the states Si of the switches i (where i

denotes position along the fiber) and the other for the

di¤usion of the morphogen. We assume that M has

concentration-dependent probabilities for occupying

the a promoter site(s) and that whenever a promoter is

occupied by M, transcription takes place. Thus the

transition probabilities per time step for the switches

are

If SiðtÞ ¼ 1 then Siðt þ 1Þ ¼ 1 with probability

mþ af ðM iÞ and Siðt þ 1Þ ¼ 0 with probability

1� m� af ðM iÞ

If SiðtÞ ¼ 0 then Siðt þ 1Þ ¼ 1 with probability

1� nþ bf ðM iÞ and Siðt þ 1Þ ¼ 0 with probability

n� bf ðM iÞ ð1:1Þ

where m; a; n, and b are parameters obeying restric-

tions that make the probabilistic interpretation of Eq.

(1.1) possible, and f ðMÞ is a threshold function with

threshold T. The probabilities of staying on or going

on are both increased when M i bT . Morphogen

di¤usion and synthesis obey

M iðt þ 1Þ ¼ cb þMiðtÞfti � taEðtÞ � 2k½1� sSiðtÞ�g

þ kf½1� sSi�1ðtÞ�Mi�1ðtÞg

þ kf½1� sSiþ1ðtÞ�Miþ1ðtÞg; ð1:2Þ
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where k is the di¤usion coe‰cient, or internuclear

‘‘hopping’’ probability, of M per unit of time. The

first k term describes hopping away from i, the next

two hopping toward i. Note that the equations need

to be modified for those nuclei closest to the ends of

the fiber (tendons). The parameter cb denotes the basal

level of synthesis. It is important to realize that when

the nuclear switch i is turned on, only a fraction 1� s

of the morphogen there is available for di¤usion;

the rest is trapped in the nucleus, where it directs

enhanced mRNA transcription. The M-enhanced

transcription of the m gene yields fresh M product, at

a rate described by ti. The latter embodies the net ef-

fect of turnover (degradation) and autocatalytic bio-

synthesis. It depends on whether a nerve ending is

located in the immediate vicinity of nucleus i and on

the state of activity Si of this nucleus. In an isolated

nucleus, ti ¼ t0 þ tnSi, while under a synaptic termi-

nal, ti ¼ t0 þ ts þ tnSi. When the switch is on, syn-

thesis proceeds at a faster pace (at a rate determined by

tn). Under a terminal, transcription is also boosted

further by anterograde factors (ts). On the other hand,

we introduce the depressing e¤ect of electrical activity

E through a reduction (at a rate determined by ta)

of the net autocatalytic synthesis of M. Thus, in

the absence of electrical activity, EðtÞ ¼ 0, while with

ongoing electrical activity, EðtÞ ¼ 1� gnðtÞ, where

0 < g < 1 is a constant and nðtÞ denotes the number

of subsynaptic nuclei actively transcribing the m gene

at time t; we assume that nðtÞ is indicative of the

number of functional synaptic boutons and hence of

the average level of electrical activity.

1.2.2 Formation of a Transcriptional Boundary

A stationary state of great interest is the one in which

only a single focal nucleus (i ¼ 0) per muscle fiber is

actively expressing AChR genes; this is the situation

most often observed in vivo. We were able to calcu-

late an approximate analytical solution of this type

(figure 1.1) (Kerszberg and Changeux, 1993). We

found that the stabilized ratio of concentrations Ai to

Aiþ1, i0 0, is

Ai � Ay

Aiþ1 � Ay
¼ e1/l ¼ 1þ 1� tð1Þ

2kð1� sS�Þ

þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1� tð1Þ

2kð1� sS�Þ

� �2
�1

s
: ð1:3Þ

In this equation, which defines the decay length l, S�

stands for the (low) average genetic activity in the off

state, tð1Þ is the net synthesis rate at the nonactive

sites, and Ay ¼ cb/½1� tð1Þ� is the concentration dis-

tant from the active nucleus. In order for the solution

to be consistent, it is imperative that A0 (at the active

nucleus) be higher than the threshold T and that A1

(at the neighboring nucleus) be lower.

An illustrative case (Kerszberg and Changeux,

1993) yields a decay wavelength l ¼ 7:09, while

Figure 1.1

The analytical solution with one active (central) nucleus.

The central nucleus is the only one where the concentra-

tion of morphogen trapped on the gene promoter is above

threshold, thus driving local transcription of the morphogen

and hence its synthesis. The morphogen, once synthesized,

is free to di¤use away.
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A0 ¼ 2:97 and A1 ¼ 0:40 (all these are under electri-

cal stimulation). The wavelength is such that around

the isolated nucleus, about seven nuclei will be inacti-

vated on each side. The precise value depends on the

threshold T above which the morphogen becomes

e¤ective. As long as the fiber is shorter than this

wavelength, we may expect a single active nucleus;

when it is longer, multiple active nuclei are predicted.

Indeed, we have succeeded, under these conditions,

in reproducing by simulation the formation of multi-

ple, regularly spaced transcription patterns like those

occuring in certain mature muscles, such as the chick

anterior latissimus dorsi (Toutant et al., 1980), which

are accordingly innervated at multiple, regularly

spaced intervals.

Sharp boundaries may thus become spontaneously

established in the fiber when electrical activity is su‰-

ciently intense. Why are nuclei neighboring the active

nucleus quiescent? According to the model, this is be-

cause the morphogen is trapped by the promoter sites

of the active nucleus; its concentration in its vicinity is

thus reduced, hence the low value of A1. Computer

simulations are consistent with these analytical re-

sults on focal innervation (Kerszberg and Changeux,

1993). The simulations also predicted that persistent

activity may appear near the tendinous ends after the

muscle fiber has grown to its mature size. While sur-

prising at first, since no receptor seems needed where

there is no synapse, this prediction was confirmed by

analytical calculations and it has received experimental

support (Chen et al., 1990). We also examined by

simulation the progressive reinstatement of nAChR

expression known (Goldman and Staple, 1989) to oc-

cur upon denervation (i.e., extinction of the electrical

activity evoked by the nerve). This reexpression starts

from the middle and from the tendinous ends of the

fiber.

In conclusion, the example of the NMJ illustrates

how the sharpening of a boundary of genetic expres-

sion may plausibly result from the operation of simple

genetic circuits, namely, nonlinear transcriptional

switches. These involve a positive feedback of tran-

scription factors on the transcription of the very genes

coding for them.

1.3 Hetero-Oligomeric Connections: Reading

Molecular Gradients

We are now in a position to tackle more complex ge-

netic circuits. For, as TFs interact, such interactions

join independent pathways into a network. A salient

feature of these interactions, shared by the vast major-

ity of eukaryotic TFs, is that their molecular orga-

nization is oligomeric; i.e., they consist of assemblies

of identical or di¤erent subunits. Examples include

the achaete-scute gene family (Ghysen and Dambly-

Chaudiere, 1989; Simpson, 1990) and the retinoic

acid receptors (Laudet and Stehelin, 1992), which are

involved in the anteroposterior patterning of the

neural tube (Ruiz i Altaba, 1994). The combinato-

rial complexity that results from dimer formation is

increased by the composite structure of the genomic

promoter or enhancer sites to which they bind, with

their variety of high- and low-a‰nity components

( Jiang and Levine, 1993). Indeed, in addition to

structural genes, TFs control transcription of their

own and other genes coding for TFs (see section

1.2.1).

1.3.1 The Model

Based on these observations, we have proposed a the-

oretical model for gradient reading that relies crucially

upon the formation of TF oligomers as well as TF

self- and cross-regulation. The problem of gradient

reading (i.e., the establishment of sharp transcription

boundaries from a system of di¤use molecular dis-

6 Michel Kerszberg and Jean-Pierre Changeux



tributions) arises, for instance, in the Drosophila em-

bryo, which goes through a stage in which a thousand

nuclei are present in a single syncytium, much like the

skeletal muscle fiber we just considered. In this so-

called syncytial blastoderm (Kerszberg and Changeux,

1994a,b), none of the genes of interest are initially

active. However, these so-called zygotic genes, many

of them TFs, will become expressed under the precise

control of several morphogens, deposited inhomo-

geneously in the cytoplasm of the egg before it is laid

down. We will concentrate on one of the most

prominent of these shallow ‘‘maternal’’ gradients,

namely, the anteroposterior gradient of Bicoid (Dri-

ever and Nüsslein-Volhard, 1988; Hoch et al., 1991;

Struhl et al., 1989), which is a dominant factor in

structuring the embryo along the head-to-tail axis.

We assume that the morphogen M (e.g., Bicoid) is

a TF, or that it activates a TF. Its gene m is not tran-

scribed in the embryo. It is the concentration of M

that must be read. A second TF, V (e.g., Hunchback),

is expressed in the embryo. V may form with M all

possible homo- or heterodimers: MM, MV, and VV.

The MV heterodimer establishes the crucial con-

nection between the morphogenetic gradient and a

zygotic gene product. Note that oligomer formation

may be happening in the cytoplasm or in the nuclei

by interaction with the DNA promoters.

V will be called the ‘‘vernier’’ molecule, responsi-

ble for M-gradient reading (Lawrence, 1992). We

now posit that V binds to its own promoter. The

sequence

v gene activity ! V protein ! MV;VV dimers

! v gene activity

may thus compose a positive or negative self-

regulation loop. It is on the existence of this loop that

the model rests. As before, we formalize transcription

of v in nuclei by a genetic switch. At first, transcrip-

tion of v proceeds in a statistically uniform way. Once

synthesized, however, V di¤uses between cytoplasmic

compartments and forms the MV and VV complexes,

thus regulating v transcription both locally and at a

distance.

We study the embryo over two dimensions ði; jÞ
and divide it into 100� 25 ‘‘boxes.’’ Five hundred

of these boxes, chosen at random, contain a nucleus.

M is initially distributed in an exponential gradient

M0e
�i/l, where M0 and l are constants. The con-

centrations of M, V, and MV, and optionally of

MM or VV, obey straightforward discrete di¤usion-

reaction equations governed by mass-action laws for

the formation and decay of dimers. The crucial term

is the source term for V, which is present if the box

ði; jÞ contains a nucleus, where v may be transcribed

with a probability P. P depends on the presence

of TFs at the promoter binding sites, these sites

being characterized by their respective a‰nities and

synergistic-antagonistic interactions. We assume P to

be a sigmoid function of occupancy; for instance, if

MV activates v transcription, one would have

P ¼ 1� b� f

2
1þ tanh

b0MMþ b1MV� T

Q

� �
þ b;

ð1:4Þ

where b is the basal transcription rate, f the transcrip-

tion failure rate at high promoter occupancy, and T

and Q are, respectively, the threshold and width of

the sigmoid. The bs are kinetic binding and activation

coe‰cients. Note that Eq. (1.4) embodies coopera-

tivity (Driever and Nüsslein-Volhard, 1989), owing

both to the presence of the quadratic terms and to the

nonlinearity of the sigmoid. The reaction scheme is

described in the original publication (Kerszberg and

Changeux, 1994a). We now describe the computer

solutions obtained with various interaction schemes,

using stochastic Monte Carlo methods.
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1.3.2 Transcription Patterns with Multiple

Boundaries

At a given M concentration [i.e., on a given column

j ðEiÞ] transcription may be on, off, bistable (i.e., be

in a regime where transcription is either high or low,

depending on the relative stability of the two states

and sometimes on system history), or unstable (i.e.,

not settling into a stationary pattern at all). For simple

cases, the existence and stability of on and off can be

determined analytically (Kerszberg and Changeux,

1994a). Accordingly, four distinct, generic regimes

can be defined that correspond to extended ranges of

values in parameter space and that yield di¤erent

behaviors of the model. In what follows, we have

selected parameters appropriate for obtaining repre-

sentative results for three of the four regimes, which

are, respectively, MM dominated, MV dominated,

and MV-MM competition-regulated (figure 1.2).

Smooth Gradient Reading by the MM

Homodimer

Let us first consider the regime where the MM

homodimer promotes v transcription (b0 > 0,

b1 ¼ 0). The results of a typical simulation are dis-

played in figure 1.2, where we see that the final stable

situation, starting from the complete absence of V, is a

graded distribution of this molecule that is steeper

than that of M and in register with it. Note that in

terms of transcriptional activity, the transition is sharp.

Analytically, the position of this abrupt boundary is

easily deduced as the location where concentration of

M leads to a 50 percent chance for transcription being

on. Thus the gradient is read very precisely in terms of

Figure 1.2

Gradient reading by a cooperatively bound morphogen. In this and subsequent figures, the upper panel (A) displays protein

concentrations, with large squares denoting the initial gradient of morphogen Mi along coordinate w of the embryo, small

squares its final (late times) concentration Mf , and crosses the final vernier V distribution. The lower panel (B) represents nuclei

in the simulated two-dimensional embryo. Only those nuclei are shown in which v transcription is turned on (squares) at late

times. A sharp boundary is seen in the distribution of those nuclei. The protein V itself, however, shows a rather smooth distri-

bution, which may be considered a secondary gradient.
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gene activation patterns, but defines a rather smooth

protein distribution suitable for playing the role of a

secondary morphogenetic gradient such as that exhib-

ited by Hunchback.

Sharp Gradient Reading by the MV

Heterodimer

We now turn to the case (b0 ¼ 0, b1 > 0). Here the

MV heterodimer controls vernier transcription posi-

tively. The morphogen gradient is now read reliably

and sharply, both in concentration and in transcrip-

tional intensity (figure 1.3). The sharpness of the

boundary depends on the strength of the b1 non-

linearity and on the sharpness of the threshold func-

tion [Eq. (1.4)]. No secondary gradient arises. The

boundary occurs around a threshold M1. In a first

approximation, this is located at the point where

morphogen concentration is such that the V loop

gain is 1; i.e., per unit of time, one molecule of V

forms MV in such an amount that the transcription it

induces will yield fresh V in just the quantity needed

to balance decay (this reasoning neglects di¤usion).

Dynamically, the v gene is switched on in nuclei

starting from the high-M end, and transcription is

progressively established as an ‘‘on-wave’’ all the way

to the threshold value. Thus, a smooth M gradient

leads from an initially uniform rate of basal expression

of v to a sharp boundary.

In contrast to the situation illustrated in figure 1.2,

however, a sharp boundary in V concentration is now

also apparent. In the figure, one notices in addition

that when M is scarce, its concentration diminishes

appreciably as the MV dimer is formed in the active

zone. Counterdi¤usion of M toward that zone fol-

lows, stabilizing the exclusive expression of v there

and leaving a very shallow final distribution of M. The

Figure 1.3

Gradient reading by the autocatalytic vernier protein V. Transcription of v is induced by the MV dimer, and this cooperativity

gives rise to a sharp boundary in v expression. The boundary is at first located at the threshold M ¼ M1, the value at which the

amplification factor (gain) of the V regulation loop is precisely 1. Owing to di¤usion of the involved substances, it then moves

somewhat toward the low-M region. When the morphogen is scarce, as here, its depletion may result in a countergradient,

which reduces this later motion and stabilizes the boundary in an even stronger way.
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scarce morphogen situation is favorable because the

ultimate location of the boundary then depends less

on the fine details of the initial M distribution than

on the total quantity of morphogen available on the

high-M side of the embryo.

MV-MM Interaction: Reading the Gradient at

Two Levels and Forming a Stripe

The final case of interest is the one where (b0 < 0,

b1 > 0). MM dimers and MV dimers now have com-

peting e¤ects on transcription. Band formation may

result (figure 1.4). If the competition is not too strong,

the situation will be as described in the previous para-

graph. However, if b0 becomes su‰ciently negative

with respect to b1, two thresholds become apparent in

the system. The first is the M1 threshold, somewhat

displaced; this is the threshold above which transcrip-

tion starts. But when M (and thus MM) concentration

reaches a high enough value M ¼ M2, the negative

interaction will cause the V-loop gain to drop below

1; hence transcription is switched o¤. The figure

shows that transcription is on in a band defined by

these two morphogen concentration values.

The Krüppel Band

We may summarize and illustrate our findings by an

analysis of the expression of Krüppel, a Drosophila TF

gene expressed in a central stripe of the syncytial blas-

toderm, under the control of the bicoid and hunchback

genes (Kerszberg and Changeux, 1994b).

Hoch et al. (1991) showed that response elements

for both Bicoid and Hunchback were present in the

Krüppel promoter. Both Hunchback and Bicoid were

known to promote Krüppel transcription at low con-

centrations and to inhibit it at high concentrations.

What was not known when we performed our cal-

culations was whether Bicoid and Hunchback were

interacting. Using our formalism, we proposed that

Figure 1.4

The e¤ect of MM homodimer formation. Double gradient reading by the vernier protein V is seen to occur. Here the action of

the MV dimer [see figure 1.3] is antagonized at large M concentrations by the formation of abundant MM homodimer, which

competes with MV for v promoter sites, thereby reducing the V autocatalytic loop gain. At the location M ¼ M2 where MM

reduces this amplification factor below 1, v transcription is turned o¤.
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the experimental data could be explained by the MV

scheme (Bicoid as M and Hunchback as V), i.e., by

the existence of pairwise interactions between Bicoid

and Hunchback (not by direct heterodimer forma-

tion, but possibly on the Krüppel promoter itself ).

Indeed, such interactions were experimentally dem-

onstrated shortly afterward (Simpson-Brose et al.,

1994).

The model o¤ers a number of additional, specific,

and testable predictions. Some of these are apparent in

the results of a simulation of the full three-gene sys-

tem shown in figure 1.5. For instance, anterior ex-

pression of hunchback is predicted by the model to start

at the anterior end of the embryo and progress as a

wave toward its posterior limit. This should be ob-

servable in spite of rapid kinetics. The later, observed

retraction at the anterior end was predicted as well,

and appears to a certain extent to be due to Krüppel

competition. The model also explains rather simply

the puzzling experimental fact that multiple doses of

Bicoid protein displace the Krüppel stripe toward the

posterior end of the embryo instead of expanding it.

This results from the fact that Krüppel expression is

both enhanced by Bicoid-Krüppel and repressed by

Bicoid-Bicoid interactions.

Cellularized Embryos

The basic model has been further extended to en-

compass the more general case of cellularized embryos

(Kerszberg, 1996). A graded, shallow distribution of

some small, di¤usible molecule such as a steroid hor-

mone or retinoic acid (RA) is now assumed. Retinoic

acid has indeed been shown to intervene in the ante-

roposterior patterning of the neural tube (Ruiz i

Altaba, 1994). The receptors for RA are nuclear pro-

teins that function as oligomeric TFs with a rich com-

binatorial repertoire by binding to multiple promoter

sites on the cells’ DNA (see figure 1.6). It was found

that such combinatorics, operating under the con-

straint of no intercellular receptor tra‰c (i.e., di¤usion

Figure 1.5

Regional patterns of transcription established in Drosophila syncytial blastoderm. Each rectangle represents the embryo (head

upward) at a given time, which goes from 0 to 650 (left to right, in the simulation’s arbitrary units). Dark dots, nuclei tran-

scribing the hunchback gene; light dots, nuclei transcribing the Krüppel gene, which form a band at the center of the embryo. At

t ¼ 650, the preexisting exponential gradient of Bicoid, and the final concentrations of Hunchback and Krüppel have been

represented. We observe the progress of the hunchback expression wave and the establishment of the Krüppel stripe in the mid-

dle of the embryo.
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Figure 1.6

(a) Gradient reading in cellularized systems: a simplified

view of the retinoic acid (RA) receptors and the response

elements they bind to on DNA. Two major forms of

the receptors are the RAR (black circles) and RXR (gray

squares) families. They bind as dimers on two main types

of response elements, consisting of directly repeated half-

sites (dark triangles) spaced by one (DR1) or five (DR5) base

pairs. Various combinations of dimers and repeats induce

ð!Þ or, contrariwise, inhibit (x) transcription of down-

stream sequences. RA (black dots) binding to the receptors

is essential for activation. In particular, the DR5 element

functions as an enhancer when bound by an RAR-RXR

liganded heterodimer, with the RAR subunit occupying

the downstream (5 0) position. On the DR1, a homodimer

RXR-RXR or a heterodimer RAR-RXR may form; in

the latter case, the RAR subunit preferentially occupies

the upstream position. Actually, heterodimer formation is

the most likely process, but, presumably through allosteric

interactions, precludes ligand binding to RXR. Hence, the

homodimer is the only species that may actively promote

transcription. (b) The pathway controlling the expression of

the RAR receptor gene itself. In a cell nucleus (dotted line),

RAR-RXR receptor dimers may activate transcription of

the RAR gene if the local concentration of RA is suf-

ficient, because of the presence of a DR5 response element

driving the RAR gene. (RXR is expressed throughout the

embryo at a relatively constant level.) Note that the RAR

pathway forms a loop of retroaction, potentially leading to

many interesting morphogenetic phenomena. We assume

that a second pathway (not shown), operating through an-

other response element, controls the expression of a ‘‘re-

porter’’ gene, which is the one we use to display pattern

formation in time and space; an example is shown in (c ).

(c ) Precise gradient reading by nuclear receptors in a very

narrow band of gene transcription. A gradient of retinoic

acid is imposed on a cell field, with maximal value on the

left, and decaying to 0.1 of this maximum at the arrow’s

location. The reporter gene is assumed to be driven by a

DR1 response element. Successive snapshots (time in units

of simulation steps) display the nuclei (black) of cells where

transcription of the reporter gene takes place; these cells

form a finely delineated band (one cell diameter wide).

Note that such precision is achieved, in the present model,

in the absence of any cell-cell communication mechanism.

In view of the many sources of fluctuation, this demon-

strates a remarkable degree of reliability.



is now prevented), can produce gene transcription

patterns of remarkable accuracy. For example, a single

row of cells that is a given distance from a retinoic acid

source can be assigned a unique transcriptional fate, as

seen in figure 1.6. An experimental situation that this

result could partly describe is the specification of

rhombomere r4, a small and sharply defined portion

of the developing mammalian CNS. The cells of r4

indeed assume their correct identity only when an

appropriate concentration of RA is ensured and when

the RA receptors of the embryo are not defective

(Studer et al., 1994). Kerszberg (1996) analyzed how

multiple pathways interact in reliably achieving such

sharp territory formation.

1.4 Cell Adhesion, Motion, and Division:

Neurogenesis

The formation of patterns of cell di¤erentiation, as

described in the preceding section, is one of the fun-

damental features of embryonic development. Other

major aspects of morphogenesis, such as neurulation,

depend on the subsequent behavior of the di¤er-

entiated cells, e.g., cell adhesion, cell motion, and cell

division. We have proposed a simple, plausible model

(Kerszberg and Changeux, 1998) for the early devel-

opment of both the neural tube (neurulation in verte-

brates) and the neural cord (neuroblast delamination

in insects).

It is well established that the genes involved in

CNS formation in vertebrates and insects are homol-

ogous, and so is the general scheme of their in-

teractions. We therefore posit a common genetic

database for insects or vertebrates, defining in this way

a minimal set of molecular components necessary

for neurulation. Three distinct hierarchical levels are

involved in CNS formation: (1) permanent di¤erenti-

ation, i.e., cell determination (see earlier discussion);

(2) cell membrane presentation of ligands and recep-

tors and their intercellular interactions; and (3) cell

responses, i.e., signal transduction pathways that dic-

tate biochemical changes, altered gene transcription

(back to level 1, for a new round of further di¤erenti-

ation), cellular motion, adhesion, and mitotic activity.

This approach should be contrasted with previous

models ( Jacobson et al., 1986) in which only me-

chanical factors were considered.

1.4.1 Neurobiological Background

Formation of the CNS starts when the embryonic

outer layer (ectoderm) di¤erentiates into neuro-

ectoderm, or the neural plate (which will give rise to

neurons and glia), and epiderm (Gilbert, 1995). Cen-

tral to the process of neuron di¤erentiation within the

neuroectoderm are the so-called proneural TFs of the

achaete-scute (AS-C ) complex (Ghysen and Dambly-

Chaudiere, 1989; Simpson, 1990) or the homologous

XASH genes of, for example, Xenopus (Zimmerman

et al., 1993). Continued AS-C activity is su‰cient for

cells to become neurons. What are the upstream fac-

tors inducing AS-C TF activity? How is their activity

later maintained? What downstream e¤ects do the

AS-C TFs produce on cell behavior? We address these

questions in turn. The following discussion of experi-

mental data is summarized in figure 1.7.

Morphogens and Neural Induction

Figure 1.7a is a transverse section of the vertebrate

embryo’s dorsal ectoderm. Early determination of

neuroectoderm is characterized by the expression of

a battery of genes, which is at first antagonized by

endogenous repressors, the ‘‘bone morphogenetic

proteins’’ (BMP-2 and/or BMP-4) (Smith, 1995;

Liem et al., 1995). The BMPs are in turn inhibited by

Chordin (Sasai et al., 1994), which is synthesized in

and di¤uses from the underyling dorsal mesoderm
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Figure 1.7

(a) Signaling in neural morphogenesis upstream of achaete-scute (AS-C ). The AS-C complex of proneural genes occupies a

central place in the signaling events leading to neurogenesis. Here we depict in a simplified way the part of the signaling

chain lying upstream of the vertebrate homologs of AS-C. See the text for details. (b) Signaling in neural morphogenesis

downstream of AS-C. (I) The hierarchical organization of the two genetic switches that define the neural plate (dark) and its

neuronal (light) subterritories. (II) A model of the neuronal genetic switch, based on autocatalysis and mutual inhibition. See

text for details. (c ) The lateral inhibition pathway. Two cell nuclei n and n 0 in which the genetic switches operate as described

in (b) separated by cell membranes m and m 0. Notch is a membrane receptor for Delta; the gene for Delta is activated down-

stream of AS-C; Notch is expressed over the whole neural plate (see a). When activated by Delta, Notch in a nearby cell signals

an inhibition of the proneural genes and hence of Delta itself. When cells thus interacting are immersed in the two morphogen

gradients (see a), a complex competition arises (see text).
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(Spemann’s organizer). This ‘‘inhibition of an inhibi-

tion’’ is what leads to neural induction, i.e., the for-

mation of the neural plate. After induction, neural

plate gene expression becomes autonomous.

Under the concentration-dependent control of an-

other notochord-secreted protein, Sonic hedgehog

(SHH) (Roelink et al., 1995; Fietz et al., 1995), and

subject to BMP-mediated contact interactions with

the epidermal ectoderm, homeobox TFs such as Msx

and Nkx-2 then become expressed and, by acting on

AS-C, play a key role in inducing the formation of

neurons within the neural tissue.

The BMPs, which play a central role in neural pat-

terning, belong to the transforming growth factor-

beta (TGF-b ) family. BMP is a morphogen (Nellen et

al., 1996) and so is the extracellularly exported termi-

nal of SHH. In both vertebrates and invertebrates, the

net activation of the proneural TFs is thus e¤ected by

a distributed morphogen activity, modulated during a

second step by another morphogen that induces the

ventral neuron types.

Cell-Cell Interactions: The Lateral Inhibition

Pathway

Transcription of AS-C starts over a large area ini-

tially and then becomes restricted by a mechanism

of intercellular communication. Synthesis of AS-C

activates transcription of the gene for Delta, a ligand

for the receptor Notch (Artavanis-Tsakonas et al.,

1995). Notch on the membrane of cell x, when

activated by Delta present on the membrane of

neighboring cell y, inactivates expression of Delta in

x. The result is clearly lateral inhibition, implying

that local di¤erences in AS-C activity will tend to

Figure 1.7 (continued)
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become amplified. The spatially graded AS-C activ-

ity becomes sharpened into a spatial on/off distri-

bution (Heitzler et al., 1996), with topographically

separate cells undergoing separate developmental

fates—neural (AS-C and Delta expression) or epithe-

lial (no such expression).

Heterodimers and Genetic Determination

How are these di¤erent fates stabilized once the in-

ductive signal has subsided? The key to this problem

is thought to be that AS-C TFs interact with other

TFs belonging to the Enhancer-of-split [E(spl )] family

(Gigliani et al., 1996; Heitzler et al., 1996). By form-

ing heterodimers and homodimers, the AS-C and

E(spl) molecules cooperate in establishing (pro)neural

identity, perhaps through a combination of autocatal-

ysis and mutual inhibition (Nakao and Campos-

Ortega, 1996).

Hypothesis

Here we hypothesize that these experiments support

the idea of a bistable genetic memory system (see sec-

tion 1.2.1) based on the AS-C and E(spl ) gene fami-

lies. This suggests the possibility of embryonic cell

determination in the model, i.e., persistence of dif-

ferentiated transcriptional states. Two major genetic

switches of this type can be distinguished: (1) the

proneural switch just described and (2) the neuro-

ectodermal switch, which is responsible for the di¤er-

entiation of the neural plate itself. Candidates for

composing this second switch have been identified

(Ruiz i Altaba, 1994).

Cell Adhesion and Motion; Mechanical E¤ects

Once their developmental fate is determined, neural

tissues become mechanically separated from the epi-

derm. In insects, future neurons (neuroblasts) delami-

nate individually and go on to form the discrete

segmental ganglia. In vertebrates, two modes of neu-

rulation are known (Gilbert, 1995; Copp, 1993). Pri-

mary neurulation occurs as neural tissue forms a

thickened neural plate, which invaginates while the

surrounding epithelium folds over it. The two so-

called neural folds ultimately join, closing the neural

tube.

On the other hand, secondary neurulation consists

in the ingression of a neuroblastic cell mass followed

by cavitation. Formation of the neural tube by sec-

ondary neurulation is observed in some organisms and

may sometimes coexist with primary neurulation,

occurring then in those parts of the neural tube that

form last. The expression of various cell adhesion

molecules shows a characteristic pattern during the

invagination process (Papalopulu and Kintner, 1994).

During neural tube formation, neural tissue progres-

sively ceases presenting the E-cadherin cell adhesion

molecule, while beginning the production of N-

cadherin instead, which plays a role in tube closure.

Throughout the process, E-cadherin remains present

on outer ectoderm cell membranes.

The complex movements of epithelial cells leading

to neural tube formation depend on the mechanical

properties of tissues. Important di¤erences of motility

may exist between the basal (inner) and apical (outer)

faces of the epithelium (Viebahn et al., 1995). In ad-

dition, all cells involved are epithelial and thus form a

connected sheet held together by strong intercellular

junctions. An important mechanical role is also played

by cell division, which undoubtedly generates com-

plex forces, if simply by increasing the amount of tis-

sue present.

1.4.2 The Model

The model implements many of the components

described here quite accurately. Its dynamics are
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studied using a Monte Carlo formalism. For details,

the computer program is available from the authors.

The Geometric Substratum

For the sake of the computations, cells are assumed to

exist in a restricted two-dimensional space. This is ar-

tificially divided into a honeycomb lattice (124� 248)

of ‘‘bins’’ (see figure 1.8). These are analogous to pix-

els in a digitized image; their location is fixed, but

their shade of gray reflects the presence of objects,

such as molecules, or parts of objects, such as cell

membranes. Thus closed strings of adjacent bins com-

pose the ‘‘membranes’’ of cells (see the figure). Mem-

brane bins, as well as extracellular ones, are occupied

by molecules in varying concentrations. The mem-

branes are mobile; membrane molecules are trans-

ported along with their membrane (convection), and

extracellular molecules are displaced as membranes

move. In addition, membrane molecules di¤use on

the membrane, and extracellular molecules may dif-

fuse in the extracellular medium. Di¤usion is de-

scribed by probabilities per time step of ‘‘hopping’’

between adjacent bins. Reactions occur locally among

the various molecular species.

The Transcriptional Switches

Genes are turned on or off in a switchlike manner

described by binary variables (see section 1.2.1). These

switches determine cell fate and are themselves con-

trolled by TFs. Two pairs of TFs are introduced, each

composing a genetic switch. Thus, the proneural

switch consists of the proneural factor a and an asso-

ciated E(spl )-type factor e. a and e products form dim-

ers: AA, EE, and AE. The homodimer AA enhances a

transcription, while it represses e; EE does the con-

verse, activating e and inhibiting a; AE is not active in

this simple formalism. In addition, AA positively reg-

ulates the gene for a membrane ligand D (the equiva-

lent of Delta). It is assumed that D expression is at

this stage the hallmark of the neural phenotype. The

second, neuroectodermal switch, is established by

factors p (for plate) and q. These could represent two

homeobox genes, for example. The same interactions

are assumed to exist among the products of these

genes and those of a and e, so that expression of

one prevents expression of the other and con-

versely. The presentation on a cell membrane of N

Figure 1.8

The geometric substratum of the neurulation model. (a)

Space is divided in an underlying honeycomb array of

‘‘bins’’ or ‘‘pixels.’’ Groups of pixels comprise cells, with

their membranes m, m 0 (in various shades of gray, indicating

local ligand molecule concentration) and nuclei n, n 0 (dark
or light, depending on current gene transcription). Mole-

cules di¤use and react on the membrane or are translocated

to it as a result of genetic activity (arrows). Black pixels

are extracellular matrix. (b) The bins comprising a cell can

change in time (arrows); this is cell motion. Restricting this

motion are strong focal attachment points among cells (cir-

cle). These may correspond to, for example, adherens junc-

tions or to desmosomes.
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(Notch), the receptor for D, depends on the product

of gene p.

Morphogens

Two morphogens are assumed, B and S. Their distri-

bution is fixed before the simulation starts and decays

progressively. B activates transcription of the neuro-

ectodermal gene p, increasing its on probability. It

does so by reducing a preexisting inhibition and thus

operates very much like BMP when not antagonized

by Chordin. The second morphogen, S, is an analog

of SHH. It is responsible for the initial, relatively

widespread, ventralmost region of expression of the

proneural gene a, which it activates. The concen-

tration of S reaches a peak near the midline, and is

interpreted according to its value relative to two

thresholds, which is in agreement with experiment

(Roelink et al., 1995). At the midline (above the

notochord), a high concentration of S represses the

proneural gene; at intermediate levels (on both sides),

activation takes place; while even farther from the

midline, repression is again assumed to occur.

Lateral Inhibition

Lateral inhibition is a new feature introduced in this

work. Cell membranes read at all times the state of

neighboring membranes for adhesion, motion, and

signal transduction purposes. Transduction occurs as

each membrane bin i is examined for neighboring

bins j belonging to di¤erent cells. The amounts of

ligand D in these neighbors are added up. The sum is

then multiplied by the concentration of receptor N in

i; it is assumed that the local activated receptor N� is

proportional to this product. N� is finally summed

over all the bins constituting the membrane of the cell

under consideration, and the resulting signal causes a

reduction in the expression of the proneural gene a in

this cell.

Cell Adhesion and Motion

Accounting for cell adhesion and motion is a com-

pletely novel and, as far as we know, unique aspect

of our simulations. Cell motion is introduced in a

simple manner. At the membrane, bins (‘‘pixels’’) may

cease to belong to a cell (retraction) or may be added

to it. The probabilities of subtraction or addition are

adjusted according to the conditions encountered lo-

cally. For the sake of illustration, consider a cell x that

displays on its membrane a particular homophilic ad-

hesion molecule. Assume now that cell x has the pos-

sibility of growing by adding a particular pixel to itself

and that this addition results in cell x making contact

with another cell y. If y displays on its membrane a

su‰cient concentration of the same adhesion mole-

cule as displayed by x, the probability of e¤ectively

adding the pixel will be increased relative to the

probability of other possible moves. The net result is

an adhesion force that acts on cells and parts of cells to

bring and keep them together (Edelman, 1988). In

addition, epidermal cells, which do not express p, are

restricted to moving in a horizontal layer. On the

other hand, neural plate cells, which do express p,

move more freely and movement toward their basal

side is favored; i.e., the Monte Carlo moves that result

in motion toward the basal side are accepted with a

higher probability than those that do not result in such

motion.

Cells are joined in pairs by strong focal adhesion

points and form a ‘‘string of beads’’ much like actual

epithelia when seen in transverse section. Pair rela-

tionships cannot be rearranged. The adhesion points

demarcate the apical and basal faces of the cells. This

distinction serves as a starting point for our modeling

of cytoskeletal movement. Cell motion is in the form

of a contraction of the cell cortex at the apical face,

and an expansion of the basal face. By what genes is

the motion controlled? In the next section we will see
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that the possible answers to this question form a basic

prediction of our model.

Cell Division

An equally important novelty is our modeling of cell

division in the context of development. In cell divi-

sion, the bins previously occupied by the mother cell

are split into two sets, each belonging to a daughter. A

fundamental feature of cell division is anisotropy.

That is, the axis defined by the two daughter nuclei is

not oriented in random fashion; instead, the axis has a

greater probability of lying parallel to the line joining

the two focal adhesion points on the mother cell

membrane. As a consequence, the new cells automat-

ically lie in the plane of the epithelial sheet. Division

itself occurs with a probability that is a function of cell

size and type (expressing p and a or not expressing

them). As division occurs, all molecular species pres-

ent must be distributed among daughters; this is done

on the basis of equipartition. Note that a rudimentary

mechanism for epigenetic inheritance must be imple-

mented during mitosis, so that each cell bequeaths to

its daughters the transcriptional state of its nucleus;

this is important, particularly just after division, when

the complement of TFs in a daughter may not yet be

su‰cient to ensure continued expression or repression

of the proper genes.

1.4.3 Results: Neurogenesis and its Evolution

Two main sets of simulations have been performed.

They di¤er essentially with respect to the coupling

of cell motion to the genetic switches. When cell

movement is activated and modulated by the neuro-

ectodermal switch, which is turned on over the rela-

tively widespread neural plate region, we observe the

analog of vertebrate primary or secondary neurula-

tion, depending on the rate of cell division. Coupling

of cell motion to the proneural switch, on the other

hand, gives rise to the delamination of discrete neuro-

blasts, as happens in the formation of the insect neural

cord.

Computer Simulation: The Vertebrate Neural

Tube

Consider the dorsal part of a vertebrate embryo in

transverse section (figure 1.9). In the top left of the

figure, the distribution of morphogenetic activities

over such a section is shown. The light curve corre-

sponds to B, the molecule(s) that inhibits neural plate

formation. B (say, free BMP-4) is distributed in a

shallow midline-centered gradient. Its concentration

is high when it is far from the midline and is depressed

near it by a chordin-type activity. The dark curve indi-

cates the Sonic hedgehog-style gradient S. The rest of

figure 1.9 shows simulated snapshots of the system,

taken at successive times during a typical simulation.

Cells start as a homogeneous epithelial sheet (figure

1.9a). As the morphogens act, neural plate genes are

turned on. Note that while the inhibition gradient is

shallow, the gene expression boundary is sharp. All

neural plate cells express the N (Notch) receptor. The

neural plate cells are released from the molecular

forces that maintain them in a sheet; they thus grow,

and the epithelium thickens as a neural plate. Apical

side membrane constriction and basal side expansion

also take place, the consequences of which will be-

come clear shortly. Meanwhile (see figure 1.9b), the

neurogenic gradient acts and turns on the proneural

genes a (nuclei marked in white). This occurs in two

patches, which are, however, very close to one an-

other in our simulations and thus appear rapidly as a

single one. A turns on h, the ligand for N (high h is

depicted by a light color); lateral inhibition is thus

triggered, leading to a restriction of neuronal fate to

isolated cells (figure 1.9c).
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Figure 1.9

Simulated formation of a neural tube (primary neurulation). The dorsal part of a transverse embryonic section is shown at suc-

cessive times from top to bottom and from left to right (the embryo’s dorsal side is up). See the text for details.
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Thus the model achieves accurate and reliable

genetic determination of single cells at locations de-

termined precisely by morphogenetic fields (gray

arrows). The morphogen distribution has now de-

cayed, but gene activity has become self-maintained

through autocatalytic loops, and cells are committed

at the genetic level. Because of di¤erential expan-

sion and contraction of the cell membrane, neuro-

epithelium ingression starts (figure 1.9d,e). Neural

ingression is accompanied by a progressive further

thickening near the edge of the neural plate, as ecto-

derm covers the plate (figure 1.9g,h).

In figure 1.9e–h, we observe how the neural folds

get closer until the gap between them heals com-

pletely. Note, too, how cell shapes are a¤ected at the

folds, owing to the mechanical stresses applied there

by the combined ectodermal expansion (because of

cell divisions) and neural tube movements. Such shape

changes have been modeled in much mechanical de-

tail by Oster’s group ( Jacobson et al., 1986).

Computer Simulation: Secondary Neurulation

If one divides the spatial range of the neural inhibition

activity by a factor of 2 and increases by a factor of

about 5 the rate of division of the neural plate cells,

the resulting behavior (figure 1.10) is in sharp contrast

to our previous simulations. We now observe the

ingression of a neuroblastic mass; this resembles the

initial steps of secondary neurulation. The model as it

stands does not encompass the full subsequent cav-

itation of this mass, although a tendency to cavitation

can be observed in figure 1.10e,f.

Computer Simulation: The Insect Neural Cord

Let us now assume that cell motion is coupled, not to

the neural plate switching genes, but to those that

signal a neuronal fate (a). The results are remarkably

di¤erent (see figure 1.11). At first, everything pro-

ceeds as in neurulation. A group of cells at the center

of the system start to express the neural plate signal

(figure 1.11a), and in two apposed subgroups of these,

the proneural genes then become active (figure

1.11b,c). This again turns on the lateral inhibition

pathway for these genes; hence, some cells progres-

sively stop producing the neuronal signal. Ultimately,

two discrete neuroblasts di¤erentiate and their mem-

brane motions become specialized (i.e., they perform

apical contraction and basal expansion). This leads

to their delamination at locations that are symmet-

rical with respect to the midline (figure 1.11d–f ).

Such behavior bears a close resemblance to the de-

lamination of one line of ganglion precursors during

neurogenesis in insects (provided the embryo is seen

ventral side up).

1.5 Discussion

We started from the simplest genetic network,

involving a single gene and its product. This is su‰-

cient to obtain a major result: the establishment of

sharp territorial boundaries in the embryo. We then

proceeded to link di¤erent genetic pathways through

the oligomerization of transcription factors involved

in these pathways. Our fundamental result is that such

crosstalk among cellular regulatory systems could have

been a key factor in the increase of complexity in

biological pattern formation. In this way, indeed, we

have shown formally that coupled pathways of tran-

scriptional control and cell-cell communication are

capable of accurately reading morphogen gradients at

several threshold levels, in syncytial as well as cellular-

ized systems.

When several sharp territorial boundaries are

achieved, cell adhesion, growth, and movement will

drive organ morphogenesis in a direct fashion, as we

have proved for the initial stages (neurulation) in the
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formation of the CNS. It must be emphasized that

all the results described are valid over a sizeable range

of parameter values (otherwise, one may argue, we

should have been unable to observe them). Our

models thus demonstrate the resilience of the hypo-

thesized developmental mechanisms. Because simu-

lations such as those of neural tube formation were

Monte Carlo processes and therefore included sources

of random noise, resistance to statistical fluctuations

and errors is clearly built into the system as well.

Our formalism shows that major morphological

changes associated with evolutionary transitions did

not require large genetic changes. Thus the genetic

data (De Robertis and Sasai, 1996) and the morpho-

genetic capabilities of the model together suggest that

no major genetic reshu¿ing or novelty was needed

to e¤ect the transition from the neural cord of Droso-

phila or Octopus to the hollow neural tube of verte-

brates. Yet this was a momentous transition, since it

greatly facilitated the growth and di¤erentiation of the

Figure 1.10

Formation of a neuroblastic cell mass (secondary neurulation). The conditions are the same as in figure 1.9 except that the spa-

tial range over which neural plate inhibition is weak has been decreased by a factor of 2 and the rate of mitosis in neural plate

tissue is five times higher.
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neural system, all the way to mammals, primates, and

man.

Clearly, much work remains to be done, particu-

larly with respect to the detailed modeling of genetic

pathways and, most important, the realistic modeling

of cell motion (Bray, 2001). A detailed picture of the

various molecular subcomponents of the cytoskeleton

will be required. This future work will also have to

converge with the modeling of later stages in CNS

development. Meanwhile, the connections between

neural di¤erentiation and cell motion, which have

long been neglected by experimentalists, are begin-

ning to be investigated empirically.
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Studer, M., Pöpperl, H., Marshall, H., Kuroiwa, A., and

Krumlauf, R. (1994). Role of a conserved retinoic acid re-

sponse element in rhombomere restriction of Hoxb-1.

Science 265: 1728–1732.

Thayer, M., Davis, S. T. R., Wright, W., Lassar, A., and

Weintraub, H. (1989). Positive autoregulation of the myo-

genic determination gene MyoD1. Cell 58: 241–248.

Thomas, M., and D’Ari, R. (1990). Biological Feedback. Boca

Raton, Fla.: CRC Press.

Toutant, M., Bourgeois, J., Toutant, J., Renaud, D.,

Douarin, G. L., and Changeux, J.-P. (1980). Chronic stim-

ulation of the spinal cord in developing chick embryo causes

the di¤erentiation of multiple clusters of acetylcholine re-

ceptor in the posterior latissimus dorsi muscle. Dev. Biol. 76:

384–395.

Turing, A. M. (1952). The chemical basis of morphogenesis.

Phil. Trans. Roy. Soc. London B. 237: 37–72.

Viebahn, C., Lane, E. B., and Ramaekers, F. C. (1995).

Cytoskeleton gradients in three dimensions during neurula-

tion in the rabbit. J. Comp. Neurol. 363: 235–248.

Weintraub, H., Davis, R., Tapscott, S., Thayer, M., Krause,

M., Benezra, R., Blackwell, T. K., Turner, D., Rupp, R.,

Hollenberg, S., Zhuang, Y., and Lassar, A. (1991). The

Myo-D gene family: Nodal point during specification of

muscle cell lineage. Science 251: 761–766.

Wolpert, L. (1969). Positional information and the spatial

pattern of cellular di¤erentiation. J. Theor. Biol. 25: 1–47.

Zimmerman, K., Shih, J., Bars, J., Collazo, A., and Ander-

son, D. J. (1993). XASH-3, a novel Xenopus achaete-scute

homolog, provides an early marker of planar neural induc-

tion and position along the mediolateral axis of the neural

plate. Development 119: 221–232.

26 Michel Kerszberg and Jean-Pierre Changeux



2Gene Network Models and Neural Development

George Marnellos and Eric D. Mjolsness

Rapid advances in molecular biology and genomics in

recent years have highlighted the need for theoretical

tools to analyze and integrate a flood of data. In this

chapter, we review mathematical and computational

models of molecular processes underlying biological

development and concentrate on the role of genes

and their interactions. We describe in greater detail a

modeling formalism for a gene network, based on

neural networks, to study gene regulatory interactions

during development. We apply this framework in a

computational model of early neurogenesis in Droso-

phila. Although such models are only small steps in the

elucidation of how genes orchestrate the complex

patterns of neural development, they could provide

directions for subsequent research, and could be re-

fined to deal with more powerful data as they become

available.

2.1 Genomic Advances Document Unity of

Life

From bacteria to primates, the diversity of form and

function and the interdependence between the two

have occupied biologists for a long time. How are

morphological and behavioral patterns of individual

organisms coded for and what forces produce these

patterns? How is the tremendous richness of these

patterns generated in nature? What rules or con-

straints determine their generation? What purpose

might they serve? Evolutionary biology provides of

course a framework for addressing questions like

these, but now with the advent of molecular tech-

niques, we have a unique opportunity to explore

at a mechanistic level how life’s diversity is generated

and why.

In the past 30–40 years, molecular methods for

manipulating genetic material, but also other cellular

components, have allowed researchers to investigate

hitherto inaccessible processes both at the cell level

and at higher levels of integration. Genes and entire

biochemical pathways isolated in one experimental

system (e.g., yeast and Caenorhabditis elegans) can now

almost routinely be identified in many other organ-

isms, not only providing clearer answers to questions

originally investigated in individual species, but also

revealing previously unimagined levels of homology.

Examples of homology abound. A particularly

striking one is that of homeotic genes, which are nec-

essary for specifying animal body patterns. Homeotic

genes are transcription factors containing a conserved

region that binds to DNA, and they determine re-

gional identity. Their characteristic mutant pheno-

types, which can lead to duplication of a body part or

replacement of one body part by another (e.g., legs

in place of antennae), had long puzzled geneticists

who had studied them in Drosophila. In fact, in 1978,

one of those researchers, E. B. Lewis, formulated a

detailed hypothesis as to how homeotic genes might

have contributed to the evolution of the fly body

plan, thus anticipating many related discoveries in the

following decade (Lewis, 1978). These genes were

first cloned in Drosophila (McGinnis et al., 1984; Scott

and Weiner, 1984), and because of the conserved



region, the homeobox, their homologs were sub-

sequently isolated in many other phyla, from cni-

darians to vertebrates (Akam, 1989; Schummer et al.,

1992; Krumlauf, 1994), and were shown to be orga-

nized in similar gene groupings and to be expressed in

the same order along the body axis as in Drosophila.

Such findings have prompted the reevaluation of

homologies among body parts across phyla and evo-

lutionary relationships in general, and have provided

insights into the evolution of developmental mecha-

nisms, pointing to the importance of the evolution of

regulatory genes in morphological diversity (Carroll,

1995).

Other examples of genes and pathways conserved

across species include, to name but a few: (1) the Ras

family of G proteins, which integrate inputs from a

wide range of cellular pathways and control many

aspects of cell proliferation and di¤erentiation in yeast,

flies, nematodes, and mammals by transmitting sig-

nals from tyrosine kinases at the plasma membrane

through a kinase cascade to the nucleus (Boguski and

McCormick, 1994); (2) the mitogen-activated protein

kinase (MAPK) pathway, which consists of a cascade

of three classes of kinases that deliver signals from

membrane to nucleus, and which was first identified

in the mating response pathway of yeast and then in

many metazoans (in metazoans, the MAPK cascade

conveys inputs of Ras proteins, among others) (Nei-

man, 1993); (3) the homologous pathways that regu-

late fly and vertebrate limb development, as in the

case of the Hedgehog family of proteins involved in

the anteroposterior patterning of the limb (Fietz et al.,

1994); (4) the family of nuclear receptors, such as ste-

roid, retinoid, and thyroid hormone receptors, which

mediate the e¤ect of hormones on gene expression

and which are dominant regulators of organ physiol-

ogy as well as of insect morphogenesis (Beato et al.,

1995; Thummel, 1995).

2.2 Need for Theoretical Tools

The list of such discoveries grows daily, supplying

strong evidence about the unity of life forms and their

biological building blocks, strengthening the convic-

tion that description at the gene level will provide a

unifying principle to explain diverse biological phe-

nomena, and exposing the need for analytical meth-

ods to study these phenomena.

The situation is perhaps comparable to what hap-

pened in physics during the first decades of this cen-

tury, when the structure of the atom was probed and

this opened the door to the discovery of subatomic

particles and a unified way of viewing matter in all its

forms. However, there is a crucial di¤erence between

today’s biology and the state of physics at the begin-

ning of the century. Whereas physicists at the time

had access to a formidable chest of mathematical tools,

which had been the language of physics for centuries,

the theoretical means currently at the disposal of biol-

ogists seem limited in comparison. There have been of

course major contributions, such as the work of Lotka

and Volterra (Lotka, 1925; Volterra, 1926) on popu-

lation biology and predator–prey models, Fisher

(1930) on gene flow dynamics in populations, Turing

(1952) on the role of reaction and di¤usion of sub-

stances in pattern formation during development,

Thom (1972) on the topological aspects of morpho-

genesis, and Hodgkin and Huxley (1952) on genera-

tion and propagation of action potentials in axons.

These pioneering studies have helped establish whole

fields of research in ecology, population genetics,

developmental biology, and electrophysiology, but

the fact remains that, on the whole, in biology theory

has not occupied the same place in the interpretation

of data and the designing of experiments as it has in

physics.
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The need for theoretical methods in biology has

become more apparent in the past decade as data from

molecular experiments pour in at an ever-increasing

rate, especially from whole genome sequencing proj-

ects. People have started responding to this real-

ization, most notably in the area of computational

molecular biology, where mathematical tools (e.g.,

statistical analysis and combinatorial optimization)

have been used to study structure and function in

genomes, genes, and gene products in order to answer

specific biological questions. This work includes dis-

covering genes in sequences, detecting gene homolo-

gies among species, building phylogenetic trees, and

predicting the secondary and tertiary structure of pro-

teins and nucleic acids from sequence information.

However, the intensity of theoretical e¤ort in

genomic research will have to be extended to the

study of development and the phenotypic variation

that it generates (and that selection acts upon). In par-

ticular, it will have to be directed to the study of genes

and their involvement in these processes, since mo-

lecular data will contain a wealth of information on

developmental and evolutionary questions.

2.3 Models of Molecular Processes and

Development

2.3.1 Reaction-Di¤usion

There has already been a considerable amount of

work on mathematical models of development. A

large part of this work has been in the tradition of

Turing’s reaction-di¤usion approach. In systems such

as insect segmentation, seashells, animal coats, and

butterfly wings, the stable patterns that can emerge

when chemical substances, morphogens (usually two

in number, an activator and an inhibitor), di¤use and

react with each other over a morphogenetic field

were modeled by Gierer and Meinhardt (1972),

Meinhardt (1986, 1987, 1998), and Murray (1981a,b,

1993; see also chapters 1 and 3). These e¤orts have

generally dealt with abstract quantities and have not

attempted to make explicit connections between

these quantities and the interactions of specific genes,

although in some cases subsequent experimental work

has provided candidate molecules, as in the case of

Meinhardt’s model of how insect leg proximodistal

coordinates are set up (Meinhardt, 1983; Basler and

Struhl, 1994; Diaz-Benjumea et al., 1994).

2.3.2 Mechanical Models

Other researchers have considered cell movements

and mechanical properties of cells and tissues and

modeled processes such as gastrulation and neurula-

tion (Odell et al., 1981; see also chapter 1), cartilage

condensation in limb morphogenesis and pattern-

ing of feather primordium (Murray et al., 1983; Oster

et al., 1978), aggregation of Dictyostelium amoebae

(Segel, 1984; Marée and Hogeweg, 2001), cell in-

tercalation and sorting (Weliky and Oster, 1990;

Agarwal, 1995; Graner and Sawada, 1993), and skin

generation (Stekel et al., 1995).

2.3.3 Lindenmayer Systems

Drawing inspiration from formal languages, Linden-

mayer (1968) has modeled development using sets of

rules, or grammars. These rules describe cellular pro-

cesses such as growth, division, and di¤erentiation and

are used to modify strings that represent organisms.

These so-called Lindenmayer systems have been used

to model the growth and branching patterns of plants

(Prusinkiewicz and Lindenmayer, 1990). They have

also been extended to include cell-cell interactions,

through the use of context-sensitive grammars, as well
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as two-dimensional (2-D) and three-dimensional

(3-D) cells that can change shape, as in some of the

mechanical models mentioned earlier (Lindenmayer

and Rozenberg, 1979; Lindenmayer, 1984).

2.3.4 Biochemical Kinetics

The models mentioned above do not attempt to

make any connections to specific genes or biochemi-

cal pathways involved in the processes modeled, and

in fact most of them do not make any reference to

such factors at all. There have been models incorpo-

rating such molecular elements, however, although in

this case the modeling has been restricted to processes

within single cells. Savageau (1976), applying meth-

ods from chemical kinetics, has modeled biosynthetic

pathways and the regulation of gene expression in

prokaryotes. He analyzed the fixed points and peri-

odic behaviors of these systems and also considered

questions of optimality in the design of the pathways.

Other workers have also examined dynamical features

of metabolic pathways and gene expression (Good-

win, 1965; Hunding, 1974; Hastings et al., 1977;

Tyson and Othmer, 1978), Ca2þ signaling (Dupont

and Goldbeter, 1992), and the complex interactions in

the progression of the cell cycle (Novak and Tyson,

1993).

In a similar framework, Bray has pointed out the

similarities of biochemical signal cascades to neural

networks that might be performing some kind of

pattern recognition within cells. It has in fact

been shown that chains of chemical reactions can

be viewed as neural networks that can be reduced to

Hopfield nets (Hjelmfelt et al., 1991; Hjelmfelt and

Ross, 1992; Bray, 1995). Bray has modeled networks

of cell-signaling reactions (Bray, 1990; Bray and Lay,

1994) and has optimized the reaction parameters to

achieve a desired mode of functioning or output of a

pathway. He has used this method to simulate the sig-

naling cascades involved in bacterial chemotaxis and

found reaction parameter values that produce various

chemotactic behaviors of known mutant phenotypes

(Bray et al., 1993; Bray and Bourret, 1995).

In a biochemically more concrete look at morph-

ogen gradients during development (see section

2.3.1), Kerszberg and Changeux (1994) examined

how di¤erent assumptions about transcription factor

dimers, autocatalytic feedback, and competition for

regulatory binding sites by these dimers lead to di¤er-

ent patterns of transcription and protein concentra-

tion (see also chapter 1). These authors used the results

of their model to interpret morphogen gradients of

Bicoid and Hunchback in the Drosophila blastoderm.

More recently, Von Dassow et al. (2000) have also

looked at developing Drosophila embryos, using a

fairly realistic biochemical interaction model. They

examined interactions among segment polarity genes

and found that the whole system is dynamically robust

and can resist changes to its kinetic parameters.

2.3.5 Phage l

In work concentrating on gene interactions, Ackers et

al. (1982) and Shea and Ackers (1985) have developed

a detailed quantitative model of the regulation of

certain genes of bacteriophage l that are involved in

maintenance of the lysogenic state (when the pro-

phage is integrated into the DNA of the host) and the

induction of lysis (when the virus replicates). In con-

structing their model, the authors stayed very close

to biochemical facts concerning the structure of the

genes involved and their promoters, binding con-

stants, dimerization, cooperative interactions, and so

on. In a hybrid modeling approach, McAdams and

Shapiro (1995) have also looked at the lysogeny–lysis

switch of phage l by integrating chemical kinetics

with an electrical circuit simulation of the genes and

regulatory interactions that control this switch.
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2.3.6 Boolean Nets

In a di¤erent vein, abstracting from biochemical de-

tail, Kau¤man (1969) has introduced networks of ele-

ments with binary states to model gene regulatory

interactions. These Boolean networks are intended to

be idealizations of continuous dynamic systems with

elements that behave in a sigmoidal fashion (as is the

case with many cellular and biochemical processes);

they are believed to capture a skeleton of the dynam-

ical structure of such continuous systems (see chapter

5 in Kau¤man, 1993, and references therein). Since

Boolean networks have finitely many di¤erent states,

they are guaranteed to have fixed points and state

cycles, which could be viewed as corresponding to

stable di¤erentiation states and periodic behaviors

of cells; such parallels are being explored in specific

cases where known gene expression patterns appear

to be consistent with this description (Somogyi and

Sniegoski, 1996). Kau¤man (1969, 1971, 1974) has

explored the stability of the dynamics of these Boo-

lean nets, which depends on the number of inputs of

each element and the number of elements. He has also

ascribed fitness values to di¤erent configurations of

Boolean nets and investigated features of the fitness

landscapes that result in such configuration spaces,

such as number, similarity, and accessibility of fitness

peaks (Kau¤man and Levin, 1987).

2.4 Gene Net Framework

Genes being a natural module for the description of

living systems, they also appear to be a natural level of

abstraction for integrated biological models. Starting

from this premise, Mjolsness et al. (1991) have intro-

duced a modeling framework for the study of devel-

opment, centered around genes and their interactions.

This framework shares features with the models

described earlier, but in a combination that is not

found in any of the others. It incorporates features

that allow modeling of processes at the tissue level,

such as in the reaction-di¤usion and mechanical

models, but unlike the biochemical kinetics and phage

l models; and unlike the former but similar to the

latter, it also includes a description of molecular pro-

cesses, such as gene expression. The modeling frame-

work consists of two major components:

1. The first is a neural network representation of

molecular-level interactions. Gene interactions, as

well as other molecular signaling and regulatory

events, are modeled as a particular kind of neural net,

namely, recurrent nets, with connections allowed in

both directions between any pair of nodes (Hopfield,

1984; Hertz et al., 1991). In this formulation, gene

product concentrations correspond to node activation

levels and gene interaction strengths to connection

weights.

2. The second component is a Lindenmayer-

systemlike grammar of rules (Lindenmayer, 1968;

Prusinkiewicz and Lindenmayer, 1990), L-grammar,

which describe cell-cell interactions and changes in

number, type, and state of cells.

2.4.1 Dynamics

In more detail, genes in such networks interact as

nodes in a recurrent neural net. They sum up activat-

ing and inhibitory inputs from other genes in the same

cell at any given time t; we represent this sum as u:

uaðtÞ ¼
X
b

TabvbðtÞ; ð2:1Þ

where genes are indexed by a and b, Tab is the interac-

tion between genes a and b, and vbðtÞ are gene product
levels within the cell. If we include interactions with
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neighboring cells, this becomes

uaðtÞ ¼
X
b

TabvbðtÞ þ
X
i

X
b

T̂Tabv̂v
i
bðtÞ; ð2:2Þ

where T̂Tab is the interaction of gene a with gene b in

neighboring cells and v̂v ibðtÞ are gene product levels in

neighboring cell i. Level vaðtÞ of the product of gene a
then changes according to

dva

dt
¼ RagðuaðtÞ þ haÞ � lavaðtÞ; ð2:3Þ

where uaðtÞ is the linear sum of Eq. (2.1), Ra is the rate

of production of gene a’s product, la is the rate of de-

cay of gene a product, and ha is the threshold of acti-

vation of gene a, which can be either positive or

negative and could thus correspond to a constitutive

positive or negative input. Function g is a monotonic,

nonlinear function, usually a sigmoid, such as the fol-

lowing one, which we have used in gene net models

and which is centered at 0 and takes values between 0

and 1:

gðxÞ ¼ 0:5

�
1þ xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1þ x2Þ
p �

: ð2:4Þ

Levels of gene products should be viewed as corre-

sponding to gene product activities in the biological

system rather than to actual concentrations, and gene

interactions should be viewed as corresponding more

closely to genetic rather than specific biochemical

(transcriptional, etc.) interactions. The form of Eq.

(2.3) can be justified as follows: If we consider gene a

as a producer molecule that can be either in an acti-

vated (i.e., producing) state or in an inactivated (i.e.,

nonproducing) one, depending on the concentrations

of other gene products that can bind at its regulatory

regions, then the amount of species a produced is

proportional to the fraction of time that gene a spends

in the activated state (or equivalently, to the fraction

of producer molecules in that state). Species a also

decays at a rate la that is independent of gene product

concentrations. This is expressed in the following

equation [which has the same form as Eq. (2.3)]:

dva

dt
¼ Ra½fraction activated� � lava; ð2:5Þ

where [fraction activated] is the fraction of time that

gene a is activated. It is this fraction, which depends

on the concentrations of other gene products, that

is approximated by the recurrent net formulation in

Eq. (2.3) (see also figure 2.1). For a more detailed

biochemical rationale of this approximation, see

Mjolsness et al. (1991).

2.4.2 L-Grammar

The gene net framework allows cell transformations

in the models; for instance, cells may change their

state (i.e., the levels of gene products or other state

Figure 2.1

Illustration of the biochemical model incorporated in Eqs.

(2.3) and (2.5). Production of species a depends on the acti-

vation of the gene for a, which is determined by the binding

of gene products b and c at regulatory regions of the gene for

a and by interactions of these with the transcription appara-

tus at the gene. (Adapted from figure 2 in Mjolsness et al.,

1991.)
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variables), change type, give birth to other cells, or

die. These transformations are represented by a set of

grammar rules, the L-grammar, as in Lindenmayer

systems (Lindenmayer, 1968; Prusinkiewicz and Lin-

denmayer, 1990). Rules are triggered according to the

internal state of each cell (or perhaps also of other

cells) and are of two kinds: discrete and continuous.

Transformations that happen gradually (smoothly)

over time are described by continuous time rules,

while processes that occur as abrupt, discontinuous

changes are given by discrete time rules, which are

instantaneous. Rules may involve one or more cells,

representing intracellular processes and cell-cell inter-

actions, respectively (see figure 2.2).

How rules are triggered depends on the internal

state of each cell (or perhaps also of other cells). There

are some constraints as to what rules may be active in a

cell at any given time. Only a single continuous one-

cell rule is allowed at a time, but several continuous

two-cell rules may operate simultaneously. Only one

birth or death rule may occur at a time, but other dis-

crete rules that bring about changes in cell type may

happen simultaneously, as long as they all transform a

cell into the same cell type. A set of binary variables C

keeps track of what rules are active in any particular

cell at any given time. Vector u [see Eq. (2.2)] is

therefore more accurately given, for a cell i, by

ui ¼
X
r

C r
i T

r
1 Q vi þ

X
r

C r
i

X
j

L ijT
r
2 Q vj; ð2:6Þ

where T r
1 is the interaction strength matrix for one-

cell rule r; vi is the state variable (gene product level)

vector for cell i; T r
2 is the interaction strength matrix

for two-cell rule r [r, of course, in both sums of Eq.

(2.6) is just a dummy variable that stands in for the

actual names of the rules, which could be, for in-

stance, mitosis, cell death, interphase, and so on]; vj
is the state variable vector for cell j, located in the

Figure 2.2

Graphic representation of examples of rules that can be

applied to cells in a model. Note that the asymmetrical cell

division rule produces two cells (in interphase) that di¤er in

their gene product concentrations and are depicted by dif-

ferent shadings, whereas the symmetrical division rule pro-

duces identical cells. In the propagule di¤erentiation rule,

the larger circle denotes a propagule with its stored reserves.
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neighborhood of cell i, the type of neighborhood

being specified in particular models; and L ij is a factor

that modifies the influence of cell j on cell i and

depends on the geometry of cells and their positions

in a model. Variables C r
i determine which rules in Eq.

(2.6) operate at any given time; if Cr
i ¼ 1, then the

corresponding rule is active, while if Cr
i ¼ 0, the rule

is inactive; these C variables encode the constraints on

rule activity that were described earlier.

When two rules cannot both be active at the same

time, the rule of highest ‘‘strength’’ at that time wins.

Strength S r
i of rule r in cell i signifies the likelihood

that rule r will be triggered in that cell at that time,

and depends on the internal state of the cell (and per-

haps also on interactions with neighboring cells). If we

consider only dependence on the internal state of the

cell itself (i.e., on the state variable vector vi), rule

strength is given by

S r
i ¼ vi Q sr þ yr ; ð2:7Þ

where sr is a vector that describes how each state

variable of the cell contributes to the strength of rule

r, and yr is the default likelihood that rule r will be

triggered.

Rule strengths together with the constraints de-

termine which rules are active at a given time and

along with the parameters of state variable dynamics,

T, R, h, and l of Eqs. (2.2) and (2.3), and geometry

factors L, completely specify how the modeled system

develops.

2.4.3 Optimization

Models using the gene net framework can be for-

mulated as optimization tasks that seek values for the

model parameters so that the model optimally fits

biological data or behaves in a certain desired man-

ner. Such requirements can be captured in a so-called

cost function (or energy function) EðvÞ, which

depends on the state variable values v during devel-

opment of the system; E of course ultimately depends

on the values of the model parameters. A common

example of a cost function is a least-squares cost

function:

E ¼
X
i; a; t

½v iaMODELðtÞ � v iaDATAðtÞ�
2; ð2:8Þ

which is the squared di¤erence between gene product

levels in the model and those in the data, summed

over all cells (i ) and over all gene products (a) and

times (t) for which data are available.

A quadratic penalty term on these parameters, of

the form

penalty ¼
X
m

wm p
2
m; ð2:9Þ

where pm are parameter values (m is an index over

model parameters and there is one set of parameters

for all cells in the model) and wm are weights (usually

the same for all parameters), is added to E to produce

the final, objective function, which is optimized:

objective ¼ wEE½vðpÞ� þ wppenaltyðpÞ; ð2:10Þ

p being the vector of model parameters and wE, wp

being weights for the energy and penalty terms of the

objective function, respectively. The penalty term

prevents optimized parameters from growing exces-

sively large and hence saturating the sigmoid functions

of the model or causing overflow errors in computer

simulations. It e¤ectively restricts the search space and

thus may facilitate the optimization. However, if the

restricted search space does not contain the optima

sought or if, depending on the optimization algorithm

used, parts of the parameter space are not equally ac-

cessible from all other parts of the space, this may ad-
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versely a¤ect the optimization search. See Fonseca

and Flemming (1995) for a discussion, in the context

of genetic algorithms, of this and the more general

problem of optimizing objective functions that have

many components.

The objective functions in gene net models typi-

cally have a large number of variables, are highly

nonlinear, and cannot be solved analytically or readily

optimized with deterministic methods. We have

therefore used numerical, stochastic techniques to op-

timize them: namely, simulated annealing (SA) and

genetic algorithms (GA). Both of these optimization

methods have a number of parameters that can a¤ect

their performance and need to be tuned for each

problem. For more details on this connectionist

framework and its application, see Mjolsness et al.

(1991) and Marnellos (1997).

2.4.4 Overview

This combination of di¤erential equations and gram-

matical structure is intended to make models compu-

tationally feasible and yet maintain a wide repertoire

of behaviors at the molecular and tissue levels. Gram-

mars can be used to summarize aspects of the intra-

cellular and intercellular dynamics of the system being

modeled, which would otherwise require a large

number of extra state variables and model parameters

to describe. So grammars o¤er a concise and com-

putationally tractable representation. The neural net

idealization representing molecular interactions is at a

level of abstraction similar to that of the biochemical

kinetics models. The phage l models, in contrast, in-

corporate much greater biochemical detail, and it

would be computationally very expensive to have that

much detail in models of multicellular development.

The neural net idealization has the following

additional advantage: Neural nets can be ‘‘trained’’ to

produce desired outputs. This property of the neural

net formalism has been extensively studied (Hertz et

al., 1991) and there are algorithms to perform the

training; for instance, in the case of su‰ciently simple

recurrent neural nets, there are even deterministic

methods (such as those described in Pearlmutter,

1989, and Williams and Zipser, 1989) to do the train-

ing. In the gene net framework, training corresponds

to fitting experimental observations, or having the

simulated system behave in a desired fashion, by opti-

mizing the adjustable parameters of the gene nets,

e.g., gene interaction strengths or activation thresh-

olds. This is similar to what Bray has done in his bac-

terial chemotaxis models mentioned earlier (Bray et

al., 1993; Bray and Bourret, 1995), which of course

are models of single cells only.

The range of biological questions that can be

addressed with the gene net framework is comparable

to that of Kau¤man’s Boolean nets, which are com-

putationally less expensive than gene nets. However,

because of the binary way in which they represent

molecular events and because they do not represent

cells, tissues, or such entities, Boolean nets cannot be

readily used to interpret a large body of molecular and

cell-level experimental observations.

A framework that is very similar to the gene net

method in scope, structure, expressiveness, and level

of biochemical detail has also been proposed by

Fleischer and Barr (1994). It mainly di¤ers from the

gene net framework in that (1) it does not have gram-

mar rules to represent state changes in cells, but

instead uses conditional terms in the ordinary di¤er-

ential equations that describe how state variables

change; (2) the state variable dynamics are not like in

neural nets, but of a more arbitrary form that can be

specified by the user; and (3) it has mainly been used

to simulate artificial configurations of cells and not to

interpret biological observations.
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2.5 Applications of the Gene Net Framework

2.5.1 Drosophila Blastoderm

Reinitz et al. (1995) and Reinitz and Sharp (1995)

have applied the gene net framework to an early

stage of development of the Drosophila embryo (the

blastoderm stage). They have looked at the well-

characterized hierarchy of regulatory genes that con-

trol the early events of Drosophila embryogenesis

by setting up their expression patterns along the

embryo’s length and dividing it into segments. This

includes the products of the maternal genes bicoid (bcd )

and hunchback (hb), expressed in broad gradients along

the anteroposterior axis of the embryo, and prod-

ucts of so-called gap, pair-rule, and segment polarity

genes, which end up segmenting the whole length

of the embryo into stripes, each a single cell wide

(Nüsslein-Volhardt and Wieschaus, 1980; Ingham,

1988; St. Johnston and Nüsslein-Volhardt, 1992). Be-

cause the expression of these genes does not vary

along the dorsoventral axis of the blastoderm and be-

cause there are no separate cells in the blastoderm—

the embryo is a syncytium of nuclei arranged at its

surface like a shell, and cell membranes start to form

only during later blastoderm stages (see Gilbert,

2000)—the authors have modeled the system as a sin-

gle row of nuclei, which are the sites of gene expres-

sion and which interact with each other through

di¤usion of gene products.

They have investigated questions of positional

specification in the blastoderm, and their model has

yielded predictions and interpretations of experimen-

tal observations. The model predicted that Bicoid and

Hunchback proteins cooperatively determine position

in the anteroposterior axis (Reinitz et al., 1995),

which has subsequently been confirmed by experi-

ment (Simpson-Brose et al., 1994). The model also

o¤ered insights into the spatiotemporal expression

pattern of the pair-rule gene even-skipped (eve), in-

cluding such questions as which of the broad spatial

domains of expression of the gap genes (which are

expressed at the second stage of the regulatory hierar-

chy described above and activated by the maternal ef-

fect genes bicoid and hunchback) set the boundaries of

eve stripes, and the timing and order of appearance of

these stripes (Reinitz and Sharp, 1995). Moreover, the

model provided an explanation for a cell biology ob-

servation, namely that pair-rule mRNAs and proteins

(unlike those of gap genes) are apically confined in the

cells forming around the surface of the blastoderm.

The model showed that eve stripes do not form unless

Eve protein has very low di¤usivity, which could re-

sult from its mRNA and protein being preferentially

targeted to, and retained at, the apical (facing outside

the blastoderm) surface of the invaginating cell mem-

branes, thus making it more di‰cult for Eve to di¤use

to neighboring nuclei.

2.5.2 Drosophila Neurogenesis

Marnellos and Mjolsness (1998a,b) have worked on

early neurogenesis in Drosophila and constructed

models to study how neuroblasts and sensory organ

precursor (SOP) cells di¤erentiate from proneural

clusters of equivalent cells. These neurogenesis models

have produced predictions about the dynamics of

cluster resolution and the robustness of this process

(see section 2.6).

2.5.3 Xenopus Ciliated Cells

In a more recent model, Marnellos et al. (2000)

probed lateral inhibitory signaling through the Delta-

Notch pathway and its role in the emergence of Xen-

opus ciliated cells in a salt-and-pepper pattern on the
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initially uniform epidermis. The model reproduced

the phenotypes observed experimentally in the assays

tested. Statistical analysis of ‘‘genotypes’’ in the model

suggested that the model could account for the vari-

ability of embryonic responses to the experimental

assays, and highlighted a component of lateral inhibi-

tion that may be the chief source of this variability.

2.6 A Gene Net Model of Early Neurogenesis

in Drosophila

2.6.1 Neurobiological Background

In Drosophila, neuroblasts and sensory organ precursor

(SOP) cells di¤erentiate from epithelia to give rise to

the central nervous system in the fruit fly embryo and

to epidermal sensory organs in the peripheral nervous

system of the adult fly, respectively. Neuroblasts are

neural precursor cells that divide to form neurons and

glia; they segregate from the ventral neuroectoderm

of the embryo in a regular segmental pattern. The

SOPs appear at stereotypical positions on imaginal

disks of fly third instar larvae and divide to produce a

neuron and three other cells, which form Drosophila’s

sensory organs, such as the bristles on its thorax.

The activities of two main sets of genes working in

opposite directions are thought to underlie this di¤er-

entiation process: one promoting neural development

and the other preventing it and favoring epidermal

development.

Neuroblasts and SOPs di¤erentiate from appar-

ently equivalent clusters of cells expressing genes of

the achaete-scute complex, so-called proneural genes.

Eventually, only one cell from each proneural cluster

retains proneural gene expression and becomes a neu-

roblast or SOP in a process referred to as cluster reso-

lution (see figure 2.3). Proneural genes thus promote

the neuronal fate.

The other main set of genes includes a number of

genes that also encode nuclear proteins, such as genes

of the Enhancer-of-split [E(spl)] complex and hairy, as

well as other genes for membrane and cytoplasmic

proteins; all these tend to suppress neurogenesis and

promote epidermal development. In this chapter, we

refer to this set of genes as epithelial genes; in the

literature they are called neurogenic genes because

loss-of-function mutations of these genes lead to

overproduction of neurons.

Cluster resolution and the singling out of neural

precursors from within proneural clusters is brought

about by inhibitory lateral signaling between adjacent

cells, through the signaling pathway of receptor

Notch and its ligand Delta; the neural fate is pro-

moted in the future neuroblasts and SOPs and sup-

pressed in other cells.

Several other genes that are involved in this specifi-

cation of cell fate are also expressed in characteristic

spatial and temporal patterns during the process (for

reviews, see Campuzano and Modollel, 1992; Musk-

avitch, 1994; Artavanis-Tsakonas et al., 1995).

Despite the number of empirical observations that

have been gathered, a precise characterization of

lateral signaling still does not exist, and we do not

understand the dynamical aspects of the system, e.g.,

whether and how the shape and size of proneural

clusters determine how cluster resolution proceeds.

2.6.2 Model

In our model, cells are represented as overlapping

circles in a two-dimensional hexagonal lattice; the

extent of overlap determines the strength of interac-

tion between neighboring cells (but note that in the

examples presented here we have only used identical

overlaps between cells). Cells in the model express

a small number of genes corresponding to genes that

are involved in neuroblast and SOP di¤erentiation.
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In the work presented here, we have used networks

with four genes (one corresponding to the proneural

group; another for the epithelial group; and two for

the ligand and receptor, respectively, that mediate

cell-cell signaling).

Genes interact as nodes in recurrent neural nets,

as described in Eqs. (2.2) and (2.3). The matrix T

of gene interactions has the structure depicted in

table 2.1. This table shows that we have allowed only

proneural and epithelial gene products to directly

regulate the expression of other genes (themselves

included), since these two genes correspond to tran-

scription factors in the real biological system.

We have modeled lateral interactions between cells

by the binding of ligand to the receptor in the neigh-

Figure 2.3

(a) Proneural gene expression in clusters in a Drosophila wing disk (the appendage of the fruit fly larva that gives rise to the wing

and the back of the adult). The lacZ reporter gene indicates achaete expression (achaete is one of the proneural genes). (b) Detail

of (a). Note the cluster on the lower left that has not yet resolved; other clusters appear to be at a more advanced stage of reso-

lution.

Table 2.1

Intracellular interactions. The structure of matrix T of gene

interactions

Proneural Epithelial Receptor Ligand

Proneural � �

Epithelial � �

Receptor � �

Ligand � �

Notes: Columns are for input genes, and rows are for genes

a¤ected. Empty boxes signify zero interaction strength, i.e.,

no interaction.
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boring cell and subsequent regulation of the epithelial

gene by the active ligand–receptor complex; this

corresponds to the signal relayed from the activated

Notch receptor to epithelial gene E(spl). In more

detail, the ligand-receptor reaction is assumed to be

governed by mass action-type kinetics:

L þ RTL � R; ð2:11Þ

where L is the ligand (on one cell), R is the recep-

tor (on a neighboring cell), and L � R is the active

receptor–ligand complex; the rate of the reaction to

the right is, say, k1 and to the left k2. If vL is the ligand

concentration, vR is the receptor concentration, and

½L � R� is the concentration of the receptor–ligand

active complex, then we have

d½L � R�
dt

¼ k1vLvR � k2½L � R�; ð2:12Þ

dvL

dt
¼ dvR

dt
¼ �k1vLvR þ k2½L � R�: ð2:13Þ

This reaction is assumed to take place at a much faster

time scale than gene expression and to have reached

a steady state before influencing gene expression.

Thus the epithelial gene in a cell receives input from

receptor–ligand complexes activated by ligand in the

six surrounding cells (the lattice is hexagonal).

A more recent model for the summation of gene

inputs that extends Eq. (2.2) and could cover

receptor-ligand signaling between cells, as described

earlier, is presented in Eq. (2.14) ( Jonsson et al.,

2002):

uaðtÞ ¼
X
b

TabvbðtÞ þ
X
i

X
b

T̂Tabv̂v
i
bðtÞ

þ
X
i

X
b

X
c

~TT ð1Þ
ac

~TT
ð2Þ
cb vcðtÞv̂v ibðtÞ ð2:14Þ

where the first two terms are as in Eq. (2.2) and where

in the last term, vc are receptor concentrations, v̂v ib are

ligand concentrations excreted by neighboring cell i,
~TT
ð2Þ
c b is the connection strength for excitation of

receptor c that is due to ligand b, and ~TT ð1Þ
ac is the con-

nection strength for production of protein a via re-

ceptor c activation.

We optimize on gene interaction strengths in order

to fit gene expression patterns described in the litera-

ture; the cost function optimized is a least-squares

one, as in Eq. (2.8). We have used a stochastic algo-

rithm, namely simulated annealing, for this opti-

mization. For more details on the model and the

optimization method used, see Marnellos (1997) and

Marnellos and Mjolsness (1998b).

The gene expression data sets we optimize on (i.e.,

the training data sets) are adapted from schematic

results described in the experimental literature (Cubas

et al., 1991; Skeath and Carroll, 1992; Jennings et al.,

1994). These specify the initial pattern of concen-

trations of the gene products (i.e., the proneural clus-

ters), the desired intermediate pattern, and the desired

final pattern when the proneural clusters have

resolved into single cells expressing the proneural

gene at high levels (see figure 2.4). It is left to the

optimization to find the right model parameters so

that the system develops from the initial state through

the intermediate one to the desired final one. The

initial concentrations of receptor and ligand are uni-

form for all cells, and their subsequent concentrations

are not constrained by the data set (in this respect they

are comparable to hidden units in neural nets).

2.6.3 Model Results and Predictions

We have tried to limit the number of parameters we

optimize on in order to avoid overfitting our rather

small data sets. The optimization procedure used

(simulated annealing) has produced very good and

consistent fits to the training data sets. Successful
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optimization runs have yielded solutions that not only

perform well on the training data set shown in figure

2.4 but also work for other data sets with greater

numbers of similar-sized or larger clusters in various

spatial arrangements. This indicates that optimization

does not just find parameter values that only work for

the specific size and cluster arrangement of the train-

ing data set, but produces solutions incorporating

‘‘rules’’ for cluster resolution.

With parameter values derived by optimization on

the data set of figure 2.4, the model makes predictions

about how the interplay of factors such as proneural

cluster shape and size, gene expression levels, and

strength of cell-cell signaling determines the timing

and position of neuroblasts and SOP cells as well as

the robustness of this process and the e¤ects of pertur-

bations in gene product levels on cell di¤erentiation.

In figure 2.5, for instance, we have the same opti-

mization solution parameters in both rows, but in the

run in the top row, initial concentrations of proneural

and epithelial gene products are identical for all cells

in a cluster, while in the bottom row initial proneural

concentrations vary and di¤er among cells by about

10–15 percent. Despite this and despite the fact that

in this particular example the future neural precursors

start out with lower proneural concentrations than

other cluster cells (even the lowest in the cluster), the

pattern of cluster resolution remains identical, as the

end result shows (compare the right panels of the top

and bottom rows of figure 2.5). So optimization solu-

tions are robust to small changes in initial conditions.

Such robustness is a feature that a biological system

would need during development.

Proneural clusters in test sets resolve well apart from

the small, diamond-shaped four-cell clusters; this is

probably because four-cell clusters do not have a cell

that is much more encircled than the others (as the

five-, six-, and seven-cell clusters of figure 2.6 do),

but all cells are almost equally exposed. The opti-

mization solution also resolves the large cluster in

figure 2.6, for which it was not optimized; this is

another aspect of the robustness of the solution. As

Figure 2.4

Cells are modeled as circles on a hexagonal lattice. Gene expression is represented by disks; proneural expression is in dark gray,

epithelial in medium gray, and where the two overlap, it is in light gray; the disk radius is proportional to the level of expres-

sion. This figure shows the training data set. The left panel shows the initial concentrations of the gene products; there is pro-

neural gene expression in three clusters. The middle panel shows the desired intermediate pattern of expression. The right panel

shows the desired final pattern of gene expression; proneural expression is retained only in the central cell of each cluster, the

future neuroblast or sensory organ precursor, whereas all other cells express the epithelial gene. Times (t ) indicate the points in

the run when the desired expression pattern was compared with the actual one [see Eq. (2.8)]; at t ¼ 1 there is of course only

initialization and no comparison. Initial concentrations of ligand and receptor are not shown.
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in the previous example, variation in initial concen-

trations in large clusters usually does not alter the final

outcome of cluster resolution, but in rare cases large

clusters do not resolve to a single cell, but to two or

three cells. This is consistent with experimental

observations (Huang et al., 1991) and illustrates the

role of the interplay between position in cluster and

level of proneural expression in determining whether

a cell becomes a neural precursor.

Since lateral interactions are crucial for cluster reso-

lution, we have varied their strength to see the e¤ects

on the dynamics of the process. Stronger lateral inter-

action increases the speed of cluster resolution, the ef-

fect being much more pronounced in large clusters,

which take longer to resolve in our model. With even

stronger lateral interaction, clusters start to fail to re-

solve and proneural expression is extinguished. When

lateral interactions are abolished, clusters do not re-

solve, but all cells in them retain proneural gene ex-

pression. This parallels the e¤ect of the neurogenic

mutations in a real biological system; these mutations

disrupt lateral communication between cells and lead

to overproduction of neurons (Poulson, 1940; Skeath

and Carroll, 1992). Thus, a variation in the value of

a single or a few parameters controlling the strength

of lateral interactions can produce a ‘‘heterochronic’’

Figure 2.5

Computer simulation of neural precursor di¤erentiation with parameter values in the model derived by optimization on the

data set of figure 2.4. From left to right, di¤erent time frames of the evolution of gene product concentrations. (Top) A run with

identical initial gene product concentrations for all cells in each proneural cluster. (Bottom) Initial proneural concentrations vary

by about 10–15 percent between cells in each cluster. In both runs, the clusters resolve in the same way, as the comparison of

the two panels at t ¼ 121 shows; in the bottom run, the clusters take slightly longer to resolve. This illustrates the robustness of

cluster resolution to small changes in initial gene expression levels in proneural clusters. Conventions are as in figure 2.4. (From

Marnellos and Mjolsness, 1998b.)
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change in the process of cluster resolution or even

prevent neural precursor di¤erentiation. This is an in-

teresting and testable prediction of the model.

As a final illustration of how one can probe the

dynamics of cluster resolution in our model, we per-

turbed the levels of expression of proneural and epi-

thelial genes in specific cells during a run, as illustrated

in figure 2.6. In this simulation, we increased instan-

taneously at t ¼ 60 the level of epithelial expression in

the central cell of a symmetrical, seven-cell cluster and

also the level of proneural expression in a peripheral

cell of a di¤erent symmetrical cluster. Whereas the

first perturbation prevents normal resolution of the

cluster involved (as can be observed at t ¼ 121 for in-

stance), the second one has no e¤ect on resolution

and the cluster involved resolves normally. The e¤ects

of such perturbations will vary, depending on what

time and in which cell they are carried out, and on

whether they occur singly as in the two examples of

figure 2.6, or in various combinations. Such manipu-

lations are therefore a rich source of predictions of the

model and most likely can be tested in Drosophila

(Halfon et al., 1997).

2.7 Discussion

In this chapter we have presented an overview of

computational models of gene regulation—including

fairly detailed models of biochemical reactions and

their dynamics as well as more abstract reaction-

di¤usion and Boolean network models—that have

been applied to questions in biological development.

In particular, we have concentrated on a gene net-

work model based on the framework of Mjolsness et

al. (1991) as it has been applied to early neurogenesis

in Drosophila.

Figure 2.6

Simulation with perturbations of gene expression in individual cells of two symmetrical, seven-cell clusters. The clusters are the

two in the lower left corner of the data set. At t ¼ 60 (not shown), the level of epithelial expression in the central cell of the

upper one of these two clusters is instantaneously increased, while in the lower cluster proneural expression is increased in a

peripheral cell. Both perturbations can be detected in the left panel ðt ¼ 76Þ. The first perturbation abolishes cluster resolution,

while the second has no e¤ect on resolution, as can be seen in the right panel ðt ¼ 121Þ.
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Although di¤erent in details, all such models o¤er

insights into the processes under study by posing bio-

logical questions in more concrete terms and testing

the logical consistency and inferences of underlying

assumptions. The gene network approach has the

advantages (1) that it can represent, through its gram-

mar structure, a large spectrum of molecular and

tissue-level processes while at the same time being

computationally tractable; and (2) because of its neural

net dynamics, its adjustable parameters can be trained

on experimental data or optimized to produce other

desired behaviors. However, as with other models us-

ing parameters fitted on experimental data, the avail-

able regression methods (such as optimization through

simulated annealing, used in the neurogenesis model

presented here) are often inadequate for fitting the

parameters of gene network models; this could limit

the scalability of such models.

Future Experimental Studies

Neurogenesis, which we have examined in this chap-

ter using our gene network model, encompasses gen-

eral questions of cell di¤erentiation in epithelia and

tissue-level dynamic interactions, which are relatively

simple to formulate and yet complex enough to be of

theoretical and experimental interest since such pro-

cesses occur repeatedly in metazoan development.

We have been able to extract predictions about the

dynamics of proneural cluster resolution and draw

conclusions about mechanisms that may be su‰cient

or necessary for neuroblast and sensory organ precur-

sor di¤erentiation. We have also investigated how

robustly various genotypes lead to cluster resolution

under various perturbations. The predictions of the

model and the model’s robustness under perturbations

can be tested experimentally.

The kinds of questions that can be posed with the

model described here are not only of relevance to

neurogenesis in Drosophila but are common to many

developing organisms, especially in view of the fact

that homologs to genes involved in Drosophila neuro-

genesis have been isolated in many species, from

worms to mammals, and participate in a variety of

developmental processes. In vertebrate neurogenesis,

such homologs act in ways similar to those of the Dro-

sophila genes in regulating the number of neurons

generated (Chitnis et al., 1995; Lewis, 1996). One

would therefore expect that a theoretical and empiri-

cal understanding of Drosophila neurogenesis would

provide insights into neurogenesis in higher verte-

brates, for example, into questions surrounding neu-

ronal proliferation in the developing mammalian

cortex (Caviness et al., 1995; Rakic, 1995).

Future Modeling Studies

In view of this, it would be interesting to see the neu-

rogenesis model presented here extended to mam-

malian neurogenesis now that molecular data are

becoming increasingly available in this area also.

Considering ways to move ahead with devel-

opmental modeling approaches more generally, one

has to observe that the models described in this review

have been primarily concerned with the dynamics of

development, i.e., how cells develop in space and

time. Such models can, of course, be constrained by

the large amounts of genomic data becoming avail-

able, but still, they cannot incorporate all the available

data without becoming intractable. A good portion of

these data is of a qualitative nature and therefore can-

not be readily mapped to precise interaction strengths

between the components of a model. Other methods

are needed to achieve a more comprehensive repre-

sentation of biological knowledge.

Researchers have recently experimented with

graphical models and pathway-model databases.

Graphical models (Gi¤ord, 2001) attempt to system-
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atically describe relationships (edges) between ele-

ments (nodes) in biological systems, bringing together

data on mRNA expression, protein interactions, en-

vironmental conditions, etc. These descriptions are

probabilistic, with probabilities conditioned on exist-

ing data. They allow inferences from these data and

point to areas where more data are needed. Pathway-

model databases (Karp, 2001) describe metabolic and

gene-regulatory networks, enzymes, and other pro-

teins and try to present a more global picture of many

interacting processes within an organism. They are

based on an ontology, which is a database structure or

schema that captures important features of the under-

lying system and precisely defines their relationships,

and include theories about how the organism works

that can be derived from the ontology. For such data-

bases to be able to extract knowledge from large data

sets, methods for e‰ciently generating mathematical

models, storing them in the databases, comparing

them with each other, and validating them against

existing data will also be needed. In connection with

this last point, see, for instance, Cellerator (Shapiro

and Mjolsness, 2001), a program that allows users to

specify a set of biochemical reactions, group them in a

hierarchical graph structure that corresponds to the

process modeled, and translate them into ordinary

di¤erential equations and solve them.

Both graphical models and pathway-model data-

bases appear to be attractive vehicles for storing the

more detailed kinds of dynamical models presented in

this review, for comparing them with each other and

with available data, and for assessing how well they fit

in the more global ontology of an organism.
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mone receptors: Many actors in search of a plot. Cell 83:

851–857.

Boguski, M. S., and McCormick, F. (1994). Proteins regu-

lating Ras and its relatives. Nature 366: 643–654.

Bray, D. (1990). Intracellular signalling as a parallel dis-

tributed process. J. Theor. Biol. 143: 215–231.

Bray, D. (1995). Protein molecules as computational ele-

ments in living cells. Nature 376: 307–312.

Bray, D., and Bourret, R. B. (1995). Computer analysis of

the binding reactions leading to a transmembrane receptor-

linked multiprotein complex involved in bacterial chemo-

taxis. Mol. Biol. Cell 6: 1367–1380.

Bray, D., and Lay, S. (1994). Computer simulated evolution

of a network of cell-signaling molecules. Biophys. J. 66:

972–977.

Bray, D., Bourret, R. B., and Simon, M. I. (1993). Com-

puter simulation of the phosphorylation cascade controlling

bacterial chemotaxis. Mol. Biol. Cell 4: 469–482.

Campuzano, S., and Modollel, J. (1992). Patterning of the

Drosophila nervous system—the achaete-scute gene complex.

Trends Genet. 8: 202–208.

Carroll, S. B. (1995). Homeotic genes and the evolution of

arthropods and chordates. Nature 376: 479–485.

Caviness, V. S., Takahashi, T., and Nowakowski, R. S.

(1995). Numbers, time and neocortical neuronogenesis: A

general developmental and evolutionary model. Trends

Neurosci. 18: 379–383.

Chitnis, A., Henrique, D., Lewis, J., Ish-Horowicz, D., and

Kintner, C. (1995). Primary neurogenesis in Xenopus em-

44 George Marnellos and Eric D. Mjolsness



bryos regulated by a homologue of the Drosophila neuro-

genic gene delta. Nature 375: 761–766.

Cubas, P., De Celis, J.-F., Campuzano, S., and Modolell, J.

(1991). Proneural clusters of achaete-scute expression and the

generation of sensory organs in the Drosophila imaginal wing

disc. Genes Dev. 5: 996–1008.

Diaz-Benjumea, F. J., Cohen, B., and Cohen, S. M. (1994).

Cell interaction between compartments establishes the

proximal-distal axis of Drosophila legs. Nature 372: 175–179.

Dupont, G., and Goldbeter, A. (1992). Oscillations and

waves of cytosolic calcium: Insights from theoretical models.

BioEssays 14: 485–493.

Fietz, M. J., Concordet, J.-P., Barbosa, R., Johnson, R.,

Krauss, S., McMahon, A. P., Tabin, C., and Ingham, P. W.

(1994). The hedgehog gene family in Drosophila and verte-

brate development. Development. Suppl. 43–51.

Fisher, R. A. (1930). The Genetical Theory of Natural Selection.

Oxford: Clarendon Press.

Fleischer, K., and Barr, A. H. (1994) A simulation testbed

for the study of multicellular development: The multiple

mechanisms of morphogenesis. In Artificial Life III: Proceed-

ings of the Workshop on Artificial Life, C. G. Langton, ed.

Reading, Mass.: pp. 389–416. Addison-Wesley.

Fonseca, C. M., and Fleming, P. J. (1995). An overview of

evolutionary algorithms in multiobjective optimization.

Evolut. Comput. 3: 1–16.

Gierer, A., and Meinhardt, H. (1972). A theory of biological

pattern formation. Kybernetik 12: 30–39.

Gi¤ord, D. K. (2001). Blazing pathways through genetic

mountains. Science 293: 2049–2051.

Gilbert, S. F. (2000). Developmental Biology, 6th ed. Sunder-

land, Mass.: Sinauer.

Goodwin, B. C. (1965). Oscillatory behaviour in enzymatic

control systems. Adv. Enzyme Reg. 5: 425–438.

Graner, F., and Sawada, Y. (1993). Can surface adhesion

drive cell rearrangement? Part II: A geometrical model. J.

Theor. Biol. 164: 477–506.

Halfon, M., Kose, H., Chiba, A., and Keshishian, H. (1997).

Targeted gene expression without a tissue-specific pro-

moter: Creating mosaic embryos using laser-induced single-

cell heat shock. Proc. Natl. Acad. Sci. U.S.A. 94: 6255–6260.

Hastings, S. P., Tyson, J. J., and Webster, D. (1977). Exis-

tence of periodic solutions for negative feedback control

systems. J. Di¤. Eqs. 25: 39–64.

Hertz, J. A., Palmer, R. G., and Krogh, A. S. (1991). Intro-

duction to the Theory of Neural Computation. Reading, Mass.:

Addison-Wesley.

Hjelmfelt, A., and Ross, J. (1992). Chemical implementa-

tion and thermodynamics of collective neural networks.

Proc. Natl. Acad. Sci. U.S.A. 89: 388–391.

Hjelmfelt, A., Weinberger, E. D., and Ross, J. (1991).

Chemical implementation of neural networks and Turing

machines. Proc. Natl. Acad. Sci. U.S.A. 88: 10983–10987.

Hodgkin, A. L., and Huxley, A. F. (1952). A quantitative

description of membrane current and its application to con-

duction and excitation in nerve. J. Physiol. (London) 117:

500–544.

Hopfield, J. J. (1984). Neurons with graded response have

collective computational properties like those of two-state

neurons. Proc. Natl. Acad. Sci. U.S.A. 81: 3088–3092.

Huang, F., Dambly-Chaudiere, C., and Ghysen, A. (1991).

The emergence of sensory organs in the wing disc of Droso-

phila. Development 111: 1087–1095.

Hunding, A. (1974). Limit-cycles in enzyme systems with

nonlinear negative feedback. Biophys. Struct. Mech. 1: 47–

54.

Ingham, P. W. (1988). The molecular genetics of embry-

onic pattern formation in Drosophila. Nature 335: 25–34.

Jennings, B., Preiss, A., Delidakis, C., and Bray, S. (1994).

The Notch signalling pathway is required for Enhancer-of-

split bHLH protein expression during neurogenesis in the

Drosophila embryo. Development 120: 3537–3548.

Jonsson, H., Mjolsness, E., and Shapiro, B. (2002). Re-

sources and signaling in multicellular models of plant devel-

opment. Proceedings of the Third International Conference on

Systems Biology (ICSB 2002), Karolinska Institutet, p. 127.

Karp, P. D. (2001). Pathway databases: A case study in

computational symbolic theories. Science 293: 2040–2044.

Gene Network Models and Neural Development 45



Kau¤man, S. A. (1969). Metabolic stability and epigenesis in

randomly connected nets. J. Theor. Biol. 22: 437–467.

Kau¤man, S. A. (1971). Di¤erentiation of malignant to be-

nign cells. J. Theor. Biol. 31: 429–451.

Kau¤man, S. A. (1974). The large-scale structure and

dynamics of gene control circuits: An ensemble approach. J.

Theor. Biol. 44: 167–190.

Kau¤man, S. A. (1993). The Origins of Order. Oxford: Ox-

ford University Press.

Kau¤man, S. A., and Levin, S. (1987). Towards a general

theory of adaptive walks on rugged landscapes. J. Theor.

Biol. 128: 11–45.

Kerszberg, M., and Changeux, J. (1994). A model for read-

ing morphogenetic gradients: Autocatalysis and competition

at the gene level. Proc. Natl. Acad. Sci. U.S.A. 91: 5823–

5827.

Krumlauf, R. (1994). Hox genes in vertebrate development.

Cell 78: 191–201.

Lewis, E. B. (1978). A gene complex controlling segmenta-

tion in Drosophila. Nature 276: 565–570.

Lewis, J. (1996). Neurogenic genes and vertebrate neuro-

genesis. Curr. Opin. Neurobiol. 6: 3–10.

Lindenmayer, A. (1968). Mathematical models for cellular

interaction in development, parts I and II. J. Theor. Biol. 18:

280–315.

Lindenmayer, A. (1984). Models for plant tissue devel-

opment with cell division orientation regulated by pre-

prophase bands of microtubules. Di¤erentiation 26: 1–10.

Lindenmayer, A., and Rozenberg, G. (1979). Parallel gen-

eration of maps: Developmental systems for cell layers. In

Graph Grammars and Their Application to Computer Science;

First International Workshop, Lecture Notes in Computer

Science, Vol. 73, V. Claus, H. Ehrig, and G. Rozenberg,

eds. pp. 301–316. Berlin: Springer-Verlag.

Lotka, A. J. (1925). Elements of Physical Biology. Baltimore,

Md.: Williams and Wilkins.

Marée, A. F. M., and Hogeweg, P. (2001). How amoeboids

self-organize into a fruiting body: Multicellular coordina-

tion in Dictyostelium discoideum. Proc. Natl. Acad. Sci. U.S.A.

98: 3879–3883.

Marnellos, G. (1997). ‘‘Gene Network Models Applied to

Questions in Development and Evolution.’’ PhD thesis,

Yale University, New Haven, Conn.

Marnellos, G., and Mjolsness, E. (1998a). A gene network

approach to modeling early neurogenesis in Drosophila. In

Pacific Symposium on Biocomputing, Vol. 3, pp. 30–41. Singa-

pore: World Scientific.

Marnellos, G., and Mjolsness, E. (1998b). Probing the

dynamics of cell di¤erentiation in a model of Drosophila

neurogenesis. In Artificial Life VI, Proceedings of the Sixth In-

ternational Conference on Artificial Life, Vol. 6, pp. 161–170.

Cambridge, Mass.: MIT Press.

Marnellos, G., Deblandre, G. A., Mjolsness, E., and Kint-

ner, C. (2000). Delta-Notch lateral inhibitory patterning in

the emergence of ciliated cells in Xenopus: Experimental

observations and a gene-network model. In Pacific Sympo-

sium on Biocomputing, Vol. 5, pp. 329–340. Singapore: World

Scientific.

McAdams, H. H., and Shapiro, L. (1995). Circuit simulation

of genetic networks. Science 269: 650–656.

McGinnis, W., Garber, R. L., Wirz, A., Kuroiwa, A., and

Gehring, W. (1984). A homologous protein-coding se-

quence in Drosophila homeotic genes and its conservation in

other metazoans. Cell 37: 403–408.

Meinhardt, H. (1983). Cell determination boundaries as

organizing regions for secondary embryonic fields. Dev.

Biol. 96: 375–385.

Meinhardt, H. (1986). Hierarchical inductions of cell states:

A model for segmentation in Drosophila. J. Cell Sci. Suppl. 4:

357–381.

Meinhardt, H. (1987). A model for pattern generation on

the shells of molluscs. J. Theor. Biol. 126: 63–89.

Meinhardt, H. (1998). The Algorithmic Beauty of Sea Shells.

Berlin: Springer-Verlag.

Mjolsness, E., Sharp, D. H., and Reinitz, J. (1991). A

connectionist model of development. J. Theor. Biol. 152:

429–453.

Murray, J. D. (1981a). On pattern formation mechanisms

for lepidopteran wing patterns and mammalian coat mark-

ings. Phil. Trans. Roy. Soc. London B. 295: 473–496.

46 George Marnellos and Eric D. Mjolsness



Murray, J. D. (1981b). A pre-pattern formation mechanism

for animal coat markings. J. Theor. Biol. 88: 161–199.

Murray, J. D. (1993). Mathematical Biology. Berlin: Springer-

Verlag.

Murray, J. D., Oster, G. F., Harris, A. K. (1983). A me-

chanical model for mesenchymal morphogenesis. J. Math.

Biol. 17: 125–129.

Muskavitch, M. A. T. (1994). Delta-Notch signalling and

Drosophila cell fate choice. Dev. Biol. 166: 415–430.

Neiman, A. (1993). Conservation and reiteration of a kinase

cascade. Trends Genet. 9: 390–394.

Novak, B., and Tyson, J. J. (1993). Modeling the cell divi-

sion cycle: m-Phase trigger, oscillations and size control. J.

Theor. Biol. 165: 101–134.

Nüsslein-Volhardt, C., and Wieschaus, E. (1980). Muta-

tions a¤ecting segment number and polarity in Drosophila.

Nature 287: 795–801.

Odell, G. M., Oster, G., Alberch, P., and Burnside, B.

(1981). The mechanical basis of morphogenesis. I. Epithelial

folding and invagination. Dev. Biol. 85: 446–462.

Oster, G. F., Murray, J. D., and Harris, A. K. (1978). Me-

chanical aspects of mesenchymal morphogenesis. J. Embryol.

Exp. Morphol. 78: 83–125.

Pearlmutter, B. A. (1989). Learning state space trajectories

in recurrent neural networks. Neur. Comput. 1: 263–269.

Poulson, D. (1940). The e¤ect of certain X-chromosome

deficiencies on the embryonic development of Drosophila

melanogaster. J. Exp. Zool. 83: 271–318.

Prusinkiewicz, P., and Lindenmayer, A. (1990). The Algo-

rithmic Beauty of Plants. New York: Springer-Verlag.

Rakic, P. (1995). A small step for the cell, a giant leap for

mankind: A hypothesis of neocortical expansion during

evolution. Trends Neurosci. 18: 383–388.

Reinitz, J., and Sharp, D. H. (1995). Mechanism of eve

stripe formation. Mech. Dev. 49: 133–158.

Reinitz, J., Mjolsness, E., and Sharp, D. H. (1995). Model

for cooperative control of positional information in Droso-

phila by Bicoid and maternal Hunchback. J. Exp. Zool. 271:

47–56.

Savageau, M. A. (1976). Biochemical Systems Analysis. Read-

ing, Mass.: Addison-Wesley.

Schummer, M., Scheurlen, I., Schaller, C., and Galliot, B.

(1992). HOM/HOX homeobox genes are present in Hydra

(Chlorohydra viridissima) and are di¤erently expressed during

regeneration. EMBO J. 11: 1815–1823.

Scott, M. P., and Weiner, A. J. (1984). Structural relation-

ships among genes that control development: Sequence

homology between the Antennapedia, Ultrabithorax and fushi-

tarazu loci in Drosophila. Proc. Natl. Acad. Sci. U.S.A. 81:

4115–4119.

Segel, L. A. (1984).Modeling Dynamic Phenomena in Molecular

and Cellular Biology. Cambridge: Cambridge University Press.

Shapiro, B., and Mjolsness, E. (2001). Developmental simu-

lations with Cellerator. In Second International Conference on

Systems Biology (ICSB), pp. 342–351. California Institute of

Technology.

Shea, M. A., and Ackers, G. K. (1985). The OR control

system of bacteriophage lambda: A physical-chemical model

for gene regulation. J. Mol. Biol. 181: 211–230.

Simpson-Brose, M., Treisman, J., and Desplan, C. (1994).

Synergy between the Hunchback and Bicoid morphogens

is required for anterior patterning in Drosophila. Cell 78:

855–865.

Skeath, J. B., and Carroll, S. B. (1992). Regulation of

proneural gene expression and cell fate during neuroblast

segregation in the Drosophila embryo. Development 114:

939–946.

Somogyi, R., and Sniegoski, C. A. (1996). Modeling the

complexity of genetic networks: Understanding multigenic

and pleiotropic regulation. Complexity 1: 45–63.

Stekel, D., Rashbass, J., and Williams, E. D. (1995). A com-

puter graphic simulation of squamous epithelium. J. Theor.

Biol. 175: 283–293.

St. Johnston, D., and Nüsslein-Volhardt, C. (1992). The

origin of pattern and polarity in the Drosophila embryo. Cell

68: 201–219.
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3Early Dendritic and Axonal Morphogenesis

H. G. E. Hentschel and A. Fine

In this chapter we review the neurobiology of early

dendritic and axonal morphogenesis and the underly-

ing physical mechanisms that may control the growth

and form of axons and dendrites. An increasing body

of experimental and modeling work suggests that

several physicochemical instabilities may underlie the

generation of dendritic and axonal forms. Lamelli-

podia formation and the early stages of dendritic

arborization may be the consequence of an instability

involving the control of growth by the local calcium

concentration, while axonal di¤erentiation may be

due to an instability involving actin depolymerization

and microtubule formation in the developing neuron.

In this chapter we describe models of neurite forma-

tion and axonal di¤erentiation that incorporate these

instabilities and discuss their implications for neuronal

development.

3.1 Neuronal Morphogenesis as Pattern

Formation

The diversity of neuronal morphologies has been

recognized since the time of Ramon y Cajal (1911;

see also chapter 4). The mechanisms determining

neuronal morphology, however, remain obscure.

From the observation that many neurons can recreate

their characteristic dendritic branching patterns when

grown in cell culture, we may infer that dendritic

morphology is genetically determined. At the same

time, however, dendritic growth and the resulting

morphology can be influenced by various extrinsic

(epigenetic) factors, such as external electric fields

( Ja¤e and Poo, 1979), glial- or target-derived sub-

stances (Tessier-Lavigne et al., 1988), electrical activ-

ity (Schilling et al., 1991), neurotransmitters (Mattson,

1988), cyclic adenosine monophosphate (cAMP)

(Lohof et al., 1992), and neurotrophins (Ruit and

Snider, 1991).

Despite their diversity, many neurons share com-

mon aspects of growth and form. Cells, typically, ex-

hibit a set of well-defined growth stages involving the

development of both axons and dendrites (see figure

3.1A). The initially spherical cell begins to grow by

projecting many broad, short, wavelike extensions

called lamellipodia. This period, typically lasting a few

hours, has been referred to by Dotti et al. (1988) as

stage 1 of outgrowth. The lamellipodia subsequently

condense into a number of small neurites of approxi-

mately equal length, which undergo a period (roughly

half a day) of growth and contraction (stage 2). Even-

tually (typically by the second day), one of the

neurites rapidly increases its growth rate, becoming

di¤erentiated as the axon (stage 3), while the growth

rates of the other neurites are profoundly reduced.

Over the next several days, the remaining neurites

begin to grow again and acquire the full dendritic

characteristics (stage 4). Finally, the neuron develops

into its mature form (stage 5). In this chapter we con-

centrate on modeling the early stages (stages 1–3) of

neuronal development.

What are the biological mechanisms underlying

neuronal development? One possibility is that a

detailed specification of the total structure of indi-

vidual neurons is genetically encoded. A problem

with this suggestion, however, is that too many genes



would be required. An alternative possibility is that

only rules are encoded. At first sight, this possibility

appears attractive. The amount of information that

would have to be stored is very small compared with

detailed encoding, and in addition, evidence for a

degree of self-similarity in the structure of some den-

dritic branching patterns (Montague and Friedlander,

1989; Caserta et al., 1990; Takeda et al., 1992) sug-

gests that underlying the observed shape there possibly

is a recursive algorithm, repeating some simple rule at

several scales (e.g., Pellionisz, 1989; see also chapter

4). A problem with rule encoding, however, is its

arbitrariness; there is no underlying justification for

the choice of one set of rules over another except

for a posteriori agreement with observed structures.

An interesting alternative is that a large fraction of the

observed variation among classes of cells is controlled

by epigenetic factors such as variations in their local

environments (see McAdams and Arkin, 1997). In re-

ality, we would expect both genetic and epigenetic

factors to play a role in neuronal development.

As first suggested by Turing (1952), much of

neuronal morphogenesis may result from phys-

icochemical self-organization arising naturally from

Figure 3.1

(A ) A schematic diagram of stages 1–5 in the development of hippocampal neurons in vitro. See the text for details. (B ) A sche-

matic diagram showing axon regeneration after axotomy. If the axon is transected so that its remaining length is still greater than

that of the other neurites, it regrows as the axon (1). If after transection the axon is no longer the longest neurite, the longest

remaining neurite becomes the axon (2). (Redrawn from Andersen and Bi, 2000.)
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reaction-di¤usion processes in the cell. Turing (1952)

showed that in domains of a simple geometry con-

taining reaction-di¤usion processes, the homoge-

neous state can be unstable to stripe formation. With

di¤erent initial and boundary conditions, more com-

plex spatiotemporal patterns can be generated, such as

evolving and colliding whorl-like patterns (see also

Gierer and Meinhardt, 1972; Meinhardt and Gierer,

2000). These are examples of self-organization in the

sense that the specific pattern has much more structure

than the reaction-di¤usion equations that created it.

Such reaction-di¤usion processes have also been

applied to cellular morphogenesis by coupling the

resulting spatiotemporal patterns of a morphogen

with membrane growth. For example, this approach

has been used to explain the whorls of hair formation

at the growth tips of single-celled algae such as Aceta-

bularia (Goodwin and Trainor, 1988), and an explicit

morphogen has been suggested in membrane-bound

calcium (Harrison et al., 1988). The free boundary

problem in which the pattern depends on the shape of

the enveloping membrane (through its boundary

conditions) while at the same time the shape of the

membrane changes in response to this pattern is a

highly complex nonlinear problem requiring the ki-

nematics of curved surface evolution. Such methods

have been applied to algal tip growth by Pelce and

Pocheau (1992), who assumed the elongation rate

of the cell wall to be proportional to the local os-

motic pressure. Mechanical strain fields can also a¤ect

cellular morphogenesis, and their influence has been

studied by several groups (Odell et al., 1981; Good-

win and Trainor, 1988).

A dominant aspect of neuronal form is its dendritic

arborization (see chapter 4). An important class of

physical processes that can generate such dendritic

structures are regulated by di¤usion (Witten and

Sander, 1981) and based on the Mullins-Sekerka in-

stability (Mullins and Sekerka, 1963). Qualitatively,

the basic principle is that morphogen di¤usion gives

rise to spatial gradients in morphogen concentration

at curved interfaces. These concentration gradients

increase at the tips of curved surfaces. If the interface

then grows at a rate proportional to this gradient, a

positive feedback loop is created in which the tips of

curved interfaces grow at the greatest rates, giving rise

to even larger gradients. It has been found that nu-

merous di¤erent physical processes controlled by the

Mullins-Sekerka instability all give rise to similar den-

dritic patterns and are in the same universality class as

di¤usion-limited aggregation (DLA) (see figure 3.2).

They generate fractal structures at large scales, with a

fractal dimension of df ¼ 1:718 . . . in two dimensions.

The dendritic arbors of neurons also display statisti-

cal self-similarity (although only over a small range

of scales). For example, fractal dimensions df close to

those associated with two-dimensional DLA have

Figure 3.2

A typical dendritic structure grown by di¤usion-limited

aggregation (DLA). The branching was allowed to continue

to approximately the same degree as a neuronal arbor. If

allowed to proceed indefinitely, a fractal structure emerges

with a fractal dimension df A1:72.
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been found for a number of approximately flat neu-

ronal arbors, e.g., for cat retinal ganglion cell dendrites

(Caserta et al., 1990; Montague and Friedlander,

1989), df A1:68–1.73; and for mouse cerebellar Pur-

kinje cell dendrites (Takeda et al., 1992), df A1:71. Is

this a coincidence or does this observation provide a

clue to how neurons actually grow? We argue that the

observation is not coincidental and that calcium ion

may be the key morphogen (Hentschel and Fine,

1994, 1996).

Of course, even if di¤usion-limited processes con-

trol aspects of dendritic arborization, many other

dynamic mechanisms may be involved in neuronal

growth. Not only can retraction and growth occur

during dendritic morphogenesis—a feature absent in

most di¤usion-limited growth processes—but a cru-

cial feature of neuronal development is axonal di¤er-

entiation, or neuronal polarization (Dotti and Banker,

1987; Goslin and Banker, 1989). Generally, the lon-

gest neurite becomes the axon. Moreover (see figure

3.1B), if the developing axon is transected so that its

remaining length is still greater than that of the other

neurites, it will usually regrow as the axon; however,

if it is transected close to the soma, a change in polar-

ity usually occurs, with the longest remaining neurite

becoming the new axon (Dotti and Banker, 1987;

Craig and Banker, 1994). Positive and negative feed-

back loops leading to dynamic instability may underlie

such behavior (Samuels et al., 1996; Anderson and Bi,

2000). Neuronal polarization may result from compe-

tition for a di¤usible, anterogradely transported ‘‘de-

terminant chemical’’ (produced in the soma) whose

concentration at the neurite tip a¤ects the rate of

outgrowth. In section 3.3.3, we show that active

transport mechanisms coupled to di¤usion inside the

neurites may indeed lead to such a ‘‘winner-take-all’’

instability in growth (Samuels et al., 1996) and thus to

neuronal polarization.

3.2 Neurobiological Background

In this section, we summarize some key phenomena

of early dendritic and axonal morphogenesis.

3.2.1 Influence of Calcium on Neuronal Outgrowth

Many factors have been implicated in the appearance

of lamellipodia and filopodia and their subsequent

transformation into branched neurites. These factors

include neurotransmitters, cell adhesion molecules

(CAMs), and growth factors. An important common

link, however, is that they may work, at least partially,

by changing local internal calcium concentrations

within the neuron (Kater et al., 1988; Cohan et al.,

1987; Mattson et al., 1990; Grinvald and Farber,

1981).

Electrical stimulation and gradients of various

chemicals can change the neuron’s internal concen-

tration of calcium via local calcium influx through

voltage- or ligand-gated calcium channels (Lohof

et al., 1992; Zheng et al., 1994; Grinvald and Farber,

1981) and further augmentation by calcium-induced

calcium release from internal stores (Holliday et al.,

1991); in consequence they can modulate the growth

and form of neurons. The modulation of neurite out-

growth by calcium in growth cones appears to be bell

shaped (Kater et al., 1988). Outgrowth is enhanced by

increased calcium concentration up to an optimum,

whereas very large elevations of calcium can suppress

outgrowth (Cohan et al., 1987; see also chapter 6).

Accordingly, preventing such large elevations in cal-

cium by a blockade of electrical activity (Schilling

et al., 1991) or depletion of internal stores (Holliday

et al., 1991) can increase outgrowth.

In accordance with the bell-shaped modulation of

outgrowth by calcium, imaging studies have demon-

strated that calcium levels are higher in actively grow-
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ing growth cones (but not quiescent ones) than in the

cell body (Kater et al., 1988; Cohan et al., 1987).

Asymmetrical elevations in calcium on one side of a

growth cone may precede turning toward that side

(Zheng et al., 1994). Focal elevations in internal cal-

cium concentration (Meberg et al., 1999; Lau et al.,

1999) lead to spatially restricted formation of filo-

podia, which in turn give rise to dendritic or axonal

branches. The precise molecular mechanisms by

which calcium exerts these e¤ects on neurite growth

are not known, but are likely to involve calcium-

regulated processes such as cytoskeletal actin dynamics

and the exocytotic addition of plasma membrane

(Kater et al., 1988; Forscher, 1989).

3.2.2 Influence of Other Signaling Molecules on

Neuronal Outgrowth

Neuronal outgrowth can be influenced by molecules

secreted by other cells, such as nerve growth factor

(NGF) (e.g., Levi-Montalcini, 1976; Campenot,

1977; Ruit and Snider, 1991; see also chapter 10),

semaphorins, netrins, and Slit (see chapter 5). These

molecules may be di¤usible or bound to the extrac-

ellular matrix. They may function via changes in lev-

els of second messengers, including calcium and cyclic

nucleotides, or by modulating the activity of enzymes

(Song and Poo, 1999; Polleux et al., 2000). Nerve

growth factor, in particular, may exert its e¤ects via

modulation of guanosine triphosphatases (GTPases) of

the Rho family (Davies, 2000; Li et al., 2000). These

enzymes influence cellular polarity and lamellipodia

and filopodia formation (Bradke and Dotti, 1999;

Nobes and Hall, 1999; see also chapter 4), at least in

part by regulating cytoskeletal actin (Tapon and Hall,

1997). Among the diverse targets of these GTPases are

several phosphatidyl inositol kinases (Kaibuchi et al.,

1999), which may mediate some of these e¤ects.

In addition, through its influence on membrane

cycling (Stenmark, 2000) and modulation by growth-

associated protein 43 (GAP-43) and related protein

kinase C substrates (Laux et al., 2000), phosphatidyl

inositol phosphate metabolism may complement

calcium in constituting a common pathway uniting a

variety of outgrowth-regulating pathways.

3.2.3 Axonal Di¤erentiation

The onset of rapid growth in the presumptive axon is

the first known sign of neuronal polarization (see fig-

ure 3.1A). It is preceded in stage 2 by the enlargement

and increased dynamics of growth cones (Bradke and

Dotti, 1997) and an increased intracellular vesicular

and microtubule transport (Bass, 1999); it is followed

by a slowing of the other neurites’ growth (Esch et al.,

1999). Also at this stage, certain cell constituents begin

to be segregated to either the axonal or the somato-

dendritic compartments (Craig and Banker, 1994).

For example, only microtubules with plus ends ori-

ented distally to the cell body are found in axons

(Burton and Paige, 1981), whereas in dendrites com-

parable numbers of plus and minus ends occur distally

(Burton, 1988). This is not the result of the exclusion

of minus-end distal microtubules from axons; rather,

the appearance of minus-end distal microtubules in

dendrites requires the presence of a specific motor

protein, CHO1/MKLP (Sharp et al., 1997). In addi-

tion, GAP-43 and microtubule-associated protein

(MAP) tau are conspicuous components of axons but

not of dendrites (Goslin et al., 1988), whereas MAP2

is largely restricted to dendrites (Matus, 1988). The

mechanism of their sorting is unknown.

Axotomy experiments (see figure 3.1B) have

shown that all neurites have the potential to develop

into an axon (Dotti and Banker, 1987; Goslin and

Banker, 1989) when the axon is cut during devel-

opmental stages 2 and 3. The origin of the new axon

is determined primarily by the length of the neurites,
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with the longest one most often becoming the axon

(Goslin and Banker, 1989). If the two longest neurites

are roughly of equal length, then a latency period

occurs before a decision is made as to which neurite

will form the new axon. It appears, therefore, that

identical growth processes occur in every neurite and

that an instability occurs that accelerates the growth

rate of a single neurite, favoring the longest and

inhibiting the growth of all others. External cues, such

as contact with a novel permissive substrate, can in-

fluence this process (Esch et al., 1999).

Several mechanisms have been suggested for axonal

di¤erentiation. One possibility is that preexisting in-

ternal cellular asymmetries bias one neurite to become

the axon. Dotti and Banker (1991), however, found

no evidence of correlations between site of axon ini-

tiation and asymmetry or position of various cell

organelles. Certain molecules, such as the membrane-

associated protein GAP-43 (Goslin et al., 1988) and

the microtubule-associated protein tau (Binder et al.,

1984), are segregated to the axon soon after the axon

can first be identified on morphological grounds; on

this basis, it has been suggested that these molecules

could determine the axon. While such segregated

molecules may participate in the formation, stabiliza-

tion, or function of the axon, the mechanisms re-

sponsible for their segregation—and thus for the

uniqueness of the axon—remain unknown. Thus, such

‘‘prepattern’’ hypotheses do not provide a full account

of neuronal polarization. Moreover, prepattern

mechanisms are inconsistent with the observed out-

come of axotomy experiments, as described earlier.

To avoid this inconsistency, Caceres and Kosik

(1990) hypothesized that a phosphatase-mediated

cooperative dephosphorylation of microtubule-

associated proteins (e.g., tau), stochastically acting

within each neuron to increase microtubule stability

and elongation, could account for the emergence of

the fastest growing neurite as the axon. Evidence for

a distally increasing gradient in the ratio of dephos-

phorylated to phosphorylated tau has recently been

obtained (Rebhan et al., 1995). Such a mechanism

may indeed participate in axon di¤erentiation, but

cannot by itself account for the inhibition of the

growth of the other neurites.

Another mechanism that may be involved in neu-

ronal polarization is actin depolymerization at the

growth cone (Bradke and Dotti, 1999). When ran-

domly selected neurites of hippocampal neurons at

stage 2 were perfused for 15–30 min with cytochala-

sin D (an actin polymerization inhibitor), the perfused

neurite formed the axon within a day (Bradke and

Dotti, 1999; Forscher and Smith, 1988). It is not cer-

tain how actin depolarization results in axon forma-

tion, but it may involve the exposure of more barbed

ends of actin filaments, thus ultimately increasing net

actin polymerization or leading to enhanced micro-

tubule formation, which results in neurite extension

(Waterman-Storer and Salmon, 1999).

3.2.4 Active Transport and Di¤usion in Axonal

Di¤erentiation

Axon formation must involve enhanced transport of

vesicles and microtubule elements, and may also in-

volve reduced transport of other elements. Transport

of such ‘‘determining factors’’ must occur either by

active mechanisms or by di¤usion. In addition, after

selective delivery to the axon, some membrane pro-

teins appear to be retained by association with cyto-

skeletal elements, constituting a di¤usion barrier at

the axon’s initial segment (Dotti and Simons, 1990;

Winckler et al., 1999). Such polarization may depend

on complexes between sca¤old proteins such as

protease-activated receptor (PAR) 3 and PAR-6,

which can bind to, and modulate, enzymes such as
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Rho GTPases and protein kinase C, that are involved

in cell polarity (Lin et al., 2000).

Evidence of intracellular sorting during axonal dif-

ferentiation suggests that active transport is involved.

During axonal di¤erentiation, cytoplasmic flow into

the incipient axon is associated with morphologi-

cal changes, including the development of a larger

growth cone and the accumulation of organelles such

as vesicles and ribosomes (Bradke and Dotti, 1997).

Active transport of substances along neurites is

analogous to transport along a series of highways. The

highways themselves are formed by microtubules, and

transport can occur both from the soma to the growth

cones (anterograde transport) and from the growth

cone to the soma (retrograde transport). Such active

transport is mediated by motor proteins such as

dynein and kinesin (Vallee and Bloom, 1991), which,

utilizing adenosine triphosphate (ATP) as an energy

source, move along the microtubules, transporting

vesicles and other organelles to which they bind.

One place where such active transport against dif-

fusive gradients is likely to have a great influence is in

the development of the axon, which can in principle

grow many centimeters or even meters in length.

Proteins competing unsuccessfully with axonally

segregated substances for cytoskeletal binding would

be excluded from the axon. Tau proteins segregate to

the axon, and it has been suggested that they could

displace MAP2 from axonal microtubular binding

sites (Schoenfeld and Obar, 1994). Also, if substances

that selectively cap microtubule minus ends, prevent-

ing their elongation, segregate to the axon, this could

account for the di¤erential orientation of micro-

tubules in axons and dendrites (see section 3.2.3).

Axons thus contain only (the faster growing) plus-end

distal microtubules. In dendrites, in the absence of

such selective caps, the initial preponderance of the

faster growing plus-end distal microtubules would

in time equilibrate with slower growing minus-end

distal microtubules, so that both orientations occur.

Cellular elements would thus be transported from the

soma along minus-end distal microtubules (e.g., Steb-

bings and Hunt, 1983) into the dendrites and would

be excluded from the axon if they selectively bound

dynein (which is responsible for transport toward the

minus end) rather than kinesin (which is responsible

for transport toward the plus end).

Why could active transport have an important

influence on axonal di¤erentiation? The rate of ante-

rograde transport could be coupled to growth rate

by at least two mechanisms. The growing tip exerts

tension on the neurite (Lamoureux et al., 1989), and

increased growth may lead hydrostatically to increased

flow of cytosol into the proximal neurite. This

increased proximal inflow will allow increased load-

ing, and thus transport, of a chemical that determines

axonal di¤erentiation. Alternatively, the capacity

or velocity of the transport mechanism could be

increased by the growth-associated increase in neurite

tension if the increased strain leads to conformational

changes (Heidemann and Buxbaum, 1994) in trans-

port proteins.

Whereas attention has generally focused on special

characteristics of the nascent axon, complementary

mechanisms for neuronal polarization may involve

special characteristics of the nascent dendrites. Deple-

tion of the motor protein CHO1/MKLP1, required

for transport of minus-end distal microtubules into

dendrites, causes the dendrites to become longer,

thinner, and, ultimately, indistinguishable from axons

(Yu et al., 2000).

Finally, di¤usion is also likely to be of major im-

portance because it may be the source of inhibiting

signals during neuronal polarization. Di¤usion of de-

terminant chemical back from the neurite tips opposes

active anterograde transport, and may be responsible
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for the slowing of growth in ‘‘losing’’ neurites as their

tips come into equilibrium with the soma.

3.3 Models of Early Dendritic and Axonal

Morphogenesis

The neurobiology described in the preceding sections

provides a framework in which models for the early

stages of neuronal morphological development need

to fit. In this section, we describe possible mechanisms

by which calcium (and other signaling molecules),

active transport and di¤usion may give rise to dy-

namic mechanisms underlying the emergence of

dendritic form and axonal di¤erentiation. Models

that study the implications of calcium (or electrical

activity)-dependent neurite outgrowth for a later

developmental stage (namely, the development of

networks of synaptically connected cells) are described

in chapters 6 and 7.

3.3.1 Stage 1 Growth: The Development of

Lamellipodia

How does a spherical neuron begin to develop lamel-

lipodia, the wavelike protrusions of its membrane? If

the internal structure of the cell also had spherical

symmetry, some sort of symmetry-breaking instability

would have to be involved. In reality, of course, even

if the cell appears spherical on a coarse scale, its inter-

nal structure is already highly asymmetrical in the

distribution of organelles and proteins. Thus, even

at the earliest stages of development, asymmetrical sig-

nals could exist that initiate stage 1 of development.

Nevertheless, it is reasonable to ask whether such

asymmetry is a necessary precondition for stage 1 of

development to occur. The answer is no, and by the

time a cell reaches a critical size Rcrit, lamellipodia are

likely to appear as a result of a dynamic instability

even in a truly spherical cell in the presence of a dif-

fusive morphogen such as calcium.

The development of a cell whose growth depends

upon the local concentration of calcium near the

inner surface of the cell membrane, ½Ca2þ�in, (in a

growing, complex-shaped cell, this concentration

varies with both time and position) can be modeled

by solving the di¤usion equation for the calcium con-

centration (in the presence of voltage-dependent

ionic fluxes through the membrane) and by taking

the growth rate V ð½Ca2þ�inÞ to be locally determined

according to the empirically observed bell-shaped de-

pendence of growth upon calcium (see section 3.2.1).

For an initially spherical cell, such growth can be

shown analytically (Hentschel and Fine, 1994) to be

unstable, i.e., to generate lamellipodia rather than a

smoothly advancing circular border. This growth

exhibits important di¤erences in cells with excitable

versus passive membranes, particularly with regard to

the dependence of dendritic morphogenesis on cell

size R0ðtÞ and calcium di¤usivity DCa. For cells with

excitable membranes, instability results mainly from

a positive feedback between calcium influx and

submembrane calcium concentration. This instability

will be enhanced as the cell increases in size, and also

by any reduction in internal morphogen di¤usivity

(Hentschel and Fine, 1994). In contrast, for a passive

membrane—where the unstable growth is mainly

due to membrane convexities, generating regions of

higher intracellular calcium concentration—the insta-

bility will be strengthened by a decrease in cell size

and by an increase in calcium di¤usivity.

To understand these results intuitively, consider a

spherical cell from which a dendrite protrudes spon-

taneously. Since the calcium concentration outside

the cell is much higher than that inside the cell, an

inward flux through the protrusion into the cell will

occur. The magnitude of this flux will depend both

on the geometric properties of the protruding den-
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drite and on whether the membrane is passive or

excitable. The internal calcium concentration, and

especially the submembrane calcium concentration

½Ca2þ�in, will be a¤ected by this influx. The sponta-

neous protrusion is likely to be unstable if ½Ca2þ�in
in this protrusion increases su‰ciently above its

submembrane value elsewhere in the soma to cause

increased growth and consequently an even more

dominant protusion. From the flux boundary condi-

tion at the membrane surface, �DCa
~‘‘½Ca2þ�in ¼~JJCa,

we can estimate that for spherical cells with a passive

membrane of permeability k, the local submembrane

calcium concentration scales as

½Ca2þ�in @
k½Ca2þ�out
DCa/R þ k

; ð3:1Þ

where R is the cell radius. From Eq. (3.1), we see that

for small cells RfDCa/k, protrusions are likely to

lead to significant variations in the submembrane

calcium concentration with variations in curvature,

while the actual magnitude of the submembrane con-

centration will be greater in larger cells RgDCa/k.

Thus we might expect that for passive membranes

there will be large variations in the calcium concen-

tration in small cells with large internal calcium dif-

fusivities, encouraging lamellipodia formation; while

as the actual magnitude of ½Ca2þ�in is likely to be

greater in larger cells, there is a greater likelihood

that this will open channels in excitable membranes,

leading to an even greater calcium influx and con-

sequently to lamellipodia formation by this new

positive feedback mechanism available only to active

membranes.

These intuitive ideas can be developed in a more

rigorous manner. The nature of the instability for

cells with excitable membranes will depend upon

the details of the membrane’s ionic conductances. For

example, for an excitable membrane whose con-

ductivity is modulated mainly by the morphogen cal-

cium, growth instability increases with cell radius

R0ðtÞ, rising rapidly when the cell grows beyond a

size

Rcrit @DCa

�
qJCa

q½Ca2þ�in

� �
; ð3:2Þ

where JCa is the calcium flux into the cell. Note

that for a cell with a passive membrane, this positive

feedback caused by channel opening with increased

submembrane calcium, qJCa/q½Ca2þ�in > 0, does not

exist, and indeed qJCa/q½Ca2þ�in ¼ �k is negative.

If, alternatively, the membrane conductivities are

set by a sodium- and potassium-dependent trans-

membrane potential f, the instability increases rapidly

as the radius approaches a value

Rcrit @

e

kT
ð½Kþ�in þ ½Naþ�inÞ

D�1
Na

qJNa

qf
þ D�1

K

qJK

qf

; ð3:3Þ

where JNa and JK are, respectively, the sodium and

potassium fluxes into the cell; DNa and DK are the in-

ternal sodium and potassium di¤usivities; and ½Naþ�in
and ½Kþ�in are the internal sodium and potassium

concentrations. The conditions for these kinetic

instabilities resemble those leading to endogenous

ionic currents through spherical cells (Pelce, 1993),

and indeed the two phenomena appear to be related;

if the ions behave as morphogens, lamellipodia will

result.

Equations (3.2) and (3.3) come from a linear stabil-

ity analysis of spherical cell growth (Hentschel and

Fine, 1994, 1996). Linear stability analysis investigates

whether infinitesimal geometric perturbations of the

cell membrane vanish or grow with time. If we

observe that the perturbations grow, then a spherical

cell of radius R0ðtÞ is unstable, and we can investigate

what shape takes its place. Any observed instabil-

ity will place an upper bound on the real cell size
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that can remain spherical, because any internal cell

variations will only enhance the observed dynamic

instability.

Consider a circular cell taken to grow as dR0/dt ¼
V ð½Ca2þ�inðtÞÞ, where V ð½Ca2þ�inðtÞÞ is the rate of

cell growth, which is dependent in a bell-shaped

manner on ½Ca2þ�inðtÞ. In the presence of surface per-

turbations, the cell will ru¿e and can be parametrized

by its now variable radius Rðy; tÞ, where y is the angle.

Rðy; tÞ has the Fourier expansion Rðy; tÞ ¼ R0ðtÞþPy
m¼1 dmðtÞ cosðmyÞ, where R0ðtÞ is the radius of the

growing unperturbed cell and dmðtÞ is the magnitude

of a surface fluctuation, which varies with angle y

as cosðmyÞ. Owing to this surface perturbation, the

calcium flux through the membrane, and conse-

quently the calcium concentration in the cell, will

change. The submembrane calcium concentration

½Ca2þ�inðy; tÞ will gain an angular dependence, and

this spatial dependence will in turn modulate the

growth, resulting in an equation of motion for the

interface perturbations (obtained from linear stabil-

ity analysis and valid for both excitable and passive

membranes):

ddm

dt
¼ dm

"
m2ð1� m2Þg

R4
0

þ Xm

#
; ð3:4Þ

where g is the membrane rigidity and

Xm 1
qC

qR0

qV

q½Ca2þ�in

�

8>>><
>>>:
1þ

1þ ðR0/DCaÞ
qJCa

q½Ca2þ�in
m� ðR0/DCaÞ

qJCa

q½Ca2þ�in

9>>>=
>>>;
: ð3:5Þ

In Eq. (3.5), qC/qR0 1 qCðr; tÞ/qrjr¼R0ðtÞ, where

Cðr; tÞ is the intracellular morphogen concentration at

a point r and time t during unperturbed growth, while

½Ca2þ�in 1C½R0ðtÞ; t�.

An analysis of Eqs. (3.4) and (3.5) suggests the pos-

sibility of unstable growth, i.e., ddm/dt > 0; therefore,

dendritic morphogenesis is in principle possible for

both passive and excitable membranes provided that

calcium stimulates growth, i.e., qV /q½Ca2þ�in > 0.

But we can see that excitable and passive membranes

show interesting di¤erences with regard to their de-

pendence on cell size R0ðtÞ and di¤usivity DCa, which

is in agreement with the intuitive arguments pre-

sented earlier.

For an excitable membrane, qJCa/q½Ca2þ�in > 0,

and the cell surface can in principle be unstable how-

ever small the cell is, provided membrane rigidity g

is weak. As the cell grows, the instability is enhanced

and by the time the cell reaches a size R0ðtÞA
DCa/ðqJCa/q½Ca2þ�inÞ, nonlinear terms need be added

to Eq. (3.4) for a complete analysis; however, it is

clear that the cell surface will ru¿e, as suggested by

Eq. (3.2). Note also that as the morphogen di¤usivity

DCa decreases, instability is enhanced for excitable

membranes because the submembrane calcium is

larger and therefore more e‰cient at opening calcium

channels.

For a passive membrane, qJCa/q½Ca2þ�in ¼ �k,

where k is the membrane permeability. In con-

sequence, Xm ¼ ðqC/qR0ÞðqV /q½Ca2þ�inÞðmþ 1Þ/
ðmþ kR0/DÞ, and therefore, although unstable

growth may still occur in this case, the instability will

be strongly damped by membrane rigidity g and will

decrease with cell size R0ðtÞ. For a passive membrane,

increases in the di¤usivity DCa will enhance unstable

growth.

3.3.2 Stage 2 Growth: Lamellipodia Condensation

into Neurites

The strong conclusion from these analytical inves-

tigations is that stage 1 of development can be under-

stood as a dynamic instability involving calcium as a
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morphogen. To investigate neurite formation in a

biologically plausible manner, we describe here simu-

lations of neuronal growth that incorporate the

sodium field as the major modulator of the trans-

membrane potential. That is, the transmembrane po-

tential is set mainly by the potassium field, but this

resting potential is modulated mainly by variations in

the submembrane sodium concentration. The calcium

permeability is active in the sense that the calcium

channels are voltage dependent; thus, calcium chan-

nels open in response to local depolarization, allowing

an inward flux of calcium, which then acts as the

morphogenic field.

We are interested here in the dynamics of growth

on a time scale of hours—which is significantly larger

than the di¤usive time scale Tdi¤ A l2/DCaA10 sec,

where lA100 mm is the neurite length scale and

DCaA10�7 cm2/sec is the calcium di¤usion constant

in the presence of bu¤ering. Therefore, in our simu-

lations we made the adiabatic approximation of solv-

ing Laplace’s equation ‘2C ¼ 0 for quasi-equilibrium

ionic concentrations, using relaxational methods

rather than the full di¤usion equation.

In our simulations (which are two-dimensional),

the cell interior is divided into a number of discrete

compartments corresponding to about 1 mm2 of cyto-

plasm, while the surface is divided into segments

about 1 mm in length. The relaxational procedure

yielded the concentrations of sodium and morphogen

(calcium) at each internal compartment, or pixel. The

cell surface was treated as a discrete linked list of ele-

ments, referred to as membrane pixels, which contain

information not only on transmembrane potential and

ionic conductivities at each interfacial site si but also

on the local submembrane concentration of relevant

ions, especially calcium Ci 1 ½Ca2þ�inðsiÞ and sodium

Nai 1 ½Naþ�inðsiÞ.
The solution of these relaxational equations for

the ionic concentrations requires knowledge of the

explicit boundary conditions. These boundary condi-

tions are found by equating the flux just internal to

the surface with the total flux by all mechanisms

through the membrane. This flux boundary condition

then fixes the submembrane ionic gradients. Thus, the

total morphogen flux through the cell membrane at

point si is the sum of its di¤usive influx and active

extrusion by pumping, i.e., JðsiÞ ¼ Jdi¤ ðsiÞ � JpumpðsiÞ.
For each ionic species, we then have the boundary

condition

�D~‘‘Ci ¼ ½ Jdi¤ ðsiÞ � JpumpðsiÞ�~nnðsiÞ; ð3:6Þ

where ~nnðsiÞ is the unit normal vector into the cell at

point si on the surface. We also need explicit expres-

sions for the di¤usive and pumping fluxes. For exam-

ple, we employed for the di¤usive calcium flux,

JCa;di¤ ½fðsiÞ� ¼ gCa½fðsiÞ�
fCa;NeðsiÞ � fðsiÞ

2e
; ð3:7Þ

where gCa½fðsiÞ� is the voltage-gated calcium con-

ductivity at site si and fCa;NeðsiÞ ¼ ðkT /2eÞ log
ð½Ca2þ�out/CiÞ is the local Nernst potential for cal-

cium in terms of its charge 2e and concentration Ci

inside and concentration ½Ca2þ�out outside the cell.

(We took the outside of the cell to be well mixed, an

assumption that is in accord with the observation that

normal development occurs in neurons grown in

vitro in the presence of well-mixed media.)

To calculate the transmembrane potential em-

ployed in Eq. (3.7), we assume that the principal

voltage-dependent ionic conductance modulating

the potential is sodium. Thus, membrane potential is

solved from the nonlinear approximation:

fðsiÞ ¼
gleakfrest þ gNa½fðsiÞ�fNa;NeðsiÞ

g leak þ gNa½fðsiÞ�
; ð3:8Þ

where g leak and frest are, respectively, a lumped con-

ductance and its associated Nernst resting potential,
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terms that represent the aggregate contribution of the

other main permeant ions (e.g., Kþ, Cl�), which

are assumed to have a constant spatial distribution in

the cell. The Nernst potential for sodium, fNa;NeðsiÞ,
which is a function of the distribution of sodium, is

determined by solving the di¤usion and flux equa-

tions for sodium in the same manner as for calcium.

Active extrusion of sodium and calcium is assumed

to occur via saturable mechanisms, i.e., to depend

sigmoidally upon their internal concentrations near

the membrane, with pumping negligible at low con-

centrations but above some concentration increasing

significantly to a maximum (Blaustein, 1988). For ex-

ample, for calcium we used

JCa;pumpðCiÞ ¼
JCa;max

1þ eðCcrit�CiÞ/DC
; ð3:9Þ

where DC is the width of this sigmoidal dependence.

For CiACcrit, the pumping becomes significant; this

occurs shortly after the voltage-gated channels open.

The e¤ect can be seen in simulations as a slowing

down of the total inward flux at CiA1000 nM.

Membrane parameters (ionic conductivities, pump

fluxes, etc.) were chosen as far as possible to be con-

sistent with known biology (Blaustein, 1988). For ex-

ample, the calcium pumping and di¤usive fluxes were

typically found to vary from 0.1 to 10 pmol/cm2 sec

at di¤erent points on the cell surface. With the exter-

nal calcium concentration fixed at ½Ca2þ�out ¼ 1 mM,

the observed internal calcium concentrations were

found to range from 100 nM to 400 nM.

We incorporated the empirically observed bell-

shaped dependence of outgrowth upon calcium (see

section 3.2.1) by parameterizing growth velocity nor-

mal to the surface as

V ðsiÞ ¼ k1C
a
i � k2C

b

i þW ðtÞ; ð3:10Þ

where k1 and k2 are lumped rate constants for the

growth and retraction mechanisms, respectively, and

a and b reflect the cooperativity of the dependence

on calcium. The global rate of cell growth is taken

to be constant, reflecting a constant rate of synthesis

of new cytoplasm; the constraining velocity term

W ðtÞ, so defined to ensure this, is therefore included.

A problem arises as to how membrane sti¤ness and

short-range membrane repulsion are to be included

(growing membrane segments cannot intersect). In

addition, Eq. (3.10) implies deterministic growth un-

a¤ected by noise.

How do we treat time in our simulations? Since we

assume that cytoplasmic material is manufactured at a

constant rate in the cell, time is divided into a series of

intervals in which M new elements of cytoplasmic

material are added to the surface of the growing cell.

If in this time interval Nþ new compartments are

added to the surface and N� compartments disappear

as a result of retraction, then clearly M ¼ Nþ �N�,

but there is no unique algorithm specifying how

this is to be achieved. Each interfacial site si has a

probability Pg; i of growing, a probability Pr; i of

retracting, and a probability Ps; i of remaining station-

ary (Pg; i þ Pr; i þ Ps; i ¼ 1); these probabilities de-

pend on Ci and are not uniquely defined. Indeed,

di¤erent neuronal morphologies could be created by

specifying di¤erent growth rules. We have employed

a plausible but non-unique, two-stage stochastic

growth rule.

First, a calcium-stimulated growth step is

attempted, with the probability of growth at a mem-

brane pixel si given by Pg; i ¼ Pmax½2ðCi/CmaxÞ�
ðCi/CmaxÞ2�, where Pmax is the maximal growth

probability (which occurs when the submembrane

calcium concentration Ci ¼ Cmax, the peak of the

bell-shaped curve). This functional form is equivalent

to taking a ¼ 1 and b ¼ 2 in Eq. (3.10). In general in

our simulations, Pg; i > 0, since the calcium concen-

tration Ci was typically less than Cmax; very rarely, at

very high calcium concentrations (if Ci > 2Cmax),
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Pg; i < 0, and the surface was retracted. Growth is

attempted at each membrane pixel by comparing Pg; i
with the output of a random number generator. In

this manner, a total number of Nþ sites are grown at

each discrete time step.

Second, if Nþ > M , we then attempted to retract

each nongrowing membrane pixel with a probability

Pr of retraction, whose value was fixed by demanding

that a fixed amount M of cytoplasm be added to the

whole interface per unit of time [Pr ¼ ðNþ �MÞ/
ðN �NþÞ, where N is the number of membrane

pixels at any time]. Thus the probability of retraction

at a particular membrane pixel si is given by Pr; i ¼
Prð1� Pg; iÞ, and the probability of its remaining sta-

tionary is therefore Ps; i ¼ 1� Pr; i � Pg; i. Retraction

or stationarity was then assigned by use of a random

number generator.

All sites in the domain were flagged as either inside

the growing cell (internal), belonging to the mem-

brane (one pixel thick, although in reality the inter-

face is much thinner on the scale of a single pixel), or

outside the cell (external). Whether growth or retrac-

tion occurred was further constrained by topology

and rigidity (no pinching o¤ of membrane, curvature

not too large). Finally, the intersection of growing

dendrites was discouraged. The approach of pro-

cesses closer than the diameter of a filopod-bearing

growth cone was disallowed (thus implementing

contact-mediated inhibition). Growth or retraction

was achieved by replacing the membrane pixel in

question by an internal (growth) or external (re-

traction) domain point, while preserving membrane

contiguity.

Growth and Form

Simulations of the growth of cells according to the

model described here (figure 3.3A–E) display emer-

gent properties that resemble the dynamic behavior of

actual growing neurons (figure 3.3F–J).

In both model neurons (figure 3.3A,B) and natural

neurons (figure 3.3F,G), initial outgrowth consists of

broad, irregular extensions (lamellipodia) and short,

very fine extensions (filopodia) of the cell membrane.

Distinct processes (neurites) emerge only subsequently

in both model and natural neurons (figure 3.3C,H); in

both cases, the processes spontaneously form enlarge-

ments (growth cones) at their actively growing tips

(figure 3.3C–D,H–I), which in turn give rise to

branches (figure 3.3D–E,I–J). In both model and

natural neurons, small processes often retract, and the

Figure 3.3

Typical growth of a model neuron (A–E, top) and of real retinal neurons (F–J, bottom), from 0.5 to 4 days in vitro. See the text

for details. (From Hentschel and Fine, 1996.)
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extension of large processes may be punctuated by

episodes of stasis or retraction.

Influence of Biological Parameters on

Morphology

An important emergent property of the model is

the ability of changes in membrane excitability and

calcium conductivity to a¤ect dendritic thickness,

branching, and neurite length. Figure 3.4A–D shows

the e¤ects of changes in membrane electrical excit-

ability (changes in excitability influence calcium

permeability via voltage-gated conductances). The

growth of model neurons with reduced electrical ex-

citability (figure 3.4B) results in longer, thinner neu-

rites than equivalent growth of control model neurons

(figure 3.4A). Similar changes are seen in cerebellar

Purkinje neurons grown in culture in the presence

of 1 mM tetrodotoxin (TTX) (which blocks voltage-

dependent sodium channels) (figure 3.4D) compared

with those grown in standard medium (figure 3.4C)

(Schilling et al., 1991). Figure 3.4E–H shows the

e¤ects of changes in calcium permeability. Increasing

calcium permeability in model neurons (figure 3.4F)

leads to the formation of more compact dendrites

with broader growth cones than equivalent growth

under standard conditions (figure 3.4E). Compari-

son with the growth of hippocampal neurons in

standard culture medium (figure 3.4G) and in the

presence of the calcium ionophore A23187 (500 nM )

(figure 3.4H) reveals similar e¤ects (Mattson et al.,

1990).

Ionic Gradients

The spatiotemporal distributions of ionic concentra-

tions inside growing cells can be extracted from

our simulations (see figure 3.5). These findings are in

accord with the basic mechanisms of unstable growth.

The existence of voltage-gated sodium channels leads

to focal depolarizations and elevated sodium concen-

trations whose tendency to di¤use away is exceeded

by an influx that is due to increased permeability.

Calcium follows through voltage-gated calcium

channels, causing increased growth and neurite for-

mation. These internal sodium and calcium gradients

and irregularities of contour emerge spontaneously

at early stages of growth and lead to the observed in-

stability through positive feedback, as the emerging

neurities lead to even greater focal membrane depo-

larization. The appearance of calcium gradients along

neurites early in the growth of a model neuron can

be seen in figure 3.5B. In figure 3.5C, similar intra-

Figure 3.4

E¤ects of changes in membrane electrical excitability (A–D)

and calcium permeability (E–H ). (C and D are taken from

Schilling et al., 1991, with permission; G and H are taken

from Mattson et al., 1990, with permission.) See the text for

details.
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cellular calcium gradients along growing neurites of

a real (molluscan) neuron in culture (Cohan et al.,

1987), monitored with fura-2, can be seen.

Membrane Potentials

The sodium gradients are enhanced by, and con-

tribute to, local depolarization of the cell membrane

along the neurite. Gradients of transmembrane po-

tential, progressively more depolarized toward the tips

of growing processes, are a robust emergent property

of our simulations. Recent observations indicate that

similar gradients exist along growing processes of real

neurons (Bedlack et al., 1994); to our knowledge,

gradients of sodium along neurites have not been

investigated in real cells. Our simulations (see figure

3.5D) show relative depolarization (lighter pixels) at

the tips of growing neurites, an emergent property in

keeping with observations of such gradients in real

neurons (Bedlack et al., 1994).

External Electric Fields

It is known that in the presence of external electric

fields, neurites grow preferentially toward the cathode

( Ja¤e and Poo, 1979), and it has been suggested that

intracellular calcium gradients generated by these

fields may be responsible for this (Robinson, 1985).

This suggestion is supported and clarified by the

behavior of the model, where external electric field

Figure 3.5

Gradients of intracellular concentration in neuronal outgrowth. (A) Sodium concentration in a model neuron increases distally

along neurites in concert with membrane depolarization. (B ) Calcium concentration in the same model neuron, influenced by

membrane potential, is also higher along the neurite than within the cell body. (C ) Calcium concentration in a mollusk neu-

ron. (From Cohan et al., 1987 with permission.) (D) The transmembrane potential variation about the resting potential in the

model neuron.
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e¤ects were incorporated as an additive contribution

to the transmembrane potential. The external fields

induced slight depolarization of cathode-facing mem-

branes and hyperpolarization of anode-facing mem-

branes. Preferential opening of voltage-dependent

calcium channels on cathode-facing membranes

results in higher local calcium influx and consequently

in a tendency for neurites to extend toward the

cathode.

3.3.3 Stage 3 Growth: Axonal Di¤erentiation

We have shown (Samuels et al., 1996) that a ‘‘winner-

take-all’’ dynamic instability is in all likelihood

involved in axonal di¤erentiation (see also Andersen

and Bi, 2000) and that a great deal of the data about

axonal di¤erentiation can be understood by assuming

that the formation, motion, and consumption of a

single chemical determines the rate of growth of the

neurites. The determinant chemical in this model

should therefore be interpreted as the rate-limiting

substance among all of those necessary for early neu-

rite growth. At present, the identity of this determi-

nant chemical is not known.

We assume that the determinant chemical is pro-

duced in the soma of the neuron and transported to

the tips of the growing neurites, where it is consumed

by the growth process. Depending on the identity of

this chemical, this consumption may be viewed as, for

example, the polymerization of cytoskeletal mono-

mers, the addition of microtubule-associated proteins

to microtubules, the consumption of energy or

metabolites in cytoskeleton assembly, or the addition

of new membrane. These processes are believed to

occur primarily at the distal ends of growing neurites

(Craig et al., 1995).

So far in this chapter we have employed two main

mathematical methods to study early neuronal devel-

opment: (1) linear stability analysis to understand the

stage 1 appearance of lamellipodia, and (2) detailed

computer simulations to understand aspects of stage 2

neurite formation and its dependence on membrane

parameters. To study axonal di¤erentiation, we use a

third approach: dynamic systems theory. We treat the

developing neuron at a very coarse scale and com-

partmentalize the complex neuronal architecture to

the level necessary for developing the essence of the

proposed dynamic instability. In particular, we seg-

ment the neuron into its soma and a set of N neurites

of di¤erent lengths.

The variables we consider are the concentration

C0 of the determinant chemical in the soma, the con-

centrations C1 to CN at the N neurite tips, and the

neurite lengths L1 through LN (see figure 3.6). The

development of the concentration in the soma is

given by

dC0

dt
¼ 1

Vsoma

S �
XN
i¼1

Ti

 !
; ð3:11Þ

Figure 3.6

A schematic diagram of the simulation for a neuron with

four neurites. The simulation variables are the concentration

C0 of the determinant chemical in the soma, the concentra-

tions C1 to C4 at the four neurite tips, and the neurite

lengths L1 through L4.
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where S is the rate of production of the determinant

chemical by the cell, the i subscript labels each of the

N neurites, Ti is the net transfer rate of the chemical

from the soma to the neurite tip, and Vsoma is the vol-

ume of the soma. We take S to be constant; in reality,

the value of S is likely to change with time as the

cell enters di¤erent stages of development, and it may

also be dependent on C0 so that production decreases

when the soma concentration becomes too high.

The net transfer of the determinant chemical will

result from two processes, di¤usion and anterograde

transport (more precisely, the net result of combined

retrograde and anterograde transport). These two

processes will tend to counteract each other, since

anterograde transport acts to concentrate material

at the neurite tip, while di¤usion acts to equilibrate

concentrations at the tip and soma. If a unique axon is

to form, the net transfer rate must increase for the

axon—at the expense of the other neurites—in order

to supply adequate amounts of determinant chemical.

Di¤usion becomes less e¤ective with increased neu-

rite length, but the required instability only emerges if

anterograde transport increases with either the length

or the growth rate of the neurite. It is di‰cult to

imagine how neurite length per se could a¤ect the

transfer rate, but an e¤ect due to the growth rate is

plausible (see also section 3.2.4). The transfer rate is a

product of two factors: the speed of transport along

the neurite and the rate at which substances enter the

transport process from the soma. Then if, for example,

neurite outgrowth results from traction exerted by

the growing tip (Lamoureux et al., 1989), an in-

creased growth rate would, as noted earlier, pull more

cytosol—and thus more of the determinant chemical

—into the neurite’s proximal end, where there is

access to the transport mechanism. The rate at which

any determinant chemical is used during growth—

whether it is the addition of microtubule monomers,

the addition of new material to the growth cone

membrane, or the use of some important protein in

microtubule stabilazation—is likely to be propor-

tional to the rate of axon growth. With such a picture

in mind, we model the anterograde transport as pro-

portional to the growth rate of the neurite. The net

transfer rate from the soma to the neurites is then

Ti ¼ DA
C0 � Ci

Li

þ F
dLi

dt
C0; ð3:12Þ

where D is the di¤usion constant of the determi-

nant chemical, A is the cross-sectional area of the

neurite, and F is a growth-dependent active transport

parameter.

Because all neurites have the potential to form

the axon (Dotti and Banker, 1987), we model all the

neurites identically. The development of the chemical

concentrations Ci and the neurite lengths Li are given

by

dCi

dt
¼ 1

Vtip

Ti �G
dLi

dt

� �

dLi

dt
¼ aCi;

ð3:13Þ

where G and a are growth parameters and Vtip is the

volume of the neurite tip, where the growth processes

occur. The term GðdLi/dtÞ represents the consump-

tion of the determinant chemical by the growth

process at a rate proportional to the growth rate. The

growth rate of the neurite is assumed to be propor-

tional to the local concentration Ci of the determinant

chemical. More complex models for this growth rate,

as well as retraction and noise, can easily be incorpo-

rated, but Eq. (3.13) is su‰cient to show the dynamic

instability.

There are nine parameters in Eqs. (3.11)–(3.13),

but only special combinations of them influence form.
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The others simply influence the temporal and spatial

scales at which growth occurs, and we can extract

the important combinations of parameters controlling

form by converting Eqs. (3.11)–(3.13) into a non-

dimensional form. To do this, we must choose scales

for the concentration, time, and length. We choose

the scales

Cscale ¼
S

aG
; tscale ¼

Vsoma

aG
; L scale ¼

VsomaS

aG2
:

ð3:14Þ

The biological meaning of this choice can be under-

stood as follows: An extreme solution of Eqs. (3.11)–

(3.13) is when the entire source is consumed by a

single neurite, a situation that closely resembles our

expectations for the growth of a single axon. In that

case, we have S ¼ GaCi (production equals con-

sumption by neurite i ), which we may write as

Ci ¼ S/ðaGÞ. With this as the choice for Cscale, we

can expect the nondimensionalized concentration in

any axon to be near 1. The time scale was chosen so

that the nondimensionalized source term of Eq. (3.11)

would be unity. The length scale was chosen to sim-

plify the rate of growth in Eq. (3.13). The equations

in nondimensional form are then

d ~CC0

d~tt
¼ 1�

XN
i¼1

w1

~CC0 � ~CCi

~LLi

þ w2
d~LLi

d~tt
~CC0

� �

d ~CCi

d~tt
¼ w3 w1

~CC0 � ~CCi

~LLi

þ w2
d~LLi

d~tt
~CC0 �

d~LLi

d~tt

� �
ð3:15Þ

d~LLi

d~tt
¼ ~CCi;

where a tilde marks a nondimensionalized quantity

and the parameters are defined as

w1 ¼
DAG

SVsoma

; w2 ¼
FS

aG2
; w3 ¼

Vsoma

Vtip

: ð3:16Þ

The nine parameters of Eqs. (3.11)–(3.13) are now

reduced to four (w1, w2, w3, and N ). The parameters

w3 and N are simple geometric parameters. All of the

important biological parameters are subsumed into

w1 and w2. The values of w1 and w2 for a real neuron

cannot be determined until the identity of the de-

terminant chemical is known. Nevertheless, we have

observed that much of the behavior of the solutions

to Eq. (3.15) is not strongly dependent on the exact

values of w1 and w2, as long as the parameters are not

near their critical values for axon development.

We used a Runge-Kutta-Fehlberg method to inte-

grate Eq. (3.15). Typical initial conditions are that

the initial concentrations are set to zero and the ini-

tial neurite lengths are set to small random values

½~LLið~tt ¼ 0Þ < 10�2�, where ‘‘small’’ is defined relative

to the typical length attained by the neurites that do

not form the axon.

Axon Development

Within a certain parameter range, the numerical solu-

tions of Eq. (3.15) show an instability leading to the

formation of N � 1 very slowly growing neurites and

a single quickly growing neurite, which we identify

as the axon. Figure 3.7 shows the development of

the determinant chemical concentrations and neurite

lengths for a typical simulation. In figure 3.7a, we can

see the rapid and continuous growth of the axon,

while the other neurites remain short. The develop-

ment of the chemical concentrations (figure 3.7b)

shows more detail. Our model [Eq. (3.15)] specifies

that the growth rate of each neurite is proportional

to the concentrations of the determinant chemical at

its tip; thus the development of the concentrations

also describes the development of the neurite growth

rates.

Initially, the concentrations in the soma (dashed

line) and all the neurites (solid lines) rise together. At
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this stage, the neurites are very short and di¤usion is

su‰cient to keep the concentrations equal. As the

concentrations within the neurites increase, the soma

concentration begins to fall, owing to the increase in

the transfer term [Eq. (3.12)] from soma to neurites.

During this stage, the concentrations within the neu-

rites diverge, as one by one the neurite concentrations

begin to fall. Eventually, only a single neurite is left

with a high concentration. The concentration of this

neurite then increases very rapidly and levels out at a

value slightly less than 1, while the concentrations of

the other neurites decrease and level out at a very low

value. This progression is typical of axon development

in these simulations and corresponds to neuronal

developmental stages 2 and 3 as defined by Dotti et al.

(1988).

Instability Leading to Axon Formation

Not all values of the parameters lead to axon forma-

tion. A stability map for Eq. (3.15) may be con-

structed as a function of the four parameters w1, w2, w3,

and N. To construct a useful two-dimensional map,

we held the geometric parameters constant at reason-

able values (w3 ¼ 10 and N ¼ 4) and concentrated on

the stability as a function of the biological parameters

w1 and w2 (see figure 3.8).

In the region labeled ‘‘no axon’’ in figure 3.8, the

steady-state solution of Eq. (3.15) is that the con-

centrations (and therefore the growth rates) all have

equal values of ~CCi ¼ 1/N . In this region, all neurites

continue to grow at equal rates with approximately

equal lengths. In the ‘‘axon formation’’ region, a sin-

gle neurite develops a concentration of near 1 while

all other neurites have small concentrations. The po-

sition of the instability curve was defined to be there

where the largest concentration reaches a value half-

way between ~CCi ¼ 1/N and ~CCi ¼ 1. The exact value

defined for the transition is relatively unimportant

because the transition between the two regions is

rapid.

The shape of the instability curve contains infor-

mation about the instability. There is a broad mini-

mum extending across three orders of magnitude in

w1; thus, aside from extreme low and high values, the

instability is rather insensitive to the value of w1. In

contrast, the dependence of the stability curve on w2 is

Figure 3.7

The development of one long neurite (the axon). Typical simulation results for a cell with four neurites. All values

are dimensionless. The simulation parameters are w1 ¼ 1, w2 ¼ 100, w3 ¼ 10, and N ¼ 4. (a) The development of neurite

lengths. (b) The development of the concentrations of the determinant chemical in the soma (dashed line) and in the neurites

(solid lines).

Early Dendritic and Axonal Morphogenesis 67



quite sharp, with a transition to axon formation at

approximately w2 ¼ 10 to 20. Recalling the defini-

tions w1 ¼ DAG/ðSVsomaÞ and w2 ¼ FS/ðaG2Þ, it is

evident that since w1 ¼ 0 is always in the stable (no

axon) region, di¤usion must be present for instability

to occur. Similarly, since w2 ¼ 0 is always in the stable

region, anterograde transport must also be present

(F > 0) for the instability to arise.

We have modeled the source term S as a constant,

but it is reasonable that in a real neuron this parameter

could change during development. From the insta-

bility curve, we can understand how changes in S

will a¤ect the development of the instability. If S

decreases, then w1 increases and w2 decreases. These

changes in parameters could shift an axon-bearing

cell across the instability line into the region of stabil-

ity, perhaps corresponding to developmental stage

4, dendritic di¤erentiation and growth (see later

discussion).

Axotomy Experiments and Simulations

The underlying assumptions of our simulation—that

all neurites are initially equally competent and that

a length-related instability determines the identity of

the axon—are derived from the axotomy experiments

of Dotti and Banker (1987) and Goslin and Banker

(1989), and we should be able to reproduce the quali-

tative behavior seen in these experiments.

We simulate axotomy by reducing the length of the

axon at an arbitrary time (~tt ¼ 2) after the identity of

the axon has been established (see figure 3.9). Since Ci

represents the concentration at the tip of the neurite

(where growth is occurring), we must also alter that

value to simulate an axotomy. As a simplification, we

assume that the concentration profile of the available

determinant chemical is linear from the soma to the

neurite tip; we calculate the new concentration from

this profile and the new length of the cut neurite.

Other models for the concentration profile may be

used, but we have found that the development of

the simulation after an axotomy is only dependent

upon the chosen concentration profile if the axotomy

leaves the original axon at a length close to that of the

longest of the other neurites.

Figures 3.9a and 3.9b are two examples of axotomy

simulations. In figure 3.9a, the axon is cut to a length

that is still longer than (although comparable to) the

length of the longest of the other neurites. The origi-

nal axon quickly regains its rapid rate of growth and

reforms the axon. In figure 3.9b, the original axon is

cut to a length shorter than the other three neurites.

In this case, the longest neurite begins to grow rapidly

and forms a new axon, while the original axon

regrows only slightly to a length comparable to the

other short neurites. Immediately after the axotomy,

all of the neurites experience a spurt of growth before

a new axon emerges, which is in agreement with

experiments (Goslin and Banker, 1989) in which the

axon was cut to a length comparable to the other

neurites.

Goslin and Banker (1989) observed that the latency

for resumption of growth of an axon after axotomy

Figure 3.8

Stability map for the growth of axons. The map shown is for

the values N ¼ 4, w3 ¼ 10, and an initial length di¤erence

of 10�2. The position of the curve depends on these param-

eters, but the shape of the curve does not.
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was a function of the di¤erence in length between the

two longest neurites, with a smaller di¤erence requir-

ing a longer latency. The latency in our simulations

shows the same qualitative behavior (figure 3.10). At

~tt ¼ 2, when the simulation variables were close to a

steady-state solution, we cut the axon to a random

length and measured the time from axotomy to the

beginning of rapid growth of a new axon, where rapid

growth was arbitrarily defined as a growth rate half-

way between 1/N and the maximum sustainable

growth rate of 1.

3.4 Discussion

This chapter has been concerned with the modeling

of the early stages (stages 1–3) of neuronal develop-

ment and with the identification of possible physical

instabilities underlying the evolution of form. These

instabilities are generic and follow almost automati-

cally from the known biology. However, the sheer

variety of dendritic branching patterns implies that

physical instabilities alone cannot account for the

observed variety. For example, there is evidence that

some dendritic branching patterns, such as those of

human cerebellar Purkinje arbors, are space filling,

while many other branching patterns are fractal or

have asymmetrical characteristics. In our simulations,

we found that at intermediate times the neurons had

fractal characteristics, but if we allowed our simula-

tions to proceed for very long periods, the dendritic

branching patterns tended to become space filling. To

what extent such characteristics are generic and to

what extent they depend on the details of the model

(recall that the growth rule we used in our simula-

tions, although plausible, is non-unique) is a di‰cult

question to answer without more extensive simula-

tions and more constraints from biology.

These observations show why modeling is so im-

portant for understanding the development of neuro-

nal form. The degree of control that simulations

give us over the great variety of biological param-

eters (genetic switches, pumping rates, channel con-

ductivities and excitability, calcium-induced calcium

release from stores, membrane rigidity, etc.) that

might influence morphology means that at least in

principle it may be possible to uncover their con-

Figure 3.9

Axotomy of the growing axon. The dashed line represents the original axon. (a) The axon is cut to a length of 0.3, which is still

longer than all the other neurites. The original axon reforms. (b) The axon is cut to a length of 0.1, which is shorter than that of

the other neurites. The longest remaining neurite forms a new axon.
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tributions to morphogenesis by varying individual

control parameters.

Future Modeling Studies

Perhaps the most important avenue for further theo-

retical work lies in separating genetic from epigenetic

factors in morphogenesis. Biochemical reaction net-

works (see chapters 1 and 2) can be used to simulate

genetic switching mechanisms occurring during de-

velopment. The genetic component may express itself

as a tendency for the dendritic arbor to branch at reg-

ular intervals, or as a specific time dependence for the

production of a determinant chemical influencing

axonal di¤erentiation. Branching frequencies may

also be influenced by extrinsic attractant and repellent

substances. Also, the role of neuronal asymmetry

needs to be investigated further, as well as synaptic

activity, which can influence dendritic morphogenesis

(Wong and Wong, 2000).

Future Experimental Studies

Both environmental and genetic factors can be

expected to influence neuronal development, and as

we uncover new biological mechanisms, these mech-

anisms can be incorporated into our simulations and

their influence on growth and form investigated. The

e¤ect of di¤erent growth substrates (Esch et al., 1999),

or of growth-stimulating signals, such as nerve growth

factor (Ruit and Snider, 1991) or cyclic AMP (Zheng

et al., 1994), can influence morphology; the more

we can tease out the mechanisms involved, the more

realistic our simulations will be. Environmental influ-

ences on axon di¤erentiation could be important.

For example, we found a very sensitive dependence

of axon formation on a small (10 percent) variation in

the parameter a controlling the growth rate of the

neurites in Eq. (3.13) (Samuels et al., 1996). Clearly, a

much deeper understanding is needed of the exact

reaction kinetics, as well as the identity of the deter-

Figure 3.10

Latency of axon regeneration after axotomy versus the di¤erence in length between the two longest remaining neurites. (a)

Data from the simulation. (b) Latency data are from the axotomy experiments of Goslin and Banker (1989). Note that since the

cells were not observed continuously, the minimum latency time measurable in those experiments was 2 hr.
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minant chemicals. Although the choice of the neurite

that forms the axon is random under homogeneous

environmental conditions, this choice may easily be-

come deterministic in an inhomogeneous environ-

ment. Axon formation by neurites in di¤erent locations

may be inhibited or encouraged by their environment.

More experimental work on these influences is

needed.
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4Formation of Dendritic Branching Patterns

Jaap van Pelt, Bruce P. Graham, and Harry B. M. Uylings

Understanding the enormous diversity of neuronal

shapes and their impact on neuronal function is a

major challenge in neuroscience. Much experimen-

tal e¤ort has been dedicated to the reconstruction

of three-dimensional neuronal morphologies, to the

quantification of shape characteristics, and to the

measurement of electrophysiological properties.

Neurons attain their shapes as the result of a devel-

opmental process in which many cellular and molec-

ular processes are involved. Understanding neuronal

morphology therefore requires quantitative insight

into these processes as well as a powerful framework

for the description of morphology. This chapter

reviews the di¤erent modeling approaches used in

studying the morphology of dendritic branching

patterns. Detailed examples are given of a stochastic

dendritic growth model and models of intracellular

mechanisms in neurite outgrowth.

4.1 Neurobiological Background

4.1.1 Neuronal Morphology

Neurons are characterized by the shape of their axonal

and dendritic arborizations. Axons enable the neuron

to deliver action potentials to local and remote target

neurons (axons thus form the substrate of neuronal

connectivity), while dendrites serve as target struc-

tures and receive and integrate incoming signals.

The contribution of an individual, active synapse

located at a particular site on the dendritic tree, to the

firing probability of the neuron depends on, among

other factors, the amplitude of the postsynaptic po-

tential, the characteristics of the path to the soma, the

momentary state of the dendritic membrane and its

ion channels, and the spatial and temporal relations

with other active synapses. Dendritic morphology

is therefore strongly involved in the electrical signal

transduction properties of a neuron. For a detailed

discussion on the functional role of dendritic mor-

phology, see chapter 13.

Dendritic and axonal arborizations show an enor-

mous diversity among and within neuron classes. It is

tempting to assume that the morphology of a neuron

contributes to its functional specialization, i.e., to its

role in neuronal information processing. However,

lack of a thorough understanding of how information

is ‘‘encoded’’ or processed makes it very di‰cult to

give a quantitative assessment of this role. The func-

tional role of morphological specializations therefore

remains largely unknown.

Neuronal morphology is the outcome of a

developmental process, and understanding the char-

acteristics of neuronal morphology requires an under-

standing of this process. To this end, one needs not

only data and tools for e‰ciently and quantitatively

describing neuronal morphologies, but also data and

tools for describing neuronal morphogenesis.

4.1.2 Neurite Outgrowth and Neuronal

Morphogenesis

In this section we give a brief overview of some of the

major stages in neuronal development.



Cell Division and Migration

Rat cerebral cortex neurons are mainly generated

from embryonic day 10 (E10) until birth. For the

human brain, the period of major neocortical neuron

formation is between approximately 6 and 18 weeks

of gestation (Rakic, 1995; Uylings, 2000). According

to the current view, pyramidal neurons migrate radi-

ally from the neocortical proliferative zone of the

cerebral wall toward their final location, whereas the

majority of the nonpyramidal neurons are derived

from the medial ganglionic eminence via tangential

migration (Parnavelas, 2000).

Neurite Outgrowth

After migration to their final location, neurons start

to grow out neuritic processes. In the early phase of

neuronal outgrowth, these neuritic processes di¤er-

entiate; one of the neuron’s neurites becomes an axon

and the others become dendrites (see also chapter 3).

Axons continue their advanced outgrowth rate, arbo-

rize, and migrate to their targets (axon guidance; see

chapter 5), where they make synaptic connections.

Pyramidal and nonpyramidal neurons accelerate their

dendritic growth after the ingrowth of thalamic and

other subcortical fibers. In rat cortex, the period of

fastest dendritic outgrowth is between postnatal days

8 and 14, reaching mature dendritic extent around

postnatal day 18 (Parnavelas and Uylings, 1980;

Uylings et al., 1994; Koenderink and Uylings, 1995).

Role of Growth Cones in Neurite Elongation

and Branching

Neurite elongation and branching are mediated by

growth cones, i.e., specialized structures at the tip of

growing neurites. Growth cones consist of a central

core, lamellae sheets, and filopodia, all of which

contain filamentous actin. Elongation of neurites

proceeds by growth cone migration and requires

the lengthening of the microtubule cytoskeleton (by

polymerization of tubulin) in the trailing neurites.

Dendritic branching is initiated by the splitting of a

growth cone, a process that requires a reorganization

of the growth cone’s actin cytoskeleton (for a recent

review of the molecular mechanisms involved in

branching, see Acebes and Ferrus, 2000). The actin

cytoskeleton is modified by the activity of a number

of small GTPase enzymes, the Rho family, with

Rac promoting lamellipodium and membrane ru¿es,

Cdc42 polymerizing actin into filopodia, and espe-

cially RhoA being involved in dendritic branching.

Initial growth cone splitting and filamentous actin

branch formation are further consolidated by the for-

mation of a more rigid microtubular sca¤old.

Neural branching is subject to fine modulation,

with Rho proteins acting as molecular switches and

integrating extracellular and intracellular signals to

regulate rearrangement of the actin cytoskeleton. By

altering neuronal network formation, mutations in

the proteins involved in Rho-dependent signaling

may possibly result in mental retardation (Ramakers,

2000). For the dependence of neurite outgrowth on

electrical activity and intracellular calcium, see chap-

ters 3 and 6. Growth cones have both a motor and

a sensory function. They sense the local environment

through receptor- and ion channel-mediated signal-

ing, adhere to local cues, exert elastic tension, and

react by internal reorganization. The actual behavior

of a growth cone is the outcome of this multitude

of processes and consists of an integration of envi-

ronmental information (adhesivity, chemorepellants,

chemoattractants) and internal processes [(de)poly-

merization of actin and microtubules, stabilization

of microtubules by microtubule-associated proteins,

transport of structural proteins, signaling pathways

involving calcium and Rho proteins, electrical activ-

ity, and gene expression].
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Overshoot and Regression

After a mature neuronal morphology has formed,

further minor alterations may occur in di¤erent cell

types, e.g., some further growth in layer II/III pyra-

midal neurons and some minor regression in layer

IV multipolar nonpyramidal neurons (Uylings et al.,

1994). Some neocortical neurons show pronounced

dendritic regression (e.g., in the apical dendritic field

in the callosal, small layer V pyramidal cell; Koester

and O’Leary, 1992), but this appears to be the excep-

tion rather than the rule. A clear pattern of out-

growth, regression, and regrowth has been observed

in rat cerebellar Purkinje cells (PC). Quackenbush

et al. (1990) and Pentney (1986) have shown that PC

networks sampled from 18-month-old rats had fewer

terminal segments than those from 10-month-old rats,

while PC networks from 28-month-old rats were in-

termediate in size. Woldenberg et al. (1993) analyzed

the distributions of terminal segment numbers and

argued for the simultaneous existence of growing and

declining subpopulations of PC cells.

This brief overview of neuronal development shows

that many mechanisms are involved in neurite out-

growth, including the intracellular machinery, the

neuron’s response to the extracellular environment,

and neuronal electrical activity. Cline (1999) recently

formulated a consensus view that dendritic structure

and function develop as part of a continual dynamic

process that balances the e¤ects of neuronal activity,

growth-promoting and growth-inhibiting proteins,

and homeostatic mechanisms. In addition, the notion

was emphasized that dendrites develop as part of a

neural circuit, with development regulated by syn-

aptic activity, activity-regulated proteins, and activity-

induced genes.

All processes and mechanisms involved in dendritic

development exert their e¤ects on neurite elongation

and branching through the influence they have on the

actin and microtubule cytoskeleton, which makes

understanding the cytoskeletal mechanisms in den-

dritic morphogenesis of crucial importance.

4.2 Questions and Approaches in Modeling

Neuronal Morphology

4.2.1 Questions

The preceding section made it clear that under-

standing morphological diversity in neurons is an ex-

tremely challenging goal. Experimental approaches

for longitudinal, in vivo studies of neurite out-

growth and neuronal morphogenesis are still limited,

although high-resolution time-lapse confocal imaging

techniques o¤er promising prospects. But even if all

experimental data are available, computational ap-

proaches remain essential for describing the processes

in their quantitative interrelationships and their con-

sequences for neuronal development.

Important questions that can be addressed by com-

putational approaches include (1) how can neuronal

morphology and developmental changes be described,

(2) how does neuronal morphology emerge from the

dynamic behavior of growth cones, and (3) which

mechanisms are involved and how do they contribute

to growth cone behavior and neurite outgrowth?

There is not a single computational approach to all of

these questions; each question requires its own partic-

ular strategy, which will also depend on the level of

detail of the description.

Addressing the first question requires a set of shape

factors that capture the characteristic shape proper-

ties of neuronal morphology. Neuronal morpho-

genesis may then be described by the way in which

these morphological characteristics change over time.

On the basis of these quantitative descriptions, we

may search for the most e‰cient algorithms that can
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produce arborizations that have morphological char-

acteristics similar to the neuronal ones.

The second question can be approached by quanti-

fying the dynamic actions of growth cones and study-

ing what variety of morphologies will emerge from

these actions. As a first step, we may describe growth

cone elongation and branching as the outcomes of

a stochastic process. Such an approach will provide

insight into how the growth cones’ elongation and

branching probabilities translate into typical shape

properties of the model dendritic trees produced.

These model trees may then be compared with neu-

ronal dendritic trees, in an attempt to find agreement

by optimizing the stochastic growth rules. In fur-

ther refinements, we may approximate growth cone

dynamics at a finer level of detail by including state-

and time-dependent conditions in the stochastic

growth rules.

The third question is the most complex one be-

cause it concerns a multitude of mechanisms and

their interactions. As a first step, we may focus on a

particular mechanism and explore its role in neurite

outgrowth. For instance, we may focus on the cytos-

keleton and build computational tools for quanti-

tatively studying cytoskeletal dynamics and their

contribution to the behavior of growth cones. Alter-

natively, we may focus on regulatory mechanisms;

this requires computational tools for quantitatively

describing the biochemical and signaling pathways

that target the cytoskeletal dynamics. From a more

general point of view, we may ask whether neurite

outgrowth is subject to basic (biophysical) constraints,

as imposed by conservation of matter and energy or

by limited resources (possibly leading to competitive

phenomena). Addressing this question requires bio-

physical models of production, transport, use, and

decay of key proteins involved in neurite outgrowth.

An interesting question is also whether the mecha-

nisms involved in neurite outgrowth are operating in

an orchestrated way or more or less independently.

This question is far from trivial, because even when

two mechanisms lack direct interaction and thus may

seem independent, the complexity of the full system

may include indirect links, resulting in an e¤ective

dependence (homeostasis of, e.g., electrical activity or

the intracellular calcium concentration may produce

such e¤ective correlative behavior; see also chapter

6). Related questions are whether growth cones may

be considered as operating independently from one

another, only under control of local mechanisms, and

to what extent axonal and dendritic outgrowth is

correlated.

4.2.2 Parameterization of Neuronal Morphology

Neurons may be readily distinguished by the global

shape of their dendritic field. Recently, Fiala and

Harris (1999) reviewed di¤erent schemes for charac-

terizing the global shape of dendritic fields: (1) in

terms of extent, density, and polarity (e.g., bipolar,

multipolar); (2) on the basis of a selective, sampling,

or space-filling appearance; and (3) in terms of regular

3-D geometric bodies [spherical, laminar, cylindrical,

(bi)conical, or fan shaped].

For a detailed description of neuronal arborizations,

it is necessary to include both topological and metrical

characteristics. The topological structure is defined by

the number of segments and the connectivity pattern

of the segments as a rooted tree. It determines, for ex-

ample, the distribution of segments versus centrifugal

order (figure 4.1), the division of segments in subtrees

at branch points (indicated by the tree asymmetry

index; Van Pelt et al., 1992), and the frequencies of

di¤erent types of branch points (e.g., Horsfield et al.,

1987; Sadler and Berry, 1983). Metrical properties

include the lengths and diameters of segments, their

curvature, the three-dimensional embedding of the

arborization, and further details, such as the number
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and shape of dendritic spines. Metrical characteriza-

tion can be given in terms of length and diameter dis-

tributions and spatial densities of segments or branch

points. Measures that are a combination of topological

and metrical properties include radial distribution

functions of dendritic length or the number of branch

points (for a review, see Uylings et al., 1986). Mor-

phological characterization thus requires many mea-

sures, the choice of which depends on the required

detail of the analysis. For example, Ipiña et al. (1987)

applied multivariate analysis techniques to a set of ten

variables to analyze developmental e¤ects and aging,

and Cannon et al. (1999) used a large set of dendritic

measures to di¤erentiate among di¤erent populations

of hippocampal neurons.

4.2.3 Stochastic Models of Neuronal Arborizations

Di¤erent algorithms have been developed for gen-

erating neuronal arborizations with shape proper-

ties (statistically) similar to their empirically observed

counterparts. One class of models focuses on the radial

distribution of dendrites, in terms of intersections

with spheres (e.g., Ten Hoopen and Reuver, 1971),

or of segment number per centrifugal order (e.g.,

Kliemann, 1987). Focusing on the topological struc-

ture, Devaud et al. (2000) proposed a parsimonious

description for the variation in segment order distri-

butions among di¤erent dendritic trees by assuming

a simple two-parameter model for the centrifugal

order-dependent splitting probabilities. Using this

model, they found good matching with cultured

honeybee (olfactory) antennal lobe neurons.

Another class of models, which focuses on both to-

pological and metrical aspects, uses the empirical dis-

tribution functions for segment lengths and diameters,

as well as their correlations, to generate random den-

dritic morphologies by a repeated process of random

sampling of these distributions (e.g., Hillman, 1979,

1988; Burke et al., 1992; Tamori 1993; Ascoli and

Krichmar, 2000).

A third class of models, stochastic growth models,

uses hypothetical, stochastic growth rules for branch-

ing and elongation in the generation of random

Figure 4.1

(A) Tree elements. Intermediate and terminal segments, labeled by a centrifugal ordering scheme. (B ) Distribution of number

of segments versus centrifugal order.

Formation of Dendritic Branching Patterns 79



dendritic trees. Topological growth models aim at

explaining topological variation by assuming that the

branching probability depends on the type of segment

(intermediate or terminal) (e.g., Berry et al., 1975) as

well as on the centrifugal order (see figure 4.1) of the

segment (Van Pelt and Verwer, 1986). These studies

indicated how the mode of branching determines the

eventual variation in dendritic topological structures

and showed that the empirically observed topologi-

cal variation in dendritic trees was consistent with

branching of predominantly terminal segments, as was

also found in an extensive study of dendrites of motor

neurons (Dityatev et al., 1995).

Segment length distribution, a metrical property,

depends on both the branching and the elongation

process. Van Pelt et al. (2001a) extended the topolog-

ical growth model by including neurite elongation

in the already optimized branching process. By this

separation of elongation and branching, they were

able to match many topological and metrical shape

properties of the dendrites of a variety of cell types,

including basal dendrites of Wistar rat cortical layer

5 large pyramidal neurons (Van Pelt and Uylings,

1999a), basal dendrites of Wistar rat cortical layer

5 small pyramidal neurons (Van Pelt and Uylings,

1999b), basal dendrites of S1 rat cortical layer 2/3

pyramidal neurons (Van Pelt et al., 2001a), guinea pig

cerebellar Purkinje cell dendritic trees (Van Pelt et al.,

2001a), and cat deep-layer superior colliculus neurons

(Van Pelt et al., 2001b). These studies demonstrated

that the empirically observed morphological variabil-

ity in dendrites can emerge from a growth process in

which branching and elongation events show varia-

tion as well, being described by the probability func-

tions in the model. For these results, it was necessary

to assume (1) that branching depends on the total

number of terminal segments and the centrifugal order

of each terminal segment, and (2) that after branching,

newly formed (stabilized) daughter segments have

initial lengths, in order to account for the small num-

ber of short intermediate segments observed in all

segment length distributions. Empirical growth curves

for the number of terminal segments provide the pos-

sibility of gauging the time scale for the branching

process and predicting absolute elongation rates.

Other metrical studies include those of Now-

akowski et al. (1992), who studied segment length

distributions by assuming an increasing but saturat-

ing branching probability with segment length. They

found that it was necessary to include an inhibition of

branching for some distance beyond a branch point.

Ireland et al. (1985) studied the growth of apical den-

dritic trees in rat entorhinal cortex by means of ana-

lytical, time-dependent functions for elongation and

branching and found that terminal growth velocities

decrease with time. Li et al. (1992, 1995) developed

a model for neurite elongation and branching that

includes interactions with a morphogen gradient; they

found evidence for the existence of lateral inhibition

as well as a role for filopodial tension in branching.

Studying the lengths of intermediate and terminal

segments during phases of growth, decline, and re-

growth of rat Purkinje cell dendritic trees, Wolden-

berg et al. (1993) found evidence for Fibonacci scaling

in segment lengths.

4.2.4 Mechanistic Models of Neurite Outgrowth and

Neuronal Morphogenesis

Stochastic growth models do not consider the under-

lying mechanisms involved in neurite elongation and

branching. A di¤erent class of models can be dis-

tinguished that is concerned with these mechanisms.

Because of the multitude of mechanisms involved,

these models generally focus on particular mechanisms

and explore their implications for neurite outgrowth.

Van Veen and Van Pelt (1994) studied elongation

and branching under the control of production, trans-

80 J. van Pelt, B. P. Graham, and H. B. M. Uylings



port, and polymerization of tubulin. They predicted

that small di¤erences in polymerization rates would

result in competitive phenomena in the elongation

rates of daughter segments at branch points. This

model has recently been extended by Van Ooyen et al.

(2001) (see section 4.3.4).

Graham et al. (1998) and Graham and Van Ooyen

(2001) have investigated the possible intracellular ori-

gins of the dependence of branching on the number

of terminal segments and their centrifugal order (see

sections 4.3.2 and 4.3.3).

Hely et al. (2001) have modeled both the rate of

terminal branching and the rate of elongation as func-

tions of the stability of microtubule bundles in the

growth cone. The stability depends on the phosphor-

ylation state of microtubule-associated protein MAP2,

which is in turn determined indirectly by calcium in-

flux. Dephosphorylated MAP2 favors elongation by

promoting microtubule polymerization and bundling.

Phosphorylation of MAP2 disrupts its cross-linking

of microtubules and thus destabilizes the micro-

tubule bundles and promotes branching. A wide vari-

ety of tree characteristics are produced by the model,

depending on the relative rates of phosphorylation

and dephosphorylation of MAP2, the production and

transport of MAP2, and calcium influx.

In her doctoral thesis, Aeschlimann (2000) intro-

duced a biophysical model of the sensory function and

the motor behavior of growth cones. On the basis of

this model, she made quantitative predictions for elas-

tic and inelastic elongation and for the shear stress and

bending forces within growth cones.

4.2.5 Modeling Arborizations in Other Biological

and (Geo)physical Areas

Branching patterns are common structures in nature,

and in many fields of research stochastic and mecha-

nistic models have been used. There has been meth-

odological cross-fertilization between these fields of

research. For instance, topological studies of river sys-

tems in the 1960s and 1970s (e.g., Shreve, 1966;

Dacey and Krumbein, 1976) stimulated topological

growth studies of neuronal branching patterns (e.g.,

Berry et al., 1975; Hollingworth and Berry, 1975),

lung branching patterns (Horsfield and Woldenberg,

1986; Horsfield et al., 1987), microvessel networks

(Ley et al., 1985), and plant root systems (Fitter et al.,

1991). In turn, further generalizations of the topolog-

ical models for neuronal arborizations have produced

a new view on random river topology and headward

growth (Van Pelt et al., 1989).

4.3 Detailed Examples of Models of Neuronal

Morphology

4.3.1 Dendritic Growth Model

The dendritic growth model aims at describing the

morphology and variability of dendritic trees for a

wide variety of neuron types (for reviews, see Van

Pelt and Uylings, 1999a; Van Pelt et al., 2001a).

Briefly, the model describes dendritic growth by

elongation and branching of segments. Because in re-

ality many intracellular and extracellular mechanisms

are involved in the behavior of growth cones (which

mediate elongation and branching), it is assumed that

elongation and branching can be described as stochas-

tic processes. The branching process is defined by a

branching probability for each terminal segment:

piðgÞ ¼ ðB/NÞCi2
�Sgn�E

i ð4:1Þ

evaluated at each time bin i ði ¼ 1; . . . ;NÞ during the
developmental period T. In Eq. (4.1), the branching

probability is assumed to depend on the growing

number of terminal segments, ni, according to param-
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eter E, and on the centrifugal order g of the segment,

according to parameter S. The basic branching pa-

rameter B denotes the expected number of branching

events at an isolated segment in the full period. The

ratio B/N denotes the basic branching probability per

time bin. Parameter Ci ¼ ni/
Pni

j¼1 2
�Sgj is a normal-

ization constant and must be evaluated at each time

bin with a summation over all ni terminal segments.

The number of time bins, N, can be chosen arbitrarily

but so that the branching probability per time bin

remains much smaller than 1, making the probabil-

ity of more than one branching event per time

bin negligibly small. To describe the branching

process in continuous time, the time bin scale needs

to be mapped onto an absolute time scale. Time

bins will have equal durations in a linear mapping, but

di¤erent durations in a nonlinear mapping. The

equation for the branching probability per time bin

transforms into a branching probability per unit of

time:

ptðgÞ ¼ DðtÞCt2
�Sgn�E

t ; ð4:2Þ

where DðtÞ denotes the basic branching rate parame-

ter per unit of time [DðtÞ is not constant for a non-

linear mapping].

After a branching event, newly formed daughter

segments are given a gamma-distributed, randomly

chosen initial length with mean l in and standard devi-

ation sl in , and a gamma-distributed, randomly chosen

elongation rate. The developmental period may con-

sist of a first phase of elongation and branching and a

subsequent phase of elongation only, with elongation

rates vbe and ve, respectively, both with a coe‰cient of

variation cvv. A summary of the model parameters is

given in table 4.1.

During outgrowth, the total number of terminal

segments increases at each branching event. If the

branching probability is independent of the total

number of terminal segments, branching is prolific,

leading to very large trees. This is shown in figure

4.2A for parameter value E ¼ 0, resulting in an expo-

nentially declining degree distribution. For positive

values of E, the branching probability decreases with

an increasing number of terminal segments, leading to

degree distributions with a modal shape that becomes

narrower at larger E values. By its control of the

increase in the total number of terminal segments, pa-

rameter E may be interpreted as representing compe-

tition during dendritic branching.

Application of the Dendritic Growth Model to

Wistar Rat Cortical Layer IV Multipolar

Nonpyramidal Neurons

The morphological data on Wistar rat visual cortex

layer IV nonpyramidal neurons are obtained from

a developmental study by Parnavelas and Uylings

(1980), with detailed reconstructions for di¤erent age

groups. Growth starts in the first postnatal week and

shows a continuing increase in the number of seg-

ments and total dendritic length up to postnatal (PN)

day 16. After this growth phase, terminal segments

show further elongation up to at least PN90.

In the present study, the growth model is applied to

the PN16 data set and studied for the following shape

parameters: total dendritic length, number and lengths

of intermediate and terminal segments, path lengths,

centrifugal order of the segments, and the tree asym-

metry index (as a measure of the topological struc-

ture, or connectivity pattern, of the segments). The

observed mean and standard deviation (SD) values

are listed in table 4.2; the frequency distributions

are shown in figure 4.3 as dashed histograms. First,

the branching process was studied by optimizing

the branching parameters B, E, and S. The results

are illustrated in figure 4.4A, showing the predicted

growth curve of the number of terminal segments.

The panel shows an excellent matching with the em-

pirically observed data at PN16, but a mismatch with
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the data in earlier age groups at 4, 6, 8, 10, 12, and

14 days PN, when time bins of equal duration are

assumed. Applying a nonlinear mapping of time bins

to absolute time scale (figure 4.4B illustrates an expo-

nential mapping with exponent 3) results in a growth

curve for the model that matches in both mean and

SD the di¤erent age groups very closely (figure 4.4C).

By a transformation to absolute time, the time course

of the basic branching rate DðtÞ can be predicted; it

shows a rapid decline in the first week of development

(figure 4.4D) (see also Van Pelt and Uylings, 2002).

The elongation process was studied by optimizing

the parameters ain, lin, and sl in for the initial lengths at

the time of branching, and the parameters vbe and cvv
for the sustained elongation rate. The shape properties

of the random trees generated with these optimized

parameters (table 4.3) are listed in table 4.2 for their

mean and SD, and plotted as dashed histograms in

figure 4.3. These outcomes show that the model trees

conform closely to the observed dendrites in most of

their statistical shape properties.

The decline in the branching probability with an

increasing number of terminal segments via parameter

E may be interpreted as a competition e¤ect when

growth cones compete for some limited resource. The

positive value of E ¼ 0:106 thus suggests that such

Table 4.1

Summary of parameters used in the dendritic growth model

Aspect of growth Related to

Optimizing parameters

B Basic branching parameter Segment number

E Size dependence in branching Segment number

S Order dependence in branching Topology

al in (mm) Initial length—o¤set in gamma distribution Segment length

l in (mm) Initial length—mean Segment length

sl in (mm) Initial length—SD Segment length

nbe (mm/hr) Mean elongation rate in branching and elongation phase Segment length

ne (mm/hr) Mean elongation rate in elongation phase Segment length

cnn Coe‰cient of variation in elongation rates Segment length

Experimental parameters

T0 (hr) Start of growth

Tbe (hr) End of branching and elongation phase

Te (hr) End of elongation phase

d t (mm) Terminal segment diameter—mean Segment diameter

sdt (mm) Terminal segment diameter—SD Segment diameter

e Branch power—mean Segment diameter

se Branch power—SD Segment diameter

Notes: A distinction is made between optimizing parameters, whose values are subjected to optimization, and experimental

parameters, whose values are taken (in)directly from experimental observations. Note that the segment diameter parameters are

not part of the growth model, but are used afterward to assign diameter values to the skeleton trees produced by the model. It is

assumed that the gamma distributions for the elongation rates have zero o¤set (an ¼ 0). SD, standard deviation.
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competitive behavior also occurs during outgrowth of

these nonpyramidal dendrites.

4.3.2 Intracellular Signal Model

The dendritic growth model (see section 4.3.1)

reveals that the branching probability may change

with increasing numbers of terminals in the growing

tree and with the centrifugal order of each terminal.

Although this model characterizes these depend-

encies, it does not specify any particular biophysical

mechanisms that may be their underlying cause. The

intracellular signal model is an attempt at a growth

model in which branching is modulated by the num-

ber of terminals and their centrifugal order, but which

also may have a physical instantiation in terms of

intracellular processes (Graham et al., 1998).

The intracellular signal model describes the growth

process as one in which the probability that a terminal

branches is proportional to the amount of some sub-

stance, v, in the terminal. Branching is still described

as a stochastic process, but this process is now modu-

lated according to the distribution of v throughout the

growing tree. The substance is produced in the cell

body and is transported along the tree to the terminal

tips. The branching probability of a terminal segment

i is pi ¼ ðB/NÞvi. The production and distribution of

v is given by

v0 ¼ nð1�EÞ ð4:3Þ

v l ¼
n
ð1�SÞ
l

n
ð1�SÞ
l þ n

ð1�SÞ
r

vp ð4:4Þ

vr ¼
nð1�SÞ
r

n
ð1�SÞ
l þ n

ð1�SÞ
r

vp; ð4:5Þ

where B, N, E, S, and n are as for the dendritic

growth model; v0 is the amount of substance in the

cell body; v l (vr ) is the amount in the left (right)

Figure 4.2

(A) Distributions of the number of terminals per dendritic

tree. The model trees are randomly generated by the den-

dritic growth model. The distributions, calculated for sev-

eral values of the parameter E, demonstrate the control of

the competition parameter E over the proliferation of the

number of terminal segments during dendritic branching.

(B ) Relation between the mean and standard deviation of

the distribution of the number of terminal segments of trees

randomly generated by the dendritic growth model for dif-

ferent values of E.
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daughter segment at a branch point; vp is the amount

in the parent segment to a branch point; and nl (nr) is

the number of terminals in the subtree emanating

from the left (right) segment. The probability that

a particular terminal i will branch is calculated by

applying the above equations iteratively at each time

step, starting with the root segment, 0. The specifica-

tion of time bins and the calculation of segment elon-

gation rates are as for the dendritic growth model.

The production of v in the cell body is a function of

the number of terminals, according to the parameter

E. This modulates the terminal branching proba-

bilities identically to the e¤ect of E in the dendritic

growth model. The distribution of v at branch points

according to the value of S results in a modulation of

branching probabilities that is a close approximation

to the dendritic growth model’s dependence on cen-

trifugal order. The di¤erence lies in the fact that the

dendritic growth model requires global knowledge at

each terminal tip of the number of terminals in the

tree and their centrifugal orders. The intracellular

signal model relies only on local knowledge at each

branch point of the size of the subtrees emanating

from it. Such knowledge may be gained from a retro-

grade signal in the form of a molecule produced at

each terminal and transported to the cell body. An-

other possible signal arises from changes in segment

diameters as the tree grows. Many actual dendritic

trees exhibit an approximate power law relationship

between the diameters of parent and daughter seg-

ments at branch points. If during growth parent seg-

ments increase their diameters according to such a

power law as new terminal branches are created, then

the diameter of any segment is an indication of the

size of the subtree below it. Thus a transport mecha-

nism that splits the amount of substance available at a

branch point according to the relative diameters of the

daughter branches would instantiate this model.

Examples of the tree characteristics produced by

the intracellular signal model are given in figures 4.5

and 4.6. These figures show the degree and centrifu-

gal order of trees grown using the dendritic growth

model parameters optimized to data drawn from

either rat multipolar nonpyramidal cells (figure 4.5;

see the dendritic growth model example) or the basal

dendrites of large layer V rat cortical pyramidal neu-

rons (figure 4.6; Van Pelt and Uylings, 1999a). In

both examples, the degree and centrifugal order dis-

Table 4.2

Mean and SD of dendritic shape parameters of observed and modeled visual cortex layer IV nonpyramidal neurons in the PN16

Wistar rat

Observations

Model outcomes

Shape variables

No. Mean SD Mean SD

Degree 238 3.29 2.5 3.17 2.4

Tree asymmetry 84 0.47 0.21 0.45 0.23

Centrifugal order 1330 1.92 1.45 1.85 1.43

Total dendritic length (mm) 238 169 164 159 127

Terminal segment length (mm) 782 38.6 35.1 38.6 39.1

Intermediate segment length (mm) 537 17.7 19.2 16.8 20.4

Path length (mm) 782 75.2 48.4 70.3 40.8
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tributions closely match those produced by the den-

dritic growth model.

4.3.3 Di¤usional Model

The intracellular signal model does not explicitly

specify a transport mechanism for the branch-

determining substance. The di¤usional model ex-

plores how the transport of a branch-determining

substance by di¤usion a¤ects tree growth (Graham

and Van Ooyen, 2001). The spatial production, con-

sumption, decay, and di¤usion of the substance results

in a branching process that also shows dependence

upon both the number of terminals in the growing

tree and their centrifugal order.

In this model, the branch-determining substance

has concentration Ci at terminal i in the growing tree.

Terminal segments elongate at fixed rates as deter-

mined for the dendritic growth model. The branching

probability of terminal i is pi ¼ ðB/NÞCi. The sub-

Figure 4.3

Frequency distributions of dendritic tree shape parameters of visual cortex layer IV multipolar nonpyramidal neurons in the

Wistar rat at postnatal (PN) day 16 (shaded histograms) and in model-generated trees (continuous thick lines), using the opti-

mized parameter values given in table 4.1. The panels show (A) the frequency distributions for the number of terminal seg-

ments, (B ) centrifugal order of the segments, (C ) total dendritic tree length, (D) intermediate segment length, (E ) terminal

segment length, and (F ) path length.
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Figure 4.4

(A) Comparison of the observed mean (open circles) and standard deviation (error bars) of the number of terminal dendritic

segments at di¤erent time points [i.e., 4, 6, 8, 10, 12, 14, and 16 days postnatal (PN)] during development of Wistar rat cortical

layer IV multipolar nonpyramidal neurons, with the growth curve predicted by the dendritic growth model for the parameters

optimized for the 16-day PN group. The time bins represent a linear time scale with time bin 500 corresponding to 16 days

PN. The dotted lines indicate the time bins at which the model’s growth curves attain values similar to the observed data points.

Parameters: B ¼ 1:26; E ¼ 0:106. (B ) A nonlinear exponential mapping of time bins onto absolute time in order to match the

model’s predicted growth curve through the observed data points. (C ) Comparison of the model’s predicted and observed

growth curve for the number of terminal segments, plotted against an absolute time scale. Note the good matching of the stan-

dard devations. (D) Time course of the basic branching rate per hour during dendritic development, as predicted by the growth

model for the exponential bin-to-time transformation. A constant mean elongation rate has been assumed.

Table 4.3

Optimized values for growth parameters (see table 4.1) to match the statistical shape properties of cortical layer IV non-

pyramidal cell basal dendrites in the PN16 Wistar rat, given in table 4.2

Growth model parameters Experimental

B E S ain l in (mm) sl in nbe (mm/hr) cnn T0 (hr) Tbe (hr)

1.26 0.106 0 0 4 3 0.16 0.9 24 384
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Figure 4.5

Distributions of the number of terminals in the fully grown

trees (degree) and the segment centrifugal order for 1000

trees grown using either the dendritic growth (DG), intra-

cellular signal (IS), or di¤usional (DIFf ) models. The den-

dritic growth model used parameters optimized to the

branching phase of rat multipolar nonpyramidal cell den-

drites [B ¼ 1:26, E ¼ 0:106, S ¼ 0, N ¼ 500; mean elon-

gation rate, 0.16 mm/hr ðCV ¼ 0:9Þ]. These identical

parameter values were used with the intracellular signal

model. For the di¤usional model, the decay parameters

were set to match the required E value, giving I ¼ 1:0,
g0 ¼ 0:96, and gi ¼ 0:04; segment diameters were 1 mm

throughout and di¤usion was D ¼ 600 mm2/hr.

Figure 4.6

Distributions of the number of terminals in the fully grown

trees (degree) and the segment centrifugal order for 1000

trees grown using either the dendritic growth (DG), intra-

cellular signal (IS), or di¤usional (DIFf and DIFs) models.

The dendritic growth model used parameters optimized to

the branching phase of rat large layer V pyramidal cell basal

dendrites [B ¼ 3:85, E ¼ 0:74, S ¼ 0:87, N ¼ 264; mean

elongation rate, 0.22 mm/hr ðCV ¼ 0:28Þ; Van Pelt and

Uylings, 1999a]. These identical parameter values were used

with the intracellular signal model. For the di¤usional

model, the decay parameters were set to match the required

E value, giving I ¼ 1:0, g0 ¼ 0:45, and gi ¼ 0:55; segment

diameters were 1 mm throughout and di¤usion was either

fast (D ¼ 600 mm2/hr; DIFf ) or slow (D ¼ 2 mm2/hr;

DIFs).
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stance is produced at rate I in the cell body (location

0) and decays there at rate g0. The substance also

decays (or is consumed by the branching process) at

rate gi in terminal i. The substance di¤uses between its

site of production and the terminal tips at rate D. The

changes in concentration over time at these locations

when there are n terminals in the growing tree are

given by

dC0

dt
¼ I � g0C0 þ

Xn
i¼1

DAi

LiV0

ðCi � C0Þ ð4:6Þ

dCi

dt
¼ �giCi þ

DAi

LiVi

ðC0 � CiÞ; ð4:7Þ

where Li is the intracellular longitudinal distance be-

tween terminal i and the cell body, Ai is the available

cross-sectional area (assumed to be uniform along the

length of the branch), and Vi is the volume into

which di¤usion takes place at the terminal.

In the steady state, the cell body and terminal con-

centrations can be calculated explicitly. If di¤usion is

rapid relative to segment elongation, then

C0ACiA
I

g0 þ ngi
: ð4:8Þ

In this situation, the entire dendritic tree acts as one

large compartment in which the concentration of the

branch-determining substance decreases as the num-

ber of terminals, n, increases. Thus the branching

probability also decreases with the number of termi-

nals. Although it is not identical to the dendritic

growth model dependence, n�E , the e¤ect of any

given value of E can be approximated by selecting

appropriate values for the production rate I and

the decay rates g0 and gi. If di¤usion is slow, branch

lengths and cross-sectional areas will a¤ect terminal

concentrations. More distant terminals may have a

lower concentration than those closer to the cell

body. Terminals clustered closely on a subtree may

interact so that they have lower concentrations than

isolated terminals, owing to their combined decay

rates. Branch diameters will influence the amount of

substance transported into subtrees, as described for

the intracellular signal model. This results in centrifu-

gal order e¤ects similar to that determined by param-

eter S of the dendritic growth model.

The model is implemented in a computer simula-

tion by calculating the concentrations Ci at the distal

ends of every segment (terminal and intermediate) in

the tree and C0 in the cell body. All concentrations

are measured in the small volume of the last 1 mm of

the segment, and concentration di¤erences are mea-

sured over the length of each segment. For the results

shown here, the segment diameter is a uniform 1 mm

throughout and di¤usion is proportional to the total

cross-sectional area of a segment.

Comparisons with the dendritic growth and intra-

cellular signal models are shown in figures 4.5 and 4.6.

The dendrites of the rat multipolar nonpyramidal cells

show no branching dependence on centrifugal order

(table 4.3, S ¼ 0). Consequently, a fast di¤usion rate

produces a close match in the degree and centrifugal

order distribution with the dendritic growth model

(figure 4.5). Rat layer V pyramidal neuron basal den-

drites do show a branching dependence on centrifugal

order (S ¼ 0:87; Van Pelt and Uylings, 1999a). In

this case, fast di¤usion does not produce a good match

to the centrifugal order distribution for the den-

dritic growth model (figure 4.6) because it shows no

e¤ect of centrifugal order on branching probability.

This results in the centrifugal order distribution being

skewed toward higher values than found in the actual

trees. A better distribution results when di¤usion is

much slower, resulting in a reduction in branching

probability with centrifugal order (figure 4.6). If seg-

ment diameters are set according to a power law,

i.e., to approximate the real dendrites, the centrifu-

gal order e¤ect is lessened because of the increased
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transport of substance into larger subtrees (results not

shown). However, it is possible that the transport area

does not increase proportionately with the anatomical

area.

A candidate for the branch-determining substance

in the intracellular signal and di¤usional models is

tubulin. This molecule is produced in the cell body

and transported along dendrites by a combination of

di¤usion and active transport (for references, see Van

Veen and Van Pelt, 1994). In the growth cones, it

is assembled into microtubules, leading to elongation

and possibly branching, depending on the stability of

the microtubules. Trees that result from the relative

rates of elongation and branching determined by

microtubule stability, as influenced by the phosphor-

ylation state of MAP2, have been explored in the

model of Hely et al. (2001) (see section 4.2.4). In the

di¤usional model, for realistic elongation rates, cen-

trifugal order e¤ects appear only at unreasonably slow

di¤usion rates. It remains to be explored whether an

active transport component could lead to an inhomo-

geneous distribution of tubulin in a growing tree.

4.3.4 Elongation Model

The elongation model explores how intracellular mo-

lecular transport may a¤ect the growth of particular

dendritic segments (Van Veen and Van Pelt, 1994;

Van Ooyen et al., 2001). The model is essentially

the same as the di¤usional model, except that now

the concentration of the substance, Ci, in terminal i

determines the elongation rate of the segment, rather

than its branching probability. If the substance is

identified as tubulin, then the rate of change in seg-

ment length Li is a function of the relative rates of

assembly, ai, and disassembly, bi, of microtubules. The

model is described by the following equations (Van

Ooyen et al. 2001):

dLi

dt
¼ aiCi � bi ð4:9Þ

dC0

dt
¼ I � g0C0 þ

Xn
i¼1

D

Li

ðCi � C0Þ �
Xn
i¼1

fC0

ð4:10Þ

dCi

dt
¼ bi � aiCi � giCi þ

D

Li

ðC0 � CiÞ þ fC0 ð4:11Þ

for uniform cross-sectional area and di¤usional vol-

ume, and with an active transport rate f . In Van

Veen and Van Pelt (1994) there is no degradation

of tubulin—which is biologically not plausible

and which makes the mathematical analysis more

di‰cult—and no active transport of tubulin.

The model reveals that small di¤erences in (dis)-

assembly rates between two branches emanating from

the same cell body, and thus competing for the same

pool of tubulin, can result in retardation in the growth

of one branch while the other grows. If the elongating

branch stops growing (say, it has reached its synaptic

target), the dormant branch then starts growing after

some delay. Such apparent competitive growth is seen

in cells grown in culture (see Costa et al., 2002). It

remains to be determined whether this is actually due

to competition for tubulin.

4.3.5 Compartmental Models

Moving closer to the underlying biophysics of

growth and branching requires the specification of

ever more detailed models. A first step in this direc-

tion is to extend the compartmental modeling frame-

work commonly used to investigate the intracellular

(particularly electrical) properties of morphologically

static neurons. This framework subdivides the struc-

ture of a neuron into small compartments so that

quantities of interest (such as membrane potential or
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molecular concentration) are assumed to have a con-

stant value throughout a compartment.

A compartmental model of the di¤usional model

(section 4.3.3) requires dividing each segment of the

dendritic tree into short compartments. The model

must calculate the concentration of the branch-

determining substance in each compartment and its

di¤usion between compartments. The novelty of the

situation is that the morphology of the tree is not

fixed, so that new compartments must be added or

subtracted as the tree grows. Appropriate algorithms

for the addition and deletion of compartments are

under investigation (Graham and Van Ooyen, 2001).

For stable calculation of di¤usion and accurate deter-

mination of concentrations, finite compartment sizes

must be maintained and care must be taken to ensure

conservation of material during growth. Such com-

partmental models allow the investigation of more

complex situations in which inhomogeneities along

segment lengths can be incorporated. These include

the degradation and interaction of molecules as they

are transported, or the formation and maintenance of

synaptic connections.

4.4 Discussion

This chapter has focused on the question of how to

understand the emergence of neuronal morphology

from a developmental point of view. The modeling

approaches have clearly contributed to this under-

standing. The dendritic growth model has shown

how morphological variability arises from stochasticity

in growth cone elongation and branching. The intra-

cellular origins of the global assumptions in the den-

dritic growth model have been explored, and this

has provided further insight into the possible bio-

physical mechanisms underlying the dependence of

the branching probability on the number of terminal

segments and their centrifigal order.

Our models may also be seen as an attempt to link

di¤erent levels of biological organization, by integrat-

ing (in a quantitative way) phenomena and mecha-

nisms at the level of molecules, growth cones, and

dendritic morphology. Clearly, these are only first

steps toward a full, quantitative understanding of how

neuronal morphology arises from the cellular ma-

chinery in interaction with, and in response to, the

many intracellular and local environmental factors.

Important considerations in all modeling studies are

the spatial and temporal scales of abstraction. In the

dendritic growth model, neuronal development has

been approximated by a sustained process of elonga-

tion and branching, thereby implicitly assuming a

time scale at which ‘‘rapid’’ alterations are averaged

out. The models that implement intracellular pro-

cesses look at a more detailed level and may therefore

be more suitable for describing dendritic remodeling,

dendritic regression, and activity-dependent plasticity.

Future Modeling Studies

Further modeling work will increasingly be con-

fronted with the multitude and complexity of the

processes involved in dendritic growth. Several strat-

egies may be followed in future work. First, we may

search for general principles of organization, assuming

that the concerted actions of the many mechanisms

involved serve simple and robust functional goals.

Homeostasis (of, e.g., the level of electrical activity

or the intracellular calcium concentration; see chapter

6) is one such functional goal. Second, we may focus

on particular biophysical processes and explore their

e¤ects on dendritic growth. Examples of such pro-

cesses are the (de)polymerization of cytoskeletal ele-

ments and the production and transport of structural
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proteins (e.g., tubulin, MAPs). Third, we may follow

a brute force approach by including in a computa-

tional model all actors and structures known at present

to be involved in growth cone behavior and neurite

outgrowth. Such an approach will undoubtedly lead

to a highly complex model, but it may allow the

computational study of neurite outgrowth in relation

to any parameter involved.

Future Experimental Studies

In order to validate the models, predictions from the

modeling studies must be complemented by experi-

mental investigations. Our models have made a num-

ber of predictions that can be tested experimentally.

Given a population of dendritic trees of neurons

at some stage of development, the dendritic growth

model can calculate, from the observed standard devi-

ation and mean of the number of terminal segments in

the population, the value of the competition parame-

ter E and from this predict (see figure 4.2B) what the

standard deviation should be at another stage of de-

velopment (e.g., at a later stage of development, when

the mean number of terminal segments has increased).

This thus provides a relatively straightforward way of

testing the dendritic growth model. Another predic-

tion of the dendritic growth model is that after split-

ting of a growth cone, the daughter branches should

already have a small initial length. The model also

predicts quantitative values for the elongation rate of

the growth cone (see table 4.3). The intracellular sig-

nal and di¤usional models predict the likely e¤ects of

the di¤erential transport of a growth-determining

substance, such as tubulin, on the branching patterns

formed by the growing neurite.

A significant outcome of the elongation model is

the prediction of competition between elongating

neurites (of the same neuron). Such apparent com-

petitive neurite growth has indeed been observed

in neurons grown in culture (Costa et al., 2002). To

test whether this is due to competition for tubulin, as

our model suggests, the concentration of tubulin in

growth cones should be monitored. The model pre-

dicts that the concentration of tubulin in growth

cones that are not growing out should be below the

critical value [i.e., the concentration of tubulin at

which assembly (aiCi) just equals disassembly (bi)].

The model by Hely et al. (2001) predicts what the

form of the dose–response functions relating calcium

with phosphorylation and dephosphorylation should

be to obtain trees in which the terminal segments are

longer than the proximal segments or to obtain trees

in which the terminal segments are shorter than the

proximal segments. Thus, to test the model, these

dose–response functions can be measured in neurons

with di¤erent branching patterns.
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5Axon Guidance and Gradient Detection by

Growth Cones

Geo¤rey J. Goodhill and Je¤rey S. Urbach

Growing axons can find appropriate targets in the

developing nervous system with remarkable preci-

sion. They do this using a variety of molecular cues,

including concentration gradients. Axon guidance is a

very active area of experimental research, and several

of the molecules involved have recently been identi-

fied. This chapter reviews these recent data and some

of the theoretical models proposed to account for

these data. It particularly focuses on constraints on

guidance by a target-derived di¤usible factor, and on

signal-to-noise constraints on gradient detection by

growth cones.

5.1 Neurobiological Background

A crucial stage in the construction of the nervous

system is the appropriate wiring up of its components.

As the brain develops, axons often have to grow over

long distances to find their appropriate targets. One

can distinguish between initial pathfinding, by which

axons grow out to the right general target region, and

more specific processes, such as topographic map for-

mation (see chapter 11), by which axons find the right

location within the target region. Axons perform both

these tasks by integrating a number of di¤erent

molecular cues in their environment. These cues are

primarily detected by the growth cone, a complex and

sensitive structure at the tip of the developing axon.

Several families of molecules have been identified as

playing important roles in guidance in many di¤erent

parts of the nervous system, and just a few general

mechanisms can now account, at least qualitatively,

for many guidance phenomena both in vivo and in

vitro (Tessier-Lavigne and Goodman, 1996). A major

challenge is now to understand these mechanisms and

molecules from a more quantitative perspective.

5.1.1 Types of Mechanisms in Axon Guidance

Most of the molecular mechanisms now known to be

involved in axon guidance can be characterized by

three traits, although many molecules, depending on

the circumstances, can take on a number of di¤erent

roles.

1. Permissive or inhibitory. Conceptually one of the

simplest ways of directing axons along specific paths is

to express molecules in three-dimensional patterns

that label some parts of the environment as permissive

for growth and others as inhibitory for growth. For

instance, a ‘‘railroad track’’ of a molecule that encour-

ages growth can join a population of axons and their

target, or axons can be restricted to a narrow path by

surrounding inhibitory signals. Molecules that simply

encourage the growth of cells and/or axons are some-

times called trophic factors.

2. Attractive or repulsive. Here the molecule is e¤ec-

tive for guidance when it is present in a concentra-

tion gradient, so that it provides a vector signal for

the axon to move in one direction or another in a

process known as chemotaxis. This can be a positive

(attractive) or a negative (repulsive) signal. For in-

stance, a molecule released by a target structure can set

up a gradient by di¤usion, which provides informa-

tion for distant axons as to the location of the target.



Molecules that provide such directional signals are

sometimes called tropic factors.

3. Contact-mediated or di¤usible. Another characteris-

tic is whether the molecule is relatively fixed, e.g.,

expressed on cell membranes or bound to the extrac-

ellular matrix (ECM), or whether it di¤uses more

freely through the ECM. In the former case, the

growth cone must remain in direct contact with the

relevant tissue to be guided, whereas in the latter this

need not be the case. As previously mentioned, an

important class of freely di¤using molecules consists of

target-derived di¤usible factors.

Two additional mechanisms help to simplify the

wiring problem. Although the final target for an axon

may be quite distant, its pathway is often broken up

into several shorter segments, with possibly di¤erent

guidance mechanisms operating on each segment. In

addition, axons generated after the first pioneering

population need only follow the track laid down al-

ready, e.g., by fasciculating (bundling) with the pio-

neering axons.

5.1.2 Families of Molecules Involved in Axon

Guidance

A much larger number of molecules play a role in

axon guidance than it is possible to review here. In-

stead, we focus on just a few families discovered in the

past few years that provide paradigm examples of how

tropic factors are relevant in neural development.

Netrin-1

One of the most important systems for the study of

axon guidance mechanisms in recent years has been

the growth of axons to and across the midline in the

developing spinal cord. For instance, commissural

axons initially generated in the dorsal spinal cord

grow ventrally toward the floor plate and then cross to

the contralateral side. Tessier-Lavigne and colleagues

(Kennedy et al., 1994; Serafini et al., 1994) purified a

75-kD protein, Netrin-1, based on its ability to attract

commissural axons. They also showed that it was dif-

fusible and that it was expressed by the floor plate at

appropriate times during development. Analysis of the

Netrin-1 knockout mouse provided further evidence

that Netrin-1 indeed plays a crucial role in attracting

commissural axons to the midline in normal in vivo

development (Serafini et al., 1996).

A common theme among di¤erent families of axon

guidance molecules is that they are reused in many

di¤erent places and times during development. This

is abundantly true of Netrin-1 , which has also been

shown to guide cerebellofugal axons in the rostral

hindbrain toward the floor plate (Shirasaki et al.,

1995), alar plate axons in the myelencephalon toward

the mesencephalon (Shirasaki et al., 1996), retinal

ganglion cell axons to the optic disk (Deiner et al.,

1997), and cortical axons to subcortical targets

(Richards et al., 1997). Netrin-1 has also been shown

to provide important repellent guidance signals in

some circumstances; for instance, ventrally generated

trochlear motor neurons are repelled by Netrin-1 and

floor plate (Colamarino and Tessier-Lavigne, 1995),

as are dorsally projecting cranial motor axons (Varela-

Echavarria et al., 1997).

An initial hypothesis, based on work on Netrin-1

homologs in Caenorhabditis elegans, was that Netrin-1

may be signaling through a di¤erent receptor in these

cases. In the examples of attractive guidance cited

above, Netrin-1 binds to the receptor DCC (deleted

in colorectal cancer) with an a‰nity of about 1 nM

(Keino-Masu et al., 1996), whereas in C. elegans it

exerts a repulsive e¤ect via binding to the receptor

Unc5. However, more recent work has shown that

the determination of an attractive versus repulsive

response is much more complex than this; DCC and

Unc5 must come together to produce a response, and
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it is the intracellular domain alone of the receptor

that determines the sign of the response (Hong et al.,

1999). In addition, as discussed in section 5.1.3,

manipulations in the levels of cyclic nucleotides in the

growth cone can convert attraction to repulsion and

vice versa (Song et al., 1997).

Ephrins and Eph Receptors

The ephrin family of ligands, acting repulsively

through receptors of the Eph family, plays an impor-

tant role in the initial activity-independent stage of

topographic map formation in the retinotectal sys-

tem (see chapter 11). Unlike netrin-1, these ligands

are substrate bound. Increasing nasal-to-temporal

gradients of Eph receptors are present in the retina,

while increasing anterior-to-posterior gradients of

ephrin are present in the tectum (Cheng et al., 1995;

Drescher et al., 1995; Feldheim et al., 1998). These

patterns provide a substrate for the ‘‘chemoa‰nity’’

hypothesis of Sperry (1963), and there is evidence

from misexpression and knockout experiments that

the resulting topographic map is strongly a¤ected

by the shape of Eph and ephrin gradients (Friedman

and O’Leary, 1996; Feldheim et al., 2000; Goodhill,

2000). Ephrin gradients also seem to be important in

map formation in the thalamus and cortex (Feldheim

et al., 1998; Vanderhaeghen et al., 2000). In addition,

ephrins have been suggested to play a role in regulat-

ing branching in the cortex (Castellani et al., 1998),

although this is controversial (Yabuta et al., 2000). For

reviews, see Flanagan and Vanderhaeghen (1998) and

Goodhill and Richards (1999).

Semaphorins and Slits

The semaphorins (also called collapsins) are a very

large family of axon guidance molecules (Raper,

2000). They bind to the neuropilin and plexin fami-

lies of receptors and have been implicated in the cor-

rect targeting of sensory projections to the spinal cord

(Messersmith et al., 1995). Although so far their in

vivo function mostly appears to be repulsive, under

some circumstances they can also act as attractive cues

(Song et al., 1998). They can be both di¤usible and

substrate bound. Members of the Slit family of guid-

ance molecules are expressed at the midline in both

the spinal cord and the brain (Brose and Tessier-

Lavigne, 2000). They are usually repulsive and, acting

through receptors of the Robo family, play an impor-

tant role in regulating whether axons can cross the

midline (e.g., Shu and Richards, 2001), and where

they project to beyond the midline (Rajagopalan et

al., 2000; Simpson et al., 2000; Goodhill, 2003). Sur-

prisingly, members of the Slit family have also been

implicated in controlling the branching of dorsal root

ganglion axons (Wang et al., 1999).

5.1.3 Growth Cones

The growth cone integrates guidance cues from the

extracellular environment and guides the develop-

ing axon to its target. The morphology of the growth

cone varies somewhat but typically consists of a cen-

tral zone at the terminus of the axon containing

organelles and microtubule bundles and surrounded

by highly dynamic spikelike protrusions, the filo-

podia, and weblike veils, the lamellipodia. Both

filopodia and lamellipodia consist primarily of actin

filaments. The filopodia are narrow, 0.2–0.5 mm, and

can be up to 40 mm in length. When axon growth

follows a well-defined path, e.g., during fasciculation,

the growth cones tend to be small and compact,

while at decision points they are widely spread out

(reviewed in Rehder and Kater, 1996). The contribu-

tion of filopodia to axonal navigation has been sug-

gested through observation of the interactions of

filopodia with substrate-bound guidance cues both in

vitro and in vivo (O’Connor et al., 1990; Myers and

Bastiani, 1993; Steketee and Tosney, 1999). When
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the filopodia are eliminated, growth cones cannot

navigate their environment and do not respond to

either substrate-bound or di¤usible guidance cues

(Bentley and Toroian-Raymond, 1986; Chien et al.,

1993).

While some of the biochemical mechanisms un-

derlying the dynamics of filopodia and lamellipodia

have been identified (Suter and Forscher, 1998), the

pathways responsible for chemotaxis are mostly un-

known. However, an intriguing recent finding is that

attraction can be converted to repulsion and vice versa

by altering levels of cyclic nucleotides within the

growth cone (Song et al., 1997, 1998; Ming et al.,

1997; Song and Poo, 1999). For instance, the nor-

mally attractive response of Xenopus spinal axons to

a Netrin-1 gradient can be converted to repulsion by

lowering levels of cAMP, and the normally repulsive

response of the same axons to a gradient of Sema III

can be converted to attraction by raising levels of

cyclic guanosine monophosphate (cGMP). Calcium,

both from outside the growth cone and from intra-

cellular stores, seems to play a crucial role in the sig-

naling pathways (Hong et al., 2000; Zheng, 2000), but

much work remains to be done to trace the complete

paths from receptor binding to directed movement.

5.1.4 Relation of Axon Guidance to Other Fields of

Developmental Biology

Mechanisms of axon guidance may be closely related

to mechanisms regulating other aspects of neural de-

velopment. Two specific examples are cell migration

and activity-dependent plasticity. During develop-

ment, neurons often make long journeys from their

initial birthplace to their final location. In some cases

they seem to be following gradients of exactly the

same families of molecules that guide axons to their

targets (e.g., Wu et al., 1999). In addition, the signal

transduction pathways in such cellular chemotaxis

may be similar to those involved in growth cone

chemotaxis (Parent and Devreotes, 1999; Dekker and

Segal, 2000).

Once the basic architecture of the nervous system

has formed, synapses are modified by patterns of neu-

ral activity. Besides changing their strength within

a fixed architecture, fine-scale structural changes can

occur by the making of new contacts and the breaking

of old ones. This local searching of space for the

most appropriate nearby contacts may involve both

the generation of filopodia ( Jontes and Smith, 2000)

and the tropic guidance of axons and dendrites by

factors released in an activity-dependent manner. For

instance, the release of brain-derived neurotrophic

factor (BDNF) is activity dependent (McAllister et al.,

1999), and BDNF can also act as a tropic factor (Song

et al., 1997).

5.2 Review of Models

Several types of models have been developed that

address axon guidance phenomena at a variety of

levels. As with all modeling, the goals are to construct

mathematical frameworks that impose order on com-

plex phenomena, to propose quantitatively rigorous

hypotheses, and to produce testable predictions. Such

goals are becoming increasingly relevant as the num-

ber of molecules implicated in axon guidance mul-

tiplies and the qualitative mechanisms invoked to

explain the data become increasingly subtle.

5.2.1 The Growth Cone

Van Veen and Van Pelt (1992) modeled the dynamics

of filopodia on the growth cone and showed how the

morphological characteristics of neurites, such as the

amount of branching, could emerge from the interac-

tion of the growth cone with its environment. Buett-

ner and colleagues have also developed models of
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filopodial and microtubular dynamics (e.g. Buettner,

1995; Odde and Buettner, 1998) based on experi-

mentally determined distributions for such parameters

as rates of filopodial initiation, extension, and retrac-

tion, filopodial length, and angular orientation. These

models suggest that the dynamics of the growth cone

and axon–target encounters are determined by the

dynamics of the filopodia and microtubules.

Hely and Willshaw (1998) modeled microtubule

dynamics and the interactions between microtubules

and F-actin, and found that these interactions may

play an important role in determining axonal growth

rate and in microtubule invasion into the growth

cone once the target cell is reached. Meinhardt (1999)

proposed a model for how amplification of a weak

gradient signal occurs within the growth cone. This

is based on a reaction-di¤usion system in which a

small inhomogeneity in an initially uniform system is

amplified by the interaction of a short-range activator

with a longer-range inhibitor. A second type of reac-

tion with a longer time constant is invoked to return

the system to a uniform state so that the directional

preference of the growth cone can change with time.

5.2.2 Di¤usible Factors

One branch of modeling has attempted to understand

certain axon guidance phenomena in terms of the

physics of di¤usible factors. Goodhill (1997, 1998)

modeled guidance by a target-derived di¤usible factor

by imagining a small target that releases factors at a

constant rate into a large uniform volume. By calcu-

lating the places and times at which certain sensing

constraints are satisfied (i.e., both the absolute con-

centration at, and the fractional change across, the

growth cone exceed minimum thresholds), he derived

the maximum distance over which an axon could be

guided in such a scenario. This is discussed further in

section 5.3.1.

Hentschel and Van Ooyen (1999) investigated a

possible role for di¤usion in controlling axon fas-

ciculation. They considered a population of axons

being guided by a target-derived di¤usible factor, and

hypothesized that in addition each axon releases a dif-

fusible attractant that pulls it toward the other axons,

leading to fasciculation as they grow together toward

the target. In order to account for defasciculation

at the target, they hypothesized that each axon also

releases a repulsive factor for other axons at a rate de-

pendent on the concentration of the target-derived

factor. As the axons approach the target, this repul-

sive force overcomes the attractive force, leading to

defasciculation.

5.2.3 Retinotectal Maps

Perhaps the richest set of models of axon guidance

are those addressing map formation in the reti-

notectal system (see chapter 11). Sperry (1963) qual-

itatively proposed the ‘‘chemospecificity’’ hypothesis:

that graded distributions of molecules are somehow

matched to graded distributions of complementary

molecules in the tectum so as to form a topographic

map. This inspired a great deal of experimental work

to test the hypothesis, based on surgical manipulation

experiments in which parts of the retina or tectum

were removed, rotated, or translocated (reviewed

in Udin and Fawcett, 1988; Goodhill and Richards,

1999). In parallel, several theoretical models were

developed that implemented di¤erent versions of

Sperry’s hypothesis, and for a period there was a rela-

tively close association between models and data.

Prestige and Willshaw (1975) proposed a competitive

model in which all axons from one end of the retina

compete to innervate space at one end of the tectum.

They showed that some kind of normalization process

is essential for this to produce smooth maps (see also

Goodhill, 2000). Willshaw and Von der Malsburg
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(1979) proposed the ‘‘tea trade model,’’ in which

distributions of molecules in the retina were hypothe-

sized to be transported up retinal axons and then

di¤used within the tectum. A molecular version of

Hebb’s rule is then su‰cient to produce a smooth

map. Other models also considered various types of

molecular matching mechanisms (e.g., Fraser, 1980;

Whitelaw and Cowan, 1981; Gierer, 1987). How-

ever, with a few exceptions (e.g., Fraser and Perkel,

1990; Weber et al., 1997; Honda, 1998), most models

since then have focused on the activity-dependent

aspects of retinotectal map formation. No models

have yet attempted to address the complexity of the

rapidly evolving literature on the role of Eph and

ephrin gradients.

5.2.4 Sensing at the Growth Cone

In order to move reliably in response to a molecular

gradient of a di¤usible factor, the growth cone of

the developing axon must perform some relatively

sophisticated signal analysis to overcome the noise

inherent in a measurement of molecules that move

about randomly through Brownian motion. The fun-

damental statistical limitations on gradient detection

by a small sensing device were originally described by

Berg and Purcell (1977) in the context of understand-

ing chemotaxis in leukocytes and bacteria. The pres-

ence of a ligand gradient will produce a variation in

the average occupancy of receptors across the sensing

device. Regardless of the specific signal transduction

mechanisms involved, quantitative limits on the guid-

ance process can be obtained from the fact that at any

instant in time, the actual occupancy of the receptors

will di¤er from the average. If these fluctuations are

large compared with the di¤erence in the average that

arises from the concentration gradient, the sensing

device will not be able to obtain a clean guidance sig-

nal from the gradient in receptor occupancy at any

one instant. This random noise can be overcome by

making a su‰cient number of statistically indepen-

dent measurements. Berg and Purcell (1977) per-

formed an analysis of the size of these fluctuations,

which makes predictions about the minimum steep-

ness of gradient the sensing device can detect as a

function of various parameters. This approach has

been applied specifically to growth cones (Goodhill

and Urbach, 1999; Urbach and Goodhill, 1999) and is

described further in section 5.3.2.

5.3 Some Models in More Detail

In this section, we focus on constraints on guidance

by a target-derived di¤usible factor, and on signal-

to-noise constraints on gradient detection by growth

cones.

5.3.1 Guidance by a Target-Derived Di¤usible

Factor

As a simple first step toward understanding axon

guidance by target-derived di¤usible factors both in

vivo and in vitro, Goodhill (1997, 1998) considered a

point source continuously releasing a factor with a

di¤usion constant D cm2/sec, at a rate of q mol/sec,

into an infinite, spatially uniform three-dimensional

volume. Initially, no decay of the factor was assumed.

For radially symmetrical Fickian di¤usion in three

dimensions, the di¤usion equation has the form

qCðr; tÞ
qt

¼ D
q2Cðr; tÞ

qr 2
þ 2

r

qCðr; tÞ
qt

� �
; ð5:1Þ

where Cðr; tÞ is the concentration at distance r from

the source at time t, and the source is at r ¼ 0. This

has the solution for the above boundary conditions of

Cðr; tÞ ¼ q

4pDr
erfc

rffiffiffiffiffiffiffiffi
4Dt

p ð5:2Þ
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(e.g., Crank, 1975), where erfcðxÞ ¼ 1� erf ðxÞ, and
erf ðxÞ is the error function: erf ðxÞ ¼ ð2= ffiffiffi

p
p Þ �Ð x

0
e�x2 dx. As t ! y, Cðr; tÞ ! q=4pDr.

If the factor is reversibly bound to the substrate

through which the growth cone is growing, so that

the amount S bound at any time equals a constant

R times the local free concentration C, then it is

straightforward to show that the relevant solution of

the di¤usion equation is the same as for the case with-

out binding, but with an e¤ective di¤usion constant

of D=ðR þ 1Þ; the speed of di¤usion is simply reduced

(Crank, 1975). Motivated by the signal-to-noise

arguments discussed in section 5.3.2, we assume that

the important constraint on gradient detection is the

fractional change DC=C across the growth cone. As

long as the gradient is not too steep, this change across

a growth cone width a is given by ðDC=CÞ ¼
½ðqC=qrÞða=CÞ�.

For Eq. (5.2), this can be straightforwardly

calculated:

DC

C
¼ a

r
1þ rffiffiffiffiffiffiffiffi

pDt
p e�r 2=4Dt

erfcðr=
ffiffiffiffiffiffiffiffi
4Dt

p
Þ

" #
: ð5:3Þ

(This expression is actually negative, meaning that in

qC=qr, C decreases as r increases; the minus sign has

been omitted for clarity.) DC=C has an identical form

for the two cases of reversible binding and irreversible

decay considered above. This function has the per-

haps surprising characteristic that for fixed r, DC=C

decreases with t. That is, the largest gradient at any

distance occurs immediately after the source starts

releasing factor (see figure 5.1a,b). For large t, DC=C

asymptotes at a=r. Thus: (1) At small times after the

start of production, the factor is unevenly distributed.

The concentration C falls quickly to almost zero

moving away from the source, the gradient is steep,

and the percentage change DC=C across the growth

cone is large everywhere. (2) As time proceeds, the

factor becomes more evenly distributed, C increases

everywhere, but DC=C decreases everywhere. (3) For

large times, C tends to an inverse variation with the

distance from the source r, while DC=C tends to a=r

independent of all other parameters.

Equation (5.3) gives the size of the true gradient,

while Eq. (5.6) (see later) gives the size of the

smallest gradient the growth cone can detect. These

two can be compared to find the regions of parameter

space in which guidance is possible. Goodhill (1997,

1998) considered the simpler case where Eq. (5.6) is

approximated by a step function. Based on data for

leukocyte chemotaxis such as that of Zigmond (1977,

1981), he assumed that gradient detection occurs

when DC=Cb p and CbCmin, where p is a thresh-

old assumed to be independent of C. [The high con-

centration limit, where all receptors are saturated,

does not significantly constrain guidance in this case

(Goodhill, 1997).] Given appropriate estimates for

the parameters D, q, a, p, and Cmin, the positions and

times for which the gradient calculated above satisfies

these criteria were examined.

The constraints arising from Eqs. (5.2) and (5.3) are

plotted in figure 5.1. The cases of D ¼ 10�7 cm2/sec

and D ¼ 5� 10�7 cm2/sec are shown in figures 5.1C

and 5.1D, respectively. For large times (several days)

after the start of factor production, the maximum

distance from the target for which axon guidance is

possible is independent of the di¤usion constant and

is about 1 mm (figure 5.1). This value fits well with

what has been observed in 3-D collagen gel cultures

and with the fact that target and growth cone are

not separated by more than a few hundred microns

in vivo for the guidance of axons from the trigemi-

nal ganglion to the maxillary process in the mouse

(Lumsden and Davies, 1983, 1986), or of commissural

axons in the spinal cord to the floor plate (Tessier-

Lavigne et al., 1988). This limit on maximum guid-

ance distance is due to the requirement that there be a
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Figure 5.1

Gradients for guidance by a target-derived di¤usible factor. (A), (B ) Concentration profiles. (C ), (D) Interaction of constraints.

(A) and (C ) are for a larger molecule with a di¤usion constant D ¼ 10�7 cm2/sec. (B ) and (D) are for a smaller molecule with

D ¼ 5� 10�7 cm2/sec. In (C ) and (D), each graph shows, at each distance, the time at which two constraints are satisfied: the

low concentration limit, where not enough receptors are bound for a gradient signal to be detected (assumed to be KD=100,
with KD ¼ 1 nM , and the fractional change constraint (assumed to be pb DC=C ¼ 1 percent). The region between the two

curves in each graph is where guidance is possible. In both cases, the guidance limit imposed by the fractional change constraint

once the gradient has stabilized is 1 mm. However, the guidance range is extended at earlier times, when the fractional change

constraint has yet to take full e¤ect. This is particularly apparent for the slowly di¤using molecule (D ¼ 10�7 cm2/sec).



minimum change in concentration across the growth

cone. The minimum concentration constraint is easily

satisfied at large times after the start of factor pro-

duction. At earlier times, however, the factor is

more unevenly distributed, being more concentrated

around the source. This makes the fractional change

larger than at later times, increasing the range over

which guidance can occur (figure 5.1). Depending on

the parameters, the model predicts that guidance may

be possible at distances of several millimeters before

the distribution of factor equilibrates. This is particu-

larly true for a large molecule that di¤uses slowly; the

change across the growth cone remains larger for a

longer time. It is conceivable that such a mechanism

might be utilized in vivo to extend the guidance range

beyond the 1-mm limit imposed once the gradient

has stabilized.

5.3.2 Statistical Constraints on Gradient Detection

As described in section 5.2.4, Berg and Purcell (1977)

performed a classic analysis of gradient detection by

a small sensing device (e.g., a growth cone). Reliable

guidance by a chemical gradient requires that the sta-

tistical fluctuations in the measured concentration be

less than the di¤erence in average concentration on

opposite sides of the sensing device that is due to the

gradient. In particular, Berg and Purcell did several

increasingly sophisticated calculations for the frac-

tional error DCnoise=C, the ratio of the root-mean-

square fluctuation in the concentration estimate to the

mean concentration.

The simplest analysis is as follows: Random fluctu-

ations in molecular positions will produce fluctuations

in the concentration in the vicinity of the growth

cone, given roughly by

DCnoise

C
¼ 1ffiffiffiffiffi

N
p ; ð5:4Þ

where N is the number of molecules around the

cell. This is approximately equal to 1=
ffiffiffiffiffiffiffiffi
VC

p
, where

V ¼ a3 is the volume of the cell and C is the average

ligand concentration. However, this is for an instanta-

neous measurement. If the concentration is instead

averaged over M measurements suitably spaced over

time, the fractional error is reduced by roughly

1=
ffiffiffiffiffi
M

p
. ‘‘Suitably spaced’’ means allowing su‰cient

time for a molecule that is counted in one measure-

ment to di¤use away before the next measurement,

about a2=D. Thus if the total averaging time available

is T, then the number of independent measurements

is T=ða2=DÞ, so

DCnoise

C
¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi

aDTC
p : ð5:5Þ

Using more sophisticated methods, Berg and Pur-

cell also calculated DCnoise=C for a measuring instru-

ment that relies on the statistics of binding to a finite

number of receptors to assess concentration. In the

three-dimensional case, they find

DCnoise

C
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2pTDa
Nrs

Nrsþ pa

CC1=2

C þ C1=2

vuuut ; ð5:6Þ

where Nr is the number of receptors on the growth

cone, s is the e¤ective receptor area, and C1=2 is the

concentration of ligand molecules at which half the

receptors are bound, i.e., the dissociation constant KD

(measured in units of molecules per volume). Note

that the fractional uncertainty given by Eq. (5.6) tends

to a constant as C increases above C1=2. On the one

hand, there are more ligand molecules available for

making a comparison, and the uncertainty decreases.

On the other hand, an increasingly high proportion of

receptors will be bound, and the uncertainty increases.

In Eq. (5.6), these two tendencies exactly cancel, and

the uncertainty tends to a constant for large C.
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The application of this model to growth cone sens-

ing produces results that are in good agreement with

the limited experimental data available on the che-

motactic sensitivity of growth cones (Goodhill and

Urbach, 1999; Urbach and Goodhill, 1999). Consider

a growth cone sampling a spherical volume of radius

10 mm, in a ligand concentration of 1 nM [roughly

the value of the dissociation constant for many recep-

tor-ligand pairs implicated in axon guidance (see the

references cited in Goodhill and Baier, 1998)]. This

volume contains about 2500 molecules, and the frac-

tional error in an instantaneous measurement of the

gradient in this case is therefore about 1=
ffiffiffiffiffiffiffiffiffiffi
2500

p
, or 2

percent. However, growth cones take a time on the

order of a minute to show a response to a gradient

signal (Zheng et al., 1996), which suggests they may

be averaging concentration measurements over a time

T of about 100 sec. For a freely di¤using molecule

the size of netrin in a liquid, the di¤usion constant

DA10�6 cm2/sec, whereas in vivo DA10�7 cm2/

sec (reviewed in Goodhill, 1997). For proteins bound

to cell membranes, experimental values have been

obtained in the range D ¼ 10�8 cm2/sec to D ¼
10�11 cm2/sec (Wiegel, 1983); for instance, Poo

(1982) found a value of D ¼ 2:6� 10�9 cm2/sec for

ACh receptors di¤using over the surface of embryonic

muscle cells. Taking therefore DA10�9 cm2/sec for

membrane-bound ligands yields values from Eq. (5.5)

in the (3-D) liquid, in vivo, and in membrane-bound

cases of 0.5 percent, 1 percent, and 10 percent, re-

spectively. The model therefore predicts that much

shallower gradients of a di¤usible factor are detectable

than of a bound factor.

Receptor numbers have been measured in the case

of, for example, neurotrophin receptors on embry-

onic sensory neurons (not growth cones themselves),

yielding numbers between a few hundred and about

50,000 (reviewed in Meakin and Shooter, 1992). If

Nr ¼ 10;000, s ¼ 50 Å, and KD ¼ 1 nM, this yields

values for the fractional gradient error given by Eq.

(5.6) that are very similar to those for the rough cal-

culation using Eq. (5.5). (Note that the gradient error

varies only as the square root of most of the parame-

ters, so that a variation that is an order of magnitude in

a parameter yields a change of only a factor of 3 in the

gradient error.) The number of receptors for which

the sphere collects half the available flux is Nr ¼
10;000, even though only a tiny fraction of the surface

area is covered by receptors (Berg and Purcell, 1977).

If Nr ¼ 100, the minimum detectable gradient would

be ten times greater.

What is the optimal gradient shape in the Berg and

Purcell model for guiding an axon over the maximum

possible distance, and what is this maximum distance?

The optimal gradient has a percent concentration

change across each growth cone diameter that is equal

to the minimum required for gradient detection. Set-

ting ða=CÞðdC=dxÞ equal to Eq. (5.6) and integrating,

Goodhill and Urbach (1999) calculated the maximum

guidance distance, assuming there exists a maximum

concentration C ¼ Cmax above which the gradients

cannot be detected. This assumption was motivated

by experimental data both from leukocytes and from

the experiments of Ming et al. (1997), which indi-

cated that owing to factors not considered in the Berg

and Purcell model, gradient detection is not possible

above a certain high concentration limit of about ten

to one hundred times C1=2. The resulting formula for

the maximum distance xmax is

xmax ¼ a
ffiffiffiffiffi
2a

p
log
h
2 C2

max þ Cmax

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffip þ2Cmax þ 1=2
i
;

ð5:7Þ

where C ¼ C=C1=2, Cmax ¼ Cmax=C1=2, a ¼
2pðT=TDÞN1=2 f , TD ¼ a2=D, N1=2 ¼ C1=2a

3, and

f ¼ Nrs=ðNrsþ paÞ. Assuming Cmax g 1, this reduces
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to xmax ¼ a
ffiffiffiffiffi
2a

p
logð4CmaxÞ. Using the estimated pa-

rameter values given earlier and setting Cmax ¼ 100

yields xmaxA1 cm. This is not far from the estimate

based on a much cruder model of the gradient sensing

process discussed in section 5.3.1 (Goodhill and Baier,

1998; Goodhill, 1998), but it makes specific pre-

dictions for how this varies with parameters such as T,

D, and Nr . The natural length scale for this problem is

a
ffiffiffi
a

p
, which gives the distance between C ¼ 1 and

C ¼ 0 for a linear gradient with a slope equal to the

minimum detectable gradient at C ¼ 1.

5.4 Discussion

Axon guidance is an extremely active area of exper-

imental work. New and interesting results appear

almost monthly, and the overall story continually

becomes more complicated. This provides great

opportunities for theoretical modeling to be on the

cutting edge and to feed back directly into experi-

ments, but it also brings great challenges. Modelers

of axon guidance must keep up with data on a broad

front in order to extract key insights and constraints

from many diverse areas. These areas include the

biochemistry of many di¤erent families of guidance

molecules, the in vivo mode of action of guidance

molecules (such as knockout and misexpression

studies), the molecular mechanisms of growth cone

movement, signal transduction within the growth

cone, and analogous results from related systems such

as leukocytes, Dictyostelium, and bacteria.

The area of axon guidance within which models

have so far had the greatest impact is retinotectal map

formation. In the 1970s and 1980s, many experimen-

talists in this area were keenly aware of the relevant

theoretical literature, and theoretical results had some

influence on the experiments performed. With the

discovery of Eph and ephrin gradients in the 1990s,

the attention of a new generation of experimentalists

has focused on the ‘‘dual gradient’’ model of Gierer

(1987). Although this model does not attempt to ex-

plain most of the older surgical manipulation data, it

does provide an appealing picture for how measured

Eph and ephrin gradients could produce a map (see

also chapter 11). An important piece of the model

that is currently missing experimentally is an attractive

gradient to counterbalance the repulsive one, and this

prediction is actively being pursued by some exper-

imentalists. Other areas where models have success-

fully accounted for experimental data are growth cone

morphology and how this changes at, for instance,

decision points, and the approximately 1-mm limit on

the maximum guidance range of a target-derived dif-

fusible factor.

Future Modeling Studies

Some attractive areas for future theoretical work in-

clude the following:

1. Models of retinotectal map formation that take

into account the full range of available data, from sur-

gical manipulations to gene knockout and misexpres-

sion studies (see chapter 11)

2. Models of growth cone movement in response

to patterned molecular cues that can explain the paths

taken by axons in specific in vivo scenarios, such as in

the tectum or toward and across the midline

3. Models of the statistical limitations on gradient

sensing that go beyond the relatively simple picture of

Berg and Purcell (1977) (cf. DeLisi et al., 1982; Lauf-

fenburger, 1982; DeLisi and Marchetti, 1983)

4. Models of the signal transduction mechanisms

underlying growth cone chemotaxis that take into

account recent discoveries not included in generic

reaction-di¤usion proposals.
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Future Experimental Studies

One of the strongest proposals for new experimental

work suggested by these modeling studies is the need

for a more quantitative assay for measuring axonal re-

sponse to gradients. This is needed to determine the

minimum steepness of gradient that can be detected

by growth cones, how this varies with concentration,

and how growth cone morphology varies as a func-

tion of gradient parameters. Some studies (e.g., Baier

and Bonhoe¤er, 1992; Rosentreter et al., 1998; Bag-

nard et al., 2000) have attempted to set up controlled

gradients of molecules such as ephrins, which are

expressed on cell surfaces. However, these are created

by depositing a gradient of ground-up cell membranes

rather than the actual guidance molecules themselves,

and work only for substrate-bound factors. Poo and

colleagues (see papers cited in Song and Poo, 1999)

have developed a technique for slow ejection of

di¤usible factors into a culture dish so as to establish

a gradient near a growth cone. Although this has

been very useful for examining the acute response of

growth cones to gradients, it does not address the

chronic response and it is not possible to arbitrarily

vary the gradient shape. In order to address these

problems, we are currently developing a new tech-

nique for establishing precisely controlled gradients in

collagen gels, which should provide a variety of novel

quantitative results with which to constrain theories of

gradient detection (Roso¤ et al., 2001).
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6Activity-Dependent Neurite Outgrowth:

Implications for Network Development and

Neuronal Morphology

Arjen van Ooyen, Jaap van Pelt, Michael A. Corner, and
Stanley B. Kater

Empirical studies have shown that high levels of neu-

ronal activity can cause neurites to retract, whereas

lower levels allow further outgrowth. Using simula-

tion studies, we have explored the possible implica-

tions of such activity-dependent neurite outgrowth

for network development and neuronal morphology.

These implications include a transient phase of high

connectivity during development, the presence of

multiple stable end states of development at di¤erent

connectivity levels, and the emergence of size di¤er-

ences between the neuritic fields of excitatory and

inhibitory cells. These phenomena, which are also

observed in developing cultures of cerebral cortex

cells, emerge in the model without assuming pre-

determined, time-scheduled mechanisms.

6.1 Introduction

Electrical activity, in the form of action potentials and

synaptically driven fluctuations in membrane poten-

tial, plays an important role in the development

of neurons into functional neural networks. This

activity-dependent maturation begins even before the

onset of sensory responses, and is driven by intrinsi-

cally generated patterns of electrical discharges. Most

studies, theoretical as well as empirical, have largely

focused on activity-dependent changes in synaptic

strength, but many other processes that determine

network connectivity and neuronal function are, on a

variety of time scales, also modulated by electrical

activity. These include naturally occurring cell death

(see chapter 9), neurite outgrowth and branching,

synaptogenesis, elimination of synapses, changes in

the number and e¤ectiveness of ion channels and

neurotransmitter receptors (see chapter 8), and even

gene expression (for reviews, see Van Ooyen, 1994;

Corner et al., 2002).

As a result of these activity-dependent processes, a

reciprocal influence exists between the development

of neuronal form, function, and connectivity on the

one hand (‘‘slow dynamics’’; di¤erent time scales are

involved, but they are all slow relative to the time

scale of the dynamics of electrical activity) and neuro-

nal and network activity on the other hand (‘‘fast

dynamics’’). Thus, the activity patterns generated by a

developing network can modify the organization of

the network and the functional characteristics of the

neurons, leading to altered activity patterns, which in

turn can further modify structural and functional

characteristics.

Electrical activity exerts its e¤ects on multiple time

scales (hours, e.g., number and e¤ectiveness of neuro-

transmitter receptors; days or weeks, e.g., neurite

outgrowth and synapse formation) as well as on mul-

tiple levels of organization [individual synapses, e.g.,

long-term potentiation (LTP) and depression (LTD);

whole cell, e.g., neuronal excitability and neurite

outgrowth; population of cells, e.g., balance of exci-

tation and inhibition]. In many cases, the way in

which activity modifies network connectivity and

neuronal function contributes to the homeostasis of

neuronal activity (for reviews, see Van Ooyen, 1994;

Turrigiano, 1999; Abbott and Nelson, 2000; Corner

et al., 2002). When the activity of a neuron is high,

neuronal connectivity and excitability are modified



by activity-dependent processes such as neurite

outgrowth (see section 6.2), changes in ionic con-

ductances (Turrigiano et al., 1994, 1995) and neuro-

transmitter receptors (Turrigiano et al., 1998; see also

chapter 8), and changes in the balance of excitation

and inhibition (Corner and Ramakers, 1992; Turri-

giano, 1999) so as to decrease activity. When the

activity of a neuron is low, on the other hand, neu-

ronal connectivity and excitability will be modified so

as to increase activity.

In this chapter we focus on activity-dependent

neurite outgrowth and explore its implications for

network development and neuronal form. Section

6.2 describes the empirical studies, which have estab-

lished that high levels of neuronal activity often cause

neurites to retract (mediated by changes in intra-

cellular calcium levels), whereas lower levels allow

further outgrowth. Section 6.3 briefly reviews mod-

eling studies of activity-dependent neurite outgrowth

and some other activity-dependent processes. In sec-

tion 6.4 we describe in detail a model of activity-

dependent neurite outgrowth.

6.2 Activity-Dependent Neurite Outgrowth—

Neurobiological Background

Neurite elongation, branching, and steering are under

the control of the growth cone, a specialized structure

at the tip of a growing neurite (Letourneau et al.,

1991). Growth cones consist of a central zone con-

taining organelles and microtubules (long polymers of

tubulin that form a continuous core within the neu-

rite) and surrounded by spikelike protrusions (filopo-

dia) and fan-shaped sheets (lamellipodia), both of

which are filled with actin filaments. Polymerization

of tubulin into microtubules—which for the most

part takes place at the growth cone—provides the

driving force for neurite elongation. The actin cyto-

skeleton mainly serves to control branching and steer-

ing (Acebes and Ferrús, 2000), but also participates in

elongation. The tension generated by the rearward

flow of fibrillar actin (F-actin) in the growth cone

slows down elongation, probably by a¤ecting the rate

of microtubule polymerization (Buxbaum and Hei-

demann, 1992; Lin and Forscher, 1995).

Neurite outgrowth is sensitive to the calcium con-

centration within the growth cone, ½Ca2þ�in. Cal-

cium a¤ects the polymerization and depolymerization

of microtubules, both directly (e.g., Schilstra et al.,

1991) and via its influence on microtubule-associated

proteins (MAPs). By interacting with microtubules,

MAPs regulate many aspects of microtubule dynam-

ics, not only polymerization and depolymerization,

but also bundling, spacing, and interactions with actin

filaments (Maccioni and Cambiazo, 1995). Calcium

modulates MAP function by regulating the phos-

phorylation state of MAPs (Sánchez et al., 2000).

The dynamics of the actin cytoskeleton are also

influenced by calcium. The (de)polymerization of

F-actin and the formation of cross-linked meshworks

and bundles of actin filaments are controlled by actin-

binding proteins, many of which are modulated by

calcium (Forscher, 1989). The Rho proteins are par-

ticularly important for growth cone morphology and

neurite branching (Aspenstrom, 1999; Cline, 1999; Li

et al., 2000). These are involved in the organization of

the actin cytoskeleton and are essential for the forma-

tion of lamellipodia and filopodia (Tapon and Hall,

1997; Aspenstrom, 1999; see also chapters 3 and 4).

Rho proteins, too, may be modulated by calcium

(Ramakers et al., 1998; Chen et al., 1998).

Because of the strong dependence of neurite out-

growth on calcium, any factor that can change

½Ca2þ�in—such as depolarization, neurotransmitters

(Cohan et al., 1987; Berridge, 1998), neurotrophins
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(Stoop and Poo, 1996), and cell adhesion molecules

(Bixby et al., 1994), which a¤ect calcium influx

through voltage- and ligand-gated calcium channels

—will be able to a¤ect neurite outgrowth (for

reviews, see Goldberg and Grabham, 1999; McAllis-

ter, 2000).

Large increases in ½Ca2þ�in—caused, for example,

by high levels of neuronal electrical activity (action

potentials) or by depolarization induced by neuro-

transmitters or depolarizing media—arrest neurite

outgrowth and can even cause retraction (e.g., Cohan

and Kater, 1986; Fields et al., 1990; Mattson and

Kater, 1989; Mattson et al., 1988; Torreano and

Cohan, 1997). Growth cones can generate transient

elevations of ½Ca2þ�in as they migrate (Gomez and

Spitzer, 1999), and, consistent with the results men-

tioned earlier, the rate of axon elongation is inversely

proportional to the frequency of these spontaneous

calcium transients (Gu and Spitzer, 1995; Gomez and

Spitzer, 1999). However, decreases in ½Ca2þ�in (e.g.,

as a result of lowered neuronal electrical activity) can

also suppress neurite elongation (e.g., Mattson and

Kater, 1987; Mattson, 1988; Lankford and Letour-

neau, 1991; Al-Mohanna et al., 1992; Ramakers et

al., 2001), while in some cases neurite elongation can

be promoted by elevations of ½Ca2þ�in above the rest-
ing level (e.g., Kuhn et al., 1998).

These seemingly contradictory results are accom-

modated by Kater’s calcium hypothesis for neurite

outgrowth, which states that deviations in either di-

rection from an optimal ½Ca2þ�in slow down neurite

elongation (Kater et al., 1988; Kater and Mills, 1991).

Deviations within the physiological range are already

e¤ective, so that calcium signaling in the growth cone

is indeed physiologically relevant (reviewed in Gold-

berg and Grabham, 1999).

The bell-shaped dependence of neurite elongation

on ½Ca2þ�in implies that one cannot predict a priori

whether a given change in ½Ca2þ�in has a growth-

promoting or growth-inhibiting e¤ect (Kater and

Mills, 1991). This will depend on the magnitude of

the change as well as on the existing resting calcium

levels. Moreover, the optimal ½Ca2þ�in for outgrowth

may be di¤erent for di¤erent neurons (Kater et al.,

1988; Kater and Mills, 1991). Furthermore, it is

worthwhile to distinguish between the e¤ects of cal-

cium on the morphology of the growth cone (num-

ber and extent of its protrusions—filopodia and

lamellipodia) and the e¤ects of calcium on neurite

elongation. For example, focal increases in ½Ca2þ�in
can induce the formation of protrusions (Davenport

and Kater, 1992), which may slow the forward

movement of the growth cone, and thus neurite

elongation, through lateral interactions with the envi-

ronment (Goldberg and Grabham, 1999).

In addition to a¤ecting neurite elongation, calcium

levels and depolarization influence neurite branching

(Schilling et al., 1991; Sanes and Takács, 1993; Ram-

akers et al., 1998, 2001). Both increased and reduced

branching have been observed following depolariza-

tion (for reviews, see Cline, 1999; Acebes and Ferrús,

2000; McAllister, 2000). So, as for elongation, there

may be an optimal calcium level for branching, which

could be di¤erent for di¤erent cell types.

The stimuli that change ½Ca2þ�in in the growth

cone can act on the level of a single neurite or on the

level of the whole cell. For example, local application

of glutamate to a single dendrite results in regression

of that dendrite (Mattson et al., 1988), whereas so-

matic action potentials may simultaneously regulate

the behavior of all the growth cones and neurites of a

given neuron (Cohan and Kater, 1986; Kater and

Guthrie, 1990), for example, by propagation of action

potentials into the dendrites (Stuart and Sakmann,

1994) or by other mechanisms (electrotonic spread,

calcium dynamics).
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6.3 Review of Models

Hentschel and Fine (1996) used Kater’s calcium hy-

pothesis for neurite outgrowth to study the emer-

gence of dendritic forms from initially spherical cells

(see chapter 3). In their model, local outgrowth of the

cell membrane is taken to depend on the local con-

centration of calcium close to the internal surface of

the membrane.

Whereas Hentschel and Fine (1996) used Kater’s

hypothesis to study the development of dendritic

forms in single, isolated cells, we used Kater’s hy-

pothesis to study the development of synaptically

connected networks from initially unconnected cells

(see section 6.4).

Abbott and Jensen (1997) studied calcium-

dependent neurite outgrowth in combination with

calcium-regulated conductances (see chapter 8). As in

our model, they used the concept of a circular neuritic

field to model outgrowth and connectivity, but in-

stead of modeling firing frequency (see section 6.4.1),

they used spiking neurons and also explicitly modeled

the dynamics of intracellular calcium. Starting from

random initial conditions, the model cells develop

spontaneously into a coupled network displaying a

complex pattern of activity. Although the cells are

governed by identical equations, they di¤erentiate

within these networks and show a wide variety of in-

trinsic characteristics.

Raijmakers and Molenaar (1999) applied activity-

dependent neurite outgrowth to the maturation of

connections in an ART (adaptive resonance theory)

neural network model of memory, and Eglen et al.

(2000) studied the role of neurite outgrowth in the

formation of retinal mosaics (see chapter 7).

Activity-dependent neurite outgrowth contributes

to the homeostasis of neuronal activity (see section

6.1). Other forms of homeostatic plasticity include

mechanisms for regulating the intrinsic excitability

of neurons (ionic conductances, neurotransmitter

receptors; for a review, see Corner et al., 2002) and

mechanisms for stabilizing total synaptic strength

(Turrigiano, 1999). Modeling studies have begun to

explore the implications of these forms of plasticity for

network development and function (e.g., LeMasson

et al., 1993; Marder et al., 1996; Horn et al., 1998;

Golowasch et al., 1999; see also chapter 8). In contrast

to Hebbian mechanisms, where changes in synaptic

strength occur in a synapse-specific manner, homeo-

static plasticity acts on the neuronal level. Neurite

outgrowth, too, operates on a higher level than that of

a single synapse. A change in a cell’s axonal or den-

dritic extent means that the connectivity with many

other cells is changed simultaneously. During devel-

opment, homeostatic plasticity ensures that neurons

remain responsive to their inputs and allows Hebbian

plasticity to modify synaptic strengths selectively

(Turrigiano, 1999). During aging, homeostatic plas-

ticity can account for maintenance of memory sys-

tems that undergo synaptic turnover and degradation

(Horn et al., 1998).

6.4 Detailed Description of a Model of

Activity-Dependent Neurite Outgrowth

The goal of the model that we present in this section

(see Van Ooyen and Van Pelt, 1994; Van Ooyen et

al., 1995) is not to reproduce any particular system in

detail, but rather to explore the range of phenomena

that could result from activity-dependent neurite

outgrowth. In the model, the growth of both excita-

tory and inhibitory neurons is activity dependent, and

all the cells are initially unconnected. Development

into a connected network (slow dynamics) takes place
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only under the influence of the activity (fast dynam-

ics) that is generated by the network itself (no external

input). Growing neurons are modeled as expanding

neuritic fields, and neurons become connected when

their neuritic fields overlap. The outgrowth of each

neuron depends upon its own level of electrical activ-

ity, according to Kater’s theory for the control of

neurite outgrowth (thus we do not model calcium

explicitly, assuming that ½Ca2þ�in is proportional to

the level of neuronal electrical activity). The de-

pendence of outgrowth on activity in an indivi-

dual neuron is such that when activity is higher

than a critical value, its neuritic fields retract (reduc-

ing its connectivity with other cells and thus, in gen-

eral, its activity), and when it is lower, its neuritic

fields expand (increasing its connectivity and activ-

ity). Thus, by adapting the size of its neuritic field,

a neuron attempts to maintain a certain level of

activity (homeostasis), the aforementioned critical

value, at which the neuron’s neuritic field remains

stationary.

The model is inspired in part by cultures of dis-

sociated cerebral cortex cells (e.g., Van Huizen et al.,

1985; for a review, see Marom and Shahaf, 2002),

whose development into a network (without external

input) by neurite outgrowth and synaptogenesis

shows many similarities with that in vivo. The phases

through which the cultured networks pass during

development—with respect to electrical activity and

connectivity—as well the e¤ects of various treat-

ments, such as chronically blocking activity, have

been described extensively (see section 6.4.4). In sec-

tion 6.4.4, the phenomena observed in the model are

compared with those observed in culture.

6.4.1 Neuron Model

The shunting model (Grossberg, 1988), transformed

into dimensionless equations, is used to describe

neuronal activity. In this model, excitatory inputs

drive the membrane potential toward a maximum

(the excitatory saturation potential), while inhibitory

inputs drive the membrane potential toward a mini-

mum (the inhibitory saturation potential):

dXi

dT
¼ �Xi þ ð1� XiÞ

XN
k¼1

WikFðXkÞ

� ðH þ XiÞ
XM
l¼1

WilFðYlÞ ð6:1Þ

dYj

dT
¼ �Yj þ ð1� YjÞ

XN
k¼1

WjkFðXkÞ

� ðH þ YjÞ
XM
l¼1

WjlFðYlÞ; ð6:2Þ

where Xi and Yj are the membrane potentials of, re-

spectively, the excitatory cell i and the inhibitory cell

j, expressed in units of excitatory saturation potential;

N and M are the total number of excitatory and in-

hibitory cells, respectively; H is the ratio of inhibitory

to excitatory saturation potential; T is time expressed

in units of membrane time constant; the Ws denote

the connection strengths (all W b 0; k and l are the

indices of the excitatory and inhibitory driver cells,

respectively; i and j are the indices of the excitatory

and inhibitory target cells, respectively); and FðXÞ is
the mean firing rate, which is taken to be a sigmoidal

function of the membrane potential:

FðXÞ ¼ 1

1þ eðy�XÞ=a ; ð6:3Þ

where a determines the steepness of the function and

y represents the firing threshold. The low firing rate

when the membrane potential is subthreshold repre-

sents spontaneous activity.
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6.4.2 Outgrowth and Connectivity

Neurons are randomly placed on a two-dimensional

surface. Each neuron is given a circular ‘‘neuritic

field,’’ the radius of which is variable. When two such

fields overlap, both neurons become connected with a

strength proportional to the area of overlap:

Wij ¼ AijS; ð6:4Þ

where Aij ¼ Aji is the amount of overlap, representing

the total number of synapses formed reciprocally be-

tween neurons i and j (Aii ¼ 0); and S is a constant

of proportionality, representing the average synaptic

strength. Strength may depend on the type of con-

nection. We distinguish S ee, S ei, S ie, and S ii, where,

for example, S ei is the inhibitory-to-excitatory syn-

aptic strength.

In this abstraction, no distinction has been made

between axons and dendrites, so the connections

among excitatory cells and among inhibitory cells are

symmetrical. The main findings of the model do not

change, however, if separate axonal and dendritic

fields are implemented (see the section on di¤erences

among cells and section 6.5).

In the model, the outgrowth of each neuron,

whether excitatory or inhibitory, depends in an iden-

tical way upon electrical activity:

dRi

dT
¼ rG½FðXiÞ�; ð6:5Þ

where Ri is the radius of the neuritic field of neuron i,

FðXiÞ is the firing frequency of neuron i, and r deter-

mines the rate of outgrowth. The outgrowth function

G is defined as

G½FðXiÞ� ¼ 1� 2

1þ e½e�FðXiÞ�=b
; ð6:6Þ

where e is the value of FðXiÞ for which G ¼ 0, and b

determines the steepness of the function. Depending

on FðXiÞ, a neuritic field will grow out [G > 0 when

FðXiÞ < e], retract [G < 0 when FðXiÞ > e], or re-

main constant [G ¼ 0 when FðXiÞ ¼ e] (see figure

6.1A). All cells will thus attempt to get a neuritic field

size for which the input from overlapping cells is such

that FðXiÞ ¼ e; in other words, e is a ‘‘homeostatic

setpoint.’’ Equation (6.6) is a phenomenological de-

scription of the theory of Kater et al. (see section 6.2).

It is not a complete bell-shaped curve, but the precise

rates of outgrowth are not essential for the results as

long as with high activity, neuritic fields retract and

with low activity, they expand. What could produce

new results is if a growth function is used for which

cells also retract when neuronal activity is below a

certain level (figure 6.1B). However, using such a

function yields similar results, provided that the initial

activity is high enough (see the section on an alterna-

tive growth function).

6.4.3 Parameters

The fraction of inhibitory cells, M=ðN þMÞ, is taken
in the range of 0.1–0.2 (e.g., Meinecke and Peters,

1987). For the rest, all the parameter values are the

same for excitatory and inhibitory cells. The out-

growth of neurons is on a time scale of days or weeks

(Van Huizen et al., 1985; Schilling et al., 1991), so

connectivity is quasi-stationary on the time scale of

membrane potential dynamics. To avoid unneces-

sarily slowing down the simulations, r is chosen as

large as possible under the quasi-stationary approxi-

mation. In most simulations, we use r ¼ 0:0001. As

nominal values for the other parameters, we chose

H ¼ 0:1, y ¼ 0:5, a ¼ 0:1, b ¼ 0:1, and e ¼ 0:6.

6.4.4 Results of the Model

In most of the following subsections, the results of

the model are given first, followed by the empirical
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data from cultures of dissociated cells that can be

accounted for by the model.

Overshoot in Excitatory Networks

Model

Simulation shows that one of the implications of

activity-dependent outgrowth, together with a hyste-

resis relationship between network connectivity and

activity (see the following discussion), is that a devel-

oping network goes through a phase in which the

connectivity, or number of synapses, is considerably

higher than in the final, stable situation; i.e., the net-

work exhibits overshoot in connectivity (figure 6.2A).

For a purely excitatory network (M ¼ 0), this result

can be predicted directly from Eq. (6.1). For a given

connectivity matrix W, the equilibrium points are

solutions of

0 ¼ �Xi þ ð1� XiÞ
XN
k¼1

WikFðXkÞ Ei: ð6:7Þ

If all cells have the same e and the variations in Xi are

small relative to X , the average membrane potential of

the network, we find (Van Ooyen and Van Pelt,

1994):

0G�X þ ð1� XÞWFðXÞ; ð6:8Þ

where W is the average connection strength. Based

on this approximation,

W ¼ X

ð1� XÞFðXÞ 0aX < 1: ð6:9Þ

Thus, this equation, which defines a manifold

(plotted in figure 6.2B), gives the equilibrium value(s)

of X for a given value of W . Equilibrium states

on branch CD of the manifold are unstable with re-

spect to X ; equilibrium states on the other branches

are stable. Because changes in W—arising from

Figure 6.1

Growth functions relating the rate of neurite outgrowth (G )

with firing rate ½FðXÞ�. (A) The growth function [see Eq.

(6.6)] as used in most of the simulations. The neuritic field

of a neuron retracts when the neuronal firing rate is above e.

(B ) A growth function for which the neuritic field of a neu-

ron also retracts when the firing rate falls below some critical

value.
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Figure 6.2

Overshoot in connectivity during development. (A) Total connectivity C ¼
PNþM

p¼1; q¼1 Apq in (1) a network without inhibition

and (2) a network with inhibition. The arrow indicates the onset of network activity in the network with inhibition. (From

Van Ooyen et al., 1995.) (B ) Hysteresis relationship between average membrane potential X ¼ ð1=NÞ
PN

i¼1 Xi at steady state

for a given value of W , and average connection strength W ¼ ð1=NÞ
PN

i¼1; k¼1 Wik in a purely excitatory network [see Eq.

(6.9)]. The intersection point with the line X ¼ F�1ðeÞ is the equilibrium point of the system, at which W remains constant.

(From Van Ooyen and Val Pelt, 1994.) See section 6.4.4. (C ) To arrive at the equilibrium point in (B ), a developing network,

starting at point A in (B ), has to go through a phase in which W is higher than in equilibrium. (D) The average membrane

potential during development.
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outgrowth and retraction of neuritic fields—are very

much slower than changes in X , W can be considered

as quasi-stationary on the time scale of the membrane

potential dynamics. In other words, in the time that X

relaxes to its equilibrium value (for a given W ), W

hardly changes. The slow evolution of X , determined

by changes in W , therefore takes place along the

equilibrium manifold defined by Eq. (6.9); this mani-

fold is sometimes referred to as the slow manifold.

At the intersection point with the line X ¼ F�1ðeÞ
(F�1 is the inverse of F ), W remains constant; above

and below that line, it decreases and increases, respec-

tively [see Eq. (6.6)]. Consider the case in which the

intersection point is on the branch DE (figure 6.2B).

In a developing network, connectivity and activity are

initially low, and W increases; X follows the branch

ABC until it reaches W2, at which point X jumps to

the upper branch, thus exhibiting a transition from a

quiescent to an activated state. But the activity in the

network is then so high that the neuritic fields begin

to retract and W to decrease, and so X moves along

the upper branch from E to the intersection point.

Thus, in order to arrive at an equilibrium point on the

branch DE, a developing network has to go through a

phase in which the average connectivity is higher than

in the final situation. In other words, a higher con-

nectivity is needed to trigger activity in a quiescent

network than to sustain it once the network has been

activated (hysteresis). The existence of such hysteresis

(i.e., the S-shaped curve of figure 6.2B) hinges upon

the firing rate function F having a firing threshold and

low but nonzero values for subthreshold membrane

potentials.

Empirical

A general feature of nervous system development, in

vivo and in vitro, is that many structural elements

show an initial overproduction followed by an elimi-

nation during further development. These so-called

overshoot phenomena occur, for example, with re-

spect to total dendritic length (Uylings et al., 1990),

number of dendrites and axons (e.g., Gorgels et al.,

1989), and synapse numbers (e.g., O’Kusky, 1985).

The mechanism underlying the generation of over-

shoot in the model may provide part of the explana-

tion for overshoot phenomena, at least for those that

have been observed in vitro. For example, cultures of

dissociated cerebral cortex cells show a transient over-

production of synapses during development (Van

Huizen et al., 1985, 1987a), with a phase of neurite

outgrowth and synapse formation during the first 3

weeks in vitro being followed by a substantial elimi-

nation of synapses during the week thereafter (figure

6.3). The development of electrical activity in these

cultures also shows a good correspondence with the

model. With increasing synaptic density, single-

neuron firing and network activity abruptly appear

within a window of a few days (Habets et al., 1987).

Electrical activity appears to control both neurite out-

growth and synapse elimination. Chronic blockade of

 

Figure 6.3

Cultures of dissociated cerebral cortex cells show a transient

overproduction of synapse numbers (Control). Chronic

blockade of activity (by tetrodotoxin, TTX) largely prevents

synapse elimination, whereas intensification of activity (by

picrotoxin, PTX, which blocks inhibition) accelerates the

process. (After Van Huizen et al., 1985, 1987a.)
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electrical activity enhances neurite outgrowth (Van

Huizen and Romijn, 1987) and prevents subsequent

synapse elimination (Van Huizen et al., 1985). Devel-

oping cerebellar cultures have also been shown to ex-

hibit a sequence of events similar to that in the model

(Schilling et al., 1991).

Periodic Behavior in Excitatory Networks

Model

The level of electrical activity (or ½Ca2þ�in) above

which neurites retract may be di¤erent for di¤erent

classes of neurons (Guthrie et al., 1988; Kater et al.,

1988). In terms of the model, this means that there

can be variation among cells in e, the level of electrical

activity above which the neuritic field retracts. Under

these conditions, complex periodic behavior can oc-

cur, with individual cells displaying oscillations that

di¤er in frequency and amplitude (figure 6.4C,D)

(Van Ooyen and Van Pelt, 1996). The precise behav-

ior depends on the spatial distribution of the cells and

the distribution of e values over the cells. Note that

the oscillations in activity are caused by retraction and

outgrowth of the cells’ neuritic fields and thus occur

on a time scale of days. The network as a whole

still shows overshoot in connectivity, but instead of

going to a stable connectivity level, the network

connectivity (and activity) keeps oscillating to some

degree.

Empirical

Using a multielectrode setup to record activity pat-

terns in developing cultures of dissociated cortex cells,

Van Pelt et al. (2003) have observed fluctuations in

the level of electrical activity of individual cells, with

periods of increased activity sometimes lasting as long

as several days. Whether these are correlated with pe-

riodic changes in neurite outgrowth and connectivity,

as the model suggests, is now being investigated.

Overshoot in Mixed Networks

Model

We now consider networks that contain both excita-

tory and inhibitory cells. Simulation shows that over-

shoot still takes place in the presence of inhibition,

and can even be enhanced (figure 6.2A). To counter-

balance inhibition, a higher excitatory connectivity is

necessary to reach the level of electrical activity at

which the average connectivity starts declining.

Whereas in purely excitatory networks the decline

in connectivity begins shortly after the onset of net-

work activity, in mixed networks the decline in over-

all connectivity can be considerably delayed relative

to the onset of network activity (figure 6.2A). In parts

of the network with many inhibitory cells, excitatory

cells can still be growing out, while in parts with

fewer inhibitory cells they are already retracting. For

the overshoot curve this implies that average con-

nectivity can still increase markedly after the onset of

network activity. Blocking inhibition will thus ad-

vance the process of overshoot.

Empirical observations show that the development

of inhibition tends to lag behind that of excitation

(reviewed in Corner et al., 2002). Modeling the

delayed development of inhibition by giving the in-

hibitory cells a lower outgrowth rate results in a less

pronounced excitatory overshoot and a growth curve

of the number of inhibitory connections that no

longer exhibits any overshoot. The inhibitory cells

develop into a network that is already approaching a

more or less stable level of electrical activity, and will

therefore simply grow out until their overlap is such

that FðXiÞ ¼ e.

Empirical

The observation in the model that the decline in

connectivity can occur earlier in purely excitatory

networks than in mixed networks (figure 6.2A) is
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Figure 6.4

Oscillations in electrical activity as a result of periodic changes in neurite outgrowth. (A) See also figure 6.2B. If the value of e is

such that the intersection point of the line X ¼ F�1ðeÞ and the hysteresis curve is on the branch CD, regular oscillations occur,

in both average connectivity and average membrane potential, that follow the path ABCEDBCED. . . . The period of these

oscillations is determined by the value of r [see Eq. (6.5)]. (B ) The oscillations in the average membrane potential. (C, D) If the

value of e is not approximately equal for all cells in the network [so that the approximation on which (A) is based cannot be

made], complex periodic behavior can occur. Here are shown the oscillations in membrane potential for two di¤erent cells in a

network in which there is variation in e values. The cell in (C ) has e ¼ 0:15; the cell in (D) has e ¼ 0:68. (From Van Ooyen and

Van Pelt, 1996.)
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Figure 6.5

If the connection strength in a network with excitatory and inhibitory cells is larger than a critical value, connectivity will not

be reduced to the normal equilibrium value. (A) Normal development in a mixed network. C ¼ total connectivity ¼
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in agreement with the observation in culture that

chronic blockade of GABAergic (i.e., g-aminobutyric

acid) transmission advances the process of synapse

elimination (Van Huizen et al., 1987a) (figure 6.3).

The presence of inhibition can account for the obser-

vation in culture that the decline in connectivity is

delayed relative to the onset of network activity (Van

Huizen et al., 1985).

Delayed development of inhibition, which in the

model causes the number of inhibitory connections

to fail to exhibit overshoot, o¤ers a putative explana-

tion for the observation in culture that the synapses

on dendritic shafts (presumably inhibitory; Shep-

herd, 1990) show no overshoot during development,

whereas the synapses on dendritic spines, which are

mostly excitatory, account for the overshoot phe-

nomenon (Van Huizen et al., 1985).

Multistability, Critical Period, and Periodic

Behavior in Mixed Networks

Model

Under all initial conditions, purely excitatory net-

works go to the same global end state with respect to

electrical activity and average connection strength.

Mixed networks, however, do not necessarily do so.

In a network with a moderate level of inhibition and

an initial average connection strength (of both excita-

tory and inhibitory connections) that is larger than a

critical value, connectivity will not be reduced to the

normal equilibrium value but instead will continue to

increase (figure 6.5C; Van Ooyen et al., 1995). Basi-

cally, this is because the increased inhibitory connec-

tion strength stimulates further outgrowth. Van Oss

and Van Ooyen (1997) studied this e¤ect in a sim-

plified model consisting of one excitatory and one in-

hibitory unit. These units can be interpreted as single

cells or as representing populations of cells. The exci-

tatory unit (with membrane potential X ) is connected

to itself and to the inhibitory unit, while the inhibi-

tory unit (with membrane potential Y ) is connected

only to the excitatory unit and not to itself. Further-

more, it is assumed that the connection between the

excitatory and the inhibitory unit is symmetrical (this

assumption is not essential for the results) and that

the connection strength between the excitatory and

the inhibitory unit is a fraction p of the connection

strength W of the excitatory unit to itself. The latter

assumption is reasonable because when a cell’s neuritic

field increases, its connection strength with both

PNþM
p¼1; q¼1 Apq. (B, C ) Electrical activity is blocked until the time indicated by the arrow. In this period, connectivity can only

increase. If the level of connectivity thus reached is higher than the level indicated by the horizontal line, connectivity is not

reduced, but continues to increase when activity is allowed to return. (D) Activity is blocked in a normally developed network

at the time indicated by the arrow. (E ) The slow manifold of X, where both dX=dT ¼ 0 and dY=dT ¼ 0, and the W-nullcline

(the thin, nearly horizontal line), where dW=dT ¼ 0, in the simplified model (see the section on multistability in mixed net-

works). The bold lines indicate stable equilibrium points with respect to X and Y (when W is regarded as a parameter), and the

thin lines indicate the unstable ones. The intersections of the manifold and the W-nullcline are the equilibrium points of the

system. (F ) The slow manifold (without showing stability) and the W-nullcline. The bold lines are trajectories: one, starting at

W ¼ 0 and X ¼ 0, approaches the normal point attractor at low W; the other one, starting at W ¼ 15 and X ¼ 0, approaches

the limit cycle attractor at high W (see arrow). Starting at W ¼ 15, X and Y oscillate while W slowly increases until the oscilla-

tions ‘‘touch’’ the fold of the slow manifold, at which point there is no further net increase in W. Note that since the changes in

W are much slower than in X and Y, no separate oscillations are visible. (G ) Time plot of the limit cycle attractor in (F ) show-

ing X (bold line) and Y. (H ) Time plot of the limit cycle attractor in (F ) showing W. (From Van Ooyen et al., 1995, and Van

Oss and Van Ooyen, 1997.)

Activity-Dependent Neurite Outgrowth 123



excitatory and inhibitory cells increases. The sim-

plified model in di¤erential equations is

dX

dT
¼ �X þ ð1� XÞWFðXÞ � ðH þ XÞpWFðYÞ

ð6:10Þ

dY

dT
¼ �Y þ ð1� YÞpWFðXÞ ð6:11Þ

dW

dT
¼ qðe� bW 2 � XÞ; ð6:12Þ

where H is the inhibitory saturation potential and q

determines the rate at which the connection strength

increases. Because the rate of neurite outgrowth [r in

Eq. (6.5)]—and thus the rate at which the connection

strength changes—is low compared with the dynam-

ics of the membrane potential, q is small. Compared

with Eq. (6.6), the growth function [Eq. (6.12)] is

simplified to ðe� XÞ, which has the same qualitative

behavior as Eq. (6.6). To prevent connectivity from

increasing indefinitely, a saturation term �bW 2 is

added, where b is small. Without this term, however,

the model gives essentially the same results. The

model is simple enough to be studied by bifurcation

analysis and elaborate enough to show the same phe-

nomena as in the full network model [Eqs. (6.1), (6.2),

and (6.5)].

Bifurcation analysis shows that in most cases there is

a point attractor (attractor A) at a low connectivity

level and a limit cycle attractor at a high connectivity

level (attractor B) (figure 6.5E,F). Attractor B is in-

terpretable as a ‘‘pathological’’ state; the limit cycle

has fast, epileptiform oscillations in electrical activity

(figure 6.5G). Under the normal initial conditions for

a developing network (namely, a low level of con-

nectivity), the system develops normally and ends

up, via an overshoot in connectivity, in attractor A,

whereas a high initial connectivity will cause the sys-

tem to end up in attractor B (a high initial con-

nectivity can be brought about by, for example,

blocking electrical activity for a certain time during

network formation). Furthermore, the model shows

that the higher the level of inhibition during devel-

opment (e.g., number of inhibitory cells, strength of

inhibitory synapses), the more likely the system is to

end up in attractor B.

Empirical

The presence of two stable attractors at di¤erent con-

nectivity levels can explain the observation in culture

that following chronic blockade of electrical activity

(thus causing enhanced neurite outgrowth and a high

density of synapses, i.e., a high level of connectivity),

there is no subsequent elimination of the excess syn-

apses when the block is finally removed and activity

returns to control levels (Van Huizen et al., 1987b,

Van Huizen and Romijn, 1987).

In the model, the higher the level of inhibition

during development, the more likely the system is to

end up in pathological attractor B with strong oscilla-

tory activity (epileptiform activity). This is in line with

the following observation: Hypoxic-ischemic ence-

phalopathy (HIE, i.e., brain damage as result of lack of

oxygen) induced in rat pups can lead to permanent

epileptiform activity later on in adulthood (Romijn et

al., 1994), but this epileptiform activity is not the re-

sult of a preferential loss of inhibitory elements such as

GABAergic nerve endings; indeed, there is a prefer-

ential survival of inhibitory elements in the damaged

areas (Romijn et al., 1993).

Di¤erences among Cells and Di¤erentiation

between Excitatory and Inhibitory Cells

Model

The neuritic field size adapts to the local cell density,

resulting in small fields in dense areas and larger ones

in sparse areas. Cell death in a mature network will
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result in a compensatory increase in the neuritic fields

of the surviving neurons. After excitatory cell loss,

electrical activity decreases, and cells will begin to

grow out until they all have the same activity level as

before [FðXiÞ ¼ e]. To compensate for the lost cells, a

larger neuritic field is necessary.

Although in the model there are no intrinsic di¤er-

ences in growth properties between excitatory and

inhibitory cells, their neuritic fields will nevertheless

become di¤erent. The neuritic fields of inhibitory

cells tend to become smaller than those of excitatory

cells (figures 6.6 and 6.7), and the mechanism ac-

counting for this is as follows: Each cell will attain a

neuritic field size for which the input from over-

lapping cells is such that FðXiÞ ¼ e. An excitatory cell

that receives inhibition therefore needs more excita-

tory input than a cell that is not inhibited, and thus

grows a larger neuritic field. As a consequence, each

inhibitory cell will become surrounded by large,

strongly connected excitatory cells, whereas, since

the same growth rules apply to inhibitory cells, the

inhibitory cell itself can remain small because a small

neuritic field yields su‰cient overlap with its large

surrounding cells. In other words, an inhibitory cell

becomes small by increasing the size of its direct

neighbors. These neighbors, in turn, will become sur-

rounded by relatively small cells, and so on (figure

6.7).

When separate axonal and dendritic fields are used

in the model, di¤erentiation between excitatory and

inhibitory cells still occurs (the other results are also

robust to modeling axonal and dendritic fields sepa-

rately; see section 6.5). Let Rd
i be the radius of the

dendritic field of cell i, and R a
i that of its axonal field.

As a dendritic field receives input from axonal fields,

Eq. (6.4) becomes

Wij ¼ OðRd
i ;R

a
j ÞS

Wji ¼ OðRd
j ;R

a
i ÞS,

ð6:13Þ

where Oð Þ gives the area of overlap and S represents

synaptic strength. The growth of both types of fields is

governed by Eq. (6.6) in which, in order to have axo-

nal fields larger than dendritic fields, the growth rate

of the latter is given a smaller value ( rd < ra). With

this procedure, inhibitory cells still become smaller

than excitatory cells. Even if the axonal field of an in-

hibitory cell is kept at a constant size, its dendritic field

becomes smaller than the fields of the excitatory cells.

Excitatory cells receiving input via the (constant) axo-

nal field of a neighboring inhibitory cell will get

large dendritic and axonal fields, so that the dendritic

Figure 6.6

The average neuritic field area (NA) of excitatory cells

(thick lines) becomes smaller than that of inhibitory cells

(thin lines). The network has torus boundary conditions. In

(A), the inhibitory cells have the same outgrowth rate as the

excitatory cells; in (B ), the inhibitory cells have a lower

outgrowth rate than the excitatory cells. (From Van Ooyen

et al., 1995.)
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Figure 6.7

Patterns of neuritic field sizes imposed by inhibitory cells. All networks have torus boundary conditions. (A) Mature network

with excitatory and inhibitory cells. A dotted line indicates an inhibitory cell. (B ) Graph showing the connections in the net-

work of (A). The line width is proportional to the connection strength. A dashed line indicates a connection between an in-

hibitory and an excitatory cell. Connections that cross boundaries are not shown. (C ) Same placing of cells as in (A), but all

former inhibitory cells are now excitatory. (D) Graph showing connections in network of (C ). (E ) Cells on grid positions. The

diameter of a square is proportional to the area of the neuritic field. Scaled to maximum area. The cell with a white dot in the

middle is inhibitory. (F ) Same as in (E ), but with two inhibitory cells. (From Van Ooyen et al., 1995.)

126 Arjen van Ooyen and colleagues



field of the inhibitory cell can remain small to get suf-

ficient input.

Empirical

The model shows that excitatory cell loss will be

accompanied by an increased neuritic (dendritic) field

of the surviving neurons. In the human cortex, the

dendritic extent per neuron increases steadily through

old age (Coleman and Flood, 1986), which has been

interpreted as a compensatory response to neuronal

death (Coleman and Flood, 1986). This is consistent

with the model and with the observation that no in-

crease in dendritic extent occurs in brain regions that

do not lose neurons with age (Coleman et al., 1986).

In the model, the neuritic fields of inhibitory cells

tend to become smaller than those of excitatory cells.

In the cerebral cortex, the dendritic (and axonal) fields

of inhibitory neurons are indeed smaller, on the

whole, than those of excitatory neurons. Pyramidal

cells, which are excitatory, have large apical dendrites

(which often cross several layers) and long axons. The

nonpyramidal cells, most of which are inhibitory,

usually have dendritic and axonal branches that ex-

tend only locally (e.g., Abeles, 1991).

Alternative Growth Function

In the growth function [Eq. (6.6)] used in the model,

neurite retraction takes place only when neuronal

activity is too high. If a growth function is used in

which neurite retraction can also take place when

neuronal activity is too low (see figure 6.1B), all the

main results still hold, provided that the initial activity

(as a result of initial connectivity and/or spontaneous

activity) is high enough to stimulate outgrowth (Van

Ooyen et al., 1996). A di¤erence with this growth

function is that not all cells will necessarily become

part of the network; cells that receive too little excita-

tion from their surrounding cells will completely re-

tract their neuritic fields.

6.5 Discussion

It has previously been realized that activity-dependent

neurite outgrowth could have considerable poten-

tial for controlling neuronal form and circuitry (e.g.,

Mattson, 1988). The model studies described in this

chapter have begun to make this potential explicit.

The way in which activity influences neurite out-

growth contributes to the homeostasis of neuronal

activity, and our model studies have shown that

this striving for homeostasis may underlie many of

the seemingly unrelated phenomena observed in

developing cultures of dissociated neurons. The phe-

nomena that may be the consequence of activity-

dependent neurite outgrowth, and that are observed

both in culture and in the model, include (1) a tran-

sient phase of high connectivity during development,

(2) the presence of stable end states of development at

di¤erent connectivity levels, and (3) size di¤erences in

neurite length between excitatory and inhibitory cells.

Without modeling studies, it would have been im-

possible to surmise that these three e¤ects could be

di¤erent aspects of the same underlying process.

With respect to e¤ect (2), the model has shown

that the state of the network (e.g., the average con-

nectivity level) and the balance between excitatory

and inhibitory elements can determine whether nor-

mal development will take place. Thus, too much inhi-

bition prevents the normal pruning of exuberant

connections and results in a network with highly os-

cillatory electrical activity (epileptiform activity).

With respect to e¤ect (3), one must not draw the

conclusion that intrinsic di¤erences are unimportant

in the development of size di¤erences, but some

aspects of di¤erentiation can take place without

them.

The results of the model do not depend critically

on the neuritic fields being described as circles. Other
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approaches for modeling neurite outgrowth and con-

nectivity give essentially the same results as described

here (Van Ooyen and Van Pelt, 1994). Also, model-

ing axonal and dendritic fields separately, so that con-

nectivity is no longer necessarily symmetrical, does

not alter the main findings (see the section on alterna-

tive growth function and Van Ooyen et al., 1995).

Activity-dependent neurite outgrowth could play

a role not only during development but also in the

adult nervous system. Many studies have shown

structural changes in axons and dendrites in response

to lesions, aberrant activity, changes in environmental

conditions, and behavioral training (for a review, see

Woolley, 1999).

Future Modeling Studies

Our modeling studies have dealt with the implications

of activity-dependent neurite outgrowth for neuronal

morphology and gross network development. Possi-

ble roles of activity-dependent neurite outgrowth in

learning and memory have not been studied (but see

Raijmakers and Molenaar, 1999; see also section 6.3).

A form of memory could occur when, after the appli-

cation of external input, the network is pushed into a

di¤erent stationary state with respect to neuritic field

sizes and connectivity.

A first step toward a more detailed description of

growing neurons will be to use, instead of circular

neuritic fields, spatial functions describing the density

of the neuron’s axonal and dendritic branches. Con-

nectivity between neurons can then be described as a

convolution of the overlapping dendritic and axonal

spatial density functions.

A second step toward a more detailed description

could be to model the growing neurites themselves

(for example, using a compartmental modeling ap-

proach; see chapter 4). The outgrowth of each neurite

can then be made dependent on the (time-averaged)

local membrane potential at the tip of the neurite (the

growth cone). This membrane potential will be influ-

enced by both the firing rate at the soma and the local

synaptic potentials at the neurite. In this approach, the

e¤ects of neuronal activity on neurite branching can

also be incorporated.

Besides making the description of the growing

neurites more detailed, the neuron model can be im-

proved upon. Spiking neurons can be used, and the

dynamics of intracellular calcium can be modeled

explicitly (as in Abbott and Jensen, 1997). This has the

advantages that outgrowth can be made directly de-

pendent on intracellular calcium, the major mediator

of activity-dependent neurite outgrowth (see section

6.2), and that the e¤ects of di¤erent firing patterns on

neurite outgrowth can be included. For example,

Fields et al. (1990) found that phasic stimulation is

more e¤ective in inhibiting neurite outgrowth than

stimulation with the same number of impulses at a

constant frequency, an e¤ect for which the calcium

dynamics could be responsible.

Finally, activity-dependent neurite outgrowth

can be studied in combination with other activity-

dependent processes, such as changes in conductances

of membrane currents (see chapter 8 and Abbott and

Jensen, 1997).

Future Experimental Studies

Experiments are necessary for studying the extent to

which activity-dependent neurite outgrowth indeed

underlies the phenomena listed in section 6.4.4. Ide-

ally, one would like to simultaneously record the

morphological development and neuronal activity of

individual cells in a developing network. Using a

multielectrode setup, Van Pelt et al. (2003) can con-

tinuously record the electrical activity of up to sixty

cells in a developing network for a period of at least 6

weeks in culture. In order to correlate activity history

128 Arjen van Ooyen and colleagues



with morphology, steps are being undertaken to

determine the morphology of the cells from which

activity has been recorded.

Examples of the many specific questions that can

now be investigated include the following:

0 Do neurites retract or change their morphology

when they become electrically active?

0 Does synaptic input from inhibitory cells indeed in-

fluence the size of the dendrites of excitatory cells?

0 Do excitatory cells in purely excitatory networks

have less variation in the size of their neuritic extent

than excitatory cells in a mixed network (as the model

predicts; compare figures 6.7A and 6.7C)?

0 Does the failure of synapse elimination to occur

after chronically blocking electrical activity depend

upon the length of the blockade? The model predicts

that as long as the blockade does not exceed a critical

time, and the connectivity level is therefore below a

critical value, elimination of surplus synapses will still

occur.

0 Do the slow fluctuations observed in the level of

electrical activity of individual cells correlate with pe-

riodic changes in neurite outgrowth?

It would be useful for further modeling studies if

the relationship between intracellular calcium con-

centration and rate of outgrowth could be determined

more quantitatively.
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7TheoreticalModels of RetinalMosaic Formation

Stephen J. Eglen, Lucia Galli-Resta, and Benjamin E. Reese

The spatial distribution of neurons a¤ects the e‰-

ciency of neural circuitry. This is particularly evident

in the retina, where cells are regularly arranged so that

the visual world can be e‰ciently sampled. In this

chapter we outline several developmental mechanisms

(cell fate, lateral cell movement, and cell death) by

which postmitotic cells become organized into a reg-

ular spatial pattern. Here, we focus on two models

and review other relevant models. In the first model,

the dmin model, cellular positioning is subject only to

the constraint that no cell can be closer than some

minimal distance to any other cell of the same type.

This simple model can account for the distribution of

many classes of retinal cells. The second model, the

lateral movement model, investigates the suggestion

that dendritic interactions control cell positioning.

This model shows that lateral movements are su‰-

cient for achieving regularity. We conclude by com-

paring simulated mosaics produced by these two

models and highlight areas of future experimental and

theoretical research.

7.1 Neurobiological Background

The vertebrate retina contains six classes of retinal

neuron, distributed in several layers. Each class of

neuron typically occupies just one of these layers,

with the neurons regularly distributed throughout a

layer to ensure that the visual world is e‰ciently sam-

pled and that each cell receives roughly the same

number of inputs as its neighbors. Owing to the way

that the cell bodies (and their dendrites) seem to tile

the retina (figure 7.1), these spatial distributions are

often termed retinal mosaics. What developmental

mechanisms help form these regular distributions?

The formation of regular cell distributions may not

be a phenomenon specific to the retina; many other

brain regions may assemble their functional circuits in

an e‰cient manner, simplifying the task of making

appropriate connections by virtue of regular arrays. In

contrast, if cells are not regularly arranged, it may be

more di‰cult for cells to find su‰ciently close post-

synaptic partners. Subpopulations of cells in cortical

areas may be regularly distributed, but may simply

have not yet been examined. The flat, layered struc-

ture of the retina makes it relatively easy to examine

the distributions of cells compared with other neural

tissue. Observing regular distributions of cells in other

regions is also complicated by the large number of cell

types that exist and the di‰culty in correctly classify-

ing them. Despite these problems, Cook and Chalupa

(2000) describe examples of neuronal mosaics dis-

covered in the rat cerebellum and the avian tectum.

Mosaics are also likely to be found in non-neural tis-

sue, such as skin.

7.1.1 Possible Mechanisms Underlying Mosaic

Formation

Several developmental processes are likely to be in-

volved in regulating the distribution of retinal cells

throughout development, starting from the time that

cells acquire their identity via fate determination

mechanisms. Postmitotic cells leave the ventricular



surface (near the future photoreceptor layer) and mi-

grate (radially) toward their destination layer. Cells

can also move tangentially (parallel to the retinal lay-

ers). Morphological di¤erentiation begins while cells

migrate and continues once they arrive at their desti-

nation layer. Throughout this period, there is massive

cell death within the retina that could further sculpt

retinal distributions. Each of these mechanisms is now

described; for further details, see recent experimental

reviews (Cook and Chalupa, 2000; Galli-Resta, 1998;

Reese and Tan, 1998).

Cell Fate Mechanisms

The di¤erent classes of retinal cells are generated in

two main phases of cell birth (reviewed in Robinson,

1991). In the first phase, retinal ganglion cells (RGCs)

and cone photoreceptors are produced, followed by

amacrine and horizontal cells. In the second phase,

bipolar cells and rod photoreceptors are born. How-

ever, postmitotic cells in the mammalian retina are not

predestined purely by their birth date to become one

particular class, although their fate appears to become

restricted over time (Cepko et al., 1996). The fate of

cells to become a particular class may be influenced by

neighboring cells. Early specification of one cell, the

founder cell, could induce neighboring cells to adopt

a di¤erent fate, as suggested for rods and cones in pri-

mates and goldfish (Wikler and Rakic, 1991; Sten-

kamp et al., 1997). The RGCs also secrete factors that

inhibit neighboring cells in acquiring the same fate

(Waid and McLoon, 1998). Much more is known

about cell fate determination in invertebrate eye de-

velopment. Genetic and molecular advances have

shown that the di¤erentiation of photoreceptors in

each ommatidium of the Drosophila eye follows a se-

quence of fate determination signals once the founder

cell, the photoreceptor R8, is determined (Freeman,

1997).

A combination of genetic and environmental influ-

ences is therefore likely to be involved in regulating

the density of each type of retinal cell. However, the

role of these processes in mosaic formation is unclear.

Lateral inhibitory mechanisms should prevent primary

fate cells from being close to each other, creating an

initial regularity in the spatial distribution. In favor of

this suggestion, early di¤erentiating RGCs appear

regularly distributed in chicks (McCabe et al., 1999).

However, while cholinergic amacrine cells (Galli-

Resta et al., 1997) and horizontal cells (Galli-Resta,

unpublished observations) migrate to their destination

layer, they are often much closer to each other than

the minimal spacing observed between cells in the

destination layer. This suggests that subsequent devel-

Figure 7.1

(a) Mosaic of adult mouse cholinergic amacrine cells (scale

bar: 50 mm). The regularity index is 4.1. (b) Autocorrelation

plot (defined in section 2 of the appendix) of this sample of

cells; annuli are spaced 5 mm apart.
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opmental events improve upon any order established

by fate-based mechanisms.

Lateral Cell Movement

Early analysis of retinal cell migration from various

lineage-tracing studies indicated that most cells moved

radially from the site of their final mitotic division at

the ventricular surface to yield columns of clonally

related cells (Turner and Cepko, 1987). By using a

transgenic mouse model enabling the marking of 50

percent of all clones, however, reanalysis of the mi-

gration patterns indicated that certain classes of retinal

cell also move laterally away from their column of

origin (Reese et al., 1995; Reese and Tan, 1998).

Furthermore, the classes exhibiting lateral movement

are the same classes that are regularly arranged. Cells

moved typically less than 100 mm, and all cells within

a given class moved (Reese et al., 1999).

Further evidence for lateral movement of retinal

cells came from the discovery that cholinergic cells

could be identified while they were still migrating to

their destination layers (Galli-Resta et al., 1997; Galli-

Resta, 2000). Migrating cholinergic cells were often

found side by side, but once they arrived in their layer

they acquired a regular spacing, which was maintained

throughout the several days during which new cells

entered the array. This suggests that the cells moved

laterally within their destination layer to maintain

regularity.

These two lines of evidence suggest that lateral

movement of cells within a cell’s destination layer is

instructive for retinal mosaic formation. Indirect evi-

dence in favor of lateral cell movement also comes

from the observation that the positions of blue cone

photoreceptors and their postsynaptic contacts, the

blue cone bipolar cells, are positively correlated. Lat-

eral cell movement is the most likely mechanism by

which this patterning occurs (Kouyama and Marshak,

1997). The mechanisms driving cell movement have

not yet been discovered, although one suggestion is

that the cell body partially translocates within its pro-

cesses (Reese and Tan, 1998; Cook and Chalupa,

2000).

Cell Death

Results from a range of mammalian species indicate

that 50–90 percent of RGCs that are born will die

during development (Finlay and Pallas, 1989; see also

chapter 9). As well as refining the projection of RGCs

to their targets (O’Leary et al., 1986), cell death might

also influence mosaic formation by removing those

neurons that are inappropriately placed among a pop-

ulation of cells (Galli-Resta, 1998; Cook and Cha-

lupa, 2000). In favor of this hypothesis, early postnatal

cell death, influenced by electrical activity, was impli-

cated in the formation of on- and off-center alpha

RGC mosaics ( Jeyarasasingam et al., 1998). It is pos-

sible that RGCs compete with their neighbors for

trophic support or contacts from their a¤erents (Wäs-

sle and Rieman, 1978), and those cells that receive

insu‰cient support will die (Kirby and Steineke,

1996). However, retinal cell death does not always

guide mosaic formation. In rats, 20 percent of chol-

inergic amacrine cells die between postnatal day 4

(P4) and P12 without increasing mosaic regularity

(measured using the regularity index, as defined in

section 1 in the appendix to this chapter) (Galli-Resta

and Novelli, 2000). Computer simulations showed

that random deletion of 20 percent of these cells

from P4 retina is su‰cient to account for the distri-

butions found at P12, implying that cell death occurs

randomly across the retina without increasing mo-

saic regularity. Furthermore, cell death alone cannot

create the spatial dependence observed between blue

cones and the blue cone bipolar cells because the

magnitude of cell death is too small to remove all the
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bipolar cells that are too far from the blue cones

(Kouyama and Marshak, 1997).

7.2 The dmin Rule and Lateral Movement

Model

Theoretical approaches to mosaic formation are in-

structive for investigating how local developmental

rules can generate global properties of retinal mosaics.

In this section we focus on two di¤erent approaches

to modeling mosaic formation. Other relevant models

are discussed in section 7.3. Theoretical models can

be classified as either phenomenological or mech-

anistic (Nathan and Muller-Landau, 2000). Most

models mentioned in this review are phenomeno-

logical models, since they replicate statistical proper-

ties of experimental mosaics without concern about

the underlying developmental processes. In contrast,

mechanistic models simulate potential developmental

processes to see if they reproduce relevant aspects of

development. Although a mechanistic model is usu-

ally preferred over a phenomenological model, both

types of model are informative, as shown, for exam-

ple, in models of dendritic tree formation (see chapter

4). In this section, we discuss the dmin rule (a phe-

nomenological model) and the lateral movement

model (a mechanistic model).

7.2.1 The dmin Rule

Autocorrelation plots of retinal mosaics typically have

an empty space around the origin (figure 7.1b; section

2 in the appendix), suggesting that each cell has its

own ‘‘exclusion zone’’; i.e., each cell prevents other

cells of the same type from getting too close to it. The

dmin model (named after the minimal distance param-

eter in the model) (Galli-Resta et al., 1997) mimics

this exclusion zone by constraining the addition of

new cells into a mosaic. The model generates a distri-

bution of cells by sequentially adding new cells into a

(initially empty) two-dimensional array. A trial cell is

randomly positioned within the array and given a dmin

value from a Gaussian distribution of fixed mean and

standard deviation. The trial cell is accepted if the dis-

tance to the nearest neighbor of previously accepted

cells is greater than the dmin of the trial cell; otherwise

the trial cell is discarded. This process continues until

the desired number of cells has been placed in the ar-

ray, or until no more cells can be positioned within

the array.

The dmin model is one example of a general class

of exclusion zone models in which the acceptance of

a cell into the array is based upon a probability of

acceptance function (figure 7.2). This function deter-

mines the probability of accepting a new cell accord-

ing to the distance to the nearest neighboring cell.

The exact shape of the function varies for di¤erent

classes of retinal cell, but it has three regions. First,

there is a hard-core exclusion zone that always pre-

vents any two cells being closer to each other than

Figure 7.2

Example of a probability of acceptance function for an ex-

clusion zone model (in this case, for a dmin model with a

Gaussian distribution of 15G 3:0 mm).
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some minimum distance. This area is partially, but

not totally, accounted for by the restriction that

somas within a layer cannot overlap. Second, there is

a soft-core (or elastic) exclusion zone; the probabil-

ity of accepting the new cell typically increases with

distance. Third, after the nearest neighbor is farther

than some upper distance, the trial cell is always

accepted.

The dmin model requires only three parameters: (1)

the density of cells to generate and (2) the mean and

(3) standard deviation for the Gaussian distribution of

dmin values. To fit the dmin model to a data set, the

density of cells is the same as the density of the data

set. A range of values for the mean and standard devi-

ation of dmin is tested to see which values produce the

closest fits to the experimental data. The quality of the

match between simulated and experimental mosaics is

measured by comparing distributions, such as nearest-

neighbor distances and Voronoi-based features (sec-

tion 3 in the appendix), and can be used by principled

approaches to find the best model parameters (Diggle

and Gratton, 1984).

Performance of the dmin Model

The dmin rule has successfully replicated the dis-

tribution of several developing and adult retinal

mosaics, including rat cholinergic amacrine cells

(Galli-Resta et al., 1997; Galli-Resta and Novelli,

2000), rod and cone photoreceptors in ground squirrels

(Galli-Resta et al., 1999; see figure 7.3), nicotinamide

adenine dinucleotide phosphate (NADPH)-diaphor-

ase active RGCs in chicks (Cellerino et al., 2000), and

mouse horizontal cells (our unpublished results). The

quality of these fits indicates that local, homotypic

(i.e., interactions occur only between cells of the same

class) exclusion zones are su‰cient to recreate the

spatial distributions of experimental mosaics. Further-

more, the dmin model has revealed additional features

about retinal mosaics.

In the ground squirrel study, retinal mosaics were

collected from a range of di¤erent cell densities. In

these mosaics, the regularity index increased with cell

density (figure 7.3). The dmin model fitted all rod and

cone photoreceptor mosaics using the same Gaussian

distribution (6.5G 1.0 mm for rods, 16.5G 3.5 mm

for cones) across all cell densities. As cell density

increases, the dmin model rejects more cells as it

becomes harder to place trial cells that do not overlap

with other exclusion zones, hence making more reg-

ular distributions. Also, when fitting cone photo-

receptors at cell densities close to the packing density

limit for the dmin rule, allowing less than 10 percent of

the cells to ignore the dmin constraint was su‰cient to

fit the high-density mosaics.

In contrast, the regularity index of RGCs with

NADPH-diaphorase activity in adult chicks (Celler-

ino et al., 2000), 6.3G 0.8 mm, did not vary with cell

density across the retina. In this case, it was suggested

that the initial population of RGCs across the entire

retina was created at a constant density with one dmin

value. Di¤erential expansion of the retina then varied

cell density across the retina while preserving regular-

ity. This is a variant of the ‘‘little bang’’ hypothesis

(Rodieck and Marshak, 1992), which suggests that

cell bodies are initially close packed and then space

out to di¤erent degrees during development because

of nonuniform stretching of the retina (Mastronarde

et al., 1984).

What Does the dmin Rule Tell Us about

Development?

Although the dmin rule is a phenomenological model,

it could inform us about some aspects of the develop-

ment of retinal mosaics. It is a simple, robust model

that requires only local information (over the range of

the exclusion zone) when deciding whether to accept

new cells into the mosaic. The model predicts that the

cellular interactions underlying exclusion zones are
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homotypic and that the exclusion zones of neighbor-

ing cells are nonadditive (i.e., two closely neighboring

cells do not make a stronger exclusion zone than one

cell). In a recent experimental study prompted by

these model predictions, both these features of the

exclusion zone were verified for cholinergic amacrine

cells (Galli-Resta, 2000). The dmin model is therefore

a good example of theoretical work that has suggested

new experiments to increase our knowledge of devel-

opmental mechanisms.

What cellular mechanisms e¤ectively produce an

exclusion zone around each cell? One possibility is

that cell death removes new cells that are too close

to preexisting cells within the mosaic (Galli-Resta,

1998). Although the number of rejected cells from the

dmin model for low densities is small enough to be

plausibly accounted for by cell death, at higher den-

sities the number of rejected cells is much higher than

the amount of cell death. In light of the studies show-

ing cellular movement in the plane of the retina, cells

may move laterally to observe the exclusion zone

constraint rather than dying (Galli-Resta, 1998). The

su‰ciency of lateral cell movement to generate retinal

mosaics is discussed further in section 7.2.2.

Figure 7.3

Comparison of the distribution of rod photoreceptors in the ground squirrel with the dmin model (using a Gaussian distribution

of 6:5G 1:0 mm). (a) Distribution of Voronoi polygon areas for rod mosaics at four di¤erent densities (filled symbols). Dotted

lines indicate the closely matching distribution of Voronoi polygon areas for mosaics produced by the dmin model at those four

densities. (b) Regularity index of rod mosaics taken at di¤erent densities from two di¤erent animals (filled circles and triangles).

Open circles indicate the regularity index of mosaics produced by the dmin model. The arrows along the abscissa indicate the

four densities examined in (a). (Reprinted from figure 5 of Galli-Resta et al., 1999, with permission from Blackwell Science

Ltd.)
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Related Exclusion Zone Models

Several other exclusion zone models have been used

to model retinal mosaics. In the first reported model

(Diggle and Gratton, 1984), the probability of ac-

cepting a new cell depended on the distance to all

neighboring cells and successfully fitted the mosaic of

displaced amacrine cells in the rabbit. The distribution

of macaque blue cone photoreceptors was fitted by

a dmin-like model using the distribution of nearest-

neighbor distances measured from one experimental

sample as the probability of acceptance function (Sha-

piro et al., 1985). Later work using the same ‘‘elastic

ball’’ model found that it fitted the distribution of

blue cones in the ‘‘foveal slope,’’ but not the retinal

periphery, of the macaque (Curcio et al., 1991).

Ammermüller et al. (1993) used a Boltzmann dis-

tribution as the probability of acceptance function to

successfully fit the distribution of turtle horizontal

cells; this fit was better than a lattice-based model (see

section 7.3.1). The dmin rule was also used to fit em-

bryonic rabbit horizontal cells (Scheibe et al., 1995).

Outside of the retina, exclusion zone models have

replicated many other spatial distributions, including

gull’s nests (Bartlett, 1975) and pine trees (Ripley,

1981). Owing to their wide use and slight variations,

exclusion zone models have several names, including

Strauss processes (Ripley, 1981), serial sequential in-

hibition, and Matérn processes (Diggle, 1983).

7.2.2 Lateral Movement Mediated by Dendritic

Interactions

The dmin model has shown that local homotypic

interactions are su‰cient to replicate the spatial distri-

bution of retinal cells. However, the biological mech-

anisms that might implement the dmin constraints are

as yet unclear. One of the early mechanisms hypothe-

sized for retinal mosaic formation was that each cell

has a repulsive force so that an initial random distri-

bution of cells can transform itself into a regular pat-

tern (Wässle and Riemann, 1978). In this section we

review a model investigating if dendritic interac-

tions could mediate the repulsive force driving lateral

cell movement and mosaic formation (Eglen et al.,

2000).

Description of the Lateral Movement Model

The lateral movement model (Eglen et al., 2000) is

based upon a previous model of dendritic outgrowth

(Van Ooyen and Van Pelt, 1994; see also chapter 6).

A number of n cells are positioned within a square re-

gion of tissue of side length l. Each cell i has three

variables: Ci, Ri, and Xi, where Ci (the bold denotes a

2-D vector) is the position of the cell body, Ri is the

radius of the circular dendritic field around the cell

body, and Xi is the mean membrane potential (al-

though other physiological interpretations of Xi are

equally plausible). Each cell is given a random initial

position Ci, and both Ri and Xi are zero initially. The

following equations [Eqs. (7.1), (7.3), and (7.5)] then

update each variable.

The mean membrane potential Xi is a weighted

function of inputs from neighboring cells, along with

a decay term with a time constant t:

dXi

dt
¼ �Xi

t
þ ð1� XiÞ

Xn
j¼1

WijFðXjÞ; ð7:1Þ

where

FðXjÞ ¼
1

1þ exp½ðy� XjÞ=a�
ð7:2Þ

and Wij ¼ cAij. The mean firing rate of cell j, FðXjÞ,
is thus a sigmoidal function with a threshold y and

steepness a. The function Aij is the area of overlap be-

tween the dendritic fields of cells i and j, with Aii ¼ 0.

The input from cell j to cell i, Wij, is then cAij, where

c is a constant.
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The rate of dendritic outgrowth of each cell is con-

trolled by the mean activation of the cell via the sig-

moidal function G:

dRi

dt
¼ rG½FðXiÞ�; ð7:3Þ

where

GðxÞ ¼ 1� 2

1þ exp½ðe� xÞ=b� ; ð7:4Þ

with b a constant that determines the steepness of the

function. When the cell’s firing rate is below thresh-

old e, G½FðXiÞ� is positive, causing outgrowth. Con-

versely, when it is above threshold, G½FðXiÞ� is

negative, and the dendritic field retracts.

Cell bodies repel each other in proportion to their

dendritic overlap:

dCi

dt
¼ h

Xn
j¼1

uðCi � CjÞWij; ð7:5Þ

where uðVÞ is the vector V normalized to a unit of

length, except uð0Þ ¼ 0. Both elements of Ci were

bounded to keep each cell within the fixed region of

tissue.

In contrast to the relatively simple dmin model with

three parameters, Eqs. (7.1)–(7.5) contain ten param-

eters that a¤ect development (n, l, t, y, a, c, e, b, r, h);

typical values are given in Eglen et al. (2000).

Results from the Lateral Movement Model

Figure 7.4 shows a typical sequence of development

in the model. In the early stages of development, since

most dendrites do not overlap, they receive little in-

put from neighboring cells and so the dendrites first

expand. Once neighboring dendrites overlap, cells

Figure 7.4

Typical lateral movement model at three stages during development (n ¼ 100 cells). In the top row, each dot represents a cell

body; in the bottom row, each circle represents the position of one cell, with its radius equal to the dendritic extent. (a) At the

start of development, dendrites begin to grow outward, but cells have not yet moved very much and the mosaic is still random

[regularity index (RI) ¼ 2:1)]. (b) After a little while, dendrites have grown enough to cause some small movement and a slight

increase in mosaic regularity ðRI ¼ 2:5Þ. (c ) At the end of development, dendrite sizes are uniform and the mosaic is highly

regular ðRI ¼ 10:9Þ. Scale bar: 100 mm.
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then begin to repel each other and gradually reorga-

nize into a regular mosaic while dendritic field sizes

still change. Long after dendritic field sizes have stabi-

lized, there is usually some small movement of a few

cells, which continues to increase mosaic regularity.

The small distances moved by each retinal cell are

within the range observed experimentally (Reese et

al., 1999). All cells within the model also move,

which is in agreement with experimental results. Mo-

saic regularity is una¤ected by cell density (figure

7.5a), although the values are higher than those typi-

cally found in experimental mosaics. Dendritic field

size is inversely proportional to the cell density. Fur-

thermore, if the overlap function A measures the rela-

tive rather than absolute amount of dendritic contact

between cells, the coverage factor (dendritic area

multiplied by cell density) is constant across retinal

space.

Various components of the model were inves-

tigated to see how they a¤ect development. First, dif-

ferent forms of the overlap function were considered.

In the model, it is assumed that the dendrites of each

cell are circular and that pairs of cells can calculate ex-

actly by how much they overlap. If the estimate of the

amount of overlap is made more qualitative by reduc-

ing the precision of the calculation, the regularity in-

dex decreases down to experimentally observed levels

(see table 1 of Eglen et al., 2000).

Another contribution to mosaic regularity is

whether dendritic fields change size during mosaic

formation. If dendritic field sizes are fixed, regularity

of the developed mosaic is no longer constant across

cell densities, but instead increases with cell density

(figure 7.5a). This might occur if dendrites grow on a

much slower time scale than the rate at which cells

move. Furthermore, when dendrites are fixed, cell

movement is not universal. Instead, cells simply repel

each other until they no longer overlap. The degree

of cell movement is therefore proportional to the

 

 

 

 

 

 

 

 

Figure 7.5

Regularity of the lateral movement models and comparison

with the dmin model. (a) Regularity indexes in the adaptive-

dendrite (triangles; five simulations per condition) and

fixed-dendrite model (circles; ten simulations per condition)

for di¤erent cell densities. (b) Comparison of the dmin model

with the fixed-dendrite model. For each mean value of dmin,

ten dmin mosaics (triangles) were simulated (n ¼ 200 cells)

using a Gaussian distribution with a standard deviation of

20 percent of dmin. Likewise, ten simulations of the fixed-

dendrite lateral model (circles) were run using the same

Gaussian distribution for the dendritic field diameters.

In each simulation, the simulated region of the retina was

400� 400 mm2, and in both plots, error bars denote 1 stan-

dard deviation of the mean.
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cell density and the size of the exclusion radius. For

example, at low cell densities (n ¼ 100 cells, figure

7.5a), about 25 percent of the cells moved; at higher

densities (n ¼ 500, figure 7.5a), about 80 percent of

the cells moved. Regularity is proportional to cell

density here because more cells move at higher den-

sities to fit the model’s constraints.

The lateral movement therefore behaves di¤er-

ently according to whether the dendrites adapt

(the adaptive-dendrite model) or remain fixed (the

fixed-dendrite model) during development. In the

adaptive-dendrite model, cells move and dendrites

adapt sizes until each cell receives a fixed amount

of input (see chapter 6), and cells move until the

movement forces cancel each other out. In the fixed-

dendrite model, at low densities, cells can repel each

other until their dendrites do not overlap.

These two variants of the model produce di¤er-

ent results as cell density varies. In agreement with

the adaptive-dendrite model, the regularity index of

mammalian cone photoreceptors, cholinergic ama-

crine cells, and chick NADPH-diaphorase active

RGCs ( Je¤ery et al., 1994; Rodieck and Marshak,

1992; Cellerino et al., 2000) did not increase with cell

density. In contrast, and in agreement with the fixed-

dendrite model, the regularity of rod photoreceptors

in the ground squirrel increased with cell density

(Galli-Resta et al., 1999; see also figure 7.3). Corre-

sponding experimental data for the percentage of cells

that move are not yet available. Measurements of cell

movement can currently be made only in transgenic

models, namely, the mouse retina, where there is a

shallow center-to-periphery gradient in cell density.

Experimental manipulations to alter the density of

cells in the mouse retina are therefore necessary to test

if the amount of cell movement is proportional to, or

independent of, cell density.

The lateral movement model assumes that dendritic

interactions produce repulsion between cells. To date,

the only evidence implicating dendrites in lateral cell

movement is correlational. The morphology of hori-

zontal cells changes from radial to tangential processes

during the period of lateral cell movement (Reese et

al., 1999). The role of dendritic interactions therefore

awaits experimental investigation. However, non-

dendritic interpretations of the fixed-dendrite model

are possible. Each cell could produce a chemo-

repellant that is e¤ective over a fixed radius R to attain

some minimal spacing between cells (Eglen et al.,

2000), although no such chemorepellants have yet

been identified. Furthermore, at least for cholinergic

amacrine cells, the exclusion zone around each cell is

not additive and so probably is not mediated by di¤u-

sible substances (Galli-Resta, 2000).

7.2.3 Comparison of dmin and Lateral Movement

Model

The fixed-dendrite version of the lateral movement

model prevents dendrites of neighboring cells from

overlapping when possible. The lateral movement

model could therefore be interpreted as implementing

a dmin rule by repelling cells that lie within each

other’s exclusion zones (Eglen et al., 2000) if we

equate the dmin value of a cell from the dmin model

with the diameter of a cell’s dendritic field in the lat-

eral movement model. To test if the two models are

functionally equivalent, we simulated a set of mosaics

using the same Gaussian distribution for both the dmin

values and dendritic field diameters (figure 7.5b). For

each value of dmin, the regularity indexes of mosaics

produced by the two models are significantly di¤erent

( p < 0:02 in each comparison, Wilcoxon rank sum

test) except when dmin ¼ 16 mm ( p ¼ 0:25). Hence

the two models are not functionally equivalent, al-

though their regularity index curves follow the same

general shape. In both models, regularity increases

with dmin up to about 20 mm, but increases slightly
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faster in the fixed-dendrite model. For values of dmin

greater than 20 mm, regularity in each model reaches

its own plateau value because it is close to the packing

density limit. No significant di¤erence in regularity

was found in this range. (When comparing the regu-

larity of mosaics at 24 mm, 28 mm, and 32 mm with the

Kruskal-Wallis test, p ¼ 0:43 for the dmin model and

p ¼ 0:29 for the fixed-dendrite model.)

One source of the di¤erence between the two

models may be because the exclusion zones in the

dmin model are nonadditive, whereas the repulsive

forces in the lateral movement model are additive.

Despite this di¤erence, the two models may agree

more closely after the repulsive force is altered in

the lateral movement model. First, the force repels the

two cells along a straight line between the cells. The

direction of any repulsive force is likely to be much

less accurate, perhaps just pushing the two cells away

in di¤erent directions. Second, repulsion stops once

two cells no longer overlap, whereas it could continue

over longer distances. Third, if cells migrate into the

destination layer over a long time, the ‘‘arrival time’’

of a cell into the layer might be important. For two

overlapping cells, the newer cell could be the one that

must translocate. This would be like the dmin model,

in which only the later-positioned cell moves.

7.3 Related Theoretical Models of Mosaic

Formation

Here we describe the main findings of other theoreti-

cal models, retinal and nonretinal, that are of rele-

vance to retinal mosaic formation.

7.3.1 Lattice-Based Models

Exclusion zone models incrementally generate mosa-

ics on a cell-by-cell basis. In contrast, lattice-based

models generate the whole sample of cells in parallel

by placing the cells on a predefined regular (hexago-

nal or rectangular) lattice. Each cell is then independ-

ently moved some random direction and distance, as

long as cell bodies do not overlap. This method was

used to fit the distribution of macaque blue cone

photoreceptors (Shapiro et al., 1985) and turtle hori-

zontal cells (Ammermüller et al., 1993). In both cases,

better fits to the experimental data were obtained us-

ing exclusion zone models. Lattice models were also

used to investigate the distribution of on- and off-

center cat beta RGCs (Zhan and Troy, 2000). In this

distribution, the nearest neighbor of an on-center cell

is normally an off-center cell (and vice versa), and the

on (or off) mosaic is more regular than the combined

(on and off) mosaic. Zhan and Troy showed that just

the on- or off-center cells alone could be fit using a

hexagonal lattice. Furthermore, to match the statisti-

cal properties of the overall population of beta RGCs,

one array needed to be spatially o¤set from the other

in a precise manner. If this result can be generalized

across many samples of mosaics, it would indicate that

there are positional constraints among the di¤erent

subclasses, rather than the on- and off-center mosaics

being spatially independent, as originally suggested

(Wässle et al., 1981).

Lattice-based models seem inappropriate for de-

scribing the biological processes underlying mosaic

formation because they assume that cells are initially

perfectly arranged in a lattice before some noisy

process disturbs them. However, they are sometimes

preferred by theorists because of their analytical

tractability compared with exclusion zone models

(Diggle, 1983).

7.3.2 Cell Fate Models

Models of cell fate processes have investigated how an

initial population of undi¤erentiated cells could di-
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vide into several di¤erentiated cell classes (see also

chapters 1 and 2). Early cell fate models investigated

whether the relative sizes of cell populations of pri-

mary and secondary fates could be explained by

nearest-neighbor interactions within an initial undif-

ferentiated population of cells (Honda et al., 1990).

Undi¤erentiated cells were positioned on a surface

using an exclusion zone model and then chosen either

systematically (e.g., from left to right across the

surface) or at random to become primary fate cells,

forcing all the nearest neighboring cells to become

secondary fate cells. This simple cell fate process pro-

duced about a 3:1 ratio of secondary to primary fate

cells. A biologically realistic process for deciding cell

fate among neighboring cells, simulating lateral inhi-

bition mediated via Delta-Notch signaling, produced

a similar ratio of secondary to primary fate cells (Col-

lier et al., 1996). In this model, however, cells were

arranged in a regular hexagonal grid so that each cell

always had six neighbors. When the Delta-Notch

process was applied to an array of undi¤erentiated cells

generated using an exclusion zone model, the ratio of

secondary to primary fate cells dropped to about 2.6:1,

regardless of the regularity of the undi¤erentiated cell

mosaic (Eglen and Willshaw, 2002). Furthermore, the

regularity of the primary fate mosaic was always

higher than that of the secondary fate mosaic.

Cell fate models were used to investigate the spe-

cific problem of the development of four classes of

cone photoreceptor in zebrafish retina (Takesue et

al., 1998; Tohya et al., 1999). Undi¤erentiated cells

were placed in a rectangular grid. The potential dif-

ferentiated state of each cell changed probabilistically

according to its a‰nity with the current state of its

neighbors. The final stable state of each cell was de-

pendent on the relative a‰nities between di¤erent

classes of photoreceptors. By exploring di¤erent a‰n-

ity values, Tohya et al. (1999) predicted the relative

size of a‰nities between di¤erent cell classes that were

required to match the experimental distribution of

photoreceptors.

7.3.3 Cell Sorting Models

A general property of embryonic cells, not just neu-

rons, is that they normally show preferential grouping

toward other cells of the same type. When two di¤er-

ent types of cells are randomly mixed, they tend to

eventually separate so that cells of the same type ad-

here to each other—a phenomenon known as cell

sorting. It is suggested that cells have di¤erential a‰n-

ity for di¤erent classes of cells, and that cell movement

is influenced by these a‰nities (see also chapter 1). For

example, two cell classes will segregate if cells of the

same type have a high a‰nity and cells of an oppo-

site type have a low a‰nity. Di¤erent patterns can

emerge according to the relative value of within and

between-class a‰nities. Theoretical models of cell

sorting can be used to discover the relative a‰nities

(adhesive strengths) between the di¤erent classes of

cells (Mochizuki et al., 1996), or how changes in the

aggregate tissue shape depend on these a‰nities (Sul-

sky et al., 1984).

To date, cell sorting models have rarely been ap-

plied to the development of retinal mosaics. This

could be because the distribution of one class of reti-

nal cells is mostly independent of other classes of reti-

nal cells (Galli-Resta, 2000; Rockhill et al., 2000;

Cameron and Carney, 2000). The only known ex-

ample is recent work describing a cell sorting model

of zebrafish cone photoreceptors, similar to the cell

fate model mentioned previously (Mochizuki, 2002).

There is currently no experimental evidence, how-

ever, suggesting if the pattern of cone photoreceptors

is due to either cell fate mechanisms operating among

undi¤erentiated cells or to di¤erentiated cells under-

going cell sorting.
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7.4 Discussion

Exclusion zone models, such as the dmin model, are

simple phenomenological models that can replicate

the statistical distribution of many di¤erent classes of

retinal cells. These models suggest that mosaics de-

velop from purely local, homotypic interactions. This

agrees with recent experimental findings, prompted

by the modeling studies, that interactions are homo-

typic, since the regularity of cholinergic amacrine cells

was una¤ected by either up- or down-regulating the

number of synaptic partners (Galli-Resta, 2000). This

experimental evidence is supported by correlational

studies of adult mosaics, which found no evidence for

heterotypic interactions (Cameron and Carney, 2000;

Rockhill et al., 2000).

Complementary mechanistic models, such as the

lateral movement model described here, have shown

that universal, small movements by retinal cells are

one mechanism by which the exclusion zones can be

enforced. Other recent theoretical work is beginning

to investigate the importance of other developmental

mechanisms, such as cell fate and cell sorting, in the

development of retinal mosaics.

Future Modeling Studies

Given that the dmin model is so successful at replicat-

ing retinal mosaics, one potential area of future work

is to obtain closer agreement between the dmin model

and the mechanistic models, perhaps by making the

changes to the lateral movement model described in

section 7.2.3. The fixed-dendrite model could then

be used to evaluate the e¤ect of di¤erent degrees of

dendritic overlap upon the resulting dispersion dis-

tances and regularity indexes. These model results

could then be compared with dispersion distances

observed experimentally for cells with di¤erent

degrees of dendritic overlap, such as horizontal and

cholinergic amacrine cells (Reese et al., 1999). These

results might also suggest whether the relative di¤er-

ences in dendritic overlap observed in adult retina are

also present at the time of mosaic formation.

However, in addition to lateral cell movement,

many other mechanisms, such as cell death and the

local regulation of cell genesis (Galli-Resta, 1998),

might be involved in mosaic formation. Hence the

translation from the phenomenological dmin model to

a mechanistic model may require the simulation of

several di¤erent mechanisms. Another challenge is if

the mechanistic models can be extended to account

for the distribution of those cells that are thought to

be cross-correlated with other classes (Kouyama and

Marshak, 1997; Ahnelt et al., 2000).

Theoretical research on retinal mosaic formation

could also benefit from other areas of mathematical

biology. Mathematical models of regular spatial dis-

tributions in ecological situations, such as territory

formation (Tanemura and Hasegawa, 1980; Adams,

1998), have close parallels to the models proposed for

retinal development. Models of gene networks (see

chapter 2) are also now being built to investigate the

formation of regularly spaced patterns (Von Dassow

et al., 2000). Another relevant area is to consider

models in which neighboring cells compete for

limited resources, in analogy with trees in a forest that

compete for sunlight and nutrients from the ground

(Wässle and Riemann, 1978). Such competitive pro-

cesses have long been proposed to explain the reorga-

nization of dendrites in response to retinal lesions

(Perry and Linden, 1982). Ongoing theoretical work

into competition for neurotrophins (see chapter 10)

may provide useful insights, especially since neuro-

trophins can modulate the outgrowth of retinal neu-

rites (Bosco and Linden, 1999).
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Future Experimental Studies

The theoretical work mentioned here raises several

interesting questions to be investigated experimen-

tally. Some of these questions may require experi-

mental techniques that are not yet available, but may

soon become possible. They include the ability to

identify di¤erent cell types at early stages of develop-

ment using suitable markers. Advances in imaging

techniques may also allow us to follow the radial and

tangential movements made by cells over su‰ciently

long periods of time.

One major outstanding question is how exclusion

zones are mediated biologically. Candidate mecha-

nisms to be explored include cell death and lateral cell

movement (Galli-Resta, 1998). To investigate the

role of cell death, the e¤ect of altering the magnitude

of cell death, perhaps using transgenic models (Galli-

Resta, 2000), upon mosaic regularity should be eval-

uated. To test the importance of lateral cell move-

ment in mosaic formation, the mechanisms driving

such movement will first need to be found. Obvious

mechanisms to be tested include di¤usible repellants

and dendritic interactions.

The current models also raise other questions best

tested directly by experiments. The regularity index

of some retinal mosaics does not vary with density

(Rodieck and Marshak, 1992; Je¤ery et al., 1994;

Cellerino et al., 2000); theoretical models cannot dis-

criminate between the possibility that these mosaics

were created by di¤erential expansion of a mosaic

created with one exclusion zone (the ‘‘little bang’’

hypothesis) or by exclusion zones that vary in size

depending on local cell density (Eglen et al., 2000).

Assuming that markers are available to label certain

cell types early enough in development, this could be

investigated by seeing if an immature mosaic is uni-

formly regular across the retina before di¤erential

growth begins (Mastronarde et al., 1984). These

markers may also be used to see if cell fate mechanisms

initiate any spatial regularity, as predicted by models

of lateral inhibition (Eglen and Willshaw, 2000).

Finally, the cell fate models predict relative a‰nity

levels between di¤erent classes of cone photorecep-

tors (Tohya et al., 1999) that need to be measured.
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Appendix: Evaluating Mosaic Regularity

Here we outline the main methods used to quantify

the degree of regularity of spatial distributions. These

techniques are complementary and can describe dif-

ferent aspects of mosaic regularity (Galli-Resta et al.,

1999). Cells at the border of the sample area are spe-

cially treated (either by excluding them or by using

a weighting factor) to minimize biasing the distri-

butions. Statistical methods, including ranking and

bootstrap methods (Shapiro et al., 1985), can then be

used to compare distributions of experimental and

model mosaics.

1 Nearest-Neighbor Analysis

The simplest estimate of mosaic regularity is based

upon measuring the distance from each cell to its

nearest neighboring cell. For randomly arranged cells

(assuming a negligible soma size), these distances

match a Rayleigh distribution (Wässle and Riemann,

1978), whereas regular mosaics tend to have Gaussian-

shaped nearest-neighbor distributions. One useful
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measure of this distribution, the regularity index (RI;

Wässle and Riemann, 1978) or conformity ratio

(Cook, 1996), is the mean divided by the standard

deviation of the nearest-neighbor distances. For ran-

dom distributions, the regularity index is about 1.9,

whereas a conservative baseline for nonrandomness is

about 3.0, depending on sample size and tissue geom-

etry (Cook, 1996). Retinal mosaics typically have

regularity indexes of about 4–9 (Wässle and Rie-

mann, 1978), whereas for a perfectly regular pattern,

the index is infinity.

This method has two main drawbacks (Cook,

1996). First, since it considers only the distance to the

nearest neighboring cell, a 1-D line and 2-D array of

cells can have the same regularity index, despite their

di¤erent coverage of space. Second, the regularity in-

dex is sensitive to undersampling of cells.

2 Auto- and Cross-Correlation Measures

One improvement on nearest-neighbor analysis is to

graphically observe the relative position of a cell to all

other cells in an autocorrelation plot (see figure 7.1b).

Taking each cell in turn, the relative position of all

other cells is plotted. The size of the exclusion zone

is proportional to the size of the central hole in the

plot. This method can be generalized to the cross-

correlation plot to check for correlations between two

cell classes by taking each cell of class one in turn and

plotting the relative positions of all class two cells

(Rodieck, 1991). The autocorrelation plot is quanti-

fied using the density recovery profile (Rodieck and

Marshak, 1992), which measures the expected num-

ber of cells within a certain distance of each other.

Autocorrelation methods have the advantage of being

more robust to undersampling than nearest-neighbor

methods, and clearly show the size of any exclusion

zone or deviation from randomness (Rodieck and

Marshak, 1992).

3 Voronoi-Based Methods

The Voronoi tessellation divides the plane into non-

overlapping polygons; the Voronoi polygon of a cell

encloses all points of the plane that are closer to the

cell than to any other cell (figure 7.6). The Delaunay

triangulation is an equivalent representation in which

lines, or segments, are drawn between cells that share

an edge of a Voronoi polygon, and the neighboring

segments form triangles. From these tessellations, sev-

eral useful distributions can be measured (Galli-Resta

et al., 1999; Zhan and Troy, 2000), including the area

Figure 7.6

Voronoi (left) and Delaunay tessellations (right) of a central region of an example data set (cells marked with circles).
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of Voronoi polygons and Delaunay triangles, the

length of Delaunay segments, the number of Voronoi

polygon edges, and the internal angles in Delaunay

triangles or Voronoi polygons. Area-based distribu-

tions measure the uniformity of coverage of visual

space, whereas angle-based distributions indicate if

cells are arranged in a distorted lattice (Shapiro et al.,

1985). The extent to which these measures covary, or

whether some are more discriminative than others, is

not yet known. From experience, the distribution of

Delaunay segment lengths is a reliable measure to use

(Galli-Resta et al., 1999).
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8Activity-Dependent Modification of Intrinsic

and Synaptic Conductances in Neurons and

Rhythmic Networks

L. F. Abbott, Kurt A. Thoroughman, Astrid A. Prinz, Vatsala
Thirumalai, and Eve Marder

How do neurons and networks develop and maintain

stable physiological properties despite a continuous

turnover of the ion channels and receptors that un-

derlie neuronal signaling? In this chapter we present a

series of computational models based on the premise

that neurons have mechanisms to monitor their own

patterns of activity and use these sensors to control the

strengths of their voltage-dependent and synaptic

conductances. Single neurons and small networks

with these properties can self-assemble and recover

from perturbations. These models predict that indi-

vidual neurons of the same type, or identical networks

in di¤erent animals, can produce similar activity pat-

terns using di¤erent mixtures of conductances, all

consistent with the same behavior.

8.1 Introduction

During development, neurons and neural circuits

construct the response characteristics they need to

function properly, and this process is regulated, at least

in part, by activity (see also chapter 6). It seems likely

that many of the activity-dependent processes that

guide development remain active throughout adult

life to maintain cells and circuits. The ion channels,

synaptic receptors, vesicle tra‰cking proteins, and

numerous other components that give neurons and

neural circuits their functional properties have life-

times much shorter than the animals in which they

are found. As a result, continuous maintenance and

renewal of these components is needed to main-

tain stable functional and behavioral performance

throughout the lifetime of an animal. Homeostatic

maintenance of stability in adult circuits may require

continuous implementation of many of the same pro-

cesses used during development.

To function properly, neural circuits must generate

appropriate patterns of electrical activity, so it seems

almost unavoidable that activity plays a vital role in

guiding the development and maintenance of neuro-

nal characteristics. The role of activity in the de-

velopment of functional circuits has been studied

extensively in sensory systems with defined topo-

graphic maps (Miller, 1996), and in motor systems

where the resulting behavior can be used as an assay

for when the circuit is producing appropriate output

(Fénelon et al., 1998; O’Donovan, 1999; Marder and

Bucher, 2001). An interesting common feature of

embryonic motor systems is that they are sponta-

neously active, although they generate movements

that are not directly used for behavior (Beko¤ et al.,

1975; Beko¤, 1992; Casasnovas and Meyrand, 1995;

Richards et al., 1999; Saint-Amant and Drapeau,

2000). This suggests that early rhythmic activity may

provide a signal that guides the tuning of neuronal and

circuit properties.

In this chapter we describe a series of models in

which the properties of neurons and synapses are dy-

namically maintained and modified by processes that

are sensitive to and regulated by patterns of neuronal

activity. Much of this work focuses on the crustacean

stomatogastric ganglion (STG), a small motor pattern

generator that controls a number of digestive rhythms

in crustaceans. The STG is an excellent preparation



for these studies because it generates stereotypical pat-

terns of activity that can act as targets for activity-

dependent processes during circuit development and

maintenance. For modeling purposes, the STG rhy-

thms provide an easily identifiable circuit output that

indicates when a simulation has achieved a desired

goal. Furthermore, neurons within the STG can

themselves have interesting rhythmic properties, and

these can be used to study activity-dependent regula-

tion of characteristics at the single neuron level. Be-

cause the STG plays a central role in the studies we

discuss, we begin with an introduction to its relevant

features.

8.2 The Stomatogastric Ganglion:

Neurobiological Background

In vivo, the STG controls the movements of the crus-

tacean foregut and produces rhythms that are neces-

sary for feeding and processing food. When the

STG of an adult lobster or crab is removed from the

animal and placed in a saline solution, it generates a

triphasic motor pattern known as the pyloric rhythm

(figure 8.1) (Marder and Calabrese, 1996; Abbott and

Marder, 1998).

Although the frequency of the rhythm and the

phase relations among the constituent neurons are

modified on short time scales by the behavioral state

of an animal (Clemens et al., 1998b) and by sensory

(Sigvardt and Mulloney, 1982; Hooper and Moulins,

1989; Combes et al., 1999) and modulatory inputs

(Nagy and Dickinson, 1983; Nusbaum and Marder,

1989; Coleman et al., 1995; Marder and Calabrese,

1996), in vivo recordings show that the pyloric

rhythm is always active (Rezer and Moulins, 1983;

Clemens et al., 1998a), and under stable recording

conditions the in vitro pyloric rhythms recorded from

di¤erent adult animals are remarkably consistent. This

argues that the STG in adult animals is always tuned

to produce a stereotypical pyloric rhythm.

The pyloric rhythm (figure 8.1A) is produced by

fourteen neurons that fall into six cell types (figure

Figure 8.1

Pyloric rhythm in decapod crustaceans. (A) When modulatory inputs to the STG are intact, the pyloric neurons produce a

triphasic motor pattern. The electrically coupled AB and PD neurons fire together, followed by the LP neurons first and then

by the PY neurons (not shown). (B ) Synaptic connections between neurons of the pyloric network. Chemical synaptic con-

nections are represented by lines ending in black circles. In the STG, all of the chemical synapses are inhibitory. Electrical syn-

apses are represented by resistor symbols. There are two PD neurons and 8 PY neurons, and one neuron each for the other cell

types. (C ) Activity patterns produced in pyloric neurons when each cell type is isolated from its presynaptic partners by photo-

inactivating them. An isolated AB neuron continues to produce bursts, whereas the PD and LP neurons fire tonically.
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8.1B). The neurons of the pyloric network are con-

nected by electrical and inhibitory synapses, and in

general the neurons fire on rebound from inhibition.

Each cell type in the pyloric network displays char-

acteristic intrinsic properties (Harris-Warrick et al.,

1992) that depend on particular combinations of ionic

conductances expressed in the cell membrane. For

example, the anterior burster (AB) neuron bursts

when isolated, while the lateral pyloric (LP) and

pyloric dilator (PD) neurons do not burst, but fire at a

constant rate when isolated (figure 8.1C).

As is the case with many motor systems, the STG is

already active in embryos, although the animal is not

yet feeding (Casasnovas and Meyrand, 1995; Le Feu-

vre et al., 1999; Richards et al., 1999; Richards and

Marder, 2000). Recordings from embryonic and lar-

val animals show that these early motor patterns are

less frequent and less regular than in adults (Casas-

novas and Meyrand, 1995; Richards et al., 1999;

Richards and Marder, 2000). In contrast, once the

animals have metamorphosed into juveniles, their

motor patterns are statistically identical to those seen

in the adult (figure 8.2A). The juvenile data shown in

figure 8.2 were taken from 18-month-old animals

that were approximately one-eighth the size of adult

animals, and the STG itself was about one-quarter the

size of the adult STG (figure 8.2B). An adult lobster of

su‰cient size to reach the dinner table is commonly 5

to 7 years old.

In summary, the development of the STG reveals

two stages. Early in development, the circuit, while

active, is irregular and does not produce a reliable set

of motor patterns. Later in development, the circuit is

active and produces motor patterns identical to those

in the adult, although all of the neurons that partici-

pate in the circuit are still experiencing an enormous

amount of structural growth. At this stage, circuit be-

havior remains constant despite the fact that all of

the constituent neurons change size. Thus, activity-

dependent regulatory processes that tune circuits to

achieve stable behavior must maintain this behavior

not only over extended periods of time but also dur-

ing periods of significant growth.

8.3 Models of Activity-Dependent Regulation

of Conductances in Single Neurons

All nervous systems contain neurons with a wide

range of intrinsic properties that arise from particular

combinations of ionic conductances. Some neurons

are silent unless driven by synaptic input; some neu-

rons fire action potentials spontaneously; other neu-

rons fire action potentials in rhythmic bursts; while

still others display spike-frequency adaptation or other

characteristic activity signatures. Appropriate func-

tion in a neural circuit relies on the specific intrinsic

properties of its constituent neurons. The models we

discuss in this chapter address the question of how

neurons develop and maintain the arrangement of

conductances they need to perform properly.

Models of activity-dependent regulation of neuro-

nal conductances require two critical features: sensors

of activity that monitor changes in neuronal output

and identify when neuronal activity is appropriate,

and mechanisms that allow these sensors to control

changes in intrinsic properties when activity patterns

are inappropriate. A great deal of experimental work

indicates that intracellular Ca2þ concentrations are

a good indicator of neuronal activity. Specifically,

intracellular Ca2þ concentrations become elevated

in response to activity and fall during inactive peri-

ods (Ross, 1989). Finally, during development, some

neurons produce slow Ca2þ spikes before they ac-

quire the ability to generate fast action potentials

(Baccaglini and Spitzer, 1977; O’Dowd et al., 1988;

Ribera and Spitzer, 1998), and an important func-

tion of these early Ca2þ spikes is to provide signals
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Figure 8.2

Maintenance of the pyloric rhythm during growth. (A) The STG of a juvenile lobster produces pyloric motor patterns that are

similar to those seen in the adult. This figure shows an intracellularly recorded PD neuron and an extracellular nerve recording

from the lower lateral ventricular nerve (llvn). The nerve recording shows the spiking patterns of the three pyloric motor neu-

rons, LP, PY, and PD. (B ) Growth of a pyloric neuron between juvenile and adult stages. The LP neuron was identified, filled

with Lucifer yellow, and imaged on a confocal microscope during di¤erent stages of growth. The cell shown at the top is an LP

neuron from a juvenile lobster with a carapace length of 12 mm. The cell in the middle is from a juvenile lobster with a cara-

pace length of 20 mm, and the cell at the bottom is an LP neuron from an adult lobster (carapace length 110 mm). (From

unpublished work of V. Thirumalai and E. Marder.)
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for developmental tuning of excitability (Spitzer,

1994a,b; Gu and Spitzer, 1995; Spitzer and Ribera,

1998). Therefore, in these models, the intracellular

Ca2þ concentration, or a filtered version of the in-

ward Ca2þ current (representing a Ca2þ-dependent

molecular pathway), is used as the feedback element

that monitors activity. In the first-generation models

(Abbott and LeMasson, 1993; LeMasson et al., 1993;

Siegel et al., 1994), the intracellular Ca2þ con-

centration itself was used in this role, while in a

second-generation model, three Ca2þ-current filter-

ing sensors (fast, slow, and steady-state) were used

(Liu et al., 1998).

The Ca2þ sensors in any such models are used to

modify and control the maximal conductances of dif-

ferent membrane currents. This corresponds to Ca2þ-

dependent processes that insert, remove, and modify

ion channels within the cell membrane. The Ca2þ

sensors are constructed using the same formalism as in

standard models of voltage-dependent conductances,

with Ca2þ playing the role that the membrane poten-

tial would normally play in those models. In other

words, the sensors are described in terms of Ca2þ-

dependent activation and inactivation variables. The

integration time for each sensor is set by adjusting the

time constants of the activation and inactivation pro-

cesses. The sensors then drive changes in the maximal

conductances of the active membrane currents in the

model. Specifically, the maximal conductance gi for

current i is modified in terms of a set of calcium sen-

sors Sa according to the equation

t
dgi
dt

¼
X

a

BiaðSa � SaÞgi; ð8:1Þ

where t is a time constant that reflects the slow

dynamics of the activity-dependent processes. The

parameter Bia is a coupling coe‰cient that determines

how sensor a a¤ects conductance i. The parameter Sa
is the target value for Ca2þ sensor a, and these target

values collectively determine the equilibrium point of

the model. When constructing the model, these are

set by hand so that the equilibrium point generates a

desired pattern of activity.

In general, when neuronal activity is high, the

activity-dependent rules are set to modify conduc-

tances so that excitability is decreased. When neuronal

activity is low, they increase excitability. If these

models are to represent homeostatic regulation and

maintenance of neuronal properties, they must

achieve a stable steady-state configuration of con-

ductances that produces a desired pattern of activity.

We first show how an activity-regulated model can

self-assemble the conductances needed to generate

such a steady-state configuration. To analyze stability,

we then show the response to a perturbation.

Figure 8.3 shows examples of a model neuron with

Ca2þ sensors that control the maximal values of its

membrane conductances self-assembling to produce a

bursting pattern of activity (Liu et al., 1998). The two

examples show the model spontaneously developing

sets of maximal conductances that produce bursting

behavior starting from two di¤erent initial conditions.

Although the final activity shown in the middle panels

is similar, the maximal conductances established by

the model in the two cases (figures 8.3A and 8.3B) are

di¤erent, as are the trajectories followed by the model

as it self-assembles (bottom panel). A study of these

models indicates that there is a non-unique map be-

tween maximal conductances and activity (Goldman

et al., 2001). The final set of conductances attained by

the model depends on initial conditions and is highly

variable even though the pattern of activity ultimately

produced is not.

A similar development of intrinsic properties was

seen in adult STG neurons that were placed in dis-

sociated cell culture (Turrigiano et al., 1995). In the

intact adult network, STG neurons are always rhyth-

mically active, but when they are acutely isolated
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from the presynaptic drive, most of them are not in-

trinsic bursters. In contrast, after several days in dis-

sociated cell culture, the vast majority of isolated STG

neurons fire in bursts when depolarized. This suggests

that in response to removal of rhythmic drive, STG

neurons rebuild the conductances they need to pro-

duce, by themselves, the rhythmic bursting activity

that they normally achieve as part of a network (Tur-

rigiano et al., 1994). As is seen in embryonic de-

velopment, the adult neurons follow a sequence of

developmental changes—in this case, first becoming

tonically active and then bursting. This sequence is

also seen in specific temporal changes in membrane

conductances as the neurons move to their final target

activity levels (Turrigiano et al., 1995).

Figure 8.4 shows another example of a self-

regulating model neuron. In this case, the model

started out in a spiking mode, while its destined target

Figure 8.3

Self-assembly of an activity-regulated model neuron. The top traces in A and B show the activity of the model neuron in two

silent initial states with di¤erent sets of ionic conductances. Over time, the model adjusted the maximal conductances of its

ionic currents until the activity shown in the middle traces was obtained. The values of the maximal conductances over a period

of 1000 sec are shown in the bottom row of plots. The vertical axes extend from 0 to 2 mS/nF for CaT, CaS, and H and from 0

to 50 mS/nF for all other currents. In both A and B, the model neuron achieves a bursting activity pattern, but the final equilib-

rium values of the maximal conductances are di¤erent. (Figures 8.3–8.5 were constructed using the model of Liu et al., 1998.)
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activity was bursting. Here we have plotted the

changes in activity and conductances as the model

self-tuned. Note that early in the tuning process all

of the conductances were significantly altered. The

model very rapidly moved into a bursting mode, but

then it moved away from this activity and back into a

spiking mode for a short time as it continued to tune.

Close examination of this figure shows areas where

large changes in conductance produce relatively little

change in activity, while at other times during the

tuning process, relatively modest changes in conduc-

tance are associated with more dramatic changes in

the firing properties of the neuron.

Figure 8.5 shows an example of the stability of the

activity in such a model when perturbations are ap-

plied. The model was initially in a bursting mode, but

was then perturbed by simulating the application of

high Kþ extracellular saline. Immediately after the

perturbation, the model neuron changed its firing

pattern from bursting to steady firing. Then, over

time, the Ca2þ-dependent processes responded to this

change in activity by modifying the parameters con-

trolling the di¤erent membrane conductances in the

model. Ultimately, this returned the activity to some-

thing quite close to the initial bursting pattern. At this

point, the Ca2þ signal indicated that the desired

Figure 8.4

Activity and conductances of a regulating model neuron during self-tuning. The central graph shows the development of the

seven activity-dependent ionic conductances of a regulating model neuron during its transition from spiking to a bursting

activity pattern. The insets illustrate the activity of the model at di¤erent times during the approach to equilibrium. Similar sets

of conductances can result in di¤erent activity patterns, while similar bursting patterns can be obtained from very di¤erent ionic

conductances.
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activity pattern had been achieved, and further modi-

fication was halted. In the end, the model has intrinsic

properties that are di¤erent from those when the sim-

ulation started, which allows it to produce a similar

activity pattern in a di¤erent environment. Experi-

mental support for the types of adaptations seen in

figure 8.4 has been obtained in cultured neurons from

the STG (Turrigiano et al., 1994).

Models of this type predict that neuronal con-

ductances are likely to depend on the past history of

activity. Consequently, individual examples of the

same neuronal type could easily have quite di¤erent

membrane conductances, and membrane conduc-

tances measured in a given neuron might vary over

time as a consequence of activity. Figure 8.6 shows

that both of these are true for individual neurons of

the STG. Figure 8.6A shows that individual neurons

of the same cell type show a considerable range of

measured conductance densities for three di¤erent Kþ

conductances (Golowasch et al., 1999b). Figure 8.6,

panels B and C, shows that the strengths of these Kþ

conductances are altered by prolonged stimulation

(Golowasch et al., 1999a). A similar result was found

in experiments on cultured rat cortical neurons (Desai

et al., 1999). In these experiments, the cultures were

silenced for 48 hr by the application of tetrodotoxin,

and, as predicted by these models, the Naþ conduc-

tance increased and the delayed rectifier Kþ conduc-

tance decreased.

The models discussed to this point have a single

compartment describing both the membrane potential

and Ca2þ concentration of the entire cell. It is possible

to construct multicompartment models in which local

Ca2þ concentrations control the membrane conduc-

tances within each compartment (Siegel et al., 1994).

This introduces the idea that morphological features

of neuronal structure might a¤ect the distribution of

conductances across the surface of the cell membrane.

Indeed, in such models, conductances typically are

not distributed uniformly across the cell. Instead, so-

matic and axonal regions, where Ca2þ concentrations

are typically low, develop high concentrations of Naþ

conductances. Dendritic regions, where synaptic acti-

vation results in higher Ca2þ concentrations, develop

lower levels of Naþ and higher levels of Kþ conduc-

tances (Siegel et al., 1994).

8.4 Activity-Dependent Conductance

Regulation at the Network Level

Thus far, we have discussed models and experimental

data that deal with the ability of single neurons to self-

tune and regulate their own properties. However,

Figure 8.5

Response of a self-regulating model neuron to a change in

extracellular Kþ concentration. The electrical activity of a

model neuron before and at di¤erent times after the reversal

potential for Kþ was shifted from �80 mV to �65 mV to

simulate an increase in extracellular Kþ. Immediately after

the change (indicated by the triangle) the model neuron

spiked rapidly, but later it managed to return to its initial

bursting activity by adjusting its conductances to the new

ionic environment. Note that the activity switches between

spiking and bursting several times before an equilibrium is

reached.
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what really matters for an animal is not how individ-

ual neurons fire, but how the circuits in which these

neurons are embedded function. How might stability

of circuit output be ensured? It might seem that cir-

cuit stability would require regulation by a mecha-

nism that senses the output of the entire circuit, but it

is di‰cult to imagine how this would be achieved.

Instead, we have found that circuit stability can be

achieved by cell-autonomous regulation that only

involves activity sensing at the single neuron level

(Golowasch et al., 1999b).

In this work, a three-cell model of the triphasic

pyloric rhythm of the STG was constructed. Each

model neuron had a simple activity-dependent con-

ductance modification mechanism, and the synaptic

connectivity was fixed to match that of the STG.

Even when the initial intrinsic properties of the indi-

vidual neurons are set randomly, the network devel-

ops a triphasic activity pattern similar to the pyloric

motor pattern. Moreover, as in the case of the bio-

logical STG, when the individual neurons are acutely

isolated from their presynaptic inputs, their intrinsic

activity patterns are di¤erent from those they display

within the network, indicating that activity-regulated

neurons change their properties in response to syn-

aptic inputs (Golowasch et al., 1999b).

The canonical pyloric rhythm depends on the pres-

ence of modulatory inputs to the STG, so that when

Figure 8.6

Ranges and activity-dependent shifts in conductances. (A) Conductance densities measured from eighteen di¤erent IC (inferior

cardiac) neurons (see figure 8.1) in the crab STG for delayed rectified Kþ (Kd), Ca
2þ-dependent Kþ, A-type Kþ, and leak

conductances. Each plotted point corresponds to a di¤erent preparation. The numbers above the points show the ratios of the

maximum to minimum values. (B ) Patterned stimulation changes Kþ conductances. Conductances were measured in IC neu-

rons every 60 min, before (to the left of the downward arrow) and during (to the right of the downward error) patterned stim-

ulation applied continuously to the neurons. The amplitudes shown are for the sum of delayed rectified and Ca2þ-dependent
Kþ conductances (black bars), A-type Kþ conductances (striped bars), and leakage conductances (gray bars). The stars indicate

statistically significant changes in conductance that are due to the patterned stimulation. NS indicates a di¤erence that is not

statistically significant. The numbers in parentheses below the x-axis indicate the numbers of neurons measured in each case.

(C ) Same as (B ), except for three neurons measured before (to the left of the downward arrow), during (between the two

arrows), and after (to the right of the upward arrow) patterned stimulation. Patterned stimulation decreased the sum of delayed

rectified and Ca2þ-dependent Kþ conductances (black bars) and increased A-type Kþ conductances (striped bars), and this

e¤ect reversed after the stimulation stopped. (Adapted from Golowasch et al., 1999a,b.)

Modification of Intrinsic and Synaptic Conductances 159



the STG is isolated from descending modulatory

inputs, the pyloric rhythm usually slows considerably

or stops. Nonetheless, after several days of silence,

rhythmicity returns and individual neurons become

more excitable (Thoby-Brisson and Simmers, 1998;

Golowasch et al., 1999b; Thoby-Brisson and Sim-

mers, 2000; Mizrahi et al., 2001). Figure 8.7 shows

that a cell-autonomous model can replicate these

findings. On the left side of the figure, a three-cell

model is shown. The presence of the modulatory

inputs is modeled by adding a ‘‘proctolin current’’

(Golowasch and Marder, 1992; Swensen and Marder,

2000) to the AB/PD and LP neurons. In figure 8.7A,

the triphasic pattern depends on the presence of this

modulatory current, as is seen when the proctolin

current is removed in figure 8.7B. However, over

time the individual neurons in the circuit sense the

lack of rhythmic activity and regulate their conduc-

tances accordingly, resulting in a restoration of the

triphasic pattern, as seen in figure 8.7C. It is important

to stress that the triphasic motor patterns seen in figure

8.7A and C, although quite similar in appearance, re-

sult from di¤erent configurations because the circuit

elements have retuned themselves so that the circuit

output is maintained. The right panels in figure 8.7

show the same sequence of events occurring in a cul-

tured STG circuit when it was isolated from its mod-

ulatory inputs for a prolonged period.

Figure 8.7

E¤ect of blocking neuromodulators on model and biologi-

cal pyloric rhythms. In the experiments, recordings were

made before, immediately after, and 24 hr after blocking

modulatory inputs, indicated in the figure by ‘‘Stn intact’’

and ‘‘Blocked stn’’ (the stn is a nerve carrying modulatory

input to the STG). (A) The triphasic pyloric rhythm in

model and biological networks when modulator inputs are

intact. (Left ) ‘‘Extracellular’’ recordings (lvn nerve) from the

model and ‘‘intracellular’’ recordings of model PY, AB/PD,

and LP neurons in steady-state control conditions. (Right )

Extracellular recordings from two motor nerves (lvn and

lpg/pyn) and intracellular recordings of the PD and LP neu-

rons. Activity of the PY neuron appears as the small unit on

the lvn and lpg/pyn recordings (arrow). (B, left) Immediately

after the proctolin conductance was set to zero in both the

AB/PD and the LP neurons, the PY neuron remained

depolarized and tonically fired action potentials at high

frequency, while the AB/PD and LP neurons were silent.

(Right) Soon after modulatory input was blocked, the PY

units (recorded extracellularly on the lpg/pyn and lvn)

showed high-frequency firing, and the LP and PD neurons

were silent. (C, left) The pyloric activity in the model has

recovered after prolonged deactivation of the proctolin cur-

rent owing to changes in intrinsic conductances. (Right) The

activity of the biological network also recovers after pro-

longed block of modulatory inputs. (Adapted from Golo-

wasch et al., 1999b.)
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8.5 Activity-Dependent Tuning of Synaptic

Inhibition

Pharmacological perturbations, dynamic clamp mani-

pulations, and computational modeling have demon-

strated that properties of the triphasic pyloric rhythm

depend critically on proper tuning of both the intrin-

sic and synaptic conductances within the STG (Eisen

and Marder, 1984; Johnson and Harris-Warrick,

1990; Harris-Warrick et al., 1995; Abbott and

Marder, 1998; Kloppenburg et al., 1999; Swensen and

Marder, 2001). Thus, a discussion of the role of activ-

ity in the development and maintenance of this circuit

is not complete without an analysis of the role of

activity-dependent modification of synapses. As stated

earlier, all the chemical synapses within the STG are

inhibitory. Across neurobiological preparations, many

experimental and theoretical studies have elucidated

aspects of activity-dependent modification of excita-

tory synapses. Although inhibitory synapses are pres-

ent in virtually all neural systems, much less attention

has been paid to how activity a¤ects their long-term

strength (Marty and Llano, 1995). Furthermore, the-

oretical work has not identified sensible and useful

rules for inhibitory synaptic tuning similar to what

the Hebb rule and theories of LTP and LTD have

done for excitatory synaptic modification. We have

modeled small networks with inhibitory synapses to

determine whether activity-dependent modification

of inhibitory synapses allows them to self-assemble to

produce particular forms of rhythmic activity (Soto-

Treviño et al., 2001). In this work, the intrinsic con-

ductances of the neurons were held fixed in order to

focus on the e¤ects of regulating synaptic strength.

We first modeled two-neuron circuits with mutual

inhibition. Two LP neurons, modeled by Morris-

Lecar equations and connected by instantaneous,

voltage-dependent inhibitory synapses, oscillate at

frequencies that depend nonlinearly on the values of

both synaptic strengths. The intracellular Ca2þ con-

centration in the postsynaptic neuron, however,

smoothly and monotonically decreases when inhibi-

tory synaptic strength increases. This suggests that

intracellular Ca2þ can serve as an e¤ective activity

sensor, and it led to a modification rule that changes

the strength of synapses in proportion to the di¤er-

ence between the current postsynaptic Ca2þ concen-

tration and a fixed target value (Soto-Treviño et al.,

2001). Such a rule did indeed drive all initial synaptic

strengths to a single fixed point (figure 8.8A), at

which the two neurons oscillated in the target 1 : 1

pattern of entrainment (figure 8.8B).

We then modeled a three-cell network (LP, PY,

and one cell combining the electrically coupled AB

and PD neurons) that, when properly connected with

inhibitory synapses, mimicked the triphasic pyloric

rhythm of the STG. This model network has five in-

hibitory synapses; therefore, two cells each received

two inhibitory synapses. Because each cell possesses

only one Ca2þ concentration, such a neuron must in-

crease or decrease the strengths of all the synapses it

receives proportionally, using the Ca2þ concentration

rule. It cannot di¤erentially regulate their strengths.

Despite this limitation, the Ca2þ concentration rule

successfully drives the majority of networks with

randomly selected initial synaptic strengths to con-

figurations that produce the target triphasic rhythm.

However, if the network encounters synaptic

strengths outside this majority of values, it requires a

supplemental mechanism during either development

or adult homeostasis because di¤erential regulation of

synaptic strengths is required. We hypothesized that

such a synapse-specific mechanism (as opposed to the

global mechanism that modifies all synapses onto a

given neuron on the basis of its intracellular Ca2þ

concentration) could alter a synapse only when it is
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active. Thus, the synapse-specific synaptic modifica-

tion rule depends on the presynaptic membrane po-

tential, as well as on postsynaptic Ca2þ (Soto-Treviño

et al., 2001).

For the synapse-specific rule, we based this latter

dependence on the Ca2þ current, rather than on the

Ca2þ concentration, to increase temporal specificity.

Because local Ca2þ concentrations near the cell

membrane are proportional to the Ca2þ current, this

dependence can be construed as reflecting a depen-

dence on a local, rather than on the bulk, Ca2þ

concentration. The combination of global, Ca2þ

concentration-dependent and synapse-specific syn-

aptic modification rules successfully drove networks

with any set of initial synaptic strengths to a fixed-

point configuration (figure 8.8C) at which the three

neurons produced the target triphasic rhythm (figure

8.8D).

This modeling work suggests that reasonably sim-

ple, activity-dependent modification rules are su‰-

cient to drive inhibitory synapses in small networks to

values appropriate for generating specific patterns of

activity. These results also suggest that Ca2þ concen-

trations and currents can drive sensors that monitor

activity to produce this tuning. We do not expect that

our proposed rule is uniquely appropriate for all

cases of inhibitory synaptic tuning, nor do we know

whether biological networks use these mechanisms.

Nevertheless, these simulations show that individual

synapses in networks coupled through inhibition can

Figure 8.8

(A) Trajectories of synaptic strengths in LP-LP circuits initiated from many initial values, as modified by a Ca2þ-dependent
rule. The dot at the lower left indicates a global fixed point of the dynamics. (B ) Example voltage traces of two coupled LP cells

as synaptic strengths are modified. (C ) Time series of synaptic strengths in a three-cell model of the pyloric network starting

from a single initial condition, as modified by a combination of global and synapse-specific rules. (D) Voltage traces for all three

model neurons taken at the five di¤erent times indicated by the numbers underneath the synaptic strength time series in (C ).

(Adapted from Soto-Treviño et al., 2001.)
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autonomously control their strengths on the basis

of pre- and postsynaptic activity to assemble and

maintain a network that exhibits a particular emergent

behavior.

8.6 Discussion

The modeling work described here raises several

novel issues. All neural circuits function as a conse-

quence of both the intrinsic properties of their neu-

rons and the strengths of the synapses among those

neurons, but there is not a one-to-one map between

activity patterns and configurations of intrinsic and

synaptic conductances. We therefore predict that all

neurons of the same type need not have, nor would

be expected to have, identical sets of conductances,

and that the same neuron might display similar pat-

terns of activity over its lifetime produced by di¤erent

conductances. Likewise, at the network level, because

both synaptic and intrinsic conductances can be coor-

dinately tuned, the same network in di¤erent animals,

or in the same animal at di¤erent times, is likely to

produce similar behavior by di¤erent combinations of

synaptic strengths and intrinsic membrane conduc-

tances. The essential feature of this paradigm is that

tuning rules must be continuously operational over

development and in adult life to maintain stable net-

work dynamics and behavior.

Future Modeling Studies

A future goal of this research is to implement plasticity

of both intrinsic and synaptic conductances in the

same model. Synaptic plasticity is thought to be a ma-

jor mechanism of learning and memory, but changing

synapses without adjusting intrinsic neuronal excit-

ability can lead to severe instabilities in network

activity, and it may not allow optimal plasticity in

network function. It is important to understand how

intrinsic and synaptic plasticity might interact con-

structively to maximize learning and adaptation to

novel situations.

Future Experimental Studies

The experimental challenge of this work is to under-

stand more fully the nature of the rules governing

these types of activity-dependent plasticity and to dis-

cover the mechanisms by which such plasticity is gen-

erated. Theoretical work should serve as an important

guide both by suggesting lines of inquiry and in the

interpretation of experimental results.
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9Models of Neuronal Death in Vertebrate

Development: From Trophic Interactions to

Network Roles

Peter G. H. Clarke

Large numbers of neurons die in development at the

time when their connections are being formed, and

the survival of individual neurons during this period

depends on their integrated response to anterograde

signals received from their a¤erents as well as retro-

grade signals received from their e¤erent targets. In

central neurons, both the anterograde and the retro-

grade signals are multiple. Both involve neurotrophic

factors and both include a component that is depen-

dent on electrical activity. The roles of the neuro-

nal death are unclear, but the most widely invoked

hypotheses involve the regulation of neuronal num-

ber or the refinement of connectivity.

While the signals controlling neuronal death appear

to be moderately well understood, we have only a

minimal conception of how they combine to a¤ect

the developing networks of the nervous system. To

achieve such a network-level understanding, it will be

necessary to incorporate the principles of neuron-to-

neuron signaling into network-level models. The few

models so far available are reviewed here and placed

in their biological context.

9.1 Neurobiological Background

9.1.1 The When and Where of Neuronal Death in

the Developing Nervous System

The fact that large numbers of neurons die during

development is now a commonplace, and large num-

bers of papers, coasting on the wave of the boom in

research on apoptosis, are currently devoted to unrav-

eling the underlying molecular mechanisms. Yet the

basic question of what role the neuronal death serves

in development has received less attention.

Two Phases of Cell Death A¤ecting Developing

Neurons

Cell death during development is a widespread phe-

nomenon, a¤ecting most kinds of cells. In the nervous

system, it a¤ects glia as well as neurons, but this re-

view is limited to neurons.

Even with this restriction, there are multiple phe-

nomena. During proliferation and migration, cells

with the potential to become neurons are eliminated

(Lewis, 1975; Carr and Simpson, Jr., 1981). This early

phase of neuronal death is followed by a period with-

out cell death, after which there is a second phase of

neuronal death, occurring at the time when the neu-

rons are making and receiving connections.

The early phase of neuronal death was long

thought to be a relatively minor phenomenon, but its

numerical importance was recently suggested by the

fact that a highly sensitive adaptation (ISELþ) of a

standard method for in situ end labeling (ISEL) of

fragmented DNA (considered to be a marker of cell

death) showed labeling of up to 70 percent of cells in

many cortical and subcortical regions, including even

higher percentages among proliferative cells (Blaschke

et al., 1996, 1998). The interpretation of this result is

not straightforward, because DNA fragmentation may

not be an infallible criterion of cell death (Gilmore

et al., 2000), but the importance of the early phase of

neuronal death is supported by analyses of the e¤ects

of preventing it (Kuida et al., 1996, 1998; Frade et al.,



1997). However, very little is known concerning its

role, and this chapter concentrates on the second

phase of neuronal death.

This second phase has been studied in many neural

systems and occurs roughly at the time when the

neurons in question are making and receiving con-

nections. It involves the death of large numbers of

postmitotic, postmigratory neurons that are already

well di¤erentiated, being endowed with dendrites and

an axon. The extent of loss varies from region to re-

gion, but in most neuronal populations accounts for

25–75 percent of the initial number (Clarke, 1985).

The timing of this naturally occurring death suggests

a relationship between it and the establishment of

connectivity.

9.1.2 The Multiple Signals Controlling Neuronal

Death

Since the neuronal death occurs when a¤erent (input)

and e¤erent (output) connections are being formed,

the question arises whether these are instrumental in

regulating the phenomenon, and the answer is that

they are. Both anterograde and retrograde signals play

a role. In each direction, electrical activity and neuro-

trophic factors both contribute to the signaling, as

discussed later (figure 9.1).

Retrograde Survival Signals and Death Signals

The textbook view is that during a critical period in

development neurons need to receive one or more

 

 

 

  

 

 

  

 

 

 

 

 

 

 

 

 

 

Figure 9.1

The di¤erent anterograde and retrograde signals so far shown to a¤ect neuronal survival. The diagram shows three di¤erent

signals promoting the survival of the center neuron and one promoting its death. While all four signals have been shown to

exist, it is not clear that all operate in all neurons. The existence of additional signals cannot be excluded.
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‘‘trophic’’ (literally, ‘‘nourishing’’) substances, taken

up by their axon terminals and transported retro-

gradely to the cell body, and that natural neuronal

death is due to failure in the competition for such

substances. This view is based on considerable experi-

mental evidence in the peripheral nervous system

(Fariñas et al., 1994), including the fact that nerve

growth factor (NGF) is available in the skin in limited

amounts that depend on competition (Davies et al.,

1987; Korsching and Thoenen, 1985), as well as the

fact that the death of sensory and sympathetic neurons

is reduced in transgenic mice that overproduce NGF

specifically in skin.

The textbook view is supported also in the central

nervous system by the facts that target-specific injec-

tions of brain-derived neurotrophic factor (BDNF)

reduce neuronal death in the centrifugally projecting

isthmo-optic nucleus (ION) of chick embryos (Von

Bartheld et al., 1994; Primi and Clarke, 1996) and in

retinal ganglion cells of neonatal rats (Ma et al., 1998).

These responses to exogenous BDNF do not on

their own prove that endogenous BDNF is exerting

a survival role in normal development. However,

BDNF is known to be present normally in the

injected target areas, and in the case of the isthmo-

optic projection, the survival role of an endogenous

ligand to TrkB (the high-a‰nity receptor to BDNF

and neurotrophin-4, NT-4) in the isthmo-optic target

area (i.e., the retina) has been shown by the fact that

intraocular injection of anti-TrkB Fab fragments

reduces the survival of ION neurons (Von Bartheld et

al., 1996b).

The analysis of knockout mice lacking particular

neurotrophic factors has given substantial support to

the textbook view in the peripheral nervous system,

but not in the central nervous system. Thus, deletion

of the genes for NGF, BDNF, NT-3, and NT-4/5 (all

members of the neurotrophin family of neurotrophic

factors), or of their high-a‰nity receptors, leads to the

death of particular classes of sensory neurons, but the

central e¤ects are much milder, and indeed minimal

during the period of naturally occurring neuronal

death (Conover and Yancopoulos, 1997). To explain

this unexpected absence of neuronal death, it is some-

times suggested that neurons may switch their neuro-

trophic factor dependence in the knockout mice, or

that individual central neurons may depend on sev-

eral di¤erent neurotrophic factors, necessitating the

knockout of several genes in order to cause massive

neuronal death centrally. These alternative explan-

ations have yet to be thoroughly tested, but the

double knockout of BDNF and NT-4 does not sig-

nificantly increase neuronal death (Conover et al.,

1995).

In view of these uncertainties, we should be open

to other possible mechanisms, and there is in fact

evidence for a second retrograde signal that is much

less conventional—a retrograde death signal—in the

chick embryo’s isthmo-optic pathway, which termi-

nates in the retina. This death signal is mediated

(or perhaps modulated) by electrical activity in the

isthmo-optic terminals (Primi and Clarke, 1997a,b)

owing to calcium entry through N-type channels and

probably to the subsequent, calcium-mediated activa-

tion of nitric oxide synthase in the terminals (Posada

and Clarke, 1999a,b). This signal acts very rapidly,

promoting the death of ION neurons within as little

as 3–6 hr after the arrival of an action potential in

their terminals.

A¤erent Survival Signals

Neuronal survival is also influenced by a¤erents. De-

spite an early suggestion by Levi-Montalcini (1949),

a¤erents were for many years believed to influence

neuronal death only much later than the neuronal

death period. It is now, however, known that when a

major proportion of the a¤erents are prevented from

arriving, this greatly enhances neuronal death during
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its natural period in many neuronal populations.

These include spinal motor neurons, the isthmo-optic

nucleus, and the ciliary ganglion in chick embryos;

and the parabigeminal nucleus in baby rats (reviewed

in Linden, 1994; Sherrard and Bower, 1998). The

anterograde signals involved appear to be multiple,

involving separate components dependent on and in-

dependent of activity. Thus, a blockade in activity

in optic a¤erents to the developing tectum causes

neurons there to die within a few hours (Catsicas

et al., 1992; Galli-Resta et al., 1993). The activity-

dependent interneuronal signal is probably the trans-

mitter itself rather than a coreleased neurotrophic

agent because in parasympathetic ganglia, cholinergic

receptor blockade is su‰cient to increase neuronal

death (Meriney et al., 1987).

However, an activity-independent survival signal

has also been demonstrated. In the chick embryo’s

tectum, neuronal death is greatly enhanced from

about 12 hr after the blockade of axonal transport in

the optic a¤erents (Catsicas et al., 1992). The nature

of the activity-independent signal is not known, but

neurotrophins are candidates because the intraocular

injection of radiolabeled NT-3 or BDNF is followed

by their anterograde transport along optic axons,

release, and uptake by tectal neurons (Von Bartheld

et al., 1996a).

The fact that neurons need a¤erents in order to

survive does not prove this to be critical in the regula-

tion of naturally occurring neuronal death. Although

massive elimination of a¤erents does increase neuro-

nal death, removing a small proportion of them often

has little e¤ect. The normal variability in a¤erent sup-

ply to individual neurons might therefore be too small

to a¤ect their survival, or the neurons might be satu-

rated with a¤erents. The latter possibility would be

ruled out if reducing competition between a¤erents

could be shown to reduce neuronal death. A report

that increased optic innervation of rodent visual cen-

ters reduces neuron death (Cunningham et al., 1979)

was not confirmed by another group (Raabe et al.,

1986). However, there is evidence that the retinal

ganglion cells may compete with each other for inputs

from retinal interneurons onto the ganglion cell den-

drites (Linden and Serfaty, 1985).

9.2 Review of Models

Models are needed to go from the above data on

a¤erents and e¤erents to an understanding of the roles

of neuronal death in development. Many sugges-

tions have been made concerning these roles, but the

two most widely considered are the control of neuro-

nal number and the elimination of axonal targeting

errors. A third possibility, one that has appealed to

modelers, is the optimization of learning. Throughout

the rest of this chapter, we group the di¤erent models

of neuronal death according to the postulated role

of the death: number control, error elimination, or

optimization of learning. Yet another possibility, the

refinement of neuronal mosaics, as in the retina (Cook

and Chalupa, 2000), is not discussed here, but is men-

tioned in chapter 7.

It is perhaps worth pointing out that in the pres-

ent stage of knowledge it is impossible to produce

detailed, fully realistic models of so complex a phe-

nomenon as neuronal death. All existing models of

neuronal death are open to criticism, and I will at-

tempt to provide it, but that does not imply a negative

value judgment about the work, merely a reminder

that more needs to be done. Moreover, the aim of the

modeling is not generally the formulation of a quanti-

tative replica, but the construction of aids to concep-

tualization, and this can sometimes be achieved even

with a biologically unrealistic model.
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9.2.1 Models of Neuronal Number Control by

Neuronal Death

The Numerical Matching Hypothesis and the

Notion of Competition for Retrograde Support

The numerical matching hypothesis is the most widely

held interpretation of neuronal death. It states that the

role or purpose of neuronal death is to match the

number of neurons in a given population to the size of

their axonal target territory or, in recent versions, to

the number of their a¤erents as well. The underlying

assumption is that many, even most, of the neurons

that die are not aberrant, but merely numerically su-

perfluous.

This hypothesis dates back to the classic experiments

of Hamburger and Levi-Montalcini on spinal ganglia

and motor neurons. They reported that before the

period of neuron death, the spinal ganglia were

of a similar size at all levels (Hamburger and Levi-

Montalcini, 1949) and that the motor column (which

contains the motor neurons) was likewise homogen-

eous in size (Levi-Montalcini, 1950). They also

claimed that the subsequently larger numbers of spinal

ganglion cells and motor neurons at brachial and lum-

bar levels were due to a retrograde influence from the

peripheryonneuronalproliferationandneuronaldeath.

It soon became clear that there is no such e¤ect of the

periphery on the proliferation of neurons (although

neurotrophic factors from a more local source may in-

deed a¤ect proliferation; Ge¤en and Goldstein, 1996),

but the notion that axial-level related di¤erences in

neuronal number are due to sculpting through regula-

tion by the periphery of neuronal death became widely

accepted and still exerts a major influence.

Axial Level-Dependent Di¤erences Are Not

Sculpted by Neuronal Death

However, several of the early claims of Hamburger

and Levi-Montalcini turned out to be false. Whereas

they had thought neuronal death occurred almost

exclusively at upper cervical and thoracic levels, it

is now known to occur in substantial amounts at all

levels, in both the spinal ganglia and the motor col-

umns. Moreover, even before the period of neuronal

death, axial-level related di¤erences occur both in

sensory ganglia, where they seem to be imposed by

local mesoderm (Goldstein et al., 1995), and in the

motor column (Hollyday and Hamburger, 1977).

Thus, sculpting of regional di¤erences in neuronal

number seems to be at most a minor purpose of neu-

ronal death in peripheral projections.

In the central nervous system, there is no evidence

for the sculpting by neuronal death of regional dif-

ferences, but, as in the peripheral system, neuronal

survival is reduced by reductions in the number of

a¤erent or target neurons and enhanced by their in-

crease (e.g., Herrup and Sunter, 1987).

Numerical Matching in an Evolutionary

Context

An influential version of the numerical matching

hypothesis casts it in the context of evolution (Katz

and Lasek, 1978). It is argued that since the nervous

system is organized in sets of ‘‘matching populations’’

of neurons, a mutation that changed the production

of neurons in a given population would disturb the

match, which might be nonadaptive. However, an

initial overproduction of neurons would permit the

match to be restored by reduced death in the partners,

giving the species bu¤er capacity and enabling it to

tolerate mutations and hence evolve more readily. I do

not find this argument compelling. It fails to explain

the proportionally massive overproduction (typically,

50 percent) that normally occurs. I know of no evi-

dence for viable mutations causing such large changes.

Moreover, a mathematical analysis of motor neuron

counts made by the same first author concluded that

the initial excess in their numbers is far greater than
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that required to bu¤er the variability in their numbers

(Katz and Grenander, 1982).

Two Early Models Predicting the Time Course

of Neuronal Death

The earliest mathematical approach to neuronal death

was the study by Rager (1978), who integrated into a

single model a consideration of the proliferation, axo-

nal growth, and terminal competition of retinal gan-

glion cells, and then formulated di¤erential equations

predicting the time course of several variables, includ-

ing neuronal number. All the di¤erential equations

resembled the Verhulst equation and were integrated

directly. By a suitable choice of parameters, it was

possible to make the resulting curves fit the author’s

own extensive counts of retinal ganglion cell axons

with remarkable precision.

Another early model derived the time course of

neuronal loss from a consideration of the dynamics of

competition among neurons (Borsellino, 1980). The

author drew on the mathematics of competition for

light among plants and managed to fit reasonably well

the time course of neuronal death in the isthmo-optic

nucleus. However, this model incorporated none of

the available data on neuronal competition and arbi-

trarily assumed that the competing neurons occurred

in pairs, artificially ensuring a death rate of 50 percent.

Another implausible characteristic was the assumption

that the stronger member of each pair could deprive

the weaker one of resources, but that the weaker

could not a¤ect the stronger. This is plausible for trees

competing for light, but not for neurons competing

for neurotrophic factors.

A Model Incorporating Mutual Neurotrophic

Interactions between Input and Output

A substantial modeling contribution to neuronal

death theory focused on the mutuality of neuro-

trophic interactions (Galli-Resta and Resta, 1992).

Until the late 1970s, neurotrophic theory emphasized

almost exclusively competition among neurons for a

unidirectional trophic influence from their e¤erent

target, which was considered to imply a positive, al-

most linear, correlation between the final neuron

number and the size of the target. This implication

was contradicted by Lamb (1980), who showed that

when both right and left hind-limb motor neurons of

the Xenopus frog were made to project to a single limb

at an early stage of development, the number of

motor neurons surviving death was close to normal.

Lamb concluded that this refuted the notion of pe-

ripheral competition, but an alternative reaction was

to complicate the competition hypothesis without

rejecting it, by assuming that the motor axons regulate

the target property that they seek (Purves, 1980). A

further consideration is that cell death may occur in

the target territory as well as in the innervating popu-

lation, and that the a¤erents may influence, not only

the properties of the target neurons, but also their

very survival. Both these considerations are taken into

account in the model of Galli-Resta and Resta (figure

9.2).

This model deals with the interaction between two

groups of neurons containing, at time t, N1ðtÞ and

N2ðtÞ neurons, each of which is subject to both neu-

rogenesis and cell death, the timing and rates of both

phenomena being determined partly by prespecified

Gaussian functions of time, and partly by trophic in-

fluences. It is assumed that group 1 innervates group 2

and that the trophic influence exerted by group 2 on

group 1 is given by

F ¼ a12N1ðtÞN2ðtÞ; ð9:1Þ

where a12 is a constant. The trophic term F is assumed

to linearly decrease the rate of cell death in popula-

tion 1.

The fact that F depends on N2 is intuitively rea-

sonable because the amount of trophic factor pro-
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duced in group 2 will depend on the number of cells

in it. The dependence of F on N1 means that the cells

in group 1 upregulate the trophic factor production

in group 2, which is biologically reasonable given

that electrical activity mediated by a¤erents has been

shown to upregulate the production and release of

neurotrophins in a variety of forebrain structures (e.g.,

Castren et al., 1992; Blochl and Thoenen, 1996). In

the model, the term F reduces the rate of cell death.

The model also incorporates an equation for the pro-

liferation of the neurons in each group. These consid-

erations are combined to yield a rather complicated

di¤erential equation expressing dN1=dt as a function

of N1, N2, and t.

The further consideration, that the a¤erents exert a

trophic influence on target cell survival, is then taken

to justify a symmetrical equation in which N1 and N2

are interchanged. Thus, dN2=dt is expressed as a func-

tion of N1, N2, and t.

This set of two equations is simulated, and it is

shown that a wide variety of results can be accounted

for (with a suitable choice of constants). They include

0 The changes in retinal ganglion cell numbers during

normal development of the rat

0 The changes in numbers of retinal ganglion cells and

their target neurons in the lateral geniculate nucleus

during normal development of the rhesus monkey

0 And, most important in the present context, the

final numbers of motor neurons in Lamb’s (1980)

experiment involving innervation of a single limb by

the motor neurons on both sides of the spinal cord;

the persistence of normal numbers on both sides can

be accounted for

An important prediction of this model is that it is

only the initial numbers of cells generated in groups

1 and 2 that determine how many in each group will

survive to adulthood. If more are generated, more

will survive. The model does not predict numerical

matching in the simple sense of adjusting the number

of input neurons to be essentially proportional to the

number of target neurons, but implies a more com-

plex kind of numerical adjustment between input and

target.

I consider this to be the most useful model of neu-

ronal death in development so far, but I nevertheless

have some criticisms. First, I find the expression for

trophic influence, F ¼ a12N1ðtÞN2ðtÞ, inappropriate.
The authors do in fact attempt to justify it on the

grounds that it is the lowest nonzero term of the Tay-

lor series expansion for FðN1;N2Þ, but I find implau-

sible its implication that the relative trophic influence

(i.e., F=N1 or F=N2) will depend on the absolute

number of neurons N2 or N1, respectively. For exam-

ple, if N1 ¼ N2 ¼ 100, the trophic influence per

neuron will be 10,000 times less than if N1 ¼ N2 ¼
1;000;000. This counterintuitive situation could be

avoided if the expression for trophic influence were

changed to F ¼ a12½N1ðtÞN2ðtÞ�0:5, although it is not

known if the model works with this change. A second

criticism is that the model ignores, or at least fails to

  

 

Figure 9.2

The model of Galli-Resta and Resta (1992). Group 1

innervates group 2 and provides an anterograde trophic

influence G, whereas group 2 exerts a retrograde trophic

influence F on group 1.
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make explicit, the role of electrical activity, which is

known to exert an important influence on neuronal

survival (see section 9.1.2). A third is that the model

deals only with the global influence of the whole tar-

get on the whole input population and vice versa. It

ignores the di¤erences among the cells of a given

population and does not explicitly deal with competi-

tion among the cells. None of these objections abro-

gates the importance of the model, which lies in its

providing an intellectual handle to the conceptually

elusive question of mutual trophic interactions and in

its proposing a resolution to the seemingly paradoxical

results from Lamb’s dual innervation experiments.

9.2.2 Models of the Elimination of Axonal Targeting

Errors by Neuronal Death

Evidence for and against Elimination of

Targeting Errors by Neuronal Death

The main alternative hypothesis to numerical match-

ing is that neuronal death might be involved in error

elimination. That initial neural connections are re-

fined in vertebrates by regressive events such as the

loss of axonal branches is undeniable, but the role of

neuronal death in the refinement is less clear. How-

ever, there is evidence from the retinopetal (brain-to-

retina) and retinofugal (retina-to-brain) visual systems

that here at least, neuronal death does play a signifi-

cant role in eliminating neurons with connections that

are aberrant by adult standards.

In the isthmo-optic projection of chick embryos, a

very small proportion (about 0.2 percent) of the axons

initially project to the ipsilateral retina, whereas the

adult projection is entirely to the contralateral retina;

the elimination of the transient ipsilateral projection

involves the death of the parent cell bodies during

the neuronal death period (Clarke and Cowan, 1976;

O’Leary and Cowan, 1982). A much greater number

of transient ‘‘aberrant’’ axons project to the ‘‘correct’’

(contralateral) retina, but to the ‘‘wrong’’ part of it by

the standard of adult topography; again their elimina-

tion involves the death of their parent cell bodies

(Catsicas et al., 1987). The exact percentage of topo-

graphically aberrant axons is uncertain, but may be

25–50 percent. When isthmo-optic neuron death is

reduced by intraocular injections of tetrodotoxin (a

blocker of action potentials), this permits the survival

of aberrantly projecting isthmo-optic neurons of both

types (‘‘wrong’’ laterality and ‘‘wrong’’ topography)

(Péquignot and Clarke, 1992).

Similarly, in the retinocollicular projection of

young rodents, neuronal death has been reported to

eliminate preferentially retinal ganglion cells projec-

ting to inappropriate regions of the superior collicu-

lus, and here too the sculpting of the final precise

projection by cell death is essentially blocked by

intraocular tetrodotoxin (O’Leary et al., 1986). How-

ever, the importance of neuronal death for refining

topography in the mammalian retinofugal projection

is currently controversial (Chalupa and Dreher, 1991;

Thompson and Cordery, 1997).

Model of Topographical Sculpting by Cell Death

A computational model (figure 9.3) was therefore

elaborated for neuronal death-mediated changes in

the topographical organization of a two-layered neu-

ral network (Posada and Clarke, 1999c). There is

evidence that, at least in the retina, the spontaneous

electrical activity occurring during the cell death pe-

riod occurs in waves that sweep across the tangential

extent of the retina (Wong, 1999), so this was mod-

eled as an ‘‘activity wave’’ sweeping regularly through

layer 1. There is further evidence that synaptic modi-

fication according to a Hebbian mechanism might

be responsible for the topographical refinement,

either through a secondary e¤ect on neuronal death

(O’Leary et al., 1986) or independently of neuronal

death (Stollberg, 1995), but there were also some
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grounds for thinking that the activity-mediated retro-

grade death signal in the isthmo-optic pathway (see

section 9.1.2) might likewise result from a Hebbian

mechanism (Posada and Clarke, 1999a). For these

reasons, in di¤erent versions of the model, transmis-

sion of activity to layer 2 was assumed to cause neu-

ronal death in layer 1 or synaptic modification in layer

2 or a combination of the two. In the simulations

involving neuronal death, transmission of activity to

layer 2 was assumed to generate, according to a Heb-

bian rule, a retrograde death signal compensated for

by a trophic survival signal from the target cells. The

interaction between the two retrograde signals deter-

mined the death or survival of layer 1 neurons.

Figure 9.3

The model of Posada and Clarke. (A) Connectivity between the two layers. Each layer network is circular. An axon from layer

1 reaches a neuron in layer 2 and ramifies. The synaptic values are defined by a Gaussian function; narrow axonal ramification is

given by a Gaussian variance (V ) equal to 3; wide axonal ramification is given by V ¼ 10. Each neuron from layer 2 receives

only one axon with a synaptic weight equal to 1. The numbers 1; 2; . . . ; 30 represent topographical neuron positions. (B )

Representative examples of topographical refinement involving removal of approximately half the neurons in layer 1. (Top)

Initial connectivity between the two layers, 50 percent correct and 50 percent random. (Bottom) Remaining network after se-

lective neuronal death. Rectangles represent synaptic weight values. After neuronal death, the network has been reconstructed

(i.e., closed up to fill the gaps left by dead neurons) and the rectangles have been adapted to the new scale. The correlation co-

e‰cient r gives an indication of the precision of the topography. (Based on figures 1A and 2 of Posada and Clarke, 1999c.)
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The main results were as follows: In the simulations

involving neuronal death, with a suitable choice of

parameters, about 50 percent of the neurons in layer

1 died, and this produced a substantial improvement

in the topography. In simulations involving Heb-

bian synaptic modification without neuronal death,

an equivalent reorganization occurred, but with less

precision and e‰ciency. With the two mechanisms

combined, synaptic modification provided no further

improvement over that achieved by neuronal death

alone.

This model thus supports the hypothesis that neu-

ronal death could play a role in the refinement of

topographic projections during neural development,

but it is not a realistic model of what happens in detail.

It ignores the trophic e¤ects on the layer 2 neurons of

the a¤erents from layer 1. It makes no provision for

neuronal death in layer 2. It did not include inhibi-

tory neurons, or lateral or feedback connections. And

most of the parameters were chosen without biologi-

cal justification.

9.2.3 Models Postulating Optimization of Learning

by Neuronal Death

The two models just described dealt with relatively

simple hypotheses of the role of neuronal death; both

of them proposed that it was optimizing some aspect

of the nervous system: neuronal number or connec-

tivity. It remains possible that neuronal death may

play a much more subtle role, one that involves the

functioning of the nervous system in complex tasks.

While most neuronal death occurs too early for this,

the hippocampal dentate gyrus is an exception, since

neuronal death there continues into adult life and has

been shown to be reduced in juvenile rats exposed to

an enriched environment (Young et al., 1999).

Such subtle roles will be all the more di‰cult to

unravel, but computational models can at least pro-

vide clues as to the possibilities. Several such models

have been produced, and all of these relate to some

kind of optimization of learning (where ‘‘learning’’

can be interpreted broadly to mean almost any kind

of adaptive plasticity, e.g., in development; see also

chapter 14). I first mention briefly some studies that

were concerned with the optimization of artificial

neural networks without claiming to model the ner-

vous system.

Optimization of Artificial Networks by

Elimination of Units

Several authors have tested the e¤ects of eliminating

units in artificial networks. A major purpose of this has

been to reduce the size of the network so as to opti-

mize generalization (appropriate classification even of

inputs not used to train the network). If the network

is too large, it has too much freedom and may fit the

intricacies in input space rather than extracting the

underlying trends, so that when a novel input is pre-

sented, i.e., one that was not in the training set, it

cannot make a correct classification.

On the other hand, having a large number of units

tends to enhance the speed of learning. In an attempt

to combine speed of learning with constrained gen-

eralization, Mozer and Smolensky (1989) trained

a three-layer feedforward network until all output

activities were within a specified range of the target

value. They then measured a ‘‘relevance’’ parameter

for each unit, a criterion of how important the unit

was for the overall performance, and removed the

least relevant units one by one, with retraining be-

tween the removals. This procedure improved per-

formance (a combination of speed and generalization)

on a variety of tasks. Other authors have adopted sim-

ilar strategies, although the improvement in general-

ization was not always found (Sietsma and Dow,

1988, 1991). Since the aim of these artificial networks

was not to simulate neuronal death, some authors
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used networks that could both increase and decrease

the number of hidden units, and in this case the

improvements were greater (Hirose et al., 1991). In

this respect, it is interesting that neurogenesis in the

adult may be involved in the formation of memories

(Shors et al., 2001).

Optimization of Learning by Neuronal Death in

a Neural Network Model

The neuron removal algorithms used in the papers

described above are unlikely to be adopted by the brain

because they require nonlocal computations (e.g., the

decision of which neurons to remove is based on

knowledge of the overall network performance or

the behavior of all the neurons). Therefore, Brown

et al. (1994) drew on the above ideas, as applied to a

three-layer backpropagation network (figure 9.4), but

developed an alternative criterion for neuron removal

that relied solely on local computation. They assumed

that each ‘‘neuron’’ has a constant death tendency K

that is counteracted by a supply P1 of protective fac-

tor that is directly proportional to the average rate of

change in the neuron’s output activity. In order to

ensure that the process would be self-limiting (all the

neurons would not die), the authors further assumed a

fixed supply P2 of a second protective factor that

was equally divided among the neurons. Their simu-

lations of a simple pattern-recognition task indicated

that an initial oversupply of neurons in the hidden

unit layer permitted the network to more e‰ciently

learn to solve the task, and that although the per-

formance was temporarily disrupted by the death of

a neuron, the subsequent relearning was rapid (al-

though in simulations performed after publication, the

results turned out to be somewhat sensitive to weight

initialization parameters; G. D. A. Brown, personal

communication).

In my view, the main value of this paper is that it

reminds us that neuronal death may play a much more

subtle role than the regulation of neuronal number

or long-range connectivity. Adjusting the parameter

space of a learning network is one possibility among

several. However, the model proposed is (inevitably)

less than fully realistic biologically, for several reasons,

including the following: It assumes without justifica-

tion that retrograde signals can mediate error-sensitive

gradient descent. It ignores the activity-independent

component of a¤erent trophic signals. While the

assumption that a neuron’s activity will in some way

a¤ect its receipt of trophic factor is biologically sup-

ported, there is no evidence that the receipt will be

proportional to the average rate of change in activity.

The network modeled contains ‘‘neurons’’ that do

not behave like biological neurons; for example, they

are not either excitatory or inhibitory. And most

of the parameters were chosen without biological

justification.

Figure 9.4

The backpropagation model of Brown et al. (1994). The

activation of hidden units and the output unit is determined

by the activation of all the units they are connected to in the

previous layer, and by the strengths of these connections.

The strengths are adjusted by a standard gradient-descent

learning algorithm (backpropagation). (Reproduced from

Brown et al., 1994, with permission.)
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Model of the Developmental Basis of

Schizophrenia

A still more complex neural network model (figure

9.5) employed 148 units organized in four layers

(‘‘input,’’ ‘‘hidden,’’ ‘‘output,’’ and ‘‘temporary stor-

age’’) to explore the possibility that abnormalities in

synaptic elimination and neuronal death might con-

tribute to the etiology of anomalous speech percep-

tion in schizophrenia (Ho¤man and McGlashan,

1997, 1999). An interesting feature of the model is

its capacity to acquire and use linguistic expectations,

stored as activation patterns resonating between the

hidden and temporary storage layers, to guide detec-

tion of words. The main finding was that low levels

of synaptic elimination or excitotoxic neuron death

(i.e., death that is due to intense electrical activa-

tion) improved perceptual ability (word detection),

whereas excessive synaptic elimination (but not neu-

ron death) led to hallucinated speech (detection of

nonexistent words). It is of course di‰cult to make a

biologically realistic model of so complex a process as

speech perception. I therefore refrain from detailed

criticism, but would point out that while excitotox-

icity is sometimes postulated as a cause of neuronal

death in schizophrenia, the regulatory role of electri-

cal activity in neuronal death during development is

certainly more complex, as discussed in section 9.1.2.

9.3 Discussion

We need models primarily to bridge the gap between

the wealth of data on trophic interactions and a net-

work-level understanding of the role of the neuronal

death. Models can do this in two ways. Simula-

tions can demonstrate the diversity of network con-

sequences that could arise from a given set of

cell-to-cell mechanisms. And analytical mathematics

Figure 9.5

The speech perception neural network studied by Ho¤man and McGlashan (1997, 1999) in relation to schizophrenia. The

hidden layer receives ‘‘phonetic information,’’ while the output layer codes for ‘‘words.’’ Projections are unidirectional and

flow upward in the figure except for those from the hidden layer to the temporary storage layer. The latter retains a copy of

the hidden layer from the previous iteration. (Reproduced from Ho¤man and McGlashan 1997, 1999, with permission.)
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can show definitively the inevitability of certain con-

sequences over a wide range of functions, parameters,

and initial conditions. However, it has to be admitted

that so far the modeling of neuronal death is imma-

ture. It lacks the sophistication that has been achieved

in the modeling of axonal competition and with-

drawal (see chapters 10–12).

This may arise from three factors. First, the causa-

tion of neuronal death appears to be secondary to that

of axonal competition, and more complex, since the

retrograde signals that regulate it depend on all the

events that a¤ect axonal competition; however, neu-

ronal death also depends on a further set of influences,

the a¤erent signals. Second, the available biological

data are not adequate, because a network-level analy-

sis of neuronal death requires the integration of data

concerning perikaryal survival with data on the axonal

terminal fields, which is di‰cult to obtain. Third, the

modeling of neuronal death has simply attracted less

attention.

As the supply of biological data continues to in-

crease, the usefulness of modeling neuronal death

should increase substantially over the next few years.
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10Competition in the Development of Nerve

Connections

Arjen van Ooyen and Richard R. Ribchester

During development, neurons and other target cells

are often initially innervated by more axons than

ultimately remain into adulthood. The process that

leads to elimination of connections is referred to as

axonal or synaptic competition. This chapter reviews

the models of competition that have been proposed

for the neuromuscular and the visual system, and

describes in detail a model that links competition

in the development of nerve connections with the

underlying actions and biochemistry of neurotrophic

factors.

10.1 Competition

The establishment and refinement of neural circuits

involve both the formation of new connections and

the elimination of existing connections (e.g., Lohof

et al. 1996). A well-studied case of this form of

remodeling is the withdrawal of connections that

takes place during development. Neurons, and other

cell types, are initially innervated by more axons than

they ultimately maintain into adulthood (Purves and

Lichtman, 1980; Lohof et al., 1996). This is a wide-

spread phenomenon in the developing nervous sys-

tem and occurs, for example, in the development

of connections between motor neurons and muscle

fibers (reviewed in Jansen and Fladby, 1990; Sanes

and Lichtman, 1999; Ribchester, 2001; see also sec-

tion 10.2.2), the formation of ocular dominance

columns (see chapter 12 and section 10.2.3), and the

climbing fiber innervation of Purkinje cells (Crepel,

1982).

The process that reduces the amount of innerva-

tion onto a postsynaptic cell is often referred to as

axonal or synaptic competition, although neither term

describes the competitors adequately (Colman and

Lichtman, 1992; Snider and Lichtman, 1996). Since a

single axon can branch to innervate, and compete on,

many postsynaptic cells simultaneously, competition is

perhaps better described as occurring between axon

branches rather than between axons. By further arbo-

rization, the contact between an axon branch and a

postsynaptic cell can involve several synaptic boutons,

so that competition occurs not between single syn-

apses but between groups of synapses.

Defining synaptic competition has exercised a

number of authors. In discussing the neuromuscular

system, Van Essen et al. (1990) gave one of the most

general definitions of competition: a process in which

there are multiple participants whose behavior is

governed by certain rules so that one or more of the

participants emerge as victors. This definition leaves

open the processes by which the victors arise. Based

on whether or not there are interactions between

the participants, Colman and Lichtman (1992) distin-

guished two ways by which victors can come about,

leading to two types of competition:

1. In independent competition, victors do not arise as a

result of interactions (either direct or indirect) be-

tween the participants, but are chosen (by ‘‘judges’’)

based on a comparison of the performance or desir-

able features of the participants (e.g., as in a beauty

contest). In this form of competition, one participant

cannot influence the performance of the others during



the competition. Lotteries are another example of this

form of competition. Here the criteria for selection

are random, and there is nothing a single ticket holder

can do to influence the outcome. In axonal competi-

tion, this would mean that the axons innervating the

same postsynaptic cell do not a¤ect each other and

that the postsynaptic cell would decide, on the basis of

some performance or random criteria, which axon(s)

would win. Since axons do a¤ect each other (see sec-

tion 10.2), and synapse elimination is nonrandom, this

form of competition is unlikely.

2. In interdependent competition, victors emerge as a

result of direct or indirect interactions between the

participants, a¤ecting their performance. This is the

type of competition that is considered in population

biology, where two species of organisms are said to

compete if they exert negative e¤ects on the growth

of each other’s population. Ribchester (1992) and

Ribchester and Barry (1994) extended this defini-

tion to neurobiology; they defined competition as the

negative e¤ects that one neuron or its synapses have

on others. Based on how the negative interactions

come about, two types of interdependent competition

can be distinguished (Yodzis, 1989; see also figure

10.1):
0 In consumptive competition, in systems of consumers

and resources, each consumer hinders the others

solely by consuming resources that they might other-

wise have consumed; in other words, consumers hin-

der each other because they share the same resources.

In neurobiology, competition is commonly associated

with this dependence on shared resources (Purves and

Lichtman, 1985; Purves 1988, 1994). In particular, it

is believed that axons compete for target-derived

neurotrophic factors (see section 10.2.1).
0 In interference competition, instead of hindrance

through dependence on shared resources, there is

direct interference between individuals, e.g., direct

negative interactions, such as aggressive or toxic

interactions. In axonal competition, nerve terminals

could hinder each other by releasing toxins or pro-

teases (see section 10.2.2). If some essential resource

can be obtained only by occupying, more or less

exclusively, some portion of space (competition for

space), this is also primarily interference competition,

because each consumer is seeking to monopolize a

portion of space rather than to share resources (Yod-

zis, 1989).

Although the notion of competition is commonly

used in neurobiology, there is little understanding

of the type of competitive process or the underlying

molecular mechanisms. In this chapter we discuss the

di¤erent models of competition that have been pro-

posed, both in the neuromuscular and in the visual

system (for a more detailed review, see Van Ooyen,

2001). We classify the models according to the forms

of (interdependent) competition that are distinguished

in population biology (as described earlier). Before

presenting the models, we briefly review the biology

of neurotrophic factors—which play an important

role in many models—and the development of the

neuromuscular and the visual system, the two systems

where competition is most widely studied.

Figure 10.1

(a) Interference competition. (b) Consumptive competition.

See the text for details. (Modified from Huisman, 1997.)
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10.2 Neurobiological Background

10.2.1 Neurotrophic Factors

During an early stage of development, when initial

synaptic contacts are made, neurotrophic factors have

a well-established role in the regulation of neuronal

survival (see chapter 9). However, many studies now

indicate that neurotrophic factors may also be in-

volved in the later stages of development, when there

is further growth and elimination of innervation (see

sections 10.2.2 and 10.2.3; for a critical review, see

Snider and Lichtman, 1996). For example, neuro-

trophic factors have been shown to regulate the de-

gree of arborization of axons (e.g., Cohen-Cory and

Fraser, 1995; Funakoshi et al., 1995; Alsina et al.,

2001).

In addition to their decisive role in the fate of

neurons and the disposition of their connections,

neurotrophic factors have well-defined roles in mod-

ulating synaptic transmission. For instance, neuro-

trophins (i.e., neurotrophic factors of the NGF family,

including BDNF, NT-3 and NT-4/5; Bothwell,

1995; Lewin and Barde, 1996), acting on their specific

Trk receptors, may phosphorylate synapse-specific

proteins and enhance transmitter release (Lohof et al.,

1993). Similar e¤ects are exerted by other neuro-

trophic factors, of the ciliary neurotrophic factor

(CNTF) and glial cell line-derived neurotrophic fac-

tor (GDNF) classes (Ribchester et al., 1998; Stoop

and Poo, 1996). It is of some interest that positive

e¤ects of neurotrophic factors on synaptic transmis-

sion and growth can be commuted to negative e¤ects,

depending on the relative levels of intracellular sig-

naling molecules such as cyclic nucleotides (Bou-

langer and Poo, 1999; Poo, 2001).

10.2.2 Neuromuscular System

Adult System and Development

In adult mammals, each muscle fiber is innervated at

the endplate—a discrete region near the midpoint of

the muscle fiber—by the axon from a single motor

neuron. This state is referred to as mononeuronal (m)

or ‘‘single’’ innervation (figure 10.2b). However, a

single motor neuron, through its axonal branches,

typically contacts many muscle fibers. The motor

neuron and the group of muscle fibers it innervates

is referred to as the motor unit, and the number of

fibers contacted by a given motor neuron is called the

motor unit size. Motor neurons with higher firing

thresholds—which may therefore be less frequently

activated—have progressively larger motor units (the

size principle; Henneman, 1985).

During prenatal development, the axons of the

motor neurons grow toward their target muscle, and

near the muscle each axon arborizes to innervate a

large number of muscle fibers. At birth, the end-

plate of each muscle fiber is contacted by axons from

several di¤erent motor neurons, a state referred to

as polyneuronal (p) or ‘‘multiple’’ innervation (figure

10.2a). During the subsequent few weeks, axonal

branches are removed or withdrawn until the motor

endplate of each muscle fiber is taken over by the

synaptic boutons derived from a single motor axon

collateral (Brown et al., 1976; Betz et al., 1979;

Keller-Peck et al., 2001a; Walsh and Lichtman, 2003).

Thus, during the elimination of polyneuronal inner-

vation, the number and size of the synaptic boutons of

the winning axon increase, while the synaptic bou-

tons of the losing axon are either gradually retracted

or nipped o¤ from their parent neuron (Keller-Peck

et al., 2001b). With contemporaneous addition and

loss of synaptic boutons, the synaptic area on the

endplate actually increases during the elimination
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of polyneuronal innervation (Sanes and Lichtman,

1999). Motor unit sizes, as well as the range of sizes,

decrease during elimination of polyneuronal innerva-

tion (Brown et al., 1976; Betz et al., 1979; Balice-

Gordon and Thompson, 1988).

Competition

The elimination of polyneuronal innervation appears

to be a competitive process. Following removal of

some motor axons at birth, the average size of the

remaining motor units after elimination of poly-

neuronal innervation is larger than normal (Thomp-

son and Jansen, 1977; Betz et al., 1979; Fladby and

Jansen, 1987). This competition for the endplate

(postsynaptic competition), however, cannot explain

why larger motor units decrease in size more than

smaller ones (thus reducing the range of motor

unit sizes) and why sometimes branches at singly

innervated fibers—where there is no competition—

apparently withdraw (Fladby and Jansen, 1987). This

process of ‘‘intrinsic withdrawal’’ has not yet been

observed directly, but Keller-Peck et al. (2001b) have

argued that the asynchronous pattern of synapse loss

observed within motor units precludes intrinsic with-

drawal as an integral component of synapse elimina-

tion. It should now be possible to resolve this issue by

repeating the earlier studies of Betz et al. (1979) and

Fladby and Jansen (1987) using thy1-YFP transgenic

mice, which have endogenously fluorescent motor

axons and synapses, facilitating repeated visualization

of identified neuromuscular junctions (Feng et al.,

2000). If confirmed, the existence of intrinsic stimuli

to synapse elimination would imply that there are

also presynaptic constraints that restrict the number of

axon branches each neuron can maintain.

What mediates the competition in the develop-

ment of mononeuronal innervation? We discuss this

for both consumptive and interference competition.

Figure 10.2

The development of connections between motor neurons and muscle fibers. (a) At birth, each fiber is innervated by axons from

several di¤erent neurons. (b) In adulthood, each fiber is innervated by the axon from a single neuron. (From Van Ooyen, 2001.)

186 Arjen van Ooyen and Richard R. Ribchester



Consumptive Competition

Muscles might release di¤usible neurotrophic factors

for which axons compete (Snider and Lichtman,

1996). Several factors produced by muscles are capa-

ble of retarding elimination of polyneuronal elimina-

tion when applied to postnatal muscles (English and

Schwartz, 1995; Kwon and Gurney, 1996; Jordan,

1996). For example, transgenic mice overexpressing

the neurotrophic factor GDNF show extensive poly-

neuronal innervation at a relatively late postnatal stage

(Nguyen et al., 1998). Mononeuronal innervation is

eventually established, but about 2 weeks later than

normal. Exogenous administration of GDNF to neo-

natal muscle also delays elimination of p-junctions,

but the pattern of innervation, together with the de-

cline in sensitivity, suggested that the predominant ef-

fect of this growth factor is to stimulate or maintain

nerve branch points, rather than synaptic terminals

per se (Keller-Peck et al., 2001a). It remains uncer-

tain where the receptors for GDNF are located and

how their expression is regulated. However, the ob-

servation that small but significant enhancements

in neurotransmitter release occur in response to low

concentrations of GDNF suggests that immature syn-

aptic terminals at least express the receptor (Rib-

chester et al., 1998). It is not known whether nodes

of Ranvier, or other sites of neural sprouting, also ex-

press GDNF receptors.

Interference Competition: Competition for Space

Until recently, the notion that competition occurs

only for space at the endplate was controversial be-

cause some observations of developing neuromuscu-

lar junctions in vivo revealed that as one terminal is

withdrawn, the space it occupied is left vacant rather

than being taken over by another terminal (Balice-

Gordon and Lichtman, 1994). However, a takeover

of existing space clearly occurs during reinnervation

of partially denervated muscle (Costanzo et al., 2000).

Moreover, very recent observations made by Licht-

man and colleagues, utilizing transgenic thy1-YFP

mice, suggest that both processes—takeover and

withdrawal without takeover—occur at the same or

di¤erent junctions during neonatal synaptic competi-

tion as well (Walsh and Lichtman, 2003). At present,

it remains to be seen whether takeover will turn out

to be the predominant mechanism, as in reinnervated

muscle (Barry and Ribchester, 1995; Costanzo et al.,

1999, 2000).

However, attempts to identity molecules that

might mediate a spatial competition have so far been

unsuccessful (Ribchester, 2001). For example, normal

elimination of synapses occurs in various transgenic

animals in which expression of cell surface or extrac-

ellular matrix molecules, such as neural cell adhesion

molecules (N-CAMs), has been disrupted (Sanes et al.,

1998). But since synapse elimination must, at some

stage in the process, involve weakening of the ad-

hesive bonds between synaptic membranes and

molecules in the extracellular matrix, the notion of

interference competition based on access to synaptic

space should therefore still receive attention. Intra-

neuritic tension-adhesion mechanisms have been

posited to account for morphogenesis in the brain

(Van Essen, 1997), and such mechanisms may be

accessible to experimental investigation at a cellular

level, using the neuromuscular junction as a paradigm.

Mechanical stimulation (stretch) of motor nerve end-

ings regulates transmitter release at neuromuscular

junctions, and this e¤ect is mediated by integrins, re-

ceptors for adhesion molecules (Kashani et al., 2001).

Integrins are implicated in synapse formation, growth,

and specificity in Drosophila muscle (Beumer et al.,

1999).

Interference Competition: Direct Negative Interactions

Another possibility is axon-derived or axon-

stimulated release of interfering molecules. For
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instance, proteases might mediate direct negative in-

teractions between axons (Sanes and Lichtman,

1999). Many proteases and protease inhibitors are lo-

cated at the neuromuscular junction (Hantai et al.,

1988), and various proteases have been proposed to

play a role in synapse destabilization (e.g., Zoubine

et al., 1996). Highly selective proteases could also

work indirectly, mediating the kind of spatial com-

petition indicated earlier.

Role of Electrical Activity

Does the overall level of activity a¤ect the rate of

synapse elimination? Blocking activity (by interfering

with input activity, synaptic transmission, or muscle

activity) delays or prevents synapse elimination

(Thompson et al., 1979; Brown et al., 1982; Rib-

chester and Taxt, 1984; Callaway and Van Essen,

1989; Barry and Ribchester, 1995), while stimulating

activity accelerates synapse elimination (O’Brien et al.,

1978; Thompson, 1983; Zhu and Vrbova, 1992;

Vyskocil and Vroba, 1993; for a review, see Rib-

chester, 2001).

Do di¤erences in the activity of innervating axons

confer competitive advantages on the more active

axons? Here the findings are less clear-cut. Selectively

stimulating motor neurons in neonates, Ridge and

Betz (1984) found that the more active axons have

a competitive advantage over the less active ones,

whereas Callaway et al. (1987), using selective block-

ing, found the opposite. Experiments in tissue culture

also show opposing results (Magchielse and Meeter,

1986; Nelson et al., 1993). Based on observations

that synapse elimination begins with elimination of

AChRs (the postsynaptic receptors for acetylcho-

line, the neurotransmitter in motor neurons) and

that in adults partial but not complete paralysis of

the endplate leads to the elimination of the termi-

nals overlying the silent patches, Balice-Gordon and

Lichtman (1993, 1994) suggested that electrically

active synapses are the stimulus for removing the

AChRs underlying the less active synapses, which are

then eliminated. However, when motor endplates are

made completely silent by blocking nerve conduction

and synaptic transmission during nerve regeneration,

inactive terminals appear capable of competitively

displacing other, active or inactive, terminals (Rib-

chester, 1988, 1993; Costanzo et al., 2000). Thus,

di¤erences in activity are not strictly necessary for

synapse elimination.

Electrical activity also seems to be insu‰cient

for synapse elimination. Barry and Ribchester (1995)

found that following recovery from chronic nerve

conduction block, many reinnervated muscle fibers

in partially denervated muscles retain polyneuronal

innervation, in spite of the resumption of normal

neuromuscular activity. Following on from this, Cos-

tanzo et al. (1999) showed that the synaptic e‰cacy

per unit area was similar in the coinnervating inputs to

the muscle fibers, whatever the relative synaptic area

covered by each motor nerve terminal.

In conclusion, activity is clearly influential in syn-

aptic competition—particularly in regard to its e¤ects

on the rate of synapse elimination—but activity does

not seem to be decisive (Costanzo et al., 2000; Rib-

chester, 2001). To reconcile the di¤erent findings,

one possibility is that activity is just one of many

influences in competition. Perhaps its main influence

is restricted to critical periods during the competitive

process, while the actual competition is governed

by other factors, e.g., neurotrophic factors, adhesion

molecules, and their receptors (Costanzo et al., 2000;

see also section 10.4).

10.2.3 Visual System

Adult System and Development

In the adult visual system, the di¤erent layers of the

lateral geniculate nucleus (LGN) receive axons from
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either the left or the right eye (figure 10.3a). Like the

di¤erent layers in the LGN, columns of cells in layer

IV of the visual cortex (to which the axons from the

LGN project) respond preferentially to input from

either the left or the right eye (ocular dominance; see

also chapter 12).

The formation of eye-specific layers and columns

requires anatomical remodeling of axonal arbors dur-

ing development (figures 10.3b and 10.3c). Initially,

the retinal axons from the two eyes overlap exten-

sively within the LGN. Similarly, the arbors of geni-

culate axons are initially evenly distributed within

layer IV. Just as in the elimination of polyneuronal

innervation in the neuromuscular system, the refine-

ment of connections to the LGN and cortex involves

both the retraction of axonal side branches that

project to the wrong region and the elaboration

of branches that project to the correct region, and

the total number of synapses onto a postsynaptic cell

actually increases during the period in which elimina-

tion takes place.

Competition

As in the neuromuscular system, the formation of

eye-specific layers and columns might involve com-

petition between axons or axon branches for target-

derived neurotrophic factors. Continuous infusion

of the neurotrophins NT-4/5 or BDNF in the cat

visual cortex prevents the formation of ocular domi-

nance columns (Cabelli et al., 1995), presumably

because the LGN axon branches fail to retract. In

monocular deprivation experiments (see the follow-

ing section) in cats and rats, excess neurotrophic factor

mitigates or abolishes the relative increase of the ocu-

lar dominance stripes associated with the open eye

(e.g., Yan et al., 1996; see also chapter 12).

Role of Electrical Activity

The process of segregation into eye-specific regions is

influenced by neural activity, which arises not only

from visual stimulation through photoreceptor activa-

tion but also from spontaneous activity in retinal gan-

glion cells. When all activity in both eyes of kittens is

blocked by tetrodotoxin, ocular dominance columns

do not form at all (Stryker and Harris, 1986). When

only the visually driven activity is blocked, however,

as in macaque monkeys reared in complete darkness, a

normal pattern of ocular dominance columns is found

(LeVay et al., 1980). In fact, in monkeys at least, ocu-

lar dominance columns are present prior to birth and

eye opening (Horton and Hocking, 1996). Taken

Figure 10.3

The development of ocular dominance columns. (a) The

adult visual system. The lateral geniculate nucleus (LGN) of

the thalamus is composed of two or more layers, each of

which receives axons from either the left or the right eye.

In the visual cortex, cells in layer IV respond preferentially

to input from either the left or the right eye. (b) In the im-

mature system, the arbors of the geniculate axons overlap

extensively within layer IV. (c ) During further develop-

ment, remodeling of axonal arbors takes place so that each

cortical cell receives axons from either the left-eye or right-

eye geniculate neurons. (From Van Ooyen, 2001.)
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together, these observations suggest that spontaneous

activity in the retina may instruct the formation of

ocular dominance columns. This is inconsistent with

the finding that eye removal in ferrets early in visual

development does not prevent the development

of ocular dominance columns (Crowley and Katz,

1999). Recently, Crowley and Katz (2000) showed

that in ferrets, ocular dominance columns appear

much earlier during development than previously

thought, and that these early columns are una¤ected

by imbalances in retinal activity. They proposed that

axon guidance cues are su‰cient to initially establish

columns.

Although activity might not be necessary for the

initial formation of ocular dominance columns, the

prevailing view is that it does play a decisive role

in their later plasticity. For example, when vision

through one eye is prevented by suturing the eyelids

shut after birth, the stripes or patches formed by the

sutured eye’s input become smaller than those formed

by the open eye’s input (e.g., Shatz and Stryker, 1978;

see also chapter 12). However, even this bastion of

synaptic plasticity seems to be under renewed assault

(Wickelgren, 2000; Crowley and Katz, 2000; Crair

et al., 2001). In conclusion, just as activity has a role in

the development of the neuromuscular system, activ-

ity is also influential in the development of the visual

system, but it may not be overwhelmingly decisive.

10.3 Review of Models

Models in which competition plays an important role

have been proposed for both the neuromuscular and

the visual system. In the neuromuscular system, the

main aim is to explain the change from polyneuronal

to mononeural innervation of muscle fibers. In the

visual system, the main aim is to explain the develop-

ment of columnar organization of synaptic connec-

tivity, especially ocular dominance. The presentation

of the various models here is structured on the basis of

how competition is implemented: through synaptic

normalization and modified Hebbian learning rules

(section 10.3.1), dependence on shared resources

(section 10.3.2), or interference (section 10.3.3).

For each model, we identify its underlying positive

feedback loop; this is what enables one or more

competitors to outcompete the others. To show the

di¤erences and similarities in modeling approach,

mathematical equations are given for one model of

each type.

10.3.1 Competition Through Synaptic

Normalization and Modified Hebbian Learning Rules

Many models—especially those of the formation of

ocular dominance—enforce competition rather than

implement its putative underlying mechanisms (for a

review, see Miller, 1996). That is, these models ex-

plore the consequences of imposing certain rules that

are introduced to ensure competition between axons.

These models usually describe changes in synaptic

strength (physiological plasticity) rather than changes

in axonal arborization (anatomical plasticity). To see

how competition can be enforced, consider n inputs

with synaptic strengths wiðtÞ ði ¼ 1; . . . ; nÞ impinging

on a given postsynaptic cell at time t. Simple Hebbian

rules for the change DwiðtÞ in synaptic strength in time

interval Dt state that the synaptic strength should grow

in proportion to the product of the postsynaptic

activity level yðtÞ and the presynaptic activity level

xiðtÞ of the ith input:

DwiðtÞz yðtÞxiðtÞDt: ð10:1Þ

According to Eq. (10.1), only increases in synaptic

strength can take place, and if the activity levels of

two inputs (e.g., two eyes) are both su‰cient to
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achieve potentiation, then both pathways are strongly

potentiated (and no ocular dominance can occur). To

achieve the situation that when the synaptic strength

of one input grows, the strengths of the other one

shrinks (i.e., competition),
Pn

i wiðtÞ should be kept

constant (synaptic normalization). At each time inter-

val Dt—following a phase of Hebbian learning, in

which wiðt þ DtÞ ¼ wiðtÞ þ DwiðtÞ—the new synaptic

strengths are forced to satisfy the normalization con-

straint, either by multiplying each synaptic strength by

a certain amount (multiplicative normalization; Will-

shaw and Von der Malsburg, 1976) or by subtracting

a certain amount from each synaptic strength (sub-

tractive normalization; Miller et al., 1989). The final

outcome of development may depend on whether

multiplicative or subtractive normalization is used

(Miller and MacKay, 1994). Multiplicative, but not

subtractive, normalization prevents the development

of ocular dominance if there are positive between-eye

correlations (which are likely to be present when the

two eyes are open). Experimental evidence for multi-

plicative normalization has been found in cultures of

cortical neurons (Turrigiano et al., 1998; see also

chapter 8).

Another approach for achieving competition is

to modify Eq. (10.1) so that both increases in syn-

aptic strength (long-term potentiation, or LTP) and

decreases in synaptic strength (long-term depression,

or LTD) can take place. Assume that yðtÞ and xiðtÞ
must be above some thresholds yy and yx, respectively,

to achieve LTP, and otherwise yield LTD (Miller,

1996); i.e.,

DwiðtÞz ½yðtÞ � yy�½xiðtÞ � yx�Dt: ð10:2Þ

A stable mechanism for ensuring that when some

synaptic strengths increase others must correspond-

ingly decrease is to make one of the thresholds vari-

able. If y ix increases su‰ciently as yðtÞ or wiðtÞ (or

both) increases, conservation of synaptic strength can

be achieved (Miller, 1996). Similarly, if yy increases

faster than linearly with the average postsynaptic

activity, then the synaptic strengths will adjust to keep

the postsynaptic activity near a set point value (Bien-

enstock et al., 1982; see also chapter 12).

Yet another mechanism that can balance synaptic

strengths is based on (experimentally observed) spike

timing-dependent plasticity (STDP; reviewed in Bi

and Poo, 2001). Presynaptic action potentials that

precede postsynaptic spikes strengthen a synapse,

whereas presynaptic action potentials that follow

postsynaptic spikes weaken it. Subject to a limit on

the strengths of individual synapses, STDP keeps the

total synaptic input to the neuron roughly constant,

independent of the presynaptic firing rates (Song et al.,

2000).

10.3.2 Consumptive Competition: Competition for

a Target-Derived Resource

Keeping the total synaptic strength on a postsynaptic

cell constant (synaptic normalization) is a biologically

unrealistic way of modeling competition during de-

velopment. In both the neuromuscular and the visual

system, the total number of synapses on a postsynaptic

cell increases during competition as the winning

axons elaborate their branches and the losing axons

retract branches (see section 10.2). In models that

implement consumptive competition, competition

between input connections does not have to be

enforced, but comes about naturally through their

dependence on the same target-derived resource.

There are two ways in which this can be modeled:

1. In fixed-resource models, the total amount of post-

synaptic resource is kept constant. The total amount

of resource is the amount taken up by the input con-

nections (i.e., the total synaptic strength if the re-

source is ‘‘converted’’ into synaptic strength) plus the
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amount left at the target. Thus, the total synaptic

strength is not kept constant and can increase during

development when the resource becomes partitioned

among the input connections.

2. In variable-resource models, it is not imposed that

even the total amount of resource should remain

constant. In these models, there is continuous pro-

duction of neurotrophin and continuous uptake

or binding of neurotrophin. Continuous uptake or

binding (‘‘consumption’’) of neurotrophin is needed

to sustain the axonal arbors and synapses. This view

of the way in which the resource exerts its e¤ects is

closer to the biology of neurotrophins, and is also

closer to other consumer–resource systems in biology;

organisms need a continuous supply of food (resource)

to sustain themselves.

Fixed-Resource Models

Dual Constraint Model (Bennett and Robinson, 1989;

Rasmussen and Willshaw, 1993)

Based on experimental results that suggest a role for

both a postsynaptic and a presynaptic resource in

the development of neuromuscular connections (see

section 10.2.2), the dual constraint model combines

competition for both these types of resources. Each

muscle fiber m has a postsynaptic resource B (in

amount Bm), and each motor neuron n has a pre-

synaptic resource A, which is located in its cell soma

(in amount An) and in all its terminals nm (in amount

Anm). In the synaptic cleft, a reversible reaction takes

place between A and B to produce binding complex

C:

Anm þ Bm TCnm; ð10:3Þ

with

dCnm

dt
¼ aAnmBmC

m
nm � bCnm; ð10:4Þ

where a and b are rate constants. The size of the ter-

minal is assumed to be proportional to Cnm. Including

C m
nm (with m > 0) in Eq. (10.4) incorporates a positive

feedback and is needed to achieve single innervation.

The justification given by Bennett and Robinson

(1989) for including this positive feedback is that

electrical activity in the nerve terminal could produce

electromigration of molecules B in the endplate, so

that larger terminals will attract more molecules.

The total amount A0 of presynaptic substance in

each motor neuron is fixed:

A0 ¼ An þ
XM
j¼1

Anj þ
XM
j¼1

Cnj; ð10:5Þ

where N and M are the total numbers of neurons

and muscle fibers, respectively. The amount Anm is

assumed to be proportional to Cnm (thus incorporating

a second positive feedback) and An:

Anm ¼ KCnmAn; ð10:6Þ

where K is a constant.

The total amount B0 of postsynaptic substance in

each muscle fiber is also fixed:

B0 ¼ Bm þ
XN
i¼1

Cim: ð10:7Þ

Introducing Eqs. (10.5), (10.6), and (10.7) into Eq.

(10.4) gives a set of di¤erential equations for how Cnm

changes over time.

Single innervation is a stable state of the model, and

there is an upper limit, proportional to A0=B0, on the

number of terminals that can be supported by each

motor neuron (Rasmussen and Willshaw, 1993). So

if the initial amount of polyneuronal innervation is

larger than this limit, then terminals will withdraw,

even in the absence of competition (intrinsic with-

drawal; see section 10.2.2).
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Polyneuronal states can also be stable and can co-

exist with single innervation states (Van Ooyen and

Willshaw, 1999a). This o¤ers an explanation for par-

tial denervation experiments that show that persistent

polyneuronal innervation occurs after reinnervation

and recovery from prolonged nerve conduction block

(see section 10.2.2), while under unblocked condi-

tions single innervation develops (see also section

10.4).

Weak points of the dual constraint model are that

(1) it does not make clear the identity of the pre- and

postsynaptic resources; (2) a stronger biological justifi-

cation for the positive feedback loops is needed; and

(3) without electrical activity [m ¼ 0 in Eq. (10.4)], no

competitive elimination of connections takes place,

which is not in agreement with recent experimental

findings (see section 10.2.2).

Joseph and Willshaw (1996) and Joseph et al.

(1997) gave a more specific interpretation of the dual

constraint model in which A represents the protein

agrin, B the acetylcholine receptor (AChR), and C

aggregated AChRs. They were able to explain the

results produced by focal blockade of postsynaptic

AChRs (Balice-Gordon and Lichtman, 1994; see also

section 10.2.2).

Harris et al. (1997, 2000)

This model of the development of ocular dominance

columns incorporates a combination of Hebbian syn-

aptic modification and activity-driven competition for

neurotrophins. In the model, each cortical cell has a

fixed pool of neurotrophin to distribute over its input

connections. The higher the connection strength,

the faster the uptake of neurotrophin. Connection

strength increases owing to Hebbian LTP at a rate that

depends on the amount of neurotrophin taken up

(together with the previous assumption, this creates

a positive feedback loop). Connection strength de-

creases owing to heterosynaptic LTD.

The model shows that (1) ocular dominance col-

umns develop normally—even with positive intereye

correlations in activity (compare section 10.3.1)—

when the available neurotrophin is below a critical

amount and (2) column development is prevented

when excess neurotrophin is added. A criticism of the

model is that it incorporates only physiological plas-

ticity, while anatomical plasticity is (mainly) involved

in the formation of ocular dominance columns.

Variable-Resource Models

Elliott and Shadbolt (1998a,b)

This model of the development of the visual system

explicitly describes anatomical plasticity and incorpo-

rates a role for electrical activity, both in the release

and in the uptake of neurotrophin. For the case of a

single target (e.g., a cortical cell) with a number of

innervating axons (e.g., from the LGN), the rate of

change in the number si of synapses that axon i has on

the target is given by

dsi

dt
¼ esi T0 þ T1

P
j sjajP
j sj

 !
ðaþ aiÞriP
j sjðaþ ajÞrj

� 1

" #
;

ð10:8Þ

where e is a rate constant, T0 is a constant representing

the activity-independent component of release of

neurotrophin by the target; T1 is a constant for the

activity-dependent component;
P

j sjaj=
P

j sj is the

mean activity of a synapse, where aj is the level of

activity of axon j; ðaþ aiÞri represents the capacity of an
axon to take up neurotrophin, where a is a constant

for activity-independent uptake and ri is the number

of neurotrophin receptors per synapse. Equation

(10.8) incorporates a positive feedback: neurotrophin

increases the number of synapses, while more synapses

mean a higher uptake of neurotrophin. The model

permits the formation of ocular dominance columns,
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even in the presence of positively correlated inter-

ocular images (compare section 10.3.1). A high level

of neurotrophin released in an activity-independent

manner prevents the formation of ocular dominance

columns.

A criticism of the model is that it is not clear

why the activity-dependent release of neurotrophin is

taken to depend on the mean activity of the synapse,

rather than on the level of activity of the target. Also,

in the model, electrical activity directly increases the

uptake of neurotrophin, rather than by increasing

the number of neurotrophin receptors (Salin et al.,

1995; Birren et al., 1992) or the number of synapses

(Ramakers et al., 1998).

Jeanprêtre et al. (1996)

Jeanprêtre et al. (1996) were the first to model neuro-

trophic signaling in a fully dynamical way, imple-

menting production, degradation, and binding of

neurotrophin. They considered a single target that

releases neurotrophin and at which there are a num-

ber of innervating axons. In the model, each axon has

a variable called axonal vigor, which represents its

ability to take up neurotrophin and which is propor-

tional to its total number of neurotrophin receptors.

The rate of change in vigor depends on the vigor itself

(i.e., positive feedback) and increases with the frac-

tion of receptors occupied by neurotrophin, over and

above some threshold (the threshold is a constant that

represents the value of the axonal vigor that yields

zero growth). The system will approach a stable equi-

librium point in which a single axon—the one with

the lowest threshold—survives.

Criticisms of the model are that (1) the rate of

change in axonal vigor (including the positive feed-

back) is postulated but not explicitly derived from

underlying biological mechanisms; and (2) the thresh-

olds do not emerge from the underlying dynamics but

need to be assumed.

Van Ooyen and Willshaw (1999b)

Independently from Jeanprêtre et al. (1996), Van

Ooyen and Willshaw (1999b) proposed a model of

competition that implements neurotrophic signaling

in a fully dynamical way and that does not have the

above-mentioned drawbacks. For the description of

this model, see section 10.4.

10.3.3 Interference Competition

Competition for Space

Competition for space occurs if some essential re-

source can be obtained only by monopolyzing some

portion of space. The resource may be space itself or it

may be some immobile resource.

Van Essen et al. (1990)

This model incorporates competition for space

together with the idea that the increase in size of a

motor neuron terminal depends on how much ‘‘scaf-

fold’’ is incorporated in the underlying basal lamina at

the endplate. In the model, a terminal occupies a cer-

tain amount of space on the endplate and grows (as a

stochastic process) by occupying more space at the

expense of the size of other terminals. It is not clear

whether the model can account for single innervation,

because even after many iterations, a high percentage

of muscle fibers remained polyneuronally innervated.

Induced-Fit Model (Ribchester and Barry, 1994)

In the induced-fit model, which was not given in

mathematical terms, nerve terminals from di¤erent

axons have di¤erent isoforms of an adhesion mole-

cule, and each endplate may express a number of

di¤erent complementary isoforms. Nerve terminals

induce a conformational change in (or increase the

expression of ) the complementary adhesion mole-

cules in the endplate so that goodness-of-fit increases.

Electrical activity in a terminal accelerates the con-
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formational change. The model was proposed to

explain that a block in nerve conduction delays or

inhibits elimination of polyneuronal innervation in

partially denervated and reinnervated muscle (Taxt,

1983; Barry and Ribchester, 1994, 1995; see also sec-

tion 10.2.2).

Direct Negative Interactions

In the following models, all of which describe the

neuromuscular system, interference competition in-

volves direct negative interactions. Nerve terminals

are destroyed or disconnected by the punitive e¤ects

of other axons.

Willshaw (1981)

This is the first published formal model of the elimi-

nation of polyneuronal innervation in the neuromus-

cular system. Based on a proposal by O’Brien et al.

(1978), Willshaw (1981) assumed that each terminal

injects into its endplate a degrading signal, at a rate

proportional to its own ‘‘survival strength’’ (the size of

the terminal is thought to be proportional to this

strength), that reduces the survival strength of all the

terminals (including itself ) at that endplate. The sur-

vival strength of each terminal also increases, at a rate

proportional to that strength (positive feedback). Fur-

thermore, the total amount of survival strength sup-

ported by each motor neuron is kept constant, i.e.,

synaptic normalization of the total strength of the

output connections.

The model can account for (1) the elimination of

polyneuronal innervation, (2) the decrease in spread

of motor unit size, (3) the competitive advantage of

the terminals of smaller motor units over those of

larger ones (Brown and Ironton, 1978), and (4) the

increase in motor unit size after neonatal partial

denervation (Fladby and Jansen, 1987).

Criticisms of the model are that (1) the positive

feedback is not accounted for biologically; and (2)

it uses synaptic normalization of output connections,

which implies that not all fibers will show an increase

in their total input survival strength during develop-

ment (see section 10.2).

Nguyen and Lichtman (1996)

This model, which was not given in mathematical

terms, has many similarities with Willshaw’s (1981)

model except that there is an explicit role for electrical

activity. In the model, each active synapse, by activat-

ing its underlying acetylcholine receptors in the

endplate, generates two postsynaptic signals: (1) a

punishment signal that spreads over short distances

and eliminates the AChRs of neighboring synaptic

sites, which instigates the removal of the overlying

nerve terminal; and (2) a more locally confined pro-

tection signal that neutralizes the punishment signal.

The strength of both signals is proportional to the

level of activity. Thus, when postsynaptic sites at the

same endplate have a di¤erent level of activity, the less

active ones will generate a weaker protection signal

(and a weaker punishment signal) than the more

active ones, so that the less active ones lose more

AChRs. The loss of AChRs further reduces local

postsynaptic activity, leading to an even weaker pro-

tection signal, more loss of AChRs, and eventually

the removal of the overlying nerve terminal. This

positive feedback loop can bring about the removal

of all nerve terminals except the most active one.

When all the postsynaptic sites are equally active or

when they are all inactive, all nerve terminals will be

maintained.

The model can account for the observation that

when the AChRs of a portion of an endplate are

blocked, the blocked AChRs and their directly over-

lying nerve terminals are eliminated only when a sub-

stantial portion remains unblocked (Balice-Gordon

and Lichtman, 1994). A criticism of this model (and

the next one) is that it relies heavily on electrical
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activity, while recent experimental results suggest that

activity might not play such a decisive role (see section

10.2.2).

Barber and Lichtman (1999)

Barber and Lichtman (1999) put the ideas of Nguyen

and Lichtman (1996) into mathematical terms, al-

though the punishment and protection signals are not

explicitly modeled. In their model, each synaptic area,

Amn for the area that neuron n makes on muscle fiber

m, is subjected to two e¤ects: (1) loss of synaptic area,

in an amount Emn, through the punishing e¤ect of

other axons; and (2) gain or loss of synaptic area, in

an amount Umn, through utilization of neuronal

resources. Thus,

dAmn

dt
¼ �aEmn þ bUmn; ð10:9Þ

where a and b are rate constants.

It is assumed that axons are able to compete e¤ec-

tively only during asynchronous activity and that the

punishing e¤ect of an axon is proportional to the

amount of neurotransmitter it releases (which in turn

is proportional to the axon’s terminal size at the end-

plate and to its mean firing rate), so that

Emn ¼
X
i0n

fiAmið1� t
2fn fiÞ; ð10:10Þ

where fi and fn are the firing rates of neurons i and n,

respectively; the neurons are asynchronously active

during a fraction ð1� t2fn fi ) of the time, where t is a

constant.

The total amount R of presynaptic resource in each

motor neuron is kept constant, so that

R ¼ Ra;n þ fn
X
j

A
g

jn; ð10:11Þ

where Ra;n is the amount of free resource left in motor

neuron n and g < 1 represents the assumption that

large synaptic areas are disproportionally less taxing on

the resources of the neuron. This total amount of

presynaptic resource in each neuron is divided among

all its connections, with large synaptic areas receiving

a greater share, so that

Umn ¼ Ra;n
AmnP
j Ajn

¼ R � fn
X
j

A
g

jn

 !
AmnP
j Ajn

:

ð10:12Þ

In addition to accounting for the elimination of

polyneuronal innervation, the model is able to repro-

duce the size principle (see section 10.2.2) because the

presynaptic resource is utilized more heavily with

increased activity of the neuron. The competitive

advantage of higher frequency axons early in devel-

opment is overcome at later stages by the greater syn-

aptic e‰cacy of axons firing at a lower rate.

10.4 One Model in More Detail

Van Ooyen and Willshaw (1999b) proposed a model

of (consumptive) competition that implements neu-

rotrophic signaling in a fully dynamical way. Unlike

Jeanprêtre et al. (1996) (see section 10.3.2), they did

not need to assume a priori thresholds. Important

variables in the model are the total number of neuro-

trophin receptors that each axon has and the concen-

tration of neurotrophin in the extracellular space. In

this model, there is a positive feedback loop between

the axon’s number of receptors and the amount of

neurotrophin bound. Unlike the model of Jeanprêtre

et al. (1996), this positive feedback, which enables one

or more axons to outcompete the others, was derived

directly from underlying biological mechanisms. Fol-

lowing binding to their receptors, neurotrophins can

increase the terminal arborization of an axon (see sec-

tion 10.2.1) and therefore the axon’s number of syn-
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apses. Because neurotrophin receptors are located on

synapses, increasing the number of synapses means

increasing the axon’s total number of receptors. Thus

the more receptors an axon has, the more neuro-

trophin it will bind, which further increases its

number of receptors, so that it can bind even more

neurotrophin—at the expense of the other axons.

Neurotrophins might increase the axon’s total

number of receptors not only by enhancing the ter-

minal arborization of an axon but also by increasing

the size of synapses (e.g., Garofalo et al., 1992) or by

upregulating the density of receptors (e.g., Holtzman

et al., 1992).

10.4.1 Description of the Model

A single target cell is considered at which there are n

innervating axons, each from a di¤erent neuron (fig-

ure 10.4a). Neurotrophin is released by the target into

the extracellular space at a (constant) rate s and is

removed by degradation with a rate constant d. In

addition, at each axon i, neurotrophin is bound to

receptors with association and dissociation constants

ka;i and kd;i, respectively. Bound neurotrophin (the

neurotrophin–receptor complex) is also degraded,

with a rate constant ri. Finally, unoccupied receptors

are inserted into each axon at a rate fi and are

degraded with a rate constant gi. Thus, the rates of

change in the total number Ri of unoccupied recep-

tors on axon i, the total number Ci of neurotrophin–

receptor complexes on axon i, and the extracellular

concentration L of neurotrophin are

dCi

dt
¼ ðka;iLRi � kd;iCiÞ � riCi ð10:13Þ

dRi

dt
¼ fi � giRi � ðka;iLRi � kd;iCiÞ ð10:14Þ

dL

dt
¼ s� dL �

Xn
i¼1

ðka;iLRi � kd;iCiÞ=n; ð10:15Þ

where v is the volume of the extracellular space.

Axons that will end up with no neurotrophin

ðCi ¼ 0Þ are assumed to have withdrawn.

The biological e¤ects of neurotrophins—all of

which, as explained earlier, can lead to an axon ob-

taining a higher total number of receptors—are trig-

gered by a signaling cascade that is activated upon

binding of neurotrophin to its receptors (Bothwell,

1995). In order for the total number of receptors to

increase in response to neurotrophin, the rate of in-

sertion of receptors, fi, must be an increasing func-

tion, fi (called the growth function), of Ci. To take

into account the fact that axonal growth is relatively

slow, fi lags behind fiðCiÞ, with a lag given by

t
dfi
dt

¼ fiðCiÞ � fi; ð10:16Þ

where the time constant t for growth is on the order

of days. Immediately setting fi ¼ fiðCiÞ does not

change the main results. Van Ooyen and Willshaw

(1999b) studied di¤erent classes of growth functions,

all derived from the general growth function

fiðCiÞ ¼
aiC

m
i

K m
i þ Cm

i

: ð10:17Þ

Depending on the values of m and K, the growth

function is a linear function (class I: m ¼ 1 and Ki

much greater than Ci) or a saturating function, which

can be either a Michaelis-Menten function (class II:

m ¼ 1 and Ki not much greater than Ci) or a Hill

function (class III: m ¼ 2). Within each class, the spe-

cific values of the parameters ai and Ki, as well as those

of the other parameters, will typically di¤er among

the innervating axons as a result, for example, of dif-

ferences in activity or other di¤erences. For example,

increased presynaptic electrical activity can increase

the axon’s total number of receptors (by upregulation:

Birren et al., 1992 and Salin et al., 1995; or by stim-

ulating axonal branching: Ramakers et al., 1998),
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Figure 10.4

The model of Van Ooyen and Willshaw (see section 10.4). (a) Target cell with three innervating axons. The target releases

neurotrophin, which binds to neurotrophin receptors at the axon terminals. For three di¤erent classes of growth functions, (b–

d ) show the development of innervation for a system of five innervating axons, where each axon has a di¤erent competitive

strength bi. (e–g) The nullcline pictures for a system of two innervating axons [the variables Ri; Ci; i ¼ 1; 2 and L are set at
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which implies that, for example, ai is increased or gi is

decreased.

10.4.2 Results of the Model

For class I, starting with any number of axons, elimi-

nation of axons takes place until a single axon remains

(single innervation), regardless of the rate s of neu-

rotrophin release (see figure 10.4). For class I, the

number of surviving axons cannot be increased by

increasing s because an increased amount of neuro-

trophin will again become limiting as a consequence

of the resulting increase in the size of the winning

axon, which shows that the widely held belief that

competition is the result of resources being produced

in limited amounts is too simplistic. The axon that

survives is the one with the highest value of the

quantity bi 1 ½ka;iðai=Ki � riÞ�=½giðkd;i þ riÞ�, which is

interpreted as the axon’s competitive strength. If the

growth function is a saturating function (classes II and

III) more than one axon may survive (multiple inner-

vation) and then the higher the rate s of release of

neurotrophin, the more axons survive. For class III,

stable equilibria of single and multiple innervation can

coexist, and which of these will be reached in any

specific situation depends on the initial conditions.

For classes I and II, there is just one stable equilibrium

point for any set of parameter values and therefore no

dependence on initial conditions. For all classes, axons

with a high competitive strength bi survive, and the

activity dependence of bi (e.g., via ai) means that these

are the most active ones, provided that the variation

due to other factors does not predominate.

The model can account for the following:

0 The development of both single and multiple

innervation.

0 The coexistence of stable states of single and mul-

tiple innervation (class III) in skeletal muscle. Persis-

tent multiple innervation is found in denervation

experiments after reinnervation and recovery from

prolonged nerve conduction block (Barry and Rib-

chester, 1995; see section 10.2.2 and figure 10.5).

0 Increasing the amount of target-derived neuro-

trophin delays the development of single innervation

(class I) (see section 10.2.2) or increases the number of

surviving axons (classes II and III) (e.g., in epidermis;

Albers et al., 1994).

0 Decreasing the di¤erence in competitive strengths

between the di¤erent axons (which could be brought

about by blocking their activity) delays the develop-

quasi-steady state; in (e) and ( f ), b1 > b2; in ( g), b1 ¼ b2]. The variable C is expressed in number of molecules and f in number

of molecules hr�1. Axons that at the end of the competitive process have no neurotrophin (Ci ¼ 0; equivalent to fi ¼ 0) are

assumed to have withdrawn. In (e–g), the bold lines are the nullclines of f1 and the light lines are the nullclines of f2 (the x- and

y-axes are also nullclines of f2 and f1, respectively). The intersection points of these lines are the equilibrium points. A filled

square indicates a stable equilibrium point, an open square an unstable equilibrium point. Vectors indicate direction of change.

(b) Class I. Elimination of axons takes place until the axon with the highest value of the competitive strength bi survives. (c )

Class II. For the parameter settings used, several axons survive. (d ) Class III. Dependence on initial conditions. Although axon 1

has the highest value of the competitive strength, axon 2 survives because its initial value of fi is su‰ciently higher than that of

axon 1. (e) Class I. The nullclines do not intersect at a point where both axons coexist. ( f ) Class II. The nullclines intersect at a

point where both axons coexist. For a su‰ciently lower rate of neurotrophin release, for example, the nullclines would not in-

tersect and only one axon would survive. ( g) Class III. There is a stable equilibrium point where both axons coexist, as well as

stable equilibrium points where either axon is present. For a su‰ciently higher value of Ki, for example, the stable equilib-

rium point where both axons coexist would disappear. (From Van Ooyen, 2001.)
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ment of single innervation or increases the number of

surviving axons (the latter only for classes II and III).

0 Both presynaptic and postsynaptic activity may be

influential, but are not decisive (Ribchester, 1988;

Costanzo et al., 2000; see section 10.2.2). For compe-

tition to occur, it is not necessary that there be pre-

synaptic activity; di¤erences in the axons’ competitive

strengths bi can also arise as a result of di¤erences in

other factors than activity. It is also not necessary that

there be postsynaptic activity or activity-dependent

release of neurotrophin (compare Snider and Licht-

man, 1996).

An interesting observation is that the coexistence of

several stable equilibria for class III implies that an

axon that is removed from a multiply innervated

target may not necessarily be able to reinnervate the

target (‘‘regenerate’’) when it is replaced with a low

number of neurotrophin receptors (figure 10.6). To

stimulate reinnervation, the model suggests that it is

more e‰cient to increase the number of receptors on

the regenerating axons than to increase the amount of

neurotrophin, because the latter treatment also makes

the existing axons stronger.

10.4.3 Influence of the Spatial Dimension of the

Extracellular Space

Van Ooyen and Willshaw (1999b) assumed that the

concentration of neurotrophin is uniform across the

extracellular space, so that all axons ‘‘sense’’ the same

concentration. This is a valid assumption if all the

axons are close together on the target structure, as, for

example, at the endplate on muscle fibers (Balice-

Gordon et al., 1993). However, if the target structure

is large (e.g., a large dendritic tree), the spatial dimen-

sion of the extracelluar space should be taken into ac-

count. Modeling local release of neurotrophin along

the target and di¤usion of neurotrophin in the extra-

cellular space, VanOoyen andWillshaw (2000) showed

Figure 10.5

For class III, persistent multiple innervation can arise after recovery from nerve conduction block. Shown are the phase-space

plots for a system of two innervating axons; for notations, see figure 10.4. The triangles mark the starting points of the trajecto-

ries (bold lines). As shown in (a), under normal conditions—with electrically active axons that have a di¤erent level of activity

(values of ai high and di¤erent) and a low initial number of receptors—single innervation develop. When activity is blocked

(values of ai lower and the same), as in (b), the same initial conditions lead to multiple innervation. Subsequent restoration of

activity means that the nullclines are again as in (a), but now the starting values of fi are those reached as in (b), i.e., in the basin

of attraction of the polyneuronal equilibrium point. The system goes to this equilibrium and will remain there; i.e., there is

persistent polyneuronal innervation. (From Van Ooyen, 2001.)
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that the distance between axons mitigates competi-

tion, so that if the axons are su‰ciently far apart on

the target, they can coexist (even under conditions,

e.g., a class I growth function, where they cannot

coexist with a uniform extracellular space; see figure

10.7). This can explain why (1) when coexisting

axons are found on mature muscle cells they are

physically separated (Ku¤er et al., 1977; Lo and Poo,

1991) and (2) in adulthood a positive correlation exists

between the size of the dendritic tree and the number

of innervating axons, while in newborn animals neu-

rons of all sizes are innervated by approximately the

same number of axons (e.g., in the ciliary ganglion of

rabbits; Hume and Purves, 1981; Purves, 1994).

10.4.4 Axons Responding to More than One Type

of Neurotrophin

Van Ooyen and Willshaw (2000) considered a single

target that releases two types of neurotrophin and at

which there are two types of innervating axons (see

figure 10.8). Each axon type can respond to both

neurotrophin types. The following situations were

examined: (1) Individual axons have only a single type

of neurotrophin receptor, but this can bind to more

than one type of neurotrophin. Di¤erent types of

axons have di¤erent receptor types. (2) Individual

axons have more than one type of neurotrophin

receptor, and each receptor type binds exclusively to

Figure 10.6

(a) Removal of an axon from a multiply innervated target and subsequent replacement, for class II (b) and class III (c). At

t ¼ 504 hr, axon 1 (bold line) is removed. At t ¼ 756 hr, axon 1 is replaced (with initial conditions f1 ¼ 30, R1 ¼
f1=g, and C1 ¼ 0). Only for class II can the replaced axon survive. For class III, in order for the replaced axon to survive, a

much higher initial value of f1 would be required. For notations, see figure 10.4. (Modified from Van Ooyen, 2001.)
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Figure 10.7

Influence of distance between axons on competition. (a) There is release of neurotrophin along the target and diffusion of

neurotrophin in the extracellular space. Both axons have a class I growth function. (b–d ) If the axons are relatively far apart,

both survive. (e–g) If the two axons are close to each other, only one will survive. (c, f ) The neurotrophin concentrations Li (in

mol l�1) near the axons. (d, g) The null-isoclines, in which the bold lines are the null-isoclines of f1 and the thin lines those

of f2. For other notations, see figure 10.4. (Modified from Van Ooyen and Willshaw, 2000.)
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one type of neurotrophin. Di¤erent types of axons

have these receptor types in di¤erent proportions.

The results show that for both (1) and (2), di¤erent

types of axons can coexist (even under conditions,

e.g., a class I growth function, where they cannot

coexist with a single type of neurotrophin) if they re-

spond to the neurotrophins with su‰ciently di¤erent

‘‘a‰nities.’’ For (1), this means that each type of re-

ceptor should bind preferentially, but not necessarily

exclusively, to one type of neurotrophin. For (2), this

means that the receptor content among di¤erent types

of axons should be su‰ciently di¤erent. By having

axons respond with di¤erent a‰nities to more than

one type of neurotrophin, the model can account

for competitive exclusion among axons of one type

while at the same time there is coexistence with axons

of another type innervating the same target (figure

10.8b,d). This occurs, for example, on Purkinje cells,

where climbing fibers compete with each other dur-

ing development until only a single one remains,

Figure 10.8

(a) System of five innervating axons where the target releases two types of neurotrophin, L1 and L2. Axons 1, 2, and 3 have re-

ceptor type R1 (which binds preferentially, but not exclusively, to L1), and axons 4 and 5 have receptor type R2 (which binds

preferentially, but not exclusively, to L2). In (b–d ), C1i (C2i) is the total number of R1-L1 and R1-L2 (R2-L1 and R2-L2)

complexes for axon i. Except in (d ), all axons have a class I growth function. Time is in hours. For other notations, see figure

10.4. (b) When the receptor specificity is high, there is competitive exclusion within each group, but coexistence among

groups. (c ) When the receptor specificity is low, only one axon overall survives. In (d ), the second group of axons (axons 4 and

5) has a class II growth function, the first group (axons 1, 2, and 3) class I. Axons 1, 4, and 5 survive. (Modified from Van Ooyen

and Willshaw, 2000.)
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which coexists with parallel fibers innervating the

same Purkinje cell (Crepel, 1982).

10.4.5 Parallels with Population Biology

In population biology, competition has been studied

in many formal models (e.g., Yodzis, 1989; Grover,

1997). Parallels with axonal competition would allow

results from population biology to be applied to neu-

robiology. Van Ooyen and Willshaw (2000) showed

that the equations describing axonal competition are

of the same form as those describing consumer–

resource systems (Yodzis, 1989). By making quasi-

steady-state approximations—on the slow time scale

of fi—for Ri and Ci (i.e., dRi=dt ¼ dCi=dt ¼ 0), they

showed that Eqs. (10.13)–(10.16) can be rewritten as

dfi
dt

¼ fi½giðL; fiÞ � l3� ð10:18Þ

dL

dt
¼ s� dL �

Xn
i¼1

fihiðLÞ; ð10:19Þ

where function giðL; fiÞ encompasses the growth

function, and function hiðLÞ1 l1L=ðl2;i þ LÞ includes
the kinetics of binding neurotrophin to receptors. (All

ls are constants.) Note that under the quasi-steady-

state approximations, fi ¼ riCi þ giRi. Thus fi is a

measure of the total number of neurotrophin recep-

tors (unoccupied plus bound to neurotrophin) on

axon i. In population biological terms, fi is the size of

the population of consumer species i; L is the size of

the resource population; hiðLÞ is the functional re-

sponse of the consumer, which describes how much

resource is consumed per individual consumer per

unit of time; and giðL; fiÞ � l3 is the numerical re-

sponse of the consumer, which describes the change

in the consumer population expressed per individual

per unit of time in response to (in general) both re-

source and consumer. For class I of the general growth

function, giðL; fiÞ ¼ giðLÞ ¼ l4;iL=ðl2;i þ LÞ.
The form in which the classical Lotka-Voltera

competition equations are given, i.e., without direct

reference to what the consumer species are competing

for, is obtained from Eqs. (10.18) and (10.19) by

making a quasi-steady-state approximation for the re-

source, i.e., dL=dt ¼ 0. This gives an expression for L

in terms of fi, which can then be inserted into Eq.

(10.18). For example, for class I, if we assume for sim-

plicity that all l2;i are the same and d can be neglected,

we obtain

dfi
dt

¼ fi
l4;i

ðl1=sÞ
Pn

i¼1 fi
� l3

� �
: ð10:20Þ

10.5 Discussion

The model by Van Ooyen and Willshaw (1999b)

links competition in the development of nerve con-

nections with the underlying actions and biochemistry

of neurotrophins. It can account for the development

of single and multiple innervation, as well as for sev-

eral other experimental findings, including the obser-

vation that activity is influential but not decisive in

competition.

The model suggests that the regulation of axonal

growth by neurotrophins is crucial to the competi-

tive process in the development, maintenance, and

regeneration of nerve connections. Among the many

axonal features that can change during growth in

response to neurotrophin [the degree of arborization

(and consequently the number of synapses), the size

of synapses, and the density of neurotrophin recep-

tors], the consequent change in the axon’s total num-

ber of neurotrophin receptors, which changes its

capacity for removing neurotrophin, is what drives

the competition.
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Being a variable resource model (see section

10.3.2), this model has the advantage that its variables

and parameters are directly interpretable in terms of

the underlying biology (e.g., release, degradation, and

binding of neurotrophin; insertion and turnover of

receptor). This makes it also more straightforward to

extend the model.

Future Modeling Studies

Axons in the model by Van Ooyen and Willshaw

(1999b) have only a single target, whereas in the neu-

romuscular system, for example, each axon innervates

a number of targets, so that there will also be compe-

tition among branches of the same axon for neuro-

trophin receptors (which are produced in the soma).

Furthermore, the e¤ects of activity have not yet been

studied explicitly (e.g., the activity-dependent release

of neurotrophin).

In general, a challenge for future modeling studies

is to investigate whether explicitly implementing

the putative underlying mechanisms of competition

makes a di¤erence in models in which competition is

involved. For example, Harris et al. (1997) and Elliott

and Shadbolt (1998b) showed that implementing the

putative underlying mechanism of activity-dependent

competition permits the formation of ocular domi-

nance columns in the presence of positively correlated

interocular images. Ocular dominance columns do

not occur under these conditions when competition is

enforced using multiplicative normalization.

Further challenges for modeling competition in-

clude (1) accounting for the observation, in the visual

system as well as in the neuromuscular system, that

activity is influential but may not be decisive; and (2)

combining physiological plasticity (changes in syn-

aptic strength) with anatomical plasticity (changes in

axonal arborization) (as in Elliott et al., 2001).

Future Experimental Studies

Further experimental studies are necessary to find out

what type(s) of competition is (are) involved in the

formation of nerve connections. More types of com-

petition may be involved at the same time, e.g., con-

sumptive competition plus interference competition.

Recent findings (see sections 10.2.2 and 10.2.3), both

in the neuromuscular and in the visual system, have

supported a role for neurotrophic factors in consump-

tive competition.

The model by van Ooyen and Willshaw (1999b),

which implements consumptive competition for neu-

rotrophins, can be tested experimentally. The model

predicts that axons that are being eliminated will have

a low number of neurotrophin receptors. The shape

of the growth function [i.e., the dose-response curve

between neurotrophin and axonal growth; see Eq.

(10.17)], which determines what type of innervation

can develop, can be determined experimentally in

vitro by measuring, for di¤erent concentrations of

neurotrophin, the axon’s total number of neuro-

trophin receptors over all its synapses.

In assessing the role of electrical activity in compe-

tition, it is important to know exactly how activity

has been changed, including postsynaptic activity (and

whether decreased levels of activity increase or de-

crease the release of neurotrophin; see Snider and

Lichtman, 1996), the absolute level of presynaptic

activity, and the relative di¤erences in activity among

innervating axons. The models suggest that all these

could in principle have di¤erent e¤ects.

Finally, synapse elimination is thought to be a

process distinct from ‘‘Wallerian’’ degeneration—a

synchronous, obliterative response to nerve injury in

which nerve terminals are degraded and undergo

phagocytosis (e.g., Winlow and Usherwood, 1975).

However, an interesting alternative paradigm with
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the potential to o¤er insights into mechanisms of

synapse elimination is provided by the WldS mutant

mouse and its transgenic derivatives (Ribchester et al.,

1995; Gillingwater and Ribchester, 2001). These

mice have slow Wallerian degeneration or none.

Sciatic nerve axotomy in WldS mice induces synaptic

boutons to withdraw from motor endplates in a fash-

ion that strongly resembles synapse elimination. Very

recently, the WldS genotype has been used to form

the genetic background for thy1-CFP transgenic

mice, in which motor axons and synaptic terminals

endogenously express cyan fluorescent protein (Gil-

lingwater et al., 2002). These mice, which have

endogenously fluorescent synapses that are protected

from Wallerian degeneration, o¤er many advantages

that should facilitate further descriptive, experimental,

and computational analyses of synapse elimination and

its molecular mechanisms.
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O’Brien, R. A. D., Östberg, A. J. C., and Vrbová, G.
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11Models for Topographic Map Formation

David Willshaw and David Price

The successful functioning of the nervous system

relies to a large degree on the existence of precise pat-

terns of connectivity within and between populations

of nerve cells. One fundamental question for neu-

robiology is how such patterns of connections are

formed. In particular, how are connections made so as

to form a geographic map of one structure onto an-

other, as found in all vertebrate visual systems? This

chapter has three parts. (1) We review experimental

and theoretical methodologies that address the ques-

tion of how maps of connections are formed in the

nervous system. (2) We review the main hypotheses

for neural map making that have been put forward.

(3) We then present the major experimental evidence

for map making and the computational models that

have emerged. We outline the challenges posed by

new experimental evidence relating to the underlying

molecular biology of the formation of nerve connec-

tions emerging from the recent results of genetic

manipulations.

11.1 Neurobiological Maps

In neurobiology, the existence of a ‘‘map’’ is taken

to refer to the fact that the response properties of a

population of nerve cells become distributed across

a second population of nerve cells, by virtue of the

connections made with these cells by the first popula-

tion. One example of a neural map is the projection of

the vertebrate retina onto the contralateral optic tec-

tum in nonmammalian vertebrates (Gaze, 1958), to

which the retina projects directly. The projection is of

such precision that stimulation of each small region of

the retina produces activity in a small area of the tec-

tum, the projections of these areas onto the tectum

being arranged to form a geographic map of the retina

across the tectal surface. Another example is that indi-

vidual cells in the binocularly innervated mammalian

visual cortex, which receives projections from both

eyes via the lateral geniculate nucleus, respond to

activation of the ganglion cells in just one eye; the

pattern of eye preference thus formed over the cortex

resembles a pattern of zebra stripes (LeVay et al.,

1975; see also chapter 12).

The use of the term ‘‘map’’ in the neurobiological

context should be compared with its use in the more

general mathematical sense where it describes the as-

sociation (mapping) of elements of one set with those

in a second set; ordered topographic mappings are just

one particular type of mathematical map, where the

sets of elements have a geometric structure.

Both anatomical and physiological means have

been used to investigate the nature of the map be-

tween two neural structures. To investigate point-

to-point mappings, the oldest method involves the

production of a local lesion in one set of cells. The

localized structural changes that result within its target

population are then taken as evidence for a link be-

tween the two populations of cells. More recently,

the application of axonal tracer molecules has enabled

the path of axons to be followed from cell body to

axonal destination (Mesulam, 1982; Cook and Ran-

kin, 1984). The electrophysiological approach is to

stimulate cells in one small part of a structure and

to record the e¤ects of the stimulation in the target



structure. The stimulation can be direct, via local

injection of current, or indirect. For example, presen-

tation of a local stimulus within the visual field of an

animal will cause stimulation of that part of the retina

onto which the visual field is projected according

to the principles of geometrical optics. By repeating

this procedure and stimulating di¤erent parts of the

retina, a map of the retina onto its target structure can

be built up (Gaze, 1958). The electrophysiological

approach is potentially more versatile because it

allows the construction of maps of features that have

more complex properties than simple area-to-area

relationships.

In this chapter we restrict ourselves to the problem

of how the geometric relationships within one set of

cells are transferred to a second set of cells so that a

geographic or topographic map of the first structure

is formed over the second structure. There are sev-

eral well-characterized examples. In the somato-

sensory system in rodents, the two-dimensional array

of whiskers on the snout projects through midbrain

nuclei to form a somatotopic map in the somato-

sensory cortex (Rose and Mountcastle, 1959), called

the barrel field (because the cellular arrangement in

this part of the cortex resembles barrels). This ordered

projection is indirect, as is the ordered projection of

the retina onto the visual cortex in mammals.

In contrast, in amphibians and fish, the retinotopic

projection of the retina onto the optic tectum, the

main visual center, is direct. Early in development, the

axons of the retinal ganglion cells in each retina travel

along the optic nerve, cross the nerve from the other

eye at the optic chiasma, travel up the wall of the

diencephalon, and arrive at the optic tectum, where

they are distributed across the surface of the tectum so

as to give rise to a map of the entire retinal surface over

the entire surface of the optic tectum (Gaze, 1958).

The problem that the axons have to ‘‘solve’’ can be

formulated as: What are the signals that guide them to

their site of termination? The relative simplicity of the

retinotectal system, its accessibility during develop-

ment, and the relative ease with which experiments

can be carried out to test particular hypotheses of map

making have made it a favorite system for computa-

tional neuroscientists. Most of the mathematical and

computer models that have been developed for the

formation of ordered nerve connections relate to the

retinotectal system in lower vertebrates. As a result,

this review is focused on this particular neurobiolog-

ical system.

11.2 Strategies for Model Building in

Developmental Neurobiology

In this chapter, most of the discussion is about partic-

ular models of specific developmental processes. The

term ‘‘model’’ should be distinguished from a theory

or hypothesis, which in this context describes a gen-

eral idea, or collection of ideas, about a developmental

process. A model is a specific realization of a theory or

hypothesis. Models can be informal or formal. Infor-

mal models are those described, for example, in pic-

torial or verbal language (see also the introduction to

this volume). We concentrate here on formal models,

which are those described in a mathematical formal-

ism, the properties of which in most cases are exam-

ined by establishing the underlying mathematical

relationships analytically or, more usually, numeri-

cally, by using a computer.

The use of formal models to test hypotheses relat-

ing to specific biological questions is an activity that

is now common to many areas of biology, includ-

ing developmental biology and neurobiology. The

models considered here are formulated as sets of

equations representing the actions of the cellular or

subcellular elements and their interactions in the bio-

logical system under consideration. Solution of the
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equations, either analytically or by computer simula-

tion, specifies how, according to the model, the sys-

tems under consideration will behave under the given

conditions. The modeling work that we describe

should be distinguished from modeling of a purely

mathematical nature, where it is attempted to describe

in quantitative form how the key measurable attrib-

utes of a system depend on other parameters but

without requiring the proposed mathematical rela-

tionships to have any interpretation in the underlying

biology.

Models are usually constructed in one of two ways

(Sejnowski et al., 1988): top-down modeling is con-

cerned with constructing a model system containing

the machinery that enables it to carry out a specific

computation or have specific properties; bottom-up

modeling is concerned with investigating the proper-

ties of a model system that arise from the assumed

interactions among its elements. Most models for

the development of connections are top-down be-

cause the developmental problem to be solved is well

specified.

11.2.1 Pattern Formation

The functioning of the nervous system depends criti-

cally on the roles adopted by specific cells and their

relationships with other cells. The basic question

addressed in all modeling enterprises in developmental

neurobiology focuses on how the individual members

of a set of cells acquire di¤erences from one another

that enable them (1) early in development to adopt

di¤erent developmental paths and di¤erentiate into

di¤erent structures (see chapters 1–4); and (2) later

in development, to make di¤erent patterns of con-

nections. Both stages of development can be said

to involve pattern formation (Wolpert, 1969; Slack,

1991). Similar theoretical concepts have been used for

the two stages, although they involve di¤erent types

of patterns. In the first case the pattern is a property of

the cells themselves and in the second case the pattern

is in the relation between nerve cells.

As applied to the development of nerve connec-

tions in the retinotectal system, all models concentrate

on the source of the information acquired by individ-

ual cells that enables di¤erent cells to act di¤erently.

The key questions concern:

0 Acquisition of the information

– From the genes or from the environment?

– Acquired by retinal cells, tectal cells, or both?

0 Signaling of the information to the cells

– Molecular or electrical signaling?

– Di¤usion or active transport?

There are many levels at which computational

neuroscience models can be formulated, such as the

system, cellular, synaptic, or subsynaptic levels (Sej-

nowski et al., 1988). Given that we are discussing

models for the formation of nerve connections, it is

natural to concentrate on the synaptic level. At this

level, di¤erent models may be expressed in di¤erent

amounts of detail. Two examples of models that are

expressed in di¤erent amounts of detail are (1) a set

of instructions (often expressed anthropomorphically)

for how axons find their tectal partners, such as ‘‘find

the tectal cell with the label that is identical to your

label’’; and (2) a set of mathematical equations calcu-

lating the net force that acts on an axonal growth

cone as calculated from the repulsive influences of its

neighbors in the optic pathway.

The first, crude, retinotectal maps were constructed

from the results of axon degeneration studies (Attardi

and Sperry, 1963), but the first maps created with any

precision were constructed by extracellular recording

from the optic tectum of goldfish and of the anura

Rana pipiens and Xenopus laevis (Gaze, 1970; Sharma,

1972). In Xenopus, at least fifty distinguishable record-

ing positions are arranged in topographic order (Gaze,
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1970). The other important attribute of such maps

is that they always have a specific orientation; all reti-

notectal maps are arranged so that nasal field (and

therefore, by camera inversion, temporal retina) pro-

jects to rostral tectum and dorsal field (ventral retina)

to medial tectum (figure 11.1).

Unlike the situation in the mammalian visual sys-

tem, the optic nerve in amphibians and fish can

regenerate following surgical damage. Given that

originally experiments were more easily carried out

on adults than on neonates, most of the early data

were obtained from studies on the regeneration of

connections. The first ideas about the formation of

nerve connections were derived from Langley (1895),

whose data were obtained from information on the

regeneration of his own peripheral nerves. As a con-

sequence, most of the theories and most of the models

for the development of ordered nerve connections

are focused on regeneration studies, meaning that

in almost all models, features related to the changing

morphology of the system during development are

not included.

11.3 Overview of Hypotheses for Map

Formation

We now describe the main classes of hypotheses that

have been advanced for the formation of ordered

maps of connections. Despite the fact that most of the

main hypotheses were developed between the 1940s

and the 1970s, they are still relevant today and no new

type of hypothesis has been advanced since then; most

‘‘new’’ hypotheses are combinations of older ones.

These hypotheses can be divided into three groups

involving (1) specific cellular properties, (2) specific

relationships between cells, or (3) external factors.

As a prelude to the discussion of the three major

classes of hypothesis, the retrograde modulation hypothesis

formulated by Weiss (1937a,b) is mentioned. In this

hypothesis, it is assumed that growing nerve fibers

make contact with their target at random. Di¤erent

retinal cells send out electrical signals of di¤erent

types, with each tectal cell tuned to respond to the

signal that is characteristic of a di¤erent retinal loca-

tion. In this way, specificity between individual retinal

and tectal cells is established. However, since connec-

tions are assumed to be made at random, there is no

anatomical map, and so this hypothesis does not ad-

dress the fundamental question of how such maps are

formed. This hypothesis is mentioned mainly for its

historical relevance because it had an important influ-

ence on the first major class of hypothesis.

1. Cellular properties—chemoa‰nity. The notion of

chemoa‰nity is associated with the name of Sperry

(1943, 1963), a student of Weiss, who formulated

the concept as a reaction to the retrograde modula-

tion hypothesis. On the basis of degeneration studies

carried out on normal adult goldfish, he proposed that

there are preexisting sets of biochemical markers that

label both retinal and tectal cells and that the ordered

pattern of connections observed during development

is generated by the matching together of cells with the

matching labels (figure 11.2A).

2. Intercellular relationships—neighbor matching. The

idea of this hypothesis is that there is a mechanism

that forces the retinal axons from cells of neighboring

origins to innervate neighboring tectal cells (Lettvin,

cited in Chung, 1974). This mechanism has to be

supplemented by a separate mechanism specifying the

orientation of the map, which cannot be supplied by

a mechanism working on intercellular relations only.

Two ways of supplying neighborhood information

have been suggested.
0 Electrical activity. This derives from the idea that cells

that are close together in the retina have correlated

firing patterns. It is assumed that neighboring tectal
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Figure 11.1

The ordered projection of a visual field onto the contralateral tectum in an adult Xenopus laevis. Each of the twenty-three

numbered regions in the left visual field denotes the field position where a small light spot elicits maximal response at the cor-

respondingly labeled recording electrode on the right optic tectum. As an aid to demonstrating the orderliness of the projection,

electrode recording positions in the same straight line running from lateral and medial tectum have been joined with dotted

lines and so have the corresponding visual field positions. The map of the left visual field (and hence retina) onto the right optic

tectum is ordered and in a specific orientation, with the nasal field projecting to rostral tectum and the ventral field to lateral

tectum. The similar direct projection from the right visual field to the left optic tectum is shown schematically, with the two

arrows indicating the polarity of the projection.
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Figure 11.2

A schematic view of the projection from a one-dimensional retina to a one-dimensional tectum in normal and surgically altered

conditions displaying systems matching. (A) The normal case of a full-sized retina projecting to a full-sized tectum. According

to Sperry’s hypothesis of chemoa‰nity, this is achieved by each retinal ganglion cell carrying a unique identifying label (in this

case, one of the numbers from 1 to 8), which enables it to contact the tectal cell with the corresponding label. (B, C, D) The

projections formed in adult goldfish after transection of the optic nerve and surgical removal of half of the retina (B ), half of the

tectum (C ), or half of the retina and half of the tectum (D). In all cases, the remaining retina reestablishes an ordered projec-

tion onto the remaining tectum. In these cases, the distribution of Sperry’s postulated sets of labels across the retina and the tec-

tum is unknown. (E, F ) The distribution of labels across a surgically constructed half-retina and a whole tectum under two

di¤erent hypotheses. (E ) According to the hypothesis of regulation, the half-retina regenerates the entire set of labels, which

allows it to innervate the entire tectum in an ordered fashion. (F ) According to the hypothesis of induction, the retinal labels

remain unchanged, but the tectal labels are altered to match those in the retina, again enabling the axons to make the appropri-

ate connections by recognizing their tectal partner carrying the matching label.
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cells have strongly correlated firing patterns and that

connections between cells are reinforced according

to their level of activity (‘‘cells that fire together wire

together’’). If all retinal cells that are neighbors con-

nect to tectal cells that are neighbors, a topographi-

cally ordered map of the retina onto the tectum will

result (Chung, 1974; Willshaw and Von der Mals-

burg, 1976).
0 Molecular mechanisms—marker induction. Properties

other than those of electrical activity which have spa-

tial distributions, such as freely moving molecules, can

be exploited. It has been suggested that the tectal cells

acquire the ability to make contact with selected reti-

nal cells through signals passed to them from the reti-

nal cells which cause retinal labels, or markers, to be

induced into the tectum. This hypothesis could also

be regarded as an extension of the chemoa‰nity

hypothesis (Von der Malsburg and Willshaw, 1977;

Willshaw and Von der Malsburg, 1979).

3. Mapping involving external properties. Two members

of this class can be identified:
0 Fiber ordering. The idea of this hypothesis is that the

fibers attain their order before contact is made with

the target structure. This could be done, for example,

by axons matching to labels that are placed in the

pathway rather than on the tectum itself (Attardi

and Sperry, 1963) (which would be a variant of the

chemoa‰nity hypothesis). Another suggestion is that

since axons are already ordered as they leave the ret-

ina, they could simply maintain that order all the way

to the optic tectum (Horder and Martin, 1979; Rager

and Von Oeynhausen, 1979).
0 The timing hypothesis. In this hypothesis, the earliest

growing fibers to reach their target make connections

with the earliest di¤erentiating postsynaptic cells. This

would assume a mechanism that converts positional

information into temporal information ( Jacobson,

1960; Gaze, 1960).

11.4 Cellular Properties—Chemoa‰nity

Based on his observations that after the optic nerve in

the adult newt was cut and the eye rotated, the ani-

mal’s response to visual stimulation was not adapted

to the eye’s rotation, Sperry (1943, 1944, 1945) for-

mulated his doctrine of chemoa‰nity. According to

this hypothesis, both the retinal and the tectal cells

carry prespecified, distinguishing labels of a chemical

origin. The making of connections involves match-

ing each retinal cell with the tectal cell carrying the

matching label. Originally the matching process was

regarded as analogous to fitting keys to locks (figure

11.2A). In later papers, Sperry (1963) went on to pro-

pose an informal model for this process. Following

related ideas about specification of the developing

limb, he proposed that each axis of the retina is la-

beled by a di¤erent label in a graded fashion, so that

there are as many labels as there are axes of variation.

In this way, a di¤erent collection of labels is assigned

to each retinal location. He assumed that similar gra-

dients were present in the tectum (see also section

11.4.4). Each incoming axon would then find the

tectal cell with the matching collections of labels to

which it would make contact.

There are several general points of interest about

this hypothesis. First, the process of matching retinal

and tectal elements is assumed to take place entirely at

the optic tectum; second, as applied to development,

this hypothesis assumes a fully grown retina connect-

ing with a fully grown tectum. We now know that

both structures and the pathway between them de-

velop as connections are made, but there was no pro-

vision for these changes in the theory. At a more

conceptual level, this hypothesis places a significant

burden on the genome to provide enough informa-

tion to specify every label used by the developing
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nervous system. Finally, it is assumed that the sets of

matching labels are developed independently yet per-

fectly in step; a slight deviation in the ideal program of

growth will lead to errors in the connections made.

Much experimental work has been carried out on

the development and regeneration of the ordered ret-

inotectal projection of the retina onto the optic tec-

tum in amphibians and fish to test Sperry’s hypothesis.

The main experimental issues have been (1) whether

the labels that are proposed to exist are fixed or are

plastic, which would be signaled by a plasticity of

connections under certain circumstances; and (2) the

mode of acquisition of these labels by the retina and

tectum.

11.4.1 Plasticity of Labels and Connections

Sperry’s original idea was that the labels are the prop-

erty of the tissue itself and so could not be changed

by external influences, such as those arising when

his goldfish ‘‘sees the world upside down’’ after one

of its eyes has been rotated. This idea was supported

by his subsequent work showing that the optic fibers

from a surgically diminished half-retina in goldfish

regenerated to the appropriate half of the tectum

(Attardi and Sperry, 1963). However, later experi-

ments showed that the half-retinal projection ex-

panded in order to cover the whole tectum (Schmidt

et al., 1978). This result is an example of those

obtained from the extensive series of the so-called

mismatch experiments. After surgery to reduce the

size of the retina or of the tectum, coupled with tran-

section of the optic nerve, optic nerve fibers are chal-

lenged to reinnervate the optic tectum that remains

(Horder, 1971; Yoon, 1972; Gaze and Keating, 1972;

Schmidt et al., 1978). The fundamental result is that

whatever the size of the two participating structures,

an ordered map of the retina will be formed across the

entire tectal surface, in the normal orientation (figures

11.2B, 11.2C, and 11.2D).

The phrase ‘‘systems matching’’ was coined to

describe this type of connectivity pattern (Gaze and

Keating, 1972). This result is found not only in the

regeneration of connections as seen during the devel-

opment of the visual system. In Xenopus, the retina

and tectum are still developing as the projection be-

tween them develops. They grow in di¤erent ways,

and from the very earliest stages of development at

which a map can be recorded, there is an ordered

projection of the retina onto the tectum (Gaze et al.,

1974). This implies a continual adjustment of the pat-

tern of connections during development.

Consider, for example, cells from near the middle

of the retina, which are among the earliest retinal cells

generated. Eventually they come to project to cells at

the center of the optic tectum, but they cannot pro-

ject there initially because the appropriate tectal cells

have not yet been born. Electrophysiological map-

ping shows that these cells initially project to the front

of the tectum and gradually move in a caudal direc-

tion to reach their final position (figure 11.3). The

nonlinearities in the projection pattern seen at devel-

opmental stages reflect this changing pattern of con-

nections during development (Gaze et al., 1974). The

conclusion that retinal axons move their site of termi-

nation during development is supported by electron

microscope studies demonstrating the degeneration

of synapses during development. In experiments on

Rana pipiens tadpoles, Reh and Constantine-Paton

(1983) investigated how the termination sites of reti-

nal ganglion cell terminals labeled with horseradish

peroxidase (HRP) change during development. They

showed that the fibers could travel for up to 1.4 mm

in the rostrocaudal direction, which represents a

substantial fraction of the entire extent of the adult

tectum. Together with related electrophysiological
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and electron microscope studies (Gaze et al., 1979b),

this established that the retinal ganglion cell termi-

nals continually change their tectal partners during

development.

A second set of studies on development exploits the

properties of the experimentally induced compound

eye projection in Xenopus (Gaze et al., 1963). A com-

pound eye is made early in development by replacing

a half-eye rudiment by another half-eye rudiment of

di¤erent embryonic origin. The eye that develops is

called a compound eye. Many di¤erent combinations

of compound eye are possible, the most common

ones being double nasal eyes (NN) made from two

nasal half-rudiments, double temporal (TT), and dou-

ble ventral (VV) compound eyes. In the adult, the

eyes are of normal size and appearance (apart from

some abnormalities in pigmentation). A single optic

nerve develops and innervates the contralateral tec-

tum in the normal fashion. However, the projection

made by these compound eyes as assessed by extra-

cellular recording is grossly abnormal. Each half-eye

corresponding to the two half-eye rudiments that

were brought together to make the compound eye

projects in order across the entire optic tectum (Gaze

et al., 1963) instead of being localized to just one half-

tectum (figure 11.4).

If connections are formed through the matching of

labels carried by the retinal axons and the tectal cells,

these two sets of experimental results provide evi-

dence that the labels are plastic. The question then

arises as to the mechanisms underlying this plastic-

ity. Some people have argued that the labels do not

change but that the mapping function between them

does; alternatively, that there are other mechanisms at

play that can override the e¤ects of the fixed labels.

Whichever of these interpretations is correct, it is clear

that the version of chemoa‰nity as first presented

by Sperry is not compatible with the experimental

findings.

Figure 11.3

A diagram of how connections are made during the devel-

opment of the retinotectal projection in Xenopus laevis.

The diagram shows how the cells arranged along the tem-

peronasal axis of the retina project in order across the ros-

trocaudal axis of the tectum at three di¤erent stages of

development. (A) Initially, the first-born retinal cells, at the

center of the retina, project to the first-born tectal cells, in

rostral tectum. (B, C ) Two stages of development, during

which new retinal cells are added at the periphery, whereas

new tectal cells are added to caudal tectum only. As a result,

individual cells change their partners until the adult config-

uration is reached. The retinal and tectal cells existing at

each of the three development stages are shown by the

shaded regions.
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11.4.2 Specification of the Retina

If cells from di¤erent parts of the retina and tectum

are labeled according to their place of origin, at some

stage in development di¤erent parts of the retina (and

the tectum) must acquire their own identity. The

issue of how and when this occurs has been discussed

in terms of how the di¤erent axes of the retina and the

tectum are specified. When do the axes of the retina

become polarized to enable, for example, nasal retina

to develop connections with caudal tectum, temporal

retina with rostral tectum, dorsal retina with lateral

tectum, and so on?

Following rotation of a Xenopus eye rudiment prior

to embryonic stage 28, the retinotectal map devel-

oped in the adult was found to be indistinguishable

from a normal map. In contrast, following rotation of

the eye rudiment at stage 32, the adult map was found

to be ordered and the di¤erence in map orientation

compared with that in the normal case was equal to

the amount by which the eye rudiment had been

rotated ( Jacobson, 1967; Gaze et al., 1979b). The in-

terpretation was that the retinal axes were laid down

between these two stages. Further experiments sug-

gested that (1) the nasotemporal and dorsoventral

axes of the eye are specified independently, one after

another ( Jacobson, 1967) (which mirrored similar

inferences about the specification of the axis of the

limb); and (2) the axis of one of two half-eye rudi-

ments when put together in the same orbit to form a

compound eye could undergo respecification after the

time of axial polarization by the presence of the other

half-eye (Hunt and Frank, 1975).

These findings were controversial. However, some

of the issues have been resolved by the use of albino

tissue as an indicator of retinal origin. This suggested

that in some of the controversial cases the retina had

not been respecified; rather, the eye rudiment that

had been rotated had died and was replaced by re-

Figure 11.4

The ordered projection of the visual field onto the con-

tralateral tectum recorded from an adult Xenopus laevis with

one double nasal compound eye. Conventions are as in fig-

ure 11.1. This double nasal compound eye was made by

replacing the temporal half of a right eye rudiment by a nasal

half from a right eye rudiment. In this map each position on

the tectum from which recordings were made can be stimu-

lated by two distinct regions in the visual field, arranged

symmetrically about the dorsoventral axis.
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generating tissue, which had the normal orientation

(Gaze et al., 1979a).

A large series of experiments was carried out to as-

sess the maps developed from Xenopus compound eyes

made in many di¤erent combinations (Straznicky and

Gaze, 1980). Examples are VrVr (the compound eye

is assembled from two ventral halves from right-eye

rudiments) and NVrNVl (nasoventral right half with

nasoventral left half ). In all cases, the orientation of

each part-map was predictable from knowledge of

the origin of the corresponding half making up the

compound eye maps. In a series of experiments using

‘‘pie-slice’’ compound eyes (Willshaw et al., 1983),

the pie-slice part of the map was either normal (indi-

cating loss of the pie slice) or had an orientation pre-

dictable from knowledge of the place of origin of the

pie slice.

11.4.3 Specification of the Optic Tectum

A limited amount of work has been done on assessing

how the optic tectum becomes specified, using a sim-

ilar paradigm of comparing the e¤ects of rotating tec-

tal precursors at very early stages. Chung and Cooke

(1975, 1978) rotated portions of Xenopus pretectal

tissue. In the cases where the tissue that gives rise to

the diencephalon (normally immediately anterior to

the tectum) had been rotated as well, the adult reti-

notectal map was found to be rotated. In cases where

there had been no rotation of diencephalic tissue,

a normal map resulted. Based on a relatively small

number of experiments, the inference was that the

presumptive diencephalon contains an organizer (a

‘‘beacon’’) that determines the polarity of tectal tissue.

This type of experiment attempting to manipulate

the tectal axis has been repeated in a di¤erent form at

the genetic level. Itasaki and Nakamura (1992) trans-

planted mesencepalic alar plate into the diencephalon

of chick embryos. They found that insertion of this

tissue reverses the normal rostrocaudal gradient of

expression of the gene engrailed in the optic tectum.

Engrailed is a homeobox gene, originally discovered in

Drosophila (Morata and Lawrence, 1975; Kornberg,

1981) and now known to have homologs in many

vertebrates (Patel et al., 1989). It has a gradient of ex-

pression along the rostrocaudal axis of the chick optic

tectum, with a high level in caudal tectum, to which

nasal fibers normally project, and a low level in rostral

tectum, which is innervated by temporal fibers (Itasaki

and Nakamura, 1996). It may control the ligands of

the Eph class of receptors (see later discussion).

The e¤ect of reversing the rostrocaudal axis of

expression of engrailed is that nasal fibers come to

innervate rostral tectum; conversely, temporal fibers

innervate caudal tectum rather than rostral tectum.

Using a retroviral gene transfer technique to produce

animals with high levels of engrailed expression at spe-

cific regions throughout chick tectum, Friedman and

O’Leary (1996) and Itasaki and Nakamura (1996)

found that nasal fibers preferentially innervate the

areas of high expression of engrailed, whereas temporal

fibers do not. This suggests that there is a causal link

between expression of engrailed and the establishment

of retinotectal maps.

The use of large-scale screening of zebrafish

mutants has found a number of genes a¤ecting the

mapping of the retina onto the contralateral tectum.

Mutations in some genes are related to abnormal

mapping of connections along the dorsoventral axis

and in other genes to similar abnormalities along the

anterior-posterior (rostrocaudal) axis. In some cases

the arrangement of optic fibers within the optic path-

way is normal; in other cases it is abnormal. These

results may provide evidence for genes that control

the establishment of gradients of guidance cues

arranged along these axes (Trowe et al., 1996). How-

ever, the precision of the retinotectal projection in

these studies is too low to allow any firm conclusions.
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11.4.4 Evidence for Gradients of Molecules

At the time when the idea of chemospecificity was

proposed, the molecular labels required by the theory

were hypothetical objects and they were justified on

the basis of necessity rather than on direct experimen-

tal evidence. Since the 1970s, many molecules have

been considered as candidates for Sperry’s postulated

chemical labels. Initial work was carried out in vitro.

It was investigated whether specificity involves pref-

erential adhesions between retinal cells and tectal cells.

Cells prepared from central chick neural retina were

found to adhere preferentially to medial tectum, and

cells from dorsal retina to lateral tectum (Roth and

Marchase, 1976; Gottlieb et al., 1976). Similar results

were obtained using axonal tips instead of entire neu-

rons (Halfter et al., 1981). More recent experiments

have tested the growth responses of retinal axons.

Walter et al. (1987) allowed retinal cells to extend

axons onto a membrane made up of tectal strips

derived alternatively from rostral and caudal tectum.

Ganglion cells from nasal retina were found to inner-

vate each type of strip equally. In contrast, cells from

temporal retina extended axons onto strips of rostral

origin only. The e¤ect seems to be one involving re-

pulsion of cells of temporal origin by caudal cells. This

was shown directly in experiments where after tectal

cell membranes were contacted by a growth cone of

temporal origin, the growth cone filopodia withdrew,

leading to the collapse and retraction of the growth

cone (Cox and Bonhoe¤er, 1990). This notion of

repulsion has become central to modern ideas of how

molecules interact to form ordered patterns of nerve

connections.

The evidence cited here is suggestive of the exis-

tence of molecular labels, but does not indicate the

identity of the labels. A number of candidate mole-

cules have been proposed, such as toponymic mole-

cule (TOP; Trisler and Schneider, 1981) and repulsive

guidance molecule (RGM; Stahl et al., 1990). Recent

interest has focused on the Eph receptors, the largest

known subfamily of receptor tyrosine kinases, and

their associated ligands, now known as ephrins (Fla-

nagan and Vanderhaeghen, 1998; Nakamura, 2001;

Wilkinson, 2001). The molecular compositions of

Eph receptors have been known for some years. They

have been found to be expressed in the developing

and adult nervous system (Tuzi and Gullick, 1994),

and the family of associated ligands, the ephrins, has

recently been cloned (Flanagan and Vanderhaeghen,

1998). The ephrins, discovered in mouse superior

colliculus (Cheng and Flanagan, 1994), bind to the

Eph receptors found in retinal ganglion cells. These

pairs of molecules seem to fulfill the requirements for

the labels needed for chemospecificity. In the mouse,

there is a gradient of the receptor EphA5 across the

nasotemporal axis of the retina, whereas there is a

complementary gradient of ephrinA2 from anterior to

posterior superior colliculus. In chicks, there is a simi-

lar set of gradients in the retina and tectum. EphA3 is

expressed in a decreasing gradient from the temporal

to the rostral pole, and in the optic tectum ephrinA5

and ephrinA2 are arranged in a gradient increasing

from rostral to caudal tectum. In all cases, the gra-

dients in the two structures do not match, but are

complementary. For example, temporal retina pro-

jects to rostral tectum, but in temporal retina the level

of Eph receptor is at its highest value, whereas in ros-

tral tectum, the level of the ephrins is lowest (figure

11.5B).

The following results from the chick suggest the

involvement of the Eph receptors and ephrins in map

formation:

1. These molecules are produced at the time when

retinal axons travel into the tectum to make their

connections.
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2. In experiments where ephrinA2 was overexpressed

at the low end of its gradient:
0 Incoming axons destined for the low end of the

ephrinA2 gradient avoided this region.
0 Axons that normally map to high ephrinA2

regions of the tectum were unperturbed by the

overexpression.

From these experiments, it was inferred that con-

nections are made in the following way (Nakamoto

et al., 1996): The ligand ephrinA2 is distributed over

the optic tectum, a gradient being built up from ros-

tral (low end) to caudal (high end) tectum. Axons

of temporal origin normally project to rostral tectum.

They have large numbers of EphA3 receptors on their

surfaces, making them highly sensitive to ephrinA2.

These axons enter rostrally and grow until the ever-

increasing amount of ephrinA2 that they encounter

forces them to stop. By contrast, axons of nasal origin

normally map to the back of the tectum, where eph-

rinA2 levels are high. This is possible because these

axons have few EphA3 receptors, rendering them

nearly oblivious to the ligand, which allows them to

Figure 11.5

The distribution of the molecular gradients underlying the formation of nerve connections in a schematic one-dimensional

retinotectal projection. (A) According to the hypothesis of chemospecificity, the retinal and tectal gradients are matching; i.e.,

axons from the high end of the retinal gradient project to the region of the tectum that is at the high end of the tectal gradient

and similarly, axons from the low end of the retina project to the low end of the tectal gradient. (B ) Conversely, in chick,

mouse, and goldfish, retinal axons with a high density of Eph receptors project to the part of the tectum with a low density of

ephrins and vice versa.
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pass through increasing concentrations of it as they

cross the tectum.

11.4.5 Models Based on Chemoa‰nity

Sperry’s model of neuronal specificity (Sperry, 1943,

1945, 1963) has already been described, as applied

to the retinotectal system of lower vertebrates. Several

issues about the labels that were proposed to exist

were also discussed, together with various informal

models.

Gierer (1983) proposed that axons grow in the di-

rection of the maximal slope of a growth parameter,

or potential. Each axon has its own potential assigned

to it, which is assumed to be a function of the coor-

dinates of its retinal cell of origin and its current loca-

tion on the tectum. The direction of growth of an

axon is down the steepest slope of its potential, there-

by decreasing its value. The axon will continue to

change its position until its potential cannot be

diminished any further. The form of the potential

function is such that at this point the axon will have

found its correct location in the tectum. This model

can be thought of as a computationally more plausible

model than that of Nakamoto et al. (1996) for how

molecular gradients give rise to maps of connections

(which Gierer’s work predates considerably). As such,

Gierer’s model is a straightforward demonstration of

how gradients can provide guidance signals. How-

ever, there is no provision for plasticity of connections

under conditions of retinotectal mismatch.

Models Providing for Plasticity of Connections

If two sets of nerve cells interconnect to form an

ordered map of connections on the basis of the labels

carried by the participating cells, and if after surgical

diminution of the retina or tectum the retinal cells

project to tectal positions that they would not have

occupied in the absence of surgery (Gaze and Keating,

1972), then surgery must have changed the labels.

Various proposals have been made to explain this.

Regulation

To account for the map seen in the mismatch experi-

ments, it was suggested that removal of cells triggers

a reorganization of labels in the surgically a¤ected

structure (Meyer and Sperry, 1973). Following retinal

hemiablation, for example, the set of labels initially

deployed over the remaining half-retina would be-

come rescaled so that the set of labels possessed by

a normal retina would now be spread across the re-

duced retina (figure 11.2E). This would allow the

entire reduced retina to project in order across the

entire tectum. The mechanism was called regulation

by analogy with similar findings in morphogenesis,

where a complete structure can regenerate from a

partial structure (Weiss, 1939). However, this is a post

hoc explanation and lacks predictive power (Gaze and

Keating, 1972).

Plasticity through Competition?

Gaze and Keating (1972) suggested that it may be

possible for systems matching to occur without the

necessity for changes in labels. Retinal axons could

compete for space, and if each retinal axon has the

same amount of ‘‘synaptic strength,’’ the set of axons

can expand or contract to fill the amount of tectal

space available. Prestige and Willshaw (1975) for-

malized the notion of chemospecificity by distin-

guishing between two types of chemical matching

schemes. In schemes of type I, each retinal cell has af-

finity for a small group of tectal cells and less for other

cells (i.e., chemoa‰nity). Cells that develop connec-

tions according to this scheme will make specific con-

nections with no scope for flexibility. In schemes of

type II, all axons have high a‰nity for making con-

nections at one end of the tectum and progressively

less for tectal cells elsewhere. Conversely, tectal cells
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have high a‰nity for axons from one pole of the ret-

ina and less from others; there is graded a‰nity be-

tween the two sets of cells.

Prestige and Willshaw (1975) explored models of

type II where the a‰nities were fixed. Simulations

showed that ordered maps (albeit in one dimension

only) can be formed if competition is introduced

by limiting the number of contacts that each cell can

make, which ensures an even spread of connections;

without competition, the majority of the connections

would be between the retinal and tectal cells of high-

est a‰nity. In order to produce plasticity when the

two systems are of di¤erent sizes, the additional as-

sumption had to be made that the number of con-

nections made by each cell can be altered. This is

equivalent to introducing a form of regulation, even

though the labels as such are not changed.

Eph/ephrin-Based Models

Nakamoto et al. (1996) proposed an informal model

for topographic mapping to account for the following

findings:

1. Ephrins and their receptors are arranged in coun-

tergradients; i.e., axons from the high end of the reti-

nal gradient normally project to the cells at the low

end of the tectal gradient and vice versa.

2. The interactions between Eph receptors and eph-

rins cause repulsion.

According to this model, all axons have an equal ten-

dency to grow toward posterior tectum. In the final,

stable state, once the mapping has been set up, this

tendency is counterbalanced by an equivalent amount

of negative signal. The amount of negative signal is

determined by the number of receptors bound by

ligand. In the simplest case, if the axon has an amount

R of receptor that binds to an amount L of ligand, the

strength of the negative signal would be the product

R � L. The same amount of signal would result from

either high receptor and low ligand, low receptor

and high ligand, or a medium amount of both quanti-

ties. This would account for the necessity of having

countergradients.

There are several problems with this type of mech-

anism. First, the model specifies how order can be

arranged along one dimension only and cannot be

generalized to two dimensions. The fact that optic

fibers grow in along the rostrocaudal axis of the tec-

tum is exploited in the model when accounting for

the ordering of connections along this axis; this fact

cannot also be used for the ordering of connections

along the mediolateral axis. It could be that order-

ing of axons along the second axis is controlled by a

separate set of gradients; or that there is an entirely

di¤erent mechanism for exploiting the information

supplied from molecular gradients. The second prob-

lem is that this model is concerned only with how to

generate matching gradients in the retina and tectum.

Like all models employing fixed labels, it will not ac-

count for the variety of results from both experimen-

tal and normal situations that demonstrate plasticity of

connections in the system (Gaze and Keating, 1972).

Finally, the model has one of the fundamental weak-

nesses of Sperry’s proposal itself, which is that there is

a lack of information concerning how, in early de-

velopment, two precise gradients could be set up and

kept in step with each other during the growth of two

independently developing structures.

11.5 Intercellular Relationships—Neighbor

Matching

A very di¤erent hypothesis from that of chemoa‰nity

is that the nature of the contacts made by any given

axon depends on the contacts formed by its neighbors.

This suggests a di¤erent type of relation between reti-

nal and tectal cells, in particular that there is no fixed

relation between them.

Models for Topographic Map Formation 227



The underlying idea is that there is a mechanism

that ensures that axons with nearby cells of origin in

the retina tend to make connections on nearby tectal

cells (figure 11.6A). This could be the result of spon-

taneous activity in the retina, which is formed into

small islands of highly correlated activity because of

the pattern of intraretinal connectivity. Connections

between these active cells and similar islands of activ-

ity in the tectum would be reinforced by an activity-

dependent Hebbian mechanism (Hebb, 1949; Chung,

1974; Willshaw and Von der Malsburg, 1976). Alter-

natively, there could be a set of labels assigned to the

retinal cells with a graded spatial distribution; cells of

nearby retinal origin carry similar labels and therefore

establish contact on the same part of the tectum on

the basis of their carrying similar labels (Von der

Figure 11.6

Neighbor-matching hypotheses for the formation of the retinotectal map. (A) A mechanism that operates (1) to connect each

pair of neighboring retinal cells to neighboring tectal cells (left-hand diagram) and (2) to prevent non-neighboring retinal cells

from connecting to neighboring tectal cells (center diagram) and (3) vice versa (right-hand diagram), will generate an ordered

retinotectal map. (B ) Illustration of the marker induction scheme. Retinal cells acquire markers of two distinct types in con-

centrations shown in the top graph. Tectal cells acquire markers from the retinal cells through the retinotectal synapses, in

amounts in proportion to their synaptic strength, and through intratectal exchange. The distribution of the two markers over

the tectum is shown in the bottom graph and is continually refined according to the similarity between retinal and tectal mark-

ers. This leads to a gradual refinement in the tectal marker profile and the pattern of connections until a copy of the retinal

marker distribution has been reproduced in the tectum, with an ordered mapping of the retina onto the tectum.
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Malsburg and Willshaw, 1977; Willshaw and Von der

Malsburg, 1979). This distinction gives rise to the

issue of the evidence for activity-dependent versus

activity-independent mechanisms for map formation.

11.5.1 Activity Dependence versus Activity

Independence

Various experimental results suggest that both

activity-independent and activity-dependent influ-

ences are essential for the establishment of ordered

nerve connections (see also chapters 10 and 12). It

could be that activity-independent e¤ects direct the

nerve fibers onto the tectum and are responsible for

producing an initial coarsely grained map and that the

refinement of connections into the precision seen in

the adult is driven by activity. One possible type of

activity is correlated activity. The existence of strongly

correlated spontaneous activity has been demonstrated

among ganglion cells, in the adult at least (Arnett,

1978; Rodieck, 1967). This makes spontaneous activ-

ity a plausible basis for the formation of ordered maps.

Evidence for Activity-Dependent Mechanisms

Most investigations have been on the e¤ect of neural

activity on map formation in the regeneration of adult

projections, and some have examined the e¤ect of

tetrodotoxin (TTX), which blocks voltage-sensitive

sodium channels and therefore prevents the propaga-

tion of nerve impulses. Meyer (1983) and Schmidt

and Edwards (1983) made repeated injections of

TTX into the goldfish eye after the optic nerve was

crushed. They found that the maps regenerated in

the presence of TTX were ordered, but not with the

same amount of detail expected after regeneration

without application of TTX. Cook and Rankin

(1986) investigated the refinement of the regenerated

goldfish optic projection under conditions of abnor-

mal electrical stimulation produced by keeping the

animals under stroboscopic illumination. They made a

careful quantitative study in which retrograde trans-

port of HRP from a standard tectal injection site was

employed to measure the precision of the mapping.

For all the retinal cells labeled, they calculated the

mean-squared distance of each labeled retinal cell to

its nearest neighbor and expressed this as a propor-

tion of retinal area. In normal animals, the precision

calculated in this way has a value of 1 percent. Early

in regeneration, without exposure to stroboscopic

illumination, labeled retinal cells are very widely dis-

persed, and over the next 2 or 3 months, precision is

improved until the normal figure of 1 percent is

reached. After 3 months of exposure to strobe light,

the precision of the mapping was still very di¤use and

corresponded to that seen 1 month after regeneration

under normal lighting conditions.

Evidence for Activity-Independent Mechanisms

In addition to the evidence relating to chemoa‰nity

discussed earlier, evidence for the role of activity-

independent mechanisms comes from work showing

that maps of connections can develop in the absence

of neural activity or where the normal activity pat-

terns have been disturbed.

The Californian newt Taricha torosa manufactures

TTX, to which it is insensitive. Harris (1980) grafted

eye rudiments on this newt from a newt that is tetro-

dotoxin sensitive. This ‘‘silent’’ eye developed as

normal and innervated the optic tectum apparently

normally. In this eye, all action potentials were

blocked, yet neuroanatomical studies revealed a reti-

notopic map. However, only a low degree of order

could be demonstrated owing to the particular ana-

tomical techniques employed. The transplanted silent

eye could maintain an optic projection even in the

presence of competition from the electrically active

normal eye.
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It may be that activity-independent mechanisms

act to arrange fibers in the optic tract as they approach

the tectum. Stuermer (1990) showed that the initial

growth of optic fibers into the tectum of the zebra fish

is not a¤ected by blocking activity with TTX. Cook

and Becker (1988) investigated the regeneration of an

orderly projection from the retina to the tectum in

goldfish after the optic nerve was cut. In normal ani-

mals, axons from ventral retina travel in the medial

brachium of the optic tract and axons from dorsal ret-

ina in the lateral brachium. After regeneration, ventral

and dorsal retina were represented in both brachia.

Optic nerve fibers reached the optic tectum some 3

weeks after the optic nerve was cut. Three weeks

later, the number of inappropriately directed fibers

had decreased, owing probably to elimination of

external collaterals rather than cell death. Cook and

Becker (1988) found that this refinement was not

a¤ected by intraocular injection of TTX or by sub-

jecting the animals to continuous stroboscopic illumi-

nation. In previous experiments this had been found

to impair the refinement of the map itself, as men-

tioned earlier.

11.5.2 Models for Map Making Employing Neural

Activity

Activity-based models originate in the model for

the development of orientation specificity in the vi-

sual cortex that was proposed by Von der Malsburg

(1973). He showed that when connections between

two sets of cells are modified according to the amount

of simultaneous pre- and postsynaptic activity present

for each synapse (Hebb, 1949), retinal activity pat-

terns in the form of straight lines of activated cells will

cause the cortex to acquire orientation preferences.

The pattern of preferences in the orientation map

produced corresponds approximately to what is mea-

sured experimentally.

The first activity-based model for the development

of retinotopy, called the neural activity model, was

that of Willshaw and Von der Malsburg (1976). This

was the first of two proposals that these authors made

for how neighborhood mechanisms for making con-

nections could be realized in the nervous system, the

second being the marker induction model (Von der

Malsburg and Willshaw, 1977).

Both models are based on the idea that ordered

maps of connections will form if all pairs of neighbor-

ing retinal cells connect with tectal cells that also are

neighbors (figure 11.6). The models di¤er in that

in one model molecules are used to implement the

neighborhood mechanism and in the other model

neural activity is used.

In the neural activity version, Willshaw and Von

der Malsburg (1976) assumed that the retina is spon-

taneously active and that through the action of short-

range lateral interconnections, cells that are closer

together are more likely to be spontaneously active

concurrently than cells that are farther apart. If ini-

tially connections are made between the retina and

tectum at random, spontaneously active retinal cellswill

come to excite cells at random positions on the tectal

surface and the tectal cells that are closer together

would be also more likely to fire in synchrony than

cells farther apart (owing to lateral interconnections in

the tectum). The synapses between retinal and tectal

cells that are simultaneously active would then be

strengthened, in a Hebbian fashion (Hebb, 1949). It

was demonstrated by computer simulation how such a

mechanism could lead to the formation of ordered

neural mappings. To specify the polarity of the map,

some of the retinal cells were assumed to be connected

initially to the tectal cells in the right orientation (but

not necessarily in the right position). The simulation

results illustrated the plasticity of connections that is

allowed under such conditions, which will account

for the results of the size-disparity experiments.

230 David Willshaw and David Price



Takeuchi and Amari (1979) and Amari (1980)

carried out a one-dimensional analysis of a continuous

version of the neural activity model, as applied to ret-

inocortical connections. They showed that when the

width of the input stimuli is smaller than the extent of

the lateral interactions in the cortex, an ordered map

results; when the width is greater, the map is ordered

on a large scale, but on a small scale it breaks up into

blocks. Later work showed that the area of the cortical

sheet occupied by the parts of the retinal sheet that

are stimulated relatively frequently during develop-

ment occupy proportionally more of the cortex sheet

(Amari, 1983). More recently, this analysis has been

extended to the case where the cortical sheet is made

up of excitatory and inhibitory cells (Da Silva Filho,

1992).

The predictions and assumptions made from the

neural activity neighborhood type of model require

detailed verification, much of which is lacking. There

is some evidence for the assumption that the retina

is spontaneously active and that the amount of cor-

related activity between two points is positively cor-

related with the distance between them (Rodieck,

1967; Arnett, 1978; Galli and Ma¤ei, 1988; see also

chapter 12). At a more general level, much careful

work has been done to demonstrate the activity-

dependent sharpening up of retinotectal projections

in experimental paradigms (such as adult goldfish)

where activity can be manipulated (see, for example,

Schmidt and Edwards, 1983; Cook and Rankin,

1986; Rankin and Cook, 1986; Cook, 1987, 1988).

Many researchers talk of activity-dependent ‘‘re-

finement’’ of connections, implying that this may

be a secondary mechanism that refines a map that

is already formed. It is possible that the primary

mechanism is the one that forms the initial crude map,

i.e., the mechanism for specifying the polarity of the

map.

11.5.3 Neighbor Matching Not Involving Electrical

Activity

Marker Induction

Another mechanism by which axons from cells of

neighboring origin can be distinguished from axons

from other cells is one that uses sets of labels (or

markers) assigned to retinal cells. These markers are

then induced, through the initial connections formed,

into the tectal cells (figure 11.6B). Markers spread be-

tween tectal cells by a mechanism such as di¤usion.

Nearby tectal cells will then acquire similar markers. A

mechanism that strengthens connections according to

the similarity between retinal and tectal markers will

cause the tectal cells to acquire markers and at the

same time an ordered retinotectal map will develop

(Willshaw and Von der Malsburg, 1979). The experi-

mental evidence that directly relates to this idea is

now described. In this case, the theoretical work pre-

ceded the experimental findings.

A surgically constructed half-retina regenerates an

ordered projection to the entire optic tectum, rather

than innervating the half of the tectum that it would

innervate if it were part of a normal eye. This could

be because the retinal labels had been changed by

the surgery, the tectal labels had been changed, or

both sets of labels had changed. Schmidt et al. (1978)

carried out a set of experiments in adult goldfish. By

forcing a surgically reduced half-retina to innervate

the optic tectum together with a normal retina, he

was able to use the projection made by the normal

retina to calibrate the putative labels carried by the

tectum and the experimental retina.

He removed one half of a retina from an adult

goldfish and allowed the remaining half-retina to

regenerate its connections to the entire contralateral

tectum. He then diverted this projection to the ipsi-

lateral tectum, which carried a projection from a nor-

mal retina, and showed that it innervated, in order,
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only its ‘‘appropriate’’ half. This established that the

half-retina was still a half-retina in terms of the labels

that it was assumed to carry.

In a complementary set of experiments, he diverted

the projection from a whole retina onto an ipsilateral

tectum that carried an expanded projection from a

half-retina. In this case, only the half of the retina that

had a matching origin with the experimental half-

retina established an ordered projection on the ipsi-

lateral tectum, showing that the tectum carried a

half-set of labels. These results demonstrated that in a

surgically constructed half-eye that made an expanded

projection onto the optic tectum, the retinal labels

did not change, but the tectum acquired a half-set of

labels; i.e., the labels were induced from the retina.

Formal Models—Marker Induction

Von der Malsburg and Willshwaw (1977) suggested

that in all cases the retina retains its labels and the tec-

tum’s labels are modifiable. The idea is that the retina

is labeled by a set of markers continually generated at

fixed locations within the retinal surface and subject

to lateral transport and degradation. At steady state,

this sets up a fixed set of markers assigned to each ret-

inal location, nearby retinal cells carrying similar sets

of markers. As connections are formed, the markers

are induced through the synapses already made into

the tectum, which holds no markers initially. The rate

of transfer of markers over a synapse is in propor-

tion to the strength of that synapse. At each tectal site,

markers from the various retinal cells innervating it

become blended together with markers from adjacent

tectal regions. By this means, each tectal cell acquires

a characteristic set of markers. Synapses are progres-

sively strengthened, in proportion to the similarity

between the markers carried by the corresponding

retinal and tectal cells. Each tectal cell becomes spe-

cific to the retinal cells carrying the markers most

similar to its own set. This sets o¤ a positive feedback

mechanism, resulting in each tectal cell becoming

more and more specific to particular retinal cells and

thereby attracting more and more markers of this

type. Because nearby retinal cells and nearby tectal

cells carry similar sets of markers, retinal neighbors

tend to project to tectal neighbors (figure 11.6B).

Provided that the initial pattern of innervation is

biased to favor the desired orientation of the map, the

result is that the set of retinal markers and a reti-

notopic map is induced onto the tectum in the desired

orientation.

According to the marker induction model, the way

in which the retina plays a role in establishing con-

nections is somewhat similar to the way the periphery

is involved in the development of barrel fields in the

somatosensory cortex. The same basic idea has been

applied to the problem of the elimination of super-

innervation in developing muscle (Ribchester and

Barry, 1994; see also chapter 10).

This model solves the problem of how a set of

markers (or labels) in one structure can be reproduced

in a second set in a way that is resistant to variations in

the developmental program for the individual struc-

tures. It is able to account for the systems-matching

sets of results (Gaze and Keating, 1972) as well as

those on the reinnervation of the optic tectum fol-

lowing graft translocation and rotation, which suggest

that in some but not all cases di¤erent parts of the

optic tectum have acquired specificities for individual

retinal fibers ( Jacobson and Levine, 1975; Levine and

Jacobson, 1974; Hope et al., 1976; Yoon, 1971, 1980;

Gaze and Hope, 1983).

This model is consistent with the conclusions

reached by Schmidt et al. (1978), as reviewed in the

previous subsection. Furthermore, according to the

marker induction model, each half-eye of a Xenopus

compound eye contains a half-set of labels even

though it projects across the entire tectum (Willshaw

and Von der Malsburg, 1979). Evidence for this is
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discernible in the results from experiments by Straz-

nicky and Tay (1982) on diverting compound eye

projections in a manner analogous to that used by

Schmidt et al. (1978) in their regeneration experi-

ments and from the fact that the position of retinal

axons growing from compound eyes in the optic tract

is characteristic of the position occupied by fibers from

the appropriate half of a normal eye (Straznicky et al.,

1979). In addition, the nonlinearities in the extra-

cellularly recorded maps of compound eye pro-

jections during development (Straznicky et al., 1981)

are predicted directly from the marker induction

model.

What counts against the marker induction model

is that Schmidt’s experimental results (Schmidt et al.,

1978) have never been confirmed. In addition, a

problem shared by all molecular-based mechanisms of

this type (until very recently) is that there is little di-

rect evidence for sets of labels in retina and tectum.

Recent experiments on mice pose intriguing

new challenges for the marker induction type of

model. Using a knock-in assay, Brown et al. (2000)

introduced the EphA3 receptor into the mouse ret-

ina, which normally has EphA5 receptors only. In

the knock-in mouse, some retinal ganglion cells had

EphA5 receptors and some had both EphA3 and

EphA5 receptors, both receptors being distributed

across the nasotemporal axis of the retina. The reti-

nocollicular maps developed were wholly abnormal,

with one half of the colliculus receiving an ordered

projection from the cells containing EphA5 and the

other half an ordered projection from the cells con-

taining both EphA5 and EphA3 receptors. These

results strongly suggest an inductive e¤ect, driven by

the abnormal retinal distribution of Eph receptors

acting as retinal labels (figure 11.7). One challenge to

theorists is whether a retinal gradient can induce and

maintain the tectal gradient even though the two gra-

dients run in completely opposite directions.

The Arrow Model

The arrow model (Hope et al., 1976), which is con-

temporary with the neural activity model (Willshaw

and Von der Malsburg, 1976), sought to explain the

results of systems matching, mentioned earlier. The

assumptions made in the model are that each retinal

fiber has to ‘‘know’’ whether it is in the correct rela-

tive position with respect to the neighboring fibers on

the tectum. In the model, fibers that are in the incor-

rect relative positions are able to swap their positions,

and the process of comparison of fiber positions is re-

peated. Starting from any initial pattern of connec-

tions, an ordered map of connections in the correct

orientation will result. Provided that each axon is in

addition given a certain degree of random exploratory

behavior, the set of retinal fibers will come to occupy,

in order and in the correct orientation, the appropri-

ate area of tectum available (systems matching). This

model has no fixed labels of the type suggested

by Sperry (1943, 1944, 1963); all that each fiber is

required to know is information about the desired

polarity of the map.

An advantage (and disadvantage) of this type of

model is that it is immediately falsifiable. It predicts

that the maps produced by allowing optic nerve fibers

to reinnervate the adult tectum after a portion of the

tectum has been removed, rotated, and then replaced

will be a normal map, with the small portion of the

map identified with the rotated part of the tectum

being rotated by a corresponding amount. However,

since there is no information about absolute position

on the tectum, if two parts of the tectum are inter-

changed without rotation (translocation), the arrow

model will predict a normal map. A variety of ex-

perimental results have been obtained, but the inter-

pretation of the authors of the arrow model [who

themselves carried out translocation experiments,

which are mentioned in the original paper (Hope

et al., 1976)] is that the maps obtained after the
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Figure 11.7

Proposal for how the retinocollicular maps found in EphA3 knock-in mice (Brown et al., 2000) can be accounted for by

marker induction. According to this hypothesis, the full set of retinal markers is induced in order over the entire target struc-

ture. (A) The markers (here represented by the numbers 1; 2; . . . ; 8) distributed over the full retina are induced onto the colli-

culus in numerical order to produce an ordered retinocollicular projection. (B ) Similarly, the markers 1; 2; 3; 4 from a half-

retina are induced over the colliculus to give an expanded half-retina projection. (C ) Following Brown et al. (2000), the retinal

cells containing the extra Eph3 receptors have their markers augmented, giving rise to two populations of cell markers, namely

1; 2; . . . ; 8 (wild type) and 7; 8; . . . ; 14. The full population of markers now ranging from 1 to 14 is induced onto the colliculus

in numerical order, giving rise to the double projection observed; compare with figure 6 of Brown et al. (2000).
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translocation experiments are not normal, but contain

matching translocated portions, which falsifies their

own model.

11.6 Mapping Involving External Properties

Two members of the class of mappings that involve

external properties can be identified: fiber ordering

and the timing hypothesis.

11.6.1 Fiber Ordering—The Retinotectal Projection

in Fish

It could be argued that the topographic mapping

problem will have been solved if the nerve fibers

arrive at their target structure in order. Fibers are or-

dered initially, insofar that their retinal cells of origin

are arranged in order across the retina. If this order is

preserved to the point of synaptogenesis, a map of the

first structure will be imposed on the second structure

without there being any need for the action of any

complex mechanism of the types already discussed.

In the simplest possible case, fibers could grow out

alongside those from their neighboring cells of origin

and maintain this ordering all the way to the target.

This can be tested by looking for order in the mature

pathway. One vertebrate with a remarkably precise

ordering of axons within the optic nerve is the cichlid

fish (Anders and Hibbard, 1974; Scholes, 1979, 1981;

Ruso¤, 1984; Presson et al., 1985). The axons of

the retinal ganglion cells pass into the optic nerve in

order. The nerve cross-section just behind the eye

resembles a long, folded-up ribbon. There is a polar

coordinate representation of retinal position in the

nerve cross-section, the radial dimension represented

along the long axis and the circumferential dimension

along the short axis. The retina grows in rings. The

axons from each annulus of newly formed cells add on

as a band of unmyelinated fibers at one end of the

ribbon. It is inferred that newly growing fibers travel

over the substrate laid down by the older fibers. This

order is maintained toward the optic chiasma as grad-

ually the ribbon becomes shorter and fatter. The

folds coagulate until finally the cross-section becomes

roughly circular (figure 11.8).

Despite this evidence of a high degree of order

within the optic pathway, as an explanation of

how the ordered retinotectal map is formed, it is

unsatisfactory:

1. After the optic chiasma, the fibers change their

relative positions very abruptly, each group of fibers of

the same age seeming to stay together. The fibers then

form the lateral and medial brachia and are led onto

the tectum. It has not been possible to follow the

course of these fibers as they change their position.

2. It is not known how optic fibers leave the two

brachia to innervate the tectum. The situation may be

complicated by the possibility that the fibers are des-

tined for more than one area of termination; i.e., two

or more sets of innervating fibers are intermingled.

3. The polarity of the retinotectal map formed means

that, in principle, fibers cannot be led onto the optic

tectum without grossly violating their relations with

their neighbors. Let us make the simplifications that

all optic nerve fibers leave the optic nerve head

together, and in order, and travel to the tectum to-

gether. Follow the planar cross-section of the growth

cones as they travel to the tectum (this can be thought

of as moving a disk representing the retina along the

optic pathway, which eventually projects onto the

surface of the optic tectum). Maps in some polarities

can be produced without fibers losing contact with

one another on the way to the tectum; to produce the

polarity of the map that is observed, the disk has to be

flipped over, which corresponds to a gross violation of

neighborhood relations between fibers (figure 11.9).
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Figure 11.8

The arrangement of fibers in the optic nerve of a cichlid fish. The series shows the pattern of osmiophilic degeneration of fibers

in the optic pathway after selective labeling of nasal retina (left-hand column), dorsal retina (middle column), and temporal

retina (right-hand column) with horseradish peroxidase. (a) The distribution of label in the retina. (b) Immediately behind the

optic nerve head, the optic nerve in cross-section is a very long and thin ribbon. There is an ordered representation of retina

within the ribbon, the radius being represented along the long axis and the circumference along the short axis, i.e., a represen-

tation in polar coordinates. Unmyelinated, presumably newly arriving axons are grouped at one end of the ribbon, shown by a

star. (c ) A more posterior section of the optic nerve, showing that the ribbon has become shorter and wider, yet the polar co-

ordinate representation has remained. (d ) A little in front of the optic tectum, there has been a rearrangement of fiber positions

within the cross-sections, over a very small distance, which disturbs their neighborhood relationships. (e) The fibers being led

onto the optic tectum. N, nasal; T, temporal; D, dorsal; V, ventral; R, rostral; C, caudal; M, medial; L, lateral. (Reproduced

from Scholes, 1981, with permission.)
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The biological case is more complicated than this.

Fibers do not grow out or arrive together and they

undergo specific transformations that occur within the

three-dimensional optic pathway, but the argument

remains the same.

4. It may be that the ordering of fibers in the adult

is an unfaithful historical record of developmental

events; direct experimental evidence is lacking.

The channel catfish (Ictalurus punctatus) (Dunn-

Meynell and Sharma, 1986) has a di¤erent ordering of

fibers in the optic nerve. In the first part of the optic

nerve, the ganglion cell axons are arranged in thirteen

separate optic papillae. In the first part of the nerve

cross-section, the papillae are arranged in a U-shaped

formation. Fibers of dorsal origin are at one tip of the

U and ventral fibers at the other tip, with fibers of

both nasal and temporal origin at the base of the U. At

the level of the optic chiasma, the U shape has flat-

tened out while retaining the relative ordering of the

papillae. In the optic tract, a substantial reordering of

fibers takes place.

In other species, there is more evidence about the

behavior of fibers throughout the entire visual path-

way, but at a less detailed level. Along the pathway

between the retina and colliculus of the quokka wal-

laby (Setonix brachyvrus) (Chelvanayagam et al., 1998),

fibers of nasal and temporal origin remain in the me-

dial and lateral regions of the pathway. But dorsal and

ventral fibers exchange positions, thereby achieving

the required uniaxial inversion of the retinocollicular

map.

These studies illustrate that there are cases where

fibers maintain contact with their neighbors for much

Figure 11.9

(A) Illustration of how an ordered map between the retina and tectum could be attained by axons traveling directly from one

structure to the other while maintaining their relative positions. (B ) Maps with certain polarities cannot be achieved in this way;

in the case shown, the required pattern of interconnections is attained only at the expense of a massive crossing over of fibers.
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of the distance along the pathway, which could con-

tribute to the formation of a map but without being

the whole story. The cichlid fish seems to be an ex-

treme case where there is a high degree of ordering in

the optic pathway. There are signs that similar types of

ordering exist in many other species of fish, but to a

lesser extent or obscured by such factors as the pattern

of fasciculation (Bunt, 1982).

11.6.2 The Timing Hypothesis

In invertebrates, experiments involving the surgical

ablation of target cells during development show that

connections are made on the basis of the time of ar-

rival of axons at their target structure (Lopresti et al.,

1973). In chicks, Rager and Von Oeynhausen (1979)

proposed that axons arriving at one area of the tec-

tum (such as the rostral edge) make contacts there

and occupy this space, preventing later-arriving fibers

from innervating this region and forcing them to

contact regions nearby. In this way a temporal pattern

is converted into a spatial pattern. It is fairly simple to

imagine how such a mechanism could specify the

ordering of optic fiber terminals along the direction of

ingrowth of optic fibers, but not along the direction

perpendicular to it. The basic problem is that tim-

ing provides for variation along one dimension only,

whereas most maps are at least two-dimensional.

Moreover, timing is inherently unstable, and on this

hypothesis, a disruption of timing relations would

result in a disruption in the map. This is contrary to

the experimental findings. Maps are not a¤ected by a

delay in the arrival of optic fibers made by diverting

optic fibers to take a di¤erent route. In surgically

constructed Xenopus compound eyes made up of

halves of di¤erent ages, the normal temporal pattern

of axonal outgrowth is reversed but the initial pattern

of innervation is normal (Holt, 1984).

11.7 Other Models

A wide variety of models for map making exists, and

it is impossible to include them all here. We have

concentrated on the ones that are either historically

or fundamentally significant or about which we have

specialist knowledge. Here we mention several other

models to illustrate the variety of di¤erent approaches

that have been adopted.

11.7.1 Hybrid Models

Whitelaw and Cowan (1981) combined the idea of

a gradient of adhesive selectivity proposed by Pres-

tige and Willshaw (1975) with synaptic updating as

in the neural activity model (Willshaw and Von der

Malsburg, 1976). The amount by which individual

synaptic strengths are assumed to change follows the

prescription of the neural activity model, but then the

raw changes in strength are multiplied by the degree

of adhesion between the corresponding retinal and

tectal cells. In a modification to the model, a postu-

lated random depolarization that is due to spontane-

ous release of transmitter is added to account for the

finding that a map will form in the absence of exter-

nally applied electrical activity (Cowan and Friedman,

1990).

Overton and Arbib (1982) developed a pair of

models called the branch arrow model (BAM) and the

extended branch arrow model (XBAM), as extensions

of the arrow model (Hope et al., 1976). In BAM,

each axon terminates at a number of di¤erent sites on

the tectum, and the overall movement of each retinal

fiber is determined by the sum total of the influences

from each terminating region. In addition, retinal

axons can interact only if their cells of origin are

within a certain specified distance of one another. It

was found that ordered maps form only when this
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distance is less than two-thirds of the size of the retina.

In XBAM, a mechanism of retinotectal interaction

according to chemospecific markers is added.

Both of these classes of models incorporate a large

amount of biological realism and account for a wide

variety of experimental results. However, this is at the

cost of surrendering predictive power.

11.7.2 Optimization Models

In models of the optimization type, the developmen-

tal process involves minimization of the amount of

some physical quantity, e.g., the length of connec-

tions between cells, which can be calculated for each

configuration of connections and which has an ex-

treme value when the configuration is in its required

state. If a procedure to systematically modify connec-

tions can be devised that will make the configuration

more optimal at each stage, then continued applica-

tion of this procedure will result in the required con-

figuration being reached. In physics, such a physical

quantity is called an energy.

Fraser’s Energy Model

Fraser (1981) introduced the idea of an ‘‘adhesive free

energy.’’ This is a number that can be calculated

for every state on a system and that describes how

well the various constraints postulated to control the

development of the mapping have been satisfied. In

order of increasing importance, the constraints relate

to:

1. Gradients of adhesive specificity along the dorso-

ventral and the nasotemporal axis of the retina to-

gether with a matching gradient on the tectum

2. The degree of adhesion between retinal and tectal

cells, which varies according to relative position

3. The degree of competition among retinal axons

for tectal space, which is also position independent

4. A tendency for axons that occupy nearby places on

the tectum to stabilize their connections if their cells

of origin are also neighbors

This model accounts for a variety of phenomena, but

the advantages of Fraser’s hypothesized energy func-

tion are mathematical rather than biological.

Dimension Reduction

The idea used in dimension reduction is that each

point on the two-dimensional surface of the visual

cortex that codes, for example, the three coordinates

of space, ocularity preference, and direction of ori-

entation represents a position in a high-dimension

‘‘stimulus space’’ (see also chapter 12). Models for

how such mappings can be produced have been

devised. The elastic net (Durbin and Willshaw, 1987)

is one such model. It was devised originally to solve

the Traveling Salesman Problem, the classic computer

science problem of finding the shortest circuit around

a given set of points (Lawler et al., 1986). This prob-

lem can be thought of as constructing a mapping from

a two-dimensional space onto a one-dimensional

space while maintaining neighborhood relationships.

When applied to neural mapping problems, a model

based on the elastic net can account for the produc-

tion of retinotopy, ocular dominance, and orientation

maps simultaneously (Erwin et al., 1995). The elastic

net was not designed for biological plausibility, and

this is its drawback. It may be interesting to note that

it was in fact developed from the marker induction

model for retinotopy (Willshaw and Von der Mals-

burg, 1979), and many of the biological features of

that model were removed. In light of this fact, it is

curious that the marker induction model could never

be applied successfully to the development of all

three types of map; Von der Malsburg (1979) showed

how it could account for retinotopy and ocularity by

assuming that the development of retinotopy precedes

that of ocularity.
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11.8 Conclusions

The problem of understanding how ordered maps are

generated within the nervous system is now more

than a century old. As far as the establishment of reti-

notopic maps is concerned, interest in the underly-

ing theoretical basis of this phenomenon has seen two

decades of intense activity. The 1940s saw the first

theoretical accounts, in which ideas of chemoa‰nity

were introduced and developed; from mid-1970 to

mid-1980, new concepts were introduced (partic-

ularly those concerning the role of competition and

neural activity), old concepts were refined, and a

plethora of models developed. While many of the

models could fit the available facts, the critical experi-

mental findings concerning the nature of cell-to-cell

recognition at the synaptic level remained unan-

swered. In the early years of the twenty-first century,

the new data concerning the molecular basis of reti-

notectal mapping promise to introduce a new decade

of modeling activity and perhaps finally the answers

that all of us in the field are seeking.
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12Development of Ocular Dominance Stripes,

Orientation Selectivity, and Orientation

Columns

N. V. Swindale

Neurons in the somatosensory and visual cortices

respond to spatially localized and specific kinds of

stimuli. For example, many visual cortex neurons

have a preference for stimulation through one of the

two eyes (ocular dominance) and for stimuli of a par-

ticular orientation (orientation selectivity). This chap-

ter reviews the variety of models that have been

proposed to explain the development of ocular domi-

nance and orientation selectivity in the mammalian

visual cortex.

12.1 Introduction

12.1.1 Columnar Organization and Maps in the

Adult Visual Cortex

The response properties of neurons in the somato-

sensory and visual cortices tend to remain unchanged

with position perpendicular to the cortical surface

(Mountcastle, 1957; Hubel and Wiesel, 1962). This

property, termed columnar organization, means that

for many purposes the cortex can be treated as a two-

dimensional sheet. The term ‘‘column’’ is generally

used (somewhat loosely) to define a set of cells having

boundaries perpendicular to the cortical surface and

spanning all the cortical layers, with some property in

common, such as eye preference or selectivity for a

particular orientation.

In contrast to columnar invariance, response prop-

erties often change systematically with sideways (tan-

gential) movement through the cortex; these forms

of variation are called mappings (see also chapter 11).

The properties that have ordered mappings include

(1) the spatial receptive field, i.e., the specific region

of visual space within which a stimulus must be pres-

ent in order for a cell to respond; (2) ocular domi-

nance, i.e., a preference for stimulation through one

of the two eyes; and (3) orientation selectivity, i.e., a

preference for a bar or an edge of a particular orienta-

tion. Ordered maps of other receptive field properties,

such as preference for spatial frequency or for a par-

ticular direction of stimulus motion, have also been

demonstrated. Additional maps may exist, although

most of the possibilities are speculative (Swindale,

2000).

12.1.2 The Cortex as a Dimension-Reducing Map

In this section, a general framework for thinking

about maps is presented. Each cell in the visual cortex

can be thought of as representing (when maximally

active) the presence in the image of a specific combi-

nation of stimulus features, e.g., the presence of an

edge of a particular orientation moving in a partic-

ular direction across a specific small region of visual

space in a particular eye. This set of properties defines

a point w in an N-dimensional stimulus space SN

whose axes are the stimulus parameters of interest

(figure 12.1). There is thus a mapping between an N-

dimensional stimulus space and the two-dimensional

sheet of the cortex. This type of mapping has been

termed a dimension-reducing mapping (Durbin and

Mitchison, 1990).

While one typically thinks of a map in terms of the

way in which some property varies across a surface, it



is often useful to consider the mapping in the inverse

direction, i.e., to consider the map as a projection of

a 2-D surface into S. The complex foldings of the

2-D cortical sheet within S are thought to be subject

to two constraints: a continuity constraint and a com-

pleteness constraint, which act in opposition. The

continuity constraint means that the mapping should

be locally smooth—neighboring points in the cortex

have similar receptive fields (i.e., map to neighbor-

ing points in S )—while the completeness constraint

means that the cortex should fill functionally impor-

tant regions of S as completely as possible. Since for

N > 2, not all points in S can be mapped to the cor-

tex in a neighborhood-preserving way, the mapping

must necessarily be incomplete. One might require,

however, that some part of cortex come within some

minimum distance of every functionally important

point in S.

Alternatively, because receptive fields are not infi-

nitely narrow, one can think of them as occupying

small regions of stimulus space. More generally, one

can think of the cortex as filling S with neural activity,

and one interpretation of completeness is that the

density of activity should be as uniform as possible

(Swindale, 1991). The implications of this particular

approach will be returned to later on. First, some spe-

cific mappings are described in more detail.

12.1.3 The Retinotopic Map

Each visual cortex (i.e., on the left and the right side

of the brain) contains a topographic map of the con-

tralateral visual field (see also chapter 11). This map-

ping exists because there is a topographically precise

mapping from the retina to the layers of the lateral

geniculate nucleus (LGN) and because there is a simi-

larly precise mapping from each of these layers to layer

IV of the visual cortex. To a first approximation,

equal areas of the visual cortex are innervated, via the

LGN, by equal numbers of retinal ganglion cells.

Because ganglion cell density is highest in the central

region of the retina, the visual world is not linearly

scaled onto the cortex, but is distorted so that the

magnification factor (square millimeters of cortex per

square degree of visual angle) is greatest in the central

visual field and least in the peripheral field. Although

it is an important detail for modelers, relatively little is

known about the local precision of the topography.

The most precise mapping possible would have LGN

axons connecting to cells in layer IV in a pattern that

matched the locations of the ganglion cells driving the

LGN axons. It is possible that the retinotopic map

approaches this precision in layer IVCb of the ma-

caque monkey (Blasdel and Lund, 1983; Hubel et al.,

1974; Blasdel and Fitzpatrick, 1984), where receptive

fields are small and circularly symmetrical and the ret-

Figure 12.1

A stimulus space, S. The folded sheet represents the visual

cortex; points on the grid represent position in cortical

coordinates. The receptive field properties of each point in

the cortex determine the position of the corresponding

point of the sheet in S. A 3-D space is shown here, with the

dimensions representing the receptive field position (eleva-

tion and azimuth) and preferred orientation.
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inotopic map shows little disorder. In subprimate spe-

cies, such as cats and ferrets, the degree of precision is

probably much less than this (Albus, 1975).

12.1.4 Ocular Dominance Stripes

Eye dominance or ocular dominance columns form a

pattern of periodic branching stripes with a width of

about 0.5 mm, interdigitated with regions of the same

width that prefer stimulation through the other eye

(figure 12.2). The pattern reflects the fact that the

inputs from the left and right eyes, relayed through

separate layers of the LGN, terminate in nonover-

lapping stripes in layer IV of the cortex. The similarity

between ocular dominance stripes and other patterns

such as fingerprints and the striped and spotted pat-

terns found on the body surfaces of fish, frogs, and

zebras has often been commented on and suggests the

possibility that their development might be under-

stood in terms similar to those postulated to explain

pattern formation in these other systems (Murray,

1989).

12.1.5 Orientation Domains

In addition to a preference for stimulation via one

or the other eye, most visual cortex neurons respond

to bars or edges flashed or moved across the recep-

tive field at specific orientations. One of the causes

of this selectivity in those cells that receive inputs di-

rectly from the LGN is a receptive field organization

in which one or more regions of on responsiveness

alternate with regions of off responsiveness (Hubel

and Wiesel, 1962). The preferred orientation of these

cells, which are called simple cells, can be predicted

from the orientation of the line (or lines) that best

separates the on and off regions.

The overall layout of orientation preference is

continuous and periodic (Hubel and Wiesel, 1974;

Swindale et al., 1987; Bonhoe¤er and Grinvald, 1991;

Figure 12.2

The complete pattern of ocular dominance stripes in the flattened visual cortex of a macaque monkey. A complete retinotopic

map of the contralateral visual field is represented within the area of cortex shown. F, the region corresponding to the fovea;

OD, the region corresponding to the optic disk; MC, the monocular segment. (From Florence and Kaas, 1992.)
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Blasdel, 1992). Iso-orientation domains—regions of

the map where orientation preference lies within a

defined range—have a well-defined periodicity of

about 1 mm in the cat and about 0.6 mm in the

monkey (figure 12.3). The maps also include sin-

gular points where a single complete 180 degree set of

domains meet. Because of their appearance in color-

coded images, the singularities and the regions imme-

diately surrounding them are often called pinwheels.

They are characterized as positive if the orientation

rotates in a clockwise direction when a clockwise cir-

cuit is made around the singularity, and as negative

if it rotates in a counterclockwise direction. Areas of

cortex between the pinwheel regions often contain

iso-orientation domains that run in a roughly parallel

direction; these are called linear zones.

12.1.6 Relationships between Di¤erent Visual Maps

Structural relationships between the di¤erent maps

have been demonstrated in a number of instances,

Figure 12.3

A map of orientation preference in the macaque monkey. Each gray level represents a unique orientation preference, as shown

by the key on the right. A similar though not identical gray scale is used to represent orientation preference in figures 12.5b and

12.6. A singularity (circle) and a linear zone (rectangle) are indicated. Black lines mark the boundaries between ocular domi-

nance columns. (Reproduced and redrawn from data in Blasdel, 1992, and Obermayer and Blasdel, 1993.)
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although they are often weak. As mentioned earlier,

there is a precise retinotopic map in layer IVC of the

monkey, and cells have small, circularly symmetrical

receptive fields. The retinotopic map interacts with

the map of eye dominance in the following way:

As layer IVC is traversed in a tangential direction, re-

ceptive field positions in the corresponding eye shift

in a constant direction. As the boundary between

neighboring ocular dominance stripes is crossed, the

receptive field shifts into the other eye, to a location

corresponding to that mapped to the center of the

adjacent stripe (Hubel et al., 1974; Blasdel and Fitz-

patrick, 1984). This type of z-folding is one way of

ensuring that the entire visual field of each eye gets

represented in the half of the cortex area that con-

stitutes one set of eye dominance stripes.

A relationship between the retinotopic and orien-

tation maps in area 17 of the cat was reported by

Das and Gilbert (1997). They found fractures across

which there were simultaneous jumps in both

preferred orientation and receptive field position; in

general, the retinotopic gradient and the orienta-

tion gradient were strongly correlated. It remains to

be seen whether such correlations are a general

feature of visual cortex maps; there is evidence from

the tree shrew that they may not be (Bosking et al.,

1997).

Combined maps of eye dominance and orienta-

tion (Bartfeld and Grinvald, 1992; Hübener et al.,

1997) show a tendency for singularities to be located

in the centers of eye dominance stripes and for iso-

orientation domains to run across the boundaries of

eye dominance columns at right angles (figure 12.3).

A possible explanation for these orthogonal gradient

relationships is that they maximize coverage unifor-

mity (Swindale et al., 2000), i.e., the uniform repre-

sentation of all combinations of the parameters

represented in the map.

12.2 Development of Visual Cortex Maps—

Neurobiological Background

An important issue is the extent to which environ-

mentally driven patterns of neural activity determine

the map structures. One possibility is that many

aspects of visual cortex map organization (e.g., ocular

dominance and orientation specificity) might be en-

tirely the result of postnatal visual experience. At one

point this seemed a realistic possibility, particularly

when it was reported that stimulus specificity was ab-

sent in the visual cortex of very young kittens (Barlow

and Pettigrew, 1971) and that rearing kittens in an

environment with lines of a single orientation resulted

in a visual cortex containing neurons whose orienta-

tion selectivities all matched the orientation experi-

enced (Blakemore and Cooper, 1970; Hirsch and

Spinelli, 1970). This view was probably strengthened

by the fact that the earliest computational models

of visual cortex development were able to show that

environmentally driven patterns of neural activity

could account for the development of orientation

selectivity (Von der Malsburg, 1973), ocular domi-

nance stripes (Von der Malsburg and Willshaw, 1976),

and retinotopic maps (Willshaw and Von der Mals-

burg, 1976; see also chapter 11).

Subsequent work has not confirmed this extreme

environmentalist viewpoint. It is now clear that many

forms of stimulus selectivity, and their columnar or-

ganization, are either present at birth or can be shown

to be present in animals reared in the dark from the

time of eye opening. For example, in macaque mon-

keys (whose eyes are open at birth), orientation selec-

tivity (Wiesel and Hubel, 1974), orientation columns

(Blasdel et al., 1995), and ocular dominance col-

umns (Horton and Hocking, 1996) are present at

birth. In kittens (whose eyes open at 7–10 days after

birth), orientation-selective neurons can be recorded
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at 6–8 days of age (Albus and Wolf, 1984; Braastad

and Heggelund, 1985), while orientation and ocular

dominance columns are present in rudimentary form

in normal or visually inexperienced kittens at 15 days

of age (Crair et al., 1998).

Given these observations, attention has been de-

voted to roles that spontaneously occurring patterns

of neural activity might play in the initial forma-

tion of ocular dominance and orientation maps (Katz

and Shatz, 1996). These experiments generally sug-

gest that spontaneous activity plays a crucial role

(however, see Crowley and Katz, 2000, and section

12.5). For example, in kittens, silencing retinal

activity by intraocular injections of tetrodotoxin abol-

ishes ocular dominance columns (Stryker and Harris,

1986). Blocking activity in retinal on-center gan-

glion cells by intraocular injection of DL-2-amino-

4-phosphonobutyric acid (APB) prevents the devel-

opment of orientation selectivity (Chapman and

Gödecke, 2000).

Given the probable importance of spontaneous

neural activity in the earliest stages of map develop-

ment, it is not surprising that a disturbance of visual

experience early in life can a¤ect the later stages of

map development in many di¤erent ways. Closing

one eye during the first 2–6 weeks of age in kittens,

or before 3 months of age in macaque monkeys,

causes the ocular dominance stripes representing the

closed eye to shrink in area, while the stripes repre-

senting the open eye expand and take over the terri-

tory vacated by the closed eye (Hubel et al., 1977;

Shatz and Stryker, 1978). The interpretation of the

analogous experiment in which animals are reared

in an environment where lines of a single orienta-

tionpredominate has been less straightforward. How-

ever, a recent study in the cat using optical recording,

which avoids many of the problems inherent in

earlier studies, showed that iso-orientation domains

corresponding to the orientation experienced do

increase in size (Sengpiel et al., 1999). This confirms

that neurons can change their orientation preference

in response to environmentally driven patterns of

stimulation.

Overall, these experiments support a restricted

environmentalist viewpoint in which visually driven

patterns of activity do not play a role in initially set-

ting up the map, but can sculpt and modify a preex-

isting map by causing local shrinkage or expansion of

columns. Whether early visually driven activity can go

beyond this and change more global details, such as

column periodicity, remains controversial (see section

12.4.2).

12.2.1 Role of Spontaneous Retinal Activity

Since many aspects of visual cortex map formation

occur either in utero (as in primates) or postnatally in

the absence of visual experience (as in cats and ferrets),

visually driven activity cannot be the primary factor

that establishes receptive field structure and columnar

organization. Attention therefore has to be focused on

patterns of spontaneous neural activity that occur be-

fore the eyes open. At a very early stage, before many

synaptic connections have been made, cortical neu-

rons are coupled by gap junctions, and small domains

of cells exhibit coordinated transient elevations in

Ca2þ levels (Kandler and Katz, 1998). These events

could play a role in establishing common feature se-

lectivity in the earliest stages of map formation.

Another form of spontaneous activity occurs in the

embryonic retina, where ganglion cells fire in ir-

regular bursts (Galli and Ma¤ei, 1988). These bursts

are correlated in neighboring ganglion cells and form

waves that spread across the retina (Wong, 1999).

Models for this behavior have been presented (Burgi

and Grzywacz, 1994; Feller et al., 1997). While retinal

waves are a likely candidate for a mechanism to refine

topography and enforce laminar segregation of retinal

250 N. V. Swindale



inputs in the LGN, they end a few days before the

emergence of ocular dominance and orientation maps

in ferrets, so their role in these aspects of map forma-

tion is uncertain. It is not known whether retinal

waves occur in kitten or primate retinas, so their role

in map formation in these species is also uncertain.

Spontaneous bursting has been demonstrated in

developing ferret LGN (Weliky and Katz, 1999). This

shows positive interocular correlations that are de-

pendent on feedback from the visual cortex. Much

more remains to be discovered about this phenome-

non, particularly with respect to its spatiotemporal

patterning, its persistence beyond the period of eye

opening, and the role of cortical feedback and pat-

terning in the cortex itself. These details are likely to

be critical for future models.

12.2.2 Factors A¤ecting the Development of Ocular

Dominance Columns

A brief summary of some experimental results perti-

nent to models of the formation of ocular dominance

columns is given here:

0 Monocular deprivation during the critical period

causes the ocular dominance stripes for the closed

eye to shrink and those for the open eye to expand

(Hubel et al., 1977; Shatz and Stryker, 1978; LeVay

et al., 1980); this can occur after segregation is

complete.

0 Stripes shrunken by monocular deprivation can re-

expand if the deprived eye is opened and the normal

eye closed (reverse suturing) (LeVay et al., 1980;

Swindale et al., 1981).

0 Silencing retinal activity abolishes segregation

(Stryker and Harris, 1986).

0 The e¤ects of monocular deprivation can be

blocked by infusing the cortex with N-methyl-d-

aspartate (NMDA) receptor antagonists (Bear and

Rittenhouse, 1999).

0 Infusion of the g-aminobutyric acid (GABA) agonist

muscimol into the cortex of monocularly deprived

kittens (which will cause cortical neurons to hyper-

polarize, so that their inputs will fail to evoke action

potentials) causes strengthening of the inputs from the

deprived eye and a weakening of the inputs from the

normal eye (Reiter and Stryker, 1988).

0 Infusion of neurotrophins (NT-4/5 or brain-derived

neurotrophic factor) into kitten visual cortex blocks

the formation of ocular dominance columns (Cabelli

et al., 1995).

0 Monocular deprivation by lid suture produces a

bigger ocular dominance shift than monocular TTX

injection (Rittenhouse et al., 1999).

12.2.3 Factors A¤ecting the Development of

Orientation Columns

Any model of orientation column development ought

to be able to explain the following observations:

0 Orientation preferences should vary smoothly over

most parts of the map, except in singularities and

(possibly) short fracture regions.

0 The power spectrum of the orientation vectors

should have a strong nonzero peak.

0 The map should contain half-rotation (i.e., 180-

degree) singularities of positive and negative sign,

with an irregular spacing and a density in the range of

2.0–3.5 per l2, where l is the dominant wavelength

as determined by Fourier spectral analysis.

0 Singularities should be grouped so that approxi-

mately 70–80 percent of nearest-neighbor pairs are of

opposite sign (Obermayer and Blasdel, 1997).
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0 There should be no statistical relationship between

orientation and orientation gradient angle.

0 Spatial segregation on on and off center inputs

within cortical receptive fields should be a primary

determinant of orientation selectivity, since blocking

activity in the on pathway during development abol-

ishes orientation selectivity (Chapman and Gödecke,

2000).

12.3 An Overview of Models of Visual Cortex

Map Formation

The history of modeling of visual cortex maps begins

with the demonstration by Von der Malsburg (1973)

that oriented patterns of activity in a retina, connected

initially at random by Hebbian synapses to a cortex

with lateral short-range excitatory and long-range in-

hibitory connections, could give rise to neurons that

are selective for specific orientations laid out in a spa-

tially organized map. The components and assump-

tions of most models have changed very little since

then (figure 12.4). In the following sections I describe

these components and how they have typically been

used.

12.3.1 Retinal Inputs

Inputs to the model cortex are typically represented in

terms of static activation levels in one or more two-

dimensional arrays that are assumed to correspond to

sheets of cells in the retina or the LGN. These values

are assumed to represent firing rates averaged over a

period of time that is brief compared with the time

scale of synaptic weight change. Models of ocular

dominance column formation of course use two such

arrays, one for the left and one for the right eye. Ad-

ditional layers may be used to represent the activities

of on and off ganglion cell types; for example, four

sheets of cells, corresponding to the on and off layers

in the two eyes, were used by Erwin and Miller

(1998). Most, if not all, models assume that the input

layers project directly to the cortex. Thus, either the

LGN is assumed to pass on retinal activity without

changing it, or activity is assumed to arise directly

within the LGN.

Very simple patterns of activity have typically been

assumed, including randomly oriented lines, ran-

domly positioned circular or elongated blobs, or

noise into which local correlations have been intro-

duced. For models of ocular dominance column for-

mation, one technique is to assign random values to

the points in each array, smooth them with a Gaussian

kernel, and then add a fraction of the values in each

eye to those in the other. This creates a stimulus with

defined local and intereye correlations. Very few sim-

ulations have used natural images, which is probably

Figure 12.4

Generic structure of visual cortex map models. Units in an

input layer (the LGN or retina) with activities rj make con-

nections with strengths si; j to units in an output layer (the

cortex) that have activities ci. Local interactions between the

cortical units are described by an interaction function hði; i 0Þ,
which is typically positive for short distances and negative

for intermediate distances between points i and i 0.
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justified given the ability of cortical maps to develop

in the dark, nor have there been many attempts to use

statistics based on the known spontaneous firing pat-

terns of retinal or LGN neurons (Elliott and Shadbolt,

1999, is an exception).

12.3.2 The Cortex

In most, if not all, models, the cortex is represented by

a single sheet of cells receiving connections from the

input layers. In many cases, a fixed ‘‘Mexican hat’’

pattern of short-range excitatory and intermediate-

range inhibitory connections between cortical points

has been assumed (although without much in the way

of empirical justification). Very few modelers have

assumed the presence of more cortical layers, or of

feedback from the cortex to the input layer(s).

For a given pattern of activity in the input layers,

activity in each cortical unit is generally assumed to

be determined by the sum of the input activities times

the relevant weights plus a contribution from the

activities of surrounding cortical units via the lateral

interaction function. A threshold, or other response

nonlinearity, may be applied to the outputs of the

cortical units. Because the activity pattern in the cor-

tical sheet cannot be determined simply—it may take

many iterations before a stable cortical response to a

particular input is generated—most models have

found ways of sidestepping or simplifying this step.

The ways in which this has been done are discussed in

section 12.4.

12.3.3 Learning Rules

Many models (e.g., Von der Malsburg, 1973; Miller

et al., 1989; Goodhill, 1993) are based on the simplest

form of Hebbian learning, in which synaptic weights

are increased by an amount proportional to the prod-

uct of pre- and postsynaptic activation levels. Be-

cause these values cannot be negative, this means

that weights cannot decrease. Without an additional

regulatory mechanism, competition—the process in

which an increase in the strength of some connections

leads to the weakening of others—cannot occur. In

these models, competition is typically implemented

by ensuring that the sum of the synaptic strengths

onto individual neurons (i.e., each point in the corti-

cal array) remains a constant at each learning step, a

procedure termed normalization. Normalization can

be implemented by division or by subtraction. The

choice is not trivial because it can significantly a¤ect

the way development proceeds (Miller and MacKay,

1994; Goodhill and Barrow, 1994; Wiskott and Sej-

nowski, 1998; see also chapter 10). In some models,

alternative ways of implementing competition and

avoiding normalization have been explored (see sec-

tions 12.4.5 and 12.4.6).

12.3.4 Initial Conditions

Many models assume some degree of topographic or-

der in the initial set of connections between the input

and cortical layers. In some models, connections from

the input layer are assumed to be made initially within

a small region of the cortical layer, described by an

arbor function, which is in exact topographic corre-

spondence with the input layer. The arbor function is

fixed in size and position, so that a given a¤erent can

only make or modify its connections with a fixed

cortical region. Other models allow for a less rigid

retinotopy and consequently permit less rigid initial

conditions and more varied retinotopic outcomes.

Initial connection strengths are generally assumed to

be random. Periodic boundary conditions are often

assumed for convenience; i.e., distances over the in-

put and output arrays are calculated as though left

and right edges, and the top and bottom edges, are

contiguous.
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12.4 The Models

While this general framework for modeling is about

as simple as it could be, it can still prove unwieldy and

slow when implemented on a computer. As a result,

many modelers have found ways of further simplify-

ing the calculations. This has had worthwhile con-

sequences because it has resulted in a variety of related

simpler models whose behaviors are easier to under-

stand. Some of the ways in which simplification has

been achieved are the following:

0 Linear Hebbian models. In these models it is assumed

that learning can be averaged over input patterns.

This means that the quantities that are explicitly

represented in the calculations are time-averaged

spatial correlation functions present in each of the in-

put layers, rather than explicit patterns of neuronal

activity.

0 Competitive Hebbian models. In these models the

calculation of cortical activity following a stimulus

is simplified by assuming that synaptic modification

occurs only in the most active cortical unit and its

nearest neighbors.

0 Lateral interaction models. Here all the interactions

are lumped into a single lateral interaction function.

This leads to models that are computationally simple

and that bring out similarities with more general

theories of pattern formation.

0 Feature-based or dimension-reduction models. In these,

the description of the input space is simplified by rep-

resenting stimuli as points in a feature space (section

12.1.2). This leads to very abstract models whose

construction seems far removed from biology, yet

which have been remarkably successful in explaining

the phenomenology of visual cortex maps.

0 Models that avoid explicit normalization rules. These

include models based on competition for neuro-

trophins (section 12.4.5) and the BCM learning rule

(section 12.4.6).

These classes of model are described in more detail in

the following sections.

12.4.1 Linear Hebbian Models

Linear Hebbian models avoid the explicit representa-

tion of activity patterns in the input and output layers;

instead, they assume that changes in synaptic strength

are determined by time- and space-averaged patterns

of correlation in the input layers. This simplification

follows if the responses of the units in a layer are line-

arly related to the activities in the input layer and if

the change in weights following each activity pattern

is small. In this case, the learning rule can be expressed

simply in terms of the time-averaged spatial correla-

tions in the input patterns.

The Ocular Dominance Column Model of

Miller et al.

The model of Miller et al. (1989) assumes two input

layers, L and R, with four corresponding correlation

functions, C LL, CRR, C LR, and CRL, specifying how

the correlations in neural firing rates vary with lateral

separation in the LGN layers. Inputs from a location

j in the LGN are assumed to make contact with a ret-

inotopically corresponding cortical neuron centered

on a location i in the cortex and spread over a sur-

rounding region described by a fixed arborization

function Aði� jÞ. (It is assumed that any position j in

the LGN maps directly to an equal position i in the

cortex, so that LGN and cortical coordinates are in-

terchangeable.) The arborization function is 1 over a

small square region and zero elsewhere. The strengths

of the connections at time t are given by the functions

sLði; j; tÞ and sRði; j; tÞ. Lateral cortical interactions

are described by a Mexican hat function h, which is
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a radially symmetrical di¤erence of Gaussians with a

fixed width. The contribution of a synapse sðk; lÞ to

the correlation value associated with a second synapse

sði; jÞ is assumed to be proportional to the product

of the correlation value associated with the separa-

tion between the cells of origin in the LGN [i.e.,

Cð j � lÞ], the strength of the synapse itself [i.e.,

sðk; l; tÞ], and the value of the lateral interaction func-

tion for separation of the synapses in the cortex [i.e.,

hði� kÞ]. This gives the following learning rule:

sLði; j; t þ 1Þ ¼ sLði; j; tÞ þ eAði� jÞ
X
k; l

hði� kÞ

� ½C LLð j � lÞsLðk; l; tÞ

þ C LRð j � lÞsRðk; l; tÞ�; ð12:1Þ

where e is a constant determining the overall growth

rate. The corresponding equation for sR is obtained

by interchanging L and R. Initial connection strengths

are random within a small range. At each time step,

after updating the connection strengths, a subtractive

normalization procedure is carried out. Separate limits

are also put on the maximum and minimum synaptic

strengths.

For the model to work, it is su‰cient that the

within-eye correlations C LL and CRR are positive

Gaussian functions, while the between-eye correla-

tions C LR and CRL are either zero or negative. Under

these conditions, cortical receptive fields, which are

initially binocular and equal in size to the arbor func-

tion, gradually become smaller and monocular, while

individual a¤erent arbors become smaller and often

break up into patches confined to neighboring ocular

dominance stripes. As a result of these changes, a

striped pattern of ocular dominance develops. When

the cortical interaction function contains both short-

range excitatory and long-range inhibitory compo-

nents, the spacing of the stripes is determined by the

position of the peak in the Fourier transform of

the cortical interaction function hðxÞ. Narrower

within-eye correlation functions result in more bin-

ocular cells at the borders of the stripes and smaller

receptive field sizes. When hðxÞ is purely excitatory,

segregation occurs, provided a constraint maintain-

ing the total strength of individual axonal arbors is

applied.

Further Applications of Correlation-Based

Models

The conceptual framework o¤ered by Eq. (12.1) can

be extended to explain the development of orienta-

tion columns (Miyashita and Tanaka, 1992; Miller,

1994) and the joint development of orientation and

ocular dominance columns (Erwin and Miller, 1998).

For orientation selectivity, cortical inputs are again

represented by two sheets of cells, but in this case they

represent on-center and off-center LGN cells. The

model now has to produce a segregation of inputs

within individual receptive fields, rather than recep-

tive fields that are entirely dominated by one or the

other layer. This will happen if (1) a di¤erence of

Gaussians is used to describe the correlations, an up-

right 1 (positive near the origin) for on-on and off-

off correlations, and an inverted 1 for on-off and

off-on interactions; and (2) the functions change sign

in a distance less than the width of the arbor function.

This causes the development of receptive fields that

are divided into two (or, occasionally, more) regions

of on and off responsiveness, from which an orienta-

tion preference can be calculated. This changes con-

tinuously over the surface of the cortex; singularities

are present; and individual iso-orientation domains

are morphologically similar to those observed in the

monkey and cat. The overall orientation pattern,

however, lacks a well-defined periodicity. Periodicity

is a prominent characteristic of real orientation maps,

and this suggests that the model needs modification.
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However, the model’s basic premise—that interac-

tions between on- and off-center a¤erents establish

the initial map of orientation preference—is sup-

ported by experimental results showing that inactiva-

tion of on-center pathways during early development

blocks the emergence of orientation selectivity

(Chapman and Gödecke, 2000).

To explain the joint development of orientation

selectivity and ocular dominance, the model has four

input layers: L-on, L-off, R-on, and R-off, with a

corresponding 4� 4 matrix of correlation functions.

Erwin and Miller (1998) discuss the conditions that

must be satisfied in order for the model to produce

ocular dominance segregation as well as correlated

orientation maps in the two eyes. Although these

conditions can be satisfied, the model, like the simpler

on-off model, fails to generate periodic orientation

columns. It is also unable to reproduce the tendency

toward orthogonal intersection of ocular dominance

column boundaries and iso-orientation domains, as

observed in cats and monkeys. However, a weak ten-

dency for orientation singularities to lie in the centers

of the ocular dominance stripes can be produced by a

two-stage model in which the correlation functions

change over time in such a way that on-off segrega-

tion occurs in advance of L-R segregation.

Linear correlation-based models would appear to

be limited in terms of how well they can describe the

appearance of cortical feature maps. As implemented

by Miller and his colleagues, the arbor function has

the undesirable e¤ect of imposing a fixed retinotopy,

while the normalization rules that are integral to the

way the models work are complex and not derivable

from known cellular mechanisms. In spite of this, the

models are important because of the simplicity of the

underlying assumption, namely, that Hebbian changes

in synaptic strength build up slowly over time in ways

that reflect time-averaged correlations in the pat-

terns of input activity. It is important to see how far

such simple assumptions can go in explaining cortical

development.

12.4.2 Competitive Hebbian Models

When a stimulus is presented to a sheet of cells con-

nected by a Mexican hat pattern of lateral connec-

tions, the activity patterns that develop tend to consist

of isolated patches of high activity with a size that

matches the extent of the lateral excitation in the net-

work. This suggests the following way of simplifying

the computationally time-consuming calculation of

activity patterns in response to a stimulus: For any

particular stimulus, find the cortical point that gives

the largest initial response (ignoring lateral interac-

tions); assume nearby cells will likewise be active (be-

cause of the lateral connections); and then modify the

connections by a Hebbian rule. This will have the ef-

fect of making the ‘‘winning’’ cortical point, and its

neighbors, more responsive to the stimulus in ques-

tion. The application of a neighborhood rule enforces

continuity in the mapping; i.e., it ensures that nearby

cortical locations will develop similar receptive field

profiles. The competitive element has the opposite

e¤ect and ensures that the map represents diverse

features. Thus, even if a stimulus evokes only a very

weak response in the cortex initially, that response

will still evoke a modification that will strengthen the

response, and if the stimulus is presented su‰ciently

often, it will gain a representation in the map.

This method was first proposed by Kohonen (1982)

and is often termed the self-organizing feature map

algorithm. It can be expressed mathematically as fol-

lows: First, compute the response ci of each cortical

point i to the stimulus r—i.e., ci ¼
P

j si; j rj, where

the summation is over all points, indexed by j, in the

input—and find the winning cortical point i� for

which c is a maximum. Then change the connection

strengths according to the following rule:
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si; jðt þ 1Þ ¼ aðtÞ½si; jðtÞ þ ehði; i�Þrj�; ð12:2Þ

where aðtÞ is a normalization factor chosen to keep

the sum of the synaptic strengths at each cortical point

(or the sum of their squares) a constant; and h is a

neighborhood function, which is typically a Gaussian

function of the distance between cortical points i

and i�. Input patterns r are chosen according to the

mapping problem being studied. For example, when

Obermayer et al. (1990) modeled the formation of

orientation columns and the retinotopic map, points rj
were randomly positioned in a single 2-D input layer

and the activity patterns were elliptical Gaussian blobs

of varying position and orientation. Goodhill (1993)

modeled the formation of ocular dominance col-

umns and the retinotopic map, assuming short-range

within-eye correlations and positive between-eye

correlations. This was done to study the e¤ects of

changing the interocular correlation, given that this

is likely to be changed by visual experience or by

manipulations such as strabismus (a condition in

which the two eyes point in di¤erent directions).

Both models produce realistic patterns of orientation

preference, or ocular dominance stripes, in which

there are interesting accompanying variations in the

retinotopic map. For the orientation column model,

periodic fluctuations in retinal magnification factor

develop, and these correlate with the orientation gra-

dient, i.e., the rate at which preferred orientation

changes with distance in the map. Specifically, there

is a negative gradient correlation, so that in regions

where orientation changes rapidly with position,

retinal positions change slowly, and vice versa. This

negative gradient correlation has been observed in

other models (see section 12.4.4) that implement re-

lated developmental principles. In the model of ocular

dominance column formation, z-folds developed in

the retinotopic map. These would appear to be a re-

alistic feature given the evidence for this type of

folding in the macaque monkey (see section 12.1.6).

Periodicity in this model appears to be determined

by a variety of factors, including the size of the cor-

tical neighborhood function and, in the case of ocular

dominance, by the amount of interocular correlation.

Goodhill (1993) showed that if this correlation is

low or absent, then the stripes have a larger spacing

than if the correlation is high. Since strabismus can be

expected to reduce or abolish interocular correlations,

Goodhill made the experimentally testable prediction

that animals made artificially strabismic during the

period when ocular dominance columns are develop-

ing should have larger than normal ocular dominance

columns. Although initial tests in cats appeared to

confirm this (Löwel, 1994; Tieman and Tumosa,

1997), more recent studies have not replicated the

e¤ect in cats (Sengpiel et al., 1998) or been able to

demonstrate it in monkeys (Crawford, 1998; Murphy

et al., 1998). A possible reason for this is that the peri-

odicity of ocular dominance columns becomes estab-

lished too early for strabismus to change it. Better tests

of the prediction are likely to involve manipulations

that can alter the correlations present in spontaneously

occurring, prenatal patterns of activity.

The learning rule used in Eq. (12.2) di¤ers from

that used in the linear correlation models described in

section 12.4.1. Here, learning is not strictly Hebbian,

because although the rate of change is proportional to

the level of presynaptic activity rj, it is conditional on

the synapse in question being close to a region of cor-

tex that is responding strongly to the stimulus, rather

than simply being the product of pre- and post-

synaptic activities. Some physiological evidence points

toward mechanisms similar to this. In rat visual cortex,

it has been observed that when a connection between

an a¤erent and a neuron is strengthened by the corre-

lated stimulation of both cells, the connections from a
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nearby but unstimulated a¤erent become strength-

ened as well (Kossel et al., 1990). This suggests that

synaptic potentiation is accompanied by a signal that

travels through tissue and potentiates nearby synapses.

This mechanism has been termed volume learning

(Montague and Sejnowski, 1994). Possible mecha-

nisms for the spread include glial involvement and

release of nitric oxide, arachidonic acid, carbon mon-

oxide, hydrogen peroxide, or neurotrophins (Thoe-

nen, 1995).

Piepenbrock and Obermayer (2000) have intro-

duced a model that is a blend of linear Hebbian learn-

ing (see section 12.4.1) and the nonlinear Kohonen

mechanism (section 12.4.2). This is done by normal-

izing the net response of the cortex to each stimulus

and by introducing a nonlinearity (parameterized by a

constant b) in the cortical response. Low values of b

approximate the linear case, where development is

driven by the second-order statistics of the input pat-

terns (i.e., the correlation functions C LL etc.), while

large values approximate the competitive case, where

only a single small region of cortex responds to any

stimulus. In this case, learning is essentially feature

based, i.e., driven by higher-order statistics in the in-

put patterns.

12.4.3 Lateral Interaction Models

Most, if not all, models describe the emergence of

pattern in the cortical map as the result of processes

that involve lateral interactions. The origins of these

interactions are varied in the models, just as they are

likely to be in the real brain. They include spatial cor-

relations in the inputs, lateral intracortical interactions,

the release of di¤usible substances, and factors gener-

ally subsumed under the ambit of normalization—

regulatory mechanisms exerted within individual

axons, and mechanisms regulating the total number

and strength of connections each cell receives.

A considerable simplification can be achieved by

making the following assumptions: (1) all of the

e¤ects occur on a time scale that is short compared

with the time scale of map development; (2) the

e¤ects add linearly; and (3) they are translationally

invariant; i.e., the net e¤ect of each type of interaction

is a function of the distance between points and does

not vary with absolute location in the cortex. It is

then possible to lump all the interactions together and

write down an equation for growth (e.g., of one type

of connection) in terms of convolution with kernels

that describe the lateral interactions within and be-

tween the pattern elements (Swindale, 1980, 1982).

For left and right eye synapses, whose densities are,

respectively, given by nL and nR as functions of posi-

tion on the cortical surface, we can write

dnL

dt
¼ ðnL � wLL þ nR � wRLÞ f ðnLÞ

dnR

dt
¼ ðnR � wRR þ nL � wLRÞ f ðnRÞ;

ð12:3Þ

where wLL and wRR describe within-eye interac-

tions; wRL and wLR describe, respectively, the e¤ects

of right-eye on left-eye, and left-eye on right-eye

connections; and the asterisk denotes convolution.

The function f ðnÞ is used to terminate growth as it

reaches some upper or lower limiting density; a suit-

able form is f ðnÞ ¼ nðN � nÞ, where N is the upper

limiting density and the lower limit is assumed to be

zero. If the within-eye interactions are described by

an upright Mexican hat function, and the between-

eye interactions by an inverted Mexican hat function,

then an initial state in which left and right eye syn-

apses have random densities > 0 and <N evolves

into a branching periodic pattern of stripes with the

morphological features of ocular dominance columns

(figure 12.5a).
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A comparison can be made between this type of

model and reaction-di¤usion models of pattern for-

mation, which were initially developed by Turing

(1952) and later applied by others to various aspects of

pattern formation, particularly animal coat patterns

(Meinhardt, 1982; Murray, 1989; see also chapters 1,

2, and 3). As pointed out earlier, these often bear

an interesting resemblance to ocular dominance stripe

patterns. In Turing’s formulation, substances called

morphogens react with each other and di¤use laterally

through the substrate (usually assumed to be two-

dimensional). For two substances with linear first-

order reaction kinetics, the concentrations evolve

according to the following di¤erential equations:

qX

qt
¼ aX þ bY þ D1

q2X

qr 2

qY

qt
¼ cX þ dY þ D2

q2Y

qr 2
;

ð12:4Þ

where X and Y are the morphogen concentrations; a,

b, c, and d are rate constants; r is spatial position; and

D1 and D2 are di¤usion coe‰cients. Turing showed

that with suitably chosen rate constants, initially

nearly uniform concentrations of X and Y would de-

velop into spatially periodic patterns. He supposed

that these patterns, or prepatterns, would then trigger

the di¤erentiation of tissues into the observed pattern.

Simulations of these, or related, systems of equations

show that periodic spots or stripes of morphogen

concentration are produced, although stripes are

generally formed on narrow cylinders (Bard, 1981;

Murray, 1981; Lyons and Harrison, 1991). A compar-

ison of Eq. (12.3) with Eq. (12.4) makes the di¤er-

ences between the two mechanisms clear. Turing

assumed that the actions of X and Y on themselves

and each other were strictly local, which is appropri-

ate for chemical reactions, while Eq. (12.3) assumes

‘‘action at a distance’’ as subsumed by the lateral

interaction terms. Lateral interactions in the Tur-

ing model are mediated by the actual movement, via

di¤usion, of X and Y through the tissue, whereas

in Eq. (12.3) lateral movement of synapses does not

occur.

The lateral interaction model can also be imple-

mented as a cellular automaton. This is a class of

model in which pattern elements have discrete states

at discrete times and simple neighborhood rules are

used to determine state transitions at each time step

(Wolfram, 1984). The stripe-forming behavior of Eq.

(12.3) can be adequately approximated by the follow-

ing procedure: Let n take only values of þ1 or �1 on

Figure 12.5

(a) Simulated pattern of ocular dominance stripes produced

by a lateral interaction model [Eq. (12.3)]. (Reproduced

from Swindale, 1980.) (b) Orientation preference map

simulated using Eq. (12.5). For gray scale, see figure 12.3.
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a discrete 2-D lattice indexed by ði; jÞ. At each time

step, calculate ai; j ¼
P

k; l niþk; jþlwk; l , where w is also

Mexican hat in form (e.g., wk; l ¼ 1 for 0a jk; lja dE;

wk; l ¼ �1 for dE < jk; lja dI, where the distances dE
and dI define the spread of excitation and inhibition,

respectively). The values of ni; j are then updated

according to the sign of ai; j. That is, if ai; j > 0, ni; j is

set to 1; if ai; j < 0, ni; j is set to �1. It may also be

noted that this system is isomorphic with a suitably

connected Hopfield net (Hopfield, 1982). Thus ocu-

lar dominance stripe patterns are stable (ground) states

of a Hopfield net with short-range excitatory and

long-range inhibitory connections.

Orientation Columns

The approach of the previous section can be extended

to orientation columns (Swindale, 1982). Here we

assume that the quantity that is emerging in the map is

an orientation, represented by a vector z ¼ ða; bÞ. In
order to ensure that angles di¤ering by 180 degrees

are equivalent, we adopt the convention that the ori-

entation represented by z is y ¼ 0:5 atanðb/aÞ. It is

intuitive to regard jzj as a measure of the strength of

orientation tuning; i.e., regions of cortex with narrow

orientation tuning will have large values of jzj,
while regions of weak or disorganized selectivity will

have small values of jzj. As before, the change in z is

assumed to be determined by many di¤erent pro-

cesses, the net outcome of which is to make nearby

regions develop similar preferences and to make

regions further away develop dissimilar preferences.

Thus, we write

dz

dt
¼ z � wz f ðzÞ; ð12:5Þ

where wz is a Mexican hat function describing the lat-

eral interactions and f ðzÞ is used to keep z within

bounds, e.g., f ðzÞ ¼ ð1� zÞ. Solutions to Eq. (12.5),

with values of z initially small and randomly dis-

tributed, are a good match to real orientation column

patterns with respect to periodicity and singularity

distribution (figure 12.5b).

A combined model for ocular dominance and ori-

entation columns has been proposed (Swindale, 1992)

based on the idea of competition for feature selectiv-

ity. It is supposed that development of one feature

might be slowed down in regions where the other is

emerging most rapidly and vice versa. The resulting

model is able to reproduce the orthogonal pattern

of the intersection of orientation domains with ocular

dominance column borders as well as the tendency of

singularities to lie in the centers of ocular dominance

stripes (Erwin et al., 1995; Swindale, 1996).

12.4.4 Low-Dimensional Feature Map Models

In this section, we retain the simplifying idea of for-

mulating a model in terms of low-level features,

rather than the patterns of neural activity that corre-

spond to them, and we return to the framework of

the competitive Hebbian models discussed in sec-

tion 12.4.2. We assume that the input to the cortex is

a feature vector v, which is a point in a feature space

SN , as discussed in section 12.1.2. For a combined

map of retinotopy, ocular dominance, and orienta-

tion, we might let v ¼ fx; y; n; a; bg, where x and y

represent position in retinal space, n represents ocular

dominance, and a and b represent the two compo-

nents of the orientation vector (using the conventions

described in the section on orientation columns). The

cortex is represented by a 2-D sheet of points indexed

by i, and wi represents the feature vector currently

mapped to point i. We can picture the sheet as folded

inside S in the manner suggested by figure 12.1. Re-

member that the Kohonen algorithm (see section

12.4.2) worked by taking a stimulus, finding the most
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responsive cortical point, and then modifying its con-

nections and those of its neighbors in such a way as to

make it more responsive to the stimulus in question.

The low-dimensional version of the Kohonen algo-

rithm works in the same way if we assume that the

closer wi is to v, the stronger is the response of point i

to v. As before, i� denotes the most responsive point,

which is given by minjwi � vj Ei. Points in the cortex

are then moved toward v by an amount given by

wiðt þ 1Þ ¼ wiðtÞ þ e½v�wiðtÞ�hði�; iÞ: ð12:6Þ

As before, e is a growth rate and hði�; iÞ is a neighbor-
hood function that equals 1 for i ¼ i� and that falls

smoothly to zero with increasing distance between i

and i�. Initial values of wðt ¼ 0Þ are typically assumed

to be small and random, with the exception of reti-

notopic space, where a linear mapping with some

specified amount of random scatter is usually assumed.

At each time step, a new stimulus, typically chosen at

random from a defined manifold within S, is pre-

sented and the procedure repeated until a stable, or

nearly stable, mapping has been obtained.

Obermayer et al. (1991, 1992) used this algorithm

as a model for visual cortex map formation. Despite

the simplification involved, and the need to define a

suitable scaling and metric for determining distances

between points in S, the types of mappings obtained

in the low- and high-dimensional instances are simi-

lar. For the complete case of retinotopy, ocular domi-

nance, and orientation, the resulting maps capture

the main features observed in the monkey, including

periodic ocular dominance stripes, periodic iso-

orientation domains, orientation singularities in the

centers of ocular dominance stripes, and orthogonal

crossings of iso-orientation domains and ocular

dominance stripe borders (figure 12.6). The low-

dimensional Kohonen algorithm has been applied to

maps of direction preference (Swindale and Bauer,

1998). Mitchison and Swindale (1999) have studied

the e¤ects of making the learning rule in Eq. (12.6)

more strictly Hebbian by making modification con-

tingent on the receptive field of any cortical unit (not

just the winning one) being su‰ciently close to v.

It can be seen that the mappings produced by the

Kohonen algorithm will tend to satisfy the continu-

ity and completeness constraints discussed in section

12.1.2. That is, neighboring cortical points will tend

to be close together in S, maximizing continuity,

while for each v that is presented, there will generally

be a wi that is close to v, satisfying the completeness

(or coverage) requirement. (This is really an empirical

observation because there is no analytical proof that

the Kohonen algorithm maximizes any combination

of these properties.) If the set of stimuli that is used is

finite and less than the number of cortical points, then

of course a solution to the mapping can always be

found where there is a matching point i for every

v, i.e., for which jwi � vj ¼ 0. Note that finding the

solution that minimizes the distances in S between

adjacent cortical points (i.e., that maximizes continu-

ity in the mapping) is the same as solving the traveling

salesman problem. In this problem, a route must

be found in which neighboring points on the route

(cities) are close together, minimizing the total dis-

tance traveled, and the route must pass through every

city. The only di¤erence is that solutions to the con-

ventional traveling salesman problem are mappings

from a 1-D route to a 2-D surface, whereas in the

cortex the mapping is from a 2-D surface to an N-

dimensional space. This means that any algorithm that

can be shown to produce good solutions to the

traveling salesman problem can be applied to the prob-

lem of cortical map formation, although of course not

all algorithms may be equally suitable and the inter-

pretation of the algorithms’ behavior in biological

terms may be di‰cult.
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One such algorithm, the elastic net algorithm

(Durbin and Willshaw, 1987; see also chapter 11),

does have a plausible biological basis (Willshaw and

Von der Malsburg, 1979) and has been applied

successfully to cortical map formation (Durbin and

Mitchison, 1990; Goodhill and Willshaw, 1990;

Erwin et al., 1995; Goodhill and Cimponeriu, 2000).

In this model (figure 12.7), a finite number of stimuli

vj ð j ¼ 1 . . .MÞ exert attractive ‘‘forces’’ and pull

nearby cortical receptive fields wi toward them. This

part of the model can be considered to be Hebbian,

inasmuch as Hebbian rules have the e¤ect of making

the receptive fields of cells change so that they are

more responsive to those input patterns to which they

are already most responsive. Units that are neighbors

in the cortex are also connected by ‘‘elastic’’ and are

thereby subjected to forces that tend to enforce conti-

nuity in the mapping. The learning rule is

wiðt þ 1Þ ¼ wiðtÞ þ a
X
j

Fi; jðvj �wiÞ

þ bK
X
k ANi

ðwk �wiÞ; ð12:7Þ

where a and b are constants scaling the Hebbian and

elastic forces, respectively, and the summation in the

second term is over the nearest neighbors k of point

i. The ‘‘force’’ Fi; j exerted by stimulus j on cortical

point i is a Gaussian function of the distance between

wi and vj (i.e., the response, assuming Gaussian re-

ceptive fields) normalized by the sum of the responses

from all other cortical units, i.e.,

Figure 12.6

Combined feature map of orientation and ocular dominance produced by the low-dimensional Kohonen algorithm [Eq.

(12.6)]. Dark lines mark the boundaries of the ocular dominance columns. Each gray level represents a unique orientation pref-

erence (for gray scale, see figure 12.3). An example of a singularity (circle) and a linear zone are shown (rectangle). Note the

resemblance to the biological map shown in figure 12.3. (Figure courtesy of K. Obermayer; simulation details are given in

Blasdel and Obermayer, 1994.)
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Fi; j ¼
expð�jvj �wij2/2K 2ÞP
p

expð�jvj �wpj2/2K 2Þ
: ð12:8Þ

Normalization ensures that stimuli that are far away

from any cortical point do not get ignored and exert

forces that are as large as those exerted by stimuli that

are closer to cortical units. The parameter K scales

the receptive field sizes, i.e., the distance in S over

which stimuli exert attractive forces. This distance

may be large initially, and it is typically reduced in size

(annealing) in order to make individual cortical points

approach specific stimuli.

This algorithm provides good solutions to the trav-

eling salesman problem (Durbin and Willshaw, 1987)

and, like the low-dimensional Kohonen algorithm,

produces realistic maps of orientation and ocular

dominance columns.

To sum up this section, the advantages of feature-

based algorithms are that they start with very general

principles (continuity and completeness) and show

how these lead to detailed predictions about the lay-

out of cortical maps. They are computationally sim-

ple, which means that large areas of cortex can be

modeled and that it is easy to run many simulations.

Finally, the models work well, judged by results. The

disadvantages are that it is di‰cult to reformulate the

algorithms in terms of nuts-and-bolts models of neural

development, which makes it hard to extend them by

incorporating new biological details. Nor, arguably,

do the models give insights into the significance of

many of the biological mechanisms known to be

involved. Setting up the models requires the defini-

tion of a suitable stimulus manifold, which generally

has to be done in an ad hoc way. In addition, lateral

interactions, such as the cortical neighborhood func-

tion, cannot be justified by reference to known bio-

logical interactions.

12.4.5 Models Based on Sprouting and Neurotrophic

Interactions

Many models impose rigid constraints on the types of

growth that a¤erent connections can exhibit. Growth

may be restricted to within a predetermined arbor

function; synapses may not be allowed to reappear

once a connection strength has gone to zero in any

area; and connections are generally assumed to be

formed in response to scalar (i.e., the local concentra-

tion of a trophic molecule) rather than gradient (i.e.,

movement of a growth cone up or down a concen-

tration gradient) growth cues. Real axons, of course,

behave in more complex ways, with new connections

Figure 12.7

Illustration of how the elastic net algorithm works. For sim-

plicity, a 1-D cortex (circles) is showed mapping to a 2-D

stimulus space. The diagram shows the ‘‘forces’’ acting on

one cortical point wi. Stimuli (crosses) exert attractive forces

whose e¤ects fall o¤ as a Gaussian function of distance. The

stimulus that has the strongest e¤ect on the movement of wi

is thus the one closest to it, vj ; other, more distant stimuli

exert weaker attractive forces. Elastic forces are proportional

to the distance between neighboring cortical points; in this

case, they oppose the motion of wi toward vj.
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formed by sprouting, often in response to chemical

gradient cues, and by neurotrophic factors released by

target neurons. Competition for neurotrophic support

is thought to be one of the main mechanisms govern-

ing the selective elimination of connections during

development in many parts of the nervous system

(Purves, 1988; Van Ooyen and Willshaw, 1999; Van

Ooyen, 2001; see also chapter 10), and there is evi-

dence that this is true in the visual cortex as well. It

is obviously of interest to explore models that explic-

itly represent such features. Elliott et al. (1996) have

incorporated sprouting and retraction in a model of

ocular dominance column formation with the specific

intention of avoiding normalization rules. They do

this by first assuming that two sheets of LGN neurons

project to a cortex, with every LGN cell making con-

nections within a retinotopically defined square re-

gion of cortex. Denoting the activity of the ith or jth

LGN connection by si or sj A f1;�1g, the following

energy function is defined:

E ¼ � 1

2

X
i; j

sisjhði; jÞ; ð12:9Þ

where hði; jÞ is a coupling, or cortical neighborhood,
function that has the value 1 when connections i and

j are on the same cortical cell or are on nearest-

neighbor cells, and that is zero otherwise. The LGN

activity patterns are assumed to be randomly posi-

tioned circles of activity confined to one or the other

sheet. Connections are assumed to either exist, in

which case they have a nominal strength of 1, or to

not exist, which is signaled by a strength value of zero

and their absence from the summation in Eq. (12.9).

They can appear or disappear from within an arbor

region, with changes that decrease the value of E

generally being favored over changes that increase

it. Elliott et al. tested a ‘‘relocation’’ model in which

fixed upper and lower limits were imposed on the

number of connections per cell, and a connection was

allowed to move to a new location within its parent

arbor, provided the number of connections per cell

remained within the limits. An ‘‘interchange’’ model

was also tested; this required that each cell received

a fixed number of connections and that a pair of

axons was allowed to exchange connections provided

they were within each other’s arbor regions. In both

types of model, change was accepted with a probabil-

ity 1/ð1þ eDE/T Þ, where T is a temperature, and

updates were repeated many times for many di¤erent

LGN activation patterns. Examples in which T ¼ 0,

and in which T was slowly reduced during develop-

ment, were studied.

The advantage of this model is that it is formally

simple and has obvious links with physical systems

such as spin glasses (Elliott and Shadbolt, 1998a). An

interpretation is possible in which the contribution

of a pair of connections to E is inversely related to

the level of neurotrophic support (low E means high

neurotrophin levels and vice versa), while the neigh-

borhood function h represents, in a crude way, the

release and di¤usion of neurotrophin molecules by

postsynaptic cells through the tissue.

More complex models, which explicitly model

activity-dependent release of neurotrophins, have

recently been proposed (Harris et al., 1997; Elliott and

Shadbolt, 1998b, 1999). These models avoid the use

of synaptic weight normalization rules, are able to

explain the e¤ects of neurotrophin injections (sec-

tion 12.2.2), and can explain segregation in the pres-

ence of positive interocular correlations. In the model

by Elliott and Shadbolt (1998b, 1999), the general

anatomical framework is similar to that just described.

Neurotrophins are released by postsynaptic neurons in

amounts proportional to their activity, di¤use through

the tissue, and are taken up by a¤erent axons in

amounts that are proportional to their activity and the
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number of synapses present in their arbor. A¤erents

are able to make or lose connections in proportion to

a recent time average of the neurotrophin uptake.

The LGN activity patterns are either correlated

random noise (section 12.3.1) (Elliott and Shadbolt,

1998b) or simulated retinal waves (Elliott and Shad-

bolt, 1999). Like Goodhill (1993), Elliott and Shad-

bolt predict that a decrease in interocular correlations

should increase column spacing (although, as dis-

cussed in section 12.4.2, the evidence for this e¤ect

is ambiguous). In addition, the model predicts that

changes in the spatial extent of within-eye correla-

tions should a¤ect periodicity. This prediction may be

testable by pharmacologically manipulating retinal

activity at early stages of development in ferrets.

12.4.6 The BCM Modification Rule

Many of the models discussed in this chapter use a

simple Hebbian rule for strengthening connections,

while weakening occurs in a nonspecific way as a re-

sult of normalizing synaptic strengths onto neurons.

Nevertheless, it has been realized for a long time that

there is a logical complement to Hebb’s principle,

namely, the postulate that when a presynaptic axon

is active but fails to cause the postsynaptic cell to fire,

its connection strength is weakened (Stent, 1973).

Such behavior has been demonstrated physiologically

and is known as long-term depression. Bienenstock,

Cooper, and Munro (1982) developed this idea

mathematically into what is now generally known as

the BCM rule for synaptic modification. Considering

only the inputs to a single cell, the learning rule for

the jth connection carrying an input vj to a cortical

cell with an activity c is

sjðt þ 1Þ ¼ ð1� eÞsjðtÞ þ j½cðtÞ�vj; ð12:10Þ

where jðcÞ is a function that is negative when the

postsynaptic response c is below a modification

threshold yM and positive when it is greater than yM.

The small constant e produces a constant decay in

synaptic strength in the absence of any input or out-

put activity; its e¤ects can be ignored in the present

context. In the absence of any kind of normaliza-

tion, this rule has the undesirable feature that there

can easily be situations in which all the inputs either

increase or decrease without limit, leading to a loss of

any kind of feature selectivity. This problem can be

avoided by the use of a sliding modification threshold

in which yM varies as a function of the recent average

activity of the cell, c. The time period over which this

average is taken is not critical. The dependence of yM
on c is important, however, and it can be shown that

for stable feature selectivity to be guaranteed, yM must

increase and decrease more rapidly, relative to a fixed

value c0, than does c. This is achieved if

yMðcÞ ¼ ðc/c0Þpc; ð12:11Þ

where p > 1. With this rule, emergence of feature

selectivity, for example, to oriented patterns of activ-

ity in a 2-D array of inputs, is guaranteed whatever

the initial values of sj.

Although a simulation of the development of a 1-D

layout of orientation selectivity was presented by

Bienenstock et al. (1982), the BCM rule does not

appear to have been incorporated into any 2-D model

of visual cortex map formation. This is a pity because

it has the clear advantage of avoiding the complex

normalization rules employed in many models. There

is also a significant body of evidence supporting the

idea of a synaptic modification threshold (Bear and

Rittenhouse, 1999). For example, the finding that

monocular deprivation produced by lid suture pro-

duces a bigger shift in ocular dominance than does

silencing one eye’s inputs by TTX injections (Ritten-

house et al., 1999) can be explained by a BCM mech-

anism (Blais et al., 1999).
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12.5 Discussion

This chapter has given an overview of a variety of

models of visual cortex development (additional cov-

erage of many of the topics discussed here can be

found in Erwin et al., 1995; Miller, 1995; Swindale,

1996). Almost all of these models assume as a frame-

work a two-layer (LGN þ cortex) feedforward net,

spatially correlated patterns of activity in the in-

put layer, and Hebbian modification. Lateral cortical

interactions, mediated either by neural connections

or by di¤usion of plasticity-modifying substances, are

universally assumed. Competition among inputs is

enforced more variably, e.g., by the use of subtractive

or divisive normalization rules, by competition for

trophic support, or by the use of learning rules that

allow for synaptic weakening as well as strengthening

to occur (this is implicit in the low-dimensional

Kohonen and elastic net models and explicit in the

BCM learning rule).

Some of the models include retinotopic refine-

ment as part of the mechanism, although in others

a rigid retinotopy is built in. All of the ocular

dominance column models are able to explain the

formation of the basic striped pattern of ocular

dominance, while individual models are able to ac-

count for the e¤ects of experimental manipulations

such as monocular deprivation, silencing of retinal

inputs, and neurotrophin injections. Of the models

for orientation columns, and those for the joint for-

mation of ocular dominance and orientation columns,

feature-based and competitive Hebbian models ap-

pear to perform better than linear correlation-based

models. Despite these undoubted successes, there is

probably no single model that is able to account for

all of the phenomena listed in sections 12.2.2 and

12.2.3.

Future Modeling Studies

Several recent experimental findings seem relevant

to the further development of new models. Studies

in the hippocampus (Bi and Poo, 1998) and cortex

(Markram et al., 1997) show that the relative timing

of pre- and postsynaptic spikes is a critical factor con-

trolling connection strengths. If an action potential

follows a synaptic input within about 20 ms, the input

is potentiated; if the action potential precedes the

presynaptic input by up to 20 ms, the input is weak-

ened. The implications of this finding from a model-

ing perspective have only just begun to be explored.

For example, timing, since it allows for weakening,

can be used in place of normalization to mediate

competition among inputs (Song et al., 2000) and

stabilize postsynaptic firing rates (Kempter et al.,

2001). Future models of visual cortex development

will probably have to take into account the possibility

that two inputs may be positively correlated at one

temporal interval but negatively correlated at another.

Feedback connections from cortex to LGN may alter

this correlation structure (Weliky and Katz, 1999) and

therefore may need to be incorporated.

It is possible that models of the formation of ocular

dominance columns may need even more radical re-

vision, since recent work has shown that segregation

will occur in the ferret even after removal of both ret-

inas (Crowley and Katz, 1999) and is present almost

as soon as thalamic a¤erents have grown into layer

IV (Crowley and Katz, 2000) (see also chapter 10).

While it is possible that spontaneous activity in deaf-

ferented LGN layers might drive segregation, it is

conceivable that it might be driven instead by eye-

specific chemical labels (perhaps through mechanisms

of the type discussed in section 12.4.3). While it is

hard to see how chemical di¤usion mechanisms might

be extended to account for the formation of more

complex properties such as orientation selectivity, dif-
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ferent kinds of mechanisms might be involved in the

formation of the two types of column.

Future Experimental Studies

Although the problems being addressed here are

developmental, much remains to be learned about the

organization of visual cortical maps in adult animals,

and these details are likely to be crucial in constrain-

ing developmental models. Current techniques (e.g.,

optical imaging and functional magnetic resonance

imaging) average the signals from large numbers of

neurons and across di¤erent layers, and it would be

useful to have much more detailed information, at

the single neuron level, about what receptive field

properties are mapped, how they are mapped, and in

which layers. Simultaneous extracellular recording

of single-cell receptive field properties in groups of

neurons whose spatial locations are precisely known

(micromapping), relative to each other and to a

coarser-scale map determined by optical imaging from

the same region of tissue, may be the best approach to

this problem. Knowing what happens at the very ear-

liest, prenatal, stages of development is also likely to

be crucial. The lack of knowledge about the spatio-

temporal patterns of neural activity in the retina,

LGN, and cortex during the periods when ocular

dominance and orientation columns are forming is

probably the weakest component of all models.

Finally, little is known about the fine-scale structure

of the retinotopic map in the adult visual cortex, or

about the mechanisms that establish and refine reti-

notopy in young animals. Answers to these questions

would be of great value to modelers.
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Löwel, S., and Bonhoe¤er, T. (1998). Intrinsic and envi-

ronmental factors in the development of functional maps in

cat visual cortex. Neuropharmacology 37: 607–621.

Sengpiel, F., Stawinski, P., and Bonhoe¤er, T. (1999).

Influence of experience on orientation maps in cat visual

cortex. Nat. Neurosci. 2: 727–732.

Shatz, C. J., and Stryker, M. P. (1978). Ocular dominance

columns in layer IV of the cat’s visual cortex and the e¤ects of

monocular deprivation. J. Physiol. (London) 281: 267–283.

Song, S., Miller, K. D., and Abbott, L. F. (2000). Competi-

tive Hebbian learning through spike-timing-dependent

synaptic plasticity. Nat. Neurosci. 3: 919–926.

Stent, G. (1973). A physiological mechanism for Hebb’s

postulate of learning. Proc. Natl. Acad. Sci. U.S.A. 70: 997–

1001.

Stryker, M. P., and Harris, W. A. (1986). Binocular impulse

blockade prevents the formation of ocular dominance col-

umns in cat visual cortex. J. Neurosci. 6: 2117–2133.

Swindale, N. V. (1980). A model for the formation of ocu-

lar dominance stripes. Proc. Roy. Soc. London B 208: 243–

264.

270 N. V. Swindale



Swindale, N. V. (1982). A model for the formation of

orientation columns. Proc. Roy. Soc. London B. 215: 211–

230.

Swindale, N. V. (1991). Coverage and the design of striate

cortex. Biol. Cybern. 65: 415–424.

Swindale, N. V. (1992). A model for the coordinated de-

velopment of columnar systems in primate striate cortex.

Biol. Cybern. 66: 217–230.

Swindale, N. V. (1996). The development of topography

in the visual cortex: A review of models. Network: Comput.

Neural Syst. 7: 161–247.

Swindale, N. V. (2000). How many maps are there in visual

cortex? Cereb. Cortex 10: 633–643.

Swindale, N. V., and Bauer, H.-U. (1998). Application of

Kohonen’s self-organising feature map algorithm to cortical

maps of orientation and direction preference. Proc. Roy. Soc.

London B. 265: 827–838.

Swindale, N. V., Vital-Durand, F., and Blakemore, C. B.

(1981). Recovery from monocular deprivation in the mon-

key: 3. Reversal of anatomical e¤ects in the visual cortex.

Proc. Roy. Soc. London B 213: 435–450.

Swindale, N. V., Matsubara, J. A., and Cynader, M. S.

(1987). Surface organization of orientation and direction

selectivity in cat area 18. J. Neurosci. 7: 1414–1427.

Swindale, N. V., Shoham, D., Grinvald, A., Bonhoe¤er, T.,
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13Structural Plasticity at the Axodendritic

Interface: Some Functional Implications

Bartlett W. Mel

Models of development and learning have often

focused on the establishment or modification of syn-

aptic connections between classical ‘‘point’’ neurons.

However, the notion that a neuron’s internal state

can be characterized by a single value is challenged by

recent evidence indicating that dendritic trees can

provide a significant degree of internal compartmen-

talization of their electrical signals. Recent experi-

ments have shown, for example, that synaptically

evoked dendritic spikes mediated by NMDA, Naþ,

and Ca2þ channels can remain confined to individual

thin dendrites or even small portions of dendrites, sug-

gesting that nonlinear thresholding of synaptic inputs

could take place on a compartment-by-compartment

basis. The potential importance of neuronal com-

partmentalization is magnified when coupled with

evidence for continuous structural remodeling at the

interface between axons and dendrites,whichmay con-

tinue throughout life. This combination of e¤ects—

subunitized neurons and fine-grained structural plas-

ticity—raises the possibility that activity-dependent

mechanisms may control the targeting of synaptic con-

tacts, not just onto neurons as undi¤erentiated wholes,

but onto specific dendritic subregions. We show how

this shift in model granularity fundamentally alters the

way new information is incorporated into neural tis-

sue, and leads to much higher storage capacities than

have been conventionally assumed.

13.1 Introduction

Models of neural development have often focused on

the mechanisms that establish or modify the point-to-

point wiring diagram within some area of the brain. A

critical assumption of such models is that the neuron is

the appropriate level of granularity at which to study

development, and when operating at this level, the

outcome of development is usually expressed in terms

of the learned strengths of connections wAB between

point neurons A and B. The development of reti-

notopy, and the formation of orientation and ocular

dominance maps, are canonical examples of devel-

opmental modeling at neuron-level granularity (see

chapters 11 and 12).

Other developmental levels must be considered,

however. For example, activity-dependent rules ap-

pear to modulate the density and spatial distribution

of the ion channels governing a cell’s basic electrical

behavior (see chapter 8) and can modulate neurite

outgrowth and branching (see chapter 6). Both in-

volve types of changes in the neural substrate that are

not naturally described in terms of changes in neuron-

to-neuron connection strengths.

In this chapter we focus on a level between that of

the ion channel and the whole neuron: development

at the level of the dendritic subunit and its inputs.

We examine the hypothesis that both the develop-

ment of neural tissue and learning in the mature brain

depend critically on a continual process of structural

remodeling at the axodendritic interface. In a shift

from the usual perspective, we view development as

the correlation-based sorting of synaptic contacts onto

the many separate dendrites of a developing neuron

rather than onto the many separate neurons of a

developing neural map. This shift in the granularity

of our analysis is justified by the assumption that in-

dividual dendrites, or parts of dendritic trees, act as



separately thresholded neuronlike subunits in a man-

ner analogous to the point neurons that populate

coarser-grained developmental models. In our discus-

sion, we focus on the main projection neurons of

cortical tissue—pyramidal cells—though our conclu-

sions are likely to apply to other types of cells as well.

We first consider recent anatomical and physiolog-

ical data that support the dendritic subunit hypothesis,

and review the basic biological mechanisms that are

thought to shape the three-dimensional interface be-

tween axons and dendrites in cortical tissue during

development and learning in the adult brain. We then

consider the functional significance of fine-grained

structural plasticity at the axodendritic interface, with

an emphasis on the memory-related functions of cor-

tical neurons.

13.2 Neurobiological Background

13.2.1 Active Responses and Dendritic

Compartmentalization

The dendrites of pyramidal cells contain a large num-

ber and variety of voltage-dependent channels, which

are likely to profoundly a¤ect their integrative be-

havior. These include NMDA channels and voltage-

dependent Naþ and Ca2þ conductances capable of

amplifying synaptic inputs (Thomson et al., 1988; Fox

et al., 1990; Cauller and Connors, 1993; Schwindt

and Crill, 1995; Lipowsky et al., 1996; Seamans et al.,

1997; Margulis and Tang, 1998; Schiller et al., 2000)

(although see Urban et al., 1998; Cash and Yuste,

1999) and of generating regenerative responses,

including full-blown fast and slow dendritic spikes

both in vitro (Spencer and Kandel, 1961; Wong et

al., 1979; Poolos and Kocsis, 1990; Ja¤e et al.,

1992, Wong and Stewart, 1992; Amitai et al., 1993;

Kim and Connors, 1993; Stuart and Sakmann, 1994;

Spruston et al., 1995; Magee and Johnston, 1997;

Larkum et al., 1999) and in vivo (Pockberger, 1991;

Hirsch et al., 1995; Svoboda et al., 1997; Kamondi

et al., 1998; Zhu and Connors, 1999). (For a review,

see Hausser et al., 2000.)

A variety of evidence from intracellular recordings

and imaging studies suggests that active spikelike

responses can be localized within the dendritic arbor,

i.e., can occur independently of the main axonal

spike-generating mechanism (e.g., Benardo et al.,

1982; Schwindt and Crill, 1997; Schiller et al., 1997;

Golding and Spruston, 1998; Schiller et al., 2000;

Wei et al., 2001). For example, Golding and Sprus-

ton (1998) used dual intracellular recordings in

hippocampal slices to show that synaptically evoked

dendritic spikes could occur with or without accom-

panying somatic spikes.

More recently, Schiller et al. (2000) used ultravio-

let (UV)-laser uncaging of glutamate to study syn-

aptic responses in thin basal dendrites of neocortical

pyramidal neurons. They found that up to a point,

a steadily increasing synaptic stimulus led to stead-

ily increasing somatic excitatory postsynaptic poten-

tials (EPSPs), after which large, slow, all-or-none

responses were elicited, which the authors dubbed

NMDA spikes. Similar findings were reported for thin

branches in the apical dendritic trees of CA1 pyrami-

dal cells (Wei et al., 2001). Of particular interest,

slow NMDA-dependent responses imaged by calcium

fluorescence were often confined to a small region

within the stimulated branch, failing to propagate to

other branches within the basal arbor. This finding of

a nonlinear thresholding response evoked by synaptic

input and confined to a single branch provides the

first direct support for the idea that individual thin

branches can act as surrogate ‘‘neurons’’ capable of

separately summing and thresholding their synaptic

inputs. In light of such evidence, we must take seri-

ously the possibility that the relevant postsynaptic
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processing unit in models of learning and develop-

ment may be the individual dendritic branch rather

than the cell as a whole.

13.2.2 Neuronal Form, Neuronal Function

Anatomical hints are similarly supportive of such a

possibility. If advantages accrue to a cell that maintains

multiple integrative subregions within its dendritic

tree, one might expect pyramidal cell morphologies

to maximize the number of subunits available for

independent synaptic processing. This is subject, of

course, to practical constraints such as that the cell

remain of manageable size, the dendritic tree retain

cytoplasmic continuity, the cell body give rise to a

bounded number of primary neurites, nonlinear volt-

age-dependent synaptic interactions remain confined

to individual subunits, all participating subunits com-

municate e¤ectively with the cell body, and so on.

Recent quantitative anatomical studies shed new

light on this issue. Pace et al. (2000) found that in

layer 4 stellate cells of the cat striate cortex, the num-

ber of long, thin terminal sections is nearly constant

around forty and is independent of the number of

primary dendritic branches emanating from the cell

body, which ranged from four to eleven in their pop-

ulation (see figure 13.1). Thus, cells with many pri-

mary dendrites exhibited fewer stages of branching,

while cells with few primary dendrites exhibited more

stages of branching. In combination with the fact that

most of the synapses onto basal dendrites lie on the

long, thin unbranched terminal sections, while the

shorter proximal branches contain a much lower

density of synaptic contacts (Beaulieu and Colon-

nier, 1985; Elston and Rosa, 1997; Pace et al., 2000;

Megı́as et al., 2001; Jacobs et al., 2001), the data of

Pace et al. (2000) suggest a developmental program

that tightly regulates the production of mutually iso-

lated dendritic subunits and then arranges for synapses

to be formed primarily there. Moreover, while the

morphologies of basal dendritic trees at di¤erent stages

of cortical processing di¤er greatly in the size of their

dendritic trees and in their spine densities—which in-

crease nearly 20-fold from the primary visual cortex to

the prefrontal cortex (Elston, 2000)—one stable and

highly salient morphological feature of these cells is

the tendency to show several quick bifurcations near

the cell body, where spine densities are low (see also

Megı́as et al., 2001), culminating in a moderately large

number of long, thin, unbranched, spine-dense ter-

minal sections (see also chapter 4), which appear

biophysically optimized for independent integrative

processing. It is interesting to note that this short-

to-long branching pattern is by no means universal

among dendritic structures and in fact is the opposite

of that found in most terrestrial trees.

13.2.3 Structural Plasticity at the Axodendritic

Interface

The possibility that neurons contain multiple, sepa-

rately thresholded dendritic subunits has profound

implications for the mechanisms governing the for-

mation and remodeling of the interface between

axons and dendrites, an issue central to the focus of

this chapter. Axons, dendrites, and spines are strik-

ingly dynamic structures (Greenough and Bailey,

1988; Goodman and Shatz, 1993; Cline, 1999;

Woolley, 1999; Harris, 1999; McAllister et al., 1999;

Klintsova and Greenough, 1999; Lüscher et al., 2000;

Segal et al., 2000). New dendritic spines or filopodia

can emerge within minutes in vitro (Dailey and

Smith, 1996; Engert and Bonhoe¤er, 2000; Maletic-

Savatic et al., 1999; Toni et al., 1999) or in vivo

(O’Rourke and Fraser, 1990; Lendvai et al., 2000),

while large-scale growth and remodeling of axonal

and dendritic arbors and/or proliferation of new

spinous synapses can occur in the adult brain within
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Figure 13.1

Evidence for regulation of number of functional dendritic subunits. (A) Schematics of spiny stellate cell morphology in cat

visual cortex derived from 3-D reconstructions, shown for cells with four or ten primary dendrites. (B ) The number of

unbranched terminal segments per cell is nearly constant (about forty) for cells with widely varying numbers of primary den-

drites (middle curve). (Adapted with permission from Pace et al., 2000.)
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days (Greenough et al., 1985; Woolley et al., 1990;

Darian-Smith and Gilbert, 1994). This structural

lability at the axodendritic interface is correlated with

the high concentration of actin found in dendrites and

spines, underlying their motility (Crick, 1982; Matus,

1999; see also chapters 3, 4, and 6).

One conception regarding the role of structural

plasticity in learning and development involves

correlation-based sorting of synaptic contacts on

their postsynaptic targets (Shatz, 1990; Cline, 1999).

According to this idea, (1) synapses are initially

formed between axons and dendrites in a random,

activity-independent fashion; (2) newly formed syn-

apses begin their life cycle in a probationary, or ‘‘si-

lent,’’ phase (i.e., containing only NMDA channels),

which leaves them unable to unilaterally activate their

postsynaptic targets (Liao et al., 1995; Isaac et al.,

1995; Durand et al., 1996); and (3) silent synapses that

are frequently coactivated with mature (nonsilent)

synapses within the same postsynaptic compartment

are structurally stabilized and thus retained, perhaps

via the insertion of AMPA receptors (Lynch and Bau-

dry, 1984), while those that are poorly correlated with

their neighbors are eliminated (Cline et al., 1997;

Lüscher et al., 2000; Segal et al., 2000).

Later in this chapter we take up an extension of this

idea in which synaptic contacts are sorted onto the

many separate dendrites of a developing neuron rather

than, or in addition to, the many separate whole

neurons of a developing neural map. Before consider-

ing this scenario in detail, we first review some rele-

vant concepts relating to the theory of dendritic

computation.

13.3 In Search of the Single Neuron Model

The neuronlike unit most often used in models of

brain function for the past 50 years is the thresh-

olded linear point neuron, in which synaptic inputs

are summed (with weights) and then passed through

a single global nonlinearity representing the output

spiking mechanism of the cell (McCullough and Pitts,

1943; Rosenblatt, 1962; Rumelhart et al., 1986). An

accumulation of evidence, however, including results

discussed earlier from anatomical and physiological

studies, suggests that the venerated point neuron may

be a poor model of synaptic integration in many cell

types, including pyramidal cells of the cerebral cortex.

Cable theory ( Jack et al., 1975; Koch, 1999)

informs us that the dendritic morphology of a typi-

cal CNS neuron, consisting of many thin-branched

subtrees radiating outward from the cell body and/or

main dendritic trunks, is ideally suited for isolating

voltage responses within individual branches of the

dendritic arbor. Thus, the impedance mismatch

between a thin branch and a main trunk or soma is

expected to produce a significant attenuation of dis-

tally generated voltage signals when measured at the

trunk, with the most profound suppression expected

for rapid voltage transients associated with fast syn-

aptic potentials or fast dendritic spikes.

In an early theoretical look at the compartmentali-

zation of synaptic interactions in a passive dendritic

tree, Koch et al. (1982) defined a dendritic subunit as

a region within which the steady-state voltage atten-

uation is small between any pair of sites within the

subunit, but large between every site within the sub-

unit and the soma. Under reasonable biophysical

assumptions, Koch et al. (1982) found that large reti-

nal ganglion cells have a considerable capacity for

subunit-specific synaptic integration. The possibility

that dendritic trees could support complex multisite

nonlinear operations, including logiclike operations,

was further considered in a number of subsequent

modeling studies (Koch et al., 1986; Shepherd and

Brayton, 1987; Rall and Segev, 1987; Mel, 1992a,b,

1993).

Structural Plasticity at the Axodendritic Interface 277



13.3.1 The Nonlinear Sum-of-Subunits Hypothesis

One recent study utilized a simplified model pyra-

midal cell whose dendrites contained AMPA/

NMDA synapses and low concentrations of voltage-

dependent Naþ/Kþ channels capable of generating

dendritic spikes. When total synaptic drive to the cell

was held constant but distributed in varying spatial

patterns to two dendritic branches, the average firing

rate of the cell was approximated by a simple sum-of-

squares model (figure 13.2). The finding is intriguing

in that it suggests a possible connection to the qua-

dratic ‘‘energy’’ models used to describe a variety of

visual receptive field (RF) nonlinearities (Pollen and

Ronner, 1983; Adelson and Bergen, 1985; Heeger,

1992; Ohzawa et al., 1997; for further discussion, see

Mel, 1999). This compartmental modeling study pro-

vided the first direct test of the two-layer sum-of-

subunits model for synaptic integration in which (1)

the thin dendritic branches, which receive the bulk of

the cell’s synaptic input, act like separately thresholded

neuronlike subunits; and (2) the outputs of these thin-

branched subunits are summed linearly via the main

trunks and cell body prior to global thresholding:

yðxÞ ¼ g
Xm
i¼1

aib
Xk
j¼1

wijxij

" # !
; ð13:1Þ

where y is the global output, m is the number of sub-

units, k is the number of synapses per subunit, wij is

the weight and xij is the activity of the jth input to the

ith subunit, bð Þ is the subunit nonlinearity, ai is the

coupling of the ith subunit to the cell body, and gð Þ
is a global output nonlinearity.

 

Figure 13.2

Summation of synaptic inputs delivered to two branches of a ball-and-stick model with active dendrites. (A) Schematic

of a model cell whose thin basal branches contained AMPA- and NMDA-type synapses and low concentrations of voltage-

dependent sodium and potassium channels (see Archie and Mel, 2000). The simulations were carried out in the NEURON

simulation environment. (B ) The plot shows the cell’s mean firing rate (averaged over sixty-four 1-sec simulations) as the

number of active (100 Hz) synapses was increased on the two branches. Within each branch, synapse locations were random.

Solid and dashed lines show two iso-synapse-count contours (solid ¼ twelve total synapses; dashed ¼ sixteen total synapses);

dips in these contours reflect compartmentalization of the cell (a point neuron would exhibit a constant response along iso-

synapse-count contours). (C ) An abstract model cell whose output is proportional to n21 þ n22 , where n1 and n2 are the num-

bers of active synapses on branches 1 and 2, respectively. Iso-synapse-count contours are similar to those shown in (B ).
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In more recent work, we developed a biophysically

detailed CA1 pyramidal cell model calibrated with a

broad spectrum of in vitro data and used it to more

closely examine the form of the thin-branched input-

output nonlinearity bð Þ. Using Eq. (13.1) to predict

the time-averaged response of the compartmental

model, we found that the assumption of a sigmoidal

subunit nonlinearity led to the most accurate pre-

dictions of the cell’s firing rate, surpassing the perfor-

mance of any simple accelerating curve tested (e.g.,

x2, x3, etc.) (Poirazi et al., 2003b).

In summary, evidence from physiological, ana-

tomical, and modeling studies suggests that neurons

may be capable of providing a moderately large num-

ber of separately thresholded integrative subunits

within their dendritic trees, perhaps 50 to 100 per

cell. If correct, this view implies that the key post-

synaptic processing unit in cortical tissue is the thin

dendritic branch rather than the neuron as a whole. In

the remainder of this chapter we consider the con-

sequences of this shift in processing granularity for the

neural basis of learning and memory.

13.4 Impact of Subunit-Containing Neurons

on Neural Learning and Development

A critical issue for the interpretation of data relating to

structural plasticity in neural tissue involves the defi-

nition of the postsynaptic unit. In line with standard

concepts from the neural network literature, the for-

mation of new synapses and the elimination of old

ones in the course of learning could be viewed as

a means to dynamically regulate the overall connec-

tion strength wAB between two neurons A and B.

However, if postsynaptic neuron B contains separately

thresholded dendritic subunits, analogous to hidden

units in a multilayer neural network, then the over-

all connection strength between two neurons is no

longer well defined. Rather, the shift in granularity

leads to a higher-dimensional parameterization of

the learning system in terms of weights wABk, i.e., the

weight from neuron A to the kth subunit of neuron

B.

In the limiting case where each postsynaptic sub-

unit contains enough sites to accommodate only a

small fraction of the presynaptic axon population, and

the modifiable synaptic weights are all positive and of

low resolution (e.g., binary valued), then it may be

conceptually parsimonious to parameterize the inter-

face between axons and dendrites in terms of addresses

rather than weights, i.e., the set of dendritic subunits

with which each presynaptic axon makes contact (for

discussion, see Poirazi and Mel, 2000, 2001).

The relevance of this address-based parameteriza-

tion can be seen from the perspective of axon i in the

process of ‘‘choosing’’ which subunit s A f1 . . . kg to

enervate on postsynaptic neuron j during learning or

development. The subunit function b, which gen-

erates nonlinear interactions among the set of inputs

to each subunit, ensures that i’s e¤ectiveness in driv-

ing cell j depends, not just on its own activity xi and

associated weights wijs, but also on the activity and

weights of the other axons providing input to the

same subunit(s).

Thus, given compartmentalized neurons, the ‘‘re-

ceptive field’’ of the neuron changes, in general,

when any single axon withdraws a synaptic contact

from one subunit and forms a new contact on an-

other, even when the change of address involves two

branches of the same postsynaptic cell (figure 13.3).

By contrast, models operating at neuron-level gran-

ularity, which encode only the overall connection

strength between neurons, lack the parameters needed

to represent such changes. This highlights the dan-

ger in counting sheer numbers of synaptic contacts

formed between two neurons as a measure of the

outcome of learning.
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13.4.1 PartnershipCombinatorics at theAxodendritic

Interface

The possibility that learning-related mechanisms

could orchestrate the correlation-based sorting of

synaptic contacts, not just onto whole neurons, but

one level down onto specific dendritic subunits, raises

the question as to whether the physical interface be-

tween axons and dendrites in cortical tissue is amena-

ble to this type of fine-scaled structural plasticity. In

particular, when a neuron contains subunits, we have

found that its capacity to absorb learned information

is closely tied to the addressing flexibility of the tissue,

i.e., the flexibility to establish arbitrary partnerships

between presynaptic axons and postsynaptic subunits

(Poirazi and Mel, 2001).

A serious practical di‰culty arising from the need

to establish on-demand partnerships between arbitrary

pairs of axons and dendrites is that of physical prox-

imity, or the lack thereof. It is unreasonable to expect

that during the course of learning, particularly in the

densely packed neuropil of the mature brain, axons or

dendrites should be regularly required to advance and

retract over long distances in search of appropriate

partnerships.

What physical properties of axons and dendrites

might enhance their partnership flexibility, minimiz-

ing the need for long-distance travel to form arbi-

trary pairings between presynaptic axons and dendritic

subunits? In one feature of the anatomy that could

contribute significantly to this process, axonal and

dendritic arborizations are heavily interdigitated

within the three-dimensional volume of the cortical

neuropil, an arrangement that maximizes the proba-

bility of a close approach between any given axon and

any given compartment of a postsynaptic cell. More

generally, treelike structures—including circulatory

systems, root systems, terrestrial trees, and so on—are

specifically designed to penetrate a volume for the

delivery or retrieval of some substance, be it oxygen,

nutrients, or in the case of neuronal arborizations,

information. By design, then, it is di‰cult for a den-

Figure 13.3

The existence of subunit (branch) nonlinearity means that the e¤ectiveness of a synapse can depend on its address on the post-

synaptic cell. At left, an a¤erent axon faces a choice between two subunits for synaptic contact (location B versus B 0). At right, a
conceptual experiment shows how coactivation of synapses A and B within the same subunit leads to supralinear summation at

the cell body, while coactivation of synapses in di¤erent subunits (A and B 0) leads to linear summation. In this scenario, the

e¤ectiveness of synapse B, and hence its ‘‘weight,’’ is in part determined by the ongoing activity of other synapses.
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dritic branch to be far away from every branch of an

axon in the region in which the two trees ramify. This

qualitative observation is supported by the conceptual

montage of two axons shown in figure 13.4, but is not

yet backed by hard numbers. One useful experiment

would be to measure, over a dense 3-D grid spanning

a volume of neural tissue, the distance between each

sample point and the point of closest approach to a

particular axonal arbor. This kind of measure would

serve as an estimate of the distances that would need

to be traversed by dynamic axonal and/or dendritic

outgrowths in the process of forming correlation-

based partnerships.

It is important to note that the three-dimensional

interdigitation of axonal and dendritic arbors found in

the cerebral cortex, which creates an interface rich in

partnership potential, is by no means a universal pat-

tern in the CNS. A striking counterexample is found

at the interface between parallel fibers and Purkinje

cells in the cerebellum, an arrangement that virtually

predetermines the site of contact between a granule

cell axon and the Purkinje cell dendrites to which it

has access.

We next consider how correlation-based sorting

of synaptic contacts onto the many separate dendrites

of a neuron could contribute to long-term memory

storage in cortical pyramidal cells. A discussion of the

possible contributions of dendritic subunit processing

to the image-processing functions of visual cortex is

available elsewhere (Mel, 1999).

13.5 Implications of Dendritic Subunits and

Structural Plasticity for Long-Term Memory

Storage

Ten years ago we found that nonlinear interactions

between synapses coactivated on the same branch of

an active dendritic tree could break the symmetry

among the many subunits of a single postsynaptic

cell, thereby providing a location-dependent mode of

long-term storage orthogonal to that contained in the

overall connection strength between neurons (Mel,

1992a,b, 1993).

We recently set out to quantify the excess trainable

capacity contained in the addressing of synaptic con-

tacts onto dendritic subunits, and to characterize how

this excess capacity depends on dendritic geometry.

We extended a previously developed function-

counting approach (Poirazi and Mel, 2000) to com-

pare the capacity of a subunit–containing neuron

with m branches (subunits) and k synapses per branch

[Eq. (13.1)] with that of a point neuron with the same

number of synaptic sites, but with a linear summation

rule, i.e., with bðxÞ ¼ x in Eq. (13.1). The two neu-

ron models were thus identical except for the pres-

ence or absence of a fixed subunit nonlinearity.

Figure 13.4

Interdigitated axonal and dendritic trees provide an ideal in-

terface for flexible partnering between a presynaptic axon

and the several dozen dendritic subunits of a single post-

synaptic neuron. The picture was created by superimposing

a dendritic arbor from a cat layer 4 spiny stellate cell (cour-

tesy Judith Hirsch) with a thalamocortical a¤erent taken

from Freund et al. (1985).
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13.5.1 Quantifying Memory Capacity with and

without Dendritic Subunits

Assuming synaptic contacts of unit weight—although

any of the d input lines could form multiple connec-

tions to the same or di¤erent branches—we derived

the upper bounds on the capacity of a linear ðBLÞ ver-
sus a nonlinear ðBNÞ cell:

BL ¼ 2 log2
sþ d � 1

s

� �
;

BN ¼ 2 log2

2
64 kþ d � 1

k

� �
þ m� 1

m

3
75:

ð13:2Þ

The expressions in each case estimate the number of

distinct input-output functions that can be expressed

by the respective model when assigning s ¼ m� k

synaptic contacts with replacement from d distinct in-

put lines. The combinatorial terms take into account

the redundancies associated with the two models, i.e.,

the changes in synaptic connectivity that have no

e¤ect on the cell’s receptive field. The linear cell, for

example, treats as equivalent every spatial rearrange-

ment of the same set of synaptic contacts, since its

summation rule encodes no notion of location on the

postsynaptic cell. For this type of cell, then, the

capacity to selectively target synaptic contacts to den-

dritic subunits would not readily translate into addi-

tional memory capacity.

In the nonlinear model, a similar type of redun-

dancy, but of much lesser magnitude, arises from an

insensitivity to rearrangements of synapses within any

given subunit, or with rearrangements of branches at

the cell level—such as the swapping of the entire syn-

aptic contents of two branches. More detail regarding

the derivation of Eq. (13.2) can be found in Poirazi

and Mel (2001).

The expressions for BL and BN are plotted in figure

13.5A for a cell with 10,000 synaptic contacts and

three values of d. The capacity is shown in bits on the

y-axis for a range of cell geometries represented along

the x-axis. The values of BL are shown on the left and

right edges of the plot, since the capacity of a point

neuron is equivalent to a subunitized neuron in a

degenerate state either with a single branch containing

10,000 synapses or with 10,000 branches containing

one synapse each. The peak capacity occurs for cells

containing approximately 1000 subunits of size 10,

where the optimal geometry depends little on d over

the order-of-magnitude range tested. Also of interest

is that the capacity of the optimally configured non-

linear cell exceeds that of the same-sized linear cell by

a factor of 23.

13.5.2 Empirical Testing of Memory Capacity

To validate the analytical model, we trained both lin-

ear and nonlinear cells on random two-class classifica-

tion problems. All target and distractor patterns were

drawn from a forty-dimensional spherical Gaussian

distribution and randomly assigned labels of 1 or �1.

The patterns were then recoded into 400 dimensions

through a set of ten nonoverlapping one-dimensional

boxcar receptive fields per input dimension, with bins

sized to contain equal (10 percent) shares of the prob-

ability density along each dimension.

A stochastic gradient descent learning rule pat-

terned after the ‘‘clusteron’’ learning rule described in

Mel (1992a) was used to train both linear and non-

linear cells. The learning rule employed two mecha-

nisms known to contribute to neural development:

(1) random, activity-independent synapse formation

and (2) activity-dependent synapse stabilization or

elimination. In each iteration of the learning process,
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a random set T of nT synapses was targeted for possi-

ble replacement. For each synapse in T, a fitness score

was computed using a delta rule that measured the

degree to which the synapse contributed to the classi-

fication performance of the postsynaptic cell. The fit-

ness fij for the ith synapse on the jth branch was given

by a product of four terms:

fij ¼ hxijb
0
j ðxÞg 0ðyÞ½t � gðyÞ�i; ð13:3Þ

where angle brackets indicate the expectation value

over the training set, xij is the presynaptic activity,

b 0j ðxÞ is the derivative of the postsynaptic branch re-

sponse, the sigmoid gðyÞ ¼ 1=½1þ expð�y=0:05Þ� is
a global output nonlinearity with g 0ðyÞ its derivative,
and t ¼ f0; 1g is an external (i.e., network-derived)

supervisory signal instructing the neuron whether

to respond to a given input pattern. For the linear

model, the value of b 0j ðxÞ was replaced by 1, so that

Figure 13.5

Linear versus nonlinear cell capacity as a function of branch geometry. (A) The capacity of a nonlinear cell with 10,000 sites for

three values of d. Branch count m grows and branch size k correspondingly shrinks moving along the x-axis. Cells at both ends

of the x-axis have a capacity equivalent to that of a linear model. The capacity of the nonlinear model is maximal for cells with

1250 branches containing eight synapses each. The asterisks indicate half-maximum capacity. (B ) A comparison of memory ca-

pacity predicted by analysis with that found empirically in random memorization problems. The dashed lines show the analyti-

cal curves for linear and nonlinear cells [the nonlinear capacity curve corresponds to the dashed curve in (A)]. The solid curves

show capacity measured empirically with a 2 percent error criterion. The analytical curves were scaled down together by a fac-

tor of 3.5 to align peak analytical and empirical capacity values for the nonlinear model. The analytical and empirical curves

were similar in form. However, the predicted capacity boost for an optimal nonlinear cell was 23 relative to its size-matched

linear counterpart, whereas the actual boost realized in empirical trials was nearly 46, corresponding to 27,400 versus 600 pat-

terns learned with a 2 percent error criterion. Using a less e¤ective variant of the learning rule developed earlier, for which the

peak empirical capacity boost for a nonlinear cell was (fortuitously) 23, the empirical and analytical capacity curves were nearly

identical in form (inset).
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Eq. (13.3) reverted to the standard single-layer delta

rule (see Bishop, 1995). Rules of this form are some-

times called Hebbian because the change in a weight

depends on the product of the presynaptic activity and

some measure of the postsynaptic activity. According

to Eq. (13.3), the synapse that most merits potentia-

tion (stabilization) is one that fires strongly whenever

(1) its branch is also strongly activated, (2) the cell-

wide supervisory signal is strongly activated, and (3)

the cell as a whole is firing somewhere in the middle

of its dynamic range.

The poorest-performing (minimum f) existing

synapse in T was tagged for replacement with the

best-performing (maximum f) synapse in a pool of

randomly chosen replacement candidates R consisting

of nR of the d input lines. The replacement set was

analogous to a pool of silent synapses that resided on

the branch in an immature state, unable to contribute

to the branch activity in the absence of other synaptic

input. In the event a silent synapse proved itself to be

strongly correlated with other synapses on the branch,

however, it was eligible to be ‘‘upgraded’’ to mature

status with an increased measure of structural stability.

We found that memory performance varied signifi-

cantly for di¤erent choices of nT and nR, which con-

trolled the degree of randomness in the gradient

descent process. In the experiments discussed here,

nT ¼ nR ¼ 25.

Memory capacity was measured for cells of di¤er-

ent geometry by determining how large the training

set could be until the cell’s error rate reached 2

percent.

13.5.3 Comparison of Analytical and Empirical

Capacity Measures

A comparison of analytical and empirical capacities

for both linear and nonlinear cells is shown in figure

13.5B. Since the analytical and empirical capacities are

reported in di¤erent units (bits versus patterns learn-

able with a 2 percent error), the analytical curves

(dashed lines) for both linear and nonlinear models

were scaled down by a factor of 3.5 to match the peak

empirical capacity (solid lines) of the nonlinear model.

As shown in figure 13.5B, the analytical and empirical

capacity curves are remarkably similar in shape, with

peak capacity again occurring for cells of very similar

shape, and with similar costs for deviations from the

optimal geometry. However, in a departure from the

predictions of Eq. (13.2), the optimal nonlinear cell

with 10,000 synapses outperformed its size-matched

linear counterpart by a factor of 46 (rather than 23),

learning 27,400 rather than 600 patterns at the 2

percent error criterion. This mismatch and the slight

di¤erence in form of the analytical and empirical

capacity curves are discussed elsewhere (Poirazi and

Mel, 2001).

In further experiments with a population of inde-

pendently trained cells, which could occur within a

cortical minicolumn, we found that the excess storage

capacity available to a structural learning rule could

easily approach two orders of magnitude.

13.6 Discussion

Several types of evidence call into question the classi-

cal point neuron as a model for a pyramidal cell or

other large dendritic neuron of the CNS. We pre-

sented an alternative model, supported by physio-

logical, anatomical, and modeling studies, in which

the output of the cell represents the sum of a moder-

ately large set of separately thresholded dendritic

subunits—a formulation that looks remarkably like

a conventional two-layer neural network. While the

validity of this subunitized view of a neuron remains
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to be proven empirically, we have nonetheless gone

about exploring some of its major consequences for

development and learning.

Most important, if we adopt a functionally com-

partmentalized model of the individual neuron, the

formation of new synapses and the elimination of

old ones during learning or development can no

longer be viewed simply as a means to increase or

decrease the overall connection strength between two

neurons—a common interpretation of the process of

new synapse or spine formation. Indeed, the concept

of an overall connection strength between two neu-

rons is no longer well defined, in the sense that the

interaction between two neurons can no longer be

captured by a single positive or negative coe‰cient.

The granularity has changed; we must now worry

about the role of learning-related mechanisms in

tuning the connection strengths between a many-

fingered presynaptic fiber and the multiple dendritic

subunits of a given postsynaptic cell.

From the perspective of learning theory, this

change in granularity brings with it a large increase

in the number of modifiable parameters available to

the tissue. This is not a purely theoretical construct.

We have found in simulation studies that these extra

parameters can translate directly into additional long-

term storage capacity hidden in the fine structure of

the axodendritic interface.

Future Modeling Studies

Future modeling studies will be needed to assess the

impact of subunitized neurons on higher-level devel-

opmental processes such as map formation. In the

visual realm, a number of models based on arrays of

point neurons have been devised to account for the

development of retinotopy and/or formation of maps

of orientation and ocular dominance among the sim-

ple cell population in the visual cortex (see chapters

11 and 12). In contrast, few studies have explored the

development of higher-order receptive field proper-

ties. In the visual cortex, Foldiak (1991) showed how

‘‘complex cells’’ (following the original terminology

of Hubel and Wiesel) could develop from ‘‘simple

cells’’ given structured spatiotemporal input, while

Hyvarinen and Hoyer (2001) showed how the princi-

ples of sparseness and independence and the statistics

of natural images could lead to the formation of both

simple and complex cell receptive fields. Although

complex cell receptive fields have been almost uni-

versally assumed to arise from the pooling of simple

cell outputs, they provide an interesting new area for

developmental modeling in light of our previous

work showing that the subunit structure of complex

cell receptive fields could arise from the contributions

of individual dendrites acting as simple cell surrogates

(Mel et al., 1998; Archie and Mel, 2000).

A biologically detailed treatment of this type of

multilayered developmental process will be compli-

cated, since it will likely require (1) modeling of the

intracellular mechanisms that give rise to functional

compartmentalization within the dendritic tree; (2)

finer-grained anatomical assumptions regarding the

targeting of axons to specific dendritic subregions

(e.g., apical versus basal trees) or the cell body; (3)

finer-grained biophysical assumptions regarding the

rules for synaptic modification within individual cells;

and as always, (4) external network e¤ects mediated

by various forms of lateral excitation and inhibition.

In short, a host of additional assumptions must be

made in the construction of such a developmental

model, once the inadequacy of the point neuron

abstraction has been accepted as a premise. The di‰-

culty of this type of research program should, how-

ever, be considered along with the potential payo¤:

the high likelihood that such explorations will lead to

the discovery of altogether new principles of neural

development.
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Future Experimental Studies

Modeling studies aside, experiments must ultimately

decide which are the relevant postsynaptic integrative

units operating in neural tissue—whether portions

of dendritic branches or entire cells—and they must

specify the changes that occur to these integrative

units in the course of development or learning. Ex-

perimental predictions arising from the ideas discussed

in this chapter lie along two main tracks.

The first track involves predictions regarding the

form of synaptic integration in the dendritic trees of

pyramidal cells of the hippocampus and neocortex

[Eq. (13.1)]. In its simplest form with only two stimu-

lus sites involved, the dendritic subunit hypothesis

predicts that for weak inputs, the cell will respond

more strongly when two stimuli are delivered to the

same subunit rather than split between two di¤erent

subunits. Several variants of this paired-input sce-

nario were tested in a recent compartmental modeling

study, leading to the expected results (Poirazi et al.,

2003a) (see also Mel, 1992b, 1993; Mel et al., 1998;

Archie and Mel, 2000; Poirazi et al., 2003b). Experi-

ments of this type can be done and could be carried

out with relatively minor modifications to methods

used in published in vitro studies (Cash and Yuste,

1999; Schiller et al., 2000).

The second experimental track addresses the pro-

posal that in the course of neural development, and

later as a manifestation of long-term memory for-

mation, synaptic contacts sort themselves into like-

activated cohorts across the population of postsynaptic

dendritic subunits. Specifically, groups of a¤erent

axons that fire together should be more likely to form

synaptic contacts, not just onto the same postsynaptic

cells, but onto the same dendritic compartments. This

prediction represents only a modest departure from

the widely accepted principle of neural development,

which holds that axodendritic connections are initially

formed at random and then stabilized or eliminated

based on the correlation of pre- and postsynaptic

signals (Shatz, 1990; Cline, 1999). Our proposed

elaboration of this principle simply requires that the

relevant postsynaptic compartment be the dendritic

branch or subtree rather than the cell as a whole.

An experimental approach to this issue has been

described recently (Poirazi and Mel, 2001). The basic

idea is to arrange through artificial means for strong

correlations between the firing of two groups of

axons, say, groups A and B, that interpenetrate the

same target dendritic field. If the activity correlations

remain strong during a period of synaptogenesis, then

synapses arising from axons in group A are expected

to be more frequently cocompartmentalized with

those of group B (i.e., lying on the same dendritic

branch or within the same minor subtree) and to be

less frequently cocompartmentalized with the termi-

nals of an uncorrelated (but equally active) control

group C. Experiments of this general kind could be

carried out in slice cultures or in vivo using triple la-

beling to visualize and quantify conjunctions of A and

B (or A and C) terminals with identified postsynaptic

dendritic branches in the target population.

In summary, clever use of coordinated experi-

mental and modeling studies will be needed to help

direct our attention to the proper levels of analysis as

we seek to more fully understand the many-faceted

mechanisms of neural development.
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Oxford: Oxford University Press.

Cline, H. T., Wu, G.-Y., and Malinow, R. (1997). In

vivo development of neuronal structure and function. Cold

Spring Harbor Symp. Quant. Biol. 61: 95–104.

Crick, F. (1982). Do dendritic spines twitch? Trends Neuro-

sci. 5: 44–46.

Dailey, M., and Smith, S. (1996). The dynamics of dendritic

structure in developing hippocampal slices. J. Neurosci. 16:

2983–2994.

Darian-Smith, C., and Gilbert, C. (1994). Axonal sprouting

accompanies functional reorganization in adult cat striate

cortex. Nature 368: 737–740.

Durand, G. M., Kovalchuk, Y., and Konnerth, A. (1996).

Long-term potentiation and functional synapse induction in

developing hippocampus. Nature 381: 71–75.

Elston, G. N. (2000). Pyramidal cells of the frontal lobe: All

the more spinous to think with. J. Neurosci. 20RC95: 1–4.

Elston, G. N., and Rosa, M. G. (1997). The occipitoparietal

pathway of the macaque monkey: Comparison of pyramidal

cell morphology in layer III of functionally related cortical

visual areas. Cereb. Cortex 7: 432–452.

Engert, F., and Bonhoe¤er, T. (2000). Dendritic spine

changes associated with hippocampal long-term synaptic

plasticity. Nature 399: 66–70.

Foldiak, P. (1991). Learning invariance from transformation

sequences. Percep. Psychophys. 3: 194–200.

Fox, K., Sato, H., and Daw, N. (1990). The e¤ect of vary-

ing stimulus intensity on NMDA-receptor activity in cat

visual cortex. J. Neurophysiol. 64: 1413–1428.

Freund, T. F., Martin, K. A., and Whitteridge, D. (1985).

Innervation of cat visual areas 17 and 18 by physiologically

identified X- and Y-type thalamic a¤erents. I. Arborization

patterns and quantitative distribution of postsynaptic ele-

ments. J. Comp. Neurol. 242: 263–274.

Golding, N. L., and Spruston, N. (1998). Dendritic sodium

spikes are variable triggers of axonal action potentials in

hippocampal CA1 pyramidal neurons. Neuron 21: 1189–

1200.

Goodman, C. S., and Shatz, C. J. (1993). Developing

mechanisms that generate precise patterns of neuronal con-

nectivity. Cell (Suppl.) 72: 77–98.

Greenough, W., and Bailey, C. (1988). The anatomy of a

memory: Convergence of results across a diversity of tests.

Trends Neurosci. 11: 142–147.

Greenough, W. T., Larson, J. R., and Withers, G. S. (1985).

E¤ects of unilateral and bilateral training in a reading task on

dendritic branching of neurons in the rat sensory-motor

forelimb cortex. Behav. Neur. Biol. 44: 301–314.

Harris, K. M. (1999). Structure, development, and plasticity

of dendritic spines. Curr. Opin. Neurobiol. 9: 343–348.

Hausser, M., Spruston, N., and Stuart, G. J. (2000). Diver-

sity and dynamics of dendritic signaling. Science 290: 739–

744.

Structural Plasticity at the Axodendritic Interface 287



Heeger, D. (1992). Half-squaring in responses of cat striate

cells. Vis. Neurosci. 9: 427–443.

Hirsch, J., Alonso, J., and Reid, R. (1995). Visually evoked

calcium action-potentials in cat striate cortex. Nature 378:

612–616.

Hyvarinen, A., and Hoyer, P. O. (2001). A two-layer sparse

coding model learns simple and complex cell receptive fields

and topography from natural images. Vision Res. 41: 2413–

2423.

Isaac, J. T. R., Nicoll, R. A., and Malenka, R. C. (1995).

Evidence for silent synapses. Implications for the expression

of LTD. Neuron 15: 427–434.

Jack, J., Noble, D., and Tsien, R. (1975). Electric Current

Flow in Excitable Cells. Oxford: Oxford University Press.

Jacobs, B., Schall, M., Prather, M., Kapler, E., Driscoll, L.,

Baca, S., Jacobs, J., Ford, K., Wainwright, M., and Treml,

M. (2001). Regional dendritic and spine variation in human

cerebral cortex: A quantitative Golgi study. Cereb. Cortex

11: 558–571.

Ja¤e, D., Johnston, D., Lasser-Ross, N., Lisman, J., Miya-

kawa, H., and Ross, W. (1992). The spread of Naþ spikes

determines the pattern of dendritic Ca2þ entry into hippo-

campal neurons. Nature 357: 244–246.
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14Modeling the Neural Basis of Cognitive

Development

Steven R. Quartz

Until recently, developmental modeling e¤orts at the

systems level were frustrated by the lack of experi-

mental data that would constrain the model. A num-

ber of new in vivo and in vitro probes now exist

(two-photon laser scanning microscopy and magnetic

resonance imaging, for example) that can provide

critical data on the dynamics of development. These

new experimental technologies now make it possible

to begin to construct computational models of brain

development at the network and systems level. My

aim in this chapter is to sketch some of the funda-

mental issues and challenges that arise for computa-

tional modeling e¤orts at this level in light of the

progress stemming from these new technologies. In

particular, I focus on questions regarding the link

between developmental processes at the cellular level

and the systems level, with reference to human devel-

opment where possible. As I will explore, one of the

most intriguing issues that arises at this level concerns

the use of computational modeling in understanding

how structural brain development relates to func-

tional, or cognitive, development.

14.1 Introduction

As illustrated by the chapters in this volume, com-

putational approaches to development are important

tools for investigating the collective properties of dy-

namic systems. In particular, such models aid in un-

derstanding how multiple interactions at one level of

organization give rise to phenomena at higher levels

of organization. Because brain function takes place

across a number of organizational levels—from the

molecular to the systems level—one goal of modeling

neural development is to construct simulation frame-

works that provide insight into how developmental

processes at one level give rise to developmental

phenomena at another level, linking molecules to

networks and systems. Since the systems level is

the appropriate level for investigating many cognitive

phenomena, linking multiple levels of organization

through modeling e¤orts suggests that computational

frameworks will o¤er a means for probing the neural

basis of cognitive development.

Computational models of development depend

upon the availability of developmental data at multi-

ple levels of organization both to construct suitably

constrained simulation frameworks and to test their

predictions. A major hurdle in constructing such

frameworks, however, has been the lack of requisite

developmental data. In part, this has been the result of

a dearth of investigative probes at a number of spatial

and temporal scales.

At the cellular level, the lack of in vivo and in vitro

probes that can monitor developmental processes

across extended time periods has meant that a great

deal about development had to be inferred from

cross-sectional histological preparations. Although this

provided a wealth of structural information, it did

not provide much knowledge regarding the dynamics

of developmental processes. Because it is generally

believed that cellular processes underlying develop-

ment are largely conserved across mammalian species,

some insight into the dynamics of developmental



processes has been obtained by using animal models to

investigate the cellular mechanisms of development,

which in turn may be used to constrain computational

models. With regard to human brain development,

the situation is more tenuous at the network and sys-

tems level, since good animal models either do not

exist or are infeasible from a practical point of view.

For this reason, the neural basis of human develop-

ment at the systems level in nonclinical populations

has been largely inferred either from clinical popula-

tions or from a limited number of postmortem studies.

In the past few years, a number of new investigative

probes have been developed that fill large temporal

and spatial gaps, providing important new constraints

at the cellular level and making it possible to begin to

construct computational models at increasingly com-

plex levels of organization. At the subcellular and cel-

lular levels, two-photon laser scanning microscopy

can be used both in vivo and in vitro to monitor

developmental processes across extended time peri-

ods; at the level of regional and whole brain develop-

ment, MRI allows both structural and functional

assays of human brain development in nonclinical

populations. Optical intrinsic signal imaging and near-

infrared spectroscopy also show promise in a devel-

opmental context.

As other chapters in this volume illustrate, compu-

tational models have been particularly important in

unraveling the relation between neuronal activity and

structural development, which generally falls under

the rubric of self-organization. Since such processes

of activity-dependent development correspond to

cognitive processes of learning at the network and

systems level, computational modeling holds great

promise in explicating the role of learning in brain

development. In recent years, the burgeoning field of

developmental cognitive neuroscience has emerged

with the explicit aim of integrating cognitive and

neural perspectives on brain development.

14.2 Learning and the Computational

Perspective

A fundamental issue in computational modeling

involves a characterization of the abstract problem a

system of interest is attempting to solve. The most

thorough discussion of this kind of analysis stems from

David Marr’s work on computational vision (Marr,

1982). According to Marr, there are three explanatory

levels at which any machine carrying out an informa-

tion-processing task must be understood. The highest,

computational, level involves a theory of the compu-

tational goal the system instantiates, why it is appro-

priate, and the logic of the strategy by which it can be

carried out. The second level involves an algorithmic

description of the computation, while the third level

involves an implementational description of the

physical substrates of the computation. Although the

details of Marr’s analysis have rightly been criticized

from a variety of perspectives, there remains much

value in articulating an abstract characterization of the

computational goal a system is attempting to achieve.

Chief among the reasons for such an analysis is that

it is impossible, and undesirable, to incorporate every

parameter in a computational model. The question

of what parameters must be incorporated depends on

the explanatory role of the model, and this depends

on the computational goal of the natural system in

question.

To cite two examples, Montague et al. (1995) con-

structed a highly illuminating model of bee foraging

that centered on an idealized model of di¤use ascend-

ing systems. Although the model was highly idealized,

its theoretical basis, which stemmed from work in

reinforcement learning and temporal di¤erences

learning (for a review, see Sutton and Barto, 1998),

demarcated what level of biological detail was neces-

sary for the model to have explanatory value. In an-
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other area of research, the originally highly empirical

exploration of neural network supervised learning

algorithms has increasingly been replaced by a theo-

retically motivated one, such as work on support

vector machines (Vapnik, 1998), which provides nu-

merous theoretical insights into the nature of super-

vised learning.

In this light, an often-overlooked value of the

computational perspective lies in how it characterizes

what I will refer to as ‘‘the problem of brain develop-

ment’’ and how this characterization conceptualizes

the interplay between the processes of learning and

those of biological maturation. At its most general,

development is the process by which an organism or

artificial system constructs those representations that

both guide adaptive behavior and facilitate alterations

in representational structures through experience in

the mature state.1 The process of fitting representa-

tions to ecological niches involves both phylogenetic

and ontogenetic strategies, which at a high level of

abstraction instantiate similar strategies of error cor-

rection, although on di¤erent time scales (see Koza,

1992). A great deal of debate concerns the relative

contribution of these two processes to cognitive de-

velopment, as manifest in the innateness debate

(Elman et al., 1996).

A number of theoretical approaches have attempted

to characterize the problem of development as a

learning problem. In the context of language identifi-

cation ‘‘in the limit,’’ early on Gold (1967) attempted

to establish upper bounds or worst-case scenario

results by asking what a general learner could learn

when presented with example sentences of some lan-

guage. Gold supposed that the learner’s task was to

create a hypothesis regarding the grammar that might

generate that language. The learner was said to iden-

tify the language in the limit if it eventually chose

a grammar that was consistent with every string. The

major implication of Gold’s work was that uncon-

strained learning was prohibitive. Simple counting

arguments show that the probability of a learner

searching through a fixed hypothesis space to success-

fully learn a concept chosen at random is exponen-

tially small (reviewed in Dietterich, 1990). For this

reason, the hypothesis space must be an exponentially

small subset of possible concepts (see Blumer et al.,

1988).

There were two limitations of Gold’s model: the

concern for convergence in the limit and its require-

ment that the learner precisely identify the target

concept (no mistakes allowed). Valiant (1984) intro-

duced a probabilistic model of learning that remedied

these two limitations and which accordingly became

the standard model of inductive inference in the field

(see Dietterich, 1990, in the case of machine learn-

ing). Rather than disallowing any mistakes, Valiant’s

learner could make a hypothesis that was only a good

approximation with a high probability. This frame-

work was thus dubbed the probably approximately

correct (PAC) model of learning. It also addressed the

question of convergence time because it distinguished

between feasible and infeasible learning by classifying

problems according to whether they could be learned

in polynomial time. Valiant’s model thus shifted the

main emphasis of the learning problem from what is

in principle learnable to what is learnable from some

representation class in feasible time.

Like Gold’s, Valiant’s model viewed learning as a

process of selective induction, i.e., learning as a search

through a hypothesis space that the learner posits. A

key result stemming from the Gold paradigm was that

the child must come equipped with a highly restricted

set of hypotheses regarding the target function—in

the case of language, a universal grammar. This con-

clusion derives from the view of learning as essentially

a search problem in a hypothesis space (e.g., searching

through the grammars) to the target concept. To

make this a feasible search, the space must be restricted
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by building in an inductive bias, roughly the system’s

background knowledge. One of the key virtues of

Valiant’s model was that it quantified the relation be-

tween inductive bias and learning performance from

within a complexity-based account (e.g., Haussler,

1989). The results with Valiant’s model thus showed

how di‰cult it was to learn some problem with vari-

ous inductive biases, or background knowledge. The

Valiant model thus demonstrated what could not be

fully characterized in the earlier limit-based formal

learning theory: learning systems face severe learning-

theoretical pressures and can be successful in some

domain only if they have solved this di‰cult prior

problem involving representation. That is, from the

perspective of the PAC model of learning, the funda-

mental problems of learning are not those involving

statistical inference; instead they center around how

to find appropriate representations to support e‰cient

learning (reviewed in Geman et al., 1992). This prob-

lem precedes the treatment of learning as statistical

inference because a learner’s choice of representation

class (background knowledge) largely determines the

success of learning as statistical inference.

In artificial systems, it is often the designer’s task to

build in inductive bias to make learning feasible. In

natural systems, however, this is a developmental

problem. Indeed, this is the ‘‘problem of develop-

ment’’ I alluded to earlier. In the late 1980s, as neural

network research grew in popularity, there was a

growing suspicion that this problem might not be so

severe. In particular, the claim that algorithms such

as back-propagation learned internal representations

as a function of exposure to some domain attracted

a great deal of attention. Since the networks in ques-

tion typically began with a randomized set of

weights, a popular interpretation was that such net-

works did not require domain-specific constraints to

successfully learn (for an evaluation of this claim, see

Quartz, 1993). Part of the promise surrounding the

rise of neural network research concerned the poten-

tial of neural network learning algorithms to mini-

mize the requirement for a richly structured initial

state.

Many of these insights into the learning properties

of neural network algorithms were based on experi-

mental investigations. As more theoretic work was

pursued, it became apparent that these early claims

were not accurate (see Geman et al., 1992). Like other

learning algorithms, neural network algorithms con-

fronted a basic tradeo¤ between the two contributors

to error: bias and variance. Bias is a measure of how

closely the learner’s best concept in its representation

space approximates the target function (the thing to

be learned). Variance refers to the actual distance be-

tween what the learner has learned so far and the tar-

get function.

To make this a bit more concrete, a small neural

network will be highly biased in that the class of

functions allowed by weight adjustments is very small.

If the target function is poorly approximated by this

class of functions, then the bias will contribute to

error. By making a network large, hence flexible in

terms of what it can represent (by decreasing bias), the

contribution of variance to error is typically increased.

That is, the network has many more possible states,

and so is likely to be distant from the function of

interest. This means that very large training sets will

be required because many examples will be needed

in order to rule out all the possible functions. As

Geman et al. (1992) state it, this results in a dilemma:

highly biased learners will work only if they have

been carefully chosen for the particular problem at

hand, whereas flexible learners seem to place too

high a demand on training time and resources. Geman

et al. (1992, p. 22) state, ‘‘learning complex tasks is

essentially impossible without the a priori introduc-

tion of carefully designed biases into the machine’s

architecture.’’
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From this theoretical perspective, then, the prob-

lem of development is a formidable one. Indeed,

although the bulk of research in neural network

modeling has centered around learning as statistical

inference, there is a more fundamental problem,

namely, the construction of an e‰cient set of repre-

sentations that make statistical inference possible at all.

In natural systems, this latter issue is the critical prob-

lem of development.

14.3 Development as Construction of

Representation: Contrasting Selective Induction

and Constructive Induction

In order to investigate the nature of the construction

of representations that underlie behavior and facilitate

e‰cient learning in the mature state, it is necessary to

consider the following questions:

1. What structural measures correspond to repre-

sentational complexity in the brain, and how do such

measures change across the developmental time

course?

2. Is this change dependent on environmental inter-

action, and, if so, at what level of specificity?

As Quartz and Sejnowski (1997) indicated, there

are three nonexclusive measures that relate structural

and functional complexity: axonal arborization, syn-

aptic numbers, and dendritic arborization. Since its

beginnings, developmental neurobiology has been

embroiled in debate over whether these neural struc-

tures are added progressively over the developmental

time course, or whether developmental processes are

analogous to those seen in population biology, where

an initial overproduction of structures or individuals is

acted on by selective mechanisms (see Purves et al.,

1996, for a summary of this debate). In developmental

neurobiology, the most programmatic statements of

such a view are known as selectionist models. In these

models, the initial production of neural structures is

regulated by intrinsic mechanisms whose main pur-

pose is to create a diversity of representations for a

later, activity-dependent process of selective elimina-

tion to act on, eliminating those structures that do not

reflect the informational structure of the environment

appropriately (Changeux and Danchin, 1976; Edel-

man, 1987).

The abstract characterization of the computational

goal of a developing system provides insight into the

selectionist strategy. From a learning-theoretic per-

spective, these exuberant structures can be regarded as

encoding a hypothesis space that contains the target

function as a proper subset. The initial construction

of this space is insensitive to information originating

from the environment; instead the space is con-

structed through intrinsic genetic and epigenetic pro-

cesses. The role of environmentally derived activity

is limited to a process of error correction in which

representations that do not appropriately reflect the

information structure of the system’s environment are

eliminated.

The selectionist model thus implements learning as

a process of selective induction in which the essential

feature is a search through a fixed hypothesis space.

There is an alternative framework, which treats learn-

ing as a process of constructive induction (for a

review, see Quartz, 1999). According to this frame-

work, a system begins with an initially restricted hy-

pothesis space and constructs a more complex one as

some function of exposure to a problem domain.

Constructive induction provides a markedly di¤erent

answer to the question of the source of the repre-

sentations underlying acquisition. Rather than pre-

supposing a set of fixed representations in the initial

state, constructive induction regards these repre-

sentations as unfolding dynamically across the devel-

opmental time course.
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A number of analyses have demonstrated the intri-

guing properties of constructive induction. From a

theoretical perspective, White (1990) demonstrated

that a network that adds units at an appropriate rate

relative to its experience is a consistent nonparametric

estimator. This asymptotic property means that it

can learn essentially any arbitrary mapping. The intu-

ition behind this result, which plays a central role in

characterizing constructive learning, follows a general

nonparametric strategy: slowly increase representa-

tional capacity by reducing bias at a rate that also

reduces variance. Since network bias depends on the

number of units, as a network grows its approxima-

tion capacities increase. The secret is regulating the

rate of growth so that the contribution of variance to

error does not increase. Encouraging bounds on the

rate of convergence have been obtained (Barron,

1994).

White’s demonstration of the power of neural net-

works depends on allowing the network to grow as

it learns. In fact, many of the limitations encountered

by neural networks are due to a fixed architecture.

Judd (1988), for example, demonstrated that learn-

ing the weights in a neural network is a nondeter-

ministic polynomial time (NP)–complete problem,

and therefore computationally intractable, a result that

extended to architectures of just three nodes (Blum

and Rivest, 1988). These results suggest that severe

problems may be lurking behind the early success of

network learning. As Blum and Rivest (1988) note,

however, these results stem from the fixed architec-

ture property of the networks under consideration.

In contrast, the loading problem becomes polyno-

mial (feasible) if the network is allowed to add hidden

units. This suggests fundamentally di¤erent learning

properties for networks that can add structure during

learning. This has been confirmed by studies such as

that of Redding et al. (1993), who presented a con-

structivist neural network algorithm that can learn

very general problems in polynomial time by building

its architecture to suit the demands of the specific

problem. Since the construction of the learner’s hy-

pothesis space is sensitive to the problem domain fac-

ing the learner, this is a way of tailoring the hypothesis

space to suit the demands of the problem at hand.

This allows the particular structure of the problem

domain to determine the connectivity and complexity

of the network. Since the network has the capacity

to respond to the structure of the environment in

this way, the original high bias is reduced through

increases in network complexity, which allows the

network to represent more complex functions.

Hence, the need to find a good representation be-

forehand is replaced by the flexibility of a system that

can respond to the structure of some task by building

its representation class as it samples that structure to

learn any polynomially learnable class of concepts.

Research on constructive algorithms has become in-

creasingly sophisticated (reviewed in Quinlan, 1998).

Given that constructive induction has intriguing

learning properties, it is important to consider

whether there is evidence for such processes in brain

development. Were the brain to implement such a

strategy, then one would expect to find measures of

representational complexity that increase across the

developmental time course as some function of

learning. As I indicate in the following discussion, re-

cent advances in experimental techniques provide

important new evidence for this kind of learning as

construction of representation.

14.4 Rethinking Synaptic Numbers

Many influential studies in developmental neuro-

biology focused on changes in synaptic numbers

across development. To be more accurate, some of

these studies focused on changes in synaptic density
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and made estimates of area to determine absolute

numbers. Since determining areal boundaries across

samples is not a trivial task, much of this work is

limited to the primary visual cortex. Alternatively,

many of these studies relied on the assumption that

changes in area could be discounted, thereby making

density estimates meaningful. Even granting that

reliable estimates of area are possible, a number of

assumptions are involved in the claim that synaptic

numbers are a good measure of representational com-

plexity. Principal among these is the traditional view

of synaptic integration in which dendrites are passive

cables that linearly sum a set of inputs. Such a model

has led to one of the central assumptions of devel-

opmental neurobiology and much of cognitive and

computational neuroscience: that the synapse is the

basic computational unit of the brain. For this reason,

developmental neurobiologists have been concerned

with changes in synaptic numbers over the develop-

mental time course (e.g., Rakic et al., 1986). Likewise,

many computational models employ a fixed architec-

ture and regard long-term changes in connection

strengths as the main modifiable parameter, reflecting

a central tenet of brain function that information is

stored in the patterning of synaptic weight values.

The central result of the cellular basis of learning—

synaptic plasticity—has been the discovery of long-

term potentiation (Bliss and Lomo, 1973), which has

contributed to the view that information is stored

in the pattern of synaptic weights. According to this

view, learning is mediated by correlated patterns of

firing that induce long-term increases in the strength

of connections between neurons. The rise of connec-

tionist network modeling has contributed to the view

that learning involves the long-term modification of

connection strengths between neurons, as computa-

tional studies demonstrated the power of computing

by adjusting connection strengths in a fixed architec-

ture. Theoretical analyses of these learning algorithms

also demonstrated the powerful statistical methods

they implemented. The combination of experimental,

computational, and theoretical analyses has made the

view that connection strengths are the main modifi-

able parameters extremely widespread, thereby pre-

senting learning as involving a modification of this

encoding of information.

As Poirazi and Mel (2001) note, however, much

new evidence weakens the link between synaptic

weights and information representation and process-

ing in the brain (see also chapter 13). Perhaps the

most important source of evidence, and one central

to developmental issues, concerns the nonlinear

summation properties of many dendrites. The den-

drites of pyramidal cells, for example, contain nu-

merous voltage-dependent channels that play an

important role in determining the cell’s information-

processing function. Most important, a variety of

channels, including NMDA, Naþ, and Ca2þ chan-

nels, are capable of amplifying synaptic inputs and

generating fast and slow dendritic spikes. Numerous

laboratories have localized active nonlinear responses

to synaptic inputs within the dendritic arbor (Ber-

nardo et al., 1982; Golding and Spruston, 1998) and

even within a single thin dendritic branch (Schiller

et al., 2000). These nonlinear properties complicate

the notion of a connection strength, since the weight

of a given synaptic contact will be dependent on the

activity of neighboring synapses.

These considerations suggest that the dendritic ar-

bor itself is the basic unit of computation in the cortex

(for an extended discussion, see Quartz and Sejnow-

ski, 1997).2 Structural alterations in the axodendritic

interface, particularly the growth and retraction of

dendritic arbors, would be expected to have a signifi-

cant impact on information processing. Indeed, rather

than the learning of internal representations being

primarily a process of weight adjustment, structural

alterations in the axodendritic interface could be a
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primary mechanism by which the representational

properties of the cortex are constructed (see Poirazi

and Mel, 2001, for extended discussion; see also

chapter 13). From a developmental perspective, an

important issue thus concerns the processes that regu-

late the growth of the axodendritic interface and their

relation to cognitive processes of learning.

In earlier work (Quartz and Sejnowski, 1997), I

hypothesized from histological preparations that

dendritic development follows a neural constructivist

theme. In recent years, the development of such

probes as two-photon laser scanning microscopy has

provided important new insights into the processes

regulating dendritic development and their dynamics.

Recent cellular work provides the strongest evidence

to date for the role of patterned activity in the devel-

opment of neural structures. Specifically, recent

advances in microscopy that allow the continuous

monitoring of cellular components at high resolution

(Maletic-Savatic et al., 1999; Engert and Bonhoe¤er,

1999; reviewed in Wong and Wong, 2000) have

revealed a highly dynamic view of development at the

cellular level and provide strong evidence for the in-

structive role of activity in neural development (see

also chapters 6 and 8). These results indicate that den-

dritic filopodial formation may be tightly and locally

regulated by the activity of presynaptic axons. Pre-

viously, it had been di‰cult to determine the level of

specificity that activity played in the construction

of neural structures. Specifically, it was di‰cult to dif-

ferentiate between a permissive role for activity, in

which its mere presence is su‰cient to induce growth,

and an instructive role, in which activity regulates

growth according to learning rules at specific sites.

These new results demonstrate that activity is not

simply permissive in its regulation of development.

Rather, as Maletic-Savatic et al. (1999) demonstrated,

temporally correlated activity between pre- and post-

synaptic elements that induces long-term potentiation

results in the highly spatially defined local sprouting

of dendritic elements, which is in agreement with

Hebb’s original postulate in its developmental context

(Hebb, 1949).

Similar results have been obtained in vivo.

Recently, Lendvai et al. (2000) used two-photon laser

scanning microscopy to characterize the experience-

dependent plasticity of dendritic spines in the devel-

oping rat barrel cortex in vivo. They found that

sensory deprivation markedly reduced protrusive mo-

tility (@40 percent) in deprived regions of the barrel

cortex during a critical period around postnatal days

11–13, which resulted in a degraded tuning of the re-

ceptive fields of layer 2/3 cells.

This research, along with much other evidence I

considered elsewhere (Quartz and Sejnowski, 1997;

Quartz, 1999), strongly suggests that cortical develop-

ment is not exclusively mediated by mechanisms of

selective elimination operating on transient, exuber-

ant structures. Rather, neural development during the

acquisition of major cognitive skills is best charac-

terized as a progressive construction of neural struc-

tures in which environmentally derived activity plays

a role in the construction of neural circuits. Selec-

tive processes do indeed play an important role,

but they are the consequence of stochastic sampling

mechanisms and should be seen as complementary

to constructive mechanisms. This revised view of

the role of activity in the construction of neural cir-

cuits forms the basis for neural constructivism, which

examines how representational structures are pro-

gressively elaborated during development through

activity-dependent growth mechanisms, in interac-

tion with intrinsic developmental programs.

From the perspective of cognitive development,

the far-reaching interaction between neural growth

and environmentally derived neural activity blurs
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the distinction between biological maturation and

learning. In place of this dichotomy, ‘‘constructive

learning’’ thus appears to be an important theme in

development, which from a learning-theoretical per-

spective appears to possess more powerful acquisition

properties than traditional accounts of cognitive de-

velopment assumed.

As I mentioned earlier, constructive learning is

aimed at a prior problem facing natural systems that

is in many ways more fundamental than the problem

of learning as statistical inference. Development can

be divided into two distinct phases. The first involves

the development of representations, while the second

involves using those representations to learn e‰-

ciently, which continues in the mature state.

A study in the owl (Knudsen, 1998) highlights the

role of early experience as a constructor of the repre-

sentations that facilitate learning later in life. The

optic tectum of barn owls contains a multimodal map

of space. In particular, auditory visual neurons in the

optic tectum associate values of auditory spatial cues

with locations in the visual field. This is done by

matching the tuning of tectal neurons for inter-

aural time di¤erences with their visual receptive fields.

During development, but not adulthood, there is

considerable plasticity in this system, allowing a wide

range of associations to be learned. When juvenile

animals were fitted with goggles that shifted the

visual field, the resulting abnormal associations were

learned. Knudsen (1998) demonstrated that the range

of associations that adult owls could learn was greatly

expanded in those animals that had learned abnormal

associations during development.

14.5 From Cellular Processes to Networks

Recent research on the cellular basis of developmental

processes demonstrates that dendritic structures are

highly dynamic and that their growth is modulated

by patterned activity at a high level of specificity.

These results provide strong evidence that at the cel-

lular level the process of constructing representations

is one of constructive rather than selective induc-

tion. However, it is necessary to consider how these

cellular-level processes are integrated into network-

level processes to determine the processes and strat-

egies underlying the construction of representations.

In particular, it is important to consider the nature of

the constraints that make this constructive induction

paradigm e‰cient.

The abstract characterization of the computa-

tional goals of development highlighted the need

for constraints on a developing system. It appears pro-

hibitive for a developing system to e‰ciently con-

struct representations without substantial constraints

that limit the possible forms of such representations. It

is important to note that most considerations of the

form such constraints might take have centered on

static restrictions on a fixed hypothesis space. Rather

than conceiving of constraints in terms of restricting

a fixed hypothesis space, it appears necessary to con-

sider time-dependent constraints on the develop-

ing cortex. Such constraints include the interaction

among activity-dependent growth mechanisms, in-

trinsic developmental pathways, an initially small

hypothesis space, and the contribution of generic

initial cortical circuitry, conduction velocities, sub-

cortical organization, learning rates, and hierarchical

development.

To understand how the constraints I have enum-

erated here operate, it is necessary to characterize the

dynamics of development and its time-dependent

properties. That is, it is necessary to understand how

these constraints shape the developmental path. For

example, what are the implications of a limited initial

architecture for the acquisition properties of a learn-
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ing system? Whereas traditional accounts suggested

that these limitations weakened the learning system,

neural network modeling casts these limitations in

a new, advantageous, light (Elman, 1993). An ini-

tially restricted network must pass through a phase of

limited representational power during early exposure

to some problem and then build successively more

powerful representational structures. Thus, these early

limitations may actually help the system first learn the

lower-order structure of some problem domain and

subsequently use what it has learned to bootstrap itself

into more complex knowledge of that domain

(reviewed in Plunkett et al., 1997).

Such considerations suggest that the developmental

path that is determined by the dynamics of the con-

straints enumerated above play an important but

neglected role in constraining development. Thus,

understanding the process of developmental change,

rather than simply its initial state or final outcome,

is paramount in developmental science. It is here

that the study of self-organizing systems provides

a number of important insights. For example, self-

organizing systems have helped to explicate the

developmental function of spontaneous neural activ-

ity, which is known to play a role in constructing

neural circuits (reviewed in Wong, 1999). As Linsker

demonstrated (reviewed in Linsker, 1990), randomly

generated activity, which essentially appears as noise,

can create feature filters, given the functional proper-

ties that neural circuits possess in combination with

their geometric properties (e.g., interaction func-

tions through which nearby activity is excitatory

but becomes inhibitory with increasing distance).

Ordered structure is thus an emergent property of the

dynamics and geometric organization of such systems.

In the following section, I consider in more detail

how order may be generated from the dynamic inter-

action of brain systems.

14.6 Hierarchical Development

Given the evidence for constructive processes at the

cellular level, it is important to consider how these are

related to larger levels of organization in the brain.

One of the most intriguing time-dependent devel-

opmental constraints is hierarchical development. The

core idea that development involves the expansion

of hierarchically organized sequential operations, be-

ginning with perceptual and sensorimotor functions

and becoming more combinatorially complex, re-

mains popular. For example, Luciana and Nelson

(1998) recently examined the developmental emer-

gence of functions involved in prefrontally guided

working memory systems in 4–8-year-old children.

The development of these memory systems, which is

thought to involve particularly the dorsolateral region

of the prefrontal cortex (PFC), in 4–8-year-old chil-

dren, appears to proceed dimensionally, beginning

with the refinement of basic perceptual and sensor-

imotor functions and culminating with the emer-

gence of distributed networks that integrate complex

processing demands. This is a paradigmatic case of

time-dependent development in which increasingly

complex representations are built as a function of ex-

posure to problem domains.

As recently as a few years ago, however, it was

unclear whether cortical development proceeded in a

manner that was consistent with hierarchical develop-

ment. According to the influential results of Rakic

et al. (1986), cortical development followed a pattern

of concurrent synaptogenesis. This influential view

was based on electron microscope studies of synapto-

genesis in the rhesus monkey. This view suggested

that the entire cerebral cortex develops as a whole and

that the establishment of cell-to-cell communication

may be orchestrated by a single genetic or humoral

signal. As Rackic et al. (1986) pointed out, this view
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ruled out a hierarchical view of cortical develop-

ment, i.e., a developmental ordering from the sensory

periphery to higher associational areas. This theory

of concurrent synaptogenesis was di‰cult to recon-

cile with other structural measures, including pat-

terns of myelination and dendritic arborization, which

showed a regional, or heterochronic, pattern of

development.

More recent work has indicated that synatogenesis

in human development is not concurrent across dif-

ferent regions of the cortex (Huttenlocher and Dab-

holkar, 1997), but rather follows a regional pattern.

According to this finding, human cortical synapto-

genesis occurs regionally and in accord with the hier-

archical developmental schedule observed for axonal

growth, dendritic growth, and myelination. Assim-

ilating the developmental schedule for these various

measures, it appears that primary sensory and motor

cortical areas are both closer to their mature measures

at birth and reach those measures earlier than do areas

of association in temporal and parietal regions and the

PFC.

Recently, MRI studies have shed light on this issue.

For example, Thompson et al. (2000) found that

regions of the cortex develop at di¤erent rates. These

studies suggest that the brain develops hierarchically,

with early sensory regions developing before more

complex representations in association areas. This re-

gional pattern of cortical development, proceeding

from the sensory periphery to higher association areas,

is particularly intriguing given that cortical repre-

sentations are arranged hierarchically in a way that

matches this regional hierarchy. According to Fuster

(1997, p. 451), ‘‘the cortical substrate of memory, and

of knowledge in general, can be viewed as the upward

expansion of a hierarchy of neural structures.’’ Al-

though the existence of extensive feedback connec-

tions suggests that the notion of a strict hierarchy

must be qualified, cortical areas closer to the sensory

periphery encode lower-order, or more elementary,

representations than do areas further removed, which

involve more distributed networks that do not have

the topographical organization of lower areas.

All three sensory modalities—vision, touch, and

audition—involve what Fuster (1997, p. 455) refers

to as a ‘‘hierarchical stacking of perceptual memory

categories in progressively higher and more widely

distributed networks.’’ All three modalities then con-

verge on the polysensory association cortex and the

limbic structures of the temporal lobe, particularly

the hippocampus. This hierarchical organization of

representations, combined with its hierarchical de-

velopmental pattern, lends support to the view of

development as a cascade of increasingly complex

representational structures, in which construction in

some regions depends on the prior development of

others.

Given the importance of dendritic morphology in

information processing (see chapter 13), it is particu-

larly intriguing to note that dendritic complexity is

not uniform across the cortex. Rather, regional den-

dritic variation is extensive, with far-reaching impli-

cations for cortical processing. In a series of studies in

monkeys, Elston and Rosa (Elston et al., 1996; Elston

and Rosa, 1998a,b) documented a caudal-to-rostral

progression in dendritic field size and spine number.

This suggests a more extensive sampling of input in

dendritic systems at higher levels of visual processing.

Recently Jacobs et al. (2001) explored regional dif-

ferences in dendritic and spine extent across several

human cortical layers. Specifically, they utilized the

cortical hierarchy scheme proposed by Benson (1993),

in which the cerebral cortex is classified into four

subdivisions. Each subdivision corresponds to a pro-

gressively more complex level of neural processing.

The primary cortex is involved in the initial process-

ing of sensory impulses, or the final output stage for

motor functions; unimodal regions discriminate, cate-
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gorize, and integrate information within a single

modality; the heteromodal cortex is involved in cross-

modal integration; and supramodal association regions

are involved in executive control and cognitive net-

works. It should be borne in mind that these divisions

are somewhat heuristic because the existence of re-

ciprocal connections makes it infeasible to impose a

strict hierarchy on cortical regions. Jacobs et al. (2001)

examined dendritic and spine extent in four areas

corresponding to each of Benson’s subdivisions and

found a progressive increase among hierarchically

arranged cortical regions of the human brain. These

di¤erences were substantial. The increase in total

dendritic length from primary cortical regions to

supramodal regions was approximately 30 percent,

and total spine number was about 60 percent.

These results suggest that the processing demands

placed on dendritic systems may substantially influ-

ence their mature form, as Ramón y Cajal hypothe-

sized. Given the hierarchical pattern of regional

development I reviewed earlier and its correspon-

dence with regional variation in dendritic complexity,

it will be important for future research to investigate

how dendritic processing may be determined in a

stagelike fashion as increasingly complex dendritic

structures are constructed across the developmental

time course.

14.7 Supervised, Unsupervised, and Self-

Supervised Learning

A largely open question at the network level concerns

how multiple brain systems interact during develop-

ment. It is likely that multiple brain systems instantiate

multiple acquisition strategies. The hierarchical orga-

nization of these systems suggests that some structures

may constrain the development of others by directing

their development. Just as a structure such as the pri-

mary visual cortex can be constrained by the nature

of the sensory modality innervating it, so too some

neural structures can be constrained by the pattern of

input from other neural structures. In the case of the

primary visual cortex, it is generally believed that

incoming sensory information, reflected in patterns of

activity, is utilized in an unsupervised mode. Un-

supervised learning, or self-organization in its devel-

opmental context, involves developing an e‰cient

internal model of the salient statistical structure of the

environment. For example, Hebbian learning can be

understood in the context of principal component

analysis, which is a method of e‰ciently representing

the correlational structure of the environment.

Over the past few years, significant progress has

been made in exploring unsupervised learning algo-

rithms for neural network models (Hinton and Sej-

nowski, 1999). Unlike the earlier supervised learning

algorithms, which required a detailed teacher to

provide feedback on performance, the goal of un-

supervised learning is to extract an e‰cient internal

representation of the statistical structure implicit in the

stream of inputs. Infants in the womb are bombarded

by sensory inputs, and their environment after birth is

filled with latent information about the environment.

During development, unsupervised learning could

shape circuits in the early stages of sensory processing

to represent the environment more e‰ciently; in the

adult brain, similar forms of implicit learning could

provide cues to help guide behavior.

While computational neurobiologists investigate

unsupervised learning in analyses of the developing

visual system (see chapters 11 and 12), cognitive

scientists typically investigate supervised algorithms

in connectionist-style architectures (Shultz et al.,

1994; for a review, see Plunkett et al., 1997). There

is an additional class of learning algorithms—rein-

forcement, or self-supervised, algorithms—that may
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be utilized by one neural region to direct the de-

velopment of another. As Piaget stressed, a central

theme of development involves the developing sys-

tem’s active exploration of its environment in which

learning is mediated through the consequences of the

system’s actions on that environment. This places a

premium on the presence of reward systems that

both engage a developing system in its environment

and drive learning through the patterns of reward

(and punishment) that such engagement brings about.

Elsewhere (Quartz, in press), I have suggested that

evolutionary considerations support a behavioral sys-

tems model of the brain that regards the brain as a

hierarchical control structure in which reward plays a

central computational role and in which this hierar-

chical organization is evident both developmentally

and evolutionarily.

A key source of evidence regarding this view is

that despite the apparent diversity of nervous systems,

most share a deep structure, or common design prin-

ciples. Even the simplest motile organisms require

control structures to regulate the goal-directed be-

havior necessary for survival in a variable environment

(for discussion, see Allman, 1999). For example, al-

though the bacterium Escherichia coli does not possess

a nervous system, it does possess control structures for

sensory responses, memory, and motility that underlie

its capacity to alter behavior in response to environ-

mental conditions. The ability to approach nutritive

stimuli and avoid aversive stimuli in the maintenance

of life functions is the hallmark of behavioral systems

across phyla. Whereas chemotaxis in bacteria involves

a single step from sensory transduction to motor be-

havior, some multicellular organisms contain control

structures that involve intercellular communication

via hormonal signaling, while others possess nervous

systems with control structures that add layers of

mediating control between sensory transduction and

motor behavior.

There are several alternative design possibilities for

biological control structures. One is to make a closed

system, in the sense of linking fixed behavioral pat-

terns between internal goal states and their environ-

mental targets. Although there are many examples

of this strategy (Gallistel, 1990), there are more

powerful and flexible control structures. One such

strategy involves leaving the path from the internal

goal state to the target state open and discoverable via

learning. Principal among this latter design strategy

are reinforcement-based systems that are capable of

learning an environment’s reward structure.3

A variety of experimental techniques, ranging from

psychopharmacology to neural imaging, have dem-

onstrated the striking ubiquity and conservation of

reward structures across species. At virtually all levels

of the human nervous system, for example, reward

systems can be found that play a central role in goal-

directed behavior (Schultz, 2000). Here I focus on

one such system, the midbrain dopamine system (fig-

ure 14.1). This system projects principally from the

ventral tegmental area to the nucleus accumbens and

the temporal and frontal cortex. Studies utilizing self-

stimulation paradigms revealed that activation of this

system was highly reinforcing; often laboratory ani-

mals preferred to self-stimulate this system than to eat

or copulate with a receptive partner (reviewed in

Wise, 1996). Most addictive substances involve this

system, giving rise to the hedonic theory of dopamine

as the signal underlying pleasure (although see Garris

et al., 1999).

Given what I have previously stated regarding

the possibility that control structures are highly con-

served, it is interesting to note, as figure 14.1 illus-

trates, the striking homology between the dopamine

system in humans and a reward system in the honey-

bee. The honeybee subesophogeal ganglion contains

an identified neuron, VUMmx1, which delivers in-

formation about reward during classical conditioning
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experiments via the neurotransmitter octopamine,

which is similar in molecular structure to dopamine

(Hammer, 1993).

Both experimental and computational work on the

role of VUMmx1 in honeybee foraging has provided

important insights into the signal carried by octop-

amine and the system’s functional significance (Real,

1991; Montague et al., 1995). Rather than simply

carrying information regarding reward, it appears

that octopamine signals information about prediction

errors. Whereas reward is traditionally a behavioral

notion, prediction is a computational notion. The

di¤erence between certain rewarding outcomes and

the predictions of these outcomes can be used to

guide adaptive behavior. A system that learns through

prediction learning need not have the path from goal

to reward specified, in contrast to fixed behavioral

patterns, such as stimulus-response learning. Instead,

the path from goals to rewards may be left open and

discoverable via learning, resulting in flexible action.

Evolution, then, may shape the pattern of the basic

rewards that animals are motivated to obtain, but the

behavioral path is left open to discovery, as are more

complex relations among predictors. In this sense,

brains are prediction machines that use information

gathered from past experience to predict future events

important for survival (reviewed in Montague and

Quartz, 1999).

Experiments utilizing neurophysiological recording

in behaving monkeys by Schultz and colleagues dem-

onstrate that the midbrain dopamine system plays an

important role in prediction learning in the mamma-

lian brain (Schultz et al., 1993). When these monkeys

were presented with various appetitive stimuli, dop-

aminergic neurons responded with short, phasic acti-

vations, which typically lasted for only a few repeated

presentations. In an important finding, however,

Schultz and colleagues showed that when the reward-

ing stimuli were preceded by an auditory or visual

cue, dopamine neurons changed their time of activa-

 

Figure 14.1

Neuromodulatory (octopamine) neurons in the bee brain and dopamine projections in the human brain play homologous roles.

Neural activity in these neurons distributes information about expected reward.
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tion to just after the time of cue onset. In contrast,

when the reward did not follow the conditioned

stimulus, dopamine neurons were depressed below

their basal firing rate exactly at the time the reward

should have been presented. These results indicate

that the dopamine signal encodes expectations about

the delivery of reward. That is, the dopamine neurons

code for an error between the actual reward received

and predictions of the time and magnitude of reward.

Like the octopamine signal in the honeybee, the dop-

amine signal codes a prediction error that can be used

in learning and in selecting action. This mode of

action is equivalent to temporal di¤erence learning, a

thoroughly examined form of reinforcement learning

(Sutton and Barto, 1998) that learns the predictive

structure of an environment. Simulations demonstrate

that despite the apparent simplicity of this model, it is

a very powerful learner, capable of learning master-

level backgammon, for example (Tesauro, 1995).

14.8 The Developmental Relation between the

Midbrain Dopamine System and the Prefrontal

Cortex

It is deeply intriguing to note where the midbrain

dopamine system projects to in the human brain. In

particular, what is most intriguing is the fact that it

projects to the dorsolateral prefrontal, premotor, and

parietal cortices, which are structures believed to

mediate goal representations; and the orbitofrontal

cortex, which is believed to mediate the representa-

tion of relative reward value and reward expectation

(for a review, see Schultz, 2000). A great deal of

attention has centered on dorsolateral and orbito-

frontal prefrontal cortex as structures implicated in

crucial components of human cognition, particularly

social cognition and theory of mind (Stone et al.,

1998), symbolic learning (Deacon, 1997), representa-

tions of self (Craik et al., 1999), and executive func-

tion and behavioral inhibition (Norman and Shallice,

1986).

It is important to ask what the functional signifi-

cance is of the fact that a phylogenetically old part

of the brain projects to a phylogenetically new part.

According to neural constructivism, these structures

constitute a hierarchically organized control structure

in which additional layers of control have been added

to the evolutionarily conserved dopamine system and

in which this hierarchical organization is evident de-

velopmentally as well. To see this, it is important

to examine the developmental links between these

components, which I explore in more detail later.

Diamond and colleagues (reviewed in Diamond,

1998) have demonstrated that a functional midbrain

dopaminergic system is necessary for normal develop-

ment of prefrontal functions. The most compelling

evidence for this developmental dependence stems

from studies of phenylketonuria (PKU). Patients suf-

fering from PKU do not naturally produce a particular

enzyme, phenylalanine hydroxylase, which converts

the essential amino acid phenylalanine to another

amino acid, tyrosine, the precursor of dopamine.

When untreated, PKU leads to severe mental retarda-

tion. Diamond and colleagues found that lowered

levels of tyrosine uniquely a¤ect the cognitive func-

tions that are dependent on the prefrontal cortex

because of the special sensitivity of prefrontally pro-

jecting dopamine neurons to small decreases in tyro-

sine. In a 4-year longitudinal study, they found that

PKU children performed worse than matched con-

trols, their own siblings, and children from the general

population on tasks that required the working mem-

ory and inhibitory control abilities that are dependent

on dorsolateral prefrontal cortex. In contrast, these

PKU children performed well on control tasks that

were not mediated by the prefrontal cortex (Diamond

et al., 1997).
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The hierarchical organization of the control struc-

tures that constitute the human cognitive architecture

is apparent developmentally. In contrast to the early

functional involvement of midbrain dopamine sys-

tems, prefrontal structures develop relatively late and

exhibit a protracted development that continues into

adolescence. Thus, behavior and cognition increas-

ingly come under the mediation of frontal structures

from subcortical structures, a process sometimes re-

ferred to as frontalization of behavior (Rubia et al.,

2000). For example, executive function is a control

mechanism that guides, coordinates, and updates

behavior in a flexible fashion, particularly in novel

or complex tasks (Norman and Shallice, 1986). This

requires that information related to behavioral goals

be actively represented and maintained so that these

representations may guide behavior toward goal-

directed activities. In humans, executive function

follows a special developmental path, reflecting an

evolutionary reorganization of prefrontal structures

and their development. Between 7.5 and 12 months

of age, infants show developmental progress on on A-

not-B (Diamond, 1985), delayed-response (Diamond

and Doar, 1989), and object retrieval tasks (Diamond,

1988). There is substantial evidence that these tasks

are mediated by dorsolateral prefrontal cortex and

rely on working memory, neural representations of

goal-related information, and behavioral inhibition

(Goldman-Rakic, 1990; Petrides, 1995). Further-

more, various sources of evidence indicate that dop-

amine is necessary for successful performance on these

tasks (Sawaguchi and Goldman-Rakic, 1994).

Although there is strong evidence that an intact

dopamine system is necessary for the developmental

emergence of prefrontal functions, a largely unre-

solved question concerns the specific nature of this

developmental link. One particularly intriguing possi-

bility is that the dopamine signal serves as a learning

signal that guides the construction of prefrontal struc-

tures during development. Computational work on

the midbrain dopamine system suggests such a learn-

ing role, with strong analogies to temporal di¤erence

learning, a form of reinforcement learning (Sutton

and Barto, 1998).

A key notion underlying reinforcement learning is

that of learning through interacting with one’s envi-

ronment. For example, a major source of knowledge

stems from an infant’s interaction with its environ-

ment, which produces a wealth of information about

cause and e¤ect, about the consequences of actions,

and about what to do in order to achieve goals, all

without the need for an explicit teacher. Of course,

Piaget also emphasized the central importance of the

developing child’s agency and active exploration with

its environment in his constructivist theory of cogni-

tive development.

Learning through interacting with one’s environ-

ment requires structures that direct the system to its

environment. According to the view I have been

outlining here, this is mediated in part by the mid-

brain dopamine system. One clue for this role derives

from studies of the neurobiology of personality, which

view personality as deriving from motivational sys-

tems. From this perspective, the midbrain dopamine

system constitutes a behavioral facilitation system that

underlies fundamental properties of personality, spe-

cifically extraversion, and positive emotionality (Depue

and Collins, 1999). From a developmental perspec-

tive, this behavioral facilitation system appears to be

operative at an early age and most likely underlies

major dimensions of temperament, along with other

di¤use ascending systems, such as noradrenergic and

serotonergic systems. Thus, given this system’s com-

putational properties and its role as a behavioral facili-

tation system early in postnatal development, it is

ideally situated to be involved in the reinforcement or

self-supervised construction of prefrontal structures

underlying complex behavioral control.
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This computational role can be illustrated by com-

paring reinforcement models of learning with models

of self-organization, or unsupervised learning. The

best-known account of unsupervised learning is Heb-

bian learning, which in its simplest form is

wkiðt þ 1Þ ¼ wkiðtÞ þ hykðtÞxiðtÞ; ð14:1Þ

where wkiðtÞ is the synaptic weight between neurons i

and k at time t, xiðtÞ and ykðtÞ are, respectively, the

presynaptic and the postsynaptic activity, and h is a

positive constant that determines the rate of learning.

Algorithms such as Eq. (14.1), and a variety of mod-

ifications, essentially find e‰cient representations of

salient environmental information by implementing

such data reduction strategies as principal component

analysis. Such algorithms can be modified to become

reinforcement learning algorithms by making weight

updates dependent on the Hebbian correlation of a

prediction error and the presynaptic activity at the

previous time step. This takes the following form:

wiðtÞ ¼ wiðt � 1Þ þ hxiðt � 1ÞdðtÞ; ð14:2Þ

where xiðt � 1Þ represents presynaptic activity at con-

nection i and time t � 1, h is a learning rate, and

wiðt � 1Þ is the value of the weight at time t � 1. The

term dðtÞ is a prediction error term (see figure 14.2)

and is the di¤erence between a prediction of reward

and the actual reward, represented as the output of the

dopaminergic projection to the cortex in the simula-

tion framework. The addition of this term changes the

Hebbian framework to a predictive Hebbian one

(Montague and Sejnowski, 1994) and is the computed

di¤erential in the temporal di¤erences method of re-

inforcement learning (Sutton and Barto, 1998), with

 

Figure 14.2

Architecture of prediction learning. M1 and M2 represent two di¤erent cortical modalities whose output is assumed to arrive at

the ventral tegmental area (VTA) in the form of a temporal derivative _VV ðtÞ. The structure D is a placeholder in this model to

represent the highly convergent input into the VTA (in biological systems, D is likely to be part of the VTA itself ). Information

about reward rðtÞ also converges on the VTA. The VTA output is taken as a simple linear sum dðtÞ ¼ rðtÞ þ _VV ðtÞ, which is

taken to be a measure of prediction error. The output connections of the VTA make the prediction error dðtÞ simultaneously

available to structures constructing the predictions.
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close connections to dynamic programming (Bellman,

1957).

The developmental link between the midbrain

dopamine system and prefrontal structures suggests

that complex developmental skills decompose into

developmental precursors, which may often be medi-

ated by structures that are distinct from those media-

ting the mature state. For example, processing of

faces is believed to be mediated by subcortical struc-

tures during early postnatal development, but it sub-

sequently shifts to cortical sites (reviewed in Johnson,

1997). The framework I have outlined here suggests

a possible way of bootstrapping a system into such

complex representations by biasing development

through making the system selectively attentive to

faces (for a review of the relation between reward

structures and selective attention, see Dayan et al.,

2000). An economical means of implementing such a

strategy would be by making faces, or primitive tem-

plate representations of them, rewarding to the sys-

tem, thereby designing a system that preferentially

attends to faces. It is clear that human infants possess

such behavioral biases (Metzlo¤ and Moore, 1977),

which may be implemented through projections to

midbrain dopamine systems that constitute uncondi-

tioned stimuli.

Although an investigation into how one brain re-

gion may direct the development of another through

such learning procedures as temporal di¤erences

learning is only in early stages, it o¤ers a new frame-

work for analyzing the dynamics of developmental

change. Current work in my laboratory involves

exploring the relationship between these algorithms

and neural outgrowth. It is intriguing to note that

dendritic structures in the prefrontal cortex display a

protracted development (figure 14.3) and that dop-

amine may modulate this development by acting

trophically (Levitt et al., 1997). These links merit fur-

ther research.

14.9 Environmental Structure and Brain

Development

In examining the relationship between structured

neural activity and neural development, neural con-

structivism stresses the importance of environmental

structure and information in the developmental pro-

cess. Although proponents of innateness discounted

such influences, on the basis of various poverty of the

stimulus arguments, there are good reasons to believe

this discounting was premature (see Cowie, 1998).

Figure 14.3

Human postnatal dendritic development in dorsolateral

prefrontal cortex. (A) The total dendritic length of basal

dendrites of layer III and V pyramidal cells develops over a

protracted period. (B ) Camera lucida drawings of layer V

basal dendrites reveal the extent of this protracted postnatal

development. (Modified from Schade and Van Groenigan,

1961.)
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Indeed, as a number of investigators have recently

stressed (Tomasello, 1999), it appears that human

cognitive development depends on an extremely rich

social and cultural interaction. Although prefrontal

function has traditionally been most closely associated

with purely cognitive functions, its central involve-

ment in social cognition has become increasingly ap-

parent in recent years (Damasio, 1994). Indeed, one

potential reason for protracted development lies in the

di‰culty of developing the social competence neces-

sary for a complex social life. There is now good

evidence to indicate that one component of social

competence, theory of mind, depends at least in part

on the appropriate social exposure for its development

since many deaf children show delays on theory of

mind tasks (Peterson and Siegal, 1995; Russell et al.,

1998). This is believed to be because the parents of

deaf children are typically naı̈ve signers, and so house-

hold social interactions are limited by communica-

tive ability. Constructive learning, then, may be one

particularly powerful route to building complex cog-

nitive and social skills by allowing the structure of

the environment to play a central role in cognitive

development.

Although developmental models at the network

level are still rudimentary, the evidence I have

reviewed in this chapter indicates that they will be

increasingly important in understanding the complex

interplay between the cognitive processes of learning

and the biological processes of maturation that under-

lie the construction of neural representations across

the developmental time course.

14.10 Discussion

Computational models of the neural basis of cognitive

development are only beginning to be explored, in

part because the experimental constraints necessary to

build such models are just beginning to emerge from

developmental neurobiology and developmental cog-

nitive neuroscience. As I have shown in this chapter,

this modeling e¤ort has begun to characterize the

nature of learning during development as one that

is richer than traditional notions of statistical infer-

ence. I have referred to this activity-dependent

construction as constructive learning, which from a

learning-theoretical perspective appears to possess

more powerful acquisition properties than traditional

accounts of cognitive development assumed.

Future Modeling Studies

With the advent of structural MRI, it appears that

brain development is regional and follows a hierar-

chical ordering of neural systems (Giedd et al., 1999;

Jacobs et al., 2001). It will be an important goal of

future theoretical research to link computational

models of development at the cellular level with neu-

robiological evidence on the hierarchical construction

of neural systems. It will also be important to integrate

this research more closely with behavioral studies of

human cognitive development (e.g., Luciana and

Nelson, 1998). A further important goal will be to

explore self-supervised developmental algorithms be-

cause a critical element of development involves the

developing system’s interaction with its environment

and the possibilities for learning that arise as a conse-

quence of this interaction.

Future Experimental Studies

The rapid progress in many developmental sciences

suggests that it will become increasingly important

to nurture interdisciplinary e¤orts that can integrate

these multiple perspectives on development. Descrip-

tions of behavioral change at the cognitive level are

too unconstrained without reference to underlying
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mechanisms and processes, whereas an understanding

of the mechanisms of developmental change is in itself

insu‰cient to explain neural functional or cogni-

tive development. Only by integrating experimental

results across a number of levels of organization can

a more complete account of development begin to

emerge. Computational modeling promises to o¤er a

conceptually powerful framework in which to inte-

grate these perspectives. Future interdisciplinary ex-

perimental work will thus play a critical role in

constructing this framework by providing results that

can suitably constrain it.

Notes

1. The notion of representation is a complex and con-

tentious one in cognitive neuroscience. See O’Reilly and

Munakata (2000) for a discussion on the use of representa-

tion in cognitive neuroscience.

2. More technically, the main unit would include the

axodendritic interface, although the main information-

processing functions of interest would be dendritic

integration.

3. Although this strategy emphasizes learning, it is impor-

tant to bear in mind that it requires a primitive set of target

states that have intrinsic reward value for the organism (clas-

sically known as an unconditioned stimulus).

References

Allman, J. (1999). Evolving Brains. New York: Freeman.

Barron, A. R. (1994). Approximation and estimation

bounds for artificial neural networks. Machine Learn. 14:

115–133.

Bellman, R. E. (1957). Dynamic Programming. Princeton,

N.J.: Princeton University Press.

Benson, D. F. (1993). Prefrontal abilities. Behav. Neurol. 6:

75–81.

Bernardo, L. S., Masukawa, L. M., and Prince, D. A. (1982).

Electrophysiology of isolated hippocampal pyramidal den-

drites. J. Neurosci. 2: 1614–1622.

Bliss, T. V. P., and Lomo, T. (1973). Long-lasting potentia-

tion of synaptic transmission in the dentate area of the anes-

thetized rabbit following stimulation of the perforant path.

J. Physiol. (London) 232: 331–356.

Blum, A., and Rivest, R. L. (1988). Training a 3-node neu-

ral network is NP-complete. In Advances in Neural Informa-

tion Processing Systems, D. S. Touretzky, ed. San Jose:

Morgan Kaufmann, pp. 494–501.

Blumer, A., Ehrenfeucht, A., Haussler, D., and Warmuth,

M. (1988). Learnability and the Vapnik-Chervonenkis di-

mension. Technical Report UCSC-CRL-87-20.

Changeux, J. P., and Danchin, A. (1976). Selective stabilisa-

tion of developing synapses as a mechanism for the specifi-

cation of neuronal networks. Nature 264: 705–712.

Cowie, F. (1998) What’s within? Nativism Reconsidered.

Oxford: Oxford University Press.

Craik, F. I. M., Moroz, T. M., Moscovitch, M., Stuss, D. T.,

Winocur, G., Tulving, E., and Kapur, S. (1999). In search of

the self: A positron emission tomography study. Psychol. Sci.

10: 26–34.

Damasio, A. R. (1994). Descartes’ error: Emotion, reason,

and the human brain. New York: G. P. Putnam.

Dayan, P., Kakade, S., and Montague, P. R. (2000).

Learning and selective attention. Nat. Neurosci. 3: 1218–

1223.

Deacon, T. W. (1997). The Symbolic Species: The Co-

evolution of Language and the Brain. New York: W. W.

Norton.

Depue, R. A., and Collins, P. F. (1999). Neurobiology

of the structure of personality: Dopamine, facilitation of

incentive motivation, and extraversion. Behav. Brain Sci. 22:

491–569.

Diamond, A. (1985). Development of the ability to use re-

call to guide action, as indicated by infants’ performance on

AB. Child Dev. 56: 868–883.

Diamond, A. (1988). Abilities and neural mechanisms

underlying AB performance. Child Dev. 59: 523–527.

310 Steven R. Quartz



Diamond, A. (1998). Evidence for the importance of dop-

amine for prefrontal cortex functions early in life. In The

Prefrontal Cortex: Executive and Cognitive Functions, pp. 144–

164. New York: Oxford University Press.

Diamond, A., and Doar, B. (1989). The performance of

human infants on a measure of frontal cortex function, the

delayed response task. Dev. Psychobiol. 22: 271–294.

Diamond, A., Prevor, M. B., Callender, G., and Druin, D.

P. (1997). Prefrontal cortex cognitive deficits in children

treated early and continuously for PKU. Monogr. Soc. Res.

Child Dev. 62: 1–205.

Dietterich, T. G. (1990). Machine learning. Annu. Rev.

Comp. Sci. 4: 255–306.

Edelman, G. (1987). Neural Darwinism: The Theory of Neuro-

nal Group Selection. New York: Basic Books.

Elman, J. L. (1993). Learning and development in neural

networks: The importance of starting small. Cognition 48:

71–99.

Elman, J. L., Bates, E. A., Johnson, M. H., Karmilo¤-Smith,

A., Parisi, D., and Plunkett, K. (1996). Rethinking Innateness:

A Connectionist Perspective on Development. Cambridge, Mass.:

MIT Press.

Elston, G. N., and Rosa, M. G. (1998a). Morphological

variation of layer III pyramidal neurones in the occipito-

temporal pathway of the macaque monkey visual cortex.

Cereb. Cortex. 8: 278–294.

Elston, G. N., and Rosa, M. G. (1998b). Complex dendritic

fields of pyramidal cells in the frontal eye field of the ma-

caque monkey: Comparison with parietal areas 7a and LIP.

NeuroReport 9: 127–131.

Elston, G. N., Rosa, M. G., and Calford, M. B. (1996).

Comparison of dendritic fields of layer III pyramidal neu-

rons in striate and extrastriate visual areas of the marmoset: A

Lucifer yellow intracellular injection. Cereb. Cortex. 6: 807–

813.

Engert, F., and Bonhoe¤er, T. (1999). Dendritic spine

changes associated with hippocampal long-term synaptic

plasticity. Nature 399: 66–70.

Fuster, J. M. (1997). Network memory. Trends Neurosci. 20:

451–459.

Gallistel, C. R. (1990). The Organization of Learning. Cam-

bridge, Mass.: MIT Press.

Garris, P. A., Kilpatrick, M., Bunin, M. A., Michael, D.,

Walker, Q. D., and Wightman, R. M. (1999). Dissociation

of dopamine release in the nucleus accumbens from intra-

cranial self-stimulation. Nature 398: 67–69.

Geman, S., Bienenstock, E., and Doursat, R. (1992). Neural

networks and the bias/variance dilemma. Neur. Comput. 4:

1–58.

Giedd, J. N., Blumenthal, J., Je¤ries, N. O., Castellanos,

F. X., Liu, H., Zijdenbos, A., Paus, T., Evans, A. C., and

Rapoport, J. L. (1999). Brain development during child-

hood and adolescence: A longitudinal MRI study. Nat.

Neurosci. 2: 861–863.

Gold, E. M. (1967). Language identification in the limit.

Info. Control 10: 447–474.

Golding, N. L., and Spruston, N. (1998). Dendritic sodium

spikes are variable triggers of axonal action potentials in

hippocampal CA1 pyramidal neurons. Neuron 21: 1189–

1200.

Goldman-Rakic, P. S. (1990). Cortical localization of

working memory. In Brain Organization and Memory: Cells,

Systems, and Circuits, pp. 285–298. Oxford: Oxford Univer-

sity Press.

Hammer, M. (1993). An identified neuron mediates the

unconditioned stimulus in associative olfactory learning in

honeybees. Nature 366: 59–63.

Haussler, D. (1989). Quantifying inductive bias: AI learning

algorithms and Valiant’s learning framework. Art. Intel. 36:

177–222.

Hebb, D. O. (1949). The Organization of Behavior: A Neuro-

psychological Theory. New York: Wiley.

Hinton, G. E., and Sejnowski, T. J. (1999). Unsupervised

Learning: Foundations of Neural Computation. Cambridge,

Mass.: MIT Press.

Huttenlocher, P. R., and Dabholkar, A. S. (1997). Regional

di¤erences in synaptogenesis in human cerebral cortex. J.

Comp. Neurol. 387: 167–178.

Jacobs, B., Schall, M., Prather, M., Kapler, E., Driscoll, L.,

Baca, S., Jacobs, J., Ford, K., Wainwright, M., and Treml,

Modeling the Neural Basis of Cognitive Development 311



M. (2001). Regional dendritic and spine variation in human

cerebral cortex: A quantitative golgi study. Cereb. Cortex 11:

558–571.

Johnson, M. H. (1997). Developmental Cognitive Neuroscience:

An Introduction. Oxford: Blackwell Science.

Judd, S. (1988). On the complexity of loading shallow neu-

ral networks. J. Complex. 4: 177–192.

Knudsen, E. I. (1998). Capacity for plasticity in the adult

owl auditory system expanded by juvenile experience.

Science 279: 1531–1533.

Koza, J. (1992). Genetic Programming: On the Programming of

Computers by means of Natural Selection. Cambridge, Mass.:

Bradford Books.

Lendvai, B., Stern, E. A., Chen, B., and Svoboda, K.

(2000). Experience-dependent plasticity of dendritic spines

in the developing rat barrel cortex in vivo. Nature 404: 876–

881.

Levitt, P., Harvey, J. A., Friedman, E., Simansky, K., and

Murphy, E. H. (1997). New evidence for neurotransmitter

influences on brain development. Trends Neurosci. 20: 269–

274.

Linsker, R. (1990). Perceptual neural organization: Some

approaches based on network models and information

theory. Annu. Rev. Neurosci. 13: 257–281.

Luciana, M., and Nelson, C. A. (1998). The functional

emergence of prefrontally guided working memory systems

in four- to eight-year-old children. Neuropsychologia 36:

273–293.

Maletic-Savatic, M., Malinow, R., and Svoboda, K. (1999).

Rapid dendritic morphogenesis in CA1 hippocampal den-

drites induced by synaptic activity. Science 283: 1923–1927.

Marr, D. (1982). Vision: A Computational Investigation into the

Human Representation and Processing of Visual Information. San

Francisco: W. H. Freeman.

Metzlo¤, A. N., and Moore, M. K. (1977). Imitation of

facial and manual gestures by human neonates. Science 298:

75–78.

Montague, P. R., and Quartz, S. R. (1999). Computational

approaches to neural reward and development. Ment. Re-

tard. Dev. Disabil. Res. Rev. 5: 86–99.

Montague, P. R., and Sejnowski, T. J. (1994). The pre-

dictive brain: Temporal coincidence and temporal order in

synaptic learning mechanisms. Learn. Mem. 1: 1–33.

Montague, P. R., Dayan, P., Person, C., and Sejnowski, T.

J. (1995). Bee foraging in uncertain environments using

predictive hebbian learning. Nature 377: 725–728.

Norman, D. A., and Shallice, T. (1986). Attention to action:

Willed and automatic control of behavior. In Consciousness

and Self-Regulation, R. J. Davidson, G. E. Schwartz, and D.

Shapiro, eds. pp. 1–18. New York: Plenum.

O’Reilly, R. C., and Munakata, Y. (2000). Computational

Explorations in Cognitive Neuroscience: Understanding the Mind

by Simulating the Brain. Cambridge, MA: MIT Press.

Peterson, C. C., and Siegal, M. (1995). Deafness, conversa-

tion and theory of mind. J. Child Psych. Psych. 36: 459–474.

Petrides, M. (1995). Functional organization of the human

frontal cortex for mnemonic processing: Evidence from

neuroimaging studies. In Structure and Functions of the Human

Prefrontal Cortex, pp. 85–96. New York: New York Acad-

emy of Sciences.

Plunkett, K., Karmilo¤-Smith, A., Bates, E., and Elman, J.

L. (1997). Connectionism and developmental psychology.

J. Child Psychol. Psychiat., Allied Discipl. 38: 53–80.

Poirazi, P., and Mel, B. W. (2001). Impact of active den-

drites and structural plasticity on the memory capacity of

neural tissue. Neuron 29: 779–796.

Purves, D., White, L. E., and Riddle, D. R. (1996). Is neu-

ral development Darwinian? Trends Neurosci. 19: 460–464.

Quartz, S. R. (1993). Nativism, neural networks, and the

plausibility of constructivism. Cognition 48: 123–144.

Quartz, S. R. (1999). The constructivist brain. Trends Cog-

nit. Sci. 3: 48–57.

Quartz, S. R. (in press). Toward a developmental evolu-

tionary psychology: genes, development, and the evolution

of the human cognitive architecture. In Evolutionary Psychol-

ogy: Alternative Approaches, S. Scher and M. Rauscher, eds.

Dordrecht: Kluwer.

Quartz, S. R., and Sejnowski, T. J. (1997). The neural basis

of cognitive development: A constructivist manifesto.

Behav. Brain Sci. 20: 537–596.

312 Steven R. Quartz



Quinlan, P. T. (1998). Structural change and development

in real and artificial neural networks. Neur. Net. 11: 577–

599.

Rakic, P., Bourgeois, J. P., Eckenho¤, M. F., Zecevic, N.,

and Goldman-Rakic, P. S. (1986). Concurrent overproduc-

tion of synapses in diverse regions of the primate cerebral

cortex. Science 232: 232–235.

Real, L. A. (1991). Animal choice behavior and the evolu-

tion of cognitive architecture. Science 253: 980–986.

Redding, N. J., Kowalczyk, A., and Downs, T. (1993).

Constructive higher-order network algorithm that is poly-

nomial time. Neur. Net. 6: 997–1010.

Rubia, K., Overmeyer, S., Taylor, E., Brammer, M., Wil-

liams, S. C. R., Simmons, A., Andrew, C., and Bullmore,

E. T. (2000). Functional frontalisation with age: Mapping

neurodevelopmental trajectories with fMRI. Neurosci. Bio-

behav. Rev. 24: 13–19.

Russell, P. A., Hosie, J. A., Gray, C. D., Scott, C., Hunter,

N., Banks, J. S., and Macaulay, M. C. (1998). The develop-

ment of theory of mind in deaf children. J. Child Psychol.

Psychiat. 39: 903–910.

Sawaguchi, T., and Goldman-Rakic, P. S. (1994). The role

of D1-dopamine receptor in working memory: Local injec-

tions of dopamine antagonists into the prefrontal cortex

of rhesus monkeys performing an oculomotor delayed-

response task. J. Neurophysiol. 71: 515–528.

Schade, J. P., and Van Groenigan, W. B. (1961). Structural

organization of the human cerebral cortex: I. Maturation of

the middle frontal gyrus. Acta Anatom. 47: 72–111.

Schiller, J., Major, G., Koester, H. J., and Schiller, Y.

(2000). NMDA spikes in basal dendrites of cortical pyrami-

dal neurons. Nature 404: 285–289.

Shultz, T. R., Mareschal, D., and Schmidt, W. C. (1994).

Modeling cognitive development on balance scale phe-

nomena. Machine Learning 16: 57–86.

Schultz, W. (2000). Multiple reward signals in the brain.

Nat. Rev. Neurosci. 1: 199–207.

Schultz, W., Apicella, P., and Ljungberg, T. (1993).

Responses of monkey dopamine neurons to reward and

conditioned stimuli during successive steps of learning a

delayed response task. J. Neurosci. 13: 900–913.

Stone, V. E., Baron-Cohen, S., and Knight, R. T. (1998).

Frontal lobe contributions to theory of mind. J. Cognit.

Neurosci. 10: 640–656.

Sutton, R. S., and Barto, A. G. (1998). Reinforcement Learn-

ing: An Introduction. Cambridge, Mass.: MIT Press.

Tesauro, G. (1995). Temporal di¤erence learning and TD-

Gammon. Commun. ACM 38: 58–68.

Thompson, P. M., Giedd, J. N., Woods, R. P., MacDonald,

D., Evans, A. C., and Toga, A. W. (2000). Growth patterns

in the developing brain detected by using continuum me-

chanical tensor maps. Nature 404: 190–193.

Tomasello, M. (1999). The Cultural Origins of Human Cogni-

tion. Cambridge, Mass.: Harvard University Press.

Valiant, L. G. (1984). A theory of the learnable. Commun.

ACM 27: 1134–1142.

Vapnik, V. N. (1998). Statistical Learning Theory. New York:

Wiley.

White, H. (1990). Connectionist nonparametric regression:

Multilayer feedforward networks can learn arbitrary map-

pings. Neur. Net. 3: 535–549.

Wise, R. A. (1996). Addictive drugs and brain stimulation

reward. Annu. Rev. Neurosci. 19: 319–340.

Wong, R. O. (1999). Retinal waves and visual system

development. Annu. Rev. Neurosci. 22: 29–47.

Wong, W. T., and Wong, R. O. (2000). Rapid dendritic

movements during synapse formation and rearrangement.

Curr. Opin. Neurobiol. 10: 118–124.

Modeling the Neural Basis of Cognitive Development 313



This page intentionally left blank



Contributors

L. F. Abbott

Volen Center and Department of Biology

Brandeis University

Waltham, Massachusetts

Jean-Pierre Changeux
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Université de Lausanne

Lausanne, Switzerland

Michael A. Corner

Graduate School Neurosciences Amsterdam

Netherlands Institute for Brain Research

Amsterdam, The Netherlands

Stephen J. Eglen

Institute for Adaptive and Neural Computation

University of Edinburgh

Edinburgh, Scotland

United Kingdom

Alan Fine

Department of Physiology and Biophysics

Faculty of Medicine

Dalhousie University

Halifax, Nova Scotia

Canada

Lucia Galli-Resta

Istituto di Neuroscienze CNR

Pisa, Italy

Geo¤rey J. Goodhill

Department of Neuroscience

Georgetown University Medical Center

Washington, D.C.

Bruce P. Graham

Department of Computing Science and Mathematics

University of Stirling

Stirling, Scotland

United Kingdom

H. G. E. Hentschel

Department of Physics

Emory University

Atlanta, Georgia

Stanley B. Kater

Department of Neurobiology and Anatomy

University of Utah School of Medicine

Salt Lake City, Utah

Michel Kerszberg
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