

02000 Massachusetts Institute of Technology

All rights reserved. No part of this book may be reproduced in any form by any
electronic or mechanical means (including photocopying, recording, or information
storage and retrieval) without permission in writing from the publisher.

This book was printed and bound in the United States of America.

Library of Congress Cataloging-in-Publication Data

Cloete, Ian.
Knowledge-based neurocomputing / Ian Cloete and J. M. Zurada.
p. cm.
Includes bibliographical references and index.
ISBN 0-262-03274-0 (hc. : alk. paper)
1. Neural computers. 2. Expert systems (Computer science).

I. Zurada, Jacek M. 11. Title.
QA76.87 .C57 1999
006.3’2-dc2 1 99-41 770

GIP

Contents

Preface and Acknowledgments xii

Contributors xiii

1 Knowledge-Based Neurocomputing: Past. Present. and Future 1
1.1 ThePast . 1
1.2 ThePresent . 4

1.2.1 A Taxonomy . 4
1.2.2 Overview of the Book . 11
1.2.3 Overview by Chapters . 12

1.3 TheFuture . 21

2 Architectures and Techniques for Knowledge-Based
Neurocomputing 27
2.1 The Knowledge-Data Trade-off . 27
2.2 Foundations for Knowledge-Based Neurocomputing 29

2.2.1 Architectures for Neurosymbolic Integration 29
2.2.2 Knowledge-Based Neurocornputing: A Redefinition 34
2.2.3 KBN and the Bias-Variance Trade-off 36

2.3 Techniques for Building Prior Knowledge into Neural Networks . . . 37
2.3.1 Knowledge-Intensive or Translational Techniques 37
2.3.2 Knowledge-Primed or Hint-Based Techniques 38
2.3.3 Knowledge-Free or Search-Based Techniques 44

2.4 A Metalevel Architecture for Knowledge-Based Neurocomputing . . 45
2.4.1 Overview of SCANDAL . 46
2.4.2 Strategies for Knowledge Utilization 46

2.4.4 Summary of Findings . 51
2.5 Open Research Issues . 52

2.4.3 Experiments . 47

3 Symbolic Knowledge Representat ion in Recurrent Neural
Networks: Insights from Theoretical Models of Computation 63
3.1 Introduction . 63

3.1.1 Why Neural Networks? . 63
3.1.2 Theoretical Aspects of Neural Networks 64

Vi Contents

3.1.3 What Kind of Architecture Is Appropriate? 64
3.1.4 Recurrent Networks and Models of Computation 65
3.1.5 Knowledge Representation and Acquisition 66
3.1.6 Are Neural Networks Black Boxes? 66
3.1.7 Overcoming the Bias/Variance Dilemma 66

3.2 Representation of Symbolic Knowledge in Neural Networks 67
3.2.1 Importance of Knowledge Extraction 67
3.2.2 Significance of Prior Knowledge 68
3.2.3 Neural Networks for Knowledge Refinement 68

3.3 Computational Models as Symbolic Knowledge 68
3.3.1 A Hierarchy of Automata and Languages 68
3.3.2 Finite-State Automata . 69
3.3.3 Subclasses of Finite-State Automata 71
3.3.4 Push-Down Automata . 72
3.3.5 Turing Machines . 73
3.3.6 Summary . 73

3.4 Mapping Automata into Recurrent Neural Networks 73
3.4.1 Preliminaries . 73
3.4.2 DFA Encoding Algorithm . 74
3.4.3 Stability of the DFA Representation 76

3.4.5 Scaling Issues . 80
3.4.6 DFA States with Large Indegree 81
3.4.7 Comparison with Other Methods 82

3.5 Extension to Fuzzy Domains . 83
3.5.1 Preliminaries . 83
3.5.2 Crisp Representation of Fuzzy Automata 84
3.5.3 Fuzzy FFA Representation 86

3.6.1 Motivation . 90
3.6.2 Learning Algorithms . 92
3.6.3 Input Dynamics . 92
3.6.4 Real-Time On-Line Training Algorithm 92
3.6.5 Training Procedure . 93
3.6.6 Deterioration of Generalization Performance 94
3.6.7 Learning Long-Term Dependencies 94

3.7.1 Cluster Hypothesis . 95
3.7.2 Extraction Algorithm . 96
3.7.3 Example of DFA Extraction 98
3.7.4 Selection of DFA Models . 98
3.7.5 Controversy and Theoretical Foundations 100

3.8 Recurrent Neural Networks for Knowledge Refinement 102
3.8.1 Introduction . 102

3.4.4 Simulations . 77

3.6 Learning Temporal Patterns with Recurrent Neural Networks 90

3.7 Extraction of Rules from Recurrent Neural Networks 95

CO n t en ts vii

3.8.2 Variety of Inserted Rules . 103
3.9 Summary and Future Research Directions 105

4 A Tutorial on Neurocornputing of Structures 117
4.1 Introduction . 117
4.2 Basic Concepts . 119
4.3 Representing Structures in Neural Networks 121

4.3.1 The RAAM Family . 121
4.4 From Graph Representation to Graph Transductions 124
4.5 Neural Graph Transductions . 126
4.6 Recursive Neurons . 127
4.7 Learning Algorithms . 130

4.7.1 Backpropagation through Structure 130
4.7.2 Extension of Real-Time Recurrent Learning 131
4.7.3 Recursive Cascade Correlation 132
4.7.4 Extension of Neural Trees . 134

4.8 CyclicGraphs . 135
4.9 Learning with Cycles . 137

4.9.1 Backpropagation . 137
4.9.2 Real-Time . 139

4.10 Computational Power . 141
4.10.1 Tree Grammars and Tree Automata 142
4.10.2 Computational Results . 142
4.10.3 Function Approximation . 144

4.11 Complexity Issues . 145
Representing FRAO as Boolean Functions 145

4.11.2 Upper Bounds . 146
4.11.3 A Lower Bound on the Node Complexity 147
4.11.4 Bounds on Learning . 147

4.12 Conclusions . 148

4.11.1

5 Structural Learning and Rule Discovery
5.1 Introduction .
5.2 Structural Learning Methods .

5.2.1 Addition of a Penalty Term

Deletion of Unnecessary Connections
5.2.4 Constructive Learning .

5.3 Structural Learning with Forgetting
5.3.1 Learning with Forgetting .
5.3.2 Learning with Hidden Units Clarification
5.3.3 Lea.rning with Selective Forgetting
5.3.4 Procedure of SLF .
5.3.5 Extension to Recurrent Networks

5.2.2 Deletion of Unnecessary Units
5.2.3

153
153
154
155
156
156
157
157
157
158
158
158
159

...
vzaa Contents

5.3.6 Interpretation of Forgetting 159
5.3.7 Determination of the Amount of Decay 160
5.3.8 Model Selection . 161

5.4 Discovery of a Boolean Function . 162
5.5 Classification of Irises . 165
5.6 Discovery of Recurrent Networks . 166
5.7 Prediction of Time Series . 168

5.7.1 Recurrent Networks for Time Series 168
5.7.2 Prediction Using Jordan Networks 170
5.7.3 Prediction Using Buffer Networks 172
5.7.4 Discussion . 177

5.8 Adaptive Learning . 177
5.9 Methods of Rule Extraction/Discovery 178
5.10 Rule Discovery by SLF . 182
5.11 Classification of Mushrooms . 183
5.12 MONK’S Problems . 184
5.13 Modular Structured Networks . 186

5.13.1 Module Formation and Learning of Modular Networks 188
5.13.2 Boolean Functions . 190
5.13.3 Parity Problems . 196
5.13.4 Geometrical Transformation of Figures 197
5.13.5 Discussion . 198

5.14 Toward Hybrid Intelligence . 200
5.15 Conclusion . 201

6 VLIANN: Transformation of Rules to Artificial Neural
Networks 207
6.1 Introduction . 207
6.2 Data Representation and Rule Syntax 208
6.3 The VLlANN Algorithm for Rule Representation 209
6.4 Example . 212
6.5 Related Work . 213
6.6 Summary . 215

7 Integration of Heterogeneous Sources of Partial Domain
Knowledge 217
7.1 Introduction . 217
7.2 Experts Integration: Domain or Range Transformation Dilemma . . 220

7.2.1 Domain Transformation . 220
7.2.2 Range Transformation . 222
Incremental Single Expert Expansion 224
7.3.1 The HDE Algorithm . 225
7.3.2 Embedding of Transformed Prior Knowledge 228
7.3.3 Direct Integration of Prior Knowledge 229

7.3

Contents ZX

7.4 Multiple Experts Integration . 229

Symbolic Integration Using Decision Trees 230
7.4.3 Competitive Integration of Heterogeneous Experts 232

7.5 Results . 234
7.5.1 The Two-Spirals Problem . 234
7.5.2 A Financial Advising Problem 240

7.6 Conclusions . 246

7.4.1 Cooperative Combination of Heterogeneous Experts 230
7.4.2

8 Approximation of Differential Equations Using Neural Networks 251
8.1 Motivation . 251
8.2 Local Approximation by Taylor Series 252
8.3 Generalization of the Taylor Series Method 254
8.4 Choice of Suitable Neural Network Approximators 256

8.4.1 Modified Logistic Networks 257
8.4.2 Radial Basis Function Networks 258

8.5 Transformation of Differential Equations into Approximable Form . 261
8.6 Single-Step and Multi-Step Integration Procedures 265

8.6.1 Modified Logistic Networks 268
8.6.2 Radial Basis Function Networks 269
8.6.3 Example: Second Order Differential Equation 270

8.7 Training Designed Neural Networks with Observation Data 273
8.8 Application to Forecasting of Chaotic Time Series 274

8.8.1 Lorenz System . 275
8.8.2 One-Step-Ahead Forecasts . 278
8.8.3 Repeated Forecasts . 281

8.9 Conclusions . 285

9 Fynesse: A Hybrid Architecture for Self-Learning Control 291
9.1 Introduction . 291
9.2 Essential Requirements . 293

9.2.1 Dynamical Systems . 293
9.2.2 Autonomous Learning . 294
9.2.3 Quality of Control . 294
9.2.4 Integration of a priori Knowledge 295
9.2.5 Interpretation . 295

9.3 Fundamental Design Decisions . 295
9.3.1 Autonomously Learning to Control 296

Representation of Controller Knowledge 297
9.4 The FYNESSE Architecture . 298

9.4.1 Main Concepts . 299
9.4.2 Degrees of Freedom . 299

9.5 Stepping into FYNESSE . 303
9.5.1 The Learning Critic . 303

9.3.2

X CO n t en ts

9.5.2 The Explicit Controller . 308
9.6 Control of a Chemical Plant . 312

9.6.1 Task Description . 312
A Nonlinear Controller . 313

9.6.3 Learning with FYNESSE : 314
9.6.4 Self-Learning from Scratch 314

Use of a priori Knowledge . 316
9.6.6 Interpretation of the Controller 317
9.6.7 Summary . 321

9.7 Conclusions . 321

9.6.2

9.6.5

10 Data Mining Techniques for Designing Neural Network Time
Series Predictors 325
10.1 Introduction . 325
10.2 Direct Information Extraction Procedures 327

10.2.1 Information Theory . 327
10.2.2 Dynamical System Analysis 331
10.2.3 Stochastic Analysis . 335
10.2.4 An Illustrative Example . 338

10.3.1 Knowledge of Properties of the Target Function 345
10.3.2 Non-Stationarity Detection 346
10.3.3 An Illustrative Example . 351

10.4 Conclusions . 356

10.3 Indirect Information Extraction Procedures 345

11 Extraction of Decision Trees from Artificial Neural Networks 369
11.1 Introduction . 369
11.2 Extraction of Rules from Neural Networks 370
11.3 ANN-DT Algorithm for Extraction of Rules from Artificial Neural

Networks . 372
11.3.1 Training of the Artificial Neural Networks 373
11.3.2 Induction of Rules from Sampled Points in the Feature Space 374
11.3.3 Interpolation of Correlated Data 375
11.3.4 Selection of Attribute and Threshold for Splitting 375
11.3.5 Stopping Criteria and Pruning 378

11.4 Splitting Procedures of ID3, (24.5, and CART 379
11.5 Illustrative Examples . 379

11.5.1 Example 1: Binary Classification of Points in a Circular
Domain . 380

11.5.2 Example 2: Characterization of Gas-Liquid Flow Patterns . . 381
11.5.3 Example 3: Solidification of ZnC12 382
11.5.4 382
11.5.5 Example 5: Abalone Data . 383
11.5.6 Example 6: Sap Flow Data in Pine Trees 383

Example 4: Sine and Cosine Curves

CO n t e n t s Xi

11.6 Results . 384
11.6.1 Example 1: Binary Classification of Points in a Circle 386
11.6.2 Real World Classification Tasks: Examples 2 and 3 387
11.6.3 Example 4: Sine and Cosine Curves 392
11.6.4 Example 5 and 6: Abalone and Pine Data 394

11.7 Discussion . 394
11.8 Qualitative Analysis . 397
11.9 Conclusions . 398

12 Extraction of Linguistic Rules from Data via Neural Networks
and Fuzzy Approximation 403
12.1 Introduction . 403
12.2 Fuzzy Rule Extraction Algorithm . 404
12.3 Gentamycin Dosage Problem . 410
12.4 Iris Flower Classification Problem . 412
12.5 Concluding Remarks . 415

13 Neural Knowledge Processing in Expert Systems 419
13.1 Knowledge Representation in Expert Systems 419

13.1.1 Expert Systems . 420
422

. . 424
13.1.4 Comparison of Rule-Based and Neural Expert Systems 427

13.2 Neural Networks in Expert Systems 430
13.2.1 Hybrid Systems . 430
13.2.2 Neural Expert Systems . 435

13.3 EXPSYS-- An Example of a Neural Expert System 439
13.3.1 Interface . 440
13.3.2 Neural Knowledge Base . 442
13.3.3 Inference Engine . 448
13.3.4 Explanation of Conclusions 450
13.3.5 Example of Application . 454

13.1.2 Explicit Knowledge Representation and Rule-Based Systems
13.1.3 Implicit Knowledge Representation and Neural Networks

Index 467

Preface

Knowledge-based neurocomputing concerns the utilization of problem-specific
knowledge within the neurocomputing paradigm. The novelty of this book is that it
illustrates the use of explicit comprehensible knowledge, a feature not always avail-
able within artificial neural networks. We believe that the issue of explicit knowledge
manipulation within the neurocomputing paradigm has matured to such an extent,
and is of such importance, that it warrants a volume dedicated to the review and
exposition of approaches addressing this issue. This book is an outgrowth of that
belief.

Uses of knowledge include prior knowledge about the problem domain, and
the extraction, refinement and revision of knowledge about a specific problem
domain contained within a neurocomputing system. The book also gives a thorough
introduction to this field, describes the state-of-the-art methods, and points out the
emergent directions for future research.

The book will be useful not only to those in the neurocomputing community,
who wish to know more about the integration of knowledge-based principles and
artificial neural networks, but also to the Artificial Intelligence community with
its rich history of symbolic knowledge representation formalisms. The architectural
issues addressed will aid developers aiming at connectionist-symbolic integration
and the use of knowledge in hybrid intelligent systems.

The first part of the book (chapters 1 to 5) presents a taxonomy and reviews
of methods for obtaining comprehensible neural network topologies by learning, as
well as the encoding, extraction and refinement of symbolic knowledge within a
neural network. The latter part presents wide ranging examples of applications of
this technology, including rule extraction for chemical engineering systems, encoding
and parameter estimation for differential equations describing known properties of a
dynamical system, control systems development, time series analysis and prediction,
and a neural expert system.

This book will therefore be valuable to researchers, graduate students and inter-
ested laymen in the areas of engineering, computer science, artificial intelligence,
machine learning and neurocomputing, who require a comprehensive introduction
to the subject, as well as keeping up with the latest research and the issues relevant
to this exciting field.

Acknowledgments

We would like to thank Reg Dodds for his expert assistance with the preparation
of the manuscript.

edited by Ian Cloete and Jacek M. Zurada

Knowledge-Based Neurocomputing

The MIT Press
Cambridge, Massachusetts
London, England

Contributors

C Aldrich
cal Qmaties. suri.ac. za
Department of Chemical Engineering,
University of Stellenbosch,
7602 Stellenbosch, South Africa

J Cervenka
simaQuivt .cas.vz
Department of Theoretical Informatics,
Institute of Computer Science,
Academy of Sciences of the Czech
Republic,
Pod vodarenskou vezi 2, 182 07 Prague
8, Czech Republic

I Cloete
ian.cloeteQi-u.de
International University in Germany,
D-76646 Bruchsal,
Germany

RA Cozzio
cozzioQcomexar . com
COMEXAR Engineering Ltd.,
PO Box 441, Breitenstr. 15,
CH-8853 Lachen. Switzerland

R Drossu
rdrossuoeecs. wsu. edu
School of Electrical Engineering and
Computer Science,
Washington State University,
Pullman, Washington, 99 1 64- 2 75 2

J Fletcher
j AetcheQhalcyon. com
School of Electrical Engineering and
Computer Science,
Washington State University,
Pullman, Washington, 99164-2752

CL Giles
giles@research.nj .nec.com
NEC Research Institute,
Princeton, NJ 08540, USA
and
UMIACS, U. of Maryland,
College Park, MD 20742, USA

FS Gouws
cal@maties.sun.ac.za
Department of Chemical Engineering,
University of Stellenbosch,
7602 Stellenbosch, South Africa

M Hilario
Melanie.Hilario@cui.unige.ch
Computer Science Center,
University of Geneva, CH-1211
Geneva 4, Switzerland

M Ishikawa
ishi kawaoces. kyutech. ac. j p
Department of Control Engineering and
Science,
Kyushu Institute of Technology,
Iizuka, Fukuoka 820, Japan

xiv Contributors

A Lozowski
j mzura02Q homer. louisville. edu
University of Louisville,
Louisville, Kentucky 40292, USA

Z Obradovic
zoraneeecs. wsu. edu
School of Electrical Engineering and
Computer Science,
Washington State University,
Pullman, Washington, 99 164-2752

CW Omlin
omlinecs .sun. ac .za
Department of Computer Science,
University of Stellenbosch,
7602 Stellenbosch, South Africa

M Riedmiller
r ieclml 0 i r a. u ka . de
Department of Computer Science,
University of Karlsruhe,
Karlsruhe, Germany

P Romero
promeroeeecs. wsu.edu
School of Electrical Engineering and
Computer Science,
Washington State University,
Pullman, Washington, 99164-2752

GPJ Schmitz
cal Omat ies .sun. ac. za
Department of Chemical Engineering,
University of Stellenbosch,
Stellenbosch 7602, South Africa

J Sima
simaQuivt .cas.cz
Department of Theoretical Informatics,
Institute of Computer Science,
Academy of Sciences of the Czech
Republic,
Pod vodarenskou vezi 2, 182 07 Prague
8, Czech Republic

A Sperduti
persoedi .unipi .it
Dipartimento di Informatica,
Universitk di Pisa,
Corso Italia 40,
1-56125 Pisa, Italy

M Spott
spot t @ipd. info.uni- karlsruhe.de
Department of Computer Science,
University of Karlsruhe,
Karlsruhe, Germany

J Weisbrod
weisbrodQfzi.de
Forschungszentrum Informatik (FZI),
Karlsruhe, Germany

JM Zurada
jmzura02@ homer .louisville.edu
University of Louisville,
Louisville, Kentucky 40292, USA

1 Knowledge-Based Neurocomputing: Past,
Present, and Future

Ian Cloete

Knowledge- Based Neurocomputing concerns the application of problem-specific
knowledge within the neurocomputing paradigm. The old adage, "Knowledge is
power, " also applies to neurocomputing. This chapter addresses various methods
of utilizing knowledge, and presents several dimensions for the classification of the
various approaches. The chapter concludes with a view of the future prospects of
know 1 edge- based neurocomputing .

1.1 The Past

The paradigm of neurocomputing, as opposed to conventional procedural methods of
computing, has evoked wide-spread interest since the first international conference
on artificial neural networks in 1987. Neurocomputing methods are loosely based
on an artificial model of the brain as a network of simple interconnected processing
elements, corresponding to biological neurons. These methods derive their power
by the collective processing of artificial neurons, the main advantage being that
such systems can learn and adapt to a changing environment. Several other terms
have been coined previously for this rapidly advancing area, such as connectionist
processing (Shastri, 1995), parallel distributed processing (PDP) (Rumelhart and
McClelland, 1986), artificial neural networks (ANN) (Hassoun, 1995; Rojas, 1996),
and artificial neural systems (Zurada, 1992). This book assumes a basic familiarity
with neurocomputing. However, those readers requiring more information should
page to Chapter 13 where an introduction is given.

In knowledge-based neurocomputing the emphasis is on the use and represen-
tation of knowledge about an application within the neurocomputing paradigm.
Despite the powerful processing capabilities of a neurocomputing system, explicit
modeling of the knowledge represented by such a system remains a major research
topic. The reason is simply that a human finds it very difficult to interpret the
numeric representation of a neural network. It is therefore the aim of this book to
address this issue from various perspectives, and to present the state-of-the-art in

2 Knowledge-Based Neurocomputing: Past, Present, and Future

knowledge-based neurocomputing in an easily accessible form. The key assumption
of knowledge-based neurocomputing is that knowledge is obtainable from, or can
be represented by a neurocomputing system, in a humanly comprehensible form.
By humanly comprehensible it is meant that the knowledge imbedded in the neuro-
computing system is also representable in a symbolic or well-structured form, such
as Boolean functions, automata, rules, or in similar well-understood ways. The fo-
cus of knowledge-based neurocomputing is therefore on methods to encode prior
knowledge, and to extract, refine and revise knowledge within a neurocomputing
system.

Why is knowledge-based neurocomputing important? Understanding the knowl-
edge imbedded in the system would make neurocomputing systems more acceptable
in a variety of application areas. Safety-critical or life-supporting medical applica-
tions using a neurocomputing system, for instance, have to be verified to perform
to specifications-this process will be much improved if the system’s knowledge
is comprehensible. There is also another advantage to a comprehensible knowl-
edge representation scheme. It brings the research of symbolic Artificial Intelligence
methods to bear on the knowledge-based neurocomputing paradigm.

Knowledge-based neurocomputing was inspired by two historically separate re-
search areas, namely artificial intelligence (AI) and (artificial) neural networks.
Artificial intelligence developed as a subarea of traditional computer science, with
the goal to mimic human intelligence. Two viewpoints of what constitutes AI are
cited below:

Artificial intelligence is the study of the computations that make it possible to
perceive, reason and act. (Winston, 1992, p.5)

Russell and Norvig view AI from an “agent” perspective, leading to the following
definition of an ideal rational agent:

For each possible percept sequence, an ideal rational agent should do whatever
action is expected to maximize its performance measure, on the basis of the evi-
dence provided b y the percept sequence and whatever built-in knowledge the agent
has. (Russel and Norvig, 1995, p.33)

Conventional AI is strongly based on symbol manipulation and formal languages
in an attempt to mimic human intelligence. The representation and manipulation
of symbolically structured knowledge has always played a central role. It is exactly
this strong point which led to the development of so-called expert systems (ES),
also named knowledge-based systems (KBS). These systems, if sufficient explicit
“expert” knowledge about a narrow problem domain is available, provide capabil-
ities to symbolically represent the knowledge and reason with it, for instance for
diagnostic tasks (Gonzalez and Dankel, 1993). The advantages of these systems lie
in their ability to represent comprehensible knowledge.

In the field of artificial neural networks, on the other hand, the analogy with
human intelligence is based on a model of the human/animal brain, and an attempt
to model explicit symbol manipulation is largely absent. Golden says the following:

1.1 The Past 3

A n artificial neural network (A N N) system is an abstract mathematical model
inspired b y brain structures, mechanisms and functions. A n important hope of many
researchers is that A N N systems may be used as a universal language by cognitive
scientists, engineers, computer scientists, psychologists, biologists, neuroscientists,
physicists, and mathematicians for specifying and testing theories of neural infor-
mation processing. (Golden, 1996, p.1)

Neurocomputing systems have demonstrated that they model some aspects of
human intelligence very well, as recent advances in areas such as vision and speech
illustrate (Arbib, 1995). A particularly appealing feature is their ability to acquire
knowledge by learning from data. The problem is that this internal knowledge
representation developed by the artificial neural network is largely incomprehensible
to humans, and thus it cannot be manipulated easily.

We note that the issue of knowledge is common to both classical AI and neuro-
computing. The boundaries between these computing paradigms are becoming less
and less distinct, as is evidenced by the growing number of AI textbooks which now
include material on neurocomputing (Winston, 1992; Russel and Norvig, 1995). he
growing number of fuzzy-neural systems (Jang et al., 1997), which present yet an-
other form of knowledge representation and processing, is further evidence of the
importance of knowledge when rnodeling an application.

We believe that the issue of explicit knowledge manipulation within the neuro-
computing paradigm has matured to such an extent, and is of such importance,
that it warrants a volume dedicated to the review and exposition of approaches
addressing this issue. This book is an outgrowth of that belief, and we therefore
propose a broad categorization of knowledge-based neurocornputing as follows:

Knowledge- based neurocomputing (K B N) concerns methods to address the explicit
representation and processing of knowledge where a neurocomputing system is
involved.

This definition is of necessity fuzzy to accomodate the large variety of approaches.
In this book we concentrate mainly on an engineering perspective to this field. I
will return to this point in the next section.

Having discussed the motivation and sources of inspiration for KBN, the layout
of the remainder of the chapter is as follows: The next section presents a review of
approaches to KBN (which is also further exemplified in Chapter a) , followed by
an overview of the book’s chapters. The last section discusses the future of KBN,
and lists several open questions within the field of KBN.

4 Knowledge- Based Neurocomputing: Past, Present, and Future

1.2 The Present

1.2.1 A Taxonomy

A taxonomy of approaches to KBN is useful since it facilitates understanding and
allows the grouping together of related methods that share common characteristics.
Three main dimensions are useful for this purpose:

The motivating perspective of the approach followed,

w architectural considerations, and

w intrinsic characteristics of the methods.

1.2.1.1 The Motivating Perspective

Researchers’ philosophical perspective has played an important role in determining
the approach adopted to KBN. Many previous research efforts have concentrated on
bringing other knowledge processing paradigms to bear on neurocomputing, with
the underlying aim to improve the computational power and capabilities of these
systems, or to model a particular aspect of the paradigm within a neurocomputing
system, or to prove or disprove a certain theory. In one way or another, it introduces
additonal knowledge to the modeling effort. Four broad motivating perspectives are
outlined below, with varying degrees of overlap among them. The terms coined to
describe the research from a particular perspective frequently provide a hint to its
underlying motivation.

Neurobiological:
Research with a neurobiological perspective suggests biological/neural reality of the
resulting neurocomputing system. The objective of Neuronal Symbol Processing
(NSP), for instance, is to model the brain’s high-level functions (Hilario, 1997)
starting in a bottom-up fashion from the biological neuron. Edelman’s neural
Darwinism (Edelman, 1987, 1992), or neuronal group selection (TNGS), thus
presents a theory which attempts a biological account of the full range of cognitive
phenomena, ranging from sensorimotor responses to concept formation, language
and higher-order consciousness (Hilario, 1997).
Examples of research areas impinging on the neurobiological perspective are neu-
roscience, biology, physiology, aspects of philosophy and psychology, etc.
Cognitive:

Research motivated from a cognitive perspective attempts to model aspects of the
“mind,” “intelligence” or behavior, though not necessarily requiring neurobiological
reality. Cognitive science brings together computer models from AI and experimen-
tal techniques from psychology to try to construct testable theories of the workings
of the human mind (Russel and Norvig, 1995). From this perspective, for instance,
several approaches to language modeling and reasoning with knowledge have been
proposed.

1.2 The Present 5

“Connectionism” is motivated from the belief that attention must be paid to the
computational characteristics of the brain (Shastri, 1995), where the structured
connectionist approach is distinguished from the ful ly distributed approach. The
structured corinectionist approach recognizes the importance of neurally motivated
constraints, but also acknowledges that insights from disciplines such as psycliology,
linguistics, computer science, AI and learning theory will have to be incorporated
to address complex problems in AI and cognitive science. Models following the
structured connectionist approach frequently use a local representation (localist,
see also Chapter 2) in which concepts are identified with individual nodes, and
relationships among them are encoded by excitatory and inhibitory links; and
where computat>ion proceeds by spreading activation and lateral inhibition. These
models, as well as neurally plausible systems, are limitled in their representation of
composite structures in a dynamic system, for instance, representing appropriate
bindings between roles and fillers in semantic representations of language.
The fully distributed approach, on the other end of the representation spectrum,
assumes that each item (concept or mental object) is represented as a pattern of
activity over a common pool of units (Shastri, 1995).
The structured coniiectionist approach further emphasizes the importance of prior
ANN structure to facilitate learning, i.e. prior knowledge. In contrast, the fully
distributed approach assumes that all the necessary structure is developed by
general purpose learning, starting from a tabula rasa view with a general purpose
ANN architecture.
Examples of the structured connectionist approach include the following: The
interactive activation model for letter perception (Rumelhart and McClelland, 1986)
which has an interconnection pattern that allows bottom-up perceptual processing
to be guided by top-down expectations; the connectionist semantic model (CSM)
(Shastri, 1988) that represents memory as concepts organized in an IS-A hierarchy
and that allows the attachment of property values to concepts; and the SHRUTI
system (Shastri, 1995) which encodes large numbers of facts, general rules and IS-A
relations between concepts, and which employ synchronous firing to correspond to
dynamic facts.
In contrast to localist encoding of knowledge, some distributed representations
employ coarse coding, a representation method that uses populations of broadly
tuned units to encode a value collectively (Touretzky, 1995). Each unit responds to
a range of values, and is active when the input to be encoded falls within its receptive
field. The Distributed Connectionist Production System (DCPS) (Touretzky and
Hinton, 1988)) which is discussed below from the symbolic perspective, shows how
coarse coding can be applied to symbolic representations.
Another method of distributed encoding of knowledge uses feature vectors. Smolen-
sky, for instance, coined the term “sub-symbolic” to refer to certain types of micro-
feature representations which encode low-level features (Smolensky, 1988).
Other earlier work on knowledge representations used recurrent networks, such as
Elman’s siniple recurrent networks which learned to process sentences a word at
a time and to predict at every time step what the next word would be (Elman,

6 Knowledge-Based Neurocomputing: Past, Present, and Future

1995). A simple recurrent network saves hidden unit activations in another layer
and then feeds them back to these hidden units on the next time step. Words were
represented by a localist encoding in which a single bit was turned on. Analysis
of the hidden unit activation vectors showed that the hidden unit space had been
partitioned into broad regions corresponding to the grammatical category of the
words.
In Chapters 3 and 4 further knowledge representations based on recurrent networks,
which have more of a symbolic than a cognitive motivation, are presented and briefly
discussed below as motivated from a symbolic perspective.
Further examples of research areas which contribute to a cognitive perspective of
KBN are the social/behavioral sciences in general, psychiatry, linguistics, as well as
other aspects of the medical, physical, and mathematical sciences that are pertinent
to the study of cognition.

Research motivated from a symbolic perspective has a kind of AI flavor where
symbol processing plays a role in the neurocomputing model. Early attempts in
this direction started in the 1980’s, of which Touretzky and Hinton’s work on the
implementation of a production system within the neurocomputing paradigm is
a good example (Touretzky and Hinton, 1988). The connectionist expert system
MACIE illustrates automated reasoning, a field for which classical AI is well-known
(Gallant, 1993). BoltzCONS, for instance, is a connectionist model that dynamically
creates and manipulates linked lists, showing how a neurocomputing system is
capable of high-level symbol processing (Touretzky, 1995).
The CLARION (Connectionist Learning with Adaptive Rule Induction ONline) sys-
tem (Sun and Peterson, 1996; Sun and Peterson, 1997), of which the CONSYDERR
system (Sun, 1995) (CONnectionist System with Dual-representation for Eviden-
tial Robust Reasoning) is a forerunner, has a two-level architecture that represents
declarative (i.e. symbolic) knowledge in the form of rules at the top level, and pro-
cedural knowledge in the form of reactive routines at the bottom level. The central
idea is that the different representations should be developed simultaneously along
side each other. The bottom level learns procedural knowledge by reinforcement
learning (Q-learning) (Sutton and Barto, 1998), while the top level learns by rule
extraction, and generalization and specialization of the extracted rules. If some ac-
tion decided upon by the reactive level is successful, then the top level extracts a
rule corresponding to the reaction, since this provides the opportunity to obtain
general knowledge about a particular action. The bottom level is implemented as
a three layer network learning Q-values by backpropagation, with a fourth layer (a
single unit) that performs stochastic decision making.
Chapters 3 and 4 discuss knowledge representations based on recurrent networks,
e.g. various types of automata (deterministic finite-state automata (DFA), fuzzy
automata (FFA), subclasses of DFA, such as definite memory machines, etc.), and,
especially significant, labeled graphs which include many structured representations
such as decision trees, frontier-to-root tree automata, neural trees, etc. Graph
representations have played an important role in classical AI, and therefore methods

Symbolic:

1.2 The Present 7

to rnanipulate labeled graphs within the KBN paradigm will have far-reaching
consequences.
Further examples of research areas which contribute to a symbolic perspective
(other than AI) are many application areas of computer science and engineering,
e.g. robotics, vision, learning, speech, etc.

Research motivated from an engineering perspective focuses on the task or function
to be accomplished using whatever appropriate tools are available. Generally the
underlying theory stems from mathematical, engineering or physical considerations.
Many systems, classified below as hybr id combinations of symbolic and neurocom-
puting modules, attempt a synergistic integration of appropriate techniques to solve
a particular problem. Chapter 9, for instance, presents a hybrid neural network and
fuzzy system architecture called FYNESSE.

Engineering:

1.2.1.2 Architecture

A second important dimension for classifying KBN systems is their architecture. We
distinguish three rnain architectural approaches to neurosymbolic integration (see
also Chapter 2 which provides further architectural perspectives). This classification
dimension should be seen as a continuum where “unified” and “hybrid” approaches
are the two endpoints.

Unified architectures
9 Translational archit ectures . Hybrid architectures

In uni f ied approaches symbol processing capabilities are modeled within the neu-
rocomputing paradigm, i.e. no explicit symbolic functionality is programmed into
the system in the classical AI sense. Knowledge is modeled using localist, distributed
and combined localist/distributed connections between artificial neurons. Examples
of this so-called connectionist symbol processing systems are Shastri’s SHRUTT sys-
tem and connectionist semantic model (CSN) (Shastri, 1988), and DCPS (Touret-
zky and Hinton, 1988), all mentioned above. Many of these types of systems are
motivated from a cognitive or symbolic perspective.

The other types of unified architecture are those attempting to model neuro-
biological reality, such as Edelman’s neural Darwinism mentioned in the previous
section.

In hybr id systems separate neural network and symbolic modules are identifi-
able, i.e. as distinct components in a software system, where each is responsible for
particular functions, and knowledge may be shared or transferred between them.
Medsker, for instance, identifies five different integration strategies for expert sys-
terns and neural networks where the tightness of the coupling between the neural
network and expert system increases from the first to the last model (Medsker,
1994) : Stand-alone, transformational, loosely coupled, tightly coupled, and fully in-

8 Knowledge- Based Neurocomputing: Past, Present, and Future

tegrated models. Fu also identifies five integration strategies for neural networks and
knowledge-based components, named as follows (Fu, 1995) : Completely overlapped,
partially overlapped, parallel, sequential, and embedded. Chapter 2 discusses the
degree of integration between the neural network and symbolic modules, ranging
from loose to tight coupling, and the method of integration (i.e. communication
of data, knowledge and control information) among the modules. Four coopera-
tion methods are identified: Chainprocessing, subprocessing, metaprocessing, and
coprocessing.

Most systems classified as hybrids of symbolic and neurocomputational systems
are motivated from an engineering perspective, focusing on accomplishment of the
task at hand and choosing appropriate techniques from both (classical) AI and
artificial neural networks. For example, Chapter 9 describes the hybrid neuro-fuzzy
system FYNESSE for self-learning control of nonlinear dynamical systems. The INNS
(Incremental Neuro-Symbolic) system of Osorio and Amy uses a coprocessing mode
to integrate and transfer knowledge between a symbolic and ANN module(0sorio
and Amy, 1998). The system learns incrementally by repeating the rule insertion,
ANN learning, rule extraction and rule validation process, using the cascade-
correlation learning method (Fahlman and Lebiere, 1990) which can grow the ANN
to structure the topology and knowledge during the learning process. The symbolic
module uses CLIPS (C Language Integrated Production System) (Giarratano,
1993) as inference engine.

Translational architectures typically have the following sequence of steps:

1. Obtain knowledge about the problem in a symbolic, i.e. structured, form.
2. Translate the knowledge to an equivalent ANN.
3. Train the ANN to revise and/or refine the knowledge imbedded in the ANN,
using training techniques from neurocomputing.
4. Extract symbolic knowledge from the ANN.
5. Refine the symbolic knowledge.

Step 1 can be performed using machine learning algorithms, such as BEXA
which produces propositional rules in VL1 format (Theron and Cloete, 1996).
Chapter 10 considers data mining techniques to obtain knowledge in a structured
form. Chapters 5 to 8 provide examples of step 2. Some architectures start at step 3
to derive an ANN topology that is suited to symbolic knowledge extraction. This
process assumes that suitable training data are available. Chapters 5, 9, 10 and 13
address step 3; and Chapters 5, 9, 11, 12 and 13 provide examples of step 4. Most
current systems do not have step 5, however, we describe two such systems below.
Steps 4 and 5 could also be seen as a knowledge verification and validation process
typical of knowledge-based systems (Gonzalez and Dankel, 1993). This process can
be performed by comparing the extracted knowledge with existing knowledge, by
using an expert, or by using test data. For example, the hybrid INNS (Incremental
Neuro-Symbolic) system of Osorio and Amy (described before) validates rules after
each incremental rule acquisition phase to detect incorrect rules(Osorio and Amy,

1.2 The Present 9

1998). The cooperative symbolic and ANN learning framework (Viktor and Cloete,
1998)) using various forms of team learning among agents, refines extracted symbolic
knowledge before distributing it to other team members (Viktor et al., 1998).

1.2.1.3 Characteristics of Translational Methods

Translational KBN architectures can be distinguished further based on intrinsic
features of the methodology they follow to acquire comprehensible knowledge, that
is, how they address some or all of steps 1 to 4 (Cloete, 1996a). This section
elaborates further on this classification dimension and points the reader to relevant
material in the book. KBN systems are influenced by the following issues:

Type of representation of prior and final knowledge
The knowledge representation format influences the architecture of the ANN. For
instance, symbolic knowledge in the form of propositional rules (Chapter 6) can
be represented using a feed-forward ANN, while automata require a recurrent
ANN (Chapter 3). Representing labeled graphs (Chapter 4) requires more powerful
processing capabilit)ies, such as recursive neurons (in contrast to “standard” units).
Decision trees have been used both as prior knowledge (Ivanova and Kubat, 1995)
for a KBN system, and as the extracted final symbolic knowledge representation
(Chapter 11). . Restrictions placed on the ANN architecture
General, i.e. unconstrained, ANN architectures are not necessarily able to facilitate
the representation of symbolic knowledge within an ANN, and thus the ANN
architecture is constrained to allow correspondence with a symbolic knowledge
representation. Constraints include

0 restricting the network architecture so that it maps to a desired structured
represent at ion,
for instance, constructing the topology as a feed-forward ANN to follow IF-
THEN type rules (see Chapter 6 or KBCNN (Fu, 1993)), or a specific topology
suited to the representation of differential equations (see Chapter 8)) or a
recurrent structure to facilitate representation of automata (see Chapters 3
and 4)) etc.
0 restricting the number of layers of the network, e.g. to the level required to
map rules to the ANN topology,
0 restricting the types of activation functions, e.g. only sigmoid activation
functions with a high gain are used (Towel1 and Shavlik, 1994)) or certainty
factor-based activation functions are used (Fu, 1994))
0 constraints on weights, e.g. to the sets {-1,0, l}, { - H , + H } (see Chapter 3))
preferring equally valued weights incoming to a unit (Shavlik, 1996), or re-
stricting weight values to the range [-1,1] for certainty factor-based activation
functions (Fu, 1994),
0 constraints on inputs, e.g. to the sets (0 , l) or {-1, 1) (Towel1 and Shavlik,
1994).

10 Knowledge- Based Neurocornputing: Past, Present, and Future

. Characteristics of the training method
Training methods are specially adapted to obtain comprehensible representations,
such as

0 Placing restrictions on parameters during training, e.g. allow weight or bias
weight changes only, fix selected weights only (see Chapter S), or fix the weight
values of the hidden-output layer in a 3-layer feed-forward architecture,
0 Making modifications to the topology, e.g. add/delete units: TOPGEN looks
for units in the ANN with high error rates and then adds new units to these
parts of the network (Opitz and Shavlik, 1995),
0 Changing of the usual objective function,
for instance, regularization terms are added to the error function. In this
approach the “standard” error function is extended by adding additional
penalty terms intended to prefer certain parameter values, e.g. desiring weight
values in the set { - 1 , O , 1) (Denoeux and Lengellk, 1992). Structural Learning
with Forgetting (SLF) (see Chapter 5) tailors the objective functions used
at different stages of the training process to derive a required architecture.
The training process consists of three steps: 1. Learning with forgetting,
where the objective function includes a constant weight decay term to obtain
a skeletal network. 2. Learning with hidden units clarification, where the
objective function now forces hidden units to be fully active or inactive (i.e.
get rid of the “distributed” representation of knowledge). 3. Learning with
selective forgetting, where an objective function is used that makes only those
weights decay whose absolute values are smaller than a certain threshold. . Method of knowledge extraction

In addition to distinguishing the characteristics addressed above, here we note that
knowledge extraction or acquisition methods usually rely on (1) specialized training
requirements and a constrained ANN architecture, or (2) is targeted towards a
“general” ANN without any of these restrictions. These two divisions represent
a continuum where methods which require fewer restrictions are computationally
more demanding because more search is required. Methods of type (1) derive an
ANN architecture where the topology can be directly related to the structure
of the symbolic knowledge which is extracted or acquired during the process.
Methods of type (2) usually perform post processing on a trained ANN, using search
mechanisms to extract symbolic descriptions from the “distributed” representation
of the ANN. The trained ANN is treated as a black box and used to map inputs to
outputs or to cluster some parameter values of the ANN, where this association is
then re-represented in some symbolic knowledge structure.
In the special case where extracted knowledge is in the form of rules, these rule
extraction techniques have been labeled as decompositional, pedagogical and eclectic
(Andrews et al., 1995). The decompositional approach focuses on extracting rules
at the level of the hidden and output associations. The decompositional approach
is therefore applicable to a constrained ANN architecture which either originated
from a set of rules, so-called rule-based connectionist networks (RBCN) (Fu, 1994),

1.2 The Present 11

or where the topology of the ANN maps to a symbolic rule representation. The
pedagogical approach corresponds to methods of type (2) at the other end of the
continuum which treat the trained ANN as a black box and performs rule extraction
from unconstrained architectures. The eclectic approach to rule extraction is a
combination of the decornpositional and pedagogical approaches.
This classification can readily be extended to the extraction of other types of sym-
bolic knowledge representations, arid to the continuum of “constrained” to “un-
constrained” (general) architectures, as proposed above. The following redefinition
is proposed: Decompositional knowledge extraction methods find a suitable map-
ping from the stx-ucture of a constrained ANN architecture to the desired symbolic
knowledge representation scheme. Pedagogical knowledge extraction methods use
the association between inputs and outputs developed by the ANN as the input to
another procedure which creates a symbolic knowledge structure, independent of
the original ANN architecture or training procedure. Eclectic knowledge extraction
methods lie on the contiriuum from decompositional to pedagogical-the extent to
which it belongs to one or the other is determined by the severity of the constraints
and/or special training procedure requirements to extract knowledge.
The MOFN algorithm (Shavlik, 1996) is a decoinpositional method that extracts m-
of-n rules from trained knowledge-based neural networks. The INNS system (Osorio
and Amy, 1998), using a decompositional knowledge extraction method, reduces the
complexity of the rule extraction process by only analyzing the units newly added
to the ANN due to cascade-correlation learning (Fahlman and Lebiere, 1990). The
IMLP (Interpretable Multi-Layer Perceptron) of Bologna and Pellegrini decodes its
internal representation to extract zero order conjunctive rules, even with continuous
input attributes(Bo1ogna and Pellegrini, 1998). Shavlik also demonstrated that the
MOFN algorithm can be applied to ordinary ANNs by using a special training
procedure, incorporating a variant of soft-weight sharing, which encourages weights
to cluster during training. This version of the algorithm is classified as eclectic. SLF
(Chapter 5) is an eclectic knowledge extraction method which derives a constrained
ANN architecture through a special training regime. This procedure facilitates
understanding of the neural network and the ability to extract comprehensible
knowledge. Chapter 3 presents a clustering technique based on the pedagogical
approach, while Chapter 11 presents an example of decision tree extraction, and
Chapter 12 discusses a fuzzy rule extraction method.

This section concludes the review of current approaches to knowledge-based
neurocomputing. The next section summarizes the chapter contributions to this
volume, arid the final section speculates about the future of knowledge-based
neurocomputing.

1.2.2 Overview of the Book

The first and second chapters in the book provide an introduction and taxonomy
of approaches followed to date in knowledge-based neurocomputing.

12 Knowledge-Based Neurocomputing: Past, Present, and Future

Chapters 3 to 5 concentrate on theory and methods for obtaining knowledge in
a symbolic form. Knowledge representations used/acquired by both feedforward
and recurrent artificial neural networks include Boolean functions, trees, general
graphs and automata of various types (including fuzzy automata). Chapters 6 to 12
present methods for and applications of the encoding of prior knowledge, and the
extraction, refinement and revision of knowledge within a neurocomputing system.
Finally, Chapter 13 discusses knowledge-based neurocomputing in the context of
expert and neural expert systems and presents the neural expert system EXPSYS.

The emphasis of the book is on an engineering approach to the design and use
of knowledge within artificial neural networks. Thus the applications relate mainly
to engineering problems, although the methods have also been applied to more
symbolic AI and cognitive science oriented research, e.g. the methods of Chapters 3
and 4.

1.2.3 Overview by Chapters

1.2.9.1 Chapter 2

Chapter 2 traces the origins of knowledge-based neurocomputing from the original
ideas of neurosymbolic integration through to the state-of-the-art architectures of
present day systems.

The goal of neurosymbolic integration is to build intelligent systems that ex-
ploit the synergy of symbolic and neural processing. Initially this term itself had
a biologically inspired connotation where full symbol processing functionality is
assumed to emerge from neural structures and processes, i.e. there is no need for
symbolic structures and processes as such. This approach is termed “unified” since
the capabilities of the systems stem only from a neurocomputing model. However,
this unified approach to connectionist symbol processing now finds implementation
in localist, distributed and localist/distributed architectures, of which a succinct
overview is given. Thus the foundations of knowledge-based neurocomputing are
examined, and a taxonomy is proposed mainly from an architectural viewpoint
which examines the integration of neurosymbolic systems.

Subsequently, the design of neural networks is examined in the context of the
extent to which prior knowledge is used to preprocess input data, to configure
the neural network model (i.e. connections, topology, weights, etc.), and to train
the neural network. The prior knowledge for a particular domain varies from
one extreme where no domain knowledge is present, to the other extreme where
perfect knowledge is available. Depending on the amount of prior knowledge,
one can distinguish appropriate design techniques where almost perfect domain
knowledge is available, knowledge-primed techniques for partial domain knowledge,
and knowledge-free techniques where no prior knowledge is available.

The chapter concludes with a description of the SCANDAL system, whose main
goal is to apply knowledge (both general knowledge about neural networks, and
prior knowledge about a particular problem to be solved) to the design process of
a neurocomputing model. The system is currently an experimental workbench con-

1.2 The Present 13

sisting of two metalevels and a base level, of which all components are implemented
as agents on a distributed systern platform. At the highest level a superior agent
is responsible for activating the appropriate configuration agents at the next met-
alevel, based on its background knowledge and the task description at hand. The
configuration agents represent a range of topology design techniques covering the
spectrum from knowledge-rich to no prior domain knowledge applications. These
agents, in turn, are responsible for controlling simulation agents who actually use
the suggested neural network architecture and input data to train a neural network
model.

1.2.3.2 Chapter 3

We have previously stressed the importance of an interpretable and comprehensible
knowledge representation, and the fact that there exist several knowledge represen-
tation schemes which are well known in the symbolic computation paradigm. Omlin
and Giles demonstrate several methods for symbolic knowledge representation us-
ing recurrent neural networks in Chapter 3. Their underlying premise is that if a
neural model cannot represent a certain knowledge structure, then it cannot learn
it either. The chapter’s most important contribution is the relationship established
between theoretical models of computation and the corresponding implementation
using a recurrent neural network. Issues which are addressed include the following: . Temporal symbolic knowledge, encoded by finite-state automata, can be repre-
sented by recurrent neural networks.

This means that formal languages, their complexities and computational capabil-
ities, as well as their corresponding implementations as deterministic finite-state
automata (DFA), also serve as a framework to discuss the capability of various
neural network architectures to represent spatio-temporal patterns. Subclasses of
DFA, such as definite memory machines and finite memory machines, are shown to
be representable by NNFIR (neural network finite impulse response) and NNIIR
(neural network infinite impulse response) architectures respectively, while push-
down automata (a computationally more powerful DFA augmented with an infinite
stack) can be learned by recurrent networks with an external stack. Although re-
current neural networks are computationally as powerful as Turing machines, this
equivalence requires infinite precision in the network computation, and thus for
all practical purposes Turing machines cannot be simulated by recurrent neural
net works.
Chapter 3 further illiistrates a method for encoding a DFA as a recurrent network,
analyzes the stability aiid scalability of the encoding, and compares it to other
methods for t h i s purpow. The algorithm uses no more neurons than the best of
all methods, m d consistently uses fewer weights and srrialler fan-out size than
the others. This DFA encoding is then extended in two ways to yield a crisp
represeritat ion of fuuzxy nutomntn (FFA), and a fuzzy FFA representation using
a fuzzy representation of states.

A nictho(1 of rml-time on-line training of recurrent neural networks.

Knowledge-Based Neurocomputing: Past, Present, and Future

. Extraction of rules from recurrent neural networks.

By means of cluster analysis of hidden neuron state space, several different con-
sistent DFAs can be extracted. A heuristic algorithm is devised to make a choice
among them. . Insertion and refinement of prior knowledge in recurrent neural networks.

Chapter 3 illustrates how to insert prior knowledge about a DFA into dynamically-
driven recurrent neural networks, using the known states and state transitions of
the DFA. In addition, refinement and correction of the resulting DFA through
subsequent training is illustrated, even in the presence of malicious hints, i.e.
incorrect prior knowledge.

1.2.3.3 Chapter 4

Knowledge about a structured domain can frequently be represented using a
graph structure, for instance labeled graphs which represent chemical compounds,
or decision trees representing some classification task. In the early 1990’s the
first publications appeared on the processing of trees using a neural network
approach. However, significant progress on the representation and learning of graphs
with neural networks only occurred very recently. Sperduti has been a significant
contributor to this development, and in Chapter 4, he reviews the state of the art
for the classification of structures and presents his latest results in a tutorial style.

Processing of graph structures thus opens up a significant new area for the
representation of knowledge in a structured form; an area which was previously
developed only by the AI community. These methods are especially significant
because they open the door for traditional knowledge representation formalisms
of AI to be explored within the knowledge-based neurocomputing paradigm.

Chapter 4 therefore first discusses the basic concepts of graphs, graph transduc-
tions, tree grammars and frontier-to-root tree automata (FRA). Then a recursive
neuron (as opposed to a standard or recurrent neuron) is introduced as a more pow-
erful transfer function which enables neural graph transductions to be performed.

Backpropagation Through Structure (BPTS) has been proposed as a supervised
learning method for these neural graph representations. Similar to backpropagation
through time, which unfolds a recurrent network in time into an equivalent feed-
forward network, BPTS uses recursive neurons to encode and learn structures. The
chapter illustrates how to extend Real-Time Recurrent Learning (RTRL) , Recurrent
Cascade Correlation and Neural Tree architectures to recursive neurons and the
learning of neural graph transductions. For learning in the case of a cyclic graph
extensions of backpropagation and RTRL are also proposed.

The chapter concludes by considering the computational power and complexity
of several neural network arcliitectures for the processing of structures since this
characterizes the class of functions which can potentially be computed by these
networks. It is shown that a simple recurrent network (Elman-style) can simulate
any frontier-to-root tree automaton, while neither the Cascade-Correlation network
for structures nor the Neural Tree for structures can simulate any FRA. The node

1.2 The Present 15

complexity of the implementation of FRAs as recursive neural networks is addressed
as well, and new upper bounds for three and four layer recursive networks are
derived. As a special case, a new bound is derived by a constructive method for the
implementation of finite-state automata (also discussed in Chapter 3) , which may
prove very useful for practical applications.

1.2.3.4 Chapter 5

In Chapter 5 Masurni Ishikawa presents a comprehensive description of his novel
method, with several variations, for training artificial neural networks, called Struc-
tural Learning with Forgetting (SLF). This training strategy finds a suitable net-
work topology during training in such a way that the resulting network structure
is comprehensible, i.e. the network structure has a well-defined symbolic interpre-
tation. The training process consists of three successive steps: (1) Learning with
forgetting. (2) Learning with hidden units clarification. (3) Learning with selective
forgetting. Ishikawa also extends the process to apply to recurrent neural networks,
and then presents a series of examples to illustrate the effectiveness of SLF versus
other methods for various tasks. These tasks include:

Discovery of Boolean functions: Functions with binary valued inputs and outputs.
Classification of irises: Classification functions with continuous inputs and binary

outputs. . Discovery of recurrent networks: Jordan and buffer networks for time series are
trained using SLF, or rather generalized SLF (GSLF) for recurrent networks. . Adapting to a changing environment: When changes in input data indicate that
the neural network structure needs to be changed in response, SLF is capable of
on-line modification of the network topology. . Discovery of propositional rules: Knowledge represented as rules can be discovered
by SLF. . Discovery of modular structured neural networks: SLF is capable of discovering
useful subnetworks (modules) and both intra-module and inter-module connections.
The advantages of modular components in a network are better understanding of
the required knowledge organized into “knowledge” subcomponents, easier learn-
ing compared to a monolithic structure, and reduced computational cost during
training.

1.2.3.5 Chapter 6

Chapter 6 presents VL1 ANN, a method for transforming rules represented in
Variable-valued Logic I format (Michalski, 1975) (and induced by the symbolic
learning method BEXA (Theron and Cloete, 1996)) to a feedforward neural net-
work. The VLlANN algorithm is thus an example of a translational approach to
obtain an equivalent ANN architecture. This allows further training of the neu-

16 Knowledge- Based Neurocomputing: Past, Present, and Future

ral network to refine the rules, and possibly to discover other decision regions not
well-represented by the axis-parallel decision regions of the VL1 rules.

1.2.3.6 Chapter 7

Partial or incomplete knowledge about a particular problem domain is frequently
available from different sources and in different knowledge represent at ion for-
malisms. For instance, a group of human experts may share knowledge of a problem,
but each is more knowledgeable regarding a particular aspect of the problem. Previ-
ous chapters considered various approaches of introducing partial knowledge into a
knowledge-based neurocomputing model, however, most approaches were based on
transforming the prior knowledge into a neural network model before further pro-
cessing could be performed. Chapter 7, on the other hand, addresses the problem
of integrating heterogeneous sources of partial domain knowledge into a knowledge-
based neurocomputing model. These knowledge sources include (symbolic) decision
trees, rule-based expert systems and trained neural networks.

The chapter investigates several different methods for improving classification
results by integrating prior knowledge and learning from data. First, domain and
range transformations of the original problem are considered. These transformations
are integrated with a neurocomputing model of a single source of prior knowledge,
where the neural network can grow incrementally when needed. Alternatively a pre-
existing expert system is imbedded directly into this constructive neural network
learning model. Integration of multiple sources of prior knowledge is addressed
next. Methods include the direct imbedding of multiple experts and a symbolic
decision tree, while two neural network approaches are presented, namely a trainable
combiner network, and the competitive integration of heterogeneous experts using
a trainable gating network whose output units employ the differentiable softmax
activation function.

Finally the methods presented in this chapter are evaluated in the context of two
quite different benchmark problems: (1) Solving the classification of the well-known
two spirals problem using several experts, and (2) a financial advising problem. The
results illustrate how the expertise of each partial knowledge source influences the
system’s output by identifying regions of the input space where individual experts
are good classifiers. The results also illustrate that the integration of techniques
not performing well on their own may result in improved classification; and that
the competitive neural network approach to integrate multiple experts is proved
superior both to the other integration methods investigated and to each individual
source of prior knowledge.

1.2.3.7 Chapter 8

Prior knowledge about a task at hand can take several forms, for instance pro-
duction rules encoded to provide the initial neural network structure. Chapter 8
considers a novel method for encoding prior knowledge about a dynamical system
in the form of differential equations. For many engineering problems and physical
systems it is frequently the case that partial prior knowledge about the system

1.2 The Present 17

dynamics is available as differential equations. Cozzio proposes a method of using
this knowledge to construct both the architecture and initial weights of a neural
network for modeling such a system. Training of such a network from observed data
can then serve to refine the model and estimate unknown parameters of the system.

The chapter starts off with the necessary theoretical derivations by generalizing
the Taylor series met hod for polynomial approximations to nonpolynomial approxi-
mation functions, from which suitable neural network approximators can be derived.
A set of conditions depending on the properties of the derivatives of the neural net-
work is identified to guarantee the solvability of the encoded differential equations.
Any type of neural network, which adheres to these conditions, can serve as a suit-
able approximator. It is then proved that Radial Basis Function Networks and a
new proposed architecture, Modified Logistic Networks, satisfy these conditions.

The resulting four-layer network architecture contains an input layer, a prepro-
cessing layer for polynomial expressions of the inputs, a middle layer and an output
layer. All weights are determined in advance; sorne of which are fixed, and include
direct connections between inputs and outputs. Thus a Higher-Order Radial Basis
Function Network or Higher-Order Modified Logistic Network is constructed. The
chapter concludes with single-step and multi-step integration tests for forecasting
time series generated by sampling the Lorenz system of chaotic differential equa-
tions. The proposed Modified Logistic Networks outperformed the Radial Basis
Function Networks in all cases. The chapter thus illustrates how prior knowledge
in the form of ordinary differential equations can be integrated with the learning
from data approach, leading to advantages such as improved generalization arid
training efficiency, as well as less need for training data.

1.2.9.8 Chapter 9

In practice, many neural network based solutions suffer from a lack of user accep-
tance due to their black-box nature, i.e. the system’s knowledge is not explicit, but
distributed, hidden within the neural network, arid thus not interpretable by users.
Chapter 9 proposes a hybrid neural network and fuzzy system architecture called
FYNESSE, a self-learning controller of nonlinear dynamical systems. The main fea-
tures of the controller are that it represents its control strategy as fuzzy relations
which can be interpreted by end-users in terms of fuzzy rules, and which allow the
integration of prior knowledge about the dynamical system in the form of fuzzy
rules.

This chapter of the book introduces several novelties: First, it presents a control
system with feedback, an application area that is only addressed in this chapter.
This means that the temporal effects of nonlinear dynamical systems must be
addressed by solving the diffficult temporal credit assignment problem. Second,
its knowledge representation scheme is fuzzy rules and fuzzy relations, instead
of crisp rules in variants of propositional logic. Thus the desirable property of
comprehensibility of prior and acquired knowledge is maintained. Third, a novel
method is presented for learning the fuzzy control relation by modeling both the

18 Knowledge-Based Neurocomputing: Past, Present, and Future

support (positive knowledge) and possibility (negative knowledge) of actions in
a particular state. The method further includes the treatment of ignorance and
inconsistent knowledge.

The chapter starts off by distinguishing five design requirements and points
out that an architecture satisfying these requirements is a hybrid model with two
strictly separate but interacting modules-a fuzzy module and a neural network.
Various modes and levels of interaction establish degrees of freedom from which
the user can choose according to the requirements of a particular control task.
The system employs dynamic programming to implement reinforcement learning
(Sutton and Barto, 1998), i.e. a learning situation where only a judgement about
success or failure is available. In addition this judgement is delayed until the end of a
trial, requiring that the temporal credit assignment problem be solved. Finally, the
chapter illustrates a very successful benchmark test of the self-learning controller
against a carefully designed analytical controller for which complete knowledge is
available.

1.2.3.9 Chapter 10

Chapter 10 focuses on three important issues in knowledge-based neurocomputing:
(1) The extraction of knowledge from data, (2) use of this knowledge to design
appropriate neurcomputing architectures and (3) application of this knowledge
to time series predictions. The chapter explains the problems of predicting non-
stationary time series and then proceeds by proposing two categories of knowledge
imbedding: direct and indirect.

For direct knowledge imbedding, techniques from information theory, nonlinear
dynamical systems and stochastic analysis are used for exploratory data analysis
of the time series to be predicted. Knowledge extracted in this way serves as prior
knowledge to design an appropriate neural network architecture, set initial parame-
ter values of the network before training commences, and suggests an adequate data
sampling rate for the time series. These techniques are also applied to a real-life
time series of compressed video traffic data, and to an artificial nonlinear chaotic
time series, generated from the well-known Mackey-Glass differential equation.

Indirect knowledge imbedding concerns the use of a przori known properties of
the target function to be approximatedlpredicted by the neural network, as well as
general knowledge about non-stationary time series prediction which can be indi-
rectly used “on-line” to improve predictions. Novel examples of the use of the last
mentioned indirect knowledge imbedding, are various met hods of detecting, during
the prediction phase, that the characteristic parameters of the non-stationary time
series have changed, and that the prediction method must therefore be modified
accordingly.

1.2.3.10 Chapter 11

The importance of a comprehensible knowledge represent ation scheme has been
stressed earlier. Decision trees have been used extensively in symbolic machine

1.2 The Present 19

learning methods: Here choices are represented at the nodes of the tree, and the
outcomes at the leaves. Chapter 11 proposes an algorithm, ANN-DT, to extract a
binary decision tree from a trained neural network.

The basic idea of the algorithm is to sample the input space and use the trained
neural network as a satisfactory model to compute the output associated with each
input vector. In this way an artificial data set is created which serves as training
data for a decision tree generator. The ANN-DT algorithm has several novel features
to ensure that a faithful decision tree representation of the neural network model
is generated: . The generated artificial data must have the same distribution as the original
data. Several similarity measures and sampling procedures are used to cater for
both discrete and continuous variables. . Two variants of the algorithm explore different methods to select the next
attribute and its threshold when generating the tree. In particular, the chapter
also proposes a new method to analyze attribute significance. . Statistical tests, such as the Pearson’s chi-square test and the F-test, are em-
ployed as stopping criteria when generating further decision tree splits. To prevent
unnecessarily large (and thus incomprehensible) trees from being generated, a user
defined maximum tree depth constraint, a lower branching limit constraint , and
a constraint on the variance of the output of a node for continuous outputs are
introduced.

In addition, note that the algorithm can be used for continuous outputs as well as
discrete classifications, while the decision tree representation can also be converted
to the customary propositional rules.

The algorithm is compared with other machine learning methods, such as CART,
ID3 and C4.5 (Quinlan, 1993), on modeling problems involving both axis-parallel
and nonlinear decision regions. In all case studies a faithful rule representation
was extracted from the trained neural network, where the ANN-DT(e) variant of
the algorithm performed better on classification problems, while the ANN-DT(s)
variant showed more robust performance on continuous output data.

1.2.3.11 Chapter 12

Soft quantization of continuous inputs and outputs, and linguistic variables allow
interpretable fuzzy rules to be constructed. Chapter 12 presents a pedagogical
algorithm for fuzzy rule extraction from a neural network. The ANN is trained
to approximate the classification problem at hand, and is then used as a black-
box classifier which predicts the output given a sample from the input space. The
input space is soft quantized by changing real-valued inputs into fuzzy numbers
using appropriate fuzzy membership functions to produce values between 0 and
1. The input domain is systematically sampled, and the numerical coordinates of
each example are mapped into corresponding linguistic variable values. The ANN

20 Knowledge-Based Neurocomputing: Past, Present, and Future

approximator is then used to predict the output value for each numerical example.
This procedure allows a fuzzy rule to be constructed which maps the input linguistic
variable values to a decision indicated by the ANN. Since systematic sampling tends
to produce a plethora of rules, the authors introduce an uncertainty margin to limit
the number of extracted rules to represent the accuracy of approximation required.

The chapter illustrates the rule extraction method using the Exclusive-Or prob-
lem, and then applies it to the real-world problem of predicting the dosage of
gentamycin necessary to treat kidney disease. The method is also applied to the
well-known iris flower classification problem. These results allow comparison with
many other machine learning algorithms which were tested on the same benchmark
data.

1.2.3.12 Chapter 13

Expert systems captured the attention more than a decade ago as systems which
contain specialized knowledge about a problem domain with a reasoning and
explanation capability to address a user’s query. The knowledge contained in these
systems (typically in the form of production rules) is explicit and comprehensible
to the experts, and can be inspected and modified when necessary.

Present day expert systems, also termed Knowledge-Based Systems (Gonzalez
and Dankel, 1993), feature well-defined system architectures with several types
of inferencing and appropriate knowledge representation formalisms available. The
commonality between knowledge-based neurocomputing and these knowledge-based
(expert) systems lies in the concept of comprehensible explicit knowledge. It is there-
fore natural to inquire if the KBN paradigm has similar capabilities to offer as those
found in symbolic expert systems. In this regard, Chapter 13 presents an overview
of hybrid expert systems which contain a neural processing component, and of ex-
pert systems wholly implemented within the KBN paradigm. Such systems, with
reference to the preceding chapters, require that knowledge about the application
domain either be encoded as prior knowledge and/or learned (refined) from exam-
ples, thus bringing all the techniques for using or refining prior knowledge to bear
on the challenge of constructing a neural expert system.

The chapter starts off with a brief overview of the purpose and architecture
of expert systems. Then the integration strategies of hybrid expert systems, i.e.
expert systems that contain some form of knowledge-based neurocomputing model,
are discussed. The last part of the chapter addresses neural expert systems. A
review of the system MACIE (Gallant, 1993) is given, followed by a description of
EXPSYS. The latter system has, among others, two noteworthy features: First, it
uses interval neurons and encodes its input values appropriately. Second, it employs
a modified form of the well-known backpropagation algorithm for training of these
differentiable neuron activation functions, while MACIE uses the pocket algorithm
for training. The chapter concludes by working through a complete example to
illustrate all its salient features.

1.3 The Future 21

__

1.3 The Future

We believe that KBN has a bright future ahead, in both the short and longer
term. Emergent directions in the near future indicate that the technology will be
affected by three important issues: (1) New integration strategies, (2) developments
in distributed processing and (3) the need to demonstrate practical applications.

New integration strategies allow models from different perspectives or disciplines
to work together to solve a problem. KBN has its roots in two traditionally distinct
research areas, namely artificial intelligence (AI) and (artificial) neural networks.
Researchers from both main stream camps, as well as from numerous other dis-
ciplines, e.g. the behavioral and physiological sciences, and from other research
areas which have an interest in modeling “intelligent” behavior, have realized the
potential benefits of combining different approaches in a synergistic manner. The
idea is simply that a hybrid approach can build on the strengths of the individual
approaches, and so obtain better performance by utilizing complementary, but dif-
ferent, knowledge sources. Evidence of this phenomenon occurs in many places, for
example, the creation of new subareas within AI which can incorporate a neural
network Component (such as data mining, intelligent diagnosis, etc.) , modeling of
financial data using a knowledge component based on neural networks, and so on. A
further strong pointer to this expansion is the development of so-called “soft com-
puting.” Soft Computing consists of several computing paradigms, including neural
networks, fuzzy set theory, approximate reasoning, and derivative-free optimization
methods such as genetic algorithms and simulated annealing (Jang et al., 1997).

Developments in distributed processing will have a beneficial influence on
knowledge-based neurocomputing. Examples are the development of distributed
artificial intelligence and agent technology (Miiller et al., 1997), and the CORBA
(Common Object Resource Broker Architecture) specification of a standard object-
oriented architecture for applications (Ryan, 1997). These technologies have to ad-
dress the problems of communication, coordination, control and knowledge sharing
between cooperating distributed processes on potentially heterogeneous computing
platforms. These problems are shared by hybrid knowledge-based neurocomputing
systems, i.e. systems with distinct neural network and symbolic components as
discussed in Section 1.2.1.2. Although most current hybrid KBN systems are not
distributed, progress on these problems will enable the wider implementation of
KBN on distributed computing platforms and the irnbedding of this technology in
other software applications.

The rapid development of information technology in recent years demand prac-
tical applications which can use knowledge from diverse sources, cope with the
impreciseness of the real world, and adapt to a changing environment. Knowledge-
based rieurocorriputing is admirably suited to fulfil1 such a role. It has the ability
for fusion of knowledge from complementary sources and different representations,
and is tolerant of noise. KBN further provides both data driven and model driven
learning. These capabilities will ensure its integration into conventional software
applications in the future.

Despite the progress in knowledge-based neurocomputing, important open prob-

22 Knowledge-Based Neurocomputing: Past, Present, and Future

Progress

in

Technology

state-of-the-art

Time

Figure 1.1 The expected technology S-curve for KBN

lems remain. KBN cannot yet harness the full power of predicate logic representa-
tions frequently used in AI. Although good progress has been made to represent
symbolic structures in KBN (see Chapter 4), the dynamic variable binding prob-
lem remains to be solved (Park et al., 1995). Further questions to address include
the development of new integration strategies and more diverse types of knowledge
representations, e.g. procedural knowledge, methods to exchange knowledge, and
reasoning capabilities.

So where is the knowledge-based neurocomputing technology at present? Com-
pany strategists often use the so-called technology S-curve to anticipate technologi-
cal progress (Asthana, 1995). The technology S-curve tracks the progress of a base
technology as a function of research and development (R&D) effort or, if R&D is
constant, as a function of time. It most often assumes the approximate shape of an
S (or for the ANN community, the shape of a sigmoid function): In the beginning
technological progress is slow; as expertise builds up, progress is faster, and may
even be exponential. When the technology matures, progress slows down. In the
beginning of KBN technology (1980’s, early 199O’s), progress was slow; relatively
few scientific papers on the subject appeared. Since then the interest has grown
considerably, as is evidenced by several special sessions, workshops and tutorials
on the topic organized at major international conferences. Examples include (Sun
and Alexandre, 1997), (Fu, 1996), (Ghosh, 1997), (Cloete, 1996b), (Kozma, 1996),
(Cloete et al., 1997) and (Alexandre and Cloete, 1998). There is no sign that the
tempo of progress in KBN technology is slowing down, on the contrary, the growth
rate is increasing. This leads me to believe that the state-of-the-art in KBN devel-
opment is well below the inflection point of the S-curve depicted in Figure 1.1.

In conclusion, we expect that knowledge-based neurocomputing will continue to
grow and stand to benefit from developments in conventional AI, machine learning,
computational intelligence and soft computing, and from the many other disciplines
whose intention it is to model comprehensible knowledge.

References 23

References

Alexandre, F. and Cloete, I. 1998. Knowledge-based applications of artificial neural
networks. In Proceedings of the Fourth International Conference on Neural
Networks and their Applications. (NEURAP’98) Special session., pp. 367-418,
Marseille.

Andrews, R., Diederich, J., and Tickle, A. B. 1995. Survey and critique of techniques
Knowledge-based

The Handbook of Brain Theory and Neural Networks.

for extracting rules from trained artificial neural networks.
Systems, 8(6) :373-389.

Arbib, M. A., ed. 1995.
Cambridge, MA: MIT Press.

Asthana, P. 1995. Jumping the technology s-curve. IEEE Spectrum, pp. 49-54.
Bologna, G. and Pellegrini, C. 1998. Symbolic rule extraction from modular

transparant boxes. In Proceedings of the Fourth International Conference on
Neural Networks and their Applications (NE URAP’98), pp. 393-398, Marseille,
France .

Cloete, I. 1996a. Email invitation to contributors of this volume.
Cloete, I. 199613. Knowledge-based neural networks. In Proceedings of the IEEE

International Concernece on Neural Networks. Special session S2., pp. 59-93,
Washington D.C.

Cloete, I., Kozma, R., and Giles, C. L. 1997. Knowledge-based methods in
neural networks. In Proceedings of the IEEE International Conference on Neural
Networks. Special sessions SS9 (A and B), pp. 2519-2559, Houston, USA.

Denoeux, T . and Lengellk, R. 1992. Production rules generation and refinement in
back propagation networks. Tech. rep., Universitk de Technologie de Compikgne,
France.

Edelman, G. M. 1987. Neural Darwinism, the Theory of Neuronal Group Selection.

Edelman, G. M. 1992. Bright Air, Brilliant Fire. On the Matter of the Mind. New

Elman, J . L. 1995. Language processing. In Arbib (1995), pp. 508-513.
Fahlman, S. E. and Lebiere, C. 1990. The cascade-correlation learning architec-

ture. Tech. Rep. CMU-CS-90-100, Carnegie Mellon University. Web address:
http://www.cs.cmu.edu/Reports/index. html.

Fu, L. M. 1993. Knowledge-based connectionism for revising domain theories. IEEE
Transactions on Systems, Man and Cybernetics, 23(1): 173-182.

Fu, L. M. 1994. Neural Networks in Computer Intelligence. New York: McGraw-

Fu, L. M. 1995. Editorial. Knowledge-based Systems, 8(6):298.
Fu, L. M. 1996.

New York: Basic Books.

York: Basic Books.

Hill.

Knowledge and neural heuristics: Tutorial lecture. In IEEE

Knowledge- Based Neurocomputing: Past, Present, and Future

International Conference on Neural Networks, Washington, D.C.

Press.
Gallant, S. I. 1993. Neural Network Learning and Expert Systems. Cambridge: MIT

Ghosh, J . 1997. Network ensembles and hybrid systems. tutorial lecture. In IEEE

CLIPS User Guide. USA: NASA Software Technology

Mathematical Methods for Neural Network Analysis and

The Engineering of Knowledge-Based

International Conference on Neural Networks.

Giarratano, J . C. 1993.
Branch.

Golden, R. M. 1996.
Design. Cambridge, MA: MIT Press.

Gonzalez, A. J. and Dankel, D. D. 1993.
Systems. Englewood Cliffs, NJ: Prentice-Hall International.

Hassoun, M. 1995. Fundamentals of Artificial Neural Networks. Cambridge: MIT
Press.

Hilario, M. 1997. An overview of strategies for neurosymbolic integration. In
Connectionist-Symbolic Integration, eds. R. Sun and F. Alexandre, pp. 13-35.
Hillside, New Jersey: Lawrence Erlbaum Ass.

Initialization of neural networks by means of
decision trees. Knowledge-based Systems, 8(6):333-344.

Jang, J. S., Sun, C.-T., and Mizutani, Z. 1997. Neuro-Fuzzy and Soft Computing:
A Computational Approach to Learning and Machine Intelligence. Englewood
Cliffs, NJ: Prentice-Hall International.

Kozma, R. 1996. Knowledge monitoring by neuro-fuzzy methods. In Proceedings of
the IEEE International Conference on Neural Networks. Spesial session S3, pp.
94-123, Washington, D. C.

Medsker, L. 1994. Design and development of hybrid neural networks and expert
systems. In Proceedings of the IEEE International Conference on Neural Net-
works, pp. 1470-1474, Orlando, Florida.

Michalski, R. S. 1975. Variable-valued logic and its applications to pattern recog-
nition and machine learning. In Computer Science and Multiple-valued logic:
Theory and applications, ed. D. C . Rine, pp. 506-534. North Holland.

Muller, J. P., Wooldridge, M. J. , and Jennings, N. R. 1997. Intelligent agents 111:
Agent theories, architectures and languages. Springer Verlag Lecture Notes in
Artificial Intelligence, 1193.

Opitz, D. W. and Shavlik, J . W. 1995. Dynamically adding symbolically meaningful
nodes to knowledge-based neural networks. Knowledge-based Systems, 8(6):301-
311.

Osorio, F. S. and Amy, B. 1998. INSS: A hybrid system for constructive machine
learning. In Proceedings of the Fourth International Conference on Neural
Networks and their Apllications (NEURAP’98), pp. 369-376, Marseille, France.

Park, N. S., Robertson, D., and Stenning, K. 1995. Extension of the temporal

Ivanova, I. and Kubat, M. 1995.

References 25

synchrony approach to dynamic variable binding in a connectionist inference
system. Knowledge- based Systems, 8(6) :345-357.

Quinlan, J . R. 1993. (74.5: Programs for Machine Learning. San Mateo, California:
Morgan Kaufman Publishers.

Rojas, R. 1996. Neural Networks: A Systematic Introduction. Berlin: Springer
Ver lag .

Rumelhart, D. E. and McClelland, J . L. 1986. Parallel Distributed Processing:
Volume I , Foundations. Cambridge, MA: MIT Press.

Russel, S. J . and Norvig, P. 1995. Artificial Intelligence: A Modern Approach.
Englewood Cliffs, New Jersey: Prentice-Hall International.

Ryan, T. W. 1997. Distributed Object Technology: Concepts and Applications.
Upper Saddle River, New Jersey: Prentice-Hall International.

Shastri, L. 1988. Semantic Networks: A n Evidential Formulation and its Connec-
tionist Realization. London: Pitman.

Shastri, L. 1995. Structured connectionist models. In Arbib (1995), pp. 949-952.
Shavlik, J . W. 1996. An overview of research at Wisconsin on knowledge-based

neural networks. In Proceedings of the IEEE International Conference on Neural
Networks. Special session S2, pp. 65-69, Washington, D.C.

Smolensky, P. 1988. On the proper treatment of connectionism. Behav. Brain. Sci.,

Sun, R. 1995. A two-level hybrid architecture for structuring knowledge for
commonsense reasoning. In Computational Architectures Integrating Neural and
Symbolic Processes, eds. R. Sun and L. A. Bookman, pp. 247-281. Boston: Kluwer
Academic Publishers.

Sun, R. and Alexandre, F. 1997. Connectionist-Symbolic Integration. Hillside, New

11: 1-74.

Jersey: Lawrence Erlbaum Ass.

Cambridge: MIT Press.
Sutton, R. S. and Barto, A. G. 1998. Reinforcement Learning: A n Introduction.

Theron, H. and Cloete, I. 1996. BEXA: A covering algorithm for learning proposi-

Touretzky, D. S. 1995. Connectionist and symbolic representations. In Arbib (1995),

Touretzky, D. S. and Hinton, G. E. 1988. A distributed connectionist production

tional concept descriptions. Machine Learning, 24:5-40.

pp. 243-247.

system. Cognitive Science, 12(3):423-466.
Towell, G. G. and Shavlik, J . W. 1994. Knowledge-based artificial neural networks.

Viktor, H. L. and Cloete, I. 1998. Inductive learning with a computational network.

Viktor, H. L., Engelbrecht, A. P., and Cloete, I. 1998. Incorporating rule extraction
In Proceedings of the

Artificial Intelligence, 70:119-165.

Journal of Intelligent and Robotic Systems, 21(2):131-141.

from ANNs into a cooperative learning environment.

26 Knowledge-Based Neurocomputing: Past, Present, and Future

Fourth International Conference on Neural Networks and their Applications
(NEURAP’98), pp. 385-392, Marseille, France.

Winston, P. H. 1992. Artificial Intelligence. New York: Addison-Wesley.
Zurada, J. M. 1992. Introduction to Artificial Neural Systems. Boston: PWS.

2 Architectures and Techniques for
Knowledge-Based Neurocomputing

Melanie Hilario

I n its early form, knowledge- based neurocomputing consisted mainly in mapping
symbolic knowledge structures, e.g. rules, onto neural network nodes and links. I t
was shown that the resulting networks learned more quickly and attained higher ac-
curacy than those developed without the help of prior knowledge. I n the meantime,
researchers have explored other ways of using domain knowledge in neural network
development. This chapter proposes an extended definition of knowledge-based neu-
rocomputing (KRN) which covers all efforts to incorporate knowledge into neural
networks, without restriction to translational neurosymbolic models. I t then surue ys
techniques for KBN as redefined and proposes a metalevel architecture for integrat-
ing these techniques into a system for knowledge-based neural network design and
training. The chapter concludes with a discussion of challenging research issues and
directions.

_ _ _ _ _ _ _ _ ~ ~ ~

2.1 The Knowledge-Data Trade-off

The knowledge-data trade-off in machine learning reflects the fact that most
learning takes place between two extremes. On the one hand, when a system’s
initial knowledge is complete and correct, the only relevant learning approach is
analytical learning--a non-ampliative form of learning that merely reformulates
(operationalizes) what is already known in order to increase efficiency in the
performance of certain tasks. Analytical learning hardly requires data; in its pure
form, explanation-based learning uses a single training instance (Mitchell et al.,
1986). On the other hand, when prior knowledge is nil, the only recourse is data-
driven learning; most theoretical guarantees about convergence and generalization
apply mainly to this form of tabula rasa learning and assume asymptotic conditions
where the amount of data tends toward infinity (Valiant, 1984; Baum and Haussler,
1989). However, learning in the real world typically starts out with some knowledge
about a problem domain and a variable-but rarely infinite-amount of data for a
given learning task. In this more realistic context, the knowledge-data trade-off in

28 Architectures and Techniques for Knowledge-Based Neurocornputing

learning can be expressed as follows: the less knowledge you have, the more data
you need; conversely, the less data you have, the more knowledge you need. In more
general terms, learning can be viewed as the task of bringing a priori knowledge to
bear on the available data in view of extracting a posterior2 knowledge from these
data.

There is a wide range of possibilities between pure knowledge-driven and pure
data-driven learning. Depending on which end of the spectrum is closer, the
problem of combining knowledge and data can be addressed from two different
angles. First, one can use data to improve knowledge-driven learning; this approach
has been embodied in many attempts to combine explanation-based learning with
more empirical methods, thus allowing for graceful degradation in the presence of
an incomplete or incorrect domain theory. Examples of this approach are UNIMEM
(Lebowitz, 1986), IOE (Flann and Dietterich, 1989), GEMINI (Danyluk, 1994),
DISCIPLE (Tecuci and Kodratoff, 1990), ML-SMART (Bergadano and Giordana, 1990)
and others (Rajamoney and DeJong, 1987; Rajamoney et al., 1985; Segre, 1987).
Alternatively, one can use prior knowledge to guide and reduce search during data-
driven learning, as in FOCL (Pazzani and Kibler, 1992) and WHY (Saitta et al.,
1993).

The above examples have been drawn from the symbolic paradigm to highlight
the fact that the knowledge-data trade-off is as real a problem in symbolic learning
as it is in neural network (NN) learning, which is the focus of this paper. Moreover,
at the intersection of these two learning paradigms, the knowledge-data trade-off
has been a major driving force behind neurosymbolic integration, a research area
currently aimed at intelligent systems that exploit the synergy of symbolic and neu-
ral processing. Neural networks can be used to improve knowledge-driven learning;
in EBNN, for instance, a set of neural networks combines analytical and induc-
tive learning to refine imperfect , previously learned domain theories (Thrun and
Mitchell, 1993; Mitchell and Thrun, 1994). NNS can also provide processing support
to knowledge-based systems which have no learning capabilities. The SETHEO the-
orem prover relies on neural networks for diverse tasks: multilayer perceptrons are
used to induce search control heuristics and limit combinatorics in theorem proving
(Goller, 1994), whereas LRAAMs (Sperduti, 1994) are used in the classification of
first-order logical terms (Goller and Kuechler, 1996). The complementary approach
consists in using knowledge to improve connectionist learning. This has given rise
to a host of neurosymbolic systems in which knowledge expressed in symbolic for-
malisms such as rules is used to configure and initialize neural networks. Some
representatives of this approach are KBA" (Towel1 and Shavlik, 1994), TopGen
(Opitz and Shavlik, 1993), RAPTURE (Mahoney and Mooney, 1993), KBCNN (Fu
and Fu, 1990), and Lacher et al.'s work (Lacher et al., 1992). The neural networks
created with this approach have been called knowledge-based neural networks and
form the original core around which the field of knowledge- based neurocomputing
(KBN) has developed.

Neurosymbolic integration is now a major research area at the confluence of
classical AI and neurocomputing, and controlling the knowledge-data trade-off in

2.2 Foundations for Knowledge- Based Neurocornputing 29

machine learning remains one of its persistent concerns. Knowledge-based neuro-
computing emerged as a specific subarea of neurosymbolic integration, but KBN has
assumed a much broader scope than the simple mapping of symbolic structures into
neural networks. To clarify this claim, Section 2.2 presents a taxonomy of architec-
tures for neurosymbolic integration, which is then used as a framework to propose a
redefinition of knowledge-based neurocomputing. Section 2.3 explores ways of build-
ing prior knowledge into neural networks and in the process unveils the extensive
range of techniques available for knowledge-based neurocomputing. Many of these
techniques have been integrated into a metalevel architecture for knowledge-based
neural network development, described in Section 2.4. Finally, Section 2.5 concludes
on a number of related issues and directions for future research.

2.2 Foundations for Knowledge-Based Neurocomputing

To grasp the intent and scope of knowledge-based neurocomputing, we examine the
nurturing field in which it took root, that of neurosymbolic integration.

2.2.1 Architectures for Neurosymbolic Integration

As we have seen, neurosymbolic integration is the generic term that covers all
efforts at combining symbolic and connectionist processing. These have given rise to
three major architectural classes. Unified architectures attain neural and symbolic
capabilities using neural networks alone. Translational architectures use symbolic
structures as source formalisms: these are mapped onto neural networks, which
subsequently take over the learning and performance tasks. Hybrid architectures
combine neural networks and symbolic processors which can interact in a variety
of ways (Fig. 2.1).

2.2.1.1 Unified Architectures

The unified approach is premised on the claim that there is no need for symbolic
structures and processes as such: full symbol processing functionalities emerge from
neural structures a.nd processes. If we eliminate biologically inspired approaches
which attempt to ground higher cognitive processing on the biological neuron, the
unified approach consists mainly in connectionist symbol processing (CSP) (Hinton,
1991). Work in this area can be classified along two dimensions. From the point
of view of the underlying representation scheme, CSP architectures can be localist,
distributed, and combined localist/distributed. Localist architectures are based on
a one-to-one mapping between network nodes and symbolic structures. Each node
represents a feature, a value, a concept or a combination of concepts, e.g. a two-
place predicate, a relation or a rule (Shastri, 1988; Ajjanagadde and Shastri, 1991;
Sohn and Gaudiot, 1991; Lange, 1992; Feldman and Ballard, 1982). The principal
disadvantage of localist architectures is that they quickly succumb to combinatorial

30

Neurosymbolic
integration

Architectures and Techniques for Knowledge-Based Neurocomputing

. Translational
Architectures

Chainprocessing]

-1 Subprocessing 1
- Hybrid -

Architectures

explosion as the number of individual concepts increases. This has motivated the
development of distributed architectures, , where the most elementary concepts
emerge from the interaction of several different nodes. Each knowledge item, e.g.
concept, fact or rule, is represented using a combination of several units, and each
unit can be used in the representation of several items. DCPS (Touretzky and Hinton,
1988), for example, is a distributed connectionist production system that uses coarse
coding to store all entities manipulated by the rule interpreter. Its main advantage is
that the working memory requires far fewer units than the number of facts that can
potentially be stored. Coarse coding is also used in BoltzCONS (Touretzky, 1990b) to
represent symbolic structures such as lists and stacks, whereas recursive distributed
representations introduced in Pollack’s RAAM (Pollack, 1990) have been used to
implement tree-matching (Stolcke and Wu, 1992). Finally, mixed ZocaZ/distributed
architectures combine systems using these two representations in separate modules.
The main strength of these systems is that they combine the efficiency of distributed
representations with the power of localist representations. For instance, whereas
DCPS is a highly constrained system that can represent only two triples in a rule’s
left-hand side, RUBICON (Samad, 1992) , a connectionist rule-based system that uses
a combined localist/distributed rule-based system, allows for a variable number of
expressions in the left and right hand sides of each rule. It also supports chain
inferencing as well as addition and deletion of working memory elements. Other
systems that use combined localist/distributed representations are CONSYDERR
(Sun, 1991) and its descendant CLARION (Sun et al., 1996).

From the point of view of system tasks, the unified approach has been actively
investigated in a variety of task domains, particularly in automated reasoning and
natural language understanding. The CHCL system (Holldobler and Kurfess, 1991)
is a connectionist inference mechanism which uses W. Bibel’s connection method

4 Metaprocessing I

2.2 Foundations f o r Knowledge- Based Neurocomputing 31

(Bibel. 1987) to perform inferencing on Horn clauses using a matrix representation.
An important subarea of work on logic and reasoning concerns variable binding (Aj-
janagadde and Shastri, 1991; Touretzky and Hinton, 1988; Chen, 1992; Smolensky,
1990; Pinkas, 1994; Park and Robertson, 1995); a deeper insight into this problem
will certainly help neural networks to attain the reasoning power of many symbolic
systems, which perform first-order predicate logic tasks as a matter of routine. Tech-
niques experimented in the field of automated reasoning via neural networks have
been used in connectionist expert systems such as MACE (Gallant, 1988, 1993),
TheoNet (Bradshaw et al., 1989) and others (Saito and Nakano, 1988; Hayashi,
199 1). Finally, natural language processing via connectionist symbol processing is
a research field in itself; examples of work in this field can be found in (Bookman,
1987; Dyer, 1991; McClelland and Kawamoto, 1986; Gasser, 1988).

2.2.1.2 Translational Architectures

Translational architectures can be viewed as an intermediate class between unified
and hybrid architectures. Like unified models, they rely only on neural networks as
processors-but they can start from or end with symbolic structures. Most often,
the symbolic structures used are propositional rules, whether categorical (Towel1
and Shavlik, 1994; Opitz and Shavlik, 1993; Fletcher and Obradovic, 1993) or
probabilistic(Romachandran and Mooney, 1996), or rules with certainty factors
(Mahoney and Mooney, 1993; Kuncicky et al., 1992; Fu and Fu, 1990; Taha and
Ghosh, 1995). Neural networks have also been built from decision trees (Brent, 1991;
Sethi and Otten, 1990; Ivanova and Kubat, 1995), ordinary differential equations
(Cozzio, 1995), and deterministic finite-state automata (Maclin and Shavlik, 1993).
However, symbolic structures are not processed as such in translational models; for
instance, rules are not applied by an inference engine but only serve as source
or target representations of network input or output data. They can thus be
considered semi-hybrid systems in the sense that they use symbolic structures
without the corresponding symbolic processors. Typically, translational models
compile symbolic structures into neural networks before processing, or extract
symbolic structures from neural networks after processing. Often, compilation
into neural networks is followed by refinement of preexisting symbolic knowledge
via connectionist learning, then by extraction of symbolic structures in view of
communicating the knowledge thus refined to other systems (either humans or
symbol-processing systems). Here again, the symbolic structures extracted from
neural networks are typically rules (see (Andrews et al., 1995) for a survey of
rule extraction methods), but attempts have also been made to extract schemata
(Crucianu and Memmi, 1992). Translational architectures have also been called
transformational models (Medsker, 1994).

Translational methods have been discussed extensively in Chapter 1 (this vol-
ume). Section 1.2.1.2 describes the major steps involved in building translational
architectures while Section 1.2.1.3 discusses their distinctive features.

32 Architectures and Techniques for Knowledge-Based Neurocomputing

2.2.1.3 Hybrid Architectures

The hybrid approach rests on the assumption that only the synergistic combination
of neural and symbolic models can attain the full range of cognitive and compu-
tational powers. In contrast to translational approaches, hybrid architectures in-
corporate complete symbolic and connectionist components: in addition to neural
networks, they comprise both symbolic structures and their corresponding proces-
sors, e.g., rule interpreters, parsers, case-based reasoners and theorem provers.

Hybrid systems can be distinguished along different dimensions such as their
target problem or task domain, the symbolic (e.g. rule-based reasoning, case-based
reasoning) and neural (e.g. multilayer perceptrons, Kohonen networks) models used,
or the role played by the neural (N) and symbolic (S) components in relation to
each other and to the overall system. Though such dimensions allow for more or less
clear distinctions between individual systems, they have little bearing on the central
issues of neurosymbolic integration. We therefore propose a taxonomy of hybrid
systems based on the mode and level of integration of the N and S components.

The degree of integration is a quantitative criterion: one can imagine a con-
tinuum going from the simple juxtaposition of symbolic and neural components
under a common supervisor, to systems characterized by strong and repeated, if
not constant, interaction between the two components. Though this spectrum can
be graded numerically to represent progression from one extreme to another, we
shall simplify by distinguishing two main degrees of integration-loose and tight
coupling. Unfortunately, though the difference between them is intuitively clear, it
is difficult to distinguish them more precisely without delving into implementation
considerations. In loosely coupled systems, interaction between the two components
is clearly localized in space and time: control and data can be transferred directly
between N and S components, e.g. by function or procedure calls, or via some inter-
mediate external structure, e.g. domain or control blackboards accessible to both
components, or agent, e.g. a supervisor. However, interaction is always explicitly
initiated by one of the components or by an external agent. In tightly coupled sys-
tems, knowledge and data are not only transferred, they can be shared by the N
and S components via common internal structures (as opposed to structures such
as blackboards which are shared by loosely coupled components but remain outside
them). Thus a change which affects these common structures in one component has
immediate repercussions on the other component without need for explicit interuc-
tion initiatives. For instance, in the SCRAPS/" system (Hendler, 1989), a semantic
marker-passing net and a distributed neural network have a set of common nodes, so
that any activations in these nodes necessarily propagate in both the symbolic and
the neural network. Within this category, too, coupling is not uniformly tight from
one system to another: a slightly weaker example of tight coupling can be found
in SYNHESYS (Giacometti, 1992), where the shared structures are simple links or
pointers between the neural network and the symbolic component, in this case a
rule-based system.

Along the qualitative dimension, the integration mode or scheme refers to

2.2 Foundations for Knowledge-Based Neurocornputing 33

the way in which the neural and symbolic components are configured in relation to
each other and to the overall system. Four integration schemes have been identified:
chainprocessing, subprocessing, metaprocessing and coprocessing. To define them,
we suppose a system comprising one neural and one symbolic module, with the
understanding that for more complex systems, there can be as many integration
schemes as pairs of neural and symbolic components.

In chuinprocessing, one of the (N or S) components is the main processor whereas
the other takes charge of pre and/or postprocessing tasks. In (Hayes et al., 1992),
for instance, a neural network preprocesses data from a respiratory monitor to
determine qualitative states which are then fed as facts into a classical expert
system. The same approach has been applied to market survey data to determine
the effectiveness an advertising campaign (Ciesielski and Palstra, 1996); time series
data concerning consumer attitudes and behavior are fed into neural networks
which output symbolically meaningful classifications of the current trend, e.g. high
rise, no change. These are then fed into a rule-based expert system which uses its
knowledge of events and the market domain to complete the analysis. Conversely,
a neural network can be assisted by a symbolic preprocessor; e.g. a decision tree
generator selects significant features to be input into a backpropagation network,
thus reducing learning and processing time (Piramuthu and Shaw, 1994). Another
example is WATTS, a system which uses a Hopfield network to solve wastewater
treatment optimization problems. A case-based reasoner retrieves the previously
solved problem that most closely matches the current one and uses it to initialize
the Hopfield net. It has been shown that this method leads to faster convergence
than the usual random initialization of neural networks (Krovvidy and Wee, 1992).

In subprocessing, one of the two components is embedded in and subordinated
to the other, which is the main problem solver. Typically, the S component is the
main processor and the N component the subprocessor. It is an open question
whether the reverse setup is at all possible. An example of neural subprocessing is
INNATE/QUALMS: the main processor, a fault diagnosis expert system, calls on a set
of multilayer perceptrons to generate a candidate fault, then either confirms their
diagnosis or offers an alternative solution (Becraft et al., 1991). Others examples
are SETHEO, a symbolic theorem prover which delegates to a neural net the task
of learning search control heuristics (Goller, 1994), and SCRAPS/", in which a
symbolic problem solver uses a neural network to extract perceptual similarities
which can then be used in complex reasoning tasks like planning.

In metuprocessing, one component is the baselevel problem solver and the other
plays a metalevel role (such as monitoring, control, or performance improvement).
Symbolic metuprocessing is illustrated in ALVINN, a system for guiding autonomous
vehicles (Ponierleau et al., 1991). Multiple networks are trained to become experts
in specialized aspects of the autonomous vehicle control task, e.g. single-lane road
driving, highway driving, collision avoidance. At the metalevel, a rule-based arbi-
trator examines the decisions of the driving neural nets and decides which network
to follow and therefore how to steer. To take a decision, the arbitrator relies on an
annotated map which stores geometric information such as the location of roads

34 Architectures and Techniques for Knowledge-Based Neurocornputing

and landmarks, or the type of road the vehicle is in. A symbolic metaprocessor can
also supervise both symbolic and neural components, as in the Robotic Skill Acqui-
sition Architecture (RSA2) (Handelman et al., 1989, 1992). The system’s goal is to
develop robots which perform complex tasks using designer-supplied instructions
and self-induced practice. At the baselevel, a rule-based system provides a declar-
ative representation of human expert knowledge whereas neural networks embody
reflexive procedural knowledge that comes with practice. A rule-based execution
monitor supervises the training of the neural networks and controls the operation
of the system during the learning process. At the outset, performance is ensured
by a knowledge-based component, but as the networks develop robust patterns of
learned behavior, task execution is increasingly shared between the symbolic and
connectionist components under the control of the execution monitor.

In coprocessing, the N and S components are equal partners in the problem-
solving process: each can interact directly with environment, each can transmit
information to and receive information from the other. They can compete under
the supervision of a metaprocessor, or they can cooperate in various ways, e.g. by
performing different subtasks, or by doing the same task in different ways and/or
under different conditions. Coprocessing by execution of specialized subtasks is
illustrated in a system where a decision tree (timing classifier) and a neural network
(morphology classifier) work together to detect arrythmia in heart patients (Jabri
et al., 1992). In SYNHESYS (Giacometti, 1992), on the contrary, the same diagnostic
task is executed by a rule-based system and a prototype-based neural network; if
the neural component comes up with a diagnostic, this output is validated by the
rulebase in backward chaining mode; otherwise, the rulebase is activated in forward
chaining mode and its diagnostic is used to train the neural network.

2.2.2 Knowledge-Based Neurocomputing: A Redefinition

The following definition expresses the original, restrictive view of knowledge-based
neurocomputing: “Knowledge- based neural networks are neural networks whose
topology and initial connection weights are determined by symbolic knowledge rep-
resented in particular formalisms, such as production rules and decision trees” (Fu,
1995). Knowledge-based neural networks thus defined correspond exactly to what
we call translational models (Section 2.2.1.2). However, as suggested in Section 2.1,
knowledge-based neurocomputing can be characterized more generally by the use of
prior domain knowledge to improve data-driven learning in neural networks. There
is a vast range of techniques for integrating knowledge into NNS, and compilation of
symbolic structures is just a subclass of these. As a matter of fact, the knowledge
used in determining N N structure need not preexist in any symbolic formalism at
all. We therefore propose the following enlarged definition: Knowledge- based neu-
ral networks (KBNNS) are neural networks which have been designed and/or trained
with the help of prior knowledge, that is, any information about the problem domain
or the function to be learned. This definition certainly has a broader scope because
it ‘abstracts away all considerations of implementation or formalism; in other words,

2.2 Foundations for Knowledge-Based Neurocomputing 35

it is a knowledge-level definition in the sense of Newell (Newell, 1982). An added
advantage of this definition is that it remains valid despite the many new techniques
that might yet be developed for inserting prior knowledge into neural nets.

With this generic definition, we can revisit our taxonomy of neurosymbolic
integration systems and identify architectures, aside from translational models,
which can be used for knowledge- based neurocomputing. Not surprisingly, unified
architectures might have been designed for knowledge-based neurocomputing in
the broad sense. Many unified architectures such as BoltzCONS (Touretzky, 1990b)
and RAAM (Pollack, 1990) have been developed to show that neural networks
can exhibit properties-such as compositionality (recursive combining into more
complex structures)-which are essential for effective knowledge representation.
As a result, all three subclasses of unified architectures can boast of examples
of knowledge-based neural networks, though these are typically handcrafted by
the system designers. To illustrate this, we take a system that uses both localist
and distributed representation schemes. CLARION is composed of two levels: at the
reactive level, a distributed network learns procedural skills through reinforcement
learning; at the rule level, a localist network represents generic knowledge; rules
are extracted from previous experiences of the reinforcement learner and wired
up directly into the rule network (Sun et al., 1996). No symbolic-rule-to-network
mapping takes place, yet there is no doubt that CLARION’S rule network is a K B N N
in the sense that it incrementally incorporates previously learned knowledge.

Whereas the original idea underlying unified architectures was to show that neu-
ral networks can be endowed with representational powers equal to those of symbolic
systems, hybrid architectures address the representation problem from another an-
gle. If symbolic systems have the representation capabilities that are missing in
neural networks, why not couple both to overcome this limitation of neural net-
works? A priori, then, there is no need for knowledge-based neural networks in
hybrid architectures, since domain knowledge can be stored in the symbolic com-
ponents. This would be true if knowledge representation were the only motivation
for KBNNS; however, it turns out that an even more important reason for using
background knowledge in the design of neural networks is to accelerate learning
and improve network performance (Bishop, 1995). Thus, even in hybrid architec-
tures, the incorporation of prior knowledge into the neural component remains an
added value. In addition, the symbolic component can play an important role in
performing this knowledge integration task. For instance, a symbolic preprocessor
can be used to analyze the training data and extract knowledge, e.g. about domain-
dependent class probability densities, which can then be used in the design of the
neural network. Or a symbolic metaprocessor might have prior knowledge of spe-
cific properties of the function to be learned; it can then generate training examples
illustrating these properties to ensure that this prior knowledge is incorporated into
the network structure through the training process. In short, the symbolic compo-
nents of hybrid architectures can become powerful tools for automating the design
of knowledge-based neural networks. This will be substantiated in the remainder of
this chapter.

36 Architectures and Techniques for Knowledge-Based Neurocornputing

2.2.3 KBN and the Bias-Variance Trade-off

In the context of NN learning, prior knowledge designates any information concern-
ing the task domain or the target function. This knowledge may come from different
sources: it can be provided by human experts or accumulated by the system from
previous experience, e.g. from previous training episodes in the case of incremental
neural network learners. Alternatively, it can be acquired by transfer of knowledge
from other neural networks (Pratt , 1994; Thrun and Mitchell, 1993). Finally, it can
even be knowledge derived from the current training data prior to NN development,
usually by exploratory data analysis met hods.

Whatever its source, prior knowledge can be used during any of the two main
stages of neural network development-configuration (or design) and training. NN
configuration consists in defining the network topology, e.g. the number of hidden
layers, the number of input, hidden, and output units and their interconnection
patterns. N N training consists in using the data to iteratively adjust the connection
weights until a predefined error threshold is reached. These two processes may be ef-
fected sequentially (the topology is defined before training starts) or simultaneously
(network topology evolves during training).

The use of prior knowledge in NN configuration or training is a promising way of
addressing the bias-variance trade-off in neural network learning. The generalization
error in neural networks (as in other estimators) can be decomposed into two parts:
bias (squared) plus variance (Geman et al., 1992). Bias captures the notion of
systematic error for all training sets of a given size; it is that part of the error
that depends only on the learning model (in the case of neural networks, the
architecture-or more precisely, the number of free parameters). An incorrect or
inflexible model leads to high bias: in the limit, such a biased model will take no
heed of the training data. Its contribution to the error can be diminished only by
adjusting model complexity. Variance, on the other hand, depends on the training
sample; a model that is too complex or too flexible in relation to the training data
leads to large variance; in the limit, it will not generalize but simply (over)fit the
data points.

The trade-off between bias and variance is such that reducing bias often increases
variance and vice versa. To reduce bias, we add structure to the model, e.g. by
adding hidden units; but increasing model complexity may lead to high variance.
The problem, then, is to find a compromise between the conflicting requirements of
bias and variance in order to minimize the total generalization error. Various tech-
niques such as regularization and cross-validation have been proposed to balance
bias and variance, but these are computationally expensive tools. Prior knowledge
or hints can be used as an alternative or as a complement to such techniques.

The role of prior knowledge in mitigating the bias-variance dilemma can be
formulated as follows. In knowledge-based configuration, background knowledge is
used to introduce the right level of complexity into the initial model, thus obviating
bias (Sections 2.3.1 and 2.3.2.1). On the other hand, the goal of knowledge-based
training is to control variance by expanding the training set, either by increasing the

2.3 Techniques for Building Prior Knowledge into Neural Networks

Almost perfect
domain knowledge

37

Knowledge-intensive or translational techniques
e.g. Rule compilation

Domain knowledge NN Design Techniques

Partial
domain knowledge

4

Knowledge-primed or hint-based techniques
e.g. Weight sharing, Virtual examples

1 domain ::owledge
Knowledge-free or search-based techniques

e.g. Constructive algorithms

Figure 2.2 Prior domain knowledge and NN development techniques.

number of training instances or by adding training knowledge other than simple
target values to each instance (Section 2.3.2.2). In both phases, the use of prior
knowledge ensures consistency with the unknown target function, so that it becomes
possible to reduce both bias and variance at the same time.

2.3 Techniques for Building Prior Knowledge into Neural Networks

Many techniques have been proposed for neural network development, and the
choice of technique depends primarily on the amount of prior knowledge available in
the application domain. Existing methods can be situated along an axis representing
the amount of domain knowledge available-going from one endpoint where no
knowledge is available to the other extreme where domain knowledge forms an
approximate, i.e. almost complete and correct, theory. Between these two extremes
are a number of intermediate points representing the availability of specific and
partial domain knowledge (see Fig. 2.2).

In this section, we investigate a number of NN development techniques in the
three main subregions of the (domain) knowledge spectrum. Knowledge-intensive,
knowledge-primed, and knowledge-free techniques are discussed successively.

2.3.1 Knowledge-Intensive or Translational Techniques

Translational approaches, as described in Sections 1.2.1 and 2.2.1.2, consist in map-
ping symbolically expressed knowledge such as rules onto neural network structures.
Pioneers of this approach stress the need for an approximately complete and cor-
rect domain theory as a prerequisite for successful training (Towel1 and Shavlik,
1994). For this reason, translational techniques can be characterized succinctly as
techniques for knowledge-intensive neural network configuration.

The problem with translational techniques is that they have a limited area of
applicability due to the drastic constraints they impose on the amount and quality
of prior knowledge. Approximately perfect domain theories are relatively rare in

38 Architectures and Techniques fo r Knowledge-Based Neurocomputing

real-world problems; furthermore, even when a domain theory is available, it is
difficult to assess its completeness or correctness. Although Towel1 and Shavlik’s
requirement of an approximate domain theory may have been due to system-specific
limitations of KBANN, which was incapable of learning new rules, it has not been
shown that very partial or noisy theories can yield good results when translated
into neural networks that can grow or shrink dynamically during training. Thus, in
the absence of an approximate theory, so-called hint-based techniques might prove
more useful.

2.3.2 Knowledge-Primed or Hint-Based Techniques

The most common situation in neural network development is one in which some
domain knowledge is available without, however, qualifying as an approximate
domain theory. Such partial, often piecemeal, knowledge (aka hints) can be used to
prime neural network design and training. Hints come in many flavors. One type of
hint involves the structure of the application task. Another type of hint concerns
the application domain: for instance, in stock market trend prediction, it is known
that extraneous events such as domestic or international political crises can have
a major impact on market behavior. Yet another type of partial prior knowledge
formulates global constraints on the function to be learned, or partial information
about its implementation. In pattern recognition tasks, for instance, it is often
known a priori that the target function is invariant under certain transformations
such as shift, rotation or scaling. Other function characteristics which might prove
useful in other domains are symmetry, monotonicity, or parity.

Knowledge-primed or hint-based techniques are those which make use of partial
task domain knowledge in building neural networks. In the following subsections,
we examine ways in which hints are incorporated during the two main stages of NN
development as well as during preliminary data preprocessing. We thus distinguish
three broad classes of hint-based techniques: hint-based configuration, hint-based
training and hint-based preprocessing.

2.3.2.1 Hint-Based Configuration

In hint-based configuration , any information about the problem domain can be used
to determine the initial structure of the neural system. First of all, when a task is too
complex to be solved by a single network, knowledge of the task decomposition can
be used to generate a neural macrostructure: the task is broken down into subtasks
which can be solved sequentially or in parallel by a set of neural networks. This gives
rise to modular neural networks, which have been the focus of intense research but
which lie beyond the scope of this chapter (Ballard, 1987; Jacobs and Jordan, 1991;
Jacobs et al., 1990; Bottou and Gallinari, 1991; Hrycej, 1992; de Francesco, 1994).
At the level of the individual network, the configuration task involves the following
subtasks: choose the input and output units (and their encoding), determine the
number of hidden layers and units, the connectivity pattern and initial connection

2.3 Techniques for Building Prior Knowledge into Neural Networks 39

weights. Hints can be used to support any of these subtasks.
Neural network inputs and outputs are generally selected during preliminary task

analysis, but prior knowledge can be used to add input or output variables which are
not intrinsic to the original task specification. For instance, prior knowledge can be
injected as extra outputs of a neural network. Practically, this means constraining
the network to learn both the original task and a second task that is known to be
related to the first. Once training is completed, the extra outputs can be removed
and performance is restricted to the original task. The size of the training set
itself is not increased, but the original training patterns need to be modified to
incorporate the additional target values. To borrow a simple example from (Yu
and Simmons, 1990), the N-bit parity problem gets increasingly harder as N gets
larger, due to local minima. To train a neural network more easily on this task,
one can train the network on a related task like counting the number of 1’s in
the input. This means augmenting the original binary output with a set of units
which act as a counter. The key result is that multitask learning improves a
network’s generalization performance on each of the individual tasks to be learned.
Experiments reported in (Caruana, 1993) show that this improvement is not due
to a simple regularization effect such as that produced by adding random noise;
rather, it comes from the fact that training for each individual task benefits from
the extra knowledge provided by the training values for the other related tasks.

Multitask learning via extra outputs not only improves generalization, it also
decreases learning time. For instance, it has been observed that non monotonic
functions like the fuzzy predicate medium height are more difficult to learn than
monotonic functions such as tallness. A 1-4-1 neural network trained using back-
propagation took 2913 epochs to learn the concept of medium height; when an
output unit representing the concept of tallness was added, the resulting 1-4-2
network took only 1433 epochs to learn both concepts (Suddarth and Kergosien,
1990). This method has been tested on a more complex application task, the control
of a simulated planetary lander. The goal is to land the craft at low velocity; the
network’s task is to determine the thrust value required to land the craft on the
basis of three inputs-altitude, actual velocity and fuel. Training data were drawn
from actions of a human during a simulation landing. Prior knowledge about a
related task--determining the desired velocity-was used to generate extra out-
puts for the avtilable training instances. The ‘hinted’ network (3-8-2) converged
in 17% of the training time required for the same network without the hint (3-8-1)
(Suddarth and Holden, 1991).

Another hint-based configuration technique is the addition of ‘heuristic ’ input
units, i.e. units which, contrary to typical input variables, play only a heuristic role
in the mapping to be learned. In financial forecasting, for example, it is common
knowledge that major political or other non-economic events can have as direct an
influence on stock market trends as classical economic indicators. This heuristic was
integrated into the network in the form of an extra input unit whose default value is
0.5 (no significant event); newspaper headlines were examined daily, and this input
node was set to 1 in the case of positive event knowledge, e.g. cold war ends, or to -1

Architectures and Techniques fo r Knowledge-Based Neurocornputing

in the case of negative event knowledge, e.g. House of Representatives to dissolve.
Tests showed that use of this hint increased prediction accuracy, though nothing is
said about the statistical significance of this increase (Kohara and Ishikawa, 1994).

Moreover, prior knowledge can be used to improve generalization by modifying
input or output encoding. For example, (Lendaris and Harb, 1990) compared two
feedforward neural network architectures for character recognition which differed
only with respect to the encoding of the output units. The networks had 256 inputs
(training examples were 16x16-pixel images) and 2 hidden layers. The first network
had 26 outputs, one for each of the 26 capital letters of the alphabet. In the second
network, output encoding was based on observations that humans adopt a higher-
level representation of these letters in terms of component parts and their relations.
For instance, the letter A is thought of as two long lines touching each other at
one end and connected by a shorter line somewhere in the middle. In addition
to cognitive plausibility, this representation has the advantage of being invariant
to such transformations as rotations and translations. Thus the second network’s
output layer was a concept-relation vector consisting of 21 binary-valued elements.
The first network’s accuracy was between 66% and 83%; with the new output layer,
the second network’s accuracy jumped to the 93%-96% interval. Complementary
tests aimed at explaining the improvement ruled out alternative hypotheses and
confirmed that the change was in fact due to the change in output representation.

Determining inter-unit connections and their weights is an essential part of
network configuration, since the long-term knowledge of the network is stored
in these weights. Prior knowledge can be used in several ways to configure a
network’s connections. First of all, domain-specific hints can directly determine the
connectivity pattern. For instance, a neural net that forecasts the trend of the Tokyo
stock market index should somehow express the fact that the influence of economic
indicators on market trends persists for some time after a given instant t. One way
of translating this persistence into neural network structure is by means of feedback
connections: in one such forecasting system, hidden units are self-connected, with
the effect that the hidden layer at time t becomes the context layer at time t + 1
(Kohara and Ishikawa, 1994).

Prior knowledge can be formulated as permanent constraints on connections and
weights. In pattern recognition, for instance, one can encode invariance knowledge
by structuring the network in such a way that transformed versions of the same
input produce the same output. The best-known technique for doing this is weight
sharing, i.e. constraining different connections to have equal weights (LeCun et al.,
1990; Rumelhart et al., 1986). Weight sharing has also been used in time-delay
neural networks for speech recognition (Waibel et al., 1989) as well as in higher-order
recurrent networks (Giles and Maxwell, 1987; Perantonis and Lisboa, 1992). LeCun
has generalized weight sharing into a technique called weight space transformation
(LeCun, 1989).

Hints can also be used to determine initial connection weights in a more task-
specific fashion than the usual random method. Frasconi et al.(Frasconi et al.,
1995) use first-order recurrent networks for sequence learning, e.g. isolated word

2.3 Techniques for Building Prior Knowledge into Neural Networks 41

recognition, but complement pure learning from examples with prior knowledge in
the form of automaton rules. Automaton states are encoded as neuron activations;
transition rules are used not only to determine constraints on connection weights but
also to initialize these weights by using a technique based on linear programming.
In a speaker-independent test on 284 words, recognition rate attained 92.3%, but
more importantly, the proposed model seems to scale up well with the lexicon’s
dimension.

Giles et al. use a similar technique to incorporate grammatical rules into second-
order recurrent neural networks for regular language recognition. These rules are
expressed as state transitions in the corresponding deterministic finite-state au-
tomata (DFAs). Known transitions are used to program some of the initial weights
to fH, where H is a large rational number representing the strength of the hint.
All other connection weights are set to small random values. Any number of known
rules can be injected into the network in this way; the only condition is that the
number of network units be larger than the number of DFA states. Tests have shown
that when correct rules are inserted, training time decreases with the hint strength
H ; in one trial where the entire ruleset was inserted, training time went down to
zero (no training was needed) for H 2 7. This method allows for the integration of a
variable amount of prior knowledge, from single rules reflecting very partial knowl-
edge to rule sets corresponding to entirely known DFAs (Giles and Omlin, 1993;
Omlin and Giles, 1992). Even in the latter case, however, this technique remains
hint-based rather than translational, since prior knowledge is used to determine
only a particular subtask of the network design process.

The above examples show that prior knowledge can be injected into practically
any component of a network’s initial structure. However, the diversity of hint-based
configuration techniques discussed above is equalled only by their task-specific,
often ad hoc nature. Most of the techniques described in this section depend heavily
on handcrafting, and it is difficult to imagine, at least in the short term, how they
can be transferred to other application domains. The techniques themselves seem
quite generic and capable of representing different types of prior knowledge, but for
the moment, they have met with a certain degree of success mainly in image and
speech recognition tasks. This task-dependency is clearly an artefact of the state
of the art: a lot of work remains to be done before an extensive mapping of hint
types onto network structural constraints is obtained across different application
tasks and domains.

2.3.2.2 Hint- Based Training

Rather than being wired directly into the network structure, prior knowledge can
be incorporated indirectly via the training process. The first and most common way
of doing this is to expand the training set by generating a suficiently large number
of examples that illustrate the hint. Abu-Mostafa (Abu-Mostafa, 1990, 1995b) has
identified a variety of hints concerning the function to be learned and proposed two
ways of integrating them into the training set. The simplest way is by means of

Architectures and Techniques for Knowledge-Based Neurocornputing

duplicate examples: for some hints, we can take available examples of the target
function, duplicate them, and modify the copies to express the hint. For instance,
given the prior knowledge that the target function is even, i.e. y(x) = y(-x), and
given a training example y(2) = 4, we can generate a second example y(-2) = 4.
An alternative way is the use of virtual examples. For the evenness hint, a virtual
example would have the form y(x) = y(-x) for a particular input x. One can
generate as many examples as needed by picking different values of x. There is
no need to know the target value to generate the example; however the use of
virtual examples involves a modification of the objective function to be used during
the training process. For regular training instances, the objective function is some
measure of the discrepancy between the target value and the actual value; since
virtual examples do not contain target values, the error measure is dependent on
the hint; e.g. for the evenness hint, it should measure the distance between y(x)
and ~ (- 2) . If several hints are involved in a given task, they can all be integrated
following a fixed or dynamic scheduling scheme. This form of hint-based training
has been applied to foreign exchange rate forecasting, where data is both noisy and
non stationary (Abu-Mostafa, 1995a).

A similar approach was adopted by Roscheisen et al. (Roscheisen et al., 1992) to
preset the rolling force in a steel rollmill. Previously, the rolling force was determined
using a parameterized analytical model that gave only approximate predictions
which had to be adjusted on-line, resulting in a lot of steel band waste. When a
neural network solution was implemented, the imperfect knowledge contained in
the imperfect model was used to artificially generate training data; these were then
combined with data derived from on-line measurements to train a neural network
using backpropagation.

Prem et al. also use prior knowledge to generate additional training data (Prem
et al., 1993); however, their jmethod differs in that the hint-generated data are used
only in a pretraining phase. In a medical application aimed at diagnosing coronary
heart disease, heuristic rules from a medical expert are used to create pretraining
data. A randomly initialized network is trained on these examples, and the weights
thus obtained define the initial state from which the second phase, regular example-
based training, is conducted. Another form of knowledge injection, called concept
support, consists in introducing concepts which are deemed relevant using the same
pretraining technique. For instance, to incorporate the hint that the patient’s sex
is relevant to heart disease, a network with two output units representing the male-
female distinction is trained; in the second phase, the two output units are replaced
by a single unit representing the presence or absence of coronary heart disease,
and the network is trained on the original task. Experiments have shown that the
method consistently improves generalization with respect to levels achieved through
knowledge-free training.

The second main approach to hint-based training is direct incorporation of hints
into the training data. Since the number of training instances is not increased, con-
vergence is not slowed down due to artificial expansion of the dataset. This hint-
based training technique is illustrated by Tangentprop (Simard et al., 1992). In

2.3 Techniques for Building Prior Knowledge into Neural Networks 43

handwritten character recognition, for example, a useful hint concerns invariance
of the target function to minor transformations of the input such as rotation or
translation. The preceding section described examples in which invariance knowl-
edge is built into the neural net structure. Alternatively, this knowledge can be
expressed by adding training derivatives of the usual training values. For instance,
rotational invariance is expressed by assigning a value of zero to the derivative of
the target function with respect to a rotation parameter. To exploit this hint, how-
ever, the learning algorithm needs to be modified; in particular, the error function
needs to take account of the difference not only between the training value and the
actual value, but also between the training derivative and the actual derivative.
Tangentprop is a modification of standard backpropagation which obliges the net-
works to have zero derivatives in some directions. For particular transformations,
the standard error function is augmented with a regularization term which penalizes
discrepancies between the training and the actual derivatives. If several transfor-
mations are specified, the algorithm ensures that local invariance to each results in
invariance to the composed transformation. Experiments showed that Tangentprop
achieves significantly higher classification accuracy and converges more quickly than
standard backpropagation with no prior knowledge.

To summarize, hint-based training reduces variance by expanding the training
set, either by generating new examples that express the hint or by incorporating
the hint into each original example. In principle, reducing variance in this way does
not lead to increased bias, since the information content added by prior knowledge
ensures consistency with the unknown target function.

2.3.2.3 Hint-Based Preprocessing

Invariance in object recognition is probably the most popular form of partial
knowledge used in neural network development. As in NN configuration and training,
this type of knowledge has also been used for hint-based preprocessing. For instance,
(Bishop, 1995) shows that extraction of central moments from input data yields
translation-invariant features, and that normalizing these moments makes them
invariant to scale. He also points out the disadvantages of using moments as input
features, in particular the computational cost of extracting them from each new
input image. An alternative approach is feature transformation: input data are
transformed so that the features themselves exhibit invariance properties (Barnard
and Casasent, 1991). This is done in two steps: first, determine an appropriate set of
constraints; second, transform all measurements to satisfy these constraints. Tested
in a vehicle identification task under limited image resolution, this approach led to
accuracy in the range of 93-97% for neural networks as well as nonneural classifiers.

In hint-based preprocessing, the hints are known beforehand and the input data
are transformed to express these hints. Data preprocessing can serve another related
purpose; when prior knowledge is lacking, data can be explored in order to extract
hints that might prove useful in network configuration and training, indeed even in
other data preprocessing tasks. Thus a closely related issue is that of hint extraction

44 Architectures and Techniques for Knowledge- Based Neurocomputing

via data preprocessing. For certain applications, one might know which type of hint
is needed and how it will be used, without however knowing the exact content
or value of that hint. Consider a network whose task is to associate an input
pattern x to an output pattern y while simultaneously correcting all errors that
lie within a distance less than d/2, where d is the minimum Hamming distance
between the input patterns. Here the hint is the minimum Hamming distance,
which is used in the training phase by a modified backpropagation algorithm.
When this hint is not known a priori, it can be extracted from the training
examples themselves during the preprocessing stage (Al-Mashouq and Reed, 1991).
Similarly, the Tangentprop algorithm (see Section 2.3.2.2) uses invariance hints in
the form of training derivatives, which need to be introduced manually by the user.
EBNN (Thrun and Mitchell, 1993; Thrun, 1996) relieves the user of this burden;
prior to neural network training, an analytical learner uses a domain theory to
explain a given training example, then uses the explanation to compute the required
derivative.

In many applications, however, one has no precise domain-specific information to
look for in the data; the idea is simply to explore the data with the hope of finding
clues that may lead to more effective neural network design and training. For in-
stance, human designers routinely analyse application data and the insights gained
are put to use in subsequent N N development tasks such as task decomposition,
variable selection and missing value imputation. Hint extraction via preprocess-
ing is an attempt to automate this process. In (Rida et al., 1999), for instance,
the input data is assumed to be a mixture of Gaussians; during the preprocessing
stage, an improved Kohonen network (DeSieno, 1988) is used to cluster the input
data into overlapping subspaces. Local experts, e.g. a multilayer perceptron, are
assigned to these subspaces and their outputs combined either by weighted averag-
ing or by stacked generalization (Wolpert, 1992). Experiments showed that stack-
ing with subsamples based on preliminary distribution analysis led to significantly
higher accuracy than stacking with randomly generated subsamples. Combinations
of experts have been shown to lead to more accurate learning than single experts
in general (see for instance (Sharkey, 1995)); in the case of these two combination
schemes, however, the difference in performance was due precisely to the knowledge
acquired prior to learning about the probability distribution of the input space.

2.3.3 Knowledge-Free or Search-Based Techniques

At the other extreme, where domain knowledge is scarce or unusable, N N design
techniques rely mainly on guided search. These knowledge-free methods can be
subdivided into dynamic and static methods. In static configuration the network
topology is chosen before the training process, whereas in dynamic configuration it
is dynamically modified during training.

An example of static configuration is Vysniauskas et al.’s method, which estimates
the number of hidden units h needed by a single-hidden-layer network to approx-
imate a function to a desired accuracy. The approximation error E of a network is

2.4 A Metalevel Architecture for Knowledge-Based Neurocornputing 45

expressed as a function of h and the number of training instances N . Two models of
this error function are available, and the parameters of a model can be determined
by experimentation on the training set. The resulting parameterized model of the
approximation error can then be used to determine the number of hidden units h,
given a training set and a user-selected error threshold (Vysniauskas et al., 1993).
For classification tasks, Bose and Garga propose a design algorithm based on the
construction of Voronoi diagrams over the set of data points in the training set.
These diagrams are then analysed to determine which design options to take on
the basis of observed characteristics, e.g. linear separability, convexity. Contrary to
the preceding technique, which estimates only the number of hidden units, this is a
complete configuration procedure that determines the number of hidden layers and
hidden units per layer, as well as the connections and corresponding weights of the
network before training (Bose and Garga, 1993).

Dynamic configuration met hods can be divided into constructive (or growing)
and destructive (or pruning) algorithms. Constructive methods start out with a
minimal network structure, e.g. the input and output layers, and progressively
add hidden layers and/or units until a stopping criterion is met. Some algorithms,
like Neural Trees (Sirat and Nadal, 1990) and Cascade-Correlation (Fahlman and
Lebiere, 1990) , approximate the discriminant function by piecewise linear separation
of the input space. Others, like GAL (Alpaydin, 1991), use a technique similar to
the nearest neighbour decision rule in order to define regions of influence where
patterns of a given class are most likely to appear. Though most constructive
methods are aimed at classification tasks, Cascade2 (Fahlman and Boyan, 1996)
and IRO (Lengellk and Denoeux, 1996) can also perform regression, i.e. tasks with
continuous-valued outputs. Destructive methods adopt the reverse approach: they
start from an initially complex model and prune units and/or links until the
desired out-of-sample accuracy is attained. The pruning process can take place
during training, as in weight decay (Krogh and Hertz, 1992) and weight elimination
(Weigend et al., 1991), or after training, as in Optimal Brain Damage (LeCun et al.,
1990) and Optimal Brain Surgeon (Hassibi and Stork, 1993).

This quick review of knowledge-free methods has been included for the sake of
completeness, though they clearly do not produce knowledge-based neural networks.
However, it should be noted that knowledge-free methods incorporate an enormous
amount of implicit metaknowledge concerning neural networks in order to reduce
the space of search for a reasonable network architecture. It could be worthwhile to
extract this embedded metaknowledge in view of representing and using it explicitly
in neural network design and training.

2.4 A Metalevel Architecture for Knowledge-Based Neurocomputing

SCANDAL (Symbolic-Connectionist Architecture for Neural Network Design and
Learning) is an experimental workbench for exploring the use of prior knowledge-
both domain and metalevel-in the design of neural networks. This section describes

Architectures and Techniques for Knowledge-Based Neurocomputing

its architecture and the strategies for building prior knowledge into neural networks.

2.4.1 Overview of SCANDAL

The architecture consists of a connectionist baselevel and a symbolic metalevel
(Fig. 2.3), each implemented as a set of agents interacting via a distributed platform
(Gonzalez et al., 1997). The baselevel consists of agents which execute decisions
taken by metalevel design agents concerning N N configuration and training as well
as data preprocessing. At the metalevel, a supervisor receives the application task
definition and, on the basis of its knowledge of the domain and of neural networks
in general, selects one or several design agents. Each design agent embodies a class
of techniques for accomplishing one or several design subtasks. A data preprocessor
analyses available data and calls on the competent base level agents as needed:
data cleaners fill in missing values or discretize continuous attributes on request ,
knowledge extractors are symbolic learners such as C4.5 which induce rules for
use in subsequent phases of N N design, and artificial data generators are routines
which generate training examples from hints expressed as rules or as functional
constraints. Several configuration agents are available. A rule compilation agent
translates a domain theory expressed as rules into a feedforward network. In the
current version, this agent can handle categorical as well as certainty-factor rules. A
hint-based configuration agent uses knowledge of related tasks to add extra output
units to a network.

Partial knowledge can also be used to improve the training process. For instance,
when data deficiency is a problem, the pretraining agent uses knowledge-based ar-
tificial examples produced by the data generators to pretrain the network before
training on real examples. In knowledge-lean domains, the supervisor has two alter-
natives: either attempt to exploit domain hints induced from data by the knowledge
extractors, or have the search-based agents, e.g. constructive configuration agents,
resort to iterative experimentation.

Metalevel design agents are implemented in an object-oriented representation
which blends a global ontology with agent-specific rules and methods. The system’s
ontology provides a unifying framework for domain as well as metalevel knowledge;
it is by inspecting this ontology that design agents can access domain knowledge
and use it to determine N N structure and development. In addition, base level
entities such as network links and weights, nodes and activations, which typically
remain invisible in standard simulators, have associated meta-objects which are
periodically updated to reflect their current state. Via this dual representation
scheme, the internal state of the network remains accessible for explicit reasoning
and decision making by the supervisor, the design agents, and the user.

2.4.2 Strategies for Knowledge Utilization

SCANDAL’S basic bias is towards the maximum use of domain knowledge in the dif-
ferent stages of N N development. Knowledge-based configuration (KBC) consists in

2.4 A Metalevel Architecture for Knowledge-Based Neurocornputing

PRIOR KNOWLEDGE
Meta: NN knowledge
Base: Domain knowledge

Task specification
Training & test sets

47

t
Configured and trained networks

Figure 2.3 The SCANDAL architecture.

using domain knowledge to determine the network’s architecture, while knowledge-
based training (KBT) integrates domain knowledge into the training process. When
background knowledge is insufficient or inaccessible, the system attempts knowledge
extraction from data (KEX) to gather hints that might guide the design process.
For instance, any rule induction algorithm may be called to generate domain rules
for use in subsequent phases. These elementary processes-knowledge extraction
from data, knowledge-based configuration, and knowledge-based training-may be
combined in four different ways, depending on the adequacy of the knowledge and
data available. The four variants of the knowledge-based approach to N N design are
summarized in Table 2.1.

As discussed in Section 2.3, SCANDAL integrates different techniques for exploiting
knowledge during the three phases of N N development. However, in the remainder
of this chapter, we shall focus on rule-based methods to illustrate knowledge-based
N N design: rule induction by c4.5 for KEX, rule mapping onto neural nets for KBC,
and rule-based generation of artificial training data for KBT.

2.4.3 Experiments

This section reports on experiments conducted on these four strategies for incor-
porating knowledge into N N learning. To compare the knowledge-based approach
with a state-of-the-art search-based method, the SCANDAL implementation of the
Orthogonal Incremental Learning (OIL) algorithm (Vysniauskas et al., 1995) was
used. OIL is an incremental approach to N N design which adds one hidden unit at
a time while the rest of the network remains fixed. A feature of OIL is that it min-
imizes the parameters to be tuned with each hidden node addition, thus leading to
extremely fast training. Both search- and knowledge-based approaches were evalu-

Architectures and Techniques for Knowledge-Based Neurocomputing

Table 2.1 Four strategies for knowledge-based neural network design. KBC stands
for knowledge-based configuration, KBT for knowledge-based training, and KEX for
knowledge extraction from data.

Adequate prior knowledge (K) and data (D) --+ KBC
1. KBC: Compile K into a neural network
2 . Train NN on D

1. KEX: Extract K’ from D
2. KBC: Compile (K+K’) into an NN
3. Train NN on D

1. KBC: Compile K into a neural network
2 . KBT: Generate artificial data D’ from K

Pretrain NN on D’
Train pretrained NN on D

Deficient prior knowledge and adequate data -+ KEX-KBC

Adequate prior knowledge and deficient data --+ KBC-KBT

Deficient prior knowledge and data -+ KEX-KBC-KBT
(in preference to search-based design)
1. KEX: Extract K’ from D
2. KBC: Compile (K+K’) into NN
3. KBT: Generate D’ from (K+K’)

Pretrain NN on D’
Train pretrained NN on D alone

ated on several benchmarks from the UCI Machine Learning Repository (Murphy
and Aha, 1991). All experiments used 10 network initializations, each tested on
10 different permutations of a given dataset. Each experiment thus consisted of
100 training/test runs, each using ten-fold stratified cross-validation. The following
subsections present evaluation results for these four strategies in turn.

2.4.9.1 Adequate Knowledge and Data

When both knowledge and data are adequate (in particular when there is an
approximate domain theory), the knowledge-based approach is reduced to mapping
domain rules onto a neural network, followed by standard training from data. We
shall illustrate the effectiveness of this simple approach on two benchmarks. The
student loan benchmark contained a relational dataset and rulebase, both of which
were rewritten in propositional form. The domain task is to decide, on the basis
of 7 features, whether a student is exempted from reimbursing a loan; the 18-rule
theory was mapped onto a four-layer 21-6-2-1 neural network. The dataset contains
1000 instances. In the tic-tac-toe endgame benchmark, the task is to determine in
which cases player X will win, assuming she played first. The benchmark does
not include a domain theory, but it was quite straightforward to define winning
endgame configurations in 8 simple rules. However, of the 8 rules which would have
defined a complete domain theory, two were purposely eliminated to test the neural
network’s ability to recover from the lesioned initial theory.

2.4 A Metalevel Architecture for Knowledge-Based Neurocomputing 49

Loans (I=2l N=1000)
OIL

KBC

Tic-tac-toe (1-27 N=958)
OIL

KBC

Table 2.2 Results on benchmarks with adequate prior knowledge and data. In this
and the following tables, I is the number of inputs, N the dataset size. Performance
measures are classification accuracy on the test set (mean percentage of cases
classified correctly f the standard deviation) and the number of training epochs.
The default accuracy rate is that attained by simply selecting the most frequent
class. For the incremental algorithm OIL, training time is represented by the number
of training cycles for all candidate hidden units (in brackets), followed by the
number of the training cycles for the tenured hidden units alone.

Accuracy (Def=64.3%) Training cycles
94.88 f 0.09 W O 1 98
94.89 f 0.11 12

Accuracy (Def=64.7%) Training cycles
98.50 f 3.10 [1194] 122
99.00 f. 1.80 53

Since prior knowledge is meant to add information value when a dataset is de-
ficient, in this particular case prior knowledge is not expected to improve general-
ization. This is confirmed by the results shown in Table 2.2; the knowledge-based
and search-based methods attain equivalent mean off-sample accuracy rates. How-
ever, the decisive difference lies in the complexity value added by prior knowledge;
counting only the number of cycles spent on training the tenured hidden units, KBC
is twice as fast as OIL on the second benchmark and 8 times faster on the first. If
we take into account the training cycles spent on discarded candidate units, KBC is
22 times faster than OIL on the tic-tac-toe benchmark and 78 times faster on the
student loan dataset.

2.4.3.2 Deficient Knowledge and Adequate Data

To illustrate the utility of knowledge extraction when there is sufficent data, C4.5
(Quinlan, 1993) was used to generate rules for two benchmarks which came with no
domain theory. In the first, the task is to predict contact lenses prescription (soft,
hard, or none) from four features such as age and tear production; in the second,
party affiliation is predicted on the basis of a congressman’s vote on 17 crucial
issues. Rules generated by C4.5 were compiled into a 9-2-3 network for the lenses
domain and a 48-2--2 network for the votes domain. Training results are shown
in Table 2.3. The 89.9% accuracy obtained by KEX-KBC on the lenses problem is
significantly higher than known previous results which range from 65% accuracy
for I D 3 and 76.7% for backpropagation to 80.5% for FLARE using prior knowledge
and 83.3% for CN2. In the votes domain, KEX-KBC scores 95.6%, as compared with
past results: 93.8% for CN2, 95.4% for ID3, 96% for backpropagation, and 94.5% for
FLARE using prior knowledge (all past results reported on these two benchmarks are
based on (Giraud-Carrier, 1995)). It was also interesting to find out if the inductive

50

OIL

KEX-KBC
Votes (I=48 N=435)

Architectures and Techniques for Knowledge-Based Neurocomputing

47.03 f 8.65 [11918] 1101
89.93 f 2.00 3

Accuracy (Def=6l%) Training cycles

Table 2.3 Results on benchmarks with deficient knowledge and adequate data.

Credi t (I=25 N=125)
OIL

KBC

KBC-KBT

I Lenses(I=9 N=24) 1 1 Accuracy (Def=62.5%) I Training cycles I

Accuracy (Def=68%) Training cycles
75.52 f 2.45 [16692] 2392
77.05 f 2.34 36
82.42 f 2.09 1421 14

I 277 12 I 95.03 f 0.69 1 1 95.60 f 0.50

Table 2.4 Results on a benchmark with adequate prior knowledge and deficient
data. For KBC-KBT, the number of training cycles includes those for pretraining on
artificial data (in brackets), followed by training on the original data.

method used for knowledge extraction would not have solved these tasks directly;
a 10-fold cross-validation run on C4.5 yielded a mean accuracy of 83.3% for lenses
and 94% for votes-in both cases lower than the KEX-KBC results.

2.4.3.3 Adequate Knowledge and Deficient Data

When prior domain knowledge is available to remedy data deficiency, the combi-
nation of knowledge-based configuration and knowledge-based training seems to be
the most effective strategy. A network is compiled from domain rules as before; in
addition, the same rules are recycled to fulfil1 another function, the generation of
artificial data. These are used to pretrain the network before actual training on the
original dataset. This strategy proved appropriate for the Japanese credit screening
benchmark, which has a dataset of only 125 instances but includes a domain the-
ory developed in cooperation with domain experts from a Japanese credit company.
The original first-order rules were rewritten in propositional form and mapped onto
a 25-7-2-1-2 network.

The results in Table 2.4 show the improvement added by knowledge-based
training to knowledge-based configuration: on average, KBC alone achieves an
accuracy of 77% after 36 training epochs whereas KBC-KBT reaches an accuracy
of 82.4% in 14 epochs. Of course, the overhead consists of the 42 cycles used to
pretrain the network on the knowledge-based examples. This pretraining, which
can be seen as a refinement of the weight initializations effected by knowledge-
based configuration, seems to improve both generalization and convergence speed
during the actual training on the original data. A one-tailed two-sample test on

2.4 A Metalevel Architecture for Knowledge-Based Neurocomputing 51

Table 2.5 Results on two problems with deficient knowledge and deficient data.

I Hepatitis (I=59 N=155) 1 1 Accuracy (Def=79.4%) I Training cycles
83.4 f 1.8 I [5179] 1427 I I I OIL

KEX-KBC

KEX-KBC

KEX-KBC-KBT

11 85.1 f 1.3
86.1 f 1.2 [52] 11

55.2 f 4.4
60.3 f 1.4
62.3 f 1.8

these two variants showed that the improvement in accuracy for this problem is
statistically significant at the 0.01 level.

2.4.3.4 Deficient Knowledge and Data

When both knowledge and data are deficient, the SCANDAL strategy is to try the
knowledge-based approach anyway, since it is not yet clear under which conditions
search-based methods can prove more appropriate. For instance, in the hepatitis
benchmark and in a medical application concerning the diagnosis of comas induced
by tricyclic antidepressants, both KEX-KBC and KEX-KBC-KBT still attain higher
accuracies than OIL, as shown in Table 2.4.3.4.

The hepatitis problem has no available domain knowledge whereas in the coma
problem expert rules are incomplete-they detect the present of antidepressants
in isolated form, but not in combination with other toxins. Interestingly, rules
extracted by C4.5 proved to be a perfect complement to the expert’s rules: induced
rules concluded on the absence of antidepressants or their combination with other
toxins, but not on their presence in isolation. Both problems are reputedly difficult;
for the toxic coma problem, alternative approaches such as maximum entropy
probabilistic methods (Amy et al., 1997) barely bypassed the baseline accuracy,
while the best past result for the hepatitis benchmark is 83% accuracy (Murphy
and Aha, 1991). However, it must be said that the improvement brought by adding
KBT to KBC is generally less significant when knowledge is extracted from data
than in cases where adequate knowledge from domain experts effectively complete
or correct deficient data.

2.4.4 Summary of Findings

The particularity of the approach presented in this section lies in the combination
of techniques for knowledge-based configuration and knowledge-based training,
whereas previous approaches (cf. Section 2.3) have focused on a specific technique
for a single design subtask. Experiments reported in the preceding section show
that these different techniques can be combined synergistically to improve neural

52 Architectures and Techniques for Knowledge-Based Neurocomputing

network performance. These are borne out by the following findings: . Generalization power (as measured by off-sample accuracy) generally increases
and training time (as measured by the number of training cycles) generally decreases
with the amount of knowledge built into a neural network. . As the size of the dataset increases, the impact of background knowledge on final
accuracy diminishes in the sense that a knowledge-free technique will eventually
attain accuracy levels comparable to that of a knowledge-based neural network.
However, it will do so in a considerably larger number of training epochs (by
several orders of magnitude, counting time spent on training pools of candidate
hidden units). . When training data are deficient, the same knowledge that was compiled to con-
figure and initialize a neural net can be recycled to generate artificial examples and
obtain higher accuracy levels. More extensive studies will be needed to determine
the minimum amount of artificial data needed to obtain significant improvement
levels.

Finally, when both knowledge and data are deficient, knowledge can be extracted
from the original data and used both to configure the network and to generate
additional training examples. In our experiments, this combination of knowledge
extraction with knowledge-based configuration and training led to both higher
accuracy and faster learning than search-intensive methods. In particular, rule
compilation appears to achieve these effects even when the available rules are far
from being approximately complete and correct. Although these findings have to
be confirmed by further experimentation, they raise hopes that time-consuming
iterative search can be avoided even in knowledge-lean domains.

2.5 Open Research Issues

As a recent research field, knowledge-based neurocomputing still has a number
of shortcomings to remedy and open frontiers to explore. The major drawback of
most knowledge incorporation techniques is their task-specific, often ad hoc nature.
Many hint-based techniques, in particular, depend heavily on handcrafting, and it
is difficult to imagine, at least in the short term, how they can be transferred
across application domains. Some techniques such as weight sharing seem quite
generic and capable of representing different types of prior knowledge; but for
the moment, they have been successful mainly in image and speech recognition
tasks. This task-dependency is clearly an artefact of the state of the art: a lot of
work remains to be done before an extensive mapping of hint types onto network
structural constraints is obtained across different application tasks and domains. A
priority task on the research agenda is therefore the need to abstract from successful
application-dependent implementations a set of generic techniques that are valid
for broader classes of problems.

References 53

Another research challenge consists in widening the range of knowledge types that
can be incorporated into NN, as well as the repertoire of techniques for incorporating
them. This implies tackling a number of representational issues, the foremost of
which is the restricted representational power of state-of-the-art neural networks.
The overwhelming majority of these are limited to propositional representations
and thus cannot convey relational knowledge which is essential in many real-
world domains. Despite vigorous research on the variable-binding problem in neural
networks, the main hurdle is that of scaling up the proposed architectures to solve
real-world problems. A related issue is representing structured knowledge in neural
networks. Symbolic artificial intelligence (AI) boasts of a plethora of structured
representations, e.g. trees, frames, objects, semantic networks and belief networks,
to convey the rich internal structure of knowledge. Information in neural networks
is typically encoded in vector or matrix form; the problem is how to fit highly
complex knowledge structures into this representational straitjacket.

Progress in knowledge-based neurocomputing also depends on resolving certain
open learning issues. One of these is coping with complex multistep tasks: many NN
learning tasks are cast as elementary tasks which can be categorized under either
classification or regression. However, real-world applications are typically compos-
ite, and the first step is to reformulate the original problem as a combination of these
elementary tasks. This issue is being investigated independently in the connectionist
community by specialists in modular NNS (see Section 2.3.2.1) and in symbolic ma-
chine learning under the label of structured induction (Langley and Simon, 1995). A
convergence of these two research streams might have interesting repercussions on
knowledge-based neural networks. Another issue is building architectures for neu-
rosymbolic learning. The knowledge-data tradeoff has spawned a variety of multi-
strategy learning systems in symbolic AI, but multistrategy symbolic-connectionist
learning has not really taken off: the most common approach in hybrid systems
is to combine neural network learning with non-learning symbolic models. Hybrid
architectures for knowledge-based NN design would certainly gain in power and ver-
satility if the symbolic component, whose task is to improve NN learning, were itself
endowed with learning capabilities.

Acknowledgments

Thanks to Ahnied Rida who performed the experiments on the OIL algorithm.

~

References

Abu-Mostafa, Y. S. 1990. Learning from hints in neural networks.
Complexity, 6: 192-198.

Abu-Mostafa, Y. S. 1995a. Financial market applications of learning from hints.

Journal of

54 Architectures and Techniques for Knowledge- Based Neurocomputing

In Refenes, A. P., editor, Neural Networks in the Capital Markets, chapter 15,
pages 221-232. Wiley.

Abu-Mostafa, Y. S. 1995b. Hints. Neural Computation, 7:639-671.
Ajjanagadde, V. and Shastri, L. 1991. Rules and variables in neural nets. Neural

Computation, (3):121-134.
Al-Mashouq, K. A. and Reed, I. S. 1991. Including hints in training neural networks.

Neural Computation, 3:418-427.
Alpaydin, E. 1991. GAL : Networks that grow when they learn and shrink when they

forget. Technical Report TR-91-032, International Computer Science Institute,
Berkeley.

Amy, B., Danel, V., Ertel, W., Gonzalez, J., Hilario, M., Malek, M., Nerot, O.,
Osorio, F., Rialle, V., Rida, A., Schultz, S., Velasco, J., and Velasco, L. 1997.
Medical application (final report). Esprit Project MIX Deliverable D16.

Andrews, R., Diederich, J., and Tickle, A. 1995. A survey and critique of techniques
for extracting rules from neural networks. Technical report, Neurocomputing
Research Centre, Queensland.

Ballard, D. H. 1987. Modular learning in neural networks. In Proceedings of the
National Conference in Artificial Intelligence (A A AI-87).

Barnard, E. and Casasent, D. 1991, Invariance and neural nets. IEEE Transactions
on Neural Networks, 2:498-508.

Baum, E. B. and Haussler, D. 1989. What size net gives valid generalization? Neural
Computation, 1:151-160.

Becraft, W. R., Lee, P. L., and Newell, R. B. 1991. Integration of neural networks
and expert systems. In Proc. of the 12th International Joint Conference on
Artificial Intelligence, pages 832-837, Sydney, Australia. Morgan Kaufmann.

Bergadano, F. and Giordana, A. 1990. Using induction with domain theories. In
Kodratoff and Michalski (1990), chapter 17, pages 474-492.

Bibel, W. 1987. Automated Theorem Proving. Vieweg Verlag, Braunschweig,
Germany.

Bishop, C. M. 1995. Neural Networks for Pattern Recognition. Oxford University
Press.

Bookman, L. 1987. A microfeature based scheme for modelling semantics. In Proc.

Bose, N. K. and Garga, A. E(. 1993. Neural network design using Voronoi diagrams.
IEEE Transactions on Neural Networks, 4(5):778-787.

Bottou, L. and Gallinari, P. 1991. A framework for the cooperation of learning
algorithms. In Lippman et al. (1991), pages 781-788.

Bradshaw, G., Fozzard, R., and Ceci, L. 1989. A connectionist expert system that
actually works. In Touretzky, D. S., editor, Advances in Neural Information
Processing, 1, pages 248-255. Morgan Kaufmann, San Mateo, CA.

IJCAI-87 (1987).

References 55

Brent, R. P. 1991.
Transactions on Neural Networks, 2(3) :346-353.

Caruana, R. A. 1993. Multitask learning: A knolwedge-based source of inductive
bias. In Utgoff, P., editor, Proc. of the 10th International Conference on Machine
Learning, pages 41-48, Amherst, MA. Morgan Kaufmann.

Chen, J. R. 1992. A connectionist composition of formula, variable binding and
learning. In Sun et al. (1992).

Ciesielski, V. and Palstra, G. 1996. Using a hybrid neural/expert system for data
base mining in market survey data. In Sismoudis, E., Han, K., and Fayyad,
U., editors, Proc. Second International Conference on Knowledge Discovery and
Data Mining, pages 38-43, Portland, OR. AAA1 Press.

Cozzio, R. 1995. The Design of Neural Networks Using A Priori Knowledge. PhD

Crucianu, M. and Memmi, D. 1992. Extracting structure from an connectionist
network. In Artificial Intelligence and Simulation of Behaviour, Special Issue on
Hybrid Models - part 11, pages 31-35.

Danyluk, A. 1994. Gemini: An integration of analytical and empirical learning.
In Michalski, R. S. and Tecuci, G., editors, Machine Learning. A Multistrategy
Approach, chapter 7, pages 189-216. Morgan Kaufmann.

de Francesco, M. 1994. Functional Networks. A New Computational Framework
for the Specification, Simulation and Algebraic Manipulation of Modular Neural
Systems. PhD thesis, CUI, University of Geneva.

DeSieno, D. 1988. Adding conscience to competitive learning. In Proc. International
Conference on Neural Networks, volume I, pages 117-124, NY. IEEE Press.

Dyer, M. 1991. Symbolic neuroengineering for natural language processing: A
multilevel research approach. In Barnden, J. A. and Pollack, J. B., editors,
Advances in Connectionist and Neural Computation Theory. Vol. 1: High-Level
Connectionist Models, pages 32-86. Ablex Publishing.

Fahlman, S. E. and Boyan, . A. 1996. The Cascade 2 learning architecture. Technical
Report CMU-CS-96-184, Carnegie-Mellon.

ture. Technical Report CMU-CS-90-100, Carnegie Mellon University.

Fast training algorithms for multilayer neural nets. IEEE

thesis, ETHZ, Zurich.

Fahlman, S. E. and Lebiere, C. 1990. The Cascade-Correlation learning architec-

Feldman, J. and Ballard, D. 1982. Connectionist models and their properties.
Cognitive Science, 6:205-254.

inductive learning. Machine Learning, 4(2): 187-226.

constructive neural network learning. Connection Science, 5(3 & 4):365-375.

of explicit knowledge and learning by example in recurrent networks.

Flann, N. S. and Dietterich, T. G. 1989. A study of explanation-based methods for

Fletcher, J. and Obradovic, Z. 1993. Combining prior symbolic knowledge and

Frasconi, P., Gori, M., Maggini, M., and Soda, G. 1995. Unified integration
IEEE

56 Architectures and Techniques for Knowledge-Based Neurocornputing

Transactions on Knowledge and Data Engineering, 7(2):340-346.

Neural Heuristics, Pensacola, FL.

Knowledge- Based Systems, 8 (6) :298.

Knowledge-Based Systems, 3(1):48-56.

Fu, L. M., editor 1994. International Symposium on Integrating Knowledge and

Fu, L. M. 1995. Special issue: Knowledge-based neural networks (editorial).

Fu, L. M. and Fu, L. C. 1990. Mapping rule-based systems into neural architecture.

Gallant, S. I. 1988. Connectionist expert systems. Communications of the ACM,

Gallant, S. I. 1993. Neural Network Learning and Expert Systems. Bradford/MIT,
Cambridge, MA.

Gasser, M. E. 1988. A connectionist model of sentence generation in a first
and second language. Technical Report Report UCLA-AI-88-13, University of
California, Los Angeles, CA.

Neural networks and the
bias/variance dilemma. Neural Computation, 4: 1-58.

3 1 (2) 152-169.

Geman, S., Bienenstock, E., and Doursat, R. 1992.

Giacometti, A. 1992. Modkles hybrides de 1 ’expertise. PhD thesis, ENST, Paris.
Giles, C. L. and Maxwell, T. 1987. Learning, invariance and generalization in high-

order neural networks. Applied Optics, 26(23):4972-4978.

symbolic rules in dynamicallly driven recurrent neural networks.
Science, 5(3-4):307-337.

Giraud-Carrier, C. 1995. An integrated framework for learning and reasoning.
Journal of Artificial Intelligence Research, 3: 147-185.

Goller, C. 1994. A connectionist control component for the theorem prover
SETHEO. In Hilario, M., editor, ECAI’94 Workshop on Combining Symbolic
and Connectionist Processing, pages 88-93, Amsterdam.

Goller, C. and Kuechler, A. 1996. Learning task-dependent distributed represen-
tations by backpropagation through structure. In Proc. ICNN-96 (1996), pages

Gonzalez, J. C., Velasco, J. R., and Iglesias, C. A. 1997. A distributed platform
for symbolic-connectionist integration. In Sun, R. and Alexandre, F., editors,
Co nn ec t i o n is t - S y m bo 1 i c I n t eg ra t i o n : Fro m Un ifi ed to Hy b ri d A p p roach es, chap-
ter 10. L. Erlbaum.

Handelman, D. A., Lane, S. H., and Gelfand, J. J. 1989. Integrating knowledge-
based system and neural network techniques for robotic skill acquisition. In
Proc. of the 1 l th International Joint Conference on Artificial Intelligence, pages
193-198, Detroit, MI. Morgan Kaufmann.

Handelman, D. A., Lane, S. H., and J. J, G. 1992. Robotic skill acquisition based on
biological principles. In Kandel and Langholz (1992), chapter 14, pages 301-327.

Giles, C. L. and Omlin, C. W. 1993. Extraction, insertion and refinement of
Connection

347-352.

References 57

Hassibi, B. and Stork, D. 1993. Second-order derivatives for network pruning:
Optimal brain surgeon. In Hanson, S., Cowan, J . D., and Giles, C. L., editors,
Advances in Neural Information Processing, 5. Morgan-Kaufmann, San Mateo,
CA.

Hayashi, Y. 1991. A neural expert system with automated extraction of fuzzy if-
then rules and its application to medical diagnosis. In Lippman et al. (1991),
pages 578-584.

Hayes, S., Ciesielski, V. B., and Kelly, W. 1992. A comparison of an expert system
and a neural network for respiratory system monitoring. Technical Report T R
#92/1, Royal Melbourne Institute of Technology.

Hendler, J . A. 1989. Problem solving and reasoning: A connectionist perspective.
In Pfeifer et al. (1989), pages 229-243.

Hinton, G., editor 1991. Connectionist Symbol Processing. MIT-Elsevier
Holldobler, S. and Kurfess, F. 1991. CHCL-A connectionist inference system. In

Fronhoefer, B. and Wrightson, G., editors, Parullelixation in Inference Systems.
Springer-Verlag, New York.

Hrycej, T. 1992. Modular Learning in Neural Networks. John Wiley & Sons.
Ivanova, I. and Kubat, M. 1995. Initialization of neural networks by means of

decision trees. Knowledge-Based Systems, 8(6):333-343.
Jabri, M., Pickard, S., Leong, P., Chi, Z., Flower, B., and Xie, Y. 1992. Ann based

classification for heart difibrillators. In Moody et al. (1992), pages 637-644.
Jacobs, R. A. and Jordan, M. I. 1991. A competitive modular architecture. In

Lippman et al. (1991), pages 767-773.
Jacobs, R. A., Jordan, M. I., and Barto, A. G. 1990. Task decomposition through

competition in a modular connectionist architecture: the what and where vision
tasks. Technical Report 90-27, DCIS, University of Massachusetts, Amherst, MA.

Kandel, A. and Langholz, G., editors 1992. Hybrid Architectures for Intelligent
Systems. CRC Press, Boca Raton, FL.

Kodratoff, Y. and Michalski, R. S., editors 1990. Machine Learning. A n Artificial
Intelligence Approach, Vol. 3. Morgan Kaufmann.

Kohara, K. and Ishikawa, T. 1994. Multivariate prediction using prior knowledge
and neural heuristics. In Fu (1994), pages 179-188.

Krogh, A. and Hertz, J. A. 1992. A simple weight decay can improve generalization.
In Moody et al. (1992), pages 950-957.

Krovvidy, S. and Wee, W. G. 1992. An intelligent hybrid system for wastewater
treatment. In Kandel and Langholz (1992), chapter 17, pages 358-377.

Kuncicky, D. C., Hruska, S. I., and Lacher, R. C. 1992. Hybrid systems: The
equivalence of rule-based expert system and artificial neural network inference.
International Journal of Expert Systems, 4(3):281-297.

Lacher, R. C., Hruska, S. I., and Kuncicky, D. C. 1992. Backpropagatin learning in

58 Architectures and Techniques for Knowledge-Based Neurocomputing

expert networks. IEEE Transactions on Neural Networks, 3:63-72.

language understanding in structured connectionist networks.
(1992), pages 31-38.

induction. Communications of the ACM, 38(11):54-64.

Lange, T. E. 1992. Issues in controlling activation and inferencing for natural
In Sun et al.

Langley, P. and Simon, H. A. 1995. Applications of machine learning and rule

Lebowitz, M. 1986. Integrated learning: controlling explanation. Cognitive Science,

LeCun, Y. 1989. Generalization and network design strategies. In Pfeifer et al.
10:2 19-240.

(1989), pages 143-155.
LeCun, Y., Boser, B., Denker, J . S., et al. 1990. Handwritten digit recognition with

a back-propagation network. In Touretzky (1990a), pages 396-404.
LeCun, Y., Denker, J. S., and Solla, S. A. 1990. Optimal brain damage. In Touretzky

(1990a), pages 598-605.
Lendaris, G. C. and Harb, I. A. 1990. Improved generalization in ANN’s via use

of conceptual graphs: a character recognition task as as example case. In Proc.
IJCNN-90 (1990), pages 1551-555.

Lengellk, R. and Denoeux, T. 1996. Training MLPs layer by layer using an objective
function for internal representations. IEEE Transactions on Neural Networks,

Lippman, R. P., Moody, J. E., and Touretzky, D. S., editors 1991. Advances in
Neural Information Processing, 3. Morgan-Kaufmann, San Mateo, CA.

Maclin, R. and Shavlik, J. W. 1993. Using knowledge-based neural networks to
improve algorithms: refining the Chou-Fasman algorithm for protein folding. In
Michalski (1993), pages 195-215.

Mahoney, J. J. and Mooney, R. J. 1993. Combining connectionist and symbolic
learning to refine certainty factor rule bases. Connection Science, 5(3 & 4):339-
393.

Parallel distributed processing.
explorations in the microstructure of cognition. In McClelland, J. L., Rumelhart,
D. E., and the P D P Research Group, editors, Parallel Distributed Processing.
Explorations in the Microstructure of Cognition, volume 2, chapter 19, pages
272-325. MIT Press, Cambridge, MA.

Medsker, L. R. 1994. Hybrid Neural Network and Expert Systems. Kluwer Academic
Publishers, Boston.

Michalski, R., editor 1993. Machine Learning, Special Issue on Multistrategy
Learning, volume 1 1. Kluwer.

Mitchell, T. M., Keller, R., and Kedar-Cabelli, S. 1986. Explanation-based gener-
alization: a unifying view. Machine Learning, 1:47-80.

Mitchell, T. M. and Thrun, S. B. 1994. Explanation based learning: A comparison

9(1):83-97.

McClelland, J. L. and Kawamoto, A. H. 1986.

References 59

P

P

of symbolic arid neural network approaches. In Cohen, W. W. and Hirsh, H.,
editors, Proc. of the 11 th International Conference on Machine Learning, pages
197-204, Rutgers, NJ. Morgan Kaufmann.

Moody, J. E., Hanson, S., and Lippman, R. P., editors 1992. Advances in Neural
Information Processing, 4. Morgan-Kaufmann, San Mateo, CA.

Murphy, P. M. and Aha, D. 1991. UCI machine learning repository.
http://www.ics.uci.edu/ mlearn/MLRepository. html. Irvine, CA: University of
California, Dept. of Information and Computer Science.

Newell, A. 1982. The knowledge level. Artificial Intelligence, 18:87-127.
Omlin, C. W. and Giles, C. L. 1992. Training second-order recurrent neural net-

works using hints. In Sleeman, D. and Edwards, P., editors, Proc. of the 9th In-
ternational Workshop on Machine Learning, pages 361-366. Morgan Kaufmann.

Opitz, D. W. and Shavlik, J . W. 1993. Heuristically expanding knowledge-based
neural networks. In Proc. IJCAI-93 (1993), pages 1360-1365.

Park, N. S. and Robertson, D. 1995. A localist, network architecture for logical
inference based on temporal asynchrony approach to dynamic variable binding.
In Sun, R. and Alexandre, F., editors, IJCAI-95 Workshop on Connectionist-
Symbolic Integration: From Unified to Hybrid Approaches, pages 63-68, Montreal,
CN.

Pazzani, M. and Kibler, D. 1992. The utility of knowledge in inductive learning.
Machine Learning, 9(1):57-93.

Perantonis, S. J . and Lisboa, P. J . G. 1992. Translation, rotation and scale-invariant
pattern recognition by high-order neural networks and moment classifiers. IEEE
Transactions on Neural Networks, 3(2):241-251.
eifer, R., Schreter, Z., and Fogelman-Soulik, F., editors 1989. Connectionism in
Perspective. Elsevier.
nkas, G. 1994. Propositional logic, norimonotonic reasoning and symmetric
networks-On bridging the gap between symbolic and connectionist knowledge
representation. In Levine, D. S. and IV, M. A., editors, Neural Networks for
Knowledge Representation and Inference, chapter 7 , pages 175-203. Lawrence
Erlbaurn Associates Inc., Hillsdale, NJ.

feed-forward neural networks. In Fu (1994), pages 67-74.
Piramuthu, S. and Shaw, M. I. 1994. On using decision tree as feature selector for

Pollack, J . B. 1990. Recursive distributed representations. Artzficial Intelligence,

Pomerleau, D. A., Gowdy, J., and Thorpe, C. E. 1991. Combining artificial neural
networks and symbolic processing for autonomous robot guidance. Engineering
Applications of Artificial Intelligence, 4(4) :279-285.

Pratt , L. Y. 1994. Experiments on the transfer of knowledge between neural net-
works. In Hanson, S. J. , Drastal, G. A . , and Rivest, R. L., editors, Computational
Learning Theory and Natural Learning Systems, volume I, chapter 19, pages 523-

46~77- 105.

60 Architectures and Techniques for Knowledge-Bused Neurocomputing

560. MIT Press.
Prem, E., Mackinger, M., Dorffner, G., Porenta, G., and Sochor, H. 1993. Concept

support as a method for programming neural networks with symbolic knowledge.
In GAI-92: Advances in Artificial Intelligence. Springer.

Proc. ICNN-96 1996. Proc. IEEE International Conference on Neural Networks,
Washington, DC.

Proc. IJCAI-87 1987. Proc. of the 10th International Joint Conference on Artificial
Intelligence, Milan, Italy. Morgan Kaufmann.

Proc. IJCAI-93 1993. Proc. of the 13th International Joint Conference on Artificial
Intelligence, Chambkry, France. Morgan Kaufmann.

Proc. IJCNN-90 1990. International Joint Conference on Neural Networks, San
Diego, CA.

Quinlan, J. R. 1993. C4.5: Programs for Machine Learning. Morgan Kaufmann,
San Mateo, CA.

Rajamoney, S. and DeJong, G. 1987. The classification, detection and handling of
imperfect theory problems. In Proc. IJCAI-87 (1987), pages 205-207.

Rajamoney, S., DeJong, G., and Faltings, B. 1985. Toward a model of conceptual
knowledge acquisition through directed experimentation. In Proc. of the 9th
International Joint Conference on Artificial Intelligence, pages 688-690, Los
Angeles, CA. Morgan Kaufmann.

Rida, A., Labbi, A., and Pellegrini, C. 1999. Local experts combination through
density decomposition. In Uncertainty-99, Ft. Lauerdale, Florida.

Romachandran, S. and Mooney, R. 1996. Revising Bayesian network parameters
using backpropagation. In Proc. ICNN-96 (1996), pages 82-87.

Roscheisen, M., Hofmann, R., and Tresp, V. 1992. Neural control for rolling mills:
incorporating domain theories to overcome data deficiency. In Moody et al.
(1992), pages 659-666.

Rumelhart, D. E., Hinton, G. E., and Williams, R. J . 1986. Learning internal
representations by error propagation. In Rumelhart, D. E., McClelland, J. L., and
the PDP Research Group, editors, Parallel Distributed Processing. Explorations
in the Microstructure of Cognition, volume 1, chapter 8, pages 318-362. MIT
Press.

Saito, K. and Nakano, R. 1988. Medical diagnostic expert system based on pdp
model. In Proc. IEEE International Conference on Neural Networks, pages 255-
262, San Diego, CA.

Saitta, L., Botta, M., and Neri, F. 1993. Multistrategy learning and theory revision.
In Michalski (1993), pages 45-172.

Samad, T. 1992. Hybrid distributed/local connectionist architectures. In Kandel
and Langholz (1992), chapter 10, pages 200-219.

Segre, A. 1987. On the operationality/generality tradeoff in explanation-based

References 61

learning. In Proc. IJCAI-87 (1987), pages 242-248.
Sethi, I. K. and Otten, M. 1990. Comparison between entropy net and decision

tree classifiers. In International Joint Conference on Neural Networks, volume
111, pages 63-68, San Diego, California.

Sharkey, A. J. C. 1995. Special issue: Combining artifical neural nets: Ensemble
approaches. Connection Science, 8.

Shastri, L. 1988. A connectionist approach to knowledge representation and limited
inference. Gognitiiie Science, 12:331-392.

Simard, P., Victorri, B., LeCun, Y., and Denker, J. 1992. Tangentprop-a formal-
ism for specifying selected invariances in an adaptive network. In Moody et al.
(1992), pages 895- 903.

Neural trees: a new tool for classification.
Network, 1:423-438.

Sirat, J . A. and Nadal, J . P. 1990.

Smolensky, P. 1990. Tensor product variable binding and the representation of
symbolic structures in connectionist systems. Artificial Intelligence, (46): 159-
216.

Sohn, A. and Gaudiot, J . 1991. Connectionist production systems in local and
hierarchical representation. In Bourbakis, N., editor, Applications of Learning
and Planning Methods, pages 165-180. World Scientific Publishing, Singapore.

Sperduti, A. 1994. Labelling recursive auto-associative memory. Connection
Science, 6:429 -460.

Stolcke, A. and Wu, D. 1992. Tree matching with recursive distributed representa-
tions. In Sun et al. (1992).

Suddarth, S. C. and Holden, A. D. C. 1991. Symbolic-neural systems and the use
of hints for developing complex systems. International Journal of Man-Machine
Studies, 35(291-311).

Suddarth, S. C. and Kergosien, Y. L. 1990. Rule-injection hints as a means of
improving network performance and learning time. In Almeida, L. and Wellekens,
C., editors, Neural Networks: Proc. EURASIP Workshop, volume 412 of Lecture
Notes in Computer Science, Berlin. Springer.

Sun, R. 1991. Integrating Rules and Connectionism for Robust Reasoning. A
Connectionist Architecture with Dual Representation. PhD thesis, Brandeis
University, Waltham, MA 02254. Technical Report CS-91-160.

AAAI-92 Workshop on
Integrating Neural and Symbolic Processes: The Cognitive Dimension.

sequential decision tasks. In Proc. Cognitive Science Conference.

Taha, I. and Ghosh, 3. 1995. A hybrid intelligent architecture for refining input
characterization and domain knowledge. In Proc. World Congress on Neural
Networks, pages 11: 284-87, Washington, DC.

Sun, R., Booknian, L., and Shekar, S., editors 1992.

Sun, R., Peterson, T., and Merrill, E. 1996. Bottom-up skill learning in reactive

62 Architectures and Techniques for Knowledge-Based Neurocomputing

Tecuci, G. and Kodratoff, Y. 1990. Apprenticeship learning in imperfect domain
theories. In KodratoE and Michalski (1990), chapter 19, pages 514-551.

Thrun, S. B. 1996. Explanation-Based Neural Network Learning: A Lifelong Ap-
proach. Kluwer.

Integrating inductive neural network
learning and explanation-based learning. In Proc. IJCAI-93 (1993) , pages 930-
936.

Touretzky, D., editor 1990a. Advances in Neural Information Processing, 2.

Touretzky, D. S. 1990b. Boltzcons : Dynamic symbol structures in a connectionist

Touretzky, D. S. and Hinton, G. E. 1988. A distributed connectionist production

Towell, G. G. and Shavlik, J . W. 1994. Knowledge-based artificial neural networks.

Thrun, S. B. and Mitchell, T. M. 1993.

Morgan-Kaufmann, San Mateo, CA.

network. Artificial Intelligence, 46(1-2).

system. Cognitive Science, 12:423-466.

Artificial Intelligence, 70: 119-165.
Valiant, L. G. 1984. A theory of the learnable. Communications of the A C M ,

27:1134-1142.
Vysniauskas, V., Groen, F. C. A., and Krose, B. 1993. The optimal number of

learning samples and hidden units in function approximation with a feedforward
network. Technical Report CS-93-15, CSD, University of Amsterdam.

Vysniauskas, V., Groen, F. C. A., and Krose, B. J . A. 1995. Orthogonal incremental
learning of a feedforward network. In International Conference on Artificial
Neural Networks, Paris.

Waibel, A., Hanazawa, T., Hinton, G., Shikano, K., and Lang, K. 1989. Phoneme
recognition using time-delay neural networks. I E E E Transactions on Acoustics,
Speech and Signal Processing, 37:328-339.

Weigend, A. S., Rumelhart, D. E., and Huberman, B. A. 1991. Generalization by
weight elimination with application to forecasting. In Lippman et al. (1991),
pages 875-882.

Wolpert, D. H. 1992. Stacked generalization. Neural Networks, 5.
Yu, Y. H. and Simmons, R. F. 1990.

IJCNN-90 (1990), pages I11 161-166.
Extra output biased learning. In Proc.

3 Symbolic Knowledge Representation in
Recurrent Neural Networks: Insights from
Theoretical Models of Computation

Christian W. Omlin and C. Lee Giles

This chapter gives a n overview of some of the fundamental issues found in the
realm of recurrent neural networks. Theoretical models of computation are used
to characterize the representational, computational, and learning capabilitities of

recurrent network models. W e discuss how results derived for deterministic models
can be generalized to fuzzy models and then address how these theoretical models
can be utilized within the knowledge- based neurocomputing paradigm for. training
recurrent networks, for extracting symbolic knowledge from trained networks, and
for improving network training and generalization performance by making eflective
use of prior knowledge about a problem domain.

3.1 Introduction

This chapter addresses some fundamental issues in regard to recurrent neural
network architectures and learning algorithms, their computational power, their
suitability for different classes of applications, and their ability to acquire symbolic
knowledge through learning. We have found it convenient to investigate some of
those issues in the paradigm of theoretical models of computation, formal languages,
and dynamical systems theory. We briefly outline some of the issues we discuss in
this chapter.

3.1.1 Why Neural Networks?

Neural networks were for a long time considered to belong outside the realm of
mainstream artificial intelligence. The development of powerful new architectures
and learning algorithms and the success of neural networks at solving real-world
problems in a wide variety of fields has established a presence for neural networks
as part of the toolbox for building intelligent systems. The reasons why neural

Symbolic Knowledge Representation in Recurrent Neural Networks

networks enjoy tremendous popularity include their ability to learn from examples
and to generalize to new data, and their superior performance compared to more
traditional approaches for solving some real-world problems. Furthermore, they
are universal computational devices; virtually identical network architectures and
training algorithms can be applied to very different types of applications. Successful
applications of neural networks include optical character recognition, robotics,
speaker recognition and identification, credit rating and credit card fraud detection,
and timeseries prediction.

3.1.2 Theoretical Aspects of Neural Networks

Despite that neural networks have had a significant impact, their theoretical foun-
dations generally lag behind their tremendous popularity. For instance, feedforward
neural networks with hidden layers were in use long before it was shown that a single
hidden layer of sigmoidal neurons is sufficient for approximating continuous func-
tions with arbitrary precision (Cybenko, 1989). Furthermore, determining the size
of the hidden layer for a particular application remains an open question; in the ab-
sence of definitive theoretical results, heuristics for on-line growing and pruning of
network architectures have been proposed (Fahlman, 1990, 1991; Cun et al., 1990;
Mozer and Smolensky, 1989; Giles and Omlin, 1994). Similarly, recent theoretical
results relate network size and size of training sets to a network’s generalization
performance (Baum and Haussler, 1989), but there exist no results which guaran-
tee that a network can be trained to reach that generalization performance or more
importantly, that training even converges to a solution. Developers side-step that
problem by measuring generalization performance using test sets or crossvalidation.

Even though negative theoretical results demonstrate that training neural net-
works is a computationally difficult problem (Judd, 1987), neural networks have and
will continue to enjoy tremendous popularity. In addition, methods and heuristics
have been developed which ease, but do not eliminate the computational challenges;
they include use of parallel learning algorithms (Deprit, 1989), use of partial prior
system information (Omlin and Giles, 1992; Towel1 and Shavlik, 1994), and train-
ing data selection and presentation heuristics. Thus, it appears that theoretical
results generally have little bearing on how neural networks are used, particularly
when the results do not give hands-on recipes. This is also the case for some of the
theoretical results regarding the computational power of recurrent neural networks
which we will discuss here while others have the potential to have a direct impact
on applications.

3.1.3 What Kind of Architecture Is Appropriate?

Selecting the size of the hidden layer of a feedforward neural network is only one
example of how to choose a network architecture for a particular application. A more
fundamental choice is dictated by the nature of the application: Is the application
limited to dealing with spatial patterns (in the general sense) which are invariant

3.1 Introduction 65

over time or are they time-varying or so-called spatio-temporal patterns? Speech
and stock markets are good examples of time-varying patterns.

The computational capabilities of feedforward networks are sufficient for learning
input-output mapping between fixed, spatial patterns. If an application deals with
time-varying patterns, we may still be able to use feedforward neural networks.
Tapped delay neural networks (TDNNs) are a class of feedforward neural networks
proposed for speech recognition, more precisely phoneme recognition (Lang et al.,
1990). The success of TDNNs is based on the very limited context of the sampled
speech signals that is required for phoneme identification. Similarly, feedforward
networks may be sufficient for control applications where all system states are
observable, i.e. there are no hidden states, even though we are dealing with time-
varying patterns which require long-term context. What do we gain by using
recurrent neural networks with hidden states, and how does it affect training'! We
maintain the position that recurrent network architectures significantly expand the
range of problenis that neural networks can be applied to.

3.1.4 Recurrent Networks and Models of Computation

Recurrent neural networks are appropriate tools for modeling time-varying sys-
tems, e.g. financial markets, physical dynamical systems, speech recognition, etc.
Networks can be used to recognize pattern sequences, e.g. speech recognition, or
they can be used for forecasting future patterns, e.g. financial markets. These appli-
cations are generally not well-suited for addressing fundament a1 issues of recurrent
neural networks such as training algorithms and knowledge representation because
they come with a host of application-specific characteristics which muddle the fun-
damental issues, e.g. financial data is generally non-stationary, or feature extraction
may be necessary for speaker identification.

We will discuss the capabilities of recurrent neural networks and related is-
sues in the framework of theoretical models of computation (Hopcroft and U11-
man, 1979). Models such as finite-state automata and their corresponding language
can be viewed as a general paradigm of temporal, symbolic knowledge. No feature
extraction is necessary to learn these languages from examples, and there exist
correspondences between levels of complexity of formal languages, their accepting
automata, and neural network models. Furthermore, the dynamics induced into
recurrent neurad networks through learning has a nice correspondence with the
dynamics of finite-state automata. Similar approaches have been used for char-
acterizing physical systems (Crutchfield and Young, 1991). Even though formal
languages and automata models may lack the semantics and complexities of natu-
ral languages arid some dynamical processes, they have great expressive power, and
results from these investigations are likely to have an impact on natural language
learning (Lawrence et al., 1996) and nonlinear system identification and control.

66 Symbolic Knowledge Representation in Recurrent Neural Networks

3.1.5 Knowledge Represent at ion and Acquisition

We can view representation of automata as a prerequisite for learning their corre-
sponding languages, i.e. if an architecture cannot represent an automaton, then it
cannot learn it either. These questions have been answered for some automata and
some network models (Giles et al., 1995; Kremer, 1995). In some cases, results not
only show that network models can represent certain automata, but also how the
actual mapping “automata + recurrent network” can be accomplished (Alquezar
and Sanfeliu, 1995; Frasconi et al., 1996; Omlin and Giles, 1996a).

3.1.6 Are Neural Networks Black Boxes?

One of the reasons why expert sytems have found acceptance more easily than
neural networks is their capability t o explain how they arrive at a solution for
a given problem. The explanation component is a by-product of the automated
reasoning process using the knowledge base and a set of rules describing a domain.
Neural networks, on the other hand, do not provide an explanation as part of their
information processing. The knowledge that neural networks have gained through
training is stored in their weights. Until recently, it was a widely accepted myth
that neural networks were black boxes, i.e. the knowledge stored in their weights
after training was not accessible to inspection, analysis, and verification. Since
then, research on that topic has resulted in a number of algorithms for extracting
knowledge in symbolic form from trained neural networks.

For feedforward networks, that knowledge has typically been in the form of
Boolean and fuzzy if-then clauses (Fu, 1994; Hayashi and Imura, 1990; Towel1 and
Shavlik, 1993); excellent overviews of the current state-of-the-art can be found in
several chapters of this book arid in (Andrews and Diederich, 1996; Andrews et al.,
1995). For recurrent networks, finite-state automata have been the main paradigm
of temporal symbolic knowledge extraction (Cleeremans et al., 1989; Frasconi et al.,
1991; Giles et al., 1992a; Omlin and Giles, 1996b; Watrous and Kuhn, 1992a; Zeng
et al., 1993). Clearly, neural networks are no longer black boxes. Some applications
(e.g. application of neural networks to credit rating and lending policy and critical
applications such as aircraft control) may require that neural networks undergo
validation prior to being deployed. Knowledge extraction could be an important
stage in that process.

3.1.7 Overcoming the Bias/Variance Dilemma

It has been accepted for a long time that neural networks cannot be expected
to learn anything useful without some significant prior structure (Minsky and
Papert, 1969). Recent theoretical results support that point of view (Geman et al.,
1992). Therefore, learning with prior knowledge (also known as learning with
hints) has attracted increasing attention. The philosophy of learning with hints
is that since training neural networks is an inherently difficult problem, advantage

3.2 Representation of Symbolic Knowledge in Neural Networks 67

should be taken of any and all prior knowledge that is available. One approach
is to prestructure or initialize a network with knowledge prior to training (Omlin
and Giles, 1992; Towel1 and Shavlik, 1994). The goal is to reduce training time
and possibly improve network generalization performance. Thus, the role of neural
networks then becomes that of knowledge refinement or even knowledge revision in
the case where the prior knowledge is incorrect (Omlin and Giles, 1996~) .

3.2 Representation of Symbolic Knowledge in Neural Networks

We give a brief general discussion of the significance of knowledge extraction and
initialization of neural networks with prior knowledge. We then di jcuss how these
two processes can be combined for knowledge refinement and revision.

3.2.1 Importance of Knowledge Extraction

The goal of knowledge extraction is to generate a concise symbolic description of
the knowledge stored in a network’s weights. Summaries of some existing knowledge
extraction methods can be found in several chapters of this book and in (Andrews
and Diederich, 1996; Andrews et al., 1995). Of particular concern-and an open
issue-is fidelity of the extraction process, i.e. how accurately the extracted knowl-
edge corresponds to the knowledge stored in the network. Fidelity can be measured
by comparing, for a given test set, the performance of a trained network with the
performance of extracted rules. Unfortunately, rule extraction is a computationally
very hard problem. For feedforward networks, it has been shown that there do not
exist polynomial-time algorithms for concise knowledge extraction (Golea, 1996).
Although no corresponding results exist in the literature for recurrent networks,
it is likely that a similar result applies. Thus, heuristics have been developed for
overcoming the combinatorial complexity of the problem.

The merits of rule extraction include discovery of unknown salient features and
nonlinear relat,ionships in data sets, explanation capability leading to increased user
acceptance, improved generalization performance, and possibly transfer of knowl-
edge to new, yet similar learning problems. As we will see later, improved general-
ization performance applies particularly to recurrent networks whose nonlinear dy-
namical characteristics can easily lead to deteriorating generalization performance.

Extraction algorithms can broadly be divided into three classes (Andrews et al.,
1995): Decompositional methods infer rules from the internal network structure
(individual nodes and weights). Pedagogical methods view neural networks as black
boxes, and use some machine learning algorithm for deriving rules which explain
the network input/output behavior. Algorithms which do not clearly fit into either
class are referred to as “eclectic,” i.e. they may have aspects of decompositional
and pedagogical methods.

68 Symbolic Knowledge Representation in Recurrent Neural Networks

3.2.2 Significance of Prior Knowledge

Partial prior knowledge has shown to be useful for network training and general-
ization. The prior knowledge may be in the form of explicit rules which can be
encoded into networks by programming some of the weights (Towel1 et al., 1990a),
or an initial analysis of the data may provide hints about a suitable architecture
(Tresp et al., 1993). Fidelity of the mapping of the prior knowledge into a net-
work is also important since a network may not be able to take full advantage of
poorly encoded prior knowledge or, if the encoding alters the essence of the prior
knowledge, the prior knowledge may actually hinder the learning process.

3.2.3 Neural Networks for Knowledge Refinement

Rule insertion and extraction can be combined to perform knowledge refinement
or revision with neural networks (Shavlik, 1994). The goal is to use neural network
learning and rule extraction techniques to produce a better or refined set of symbolic
rules that apply to a problem domain. Initial domain knowledge, which may also
contain information that is inconsistent with the available training data, is encoded
into a neural network; this encoding typically consists of programming some of a
network’s weights. Rather than starting with a network whose weights are initialized
to small random values, these programmed weights presumably provide a better
starting point for finding a solution in weight space. A network is then trained
on the available data set; training typically requires several passes through the
training set, depending on how close the initial symbolic knowledge is to the
final solution. Refined, or revised rules in the case of wrong prior knowledge, can
then be extracted from the trained network. The impact of using prior knowledge
in training feedforward neural networks on the generalization capability and the
required sample size for valid generalization has been theoretically investigated in
(Abu-Mostafa, 1990; Fu, 1996).

3.3 Computational Models as Symbolic Knowledge

3.3.1 A Hierarchy of Automata and Languages

This section introduces theoretical models of computation and formal languages
as a convenient framework in which to study the computational capabilities of
various network models. Even though these synthetic languages may lack some of
the characteristics of natural languages, they capture some of those characteristics
and, more importantly, they allow a classification of various levels of language
complexities.

We will discuss various network architectures and relate them to formal automata
in terms of their capability to represent spatio-temporal patterns. This discussion
will build a hierarchy from simple to more powerful network architectures and

3.3 Computa t ional Models as Symbolic Knowledge 69

Figure 3.1 Examples of DFAs: Shown are two unique. minimal DFAs. (a) Ran-
domly generated DFA with 10 states and two input symbols. State 1 is the DFAs
start state. Accepting states are shown with double circles. (b) DFA for triple parity
which accepts all strings over the alphabet C = {0,1, a } which contains a multiple
of 3 zeroes.
(0 IEEE Press. used with permission, see Copyright Acknowledgments)

models of computations. We will not discuss the details of training algorithms
or proofs of equivalence here. Instead. we will summarize results reported in the
literature. This will also provide a context for the more detailed discussions to follow
later on.

3.3.2 Finite- Stat e Automat a

A large class of discrete processes can be modeled by deterministic finite-state
automata (DFAs). They also form the basic building blocks of theoretical models
of computation. hlore powerful models of computation can be obtained by adding
new elements to DFAs; restrictions to the topology of DFAs yield special subclasses
of DFAs with characteristic properties.

We will use the following definition of DFAs in the remainder of this chapter:

Definition 3.1
A DFA AI is a 5-tuple AI = (C. Q. R. F , 6) where C = { a l , . . . , arc} is the alphabet
of the language L , Q = (~ 1 , . . . , slv ,} is a set of states, R E Q is the start state,
F C Q is a set of accepting states and S : Q x C -+ Q defines state transitions in
AI.

Two examples of DFAs are shown in Figure 3.1. A string x is accepted by the
DFA AI and hence is a member of the regular language L (M) if an accepting state
is reached after the entire string x has been read by Al. Alternatively. a DFA M

70 Symbolic Knowledge Representation in Recurrent Neural Networks

(a) (b)

Figure 3.2 Network architectures for definite memory machines: (a) Neural
Network Finite Impulse Response (NNFIR) (b) Input Delayed Neural Networks
(IDNNs)
(0 IEEE Press, used with permission, see Copyright Acknowledgments)

can be interpreted as a grammar which generates the regular language L (M) . A
sequential finite-state machine (Kohavi, 1978) is the actual implementation in some
logical form consisting of logic (or neurons) and delay elements that will recognize L
when the strings are encoded as temporal sequences. It is this type of representation
that the recurrent neural network will learn.

Since we will focus our discussion on learning regular languages, we give a brief
description of regular grammars; see (Hopcroft and Ullman, 1979) for more details.
Regular languages represent the smallest and simplest class of formal languages in
the Chomsky hierarchy and are generated by regular grammars. A regular grammar
G is a quadruple G = (S , V, T , P) where S is the start symbol, V and T are
respectively non-terminal and terminal symbols and P are productions of the form
A + a or A + a B where A , B E V and a E T . The regular language generated
by G is denoted L(G). A deterministic finite-state automaton (DFA) M is the
recognizer of each regular language L: L(G) = L (M) .

The process of learning grammars from example strings is also known as grummat-
icul inference (Fu, 1982; Angluin and Smith, 1983; Miclet, 1990). The inference of
regular grammars from positive and negative example strings has been shown to be
an NP-complete problem in the worst case (Golden, 1978). However, good heuristic
methods have recently been developed for randomly generated DFAs (Lang, 1992).

We will show in later sections how DFAs can be mapped into fully recurrent
network architectures such that the DFA and the recurrent network are equivalent,
i.e. accept the same language.

3.3 Computational Models as Symbolic Knowledge 71

Figure 3.3
states
(0 IEEE Press, used with permission, see Copyright Acknowledgments)

Definite memory machine: A "FIR learned this DMM with 2048

3.3.3 Subclasses of Finite-State Automata

We can identify two network architecture which are capable of representing sub-
classes of DFAs.

is a feedforward network implemented with tapped delay lines, see Figure 3.2. In
general, each neuron has a tapped delay line which stores the outputs of the pre-
vious d time steps. The output of that node and the stored values are inputs to
nodes in the next layer. The length of the tapped delay line determines the range
of input history to which the network is sensitive. It has been shown that NNFIR
networks are equivalent with IDNNs (Input-Delayed Neural Networks) which only
have delay lines for the network input layer (Clouse et al., 1997). It is obvious that
"FIR can only represent DFAs whose state depends on a limited input history.

In order to understand the representational capabilities of NNFIRs, an intuitive
argument based on network topology has been made that DFAs can be mapped
into sequential machines (Kohavi, 1978) using combinational logic and memory el-
ements. The machines whose current state can always be determined uniquely from
the knowledge of the last d inputs are called definite memory machines (DMMs).
It is obvious that combinational logic can be implemented by a feedforward neural
network with tapped input delay lines.

The transition diagrams of DFAs that can be mapped into DMMs are essentially

The first architecture-called Neural Network Finite Impulse Response (NNF1R)-

72 Symbolic Knowledge Representation in Recurrent Neural Networks

shift registers, i.e. only a small amount of ‘logic’ is necessary to compute the next
state from the current state and previous inputs. Contrary to what one’s intuition
about feedforward network architectures may suggest, these DFAs can have loops
and thus can accept strings of arbitrary length. IDNN architectures can learn DMMs
with a large number of states (in the order of 1000 states) if the ‘logic’ is sufficiently
simple. Such a large DMM is shown in Figure 3.3.

The representational capability of NNFIR can be increased by augmenting the
network architecture with output tapped delay lines that are fed back into the
network as inputs; this network architecture is also referred to as Neural Network
Infinite Impulse Response (NNIIR) because of its similarity to infinite response
filters. This topology of NNIIR is the same as that of Finite Memory Machines
(FMMs) which can be implemented as sequential machines using combinatorial
logic, e.g. memory and combinational logic.

FMMs are a subclass of DFAs for which the present state can always be deter-
mined uniquely from the knowledge of the last n inputs and last m outputs for all
possible sequences of length max(n, m)-also referred to as FMMs of input-order
n and output-order m. Given an arbitrary finite-state machine, there exist efficient
algorithms for determining if the machine has finite memory and its corresponding
order (Kohavi, 1978). As in the case of DMMs , large FMMs (i.e., machines with
on the order of 100 states) can be learned if the corresponding logic is relatively
simple. I t is fairly obvious that the class of finite memory machines includes the
class of definite memory machines: DMMs are FFMs with output order 0.

3.3.4 Push-Down Automata

The computational power of DFAs can be increased by adding an infinite stack. In
addition to reading input symbols and performing state transitions, input symbols
may also be pushed and popped onto and from the stack, respectively. This
enriched model is called the pushdown automaton (PDA). The language L (P) is
called context-free; a string x is a member of the language L (P) if the pushdown
automaton arrives at an accepting state after x has been read. Similarly to the
regular languages, there exists a context-free grammar G which generates exactly
the strings accepted by P: L(G) = L (P) .

In order to gain an intuitive understanding why PDAs are computationally more
powerful than DFAs, consider the language L = {anbnln 2 0). Examples are
ab, aabb, aaabbb, In order for a machine to determine whether or not a string
x is a member of the language, it needs to count the number of a’s it has seen
and check the number of b’s that follow the a’s. This can be achieved by pushing
the a’s onto the stack and popping the a’s from the stack as soon as the first b is
encountered. This task cannot be performed by a DFA ifthe length of the strings is
arbitrary. From this discussion, it is obvious that PDAs can also recognize regular
languages (we simply ignore the stack), but DFAs cannot recognize context-free
languages.

PDAs can be learned by recurrent networks with an external stack (Das et al.,

3.4 Mapping Automata into Recurrent Neural Networks 73

1992). More recently, methods for training recurrent networks without the use
of an external stack have been investigated (Wiles and Bollard, 1996). While
recurrent networks have in principle the computational power of PDAs they cannot
simulate arbitrary context-free languages. PDAs require infinite stack depth; this
demands infinite precision in the computation of the recurrent network which is not
possible. Nevertheless, research into the representation of ‘context-free’ languages in
recurrent networks seems promising since some interesting questions regarding the
dynamics of networks trained to recognize context-free languages can be addressed.

3.3.5 Turing Machines

The stack of PDAs determines the order in which symbols can be read from or
written to a memory. We can relax that requirement by replacing the stack with
an infinite input tape (or two stacks). This model is referred to as a Turing ma-
chine. In addition to performing state transitions, a Turing machine may read and
write information from and to the tape, respectively. This model is the most pow-
erful model of computation: It is capable of computing essentially all computable
functions (computability of a function is often expressed in terms of Turing com-
putability). Given the restrictions on how stored data can be accessed in PDAs,
it is intuitively obvious that Turing machines are cornputationally more powerful
than PDAs. It has been shown that recurrent neural networks are computation-
ally as powerful as Turing machines (Siegelmann and Sontag, 1995). However, this
equivalence requires infinite precision in the network computation. For all practical
purposes, Turing machines cannot be simulated by recurrent neural networks.

3.3.6 Summary

We have developed a hierarchy of the computational power of recurrent network
architectures by identifying the class of computation each of the neural network
architectures discussed here can perform. Even though recurrent networks have
in principle the power of Turing machines, they can in practice perform only
DFA computation due to the finite precision with which neural networks can be
simulated. Thus, we will limit our discussion to DFA computation in the remainder
of this chapter.

~- ~

3.4 Mapping Automata into Recurrent Neural Networks

3.4.1 Preliminaries

Recently, much work has focused on the representational capabilities of recurrent
networks as opposed to their ability to learn certain tasks. The underlying premise is
that if a network model cannot represent a certain structure, then it certainly cannot
learn it either. A positive answer to the question of whether or not a given recurrent

Symbolic Knowledge Representation in Recurrent Neural Networks

network architecture can represent a certain structure can be of three types: (1) The
network architecture is in principle computationally rich enough for representating
a certain structure, but an equivalence with a theoretical model of computation
would require infinite resources such as infinite precision (Siegelmann and Sontag,
1995) or infinitely many neurons (Sun et al., 1991). These answers establish the
computational power of recurrent networks. (2) Networks can represent a certain
structure with the given resources (Kremer, 1995, 1996; Sperduti, 1997). These
results can guide the selection of a recurrent network architecture for a given
application. However, no constructive algorithm is given which guarantees the
existence of a solution for a chosen architecture, e.g. network size. (3) We can give
an algorithm which maps the structure into a recurrent network architecture such
that the structure and network perform the same computation on identical inputs
for an arbitrary number of computation steps (Alon et al., 1991; Frasconi et al.,
1996; Minsky and Papert, 1969; Omlin and Giles, 1996a). These results guarantee
the existence of a solution, but do not guarantee that it can be learned. In the
remainder of this section, we will primarily answer questions of the third type for
DFAs.

3.4.2 DFA Encoding Algorithm

In showing how DFAs can be mapped into recurrent networks, we must address
three issues: First, we must establish a mapping from DFA states to an internal
representation in the network. Then, we must program the network weights such
that the network dynamics mimic the DFA dynamics. Finally, we must prove that
the DFA and the derived network perform the same computation for an arbitary
number of time steps. This is not obvious: DFAs have a discrete state space whereas
recurrent networks with sigmoidal discriminants can exhibit complicated nonlinear
dynamics (Tino et al., 1995).

For ease of representation, we choose networks with second-order weights w ; j k

shown in Figure 3.4. The continuous network dynamics are described by the fol-
lowing equations:

where bi is the bias associated with hidden recurrent state neurons Si; I k denotes
input neurons; g is the nonlinearity; and a; is the activation of the i th neuron.

An aspect of the second order recurrent neural network is that the product SjIL
in the recurrent network directly corresponds with the state transition S (q j , arc) = qi
in the DFA. After a string has been processed, the output of a designated neuron
5'0 decides whether the network accepts or rejects a string. The network accepts a
given string if the value of the output neuron Sh at the end of the string is greater
than some preset value such as 0.5; otherwise, the network rejects the string. For
the remainder of this chapter, we assume a one-hot encoding for input symbols a k ,

3.4 Mapping Automata into Recurrent Neural Networks 75

Figure 3.4
(0 ACM, used with permission, see Copyright Acknowledgments)

Second-order recurrent neural network.

i.e. I: E (0, I}.
Our DFA encoding algorithm follows directly from the similarity of state transi-

tions in a DFA and the dynamics of a recurrent neural network: Consider a state
transition G(sj ,ak) = s i . We arbitrarily identify DFA states sj and si with state
neurons Sj and Si, respectively. One method of representing this transition is to
have state neuron Si have a high output = 1 and state neuron Sj have a low output
FZ 0 after the input symbol ak has entered the network via input neuron I k . One
implementation is to adjust the weights W j j k and W i j k accordingly: setting Wijk to
a large positive value will ensure that Skfl will be high and setting W j j k to a large
negative value will guarantee that the output S;" will be low. All other weights are
set to small random values. In addition to the encoding of the known DFA states,
we also need to program the response neuron, indicating whether or not a DFA
state is an accepting state. We program the weight W o j k as follows: If state si is an
accepting state, then we set the weight W o j k to a large positive value; otherwise,
we will initialize the weight W o j k to a large negative value. We define the values
for the programmed weights as a rational number H , and let large programmed
weight values be +H and small values -H. We will refer to H as the strength of
a rule. We set the value of the biases bi of state neurons that have been assigned
to known DFA states to -H/2. This ensures that all state neurons which do not
correspond to the the previous or the current DFA state have a low output. Thus,
the rule insertion algorithm defines a nearly orthonormal internal representation
of all known DFA states. We assume that the DFA generated the example strings
starting in its initial state. Therefore, we can arbitrarily select the output of one of
the state neurons to be 1 and set the output of all other state neurons initially to
zero.

76 Symbolic Knowledge Representation in Recurrent Neural Networks

Figure 3.5 Fixed points of the sigmoidal discriminant function: Shown are the
graphs of the function f (x , r) = , + r H (l ~ 2 T L) , 2 (dashed graphs) for H = 8 and
r = { 1,2 .4 , l O } and the function p(x. U) = l + e H (l - : (r p l A)) , 2 (dotted graphs) for H = 8
and U = {0.0,0.1,0.4,0.9}. Their intersection with the function y = x shows the
existence and location of fixed points. In this example, f (z , r) has three fixed points
for r = (1. a}, but only one fixed point for r = (4, l O } and p (x , U) has three fixed
points for U = { O . O , O . l } . but only one fixed point for U = (0.6,O.g).
(0 AChI, used with permission, see Copyright Acknowledgments)

3.4.3 Stability of the DFA Representation

The encoding algorithm leads to the following special forin of the equation governing
the network dynamics:

where x is the input to neuron S,. and H is the weight strength. The proof of
stability of the internal DFA representation makes use of (1) the existence of three
fixed points 6.4' and $+ of the sigmoidal discriminant, (2) 0 < d- < 4' <
q5+ < 1, (3) the stability of 4- and @+ (notice that the fixed point 4' is unstable),
and (4) two auxiliary siginoidal functions f and 9 whose fixed points (17 and 4:
provide upper and lower bounds on the low and high signals, respectively, in a
constructed network. The graphs in Figure 3.5 illustrate the fixed points of the
siginoidal discriminant ftinct ion.

As can be seen, the discriminant function may not have two stable fixed points
for some choices of the parameters. However, the existence of two stable fixed
points can be guaranteed by establishing a lower bound on the weight strength H

3.4 Mapping Automata into Recurrent Neural Networks 77

for given values of 'n. This is illustrated in Figure 3.5 (see figure caption for an
explanation). Convergence to the fixed points 4- and $+ can be shown using a
Lyapunov argument: An appropriate energy function can be defined and it can be
shown that that, function only reaches a minimum for either one of the two fixed
points. The following result can be derived from the above analysis:

Theorem 3.1
For any given DFA M with r states and m input symbols, a sparse recurrent neural
network with r + 1 sigmoidal state neurons and m input neurons can be constructed
from Ad such that the internal state representation remains stable if the following
three conditions are satisfied:

Furthermore, the constructed network has at most 3mr second-order weights with
alphabet C, = { - H , 0, + H } , r + 1 biases with alphabet Cb = { - H / 2 } , and
maximum fan-out 3m.

The function Ho(r) is shown in Figure 3.6 (see caption for an explanation). For
any choice H > H i (r) and N > H $ (r) for low and high signals, respectively, the
sigmoidal discriminant function is guaranteed to have two stable fixed points. Stable
encoding of DFA states is a necessary condition for a neural network to implement
a given DFA. The network must also correctly classify all strings. The conditions
for correct string classification are expressed in the following corollary:

Corollary 3.1
Let L (M D F A) denote the regular language accepted by a DFA M with r states and
let L (M R N N) be the language accepted by the recurrent network constructed from
M . Then, we have L (M R N N) = L (M D F A) if

3.4.4 Simulations

In order to empirically validate our analysis, we constructed networks from ran-
domly generated DFAs with 10, 100 and 1,000 states. For each of the three DFAs,
we randomly generated different test sets each consisting of 1,000 strings of length
10, 100, and 1,000, respectively. The networks' generalization performance on these
test sets for rule strength H = {0.0,0.1,0.2,. . . ,7.0} are shown in Figures 3.7-

78 Symbolic Knowledge Representation in Recurrent Ne,ural Networks

Figure 3.6 Existence of fixed points: The contour plots of the function h(x, rj = x
(dotted graphs) show the relationship between H and x for various values of r . If
H is chosen such that H > H o (r) (solid graph). then a line parallel to the x-axis
intersects the surface satisfying h (z , r) = x in three points which are the fixed points

(0 ACAI, used with permission, see Copyright Acknowledgments)
of h(L rj.

3.9. A niisclassification of these long strings for arbitrary large values of H would
indicate a network's failure to maintain the stable finite-state dynamics that was
encoded. However, we observe that the networks can implement stable DFAs as
indicated by the perfect generalization performance for some choice of the rule
strength H arid a chosen test set. Thus, we have empirical evidence which supports
our analysis.
All three networks achieve perfect generalization for all three test sets for approxi-
mately the same value of H . Apparently, the network size plays an insignificant role
in determining for which value of H stability of the internal DFA representation is
reached, at least across the considered 3 orders of magnitude of network sizes.

In our simulations, no neurons ever exceeded or fell below the fixed points (D: and
4;. respectively. Furthermore, the network has a built-in reset mechanism which
allows ~ O W arid high signals to be strengthened. Low signals Sj are strengthened to
h(0. H) when there exists no state transition S(. . ak) = qJ . In that case. the neuron
Sl receives no inputs from any of the other neurons: its output becomes less than
4; since h(0 . H) < df. Similarly. high signals St get strengthened if either low

3.4 Mapping Automata into Recurrent Neural Networks 79

Figure 3.7 Performance of 10-state DFA: The network classification performance
on three randomly-generated data sets consisting of 1,000 strings of length 10 (O),
100 (+), and 1,000 (U), respectively, as a function of the rule strength H (in 0.1
increments) is shown. The network achieves perfect classification on the strings of
length 1,000 for H > 6.0.
(0 kIIT Press. used with permission. see Copyright Acknowledgments)

Figure 3.8 Performance of 100-state DFA: The network classification performance
on three randomly-generated data sets consisting of 1,000 strings of length 10 (O),
100 (+). and 1,000 (U), respectively, as a function of the rule strength H (in 0.1
increiiieiits) is shown. The network achieves perfect classification on the strings of
length 1,000 for H > 6.2.
(0 hlIT Press, used with permission, see Copyright Acknowledgments)

80 Symbolic Knowledge Representation in Recurrent Neural Networks

Figure 3.9 Performance of 1000-state DFA: The network classification perfor-
mances on three randomly-generated data sets consisting of 1,000 strings of length
10 (0). 100 (+), and 1.000 (U), respectively, as a function of the rule strength H (in
0.1 increments). The network achieves perfect classification on the strings of length
1.000 for H > 6.1.
(0 hlIT Press, used with permission. see Copyright Acknowledgments)

signals feeding into neuron S, on a current state transition 6 ({ q J } , a k) = y2 have
beeii strengthened during the previous tirne step or when the number of positive
residual inputs to neiiron S, compensates for a weak high signal from neurons { q J } .
Since constructed networks are able to regenerate their internal signals and since
typical DFAs do not have the worst case properties assumed in this analysis. the
conditions guaranteeing stable low and high signals are generally much too strong
for some given DFA.

3.4.5 Scaling Issues

The worst case analysis supports the following predictions about the implementa-
tion of arbitrary DFAs:

(1)

(2)

(3)

neural DFAs can be constructed that are stable for arbitrary string length for finite
value of the weight strength H ,

for most neural DFA inipleiiientations, network stability is achieved for values of H
that are smaller than the values required by the conditions in Theorem 3.1,

the value of H scales with the DFA size, i.e. the larger the DFA and thus the
network. the larger H will be for guaranteed stability.

Predictions (1) arid (2) are supported by our experiments. However, when we
compare the values H in the above experiments for DFAs of different sizes, we

3.4 Mapping Automata into Recurrent Neural Networks 81

find that H w 6 for all three DFAs. This observation seems inconsistent with
the theory. The reason for this inconsistency lies in the assumption of a worst
case for the analysis, whereas the DFAs we implemented represent average cases.
For the construction of the randomly generated 100-state DFA we found correct
classification of strings of length 1,000 for H = 6.3. This value corresponds to a
DFA whose states have ‘average’ indegree n = 1.5. [The magic value 6 also seems to
occur for networks which are trained. Consider a neuron Si; then, the weight which
causes transitions between dynamical attractors often has a value w 6 (Tino, 1994).]
However, there exist DFAs which exhibit the scaling behavior that is predicted by
the theory. We will briefly discuss such DFAs. That discussion will be followed by an
analysis of the condition for stable DFA encodings for asymptotically large DFAs.

3.4.6 DFA States with Large Indegree

We can approximate the worst case analysis by considering an extreme case of a
DFA:

Select an arbitrary DFA state qp;

select a fraction p of states qj and set 6 (q j , arc) = qp.

For low values of p, a constructed network behaves similarly to a randomly gener-
ated DFA.
As the number of states qj for which 6 (q j , arc) = qp increases, the behavior gradually
moves toward the worst case analysis where one neuron receives a large number of
residual inputs for a designated input symbol arc.

We constructed a network from a randomly generated DFA MO with 100 states
and two input symbols. We derived DFAs Mpl , M p 2 , . . . , M p , where the fraction
of DFA states qj from Mp, to Mpitl with 6 (q j , a k) = qp increased by A p ; for our
experiments, we chose A p = 0.05. Obviously, the languages L (M p z) change for
different values of pi. The graph in Figure 3.10 shows for 10 randomly generated
DFAs with 100 states the minimum weight strength H necessary to correctly classify
100 strings of length 100-a new data set was randomly generated for each DFA-
as a function of p in 5% increments. We observe that H generally increases with
increasing values of p; in all cases, the hint strength H sharply declines for some
percentage value p. As the number of connections +H to a single state neuron Si
increases, the number of residual inputs which can cause unstable internal DFA
representation and incorrect classification decreases.

We observed that there are two runs where outliers occur, i.e. Hpi > Hpz+l even
though we have pi < pi+l. Since the value H p depends on the randomly generated
DFA, the choice for qp and the test set, we can expect such an uncharacteristic
behavior to occur in some cases.

82 Symbolic Knowledge Representa t ion in Recurrent Neural Networks

Figure 3.10 Scaling weight strength: An accepting state qp in 10 randomly
generated 100-state DFAs was selected. The number of states qJ for which 6 (q J , 0) =

qp was gradually increased in increments of 5% of all DFA states. The graph shows
the minimum values of H for the correct classification of 100 strings of length 100.
H increases up to p = 75%; for p > 75%. the DFA becomes degenerate causing H to
decrease again. (0 hlIT Press. used with permission, see Copyright Acknowledgments)

3.4.7 Comparison with Other Methods

Different methods (Alon et al., 1991: Frasconi et al., 1993, 1995; Horne and Hush,
1994: illinsky, 1967) for encoding DFAs with n states and m input symbols in
recurrent networks are summarized in Table 3.1. The methods differ in the choice
of the discrimiiiant function (hard-limiting, sigmoidal. radial basis function), the
size of the constructed network and the restrictions that are imposed on the weight
alphabet, the neuron fan-in arid fan-out. The results in (Horne and Hush, 1994)
improve the upper arid lower bounds reported in (Alon et al.. 1991) for DFAs with
only two input symbols. Those bounds can be generalized to DFAs with m input
symbols (Horne, 1994). Among the methods which use continuous discrimiiiant
functions. our algorithm uses no more neurons than the best of all methods, and
consistently uses fewer weights and smaller fan-out size than all methods.

3.5 Extension to Fuzzy Domains 83

Author(s)
Minsky (1967)
Alon (1991)

Table 3.1 Comparison of different DFA encoding methods: The different methods
use different amounts and types of resources to implement a given DFA with n states
and m input symbols.

Nonlinearity Order # Neurons # Weights
hard first O (m 4 O (m 4

hard first 0 (~ 3 / 4) -

Frasconi (1993)
Horne (1994)
Frasconi (1996)

sigmoid first O (m 4 O(n2> .

hard first O (d m) O(mn log n)

radial/sigmoid first O (4 O(n2>

3.5 Extension to Fuzzy Domains

3.5.1 Preliminaries

There has been an increased interest in hybrid systems as more applications using
hybrid models emerge. One example of hybrid systems is in combining artificial
neural networks and fuzzy systems (Bezdek, 1992). Fuzzy logic (Zadeh, 1965)
provides a mathematical foundation for approximate reasoning and has proven very
successful in a variety of applications. Fuzzy finite-state automata (FFAs) have a
long history (Dubois and Prade, 1980) and can be used as design tools for modeling
a variety of systems (Cellier and Pan, 1995; Kosmatopoulos and Christodoulou,
1995). Such systems have two major characteristics: (1) the current state of the
system depends on past states and current inputs, and (2) the knowledge about the
system’s current state is vague or uncertain.

A variety of implementations of FFAs have been proposed (Grantner and Patyra,
1994; Khan and Unal, 1995; Unal and Khan, 1994), some in digital systems. How-
ever, this is the first proof that such implementations in sigmoid activation RNNs
are stable, i.e. guaranteed convergence to the correct prespecified membership (Om-
lin et al., 1998). Furthermore, this proof can be for different FFA representations,
with and without fuzzy state representation: It is based on stably mapping de-
terministic finite-state automata (DFAs) into recurrent neural networks discussed
above.

In contrast to DFAs, a set of FFA states can be occupied to varying degrees at
any point in time; this fuzzification of states generally reduces the size of the model,
and the dynamics of the system being modeled is often more accessible to a direct
interpret ation.

The proofs of representational properties of AI and machine learning structures
are important for a number of reasons. Many users of a model want guarantees
about what it can theoretically do, i.e. its performance and capabilities; others need
this for use justification and acceptance. The capability of representing FFAs can be
viewed as a foundation for the problem of learning FFAs from examples (if a network

Symbolic Knowledge Representation in Recurrent Neural Networks

Figure 3.11 Transformation of an FFA into its corresponding DFA: (a) A fuzzy
finite-state autoniaton with weighted state transitions. State 1 is the automaton’s
start state: accepting states are drawn with double circles. Only paths that can
lead to an accepting state are shown (transitions to garbage states are not shown
explicitly). A transition from state q3 to 9% on input symbol uh with weight 8
is represented as a directed arc from q3 to q2 labeled u k / O . (b) corresponding
deterministic finite-state automaton which computes the membership function
strings. The accepting states are labeled with the degree of membership. Notice
that all transitions in the DFA have weight 1.
(0 IEEE Press, used with permission. see Copyright Acknowledgments)

cannot represent FFAs, then it certainly will have difficulty in learning them). A
stable encoding of knowledge means that the model will give the correct answer
(membership in this case) independent of when the system is used or how long it
is used. This can lead to robustness that is noise independent. Finally, with the
extraction of knowledge from trained neural networks, the methods presented here
could potentially be applied to incorporating and refining a priorz fuzzy knowledge
in recurrent neural networks (Maclin arid Shavlik, 1993).

3.5.2 Crisp Representation of Fuzzy Automata

The following result allows us to immediately apply the DFA encoding algorithm
and stability analysis discussed above in order to map FFA states and state
transitions into recurrent networks (Thomason and Marinos. 1974):

Theorem 3.2
Given a regular fuzzy automaton AI . there exists a deterministic finite-state au-
torriaton AI’ with output alphabet 2 C (8 : 8 is a production weight} U (0) which
computes the membership function p : C* + [O. 11 of the language L(h1’).

An example of such a transformation is shown in Figure 3.11. In order to complete
the mapping, we just need to compute the fuzzy membership functioii of strings.

3.5 Extension to Fuzzy Domains 85

Figure 3.12 Recurrent network architecture for crisp representation of fuzzy
finite-state automata: The architecture consists of two parts: Recurrent state neu-
rons encode the state transitions of the deterministic acceptor. These recurrent
state neurons are connected to a linear output neuron which computes string mem-
bership.
(0 IEEE Press, used with permission. see Copyright Acknowledgments)

The following lemma is useful:

Lemma 3.1
For the fixed points 9- and q5+ of the sigmoidal discriminant, we have

lim 4- = 0 and lim $+ = 1
H-30 H+r>o

Since exactly one neuron corresponding to the current automaton state has a high
output a t any given time and all other neurons have an output close to 0, we can
simply multiply the outputs of all neurons by the fuzzy acceptance label of the
corresponding automaton state and add up all values. Thus. we have the following
result:

Theorem 3.3
Any fuzzy finite-state autoniaton Al can be represented in a second-order recurrent
neural network with linear output layer which computes the fuzzy membership
function of input strings with arbitrary accuracy.

86 Symbolic Knowledge Representation in Recurrent Neural Networks

An architecture for this mapping is shown in Figure 3.12. In order to empirically test
our encoding methodology, we examine how well strings from randomly generated
FFAs are classified by a recurrent neural network in which the FFA is encoded.
We randomly generated deterministic acceptors for fuzzy regular languages over
the alphabet { a , b } with 100 states as follows: For each DFA state, we randomly
generated a transition for each of the two input symbols t o another state. Each
accepting DFA state qi was assigned a membership 0 < pi 5 1; for all non-accepting
states q j , we set p j = 0. We encoded these acceptors into recurrent networks with
100 recurrent state neurons, two input neurons (one for each of the two input
symbols 0 and l), and one linear output neuron.

We measured their performance on 100 randomly generated strings of fixed length
100 whose membership was determined from their deterministic acceptors. The
graphs in Figure 3.13 show the average absolute error of the network output as
a function of the weight strength H used to encode the finite-state dynamics for
DFAs where 1%, 5%, 20%, 30%, 50% and 100% of all states had labels 0 < pi 5 1.
We observe that the error decreases exponentially with increasing hint strength H ,
i.e. the average output error can be made arbitrarily small. The DFA size has no
significant impact on the network performance. The network performance depends
on the stability of the internal representation of the finite-state dynamics; the value
of H for which the dynamics of all DFAs used in these experiments remains stable
for strings of arbitrary length is approximately H N 9.8. When the representation
becomes unstable because the weight strength H has been chosen too small, then
that instability occurs for very short strings-typically less than five iterations.

We have also shown that network architectures such as shown in Figure 3.12 learn
an internal representation of a deterministic acceptor when trained on fuzzy strings.
A deterministic acceptor can then be extracted from a trained network using any
of the known DFA extraction heuristics. Whether or not a fuzzy representation of
an FFA can be extracted remains an open question.

3.5.3 f i z z y FFA Representation

In this section, we present a method for encoding FFAs using a fuzzy representation
of states. The method generalizes the algorithm for encoding finite-state transitions
of DFAs. The objectives of the FFA encoding algorithm are (1) ease of encoding
FFAs into recurrent networks, and (2) the direct representation of “fuzziness,” i.e.
the uncertainties 6’ of individual transitions in FFAs are also parameters in the
recurrent networks. The stability analysis of recurrent networks representing DFAs
generalizes to the stability of the fuzzy network representation of FFAs.

We extend the functionality of recurrent state neurons in order to represent fuzzy
states as illustrated in Figure 3.14.

The main difference between the neuron discriminant function for DFAs and
FFAs is that the neuron now receives as inputs the weight strength H , the signal
x which represents the collective input from all other neurons, and the transition
weight O i j k , where S (a k , q j , O i j k) = qi; we will denote this triple with (x, H 7 O i j k) .

3.5 Extension to Fuzzy Domains 87

The value of 0 i j k is different for each of the states that collectively make up the
current fuzzy network state. This is consistent with the definition of FFAs.

The following generalized form of the sigmoidal discriminant function g(.) will
be useful for representing FFA states:

Compared to the discriminant function g(.) for the encoding of DFAs, the weight
H which programs the network state transitions is strengthened by a factor 1 / 0 i j k
(0 < 0 , j k 5 1); the range of the function i j(.) is squashed to the interval [0 , 0 i j k] ,

and it has been shifted towards the origin. Setting 0 i j k = 1 reduces the function
to the sigmoidal discriminant function used for DFA encoding. More formally, the
function ij(x, H , 0) has the following important invariant property which will later
simplify the analysis:

Lemma 3.2
g (~ ~ , H, e) = e g(X, H , 11.

Thus, ij(0x, H , 0) can be obtained by scaling S(x, H , 1) uniformly in the x- and
y-directions by a factor 0.

The above property of ij allows a stability analysis of the internal FFA state
representation similar to the analysis of the stability of the internal DFA state
representation to be carried out.

We map FFAs into recurrent networks as follows: Consider state qj of FFA 111
and the fuzzy state transition 6 (u k , q j , { O i j k }) = {qi, . . . qi,}. We assign recurrent
state neuron Sj to FFA state qj and neurons Si, . . . Si, to FFA states qil . . . qi,.

The basic idea is as follows: The activation of recurrent state neuron Si represents
the certainty 0 i j k with which some state transition d (a k , q j , 0 i j k) = qi is carried out,
i.e. Stfl N 8 i j k . If qi is not reached at time t + 1, then we have Sdf' N 0.

We program the second-order weights W i j k as we did for DFAs with the exception
that any neuron with a high output can drive the output of several other neurons
to a high value. This encoding algorithm leaves open the possibility for ambiguities
when an FFA is encoded in a recurrent network as follows: Consider two FFA states
q j and ql with transitions 6 (q j , ak , 0 i j k) = 6(ql , ak , 0 i l k) = qi where qi is one of all
successor states reached from q j and 41, respectively, on input symbol uk. Further
assume that qj and 41 are members of the set of current FFA states, i.e. these states
are occupied with some certainty. Then, the state transition G(qj,ak,Nijk) = qi

requires that recurrent state neuron Si have dynamic range [0 , 0 i j k] while state
transition d(q1, ak , 0 i l k) = qi requires that state neuron Si asymptotically approach
$ i l k . For 0 i j k # O i l k , we have ambiguity for the output range of neuron Si:

Definition 3.2
We say an ambiguity occurs at state qi if there exist two states qj and 41 with
6 (Q j , ak, O i j k) 6(ql , ak, @ i l k) = qi and 0 i j k # 0 i l k . An FFA M is called ambiguous
if an ambiguity occurs for any state qi E M .

88 Symbolic Knowledge Representation in Recurrent Neural Networks

However, there exists a simple algorithm which resolves these ambiguities by
splitting each state for which an ambiguity exists into two or more new unambiguous
states (Giles et al., 1999):

Theorem 3.4
Any FFA M can be transformed into an equivalent, unambiguous FFA M’.

In order to prove the stability of a proposed fuzzy FFA encoding, we need to in-
vestigate under what conditions the existence of three fixed points of the fuzzy
sigmoidal discriminant g (-) is guaranteed. See Equation (3) in Theorem 3.1. For-
tunately, the following corollaries establish some useful invariant properties of the
function Ho(n, 0):

Corollary 3.2
The value of the minimal H (z , n, 0) only depends on the value of n and is indepen-
dent of the particular values of 0.

Corollary 3.3
For any value 0 with 0 < 0 5 1, the fixed points
function g(x , H , 0) have the following invariant relationship:

of the fuzzy discriminant

Their significance is that (1) the fixed points of ij(.) can be derived directly from
the fixed points of a standard sigmoidal discriminant, and (2) we can use the same
condition of Theorem 3.1 to guarantee the existence of three stable fixed points of
the fuzzy sigmoidal discriminant function.

Applying the analysis technique from (Omlin and Giles, 1996a) to prove stability
of the fuzzy internal representation of FFAs in recurrent neural networks yields the
following result:

Theorem 3.5
For some given unambiguous FFA M with r states and m input symbols, let Bmin

and Omux denote the minimum and maximum, respectively, of all transition weights
0ij,+ in M . Then, a sparse recurrent neural
rons can be constructed from M such that
stable if

(1) [@;I1 <

(2) [+;I1 >

network with r states and m input neu-
the internal state representation remains

Furthermore, the constructed network has a t most 3mr second-order weights
with alphabet E,, = { -H, 0 , + H } , r + 1 biases with alphabet Cb = { - H / 2 } , and

3.5 Extension to Fuzzy Domums 89

Figure 3.13 Network performance: The graphs show average absolute error of the
network output when tested on (a) 100 randomly generated strings of fixed length
100 and (b) on 100 randoiiily generated strings of length up to 100 as a function
of the weight strength H used to encode the finite-state dynamics of randomly
generated DFAs with 100 states. The percentages of DFA states with pt > 0 were
1%. 5%, 20%, 30%. 50% and 100% respectively, of all DFA states.
(0 IEEE Press. used with permission, see Copyright Acknowledgments)

iiiaximuni fan-out 3m.

For Q,,,, = Q,,,,, = 1, conditions (1)-(3) of the above theorem reduce to those
found for stable DFA encodings. This is consistent with a crisp representation of
DFA states.

In order to validate our theory. we constructed a fuzzy encoding of a randomly
generated FFA with 100 states (after the execution of the FFA transformation
algorithm) over the input alphabet { a , b} . We randomly assigned weights in the
range [0,1] to all transitions in increments of 0.1. Vc'e then tested the stability of the
fuzzy internal state representation on 100 randomly generated strings of length 100
by comparing. at each time step, the output signal of each recurrent state neuron
with its ideal output signal. Since each recurrent state neuron S, corresponds to a
FFA state y 2 , we know the degree to which q2 is occupied after input synibol a k has
been read: either 0 or Q L J k . A histogram of the differerices between the ideal and the
observed signal of state neurons for selected values of the weight strength H over all
state neurons arid all tested strings is shown in Figure 3.15. As expected, the error
decreases for increasing values of H . We observe that the number of discrepancies
between the desired arid the actual neuron output decreases 'smoothly' for the
shown values of H--almost no change can be observed for values up to H = 6. The
most significant change can be observed by comparing the histograms for H = 9.7

90 Symbolic Knowledge Representation in Recurrent Neural Networks

Figure 3.14 Fuzzy discriminant function for state representation: A neuron re-
ceives as input the collective signal x from all other neurons. the weight strength
H , and the transition certainty 0 to compute the function g(z, H , Q) = l+oH~~~zT.,zo.
Thus. the signioidal discriminant function used to represent FFA states has variable
output range.
(0 IEEE Press, used with permission, see Copyright Acknowledgments)

and H = 9.75: The existence of significant neuron output, errors for H = 9.7 suggests
that the internal FFA representmation is unstable. For H 2 9.75. the iiiteriial FFA
state representation becomes stable. This discontinuous change can be explained
by observing that there exists a critical value Ho(r) such that the number of stable
fixed points also changes discontinuously from one to two for H < Ho(r) and
H > Ho(r) , respectively.

The .smooth’ transition froin large output errors to very small errors for most
recurrent state neurons. Figures 3.15(a)-(e), can be explained by observing that not
all recurrent state neurons receive the same number of inputs; some neurons may
riot receive any input for some given input symbol uk at time step t ; in that case.
the low signals of those neurons are strengthened to g(0, H , O, . ,+) 2 0.

3.6 Learning Temporal Patterns with Recurrent Neural Networks

3.6.1 Motivation

It has become popular to use formal languages as testbeds for investigating funda-
ment a1 issues. in particular computational capabilities and efficient learning algo-
rithms. The advantages of using formal languages are (1) they represent temporal
dependencies. (2) no feature extract,ion is necessary for learning, (3) they have a
solid theoretical foundation and representation in the form of models of cornputa-
tion, and (4) they can serve as benchmark tests for new learning algorithms.

3.6 Learning Temporal Patterns with Recurrent Neural Networks 91

Figure 3.15 Stability of FFA statc encoding: The histogram shows the absolute
neuron output error of a network with 100 neurons that implements a randomly
generated FFA. and reads 100 randomly generated strings of length 100 for different
values of the weight strength H . The distribution of neuron output signal errors in
increments of 0.1 are for weight strengths (a) H = 6.0, (b) H = 9.0, (c) H = 9.60,
(d) H = 9.65, arid (e) H = 9.70. and (f) H = 9.75.
(0 IEEE Press, used with permission, see Copyright Acknowledgments)

92 Symbolic Knowledge Representation in Recurrent Neural Networks

3.6.2 Learning Algorithms

The two most popular learning algorithms for recurrent networks are real-time
recurrent learning (RTRL) (Williams and Zipser, 1989) and backpropagation-
through-time (BPTT) (Rumelhart et al., 1986). They are both gradient-descent
learning algorithms and differ only in the manner in which the gradients are
computed. The former computes the gradients in real-time as inputs are fed into
a recurrent network whereas the latter unfolds the recurrent network in time and
applies the backpropagation algorithm to this unfolded feedforward network. More
recently, a new recurrent learning algorithm has been proposed which was designed
to overcome some of the shortcomings of both RTRL and BPTT (Hochreiter and
Schmidhuber, 1997). Although early results are very encouraging, it is too soon to
say whether or not this new algorithm will fulfil1 its promise.

We will discuss the training algorithm for second-order recurrent networks in-
troduced aboved. For a discussion of the training algorithms of other recurrent
neural network models to recognize finite state languages, see for example (Cleere-
mans et al., 1989; Elman, 1990; Giles et al., 1992a; Horne et al., 1992; Mozer and
Bachrach, 1990; Noda and Nagao, 1992; Pollack, 1991; Watrous and Kuhn, 1992b;
Williams and Zipser, 1989). For a discussion of the training of neural networks to
recognize context-free grammars and beyond, see for example (Allen, 1990; Das
et al., 1992; Giles et al., 1990; Lucas and Damper, 1990; Pollack, 1990; Williams
and Zipser, 1989).

3.6.3 Input Dynamics

We will discuss learning for second-order networks. Algorithms for first-order
networks are analogous. Each input string is encoded into the input neurons one
character per discrete time step t . Each hidden neuron Si in the above equation is
updated to compute the next state vector S of the same hidden neurons at the next
time step t + 1. This is why we call the recurrent network “dynamically-driven.”
Using a unary or one-hot encoding (Kohavi, 1978), there is one input neuron for
each character in the string alphabet. After this the recurrent network is trained on
strings generated by a regular grammar, it can be considered as a neural network
finite state recognizer or DFA.

3.6.4 Real-Time On-Line Training Algorithm

For training, the error function and error update must be defined. In addition, the
presentation of the training samples must be considered. The error function E0
is defined by selecting a special “output” neuron So of the hidden state neurons
which is either on: SO > 1 - E , if an input string is accepted, or off SO < E , if
rejected, where E is the tolerance of the response neuron. Two error cases result
from this definition: (1) the network fails to reject a negative string, i.e. SO > E ; (2)
the network fails to accept a positive string, i.e., So < 1 - E.

3.6 Learning Temporal Patterns with Recurrent Neural Networks 93

The error function is defined as:
E0 = ; (To -so (f)) 2

where TO is the desired or target response value for the response neuron So. The
target response is defined as TO = 0.8 for positive examples and TO = 0.2 for negative
examples. The notation SAf) indicates the find value of So after the final input
symbol.

A popular training method is an on-line real-time algorithm that updates the
weights at the end of each sample string presentation with a gradient-descent weight
update rule:

d E (f) as'f '
Awl7nn = awl,",, = - SO) * a ~ : ~ ,

where ct is the learning rate. We also add a momentum term 7 as an additive
update to Awl,,,. To determine Awl,,,,, the aS,'f'/aWl,n,, must be evaluated.
This training algorithm updates the weights at the end of the input string and
should be contrasted to methods that train by predicting the next string (Cleere-
mans et al., 1989). From the recursive network state equation, we see that

where 9' is the derivative of the discriminant function. For the last time step f,
replace t and t - 1 by f and f - 1. Note that this is a second-order form of
the RTRL training method of Williams and Zipser (Williams and Zipser, 1989).
Since these partial derivative terms are calculated one iteration per input symbol,
the training rule can be implemented on-line and in real-time. The initial values
are dSi /awl,, set to zero. Thus the error term is forward-propagated and
accumulated at each time step t. Note that for this training algorithm each update
of aSjt)/i)Wlmn is computationally expensive and requires O (N 4 x I T 2) terms. For
N >> IT, this update is O(N4) which is the same as a forward-propagated linear
network. For scaling, it would be most useful to use a training algorithm that
was not so comput ationally expensive such as gradient-descent back-propagation
through time.

It is common to reinitialize the network state to a configuration at the beginning
of each string which remains fixed throughout training. However, it is also possible
to learn a network's initial state (Forcada and Carrasco, 1995).

(0)

3.6.5 Training Procedure

All strings used in training were accepted by the DFA in Figure 3.19(a) and Figure
3.1. This randomly generated autoniaton is minimal in size and has 4 accepting
states with the initial state also a rejecting state. The training set consisted of the
first 500 positive and 500 negative example strings. The presentation of strings was
in alphabetical order, alternating between positive and negative examples (Elman,

94 Symbolic Knowledge Representation in Recurrent Neural Networks

1991; Giles et al., 1990; Porat and Feldman, 1991). The weights, unless initially
programmed, were initialized to small random values in the interval [-0.1,O. 11.

3.6.6 Deterioration of Generalization Performance

We observed that the generalization performance of recurrent networks tends to
deteriorate for unseen strings of increasing lengths. This is due to the nonlinear
dynamics of recurrent networks: Training a network on strings induces dynamical
attractors such as fixed points and periodic orbits and trajectories between those
attractors (these attractors and orbits correspond to DFA states and loops, respec-
tively). These trajectories may deteriorate for strings that were not part of the
training set. The deterioration becomes worse with increasing string length. Thus,
the network dynamics may follow trajectories other than those induced through
training. This can cause a network to output a wrong classification for some strings.

The problem of deterioration of generalization performance can be somewhat
alleviated by continuously pruning and retraining a network that has found an
initial solution (Giles and Omlin, 1994). We have found that pruning outperforms
weight decay heuristics.

3.6.7 Learning Long-Term Dependencies

Even though recurrent neural networks have the computational capability to repre-
sent arbitrary nonlinear dynamical systems, gradient descent algorithms can have
difficulties learning even simple dynamical behavior. This difficulty can be at-
tributed to the problem of long-term dependencies (Bengio et al., 1994). This prob-
lem arises when the desired network output of a system at time T depends on inputs
presented at time t << T . In particular, it has been argued that if a system is to
store information robustly, then the error information that the gradient contributes
for inputs n time steps in the past approaches zero as n becomes large. Thus, the
network will not remember inputs it has seen in the distant past that are crucial
to computing the weight update.

Even though there exist no methods for completely eliminating the problem
of vanishing gradient information, heuristics have been proposed which aim at
alleviating the problem. These heuristics either address training data presentation
and/or selection, or suggest ways in which to alter the basic network architecture.

For applications where input sequences of varying length are available in the train-
ing set (as was the case for learning regular languages), a data selection strategy
which favors short strings in the early stages of training induces a good approxima-
tion of the desired long-term dynamical behavior of the recurrent network. Longer
strings can then be used to refine that dynamical behavior. Similarly, partial prior
knowledge about the desired dynamics (see Section 3.8) can facilitate the formation
of the network behavior for longer strings (Giles and Omlin, 1993). In the absence
of short training data or prior knowledge, other heuristics can be employed. Com-
pression of the input history that makes global features more prominent is one way

3.7 Extraction of Rules from Recurrent Neural Networks 95

to lessen the problem of vanishing gradient information (Schmidhuber, 1992). The
heuristic works well if input sequences contain local regularities that make them
partially predictable. It fails, however,when such regularitiies are absent and when
short-term dependencies are also important.

The above heuristics have all involved changing the presentation of the train-
ing data. One promising method which alters the network architecture in order to
improve learning of long-term dependencies is the use of embedded memory; pre-
vious network states are stored and participate in the network’s computation at
pre-defined time-delay intervals. A comparison study has shown that the use of em-
bedded memory (1) is universal in the sense that embedded memory can be added
to any recurrent network architecture, and (2) the heuristic significantly enhances
a network’s ability to learn long-term dependencies (Lin et al., 1996a). An intuitive
explanation can be given by observing that embedded memories provide a shorter
path for propagation of gradient information since the stored states do not need to
propagate through nonlinearities; thus, we eliminate the degradation of the error
information. A special case of a network with embedded memory is the so called
NARX architecture (Lin et al., 199613). It uses a tapped delay line of previous net-
work inputs and outputs. A different architectural modification proposes the use
of high-order gates (Hochreiter and Schmidhuber, 1995). In benchmark tests, the
method has been shown to be capable of bridging time intervals in excess of 1000
even in noisy learning environments. This is achieved by modifying the network
architecture which enforces constant error flow of error information through special
units. The heuristic, however, seems to have problems learning XOR type sequences,
i.e. sequences where the presence (or absence) of a single input symbol changes the
desired network output (Hochreiter, 1996).

3.7 Extraction of Rules from Recurrent Neural Networks

3.7.1 Cluster Hypothesis

Once the network is trained (or even during training), we want to extract meaningful
internal representations of the network, such as rules. For related work on rule
extraction from recurrent neural networks see (Cleeremans et al., 1989; Frasconi
et al., 1991; Giles et al., 1992a; Watrous and Kuhn, 1992a; Zeng et al., 1993).
The conclusion of (Cleeremans et al., 1989) was that the hidden unit activations
represented past histories and that clusters of these activations can represent the
states of the generating automaton. (Giles et al., 1992a) showed that a complete
deterministic finite-state automata and their equivalence classes can be extracted
from recurrent networks both during and after training. This was extended in
(Giles et al., 199213) to include a method for extracting bounded “unknown”
grammars from a trained recurrent network. An alternative approach to state
machine extraction was implemented by (Watrous and Kuhn, 199213).

Since our interest is in “simple” production rules, we describe a heuristic for

96 Symbolic Knowledge Representation in Recurrent Neural Networks

extracting rules from recurrent networks in the form of DFAs. Different extraction
methods are described in (Cleeremans et al., 1989; Watrous and Kuhn, 199213; Zeng
et al., 1993). The algorithm we use is based on the observation that the outputs
of the recurrent state neurons of a trained network tend to cluster in the neuron
activation space, see Figure 3.16. The figure shows the outputs of two-dimensional
projections of hidden neuron activations in the (Si , Sj)-plane for all possible pairs
(Si , Sj) (6 projections) for a well-trained 4-neuron recurrent network. This network
was trained on strings from a 4-state DFA and tested on a small test set. If the
recurrent network has learned a good representation of the DFA of the training set,
then the same colors should cluster. For a hard-threshold logic neuron or gate, the
clusters would represent points in the N dimensional neuron space (Zeng et al.,
1993). DFA extraction becomes identifying clusters in the output space [0, 1IN of
all state neurons. We use a dynamical state space exploration which identifies the
DFA states and at the same time avoids the computationally infeasible exploration
of the entire space.

3.7.2 Extract ion Algorithm

The extraction algorithm divides the output of each of the N state neurons into q
intervals or quantixation levels of equal size, producing qN partitions in the space
of the hidden state neurons. Starting in a defined initial network state, a string
of inputs will cause the trained weights of the network to follow a discrete state
trajectory connecting continuous state neuron values. The algorithm presents all
strings up to a certain length in alphabetical order starting with length 1. This
procedure generates a search tree with the initial state as its root and the number
of successors of each node equal to the number of symbols in the input alphabet.
Links between nodes correspond to transitions between DFA states. The search
is performed in breadth-first order. Paths are made from one partition to another
depending on the following: (1) When a previously visited partition is reached, then
only the new transition is defined between the previous and the current partition,
i.e. no new DFA state is created and the search tree is pruned at that node. (2)
When an input causes a transition immediately to the same partition, then a loop
is created and the search tree is pruned at that node. The algorithm terminates
when no new DFA states are created from the string set initially chosen and all
possible transitions from all DFA states have been extracted.

Obviously, the extracted DFA depends on the quantization level q chosen, i.e., in
general, different DFAs will be extracted for different values of q. Furthermore,
different DFAs may be extracted depending on the order of strings presented
which leads to different successors of a node visited by the search tree. Usually
these distinctions are not significant because the minimization algorithm (Hopcroft
and Ullman, 1979) guarantees a unique, minimal representation for any extracted
DFA. Thus, many different DFAs extracted for different initial conditions, different
numbers of neurons, etc. collapse into equivalence classes (Giles et al., 1992a).
Finally we must distinguish between accepting and nonaccepting states. If at the

3.7 Extraction of Rules from Recurrent Neural Networks 97

m I I I I I I

I I I I I I

0 . 0 0 .2 0.4 0 . 6 0 . 8 1 . 0

N e u r o n 0

I I I I
I I I I

1.0

1.0

0 . 8

d

0 . 6

E
0.4

0 . 2

0 . 0

z

0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1.0

Neuron 0

1.0

0 . 8

E: 0 . 6

g 0 .4
z

0 . 2

0 . 0

m

E

0 . 0 0 . 2 0 .4 0 . 6 0 . 8 1.0

Neuron 2

0 . 0 0 . 2 0.4 0 . 6 0 . 8 1.0

N e u r o n 1

I I I I
1.0

I I I I t
0 . 8

k
g 0 .4
z

0 . 0 0 . 2 0 .4 0 . 6 0 . 8 1.0

Neuron 1

Figure 3.16 Clustering of the states of a known DFA in hidden neuron state space.
The network builds an internal representation of the learned DFA in the space of
its hidden neurons. Two-dimensional projections of the hidden neuron state space
[O, I]* into the (Si, Sj)-plane for all possible pairs (Si, S j) are shown as the first 1024
strings are fed into the trained network. These clusters are the trained network's
internal representation of the DFA's states. Transitions between clusters correspond
to state transitions in the DFA.
(0 Elsevier Science, used with permission, see Copyright Acknowledgments)

98 Symbolic Knowledge Representation in Recurrent Neural Networks

end of a string the output of the response neuron So is larger than 0.5, the DFA
state is accepting; otherwise, rejecting.

We believe that the extraction of DFAs from recurrent networks does not fit
the decompositional class of extraction algorithms because the extraction relies
on clustering of the state space of an ensemble of recurrent state neurons. The
knowledge of the weights or activations of individual neurons is insufficient for
extracting DFA states. The global (or input/output) behavior of the network is
only used to label DFA states accept/reject but no learning is involved. Thus, our
algorithm falls into the class of eclectic extraction methods within the taxonomy of
(Andrews et al., 1995) which was extended in Chapters 1 and 2.

3.7.3 Example of DFA Extraction

An example of the extraction algorithm is illustrated in Figure 3.17. Assume a
recurrent network with 2 state and 2 input neurons is trained on a data set. The
range of possible values of SO and S1 can be represented as a unit square in the
(So, Sl)-plane. For illustration, choose a quantization level q = 3, i.e. the activation
of each of the two state neurons is divided into 3 equal length intervals, defining
32 = 9 discrete partitions. Each of these partitions corresponds to a hypothetical
state in an unknown DFA. Assign labels I , 2, 3, ... to the partitions in the order
in which they are visited for the first time.

The start state of the to-be-extracted DFA is the initial network state vector
used in training-partition I in Figure 3.17(a) which is also an accepting state
(denoted by a shaded circle) since the output of the response neuron (So) is larger
than 0.5. On input '0' and 'l', the network makes a transition into partitions 1
and 2, respectively. This causes the creation of a transition to a new accepting
DFA state 2 and a transition from state 1 to itself. In the next step, transitions
occur from partition 2 into partitions 3 and 4 on input '0' and 'l', respectively.
The resulting partial DFA is shown in Figure 3.17(b). The DFA in Figure 3.17(c)
shows the current knowledge about the DFA after all state transitions from states
3 and 4 have been extracted from the network. In the last step, only one more
new state is created. See Figure 3.17(d). When the final string of this string set is
seen, the extraction algorithm terminates. Notice that not all partitions have been
assigned to DFA states. The algorithm usually only visits a subset of all available
partitions for the DFA extraction. Many more partitions are reached when large test
sets are used, especially when they contain many long strings, e.g. when measuring
the generalization performance on a large test set. The extracted DFA can be
transformed into a unique, minimized representation.

3.7.4 Selection of DFA Models

If several DFAs are extracted with different quantization levels qi, then one or
more of the extracted DFAs Adqi may be consistent with the given training set, i.e
correctly classify the training set. To make a choice between different consistent

3.7 Extraction of Rules from Recurrent Neural Networks 99

Figure 3.17 Exaniple of DFA extraction algorithm. Example of extraction of a
DFA from a recurrent network with 2 state neurons. The state space is represented
as a unit square in the (So, S1)-plaiie. The output range of each state neuron has
been divided into 3 intervals of equal length resulting in 9 partitions in the networks
state space. Shaded states are accepting states.The figures show the transitions
performed between partitions and the (partial) extracted DFA at different stages
of the extract,ion algorithm: (a) the initial state 1 and all possible transitions. (b) all
transitions froin state 2. (c) all transitions from states 3 and 4, and (d) all possible
transitions from states 5 arid 6.
(0 Elsevier Science. used with permission, see Copyright Acknowledgments)

100 Symbolic Knowledge ‘Representation in Recurrent Neural Networks

DFAs, we devise a heuristic algorithm (Omlin et al., 1992).
Let M denote the unknown DFA and L (M) the language accepted by M . By

choosing a particular quantization level qi, we extract a minimized finite-state
automaton, the hypothesis Mq, for the grammar to be inferred. A DFA M is defined
as consistent if it correctly classifies all strings of the training set; otherwise, it is
an inconsistent model of the unknown source grammar. Given a set of consistent
hypotheses M q l , Mq2, . . . , MqQ we need a criterion for model selection that
permits the choice of a hypothesis that best represents the unknown language
L (M) . A possible heuristic for model selection would be to split a given data
set into two disjoint sets (training and testing set), to train the network on the
training set and to test the network’s generalization performance on the test set.
However, by disregarding a subset of the original data set for training, we may be
eliminating valuable data from the training set which would improve the network’s
generalization performance if the entire data set were used for training. However,
we wish to make a model selection based solely on simple properties of the extracted
DFAs and not resort to a test set. (Keep in mind that all DFAs discussed here will
accept strings of arbitrary length.) The model selection algorithm will be motivated
by the simulation results and discussed next.

An example of model selection and performance is shown in Figure 3.18. Min-
imized DFAs are extracted from a trained network for quantization levels q = 3,
q = 6 and q = 8. All three DFAs are consistent with the training set, i.e. they
correctly classified all strings in the training set. But which DFA best models the
unknown source M?

Simulations demonstrated that a policy for selecting a “good” model of the
unknown source grammar can be formulated. We choose the DFA Ms which is the
smallest consistent DFA. Ms can be found by extracting DFAs M2,. . . , Ms-l , Ms
in that order and the best model is the first consistent DFA Ms. We rely on the
hypothesis that there always exists an s such that Ms is the smallest consistent DFA.
This is an example of Occam’s Razor-complex models should not be preferred over
simple models that explain the phenomena equally well.

The quality of the extracted rules can be improved through continous network
pruning and retraining (Giles and Omlin, 1994).

3.7.5 Controversy and Theoretical Foundations

As seen above, our DFA extraction algorithm depends on the discretization of
the continuous state space into a finite number of regions. It has been argued
(Kolen, 1994), that this approach to understanding the computation performed by
recurrent neural networks is problematic for the following reasons: (1) Recurrent
neural networks are nonlinear dynamical systems which are sensitive to initial
conditions capable of producing nondeterministic machines: Their trajectories are
determined by both the initial state of the network and the dynamics of the state
transitions. Extraction methods which use single transitions between regions are
insufficient because initially nearby states will become separated across several state

3.7 Extraction of Rules from Recurrent Neural Networks 101

Figure 3.18 Examples of extracted DFAs. Minimized DFAs extracted from a
trained network with quantizatiori levels (a) q=3 (b) q=6 and (c) q=8. All three
DFAs are consistent with the training set, i.e. they correctly classify each string in
the set. Which DFA best models the unknown regular grammar? We contend DFA
(a) because it has the least number of states.
(0 Elsevier Science. used with permission, see Copyright Acknowledgments)

regions over time. Thus. no rnatter how fine a discrete quantization of the continuous
state space we use. we eventually encounter the situation where an extracted state
splits into multiple trajectories independent of the future input sequence; this is
characteristic of a nondeterministic state transition. It is, at the very least, very
difficult to distinguish between a nondeterministic automaton with few states and a
deterministic automaton with a large number of states. (2) It is the observer’s bias
which determines that a dynamical system is equivalent to a finite-state automaton.
i.e. trivial changes in observation strategies inay result in a behavioral description
from a range of complexity classes for a single system.

It has subsequently been shown analytically that objection (1) can be resolved by
rioting that sensitivity to initial conditions itself does not pose any problem for DFA
extraction: If the reachable points in a partition state are mapped to more than one
other partition state and the recurrent network robustly models some DFA, then
the target partition states must be equivalent. Thus, the following result establishes
the theoretical foundation for DFA extraction from recurrent networks:

102 Symbolic Knowledge Representation in Recurrent Neural Networks

Theorem 9.6
For recurrent neural networks that robustly model a given DFA, for sufficiently large
quantization level q, it is sufficient to consider only partitions created by dividing
each neuron’s range into q equal partitions to always succeed in extracting the DFA
that is being modeled.

This follows from the observation that a recurrent neural network that robustly
models some DFA must have mutually disjoint, closed sets that correspond to DFA
states. An immediate consequence of the above result is the following corollary:

Corollary 9.4
A finite dimensional recurrent neural network can robustly only perform finite-state
machine computations.

The above result follows from the observation that a network’s phase space can
only contain a finite number of disjoint sets due to its compactness. I t is relevant in
the context of on-going research on learning and extracting context-free languages
from trained recurrent neural networks (Wiles and Bollard, 1996).

Objection (2) can be resolved by noting that we use models of sufficient com-
plexity that adequately explain the given data. Even in cases where the dynamics
underlying an unknown system are more complex than that of finite-state automata,
this simple model may in some sense approximate the real dynamics and extraction
of this model may offer important insights not available otherwise.

3.8 Recurrent Neural Networks for Knowledge Refinement

3.8.1 Introduction

The importance of using prior knowledge in a learning problem has been noted by
many. (Minsky and Papert, 1969) state that “ ... significant learning at significant
success rate presupposes some significant prior structure. Simple learning schemes
based o n adjusting coef ic ients can indeed be practical and valuable when the partial
func t ions are reasonably matched o n the task ...”. More recently, (Geman et al.,
1992) have investigated the strengths and weaknesses of neural learning from a
statistical viewpoint. In formulating the bias/variance dilemma, they conclude that
“... important properties mu.st be built-in or hard-wired, perhaps t o be tuned later
by experience, but no t learned in a n y statistical meaningful way”. Recently, the use
of prior knowledge about a learning task to be solved with a neural network has
been studied by several authors.

Inserting a priori knowledge has been shown useful in training feed-forward neu-
ral networks, e.g. see Chapters 1, 2, 6 and (Abu-Mostafa, 1990; Berenji, 1991; Giles
and Maxwell, 1987; Pratt , 1992; Suddarth and Holden, 1991; Towel1 et al., 1990b).
The resulting networks usually performed better than networks that were trained
without a priori knowledge. In the context of training feed-forward networks, it

3.8 Recurrent Neural Networks fo r Knowledge Refinement 103

has been pointed out by (Abu-Mostafa, 1990) that using partial information about
the implementation of a function f which uses input-output examples may be valu-
able to the learning process in two ways: (1) It may reduce the number of func-
tions that are candidates for f and (2) it may reduce the number of steps needed
to find the implementation. In related work, (Al-Mashouq and Reed, 1991) have
trained feed-forward networks using hints, thus improving the learning time and
the generalization performance; while Chapter 6 and (Towel1 et al., 1990a) show
how approximate rules about a domain are translated into a feed-forward network.

Our focus has been on methods for inserting prior knowledge into dynamically-
driven recurrent neural networks (Das et al., 1992; Frasconi et al., 1991, 1994;
Giles and Omlin, 1992; Maclin and Shavlik, 1992; Omlin and Giles, 1992; Sanfeliu
and Alquezar, 1992).The work by (Frasconi et al., 1991) inserts rules into first-
order recurrent networks by solving a linear programming problem for the weights.
The theoretical foundation for this approach is discussed in (Frasconi et al., 1994).
However, (Goudreau et al., 1994) have shown that there exist simple deterministic
finite-state automata which cannot be represented with a first-order, single-layer
fully recurrent network architecture unless additional layers of weighk (or ail eiid
symbol) are added. Giving the recurrent network helpful hints about the strings,
such as too long, etc., has also been shown to help learning (Das et al., 1992). It
is also useful to put rules directly into the sample strings themselves (Maclin and
Shavlik, 1992).

We encode prior knowledge about the DFA using the algorithm presented in
Section 3.4.2. The only difference is that we may not map entire DFAs into recurrent
networks, but only known states and state transitions. These hints are encoded
as rules which are then inserted directly before training into the recurrence of the
neural network. We demonstrate the approach by training recurrent neural networks
with inserted rules to learn to recognize regular languages from grammatical string
examples. Our simulations show that training recurrent networks with different
amounts of partial knowledge to recognize simple grammars usually improves
the training time by orders of magnitude, even when only a small fraction of
all transitions are inserted as rules. In addition there appears to be no loss in
generalization performance.

When all known rule transitions have been inserted into the network by encoding
the weights according to the above scheme, the network is trained. Notice that all
weights including the ones that have been programmed are still adaptable - they
are not fixed.

3.8.2 Variety of Inserted Rules

Rules (or DFAs) to be inserted prior to training are shown in Figures 3.19 and 3.20.
They represent various amounts of prior information and also some incorrect prior
knowledge.

For a baseline comparison, Figure 3.19(a) represents the entire rule set. Rules
shown in Figures 3.19(b) and 3.19(c)-(f) represent respectively no knowledge of self-

Symbolic Knowledge Representation in Recurrent Neural Networks

Figure 3.19 Partial rules inserted into networks. Shown are the rules inserted
into the recurrent neural network before training. State 1 is the start state. State
transitions on input symbols ’0’ and ’1’ are shown respectively as solid and dashed
arcs. The figures show: (a) all rules (entire DFA), (b) all rules except self-loops, (c)
partial DFA, (d) rules for string ’(~ O O ~ O) * O O ~ ’ , (e) rules for disjointed transitions,
(f) rules that do not start with a start state, (g) rules for string ’001011011’ without
programming loop, (h) rules for separate strings ’000’ and ’0011’
(0 Carfax Publishing Ltd. used with permission, see Copyright Acknowledgments)

3.9 Summary and Future Research Directions 105

loops and partial knowledge of complete segments of the DFA. Figures 3.19(g)-(h)
represent strings that the DFA accepts but without knowledge of start or accepting
states. In this sense these rules can be considered “incorrect.” Figures 3.20(i)-(m)
are very incorrect rules which we term “malicious.”

We made the following significant observations: (1) The improvement in training
times was roughly ‘proportional’ to the amount of correct, prior knowledge for
a suitable choice of the weight strength H . (2) The generalization performances
of networks trained with and without prior knowledge were comparable. (3) The
inserted knowledge could also be extracted after network training. (4) The choice of
the weight strength value H had a significant impact on the training times. When
small values were chosen for H , then the learning bias was not sufficiently strong
for a significant speed-up. When H was chosen too large, then the network had
difficulties converging to a solution because the bias stifled the networks’ variance
necessary to converge to a solution. We investigated different methods for choosing
a ‘good’ value for H . (1) Choosing the minimum value H such that the encoded
knowledge could also be extracted from the network prior to training, and (2)
choosing H such that the function had a maximum seemed to work well, i.e.
the methods determined initial values for H which compared favorably with the
optimal value found through exhaustive search (Omlin, 1994).

The problem of changing incorrect rules has been addressed for rule-based sys-
tems (Ginsberg, 1988; Pazzani, 1989; Oursten and Mooney, 1990). We demonstrated
that recurrent networks can be used successfully for rule verification and revision,
i.e. inserted rules can be verified and also corrected. Rule verification consists of
four stages: (1) Encode knowledge into the weights of a network. (2) Train the net-
work on the data set,. (3) Check the inserted rules by extracting rules in the form of
DFAs from the trained network. (4) Compare the rules in the extracted DFA with
the initial prior knowledge.

3.9 Summary and Future Research Directions

It has been argued that learning formal languages is not a well-suited application
for neural networks, particularly since the languages learnt to date are generally
simpler, e.g. in terms of the complexity of the corresponding grammar. We agree
that, with current learning algorithms, neural networks cannot compete with
algorithms that are tailored to the problem of grammatical inference. However,
using theoretical models of computation as a testbed has led to the successful
investigation of many fundamental issues. They include computational capabilities
of different recurrent network architectures, knowledge represent ation, extraction
of symbolic knowledge from trained networks, and use of prior knowledge for
improved learning and generalization performance. Even though not all real-world
applications can be cast into a symbolic domain, the lessons learned may be useful
for nonsymbolic applications. Furthermore, some applications which at first glance
seem incompatible with a symbolic interpretation, e.g. financial forecasting, may

106 Symbolic Knowledge Representation in Recurrent Neural Networks

Figure 3.20 Malicious hints: Rule (i): DFA accepting all strings where the
number of 1’s is a multiple of 10. Rules (j)-(m): Randomly generated DFAs with
10 states.
(0 Carfax Publishing Ltd., used with permission, see Copyright Acknowledgments)

turn out to be amendable to a symbolic analysis after all, e.g. (Lawrence et al.,
1997).

There are few real-world applications small enough such that neural networks
alone could solve the problem. It is much more likely that neural networks will be
successful as components of larger intelligent systems. The challenge for the near
future lies in the design of such hybrid systems which requires that components
such as neural networks interface with other technologies.

Copyright Acknowledgments

Figure 3.1 reprinted from IEEE Transactions on Neural Networks, Vol 5, No 5,
Giles, C.L. and Omlin, C.W., Pruning recurrent neural networks for improved
generalization performance, 848-851, @ (1994) , with permission from the Institute
of Electrical and Electronics Engineers.

Figures 3.2 and 3.3 reprinted from IEEE Transactions on Neural Networks, Vol
8 , No 5, Clouse, D.S., Giles, C.L., Horne, B.G., and Cottrell, G.W., Time-delay
neural networks: representation and induction of finite state machines, 1065-1070,
@ (1997), with permission from the Institue of Electrical and Electronics Engineers.

References 1 or

Figures 3.4-3.6 and some text of Sections 3.4.1-3.4.4 and Section 3.4.7 reprinted
from Journal of the ACM, Vol 43, No 6, Omlin, C.W. and Giles, C.L., Con-
structing deterministic finite-state automata in recurrent neural networks. 937-972,
@ (1996), with permission from Association for Computing Machinery.

Figures 3.7-3.10 and some text of Sections 3.4.5-3.4.6 reprinted from Omlin, C.W.
and Giles, C.L., Neural Computation, Vol 8, No 7, Stable encoding of large finite-
state automata in recurrent neural networks with sigrnoid discriminants, 675-696,
@ (1996), with permission from Massachusetjts Institute of Technology.

Figures 3.11-3.13 and some text of Sections 3.5.1-3.5.2 reprinted from Omlin,
C.W. Thornber, K.K., and Giles, C.L., IEEE Transactions on Fuzzy Systems, Vol
6, No 1, Fuzzy finite-state automata can be deterministically encoded into recurrent
neural networks, 76--89, @ (1996), with permission from Electrical and Electronics
Engineers.

Figures 3.14-3.15 and some text of Section 3.5.3 reprinted from Omlin, C.W.
Thornber, K.K., and Giles, C.L., Proceedings of the IEEE, Special Issue on Com-
putational Intelligence, D. Fogel, (Ed), Equivalence in knowledge representation:
automata, recurrent neural networks, and dynamical fuzzy systems, accepted for
publication, @ (1998), with permission from Electrical and Electronics Engineers.

Figures 3.16-3.18 and some text of Section 3.7 reprinted from Omlin, C.W. and
Giles, C.L., Neural Networks, Vol 9, No 1, Extraction of rules from discrete-time
recurrent neural networks, 41-52, @ (1996), with permission from Pergamon Press.

Figures 3.19-3.20 and some text of Section 3.8 reprinted from Giles, C.L. and
Omlin, C.W., Connection Science, Vol 5, No 3/4, Extraction, insertion and refine-
ment of symbolic rules in dynamically driven recurrent neural networks, 307-337,
@ (1993), with permission from Carfax Publishing, 11 New Fetter Lane, London
EC4P 4EE, United Kingdom.

References

Abu-Mostafa, Y. S. 1990. Learning from hints in neural networks. Journal of

Al-Mashouq, K. A. and Reed, I. S. 1991. Including hints in training neural nets.

Allen, R. B. 1990. Connectionist language users. Connection Science, 2(4):279.
Alon, N., Dewdney, A. K., and Ott , T. J. 1991.

Complexity, 6:192.

Ne ural Co mp ‘U t a t io n, 3 (4) : 4 1 8.

Efficient simulation of finite
automata by neural nets. Journal of the Association for Computing Machinery,

Alquezar, R. and Sanfeliu, A. 1995. An algebraic framework to represent finite
state machines in single-layer recurrent neural networks. Neural Computation,
7(5):931.

38 (2) :495-5 14.

Andrews, R. and Diederich, J., eds. 1996. Proceedings of the NIPS’96 Rule Extrac-

108 Symbolic Knowledge Representation in Recurrent Neural Networks

tion f rom Trained Artificial Neural Network Workshop, Snowmass, Colorado.
Andrews, R., Diederich, J., and Tickle, A. B. 1995. Survey and critique of techniques

for extracting rules from trained artificial neural networks. Knowledge- based
Systems, 8(6):373-389.

Angluin, D. and Smith, C. H. 1983. Inductive inference: Theory and methods. ACM
Computing Surveys, 15(3):237-269.

Baum, E. B. and Haussler, D. 1989. What size net gives valid generalization? Neural
Computation, 1(1):151.

Bengio, Y., Simard, P., and Frasconi, P. 1994. Learning long-term dependencies
with gradient descent is difficult. IEEE Transactions on Neural Networks, 5:157-
166. Special Issue on Recurrent Neural Networks.

Berenji, H. R. 1991. Refinement of approximate reasoning-based controllers by rein-
forcement learning. In Machine Learning, Proceedings of the Eighth International
International Workshop, eds. L. A. Birnbaum and G. C. Collins, pp. 475-479,
San Mateo, CA. Morgan Kaufmann Publishers.

Bezdek, J., ed. 1992. IEEE Transactions on Neural Networks-Special Issue on
Fuzzy Logic and Neural Networks, vol. 3. IEEE Neural Networks Council.

Cellier, F. E. and Pan, Y. D. 1995. Fuzzy adaptive recurrent counterpropagation
neural networks: A tool for efficient implementation of qualitative models of
dynamic processes. J. Systems Engineering, 5(4):207-222.

Cleeremans, A., Servan-Schreiber, D., and McClelland, J. 1989. Finite state au-
tomata and simple recurrent recurrent networks. Neural Computation, 1 (3):372-
381.

Clouse, D. S., Giles, C. L., Horne, B. G., and Cottrell, G. W. 1997. Time-delay
neural networks: Representation and induction of finite state machines. IEEE
Transactions on Neural Networks, 8(5): 1065-1070.

Crutchfield, J. P. and Young, E(. 1991. Computation at the onset of chaos. In
Proceedings of the 1988 Workshop on Complexity, Entropy and the Physics of

Information, ed. W. H. Zurek, pp. 223-269, Redwood City, CA. Addison-Wesley.
Cun, Y. L., Denker, J. S., and Solla, S. 1990. Optimal brain damage. In Advances

in Neural Information Processing Systems 2, ed. D. S. Touretzky, San Mateo,
CA. Morgan Kaufmann Publishers.

Cybenko, G. 1989. Approximation by superpositions of a sigmoidal function.
Mathematics of Control, Signals, and Systems, 2:303-314.

Das, S., Giles, C. L., and Sun, G. 2. 1992. Learning context-free grammars: Limita-
tions of a recurrent neural network with an external stack memory. In Proceedings
of The Fourteenth Annual Conference of the Cognitive Science Society, pp. 791-
795, San Mateo, CA. Morgan Kaufmann Publishers.

Deprit, E. 1989. Implementing recurrent back-propagation on the connection
machine. Neural Networks, 2(4):295-314.

References 109

Dubois, D. and Prade, H. 1980. Fuzzy sets and systems: theory and applications,
vol. 144 of Mathematics in Science and Engineering, pp. 220-226. Academic
Press.

Elman, J. L. 1990. Finding structure in time. Cognitive Science, 14:179-211.
Elman, J. L. 1991. Incremental learning, or the importance of starting small. Tech.

Rep. CRL Tech Report 9101, Center for Research in Language, University of
California at San Diego, La Jolla, CA.

Fahlman, S. E. 1990. The cascade-correlation learning architecture. In Advances
in Neural Information Processing Systems 2, ed. D. S. Touretzky, pp. 524-532,
San Mateo, CA. Morgan Kaufmann Publishers.

Fahlman, S. E. 1991. The recurrent cascade-correlation architecture. In Advances in
Neural Information Processing Systems 3, eds. R. P. Lippmann, J. E. Moody, and
D. S. Touretzky, pp. 190-196, San Mateo, CA. Morgan Kaufmann Publishers.

Forcada, M. L. and Carrasco, R. C. 1995. Learning the initial state of a second-order
recurrent neural network during regular-language inference. Neural Computation,

Frasconi, P., Gori, M., Maggini, M., and Soda, G. 1991. A unified approach for
integrating explicit knowledge and learning by example in recurrent networks. In
Proceedings of the International Joint Conference on Neural Networks, vol. 1, p.

7(5) 1923-930.

811. TEEE 91CH3049-4.
Frasconi, P., Gori, M., Maggini, M., and Soda, G. 1995. Representation of finite

state automata in recurrent radial basis function networks. Machine Learning.
In press.

Frasconi, P., Gori, M., Maggini, M., and Soda, G. 1996. Representation of finite
state automata in recurrent radial basis function networks. Machine Learning,

Frasconi, P., Gori, M., and Soda, G. 1993. Injecting nondeterministic finite state
automata into recurrent networks. Tech. rep., Dipartimento di Sistemi e Infor-
matica, Universitk di Firenze, Italy, Florence, Italy.

Frasconi, P., Gori, M., and Soda, G. 1994. Recurrent neural networks and prior
knowledge for sequence processing: A constrained nondeterministic approach.
Knowledge-Based Systems. Submitted.

Fu, K. S. 1982. Syntactic Pattern Recognition and Applications. Englewood Cliffs,
N. J: Prentice-Hall.

23(1):5-32.

Fu, L. M. 1994. Rule generation from neural networks. IEEE Transactions on

Fu, L. M. 1996. Learning capacity and sample complexity on expert networks.
Systems, Man, and Cybernetics, 24(8):1114-1124.

IEEE Transactions on Neural Networks, 7(6):1517-1520.
Geman, S., Bienenstock, E., and Dourstat, R. 1992. Neural networks and the

bias/variance dilemma. Neural Computation, 4(1): 1-58.

110 Symbolic Knowledge Representation in Recurrent Neural Networks

Giles, C. L., Chen, D., Sun, G. Z., Chen, H. H., Lee, Y. C., and Goudreau,
M. W. 1995. Constructive learning of recurrent neural networks: limitations
of recurrent cascade correlation and a simple solution. IEEE Transactions on
Neural Networks. To be published.

Giles, C. L. and Maxwell, T. 1987. Learning, invariance, and generalization in
high-order neural networks. Applied Optics, 26(23):4972.

Giles, C. L., Miller, C. B., Chen, D., Chen, H. H., Sun, G. Z., and Lee, Y. C. 1992a.
Learning and extracting finite state automata with second-order recurrent neural
networks. Neural Computation, 4(3):380.

Giles, C. L., Miller, C. B., Chen, D., Sun, G. Z., Chen, H. H., and Lee, Y. C. 199213.
Extracting and learning an unknown grammar with recurrent neural networks.
In Advances in Neural Information Processing Systems 4 , eds. J. E. Moody, S. J.
Hanson, and R. P. Lippmann, pp. 317-324, San Mateo, CA. Morgan Kaufmann
Publishers.

Giles, C. L. and Omlin, C. W. 1992. Inserting rules into recurrent neural networks.
In Neural Networks for Signal Processing II, Proceedings of The 1992 IEEE
Workshop, eds. S. Y. Kung, F. Fallside, J. A. Sorenson, and C. A. Kamm, pp.
13-22. IEEE Press.

Extraction, insertion and refinement of
Connection

Giles, C. L. and Omlin, C. W. 1993.
symbolic rules in dynamically driven recurrent neural networks.
Science, 5(3 & 4):307-337.

Giles, C. L. and Omlin, C. W. 1994. Pruning recurrent neural networks for improved
generalization performance. IEEE Transactions on Neural Networks, 5(5):848-
851.

Giles, C. L., Omlin, C. W., and Thornber, K. K. 1999. Equivalence in knowledge
representation: Automata, recurrent neural networks and dynamical fuzzy sys-
tems. In Proceedings of the IEEE (Special Issue on Computational Intelligence),
eds. D. B. Fogel, T. Fukada, and L. Guan.

Giles, C. L., Sun, G. Z., Chen, H. H., Lee, Y. C., and Chen, D. 1990. Higher order
recurrent networks & grammatical inference. In Advances in Neural Information
Processing Systems 2, ed. D. S. Touretzky, pp. 380-387, San Mateo, CA. Morgan
Kaufmann Publishers.

Ginsberg, A. 1988. Theory revision via prior operationalization. In Proceedings of

the Sixth National Conference on Artificial Intelligence, p. 590.
Golden, E. M. 1978. Complexity of automaton identification from given data.

Information and Control, 371302-320.
Golea, M. 1996. On the complexity of rule-extraction from neural networks and

network-querying. Tech. rep., Department of Systems Engineering, Australian
National University, Canberra, Australia.

Goudreau, M. W., Giles, C. L., Chakradhar, S., and Chen, D. 1994. First-order
vs. second-order single-layer recurrent neural networks. IEEE Transactions on

References 111

Neural Networks, 5 (3): 51 1-5 13.

Grantner, J. and Patyra, M. J. 1994. Synthesis and analysis of fuzzy logic finite
state machine models. In Proceedings of the Third IEEE Conference on Fuzzy
Systems, vol. I, pp. 205-210.

Hayashi, Y. and Imura, A. 1990. Fuzzy neural expert system with automated
extraction of fuzzy if-then rules from a trained neural network. In Proceedings of
the First I E E E Conference o n Fuxxy Systems, pp. 489-494.

Hochreiter, S. 1996. Private communication.
Hochreiter, S. and Schmidhuber, J. 1995. Long short term memory. Tech. Rep.

FKI-207-95, Fakultaet fuer Informatik, Technische Universitaet Muenchen.
Hochreiter, S. and Schmidhuber, J. 1997. Long short term memory. Neural

Computation, 9(8): 123-141.
Hopcroft, J. E. and Ullman, J. D. 1979. Introduction to Automata Theory, Lan-

guages, and Computation. Reading, MA: Addison-Wesley Publishing Company,
Inc.

Horne, B. G. 1994. Personal Communication.
Horne, B. G. and Hush, D. 1994. Bounds on the complexity of recurrent neural

network implementations of finite state machines. In Advances in Neural Infor-
mation Processing Systems 6, pp. 359-366. Morgan Kaufmann.

Horne, B. G., Hush, D. R., and Abdallah, C. 1992. The state space recurrent neural
network with application to regular grammatical inference. Tech. Rep. UNM
Technical Report No. EECE 92-002, Department of Electrical and Computer
Engineering, University of New Mexico, Albuquerque, NM, 87131.

Judd, S. 1987. Learning in networks is hard. In Proceedings of the First I E E E
Annual Conference on Neural Networks.

Khan, E. and Unal, F. 1995. Recurrent fuzzy logic using neural networks. In Ad-
vances in fuzzy logic, neural networks, and genetic algorithms, ed. T. Furuhashi,
Lecture Notes in Artificial Intelligence. Berlin: Springer Verlag.

Kohavi, 2. 1978. Switching and Finite Automata Theory. New York, NY: McGraw-
Hill, Inc., 2nd edn.

Kolen, J. F. 1994. Fool’s gold: Extracting finite state automata from recurrent
network dynamics. In Advanves in Neural Information Processing Systems 6,
eds. J . D. Cowan, G. Tesauro, and J . Alspector, pp. 501-508, San Francisco, CA.
Morgan Kaufmann.

Kosmatopoulos, E. B. and Christodoulou, M. A. 1995. Neural networks for identi-
fication of fuzzy dynamical systems: Approximation, convergence, and stability
and an application to identification of vehicle highway systems. Tech. rep., De-
partment of Electronic and Computer Engineering, Technical University of Crete.

Kremer, S. C. 1995. On the computational power of Elman-style recurrent networks.
I E E E Transuctions o n Neural Networks, 6(4): 1000-1004.

112 Symbolic Knowledge Representation in Recurrent Neural Networks

Kremer, S. C. 1996. Comments on “constructive learning of recurrent neural net-
works” : Cascading the proof describing limitations of recurrent cascade correla-
tion. IEEE Transactions on Neural Networks.

Lang, K. J. 1992. Random DFAs can be approximately learned from sparse uniform
examples. In Proceedings of the Fijlh A C M Workshop on Computational Learning
Theory, Pittsburgh, PA.

architecture for isolated word recognition. Neural Networks, 3(1):23-43.
Natural language grammatical

inference: A comparison of recurrent neural networks and machine learning
methods. In Symbolic, Connectionist, and Statistical Approaches to Learning for
Natural Language Processing, eds. S. Wermter, E. Riloff, and G. Scheler, Lecture
notes in AI, pp. 33-47. Berlin: Springer-Verlag.

Lawrence, S., Giles, C. L., and Tsoi, A. C. 1997. Symbolic conversion, grammatical
inference and rule extraction for foreign exchange rate prediction. In Proceed-
ings of the Fourth International Conference on Neural Networks in the Capital
Markets, eds. A. S. W. Y. Abu-Mostafa and A.-P. N. Refenes. Singapore: World
Scientific.

Lin, T., Horne, B. G., and Giles, C. L. 1996a. How embedded memory in recurrent
neural network architectures helps learning long-term temporal dependencies.
Tech. Rep. UMIACS-TR-96-28 and CS-TR-3626, Institute for Advanced Com-
puter Studies, University of Maryland, College Park, MD.

Lin, T., Horne, B. G., Tino, P., and Giles, C. L. 199613. Learning long-term
dependencies in NARX recurrent neural networks. IEEE Transactions on Neural
Networks, 7(6):1329-1338.

Lucas, S. and Damper, R. 1990. Syntactic neural networks. Connection Science,

Lang, K. J., Waibel, A. H., and Hinton, G. E. 1990. A time-delay neural network

Lawrence, S., Fong, S., and Giles, C. L. 1996.

21199-225.
Maclin, R. and Shavlik, J. W. 1992. Refining algorithms with knowledge-based

neural networks: Improving the Chou-Fasman algorithm for protein folding. In
Computational Learning Theory and Natural Learning Systems, eds. S. Hanson,
G. Drastal, and R. Rivest. MIT Press.

Maclin, R. and Shavlik, J. W. 1993. Using knowledge-based neural networks to
improve algorithms: Refining the Chou-Fasman algorithm for protein folding.
Machine Learning, 11: 195-215.

Miclet, L. 1990. Grammatical inference. In Syntactic and Structural Pattern
Recognition; Theory and Applications, eds. H. Bunke and A. Sanfeliu, chap. 9.
Singapore: World Scientific.

Minsky, M. 1967. Computation: Finite and Infinite Machines, chap. 3, pp. 32-66.
Englewood Cliffs, NJ: Prentice-Hall, Inc.

Minsky, M. L. and Papert, S. A. 1969. Perceptrons. Cambridge, MA: MIT Press.

Mozer, M. C. and Bachrach, J. 1990. Discovering the structure of a reactive

References 113

environment by exploration. Neural Computation, 2(4) :447.
Mozer, M. C. and Sniolensky, P. 1989. Skeletonization: A technique for trimming the

fat from a network via relevance assessment. In Advances in Neural Information
Processing Systems 1, ed. D. S. Touretzky, pp. 107-115, San Mateo, CA. Morgan
Kaufmann Publishers.

Noda, I. and Nagao, M. 1992. A learning method for recurrent networks based on
minimization of finite automata. In Proceedings International Joint Conference
on Neural Networks 1992, vol. I, pp. 27-32.

Omlin, C. W. 1994. Symbolic Information in Recurrent Neural Networks: Issues
of Learning and Representation. Ph.D. thesis, Rensselaer Polytechnic Institute,
Troy, NY.

Training second-order recurrent neural
networks using hints. In Proceedings of the Ninth International Conference on
Machine Learning, eds. D. Sleeman and P. Edwards, pp. 363-368, San Mateo,
CA. Morgan Kaufmann Publishers.

Omlin, C. W. and Giles, C. L. 1996a. Constructing deterministic finite-state
automata in recurrent neural networks. Journal of the ACM, 43(6):937-972.

Omlin, C. W. and Giles, C. L. 199613. Extraction of rules from discrete-time
recurrent neural networks. Neural Networks, 9(1):41-52.

Omlin, C. W. and Giles, C. L. 1996c. Rule revision with recurrent neural networks.
IEEE Transactions on Knowledge and Data Engineering, 8(1) ~183-188.

Omlin, C. W., Giles, C. L., and Miller, C. B. 1992. Heuristics for the extraction of
rules from discrete-time recurrent neural networks. In Proceedings International
Joint Conference on Neural Networks 1992, vol. I, pp. 33-38.

Omlin, C. W., Thornber, K. K., and Giles, C. L. 1998. Fuzzy finite-state automata
can be deterministically encoded into recurrent neural networks. IEEE Transac-
tions on Fuzzy Systems, 6(1):76-89.

Oursten, D. and Mooney, R. J. 1990. Changing rules: A comprehensive approach to
theory refinement. In Proceedings of the Eighth National Conference on Artificial
Intelligence, p. 8 15.

Pazzani, M. J. 1989. Detecting and correcting errors of omission after explanation-
based learning. In Proceedings of the Eleventh International Joint Conference on
Artificial Intelligence, p. 713.

Pollack, J. B. 1990. Recursive distributed representations. Journal of Artificial

Pollack, J. B. 1991. The induction of dynamical recognizers. Machine Learning,

Porat, S. and Feldman, J. A. 1991. Learning automata from ordered examples.

Omlin, C. W. and Giles, C. L. 1992.

Intelligence, 46:77.

7: 227-252.

Machine Learning, 7(2-3): 109.
Pratt , L. Y. 1992. Non-literal transfer of information among inductive learners. In

Symbolic Knowledge Representation in Recurrent Neural Networks

Neural Networks: Theory and Applications 11, eds. R. J. Mammone and Y. Y.
Zeevi. Academic Press.

Rumelhart, D. E., Hinton, G. E., and Williams, R. J . 1986. Learning internal
representations by error propagation. In Parallel Distributed Processing, chap. 8.
Cambridge, MA: MIT Press.

inference and recognition.
Recognition, ed. H. Bunke. World Scientific.

of history compression. Neural Computation, 4(2) :234-242.

Sanfeliu, A. and Alquezar, R. 1992. Understanding neural networks for grammatical
In Advances in Structural and Syntactic Pattern

Schmidhuber, J. 1992. Learning complex, extended sequences using the principle

Shavlik, J. W. 1994. Combining symbolic and neural learning. Machine Learning,

Siegelmann, H. T. and Sontag, E. D. 1995. On the computational power of neural
nets. Journal of Computer and System Sciences, 50(1):132-150.

Sperduti, A. 1997. On the computational power of recurrent neural networks for
structures. Neural Networks, lO(3).

Suddarth, S. and Holden, A. 1991. Symbolic neural systems and the use of hints
for developing complex systems. International Journal of Man-Machine Studies,
34:291.

Sun, G. Z., Chen, H. H., Lee, Y. C., and Giles, C. L. 1991. Turing equivalence
of neural networks with second order connection weights. In 1991 IEEE INNS
International Joint Conference on Neural Networks-Seattle, vol. 11, pp. 357-362,
Piscataway, NJ. IEEE Press.

Thomason, M. G. and Marinos, P. N. 1974. Deterministic acceptors of regular fuzzy
languages. IEEE Transactions on Systems, Man, and Cybernetics, (3):228-230.

Tino, P. 1994. Personal communication.
Tino, P., Horne, B. G., and L.Giles, C. 1995. Finite state machines and recur-

rent neural networks - automata and dynamical systems approaches. Tech. Rep.
UMIACS-TR-95-1, Institute for Advance Computer Studies, University of Mary-
land, College Park, MD 20742.

Towell, G. G., Craven, M. W., and Shavlik, J. W. 1990a. Constructive induction
using knowledge-based neural networks. In Eighth International Machine Learn-
ing Workshop, eds. L. A. Birnbaum and G. C. Collins, p. 213, San Mateo, CA.
Morgan Kaufmann Publishers.

Towell, G. G. and Shavlik, J . W. 1993.
knowledge-based neural networks. Machine Learning, 13(1):71-101.

Towell, G. G. and Shavlik, J. W. 1994. Knowledge-based artificial neural networks.
Artificial Intelligence, 70. To appear.

Towell, G. G., Shavlik, J. W., and Noordewier, M. 0. 1990b. Refinement of
approximately correct domain theories by knowledge-based neural networks. In

14 (3) : 32 1-33 1.

The extraction of refined rules from

References 115

Proceedings of the Eighth National Conference on Artificial Intelligence, p. 861,
San Mateo, CA. Morgan Kaufmann Publishers.

Tresp, V., Hollatz, J., and Ahmad, S. 1993. Network structuring and training using
rule-based knowledge. In Advances in Neural Information Processing Systems 4 ,
eds. C. L. Giles, S. J. Hanson, and J. D. Cowan, San Mateo, CA. Morgan
Kaufmann Publishers.

Unal, F. A. and Khan, E. 1994. A fuzzy finite state machine implementation based
on a neural fuzzy system. In Proceedings of the Third International Conference
on Fuxxy Systems, vol. 3, pp. 1749-1754.

Watrous, R. L. and Kuhn, G. M. 1992a. Induction of finite-state languages using
second-order recurrent networks. Neural Computation, 4(3):406.

Watrous, R. L. and Kuhn, G. M. 199213. Induction of finite state languages using
second-order recurrent networks. In Advances in Neural Information Processing
Systems 4, eds. J. E. Moody, S. J. Hanson, and R. P. Lippmann, pp. 309-316,
San Mateo, CA. Morgan Kaufmann Publishers.

Wiles, J. and Bollard, S. 1996. Beyond finite state machines: Steps towards rep-
resenting and extracting context-free languages from recurrent neural networks.
In NIPS’96 Rule Extraction from Trained Artificial Neural Networks Workshop,
eds. R. Andrews and J. Diederich, p. 70.

Williams, R. J. and Zipser, D. 1989. A learning algorithm for continually running
fully recurrent neural networks. Neural Computation, 1 :270-280.

Zadeh, L. 1965. Fuzzy sets. Information and Control, 8:338-353.
Zeng, Z., Goodman, R. M., and Smyth, P. 1993. Learning finite state machines

with self-clustering recurrent networks. Neural Computation, 5(6):976-990.

This page intentionally left blank

4 A Tutorial on Neurocomputing of Structures

Alessandro Sperduti

I n this chapter we present a tutorial on neural networks for the processing of struc-
tured information. Fundamental concepts on structured domains are first introduced.
Then earlier work on representing data structures within traditional neural networks
is briefly reviewed. This review introduces some basic concepts which are exploited
to realize graph transductions. W e discuss neural realizations of a specific class of
graph transductions for the classification of labeled acyclic graphs. W e show how
the standard definition of neuron and neural learning algorithms can be extended to
deal with structured domains. A section is then devoted to the case of cyclic graphs.
I n the second part of the chapter, computational and complexity results concerning
this class of neural networks are reviewed. Almost all these results exploit Tree Au-
tomata Theory as a medium to assess the computational capabilities and functional
complexity of this kind of neural network.

4.1 Introduction

Structured representations are ubiquitous in different fields such as knowledge
representation, language modeling and pat tern recognition. Examples of application
domains where structures are extensively used are medical and technical diagnoses,
molecular biology, chemistry, automated reasoning, and so on.

While algorithms that manipulate symbolic information are capable of dealing
with highly structured data, adaptive neural networks are usually regarded as learn-
ing models for domains in which instances are organized into static data structures,
like records or fixed-size arrays. Recurrent neural networks, that generalize feedfor-
ward networks to sequences (a particular case of dynamically structured data) are
perhaps the best known exception.

Interest in developing connectionist architectures capable of dealing with these
rich representations, as opposed to “flat” or vector-based representations, can be
traced back to the end of the 80’s (Touretzky, 1990; Pollack, 1990; Hinton, 1990;
Plate, 1995; Srnolensky, 1990). However, only during the last few years a general

118 A Tutorial on Neurocomputing of Structures

framework for the development of neural networks for the representation and
processing of structures has been developed (Sperduti and Starita, 1997; Frasconi
et al., 1998). In particular, these neural networks are a generalization of recurrent
networks for processing sequences, i.e. linear chains from a graphical point of view,
to the case of (mainly) directed acyclic graphs.

There are several reasons for being interested in processing of structures by neural
networks. First of all, neural networks are universal approximators. Moreover, they
are good classifiers and they are robust to the presence of noise. These capabilities
are important when considering real-world applications in structured domains.
In order to exemplify, let us consider the classification of labeled graphs which
represent chemical compounds. The standard approach consists of encoding each
graph X as a fixed-size vector which is then given as input to a feedforward neural
network for classification. This approach is motivated by the fact that neural
networks only have a fixed number of input units while graphs are variable in
size. The encoding process is usually defined a pr ior i and does not depend on the
classification task, e.g. in molecular biology and chemistry, the encoding process is
performed through the definition of topological indexes (Hall and Kier, 1991), which
are designed by a very expensive trial and error approach.

The a priori definition of the encoding process faces the specificity-generality
d i l e m m a , i.e. if the encoding is too specific, new features must be devised (by
suitable experts) for each new computational problem; on the other hand, if the
encoding is too general, the representing features are weakly relevant with respect
to the specific target and so they turn out to be difficult to classify. To overcome
the dilemma, the encoding process should be adapted automatically to the specific
classification task at hand. This can be done by implementing the encoding process
through an additional neural network which is trained, alongside the neural network
performing the classification, to learn the best way to encode the graphs for the
given classification task.

Of course, neither standard neurons nor recurrent neurons are powerful enough
to be used in such a network. This is because the former were devised for processing
unstructured patterns, while the latter can only naturally process sequences. How-
ever, by extending the concept of recurrent neuron it is possible to formalize several
supervised models for the classification of structures which stem very naturally from
well known models, such as Backpropagation Through Time networks, Real-Time
Recurrent networks, Simple Recurrent networks, Recurrent Cascade-Correlation
networks, and Neural Trees.

When developing a new computational model, it is important to understand
its computational power and complexity. This evaluation is typically done by
resorting to known results in related models. For example, it is well known that
recurrent neural networks can simulate any finite-state automata (Alon et al.,
1991; Omlin and Giles, 1996) as well as any multi-stack Turing machine in real
time (Siegelmann and Sontag, 1995). When constraining the network architecture,
however, this computational power may no longer hold. For example, Elman-style
Recurrent Networks can simulate any finite-state automata (Goudreau et al., 1994;

4.2 Basic Concepts 119

Kremer, 1995), while Recurrent Cascade-Correlation networks cannot (Giles et al.,
1995; Kremer, 1996). Here we discuss the computational capabilities of Elman-style
Recurrent Networks, Recurrent Cascade Correlation networks, and Neural Trees
with respect to the classification of structures. We will relate them to Frontier-to-
Root Tree Automata (FRA) (Thatcher, 1973; Gonzalez and Thomason, 1978) and
show that Elman-style Recurrent Networks can simulate any FRA, while neither
Cascade-Correlation networks, nor Neural Trees can. Moreover, we briefly report
a known result which states that, if the set of possible labels (alphabet) is finite,
then any mapping from trees to the set of reals can be implemented by a neural
network for structures having a sufficient number of parameters.

Computational complexity of the model is important as well. Here we give both
upper and lower bounds on the number of neurons (or connections) needed to
implement an arbitrary frontier-to-root Tree Automaton into the most powerful
model. Some results on the complexity of learning are sketched as well.

4.2 Basic Concepts

Here we consider structured domains which are sets of annotated directed ordered
graphs (DOGS). A DOG is a directed graph Y with vertex set vert(Y) and edge
set edg(Y), where for each vertex ‘U E vert(Y) a total order on the edges leaving
from v is defined. Moreover, vertices are annotated by labels which are tuples of
variables. The void DOG will be denoted by the special symbol [.

For example, in the case of graphs representing logical terms with variables,
denoted by capital letters, the order on outgoing edges is immediately induced by
the order of the arguments to a function; e.g. the logical term f (X,g(X,c)) can be
represented as

f

Y L ”
x & g

L”
C

Note that, since the variable X is shared, a single node is used to represent it.
In problems of structure classification, we shall require the DOG either to be

empty or to possess a supersource, i.e. a vertex s E vert(Y) such that every
vertex in vert(Y) can be reached by a directed path starting from s . Note that
if a DOG does not possess a supersource, it is still possible to define a convention
for adding an extra vertex s (with a minimal number of outgoing edges), such
that s is a supersource for the expanded DOG (Sperduti and Starita, 1997). When
considering a DOAG, i.e. an acyclic DOG, the function source(Y) returns the
unique supersource of Y . We also assume that a convention is defined in such a

120 A Tutorial on Neurocornputing of Structures

way that, given a cyclic DOG, the function source(Y) returns a predetermined
supersource within the set of supersources'.

Given a DOAG Y and U E vert(Y), we denote by pa[v] the set of parents of
U, by ch[v] the set of children of U, by de[v] the set of descendants of U, and by
an[w] the set of ancestors of U. We will use the notation chj[v] to refer to the j - th
child of U. The indegree of U is the cardinality of the set pa[v] the outdegree of U

is the cardinality of the set ch[v]. In the following, we shall denote by # (Z l o) the
class of DOAGs with maximum indegree i and maximum outdegree 0. In our logical
terms example, the maximum outdegree corresponds to the maximum arity of the
functions being considered, e.g. the maximum outdegree of f (X , g (X , c)) is 2. A
generic class of DOAGs with bounded (but unspecified) indegree and outdegree,
will simply be denoted by #.

Subscript notation will be used when referencing the labels attached to vertices in
a data structure. Hence Y, denotes the set of variables labeling vertex U E vert(Y).

Given a data structure Y , the DOG obtained by ignoring all node labels will be
referred to as the skeleton of Y, denoted skel(Y). Clearly, any two data structures
can be distinguished because they have different skeletons, or, if they have the same
skeleton, because they have different node labels. The class of all data structures
defined over the label universe domain y and skeleton in # (z l o) will be denoted as

We define a structured domain V, over the set of labels C, as any (possibly
infinite) set of graphs over C. The valence of a domain V is defined as the maximum
among the out-degrees of the graphs belonging to V.

Since we deal with learning, we need to define the target function we want to
learn. In approximation tasks, a target function d(.) over V# is defined as any
function d : V# -+ Rk, where k is the output dimension, while in (binary)
classification tasks we have d : V# -+ (0, l}k, i.e. d : V# -+ {-1, l}k. A training set
T on a domain V# is defined as a set of couples (X , d (X)) , where X E U# C_ D#
and d(.) is a target function defined on V#.

Finally, for the sake of completeness, here we recall the basic definitions of

Y#(Z,O'.

standard and recurrent neurons. The output o(') of a standard neuron
by

where f (-) is some non-linear squashing function applied to the weighted

is given

(4.1)

sum2 of
inputs I. A recurrent neuron with a single self-recurrent connection, on the other

1. A cyclic graph may have several supersources.
2. The threshold of the neuron is included in the weight vector by always expanding the
input vector with a component equal to 1.

4.3 Representing Structures in Neural Networks 121

hand, computes its output o (') (t) as follows

where f(.) is applied to the weighted sum of inputs Iplus the self-weight, w,, times
the previous output. The above formula can be extended by considering both several
interconnected recurrent neurons and delayed versions of the outputs (Haykin,
1994).

4.3 Representing Structures in Neural Networks

Structures may be represented in a neural network by using either a ZocaZist repre-
sentation or a distributed representation. In the localist representation each neuron
represents a component of the structure, while each connection represents a relation
between components. This way of representing structures is trivial and not efficient,
since different structures need to be represented by different networks. For this
reason, several researchers have developed neural systems using different types of
distributed representation, such as in DCPS (Touretzky and Hinton, 1988), Boltz-
CONS (Touretzky, 1990), Tensor Products (Smolensky, 1990), RAAM (Pollack,
1990) and LRAAM (Sperduti, 1994a,b), Convolution-based models (CHARM (Met-
calfe, 1991), TODAM2 (Murdock, 1993)) and Holographic Reduced Representa-
tions (Plate, 1995). In the following we discuss the RAAM family of models, since
they can be considered the precursors of the models presented in this chapter.

4.3.1 The RAAM Family

The task of a network in the RAAM family (Sperduti and Starita, 1996) consists
of devising a reduced descriptor for each structure (and substructure) in a given
set of structures, i.e. the training set. Hinton first introduced the concept of the
reduced descriptor (Hinton, 1990). The basic idea is to represent complex conceptual
structures in distributed representations. These representations, however, should
satisfy four desiderata:

1. Representational adequacy: It should be possible to reconstruct the full
representation of the structure from the reduced descriptor;
2. Reduction: The reduced descriptor should require the allocation of fewer units
than the full explicit representation of the structure;
3. Systematicity: The reduced descriptor should be related in a systematic way
to the full representation;
4. informativeness: The reduced descriptor should tell us something about the
concept that it refers to, without it being necessary to reconstruct the full repre-
sentation.

122 A Tutorial on Neurocomputing of Structures

All these desiderata are satisfied by the networks in the RAAM family; see Fig-
ure 4.1. Depending on the nature of the structures at hand and on how they are
represented, different networks of the RAAM family can be used. A standard RAAM
network is able to generate reduced descriptors for trees with information stored in
the leaves; an SRAAM network is, instead, suited for lists and an LRAAM network
(which is a generalization of the SRAAM network) can deal with labeled directed
graphs.

The general form of a neural network of the RAAM family is defined by a
N I - N H - NO feedforward encoder network, where both the input and output
layers are partitioned in one label field and n reduced descriptor (pointer) fields,
i.e. NI = NO = Nl + nNH, where Nl 2 0 is the size of the label field; moreover,
the reduced descriptor fields and the hidden layer have the same size. In this
formulation, the network for a RAAM network is obtained by setting Nl = 0 and
the network for an SRAAM by setting n = 1. The set of equations describing the
network are as follows:

where & e ' ~ E RNH, G,;,e'o E RNi+nNH, F(;)j = f (; j) , and f (.) is a sigmoid-
shaped function. The vectors e', and $0 are the bias vectors for the hidden and
output layers, respectively, ;is the input pattern to the network, is the hidden
activation, and 0' is the output of the network. The matrix E E RNHxN' is the
Encoding matrix, i.e. the weight matrix between the input layer (N I = Nl + nNH
units) and the hidden layer (N H units); and D E RNo N H is the Decoding matrix,
i.e. the weight matrix between the hidden layer and the output layer (NO = N I) .
In the following, the index t will vary on the output units, s on the hidden units,
and q on the input units.

A pattern3 in the training set of a general RAAM network assumes the form
jj' = [Zl, . . . , Z.], where Zj E RNH can be either a reduced descriptor or a label.
When considering an SRAAM network the typical form of a pattern becomes
j? = [l , r d] , where i E RNL is a label and E RNH is a reduced descriptor.

4 -

An LRAAM network generalizes this form, allowing multiple reduced descriptors:
+ + -+ g= [I , r&,. . . , r&].

The learning algorithm for RAAM and SRAAM networks was originally devel-
oped by J. B. Pollack and it essentially remains the same for the LRAAM (Pollack,
1990). The algorithm combines a standard gradient descent with a dynamical adap-
tation of the training set. Specifically, the goal of the gradient descent consists of

3. For the sake of notation, in the following, we omit the transpose operator: the notation
3 = [yi, . . . , &] must be read as p' = . . . , g,].

4.3 Representing Structures in Neural Networks 123

A R I

A-B-

SRAAM

LRAAM
1 units I k units I k units I

1 k units I

Figure 4.1 The models belonging to the RAAM family: The RAAM is able to
encode trees with labels on the leaves, the SRAAM encodes sequences, while the
LRAAM is able to encode labeled directed graphs.

minimizing the following cost function:

where P is the number of patterns (substructures) in the training set.
If the learning is able to reach zero error, then the network implements a perfect

compressor-reconstructor couple for the training set. Furthermore, if each reduced
descriptor rd in the training set is equal to i(k) = FE(@(^)), then the network
is also a member of the RAAM family, in the sense that each reduced descriptor
retains all the information contained in the pattern 6 (I c) . In fact, this information
can be reconstructed by decoding dk), i.e. j7 (k) = F D (r d). Pollack's algorithm
fulfills this constraint by modifying the training set during learning: at each epoch
of learning every reduced descriptor rd is replaced by the corresponding hidden
layer activity i('"). Note that, this technique guarantees the consistency of the model
only at global minima of CO. Practically, however, even a point in the weights space
which is in the proximity of a global minimuni works well.

For LRAAM networks, this author introduced an additional learning rule for
dealing with void descriptors (Sperduti, 1994b). This rule is necessary because in
LRAAM networks there is no commitment to a particular representation for the
void descriptor, i.e. the void descriptor can get multiple representations. These rep-

+ (k)

+ (k)

+ (k)

A Tutorial on Neurocomputing of Structures

resentations are distinguished from non-void descriptors thanks to a void condition
bit allocated in the label for each reduced descriptor field of the network. The learn-
ing rule for void descriptors consists of copying the output representations for the
void descriptor into the training set at each epoch of learning.

The main theoretical concern about Pollack's algorithm (and its LRAAM gener-
alization) is whether it is possible to give it a better mathematical characterization,
since an improved understanding of the underpinning mathematics should eventu-
ally either help in improving the efficiency of the algorithm or in disclosing the
limitations of the RAAM family.

4.4 From Graph Representation to Graph Transductions

In the previous section, we discussed a specific way of representing labeled graphs
within a RAAM neural network. The basic idea is to implement a mechanism for

encoding the graph into a vectorial representation, preserving all the information
needed for subsequent decoding of the vectorial representation in order to recon-
struct the original graph. In this section, we discuss how the encoding function
can be fruitfully combined with a transformation to obtain a specific type of graph
t r ansd~c t ion~ .

A functional graph transduction T : Z + 0 is defined as a mapping from an
input structured domain Z (over E,) to an output structured domain 0 (over CO).
A special case of transduction that we will consider is the one where 0 is the trivial
set of structures compounded by a single labeled node. In fact, it is not difficult
to recognize that when this is the case, with CO = (0, l}, the transduction can be
interpreted as a classification function of the structures in 1.

In general, however, graph transductions can assume several forms. For the
purpose of this chapter we mainly focus on the class of transductions, defined on
domains of DOAGS with supersources, which can be represented in the following
form

where g is the output function and i is the encoding (or state transition) function.
Specifically, .i is defined recursively as

where r : vert(Z#) x Z x X" + X is the c-model function, s = source(Y) , nil E X
is used to represent the void graph, and Y(') , . . . , Y(") are the subgraphs pointed

4. Some experimental results obtained on combining an LRAAM network with a percep-
tron are reported in (Sperduti et al., 1995).

4.4 From Graph Representation to Graph Transductions 125

to by s, i.e. source(Y(2)) = chi[s]. The function r is called a c-model function since
it defines a computational model for the encoding function.

Note that, because of Equation 4.7, 7- is causal since r only depends on the
current node and nodes descending from it. Moreover, when r does riot depend
on any specific vertex, i.e. r (YS,+(Y(')) , . . . , + (Y (O))) , then 7- is also stutionury
trunsduction. We will mainly focus on stationary transductions.

Of course, for general DOGs, the above definition of +(.) is not adequate. In
Section 4.8 we will also discuss how to deal with cyclic DOGs.
Example 4.1
Given a stationary encoding function +, the encoding of the labeled structure

b

a

1
i

c + a

is defined by the following set of equations

b

;I

<
a

1 c - + a

1
= T(a, +(b), +(c -+ a)) ,

+(b) = r(b, n i l , n i l) ,

1 +(c -+ a) = r (c , +(a), nil),

+(a) = r (a , nil, nil),

where b and a denote the graphs with a single node labeled b, and a, respectively.
By proper substitutions, the encoding can finally be written as

r a

1
<

c + a

126 A Tutorial on Neurocornputing of Structures

= T(a, T(b, nil, nil), ~ (c , T(a, nil, nil), nil))

It should be noted that causal stationary transductions cannot compute any
function of the input DOAG. For example, consider the following two DOAGs

a a a

Any given transduction described by Equations 4.6-4.7 will necessarily map these
two graphs into the same output, regardless of the form of functions g(.) and ~ (0) .

This is because the graph's processing is bottom-up, so it is not possible to recognize
that in the right-hand side graph pa[a] is constituted by two nodes, i.e. the ones
labeled h and q.

This computational limitation, however, allows one to improve the efficiency
of the computation. In fact, when considering DOAGs, the training set can be
optimized by allowing only one occurrence of the same subgraph: if there are graphs
X (l) , . . . , X (4) which share a common subgraph X, then X can be represented
only once. This is obtained by merging all the graphs in a single minimal DOAG.
After that , a topological sort on the vertices of the minimal DOAG is performed
to determine the updating order on the vertices for the recursive network. The
advantage of having this topological order is that all the reduced representations
and also their derivatives with respect to the weights can be computed by a single
ordered scan of the training set.

Both the merging5 and sorting operations can be done efficiently (almost linearly)
with respect to the size of all DOAGs and the size of the minimal DOAG, respec-
tively. Moreover, the use of the minimal DOAG leads to a considerable reduction
in space complexity. In some cases, such reduction can even be exponential.

4.5 Neural Graph Transductions

The implementation of graph transductions through standard and recurrent neural
networks can only be realized by resorting to complex and very unnatural encoding
protocols which map structures onto fixed-size unstructured patterns or sequences.
A more natural approach, instead, can be obtained by proper instantiation of the
input and output domains for g, .i, and r.

Specifically, let Z# be the input structured domain with real valued vectors as
labels Z = E", and 0 = E k . The encoding function .i is completely defined by

5 . The merging operation can be performed by using either hash tables or AVL trees.

4.6 Recursive Neurons 127

choosing a representation for the void graph and by defining the c-model function
r. By choosing X = R", any real valued vector would be fine for representing the
void graph, however, for computational reasons which will be clear in the following,
we choose the null vector for representing the void graph, i.e. nil = 0 E R".
Consequently the c-model function r will be defined as

"
o times

where the first domain of the cartesian product denotes the label space, while the
remaining domains represent the encoded subgraph spaces up to the maximum
outdegree of the input domain I#. Finally, we can define the outpiit function g as

g : R" + Rk. (4.9)

Note that Equations 4.8 and 4.9 only describe the general form for r and g.
Different realizations can be given which satisfy the above equations. For example,
both r and g can be implemented by feedforward neural networks. Before reaching
such a level of complexity, however, it is worth exploring simpler realizations.
Specifically, in the following section we study recursive neurons.

4.6 Recursive Neurons

First consider the case in which m = 1. The simplest non-linear neural realization
for r(.) is given by

n 0

(4.10)

where f is a sigmoidal function, wi are the weights associated with the label space,
wj are the weights associated with the subgraphs spaces, 8 is the bias, 1 is the
current input label, and 2 1 , . . . , X, are the encoded representations of subgraphs.
Example 4.2 Logical term f (a, g (b) , c) .

Let us define a coding function

which encodes the symbolic labels into binary vectors, i.e. 4(a) = [1,0,0,0,0],

nil = 0. Thus, r (-) will be defined by five parameters for the label, i.e. w1,. . . , w5,
three parameters for the subgraphs (maximum outdegree), i.e. wl, ~ 2 2 , and &3, and
the bias 8.

4(b) = [O, L O , o,o], 4 (c) = [o, 0 , L O , O I , + (f) = [o, 0,0,1,01,4(g) = [o, o ,o ,o , 11, and

128 A Tutorial on Neurocornputing of Structures

Then,

7-

.i (C)

A graphical representation of the above equation is given in Figure 4.2.

Figure 4.2 Graphical representation for the encoding function of Example 4.2.

4.6 Recursive Neurons 129

When m > 1, T (.) E RTL can be written as

where F i (v) = f (w i) , 1 E Rn, 8 E Em, W E Rmxn, z(j) E Rm, %j E Rmxm.

taking its input as the encoded representation of the graph, i.e.
Concerning the output function g(+), it can be defined as a standard neuron

g(x) = F (M x + P) , (4.12)

where M E RkXm and P E R'" are the weight matrix and bias terms defining g (-) ,
respectively.

As a special case, g(.) can be defined as a function which selects a subset of the
state vector in Rm. For example,

where M E Rkxm is a 0-1 matrix with a single 1 for each row and at most a single
1 for each column. This corresponds with letting the selected components of the
state vector contribute to both the output and the coding of the state.

The relationship between recurrent and recursive neurons is clarified by the
following example.
Example 4.3
A recurrent neuron can be considered as a special case of a recursive neuron applied
to lists, i.e. labeled graphs with o=l; in that case, the position of a vertex within
the list corresponds to the time of processing; e.g. given the list

the set of equations derived by the recursive application of Equation 4.10 is
n

n

xi = T (z y x 2 - 1) = f (Z W j Z j (2) + zbl22-1) 2 = 2 , . . . , k
j=1

where 6 1 is the weight on the recursive connection; by making the time t of
processing explicit, the above equations can be rewritten as the output o(.) of
a recurrent neuron as follows

n

o(t = 1) = f (X W j Z j 1))
j=1

130 A Tutorial on Neurocornputing of Structures

n

o(t) = f(X WjZj.”’ + &0(t - 1)) t = 2 , . . . , k
j=1

4.7 Learning Algorithms

In this section, we discuss how several standard supervised algorithms for neural
networks can be extended to structures.

4.7.1 Backpropagation through Structure

The task addressed by backpropagation through time networks (Rumelhart and
McClelland, 1986) is to produce particular output sequences in response to specific
input sequences. These networks are, generally, fully recurrent, in which any unit
may be connected to any other. Consequently, they cannot be trained by using
plain backpropagation. A trick, however, can be used to turn an arbitrary recurrent
network into an equivalent feedforward network when the input sequences have a
maximum length T . In this case, all the units of the network can be duplicated T
times (unfolding of time), so that the state of a unit in the recurrent network at
time t is held by the t-th copy of the same unit in the feedforward network. By
preserving the same weight values through the layers of the feedforward network, it
is not difficult to see that the two networks will behave identically for T time steps.
The feedforward network can be trained by backpropagation, taking care to preserve
the identity constraint between weights of different layers. This can be guaranteed
by adding toget her the individual gradient contributions of corresponding copies of
the same weight and then changing all copies by the total amount.

Backpropagation through Time can easily be extended to structures. The basic
idea is to use recursive neurons to encode the structures, i.e. .i(.); the representations
obtained are then classified or used to approximate an unknown function by a
standard feedforward network, i.e. g(.) .

Following our framework, given an input graph X , the network output T (X) can
be expressed as the composition of the encoding function + (a) and the classification
(or approximation) function g(.) :

(4.14)

Learning the set of weights W g can be implemented by plain backpropagation
on the feedforward network realizing g(.)

(4.15)

where y = ? (X) , i.e. the input to the feedforward network, while learning the set

4.7 Learning Algorithms 131

of weights, W ; , realizing ?(.) can be implemented by

(4.16)

where the first term represents the error coming from the feedforward network and
the second one represents the error due to the encoding function +(.). Note that
W i actually refers to the weights associated with the c-model function I-(.). Thus,
in order to clarify this point we will denote this weight matrix as W T

Goller and Kuchler (Goller and Kuchler, 1996) devised a learning algorithm,
namely Backpropagation Through Structure, on the basis of the above equations.
The basic idea it to observe that can be computed by backpropagating
the error from t,he feedforward network implementing g(.) through the network
implementing the encoding function ? (X) . As in backpropagation through time,
the gradient contributions of corresponding copies of the same weight are collected
for each structure. The total amount is then used to change all the copies of the same
weight. If learning is performed by structure, then the weights are updated after
the presentation of each individual structure, otherwise, the gradient contributions
are collected through the whole training set and the weights changed after all the
structures in the training set have been presented to the network. Recalling that
the encoding network of a graph X is defined as the composition of the network
implementing ? (X) with the network implementing g(.) , the learning algorithm for
an optimized tra.ining set of L structures can be summarized in the following way:

aW,

Backpropagation through Structure

Repeat
for 1 = 1 to L
Compute 7 (X) ;

Compute the gradient using the Backpropagation Algorithm over the encoding network

Collect (add) the gradient for the different instances of weights in W , ;

Update W, and W , ;

Until Convergence

of x;

4.7.2 Extension of Real-Time Recurrent Learning

The extension of Real-Time Recurrent Learning (Williams and Zipser, 1989)
to recursive neurons does not present particular problems. Here we consider a
neural model where g (.) is implemented as in Equation 4.13, while the encoding is
performed by m recursive neurons, i.e. (by including the bias into the label weight

132 A Tutorial on Neurocomputing of Structures

matrix)
0

+ (X) = T(Z, dl), . . . ,do)) = F(WZ + @ j &)) , (4.17)
j=1

where z(j) = + (X (j)) with source(X(j)) = chj [source(X)], and

w7 = [W,@1,. . . , eO]. (4.18)

Here we show how to compute the derivatives of + (X) leaving to the reader the

The derivatives of + (X) with respect to W and Wi (i E [l, . . . ,o]) can be
derivation of the final learning rule according to the chosen error function.

computed as follows:

(4.19)

where T; is the first derivative of the p-th component of T (.) computed on the
supersource of X , S,t is the Kronecker delta, p = l , . . . ,m, t = 1 , . . . ,m,
k = 0 , . . . , n and (Wj)P is the pth row of W j ;

h h

(4.20)

where t = 1,. . . , m, and q = 1 , . . . , m.

that if V is a graph composed of a single vertex, then
These equations are recursive on the structure X , and can be computed by noting

(4.21)

This allows the computation of the derivatives in real time alongside the computa-
tion of the neural representations for the graphs.

4.7.3 Recursive Cascade Correlation

In this section we discuss how a neural graph transduction '7- can be learned
using an extension of the Cascade-Correlation algorithm. The standard Cascade-
Correlation algorithm (Fahlman and Lebiere, 1990) creates a neural network using
an incremental approach for the classification or regression of unstructured patterns.
The starting network No is a network without hidden nodes trained by a Least Mean
Square algorithm. If network NO is not able to solve the problem, a hidden unit u1

is added such that the correlation between the output of the unit and the residual

4.7' Learning Algorithms 133

error of network No is maximized6. The weights of u1 are frozen and the remaining
weights are retrained. If the obtained network cannot solve the problem, new
hidden units are added which are connected, with frozen weights, with all the inputs
and previously installed hidden units. The resulting network is a cascade of nodes.
Fahlman extended the algorithm to the classification of sequences, obtaining good
results (Fahlman, 1991).

In the following, we show that Cascade Correlation can be further extended to
structures by using our computational scheme (Sperduti et al., 1996). In fact, the
shape of the c-model function can be expressed component-wise by the following
set of equations:

(4.22)
(4.23)

(4.24)

(4.25)

where the hi are suitable nonlinear functions of the arguments.

computed as
Specifically, the output of the k-th hidden unit, in our framework, can be

n k o

k - 1

(4.26)
q = l

where is the weight of the k-th hidden unit associated with the output of the
v-th hidden unit computed on the j - th subgraph code z(j), and zijr) is the weight
of the connection from the q-th (frozen) hidden unit, q < k , and the k-th hidden
unit. The output of the network (with k inserted hidden units) is then computed
according to Equation 4.12.

Learning is performed as in standard Cascade Correlation by interleaving the
minimization of the total error function (LMS) and the maximization of the
correlation of the new inserted hidden unit with the residual error. The main
difference with respect to standard Cascade Correlation is in the calculation of

6. Since the maxirnization of the correlation is obtained using a gradient ascent technique
on a surface with several maxima, a pool of hidden units is trained and the best one
selected.

A Tutorial on Neurocomputing of Structures

the derivatives. According to Equation 4.26, the derivatives of Q (Z , x(l),
with respect to the weights are computed as

. . , x(0))

(4.27)

(4.28)

(4.29)

where i = 0, . . . ,n; q = l , , , . , (I c - 1); U = 1,. . . , k ; t = 1,. . . , o and f ’ is the
derivative of f(.). The above equations are recurrent on the structures and can be
computed by observing that for graphs composed by a single vertex Equation 4.27
reduces to 3 = Zi f ’ , 3 - - xq f ’ (for q < k) , and all the remaining derivatives
are null. Consequently, we only need to store the output values of the unit and its
derivatives for each component of a structure.

Learning of the output weights proceeds as for standard Cascade Correlation.

4.7.4 Extension of Neural Trees

Neural Trees (NT) have recently been proposed as a fast learning method in
classification tasks. They are decision trees (Breiman et al., 1984) where the splitting
of the data for each vertex, i.e. the classification of a pattern according to some
features, is performed by a perceptron (Sirat and Nadal, 1990) or a more complex
neural network (Sankar and Mammone, 1991). After learning, each vertex at every
level of the tree corresponds to an exclusive subset of the training data and the leaf
nodes of the tree completely partition the training set. In the operative mode, the
internal nodes route the input pattern to the appropriate leaf node which represents
its class.

One advantage of the neural tree approach is that the tree structure is constructed
dynamically during learning and not linked to a static structure like a standard
feedforward network. Moreover, it allows incremental learning, since subtrees can
be added as well as deleted to recognize new classes of patterns or to improve
generalization. Both supervised (Sirat and Nadal, 1990; Sethi, 1990; Atlas et al.,
1992; Sankar and Mammone, 1991) and unsupervised (Perrone and Intrator, 1992;
Li et al., 1992; Perrone, 1992) splitting of the data have been proposed.

The learning and classification algorithms for binary and general trees can be

4.8 Cyclic Graphs 135

found in (Sankar and Mammone, 1991). The extension of these algorithms to
structures is straightforward: the standard discriminator (or network) associated
with each node of the tree is replaced by a recursive discriminator (or network)
which can be trained with any of the learning algorithms we have presented so far.

4.8 Cyclic Graphs

Up to now we have considered DOAGs. In fact, the processing of graphs with cycles
poses at least two main problems: (2) How to modify the definition of ?(.) in such
a way to attain an unambiguous neural representation of the graph? (zi) How to
modify the learning algorithm? Of course, the answer to question (iz) depends on
the answer to question (2). Here we propose a solution to both problems, which,
however, must be considered partial since it is not guaranteed to be valid under all
conditions. The nature of this limitation will be clear in the following.

Given a cyclic DOG Y , with h vertices, define the associated set of equations

where there is one equation for each vertex zi j E v e r t (Y) , and if chi[vj] is void,
then x,hi [v j~ = nil. Then, if S (Y) admits a (unique) solution, we define

(4.31)

where we exploit the fact that , by definition, source(Y) returns a predefined
supersource of Y among all possible ones. Note that if Y is acyclic, then the system
S (Y) has a unique solution given by Equation 4.7. So, Equation 4.31 is more general
than Equation 4.7. The system S (Y) , however, in general may not allow a solution,
or if it does, it may admit multiple solutions. Consequently, according to the way
T (.) is actually implemented, sufficient conditions should be derived to guarantee the
existence of a (unique) solution, thus solving problem (2). Such conditions should
then also be extended to cope with the perturbations introduced by the learning
algorithm over the parametric implementation of T (.) .

The neural implementation of Equation 4.31 can still be obtained by resorting
to Equations 4.10-4.12. In this case the encoding function +(Y) is computed by a
recurrent neural network N (Y) defined according to S (Y) : N (Y) will contain a
pool of recursive neurons7 for each distinct equation in S (Y) and the connections
between pools of neurons is defined according to the functional dependencies
expressed by each single equation in the system.

7. The number of recursive units in the pool is given by m.

136 A Tutorial on Neurocomputing of Structures

Example 4.4
Let us consider the following graph

where I (’) = [l , O , O , O , 01, Z (l) = [O , l , O , O , O] , 1 (2) = [l, 1,0,0,0] , 1 (3) = [O, O , l , O , O] ,
l (4) = [l, 0,1,0,0] , I ! (~) = [0, 0, 0 ,1 ,0] and Z(6) = [0, 0 ,1 ,0 ,1] . Consider a single
recursive neuron (rn = 1). In this case, T (.) is defined by five parameters for the
label, i.e. w1,. . . , w5, two parameters for the pointers, i.e. wl, and w 2 , and the bias
0. The corresponding system S (Y) is

S (Y) = (4.32)

The resulting network N (Y) is shown in Figure 4.3.

Satisfactory sufficient conditions to guarantee the existence of a unique solution
to system S (Y) when using recursive neurons are still missing. In fact, it is well
known that if the weight matrix of a recurrent network, such as the network N (Y) ,
is symmetric, an additive network with first order connections possesses a Lyapunov
function and is convergent (Hopfield, 1984; Cohen and Grossberg, 1983). Moreover,
Almeida proved a more general symmetry condition than the symmetry of the
weight matrix, i.e. a system satisfying detailed balance is guaranteed to possess
a Lyapunov function as well (Almeida, 1987). Finally, if the norm of the weight
matrix (not necessarily symmetric) is sufficiently small, the network’s dynamics
can be shown to go to a unique equilibrium for a given input (Atiya, 1988). The
above results, however, may impose too many constraints on the class of functions
which can be computed and they also do not solve the stability problem for learning,
i.e. the weights of the network N (Y) change with learning and there is no guarantee
that learning will preserve the stability of the network.

4.9 Learning with Cycles 137

Figure 4.3 Graphical representation for the encoding function of the cyclic graph.

4.9 Learning with Cycles

In this section we formulate a proposal on how learning in the case of cyclic graphs
can be performed. Extensions of both Backpropagation and Real-Time learning are
discussed.

4.9.1 Backpropagation

Let consider the framework introduced in Section 4.7.1. Since the network imple-
menting +(.) is recurrent, can only be computed by resorting to recurrent
backpropagation (Pineda, 1988), which has been defined to cope with neural net-
works containing cycles.

In the standard formulation, a recurrent backpropagation network N with p units
is defined as

aW,

where I('bp) E lRp is the input vector for the network, and W('bp) E Rp x Rp the
weight matrix. The learning rule for a weight of the network is given by

(4.34) (r b p) o/ ('b) Awgbp) = rlo, ') : e k (L ') k r

k

where all the quantities are taken at a fixed point of the recurrent network, e k is the
error between the current output of unit k and the desired one, Lji = 6 j i - d r b p) w j i

138 A Tutorial on Neurocomputing of Structures

(6+ is a Kronecker delta), and the quantity

(4.35)
k i

can be computed by relaxing the adjoint network N', i.e. a network obtained from
N by reversing the direction of the connections8. The weight wji from neuron i
to neuron j in N is replaced by oi7'bp)wij from neuron j to neuron i in N'. The
activation functions of N' are linear and the output units in JV become input units
in N' with ei as input.

Given a cyclic graph Y , let h = # v e r t (Y) , m be the number of recursive neurons
and oi(t) be the output at time t of these recursive neurons for vi E v e r t (Y) . We
define the global state vector of N (Y) at time t as

o(t) = (4.36)

where, for convention, ol(t) is the output of the neurons representing source(Y) .
To account for the labels, we have to modify Equation 4.33 slightly

where

I =

is the vector collecting all the labels of Y , and

(4.38)

(4.39)

"
h repetitions of w

and GT E X h m x h m is defined according to the topology of Y .

become:
The input of the adjoint network is ek = (aEr7'T$(y)))k, and the learning rules

8. Note that, in this case, the directions of the connections agree with the directions of
the corresponding edges in the input graph.

4.9 Learning with Cycles 139

(4.40)

(4.41)

Of course, as in Backpropagation Through Structure, all the changes referring to
the same weight are added and then all copies of the same weight are changed by the
total amount. It must be noted that each graph gives rise to a new adjoint network
and independently contributes to the variations of the weights. Moreover, the above
formulation is more general than Backpropagation Through Structure: when used
for DOAGs the adjoint network becomes a feedforward network representing the
backpropagation of errors.

As for standard recurrent networks, in this case it may also be necessary to force
the creation of new fixed points in the dynamics of the network by using teacher
forcing, a variation of recurrent Backpropagation proposed by Pineda (Pineda,
1988). However, while the effects of this technique are quite well understood in
standard recurrent networks, it is not clear to us how it can influence the dynamics
of the networks associated with the input graphs. In fact, given a set of graphs
{Y(') , . . . , Y (p) } , the associated networks N (Y (')) , . . . , N (Y (p)) are interdependent
since they share the same set of weights. A more accurate study on how this sharing
of resources affects the dynamics of the system when using teacher forcing is needed.

4.9.2 Real-Time

Before proceeding with definitions and equations, we need to clarify a basic assump-
tion inherent to the application of real-time learning to cyclic graphs. In fact, the
original real-time algorithm was defined for sequences, where the order of presen-
tation of the input data is trivially defined. This order can naturally be extended
when dealing with DOAGs: A node is presented only if all its offspring have been
presented. Of course, the application of this convention does not work for cyclic
graphs since the presence of a cycle traversing all the vertices of the graph will ren-
der the application of a real-time algorithm impractical: The encoding of the graph
can be computed only at the time all the vertices of the graph are presented and the
corresponding network is relaxed. Thus, in this case, it is more efficient to use the
extension of Backpropagation presented in the previous section. Consequently, in
the following we only consider graphs with local cycles, i.e. cycles involving few ver-
tices. In this case, it is useful to resort to two strictly related concepts, the strongly
connected components of a graph and the related definition of a component graph.

Definition 1 Strongly Connected Component
A strongly connected component of a directed graph G is a maximal set of vertices
U vert(G) such that for each pair of vertices U and v in U , there exists a path
from U to v and vice-versa, i.e. U and v are reachable from each other.

A Tutorial on Neurocomputing of Structures

Definition 2 Component Graph
The (acyclic) component graph of G is defined as the graph Gscc, where
uert(G""") contains one vertex for each strongly connected component of G,
and edg(GS"") contains the edge (U , %)) if there is a directed edge from a vertex
in the strongly connected component of G corresponding to U to a vertex in the
strongly connected component of G corresponding to U .

The computation of the strongly connected components of a graph G and its
component graph GSCC can be performed by combining two depth-first searches
in O(#ver t (G) + #edg(G)) time (Cormen et al., 1990).

The basic assumption is that vertices of input graphs are presented to the re-
cursive network according to the preorder defined by the corresponding compo-
nent graphs. Once the vertices belonging to a strongly connected component are
presented, the partial encoding of the corresponding subgraph can be computed
alongside with the relevant derivatives. It is in this sense that we perform real-time
processing.

Thus, the computation of the derivatives in real time for a graph Y can be done
by observing that

1. Equations 4.19 and 4.20 are still valid;

2. each strongly connected component of Y corresponds to a set of interdependent
equations of this kind;

3 . Yscc defines the dependences between sets of equations.

Example 4.5
Consider a single recursive neuron (rn = 1) and the graph shown in Example 4.4.
The component graph Yscc is given by

where

32 I , Let us consider the derivatives = 3 avi, with uj E u e r t (Y) . They are the

4.10 Cornputationul Power

solutions of the set of equations (derived by Equation 4.20)

component uo
x& = 0

component U 1

= 0

component u2

component u3

, x& = f ’ (X , , + 61x&)

which can be decomposed according to tlie component graph. By substituting the
solution for x{ll into the equation for xL2, and the solution for x/,,~) into the equation
for x&, the subset of equations corresponding to the strongly connected component
u2 can be solved through a relaxation process. Finally, once the solution value for
XI, is known, the last equation corresponding to component u3 can be solved by
direct substitution. In general, by taking into account the dependencies established
by the component graph, both the output of tlie recursive neuron and its derivatives
can be computed in real-time with respect to the component graph.

4.10 Computational Power

It is well known that recurrent neural networks can simulate any finite-state au-
tomata (Alon et al., 1991; Omlin and Giles, 1996) as well as any multi-stack
Turing machinC in real time (Siegelmann and Sontag, 1995). When constraining
the network architecture, however, this computational power may no longer hold.
For example, Elman-style Recurrent Networks can simulate any finite-state au-
tomata (Goudreau et al., 1994; Krerner, 1995), while Recurrent Cascade-Correlation
Networks caririot (Giles et al., 1995; Krenier, 1996). For this reason, it is of
paramount importance to assess the computational power of a given network ar-
chitecture, since this characterizes the class of functions which, in principle, can
be computed by such network. Given an application domain, and based on the
observation that the difficulty of training a network is directly proportional to the
computational power exhibited by the network, computational results can be used
to select the least complex architecture able to deal with the application.

To assess the coinputational capability of recursive neural networks, it is useful
to resort to Tree Automata theory. In the next section we give a brief introduction

A Tutorial on Neurocomputing of Structures

to Tree Grammars and to a specific class of Tree Automata, i.e. Frontier-to-Root
Tree Automata.

4.10.1 Tree Grammars and Tree Automata

A tree grammar is defined as a four-tuple Gt = (V, T , P, S) where V = N U C
is the grammar alphabet (nonterminals and terminals); (V, r) a ranked alphabet;
productions in P are of the form Ti + T’, where Ti and T’ are trees; and S in
Tv is a finite set of “starting trees,” where Tv denotes the set of trees with nodes
labeled by elements in V .

A tree grammar is in expansive fo rm if all its productions are of the form

A (deterministic) frontier-to-root tree automaton (FRA) is a system At =

(Q, F, { fa la in E}) where C is a ranked alphabet; Q is a finite set of states; F , F C Q,
is a set of final states; { fala in C} is a set of transition functions fa : Q” + Q
such that m is a rank of the symbol a E E. The recognition process computed by
the automaton can be described intuitively by the following computational stages:
first of all, the frontier of the state tree is labeled qo (the status associated to nodes
with m = 0, i.e. the leaves); then, for any node in the input labeled I with rank m,
the corresponding node of the state tree is labeled fi (41, . . . , qm) , where 41, . . . , qm
are the states labeling the offspring of that state tree node. Finally, an input tree
is accepted by At if the automaton can enter a final state upon encountering the
root.

According to the above definition, the language recognized by At is the set
T(&) = {TIT in Tc, At can halt in a state in F when the root of T is reached}.

It is not difficult to realize that, given an expansive tree grammar Gt (V, r, S, P)
generating the set L(Gt) of trees with nodes labeled with elements in C, it is always
possible to construct a FRA At that recognizes L(Gt) . In fact, let Q = N with
F = {S} and, for each symbol a in C, define a transition function fa such that
fa(X1,. . . , X,) = X i f l there is in Gt a production

4.10.2 Computational Results

All the results reported in this section are based on the observation that a sigmoid
function can approximate a step function to an arbitrary degree of precision by
augmenting the modulus of the associated weight vector. Thus, if it is demonstrated
that a recursive network with step functions can implement any FRA, the result
holds for recursive networks with sigmoids as well.

4.1 0 Computational Power 143

Elman-style networks, i.e. recursive networks with fully interconnected hidden
units, turn out to be powerful enough to simulate any FRA (Sperduti, 1997):

Theorem 4.10.1
An Elman-style network can simulate any FRA.

The proof is based on a constructive procedure using step function units: there
will be a hidden unit for each transition function of the FRA, and a state is
represented by the set of units associated to transition functions which introduce
the same state in the computation.

Unfortunately, not all the neural networks for the processing of structures are as
powerful as Elman-style networks. In fact, the following theorems state that both
Cascade-Correlation networks and Neural Trees cannot simulate any FRA (Sper-
duti, 1997).

Theorem 4.10.2
A Cascade-Correlation network for structures cannot simulate any FRA.

The proof for this theorem is obtained by observing that a Cascade-Correlation
network for structures is a generalization of a Recurrent Cascade-Correlation
network which has been proved unable to simulate any finite-state machine (Giles
et al., 1995; Kremer, 1996). Since a finite-state machine is equivalent to an FRA
with relations having rank 1, it follows that a Cascade-Correlation network for
structures, which in the finite-state machine case reduces to a Recurrent Cascade-
Correlation network, cannot simulate any FRA.

The same kind of limitation is proved for Neural Trees.

Theorem 4.1 0.3
A Neural Tree for structures cannot simulate any FRA.

This is demonstrated by showing the following result (Sperduti, 1997):

Theorem 4 . 1 0.4
Any Neural Tree for structures can be implemented by a Cascade-Correlation
network for structures.

The above theorem holds since it is observed that a Neural Tree can be cast in
the form of a three-layer feedforward network. The trick is to retain all the units
associated with internal nodes of the Neural Tree as units of the first layer. The
second layer of units is then used to represent all the possible paths from the root
to one leaf. Finally, the output layer will implement the or of the paths associated
to leaves of the corresponding class. The proof is then concluded by observing
that the feedforward network belongs to the class of architectures implemented by
Cascade- Correlat ion for structures.

Note that from t,he previous two theorems, and from the fact that Cascade-
Correlation networks and Neural Trees for structures are generalizations of Recur-
rent Cascade-Correlation networks and Neural Trees for sequences, respectively, we
have

A Tutorial on Neurocomputing of Structures

Fully -Connected

Figure 4.4

different recursive neural network architectures.
Graphical representation of the computational relationships between

Corollary I
A Neural Tree for sequences cannot simulate any Finite-State Machine.

and

Corollary 2
Any Neural Tree for sequences can be simulated by a Recurrent Cascade-Correlation
network.

A summary of the computational results is given in graphical form in Figure 4.4.

4.10.3 Function Approximation

Theoretical results on the capacity of recursive neural networks to approximate
an arbitrary mapping from a set of labeled trees to the reals have been developed
in (Hammer arid Sperschneider, 1997). Specifically, given . a set S of trees with labels in a finite set; . a function f : s -+ I R ~ ;

set of functions F implementable by a recursive neural network defined as
in (Goller and Kiichler, 1996);

the following result holds

Theorem 4.10.5
For any E > 0 there exists a function f' E F such that b's E S , P (l f ' (s) - f(s)l >
E) < €

This result is quitje interesting, since it states that if the set of possible labels is
finite, then any mapping from trees to the set of reals can be implemented by a
recursive neural network having a sufficient number of parameters. No universal

4.11 Complexity Issues 14 5

mapping result for arbitrary real valued vectors as labels, however, has been
established up to now.

4.11 Complexity Issues

A usual problem in neural networks is the evaluation of how many resources a
network needs to implement a desired function. In this section, we explore this
problem from a node-complexity perspective when considering the implementation
of Frontier-to-Root Tree Automata with Output (FRAO) into recursive neural
networks.

Here we report upper bounds on the number of units needed to implement a
given FRAO in four-, three-, and two-layer recursive networks. While the bound
for four-layer networks constitutes a generalization of the bound discussed in (Horne
and Hush, 1996) for the implementation of Finite-State Machines (FSM) in recur-
rent networks, the bound for three-layer networks produces, as a special case, a
new bound to the implementation of Finite-State Automata (FSA) in three-layer
networks. Moreover, the bound for three-layer networks is constructive. Thus, it
may become useful for practical applications where a priori knowledge available in
the form of formal languages or inferred by symbolic machine learning approaches
can be injected into the neural network. For the case of recurrent neural networks
see Chapter 3 and (Ornlin and Giles, 1996; Frasconi et al., 1995). Its constructive
proof is based on the encoding of each possible input configuration of the FRA
by a different integer in a predefined interval. This integer is then processed by
the repeated application of the telescopic technique (Siu et al., 1995), which is so
called because it consists of the progressive activation of a set of units according to
the magnitude of the processed integer. On the basis of this progressive encoding,
it is possible to implement both the transition and output function of the desired
FRAO.

Finally, a lower bound based on a counting argument is reported, which demon-
strates the optimality of the upper bound obtained for four-layer recursive networks.

4.11.1 Representing FRAO as Boolean F'unct ions

In (Horne and Hush, 1996) the m states of a FSA are encoded through logm bits.
Hence, the state and output transition functions can be implemented by a boolean
function

where logm bits in the input are used to encode the current status, while the
remaining log1 bits are used to encode the current input label. Similarly, logm bits
in the output are used to encode the new status and one bit to encode the output
bit.

A Tutorial on Neurocornputing of Structures

In a similar way an FRAO can be implemented by a boolean function

where log1 is the number of bits encoding the input-output symbols, and N is the
maximum rank for the symbols.

4.11.2 Upper Bounds

Even in this case, the fact that a sigmoid function can approximate a step function
to an arbitrary degree of precision by augmenting the modulus of the associated
weight vector, implies that any complexity bound based on threshold gates is also
valid for sigmoidal networks.

It is known that Finite-State Automata with m states and binary alphabet
can be inserted in four-layer recurrent neural networks with O (6) units (Horne
and Hush, 1996). This result was obtained by exploiting the following lemma by
Lupanov (Lupanov, 1972):

Lemma 4.1
Arbitrary boolean logic functions of the form f : (0, l}" + { O , l } Y can be
implemented in a four-layer network of perceptrons with a node complexity of

Using the same lemma the following theorem can be proved:

Theorem 4.11.1 Four-Layer Insertion
Any FRAO with m states, 1 input-output labels, and maximum rank N , can be
implemented by a four-layer recursive neural network with a node complexity of

(log l+log m) l m N

I

O(J log1+Nlogm 1.
If 1 < m the node complexity can be simplified to O (d y) .

If the network is constrained to have three layers, then by using the telescopic
technique (Siu et al., 1995) it can be proven that:

Theorem 4.1 1.2 Three- Layer Insertion
Any FRAO with m states, 1 input-output labels, and maximum rank N , can be
implemented by a three-layer recursive neural network with a node complexity of
O((log 1 + log m) m) and with O((log 1 + log m) ImN) connections.

Note that the result stated in the theorem gives a direct upper bound to the
insertion of FSA in three-layer recurrent networks as well:

Corollary 3
A three-layer recurrent neural network can implement FSMs having m states, and
I input-output labels, with a node complexity of O((1ogI + logm)&) and with
0 ((log 1 + log m) 1 m) connect ions.

4.11 Complexity Issues 14 7

Finally, when considering two-layer networks, the application of the telescopic
technique allows the establishment of the following theorem

Theorem 4.11.3 Two- Layer Implementation
Any FRAO with m states, 1 input-output labels, and maximum rank N , can be
implemented by a two-layer recursive neural network with a node complexity of
O(lm") and with O((log I + N log m)lmN) connections.

4.11.3 A Lower Bound on the Node Complexity

When considering the minimum number of neurons that are required to implement
arbitrary FRAO into recursive networks, a first naive consideration would lead to
O(log1 + logm) since 1 different input symbols and m states can effectively be
encoded by logl + logm units.

However, by using counting arguments similar in nature to the ones used by
Alon et al. and Horn and Hush (lower bounds on the node complexity for recurrent
network implementations of FSA (Alon et al., 1991; Horne and Hush, 1996)), it is
possible to derive an improved lower bound:

Theorem 4 . 1 I .4 Lower Bound, Node Complexity
The node complexity required to implement an arbitrary FRAO with m states,
1 input-output labels and maximum rank N in a recursive neural network is

This result clearly states the optimality of the upper bound for the four-layer
networks.

4.11.4 Bounds on Learning

It is well known that any neural network learning algorithm may be seriously
plagued by the presence of local minima in the associated error function. This
is also true for the class of algorithms we have introduced here. Recently, however,
the efficiency of learning the membership of DOAGs in terms of local minima of the
error surface, by relying on the principle that their absence is a guarantee of efficient
learning, has been analyzed (Frasconi et al., 1997). The authors give a sufficient
condition under which the error surface is free of local minima. In particular, they
define a topological index associated with a collection of DOAGs that make it
possible to design the architecture so as to avoid local minima. The condition they
give holds for any training set composed of graphs with symbolic nodes and a neural
network capable of learning the assigned data.

Finally, it is worth mentioning that some preliminary results on the VC-dimension
of a specific type of recursive neural network are given in (Hammer, 1997).

14 8 A Tutorial o n Neurocomputing of Structures

4.12 Conclusions

The possibility of representing and processing structures in a neural network greatly
increases the potential of integration between neural networks and symbol systems
in a knowledge-based neurocomputing system. In fact, structures generated by a
symbolic module can be evaluated by this type of network and their evaluation
can be used to modify the behavior of the symbolic module. An instance of this
integration scheme is given, for example, by learning heuristics for automated de-
duction systems. Goller reported very successful results in using a Backpropagation
Through Structure network within the SETHEO theorem prover (Goller, 1997). On
the other hand, it is not difficult to figure out, in analogy with finite-state automata
extraction from recurrent networks, how to extract tree automata from a neural
network for structures. This would allow the above scheme to work the other way
around, with a neural module which is driven by a symbolic subsystem.

Another application domain where neurocomputing of structures has already
shown promising results is in chemistry (Bianucci et al., 1999). In this domain,
compounds are naturally represented as labeled graphs. However, the main com-
putational target typically consists of assigning numerical ratings to chemical com-
pounds in order to establish their usefulness in specific applications. Neural net-
works for structures are particularly good at performing this kind of task.

From the above examples it should be clear that neural networks for structures
have the potential of building a very natural bridge between two totally different
ways of representing concepts. This constitutes a contribution towards the devel-
opment of a homogeneous and systematic methodology for the integration of corn-
ponents of different types in a knowledge-based system.

References

Almeida, L. B. 1987. A learning rule for asynchronous perceptrons with feedback
in a combinatorial environment. In Proceedings of the IEEE First Annual
International Conference on Neural Networks, eds. M. Caudil and C. Butler,
pp. 609-618, San Diego, CA. IEEE.

Alon, N., Dewdney, A. K., and Ott , T. J. 1991. Efficient Simulation of Finite
Automata by Neural Nets. Journal of the ACM, 38(2):495-514.

Atiya, A. 1988. Learning on a general network. In Neural Information Processing
Systems, ed. D. Z. Anderson, pp. 22-30. New York: AIP.

Atlas, L. E., Cole, R., Muthusamy, Y., Lippman, A., Connor, J. T., Park, D., El-
Sharkawi, M., and Marks, R. J. 1992. A performance compariw-)ii of trained
multilayer perceptrons and trained classification trees. Proceedings of the IEEE,

Bianucci, A. M., Micheli, A., Sperduti, A . , and Starita, A. 1999. Application of

78: 1614- 1619.

References 14 9

cascade-correlation networks for structures to chemistry. Applied Intelligence.
To appear.

Breinian, L., Friedman, J., Olshen, R., and Stone, C. 1984. Classification and
Regression Trees. Wadsworth International Group.

Cohen, M. A. and Grossberg, S. 1983. Absolute stability of global pattern formation
and parallel memory storage by competitive neural networks. IEEE Trans. on
Systems, Man, an,d Cybernetics, 132315-826.

Cormen, T. H., Leiserson, C. E., and Rivest, R. L. 1990. Introduction to Algorithms.

Fahlman, S. E. 1991. The recurrent cascade-correlation architecture. In Advances in
Neural Information Processing Systems 3, eds. R. P. Lippmann, J. E. Moody, and
D. S. Touretzky, pp. 190-196, San Mateo, CA. Morgan Kaufmann Publishers.

Fahlman, S. E. and Lebiere, C. 1990. The cascade-correlation learning architecture.
In Advances in Neural Information Processing Systems 2, ed. D. S. Touretzky,
pp. 524- 532. San Mateo, CA: Morgan Kaufmann.

Frasconi, P., Gori, M., and Soda, G. 1995. Recurrent Neural Networks and Prior
Knowledge for Sequence Processing: A Constrained Nondeterministic Approach.
Knowledge-Bused Systems, 8(6):313-332.

Frasconi, P., Gori, M., and Sperduti, A. 1997. On the efficient classification of
data structures by neural networks. In Proceedings of the International Joint
Conference on Artificial Intelligence, pp. 1066-1071.

Frasconi, P., Gori, M., and Sperduti, A. 1998. A framework for adaptive data
structures processing. IEEE Transactions on Neural Networks, 9(5): 768--786.

Giles, C. L., Chen, D., Sun, G. Z., Chen, H. H., Lee, Y. C., and Goudreau, M. W.
1995. Constructive learning of recurrent neural networks: Limitations of recurrent
casade correlation and a simple solution. IEEE Transactions on Neural Networks,

Goller, C. 1997. A Connectionist Approach for Learning Search- Control Heuristics
for Automated Deduction Systems. PhD thesis, Technical University Munich,
Faculty of Computer Science.

Goller, C. and Kuchler, A. 1996. Learning task-dependent distributed structure-
representations by backpropagation through structure. 1x1 IEEE International
Conference on Neural Networks, pp. 347-352.

Gonzalez, R. C. and Thomason, M. G. 1978.
Addison- Wesley.

Goudreau, M. W., Giles, C. L., Chakradhar, S. T., and Chen, D. 1994. First-order
vs. second-order single-layer recurrent neural networks. IEEE Transactions o n
Neural Neturorks, 5(3) :511-5 13.

Chapter 9. The molecular connectivity Chi
indexes and Kappa shape indexes in structure-property modeling. In Reviews in
Computational Chemistry, eds. K. B. Lipkowitz and D. B. Boyd, pp. 367-422.

MIT Press.

6 (4) ~829-836.

Syntactical Pat tern Recognition.

Hall, L. H. and Kier, L. B. 1991.

2 50 A Tutorial on Neurocomputing of Structures

VCH Publishers, Inc.: New York.
Hammer, B. 1997. Learning recursive data is intractable. Osnabrucker Schriften zur

Mathematik Reihe P, Heft 194, Fachbereich Mathematik/Informatik, Universitat
Osnabruck, 49069 Osnabruck.

Hammer, B. and Sperschneider, V. 1997. Neural networks can approximate map-
pings on structured objects. In ICCIN '97, 2nd International Conference on
Computational Intelligence and Neuroscience.

Haykin, S. 1994. Neural Networks: A Comprehensive Foundation. Piscataway, NJ:
IEEE Press.

Hinton, G. E. 1990. Mapping part-whole hierarchies into connectionist networks.
Artificial Intelligence, 46: 47-75.

Hopfield, J. J . 1984. Neurons with graded response have collective computational
properties like those of two-state neurons. In Proc. Natl. Acad. Sci., pp. 3088-
3092.

Horne, B. G. and Hush, D. R. 1996. Bounds on the complexity of recurrent neural
network implementations of finite state machines. Neural Networks, 9(2):243-252.

Kremer, S. C. 1995. On the computational power of Elman-style recurrent networks.
IEEE Transactions on Neural Networks, 6(4):1000-1004.

Kremer, S. C. 1996. Finite state automata that recurrent cascade-correlation
cannot represent. In Advances in Neural Information Processing Systems 7, eds.
D. Touretzky, M. Mozer, and M. Hasselmo. MIT Press. 612-618.

trees. In International Joint Conference on Neural Networks, pp. 329-334.
Li, T. , Fang, L., and Jennings, A. 1992. Structurally adaptive self-organizing neural

Lupanov, 0. 1972. Circuits using Threshold elements. Soviet Physics-Doklady,

Metcalfe, E. J. 1991. Recognition failure and charm. Psychological Review,

Murdock, B. B. 1993. TODAM2: A model for the storage and retrieval of item,
associative, and serial-order information. Psychological Review, 100(2):183-203.

Constructing Deterministic Finite-State
Automata in Recurrent Neural Networks. Journal of the ACM, 43(2):937-972.

Perrone, M. P. 1992. A soft-competitive splitting rule for adaptive tree-structured
neural networks. In International Joint Conference on Neural Networks, pp.

17(2) :9 1-93.

98(4):529-553.

Omlin, C. W. and Giles, C. L. 1996.

689-693.
Perrone, M. P. and Intrator, N. 1992. Unsupervised splitting rules for neural tree

classifiers. In International Joint Conference on Neural Networks, pp. 820-825.
Pineda, F. J . 1988. Dynamics arid architecture for neural computation. Journal of

Complexity, 4:216-245.
Plate, T. A. 1995. Holographic reduced representations. IEEE Transactions on

Neural Networks, 6(3):623-641.

References 151

Pollack, J . B. 1990. Recursive distributed representations. Artificial Intelligence,

Rumelhart, D. E. and McClelland, J. L. 1986. Parallel Distributed Processing:
Explorations in the Microstructure of Cognition. MIT Press.

Sankar, A. and Mammone, R. 1991. Neural tree networks. In Neural Networks:
Theory and Applications, eds. R. Mammone and Y. Zeevi, pp. 281-302. Academic
Press.

46(1-2):77-106.

Sethi, I. K. 1990. Entropy nets: From decision trees to neural networks. Proceedings

Siegelmann, H. T. and Sontag, E. D. 1995. On the computational power of neural
of the IEEE, 78:1605-1613.

nets. Journal of Computer and System Sciences, 50(1): 132-150.

Network, 1:423-438.
Sirat, J. A. and Nadal, J.-P. 1990. Neural trees: A new tool for classification.

Siu, K.-Y., Roychowdhury, V., and Kailath, T. 1995. Discrete Neural Computation.
Englewood Cliffs, New Jersey: Prentice Hall.

Smolensky, P. 1990. Tensor product variable binding and the representation of
symbolic structures in connectionist systems. Artificial Intelligence, 46: 159-216.

Sperduti, A. 1994a. Encoding of Labeled Graphs by Labeling RAAM. In Advances
an Neural Information Processing Systems 6, eds. J . D. Cowan, G. Tesauro, and
J. Alspector, pp. 1125-1132. San Mateo, CA: Morgan Kaufmann.

Sperduti, A. 1994b. Labeling RAAM. Connection Science, 6(4):429-459.
Sperduti, A. 1997. On the computational power of recurrent neural networks for

structures. Neural Networks, 10(3).
Sperduti, A., Majidi, D., and Starita, A. 1996. Extended cascade-correlation for

syntactic and structural pattern recognition. In Advances in Structural and
Syntactical Pattern Recognition, eds. P. Perner, P. Wang, and A. Rosenfeld,
Lecture notes in Computer Science, pp. 90-99. Berlin: Springer-Verlag.

Sperduti, A. and Starita, A. 1996. A general learning framework for the RAAM
family. In Neural Nets W I R N Vietri-95, eds. M. Marinaro and R. Tagliaferri,
pp. 136-141. Singapore: World Scientific.

Sperduti, A. and Starita, A. 1997. Supervised neural networks for the classification
of structures. IEEE Transactions on Neural Networks, 8(3):714-735.

Sperduti, A., Starita, A., and Goller, C. 1995. Learning distributed representa-
tions for the classification of terms. In Proceedings of the International Joint
Conference on Artificial Intelligence, pp. 509-515.

Theory of Computing, ed. A. V. Aho. Englewood Cliffs, NJ: Prentice-Hall.
Thatcher, J. W. 1973. Tree automata: An informal survey. In Currents in the

Touretzky, D. S. 1990. BoltzCONS: Dynamic symbol structures in a connectionist

Touretzky, D. S. and Hinton, G. E. 1988. A distributed connectionist production
network. Artificial Intellicence, 46:5-46.

152 A Tutorial on Neurocomputing of Structures

system. Cognitive science, 12(3):423-466.

fully recurrent neural networks. Neural Computat ion, 1:270-280.
Williams, R. J. and Zipser, D. 1989. A learning algorithm for continually running

5 Structural Learning and Rule Discovery

Masumi Ishikawa

A n overview of structural learning is presented. This is followed by a detailed
description of structural learning with forgetting. I n contrast t o backpropagation
learning, it adopts local representation to facilitate the interpretation of hidden
units. Various applications such as classification, discovery of recurrent network
structure, t ime series prediction arid so forth are presented. Adaptive characteristics
are also evaluated. Various methods of rule extraction or rule discovery using
neural networks are summarized. Comparative studies among various methods using
neural networks and artificial intelligence are shown, emphasizing the importance
of structural learning. Learning of modular structuwd networks and its applications
are presented. Integration of symbols and patterns is discussed.

5.1 Introduction

Neural networks have been used extensively in various application domains since
their resurgence in the middle of the 1980s. Notwithstanding the similarity of neural
networks and brains, many users feel strongly that neural networks are difficult to
handle because of their black-box character; the resulting networks are often hard
to understand.

It is widely known that, despite its popularity, backpropagation (BP) learning
suffers frorn serious difficulties. The first difficulty is the necessity of prior specifi-
cation of a network structure. Needless to say, the selection of a network structure
is important; if the size of a network is too large, it generalizes poorly, and if it
is too small, learning of training samples becornes insufficient. Since prior struc-
tural information is hardly available in most cases, learning with trial and error
becomes inevitable. The second difficulty is the interpretation of hidden units. It is
attributed to excess degrees of freedom of a network arid to distributed representa-
tion on hidden layers. The third difficulty is a scaling problem: computational cost
grows rapidly as the network size increases. The fourth difficulty is a local minima
problem, which becornes more and more serious as the network size increases.

There have been various studies aiming at the solution of the first two difficul-

154 Structural Learning and Rule Discovery

ties. I call these methods structural learning. Most structural learning methods have
focused on the decrease in computational cost and the number of units or connec-
tions in a network. Still more important, I believe, is to obtain a network with a
white-box character. This facilitates the discovery of regularities or rules from data.
There have been many structural learning algorithms, but, as far as I know, there
are only a few algorithms which face this difficulty squarely. I have proposed a novel
structural learning method called a structural learning with forgetting (hereafter
referred to as SLF), which aims at obtaining neural networks with a white-box
character (Ishikawa, 1989, 1994b,c, 1996d).

The following section provides an overview of structural learning. It is followed by
a detailed description of SLF. To evaluate its effectiveness, it is applied to several
examples: the discovery of Boolean functions, classification of irises, discovery of
recurrent network structure and prediction of time series. The adaptive character
of SLF is also evaluated. Rule extraction or rule discovery is becoming popular in
an attempt to automate knowledge acquisition. An overview of rule extraction or
rule discovery using neural networks is described. SLF is particularly suitable for
rule discovery. Its applications to various databases are also presented. SLF is also
effective in the learning of modular structured networks and is considered to be
a promising solution to the third and the fourth difficulties of BP learning. Last,
integration of symbols and patterns is discussed.

5.2 Structural Learning Methods

Structural learning methods aim at ameliorating the first and the second difficul-
ties of BP learning mentioned in the Introduction: prior specification of network
structure and the interpretation of hidden units. They are roughly classified into
four categories: various pruning algorithms by adding a penalty term to the con-
ventional quadratic criterion of the mean square error (MSE) (Reed, 1993), the
deletion of hidden units with little contribution to the MSE, the deletion of con-
nections with little contribution to the MSE, and the incremental increase in the
number of hidden units until the MSE becomes sufficiently small.

The above first three categories are called destructive learning and the last one is
called constructive learning. Since the former starts with a large-size network and
the latter starts with a small-size one, the computational cost for the former is larger
than that for the latter. On the other hand, the former is expected to have larger
generalization ability than the latter, because the former optimizes the connection
weights simultaneously, whereas the latter optimizes a part of them sequentially.

5.2 Structural Learning Methods 155

5.2.1 Addition of a Penalty Term

The simplest additional term is the sum of squares of the connection weights
(Nowlan and Hinton, 1986).

where J is the quadratic criterion in BP learning, X is the relative importance of
the additional penalty term, wij is the connection weight from unit j to unit i, Ok

is the output of output unit k , and t k is its target.
The penalty term in Equation 5.1 causes exponential decay to connection weights,

i.e. the amount of decay is proportional to the corresponding connection weight.
This characteristic causes two difficulties. First, a small amount of decay for weak
connections makes the decay speed extremely slow. Thus it takes a long time for
weak connections to fade out completely. Second, a large amount of decay for strong
connections causes severe degradation of the learning performance in terms of the
MSE.

Rumelhart proposed the following penalty term, C, representing the complexity
of a network(Rumelhart, 1988).

J, = XJ + (1 - X)C (5.2)

where X and (1 - A) indicate the relative importance of the quadratic criterion and
that of the penalty term, respectively. However, it has a deficiency similar to the
exponential weight decay for weak connections, because each term on the right of
Equation 5.3 is approximated as w;j for weak connections.

Structural learning with forgetting (SLF) (Ishikawa, 1989, 1996d) will be de-
scribed in detail in t,he following section.

Minimum entropy learning (Ishikawa and Uchida, 1992) adopts an entropy
function, H , as a penalty term.

where X indicates the relative importance of the penalty term and Pij represents
a relative connection weight. Its advantage is that the penalty term has a clear
meaning based on information theory.

156 Structurul Learniriy a n d Rule Discoiiery

Lateral inhibition learning uses the following equation for weight change (Yasui,
1992).

n

/C=l,#j

where is the weight change due to backpropagation learning, and s g n (z)
is the sign function., i.e. 1 when J: is positive and -1 otherwise. It was originally
proposed as the above forrri, but can also be formulated as an additional term.

Bayesian learning (Buntine and Weigend, 1991; MacKay, 1995; Ishikawa, 1996a)
may also be regarded as belonging to this category, and provides a procedure for
finding the optimal relative weight of a penalty or a regularization term.

5.2.2 Deletion of Unnecessary Units

Structural learning methods in this category try to optimize the number of hidden
units.

Mozer arid Smolerisky proposed a skeletonization method: estimate the increase
in MSE due to the removal of a hidden unit and delete the one with the smallest
increase (Mozer arid Smolensky, 1989). This approach has the following difficulties.
First, tlie estimation is difficult and can only be an approximation. Second, it is
assumed implicitly that the optimal structure can be obtained by adjusting the
number of hidden units. However, this assumption does not necessarily hold; the
optimal structure might be sparse as is seen in subsequent examples.

5.2.3 Deletion of Unnecessary Connections

Structural learning methods in this category include Optimal Brain Damage (OBD)
(Cixn et al., 1990) and Optimal Brain Surgeon (OBS)(Hassibi et al., 1994).

OBD deletes connections which have little contribution to the MSE and train the
network again. This process is repeated until the deletion of any connection causes a
large increase in tlie MSE. The following second derivative of the quadratic criterion,
sij , estimates the increase in tlie quadratic criterion, when the connection wij is
removed from a network.

where wfj is the coririection weight which minimizes the quadratic criterion.
To be noted is that the estimate in Equation 5.7 is the product of the squared

connection weight arid the second derivative of the quadratic criterion. It clearly
indicates that it is not appropriate to remove connections simply because their
weights are small; weak connections with large second derivatives can be significant.

In the above estimation, the Hessian matrix is approximated with a diagonal
matrix. OBS uses the full Hessian matrix for the estimation.

5.3 Structural Learning with Forgetting 157

5.2.4 Constructive Learning

In constructive learning, the nuniber of hiclden units is incrementally increased
until the MSE becomes siifficieritly sniall. Gallant proposes a Tower coristriictioii
algorithm for binary inputs arid outputs (Gallant, 1986). Ash proposes simple
incremental Itlarning (Ash, 1989). Falilnian (it al. propose a cascac~e-correlatioii
learning architecture (Fahlman and Lehiere, 1990).

5.3 Structural Learning with Forgetting

SLF is composed of three successive algorithms: learning with forgetting, learning
with hidden units clarification arid leariiirig with selective forgetting. SLF call be
extended to recurrent networks. The i i i t t qmt ation of forgetting and its tfeternii-
nation are also discussed.

5.3.1 Learning with Forgetting

The criterion function in the learning with forgetting is,

where the first term on the right side, J , is tlie quadratic criterion in BP learning,
ttie second term is a penalty term, E' is its relative weight. arid J f is a total criterion.

is ol)tairicd by tlifforcntiatirig Eqiratiori 5.8 with respect
to the connection weight, U I ,) ,

The weight change,

(5.9)

where Awij(= - T I =) is ttie weight ckiaiig;c due to BP learning, 7 is a learning
rate, E (= rI&) is the amount of decay at, each weight change, and . s g n (w ~ j) is t,lic
sign function.

As shown in Equation 5.9, a key idea of SLF is constant decay of connection
weights in contrast t,o exponential decay(Nowlari and Hiriton, 1986). The diff'ereiice
may seem trivial, but results are quite diff'ererit. The learning wit,h forgetting or
constant decay lias twofold advantages. First, unnecessary connections fade away
and a skeletal network emerges. Because of this, prior specification of t,lie network
structure is no longer required. The resulting skeletal networks enable the discovery
of regularity or rules from data. Second, the ILISE is iriucli srrialler tthari that, from
learning with exponential decay.

Learning with forgetting, however, causes two difficulties. The first is the enier-
gence of clistril3uted representation 011 hidden layers, which hiiiders the discovery of
regularity or rules. Learning with hidden units clurificutiori, which succeeds learn-

DU),.7

158 Structural Learning and Rule Discovery

ing with forgetting, solves this difficulty. The second difficulty is that the MSE
of learning with forgetting is still larger than that of BP learning. Learning with
selective forgetting solves this deficiency.

5.3.2 Learning with Hidden Units Clarification

Distributed representation prevents hidden units from being fully active (1) or
inactive (0). Learning with hidden units clarification using the following criterion
dissipates distributed representation by forcing each hidden unit to be fully active
or inactive.

Jh = J f + c):rnin{l - hi, hi}
i

(5.10)

where hi is the output of hidden unit i satisfying hi E [0,1], and c is a relative
weight of the penalty term.

The minimization of the penalty term can easily be carried out by taking the
derivative of 1 - h, h > 0.5, or h, h < 0.5, with respect to the connection weight
wij. In the present paper, however, a simple three-layer network which approximates
a nonlinear mapping from hi to min(1 - hi, hi} is used instead.

5.3.3 Learning with Selective Forgetting

The MSE of learning with forgetting is larger than that of BP learning, because
the former minimizes the total criterion, J f , instead of the quadratic criterion, J .
The following criterion makes only those connection weights decay whose absolute
values are smaller than a threshold, 8.

(5.11)

This penalty term makes the MSE much smaller than that of learning with
forgetting, because the summation is restricted only to weak connections. It also
prevents the revival of deleted connections.

5.3.4 Procedure of SLF

SLF is composed of the following three steps.

1. Train a neural network by learning with forgetting to obtain a rough skeletal
structure .
2. Train it by both learning with forgetting and with hidden units clarification in
order to dissipate distributed representation. This is skipped when target outputs
are not binary.
3. Train it by both learning with selective forgetting and that with hidden units
clarification to get better learning performance in terms of the MSE.

5.3 Structural Learning with Forgetting 159

There are two ways of dealing with deleted connections. One method is to
keep the deleted connections alive, i.e. continue computation even for zero-weight
connections. In this case computational cost does not decrease, even if the number
of zero-weight connections increases. However, it makes adaptive learning possible;
once deleted connections can revive due to the change in the environment. The
alternative is to discard deleted connections from the computation. This reduces
computational cost, but can no longer learn adaptively.

5.3.5 Extension to Recurrent Networks

Backpropagation through time (BPTT) (Williams and Zipser, 1995) trains a re-
current network based on given sequences of external inputs and target outputs. A
basic idea of BPTT is the conversion of a recurrent network into a multi-layer feed-
forward network whose number of layers equals the number of time steps. BPTT,
however, has a similar drawback to BP; the resulting network tends to use up
all the connections provided, preventing the extraction of structural information
such as the location of feedback loops in a network. Generalized SLF (GSLF), a
combination of SLF and BPTT, can solve this difficulty.

In BTPP, the following criterion function J (t 0 , t l) is adopted,

(5.12)

where e j (t) is the output error of output unit j at time t . The weight change of
connection weight 'wij in GSLF is given by,

= ' IX62(t) ; y j (t - 1) - Esgn(W2j)
t

5.3.6 Interpret at ion of Forgetting

The connection weight, wij , fades away due to forgetting, provided
criterion J f becomes the minimum at wij = 0. From Equation 5.8, this
can be written as,

(5.13)

the total
condition

(5.14)

Equation 5.14 is equivalent to,

(5.15)

2 60 Structural Learning and Rule Discovery
4

Equation 5.15 is the condition under which the connection weight, wij, fades away
due to forgetting.

Consider now the similarity and the difference between SLF and OBD (Cun et al.,
1990). Let w:~ be the connection weight which minimizes the quadratic criterion.
The middle term in Equation 5.15 can be approximated as follows by expansion
around w:’, provided wr’ is small.

(5.16)

d J where dwzJ J.w7,=(110 equals zero by definition. Therefore, Equation 5.15 is rewritten
as the following using Equation 5.16.

(5.17)

OBD uses iwy: I w i i = w ~ i as an estimate of the increase in the MSE when the
connection wij is removed. Connections with small estimates are removed from a
network. Simply removing a connection with a small weight is not appropriate,
because it causes severe degradation in the MSE when the corresponding second
derivative is large. This estimate is close to the one in Equation 5.17, representing
the estimate of the derivative of the quadratic criterion. It indicates close similarity
between SLF and OBD.

They differ in the manner that estimates are obtained and used. In OBD, the
estimate must be explicitly calculated, and the connections with estimates smaller
than a threshold are deleted by a model builder. In SLF, on the contrary, there
is no need to explicitly calculate the estimate in Equation 5.17, and unnecessary
connections fade away automatically. This simplicity is a big advantage of SLF over
OBD.

From a Bayesian point of view (MacKay, 1995), a penalty term represents a prior
distribution of connection weights. In the case of quadratic weights (Nowlan and
Hinton, 1986), the prior distribution of each connection weight is Gaussian. In the
case of the penalty criterion in Equation 5.8, the prior distribution is exponential.
The difference between the Gaussian and exponential distributions is that the latter
has a much broader tail than the former.

2 3

5.3.7 Determination of the Amount of Decay

Needless to say, the determination of the amount of decay in Equation 5.9, E , or a
regularization parameter in Equation 5.8, E‘ , is important. If E is too large, even the
necessary connections fade away, causing severe degradation in the MSE. On the
other hand, if E is too small, unnecessary connections do not fade away, resulting
in a network far from skeletal.

5.3 Structural Learning with Forgetting 161

There are three methods of determining E . First, the MSE for test data (MSE,),
is used. Its disadvantage is the requirement of test data in addition to training
data. It is intuitively understandable, but when the number of samples is small, it
is difficult to apply due to the shortage of data.

Second, an information criterion, AIC, evaluates the goodness of fit of given
models based on h4SE for training data and the number of estimated parameters
(Akaike, 1974; Fogel, 1991; Kurita, 1990).

AIC = -2 log(maxin1um likelihood) + 2K (5.18)

where E(is the number of independently estimated parameters. If output errors
are statistically independent of each other and follow normal distribution with zero
mean and a constant variance, Equation 5.18 can be approximated as,

AIC = Nklog(e2) + 2K (5.19)

where N is the number of training data, k is the number of output units and e2 is
the maximum likelihood estimate of the MSE. In the presence of a regularizer, the
Network Inforniation Criterion (NIC) (Murata et al., 1994) is more appropriate to
use than AIC, because NIC is formulated for a criterion with a regularizer.

In the above two methods, models are trained with various E 'S . Among them,
the one with the smallest measure is selected as optimal. This is equivalent to the
determination of the amount of decay.

Third, a Bayesian approach is used for determining regularization parameters
(Buntine and Weigend, 1991; MacKay, 1995; Ishikawa, 1996a), which is also equiv-
alent to the determination of the amount of decay. Its advantage is that, in contrast
to other methods, training of only one model is sufficient. This is because regular-
ization parameters are iteratively adjusted during training.

5.3.8 Model Selection

Although AIC or MSE, is useful in evaluating the goodness of fit of a given model,
it is difficult to firid the model with the largest goodness of fit from among all
the possible models due to the huge search space. Consider a network with n
connections. Its submodels are obtained by removing a part of its connections.
Since the number of submodels is 2" - 1, the search space is too large to examine
all of them, unless n is very small. In most cases, therefore, only a small part of it
is actually examined to make the search feasible.

The difficulty is caused by the fact that AIC or MSE, does not provide prior
information on which models should be examined. In the case of a three-layer
network with NH hidden units, only the fully connected three-layer subnetworks
with h hidden units (1 5 h 5 NH) are usually examined. However, the true model
is not necessarily fiilly connected.

(Fogel,
1991), G P E (Generalized Prediction Error) (Moody, 1992) and NIC (Network

Recently, similar indicators such as FIS (Final Information Statistic)

162 Structural Learning and Rule Discovery

x

u u w v w
a b c d e

Figure 5.1 The resulting network in the discovery of the Boolean function,
f = (U U b) n (c U e) , by BP learning. Solid lines and dashed lines represent positive
and negative connection weights, respectively. The thickness of each connection
is approximately proportional to the absolute value of its weight. The learning
parameters are: learning rate 7 = 0.1 and a momentum a = 0.2.

Information Criterion) (Murata et al., 1994) have been proposed. They share similar
characteristics with AIC.

AIC or MSE, provides useful information on the goodness of fit of given models,
but does not provide prior information on which connections should be deleted. On
the other hand, SLF provides the latter, but not the former. In other words, SLF
deletes unnecessary connections with small derivatives, but does not tell us when to
stop the deletion. These complementary characteristics necessitate the use of both
SLF and AIC or MSE,.

5.4 Discovery of a Boolean Function

The discovery of a Boolean function is chosen as an example of binary inputs and
outputs. The Boolean function to be discovered is,

f = (a U b) n (c U e) (5.20)

where the output, f , is the Boolean function with the inputs, a, b, c and e , and U

and n denote disjunction and conjunction, respectively.
The network structure adopted here is a 4-layer network: an input layer with five

units, the first hidden layer with four units, the second hidden layer with four units,
and an output layer with one unit. Although f has four inputs, the irrelevant input,
d, is included to evaluate the ability to detect irrelevances. Equation 5.20 suggests
that a 3-layer network with 2 hidden units is sufficient for its representation, but
a 4-layer network with sufficient hidden units is used to evaluate the ability of
structure discovery.

There are 32(=25) pairs of input and output data, of which 26 pairs are used for
training. Figure 5.1 illustrates the resulting network by BP learning. Its distributed

5.4 Discovery of a Boolean Function 163

f f

(a> a b c d e (b) a b c d e

f
n

a b c d e

Figure 5.2 The resulting networks in the discovery of the Boolean function,
f = (U U b) n (c U e) , by (a) learning with forgetting, (b) the combined use of learning
with forgetting and learning with hidden units clarification, and (c) the combined
use of learning with selective forgetting and learning with hidden units clarification.
In (a) and (b), connections with weights smaller than 0.005 are not drawn for
simplicity. (a) and (b) have 9 and 7 undrawn weak connections, respectively. (c)
does not have such weak connections; all the connections are either strong or zero.
The learning parameters are: 7 = 0.1, a = 0.2, the amount of decay E = 10-4, and
the threshold in selective forgetting 19 = 0.1.

representation prevents the discovery of the Boolean function. Also note that there
are outgoing connections from the irrelevant input, d.

Learning with forgetting generates the network in Figure 5.2(a). It shows that
on the first hidden layer only the first and the fourth units are used, the first repre-
senting (a U b) and tJhe fourth representing (c U e) . Closer observation reveals that
the first unit also represents (c U P) , a minor term in the distributed representation
on this layer. On the second hidden layer only the third unit is used, representing
(a U b) n (c. U e) . Learning with hidden units clarification dissipates distributed rep-
resentation as in Figure 5.2(b). To improve the learning performance in terms of
the MSE, both learning with selective forgetting and that with hidden units clarifi-
cation are carried out, resulting in the network in Figure 5.2(c). It clearly indicates

Structural Learning and Rule Discovery

E

x10-4

Table 5.1 Performance comparison of SLF in the discovery of the Boolean func-
tion, f = (U U b) n (c U e) . MSEf is the MSE by learning with forgetting. The MSE
and the MSE, correspond to the combined use of learning with selective forgetting
and that with hidden units clarification. K is the number of connections and biases.

MSEf MSE MSEp K AIC
XIO-~ x ~ o - ~ XIO-~

5.0

6.0

7.0

5.19 0.0054 0.0052 11 -233.49

8.76 0.0056 0.0052 11 -232.54

25.24 25.0 25.0 0 -36.04

that only one hidden layer with two hidden units is enough.
Three cases are tried starting from different initial connection weights. All the

resulting networks share the same network structure. Table 5.1 compares the
performance of SLF for various amounts of decay. It indicates that as the amount
of decay increases, the MSE of learning with forgetting becomes larger. However,
the MSE resulting from the combined use of learning with selective forgetting and
learning with hidden units clarification remains almost the same for networks with
the amount of decay between l O P 5 and 6 x l O P 4 . These networks share the same
network structure as in Figure 5.2(c). Their AICs are also approximately the same.
They show the robustness of the resulting network due to the change of the amount
of decay in this example. The amount of decay of 0.0 corresponds to BP learning.
When E is larger than 6 x l O P 4 , all the connections and biases fade away due to
excess decay.

Table 5.2 compares the performance of various structural learning methods. The
task is the discovery of the Boolean function, f = (a U c) n (b U d) using a 3-layer
network: an input layer with four units, a hidden layer with four units, and an
output layer with one unit. In this case all 16 data pairs are used for training.
“Bayesian” here means that a penalty term is the sum of quadratic weights and its
relative weight is estimated by a cheap Bayesian algorithm (MacKay, 1995). The
resulting network is far from skeletal; the absolute values of all the connections are
larger than 0.6. Although the Bayesian method is effective in adjusting the relative
weight, it becomes powerless in cases where the penalty term is not appropriate
such as in this case.

Table 5.2 indicates that SLF, entropy minirnum learning, lateral inhibition learn-
ing and OBD generate skeletal networks. Furthermore, SLF, entropy minimum
learning and OBD have small values of AIC. SLF is also computationally inexpen-

5.5 Classification of Irises 165

learning
met hod

BP
complexity

SLF

Table 5.2

discovery of the Boolean function, f = (U U c) n (b U d) . CPU time is normalized.
Performance comparison of various structural learning methods in the

MSE K AIC CPU
x 10-2 time

0.0048 25 -109.11 1.00
0.0536 13 -94.50 47
0.0050 9 -140.46 3.17

entropy
lateral inhibition

OBD

0.0054 9 -139.22 45
0.324 9 -73.71 11.3

0.0050 10 -138.46 11.3
I Bayesian 1 6.00 I 25 I 4.972 I 5.52

no. of data
training I test

Table 5.3 Generalization ability in the classification of irises. # e stands for the
number of classification errors for test data and is the average over five trials starting
from different initial connection weights.

-

#.
SLF I BP

9
15

141 19.2 18.6
135 10.2 16.6

I I I

21 I 129 I 6.8 I 16.2
I 30 I 120 I 5.0 I 6.4 I

sive in addition to the above two advantages.

5.5 Classification of Irises

The classification of irises (Fisher, 1936) is chosen as an example of continuous
valued inputs and binary outputs. Irises are classified into three categories: setosa,
versicolor and virginica. Each category has 50 samples. Each sample possesses four
attributes: sepal leiigth, sepal width, petal length arid petal width. The network
structure used here is a 3-li-lyer network: an input layer with four units corresponding
to four attributes, a liiddc~ii layer with four units and an output layer with three
units represeiii iiig three cxtegories. A subset of data is randomly chosen for training,
and the gencralization ability of the resulting network is evaluated by AIC or hfSE,.

BP learning teritls to use up all the units and connections provided. Table 5.3
indicates the generalization ability of BP learning and SLF. When the number of
training data is 15, 21 or 30, SLF generalizes better than BP learning. This suggests

166

learning MSE MSE, K AIC # e

method x ~ O - ~ x1OP2

Structural Learning and Rule Discovery

CPU
time

complexity
SLF

I BP I 0.0076 I 5.52 I 35 I -527.54 I 12 I 1.00 I
0.1044 3.42 27 -378.48 7 70

0.0064 4.09 13 -582.37 9 5.9

lateral inh.
OBD

Bayesian

entropy I 0.0526 I 3.59 I 13 1 -449.66 I 8 1 37

0.3340 3.11 12 -335.21 8 25

0.0056 4.36 28 -560.78 13 3.9

4.351 7.70 35 -127.49 18 1.35

the robustness of SLF for small samples. When the number of training data is 9,
both methods have insufficient generalization ability. When it is 60 or 90, both
met hods have sufficiently large generalization ability.

Table 5.4 compares various structural learning methods. BP learning, SLF and
OBD perform well in terms of the MSE. Resulting networks by SLF, entropy
minimum learning and lateral inhibition learning are skeletal. The resulting network
by OBD is far from skeletal; one more deletion of a connection makes the MSE
much larger, i.e. from 0.0056 to 0.0290. SLF and OBD have small values of AIC.
Learning with a complexity term, SLF, entropy minimum learning and lateral
inhibition learning have less classification errors. BP learning, SLF, OBD and
Bayesian learning need less CPU time. From these SLF is the best choice among
them in this example.

5.6 Discovery of Recurrent Networks

The discovery of a recurrent network structure is chosen as an example of continuous
valued inputs and outputs. The example used here is the discovery of the simple
Jordan network in Figure 5.3(a), which has one external input and one visible unit,
i.e. a unit with a target output. A fully recurrent network with five sigmoidal units
is used as an initial network structure, i.e. the number of initial connections is 25.
The initial determination of the number of units does not matter much as long as
the network is large enough for realizing the mapping from input to output.

Starting from different random connection weights, three networks are generated
by a generalized SLF (GSLF). Figure 5.3(b) indicates the resulting network in case
1. The structure is the same as the original one in Figure 5.3(a). Two excess units
vanish in the sense that all the incoming connections into and outgoing connections
from them fade away. Only 4 out of 25 connections remain after learning. The
resulting network in case 2 in Figure 5.3(c) is different from the original one, but
it can be interpreted that the role of the state unit 3 in Figure 5.3(a) is split into

5.6 Discovery of Recurrent Networks

learning
method

Figure 5.3 Discovery of recurrent networks. (a) Original network structure. (b)
The resulting network structure in case 1. (c) The resulting network structure in
case 2. A square indicates an external input. A number within a circle indicates
the unit number. The external input sequence is given to unit 2 and the target
output sequence is given to unit 1 . A number along a connection represents the
value of its weight. The lengths of the input and target output sequences are 20.
The parameters during learning are: rl = 0.1, a = 0.2, E = 10-4 and 8 = 0.1.

MSE MSE, K AIC
x1OW2 x ~ O - ~

Table 5.5 Performance comparison of three learning methods in the discovery of
recurrent networks. The learning parameters are: q = 0.1 and a = 0.2, E = 10-4 and
0 = 0.1.

168 Strvctuml Learning and Rule Discovery

units 3 and 4 in Figure 5.3(c). The network structure in case 3 is the same as in
Figure 5.3(a).

BPTT learning, on the other hand, uses up all the connections. Most of the
connection weights are not close enough to 0. Twenty out of 25 connections have
weights whose ahsolute values are larger than 0.1. The cheap Bayesian learning
generates a skeletal network, but the resulting structure is quite different from
the original one. Table 5.5 summarizes the comparison of these methods. BPTT
and GSLF give good performance in the MSE both for training data and test
data. GSLF and Bayesiari learning generate skeletal networks. They indicate the
superiority of GSLF.

5.7 Prediction of Time Series

5.7.1 Recurrent Networks for Time Series

Neural networks for time series are categorized roughly into two: simple recurrent
networks and recurrent networks. The former includes Jordan networks, Elman net-
works and buffer networks (Jordan, 1986; Elman, 1990; Weigend and Gershenfeld,
1094). They are primarily feedforward networks with additional feedback loops or
self loops for implerrienting dynamics. They usually employ approximate learning
methods such as BP learning.

The latter, on tlie other hand, uses fully recurrent networks and employs learning
methods siicli as backpropagation through time (BPTT) (Williams and Zipser,
1995). BP learniiig is an approximation in the sense that errors a t some time back
propagate only one time step diead. In BPTT, 0x1 the other hand, errors at some
time back propagate all the way through the initial time.

In this section, Jordan networks and buffer networks with sigmoidal units are
employed (Ishikawa and Moriyama, 1996). The Jordan network in Figure 5.4 retains
the followiiig history of outputs in the context layer.

yt-1 + (1 - 4yt-2 + (1 - d)2y,-3 + (1 - d)3yt4 + * * * (5.21)

where y,-; is the output i steps before and d is a decay rate of outputs. History of
outputs in the context layer decays exponentially. Therefore, the determination of
the decay rate, which determines the effective length of history, is crucial.

As Inentioned earlier, it is tlifficult to acquire prior information on the structure
of a network. In case of BP learning, therefore, the determination of the number
of liidden units iiecessitates trial and error based on some criterion such as MSE,.
The determination of the decay rate, d , also requires trial and error.

The buffer network in Figure 5.5 stores (m + 1) most recent inputs and n most
recent outputs ill thc iiipiit aiid output buffers, respectively. The buffer network
retains complete history of inputs arid outputs for a specified time interval, while
entirely disregarding inputs and outputs outside of this interval. Therefore, the

5.7 Prediction of Time Series

Hidden layer

decay 1 Input layer Context layer

Figure 5.4 St,rixctixre of a Jordan network. History of outputs is stored in the
context layer.
(0 Elsevier Science, used with permission, see Copyright Ackriowlcdgments)

deterniination of the length of buffers is crucial for the learning of time series.
In case of BP learning, a buffer network reyaires much more structural parameters

than a Jordan network. Structural paranieters of the forrner are composed of tlie
number of hidden units, the length of a. buffer and its content, i.e. t,he specification
of a subset of { xt , xt - 1 , . . ., xt- r , L } and { yt- 1 , yt-2 ,. . ., yt-71 }. Especially the last, oiie
necessitates a huge number of trials to find the best buffer network st,ructure by
BP learning.

Consider the selection of the number of hidden units arid the length of a buffer.
Suppose tlie maxiniurii number of liidderi iiriits is N H arid the niaxirriuni length of
a buffer is N g . The number of trials is at] iiiost N H N B . In contrast to this, the
determination of the content of a buffer is far more laborious. Consider a network
with a buffer of leiigth N . Suppose its submodel has a sirialler buffer with length
less than or equal to N . There can lie 2 N - 1 sixbrriodels. However, at most N
submodels are usually examined as in the case of this paper, assuming that a buffer
is composed of the most recent successive inpiits arid outpiits. This clearly indicates
that the nuniber of trials for determining the content of a. buffer is far larger than
that for determining the number of hidden units arid the length of a buffer.

Data measured every hour at some building (Kreider and Haberl, 1993) are used
for the prediction of time series. These data originally liad three outpiit variables,
but we use only oiie of them in this paper. Figure 5.6 shows the inputs and the
output of these data: temperature, liuiriidity ratio, solar flux, wind speed, and an
indicator showing weekday(O)/holiday(1) as the inputs, and tlie consurriptiori of
electricity as the output. These data are recorded from Sep. 1: 1989, through Dec.
31, 1989. We iise the data for the tjwo weeks: from Sep. 8 through Sep. 21. These
data are iiornializecl from 0 to 1 based 011 the data of tlie entire period. Data for
the first week are used for training arid those for the succeeding week are used for
test. During the test period, only an input sequence is given; one week prediction

170 Structural Learning and Rule Discovery

Figure 5.5
buffer and {yt-1, yt--2 ,..., y t Y n } constitute the output buffer.
(0 Elsevier Science, used with permission, see Copyright Acknowledgments)

Structure of a buffer network. {xt ,x t -1 , ..., x t P m } constitute the input

temperature
humidity ratio

solar flux
wind speed

weekday (0)
or

holiday(1)

consumption of
electricity

Figure 5.6
(0 Elsevier Science, used with permission, see Copyright Acknowledgments)

Five input variables and one output variable of time series data

is adopted here instead of a series of one hour predictions.

5.7.2 Prediction Using Jordan Networks

First, training of Jordan networks is carried out by BP learning. Table 5.6 shows the
learning and prediction performance of Jordan networks with various decay rates.
MSE, reaches a minimum of 0.01625 at the decay rate of 0.1. The decay rate of
0.1 means that information of 24 hours ago decreases to 8 % (~ 0.924) of its original
value. However, the model which minimizes MSE, does not minimize AIC. This
mismatch sometimes occurs and its reason will be discussed later.

Table 5.7 indicates that the learning and prediction performance of Jordan
networks with various numbers of hidden units using the optimal decay rate of
0.1. MSE, becomes a minimum of 0.00749 for the network with 2 hidden units.
In other words the model with 2 hidden units and the decay rate of 0.1 has the

5.7 Prediction of Time Series 171

0.4

Table 5.6 Learning and prediction performance of Jordan networks by BP learn-
ing. The number of hidden units is 5. K is the number of connections and biases.
The learning parameters are: q = 0.01 and (U = 0.2. Both MSE and AIC are the
average of three trials starting from different initial connection weights.

0.00246 0.02082 41 -925

1 decay 1
MSE test 1 K I AIC I rate, d training

Nh

1
2

I ,"::5 1 0.00275 1 0.04060 1 41 1 -908 1
0.00315 0.01625 41 -899

0.2 0.00237 0.03360 41 -923

MSE K AIC
training test

0.00545 0.00960 9 -856
0.00387 0.00749 17 -898

I 0.3 I 0.00233 I 0.02134 I 41 I -935 I

3

4
0.00371 0.01163 25 -887
0.00312 0.01433 33 -903

Table 5.7 Learning and prediction performance of Jordan networks by BP learn-
ing. Nh is the number of hidden units and the decay rate is 0.1. The learning
parameters are the same as those in Table 5.6. Both MSE and AIC are the average
of three trials.

I 5 I 0.00315 I 0.01625 I 41 I -899 I

smallest MSE,, i.e. the best generalization ability, among the examined models.
The value of AIC of this model is -898, but the model with 4 hidden units has a
slightly smaller value of AIC.

In the next stage, SLF is applied to Jordan networks with 5 hidden units and
the decay rate of 0.1 for various values of E ' S . The initial determination of the
number of hidden units does not matter much as long as it is large enough, because
excessive hidden units lose all the incoming and outgoing connections during
learning. Table 5.8 indicates that MSE, becomes the minimum at the amount of
decay of E = 9 x 10-4. The numbers of hidden units actually used in this case are
1, 2 and 2 for 3 trials. It clearly demonstrates that the initial determination of the
number of hidden units does not affect the resulting models much.

Table 5.9 summarizes the performance comparison of Jordan networks by BP
learning and SLF. Case A clearly indicates the deterioration of MSE, for a large-
size network. Case B substantially improves MSE, by decreasing the number of
hidden units. In case C, although the MSE for training data is the largest, the
MSE for test data is the smallest among 3 cases. This shows the superiority of the

Structural Learning and Rule Discovery

amount of
decay, E

1 x 10V4

Table 5.8 Learning and prediction performance of Jordan networks by SLF. The
number of hidden units is 5 and the decay rate is 0.1. The learning parameters are:
7 = 0.01, a = 0.2, and I9 = 0.1. Both MSE and AIC are the average of three trials.

MSE K AIC
training test

0.00376 0.01415 22.3 -893

5 x 10V4

9 x 10V4
0.00610 0.00882 11.0 -833

0.00657 0.00674 7.7 -827

Table 5.9 Performance comparison of learning and prediction of Jordan networks
by BP learning and SLF. Nh is the number of hidden units. In case A the same
network structure is used as the initial structure in case C. Case B corresponds to
the best network in Table 5.7, i.e. Nh = 2. Case C corresponds to the best network
in Table 5.8, i.e. E = 9 x 1W4. The decay rate is 0.1. The learning parameters are:
7 = 0.01, a = 0.2, E = 9 x 10V4 and 19 = 0.1.

case

A

B
C

learning Nh MSE K AIC
method training test

BP 5 0.00315 0.01642 41 -882

BP 2 0.00387 0.00749 17 -898

SLF 5 0.00657 0.00674 7.7 -827

network model obtained by SLF in terms of MSE,. However, AIC selects a different
model. This mismatch will be discussed later.

Figures 5.7 and 5.8 illustrate the output sequence and the target output sequence
of cases B and C in Table 5.9. The actual output, i.e. the consumption of electricity,
is used as the target output here. The training period is from Sep. 8 through 14
and the test period is from Sep. 15 through 21. Sep. 9, 10, 16 and 17 are holidays
as can be seen from the low consumption rate of electricity.

5.7.3 Prediction Using Buffer Networks

First, training of buffer networks is carried out by BP learning. The input buffer
here is composed of the 5 most recent inputs and the output buffer is composed of
the n most recent outputs. Table 5.10 indicates that MSE, becomes the minimum
of 0.01002 for the output buffer of length 5. The value of AIC of this model is -978,
but some other models have slightly smaller values of AICs.

In the next stage, SLF is applied. Table 5.11 shows the learning and prediction
performance of buffer networks by SLF for various values of decay. The network
has 8 hidden units and the output buffer of length 10. As before, the initial
determination of the number of hidden units and the buffer length does not matter

5.7 Prediction of Time Series

Y

173

0.00

7

target

output

-
1 day

I-
training data -I- test data

Figure 5.7 Output and target output sequences of the Jordan network by BP
learning (case B in Table 5.9). The number of hidden units is 2 and the decay rate
is 0.1. The learning parameters are: q = 0.01 and a = 0.2.

(0 Elsevier Science, used with permission, see Copyright Acknowledgments)

Y
I .oo

0.80

0.60

0.40

0.20

0.00 -

I target

7 14 21 day

I I

training data I test data

Figure 5.8 Output and target output sequences of the Jordan network by SLF
(case C in Table 5.9). The number of hidden units is 5 and the decay rate is 0.1.
The learning parameters are: q = 0.01, a = 0.2, E = 9 x lO-* , and 8 = 0.1
(0 Elsevier Science, used with permission, see Copyright Acknowledgments)

Structural Learning and Rule Discovery

buffer
length

3
4

Table 5.10
number of hidden units is 6. The learning parameters are: q = 0.01 and a = 0.2.

Learning and prediction of buffer networks by BP learning. The

MSE K AIC
training test

0.00174 0.04829 61 -946
0.00171 0.01287 67 -937

6
10

I 5 I 0.00125 I 0.01002 I 73 I -978
0.00112 0.01171 79 -983
0.00085 0.06208 103 -981

amount of
decay, E forgetting

1 x 1 0 - ~
2 x 1 0 - ~

Table 5.11 Learning and prediction of buffer networks by SLF. The number of
hidden units is 8 and the length of the output buffer is 10. The learning parameters
are: 7 = 0.01, (I: = 0.2 and 8 = 0.1.

MSE K AIC
training test

0.00134 0.01135 26 -1059
0.00196 0.00469 21 -1005

I 3 x 10-4 I 0.00239 I 0.00576 I 17 I -980 I
5 x 1 0 - ~ I 0.00539 I 0.00959 I 10 I -858

much as long as they are large enough. Table 5.11 indicates that the model with the
amount of decay E = 2 x 10-4 has the smallest MSE,, i.e. the best generalization
ability. Figure 5.9 illustrates the corresponding buffer network. The output buffer
contains outputs of 1, 3, 5, 6, 7 and 10 hours before. In the hidden layer, only 3
out of 8 units are actually used. This intermittent output buffer and parsimonious
usage of hidden units make the number of connections much smaller than that
by BP learning. This greatly contributes to the improvement of the generalization
ability of the resulting model.

Table 5.12 summarizes the results by BP learning and SLF. The generalization
ability in terms of MSE, is maximized in case F. In SLF the number of hidden
units, the length of a buffer and its content are determined concurrently with the
learning of connection weights. It is to be noted that much trial and error is required
in obtaining the result of case E. In Table 5.12, AIC chooses the model with the
smallest MSE,. Figures 5.10 and 5.11 illustrate the output sequences and the target
output sequences in cases B and C in Table 5.12, respectively, for both the training
period and the test period.

5.7 Prediction of Time Series

case learning Nh Nb MSE
method training test

D BP 8 10 0.00060 0.02160

I 75

K AIC

137 -971

Figure 5.9 The resulting buffer network by SLF. {xi'), xi'), ..., x i 5) } is the current
input and {yt-1 , yt-2, ..., yt-10) constitute the output buffer. The learning parameters
are:
(0 Elsevier Science, used with permission, see Copyright Acknowledgments)

= 0.01, a = 0.2, E = 2 x 10-' and 8 = 0.1.

E
F

BP 6 5 0.00118 0.01273 73 -985
SLF 8 10 0.00204 0.00685 21 -996

176 Structural Learning and Rule Discovery

Y
1.00 I target

output

-
I
7 14 21 day

I _
1- cl

training test
I-

Figure 5.10 Output and target output sequences of the buffer network by BP
learning (case E in Table 5.12). The number of hidden units is 6, the length of the
output buffer is 5. The learning parameters are: 7 = 0.01 and Q = 0.2.
(0 Elsevier Science, used with permission, see Copyright Acknowledgments)

Y
I .XI

0.80

0.60

0.40

0.20

0.00 -
I- ,_ I

test data training data

target

,< 1 . ,
output

Figure 5.11 Output and target output sequences of the buffer network by SLF
(case F in Table 5.12). The number of hidden units is 8 and the length of the output
buffer is 10. The learning parameters are the same as those in Figure 5.9.
(0 Elsevier Science, used with permission, see Copyright Acknowledgments)

5.8 Adaptive Learning 177

t

0

Table 5.13 Autocorrelation function of output errors. T J (t) is the autocorrelation
function of output errors by the Jordan network of case C in Table 5.9. T b (t) is the
one by the buffer network of Case F in Table 5.12.

r J (t) T b (t)

1.000 1.000

I 4 I 0.045 I 0.071
5 I 0.004 I 0.055

5.7.4 Discussion

In the learning of neural networks, various structural parameters should be specified
in advance: the number of hidden units in Jordan networks, and the number of
hidden units, the length of a buffer and its content in buffer networks. Extensive
trial and error is needed to determine these parameters. Since exhaustive search is,
in most cases, impossible, only a small portion of search space is usually examined.

SLF solves this difficulty by simultaneously carrying out the determination of
these structural parameters and the learning of connection weights. Simulation
results demonstrate that SLF has better generalization ability than BP learning
both in Jordan networks and buffer networks in this example.

The mismatch between MSE, and AIC is considered to occur due to the following
reasons. First, both MSE, and AIC are subject to statistical variation. Second,
the independence assumption of output errors underlying Equation 5.19 does not
necessarily hold in actual cases. The autocorrelation function of output errors in
Table 5.13 clearly indicates that they have temporal correlation. Third, due to
slow learning speed, the MSE for training data decreases very slowly. Therefore it
might be larger than it should be due to immature learning. In this paper, MSE,
is considered to be more reliable than AIC due mainly to the second reason. The
clarification of these is left for further study.

5.8 Adaptive Learning

In this section the adaptive !indexlearning!adaptive ability of a network in a chang-
ing environment is evaluated. SLF has the advantage of generating the simplest
possible network structure given data from the environment. This advantage, in
contrast to BP learning, facilitates the adaptability of a network in a changing
environment.

To evaluate this ability, the following Boolean function and its subsets are used

178 Structural Learning and Rule Discovery

to realize the changing environment.

9 = (U U b) n (C U d) n (e U f) (5.22)

There are in total 64(=26) samples. Various subsets of samples are given for
training.

First, SLF is used to train a 3-layer network with 5 hidden units. In the first
stage, 36 samples for which (c U d) n (e U f) is always true are given for training.
Figure 5.12(a) illustrates the resulting network structure representing (au b) , which
is the simplest rule explaining the given data. In the second stage, 48 samples for
which (eu f) is always true are given for training. The network structure adaptively
changes and Figure 5.12(b) is generated. (a U b) n (c U d) is the simplest rule. In
the third stage, all 64 samples are given for training and Figure 5.12(c) is obtained.
The Boolean function in Equation 5.22 is the simplest rule. So far, sprouting of
connections occurs.

In the fourth stage, 48 samples for which (a U b) is always true are given
for training. Adaptive learning produces Figure 5.12(d) , eliminating unnecessary
connections. (c U d) n (e U f) is the simplest rule. In the final stage, 36 samples
for which (a U b) n (c U d) is always true are given for training. Adaptive learning
generates Figure 5.12(e), representing (e U f) . These five figures well demonstrate
the adaptive learning capability of SLF.

Second, BP learning is used for training. In the first stage, all 64 samples are
given for training. Figure 5.13(a) is generated, but is hard to understand due to
distributed representation. In the second stage, 36 samples for which (a U b) n (c u d)

is always true are used for training. However, since MSE is small even right after
the change of the environment, modification of connection weights do not occur.
Therefore, the resulting network structure in Figure 5.13(b) remains almost the
same as Figure 5.13(a). In other words, BP learning has no adaptive ability in the
changing environment.

5.9 Methods of Rule Extraction/Discovery

Knowledge acquisition is, needless to say, important, because it is a key to the
solution to one of the bottlenecks in artificial intelligence (AI). In addition to
numerous studies on knowledge acquisition in machine learning such as ID3 and
C4.5 (Quinlan, 1993) , the neural-network approach has attracted wide attention
recently because of its computational simplicity and ability to generalize. Rule
extraction or rule discovery using neural networks, however, is not easy due mainly
to distributed representation in a network. Most of the existing methods suffer from
this difficulty, hence the crucial issue has been how to extract rules from trained
neural networks.

This section surveys various methods for obtaining rules from data using neural
networks. They are roughly classified into two categories: those with prior theories

5.9 Methods of Rule Extraction/Discovery 179

(4
Figure 5.12 The

0

a b C d

0

0 0
e f

n

0 0

0 0
a b C d e f

W

a

0

0
a

0

0
a

b C d e f
n

b C d e f

b C d e f
resulting networks by adaptive learning using SLF. (a) 36

training samples satisfying (cud)n(euf). (Stage 1). (b) 48 training samples satisfying
(eu f) . (Stage 2). (c) All 64 samples are used for training. (Stage 3). (d) 48 training
samples satisfying (a u b) . (Stage 4). (e) 36 training samples satisfying (a u b) n(Cud).

(Stage 5).

180 Structural Learning and Rule Discovery

n

0 0 0 0 0 0
b C

n

d e f

V V V V V V
C e f

Figure 5.13 The resulting networks by BP learning. (a) All 64 samples are used
for training. (Stage 1). (b) 36 training samples satisfying (U U b) n (c u d) . (Stage 2).

and those without them. The former assumes prior theories, and modifies, adds and
deletes them by learning based on data. The latter, on the other hand, assumes no
theory and depends solely on learning based on data. Because of this difference,
I would like to use different terminologies in this chapter; rule extraction for the
former and rule discovery for the latter.

Andrews et al. have made an extensive survey of various methods of rule ex-
traction or discovery using neural networks, and clarified comparative performance
using the MONK’s problems and mushroom database (Andrews et al., 1995, 1996).
Thrun et al. have also made an extensive comparative study on various methods
ranging from machine learning to neural networks using the MONK’s problems
(Thrun et al., 1991). Methods using neural networks include BP, BP with weight
decay, and cascade-correlation learning. However, the purpose of this comparative
study is not to evaluate the performance of rule extraction or discovery, but to
evaluate mapping performance. Therefore, this is not our present concern.

Kowalczyk et al. proposed a rule discovery method using higher order neural net-
works (Ferrci and Gardiner, 1991). It is applied to the classification of mushrooms.
Its good performance, however, is due mainly to the pre-selection of a small number
of useful attributes by a statistical method.

Sestito and Dillon proposed the Building Representations for AI using Neural
NEtworks (BRAINNE) method (Sestito and Dillon, 1994). In BRAINNE an ex-
panded 3-layer network architecture with additional inputs representing target out-
puts is adopted. In the selection of the defining attributes for a conjunctive rule,
a measure of relevance between input and output is proposed. However, a cut-off

5.9 Methods of Rule Extraction/Discovery 181

point may not be determined clearly when data are corrupted by noise. A disjunc-
tive rule can also be obtained by an extension of the original BRAINNE. This is
in contrast to SLF, in which a universal procedure generates either conjunctive
or disjunctive rules depending on given data. BRAINNE can also be extended to
continuous valued inputs. Again in contrast to SLF, generated rules are restricted
in the sense that only one attribute is allowed for each term of a rule, i.e. each
attribute has lower and/or upper bounds. In its application to the classification of
mushrooms and irises, BRAINNE generates more rules than SLF; 46 rules in the
former and 11 rules in the latter.

McMillan, Mozer and Smolensky proposed RuleNet (McMillan et al., 1992). It
is a combination of learning of a simple mapping and local expert architecture
by Jacobs, Jordan, Nowlan and Hinton (Jacobs and Nowlan, 1991). I t deals with
only symbolic inputs and outputs. Local expert architecture generates context.
Therefore, it is a good architecture for cognitive models, but its ability to discover
rules from real world data is not clear, because no benchmark data are presented.

Towell and Shavlik propose the following framework: insert knowledge into
a neural network using KBANN (Knowledge-Based Neural Network), train the
network using a set of data and extract rules from the trained network (Towell
and Shavlik, 1993). The last extraction phase is the most difficult part. They
propose a Subset algorithm and an Mof" algorithm for the extraction phase.
The Subset algorithm generates a set of rules by selecting a subset of input units
which guarantee full activation of the corresponding non-input unit using a branch
and bound algorithm. The Mof" algorithm generates a simpler set of rules by
clustering, averaging, eliminating, optimizing, extracting and simplifying incoming
connection weights of each non-input unit. The proposed method is applied to the
classification of DNA sequences and the MONK'S problems. Detailed analyses of
the rule extraction performance is also presented (Towell and Shavlik, 1994).

which is similar to the framework by Towell and Shavlik (Towell and Shavlik, 1993).
During the learning phase, it uses heuristic procedures such as ignoring weak con-
nections. During the rule extraction phase, the KT algorithm which is similar to
the Subset algorithm is adopted. The whole procedure is somewhat more complex
than the one by Towell and Shavlik. This method is applied to the classification of
DNA sequences. Since all the data are used for training, the generalization ability
is not reported.

Fu proposes another method which does not require prior information on problem
domains. During the extraction phase it uses the KT method (Fu, 1994). A
heuristic search using three kinds of thresholds is carried out, which influences
the resulting rules. The proposed method is applied to three kinds of examples, i.e.
the classification of irises, hepatitis prognosis prediction and hypothyroid diagnosis.
The first one has continuous valued inputs, and the last two have both continuous
and discrete valued inputs. I t , however, extracts only the simplest rules similar to
C4.5, i.e. each term of a rule contains only one attribute.

Most of the existing methods focus on how to extract rules from trained neural

Fu (Fu, 1993) proposes aKnowledge-Based Conceptual Neural Network (KBCNN) ,,

182 Structural Learning and Rule Discovery

networks, because this is the most difficult part. I would say that this is the result
of using unsophisticated learning algorithms such as BP learning.

As mentioned in the Introduction, it is widely known that BP learning suffers
from such difficulties as prior specification of network structure and the interpre-
tation of hidden units. To overcome these difficulties, various structural learning
methods have been proposed as shown in Section 5.2. However, these two fields,
i.e. rule extraction or discovery and structural learning, have developed almost in-
dependently. Furthermore, most of the structural learning methods put emphasis
on the decrease in computational cost and in the number of connections, and put
less emphasis on the interpretation of the resulting networks. I claim that learning
methods which are capable of generating skeletal structure with easy interpretation
should be applied to rule extraction or rule discovery.

5.10 Rule Discovery by SLF

SLF is effective in obtaining skeletal network structure with easy interpretation of
hidden units (Ishikawa, 1989, 1996d). SLF is also efficacious in rule discovery from
data with discrete valued inputs (Ishikawa, 199513, 1996b,c), because the resulting
network structure is skeletal and hidden units are binary owing to the learning
with hidden units clarification. These characteristics make ad hoc procedures such
as ignoring weak connections unnecessary.

An input or an output unit with a discrete value can be converted to a set of
binary units. Therefore, without loss of generality, we can assume that all the input
and output units are binary. The discovery of rules is carried out in the following
steps.

1. Train a neural network by the learning with forgetting to obtain a rough skeletal
network structure.
2. Train it by both the learning with forgetting and that with hidden units
clarification to dissipate distributed represent at ion.
3. Train it by both learning with selective forgetting and that with hidden units
clarification to get a smaller MSE. At this step, all the hidden units become binary,
4. Represent each hidden unit by a Boolean function of input units.
5. Represent each output unit by a Boolean function of hidden units.
6. By combining the above two Boolean functions, each output unit can be repre-
sented by a Boolean function of input units. These are the rules we seek for.

Another advantage of SLF is that it can be extended to the discovery of rules from
data with continuous valued inputs (Ishikawa, 1997). A direct application of SLF,
however, is not powerful enough because of the inherent difficulty of continuous
valued inputs. To overcome this difficulty, neural networks of various degrees of

complexity are trained. The degree of complexity, here, is defined by the maximum

5.11 Classification of Mushrooms

output
-layer

183

Hidden
-layer

Input
-lever

O.cap-shape 1 .cap-surface 21 .habitat

Figure 5.14 The network structure for the classification of mushroom data. Each
hidden unit represents an attribute and is connected to the corresponding attribute
values in the input layer.

number of incoming connections to each hidden unit. From among these, the one
with the smallest AIC (Akaike, 1974) is selected as optimal. Since outputs of hidden
units are binary owing to the learning with hidden units clarification, incoming
connection weights to each hidden unit determine the corresponding discriminating
hyperplane. A logical combination of these hyperplanes provides rules.

~~

5.11 Classification of Mushrooms

The mushroom database contains 8124 samples (Murphy and Aha, 1992). Each
sample has 22 attributes and each attribute has from 2 to 12 nominal attribute
values. The total number of attribute values is 126. Each sample is also given
a categorical value, e.g. edible or poisonous. Figure 5.14 illustrates the network
structure adopted here. Out of 8124 samples, 812 samples are randomly chosen for
training. Learning is carried out by two methods: BP learning and SLF.

SLF can select appropriate attributes without pre-selection. In this case, 2, 4
or 6 significant attributes is chosen depending on the amount of decay, E . In a 2-
attribute case, two attributes, odor and spore-print-color, are selected. The former
attribute has {almond, anise, creosote, fishy, foul, musty, none, pungent, spicy} as
its attribute values. The latter has attribute values of {black, brown, bu8, chocolate,
green, orange, purple, white, yellow}. The discovered rule for edible mushrooms in
the 2-attribute case is,

(odor = almond U anise U none) n (spore-print-color = l g r e e n) (5.23)

where 1 stands for negation. Figure 5.15 illustrates the corresponding network
structure (Ishikawa, 1998). Out of 22 attributes, only the relevant 2 attributes are

184 Structural Learning and Rule Discovery

shown here. The discovered rule for edible mushrooms in the 4-attribute case is,

(odor = almond U anise U none)

n(spore-print-color = l g r e e n)

n((sta1k-sur f ace-below-ring = Iscaly)

U(popu1ation = Iseveral n -dustered) (5.24)

ID3, a popular inductive learning algorithm in AI, is selected for comparison.
The information expected from the entire data, E , is represented as,

where p(e) and p (p) are the probabilities that a sample belongs to the class e and
class p , respectively.

The information expected when the attribute A is selected is,

(5.26)

where the attribute A has attribute values Ai(i = 1, ..., n) , Ci is a set of samples
with attribute values Ai, p (A i) is the probability that the attribute A has attribute
value Ai. M(Ci) is the expected information when the attribute value is Ai and can
be obtained in a similar way as M (E) . The attribute which maximizes M (E) - B (A)
is selected as the most significant one, because it acquires the largest amount of
information. This procedure continues recursively.

Table 5.14 indicates the results by BP learning, SLF and ID3. It is to be noted
that BP learning, in contrast to SLF and ID3, cannot discover any explicit rules.
Since the number of attributes is 22 in case of BP learning, it requires data on
all attributes during the test phase. This is a serious disadvantage of BP learning.
Table 5.14 also shows that SLF is superior to BP and ID3 in terms of the number of
classification errors. By adding 8 erroneous samples in the 4-attribute case to 812
training data, it becomes possible to obtain a classification rule with 6 attributes
which correctly classifies all mushrooms.

5.12 MONK’s Problems

The MONK’s problems are composed of three classification tasks. One of them is
the MONK’s problem I. Table 5.15 shows a list of attributes and the corresponding
attribute values. There are 6 attributes and 17 nominal attribute values. Table
5.16 indicates 4 correct classification rules. Figure 5.16 illustrates the network
architecture used in the MONK’s problem I. Each unit in the Hidden1 layer
represents one of the attributes. The total number of samples is 432 (= 3 x 3 x 2 x
3 x 4 x 2) as can be calculated from Table 5.15.

The number of training samples is 85, 70 or 50. These training samples are

5.12 MONK’s Problems

SLF

ID3

0

7 2 0.00676 0.00639 5 48
1 4 0.00014 0.00109 0 8

2 5 48
3 2 24

- - - 2 24 4

- - -

- - -

185

attribute

head-shape
body-shape

4.odor 1 9.spore-print-color

attribute values

round, square, octagon
round, square, octagon

Figure 5.15
The learning parameters are: 7 = 0.05, a = 0.9, E = 7 x 10-5 and 8 = 0.1.

The resulting network by SLF in the classification of mushrooms.

.~ ~

jacket-color red, yellow, green, blue
has- tie yes, no

(0 Springer-Verlag, used with permission, see Copyright Acknowledgments)

Table 5.14 Performance comparison of the classification of mushrooms. The
numbers of training data and the total data are 812 and 8124, respectively. #A
stands for the number of attributes. MSE and MSET are MSEs for training data
and the total data, respectively. #el and #e2 stand for the numbers of classification
errors for training data and the total data, respectively. The parameters of learning
are: 7 = 0.05, a = 0.9 and 8 = 0.1.

1 method I E x 10-5 I #A 1 MSE I MSET I #el I #ez I
1 BP I - 1 22 1 0.00006 1 0.00606 I 0 1 56 1

Table 5.15
problems.

Attributes and the corresponding attribute values in the MONK’s

I smiling I yes, no I
I holding 1 sword, balloon, flag I

186

~

No.

1
2

Structural Learning and Rule Discovery

~~~~ ~ ~ 

rule 

(head-shape=round) n (body-shape=round) 
(head-shape=square) n (body-shape=square) 

Table 5.16 Correct classification rules for the MONK’s problem I. 

3 

4 
(head-shape=octagon) n (body-shape=octagon) 

j acket-color =red 

head-shape body-shape smiling holding jacket-color has-tie 

Figure 5.16 
(0 Springer-Verlag, used with permission, see Copyright Acknowledgments) 

The network architecture for the MONK’s problem I. 

randomly chosen. Four cases, corresponding to  different subsets of training samples, 
are tried as shown in Table 5.17. An example of the resulting network by BP learning 
in Figure 5.17 indicates that it is far from skeletal. Another example of the resulting 
network by SLF in Figure 5.18 clearly indicates its skeletal character. Table 5.17 
summarizes the performance comparison of BP learning, SLF and ID3. It shows 
that SLF is superior to BP, and BP is superior to ID3 in terms of the number 
of classification errors. SLF succeeds in discovering the correct set of rules in 11 
out of 12 trials for 85 training samples and in 10 out of 12 trials for 70 training 
samples. Although the experiments by Subset and MofN are carried out somewhat 
differently (Towel1 and Shavlik, 1993), the results suggest that they are inferior to 
SLF. 

5.13 Modular Structured Networks 

As mentioned in the Introduction, neural networks suffer from the local minima 
problem and the rapid increase in computational cost when the size of a network be- 
comes large (Minsky and Papert, 1988). Modular structured networks are expected 
to solve these difficulties, because the size of each module is modest. In modu- 
lar structured networks, mixtures of experts architecture is popular (Jacobs and 
Nowlan, 1991). SLF is also applicable to this architecture (Ishikawa and Yoshino, 



5.13 Modular Structured Networks 

m7.m 

187 

Figure 5.17 
The learning parameters are: 7 = 0.05 and a = 0.9. 
(0 Springer-Verlag, used with permission, see Copyright Acknowledgments) 

The resulting network by BP learning in the MONK’s problem I. 

Figure 5.18 
learning parameters are: q = 0.05, a = 0.9, E = 3.4 x 10-4, and 8 = 0.1. 
(0 Springer-Verlag, used with permission, see Copyright Acknowledgments) 

The resulting network by SLF in the MONK’s problem I. The 



188 

no. of 
samples 

Structural Learning and Rule Discovery 

case no. of errors 
BP I SLF I ID3 

Table 5.17 Performance comparison of BP learning, SLF and ID3 in the MONK’S 
problem I. In each case, 3 initial connection weights are tried. The learning param- 
eters are the same as those in Figures 5.17 and 5.18. 

85 41 
28.7 4.0 

mean 20.4 1.0 57.5 

4 25.3 92 
mean 29.9 7.0 47.5 

95.0 52.0 
55.0 54.0 110 

mean 82.0 49.8 82.5 

1993). In this section, another approach is pursued (Ishikawa, 1995a); both intra- 
module and inter-module connections are trained by SLF to realize understandable 
modular structured networks. 

5.13.1 Module Formation and Learning of Modular Networks 

The learning of modular structured networks is carried out here in two stages: 
the first stage being the learning of connection weights in each module and the 
second stage being that of inter-module connection weights. The advantages of 
using modular networks are the following: First, because each module is small, 
computational cost and the local minima problem in the first stage are not serious. 

Second, computational cost in the second stage is not as serious as that  of a 
homogeneous structured network, because the component modules have already 
been learned. 

Third, a resulting modular network is easy to understand, because understanding 
how component modules are connected to  each other is far simpler than understand- 
ing how separate units are connected to each other. Whether or not this advantage 
holds depends on a learning method. As shown previously, SLF generates networks 
with a small number of connections. This characteristic greatly helps understand 
the resulting modular networks. BP learning, on the other hand, does not share 
this characteristic. 



5.13 Modular Structured Networks 

output layer 

189 

0 0 0 

0 0 0 0 
input layer 

Figure 5.19 
Copyright Acknowledgments) 

Formation of a module. (0 Elsevier Science, used with permission, see 

Last, as will be shown later, learning becomes more efficient as it proceeds, 
because many previously learned modules become available. This advantage is not 
only useful from a practical point of view, but also interesting from a cognitive 
science perspective because of its similarity to the learning of humans. 

Figure 5.19 illustrates how a module is formed. A task is given to a group of units 
(called output units) from the outside world as pairs of input and target outputs. 
Suppose the input layer contains all the necessary information to do the given task. 
The network is composed of a group of hidden units in addition to those input and 
output units, and can freely use these hidden units. SLF generates a subnetwork 
with a small number of input and hidden units due to  the elimination of connections. 
The resulting subnetwork in Figure 5.19 can be interpreted as a module composed 
of output units and relevant hidden units. In contrast to this, BP learning tends to 
use up all the input and hidden units. Therefore the resulting network cannot be 
interpreted as a module. 

It is not a realistic assumption that the learning of a module is based solely on 
information frorn the input layer. The more complex a task becomes, the larger the 
size of a resulting module becomes. This increases the impact of the computational 
cost and the local niininia problem for the learning of a new module. 

A more realistic assumption is that a module, during learning, may acquire 
information either from the input layer or from previously learned modules. Figure 
5.20 illustrates a simple example of a 2-module network. Suppose module A is to 
learn a task, and module B has already learned its subtask. Suppose further that 
the input layer contains all the necessary information on these tasks. Module A, 
during learning, acquires information on the subtask from module B, riot from 
the input layer. The reason is the following. Information in module B is more 
condensed than that in the input layer. Therefore, a module acquiring information 



190 Structural Learning and Rule Discovery 

Figure 5.20 

layer. 
(0 Elsevier Science, used with permission, see Copyright Acknowledgments) 

An example of a network composed of two modules and the input 

from module B is simpler than the one acquiring information solely from the input 
layer. The parsimonious characteristic of SLF enables the acquisition of information 
from module B. 

Generally speaking, if a module uses outputs of previously learned modules, 
its learning becomes more efficient and a resulting network is constructed by 
assembling the previously learned modules. The penalty term in Equation 5.8 helps 
the generation of this simplified network. 

As learning proceeds, the number of available modules increases. The essential 
problem is this: from where does a module acquire information for its learning? 
This problem becomes serious as the number of available modules increases. As 
will be shown later, appropriate modules can be selected without any supervision, 
provided SLF is adopted. 

5.13.2 Boolean Functions 

The purpose of learning a Boolean function is not merely to realize the mapping 
from input to output, but to discover a Boolean function explicitly based on input 
and output data. 

5.13.2.1 Sequential Learning of a 2-Module Network 

The problem considered here is sequential learning, i.e. module B has finished 
learning and module A learns making use of the output of module B. In other 
words, the information flow between two modules is uni-directional. 

Suppose module A in Figure 5.20 is to learn the Boolean function, f = ( a  U b)  f l  
( c  U e ) .  Suppose further that module B has already learned its subtask, g = ( c  U e ) ,  
to some degree. If module B were not present, module A acquires information 
solely from the input layer. The existence of module B is expected to accelerate the 
learning of module A. 

Figure 5.21 illustrates output patterns of module B for various degrees of learning 
performance in terms of the MSE: complete learning, 500-iteration learning, 200- 
iteration learning, 100-iteration learning and 50-iteration learning. The output 



5.13 Modular Structured Networks 191 

pattern in the complete learning case is the same as the target output pattern. The 
50-iteration learning case is quite immature, and can barely differentiate between 
0 and 1. 

In the complete learning case, it is highly expected that module A makes use 
of the output of module B during learning. An interesting question arising next is 
whether or not module A acquires information on ( c  U e )  from the incompletely 
learned module B instead of from the input layer. 

Figure 5.22 displays the percentages of the connection weight from module B to  
module A. It indicates that in all cases except the 50-learning case the connection 
weights from the input units, c and e ,  to module A diminishes to zero, and the 
connection weight from module B to module A increases during lmrning. In the 
50-learning case the learning performance of module B is too poor to be used by 
module A. In the 100-learning case, although only partly showii iii Figure 5.22, 
the connection weight from module B to module A becomes completely dominant 
after 50,000 iterations. It also illustrates that  the better the learning performance 
of module B is, the faster the connections from module B to module A becomes 
dominant. 

Figure 5.23 shows that the higher the learning performance of module B is, the 
faster the learning of module A becomes. This is in accordance with the difference of 
the speed at  which the connection from module B to module A becomes dominant 
as shown in Figure 5.22. 

Reorganization of modular structured networks is also noteworthy. Figure 5.24 
illustrates the result of learning; modules A and B independently learn their tasks 
using SLF based on information from the input layer. Starting from this modular 
network, SLF gmerates Figure 5.25. These two figures indicate that the initial 
connections froni the input units, c' and e ,  to module A are completely replaced 
by the connection from module B to module A. This can be regarded as a simple 
example of the process in which pieces of knowledge are reorganized into more 
coherent and amalgamated knowledge. 

5.13.2.2 Sequential Learning of a Multiple- Module Network 

Suppose a new module may acquire information from either previously learned 
modules or the input layer. From where does the new module acquire information 
for its learning? 

Module A is to learn the Boolean function, f = ( a  U b )  n ( c  U e ) .  Five modules, 
B1, Bz, B3, B4 and B5, are to learn the Booleari function, ( c  U e ) ,  which correspond 
with complete-learning , 500-it eration learning, 200-it erat ion learning, 100-it erat ion 
learning and 50-iteration learning, respectively. Figure 5.26 displays how the infor- 
mation source on ( c  U e )  changes as learning proceeds. It shows that in the initial 
stage information both from the modules, Bi, and from the inputs, c and e ,  are 
used, but as learning proceeds information from the best learned module, B1, to  
module A becomes dominant. 

In other words, in cases where multiple modules are available, the best module 



192 Structural Learning and Rule Discovery 

I 1  I1 11-11 IIJ 
target 500-iteration 

patterns learning 
100-iteration 

learning 

complete 200-iteration 
learning learning 

50-iteration 
learning 

Figure 5.21 Output and target output patterns of module B for various degrees 
of learning performance in terms of the MSE. The height of each bar indicates the 
output value. Four bars in a row illustrate the output values corresponding to the 
4 training inputs: (c ,  e )  = (1, O),  (0, I) ,  (0,O) and (1,l). The length of the solid line on 
the right signifies the value of 1. 
(0 Elsevier Science, used with permission, see Copyright Acknowledgments) 

percentage 

€i 

0 5000 10000 
number of iterations 

: complete learning 
0 : 500-iteration learning A : 50-iteration learning 

U : 1 00-iteration learning 

: 200-iteration learning 

Figure 5.22 Percentages of the connection weight from module B to module A, i.e. 
100 x ~WAB I / (  I WAB I + I W A , ~ ~ ~ ~ ~  I) ,  where ~ W A B  I is the absolute value of the connection 
weight from module B to module A, and I W A , ~ ~ ~ ~ ~ I  is the sum of the absolute 
values of the connection weights from the input units, c and e ,  to module A. The 
vertical axis indicates the percentage. The horizontal axis represents the number 
of iterations during learning. Since the initial connection weight from module B 
to module A is set to zero, the initial value of the percentage is also zero. The 
percentage of connections from the input units, c and e ,  to module A is calculated 
by subtracting the above percentage from 100. The learning parameters are: q = 0.1, 
a = 0.2 and E = lop*. 
(0 Elsevier Science, used with permission, see Copyright Acknowledgments) 



5.13 Modular Structured Networks 

........... 

.......... 

193 

mean square errors o*o’l* 
number of iterations 

5000 10000 
0 

0 
0:  complete learning : 200-iteration learning 

Figure 5.23 Learning speed of module A for various degrees of learning perfor- 
mance of module B. The parameters of learning are the same as those in Figure 
5.22. 
(0 Elsevier Science, used with permission, see Copyright Acknowledgments) 

module A 

n 

module B 
(...... ................. 

i n  1 
........ 

i a  b c d e i  
input layer 

Figure 5.24 The independently learned modular structured network. Module A 
learns f = ( a ~ b ) n ( c u e ) ,  and module B learns g = (cue). The parameters of learning 
are the same as those in Figure 5.22. 
(0 Elsevier Science, used with permission, see Copyright Acknowledgments) 



194 Structural Learning and Rule Discovery 

module A 

...................................................................... 

O 3  ~. ....................................................... 

module B { 
..................... 

0 
................ 8 ;  

input layer 

Figure 5.25 The modular structured network after reorganization. Module B 
learns g = ( c  U e ) ,  and module A learns f = (a U b)  n ( c  U e )  making use of the 
output of module B. The learning parameters are the same as those in Figure 5.22. 
(0 Elsevier Science, used with permission, see Copyright Acknowledgments) 

for learning of the new module is automatically selected, provided SLF is used. This 
characteristic of the appropriate selection without any supervision is valuable for 
the learning of modular structured networks. 

In the case of BP learning, on the other hand, the information on ( c  U e )  comes 
from all the modules and the input layer as shown in Figure 5.27. Generally 
speaking, in BP learning a new module acquires information from modules whose 
outputs have correlation with the current target output. For this reason, BP learning 
is not suited for the learning of modular structured networks. 

5.1 3.2.3 Concurrent Learning of a 2-Module Network 

Suppose two modules learn concurrently, i.e. each module can make use of the 
output of the other. Module A is to learn the Boolean function, f = ( a u b )  n (cue) ,  
and module B is to learn g = ( cue ) .  These two modules start learning at  the same 
time. Qualitatively speaking, the learning of module B precedes that of module A 
due to its simplicity. 

In the beginning stage of learning, both modules acquire information on ( c  U e )  
from the input layer. Since the learning of module B becomes almost complete in 
about 2,000 iterations, module A begins to acquire information on ( c  U e )  from 
module B instead of the input layer. Figure 5.28 illustrates that the percentage 
of the connection weight from module B to module A increases and that from 
module A to module B diminishes to zero as learning proceeds. The percentage of 
connection weights from the input layer to module A is calculated by subtracting 



5.13 Modular Structured Networks 

percentage 

195 

number of iterations 
n r\ n 

" 

5000 10000 
0 : complete learning II : 200-iteration learning 

0 : 500-iterarion learning 

Figure 5.26 The percentage of the connection weight concerning ( cue )  from each 
module, B,, to module A. The cases where the percentage is almost zero throughout 
learning are not shown here. The initial connection weight from each module, B,, 
to module A is set to zero. The percentage of connection weights from the inputs, 
c and e ,  to module A is calculated by subtracting the sum of the above percentages 
from 100. The learning parameters are the same as those in Figure 5.22. 
(0 Elsevier Science, used with permission, see Copyright Acknowledgments) 

0 
0 5000 10000 

number of iterations 
0 : complete learning A : 50-iteration learning 
w : 200-iteration learning v : c and e in input layer 

Figure 5.27 The percentage of the connection weight concerning ( c  U e )  from 
each module, Bi, to module A. Not all the cases are shown here for visibility. The 
parameters of learning are: q = 0.1 arid Q: = 0.2. 
(0 Elsevier Science, used with permission, see Copyright Acknowledgments) 



196 Structural Learning and Rule Discovery 

percentage 

50 

number of iterations 

0 5000 10000 

0 :  percentage of connection weight from module B to A 
m: percentage of connection weight from module A to B 

Figure 5.28 The percentage of the connection weight concerning ( c  U e )  from one 
module to the other. The learning parameters are the same as those in Figure 5.22. 
(0 Elsevier Science, used with permission, see Copyright Acknowledgments) 

the above percentage from 100. 
This result demonstrates well that even if multiple modules learn concurrently, 

a simple modular structured network emerges, provided there exist part-whole 
relations among tasks to be learned. 

5.13.3 Parity Problems 

A parity problem is to judge whether the number of 1’s in a binary input vector is 
odd or even; when it is odd, the output is 1 and when it is even, the output is 0. A 
parity problem with n inputs is called a parity problem of order n. 

As the order of a parity problem increases, its learning becomes more and more 
difficult due to the local minima problem. When a parity problem of some order 
has already been solved, it helps solve parity problems of higher orders because of 
the similarity among parity problems of various orders. 

In this section, a trial is performed to solve a higher order parity problem under 
the assumption that lower order parity problems have already been solved and their 
outputs are available for its learning. 

Let the parity problems of orders 2, 3 and 4 be P2, P3 and P4, respectively, and 
their inputs be ( 2 1 ,  2 2 ) ,  (XI, 22, 23) and (21, 22,23,24), respectively. Suppose, in the 
learning of the parity problem of order 5, P5, not only the inputs, (21, 22, x3 ,  2 4 ,  2 5 ) ,  

but also the outputs of lower order parity problems, P2, P3 and P4 are available as 
shown in Figure 5.29. SLF using all 32(= 25) training samples generates the modular 
network constructed as the exclusive or of two information sources: P4, which has 
the largest similarity to P5 among modules and the additional input unit, 2 5 .  It 
clearly reveals the structure of the parity problem P5. It is to be noted that the 
inputs, ( 2 1 , 2 2 ,  23,24), and lower order parity problems, P2 and P3, are not used in 



5.13 Modular Structured Networks 197 

+idden layer 

Figure 5.29 

tured network. The learning parameters are: q = 0.1, a = 0.2 and E = 

(0 Elsevier Science, used with permission, see Copyright Acknowledgments) 

Learning of the parity problem of order 5 using the modular struc- 

solving the parity problem, P5. 
This result can be extended to  parity problems of higher orders. The parity 

problem of order n, Pn, can be represented by a modular network of the exclusive 
or of Pn-l and the additional input unit, x,. 

5.13.4 Geometrical Transformation of Figures 

The characteristic that  only appropriate modules among previously learned ones 
are made use of and all the connections from other modules diminish without any 
supervision is valuable in the learning of modular structured networks. Up to  now 
all the previously learned modules are located at the same level as the input layer. 
In other words, only, as it were, flat modular networks have been considered. 

In this section, the learning of a sequence of modules is considered by dynamically 
concatenating previously learned modules. As an example, geometric transforma- 
tion of simple figures is adopted here. Table 5.18 shows a list of elementary geometric 
transformations. Each of these geometric transformations corresponds to a module. 

Here, a simple geometric transformation realized by concatenating two modules 
is considered. Figure 5.30 illustrates an example of a multi-layer modular structured 
network. Both the first and the second module layers have 8 modules in Table 5.18. 
Each module can easily be realized by a 2-layer neural subnetwork and is kept frozen 
during the learning of a modular network. At first glance Figure 5.30 seems to  be 
a 6-layer network, but since the input layer and the lower layer of the first module 
layer is one and the same layer, it actually is a 5-layer network. In Figure 5.30 all 
the layers except the output layer use linear units instead of sigmoidal units. 

The problem considered here is to discover a sequence of geometric transformation 
modules based on 4 pairs of input and output figures in Figure 5.31. The supposed 
solution to  this problem is the rotation of 90" clockwise followed by the upward 



198 Structural Learning and Rule Discovery 

Table 5.18 Modules for elementary geometric transformations. 

I module I geometric transformation I 
I M I  I no transformation I 
1 M'L 1 rotation of 90" clockwise I 
I n/l; 1 rotation of 180" clockwise I 
1 M4 I rotation of 270" clockwise I 
I M5 I rightward translation by 1 block I 
I MG 1 leftward translation by 1 block I 
I M7 1 upward translation by 1 block I 

Ms I downward translation by 1 block 

translation by 1 block. 
If BP learning is used for this problem, the realization of the mapping from an 

input figure to an output figure is straightforward, but the resulting inter-module 
connections cannot be interpreted as a sequence of geometric transformations. 
Instead, they correspond to a complex combination of all the transformations and 
are impossible to implement or understand. On the other hand, SLF plays an 
essential role in discovering a sequence of geometric transformation modules. 

Given 4 pairs of input figures and target output figures, inter-module connections 
are trained. SLF generates a single path or at  most a few parallel paths from input 
to output, explicitly providing a sequence of geometric transformation modules. 

Ten different initial connection weights are tried. The solution of leftward trans- 
lation by 1 block followed by rotation of 90" clockwise is obtained 5 times. In this 
case, only the connections from MG in the first module layer to M2 in the second 
module layer and the connections from this M2 to  the output layer remain, and 
all other connections fade out. In 3 out of 10 cases, the supposed solution of the 
rotation of 90" clockwise followed by the upward translation by 1 block is obtained. 
In 2 out of 10 cases, both solutions appear simultaneously. 

Generally speaking, it is impossible to know a priori how many layers of modules 
are necessary. Preparing an excess number of module layers solves this problem; if 
the number of module layers is too large, no transformation, M l ,  in Table 5.18 can 
be used for necessary number of times. 

In cases where a given task does not depend on a sequence of modules, the 
problem is reduced to the discovery of a subset of modules instead of a sequence 
of modules. In other words, only one module layer is sufficient to  solve this kind of 
problems. 

5.13.5 Discussion 

In the section, I have demonstrated that SLF can efficiently construct modular 
networks in various examples: Boolean functions, parity problems, and the trans- 
formation of geometric figures. The characteristic that appropriate modules can 



5.13 Modular Structured Networks 199 

I output-figure I 

I inputfigure I 

Figure 5.30 
posed of 8 modules. Each module is realized by a 2-layer subnetwork. 
(0 Elsevier Science, used with permission, see Copyright Acknowledgments) 

The 2-layer modular structured network. Each module layer is com- 

output figures 

fi 

input figures 
Figure 5.31 
transformation and the latter is the one after transformation. 

Input figures and target output figures. The former is the figure before 

(0 Elsevier Science, used with permission, see Copyright Acknowledgments) 



200 Structural Learning and Rule Discovery 

automatically be selected without any supervision is especially important in the 
learning of modular networks. 

The use of previously learned modules helps shorten the required learning time. It 
also simplifies the resulting modular networks, because previously learned modules 
can be utilized as building blocks. This could be seen as a model of progressive 
learning based on the previously learned results and is similar to the layers of 

society in the society of mind (Minsky, 1985). 

5.14 Toward Hybrid Intelligence 

Information processing is categorized roughly into connectionism and symbolism. 
Let us review these two types of information processing. Connectionism is good 
at  learning and self-organization. Associative memory and recall, which is readily 
available, is similar to human memory. Because its basic mechanism is similarity- 
based inference, its information processing is flexible and robust to noise and 
distortion. Since it can represent physical signals, it is compatible with the physical 
world rather than symbolism. 

On the other hand, symbolism is good at  structural knowledge representation. 
Variables and recursive processing are also possible. 

These complementary characteristics have motivated studies on the integration 
of connectionism and symbolism to achieve flexible and effective information pro- 
cessing (Sun and Alexandre, 1995). From the viewpoint of cognitive science, the 
integration sounds reasonable, because humans seem to use both types of informa- 
tion processing. 

However, ad hoe integration will not lead to literally flexible and effective in- 
formation processing. For example, symbolic information processing using neural 
networks which lacks the advantages of connectionism is almost meaningless. There- 
fore, preserving the advantages of both types of information processing is indispens- 
able. 

There have been various studies towards this integration: introduction of flexibil- 
ity into symbolic systems (Touretzky, 1990), injection of symbolic ingredients into 
neural systems (Ishikawa, 1996d) introduction of modularity into network struc- 
ture (Ishikawa, 1995a), building of schemas to bridge the gap (Leow and Miikku- 
lainen, 1994; Miikkulainen and Leow, 1995), the subsymbol hypothesis (Smolensky 
et al., 1992), emergence of symbols or rules out of pattern information (Ishikawa, 
199413, 1996c), modeling of the interaction between them (Ishikawa, 1994a; Ishikawa 
and Kawashima, 1997; Sun, 1994), and so forth (Hinton, 1991). 

One of the various studies, which I believe is promising, is the injection of symbolic 
ingredients into neural systems. This will be made possible by structural learning 
methods which facilitate generating skeletal networks and modular networks. This 
is because symbols will emerge out of a uniform structured network and the meaning 
of its component units will be clarified. 

Another approach, which I believe is also promising, is the modeling of the 



5.15 Conclusion 201 

interaction between symbols and patterns. This is an example of hierarchical 
integration. Toward this end, I have developed an integrated model of pattern and 
symbolic information for the recognition of an object in various contexts (Ishikawa, 
1994a). This is composed of a pattern module and a symbol module, interacting 
with each other to realize flexible information processing. Another model which I 
have developed is an integrated neural network model for the recognition of complex 
figures (Ishikawa and Kawashima, 1997). It realizes both locally shift invariant and 
globally location dependent recognition. 

Development of an information processing system in which the integration plays 
an essential role in the real world is a challenging task to be pursued. 

5.15 Conclusion 

This chapter proposes a simple and effective learning method called structural 
learning with forgetting (SLF). Various applications demonstrate that it has the 
following significant advarit ages. 

1. SLF can discover regularities in or discover rules from data without initial 
theories and preprocessing. 
2. Learning with trial and error for finding appropriate network structure is no 
longer necessary, because a skeletal network emerges. 

3. SLF has good generalization ability due to the simplicity of the resulting network 
structure. 
4. SLF has a simple criterion function and learning rule. Therefore it needs only 
little extra computational cost. 

5. In cooperation with AIC or MSE for test data, SLF can determine a relative 
weight of a penalty term. 
6. SLF can easily be extended to the learning of recurrent network structure. 

7. SLF has adaptive learning capability. 

8. SLF is effective in discovering rules from data. 
9. SLF is effective in the learning of modular structured networks. 
10. SLF is expected to play an important role in the integration of connectionism 
and symbolism. 

As mentioned in the Introduction, the first advantage is the most essential. It 
enables the acquisition of white box rnodels instead of black-box models. 



202 Structural Learning and Rule Discovery 

Acknowledgments 

I would like to thank Hirotsugu Yamamoto and Jyunji Shimizu, former students 
in my laboratory, for their contributions to this research. The work was partially 
supported by Grant-in- Aid for Scientific Research (c)07680404 and (c)09680371 by 
the Ministry of Education, Science, Sports and Culture, Japan. 

Copyright Acknowledgments 

Figures 5.4-5.11 reprinted from Fuzzy Sets and Systems, Vol 82, Ishikawa, M. and 
Moriyama, T.  Prediction of time series by a structural learning of neural networks, 
167-176, @ (1996), with permission from Elsevier Science. 

Figures 5.15-5.18 reprinted from Brain-Like Computing and Intelligent Informa- 
tion Systems, Amari, S. and Kasabov, N. (eds) Chapter 16, Ishikawa, M. Structural 
learning and rule discovery from data, @ (1998), with permission from Springer- 
Verlag GmbH. 

Artificial Intelligence, Vol 75, Ishikawa, M. 
Learning of modular structured networks, 51-62, @ (1995), with permission from 
Elsevier Science. 

Figures 5.19-5.31 reprinted from 

References 

Akaike, H. 1974. A new look at the statistical model identification. IEEE Trans. 
on AC, AC-19(6):716-723. 

Andrews, R. et al. 1996. An evaluation and comparison of techniques for extracting 
and refining rules from artificial neural networks. Tech. rep., QUT NRC Technical 
Report. 

Andrews, R., Diederich, J., and Tickle, A. B. 1995. Survey and critique of techniques 
for extracting rules from trained artificial neural networks. Knowledge-Based 
Systems, 8 (6) : 373-389. 

Ash, T.  1989. Dynamic node creation in backpropagation networks. Connection 
Science, 1(4):365-375. 

Buntine, W. and Weigend, A. S. 1991. Bayesian backpropagation. Complex Systems, 

Cun, Y. L., Denker, J .  S., and Solla, S. 1990. Optimal brain damage. In Advances 
in Neural Information Processing Systems 2, ed. D. S. Touretzky, San Mateo, 
CA. Morgan Kaufmann Publishers. 

5: 603-643. 

Elman, J. L. 1990. Finding structure in time. Cognitive Science, 14:179-211. 
Fahlman, S. E. and Lebiere, C. 1990. The cascade-correlation learning architecture. 



References 203 

In Advances in Neural Information Processing Systems, ed. D. S. Touretzky, 
vol. 2, pp. 642-649, San Mateo, CA. Morgan Kaufmann. 

Ferrci, A. K. H. L. and Gardiner, K. 1991. Discovering production rules with higher 
order neural networks: a case study. In Proceedings of Machine Learning, pp. 

Fisher, R. A. 1936. The use of multiple measurements in taxonomic problem. 

Fogel, D. B. 1991. An information criterion for optimal neural network selection. 

Fu, L. M. 1993. Knowledge-based connectionism for revising domain theories. IEEE 

Fu, L. M. 1994. Rule generation from neural networks. IEEE Trans. on SMC, 

Gallant, S. I. 1986. Three constructive algorithms for network learning. In 
Proceedings of the Cognitive Science Society, pp. 652-660, Amherst, MA. 

Hassibi, B., Stork, D. G., Wolf, G., and Watanabe, T.  1994. Optimal brain surgeon: 
Extensions anti performance comparisons. In Advances in Neural Information 
Processing Systems, eds. J. D. Cowan, G. Tesauro, and J. Alspector, vol. 6, pp. 
263-270. Morgan Kaufmann. 

158- 162. 

Annals of Eugenics, 7:179-188. Part 2. 

IEEE Trans. on Neural Networks, 2(5):490-497. 

Trans. on SMC, 23( 1): 173-182. 

24(8) 111 14-1 124. 

Hinton, G., ed. 1991. Connectionist Symbol Processing. MIT Press. 
Ishikawa, M. 1989. A structural learning algorithm with forgetting of link weights. 

In IJCNN, Washington DC. 
Ishikawa, M. 1994a. An integrated model of pattern and symbolic information for 

the recognition of an object in context. In ICNN, pp. 1810-1814, Orlando FL. 
Ishikawa, M. 1994b. Structural learning and its applications to  rule extraction. In 

Proceedings of ICNN’94, pp. 354-359, Orlando FL. 
Ishikawa, M. 1994c. Structural learning in neural networks. In Proceedings of 

3rd International Conference on Fuzzy Logic, Neural Nets and Soft Computing 
(IIZUKA ’94), pp. 37-44, Iizuka, Japan. 

Ishikawa, M. 1995a. Learning of modular structured networks. Artificial Intelli- 
gence, 75: 5 1-62. 

Ishikawa, M. 1995b. Neural networks approach to rule extraction. In ANNES’95, 

Ishikawa, M. 1996a. Bayesian estimation in structural learning of neural networks. 

Ishikawa, M. 1996b. Rule extraction by successive regularization. In IEEE ICNN’96, 

Ishikawa, M. 1996c. Structural learning and knowledge acquisition. In IEEE 

Ishikawa, M. 1996d. Structural learning with forgetting. Neural Networks, 9(3):509- 

pp. 6-9. 

In ICONIP’96, pp. 1377-1380, Hong Kong. 

pp. 1139-1143, Washington D.C. 

ICNN’96, pp. 100-105, Washington D.C. 



Structural Learning and Rule Discovery 

521. 
Ishikawa, M. 1997. Structural learning approach to rule discovery from data with 

continuous valued inputs. In ICONIP'97. 

Ishikawa, M. 1998. Structural learning and rule discovery from data. In Brain-Like 
Computing and Intelligent Information Systems, eds. S. Amari and N. Kasabov. 
Springer. 

Ishikawa, M. and Kawashima, S. 1997. An integrated neural network model for 
the recognition of complex figures-combination of shift invariance and location 
dependence. In 1997 Real World Computing Symposium (RWC'97), pp. 312-317, 
Tokyo. 

Ishikawa, M. and Moriyama, T. 1996. Prediction of time series by a structural 
learning of neural networks. Fuzzy Sets and Systems, 82:167-176. 

Ishikawa, M. and Uchida, H. 1992. A structural learning of neural networks based 
on an entropy criterion. In IJCNN'92, pp. 11375-380, Beijing. 

Ishikawa, M. and Yoshino, K. 1993. Automatic task decomposition in modular net- 
works by structural learning with forgetting. In Proceedings of 1993 International 
Joint Conference on Neural Networks, pp. 1345-1348. 

Jacobs, R. A. and Nowlan, S. J. 1991. Adaptive mixtures of local experts. Neural 
Computation, 3( 1):79-87. 

Jordan, M. I. 1986. Serial order-a parallel distributed processing approach. Tech. 
rep., ICS Report, UC San Diego. 

Kreider, J. and Haberl, J. 1993. The great energy prediction shootout concept 
and summary of the first building data analysis and prediction competition. 
Unpublished. 

Kurita, T.  1990. A method to determine the number of hidden units of three layered 
neural networks by information criteria. Trans. of the Institute of Electronics 
Information and Communication Engineers, J73-D-II( 11): 1872-1878. 

Leow, W. K. and Miikkulainen, R. 1994. Visor: Schema-based scene analysis with 
structured neural networks. Neural Processing Letters, 1.1(2): 18-23. 

MacKay, D. J .  C. 1995. Probable networks and plausible predictions-a review of 
practical bayesian methods for supervised neural networks. Network: Computa- 
tion in  Neural Systems, 6:469-505. 

McMillan, C., Mozer, M. C., and Smolensky, P. 1992. Rule induction through inte- 
grated symbolic and subsymbolic processing. In Advances in Neural Information 
Processing Systems, vol. 4, pp. 969-976. Morgan Kaufmann Publishers. 

Miikkulainen, R. and Leow, W. K. 1995. Visual schemas in object recognition 
and scene analysis. In The Handbook of Brain Theory and Neural Networks, ed. 
in M. A. Arbib, pp. 1029-1031, Cambridge MA. MIT Press. 

Minsky, M. 1985. The Society of Mind. Simon and Schuster. 
Minsky, M. and Papert, S. 1988. Perceptrons. MIT Press. 



References 205 

Moody, J. E. 1992. The eflective number of parameters: a n  analysis of generalization 
and regularization in nonlinear learning sgstems, vol. 4, pp. 847-854. San Mateo 
CA: Morgan Kaufmann. 

Mozer, 1L1. C. arid Smolensky, P. 1989. Using relevance to  reduce network size 
automatically. Connection Science, 1 (1) :3-16. 

Murata, N., Yoshizawa, S., arid Amari, S. 1994. Network information criterion- 
determining the number of hidden units for an artificial neural network model. 
I E E E  Trans. on  Neural Networks, 5(6):865--872. 

Murphy, P. M. and Aha, D. W. 1992. UCI repository of machine learning databases. 
Department of Information and Computer Science, University of California, 
Irvine, CA. 

Nowlan, D. C. P. S. J. and Hinton, G. E. 1986. Experiments on learning by back 

Quinlan, J. R. 1993. C4 5: Programs for  Machine Learning. Morgan Kaufmann. 

Reed, R. 1993. Pruning algorithms-a survey. I E E E  Trans. on  Neural Networks, 

Rumelhart, D. E. 1988. Parallel distributed processing. Plenary session. 
Sestito, S. and Dillon, T. S. 1994. Automated Knowledge Acquisition. Prentice Hall. 
Smolensky, P., Legendre, G., and Miyata, Y. 1992. Principles for an integrated 

connectionist/symbolic theory of higher cognition. Tech. Rep. CU-CS-600-92, 
University of of Colorado. 

Sun, R. 1994. Integrating rules and connectionism f o r  robust commonsense reason- 
ing. New York: John Wiley & Sons. 

Sun, R. and Alexandre, F., eds. 1995. The Working Notes  of the I J C A I  Workshop 
on  Connectionist-symbolic Integration. 

Thrun, S. B., Bala, J . ,  Bloedorn, E., Bratko, I., Cestnik, B., Cheng, J.,  Jong, K. D., 
Dzeroski, S., Fahlman, S. E., Fisher, D., Harnann, R., Kaufman, K., Keller, S., 
Kononenko, I., Kreuziger, J . ,  Michalski, R. S., Mitchell, T., Pachowicz, P., Vafaie, 
Y. R. H., de Welde, W. V., Wenzel, W., Wriek, J., and Zhang, J .  1991. The 
MONK’S problems-A performance comparison of different learning algorithms. 
Tech. Rep. Ch4U-CS-91-197, Carnegie Mellon University Technical Report. 

Touretzky, D. S. 1990. BoltzCONS: Dynarnic symbol structures in a connectionist 

Towell, G. G. and Shavlik, J. W.  1993. Extracting refined rules from knowledge- 

propagation. Tech. Rep. CMU-CS-86- 126, Carnegie-Mellon Univ. 

4( 5) :740-747. 

network. Artificial Intelligence, 40:5-46. 

based neural networks. Machine Learning, 13:71-101. 
Towell, G. G. and Shavlik, J. W. 1994. Knowledge-based artificial neural networks. 

Artificial Intelligence, 70:119-165. 

the future and understanding the past. Addison-Wesley. 
Weigend, A. S. and Gershenfeld, N. A. 1994. Time  Series Prediction: Forecasting 

Williams, R. J .  and Zipser, D. 1995. Gradient-based learning algorithm for recur- 



206 Structural Learning and Rule Discovery 

rent networks. In Back-propagation: theory architectures and applications, eds. 
in Y. Chauvin and D. E. Rumelhart, Hillsdale NJ .  Erlbaum. 

Yasui, S. 1992. A new method to remove redundant connections in backpropa- 
gation neural networks: Introduction of parametric lateral inhibition fields. In 
IJCNN'92, pp. 11360-367, Beijing. 



6 VLIANN: Transformation of Rules to  
Artificial Neural Networks 

Ian Cloete 

A n  algorithm for the translation of symbolic classification rules into feedforward 
artificial neural networks is presented. The syntax of the rules for which the algo- 
rithm caters is *followed closely b y  a wide variety of machine learning algorithms, 
thus allowing domain theories acquired by  these programs to be incorporated into a 
neural network. Several methods are also proposed to tune fuxxiness in the network’s 
decision. 

6.1 Introduction 

Symbolic knowledge about a problem domain is frequently available in the form of 
classification or production rules. This chapter presents a translational neurocom- 
puting architecture that transforms symbolic rules into an equivalent feedforward 
Artificial Neural Network (ANN). 

In machine learning the area of empirical learning is concerned with the problem 
of deriving application-specific information from a set of examples. Many empirical 
machine learning algorithms for deriving classification information, such as BEXA 
(Theron and Cloete, 1996), CN2 (Clark and Boswell, 1991) and C4.5 (Quinlan, 
1993)) represent, their domain theories in the form of symbolic rules. These rules 
represent hyperrectangular decision regions formed in the input variable space, and 
cannot represent more complex decisions such as arithmetic combinations of input 
variables (Quinlan, 1993). 

An artificial neural network, on the other hand, has the ability to  encode complex 
decision regions by linear and non-linear transformations of its inputs (Zurada, 
1992). Its knowledge about an application is encoded in terms of numeric values, 
the so-called weights of the network. The challenge is to integrate the symbolic 
domain theory derived by symbolic learning methods into the ANN. Incorporation 
of symbolic rules into the ANN then allows prior knowledge about an application 
to be used by the ANN, while the numerical learning techniques of the ANN can be 
applied to refine the domain theory and to augment it with more complex decision 



208 VL1 A NN:  Transformation of Rules to Artificial Neural Networks 

regions of which it is capable. This integration of symbolic and connectionist 
knowledge representations holds the promise of combining the best features of each 
approach to construct computationally intelligent systems. 

This chapter thus addresses the issue of converting symbolic rules to an ANN 
to represent the same domain theory. The algorithm that is proposed, VLlANN, 
incorporates tunable fuzziness in the decision by adjusting the rule representation 
together with the representation of the input data (Cloete, 1996). 

The chapter is organized as follows. Section 6.2 discusses the rule syntax and de- 
scription of input data. Section 6.3 is devoted to the algorithm for rule translation 
and the representation of input data, and Section 6.4 contains an example. In Sec- 
tion 6.5 the algorithm is also briefly compared to related approaches to encode rules 
into a neural network. The method is summarized in Section 6.6 and suggestions 
for future research are given. 

6.2 Data Representation and Rule Syntax 

The variables (attributes) of a data set accepted by VL1ANN are of two basic 
types: continuous numeric values and nominal values. The continuous numeric 
values are real or integer valued (linearly ordered) variables, while the nominal 
attributes (e.g. a variable taking a string value such as green) include linearly 
ordered nominals (e.g. an attribute weight taking the string values light, m e d i u m  
and heavg) binary nominals (e.g. the boolean values false and true or any two-valued 
nominal attribute) and unordered nominal values. 

Syntax of the symbolic classification rules adhere to the conventions of VLI (The- 
ron and Cloete, 1996), Michalski’s multiple-valued extension to propositional logic 
(Michalski, 1975). The description below follows Haussler (1988) and describes the 
relevant subset of VLI using standard logic terminology (Haussler, 1988; The- 
ron and Cloete, 1996). Let Ai denote an attribute with domain Di and let ai 

denote any value in Di. Attributes are related to  values via atoms. Elementary 
atoms take the form CA, = ail for nominal attributes, e.g. [weight = light]. 
For linearly ordered attributes elementary atoms take the form [ A ,  # ail with 
# E {=,<,<,>,2} or Cai # Ai # bil with # E {<,<}, e.g. Cage < 101 and 
[20 < weight 5 1001. 

VL1 expressions are defined as follows. (1) An atom is an expression. (2) A 
conjunctive expression is the conjunction of one or more atoms. Adjacent atoms have 
an implicit A (and) between them. (3) A disjunctive expression is the disjunction of 
one or more conjunctions. (4) An expression that implies a concept is called a rule. 
A set of disjunctive rules can always be written as an equivalent set of production 
rules and vice versa. Therefore all disjunctive rules are given to  VLIANN in the 
form of production rules such as: I F  conjunction THEN concept description. 
The concept description following THEN in the production rule assigns one of its 
values to a nominal attribute Ai,  where Ai was designated as an output variable, 
e.g. I F  [autumn = no] [temp < 251 THEN Playoutside = +. 



6.3 The VL1 ANN Algorithm for Rule Representation 209 

6.3 The VL1 ANN Algorithm for Rule Representation 

The VLIANN algorithm for rule representation assumes that the neural network 
architecture into which the rules are mapped is a feedforward network, i.e. with- 
out recurrent connections, with differentiable activation functions. This network 
representation allows training by neural network learning met hods, such as back- 
propagation (Zurada, 1992)) at a later stage to refine the network’s decisions. The 
network typically has four layers (not counting the inputs at layer 0) and sigmoid 
activation functions for all units at layers 1 to 4, the output layer. Unit i at layer 
I takes its inputs from the n units connected to it from layer I - 1 with outputs 
xj and weights w j i .  The sigmoid function f(x) maps any real-valued input to a 
non-negative output in the range (0, l),  where f ( x i )  = 1/(1 + e-Sz”Z), and the net 
input xi to unit) i is xi = E,”=, wj iz j  + B i .  The parameter si  controls the slope 
of the sigmoid function. By setting it to an appropriately high value, say si > 5, 
the activation function approaches a threshold logic unit with outputs near 0 or 1. 
The parameter 19i serves as the bias for a unit. If the net input exceeds 0 the unit 
outputs a value closer to  1, otherwise a value closer to  0, since f is a monotonic 
increasing function with f ( 0 )  = 0.5. 

Since an ANN accepts only real valued inputs, all input data must be converted 
to real values. The basic idea underpinning VL1ANN is that  a neural network unit 
which approximates a threshold logic unit can divide an input variable’s values 
into two sets: those for which the unit outputs a value closer to  1 and those for 
which the unit outputs a value closer to 0. The response of the unit can be graded 
by adjusting tlhe activation function’s slope, while the bias value selects the input 
value projected onto the midpoint of the activation function’s output values. In 
this way one or more units can be programmed to implement any of the relational 
conditions (atoms) listed in Section 6.2. These conditions are implemented at layer 
1, i.e. the first hidden layer, of the ANN constructed by VL1ANN and will be 
referred to as “relational” units at the “relational” layer or level of the ANN. These 
relational tests create special surfaces in the input space, namely hyperplanes that 
are orthogonal to the axis of a tested attribute and parallel to all other axes. Thus 
this layer removes the restriction that inputs be represented as propositions. 

The condition parts of production rules are interpreted conjunctively; so all atoms 
of the same production rule are connected to a unit approximating a threshold logic 
AND function (Kohavi, 1978) at layer 2 of the ANN. This conjunctive interpretation 
of connected inputs creates decision regions that are all hyperrectangles. 

At layer 3 all AND units implementing production rules with identical conclusions 
are connected to a unit approximating a threshold logic OR function (Kohavi, 1978). 
The construction of layer 4 is discussed after each of these successive steps have 
been explained in more detail below. 

THE VLIANN ALGORITHM: 

1. Encode input variables to real (numeric) values. 

2. FOR each rule DO: 



21 0 VL1 ANN: Transformation of Rules to Artificial Neural Networks 

2.1 FOR each atom of the rule DO: 
2.1.1 Encode the atom as new relational units at  layer 1 connected to the 
input in layer 0. 

2.2 Connect all the relational units of the rule to a new AND unit in layer 2. 
3. Connect all the AND units representing rules with the same conclusion to a 
new OR unit in layer 3. 

4. FOR each output variable Attr not orthogonally encoded DO: 
4.1 Map all the OR units for Attr in layer 3 to a single new output unit in 
layer 4. 

In Step 1 continuous inputs are scaled to a specified range at the discretion of 
the user, while each nominal value is encoded as a real value. For input nominal 
attributes, the real values representing each nominal value are placed around 0, 
equally spaced unless the user specifies the mapping, and maintain the original 
order in the case of totally ordered nominal values, in such a way that no nominal 
input value is mapped to 0. This ensures that when the network is trained using 
backpropagation, the weight corresponding to each nominal value will be adjusted. 
For output nominal attributes, the nominal values are mapped similarly to real 
values within the output range of the activation functions in the output layer of 
the ANN. Mapping a nominal value to 0.5 is not allowed, since this value is used 
to indicate an unknown decision for the sigmoid activation function. 

Step 2.1.1: Rule representation is intertwined with the representation of the input 
data. Spacing of the real values and the strength of the response by each relational 
unit mutually influence one another. Consider the representation of the atom 
CX 5 41, X a continuous-valued attribute. Assume that the next larger observed 
value for X in the data set was 6 and that the user wants the relational unit for this 
rule to output at  least 0.9 when the condition is satisfied. VLlANN then computes 
a cut-point in the interval between these observed values to separate them. The bias 
of the unit determines this cut-point, which is set by default to the midpoint of the 
interval. The slope of the sigmoid function is computed (using its inverse function) 
to output the desired value when X = 4. All weights of relational units are set 
to either a positive or a negative constant C. For C = 1 this unit has a weight 
value of -1, slope value of 2.198 and bias value of 5. For the observed value 6 this 
unit will output approximately 0.1. The default placing of the cut-point, i.e. at  the 
midpoint or closer to the value specified in an atom, and the desired output of a unit 
are user-specified parameters. In this way a relational unit can produce a graded 
response, which can be further tuned by adjusting the scaling of a variable’s values 
to a specified range. For instance, scaling the range of the variable X to produce 
a larger sized interval between observed values, leads to a smaller slope value for 
the relational unit while still implementing the same atom. (A flatter slope for an 
activation function benefits subsequent backpropagation training.) 

For each of the relational operators (<, 5,  >, 2) one relational unit is added to 
the ANN. The operator > requires a cut-point to  the “right” of the value specified 



6.3 The VL1 ANN Algorithm for Rule Representation 21 1 

in an atom, but the unit’s weight is the positive constant C in order to output 
values close to 1 for all inputs greater than the cut-point. The operators 2 and 
< are currently treated similarly to the operators discussed above by placing a 
cut-point to  the “left” of the value specified in an atom. For the operator = two 
relational units are constructed which implement cut-points on both sides of the 
value. Atoms of the form Cai ## Ai ## bi3,  with # E {<, I}, are treated as the two 
atoms [ai # Ail and [A, ## b i l ,  conjunctively interpreted and connected to the 
same AND unit. 

Nominal attributes are treated like the continuous attributes, except that  a 
simplification is possible in two cases. For an atom [X = a], where a is mapped to  
the smallest real value representing the attribute’s values, only a single relational 
unit is needed. The same applies when a is mapped to the largest real value. Ordered 
nominal attributes are treated like continuous attributes. 

This type of representation chosen for inputs allows linear combinations of vari- 
ables to  be discovered and the cut-points between input values to  be adjusted by 
subsequent learning procedures. It also avoids the prior discretization of inputs typ- 
ically required by other approaches, and incorporates trainable/adjustable fuzziness 
into the representation. 

In Step 2.2 an AND unit is constructed by setting the bias of a unit with n inputs 
(each approximating 0 or 1) to a value between -n* w and -(n - 1) * w ,  with w the 
positive weight value on each of the incoming connections (Kohavi, 1978). Again the 
response of the unit can be graded by adjusting the slope of the activation function, 
by changing the magnitude of w ,  or by setting the bias to  a value -n * w * k with 
0 < k < 1. The last adjustment may allow the AND unit to fire when less than n 
units are activated or some inputs are not as highly activated as others. 

In Step 3 an OR unit computes the disjunction of all production rules with the 
same conclusion, again constructed in the usual way (Kohavi, 1978). The comments 
for softening an AND unit’s decision also applies. Such an OR unit represents an 
“orthogonal” encoding of an output attributes’ values, i.e. one output unit repre- 
senting the presence (output approximately 1) or absence (output approximately 
0) of each of the nominal attributes’ values. Recall that  a conclusion is specified 
as Attribute = value. Step 4.1 of VLlANN is not used for this type of encoding 
of nominal outputs. However, in the case that a single unit a t  layer 4 must output 
any of the real values corresponding to  a nominal value of the variable, Step 4.1 
constructs a unit to  compute such a mapping. 

Step 4.1: The unit’s bias is set to 0 and its slope to  the default value of 0.5. 
This more gradual slope allows a larger input range to project onto a small range 
of output values, thus allowing for variations in the inputs while still projecting 
the inputs close to the desired output value. All the units in layer 3 that assign a 
value to  this same output attribute are connected as inputs. Exactly one of these 
inputs takes a value close to 1, the rest a value close to 0. Then the real value to  be 
computed for each nominal value is mapped to a corresponding weight value using 
the inverse activat,ion function. For example, an OR unit a t  layer 3 which fires for 
the concept description Color = blue, blue mapped to  0.8, is connected to  the 
output unit with a weight of 2.773. 



21 2 VL1 ANN:  Transformation of Rules to Artificial Neural Networks 

Lastly, what happens when none of the production rules fire? In this situation 
each orthogonally encoded output unit outputs a value approximating 0, while 
each continuously encoded unit outputs a value approximating 0.5 (unknown 
classification). For this reason also, no nominal output value is represented by 0.5. 
VLlANN also has a post-processor which maps the network’s output values to the 
original symbolic data representation. 

In certain cases not all four layers of the network need to be constructed. It may 
occur, for instance, that for a particular decision only one production rule exists, 
thus obviating the need to construct a disjunctive (OR) unit for this decision. 
Similarly, an AND unit (conjunction) can be ommitted when a decision requires 
exactly one atom. The next section illustrates VLIANN with an example. 

6.4 Example 

Consider the following three illustrative rules suggested by BEXA when learning 
classification rules for the well-known data set: 

1. IF [petal-width 5 61 THEN iris-type = setosa 
2. IF [petal-length 5 491 AND [6 < petal-width 5 161 THEN 

iris-type = versicolor 
3. IF [petal-length > 491 AND [petal-width > 161 THEN 

iris-type = virginica 
The aim of the iris data set is to determine to which of three types an iris belongs 

based on its petal length and width, and sepal length and width. The data set 
contains four integer valued input attributes measured in milimeters (sepal-length, 
sepal-width, petal-length, petal-width) and the class attribute iris-type with possible 
values setosa, virginica and versicolor. The unpruned rules above use only two of 
the input at>tributes. petal-length varies from 10 to  69mm, while petal-width takes 
values from 1 to 25 with no values observed in the data between 6 and 10. 

The network constructed by VLlANN to encode the three rules above is shown 
in Figure 6.1. 

Firstly, the relational layer encodes each of the 6 tests in the rules above (the 
number of an atom corresponds to the number of the unit in the figure): 

1. petal-width 5 6 
2. petal-width 5 16 
3. petal-width > 6 
4. petal-length 5 49 
5. petal-length > 49 
6. petal-width > 16 
The value of the parameter si is given next to each unit, weight valcies are next 

to each link and the bias values are given on the links not connected to any lower 
layer unit. Only connetions dictated by the production rules above are included in 
the figure. Note that conditions 1 and 3 specify a bias value of 8 and si = 1.099. 
Because the values between 6 and 10 for petal-width has not been observed in the 



6.5 Related Work 21 3 

1 0.3 
iris type 

O A  

1.099 

/ 
-49.5 

petal-length petal-width 

Figure 6.1 Network constructed for three iris rules 

data set, VLIANN chooses the cut-point as the middle of the interval inbetween 
(by default) and adjusts the slope of the sigmoid transfer function accordingly. 
Similarly) the bias values of the other units and their si parameters are set to the 
midpoint between the observed integer values. Unit 1 is connected directly to the 
output unit because a single atom is adequate for the decision that the iris type is 
setosa. 

At the next layer the AND units form the conjunction of the input conditions. 
In this case an OR unit is not required as explained before) so these units are 
connected directly to the output unit. 

The nominal output values corresponding to  the possible values setosa, virginica 
and versicolor have been chosen as 0.3, 0.9 arid 0.65, respectively. The output unit 
has a bias value of 0. Its si value of 0.3 produces a ‘flatter’ sigmoid transfer function 
which reduces the effect of slightly activated inputs other than the actual decision 
to be output. 

6.5 Related Work 

The translational approach to constructing a knowledge-based neurocomputing sys- 
tem has been termed rule-based connectionist modeling (Fu, 1996) which produces 
rule-based connectionist networks (RBCN). Each rule has an antecedent (premise) 
consisting of one or more conditions and a consequent. In this approach the rules are 
first transformed into a set of equivalent rules with conjunctive conditions (propo- 
sitional variables) only and a single consequent, while the rules are interpreted 



VL1 ANN: Transformation of Rules to Artificial Neural Networks 

disjunctively. In the neural network configuration all the conjunctive conditions of 
a rule are linked to a conjunction unit and all rules (i.e. conjunction units) for 
the same concept are linked to a disjunction unit, where the firing of each such 
unit represents that concept. That is why the disjunction unit has also been called 
a concept unit, which can be an intermediate conclusion or an output unit. This 
leads to a two layer network, not counting the input layer. 

This approach is followed by both KBCNN (Knowledge-Based Conceptual Neural 
Network) (Fu, 1993) and the KBANN (Knowledge-Based Artificial Neural Network) 
algorithm (Towel1 and Shavlik, 1994). KBANN uses sigmoid activation functions 
where weights from a positive attribute and from a negative attribute are set to 
w and --w respectively. KBCNN also caters for certainty factor based activation 
functions with weight values bounded between -1 and 1. These systems accept 
rules in the form of propositional Horn clauses, while nominal inputs are translated 
to orthogonal input variables (i.e. one input unit for each nominal value of the 
variable) taking values in (0, 1} or {-1, 1} to yield a false/true interpretation. 

Although KBANN accepts rules in the form of propositions (variable free Horn 
clauses), it also caters for linearly ordered inputs (Towell and Shavlik, 1994). 
Nominal inputs are always translated to orthogonal variables, while linear inputs are 
translated to user-defined subranges. Each subrange is represented by a normalized 
input value with the midpoint of the subrange having the highest value. Ordered 
nominals are also orthogonally translated, except that each input unit is assigned a 
value which is scaled according to its distance from the given input value. These last 
two encodings of inputs enforce the use of several input units to represent a single 
input attribute, while the linear transformation also requires the a priori selection 
of subranges to which a variable should be mapped. 

The VL1 ANN algorithm follows the same general correspondence and rule-based 
semantics as these systems: Data attributes and input variables are mapped to  
input units, target concepts are mapped to output units, intermediate concepts are 
mapped to hidden units, and the domain rules determine how the attributes and 
concepts link. However, the VLl ANN algorithm caters for relational expressions as 
inputs instead of propositions only, thus inserting an extra pre-processing layer to 
create orthogonal decision boundaries in the input space. Nominal inputs may be 
mapped to numeric values in a specified range and “relational units” are used to 
define subranges, thus avoiding a restriction to an orthogonal encoding of inputs. 
Each relational unit (hidden unit in the first hidden layer) is connected to exactly 
one input unit, in the case that a relational unit is used. 

VLI ANN also extends the representation of outputs by catering for output 
variables which require a specific numeric value to be output instead of a false/true 
encoding only, i.e. output units are not restricted to an orthogonal representation. 

The most significant differences are thus that VLl ANN accepts relational condi- 
tions in a very natural syntax used by many machine learning programs, and that 
the translation of rules allow decisions to be made less crisp while also catering for 
outputs which are not orthogonally encoded as propositions. This representation 
allows linear combinations of variables to be discovered and the cut-points between 



6.6 Summary 21 5 

input values to be adjusted by subsequent learning procedures, while avoiding prior 
discretization of inputs. 

6.6 Summary 

This chapter presents an algorithm for the translation of symbolic classification 
rules into artificial neural networks. The syntax of the rules for which the algorithm 
caters is used by a wide variety of machine learning algorithms, thus allowing 
domain theories acquired by these programs to  be incorporated into an ANN. 
This approach overcomes an important limitation that input values be restricted 
to binary values as is typical for the representation of propositions; instead any 
real value is acceptable. In addition four ways of representing tunable fuzziness in 
a decision was proposed: (1) Adjust the bias value of relational units to  set the 
threshold between adjacent observed input values in the data set. (2) Adjust the 
slope of the sigrnoid activation function of a relational unit and the scaling of its 
input values to  cause a graded response by the unit. (3) Adjust the bias value of 
AND units so that a unit may fire with fewer inputs than given in the original rule. 
(4) Adjust the bias value of OR units so that a unit may fire at a lower threshold, 
i.e. an input may be close to  1 to cause the OR unit to fire, or more than one input 
being close to 1 can be viewed as additional evidence that the OR unit should fire. 

Acknowledgments 

The UCI Repository of Machine Learning Databases and Domain theories (ml- 
repository@ics.uci.edu) kindly supplied the iris data. 

~ 

References 

Clark, P. and Boswell, R. 1991. Rule induction with CN2: some recent improve- 
ments. In Machine Learning-European Working Session on  Learning, ed. Y. Ko- 
dratoff, pp. 151-163. Berlin: Springer-Verlag. 

Cloete, I. 1996. VLIANN: An algorithm for fusion of rules and artificial neural net- 
works. In Proceedings of the Workshop on  Foundations of Information/Decision 
Fusion with Applications to Engineering Problems, pp. 40-45, Washington, D. C. 

Fu, L. M. 1993. Knowledge-based connectionism for revising domain theories. IEEE 
Transactions on  Systems, Man  and Cybernetics, 23( 1):173-182. 

In IEEE 
International Conference on  Neural Networks, Washington, D.C. 

Fu, L. M. 1996. 

Haussler, D. 1988. Quantifying inductive bias: AI learning algorithms and Valiant’s 

Knowledge and neural heuristics: Tutorial lecture. 



21 6 VL1 ANN:  Transformation of Rules to Artificial Neural Networks 

learning framework. Artificial Intelligence, 36: 177-221. 

Book Company. 
Kohavi, Z. 1978. Switching and Finite Automata Theory. New York: McGraw Hill 

Michalski, R. S. 1975. Variable-valued logic and its applications to pattern recog- 
nition and machine learning. In Computer Science and Multiple-valued logic: 
Theory and applicutions, ed. D. C. Rine, pp. 506-534. North Holland. 

Quinlan, J. R. 1993. C4.5: Programs for  Machine Learning. San Mateo, California: 

Theron, H. and Cloete, I. 1996. BEXA: A covering algorithm for learning proposi- 

Towell, G. G. and Shavlik, J. W. 1994. Knowledge-based artificial neural networks. 

Morgan Kaufman Publishers. 

tional concept descriptions. Machine Learning, 24:5-40. 

Artificial Intelligence, 70: 119-165. 
Zurada, J. M. 1992. Introduction to Artificial Neural Systems. Boston: PWS. 



~ 

7 Integration of Heterogeneous Sources of 
Partial Domain Knowledge 

Pedro Romero, Zoran Obradovik and Justin Fletcher 

This  chapter explores the possibility of achieving better classification results using 
systems that integrate prior knowledge and learning f rom examples. This  integration 
is  first discussed as a transformation of either the original problem’s domain or 
its range. A domain transforming neural network model that starts f rom a single 
source of prior- knowledge and grows incrementally as needed is  introduced next. 
I n  this model tcwo integration techniques are explored: (1)  converting the expert 
system rule base into a corresponding neural network and then extending this 
network b y  constructive learning; and (2) embedding the pre-existing expert system 
directly into a constructive neural network learning system. Domain transforming 
and range transforming methods for integrating multiple prior-knowledge sources 
simultaneously are also considered. Various experiments carried out on  the two- 
spirals and a financial advising classification problem showed that prior knowledge 
can indeed help improve the results obtainable b y  learning f rom examples alone. 
W h e n  integrating multiple sources of prior knowledge, a competitive neural network 
based integration technique significantly outperformed the individual classifiers, a 
symbolic based method and a cooperative neural network based technique. 

7.1 Introduction 

Automatically classifying data into categories is an important problem in many 
real life domains. When data is two-dimensional, classification tasks can be simple 
for humans but still quite difficult for automatic systems (e.g. determining whether 
a point is inside or outside of nested spirals is a well known benchmark problem 
for classificatiori systems (Fahlmari and Lebiere, 1990)). Higher-dimensional data 
classification is typically challenging for humans too, and sometimes more accurate 
results are achievable by automatic classifiers (e.g. determining protein disorder 
from amino acid sequence (Romero et al., 1997)). 

There are two traditional ways for a computer system to acquire knowledge 
required to perform classification tasks. The knowledge based approach translates 



21 8 Integration of Heterogeneous Sources of Partial Domain Knowledge 

information obtained from human domain experts into a form that is interpretable 
by a computer system (Hayes-Roth et al., 1983). This knowledge base is the core 
of an expert sys tem,  which emulates human decision-making skills. The alternative 
approach, called machine learning, is an attempt to extract knowledge directly from 
data (Dietterich and Michalski, 1983). 

Each of these two approaches has its advantages and disadvantages. An expert 
system represents knowledge in symbolic form allowing relatively easy manipulation 
and incorporation of newly obtained knowledge. In addition, its classification 
engine may be readily interpreted by humans. A machine learning system is less 
dependent on human understanding of the phenomena and can, in principle, be 
applied to any domain with sufficient amount of available data. However, both 
approaches are based on strong modeling assumptions. Expert systems assume 
human understanding of the phenomena and availability of an expert capable of 
explaining domain knowledge to a computer programmer. The knowledge used to 
build an expert system is typically acquired from the expertise of many individuals 
and thus, it can be inconsistent and incomplete. Similarly, a data set used to 
build a machine learning system can be noisy, conflicting and sparse. Even if 
these problems are not present in a given data set, extrtacting complex nonlinear 
relationships directly from data through machine learning can still be a difficult 
nonlinear optimization task. 

Hybrid intelligent systems (Michalski and G. Tecuci, 1994) that integrate knowl- 
edge extraction from data and the use of existing alternative sources of domain 
specific knowledge have had considerable practical success (Drossu and Obradovik, 
1996; Fletcher and Obradovik, 1993; Towel1 et al., 1990). Typical systems of this 
type use trading rules, stochastic analysis, nonlinear dynamics, genetic algorithms, 
fuzzy logic or other approaches to complement limited training data information 
and create more accurate prediction systems. 

An inspection of recent literature indicates that the most popular approaches 
for integrating multiple learning components are: ( 1) combining expert modules 
through various averaging scenarios; and (2) selecting the most competent local 
expert for any given example. The combining approach can potentially be used to 
reduce the variance of an unstable predictor without increasing its bias (Breiman, 
1996). This is very attractive when applying neural network modeling in complex 
domains where these models are very likely to be unstable (Chan et al., 1996; 
Chenoweth and Obradovik, 1996; Shimshoni and Intrator, 1996). In the selection 
approach each expert module tends to learn only a subset of the training data, thus 
devoting itself to a sub-region of the input space (Jacobs et al., 1991). This showed 
quite promising results when forecasting a non-stationary time series (Weigend 
et al., 1995). 

In particular, current research has been directed towards systems in which neural 
network machine learning techniques are combined with expert systems in order to 
complement and enhance their capabilities (Kandel and G. Langholz, 1992; Medsker 
and Bailey, 1992). This combination has been carried out in several directions 
including: 



7.1 Introduction 21 9 

Transformational models. Here, one type of system is transformed into another, 
i.e. either an expert system is transformed into a neural network or vice versa (Gal- 
lant, 1988; Samad, 1988). Neural nets are transformed into expert systems whenever 
knowledge documentation and justification facilities are needed. Conversely, an ex- 
pert system can be transformed into a neural network when speed, adaptability 
and robustness are a priority. 

Fully-integrated models. Here several systems share data structures and knowl- 
edge representation. The most common variation of this model is the connectionist 
expert system, in which symbolic nodes are connected by weighted links (Gallant, 
1988). These systems are robust and have improved problem solving characteristics, 
but the complexity of the system makes it difficult to develop and maintain. 

Loosely-coupled models. This is an integrational model in which neural network 
and knowledge- based systems interact through shared data files. Examples include 
one system serving as a preprocessor, post-processor, co-processor or interface 
for the other (Benachenhou et al., 1990). These systems are easier to develop 
than more integrated models, allowing for the use of commercial software for 
both expert systems and neural networks, but at  the cost of slower operation, 
redundancy in computational capabilities, overlap in data input requirements and 
high communication cost. 

Tightly-coupled models. As in loosely-coupled models, this type of architecture 
uses independent neural net and expert systems. The difference is that here the 
interaction is by means of memory resident data structures, so communication and 
operation velocities are vastly improved. System development is not much more 
difficult than that for loosely-coupled systems, but redundancy is also an issue 
here (Gutknecht et al., 1991; Hanson and Brekke, 1988; Hendler and Dickens, 1991). 

The approaches just explained are used in this chapter to  integrate neural network 
learning from examples with sources of partial domain knowledge obtained from 
human symbolic reasoning (henceforth called experts). This integration has been 
carried out in two ways: 

Embedding transformed experts. This is a transformational approach in 
which the expert is converted into a neural network that serves as a starting 
point for learning from examples. 

Embedding experts directly. In this approach the experts are embedded with- 
out modifications in the hybrid classification system, which means that no knowl- 
edge of their internal mechanisms is required. Thus, in this case, the definition of 
an expert can be expanded to  include any system used to  encapsulate pre-existing 
knowledge: traditional expert systems, statistical prediction systems, nearest neigh- 
bor algorithms, inductive algorithms, computer programs, fuzzy logic, genetic al- 
gorithms, neural networks and the like. 



220 Integration of Heterogeneous Sources of Partial Domain Knowledge 

In addition, the hybrid systems discussed in this study are organized into: 

Single expert expansion systems. In this approach, all expert knowledge 
comes from a single source, which is further expanded through neural network 
learning. 

Multiple experts integration systems. Here multiple, possibly heterogeneous, 
experts are integrated into a hybrid classification system. 

The integration of partial domain knowledge sources can be viewed as a trans- 
forniation of either the problem domain or its range, as illustrated in Section 7.2. 
Section 7.3 describes three single expert expansion systems, two being transforma- 
tional, and one fully-integrated model that embeds an expert directly. Three multi- 
ple experts integration techniques that embed prior knowledge sources directly are 
presented in Section 7.4. Finally, Section 7.5 contains experimental comparisons of 
these models for two classification problems. 

7.2 Experts Integration: Domain or Range Transformation Dilemma 

A classification problem can be viewed as identification of an appropriate mapping 
from a given domain to a range of categories. For example, a classification problem 
that h k e s  a pattern composed of n real numbers as input and tries to  classify it as 
belonging to one of two classes, defined as “0” or ‘(1,” can be seen as a mapping: 

where Rn is the doniairi of the niappirig and (0, l )  represents its range. 
When integrating prior knowledge sources, the classification problem is hopefully 

simplified by transforming its corresponding mapping. This can be achieved by 
modifying either the problem domain or its range as discussed in this section. 

7.2.1 Domain Transformation 

When using the outputs of several experts as inputs to a new classifier (called 
a combiner.), the original input space is transformed to an entirely new one, its 
dimensionality being defined by the number of experts used and their output 
representation. 

For example, suppose E( experts are to be combined to  solve an n-input, rn-class 
classification probleni. Assuming that each expert uses m outputs, the combining 
classifier will have mh’ inputs, thus transforming the problem domain from n 
dimensions onto mh’ dimensions. Figure 7.1 shows schematically how this process 
works. 

When transforming the problem domain as explained, the hope is that  it will be 
easier to identify an appropriate mapping using the new problem domain. This can 
be the result of one or more of the following reasons: 



7.2 Experts Integration: Domain or Range Transformation Dilemma 221 

Figure 7.1 
mK-dimensional. 

Integrating m experts: domain transformation from n-dimensional to 

Reduced domain dimensionality. This results in models with less parameters, 
which, due to the curse of dimensionality, can be a significant advantage when 
designing a model from a limited data set (Bishop, 1995). 

Input preprocessing. The domain transformation can be regarded as a feature 
extraction process (Fukunaga, 1990). This can help eliminate the effect of irrelevant 
or noisy input variables. 

Simpler decision regions. Even if the original dimensionality is not significantly 
reduced through a transformation, classes in the new domain may be easier to 
separate due to more favorable clustering of the patterns. 

It is important to observe that information can be lost when transforming the 
domain, resulting in a poor classifier. This is especially true for experts with 
low resolution output representations, e.g. one bit representation for each output 
dimension. This is illustrated in Figure 7.2, where two experts, whose outputs are 
one-bit numbers, are to be combined. In that figure, class 0 and class 1 patterns 
are represented as circles and crosses respectively. The domain is partitioned into 
regions according to the experts’ outputs, shown as pairs ( a , b )  for each region. 
Notice that each pair ( a , b )  represents an input vector for the combiner. In this 
example, the transformed domain is not faithful in any of the regions, meaning 
that for each region there are examples that belong to different classes and that are 
mapped to the same input vector for the combiner. This information loss makes it 
impossible for a combiner to resolve the problem completely. 



222 Integration of Heterogeneous Sources of Partial Domain Knowledge 

Figure 7.2 Decision regions for two experts with binary outputs. 

7.2.2 Range Transformation 

In this case, a classifier is trained to integrate the various experts by partitioning 
the domain and assigning disjoint regions to individual experts. Here, the original 
problem domain does not change, but the integrating classifier has a different class 
range defined by the number of experts. 

Suppose that K experts are to be integrated in this manner. The problem is 
reduced to assigning each expert exclusively to its “region of expertise,” that is, 
a sub-domain where a given expert’s classification performance is superior to that 
of the other experts. So, the original m-class problem is transformed into a new 
problem with f ( K )  classes. 

For K = 2, the classifier could be trained to recognize the following possibilities: 

Class 0 
Class 1 
Class 2 
Class 3 

None of the local experts classifies this example correctly; 
Expert 1 alone classifies the example correctly; 
Expert 2 alone classifies the example correctly; 
Both local experts classify the example correctly. 

Figure 7.3(a) shows a schematic view of the input space of a 2-class problem and 
a possible range transformation into a 4-class problem according to the method 
just explained for K = 2 experts. Notice that in this case the number of classes is 
increased, but this is done anticipating that the new decision regions are simpler in 
the transformed problem than in the original one. Whether or not this will be the 
case depends on the characteristics of the problem and the quality of the experts 
used. 

This transformation leads to f ( K )  = 2 K ,  so the number of classes grows 
exponentially with the number of experts used. A better alternative for this example 
would be to use only 2 classes: 



‘7.2 Experts Integration: Domain or Range Transformation Dilemma 223 

Figure 7.3 (a) Hypothetical range transformation for the integration of two 
experts in a 2-class problem. (b) Two of the possible distributions of the input 
space between the two experts. 

Class 1 
Class 2 Use expert 2. 

Use expert 1 to classify the example; 

However, the new problem here is that of assigning the patterns for which both 
experts are correct (or incorrect). Figure 7.3(b) depicts two of the possible ways 
to distribute the input space between the two experts. Notice that any decision 
boundary lying within the region where both experts are correct (class 3 on the 
right hand side of Figure 7.3(a)) is acceptable for this distribution: Figure 7.3(b) 
just shows the extreme cases, that is, assigning the whole “class 3” region to either 
expert. Similarly, the “class 0” region could have been assigned to expert 2 or even 
distributed randomly between both experts. In any event, the decision regions thus 
created would have been a lot more complex. In a problem with more dimensions 
or experts, this assignment task gets even more complicated. 

Hybrid systems relying on range transformation can provide various advantages 
over original classifiers, specifically the following: 

Simpler decision regions. As in the domain transformation case, it is antici- 
pated that the transformed problem will have simpler decision regions than the 
original one, thus being easier to  solve and requiring a less complex classifier to do 



224 Integration of Heterogeneous Sources of Partial Domain Knowledge 

Figure 7.4 Range transformation for the problem of Figure 7.2. 

the job. 

Restricted domain for local training. Assigning a portion of the domain to a 
specific classifier allows local training of machine learning based experts on the 
remaining region or regions. Examples of this approach are studied in Sections 7.3 
and 7.4. 

Insensibility to output representation. Range transformation works in the 
same way regardless of the experts’ output representation. Indeed, the technique 
can even work with experts whose output representations differ from one another. 
Figure 7.4 shows the same hypothetical problem shown in Figure 7.2, but this time 
the range transformation produces two distinct and easily separable regions corre- 
sponding to the “areas of expertise” of each expert. Remember that this problem 
was impossible to solve appropriately when transforming the domain. 

7.3 Incremental Single Expert Expansion 

In (Towel1 et al., 1990), Towel, Shavlik and Noordwier propose a knowledge-based 
artificial neural network approach called KBANN,  that generates neural networks 
from hierarchically-structured rules. In these neural networks units correspond to  
rules, while connection weights and thresholds correspond to rule dependencies. 
Each layer is then fully connected with the weights of the new links set to small 
random values. This type of transformational approach is also addressed and 
extended in Chapter 6, and is demonstrated using a financial advising example in 
the results section of this chapter. Finally, the initial knowledge is refined by neural 
network training from examples using the backpropagation algorithm (Werbos, 
1995). 

The hyperplane determination from examples algorithm (HDE) proposed by 
Fletcher and Obradovic (Fletcher and ObradoviC, 1995) belongs to  the class of 
constructive algorithms. These algorithms, in addition to optimizing the model’s 
parameter values, also search for an appropriate neural network topology by growing 
hidden units in a greedy optimization manner. In contrast to the well known 



7.3 Incremental Single Expert Expansion 225 

cascade-correlation technique (Fahlman and Lebiere, 1990)’ which grows neurons 
in depth, HDE is used to construct a 2-layer neural network starting from a single 
hidden unit and adding new hidden units as necessary. 

This algorithm can be used to build a hybrid classification system by using 
an expert to build the initial neural network and then applying HDE to add 
new hidden units to improve classification performance. Similar to the KBANN 
technique, the expert) can be converted into a rule base and then transformed into 
a neural network (Fletcher and Obradovik, 1993). Alternatively, the source of prior 
knowledge can be used in a “black box” fashion by treating it as a single hidden unit 
(called an expert un i t ) .  A more detailed explanation of this domain transforming 
hybrid model is provided in the following subsections. 

7.3.1 The HDE Algorithm 

An interesting iterative construction of hidden units in a feed-forward neural 
network with a single hidden layer was proposed by Baum (Baum, 1991; Baum and 
Lang, 1991). His algorithm constructs a two layer neural network given examples 
and the ability to query an oracle for the classification of specific points within the 
problem domain. The algorithm is very efficient, but in practice the required oracle 
may either be too expensive or not available. 

Inspired by Baum’s work on learning from queries, our HDE algorithm constructs 
the hidden units in a feedforward neural network from examples alone (Fletcher and 
ObradoviC, 1995). Construction of the HDE neural network is performed in three 
phases: 

1. Determination of points on the decision boundary; 

2. Generation of a pool of candidate hyperplanes from the obtained points; and 

3. Selection of the final separating hyperplanes from the candidate pool and cre- 
ation of hidden units from selected hyperplanes. 

These phases will be described using as an example the construction of a neural 
network approximating the ideal decision boundary shown in Figure 7.5( a). For 
simplicity of explanation, we will assume that the examples from the training set 
T shown in the figure belong to two classes Tl and T2. 

For all pairs of training examples belonging to different classes, a search for 
corresponding points on the boundary separating those examples is performed. 
Approximations to points on the decision boundary are determined by repeatedly 
interpolating between example points of the classes Tl and T2. The interpolation 
begins by selecting two examples m E Tl, n E T2. The unknown region between m 
and n is defined as the circle centered at  the midpoint of m and n with a diameter 
of the distance between rn and n, as shown in Figure 7.5(b). The unknown region 
between m and n is then searched for the training example nearest to the midpoint 
of m and n. If such an example q is found and q E Tl (T2) the search is then 
repeated in the smaller unknown region between q and n (m).  The next unknown 



226 Integration of Heterogeneous Sources of Partial Domain Knowledge 

Figure 7.5 HDE algorithm example: (a) ideal decision region; (b) initial unknown 
region; ( c )  next unknown region. 
((b) and ( c )  @ Dynamic Publishers, Inc., used with permission, see Copyright Acknowl- 
edgments) 

region is shown in Figure 7.5(c). 
If no point from T is found in the current unknown region (Figure 7.6(a)), 

its midpoint is the closest approximation to a point on the decision boundary 
(Figure 7.6(b)). If the radius of this known region is within a specified tolerance, the 
boundary point is stored provided it has not been previously determined. Boundary 
points continue to be generated until a pre-determined number have been found or 
a number of data points have been examined without finding a new point on a 
decision boundary. The resultant boundary points are shown in Figure 7.6(c). 

Once the points on the decision boundary have been found, their k-1 nearest 
boundary points are determined. As previously, k is the domain dimensionality. A 
pool of hyperplanes is then determined through solution of the equation system 
defined by each set of the k boundary points. Figure 7.7(a) shows such a candidate 
pool with their associated boundary points. 

The first hidden unit is created from the candidate hyperplane which best clas- 
sifies the training data. This hyperplane is then removed from the candidate list. 
Each remaining hidden unit is created by evaluation of the remaining candidate 
hyperplanes in conjunction with the previously created hidden units. This is accom- 
plished by creating a hidden unit and iteratively setting the input layer connection 
weights to the corresponding equation of each of the candidate hyperplanes. The 
output layer weights for a candidate for the next intermediate network are then 
determined by learning from the training examples using the ratcheted pocket al- 
gorithm (Gallant, 1990). This procedure continues until no candidate hyperplane 
results in a significant improvement in classification on the training set. 

A final selection of hidden layer hyperplanes is shown in Figure 7.7(b) with the 
resultant decision boundary depicted in Figure 7.7(c). 



7.3 Incremental Single Expert Expansion 227 

Figure 7.6 HDE algorithm example: (a) last unknown region; (b) a point on the 
decision boundary; ( c )  more points on the decision boundary. 
( ( c )  @ Dynamic Publishers, Inc., used with permission, see Copyright Acknowledgments) 

Figure 7.7 HDE algorithm example: (a) candidate hyperplanes; (b) selected 
hyperplanes; ( c )  resultant decision boundary. 
(0 Dynamic Publishers, Inc., used with permission, see Copyright Acknowledgments) 



228 Integration of Heterogeneous Sources of Partial Domain Knowledge 

Figure 7.8 Direct integration of an expert into HDE construction. 

Figure 7.9 
boundary; (b) next decision boundary; ( c )  final decision boundary. 

Direct expert integration example: (a) first modification of the decision 

7.3.2 Embedding of Transformed Prior Knowledge 

Here, a symbolic expert is transformed into a neural network as in the KBANN 
method. However, in a neural network obtained from the original rule base, the 
KBANN stage in which the layers are fully connected is omitted. Instead, the HDE 
algorithm is used to add neurons to the last layer of the initial neural network. The 
output weights of the starting network are modified after each new hidden unit is 
added through HDE construction. 

The obtained hybrid system is a transformational model in which a symbolic rule 
base is required to build the original neural network using the KBANN technique. 
This means that in this case it is not possible to use an arbitrary type of expert 
since the source of prior knowledge has to be a known AND/OR structured rule 
base. 



7.4 Multiple Experts Integration 229 

7.3.3 Direct Integration of Prior Knowledge 

In this approach, no transformation of the expert system is required. Instead, a 
hybrid architecture is constructed with the expert system directly embedded into 
the neural network as shown in Figure 7.8. 

The three-phase process of the HDE algorithm is followed with certain small 
exceptions. An initial network consisting of the input layer, a single hidden unit 
and an output unit is created. The hidden unit is designated as an expert unit, 
which, instead of computing the usual activation function, calls the expert system 
to determine the unit’s output. The expert unit, then, acts as the initial hidden 
unit, contributing with its decision boundary, such as the simple one shown in 
Figure 7.9(a). 

As before, a set of candidate hyperplanes is built, and they are tested as new 
hidden units in conjunction with the original one (the expert unit) in order to create 
an intermediate network. The first hyperplane added in this example is shown in 
Figure 7.9(b). 

Any remaining hidden units are then created by evaluating each of the remaining 
candidate hyperplanes with the intermediate hybrid network. This process continues 
until either the candidate pool is exhausted or 110 significant improvement is gained 
by integrating any candidate hyperplane. The final output layer weights are again 
determined through the use of the pocket algorithm. A final decision boundary is 
shown in Figure 7.9(c). 

In contrast to this simple example, an expert can contribute with a more complex 
decision boundary that helps reduce the number of hidden units needed in the 
integrated system as compared to that of a simple neural network constructed 
similarly. This process has the same effect as an input space reduction through 
range transformation as explained in Section 7.2.2, that is, the generation of new 
hidden units is carried out only in the regions of the input space where classification 
based on prior knowledge is unsatisfactory, effectively reducing the input space to 
be solved. On the other hand, the hidden units act as experts, producing a domain- 
transformed problem for the output layer to solve. 

This classifier is an example of a fully integrated hybrid system with direct expert 
embedding. Since the expert is not modified in any way, any kind of classifier can 
be used as an expert neuron. 

7.4 Multiple Experts Integration 

Three techniques designed to integrate several sources of prior knowledge 
discussed in this section. 

are 



230 Integration of Heterogeneous Sources of Partial Domain Knowledge 

7.4.1 Cooperative Combination of Heterogeneous Experts 

The domain transformation through cooperative combination of multiple experts 
has been successfully applied to a number of real-life classification problems, e.g. 
protein structure prediction (Zhang et al., 1992). 

In this chapter, a feedforward neural network is used as a combiner for K local 
experts as shown in Figure 7.10. Here, each example for the combiner training 
process is constructed from an input vector x and a desired response vector y*. 
First, a vector z = [yly2 . . . y ~ ]  is assembled using the output vectors y1, y2,. . . , 
y~ obtained from the K experts when presented with the input vector x. Second, 
vector z is fed to the combining neural network, which finally produces the output 
vector y. 

The combining module is trained by means of the backpropagation learning 
algorithm (Werbos, 1995), using the z vectors as inputs, and the desired response 
vectors (y*) as targets. Once the combiner is trained, the whole system can be 
used, as shown in Figure 7.10, to classify new patterns. 

7.4.2 Symbolic Integration Using Decision Trees 

This technique, considered in (Romero and Obradovik, 1995), trains a decision tree 
to select among the K local experts to be integrated. Because there is no simple 
way to decide how to assign the patterns for which none, all or several experts 
make a correct classification, the decision tree has to learn a 2K-class problem. 
This corresponds to a range transformation, as explained in Section 7.2.  

Figure 7.10 Neural network based cooperative combination. 



7.4 Multiple Experts Integration 

Classifier 

Expert 

231 

input output (class) 
vector vector 

X Y 

Figure 7.11 Decision tree symbolic integration. 

Table 7.1 Range transformation through decision tree integration. 

I Decision tree 1 x I Z I 

Figure 7.11 shows an implementation of the proposed system. Again, each 
training pattern consists of an input vector x and a desired response vector y*. 
Each local expert outputs a response y L  which is fed to  a selection routine. This 
class information is used for the decision tree generation. 

The selection routine compares the local experts’ outputs (y,) to  the desired 
response y*. Then, it assigns the input x to a desired class z*. Thus, the decision 
tree is generated from modified patterns, as illustrated in Table 7.1. 

After the tree is generated, the system works as follows: The input vector x 
is fed to the decision tree and to  all local experts. The decision tree produces a 
response 2 and each expert i outputs a response yyz. All these responses are given 
to the selection routine, which, based on the value of 2 ,  selects one of the y2’s. The 
selected value is then output as the system’s response. 

When all experts are wrong, the system’s output can be generated randomly or 
inferred from the data. For example, when solving a binary classification (2-class) 
problem using 2 experts that are both incorrect on a given example, the system has 
to output the opposite class from that selected by both experts. 

The construction of the decision tree can be carried out using various decision tree 
generation methods. In this study, GID3” (Fayyad. 1994) was used. This technique 



232 Integration of Heterogeneous Sources of Partial Domain Knowledge 

Figure 7.12 Competitive neural network based integration. 

groups together irrelevant attribute values before generating the tree using the ID3 
algorithm (Quinlan, 1986). The classification problem addressed in this paper has 
real valued attributes which have to be discretized before using GID3*. This is 
achieved by using a multiple-interval discretization technique proposed in (Fayyad 
and Irani: 1993). The common approach is to  discretize the attributes at  each 
node of the decision tree. For the problem studied here, we found that a single 
discretizat,ion step performed on each input variable before tree generation always 
achieved better generalization, and so the results reported here were obtained using 
the latter technique. 

7.4.3 Competitive Integration of Heterogeneous Experts 

The competitive integration of heterogeneous experts, proposed in (Romero and 
Obradovik, 1995), is an extension of Jacobs, Jordan, Nowlan and Hinton’s mixture 
of local experts architecture (Jacobs et al., 1991) which uses a gating network to  
integrate the responses of all local experts, selecting the most competent local expert 
for any given example (see Figure 7.12). 

In the original architecture from (Jacobs et al., 1991) all K local experts are 
backpropagat ion neural networks. A supervised learning process is carried out using 
a set of training examples, each consisting of an input vector x and a desired 
response vector y*. In the basic model, the input vector x is applied to  both the 
local expert networks and the gating network. The gating network used in this 
study is a one-layer feedforward neural network whose output units use a softmax 



7.4 Multiple Experts Integration 

activation function 

233 

where s, is the weighted iripixt slim of the i th  output unit. This activation function 
ensures that tlie system’s output y = C L X I  gLyL corresponds to a weighted average 
of the individual expert’s outputs y1,. . . , y ~ .  It is interesting to notice that 
the softmax function is a continuous (differentiable) version of the “winner take 
all” selection criteria, suitable for use in a gradient descent teclinique such as 
backpropagation. 

K 

All experts use a special error function 

Ei Ei 
- & IIY*-Y, 1 1 2  E = -1nL = -ln li  = -1n g ie  7 

i= 1 / = I  

where lriL represents the log likelihood of generating a response 
0; is a scaling term. The surriniatiori term is called I ,  for clarity 
system is trained to minimize -1nL (rmxiniize tlie log likelihood), 
competitive learning process by training only the most competent 

vector y*. arid 
purposes. The 
which allows a 
local expert (s) 

on a given example. This is best iiri(Ierstooc1 when exaiiiiiiing tlie last hidden layer 
weight update term for the it11 expert network: 

where wJk is the weight of the connection between hidden layer unit tk arid output 
unit j ,  rl is the learriiiig rate, o k  is the output of liitldcii unit I; ,  arid 6,, ( 5 1 ~ )  represents 
the back-propagated error for output unit j of expert I ( d J 7 ) ,  which is a function of 
.9%. It can be sc’eri that the i th expert network weight change is dependent ori 9,. so 
only the networks selected for a given example (those with g, greater than 0) will 
have their weights updated, i.e. will “learn” that example. 

The weights’ update for the gating network is given by 

where ui represents the weight vector associated to output unit I ,  arid h i  = 2. In a 
statistical sense, the 92’s can be regarded as prior- probahilities of selecting the i th  
expert, while the hi’s represent posterior pro1)abilities of expert i generating the 
desired output vector. Thus, as the gating network learns, the prior probabilities of 
selecting an expert move towards the posterior probability of that expert generat,irig 
the desired response. 

In an extended model, the gating network can receive an additional input x‘ either 
in conjunction with, or instead of tlie expert networks’ input x. Using an additioiial 
input for the gat,irrg network coiild be useful as a “hint,” on the correct distribution 
of experts. For example, the gatirig network might work better if provided with t,lie 
sex of the speaker iri a vowel recognition problem (Nowlari and Hinton, 1991). 

In the competitive integration systerri used in this chapter we assume that tlie 



234 Integration of Heterogeneous Sources of Partial Domain Knowledge 

local experts need not only be neural networks, but can also be various sources of 
prior knowledge (Romero and Obradovik, 1995). We will also assume that only the 
gating network and any neural network components do the learning as explained 
above, while the other expert components are fixed and can only be used to respond 
to the input patterns. 

7.5 Results 

The systems discussed in previous sections are evaluated in the context of two quite 
different benchmark problems. The first problem has a 2-dimensional domain, but 
it requires generation of an extremely complex decision region, whereas the second 
one is six-dimensional, but it can be solved by using a classifier with a simpler 
decision region. Classification results of various hybrid systems applied to these 
two problems are summarized in this section. 

Some common parameters have been defined in order to standardize comparisons. 
For the HDE-based approaches’ default configuration, the maximum number of 
points on the decision boundary is set to ten times the dimensionality of the 
input space, or stopped if one thousand example pairs are examined without 
determining a new boundary point. Gallant’s parameter recommendations for the 
pocket algorithm, used for determination of the final output layer weights, are 
followed (ten thousand initial iterations, increased by fifty percent if the pocket 
is updated in the final eighty percent of the iterations). The learning rate for 
the pocket algorithm is standardized at  30%, and no additional hyperplanes are 
selected if the overall classification improvement is less than 0.5%. The gating 
neural networks used on the competitive integration experiments are all single 
layer networks, i.e. with no hidden units. Gating networks can in principle be multi- 
layered, but the principal idea was to show how problem transformation can simplify 
a classification mapping so that a basic classifier is able to achieve good integration. 

7.5.1 The Two-Spirals Problem 

The two-spirals problem was proposed by A. Wieland of MITRE Corporation as a 
task constructed to test the ability of neural networks to deal with complex decision 
regions. This well known benchmark (Fahlman and Lebiere, 1990) differs from many 
others by testing only the memorization ability, rather than the ability to generalize 
over the problem domain. The input space consists of two dimensional data points 
arranged into two spirals on the x-y plane. This is a 2-class problem: all points on 
a given spiral are of one class, while the points on the other spiral belong to the 
opposite class, as shown in Figure 7.13. 



7.5 Results 

Experts 

Expert 0 

235 

Distance metric Success 
rate 

50.00% dist = Jm 

O O  
0 

I . , . : . : . : . : . ,  
. . .  : .  . . : , . . : .  

0 
Class 0 

0 
Class 1 

Figure 7.13 The two-spirals problem. 

Table 7.2 Distance metrics for the two-spirals experts used in this work. 

dist = J ( x  + 0.5)2 + (y + 0.5)2 



236 Integration of Heterogeneous Sources of Partial Domain Knowledge 

Figure 7.14 Two-spirals: decision regions for expert system “0” from Table 7.2. 

7.5.1 .l Sources of Partial Domain Knowledge 

Both the incremental construction and the competitive integration approaches were 
applied to this problem in order to illustrate the effects of using sources of partial 
domain knowledge to construct improved classifiers. To simulate partial domain 
knowledge, it is assumed that a human expert is under the impression that the 
class of a given point depends on its polar radius, that is, on its distance to the 
origin. Using this assumption, several experts were developed. Based on a distance 
metric, the experts classify a given data point as follows: 

{ if dist mod 2 < 1 
Class = 

otherwise 

Each of the various experts used in this chapter employs a different distance 
metric dist, as defined in Table 7.2, where z and y refer to the pattern’s coordinates 
in the 2-dimensional input space. As an example, Figure 7.14 shows the decision 
regions for Expert 0 from Table 7.2. Although the global classification rate for this 
expert is only SO%, it actually contains information. In fact, this expert correctly 
classifies points lying above the z axis (horizontal line in Figure 7.14). Similarly, 
for experts 1, 2 and 3 it is also possible to identify regions of the input space where 
they are reasonably good classifiers. 

7.5.1.2 Incremental Model Construction 

The results summarized in Table 7.3 and the corresponding decision boundary 
shown in Figure 7.15(a) were obtained by the HDE algorithm using the default 
learning parameters. This may be viewed as rather dismal results especially if 



7.5 Results 237 

compared to cascade-correlation, which reports 100% classification using between 12 
and 19 units (Fahlman and Lebiere, 1990). However, these results may be somewhat 
improved if three additional steps are taken. First, the number of decision boundary 
points is not limited to ten times the problem dimensionality but instead continue 
to be generated until one thousand pairs are examined without generating a new 
boundary point. This results in a significantly larger candidate hyperplane pool 
(Figure 7.15(b)). Second, the hyperplane selection phase is eliminated as a hidden 
unit is constructed for each candidate hyperplane. Finally, the initial number of 
iterations of the pocket algorithm during final output layer weight training is 
increased from ten thousand to twenty-five thousand. Table 7.4 shows the new 
results with a representative decision boundary shown in Figure 7.15(c). 

While this results in near-perfect classification (one of the ten experiments re- 
sulted in 98.45% accuracy), the algorithm generated a very large network architec- 
ture, which is not likely to generalize well on new data. A preferred approach would 
be to integrate an existing knowledge base in order to reduce the complexity of the 
classifier. 

As shown in Table 7.2, Expert 0 has a success rate of 50%. If we embed this expert, 
hyperplanes are selected in such a fashion as to take advantage of the areas where 
the expert successfully classifies the input space (the region above the horizontal 
line on Figure 14). Table 7.5 shows an improvement in classification ability of over 
ten percent when integrating Expert 0 as compared to the original HDE algorithm 
(Table 7.3). The default learning parameters were used in both cases. 

A number of items are made apparent by this benchmark. The basic approaches 
to determining decision boundary points and constructing the candidate hyperplane 
pool appear to be appropriate, but the proper number of decision boundary points 
will vary with the problem. It is also apparent that process parameters may need 
to be adjusted for each individual problem. However, an important point made by 
this benchmark is that the integration of two techniques which do not perform well 

Figure 7.15 HDE algorithm application on the two-spirals problem: (a) decision 
boundary using default learning parameters; (b) candidate pool of decision bound- 
aries; ( c )  final decision boundary. 



238 

Boundary Points 
Candidate Hyperplanes 
Hidden Units 
Accuracy 

Integration of Heterogeneous Sources of Partial Domain Knowledge 

Table 7.3 Two-spirals: default HDE network construction. 

20 20 20 
15.7 18 18 
4.3 1 7 

61.49 56.19 65.98 

Table 7.1 

Boundary Points 
Candidate Hyperplanes 
Hidden Units 

I I Average I Min. I Max. I 

Average Min. Max. 

159.6 157 163 
152.1 150 156 

152 152 152 

_ _ _ _ _ ~  ~ 

Average Min. Max. 

Boundary Points 20 20 20 
Candidate Hyperplanes 15.7 13 18 

Two-spirals: modified HDE network construction. 

I Accuracy I 99.84 I 98.45 I 100.0 I 

Table 7.5 Two-spirals: Expert 0 + default HDE hybrid network construction. 

I Hidden Units I 3 .51  3 1  6 1  
I Accuracy I 74.43 I 68.56 I 76.29 I 

independently may result in improved classification when combined into a hybrid 
system. 

7.5.1.3 Multiple Experts Integration 

The experts shown in Table 7.2 can be combined in order to obtain a better 
classifier. Due to  the fact that these experts have single one-bit outputs, this 
example is not suitable for domain transformation approaches as explained in 
Section 7.2. (Figure 7.2). Indeed, the very nature of the decision regions generated 
by these experts (see Figure 7.14) guarantees that different patterns from each of 
the classes will get transformed into identical input vectors for the combiner. 

On the other hand, range transformation approaches can work very well on this 
problem. Figure 7.16, corresponding to the integration of Expert 0 and Expert 2, 
shows graphically how the use of local experts can simplify the decision regions in 
the input space. As explained in Section 7.2, the integration of two local experts 
can result in the input space being partitioned in up to four different decision 
regions, shown in the left picture of Figure 7.16. These regions correspond to  the 



7.5 Results 239 

Figure 7.16 
4-class decision region; (right) one of the possible experts’ assignment. 

Integration of experts 0 and 2 for the two-spirals problem: (left) 

Table 7.6 
nations. 

Two-spirals problem: Success rates for local experts and their combi- 

66.49% 66.49% 
I 0+2 I 76.80% I 76.80% I 
I 0+3 I 100.00% I 100.00% 

ones shown in Figure 7.3(a), that is: (0) data points misclassified by both experts; 
(1) data points correctly classified only by the first expert; (2) data points correctly 
classified only by the second expert; and (3) data points correctly classified by both 
experts. The right hand side of Figure 7.16 shows one possible domain partitioning 
between the two experts in the manner illustrated in Figure 7.3(b). 

The competitive integration technique for multiple experts integration was tested 
on this problem. The experiments summarized in Table 7.6 were performed by 
integrating Expert 0 with one of the other experts shown in Table 7.14. The upper 
bounds for the success rate are measured as the maximum accuracy obtainable by 
combining experts perfectly, that is, always selecting the best expert for the job. 
The difference from 100% corresponds to the examples that neither expert classified 
correctly. As can be seen in the table, the competitive integration system always 
achieved the maximum possible success rate, which means that the system always 
performed an optimal integration. Figure 7.17 depicts the decision region found 
by the gating network for the integration of experts 0+2, which can be compared 
to that shown on the right hand side of Figure 7.16. Notice that both solutions 



Integration of Heterogeneous Sources of Partial Domain Knowledge 

Figure 7.17 
and 2 shown in Figure 7.16. 

Gating network experts’ assignment for the integration of experts 0 

are equally effective for integrating these experts, since they keep the areas where 
only one of the experts is correct on opposite sides of the decision boundary, while 
distributing the regions where both experts perform identically. 

7.5.2 A Financial Advising Problem 

This problem is a modified version of the simple financial advisor from (Luger 
and Stubblefield, 1989). The task is to  advise whether an individual should invest 
capital in additional savings or in the stock market. Although the rule based model 
shown in Table 7.7 is extremely simplified, it illustrates issues involved in realistic 
financial advising. 

The system’s input consists of six real variables, shown in italics in Table 7.7: 
annual income, if the income source is steady, current assets, current savings, 
annual debt payments and the number of dependents. The output variable, in- 
vest -stocks, can have two possible values, corresponding to  advising “yes” or “no.” 
The AND/OR graph corresponding to the rule base from Table 7.7 is shown in Fig- 
ure 7.18. 

7.5.2.1 Sources of Partial Domain Knowledge 

Pruned versions (i.e. with one or more rules missing) of the rule-base were used 
to create imperfect local expert systems with diverse performances, which were 
used as models of real-life, rule- based financial advising systems developed using 
incomplete knowledge. The experts used to  test the constructive integration ap- 
proach are shown in Table 7.8. This table identifies each expert by its pruning 
point. As an example, the elimination of the savings-ok rule and its antecedents 



7.5 Results 

Label 

(1) 

(2) 

Table 7.7 Financial advisor rule base. 

Rule 

if (savings-ok and 
income-ok) 

then investstocks 

if dependentsavings-ok 
then savings-ok 

(4) 

(5) 

if assetshigh I ( 3 )  I 
if (dependent -income-ok 

and earnings-steady ) 
then income-ok 

if debt-low 
then income-ok 

I I then savings-ok 

(6) 

( 7 )  

if (savings 2 dependents x 5000) 

if (income 2 25000 + 
4000x dependents ) 

then dependentsavings-ok 

then dependent income-ok 

(9) 
I (8) I 

if (annual-debt < income x 0.30) 

then debt-low 

if (assets 2 income x 10) 
then assets-high 



Integration of Heterogeneous Sources of Partial Domain Knowledge 

debt-low earnings-steady dependent-income-ok 

income-ok savings-ok 

invest-stocks 

Figure 7.18 Financial advisor AND/OR graph. 

dependent-savings-ok and assets-high is indicated by a prior knowledge pruning 
point of savings-ok. The expert system rule base of Table 7.7 is used to generate 
example data. 

The expert systems shown in Table 7.9 were used to test the multiple experts 
integration approaches. The pruned rules for each expert are designated with rule 
numbers corresponding to  those used in Table 7.7. A fixed, previously trained neural 
network, named “NN” was also used as a local expert. The output representations 
for both symbolic and neural experts were treated as real numbers in the range [0,1]. 
Notice that these experts can be separated into three classes: pessimistic, optimistic 
and mixed. A pessimistic expert’s errors are always false negative predictions, that 
is, errors in which the output is 0 (recommending to  stay out of stocks) when it 
should be 1 (recommending to invest). On the other hand, an optimistic expert’s 
errors are all false positive predictions (it outputs 1 when it should say 0). A mixed 
expert makes both kinds of errors. 

7.5.2.2 Incremental Model Construction 

As already explained, the expert system rule base of Table 7.7 is used to generate 
example data. Five hundred training examples and five thousand test examples 
were randomly generated consistent with the full rule base. 

For these experiments, pruned versions of the AND/OR graph from Figure 7.18 
were transformed into neural networks as in the KBANN technique, but without 
fully connecting the network. Then, the HDE algorithm was used to add units to the 
last hidden layer. As an example, Figure 7.19 illustrates the initial neural network 
obtained by transforming the original AND/OR graph from Figure 7.18 with no 
pruning. 

Average results of five experiments are shown in Table 7.8. Observe that the 
hybrid system’s performance was always equal or superior to those of the rule based 
experts and learning from examples alone. Also, note that when learning without 
the debt-low rooted subtree of the rule base, the constructive algorithm showed an 
impressive increase in prediction quality. Predictive quality of 61.76% from rules 



7.5 Results 

Prior knowledge 

pruning point 

no pruning 

24 3 

Size Generalization 
(hidden rules rules + 
units) alone examples 

0 100% 100% 

Table 7.8 Individual experts vs. hybrid systerns classification accuracy. 

no prior knowledge 
dependentsavings-ok 
assets-high 

Figure 7.19 

4.1 n/a  81.06% 
3.4 74.95% 86.19% 
0 93.36% 93.36% 

dependent -income -o k 
earningssteady 
debt -low 

0 95.2% 95.2% 
0 95.6% 95.6% 

5.7 61.76% 82.22% 
savings -ok 
income-ok 

0.4 90.18% 91.17% 
4.7 67.54% 85.02% 

debt-payments eamings_\teady income drpendents assets savings 

w + 
Initial network. 

alone increased to 82.22% for rules and examples. In comparison, the knowledge 
refinement technique of the extended KBANN rule-based network using additional 
connections arid backpropagation as in (Towel1 et al., 1990) provided an increase 
to only 64.64%. It is also important to observe that when the expert was able to 
classify the sample data well no hidden units were constructed. 

7.5.2.3 Multiple Experts Integration 

In the experiments carried out with the neural network conibiners the training and 
testing sets were generated independently, with 1,000 examples in the training set 
and 10,000 in the test set. For the decision tree approach different training sets were 



244 

System Success False prediction 
Rate negative positive 

Expert 1 65% 100% 0% 
Expert 2 69% 100% 0% 

Integration of Heterogeneous Sources of Partial Domain Knowledge 

Pruned Expert 
rules type 

(5M9) 

(2) 7 (6) pessimistic 
pessimistic 

Expert 3 
Expert 4 
NN 

82% 100% 0% (3), (4), (7), (8) pessimistic 
73% 0% 100% (7),(4) optimistic 
87% 57% 43% not applicable mixed 

Table 7.10 Financial advising: Integration of two experts. 

Expert 
systems 

Experts 1 + 2 
Experts 1 + 3 

Generalization 
Upper Decision Cooperative Competitive 
bound tree network net work 

86.05% 67.75% 86.05% 85.78% 
90.37% 68.60% 90.37% 90.02% 

I Experts 2 + 3 I 95.56% I 70.00% I 95.56% I 94.53% I Experts 1 + 4 I 100.00% I 68.60% I 58.62% I 90.60% 

used, ranging from 120 to  500 examples, and the test set was the same one used 
for the neural network based integration techniques. Experiments were performed 
by applying the three integration techniques discussed in Section 7.4 to  different 
combinations of expert systems and/or neural networks. For comparison purposes, 
an upper bound on the success rate of each combination was computed for the 
given test data set. As in the two-spirals problem (Table 7.6), this upper bound 
represents the maximum possible success rate achievable by always following the 
correct advice, i.e. selecting the expert that  best classifies the given example. Also, 
a bound below 100% means that there are cases where all local experts classification 
responses are wrong, and so it is impossible to  output a correct answer either by 
selecting one of them, or by combining their outputs. Notice that this upper bound 
is by no means tight. For example, a pair of “dumb” experts, in which one of the 
modules always outputs 0 and the other always outputs 1, has an upper bound of 
100% (they are never both wrong), but the information they provide is nil. Thus, the 
cooperative combiner network can only achieve a very limited performance, while 
the gating network used in the competitive approach is left with the task of learning 
to  classify the patterns by itself. Actually, the gating network has the advantage 
of being fed the original input in addition to the outputs of the “dumb” experts, 
and so it can learn to some extent how to  classify the patterns. For the financial 
advising problem, a gating network combining two “dumb” experts achieved a test 
set success rate close to 72%. 

The results of integrating several pairs of expert systems are shown in Table 7.10. 



7.5 Results 

Expert 
systems 

Expert 1 + NN 

24 5 

Generalization 
Upper Decision Cooperative Competitive network 
bound tree network Fixed NN Dynamic NN 
96.24% 71.40% 91.79% 96.32% 

The table presents the computed upper bound on the accuracy of each combination 
and the generalization (testing data) success rates obtained by implementing the 
decision tree, cooperative and competitive network, respectively. The results shown 
for the decision tree approach are averaged over twelve training sets of different 
sizes (120, 200, 300 and 500 examples). It is interesting to note here that the 
monostrategy decision tree approach, i.e. using a decision tree to  solve the original 
classification problem, gave a better result (74.75%) than all the decision tree 
integrated systems tested here. Notice that, when combining pairs of pessimistic 
experts, both neural network-based methods produce excellent results. This is so 
because it is very easy to combine either two or more pessimistic or two or more 
optimistic experts by feeding their outputs to  an AND gate (if the experts are 
optimistic) or an OR gate (if the experts are pessimistic). Obviously, both problems 
can be learned by a single neuron. 

In contrast, the combination of pairs of experts of different types (1+4) proves 
to be much more difficult for the cooperative combiner approach. In this case, 
the competitive network achieves around 90% accuracy, and the decision tree 
does a better job than the cooperative combiner. This is another example of the 
domain transformation’s shortcomings when dealing with low resolution outputs, 
as explained in Section 7.2. 

The results of combining two of the expert systems with a neural network are 
summarized in Table 7.11. The upper bound for the success rate is measured using 
the symbolic expert and the fixed neural network. The table shows two different 
implementations of the competitive network. In the fixed neural network case, 
the neural network shown in Table 7.9 was used as an expert system, i.e. it only 
responded to the inputs, with no further training. In the dynamic learning method, 
the neural network local expert was trained at  the same time as the gating network. 

Notice that,  in this case, the cooperative combiner’s performance when combining 
“mixed” experts improves significantly over that  in Table 7.10. This is caused by 
the fact that the output from one of the experts (NN) is now a real number, 
instead of a one-bit value. This increase in resolution facilitates the generation of 
a more adequate decision region on the transformed domain. The gating network, 
on the other hand does a very good job on integrating these systems, especially 

Expert 3 + NN 
Expert 4 + NN 
Expert 5 + NN 

Table 7.11 Financial advising: Integration of one expert and a neural network. 

94.11% 74.05% 72.10% 89.00% 93.24% 
96.62% 66.10% 78.21% 91.45% 95.33% 
96.62% 79.40% 88.89% 93.79% 

I Expert 2 + NN I 97.27% I 71.40% I 93.92% I 95.22% I I 



Integration of Heterogeneous Sources of Partial Domain Knowledge 

when the local expert neural network is allowed to learn simultaneously with the 
gating network. The decision tree approach managed to  outperform the cooperative 
combiner in one of the cases, but its results continued to  be very poor. 

7.6 Conclusions 

Several approaches to the development of hybrid classification systems integrating 
existing classifiers and learning from examples are discussed and compared on two 
domains. It was demonstrated that incremental single expert expansion can provide 
generalization improvement over both the expert and learning from examples alone. 
Also, it was evident that some of the multiple experts integration techniques can 
take advantage of multiple heterogeneous sources of partial domain knowledge. In 
particular, the competitive neural network approach was found to be superior to 
the other multiple experts integration methods studied, and to each of the sources 
of prior knowledge. 

I t  is important to  observe that single expert expansion and multiple experts 
integration are not mutually exclusive approaches. Once heterogeneous experts are 
efficiently integrated, the obtained system can be used as prior knowledge for single 
expert expansion. Conversely, in multiple experts integration systems, a single 
expert extended through incremental learning can be treated as one of several 
sources of partial domain knowledge. Further research is needed to characterize 
which approach is more appropriate for specific problem classes. 

Copyright Acknowledgments 

Parts of Figures 7.5-7.7 were reprinted with permission from @ Dynamic Publish- 
ers,Inc., PO Box 48654 Atlanta, GA 30362, from (Fletcher and ObradoviC, 1995). 

References 

Baum, E. B. 1991. Neural net algorithms that learn in polynomial time from 
examples and queries. IEEE Transactions on Neural Networks, 2( 1):5-19. 

Constructing hidden units using examples 
and queries. In Advances in Neural Information Processing Systems, eds. R. P. 
Lippmann, J. E. Moody, and D. S. Touretzky, vol. 3, pp. 904-910, Denver 1990. 
Morgan Kaufmann, San Mateo. 

Benachenhou, D., Cader, M., Szu, H., Medsker, L., Wittwer, C., and Garling, D. 
1990. Neural networks for computing invariant clustering of a large open set 
of DNA-PCR primers generated by a feature-knowledge based system. In Proc. 
International Joint Conference on  Neural Networks, vol. 2, pp. 83-89, San Diego, 

Baum, E. B. and Lang, E(. J. 1991. 



References 24 7 

CA. 
Bishop, C. M. 1995. Neural Networks for  Pattern Recognition. Oxford: Clarendon 

Press. 
Breiman, L. 1996. Bagging predictors. Machine Learning, 24(2): 123-140. 
Chan, P., Stolfo, S., and Wolpert, D. 1996. Working Notes of The 1996 A A A I  

Workshop on Integrating Multiple Learned Models for Improving and Scaling 
Machine Learning Algorithms, held in conjunction with National Conference on  
Artificial Intelligence A A A I .  WWW location http://cs.fit. edu/wimlm/. Portland, 
OR. 

Chenoweth, T. and ObradoviC, Z. 1996. A multi-component nonlinear prediction 
system for the S&P 500 index. Neurocomputing, 10(3):275-290. 

Dietterich, T. G. and Michalski, R. S. 1983. A comparative review of selected 
methods for learning from examples. In Machine Learning, eds. R. S. Michalski, 
J. G. Carbonell, and T. M. Mitchell, pp. 41-82. San Mateo: Morgan Kaufmann. 

Drossu, R. and ObradoviC, Z. 1996. Rapid design of neural networks for time series 
prediction. IEEE Computational Science and Engineering, 3( 2) :78-89. 

Fahlman, S. E. and Lebiere, C. 1990. The cascade-correlation learning architecture. 
In Advances in Neural Information Processing Systems, ed. D. S. Touretzky, 
vol. 2, pp. 524-532, Denver 1989. Morgan Kaufmann, San Mateo. 

Fayyad, U. M. 1994. Branching on attribute values for decision tree generation. In 
Proc. of the 12th National Conference on Artificial Intelligence, pp. 601-606. 

Fayyad, U. M. and Irani, K. B. 1993. Multi-interval discretization of continuous- 
valued attributes for classification learning. In Proc. of the International Joint 
Conference on Artificial Intelligence, IJCAI-93, pp. 1022-1027. 

Fletcher, J. and ObradoviC, Z. 1993. Combining prior symbolic knowledge and 
constructive neural network learning. Connection Science, 5(3,4) :365-375. 

Fletcher, J. and ObradoviC, Z. 1995. A discrete approach to constructive neural 
network learning. Neural, Parallel and Scientific Computations, 3( 3) :307-320. 

Fukunaga, K. 1990. Introduction to statistical pattern recognition. San Diego: 
Academic Press. 

Gallant, S. I. 1988. Connectionist expert systems. Communications of the ACM,  

Gallant, S. I. 1990. Perceptron-based learning algorithms. IEEE Transactions on 

31(2):152-169. 

Neural Networks, l (2) :  179-191. 

rep., Universitat Zurich. 
Gutknecht, M., Pfeifer, R., and Stolze, M. 1991. Cooperative hybrid systems. Tech. 

Hanson, M. A. and Brekke, R. L. 1988. Workload management expert system- 
combining neural networks and rule-based programming in an operational appli- 
cation. In Proc. Instrument Society of America, vol. 24, pp. 1721-1726. 

Hayes-Roth, F., Waterman, D. A., and Lenat, D. B., eds. 1983. Building Expert 



Integration of Heterogeneous Sources of Partial Domain Knowledge 

Systems. Reading, MA: Addison-Wesley. 
Hendler, J .  and Dickens, L. 1991. Integrating neural network and expert reasoning: 

An example. In Proc. A I S B  Conf. on  Developments of Biological Standardization. 

Jacobs, R. A., Jordan, M. I., Nowlan, S. J., and Hinton, G. E. 1991. Adaptive 
mixtures of local experts. Neural Computation, 3:79-87. 

Kandel, A. and G. Langholz, e. 1992. Hybrid Architectures for Intelligent Systems. 
Boca Raton: CRC Press, Inc. 

Luger, G. F. and Stubblefield, W. A. 1989. Artificial Intelligence and the Design 
of Expert Systems. Redwood City, CA: Benjamin/Cummings. 

Medsker, L. and Bailey, D. 1992. Models and guidelines for integrating expert 
systems and neural networks. In Hybrid Architectures for Intelligent Systems, 
eds. A. Kandel and G. Langholz. Boca Raton: CRC Press, Inc. 

Michalski, R. S. and G. Tecuci, e. 1994. Machine Learning. A Multistrategy 
approach, vol. 4. Morgan Kaufmann. 

Nowlan, S. J. and Hinton, G. E. 1991. Evaluation of adaptive mixtures of competing 
experts. In Advances in Neural Information Processing Systems, eds. R. P. 
Lippmann, J .  E. Moody, and D. J. Touretzky, vol. 3, pp. 774-780. San Mateo, 
CA: Morgan Kaufmann. 

Quinlan, J. 1986. Induction of decision trees. Machine Learning, 1:81-106. 
Romero, P. R. and Obradovik, Z. 1995. Comparison of symbolic and connectionist 

approaches to local experts integration. In IEEE Technical Applications Confer- 
ence at Northcon/95, pp. 105-110, Portland, OR. 

Romero, P. R., ObradoviC, Z., Kissinger, C., Villafranca, J .  E., and Dunker, A. K. 
1997. Identifying disordered regions in proteins from amino acid sequence. In 
Proc. IEEE International Conference on Neural Networks, vol. 1, pp. 90-95, 
Houston, TX. 

Samad, T. 1988. Towards connectionist rule-based systems. In Proceedings of the 
IEEE International Conference on  Neural Networks, vol. 2, pp. 525-532, San 
Diego. 

Shimshoni, Y. and Intrator, N. 1996. On the integration of ensembles of neural 
networks: Application to  seismic signal classification. In Working Notes of the 
1996 A A A I  Workshop on Integrating Multiple Learned Models for Improving and 
Scaling Machine Learning Algorithms, held in conjunction with National Confer- 
ence on  Artificial Intelligence A A A I ,  WWW location http://cs.fit. edu/-imlm/, 
eds. P. Chan, S. Stolfo, and D. Wolpert, Portland, OR. 

Towell, G. G., Shavlik, J. W., and Noordwier, M. 0. 1990. Refinement of approxi- 
mate domain theories by knowledge-based neural networks. In Proceedings of the 
Eighth National Conference on  Artificial Intelligence, pp. 861-866, Boston, MA. 

Weigend, A. S., Mangeas, M., and Srivastava, A. N. 1995. Nonlinear gated experts 
for time series: Discovering regimes and avoiding overfitting. Int. J .  of Neural 
Systems, 6 : 3 73-399. 



References 24 9 

Werbos, P. 1995. Beyond regression: New tools for predicting and analysis in the 
behavioral sciences. Harvard University, Ph. D. Thesis, 197'4. Wiley and Sons 
(Reprinted). 

Hybrid system for protein 
secondary structure prediction. Journal of Molecular Biology, 225: 1049-1063. 

Zhang, X., Mesirov, J. P., and Waltz, D. L. 1992. 



This page intentionally left blank 



8 Approximation of Differential Equations 
Using Neural Networks 

Rico A. Cozzio 

Knowledge- based neurocomputing tries to  exploit pro blem-specific knowledge within 
the neurocomputing paradigm. Differential equations are a n  important type of a pri- 
ori knowledge available in engineering problems and physical systems. W e  coruider 
a novel method for using this knowledge to  generate a neural network that imple- 
ments  an  initial model of the system dynamics described by differential equations. 
A design algorithm is  developed that determines the structure as well as the weights 
of the network. This  algorithm can be used for  all neural network architectures that 
satisfy the necessary mathematical restrictions. Speciifically, Radial Basis Function 
networks and a new architecture, Modified Logistic Networks, satisfy these condi- 
tions. A f ter  initial design of the neural network using this algorithm, additional 
training can then serve to  refine the model and estimate unknown parameters of 
the system. W e  use the proposed algorithm to  construct single-step and multi-step 
integrators for forecasting t ime  series generated b y  sampling the Lorenz system of 
chaotic differential equations. I n  our tests, the Modified Logistic Networks outper- 
formed the Radial Basis Function Networks. The advantages of our translational 
approach are integration of prior knowledge in the f o r m  of differential equations 
with learning f rom data, therefore leading to improved generalization and training 
ef ic iency,  as well as the need for less training data. 

~~ 

8.1 Motivation 

Differential equations are very important mathematical tools used in engineering. 
They are the dominant technique for modeling dynamic systems, because the 
causal relations between physical variables present in engineering problems can 
be described well by differential equations. 

However, if the dynamics of a physical system are unknown, we face the problem 
of identifying the process driving the system. This nonlinear modeling problem 
can be approached using a general model, whose parameters are estimated from 
observations of the system. These system identification and parameter estimation 



252 Approximation of Differential Equations Using Neural Networks 

tasks can be attacked with neural networks, where the network corresponds to  
the model and the network weights are the free parameters. A learning algorithm 
searches for the optimal network weights that fit the network output to the actual 
system observations. Nevertheless, finding optimal weights for large neural networks 
is difficult. An overview of the usage of neural networks for system identification 
and parameter estimation tasks typically found in control applications is given in 
(Narendra and Parthasarathy, 1990) and (White and Sofge, 1992). 

Many engineering problems share some characteristics of both problem specifi- 
cations: It is common that partial knowledge about the dynamics of a system is 
available as differential equations, but they are insufficient for modeling purposes. 
Assume for example, only the structure of the differential equations describing a 
:iyStem is known, but some physical constants are missing. The standard approach 
of applying neural networks to  such problems uses only system observations for 
modeling and the available differential equations are ignored. However, an optimal 
usage of information tries to  integrate both the observation data and the structured 
knowledge into the neural networks. If we manage to combine both aspects of mod- 
eling in the networks, the accuracy, stability and efficiency of neural modeling can 
be improved, and the networks generalize better from observed data. 

In this chapter, a method to exploit ordinary differential equations for the design 
of neural networks is presented. Both the architecture and the weights of the 
networks are determined from the differential equations. Single-step and multi-step 
numerical integration procedures for the approximation of the differential equations 
are derived using the resulting neural networks as basic building blocks. After initial 
design, the neural networks can be trained from observation data in order to account 
for the modeling deficiencies of the differential equations. The approximation quality 
of constructed networks is demonstrated by forecasting the Lorenz system of chaotic 
differential equations. 

8.2 Local Approximation by Taylor Series 

Assume we have a first order ordinary differential equation of the form (8.1) with 
initial condition (8.2). 

If x ( t )  and the functional f are analytic in the neighborhood of the initial value t o ,  
we can successively differentiate the differential equation to obtain Equations 8.3. 



8.2 Local Approximation by Taylor Series 253 

Since the solution z ( t )  is assumed to be analytic at t o ,  it can he approximated near 
t o  by a power series (8.4), whose derivatives are given in (8.5). 

k=O 

Solving Equation 8.5 for the coefficients ak gives the solution (8.6), which turns (8.4) 
into the well known Taylor series (8.7) with convergence radius p. 

A local approximation (8.8) near t o  is obtained by truncating the Taylor series after 
E( terms. 

This straightforward method to compute polynomial approximations (8.8) of differ- 
ential equations is very old. Isaac Newton already used infinite power series for the 
approximation of differential equations (Hairer et al., 1991, p. 4). The result of the 
Taylor series method is a local approximation (8.8) of the differential equation (8.1), 
given as a polynomial of the step size At. The coefficients ak are functions of the 
initial conditions (8.2), and they are determined by the solution of Equation 8.5. 
Provided that the step size At is smaller than the convergence radius of the series 
and enough terms of the truncated series are used, the local approximation (8.8) of 
the solution of the differential equation allows the construction of a single-step inte- 
grator, which is sufficiently accurate to compute good approximations over a large 
interval. Taylor coefficients can be computed recursively and methods to choose a 
good step size do exist (Henrici, 1956; Campbel et al., 1961; Leavitt, 1966; Bar- 
ton et al., 1971; F a i r h  et al., 1988), or for a short summary (Hairer et al., 1991, 
p. 47). Hence, many computer programs for the automatic approximation of dif- 
ferential equations based on long truncated power series have been implemented 
(see (Chang, 1974), (Norman, 1976), (Corliss and Lowery, 1977), (Barton, 1980), 
(Corliss and Chang, 1982)). 



254 Approximation of Differential Equations Using Neural Networks 

8.3 Generalization of the Taylor Series Method 

In this section, we keep the basic idea of the Taylor series method, but we extend the 
power series approximation to more general approximation functions. The power 
series (8.4) is replaced by a parametrized local approximation function (8.9), with 
finitely many parameters ak .  

The method of successive differentiation can be generalized to approximation 
function @ K ,  if @ K  satisfies the following conditions: 

Solvability: After substituting the approximation <PK for z ( t ) ,  the equations gen- 
erated by the successive differentiation method (8.3) must be solvable for the pa- 
rameters a k .  The following requirements enforce solvability: 

Triangulation condition: 

<Ph'(t; t o ;  ao, a l ,  . . . , U K ) ( ~ ) ~  = Oz(u0 . .  . u k ) ,  where k 5 E( (8.10) 

The k-th derivative C3: of the approximation function <PK at initial value t o  
must depend only on the parameters uo . . . ak. 

t=to 

Invertibility: 

y = @:(U() .  . . U k )  

1 
ak = @:- (y; a.0. . . n k - 1 )  

1 a  

(8.11) 
@:- (0, ( a " .  . . arc); ao . .  . a k - 1 )  

The k-th derivative @: of the approximation function @ K  at initial value to 
must be invertible for the parameter ak. 

Convergence: 

lim Ix(t) - <Pk( t ;  t o ;  ao, . . . , a k ) l  = 0, t E [ to  - p, t o  + p] (8.12) 
K+CC 

for some norm I . .  . 1 
With increasing number of parameters uk, the sequence of truncated approximation 
functions @ K  must converge to the solution x ( t )  of the differential equation in a 
region near the initial value t o .  

If the approximation function @ K  and the functional f are analytic at  initial value 
t o ,  and if <PK obeys the condition (8.10), the successive differentiation method (8.3) 
generates the following Equations 8.13: 

(8.13) 



8.3 Generalization of the Taylor Series Method 255 

The solution of (8.13) for parameter a k  is given in Equation 8.14: 

(8.14) 

After having solved the first k Equations of (8.13) for the parameters a0 . . . a k ,  

the Ic + 1-th equation contains only the unknown parameter a k .  Consequently, 
Equations 8.13 can be solved iteratively, generating one parameter a k  after the 
other. If both the derivatives 91; of f and @E are linear, (8.13) turns into a linear 
equation system, whose matrix is triangular because of condition (8.10). For 
complex functions O z ,  more sophisticated methods may be needed (see (Wu, 1984)). 
The following theorem demonstrates that the method of successive differentiation 
suffices to guarantee the convergence of the sequence of approxiniat ions @ K  to ~ ( t ) .  
The proof is based on the fact that  Taylor series with identical cocf'icients converge 
to the same function (for the proof see (Cozzio, 1995)): 

Theorem 8.1 
Let x ( t )  be an analytic function defined by the differential equation (8.15), and 
let @ K  be an analytic local approximation function of the form (8.16) with E( 

parameters a k .  

(8.15) 

@ k ( t ;  t o ;  a ( ) ,  . . . , a k )  = 2 0  (8.17) 

@ k  ( t ;  t o ;  ao, . . . , aI;) 1 = f ( t ,  @ k ( t ;  t o ;  ao, . . . , L ( k ) ) ( k - l )  1 , k = 1 . . . E( 
t==t(] t=to 

If the parameters U I ;  satisfy Equations 8.17, then for any t within a radius p of 
t o ,  the approximation @ K  converges to z ( t )  with increasing I(, where p equals the 
radius of the Taylor series expansion of ~ ( t ) :  

lim I x : ( t )  - @ k ( t ;  t o ;  ao, . . . , a k ) l  = 0, t E [ to  - p, t o  + p] (8.18) 

The result of Theorem 8.1 is independent of the specific form of approximation 
function @ K  that is used. Consequently, if we select a specific function @ K ,  only 
conditions (8.10), (8.11) and (8.17) have to be checked and the convergence (8.12) 
of @ K  to ~ ( t )  is implied. 

K+CC 

1. Since condition (8.10) generates triangular matrices for linear systems, it is called t,he 
triangulation condition. 



256 Approximation of Differential Equations Using Neural Networks 

8.4 Choice of Suitable Neural Network Approximators 

In Sect ion 8.3, the Taylor series met hod for generating polynomial approximations 
has been generalized to  non-polynomial functions < P K .  This method allows the 
construction of neural networks for the approximation of differential equations, if 
neural network architectures can be found for <PK that  satisfy conditions (8.10) 
and (8.11). 

Although many standard neural network models have been proven to be universal 
function approximators (e.g., see (Cybenko, 1989), (Funahashi, 1989), (Stinchcombe 
and White, 1989), (Girosi and Poggio, 1990), (Hartman et al., 1990), (Hornik et al., 
1990), (Park and Sandberg, 1991), (Ito, 1992), (Cotter and Conwell, 1993), (Park 
and Sandberg, 1993)), most of them do not satisfy property (8.10), which requires 
that the network parameters ai>k vanish when the k-th derivative is taken at the 
initial value t o .  This strong requirement is necessary for solving Equations (8.13) 
iteratively, but it is satisfied trivially only by polynomials. 

This attractive property of power series suggests that  we should look for neural 
network architectures which can be rewritten as variants of power series. The 
derivation of power series of some basis function can take advantage of the fact 
that  the concatenation of two functions turns into multiplication of their derivatives. 
Thus, if the derivatives of the underlying power series vanish, the derivatives of the 
modified series also vanish. 

There exist classes of neural networks that satisfy additive and multiplicative clo- 
sure, which means that power series of network functions can again be implemented 
by a neural network of the same class. The classes of neural networks satisfying the 
Stone-Weierstrass theorem share this property: 

Theorem 8.2 Stone- Weierstrass, see (Cotter  and Conwell ,  1990) 
Let domain D be a compact space of N dimensions, and let F be a set of continuous 
real-valued functions on D ,  satisfying the following criteria: 

Identity function: The constant function f(z) = 1 is in F .  

Separability: For any two points x1 # 2 2  E D ,  there is an f E F such that 

Algebraic closure: If f and g are any two functions in F ,  f . g and a . f + b - g are 
f(x1) # f ( z2 ) .  

in F for any two real numbers a and b. 

Then F is dense in C ( D ) ,  the set of continuous real-valued functions on D.  In other 
words, for any E > 0 and any function g E C ( D ) ,  there is a function f E F such 
that 1g(x) - f(x)I < E for all x E D. 

Consequently, classes of neural networks satisfying the Stone-Weierstrass theorem 
are guaranteed to  be universal function approximators for continuous real-valued 
functions. In the following Sections 8.4.1 and 8.4.2, two such neural network 
architectures are investigated: the Modified Logistic Network and the Radial Basis 
Function Network with Gaussian units. 



8.4 Choice of Suitable Neural Network Approximators 257 

8.4.1 Modified Logistic Networks 

The application of neural networks to systems of differential equations requires only 
networks with a single output unit, because every variable of a differential equation 
system can be approximated by a different network. A traditional three-layered 
neural network model with sigmoidal units in the hidden layer and a linear output 
unit is represented by function (8.19). 

7J(:; 
K 

. . . z k ,  8 1  . . . $ k ,  w 1  . . . W k )  = X ' U J k  . sigmoid(zk ' 

where e.g., sigmoid(z) = tanh(z) 

- 8, )  (8.19) 
k = l  

Unfortunately, networks (8.19) using sigmoidal functions like tanh do not satisfy 
algebraic closure. Consequently, they can only approximate polynomials of their 
own activation function, but they cannot implement them exactly. 

In (Cotter and Conwell, 1990), Cotter 
Modified Logistic Network (8.20), which 
and which compensates for this defect. 

Note that the traditional networks (8.19) 

proposes a variant of this network, the 
satisfies the Stone-Weierstrass theorem 

using the function tanh are a subset of 
the class of Modified Logistic Networks, because tanh satisfies the identity (8.21). 
Polynoms of tanh functions, however, do not belong to the class of tanh networks 
any more. 

2 
- - I - -  

e x  - e - X  

ex  +e-" e2x + 1 1 + e2x 
e2x - 1 - tanh(z) = - (8.21) 

We now propose the neural network (8.22) for approximation function @ K .  @gLG 
is a polynomial of networks (8.19), which can be represented as a Modified Logistic 
Network (8.20) after transforming tanh according to identity (8.21) and after 
expanding all multiplications. 

(8.22) 
k = l  1 1 i=O 

The derivatives of the approximation function @ELG at the initial value t o  are given 
in (8.23). Its coefficients c k , i  are shown in Table 8.1, where empty entries denote 0. 



258 Approximation of Differential Equations Using Neural Networks 

Table 8.1 Coefficients C k , i .  

Theorem 8.3 
(For the proof see (Cozzio, 1995)) A Modified Logistic Network of the form (8.22) 
allows the application of the method of successive differentiation (8.13) for the local 
approximation of differential equations. The equations generated by (8.13) can be 
recursively solved for parameters ak with Equation 8.14. 

Since the derivatives of the approximation function @gLG are linear expressions 
of the parameters f z k ,  the equation system (8.13) is not significantly more complex 
to solve than for polynomial approximation functions. This makes the Modified 
Logistic Network @ELG a good choice for the local approximations of differential 
equations. 

8.4.2 Radial Basis Function Networks 

Radial basis functions are well known in approximation theory. Some of their 
properties relevant to multidimensional approximation are documented in (Powell, 
1987) and (Poggio, 1990). 

For our purposes, we use three-layered neural networks with one input layer, one 
hidden layer with Gaussian radial basis function units and one output layer with 
a single linear unit. Since every variable of the system of differential equations is 
approximated by a different neural network, we need only one output unit, which 
computes the function (8.24). 

K = 2  

y(Z; X i  - . . X K ,  WI . . . W K )  = wk - e-( crk ) , where ok > 0 (8.24) 
k = l  

Theorem 8.4 
Let the class RBF of functions of the form (8.24) be called Radial Basis Function 
Networks. Then, all functions f E RBF satisfy the Stone-Weierstrass Theorem 8.2. 



8.4 Choice of Suitable Neural Network A pyroximators 259 

Proof 

Identzty funct ion:  The constant function f ( z )  = 1 is in RBF if we allow CT + 00: 

(8.25) 

Separability: For any two points z1 # 2 2  E D ,  there is an f E RBF such that 
f b l >  # f b 2 )  : 

f ( z )  = e-(.r--21)2 (8.26) 

Algebraic closure: If f and g are any two functions in RBF, f - g and a . f + b I g 
are in RBF for any two real numbers a and b: 

Since the output layer is linear, the sum of two networks can be trivially imple- 
mented by one network. The product of two networks is transformed into a sum of 
products of the hidden layer activation functions, which again can be represented 
by Gaussian units. This transformation is justified by the identity (8.27). 

(- --f ) 2  

, U 3  = wl . w 2 .  e w  - 0 1 2  * 2 2  + 0 2 2  * 2 1  
2 3  = ,Q2 = 

012 + m2 
0 1 2  * 0 2 2  

012 + Q 2  

The generalization of Equation 8.27 to multiple products is given in (8.28) 

5 2  s - z  2 n w k  . e - (  “k ) = w .  ,c-(T) 

N 

k = l  
N N AT 

(8.28) 
k=l \i=l,i#k 1 

N 

k = l  

Therefore, Radial Basis Function Networks (8.24) satisfy algebraic closure. H 

We now present the neural network (8.29) for the approximation function Q K ,  
which can be converted into a Radial Basis Function Network of the form (8.24) 
for constant At = t - t o .  

QRKBF(t; t o ;  ao, . . . , a K )  = 



260 Approximation of Diflerential Equations Using Neural Networks 

Table 8.2 Coefficients bi. 

bq = 25 
bg = 209 
bs = 1961 M b7 = 23589 
. . .  

The transformation (8.30) translates the arguments of the Gaussian units in Equa- 
tion 8.29 into their equivalent in (8.24), where the parameters a k  correspond to the 
inputs into the Gaussian layer. 

(8.30) 

After expanding all multiplications in Equation 8.29, the approximation function @zBF can be rewritten as a polynomial of Gaussian functions. Identity (8.28) for 
multiple products transforms @EBF into a Radial Basis Function Network (8.24). 
The coefficients bi of the neural network (8.29) are given in Table 8.2. They are 
calculated by solving condition (8.10). 

Although we have not found an explicit mathematical formula for the coefficients 
bi, they can be computed easily by using the recursive equation (8.32), which is 
derived from the simplified approximation function (8.31). 

(8.32) 

The derivatives of the approximation function @zBF at the initial value t o  are 
given in Equation 8.33. Their coefficients ck, i  are shown in Table 8.3, where empty 
entries denote 0. 

k 

@EBF(t; t o ;  U O ,  . . . , U K ) ( " ~ ) I  = O ; B F ( ~ o . .  . ak)  = clC,i * ~i (8.33) 
t=to ez 

i=O 

Theorem 8.5 
(For the proof see (Cozzio, 1995)) A Radial Basis Function Network of the 
form (8.29) allows the application of the method of successive differentiation (8.13) 
for the local approximation of differential equations. The equations generated 



8.5 Transformation of Diflerential Equations into Approximable Form 261 

Table 8.3 Coefficients c k , i  

by (8.13) can be recursively solved for parameters U I ,  with Equation 8.14. 

According to  Theorem 8.5, the approximation function (8.29) describes a Radial 
Basis Function Network which allows the application of the method of successive 
differentiation (8.13) for the local approximation of differential equations. Since 
the derivatives of the approximation function @EBF are linear expressions of the 
parameters u k ,  the equation system (8.13) is only slightly more complex to solve 
than for polynomial approximation functions. This makes the Radial Basis Function 
Network @EBF another good choice as an approximation function. 

8.5 Transformation of Differential Equations into Approximable Form 

In Sections 8.4.1 and 8.4.2, the Modified Logistic Network (8.22) and the Radial 
Basis Function Network (8.29) have been proposed for approximation function 
@ K .  They both satisfy the convergence and solvability conditions described in 
Section 8.3. Fortunately, their derivatives 01, are linear expressions of the unknown 
parameters a k ,  which generates particularly simple solutions to Equations 8.13. 
Consequently, the parameters U I ,  depend only on the functional f, respectively on 
its derivatives gk. 

The architecture of the resulting neural networks looks as follows: The functional 
dependency of the parameters aI, on the initial conditions (8.2) of the differential 
equation determines the structure of a preprocessing layer. It is followed by a middle 
and an output layer, whose network weights are independent of the differential 
equation (see Figure 8.1). 

In case the functional f is linear and independent of time t ,  Equations 8.13 are 
also linear and can be solved by backsubstitution. In this case, the parameters aI, 
depend linearly on the initial conditions of the differential equation and both types 
of neural networks do not need an intermediate preprocessing layer. 

If the functional f is nonlinear, however, a nonlinear preprocessing layer between 
the input and the middle layer is needed, which is not regarded as a standard neural 
network architecture any more. 

Since we want to keep standard architectures if possible, we try to solve this 



262 Approximation of Differential Equations Using Neural Networks 

output layer 

middle layer 

preprocessing 
layer 

input layer 

Figure 8.1 Network architecture. 

problem by a suitable transformation of the differential equation, turning nonlinear 
functionals f into polynomials. In (Kerner, 1981) and (Fair& et al., 1988), a set 
of transformation rules is offered, which cover a very general class of functionals 
f .  Actually, Kerner demonstrates that polynomial systems can be even further 
simplified to quadratic systems, which are called Riccati-systems (Kerner, 1981). 
Consequently, the quadratic representation can be regarded as a normal f o r m  
for differential equations, and a very general class of differential equations can 
be reduced to this form. The neural networks that result from such quadratic or 
polynornial functionals f use polynomial preprocessing layers. In the literature, 
these networks are known as higher-order neural networks (see (Sejnowski, 1986)) 
(Lee et al., 1986) or (Pineda, 1987)). 

The transformation method is simple: Complex expressions are replaced by new 
variables, which are then defined by additional differential equations and their cor- 
responding initial conditions. Since most “interesting” furictions are themselves gen- 
erated by rational differential equations, this transformation allows the reduction 
of these functions to their associated rational derivatives. After repeated applica- 
tion of the transformation rules, polynomial differential equations are obtained. 
This method covers rational, irrational and most transcendental functions usually 
encountered in physical modeling. Basically, all functions controlled by differential 
equations of finite order can be treated this way (a counterexample is the gamma 
function, which does not obey a differential equation of finite order). 

In Table 8.4, some transformation rules are listed which serve to eliminate non- 
linear functions. Note that the first transformation rule in Table 8.4 formally erases 
the distinction between autonomous and nonautonomous differential equations by 
the near-trivial introduction of a variable. 

Theorem 8.6 
Let differential equations of polynomial form be called being of approximable form.  
Then, if a differential equation of the form (8.1) can be transformed into a system 
of differential equations of approximable form by repeated transformation of the 
functional f ,  the differential equations can be locally approximated within the 
convergence radius to any desired accuracy by higher-order neural networks of 



8.5 Transformation of Differential Equations into Approxirnable Form 

Example of transformation rules. Table 8.4 

Replaced Functions 

c * t -+ a ( t )  

263 

Added Differential Equations Added Initial conditions 

a’( t )  = c a@(,) = c . to 

& -+ a( t> 
sin(z(t)) -+ a ( t )  

cos(x(t)) -+ b ( t )  

1n(.(t>> -+ 

--+ a ( t )  
tanh(z(t))  -+ a ( t )  

u ( t 0 )  = -L 

u(to) = sin(x(t0)) 
b(to)  = COS(Z(t”)) 
a( to)  = In(z(t0)) 

a( to )  = tanh(z(t0)) 

a’@) = -a(t)2 . d ( t )  

a’( t )  = 6 ( t )  . & ( t )  

b’(t)  = - a ( t )  . d ( t )  

.’(t) = $p 
a’( t )  = u ( t )  2 ( t )  a ( t o )  = C Z ( f 0 )  

a’(t) = (1 - u ( t ) 2 )  . i ( t )  

X ( t ” )  

type (8.22) or (8.29) with polynomial preprocessing layers. 

Proof If the functional f can be transfornied into polynomial forni by introduc- 
ing new variables, each variable can be approximated by a neural network. The 
parameters of the networks (8.22) or (8.29) are the solutions of Equations 8.14, 
which result in polynomial expressions of the initial conditions of the differential 
equations. Therefore, the preprocessing layer of the network consists of polynomials 
determined by the differential equations, whereas the weights of the middle and tlie 
output layer are independent of the differential equations and remain fixed. The 
accuracy of the approximation is controlled by the number of parameters uk that 
are included, which also determines the size of the neural networks. According to 
Theorems 8.3 and 8.5, the differential equations can he approximated to any desired 
accuracy within the convergence radius p. 

The following example illustrates the trarisformation process (individual trans- 
formation steps are marked by arrows that are labeled by tlie transforniation rule 
used) : 

1. Using the transformation rules of Table 8.4, the rational differential Equa- 
tion 8.34 with initial condition (8.35) is first transformed into Equations 8.36 
and 8.37, which introduces the new variable a ( t ) .  Differential Equations 8.36 are 
now in polynomial form. 

(8.34) 
1 

x’(t) = - 
x:(t>2 

X ( h )  = 2 0  (8.35) 

z’(t) = n( t )  

a’(t) = - a ( q 2  . 2 x ( t )  . d ( t )  

= -aa(t)3 . x ( t )  

X ( t 0 )  = 2 0  

(8.36) 

(8.37) 

2. Then, Equations 8.36 are transformed successively into quadratic form, resulting 



Approximation of Differential Equations Using Neural Networks 

in Equations 8.44 and 8.45, which introduce the new variables b ( t )  . . . f ( t ) .  

I 
z’(t) = a ( t )  

U’@)  = - 2 d ( t )  

c’(2) = -4a(t) * d ( t )  

b’(t) = - 6 ~ ( t )  . d ( t ) ( t )  

d’(t) = a ( t )  . b ( t )  - 6 d ( t )  - e ( t )  

e’(t) = a ( t )  . c ( t )  - 4d(t) - f ( t )  

f ’ ( t )  = c( t )  - 2 d ( t )  * z ( t )  

4 t o )  = xo 
1 1 

1 1 

1 1 
.CO 2 0  

a(t0) = -, b ( t 0 )  = - 
X 0 2  X 0 6  

c ( t0)  = - , d ( t o )  = - 
xo4 xo5 

e( to)  = x l f ( t o )  = - 

(8.38) 

(8.39) 

(8.40) 

(8.41) 

(8.42) 

(8.43) 

(8.44) 

(8.45) 



8.6 Single-Step and Multi-Step Integration Procedures 265 

The substitution of compound expressions by new variables has a serious draw- 
back, however: Since for each new variable another differential equation is intro- 
duced, the size ofthe system of differential equations may be increased substantially. 
The worst case occurs if full transformation to Riccati-form is desired, which our 
example (8.44) demonstrates (see (Kerner, 1981) for an estimation of the increase in 
size). We also encounter a difference in numerical precision between the approxima- 
tions of the original and the transformed differential equations: After transforming 
the differential equation by differentiating away the nonlinear functions, we actu- 
ally reverse this transformation by numerical integration. In most cases this gives 
worse results. Thus, approximating the transformed differential equations in general 
requires smaller integration steps than approximating the original equations. 

On the other hand, if we transform a system of differential equations into 
quadratic form, and if we apply the method of successive differentiation and solve 
the generated equations, we still get polynomial solutions, not quadratic ones. This 
is already the case for very simple differential equations. Equations 8.47 generated 
by successive differentiation of example (8.46) demonstrate this phenomenon. 

.”(to) = z(t0)2 

(8.46) 

(8.47) 

z”’(t0) = ( 2 ~ ( t ) ’ ~ ) ’ I  = 6 ~ ( t ) ~  - x’(t)l = 6 z ( t 0 ) ~  
t=to l=to 

. . .  

Since quadratic differential equations still generate preprocessing layers with poly- 
nomials of unrestricted degree, the transformation from polynomial to quadratic 
form is not worth the effort. It only increases the complexity of the resulting neural 
networks. We therefore recommend to transform the differential equations only into 
polynomial form, not into (quadratic) normal form. 

8.6 Single-Step and Multi-Step Integration Procedures 

So far, we have discussed the construction of neural networks for the local approxi- 
mation of differential equations in the neighborhood of t o .  Using the approximation 
function @ K ,  we can construct a single-step numerical integration method (8.48). 



266 Approximation of Differential Equations Using Neural Networks 

If the function @ , K ( ~ o  +At ;  t o ;  ao, . . . , a ~ )  is independent of t o  and if the parame- 
ters a k  are resolved using the method of successive differentiation from Section 8.3, 
the single-step method corresponds to an iterated map (8.49). 

(8.49) 

If the step size At is chosen smaller than the convergence radius p, the successive 
values XI, at the points t k  = t o  + k . At provide good approximations of the solution 
of the differential equation. This is a standard method used in numerical algorithms, 
where truncated Taylor series approximations @ K  are reduced to linear functions 
pe, e.g. see (Hairer et al., 1991). 

Up to now, we exclusively treated first order differential equations. In order to  
handle higher-order differential equations, there are two approaches: 

1. We can transform every higher order differential equation into a system of 
first order differential equations, which can be treated as usual. This approach 
is useful only if we know the derivatives at the initial value t o ,  which is the case in 
example (8.50). 

x”(t) = -x(t) 

Xc(t0) = 20 

x’(t0) = x:, 
(8.50) 

(8.51) 

2. In example 8.52, however, there are two boundary conditions given for x ( t )  
instead of the initial conditions for x(t) and x’(t). Therefore, the first approach is 
not applicable to this case. 

(8.52) 

There is a basic problem with systems like (8.52). This is revealed when we look at  

2. Note that general differential equations can be transformed into autonomous systems 
using the first transformation rule of Table 8.4 shown in Section 8.5. 



8.6 Single-Step and Multi-Step Integration Procedures 261 

approximation of 
future behaviour - 

t 
I I 

I 
I 

past samples of 
measured time series 

/ 

Figure 8.2 Time series of a process variable. 

Equations 8.53 generated by successive differentiation: 

(8.53) 

For first order systems, the derivatives of the approximation function <PK satisfy 
the differential equation exactly up to order K at initial value t o .  This is possible 
because the equations generated by successive differentiation specify precise con- 
ditions for all derivatives of @ K  up to order K .  For the second order differential 
equation (8.53), however, there is no condition for the first derivative <Pk, because it 
is replaced by a boundary condition in the differential equation. Therefore, any ap- 
proximation error of the derivative d ( t )  will be duplicated in all higher derivatives 
of odd order. 

Since the exact derivative is not available, it is very important that a good 
approximation be used instead. 

The following solution provides good estimates of the derivative: If the variable 
described by the differential equation is sampled periodically, the time series of the 
past evolution of the process is available as in Figure 8.2. 

A natural way to approximate the derivative numerically is to  take the derivative 
of a Lagrange interpolation (8.54) of the past samples 20.  . . xn4. 

M M 

z ( t )  = *(t;  t o . .  . t k f ;  XO.. . xnJ = Ex2 * =, 2 3  
i=O j = O , j # i  

where M - 1 2 order m of the differential equation 

(8.54) 

The derivatives at  initial value t o  of the Lagrange interpolation (8.54) are linear 
in the samples xo . . . zhf .  They are substituted for the unknown derivatives of @ K ,  



268 Approximation of Differential Equations Using Neural Networks 

which finally results in a multi-step numerical integration procedure using several 
past values for the next integration step. In case the points xk are distributed on 
the grid t k  = t o  + k . At, At < p, an integration step is performed by executing one 
iteration of the map (8.55). Note that the step size At must be smaller than the 
convergence radius p. 

(8.55) 

In the next two sections, we substitute the neural networks @ELG and @ZBF for 
the local approximation function @ K ,  and we discuss the resulting neural network 
architect ures. 

8.6.1 Modified Logistic Networks 

It is not quite clear which parts of a Modified Logistic Network should actually be 
called a unit or neuron. We differ from (Cotter and Conwell, 1990), who decompose 
a Modified Logistic Network into a network of specialized units, and we call a 
unit with activation function (8.57) a Modified Logistic Unit. This terminology is 
consistent with the generalization of the logistic function (8.56) to  function (8.57). 

1 

(8.56) 

1 
y(T; Zl . . .xr) = I (8.57) 

It has been shown in Section 8.5 that the transformation of differential equations 
into normal form may generate equations with polynomial solutions for the parame- 
ters a k  of a Modified Logistic Network. Therefore, the most general architecture for 
a Modified Logistic Network of the form (8.22) needs a polynomial preprocessing 
layer. It feeds its outputs into a layer of Modified Logistic Units, whose outputs are 
summed up in a linear output unit. See Figure 8.3. 

Additionally, there are direct connections from the input to the output layer. 
All weights in the network are determined by the differential equation to be 
approximated, and they are computed by the method described in Section 8.3. If 
we approximate a system of several differential equations, there is one such neural 
network for each variable, and the past values of all variables are used as inputs to 
the networks. 

Theorem 8.7 
According to the definition of a Modified Logistic Unit (8.57), a network (8.22) 
with K parameters ak and constant At = t - t o ,  needs K .  + 1) . (2 . L$]  + 1) 
units in the middle layer, which increases with 0 ( K 3 )  relative to the number of 
parameters ak. 



8.6 S ingle-S tep  and M u l t i - S t e p  In tegrat ion  Procedures 269 

direct 
linear 
connec :t 

x(t+At) - approximation 

polynomial 
preprocessing 
layer 

previous samples 

higher-order 
Modified 
Logistic 
Network 

* a *  x(t-2At) x(t-At) x(t) 
Figure 8.3 Archit'ecture of modified logistic network. 

Proof The function tanh can be represented by one Modified Logistic Unit 
because of identity tanh(z) = 1 - *. Since the product of two Modified Logistic 
Units is again a Modified Logistic Unit, the power tanh(z)z can be represented by 
x;=lJ = ____ units. The sum of powers of tanh(x)2i+1 in (8.22) needs only as 
many units as the highest power of tanh, because the lower powers are contained 
therein and their units can be merged. Consequently, the total number of needed 
Modified Logistic IJnits is E( 

. i . ( i + l )  

(I$] + 1) . (2  - l$] + 1). 

8.6.2 Radial Basis Function Networks 

If we use the Radial Basis Function Network (8.29) presented in Section 8.4.2 
for the local approximation function i p ~ ,  the resulting architecture in Figure 8.4 
looks similar to the higher-order Modified Logistic Network, except for the layer 
of Modified Logistic Units, which is replaced by a layer of Gaussian units of the 
form (8.24). 

Theorem 8.8 
A Radial Basis Function Network (8.29) with K parameters a k  and constant At = 

t - t o  needs K . Gaussian units in the middle layer. Therefore, 
the network size increases with o ( K 3 )  relative to the number of parameters a k .  

= 

Proof Since the product of two Gaussian units is again a Gaussian unit, the power 
(; 1 - - ( U k  . ( t  --to) - 1 ) 2  >' can be represented by E;=, j = ~ units. The sum of 
such powers in (8.29) needs only as many units as the highest power in (8.29), 
because the lower powers are contained therein and their units can be merged. 
Consequently, the total number of needed Gaussian units is K . q. 

i . ( z + l )  



2 70 Approximation of Diflerential Equations Using Neural Networks 

x(t+At) approximation lzl after next step 

Radial Basis 

previous samples 
W 

higher-order 
Radial Basis 

} Function 
Network 

a * *  x(t-2At) x(t-At) x(t) 
Figure 8.4 Architecture of the radial basis function network. 

8.6.3 Example: Second Order Differential Equation 

The following example shows how to construct a multi-step numerical integration 
procedure for the second order differential equation (8.58): 

x"(t) = -x(t) 

X(t0) = 20 

X @ l )  = x1 

(8.58) 

1. The differential equation is already in polynomial form, therefore, no transfor- 
mation is necessary. 
2. We have to choose an approximation function of type (8.22) for the second order 
differential equation (8.58). We select a Modified Logistic Network (8.59) with four 
parameters U O . . U ~  for that  purpose, see Section 8.4.1. 

q y " ( t ;  t o ;  a(), . . . , as )  = 

(8.59) 

3. The Equations 8.60 generated by successive differentiation of (8.58) require 
the first derivative of x(t). It is approximated by the derivative of the Lagrange 
interpolation function (8.61), using the samples 2 0  and 21. 

I 1 

aO + 2 - t o ) k - 1  . E tanh(a~$~~~"))zz+l 
k=l i=O 

(8.60) 



8.6 Single-Step and Multi-Step Integration Procedures 2 71 

t - tl 
t o  - tl 

t - t o  
tl - t o  

9 ( t ;  t o ,  t1; xo,21) = 2 0  * ~ + x 1 * -  (8.61) 

If we substitute the approximation function ayLG for x ( t )  in the Equations 8.60, 
and if we replace tl = t o  - At and x’(t0) = W ( t ;  to,t l;xo,x1)1 , we get the full 
equation system (8 .62)  for the parameters arc. 

t=to 

a0 = xo 
xo - 2 1  a1 = - 

At 
2a2 = -a0 

6a3 = -a1 

(8.62) 

4. Equations 8.62 are solved for the parameters al,, resulting in the values given 
by (8.63). 

a0 = xo 
xo - 2 1  a1 = ~ 

At 
1 

2 0  2 
1 2 0  - X I  

6 At 

a2 = - - .  

a 3 = - - - -  

(8.63) 

5. The multi-step integration procedure (8.64) is completed by inserting the re- 
solved parameters al, into ayLG. 

x(t0 + At) = @yLG(to + At; ao, . . . , Q ) ,  where At < p (8.64) 

6 .  Figure 8.5 compares the results computed by the multi-step procedure with the 
exact solution x ( t )  = sin(t), where the parameters t o  = 0,xO = 0 , t l  = - 0 . 1 , ~ ~  = 

sin( -0.1) , At = 0.1 are used. Obviously, the approximated solution diverges quickly 
from the exact solution. 

+ 1.5 

?ural network 

-0.5 

-1 

Figure 8.5 Approximation and exact solution ( 2  samples for Q) 



272 Approximation of Differential Equations Using Neural Networks 

After increasing the number of past samples used for the Lagrange interpolation 
function XP from 2 to 4, the approximation of the first derivative of x ( t )  is improved 
considerably. Now, the results in Figures 8.6 and 8.7 show only small differences 
between the neural network output and 

I I  

the exact solution. 

I / exact solution - - neural network \ approximation 

Figure 8.6 Approximation and exact solution (4 samples for Q) 

_ _  0.006 

_ _  0.004 

_ _  0.002 

0 

_ _  -0.004 

Figure 8.7 Approximation error (4 samples for Q) 



8.7 Training Designed Neural Networks with Observation Data 2 73 

8.7 Training Designed Neural Networks with Observation Data 

The approximation quality of a neural network designed with our method depends 
on several factors. If the given differential equations and their physical parameters 
describe a dynamic system correctly, approximation errors are only introduced 
during the construction of the neural network. The size of the chosen network (the 
number of included parameters ak)  and the step size At determine the achievable 
accuracy. 

On the other hand, for modeling a dynamic system with differential equations, 
it is often necessary to rely on simplifying assumptions. Usually, not all influencing 
factors are known and approximation errors are introduced additionally by mis- 
specified differential equations. 

If enough observation data of the dynamic system is available, we can train 
the neural network to reduce its approximation errors. In this way the knowledge 
embedded in the neural network can be refined or revised. First, an error function 
E is constructed that measures the deviation of network approximations from 
observations. The mean-squared error (8.65) is typically used for that purpose: 

(8.65) 
i=l 

- xi =  to + i . At) = time series of observations 
At = time increment between observations 
N = length of time series 

NNi  = neural network output for observation i 

Then, neural network training tries to minimize error E by adapting the weights in 
the network. Recall the Modified Logistic Network (8.22) introduced in Section 8.4.1 
and remember the network architecture described in Section 8.6.1. Note that the 
weights in the network described by Equation 8.22 are hardwired: The weights of 
the preprocessing layer (represented by the parameters a k )  are derived from the 
differential equation, whereas the weights of the middle and output layer are fixed. 
In order to train the network, we have to replace some of the fixed weights by 
flexible weights that can be adapted during training. There are several possibilities 
to do that: 

1. The neural network represented by @FLG( t ;  t o ;  ao, . . . , a ~ )  can be replaced by 
a composite network 6 = @gLG(t; t o ;  ao, . . . , a ~ )  + " ( t ;  to;w), where only the 
weights of the second network N N  are trained. This network learns to  compensate 
for the approximation errors of the initial network @gLG. There are no restrictions 
on the size or on the architecture of the neural network N N ,  but of course the total 
network will be larger than the initial network @ELG. 
2. If we do not want to increase the size of the neural network, we can simply turn 
some of the fixed network weights into flexible weights. A good place to do that 



274 Approximation of Diflerential Equations Using Neural Networks 

are the middle and the output layer, because the number of weights is substantially 
smaller than in the preprocessing layer. If the backpropagation training algorithm 
is used, computing the gradient of the error function is also much easier for these 
weights than for those in the preprocessing layer. Basically, the arguments of the 
tanh functions in (8.22) are changed according to (8.66): 

tanh(a - ( t  - t o ) )  = tanh(a.  w - 0) (8.66) 
WO = t - t o  = At, oo = 0 

After introducing the flexible network weights 'uk ,  w k , i  and the thresholds Q k , i ,  the 
network (8.22) turns into network (8.67). If the weights are initialized according 
to Equation 8.68, the function computed by the two networks is still identical, but 
network training will adapt the weights of (8.67) in order to minimize the network's 
approximation error. 

ao += k = l  I V k  * 

U! = tanh(t - 

1 E'J 
tanh(uli~wlc,z-Bk,z)22fl 

2i+ 1 

1 i=O 
(8.67) 

(8.68) 

The same strategy can be applied to the Radial Basis Function Network (8.29) of 
Section 8.4.2. Introducing the weights U k ,  Xk, i  and O k , i  turns the network (8.29) 
into network (8.69). Again, initializing the weights according to (8.70) generates 
the same network output as (8.29). 

(8.69) 

(8.70) 

After replacing some of the network's fixed weights by flexible weights, most 
neural network training algorithms can be applied to reduce the approximation 
error E. Gradient-based algorithms like the backpropagation algorithm described 
in (Rumelhart and McClelland, 1986) are well suited for these problems. 

8.8 Application to Forecasting of Chaotic Time Series 

A traditional application of neural networks is t ime series forecasting (see (Kimoto 
et al., 1990), (Weigend et al., 1990), (Dorronsoro and Lbpez, 1991), (Wong, 1991) or 
(Hoptroff, 1993)). A time series is a series of observations of a dynamic system which 



8.8 Application to  Forecasting of Chaotic Time Series 2 75 

are taken at  regular time intervals. If the future behavior of the dynamic system 
should be determined, we speak of forecasting or predicting the time series. Neural 
networks can be used as a black-box model of the unknown process generating 
the time series, and the network can be trained to  forecast the future behavior, 
given the past observations of the series. Sometimes, the time series results from 
observing a deterministic physical process whose dynamic behavior is described by 
differential equations. For such applications, forecasting the future evolution of the 
series is equivalent to approximating the solution of the differential equation, given 
the current state as initial condition. 

In this context, our neural network design algorithm can be used to construct 
neural networks for forecasting the future behavior of time series. In case the 
knowledge of the generating process is complete, the network will be fully specified 
by the design algorithm. If the knowledge is incomplete however, the network will 
contain free parameters, which can be determined by using common neural network 
learning algorithms. In this way, any knowledge in the form of differential equations 
can be incorporated into the neural network and the discrepancies with respect to  
the real process can be reduced or even removed by additional learning. 

In this section, neural networks will be constructed for forecasting time series 
generated by chaotic differential equations. In science, chaos is used as a synonym 
for irregular behavior, whose long-term development is essentially unpredictable, see 
(Schuster, 1988). Chaotic differential equations exhibit not only irregular behavior, 
but they are also unstable with respect to small perturbations of their initial 
conditions. Consequently, it is difficult to  forecast the future of time series based on 
chaotic differential equations, and they should be a good benchmark for a neural 
network design algorithm. In this section, we test the performance of the resulting 
neural networks for the Lorenz system of differential equatfons. 

8.8.1 Lorenz System 

The Lorenz systern (8.71) of differential equations is an idealization of a hydrody- 
namic system, which serves as a simplified model for studying turbulence in fluids 
(see (Lorenz, 1963)): 

x’(t) = 0 . y ( t )  - 0 . x ( t )  

y ’ ( t )  = -x ( t )  - x ( t )  + r .  x ( t )  - y ( t )  

x’(t) = x ( t )  * y ( t )  - b * x ( t )  

X ( t 0 )  = 2 0  

Y(t0)  = Yo 
x ( t 0 )  = 20 

(8.71) 



2 76 Approximation of Differential Equations Using Neural Networks 

Figure 8.8 Evolution of the Lorenz system. 

We use the notation introduced in Equations 8.72, which embeds the Lorenz system 
into our framework: 

(8.72) 

Lorenz has shown that the behavior of system (8.72) becomes nonperiodic for boiiie 
parameter sets. Moreover, it is unstable with respect to  small modifications of the 
initial conditions, which is characteristic for chaotic systems. 

The following Figures 8.8 and 8.9 illustrate the evolution of the Loreiiz system 
for the critical parameters A = 10, B = 28, C = 8 / 3 .  Note that for this chapter, all 
reference models are generated with the numerical integration procedure DUZPCF 
of the NAG-library (see (NAG Library., 1994)). It is based on an adaptive Runge- 
Kutta method. 

Figure 8.8 shows the evolution of the Lorenz system with initial conditions 
t o  = 0, XI ,O = 2 2 , 0  = Z3,O = 1. First, periodic stationary behavior seems to 
establish, but Figure 8.9 reveals that after some time, nonperiodic chaotic behavior 
emerges. 

We now develop a neural network for the approximation of the Lorenz system: 

3 .  NAG is a registered trademark of The Numerical Algorithms Group Limited, Wilkinson 
House, Jordan Hill Road, Oxford, OX2 8DR, United Kingdom. 



8.8 Application to  Forecasting of Chaotic Time Series 277 

Figure 8.9 Evolution of the Lorenz system after t = 103. 

1. Since the differential equations are already in polynomial form, no transforma- 
tion is necessary. 
2. For each variable x l ( t )  . . . x3( t ) ,  we have to choose an approximation function 
@k. We select the Radial Basis Function Networks (8.73) with five parameters 
U i , o  . . . U i , 4 .  

3. We substitute approximation functions for xi(t) in the equations gener- 
ated by successive differentiation, and we get an equation system for the parameters 
U i , k  (omitted). 
4. The equation system is solved for the parameters a i , k ,  resulting in the val- 
ues (8.74) to (8.85). The values of ~ 1 , 4 , ~ 2 , 4  and a3,4 are omitted, see (Cozzio, 
1995) for all results. 

a1,o = x 1 , o  (8.74) 

a1,2 = ~ A - e2 ( x ~ , ~  . ( A  + B) - x2,o . (A + 1) - IC1,O * x3,0) (8.76) 4 

(8.77) 



2 78 Approximation of Differential Equations Using Neural Networks 

a2,o = X 2 , O  

a2,l = - (xl,O * B - x2,O - x1,O * x3,O) * e 

-e3 
48 

a2,3 = - 

' ~ 1 , o  * ( A  * ( 5 B  + 2 A  * B + 2 B 2 )  + 5 B ) -  

22,o * ( 5  + 7A * B + 2A2 * B)-  

X ~ , O  * ~ 3 , o  * (5 + A * ( 5  + 4 B  + 4C + 2 A )  + 5 C  + 2C2)+ 

~ 2 , o  * ~ 3 , o  - A * (7 + 2 A  + 4C)+ 

x1,02 * 2 2 , o  * (7 + 6 A  + 2 C )  - 21,o  * x2,02 * 6A+ 

x1,o . x3,02 - 2 A  - x ~ , ~ ~  - 2 B  + x ~ , ~ ~  + ~ 3 , o  2 

a3,O X3,O 

- e3 
a3,3 = - 48 

- ~ 3 , 0  (3C2 + 2C3)+ 

~ 1 , o  

~ 1 , o  * 2 2 , o  - X ~ , O  * 8A + x1,02 * B * ( 2 C  - 6 A  - 5) -  

x2,O2 * A * (9 + 2C + 2A)+ 

~ 2 , o  * ( 5  + A * (7 + 2 A  + 8B + 2 C )  + 5 C  + 2C2) -  

xi702 * x3,o ( 5  + 6 A  + 4C) - xi,o 3 * x2,o * 2 

(8.78) 

(8.79) 

(8.80) 

(8.81) 

(8.82) 

(8.83) 

(8.84) 

(8.85) 

5. The single-step integration procedure (8.86) is completed by inserting the re- 
solved parameters ai,k into @FBFz. 

8.8.2 One-S t ep-A head Forecasts 

(8.86) 

For our first experiment, we use the single-step integration procedure (8.86) for 
generating one-step-ahead forecasts of the Lorenz system. During each integration 



8.8 Application to  Forecasting of Chaotic T i m e  Series 2 79 

Figure 8.10 One-step-ahead forecasts and the reference model ( t o  = 0). 

Figure 8.11 Approximation error of one-step-ahead forecasts ( t o  = 0). 

step, the last state observation of the system is entered into the neural network 
to predict the new state after the next time step. Figure 8.10 illustrates the 
approximat'ion quality that can be achieved with this method, showing only small 
approximation errors in Figure 8.11 ( A  = 10, B = 28, C = 8/3, t o  = 0,  z1,o = z2 ,o  = 

Figure 8.12 shows the one-step-ahead forecasts for the parameters A = 10,B = 
28,C = 8/3,to = lO3,z1,o = z2,o = z3,o = 10, At = 0.001. The approximation 
errors are displayed in Figure 8.13. 

In general, the approximation errors of the one-step-ahead forecasts are quite 
small, but they are maximal wherever the trajectory of the Lorenz system changes 

~ 3 , o  = 1, At = 0.001). 



280 Approximation of Differential Equations Using Neural Networks 

Figure 8.12 One-step-ahead forecasts and reference model ( t o  = 103). 

Figure 8.13 Approximation error of one-step-ahead forecasts ( t o  = 103). 



8.8 Application to  Forecasting of Chaotic T i m e  Series 281 

Figure 8.14 Repeated forecasts and reference model ( t o  = 0). 

direction. 

8.8.3 Repeated Forecasts 

If forecasts for time horizons longer than one time step should be obtained, the 
standard approach of iterating a one-step-ahead forecasting procedure can be 
used. This is equivalent to iterating the single-step integration procedure for the 
approximation of differential equations, where intermediate approximation errors 
accumulate. Therefore, only the initial state is taken from the observations and 
all subsequent forecasts are generated by feeding back the previous forecasts as 
input into the network. Figure 8.14 compares the repeated forecasts of the neural 
network with the reference model. Again, we use the parameters A = 10,B = 
28,G = 8/3,to = O,z1,0 = 22,o = ~ 3 , o  = 1 with a step size of At = 0.001. The 
approximation errors are shown in Figure 8.15. The repeated forecasts diverge soon 
from the reference model, but the approximation error remains bounded. 

The first neural network for the approximation of the Lorenz system is based on 
Radial Basis Function Networks. Of course, Modified Logistic Networks discussed 
in Section 8.4.1 can be chosen as well. The next experiment shown in Figure 8.16 
demonstrates that a Modified Logistic Network provides better repeated forecasts 
of the Lorenz system with step size At = 0.001 than a Radial Basis Function 
Network. The approximation errors for the Modified Logistic Network are shown 
in Figure 8.17. 

We repeat both experiments for the parameters to = 103, z1,o = x2,o = x3,O = 10. 
Figure 8.18 shows the repeated forecasts of the Radial Basis Function Network. Its 
approximation errors are displayed in Figure 8.19. 

Figure 8.20 displays the forecasts of the Modified Logistic Network for t o  = 103, 
where the corresponding approximation errors are illustrated in Figure 8.21. 



282 Approximation of Diflerential Equations Using Neural Networks 

Figure 8.15 Approximation error of repeated forecasts ( t o  = 0). 

Figure 8.16 Repeated forecasts of modified logistic network ( t o  = 0) 



8.8 Application to  Forecasting of Chaotic T i m e  Series 

Figure 8.17 Approximation error of modified logistic network ( t o  = 0). 

Figure 8.18 Repeated forecasts of radial basis function network ( t o  = 103). 

283 



Approximation of Differential Equations Using Neural Networks 

Figure 8.19 Approximation error of radial basis function network ( t o  = 10’). 

Figure 8.20 Repeated forecasts of modified logistic network ( t o  = 103) 



8.9 Conclusions 285 

Figure 8.21 Approximation error of modified logistic network ( t o  = 103). 

The repeated forecasts of the Modified Logistic Network exhibit superior long- 
term behavior, because they reach the error level of the Radial Basis Function 
Network much later. 

8.9 Conclusions 

In this chapter, we have explored a method for t'he design of neural networks 
that uses application specific knowledge. Although it is common in the field of 
neural networks to replace application specific knowledge and algorithms by data 
and learning, neglecting available knowledge is an inefficient usage of informat ion. 
For complex problems, where neural networks reveal their own specific difficulties 
like inefficient learning or bad generalization, the usage of apriori knowledge can 
decide on success or failure. We therefore support the approach that all available 
information should be used, regardless of whether it is available as data or in the 
form of structured knowledge. 

The main advantages of using apriori knowledge for the design of neural net- 
works are smaller needs for learning data, improved training efficiency and better 
generalization. The potential for such improvements varies from application to  ap- 
plication, but literature studies show consistent benefits for a wide range of different 
applications. 

In this chapter, we have concentrated on the usage of differential equations for 
the design of neural networks, because they are an important type of a priori 
knowledge which has not been covered before. We have developed a method for 
constructing neural networks for the approximation of differential equations. The 
algorithm determines the structure as well as the weights of a network. It generates 
a set of equations for the network weights by the method of successive differentiation 



286 Approximation of Diflerential Equations Using Neural Networks 

of the differential equations. This is a variant of the Taylor series method generalized 
to non-polynomial approximation functions. 

We have identified a set of conditions to guarantee the solvability of these equa- 
tions, which depends on the properties of the derivatives of a neural network. Conse- 
quently, our algorithm is not restricted to one specific neural network architecture. 
All classes of neural networks that satisfy the conditions can be used. Both the Ra- 
dial Basis Function Networks and the Modified Logistic Networks have been shown 
to meet these requirements. They belong to  special classes of neural networks that 
are able to implement polynomials of their members exactly. This property has 
made it much easier to derive networks that are suitable for our algorithm. 

We have shown that most ordinary differential equations that are relevant for 
modeling physical processes can be transformed into polynomial first order systems. 
Consequently, the solutions of the network equations are polynomial expressions of 
the network inputs, which requires the introduction of a preprocessing layer in the 
network. If we restrict ourselves to linear differential equations, we do not need this 
preprocessing layer. In this case, we can keep the standard network architecture. 
Therefore, the general network architecture created by the design algorithm consists 
of four layers: An input layer, a preprocessing layer, a middle layer and an output 
layer. All weights of the network are specified: The weights from the middle layer 
to the output layer are fixed, and the weights from the polynomial preprocessing 
layer to the middle layer are derived from the differential equation. Also the direct 
connections from the input layer to the output layer are fixed. The final architecture 
is called Higher- Order Radial Basis Function Network or Higher- Order Modified 
Logistic Network respectively. 

In principle, we can approximate virtually all differential equations of practical 
interest with neural networks designed by our algorithm. Nevertheless, the com- 
plexity of the resulting networks and the induced numerical problems pose practical 
limits. For example, the transformation of a system of differential equations into 
polynomial form can expand its size substantially. Moreover, the size of the gen- 
erated network is of cubic order relative to the number of derivatives that should 
match the differential equation. This means that the complexity of the preprocess- 
ing layer increases quickly. Obviously, standard numerical integration procedures 
achieve the same results more efficiently. However, many applications are charac- 
terized by incomplete differential equations, where observation data is available. 
For such applications the learning capabilities of the neural networks outweigh the 
disadvantages. These are the applications we are aiming for. 

The neural networks obtained by our design algorithm have been used to  con- 
struct single-step and multi-step numerical integration procedures. Multi-step pro- 
cedures for higher order differential equations can be constructed by approximating 
the lower order derivatives with finite differences. This introduces additional approx- 
imation errors, however it is useful for applications, where only the main variables 
can be measured, but not their derivatives. 

We have tested the approximation quality of the networks by forecasting time 
series generated by sampling the Lorenz system of chaotic differential equations. 



References 287 

In all tests, the Modified Logistic Networks proved to be superior to the Radial 
Basis Function Networks. After initial design, these networks can still learn from 
observation data. This allows an optimal integration of both a priori knowledge 
and of learning data into neural networks. 

References 

Barton, D. 1980. On Taylor series and stiff equations. A C M  Transactions on  
Mathematical Software, 6( 3):280-294. 

Barton, D., Willers, I. M., and Zahar, R. V. M. 1971. The automatic solution of 
systems of ordinary differential equations by the method of Taylor series. The 
Computer Journal, 14( 3):243-248. 

Campbel, E. S., Buehler, R., Hirschfelder, J. O., and Hughes, D. 1961. Numerical 
construction of Taylor series approximations for a set of simultaneous first order 
differential equations. Journal of the ACM,  8:374-383. 

Chang, Y. F. 1974. Automatic solution of differential equations. In Constructive and 
Computational Methods for Diflerential and Integral Equations, Lecture Notes an 
Math. 430. Springer-Verlag. 

Corliss, G. and Chang, Y. F. 1982. Solving ordinary differential equations using 
Taylor series. A C M  Transactions on Mathematical Software, 8(2): 114-144. 

Corliss, G. and Lowery, D. 1977. Choosing a step size for Taylor series methods for 
solving ODES. Journal of Computational and Applied Mathematics, 3(4):251- 
256. 

Cotter, N. E. and Conwell, P. R. 1990. The Stone-Weierstrass theorem and its 
application to neural networks. IEEE Transactions on  Neural Networks, l(4).  

and fixed-weight networks. Neural Computation, 5:359-362. 
Cotter, N. E. and Conwell, P. R. 1993. Universal approximation by phase series 

Cozzio, R. A. 1995. The Design of Neural Networks using a praori Knowledge, Diss. 
E T H  No. 10991. Ph.D. thesis, Swiss Federal Institute of Technology, Zurich, 
Switzerland. 

Cybenko, G. 1989. Approximation by superpositions of a sigmoidal function. Math. 
Control Signals Systems, 2:303-314. 

Dorronsoro, J. R. and Lbpez, V. 1991. Neural network learning of polynomial 
formats for coupled time series. In Artificial Neural Networks, eds. T.  Kohonen, 
K. Makisara, 0. Simula, and J. Kangas, pp. 201-206. North-Holland. 

Fair& V., Lbpez, V., and Conde, L. 1988. Power series approximation to solutions 
of nonlinear systems of differential equations. A m .  J .  Phys., 56( 1). 

Funahashi, K.-I. 1989. On the approximate realization of continuous mappings by 

Girosi, F. and Poggio, T. 1990. Networks and the best approximation property. 
neural networks. Neural Networks, 2: 183-192. 



288 Approximation of Dafferential Equations Using Neural Networks 

Biological Cybernetics, 63:169-176. 
Solving Ordinary Differential 

Equations I: Nonstiff Problems, vol. 8 of Springer Series in  Computational 
Mathematics. Springer-Verlag, 2nd edn. 

Hartman, E. J., Keeler, J. D., and Kowalski, J. M. 1990. Layered neural networks 
with Gaussian hidden units as universal approximations. Neural Computation, 

Hairer, E., Norsett, S. P., and Wanner, G. 1991. 

2 :210-2 15. 
Henrici, P. 1956. Automatic computations with power series. Journal of the ACM, 

3( 1):15. 
Hoptroff, R. G. 1993. The principles and practice of time series forecasting and 

business modelling using neural nets. Neural Computing & Applications, 1 :59- 
66. 

Hornik, K., Stinchcombe, M., and White, H. 1990. Universal approximation of 
an unknown mapping and its derivatives using multilayer feedforward networks. 
Neural Networks, 3 : 55 1-560. 

Ito, Y. 1992. Approximations of continuous functions on rd by linear combinations 
Neural of shifted rotations of a sigmoid function with and withoud scaling. 

Networks, 5:105-115. 
Kerner, E. H. 1981. Universal formats for nonlinear ordinary differential systems. 

J. Math. Phys., 22(7):1366-1371. 
Kimoto, T., Asakawa, K., Yoda, M., and Takeoka, M. 1990. Stock market prediction 

system with modular neural networks. In Proceedings of the International Joint 
Conference on Neural Networks, vol. 2, pp. 1-6. 

Leavitt, J. A. 1966. Methods and applications of power series. Mathematics of 

Computation, 20:46-52. 
Lee, Y. C., Doolen, G., Chen, H. H., Sun, G. Z., Maxwell, T., Lee, H. Y., and Giles, 

C. L. 1986. Machine learning using a higher order correlation network. Physica 

Lorenz, E. N. 1963. Deterministic nonperiodic flow. Journal of the Atmospheric 

The NAG Fortran Library Manual, Mark 16, vol. 2. The 

D, 22:276-306. 

Sciences, 20:130-141. 
NAG Library. 1994. 

Numerical Algorithms Group Limited. 
Narendra, K. S. and Parthasarathy, K. 1990. Identification and control of dynamical 

systems using neural networks. IEEE Transactions on Neural Networks, 1 (1):4- 
27. 

Norman, A. C. 1976. Expanding the solutions of implicit sets of ordinary differential 

Park, J. and Sandberg, I. W. 1991. Universal approximation using radial-basis- 

Park, J. and Sandberg, I. W. 1993. Approximation and radial-basis-function 

equations in power series. The Computer Journal, 19( 1):63-68. 

function networks. Neural Computation, 3:246-257. 



References 289 

networks. Neural Computation, 5:305-316. 
Pineda, F. J. 1987. Generalization of backpropagation to recurrent and higher order 

neural networks. In Proceedings of the IEEE Conference on Neural Information 
Processing Systems (NIPS), pp. 602-61 1. IEEE. 

Poggio, T. 1990. Networks for approximation and learning. Proceedings of the 
IEEE, 78(9): 1481L1497. 

Powell, M. J. D. 1987. Radial basis functions for multivariable interpolation: A 
review. In Algorithms for Approximation, eds. J. C. Mason and M. G. Cox. 
Clarendon Press, Oxford. 

Parallel Distributed Processing: Rumelhart, D. E. and McClelland, J. L. 1986. 
Explorations in the Microstructure of Cognition, vol. I & 11. MIT Press. 

Schuster, H. G. 1988. Deterministic Chaos. VCH Verlagsgesellschaft mbH, 2nd 
edn. 

Sejnowski, T. J. 1986. Higher-order Boltzmann machines. Proceedings of American 
Institute of Physics, 151:398-403. 

Stinchcombe, M. arid White, H. 1989. Universal approximation using feedforward 
networks with non-sigmod hidden layer activation functions. In Proceedings of the 
International Joint Conference on Neural Networks, vol. I, pp. 613-617. IEEE. 

Weigend, A. S., Hubermann, B., and Rurnelhart, D. E. 1990. Predicting the future: 
A connectionnist approach. International Journal of Neural Systems, l(3):  193- 
209. 

White, D. A. and Sofge, D. A. 1992. Handbook of Intelligent Control: Neural, Fuzzy, 

Wong, F. S. 1991. Time series forecasting using backpropagation neural networks. 

Wu, W.-T. 1984. Basic principles of mechanical theorem proving in geometries. 

and Adaptive Approaches. Multiscience Press, Inc. 

In Neurocomputing, vol. 2, pp. 147-159. 

Journal of Sys. Sci. and Math. Sci., 3(4):207-235. 



This page intentionally left blank 



Fynesse: A Hybrid Architecture for Self- 
Learning Control 

Martin Riedmiller, Martin Spott and Joachim Weisbrod 

This chapter presents a novel controller design method that exploits principles of 
knowledge-based neurocomputing to realize a hybrid controller architecture that is 
able to learn to control a priori unknown nonlinear dynamical systems autonomously. 
I t  allows the user to interpret, examine and correct the acquired control strategy in 
every stage of learning. Based on  five requirements that are essential for a widely 
applicable learning controller, the hybrid control architecture FYNESSE is derived: 
The control strategy is represented b y  a fuzzy relation that can be interpreted and 
contains a priori knowledge, whereas the more complex part of learning is solved 
b y  a neural network that is trained by  dynamic programming methods. The advan- 
tages of both paradigms, learning capability of neural networks and interpretability 
of fuzzy systems, are preserved since the two modules are strictly separated. The 
application of the FYNESSE controller to a chemical plant demonstrates the high 
quality of autonomously learned control. Furthermore it shows the benefits of the 
integration of a priori knowledge and the interpretation of the controller in terms 
of fuzzy rules. 

~~ 

9.1 Introduction 

Self learning of appropriate control behavior assuming only a minimum of external 
knowledge about the system to be controlled is a field of growing research interest. 
The use of self-learning methods instead of costly analytical modeling promises the 
ability to control arbitrary systems without worrying about their probably very 
complex internal structure. The obvious advantage of an autonomously learning 
controller therefore lies in the fact that the effort to design an appropriate control 
law is removed from the human expert and executed instead by a machine. Another 
aspect which is perhaps less obvious but nevertheless of crucial importance is the 
modeling aspect: Analytical approaches are typically based on a mathematical 
model of the system to be controlled. Very often, linear models are used to  
approximate the system behavior, because they allow exploitation of a wide theory 



292 FYNESSE: A Hybrid Architecture for Self-Learning Control 

of linear controller design methods. But even if more complex models are used, 
it is unlikely that all effects that occur in a real system can be described exactly. 
Therefore, a model is always an approximation to reality, and analytical controller 
design can at  most be as good as the validity of the model. Also, analytical 
statements about closed loop behavior, for example stability issues, are given with 
respect to the model rather than with respect to the real system itself. 

A self-learning controller that is able to learn an appropriate control behavior 
by directly interacting with the real system and drawing the right conclusions, 
would not suffer from the above problem of an approximate mathematical model. 
Also, if reality may be sufficiently well described by a model, but the model is 
too complicated to  be handled analytically, a learning controller might be more 
appropriate. However, some benefits of analytical controller design, for example 
the analytical proof of stability, will be sacrificed if no analytical model is assumed. 
Due to the importance of stability issues, other ways of guaranteeing the correct 
functioning of the controller, e.g. numerical methods or less rigorous checks for 
plausibility, have to be applied. 

Although the concept of autonomously learning control is very appealing, several 
aspects known from classical control theory must be considered in order to find an 
approach that is a real alternative to  classical methods. Unfortunately, as criticized 
in (Geva and Sitte, 1993), many learning approaches are tailored to  a special 
application which make them difficult to compare and to apply in a more general 
framework. 

Therefore, the design of the proposed FYNESSE~ architecture was driven by five 
requirements that are fundamental for a reasonable and widely applicable learning 
controller. They include the demand for learning when only the control target is 
given and no other a priori knowledge can be assumed, the need for the correct 
treatment of temporal or dynamic effects and the possibility to integrate and extract 
control knowledge. 

What we derive from our basic requirements turns out to be a hybrid system. It 
contains both a neural network and a fuzzy module. Recently, neuro-fuzzy systems 
have become a very active field of research. There are many attempts to com- 
bine learning capabilities with the possibility of interpreting and understanding 
knowledge. From this point of view, the combination of neural networks (learn- 
ing capabilities) and fuzzy systems (natural language representation) seems very 
promising. Most of these systems realize a fuzzy controller by a neural network, 
e.g. (Berenji and Khedkar, 1992; Nauck et al., 1993; Sulzberger et al., 1993; Jang, 
1992; Bersini et al., 1993; Glorennec, 1993; Wang, 1994; Eppler, 1993) by trans- 
lating the concepts of fuzzy control to  neural networks and by exploiting learning 
algorithms like backpropagation. The fusion of neuro and fuzzy systems are based 
on some compromises. On the one hand, special neural networks are used that tend 
to  lose the basic property of distributed representations. In most neuro-fuzzy sys- 

1. FYNESSE stands for (Fuzzy-Neuro control system) 



9.2 Essential Requirements 293 

tems, each neuron plays a distinct role with a fixed interpretation. There is no real 
room for self-organization; this leads to reduced learning capabilities. The embed- 
ded fuzzy systems, on the other hand, are simplified to parametrized models with 
restricted approximation capabilities. In many applications these compromises have 
been shown to work satisfactorily-for example in the case of supervised learning 
for function approximation. 

Here we focus on another class of problems, namely the autonomous learning 
of control tasks. As we will see, to solve such problems, we will need important 
properties of each paradigm individually to appropriately address different aspects 
of the overall job. Hence within the FYNESSE architecture presented in this chapter, 
the fuzzy and the neural network paradigms are strictly separated and realized in 
two interacting (coprocessing) modules. 

The contents of this chapter are organized as follows. In Section 9.2 five essential 
requirements for the control architecture are put forward that form the basis of 
our design decisions in Section 9.3. This leads to the introduction of the m a i n  
concepts and degrees o f f reedom of the FYNESSE control architecture in Section 9.4. 
Section 9.5 explains the different parts and mechanisms of FYNESSE in detail, the 
procedure of self-learning to control a plant is demonstrated on the example of a 
chemical plant in Section 9.6. Conclusions close the chapter. 

9.2 Essential Requirements 

The design of the FYNESSE architecture has been guided by five fundamental re- 
quirements that are presented below. From our point of view, these requirements 
specify essential aspects that a system capable of learning to control should defi- 
nitely address. 

9.2.1 Dynamical Systems 

In many real world control applications, the management of temporal effects plays 
a central role. This is due to the dynamic nature of physical systems, which means 
that a certain event may not only influence the immediate response, but may also 
have a considerabe influence on the behavior of the system for a long time in the 
future. As a consequence, if we warit to influence a system to behave in a ‘controlled’ 
manner, we have to ensure that each control decision takes its future consequences 
into account. Every controller design method, whether analytical or not, has to 
address this important aspect. In classical control theory dynamical etfects are 
handled within t,he framework of differential equations. In the context of learning 
systems, which is the focus of this chapter, the correct treatment of dynamic effects 
inevitably leads to the hard-to-solve situation which is known as the temporal credit 
assignment problem. 



294 FYNESSE: A Hybrid Architecture for Self-Learning Control 

Requirement 1 
If we want to  manage interesting real world systems, we have to  take care of dynamic 
properties. 

9.2.2 Autonomous Learning 

In situations where we have an expert who already knows how to control a certain 
system, supervised learning methods may be applied simply to imitate the strategy 
of the expert. Reasons for this type of learning may be to  substitute the expert in 
order to  have a faster or cheaper control system. Additionally, one often aims at  
exploiting the generalization abilities of the learning mechanism, i.e. to find sensible 
answers in situations that have never been presented before. Nevertheless, in order 
to  conduct learning from examples we need a teacher who already knows the correct 
answers for at least a sufficiently large number of situations. 

Very often we are faced with the control of systems where no expert control 
knowledge is available. This is the scenario of autonomous learning which is the 
focus of this chapter. The idea behind this approach is that  a learning system 
should be able to learn a given task, when it is told only if its current behavior is 
either good or bad. The situation gets even more complicated if this judgement is 
not given after each decision, but only after the result of a complete sequence of 
decisions is observed. Clearly, this corresponds perfectly with the properties already 
mentioned about dynamical systems: current events or decisions can influence the 
complete future behavior of a system. Consequently, only the final outcome can 
determine the appropriateness of each control decision taken so far. 

Requirement 2 
In order to  manage complex processes where no or hardly any a priori knowledge is 
available, the learning procedure should be able to learn from as little information 
as possible. 

9.2.3 Quality of Control 

Given a concrete controller task, in general there are different competitive opti- 
mization goals. If, for instance, the controller is to control the temperature of a 
class room, such goals could be: . Reach the desired temperature as fast as possible. . Reach the desired temperature without overshooting. . Control the temperature as economically as possible. 

When trying to  develop control laws that lead to high quality control behavior, 
it is obviously important to be able to  specify the actual optimization goal(s) at  
hand. 

Requirement 3 
The learning mechanism should be able to cope with explicit optimization goals. 



9.3 Fundamental Design Decisions 295 

9.2.4 Integration of a priori Knowledge 

To learn a complete control policy from scratch is not always feasible, especially 
in the situation where there is no computer simulation of the process at  hand, 
and consequently the adaptation has to take place on the real process. In such a 
situation it is obvious that the initial controller cannot act in an arbitrary way: the 
system and/or the controller may get damaged and people may be endangered. 

Therefore, for some tasks it is a fundamental requirement to be able to incorpo- 
rate a priori control knowledge. In many situations, a coarse and basic controller 
strategy represents a prerequisite for adaptation without simulation. 

If adaptation starts from such an initially sensitive controller, both convergence 
speed and chances for success may improve dramatically as well. 

Requirement 4 
If there is some a priori knowledge in the controller’s strategy, we should be able 
to integrate this knowledge into the initial controller. 

9.2.5 Interpret at ion 

It is often important to understand a controller’s strategy. There are several reasons 
for being interested in an interpretation of the control knowledge: 

First of all, this understanding may give insight into the process to be controlled. . Especially in safety critical applications we need to  understand why the controller 
is acting the way it does. . Many people do not trust a black box. They need some plausible explanations to  
be convinced of the controller’s performance. 

Nevertheless, t<he most important task of a controller is to do its job as well as 
possible. Interpretation is less important. Therefore the ability to  get an under- 
standing of the controller strategy must not constrain the controller’s adaptation 
facilities and performance. 

Requirement 5 
Whenever the controller makes a decision, we are interested in an explanation of 
this decision. Therefore we need ways to interpret and understand the controller’s 
strategy, but interpretation facilities must not impose any constraints on controller 
performance. 

9.3 Fundamental Design Decisions 

In the following, we take a closer look at the above requirements and present 
methods that are able to  address the different demands faced by an autonomously 
learning controller. As will be seen, the requirements are split roughly into two 
parts. 



296 FYNESSE: A Hybrid Architecture for. Self-Learning Control 

Requirements 1 to 3, control of dynamical systems, autonomous learning, and 
controller quality, niairily address the learning process. All three of them are 
concerned with the properties and characteristics that  the learning mechanism can 
prornise to hold for the ernerging controller. On the other hand, Requirements 
4 and 5, integration of a priori knowledge and interpretation, basically refer 
to the resulting controller itself, no matter how its control strategy has been 
developed. Requirements 1 to 3 influence the specification of the learning procedure 
(Section 9.3.1), whereas Requirements 4 and 5 apply to the representation of the 
controller knowledge (Section 9.3.2). 

9.3.1 Autonomously Learning to Control 

The desire for learning based on the simple information of success or failure 
requires finding a framework in which only the knowledge of the control target (and 
respectively avoidable situations) is sufficient for finding an appropriate solution. 
This means that the learning system should be able to evaluate previous trials 
accordingly, in order to finally find a suitable policy to reach the goal. Moreover, 
by Requirement 3 we warit to be able to  further specify the range of admissible 
solutions, such that the resulting policy fulfills certain aspects of quality. Finally, 
the desire to control dynamical systems requires the possibility of appropriately 
handling temporal effects. As we shall see in more detail in Section 9.5.1, all three 
aspects can be fulfilled within the framework of Dynamic Programming. Dynamic 
Prograrriming methods aim at solving a certain class of optimization problems, 
where temporal effects play a central role. I t  will be shown later that  the control 
tasks considered here fall ir?to this class, and that the underlying learning problem 
can be formulated as a dynamic optimization problem. 

However, there are two aspects of the considered problem situation that make 
the direct application of standard Dynamic Programming methods impossible: . the dynamics of the process are unknown and . the state space of the systeni is continuous. 

These two aspects imply the need for a method that can learn and improve it- 
eratively while interacting with the real process. A modified variant of Dynamic 
Progranirriirig therefore suggests that the optimization procedure is applied only to 
those situations that are actually visited during a control trial. This approach is 
called Real- Time Dynamic Programming (Barto et al., 1995) and will be discussed 
in further detail in Section 9.5.1. The idea is to execute control trials from different 
starting situations repeatedly, thereby improving the knowledge about the conse- 
quences of the current policy. This knowledge is represented in terms of estimated 
costs for each possible state and can be effectively used to optimize the policy. 

The application of the above procedure to a system with a continuous state space 
imriiediately leads to the question of how to store the estimated costs for each state, 
since there are infinitely many possible states. This problem may be approached 
in various ways. One possibility is to partition the state space into a finite number 



9.3 Fundamental Design Decisions 297 

of distinct boxes. The problem with this approach is that  the granularity of the 
discretization mist  be determined in advance. Even worse, tlie number of boxes 
grows exponeritially with the number of dimensions. For these reasons, we decided 
to use a feedforward neural network here. The costs are not explicitly stored for 
each state, but are computed by tlie neural network function. The neural mapping 
of states to their costs is determined by the paranieters (weights) of' the neural 
network, which are adapted during the learning phase. The advantage of the use of 
a neural network to represent the costs hence lies in tlie fact that a finite number 
of parameters is sufficient to represent an arbitrary niappirig between continuous 
state information arid the associated costs. 

To summarize, we propose solving Requirements 1 to 3 using a neural network 
learning method based on Dynamic Programming. As we will see in Section 9.5.1, 
this offers the possibility of learning optimal control behavior when only minimal 
training information is available. However. tlie remaining Requirenients 4 arid 5 
have not been considered up to now. To do so. we somehow have to represent the 
policy explicitly. This is explained in the following section. 

9.3.2 Representation of Controller Knowledge 

In order to be able to reason about controller strategies. we first of all need 
some explicit and intuitive representation of the controller knowledge. If, for 
instance, the cont(ro1ler is realized by a neural network, such an explicit and intuitive 
representation is missing. Therefore we are looking for a representation scheme that 
is both as general and as flexible as possible. 

The job of a controller is to rriap inputs to outputs, i.e. sensory information to 
control actions. Ideally a controller is a mapping c : I -+ O froni some input space I 
into some output space 0. Nevertheless, the following properties are riot supported 
by such a simple mapping: 

In some situations there niay be only one reasonable action, whereas in other 
states many control actions may be applicable. . Some controller actions may be well established and resolute, whereas others are 
less determined. In the second case several control actions may be chosen as well. 

Especially wlieri learning is complicated, it should be possible to represent stochas- 
tic information iii order to explore tlie space of possible actions. 

From this we conclude that representing the controller knowledge with a mapping 
is too restricted. By generalizing the notion of a mapping ( 2  : I -+ 0 we naturally 
derive the notion of a relation C : I x 0 + (0, l}; then any sensory information 
may be mapped to more than one control action. Further generalizing tlie notion 
of a (crisp) relation into a fuzzy relation c( : I x o -+ [o, 11, we are finally able to 
differentiate the degree of applicability of several control actions. 

The concept of a fuzzy control relation ineam: given bonie input state i E I ,  for 
each o E 0 the value pc (  i .  o)  represents tlie controller's knowledge coricerriing tlie 



298 FYNESSE: A Hybrid Architecture for Self-Learning Control 

“degree of applicability” of the control action o in state i. Of course, there are several 
types of sernantics on this “degree of applicability,” see Section 9.4.2.2. There are 
numerous ways of deriving crisp answers from fuzzy relations, both deterministic 
and stochastic ones. And last but not least the crisp mapping c from above is simply 
a special case of a fuzzy relation C. 

With respect to Requirements 4 and 5, integration of a priori knowledge 
and interpretation, a fuzzy relation is a very reasonable choice. Relevant types 
of available a priori knowledge (Requirement 4) are fuzzy rule-based systems, 
statistical information (observation of human operators) and control mappings 
derived from classical control theory. All types can be represented by a fuzzy 
relation. 

When it comes to the interpretation of a fuzzy relation (Requirement 5), we have 
to develop techniques to invert the above. In the first case of fuzzy rule-based sys- 
tems, for instance, this means finding a set of rules with a relational representation 
matching the fuzzy relation at  hand. If another form of intuitive knowledge rep- 
resentation is required, we have to develop corresponding approximation schemes. 
Since an exact approximation is not expected, these algorithms will be based on 
optimization procedures. Following Requirement 5 the main optimization goals are 
the comprehensibility of interpretation and, less important, the precision of approx- 
imation. 

In conclusion, we observe that a fuzzy relation offers both the generality and the 
flexibility needed: Generality, since the notion of a fuzzy relation covers relevant 
types of control knowledge, and flexibility, since both the semantics of the mem- 
bership degrees and the method of deriving control actions from fuzzy information 
are not restricted at all in contrast with other approaches (see Section 9.1). 

9.4 The FYNESSE Architecture 

The considerations above imply a combined approach, where learning and control 
facilities are divided into two separate modules with different properties. The 
two modules cooperate in order to solve the task as a whole (coprocessing). 
The first module, a neural feed-forward network that is used to implement an 
approximate Dynamic Programming method effectively and efficiently, takes care 
of satisfying Requirements 1 to 3. The second module, a fuzzy relation appropriate 
for integrating and extracting different types of information, is derived from 
Requirements 4 and 5 .  

At first glance it is not yet clear how to specify and where to put the interface 
between these two modules. Trying to answer these questions we found that there 
are actually two different learning tasks as well. The first task is to learn something 
about the future consequences when a certain action is applied in a current situation 
and what it means with respect to the desired global optimization goal. The 
second task is the local decision on whose action should be applied in a concrete 
situation. This division of the learning task into a critic and a controller module is 



9.4 The FYNESSE Architecture 299 

already known in the literature in several variations and with different objectives; 
see e.g. (Barto et al., 1983), (Sutton, 1990), (Berenji and Khedkar, 1992). Since 
this approach perfectly matches the modularization into a neural network and 
a fuzzy relation derived from our requirements above, we decided to adapt the 
critic/controller paradigm to fit our needs. 

In the following section, we explain how this concept is realized here and present 
the resulting FYNESSE architecture. In Section 9.4.2, we will discuss the remaining 
degrees of freedom and their impacts. 

9.4.1 Main Concepts 

From the above considerations that were derived from the requirements for a self- 
learning control architecture as stated in Section 9.1, we now formulate the concepts 
of the FYNESSE architecture. As we will see, besides some fundamental and fixed 
properties, the framework offers several degrees of freedom that can be parametrized 
according to the concrete requirements of the respective application. 

The fundamental features of the FYNESSE control architecture are: . use of two separate modules to learn to control and to  explicitly represent the 
policy, . learning is based on a neural implementation of Dynamic Programming methods 
and . explicit representation of the controller by means of fuzzy relations 

Both neural and fuzzy approaches are used within the FYNESSE architecture. 
Note, however, t,hat crucially different from many neuro-fuzzy systems, within our 
framework no mixing of the two paradigms occurs. Instead, we allow the two 
separate modules to interact or communicate-the neural network based critic 
establishes the basis for changing the strategy represented by a fuzzy relation, and 
vice-versa, the explicit policy representation should help the critic to  learn in a faster 
and more robust way. Originating from this concept of communication, various 
levels and modes of interaction can be derived. They establish various degrees of 
freedom which can be chosen according to the requirements of the respective control 
task. This is the focus of the following section. 

9.4.2 Degrees of Freedom 

9.4.2.1 Types of a priori Knowledge 

As mentioned above, knowledge about the control strategy can be given in different 
ways: . crisp control laws, 

fuzzy rules and 



300 FYNESSE: A Hybrid Architecture for Self-Learning Control 

Figure 9.1 The FYNESSE architecture 

. statistical information. 

Classical control theory leads to crisp control laws via an analytical model of the 
process. If that is not available or too difficult or expensive to develop an expert 
may formulate a controller in terms of fuzzy rules. Furthermore, by observing an 
existing controller (e.g. human operator) histograms may be obtained. All these 
types of a priori knowledge can be represented by a fuzzy relation. 

9.4.2.2 Types of Fuzzy Control Relations 

A single fuzzy control relation reflects the knowledge about the control strategy at  
a certain stage of learning. The uncertainty of the strategy may be measured by the 
fuxxiness of the relation, but it is not possible to detect the stage of learning, i.e. 
locating situations that we have not yet learnt to handle. In (Weisbrod, 1996; Spott 
and Weisbrod, 1996) a concept was introduced that allows an explicit representation 
of ignorance and inconsistent knowledge. The idea is the use of two fuzzy relations, 
each attached to its own semantics: one for positive and another for negative 



9.4 The FYNESSE Architecture 301 

knowledge. In the case of complete ignorance, nothing can be supported (positive 
knowledge) and everything is possible (negative knowledge). Learning control 
then means that the support of good control actions will rise and bad ones will 
be forbidden. Since the neural critic itself changes during the learning phase, its 
evaluations of the controller’s performance will be inconsistent over time. This case 
is reflected by the two relations: a control action may be supported and forbidden 
simultaneously. As it cannot be decided which evaluation is correct, inconsistent 
knowledge will be transformed into ignorance. The formal definition of consistent 
knowledge is that the level of possibility of a fact must be greater than or equal 
to the level of its support. In the case of an inconsistency, e.g. the support is 
greater than the possibility, we adapt the levels of support and possibility to enforce 
consistency. A simple method, for example, is to swap the values. In this way the 
level of inconsistency (lpossibility - support\) becomes the level of ignorance. 

Furthermore, the knowledge about regions of ignorance can be used for active 
control of the learning procedure: learn especially in those situations in which the 
controller is ignorant. In this way a good exploration of the system’s state space 
can be guaranteed. All in all we have two basic possibilities to represent the fuzzy 
controller: . one fuzzy control relation and 
w two fuzzy control relations (positive/negative knowledge). 

9.4.2.3 Application of the Fuzzy Control Relation 

The fuzzy control relation maps a given (crisp or fuzzy) input onto a fuzzy 
output. As only crisp values can be applied to the plant the fuzzy output of the 
controller must be retransformed into a crisp value (defuxzif ied).  Several methods 
are described in the literature of fuzzy systems, the choice of an appropriate one 
depends on the application: 

w center of gravity, . mean of maxima, . stochastic defuzzification (in the learning phase) and . others. 

Since the control information in the fuzzy relation is induced by Dynamic Pro- 
gramming the method m e a n  of m a x i m a  plays an important role in the context of 
FYNESSE (see Section 9.5.2.2). 

9.4.2.4 Interpretation of the Controller’s Strategy 

Two main goals characterize the interpretation of the self-learned controller: 

1. Comprehensibility of interpretation and 
2. Quality of approximation. 



302 FYNESSE: A Hybrid Architecture for Self-Learning Control 

The interpretation is intended as a mechanism that translates the numerical infor- 
mation in the fuzzy control relation into a form that can easily be understood by 
human experts. An intuitive form is given by fuzzy rules, e.g. “IF x is A THEN 
U is B,” where x and U are the input and output of the controller, A and B are 
fuzzy sets defined on the universes of input and output. The variables can be la- 
beled with linguistic terms, i.e. we obtain linguistic rules like “IF temperature is 
high THEN open valve widely.” Each rule represents partial knowledge about the 
control strategy. The aggregation of all rules covers and approximates the complete 
control relation. There are several degrees of freedom in the extraction of control 
rules: 

number of rules, . shape of fuzzy sets (A, B), . location of fuzzy sets and . semantics of rules. 

Since each expert applies his own standard to the interpretation, he should be able 
to restrict the degrees of freedom for his purpose. For example, he may want to 
restrict the number of rules or demand convex fuzzy sets. He must also lay down 
the semantics of “IF . . . THEN . . . ” in the fuzzy rules: The most important 
interpretations are given by . fuzzy logic (logical implication or logical conjunction) and a . functional view (map A onto B). 
Especially the distribution of premises A or conclusions B may be too difficult for 
the expert, i.e. what part of the input/output space is covered by which rule. So, 
depending on the expert’s requirements and his skills we can . distribute premises or conclusions by hand or . distribute premises or conclusions automatically. 

The automation of rule extraction is one of our current research topics. 
Clearly the main goals of interpretation are contradictory: The more exact 

the approximation of the control relation the more difficult the interpretation 
becomes for the expert. The reason for this is that the number of rules will 
increase and the shape and location of fuzzy sets will become incomprehensible 
with growing precision of approximation. Besides that, the control relation contains 
some noise that can be filtered out by a rougher approximation. On the whole the 
comprehensibility of interpretation is more important than its precision. 

9.4.2.5 Interaction between Critic and controller 

The main learning scheme in FYNESSE consists of three steps: 

1. Incorporation of a priori knowledge, 



9.5 Stepping  i n t o  FYNESSE 303 

2. Self-learning control and 

3.  Interpret at ion. 

In the learning step the fuzzy relation and the neural network exchange information 
about the control strategy (see Figure 9.1). In the following both directions of 
information flow will be explained briefly. This leads to different possible types of 
interaction in the learning phase. 

The neural network learns a cost function that represents an implicit controller. 
In Section 9.5.2.2 it is shown how an explicit controller can be obtained from this in 
a transformation step. The result is the fuzzy control relation. In this case control 
knowledge is passed from the neural network to the fuzzy relation. On the other 
hand, if we integrate a priori knowledge about the control strategy into the fuzzy 
relation, first of' all the information must flow in the reverse direction. The neural 
cost function is trained to correspond with the control strategy. 

There are some possible types of iriteraction between the neural network and the 
fuzzy relation. They can be characterized by the mechanism of knowledge transfer 
from the neural network to  the fuzzy control relation: . transformation 

adapt a t  ion. 

The first is simply the transformation described above. The neural network is 
trained and the fuzzy relation exactly reflects the control knowledge embedded 
in the neural cost function. In this case learning is restricted to the neural network. 

In the second approach the neural network and the fuzzy controller really interact, 
they learn from each other in contrast to the static transformation above. The idea 
is that the implicit control knowledge in the neural network is only used as a trend, 
i.e. some kind of critical signal. The fuzzy relation is then adapted according to this 
criticism instead of completely passing the current control knowledge from neural 
cost function into the fuzzy relation. The advantage is that the learning process will 
be smoothed, temporary bad local states in the net will not harm the controller. 
This is especially irnportant in the early stages of learning. 

9.5 Stepping into FYNESSE 

9.5.1 The Learning Critic 

9.5.1.1 The Learning Scenario 

As pointed out, t,he task of the learning module is to solve the temporal credit 
assignment probleni that inevitably occurs when dynamic effects have to be appro- 
priately addressed. Here we assume additionally that no external training informa- 
tion is given. Only the control target and situations that are likely to be invalid are 
specified-this is the basis to decide about success or failure of the current behavior. 



304 FYNESSE: A Hybrid Architecture for Self-Learning Control 

This situation is closely related to biological learning, where a successful trial yields 
a reward (e.g. food) and thus the corresponding behavioral patterns are strength- 
ened or reinforced. Thus, learning situations where only a judgement about success 
or failure is provided are commonly termed Reinforcement Learnning (RL). Here 
we focus on a special class of reinforcement problems where the judgement over a 
decision comes with some delay, namely at  the end of a trial. Recently, interest has 
been growing in the application of methods based upon the theory of Dynamic Pro- 
gramming (Bellman, 1957) to solve learning problems of the above kind (Watkins, 
1989; Werbos, 1990; Barto et al., 1995; Bertsekas and Tsitsiklis, 1996; Riedmiller, 
1996a,c). Dynamic Programming methods offer a solid mathematical foundation 
with the goal of finding optimal solutions for temporal optimization problems and 
therefor constitute an ideally suited framework for the class of learning problems 
that we want to solve by the FYNESSE control architecture. The ideas of dynamic 
programming are described in the following section. 

9.5.1.2 Dynamic Programming 

Dynamic programming was first introduced by Bellman to solve a special type of 
optimization task, where temporal relations play a central role (Bellman, 1957). 
Consider a dynamical system2 described by the following system of equations 

where xt denotes the current state of the system, ut is the action or control signal 
applied to the plant, and f describes the system’s transfer function. The output 
gt of the system is computed depending on state xt by the output function g. The 
control signal ut that is applied to the plant is determined by the control policy 7r 

7r : x -+ U ,  U t  := 7r(xt), 

which selects one control signal out of a finite set of available actions U = 
( ~ 1 , .  . . , un}. The goal of optimization is to find an optimal control strategy 7r* 

that minimizes the accumulated costs over a complete control trajectory when the 
the plant starts in state 20: 

Here, the function T : ( X , U )  -+ R denotes the immediate costs that arise when 
action U is applied in state x. Thus by choosing T ,  the quality of the control 
strategy can be specified. To solve the optimization problem, the whole trajectory 
of accumulated costs has to be considered: actions with low immediate costs r ( x ,  U )  

2. To simplify the notation, we refer to a deterministic system here. The approach can be 
extended easily to the treatment of stochastic systems. 



9.5 Stepping  into FYNESSE 305 

may have advantages initially, but may have unfortunate consequences in the future. 
The theory of dynamic programming provides several methods to solve problems 

of the above kind. One such method is the value iteration technique. The idea is to 
approximate the optimal accumulated cost function J *  by improving estimates for 
the optimal costs for the states iteratively: 

Under certain assumptions, which will be discussed in Section 9.5.1.3, the sequence 
JI,  converges J * .  Once J* has been determined, the optimal control strategy is also 
known: 

7r*(x) := argmin{r(x, U U )  + J*(f(z, U ) ) } .  (9.2) 

The optimal action minimizes the sum of immediate costs r(x, U )  and accumulated 
future costs J *  that occur when this action is applied. 

9.5.1.3 Conditions of Convergence 

There are several possible sets of assumptions, which guarantee the convergence of 
the value iteration method. One popular framework is the shortest path scenario, 
where an absorbing terminal state is assumed. Unfortunately, closed loop control 
of dynamic systems is an ongoing process, and typically no such terminal state 
does exist. Instead, we formulate other conditions under which convergence can be 
proven (for an exact specification of the assumptions and the proof the reader is 
referred to (Riedmiller, 1996b)): 

1. There exists a set of states X +  with zero immediate costs: 

'dx E X+'du : r ( x , u )  = 0, 

2. For all other states immediate costs are positive: 

Vx 6 X +  'du : ~ ( x ,  U )  > 0, and 

3. With the available control signals it is possible to 
(a) control the system from an arbitrary start state to a cost-free state and 
(b) keep the system within the cost-free states. 

Then, the following can be shown: . The value iteration method converges towards the optimal costs: 

lim Jk = J * ,  
k t c c  

The optimal control policy 7r* 



306 FYNESSE: A Hybrid Architecture for Self-Learning Control 

0 Controls the system to  a cost-free state x+ E X +  

0 Then, the system is permanently kept within a (sub)set X *  C. X+ of cost-free 
states 

x E x* =+ f(x, 7r*(x)) E x*. 
This theoretical framework has an important practical impact for the control 
problems that we try to solve by learning. 

Consider a typical control task, where the output of the plant should be controlled 
to equal a given target value ytarget. The controller has a finite set of different control 
signals U that  may be applied to the plant. Now we are looking for an appropriate 
policy 7r* : X -+ IA that solves the task. The value iteration method is applied to 
approximate the optimal cost function and thus to solve the control task. To do so, 
the above assumptions must be fulfilled. We define 

where 6 denotes the maximum allowed tolerance. If the output is not within that 
region, than we select r ( x ,  U )  > 0 (Assumptions 1 and 2). To fulfil1 Assumption 3a 
and 3b, it must then be possible to control the plant within the target region X f .  
To guarantee this, the set of available actions U has to be chosen accordingly. The 
proposal now states that  the value i terat ion method will converge. Secondly it will 
automatically find a policy that controls the plant within the cost-free region. Due 
to  our special choice of T ( X , U )  this means that the output then equals the target 
value (f6). Thus, the resulting optimal control strategy solves the original control 
task. 

9.5.1.4 Value Iteration and Learning 

As pointed out, learning within this approach means to approximate the optimal 
value function. In the original value i teration method this is done by stepping 
through the set of all states, updating the values of the value function according 
to the equations in Section 9.1. This assumes that the state space is finite. If we 
do not want to assume a finite number of states-for example because the current 
state information is a vector of continuous sensor values-we have to apply another 
technique. The Real- T i m e  D y n a m i c  Programming approach proposed in (Barto 
et al., 1993) suggests to update only those states that occur during a control 
trial. The idea is to start the plant in one of a finite set of random starting 
situations, which will be denoted by X o .  The plant is then controlled by choosing 
the action which is best according to the current knowledge, represented by the 
current approximation of the cost function, Jk:  



9.5 Stepping i n t o  FYNESSE 30 7 

Then, the selected control signal is applied to  the plant which changes its state 
to xt+1. This information can be used to update the approximation of the cost 
function: 

These three steps--action selection, Equation 9.3, application to the plant and 
update of the value function, Equation 9.4-then exactly implement the value 
iteration step in Equation 9.1 for state xt. 

9.5. I .  5 Neural Value Iteration 

As already pointed out, due to the continuous nature of the state space, a neural 
network-more exactly a multilayer perceptron-is used to compute the values 
of the estimated value function. The input of this network is the current state 
information x t  arid the output represents the estimated cost value J ( x t ) .  When 
using a neural network, the assignment made by Equation 9.4 cannot be made 
directly. Instead, the assignment is expressed in terms of a minimization between 
actual output, and new target value 

To minimize the difference between the actual output of the network and its desired 
target value, the weights in the network have to be updated accordingly. This can 
be done by using standard gradient descent techniques based on the application 
of the backpropagation algorithm. What makes this update formula special is that 
the target value is not given externally, but is computed as the cost value of the 
successor state by the neural network itself. This special type of learning is therefore 
called Temporal Digereme (TD) learning (Sutton, 1988). 

9.5.1.6 Model Based and Model Free Approaches 

Finally, a word should be said concerning the use of an internal model. The pure 
value iteration idea as presented above assurnes the evaluation of the states. This 
implies the need for a model f of the process in order to choose the appropriate 
action (Equation 9.3). However, typically a model of the plant may not be avail- 
able. A tricky solution to this problem is to  represent the value of the costs for 
state/actiorzs pairs z ,u  directly. This is the idea of the Q-Learning approach pre- 
sented in (Watkins, 1989). The relationship between the function J which evaluates 
the states and Q which evaluates state/action pairs is given by 

J ( z )  = min{Q(z, U ) } .  
U 



308 FYNESSE: A Hybrid Architecture for Self-Learning Control 

The procedure of action selection then reduces simply to stepping through the Q 
values of the available actions: 

ut = argmin{Q(xt, U ) } .  (9.5) 
UEU 

This alternative representation thus allows a complete renunciation of a plant model 
inside the control architecture. 

9.5.2 The Explicit Controller 

9.5.2.1 Introduction 

The neural network learned to control the plant, but we neither know its strategy 
nor the uncertainty of its strategy. Below we show that the implicit information 
about the strategy in the neural network is indeed uncertain, i.e. fuzzy. The idea is 
to transform this information into a fuzzy relation, i.e. explicit control knowledge. 
As pointed out in Section 9.4.2.5, this can be done by a static transformation in 
one step or by an adaptation of the fuzzy relation. In this chapter we focus on the 
case that the neural network is trained using &-Learning (see Section 9.5.1.6). 

The fuzzy control relation can be interpreted in terms of fuzzy rules, e.g. “If 
x is negative small then U is positive small” with input x and output U of the 
controller. These rules can easily be understood, verified and changed by humans. 
It is explained how the extraction of such rules works. 

9.5.2.2 Transformation of the Neural Cost Function 

The control policy is implicitly given by the cost function Q(x ,  U )  that is represented 
by the neural network. In state x the costs Q(x, ui )  are compared for all U i  E U ( x ) .  
The controller chooses the action uteSt that minimizes the future costs: 

That means that Q offers information about the future costs that an action is 
expected to produce. The idea is to transform Q into a measure qual of quality or 
applicability of an action U given a state x. We require 

1. quaZ(x, U )  = 1 for a very good action 
2. quaZ(x,u) = 0 for a very bad action 

A quality value of medium actions should be scaled relatively to the best and 
worst actions. &(x, .) defines an ordering of actions: the lower Q(x ,  U )  the better is 
the choice of U in state x. The problem is that this ordering is local-it is restricted 
to the chosen x. In order to guarantee a global (with respect to the states x) 
comparability of qualities, a global scale and a shift parameter that depends on x 



9.5 Stepping  into FYNESSE 309 

are needed for the transformation of Q into qual. These considerations lead to 

qual(x, U )  = 1 - min{ 1, scale-’ - (Q(x, U )  - Q(x, uiest )>}  - sh i f t (x )  (9.7) 

with 

shZft(x) E [O? 1 - scale-’ * (Q(x, ~ G o v s t )  - Q(x?  test))] 

and 

scale 5 sup{Q(x, uZOTSt) - Q ( x ,  uteSt)} =: scale,,, . 
X E X  

The choice of shift answers questions like: Is the best action U& in a state x 
always a very good action (qual(x, ucest) = l)? Is the worst action u ~ , , , ~  in a state 
x always a very bad action (qual(x, u:,,,~) = O)? scale on the other hand has great 
influence on the shape of qual: The smaller scale is, the greater is the differentiation 
between, for example, two qualities qual(x, U’) and qual(x, u 2 ) .  

Figure 9.8 shows qual as the transformation of the neural controller of the 
chemical plant that is described in Section 9.6. We set shift z 0, i.e. qual(x, ugest) = 
1: The best action *ugest in a state x is assigned the quality “one,” all other actions 
are scaled relatively to it. If we chose a smaller scale than we did, the plateau on 
the right hand side of qual would have become an inclined plane like the one on the 
left side. This would have falsified the impression of the controller’s uncertainty. 

Now the question arises how to obtain a crisp control strategy from the fuzzy 
control relation qual and especially, if the strategy obtained from the Q-function 
through Equation 9.5 can be reconstructed from p a l .  The answer to the second 
question is positive: on the assumption that the strategy is unambiguous, the mean 
of maxima defuzzification fulfills the requirement. 

9.5.2.3 Adaptation of the Fuzzy Control Relation 

Transforming the implicit control knowledge of the neural cost function one by 
one into the fuzzy control relation results in the destruction of the existing control 
strategy of the fuzzy relation. The danger of this fact is easily understandable 
when the fuzzy relation is equipped with a priori knowledge and the neural 
network stochastically initialized at  the beginning of learning: The existing control 
knowledge is held completely in the fuzzy relation and the first transformation of 
the ignorant network would destroy the prior knowledge. When we take into account 
that the neural network may run into local minima in training (cf. Figure 9.4) this 
problem can obviously be generalized to all stages of learning. The solution to this 
problem is the interpretation of the value qual(x, U )  as a criticism of action U in state 
x. Instead of defining the control relation, written as &, by fi(rc,u) := qual(z,u) 
for all (2, u)-this is done by the static transformation-we adapt k ( x ?  U )  locally 
according to qual(x, U ) .  The basic algorithm can informally be described as follows: 

I n  state x the fuzzy control relation applies action U :  



31 0 FYNESSE: A Hybrid Architecture for  Self-Learning Control 

1. Calculate the evaluation qual(x, U). 
2. If qual(z, U) is high, then raise h ( x ,  U). 

3. If quaZ(z,u) is low, then lower fi(z,u). 

Formally the basic adaption rule reads 

A(Z, U )  := (1 - cr)h(z, U) + o! - qual(x,  U) 

with a learning parameter cr E (0,1]. More complicated forms also adapt the 
neighborhood of (2, U )  or use relaxation terms. 

The adaptation rule can simply be applied to the case of two fuzzy control 
relations: support distributions for positive knowledge and possibility distributions 
for negative knowledge. 

If the quality qual(x,u) is high, then raise the support of ( x , ~ )  (positive knowl- 

If the quality qual(z,u) is low, then lower the possibility of (z,~) (negative 
edge) 

knowledge) 

Arguments for the choice of action U in state x (high quality qual(x,u)) are 
“collected” in the support distribution, arguments against (low quality qual (x, U)) 
are summarized in the possibility distribution. 

The learning phase can be stopped if the two relations meet. Then support 
and possibility of all ( x , ~ )  have become identical. The greater the difference 
between support and possibility is, the less we know. If the support overshoots the 
possibility then we have detected inconsistent knowledge that will be transformed 
into ignorance. In order to achieve this, support and possibility are changed in 
a way such that the support will be smaller than the possibility. The size of 
the gap between support and possiblity is a measure of the level of ignorance. 
These adaptation algorithms including the treatment of ignorance and inconsistent 
knowledge, are explained in detail in (Spott and Weisbrod, 1996). 

9.5.2.4 Interpretation of the Fuzzy Control Relation 

In this chapter interpretation of the fuzzy control relation qual means an approx- 
imation of qual by the aggregation of a set of fuzzy rules. That means that the 
input space X and the space of actions U of the controller will be divided into 
fuzzy regions (fuzzy sets) Xi and ai. We can assign linguistic terms, like negative 
small or positive small, to the fuzzy regions and relate them by rules of the form 
“If x is negative small then U is positive small.” A rule is represented by a fuzzy 
relation that is calculated from its premise X and its conclusion 0. The formula for 
this calculation is determined by the semantics and type of rule we want to  use (see 
Section 9.4.2.4). We concentrate on the logical interpretation with Mamdani-type 
(logical conjunction) and Goedel-type (logical implication) rules, since they play 
an important role in the theory of possibility (negative knowledge) and evidence 
(positive knowledge) (Weisbrod, 1995). 



320 

'positive- 
'negative-:Small-u' 

-._ 
-.. 

--. 
-.. 

--.. --.. --.. 

FYNESSE: A Hybrid Architecture for Self-Learning Control 

mall-x' ~ ~~ ~~ ~~ 

0.8 - 

0.6 - 

0.4 - 

0.2 - 

0- 
-0.04 
I 

-0.03 
-..L 

-0.02 
I 

-0.01 
I 

0.01 
I I 

0.02 0.03 0.04 

Figure 9.12 Rule 2 of the controller. 

1 :  

0.8 - 

0.6 - 

0.4 - 

0.2 - 

0- 1 I I 1 -  

-0.04 -0.03 -0.02 -0.01 0 0.01 0.02 0.03 0.04 
x, U 

Figure 9.13 Rule 3 of the controller. 

rule 4 
1 -  I I I I I I 

- - _ _  
-._ 

0.8 - \-\>- .  

0.6 - 

0.4 - 

0.2 - 

0 I.- I -1 
-0.04 -0.03 -0.02 -0.01 0 0.01 0.02 

x, U 

--. 
-.._ ---. 

-. . 

A 

0.03 0.04 

Figure 9.14 Rule 4 of the controller. 



31 2 FYNESSE: A Hybrid Architecture for Self-Learning Control 

0.05 

0.04 

0 . 0 3  

0.02' ' ' ' ' ' ' ' ' ' 
0 10 20 3 0  40 50 6 0  7 0  8 0  90  100 

time (min) 

Figure 9.2 2 2  vs. time-behavior of the uncontrolled chemical reactor 

Calculation of the Rules 

When the premises are distributed the conclusions must be determined with respect 
to the following requirement: The aggregation4 of all rule relations must be a good 
approximation of the fuzzy relation qual. Solving it is an optimization problem. A 
measure approx of the quality of approximation, such as the quadratic difference 
between qual and its approximation, must be minimized. More complex measures 
also take care of the comprehensibility of conclusions. For example, they punish 
big overlaps that make it difficult to distinguish different rules. For each conclusion 
oj the degree of membership of each ui E U has to be optimized with respect to 
approx. The method is explained in detail in (Bolten and Spott, 1997). 

9.6 Control of a Chemical Plant 

9.6.1 Task Description 

The control of a chemical plant represents a challenging benchmark for nonlinear 
controller design. The task can be shortly described as follows (for a detailed 
description see (Follinger, 1993)): In a reactor there is a chemical substance with 
concentration 2 1 .  The substance chemically reacts with the fluid in the reactor in 
an energy-emitting decay process. This leads to a rise of the temperature 2 2  in the 
reactor. On the other hand, the temperature 22 influences the rate of decay of the 

4. In general, a fuzzy relation cannot be modeled exactly by a finite number of rules. 
Besides, this is not the aim of interpretation. We only expect a simple explanation of the 
controller's behavior that is qualitatively correct. 



9.6' Control of a Chemical Plant 31 3 

Figure 9.3 $ 2 2  vs. time-behavior of a nonlinear analytical controller 

substance. Thus we observe two highly interacting processes of concentration and 
temperature (see Figure 9.2) coupled via a nonlinear function y(z1: ~ 2 ) :  

The task is to  control the reactor from an initial working point (z1(0) .~2(0) )  = 
(0.42,O.Ol) to a new working point ( z 1 , ~ 2 ) ~ ~ ~ g ~ ~  - - (0.75.0.05). The behavior of 
the process can be influenced by applying external heating or cooling. Only the 
temperature inside the reactor, the state variable x2. can be measured. Thus the 
input to  the controller consistss of the difference between the current temperature 
2 2  ( t )  and the target temperature xPrget:  

target d 2 2 ( t )  := X 2 ( t )  - 2 2  

In the following the performance of a nonlinear analytical control approach is 
compared to the performance of the self-learning FYNESSE controller. 

9.6.2 A Nonlinear Controller 

One of the goals of the FYNESSE approach is to show a good final control quality 
that is comparable to the quality of conventional controller design. The following 
nonlinear control law is taken from (Follinger, 1993). It is derived using the complete 
knowledge of t,he nonlinear plant behavior. This is also expressed in the structure 
of the nonlinear control law: 



314 FYNESSE: A Hybrid Architecture for Self-Learning Control 

The derivation of this control law is beyond the scope of this chapter. The 
intention is to  present the behavior of a carefully designed analytical controller 
as a standard of comparison for the self-learning FYNESSE approach. The temporal 
behavior of the difference between reactor temperature and its target value, dx2(t) 
is shown in Figure 9.3. 

9.6.3 Learning with FYNESSE 

The rest of the section is dedicated to  the application of the FYNESSE architecture 
to control the chemical reactor. Three main points will be addressed: 

Learning an optimal policy without a priori knowledge. . Integration of a priori control. knowledge. 
Extraction of the acquired control knowledge in terms of fuzzy rules. 

The degrees of freedom in this application are restricted as follows: 

Crisp linear controller as a priori knowledge. 
One fuzzy control relation. 
Mean of maxima defuzzification. . Static transformation of the neural cost function into the fuzzy control relation. 
Interpretation of the fuzzy control relation with the distribution of premises by 

hand and optimization of the conclusions. 

9.6.4 Self-Learning from Scratch 

In contrast to conventional controller design, the self-learning approach used here 
assumes no initial knowledge of the plant’s dynamic behavior. The only ‘informa- 
tion’ is the specification of the control target. In the self-learning approach (Sec- 
tion 9.5.1.3) this target is used to determine the choice of the direct cost function 
r ( x , u ) .  The control task is to bring the temperature x2 of the plant as fast as 
possible to its target value xFrget = 0.05. This means that 

where S = 0.01 defines the range of maximum tolerance between output and target 
value. Here, c denotes a constant value. This means that every control signal applied 



9.6 Control of a Chemical Plant 31 5 

Figure 9.4 Average costs over iiuiiiber of trairiiiig sequences. 

when the plant is outside its target region iinplies tlie same iiiiriiediate costs. Thus, 
when the accumulated costs are iiiiniiiiizecl. the number of control steps outside the 
target region is minimized. This nieaiis that by this special choice of T ( T .  U )  we 
express our wish to learn a tune optirrial control law. Kote that by the definition of 
T-(.T. U )  we just express liow the filial behavior should look like. No idea of liow to 
realize this behvior  is iritroduced. No inforination of the nonlinear control behavior 
is available. The self-learning controller has to learn a11 appropriate control law all by 
itself. To do this. the controller repeatedly controls the plant. Each control sequence 
begins with a different initial state of the plant. After a certain amount of tinie, 
the trial is stopped arid a new trial begins. During each control trial, the neural 
value function, which represents the current approximation of tlie cost function. is 
updated according to  tlie value ztemtzuri rule. By inipro-criiig the approximation. the 
control strategy. wliicli is det ermined by the neural value function (Equation 9.3) 
also improves. This, vice versa, leads to  an iiiiproveiiient of the neural approximation 
of the optiiiial costs. 

The learning process is shown iii Figure 9.4 in terms of the average acciiiiiulated 
costs per control trial. At the beginning, the control law is deterrriiiied by the 
randomly initialized neural net arid is accordingly very poor (average costs e 0.3). 
After about 30.000 trials one can see a very rapid iiiiprovenieiit of the control 
strategy (average costs between 0.1 and 0.04). At this time, the controller is able to  
control the plant. but iiot perfectly optimal. An optiiiial control law is learned after 
about 52.000 control trials. The average costs per trial have reached a niininium of 
0.035. The controller has learned to  control the plant quickly to  its target value. 
The target value is reached even faster than with the carefully derived iiorilinear 
coiit rol law (Figure 9.5). 



316 FYNESSE: A E-lybrid Archztecture for  Self-Learning Control 

Figure 9.5 cln.2 over time-hehavior of the FYNESSE cont,roller 

Figure 9.6 d.r-2 over tirne---beliavior of h e a r  controller. 

9.6.5 Use of a priori Knowledge 

The h i e f i t  of tlie proposed method that learns an optimal control strategy orily 
by clever evaluation of previous experiences is paid for by a rather large amount 
of training sec41iences. This may be no probleni if there exists a coniputer niodel 
of the plant and learning iiiay be performed in simulation. But if we try to  learn 
control of a real plant directly. we niay not have the opportunity of performing 
mi le  ten tlioiisands of trials. One solution is riot to  learn completely from scratch. 
but to incorporate Q prior/ kiiowledge as far as available. The fuzzy module in 
the FYNESSE architecture allows the integration of crisp control laws (as below) or 
forinulation of our U priori control knowledge as rules of a fuzzy controller. Then 
this initial policy is i i sed  to  pretraiii the neural value function. 



9.6 Control 0.f a Chemical Plant 31 7 

Figure 9.7 Average costs over nuiiiber of training sequences. 

To demonstrate the benefits of iiicorporating a priori knowledge, we start froiii 
a crisp linear control law described in (Fdlinger, 1993). The very simple linear 
control law is given by 

The control behavior using this siiiiple linear controller is rather poor. This is 
shown by the output trajectory (dotted line in Figure 9.6). This initial idea of a 
linear control law was now used to pretrairi the neural value function. Therefore, 
the control policy was fixed and the value function \$-as adapted along the control 
trajectories as before. Although the linear control law used as a przori control 
knowledge is far froiii being optimal, pretraiiiing has a treniendous effect on tlie 
learning process. Figure 9.7 sliomrs tlie decrease of the average costs per control trial 
as the training proceeds. After oiilj- 1.100 trials an optimal control performance was 
achieved. Note that without the use of c1 przori kiiowledge. previously over 50.000 
sequences were used to get to  the same level of performance. The control behavior 
itself was sigiiificantly cliaiiged by the leariiiiig process. To see this. the resulting 
control behavior (thick line) is plotted agaiiist the coiitrol beliaxrior of the linear 
controller (dotted line) (Figure 9.6). 

9.6.6 Interpretation of the Controller 

At each learning step the neural cost function can he traiisforriied into the fuzzy 
control relation qiiul. Figure 9.8 shows the transformed neural iietwork cost function 
at the end of learning. As explained in sectioii 9.5.2.2 the defuzzificatioii of qual with 
the met hod mean of m axzma is equivalent to action select ion using Equation 9.5. 
This crisp control strategy c m  be illustrated easily in Figure 9.8: In state R' choose 
the action 11 with the highest quality q u a l ( ~ - .  U ) .  For the interpretation iii terms of 
linguistic fuzzy rules the analysis of quul leads to  the reduction of tlie state space 



31 8 FYNESSE: A Hybrid Architecture f o r  Self-Learning Control 

Figure 9.8 The fuzzy control relation qual(s,u) 

'approximation' ___ 

1 

0.5 

0 

-0.05 

U 

Figure 9.9 The approxiniatiori of qual 

X into four fuzzy premises (cf. Figures 9.10, 9.8). The quality of approximation is 
indeed very high, which is illustrated in Figures 9.8 (the original control relation) 
and 9.9 (the approximation by four rules). 

This means that the policy of the neural controller can be described by four rules 
(Figures 9.1 1-9.14) : 

1. If x is negative then U is slightly positive. 

2. If x is zero then U is around zero. 

3. If z is positive small then U is negative small. 

4. If x is positive big then U is negative medium. 

The premises reduce X to nearly sharp regions, whereas the conclusions are quite 
fuzzy. If x is negative then the quality of all actions is similar-cf. the conclusion of 



9.6 Control of a Chemical Plant 31 9 

Figure 9.11 Rule 1 of the controller. 

rule 1 in Figures 9.11-9.14. Positive actions receive a higher reward than negative 
actions, but the difference is not really big. On the other hand if x is positive then 
the quality of positive and negative actions is clearly separated-cf. the conclusions 
of rules 3 ,  4 in Figures 9.11-9.14. The fuzziness of the neural controller’s policy does 
not affect its quality: The controller always chooses the best action, i.e. it does not 
matter if the other actions are much or only a little bit worse. There are two main 
explanations for a high degree of fuzziness: 

1. The controller did not learn long enough; a clear distinction of good and bad 
actions cannot be expected. 

2. All actions in fact are of similar quality, even the worst action is good with 
respect to  the target of control. 

The degree of fuzziness of a conclusion can be used to  control the process of learning: 
The higher the fuzziness in a region the greater is the need for learning. If the 
degree of fuzziness does not decrease then the second point occurs and learning can 
be stopped. 



320 FYNESSE: A Hybrid Architecture for  Self-Learning Control 



9.7 Conclusions 321 

9.6.7 Summary 

In this section we showed the exemplary application of the FYNESSE controller 
to an analytically hard-to-solve nonlinear chemical process. Aspects of all five 
requirements as established in section 9.2 were addressed. The plant shows nonlinear 
dynamic behavior and the only training information was given in terms of the 
target value for the new temperature inside the reactor. Nevertheless, by learning 
from scratch, FYNESSE acquired a very high control quality, based on minimizing 
the time to  reach the target value. It has further been shown how the use of a 
priori knowledge can dramatically improve the learning process even if the a priori 
knowledge used did not itself establish a very good solution to the problem. Finally, 
the interpretation of the acquired critic knowledge allowed further insight into the 
policy of the controller. 

9.7 Conclusions 

Derived from five essential requirements for a self-learning controllerr, this chapter 
introduces the main concepts of the novel FYNESSE control architecture. The 
demand for learning capabilities on the one hand and the ability to  integrate and 
extract explicit control knowledge on the other hand led to a hybrid approach 
using fuzzy and neural information processing techniques. In contrast to  many other 
approaches, the fuzzy and neural computation modules are strictly separated, and 
rely on a coprocessing mode of cooperation. 

Three main issues characterize the functional properties of the FYNESSE archi- 
tecture: Self-learning is based on a neural dynamic programming approach that 
allows the acquisition of optimal control strategies for dynamical systems by re- 
quiring only a minimum of training information. In fact, only the control target 
must be specified in advance. The second point is the possible use of a priori con- 
trol knowledge formulated either as a crisp control law or as fuzzy control rules. 
The interpretation of the learned control strategy is the third important feature of 
the FYNESSE approach. For example, this allows checking of the control strategy 
for plausibility. 

The generality of FYNESSE offers some degrees of freedom which the user can 
adjust according to the application. A priori knowledge about the control strategy 
may be given as crisp analytical mappings, rule-based fuzzy systems or statistical 
information, etc. Many forms of interpretation of the fuzzy control relation are also 
possible. In this chapter we proposed a method to extract fuzzy control rules that  
facilitates a linguistic interpretation of the controller. One of our main research 
topics is the investigation of different types of interaction between the fuzzy control 
relation and the neural network. While in the application to  the chemical reactor, 
learning takes place mainly in the neural network module (the fuzzy control relation 
is obtained by a static transformation), we currently work on real interactive 
learning procedures. Both modules are adapted; they learn and profit from one 



322 FYNESSE: A Hybrid Architecture for Self-Learning Control 

another, thus the result will be a shorter and more robust learning phase. 
The principles of learning and interpretation are demonstrated on a highly 

nonlinear benchmark problem, namely the control of a chemical reactor. The 
acquired control behavior shows a very high quality. The controller has learned 
to deal perfectly with the nonlinear dynamics of the plant. The integration of a 
priori knowledge dramatically reduced the number of training sequences needed. 
The posterior interpretation of the acquired strategy in terms of fuzzy rules gives 
insight in the strategy that FYNESSE uses to control the chemical reactor. 

References 

Barto, A. G., Bradtke, S. J . ,  and Singh, S. P. 1993. Learning to act using real-time 
dynamic programming. Tech. rep. 

Barto, A. G., Bradtke, S. J., and Singh, S. P. 1995. Learning to act using real-time 
dynamic programming. Artificial Intelligence, 72( 1-2):81-138. 

Barto, A. G., Sutton, R. S., and Anderson, C. W. 1983. Neuron-like adaptive 
elements that can solve difficult learning control problems. IEEE Transactions 
on Systems, Man, and Cybernetics, 132334-846. 

Bellman, R. E. 1957. Dynamic Programming. Princeton, NJ: Princeton University 
Press. 

Berenji, H. R. and Khedkar, P. 1992. Learning and tuning fuzzy logic controllers 
through reinforcements. In IEEE Trans. Neural Networks, vol. 3, pp. 724-740. 

Bersini, H., Nordvick, P. J. ,  and Bonarini, A. 1993. A simple direct adaptive fuzzy 
controller derived from its neural equivalent. In 3rd IEEE Int. Conf. on Fuzzy 
Systems, pp. 345-350. 

Bertsekas, D. P. and Tsitsiklis, J .  N. 1996. Neuro Dynamic Programming. Belmont, 
Massachusetts: Athena Scientific. 

Bolten, E. and Spott, M. 1997. Fuzzy rule extraction from fuzzy relations. In Proc. 

Eppler, W. 1993. Prestructuring of Neural Networks with Fuzzy Logic (in German). 

Follinger, 0 .  1993. Nichtlineare Regelungen. Oldenbourg, 7th edn. 
Geva, S. and Sitte, J. 1993. 

of EUFIT’97, pp. 1019-1023, Aachen, Germany. 

Ph.D. thesis, University of Karlsruhe, Germany. 

A cartpole experiment benchmark for trainable 
controllers. IEEE Control Systems, pp. 40-51. 

Glorennec, P. Y. 1993. A neuro fuzzy inference system designed for implementation 
on a neural chip. In Proc. of the 2nd Int. Conf. on Fuzzy Logic and Neural 
Networks, pp. 209-212, Iizuka, Japan. 

Jang, R. 1992. Adaptive Network Fuzzy Inference System. Ph.D. thesis, University 
of California, Berkeley. 

Nauck, D., Klawonn, F., and Kruse, R. 1993. Combining neural networks and fuzzy 



References 323 

controllers. In Fuzzy Logic in Artificial Intelligence (FLAI93), eds. E. P. Klement 
and W. Slany, pp. 35-46. Berlin: Springer-Verlag. 

Riedmiller, M. 1996a. Application of sequential reinforcement learning to control 
dynamic systems. In IEEE International Conference on Neural Networks (ICNN 
'96) , Washington. 

Riedmiller, M. 199613. Autonomously learning neural controllers. VDI-Verlag. 
Dissertation University of Karlsruhe (in German). 

Riedmiller, M. 1996c. Learning to control dynamic systems. In Proceedings of the 
13th. European Meeting on  Cybernetics and Systems Research-1996 (EMCSR 
'96), ed. R. Trappl, Vienna. 

Spott, M. and Weisbrod, J. 1996. A new approach to the adaptation of fuzzy 
relations. In Proc. of EUFIT'96, vol. 2,  pp. 782-786, Aachen, Germany. 

Sulzberger, S. NI., Tschichold-Gurman, N. N., and Vestli, S. J. 1993. Fun: Opti- 
mization of fuzzy rule based systems using neural networks. In Proc. IEEE Int. 
Conf. on Neural Networks, pp. 312-316, San Francisco. 

Sutton, R. S. 1988. Learning to predict by the methods of temporal differences. 
Machine Learning, 3:9-44. 

Sutton, R. S. 1990. First results with Dyna, an integrated architecture for learning, 
planning and reaction. In Neural Networks for  Control, eds. W. T. Miller, R. S. 
Sutton, and P. J.  Werbos. MIT Press. 

Wang, L. 1994. Adaptive Fuzzy Systems and Control. Prentice-Hall. 
Watkins, C .  J. 1989. Learning from Delayed Rewards. Phd thesis, Cambridge 

University. 
Weisbrod, J. 1995. Fuzzy control revisited-why is it working? In Advances in 

Fuzzy Theory and Technology, Vol. III, ed. P. P. Wang, pp. 219-244. Durham 
(NC): Bookwrights. 

Weisbrod, J. 1996. A combined approach to fuzzy reasoning. In Proc. of EUFIT'96, 
vol. 1, pp. 554-557, Aachen, Germany. 

Werbos, P. J. 1990. Overview of designs and capabilities. In Neural networks for  
control, eds. T. Miller, R. S. Sutton, and P. J. Werbos, pp. 59-66. Massachusetts: 
MIT Press. 



This page intentionally left blank 



10 Data Mining Techniques for Designing 
Neural Network Time Series Predictors 

Radu Drossu and Zoran Obradovik 

A real-life t ime series prediction system is  usually subject t o  two constraints- 
accuracy and t ime ,  meaning that a suf ic ient ly  accurate prediction has to  be provided 
in a n  imposed t ime  frame.  The  objective of this chapter i s  to  demonstrate that the 
knowledge obtained through relatively simple data mining can be embedded in to  a 
neural network t ime series predictor in order to  both reduce i ts  design t ime  and 
improve its accuracy. Direct knowledge embedding methods, based o n  information 
theoretical modeling, dynamical system analysis, and stochastic modeling are dis- 
cussed. I t  i s  illustrated that direct methods can produce a wealth of prior  information 
regarding the choice of an  appropriate neural network architecture, data sampling 
rates, as well as starting values for the model parameters, which otherwise have to  
be found as a result of costly trial-and-error procedures. I n  addition to  direct knowl- 
edge embedding, the chapter also discusses indirect embedding methods which exploit 
known properties of the target funct ion and non-stationarity detection techniques. 
The  use of known properties of the target funct ion can enlarge scarce data sets or 
enforce more accurate learning through constrained optimization. Non-stationarity 
analysis can considerably improve the computational e f ic iency  of t ime series fore- 
casting by avoiding the neural network model redesign more often than needed. 

10.1 Introduction 

The outcomes of a phenomenon over time form a t ime  series. Time series are en- 
countered in sciences as well as in real life. The voltage measured every second 
across a resistor in an electrical circuit, the number of cars passing a marker on 
a highway every minute, the yearly power consumption of the United States, the 
hourly exchange rate of German mark versus U.S. dollar, the daily car production 
of Chrysler corporation are just a few examples of time series. Although sometimes 
outcomes of processes described through mathematical closed forms (known deter- 
ministic functions) are also viewed as time series, most commonly time series are 
the result of unknown or not completely understood processes. Therefore, more for- 



326 Data Mining Techniques for Designing Neural Network T ime  Series Predictors 

rnally, a time series { z t }  can be defined as a function x of an independent variable 
t ,  stemming from an unknown process. Its main characteristic is that its evolution 
can not be described exactly as in the case of a known deterministic function of t .  

It is human nature to have the desire to  know in advance what is likely to happen 
in the future. The observation of past outcomes of a phenomenon in order to 
anticipate its future behavior represents the essence of forecasting (prediction). 
If a mathematical model describing a studied phenomenon is known, forecasting 
becomes a trivial and degenerate task. However, if a model of the phenomenon 
is either unknown or incomplete, different attempts can be made for predicting 
its future evolution. A typical approach is to try to predict by constructing a 
model which takes into account solely previous outcomes of the phenomenon while 
ignoring any other additional exterior influence. Alternatively, a prediction model 
can be constructed which incorporates all the factors which presumably influence 
the process under consideration. For example, the simplest attempt to predict the 
United States power consumption would be by using a prediction model based 
just on previous values of power consumption which neglects any other information 
that might also be available. On the other hand, we could construct a model which 
incorporates additional variables that presumably influence the power consumption, 
like temperature, time of day, season, etc. The choice of one or the other of the 
two approaches is problem dependent and care must be taken when developing a 
prediction model in order not to include variables that do not bear any influence 
on the phenomenon under study, since these would merely act as input noise. 

Real-life time series are often the result of complex and insufficiently understood 
interdependencies. Hence, prediction models make use of incomplete information, 
while other factors not included in the models act as noise. In addition, real- 
life time series are often non-stationary, meaning that the data distribution is 
changing over time. Therefore, for non-stationary domains, a single model built 
on a certain data segment and used for all subsequent predictions is generally 
inadequate. A straightforward attempt is to stationarize the data by performing a 
de-trending preprocessing, e.g. a first or a second order discrete differentiation. More 
sophisticated methods provide solutions for certain types of non-stationarity, e.g. 
a reversible power transformation is successfully used to stabilize the variance of a 
series affected by a strong trend that cannot be removed by differentiation (Abecasis 
and Lapenta, 1996). However, not all non-stationary processes can be stationarized 
through data preprocessing. Forecasting such processes requires on-line learning, 
where a given model is used for a limited time and a new model is constructed 
whenever a change of the underlying data distribution is detected. 

prediction 
system are uccuracy and t ime ,  meaning that a sufficiently accurate prediction has 
to be provided in an imposed time frame. Quite often these two constraints are 
contradictory, signifying that usually, given more time for designing a prediction 
model a better accuracy could be achieved. If time is not an issue, like when 
predicting the yearly power consumption of the United States, accuracy would be 
the only constraint that the design process has to deal with. In these cases multi- 

The two issues which have to be addressed by any time series 



10.2 Direct Informution Extraction Procedures 327 

layer perceptron neural networks are often used in practice. Their popularity is 
due to their universal approximation capabilities, meaning that they can represent 
non-linear complex functions to any desired accuracy (Cybenko, 1989), and to their 
significantly better scaling with the dimensionality of the input space as compared 
to traditional approximation techniques (Barron, 1993). 

However, the design of an appropriate neural network for time series prediction 
problems with high data arrival rates (e.g. Interriet traffic predictions or financial 
intra-day predictions) can be a challenging task, due to time consuming trial-and- 
error architecture selection, non-linear parameter optimization and the need to 
devise new prediction models whenever the underlying data distribution changes. 
For these reasons, any prior knowledge that could be extracted from a time series 
under study can dramatically decrease the design time of a predictor and also 
improve its prediction accuracy significantly. 

This chapter discusses two categories of prior knowledge extraction techniques, 
which are embeddable into neural network prediction models. The first category, 
discussed in Section 10.2 and denoted as direct knowledge embedding encompasses 
information theory, non-linear dynamics, and stochastic analysis. These techniques 
of exploratory data analysis can provide prior knowledge regarding appropriate lieu- 
ral network architecture, initial network parameters and adequate data sampling 
rate. A real-life time series (compressed video traffic data),  as well as an artifi- 
cial, non-linear, chaotic time series (Mackey-Glass data) are used to illustrate the 
embedding of prior knowledge extracted froni stochastic analysis into the neural 
network design process. The second category, indirect know Ze dye embedding, ad- 
dressed in Section 10.3, includes the use of known properties of target functions 
and non-stationarity detection. The use of known properties of the target function 
can enlarge scarce data sets by creating additional artificial training examples, or 
enforce more accurate learning through constrained optimization. Non-stationarity 
analysis can considerably improve the computational efficiency of time series fore- 
casting by avoiding the neural network model re-design more often than needed. 
Therefore, different distribution-change signaling techniques for deciding whether 
to reuse “trusted” models or retrain new ones are discussed and compared on low- 
noise and high-noise, artificially generated, non-stationary time series. 

10.2 Direct Information Extraction Procedures 

10.2.1 Information Theory 

It has been hypothesized (Barlow, 1989) that the redundancy between diff’erent 
input signals allows the brain to discover their statistical relationships, and to use 
them for object recognition and associative learning. A representation has further 
been proposed in which the individual signals are statistically independent, as being 
the most appropriate for storing statistical information. In order to acquire the sta- 
tistical independence (factorial code) of the input signals, a multiple-stage learning 



328 Data Mining Techniques for Designing Neural Network T i m e  Series Predictors 

process can be employed in which every stage reduces the redundancy between its 
input signals generating more decorrelated output signals. This redundancy reduc- 
tion strategy is applied in an unsupervised fashion to  the problem of eliminating 
redundancies from English text (Redlich, 1993a). 

In order to make redundancy reduction effective for pattern recognition or time 
series prediction problems, supervision has to be incorporated into the learning 
process. The goal of the redundancy reduction process, denoted as factorial learn- 
ing (Redlich, 1993b), is to approximate the joint probability P(x1,  x2, . . . , xd) = 

P(.), where d represents the number of input signals, as a product of the individ- 
ual probabilities, P ( x l ) ,  P ( I c ~ ) ,  . . . , P(zd) .  The individual learning stages represent 
better and better approximations to the joint probability. In order to evaluate the 
quality of the factorial approximation at  different learning stages, we can make use 
of the entropy function. Considering that each learning stage represents an Rd to 
Rd mapping, we can use as a cost function the sum of output entropies (Redlich, 
1993b), expressed as 

d 

E = ~ H , ,  
i=l 

where the individual entropies are computed as 

(10.1) 

(10.2) 

with the sum running over all the discretized values of the output variable xi. 
This cost function is minimal when the code is factorial (Redlich, 1993b), so that 
reducing E in stages improves the factorial representation of the joint probability. 
In order to be able to obtain an approximation to the global joint probability after 
a number of stages, which is solely a function of probabilities at  the output level of 
the last stage, we need to impose that information is preserved from one learning 
stage to the next. Denoting by 2 the input vector to a certain learning stage and 
by y the corresponding output vector, the information preservation condition can 
be written as 

(10.3) 

with H[. ]  denoting the total entropy at  input or output level. With this additional 
constraint, minimizing E will produce a factorial approximation to the input joint 
probability, due to the independence bound on the entropy, according to  which 

H L X H i ,  (10.4) 

with equality only when the code is factorial. A network named almost reversible 
cellular automata (ARCA) has been proposed by Redlich (Redlich, 1993b), which 
can be used, both in an unsupervised and in a supervised fashion, for factorial 
learning. The ARCA network proposed for supervised learning, a viable alternative 



10.2 Direct Information Extraction Procedures 329 

to multi-layer perceptron networks, constructs additional computational layers as 
needed, in a fashion similar to  cascade correlation networks (Fahlman and Lebiere, 
1990). However, its applicability appears to be restricted to  classification problems. 
Therefore, we will illustrate an approach proposed by Deco and collaborators (Deco 
and Schurmann, 1995; Deco and Brauer, 1995), similar to the unsupervised ARCA 
networks, which could be incorporated as a preprocessing module in a time series 
predict ion system. 

The goal is to construct a one stage neural network which attempts to statistically 
decorrelate the components of its output vector (Deco and Scliurmann, 1995; Deco 
and Brauer, 1995). In order to impose the constraint of no information loss from 
input to output, we can use the mutual inforrriatiori between input and output as 
a measure of information transmission, defined as (Deco and Obradovic, 1996) 

I ( g ;  2 )  = H ( 2 )  - H ( z I g ) ,  (10.5) 

with H ( 2 )  denoting the input entropy and H(itlg) denoting the conditional entropy 
of 2 given y. 
1995) 

with equality 
Bijectivity is 
determinant, 

The output entropy satisfies the inequality (Deco and Schurmann, 

(10.6) 

holding only when the transformation T is bijective, thus reversible. 
therefore satisfied if the Jacobian of the transformation has a unit 

det - = 1. [E] (10.7) 

The architecture proposed in (Deco and Schurmann, 1995; Deco and Brauer, 1995), 
which fulfills the previous requirement and has the same structure as the ARCA 
network, is presented in Figure 10.1. 

The transformation computed by this network can be expressed analytically as 

with Wi denoting some parameter vector which intervenes in the computation 
of function f i .  It is obvious that the Jacobian of the network transformation 
is an upper triangular matrix, with all the diagonal elements equal to 1, which 
yields a deterrniriarit equal to unity and thus represents a transformation without 
information loss. The specific form assumed for the functions f i  in (Deco arid 
Schurmann, 1995; Deco and Brauer, 1995) is polynomial, resulting in network 
outputs computed according to 

(10.9) 



330 Data h4ining Techniques for  Designing Neural Net work Time Series Predictors 

Figure 10.1 Informat ion preserving transforniation. 

Viewed as a preprocessing iriodule for a time series prediction problem, 2 1 ,  . . . , xd 
m-odd represent d previous samples from a uiiivariate time series and y l . .  . . , gya 
the outputs that tend to  lie decorrelated as a result of tlie learning process. 

In order to  obtain the decorrelation of the output signals. the following alterna- 
tives are proposed (Deco and Scliurmaiiri. 1995) : 

1. The minimization of an upper bound on the mutual information between the 
components of the output vector; 

2. Cumulant expansion of tlie output distribution followed by imposing the inde- 
pendence coiidit ioii. 

Thus, the decorrelat ioii can be achieved by gradient descent error rniriiinization 
using either the cost function (see Appendix A). 

(10.10) 

with 07 being the variance of conipoiient i of the out8put vector. or (see Appendix 
B) .  

(10.11) 



10.2 Direct Information Extraction Procedures 

with 

< 2 1 2 2 . .  . x,, >= 21x2.. . 2 , p  ( 2 )  d z ,  1 

331 

(10.12) 

and a ,  p, y, and 6, representing the inverses of the number of elements in their 
corresponding summations. 

The decorrelation transformation implemented using the previously introduced 
neural network and either of the two cost functions presented leads also to an 
implicit determination of an appropriate embedding dimension (number of neu- 
ral network inputs), by discarding the outputs with a variance which is below an 
imposed threshold. Set in the unsupervised learning framework, the information 
preserving transformation is not directly applicable to prediction problems. Nev- 
ertheless, it could be used as a building block inside a prediction system, whose 
general structure could be as follows: 

w Decorrelation module (performs previously described decorrelation transforma- 
t ion) ; 

Predictor module (feedforward or recurrent neural network performing a “spatial” 
prediction in the transformed space obtained after decorrelation); 

inverse transforniatiori module (computes the inverse of the transformation 
computed by the decorrelation niodule, in order to provide an informative prediction 
in the original data space). 

10.2.2 Dynamical System Analysis 

Dynamical system analysis provides a potential means of obtaining information 
regarding an appropriate neural network architecture (more precisely, regarding the 
number of neural network inputs), as well as regarding an appropriate data sampling 
rate in prediction problems with prediction horizon larger than one (Lapedes and 
Farber, 1987). 

A dynamical system is described in terms of a set of state variables, whose 
values at any given time t are assumed to contain sufficient information to de- 
scribe the future evolution of the system (Haykin, 1994). The state vector for 
a univariate time series can be constructed from delayed samples of the series 
%(t )  = [x ( t )  , x (t - T-) , . . . , x ( t  - ( A I  - 1)7)]. Assuming that the system can be 
represented in terms of hl state variables which can be grouped together to form a 
state vector, z ( t )  = [x;l(t), . . . , x h [ ( t ) ] ,  the evolution of a dynamical system can be 
observed as a trajectory in the hl-dimensional state space, also known as the phase 
space of the system. The phase space can be a Euclidean space or a subset thereof. 
It can also be a non-Euclidean space such as a sphere or a torus, or some other 
differentiable manifold (Haykin, 1994). Many dynamical systems can be described 
by a set of differential equations 

d 
d t  
-z( t )  = v (%( t ) )  , (10.13) 



332 Data Mining Techniques for Designing Neural Network T ime  Series Predictors 

where V ( . )  is a non-linear (vector) function of the state vector. The family of 
trajectories which result when starting from different initial conditions, form the 
phase portrait of the system. The phase portrait includes all the points in the phase 
space where V ( % )  is defined. 

In general, a dissipative system (a system which “looses” energy), is character- 
ized by the convergence of its trajectories in phase space onto manifolds of lower 
dimensionality, m < M ,  which form the dynamical system’s attractor (Haykin, 
1994). Attractors represent equilibrium states of a dynamical system which can be 
observed on experimental data. Different methods are employed in practice for de- 
termining the dimensionality of a system’s attractor, the most representative ones, 
probably, being based on estimating either the (generalized) Renyi dimensions, or 
the L yapunov exponents. 

The Renyi dimensions represent a spectrum of dimensions, Do 2 D1 2 0 2  2 . . . , 
defined as (Pineda and Sommerer, 1993), 

(10.14) 

Their computation assumes that the attractor is covered by M-dimensional boxes 
of side length E ,  and p i  represents a measure of the attractor in box i, with the 
sum taken only over occupied boxes (boxes containing at  least one data point). For 
finite data sets, the pi’s can be approximated as ni/n, with ni being the number of 
data points in the i-th box and rL representing the total number of data points. The 
first three generalized dimensions, also known as capacity dimension, information 
dimension and correlation dimension, respectively, can further be expressed as 

with N ( E )  representing the number of non-empty boxes, 

and 

(10.15) 

(10.16) 

(10.17) 

The technique proposed in (Pineda and Sommerer, 1993) for computing DO, D1 and 
0 2  starts by plotting the numerators in the formulas for Do, D1, and 0 2  versus 1/e  
for different space dimensions M ,  yielding three families of curves for DO, D1, and 
D2, respectively, represented on separate plots. For each curve (corresponding to an 
individual value for M ) ,  the slope of its linear region before saturation is determined. 
These slopes are then plotted versus space dimension and the value at  which the 
resulting curve saturates, provides the value for the generalized dimension under 
consideration. To check whether the data support the dimension computations, a 
final graph should be provided which contains the slope versus space dimension 



10.2 Direct Information Extraction Procedures 333 

curves for all of Do, D1, and D2. The fulfillnient of the condition Do 2 D1 2 D2 
at any space dimension supports the hypothesis that  enough data were provided in 
order to compute the generalized dimensions. A lack of saturation of the previously 
mentioned curves can be a11 indication of either a stochastic (non-deterministic) 
process, or of insufficient data. Different alternate measures exist, which allow 
the distinction between deterministic chaos and random noise (Grassberger arid 
Procaccia, 1983). Any of Do, D1 or D2 could in principle be used to estimate 
m, since they are usually very close, but in practice D1 is the most commonly 
used. Based on Takens’ theorem (Takens, 198l), an estimate of the dimension rn of 
the time series’ attractor can be used to construct a multi-layer perceptron neural 
network of 2n1+ 1 external units (Lapedes and Farber, 1987). 

Instead of computing the generalized dimensions. we can alternatively compute 
the Lyapunov exponents using the available experimental data (Wolf et al., 1985). 
Loosely speaking, the Lyapunov exponents represent measures of change for geo- 
metric bodies of increasing diniensionality, as produced by the trajectories of the 
dynamical system. Thus, the first Lyapunov exponent, AI, measures the average 
logarithmic growth of the relative error per iteration between two initial conditions 
on neighboring trajectories of a dynamical system (Jurgens and Saupe, 1992). In 
other words, eX1 represents the maximal average factor by which an error between 
neighboring trajectories is amplified. Expressed rnatheriiat ically, the first Lyapunov 
exponent is givm by (Jurgens and Saupe, 1992) 

(10.18) 

with E0 representing the initial error and Ek/Ek-1 denoting the error amplification 
from one step to the next. The second Lyapunov exponent, A2, represents a measure 
of how an area is changed along the “flow” of the dynamical system. Expressed 
differently, e X t s X 2  represents the maximal average factor by which an area changes. 
Similarly eXl fX2SX3,  where A3 represents the third Lyapunov exponent, expresses 
the maximal average factor by which a volume changes. The process of determining 
Lyapunov exponents can continue with exponents of higher order, all of them being 
subject to the ordering 

with positive exponents standing for expansion along a certain direction and 
negative exponents denoting contraction along a direction. 

Finally, the Lyapunov dimension can be computed as 

i + IxL+1( 1 Ck=l 2 A k ,  if A1 L 0 

D , = {  0, otherwise, 
(10.20) 

with i being the maximum integer with XI +. . .$-Xi 2 0. In theory, the Lyapunov ex- 
ponents and the Lyapuriov dimension are computed in a relatively straightforward 



334 Data Mining Techniques for Designing Neural Network T i m e  Series Predictors 

manner for a continuous time series (generated from a set of differential equations). 
However, in practice, when dealing with a discrete time series, the effect of lacunar- 
ity (finite amount of data) has a negative impact on the accuracy of the results for 
both generalized dimensions and Lyapunov exponents. The Lyapunov dimension 
can be related to the information dimension in accordance to the Kuplan-Yorke 
conjecture,  which claims their equality. Hence, denoting by m the dimension (in- 
formation dimension or Lyapunov dimension) of a given time series, a potentially 
adequate multi-layer perceptron for predicting the time series should have a number 
of input units which is equal to 2m + 1. 

Dynamical system analysis can further provide an indication of an appropriate 
data sampling rate (time delay), to be used in prediction problems with larger 
prediction horizon (predicting further into the future) (Liebert and Schuster, 1989; 
Pineda and Sommerer, 1993). Pineda and Sommerer consider the original time 
series, {xt}, as well as its time-delayed counterpart {xt-.} with time origin shifted 
by r (Pineda and Sommerer, 1993), which are discretized in units of E (e.g. bits). 
Consequently, denoting by X the random variable associated with the process values 
for {xt} and by Y the random variable corresponding to the process values for 
{xt-.}, we can define the discrete probabilities 

Px(x) = Prob{X = x}, (10.21) 

Py(y)  = Prob{Y = 9). (10.22) 

and 

pXy(x,y)  = Prob{X = x and Y = Y). (10.23) 

Taking into consideration the quantized process values, we can define the scale- 
dependent entropies (Deco and Obradovic, 1996) 

(10.24) 

(10.25) 

as well as the scale-dependent cross-entropy, 

HXY ( E )  = - P X Y ( Z i ,  Yi) log, PXY (Xi, Yi), (10.26) 
i 

with the sums taken over all the occupied one-dimensional and two-dimensional 
boxes, respectively. Additionally, we can also define the mutual information between 
the random variables X and Y as 

MXY(E) = H X ( E ) +  H Y ( E )  - HXY(E) .  (10.27) 



10.2 Direct Information Extraction Procedures 335 

Making explicit the dependence on the delay r ,  we can rewrite the mutual infor- 
mation in the approximate form, 

(10.28) 

with D X  being tlie information dimerision 0 2  computed for a space dimension 
M = 1 and D x y  being the information dimension computed for M = 2. This 
expression allows the definition of a box size independent mutual information as, 

Finally, tlie optimal value of r is chosen to be the one corresponding to the first 
minimum of the mutual information between tlie actual time series and the delayed 
one. 

Although prone to lacunarity effects and not effective for stochastic processes, 
dynamical system arialysis is still useful in providing an indication of whether the 
underlying time series stems from a deterministic or from a stochastic process. This 
information is especially useful, since domain-specific analysis techniques are likely 
to provide more accurate results than general ones. 

10.2.3 Stochast ic Analysis 

Time series prediction is traditionally approached using stochastic met hods (Box 
et al., 1994). A popular and theoretically well founded stochastic model for a 
stationary time series is the autoregressive moving average model of orders p and q ,  
denoted as ARMA(p,q), which describes the process value as a weighted sum of p 
previous process values and the current one as well as q previous values stemming 
from a random process. Formally, the stationary ARMA(p,q) process with zero 
mean { x t }  is represented as 

where xt-1, xt-2, .  . . , x t -p  represent the process values at p previous time steps, 
a t ,  at - 1,  . . . , at -v are tlie current arid the q previous values of a random process, 
usually emanating from a riorrnal (Gaussiari) distribution with zero mean, and 
(pi . . . pp, $1 . . . q!iq are the model parameters. 

The ARMA(p,q)-based predictor approximates the real process value xt by a 
predicted value i t ,  computed as 

Jl't  = plq-1 + . . . + p p x t - p  + Jllat-1 + . . . + &at--q, (10.31) 

The residual cZt.-i represents the error between the real process value xt-i and the 
predicted valiie li.t - i . 

The mean AR(p) and MA(q) models are special cases of'tlie ARMA(p,q) model, 



336 Data Mining Techniques for  Designing Neurul Network T ime  Series Predictors 

where AR(p) is described as 

xt = plxf-1 + ( P 2 x t - 2  + . f . + p p x t - p  + at ,  (10.32) 

and MA(q) is described as 

ARMA rnodeling is very fast, but of limited applicability due to strong modeling 
assumptions, e.g. stationary process, linear interdependencies and Gaussian noise. 

A natural, less restrictive, generalization of the linear ARMA and AR models to 
the rionlinear ca.ses leads to tlie NARILIA model 

and the NAR model 

where h is an urikriowri smooth function. 
and NAR-based predictors are obtained from their 

corresponding models analogous to obtaining the ARMA-based predictor (Equa- 
tion 10.31) from the ARMA iiio(lc1 (Equation 10.30). However, the NARMA and 
NAR models are very coiiiplcx, thus difficult to use in real life applications. Fortu- 
nately, they are closely related to more practical rionliriear models, the neural net- 
works. Recurrent arid feedforward neural networks have been proposed in (Corinor 
et al., 1994; Werbos, 1992) for sirriulatirig NARhlA and NAR models respectively. 
An irivertible (Box et al., 1994) NARMA-based predictor can be approximated as 

The AR , MA-, NARNIA 

(10.36) 

i =  1 ,j = 1 ,j=1 

where .f represents a rionlinear, smooth and bounded function and a k  = xk - 2 k ,  
for all k E { t  - 4 , .  . . , t - 1). This approxirnation of the NARMA-based model 
corresponds to the recurrent neural network from Figure 10.2, in which w , ~  are the 
weights between external inputs and liidderi neurons, wiII are the weights between 
context inputs aiid hidden neurons, W, are the weights between hidden and output 
neurons, 0, are tlie hidden rieurori biases, r is the output neuron bias and f is the 
activatioii fuiictiori of the hidden nciirons. Similarly, a NAR-based predictor can 
bc approxiriiated as 

?r i  P 

k f  = q z f - ,  . . . . , +) % w.r(C wt7xf-7 + 0,)  + r, (10.37) 
7=1 J=1 

obtained by discorinectirig the context inputs at-1 . . . u - q  in Figure 10.2. The 
pararneters w L J ,  wiJ, W L ,  8, arid r can be estimated from examples by gradient 



Figure 10.2 s t oclrast ic iiiodel approxiiria t ioii. 

tlesceiit optiniizatioii ( \Z7~~rl~os. 199-1). 
A special case of a particiilar iiiterest iii tliis study is the approxiiiiatioii of a liiiear 

AR iiiodel hy a fwt1foivar.d iieiiral iictn-ork. Altliough the iieural network from 
Figiire 10.2 iii n-liicli t lie hiddcii layer aird t lie feedback coiiiiections are reiiioved 
is coiiiput ationally etluivalcnt t o  the liiiear AR iiiodel, such a trivial iietmork is of 
iio iiitercst siiice it is iiot able t o  perforiii better than the equivalent AR iiiodel. 
AIore iiitcrestiiig ( SCC Appendix C )  is tlic approxiiiiation of an AR(p) iiiodel with 
paraiiietcrs < I .  . . . . plj 11y :I iie~iral iietn-ork with p inputs, I-, liiddcii uirits aiid 
iiit ercoiiiiect ioii paraiiic3 ers 

(10.38) 

for all i . j  E (1,. . . . ] I } .  

In ( D ~ O S S L ~  aiid Ohraclo\-ic, 1996a) it was skiowii that the iieural iietwork weight 
t l  oil AR iiiodel prai i ie t  ci-s could significantly sliorten the neiiral 

1 ) J -  providiiig ail iiiit ial posit ioii oil the error surface which 



338 Data Mining Techniques for  Designing Neural Network Time Series Predictors 

is closer to  the rninimuni as compared to a randomly chosen position. In addition, 
stochastic analysis could provide some initial knowledge regarding appropriate 
neural network architecture and data sampling rate. The attempt to use linear 
stochastic analysis prior knowledge is supported by the fact that “many non-linear 
systems can be described fairly well by linear models and for such systems it is 
a good idea to use insights from the best linear model to select the regressors 
for the neural network model” (Sjoberg et al., 1994, 1995). The objective of 
the approach proposed in (Drossu and Obradovic, 1996a) is not to obtain “the 
optimal” neural network architecture for a given problem, but to rapidly provide 
an architecture with close to  optimal performance. Since information is obtained 
from a linear model, for more complex problems the neural network might be over- 
dimensioned (similar performance could be obtained using a smaller model and less 
learning examples). However, the exhaustive trial and error procedure involved for 
determining such an optimal model could be costlier than the stochastic analysis 
based alternative. 

10.2.4 An Illustrative Example 

Our experiments performed in (Drossu and Obradovic, 1996a) tested whether 
the most appropriate linear stochastic model can provide an indication of the 
appropriate number of neural network inputs. Additionally, they explored whether 
initial neural network weights obtained from the stochastic model as described 
by Equations 10.38 are appropriate. In the case of larger prediction horizons, 
the experiments also analyzetl whether an adequate data sampling rate could be 
obtained from stochastic rnodeling. 

All experiments encompassed preprocessing, consisting of both a logarithmic 
smoothing and a first order differentiation for stationarization purposes, and the 
neural network weight optimization was performed using gradient descent. The 
validity of the stochastic modelirig prior knowledge for selecting an adequate neural 
network architecture, initial weights and sampling rate was tested in the context of 
two very different data sets: 

9 Mackey-Glass data. 
The first data set is a deterministic time series, also known as the Mackey-Glass 
series, obtained by integrating the delay differential equation, 

d ~ ( t )  - A z ( t - T )  
- - Bx( t )  

d t  1 + xl0(t  - T) 

Experiments were performed for A = 0.2, B = 0.1, T = 17, case in which the 
system exhibits chaotic beliavior. The difficulty associated with this data set is 
the high nonlinearity. The data set consisted of 12000 samples, the first 2000 
shown in Figure 10.3. The time series appears to be quasi-periodic with fairly long 
smooth segments. This suggests that the prediction of most of the series (except 
for the turning points, possibly) should be fairly easy for an adequate predictor. In 
accordance to previously published results (Lapedes and Farber, 1987), a sampling 



10.2 Direct Informatton Extr.actzori Procc~diircs 339 

Figure 10.3 AIackey-Glass data. 

rate of six  as used for predicting 6 or 6*k stpps ahead. Hence. the original data 
set w a s  saiiipled at  a rate of 6 to  generate a iiew 2000 samples data set which was 
used for expeririierit~tioii on preclictioii horizons 1 aiid k .  The first 1000 samples of 
this -filtered" data \\-ere used for t rtaiiiiiig. whereas t lie last 1000 samples xere used 
for tcsting. . Eiitertainiiiciit video traffic data. 
The second data set usecl in the experiiiieiits coiisistetl of a real life, coiiipressed. 
tiitert aiiiineiit video traffic data used iii an ATAI (Asyiichronous Traiisfer Mode) 
iietwork, iri n-hicli each sainple represents t lie size of a correspoiidiiig coiiipressed 
video frariie (Drossii et al., 1995). The characteristics of' this data set are non- 
stat2onarztg (data clistributiori cliaiigcs o ~ ~ r  time) arid the existence of "outliers" 
(values very different froiii neighboring ones). The problem is especially difficult 
sincc the outliers coiitaiii usefiil iiiforiiiatioii that cannot be discarded throiigh 
filtering. Heiice. it is not sufficient to he able to accurately predict the (easily 
predictable) siiiootli scctioiis of the time series, but the outliers also need to be 
predict cd. The clat a set coiisidered iii our experiiiieiits coiisistecl of 2000 samples 
(showii in Figure 10.4). 



34 U 

Figure 10.4 Eiitertaiiiiiiciit vidco traffic data. 

10.2.4.1 Predicting t h e  N e a r  Future 

Iii these expcrimeiits. t lie iiciiral iietn-olk predictors attempted to prcclict oiie s t q )  

ahead of tiiiic using t lie Llackey-Glass t iiiie series. The iieiiral iietwwrk weight s 

were iiiitialized either wit 11 sriiall raiicloiii valiies. or from t lie corresponding AR 
paraineters as iii Eqiiat ioiis 10.38. Tlic results preseiitcd for the iieural iictivorks 
iiiit ializcd wit 11 raritloiii n-cight s m-cre averr-tgc~l over 10 rims. 

The results w e i ~  coiiipared vcrsiis ail earlier report cd "optimal" iieural iic.twork 
topology with 4 iiiputs aiitl two liitltlcii laycrs of 10 iiiiits each (Lapedcls a i d  Farller. 
1987), iii which t he niiiiilier of iiiputi was tleteriiiiiietl tiasetl 011 tlyiiaiiiical 
aridysis aiitl applyiiig Takeiis' t licorciii. as clisciissed iii Section 10.2.2. n-hilt) t he 
iiiinitier of liitldcii layers aiicl liidderi iuiits w a s  dcterrriiiicd t lirougli extensivo cxpcr- 
iiiieiit atioii 011 1-1 siipercoiiipiiter. The predictors' accuracy was evaluat ctl  iicco1 cliiig 
to the cocfficieiit of tlet crriiiiiat iori (Aiiclcrsoii-Sl>reclier. 1993). coniputd as 

(10.39) 

n-licre represeiit s t lit> iiiiiiibci of saiiiples. xt arid .Pt cleiiot e t lie ac : i d  aiid the 
predict c d  process values. rcspcct i\-clJ-. while s denotes tlie ineari of thc actual clat a. 
For a perfect prctlictor. t lic coefficieiit of tleteririiiiatiori should 1 x 3  1. whereas for a 
trivial iiieaii 1)rctlictor (one wliose every predictioii equals the mean of the actual 
data). the coefficieiit of (let eriiiiiia t iori is 0. 



Figure 10.5 Predictioii acciii.acy for horizon 1 oil Alackcy-Glass data.  

Tlie valiics, suiiiiriarizd in Figlire 10.5. iiitlicatecl aii AR(20) iiiodel as tlic most 
appropriat ( 3  liiiwr iiiodel. t liiis suggesting t lie use of a fwdforn-ard iieiiral network 
with 20 iiipiits. Varyiiig tlic liitltleii la~-er size siiggestd tliat a iiimiber of liiddeii 
iiriit s eqiial t o  t lie iiiiiiil )ci' of iii1)ut s was an appropriat (1 choice, thus allowing tlie 
iitviral ii~tn-orli nv4glit iiiitializat ion usiiig AR iiioclel paraiiieters a s  well. Whet her 
start iiig froiii raii(10iii n-cxiglit s or iiiit ializiiig t lie n-eight s from the AR paraincters. 
the iie1u.al iicitworks yiclcled a very siinilar predict ioii accuracy. Starting the iieiiral 
iietn-ork lwriiiiig pi'occ~ss wit 11 n-eights iiiit ializcd froiii thr. AR pai-arrieters could. 
iievc>rtlirlcss, offer tlie hciiefit of heiiig close to  a iiiiiiiniiuii of the error siu-face. hence 
shorttiiiiig the leariiiiig process. It n-oultl also eliiiiiriatt3 t lie necessity of ruiiniiig a 
iiiiiiilw of' cxperiiiierit s in n-liicli tlie weights are iiiitialized n-ith ciiffereiit raiidoin 
values in orcler t o  ohtaiii ail avcraged perforiiiaiicc. On tlie other harid, to  avoid tlie 
.freezing" of tlir. leariiing process iii a local iiiiiiiiiiimi a siiiall addit ive noise to  the 
iiiit i d  \wiglit values couhl lie dt~sira1)lt. 

Thc) c.oiic.liisioiis clran-ii froiii this esperiiiieiit are (Dross11 aiid Ohradovic, 1996a): 

0 The perfoixiaiicc3 o f  tlic) iieiu.;11 iietworks was riiiicli bet ter coinpared to  the most 
appropriate stocliastic iiiodel. this being coiisisteiit with the iioiiliiiearity of tlie time 
series. 

0 Tlie iic~iral network 1x1 011 stocliastic prior knowledge (botli regarding tlie 
iiimilier of iiiput s aiid appropriate iiiitial weight values) perforiiied similar to 
tlie bLoptiiiid*' nenral iietwork architecture. supportiiig tlie stocliastic iriforiiiation 



34 2 Dutci A i i r i  in9 Tc.ch niques for Desagriang Nt'iii a1 Nctiiiork Tame Serws Predactors 

Figure 10.6 Cocfficiciit of deteriiiinatioii for increased prediction horizon 011 

Alackey-Glass data. 

based desigii approacli. This is a very useful finding. since it confirms that useful 
inforiiiation can be extracted fi-oiri a h e a r  model elwi iii tlie case wliere the 
uiiderlying t h i e  series is highly noillinear. 

10.2.4.2 Predicting f u r t h e r  into the  Future 

For horizon h larger tliaii one. tlie prediction caii be doiie either in a direct or in 
ail /ric*rerri~rrtnl fashion. 111 tlie direct approach, tlie neural network is traiiied to  
predict directly tlie 1i-tli step aliead u-itliout predicting aiiy of the iiiteriiiediate 
1. . . . , 1, - 1 steps. Iii the iiicreriieiital approacli, tlie iieui-a1 iietwork predicts all the 
iiitcriiitdiate values up to 11 steps aliead by using the previously predicted values 
as iiipiits wlien predict iiig tlie next 1.-alue. The experiiiieiits, also performed on the 
AIackey-Glass series. were coiicerried with t lie deciease in prediction accuracv wlieii 
sigiiificaiit 1v increasing t lie predict ion horizon (Drossu aiid Obratlovic. 199Ga). For 
tliis purpose tlic AR(20) aiid tlic XN 20 20-1. trained as in the experiiiieiit for 
prediction liorizoii 1. were used to increiiientally predict the process values up to 30 
steps aliead (tliis correspoiicls to 180 steps aliead in the '.unfiltered" series preseiited 
in Figure 10.3). I11 tlie case of tlie iieural network. the weights were initialized from 
t lie AR paraiiiet ers. The  dues for the coefficient of detei-riiiiiation resulting from 
t liese experiinent s are present ed iii Figure 10 .G. 



10.2 Direct Information Extraction Pr*ocedu.res 34 3 

Figure 10.7 
eiit ert aiiinieiit video t ruffic data 

Prediction accuracy for horizon 10 and different sanipling rates on 

The results indicated that the perforiiiance of tlie neural network was iiiuch 
better wheii predicting the near future. but it decreased drainatically arid after 
about 30 steps ahead the predictor became coiiipletely unusable. This was an 
indication of the inst abilitj- of the trained neural network (an undesirable error 
accuniulation wlieii using the increment a1 approach). For this reason, three 20-20- 
1 neural networks were trained in the direct fashion for predicting 10, 20 and 30 
steps ahead. respectively. The values for their coefficieiits of deterinination, obtained 
as averages over 10 runs with different initial random weiglits. are also included in 
Figure 10.6 and they are sigiiificaiitly better than tlie corresponding ones for the 
AR( 20) model. However. for prediction horizon 10 the coefficient of determination 
for the direct approach was worse than for the incremental approach. 

The conclusioii drawn from this experiment is (Drossu and Obradovic, 199Ga): 

0 Although aii incremeiital approach for iieural network trainiiig in the case of an 
increased prediction horizon 113s the advantage of training a single iieural network 
and using it afterwards for predictiiig as inaiiy steps aliead as desired. the system 
can he unst able, resulting iii a drainatic error accumulation wheii increasing the 
prediction horizon. For this reason for larger prediction horizons it is desirable to 
analyze both tlie iiicreiiieiital aiid the direct training approach and to  select the 
iiiore appropriate one for each particular prediction horizon. 



344 Data Mining Techniques for  Designing Neural Network T ime  Series Predictors 

10.2.4.3 Selecting the Sampling Rate 

For a larger prediction horizon different sampling rates can be employed, making 
the trial and error neural network architecture selection even more impractical. 
Consequently, in this experiment the choice of an appropriate sampling rate based 
on the stochastic modeling prior knowledge was explored. In addition, it was also 
tested whether an appropriate AR(p) model indicated the use of a feedforward 
neural network with p external inputs whose initial weights could be set according 
to the AR parameters. 

The entertainment video traffic data was used for experimentation for a pre- 
diction horizon 10 (the 10th step ahead process value is predicted) (Drossu and 
Obradovic, 1996a). To predict the process at time step t + 10 using k process val- 
ues up to time t ,  the following uniform sampling rates (divisors of the prediction 
horizon) were considered: 

- sampling rate 1, where the k previous process values are 
x( t ) ,m( t  - l ) , z ( t  - 2 ) ,  . . . , x ( t  - k + 1); 

x ( t ) ,  Z ( t  - a ) ,  x ( t  - 4), . . . , x ( t  - 2 8 ( k  - 1)); 

x ( t ) ,  x ( t  - 5), x ( t  - l O ) ,  . . . , x ( t  - 5 * ( k  - 1)); 

x ( t ) ,  z ( t  - l O ) ,  x ( t  - 20), . . . , 5 ( t  - 10 * ( k  - 1)). 

- sampling rate 2, where the k previous process values are 

- sampling rate 5, where the k previous process values are 

- sampling rate 10, where the k previous process values are 

All neural network results were obtained either by initializing the weights from 
the AR parameters, or averaged over 10 runs with different initial random weights. 

The coefficient of determination for the most appropriate AR models obtained 
for different sampling rates, as well as for the corresponding neural network models 
are presented in Figure 10.7. The stochastic models indicated a sampling rate of 
1 as the most appropriate, confirmed also by their neural network counterparts. It 
could also be observed that the performance of the neural networks with weights 
initialized according to the AR parameters was very similar to  that of the neural 
networks averaged over 10 runs with different initial random weights. 

The results obtained for the most appropriate stochastic model, as well as for 
different representative neural networks when using a sampling rate of 1 indicated 
that the neural network having a number of inputs equal to the order of the most 
appropriate AR model yielded the best prediction. 

The conclusions that could be drawn from these experiments are (Drossu and 
Obradovic, 1996a): 

0 The data sampling rate indicated by the stochastic models seems to be appro- 
priate also for the neural network models. 

0 The prior knowledge provided by the stochastic analysis regarding the number 
of external inputs, and appropriate initial weight values is effective also for larger 
horizons. 



10.3 Indirect Information Extraction Procedures 34 5 

0 The performance of the AR models and the corresponding neural networks is 
comparable, this indicating the linearity of the problem under consideration. 

10.3 Indirect Information Extraction Procedures 

10.3.1 Knowledge of Properties of the Target Function 

Whenever a prediction model, whether neural network or other, is trained on 
a data set, the only information that the model can extract is from the data 
itself. In many real-life applications, however, some properties of the function to 
be approximated are known ahead of time. The use of these properties, called 
hints (Abu-Mostafa, 1995a,b) , is of niajor importance especially in problems with 
scarce, costly to obtain, or noisy data, like financial forecasting problems in which 
hints can improve the model’s accuracy dramatically. Nevertheless, a non-valid hint 
can deteriorate the performance of the model considerably ( Abu-Mostafa, 1995b) , 
so care must be taken in order to analyze the validity of hints. Hints play an 
important role in improving the generalization ability (predictive accuracy) of the 
model by imposing constraints on the target function which has to be learned. 
This would correspond to restricting the search space for valid target functions by 
eliminating those which could potentially fit the noise instead of focusing on the 
relevant information contained in the data. 

Two modalities for incorporating hints in the neural network learning process are 
proposed in ( Abu-Mostafa, 1995a,b): 

creating additional “virtual” training examples; . imposing constraints on the learning process by modifying the cost function. 

The two modalities of embedding hints into the learning process will be illustrated 
in the context of two examples presented in (Abu-Mostafa, 1995a). The first one 
deals with the case in which the target function to be approximated is known to be 
odd. In this case, if (2, y) is known to be a valid training example, a virtual example 
(-x, -y) can be created which could provide an additional ready-to-use training 
example (if not already present in the training set). On the other hand, learning 
the oddness property of the target function can be enforced during the learning 
process, e.g. using gradient descent optimization. Similar to learning a function 
by minimizing the squared error between desired and real neural network output, 
(y(x) - i j ( ~ ) ) ~ ,  the oddness property can be enforced by minimizing ( i j ( ~ ) + i j ( - x ) ) ~ .  
This requires the input of both x and -x to the network and minimizing the 
difference between the two outputs. A second example of incorporating hints 
assumes the target function to be invariant to certain transformations, e.g. scaling, 
translation and rotation in pattern recognition problems. Virtual examples can 
be produced by considering an available training example ( x , y )  and creating the 
virtual example (d, y), in which X I  represents the value obtained from J: by applying 



Data Mining Techniques for Designing Neural Network T i m e  Series Predictors 

the invariance transformation. The invariance property can also be imposed during 
learning by minimizing, in addition to the squared error sum, a sum of terms of 
the form (ij(x) - i j ( ~ ’ ) ) ~ .  Many other additional hints like symmetry, monotonicity, 
etc., can also be easily incorporated into neural network learning. 

Although not an actual way of accelerating the neural network design process, 
the use of known properties of the target function is an easy and cost-effective way 
of improving a time series predictor’s accuracy, which can be used in conjunction 
with any other direct method presented earlier. 

10.3.2 Non- S t at ionarity Detect ion 

A non-stutzonury time series can be described as a time series whose “characteristic 
parameters” change over time. Different measures of stationarity can be employed 
to decide whether a process is stationary or not (Papoulis, 1984). In practice, con- 
firming that a given time series is stationary is a very difficult task unless a closed- 
form expression of the underlying time series is known, which is rarely the case. 
On the other hand, non-stationarity detection can be reduced to  identifying two 
sufficiently long, distinct data segments that  have significantly different statistics 
(distributions). In practice, common tests for comparing whether two distributions 
are different are (Press et al., 1992): . Student’s t-test; . F-test; . Chi-square test; 
9 Kolmogorov-Smirnov test. 

The Student’s t-test is applied to identify the statistical significance of a difference 
in means of two distributions assumed to have the same variance, whereas the F-test 
evaluates the statistical significance of a difference in variances. More commonly, 
if there aren’t any assumptions regarding the means or variances of the distribu- 
tions, a chi-square or a Kolmogorov-Smirnov test, summarized in Appendix D, are 
performed. 

If time is not an issue, non-stationary time series prediction can be accomplished 
by performing on-line learning using a sliding window technique (Chenoweth and 
Obradovic, 1996), in which a new prediction model is built whenever a new data 
sample becomes available. However, in many real-life problems the data arrival rate 
is high, which makes this approach completely infeasible due to the computational 
complexity involved in repeatedly building neural network prediction models. An 
alternative encountered in practice is the unzform retraining technique, in which 
an existing neural network prediction model is used for a pre-specified number 
of prediction steps (which we call a reliable prediction interval) ,  followed by the 
replacement of the existing model by one constructed using more recent data. A 
major disadvantage of uniform retraining is that it is often hard to determine an 
appropriate reliable prediction interval, as it might be changing over time. 



10.3 Indirect Information Extraction Procedures 34 7 

Although theoretically possible, in practice it might be very difficult to efficiently 
learn a single global neural network model for a non-stationary time series predic- 
tion. An obvious difficulty of such a global approach is the selection of neural net- 
work modeling parameters that are appropriate for all data segments. Additional 
serious problems include different noise levels in various data segments resulting 
in local overfitting and underfitting conflicts (it would be desired to  stop training 
to prevent overfitting some data segments, while other data segments would still 
require additional training). 

An interesting multi-model attempt to  predict piecewise stationary time series , 
where the process switches between different regimes, is by using a gating network,  
in which a number of neural network experts having an identical structure are 
trained in parallel, and their responses are integrated by another neural network 
trained simultaneously with the expert networks (Weigend et al., 1995). Briefly, 
due to an adequate combination of activation and error functions that encourages 
localization, in a gating network each expert network tends to learn only a subset of 
the training data, thus devoting itself solely to a sub-region of the input space. This 
competitive integration method showed quite promising results when predicting a 
non-stationary time series having two regimes, but is not likely to  extend well to  
more complex non-stationary processes due to overfitting problems of training a 
gating network system consisting of too many expert networks. In addition, the 
time required to train a complex gating network is likely to be prohibitively long 
for many real-life time series prediction problems. 

In (Drossu and Obradovic, 1996b) we proposed three different time series predic- 
tion scenarios which depend on the amount of prior knowledge regarding a potential 
data distribution: 

1. Switching among the historically successful neural network models (SWITCH); 
2. Reusing one of historically successful available neural network models, or design- 
ing a new one (REUSE); 

3. Retraining a neural network model when signaled, without relying on any 
historically successful model (RETRAIN). 

The SWITCH scenario assumes a piecewise stationary, multi-regime time series 
and a library containing models for all regimes. To simplify the presentation we 
will assume two regimes and their associated historically successful models. The 
objective is to  detect in real-time which of the two models to use for prediction 
at  any given time step. The REUSE scenario assumes the potential existence 
of a repetitive regime along with an associated library model. The objective is 
to decide in real-time whether to use the existing previously successful historical 
model for prediction, or to retrain a new neural network on current data. Finally, 
the RETRAIN scenario does not assume any prior knowledge regarding the non- 
stationarity type. The objective is to decide in real-time when to discard a neural 
network predictor and retrain a new one on current data. The SWITCH and the 
REUSE scenarios are proposed in order to  efficiently forecast piecewise stationary 



Data Mtr i2ng  Techniques for  Deszgning Neural Network T ime  Serzes Predtctors 

Figure 10.8 St atist ics-based SIT'ITCH. 

processes with full or partial uriderst anding of the number of different regimes, while 
the RETRAIK sceiiario is proposed for forecast iiig completely unknown higher order 
non-st atioiiary processes. 

The three scenarios caii be used in the context of statistics- and accuracy-based 
distri~,utiori-cliaii~e sigrialiiig techiiiclues, discussed below. 

10.3.2.1 Statistics-Based Signaling 

This signaliiig t echiique at tempts to  identify changes in the data distribution by 
conipariiig t hc similarity of different data segments using either the chi-square or 
the Kolinogorov-Siniriiov statistics. 

For the SIVITCH scenario (see Figure 10.8). two historical data segments. Dhl 

and Dh2. both of length p ,  along with their neural network models. AIhl and Afh2, 
trained oil these segments are kept in a library. A current window, W ,  containing 
the p latest available data is coinpared in distribution (using either the chi-square 
or the Koliriogorov-Sriiirriov tests) to Dhl aiid Dh2. in order to decide which of the 
two liistorical data segments is more siiiiilar to it. The library model corresponding 
to the iiiore appropriate historical data segment is then used for predicting the next 
t imp series valiie. 

data segment, 
Dt,. used to build a previously successful neural network model, AI,. as well as a 
temporary data segment. Dt. used to build a temporary neural network model, AI,. 
both of length p ,  are kept in a library. The models AI, and Aft are also stored 
in the library. A current window, I.$'. containing the p latest available data is 
compared iii distributiori to  DI, aiid Dt, in order to  decide whether to  continue 
using oiie of the library models or to  train a new model. For this purpose, a 
threshold has to be imposed 011 the coiifiderice value obtained from the chi-square 
or Koliiiogorov-Siiiiriiov tests. If the test indicates more confidence in &Ih, provided 

For the REUSE scenario (see Figure 10.9). a single historical 



10.3 Indirect Information Extraction Procedures 

Figure 10.9 Statistics-based REUSE. 

Figure 10.10 Statistics-hased RETRAIN 

that  the confidence x-aliie for A I h  is larger than the specified threshold, then AI,, 
is used for the current prediction. Siinilarl>-. if we are inore confident in AI, and 
the confidence value is larger than the tlireshold, then A I t  is used for the current 
prediction. Otherwise (none of the confiderice values is larger than the imposed 
threshold), a new temporar\- neural network iiiodcl is trained on W and it replaces 
AI,. whereas I T ’  replaces Dt in the library. The new model is then used for the 
current predict ion. 

In the case of the RETRAIK scenario (see Figure 10.10), a data segment, D t ,  
of length p used to  build a temporary neural network niodel, AIt. is stored in a 
library. A currelit wiiidon-. I \ - .  coiitairiiiig the p latest available data is compared in 
distribution to  Dt. in order to  decide whether t o  continue using AI,, or discard it and 
train a new iieiiral network inodel. Once again. a threshold has to be imposed on 



350 Data Mining Techniques for  Designing Neural Network Time Series Predictors 

Figure 10.11 Accuracy-based SWITCH. 

the confidence value obtained from the chi-square or Kolmogorov-Smirnov tests in 
order to decide when the current model becomes inappropriate. If Mt is considered 
to be inadequate, W replaces Dt and a new neural network model trained on W 
replaces Aft in the library, which is used for the current prediction. 

10.3.2.2 Accuracy- Based Signaling 

The objective of this signaling technique, also proposed in (Drossu and Obradovic, 
1996b) is to identify data distribution changes by measuring recent prediction 
accuracies of previously successful models. 

For the SWITCH scenario (see Figure l O . l l ) ,  two historically successful neural 
network models, A4'hl and Mh2, are kept in a library. At each time step, the two 
models are compared based on their accuracy measured on a buffer containing the 
b most recent process values, and the more accurate model is used for the current 
prediction. 

For the REUSE scenario (see Figure l0.12), a historically successful neural 
network model, Mh, as well as a temporary neural network model, Mt, are kept 
in a library. Similar to the SWITCH scenario, the accuracy of the two models is 
compared on the b most recent process values. The model having a better accuracy 
is used for predicting the current step, unless none of the models is a sufficiently 
good predictor on the b most recent process values. A model is considered to 
be sufficiently good if its accuracy on the b most recent process values is above 
cx min{Ah, At} ,  where CY is a pre-specified threshold in the (0,l)  range, while A h  

and At are the training accuracies for the historical and the temporary model, 
respectively, computed on the process values used to build them. If none of the two 
existing models is satisfactory, a new neural network model is trained that replaces 
Mt in the library and is also used for the current prediction. 

In the case of the RETRAIN scenario (see Figure 10.13), a temporary neural 



10.3 Indirect Information Extraction Procedures 351 

Figure 10.12 Accuracy-based REUSE. 

Figure 10.13 Accuracy-based RETRAIN 

network model, Mt,  is stored in a library. Additionally, a corresponding training 
accuracy, At, is measured as for the REUSE scenario. If the accuracy Mt,  measured 
on the b most recent process values is aAt,  model Mt is used for the current 
prediction. Otherwise, a new neural network model is trained which replaces Mt in 
the library and is also used for the current prediction. 

10.3.3 An Illustrative Example 

In (Drossu and Obradovic, 1996b), non-stationary time series prediction experi- 
ments were performed on generic data which allow a rigorous control of regime 
switching between distributions, as well as the possibility of computing the perfor- 
mance of an optimal predictor. 



352 Data Mining Techniques for Design,ing Neural Network T ime  Series Predictors 

Figure 10.14 Regime switching on the QHQ series. 

The time series used there were constructed by mixing data stemming from a 
deterministic chaotic process (Q) and a noisy, non-chaotic process (H) used earlier 
in (Weigend et al., 1995). The processes Q and H were generated according to  the 
following rules: 

xt+l = tanh(-1.2xt + e t + l )  ( H ) ,  

where { e t }  is a white noise process with mean 0 and standard deviation 0.32. 
A first time series, denoted by QHQ, was created by concatenating three data 

sections of lengths 300, 400, and 500 samples, respectively, in which the first and the 
last data segments stemmed from the Q process. whereas the second data segment 
stemmed from the H process. 

A segment of the QHQ time series comprising the first regime switch from process 
Q to process H (time series data samples 251-350) is presented in Figure 10.14. 
Although the Q and H processes have basically the same means and variances! as 
well as data ranges, Figure 10.14 illustrates the different time behavior of the two 
processes. Indeed, the autocorrelation plots for lags up to  50 on the first 300 and 
the next 300 time series data samples, shown in Figures 10.15 and 10.16, indicate a 
dependence of autocorrelation on time origin, meaning that the underlying mixed 
time series is not wide-sense stationary (Papoulis, 1984). 

Two feedforward neural networks having 2 input units, two hidden layers of 4 
units each and 1 output unit were trained (using the gradient descent algorithm) 



10.3 Indirect Information Extraction Procedures 353 

Figure 10.15 Autocorrelation with time origin at sample 1 on the QHQ series. 

on two data segments stemming from the Q and the H processes, respectively. 

2 0.3.3. I The SWITCH Scenario 

The experiments compared statistics-based signaling and accuracy-based signaling 
to a single-model predictor as well as to an optimal predictor (see Figure 10.17). 
The single-model predictor is a library model used for predicting the entire time 
series, whereas the optimal predictor is obtained by using both library models and 
assuming that the switching points between distributions are detected without any 
delay (this is infeasible in practice unless the regime switching rules are entirely 
understood). 

Although the statistics-based signaling technique yields a significantly better 
prediction accuracy as compared to the single-model predictor, the results show 
the drastic superiority of accuracy-based signaling, which provides excellent results 
for buffer sizes over a fairly wide range of 2-30. It could also observed that these 
buffer sizes lead to  performance which is comparable to  that achieved when the 
regime switching points are completely known (optimal predictor curve). 

1 0.3.3.2 The R E  USE Scenario 

The results obtained in (Drossu and Obradovic, 199613) using the accuracy-based 
signaling technique for buffer sizes 50 and 100, averaged over ten runs, are shown as 
the first two bars in Figure 10.18. The bars represent the 99% confidence regions for 
the r2 means: based on the Student’s t distribution with 9 degrees of freedom. In all 



354 Data Mining Techniques for Designing Neural Network T ime  Series Predictors 

Figure 10.16 Autocorrelation with time origin a t  sample 301 on the QHQ series. 

experiments the mean values for the coefficient of determination were significantly 
better than those obtained by the SWITCH scenario with statistics-based signaling, 
with small deviations given by the 99% confidence regions. Consequently, results 
obtained using the statistics-based signaling were not reported for the REUSE 
scenario. On the other hand, although the averaged value of the coefficient of 
determination was larger for all experiments using a shorter buffer, a statistically 
significant difference could not be claimed (the 99% confidence regions overlap). 
The number of neural network retrainings in the experiments with buffer length 
100 varied between 3 and 7, whereas it varied between 5 and 14 in the case of 
buffer length 50. These figures indicate that the experiments on longer buffers are 
computationally more efficient. However, even for the shorter buffer, the number of 
retrainings is very small compared to the total number of predictions. 

10.3.3.3 The RETRAIN Scenario 

The 99% confidence regions for the averaged coefficient of determination obtained 
in (Drossu and Obradovic, 199613) using the RETRAIN scenario are shown as the 
last two bars in Figure 10.18. Once again, the statistics-based signaling was not 
considered since the accuracy-based signaling results were better (with small de- 
viations) than those obtained by the statistics-based signaling in the SWITCH 
scenario. The difference in performance for buffer sizes 50 and 100 was not statisti- 
cally significant, while the experiments on longer buffers needed less computational 
resources ( 3  to 8 retrainings for buffer length 100, compared to  6 to 16 retrainings 
for buffer length 50). 



10.3 Indirect Information Extraction Procedures 355 

Figure 10.17 
(0 Finance &- Technology Publishing, used with permission, see Copyright Acknowledg- 
ment) 

Performance for the SWITCH scenario on the QHQ series 

Figure 10.18 
series. 

Performance for REUSE and RETRAIN scenarios on the QHQ 



356 Data Mining Techniques for Designing Neural Network T i m e  Series Predictors 

In (Drossu and Obradovic, 1996b), additional experimentation was performed on 
an HQH series (in which the mixing order of the Q and H processes was reversed). 
To get insight into the robustness of our proposed methodology with respect to  
the data noise level, two high-noise time series were constructed by corrupting the 
QHQ and the HQH time series with Gaussian additive noise of zero mean and 
standard deviation equal to half of the standard deviation of the uncorrupted data. 
In spite of an extremely high noise level, the accuracy-based signaling technique 
led once again to performance that was close to optimal. However, the statistics- 
based signaling technique was not only significantly less accurate, but not even 
consistently better than the single-model predictor that used a library model trained 
entirely on one distribution. As expected, due to a much larger amount of noise, 
the “optimal” buffer sizes for the accuracy-based signaling were larger compared 
to the corresponding ones from the low-noise experiments. The number of neural 
network retrainings in the high-noise experiments was consistently larger compared 
to the low-noise ones, but still reasonably small compared to the length of the time 
series. 

10.4 Conclusions 

Neural networks are powerful computational models which have been used in a mul- 
titude of time series prediction problems ranging from power consumption (Mangeas 
et al., 1995) and compressed video traffic (Drossu et al., 1995) to currency ex- 
change ( Abu-Mostafa, 1995a). However, because of their inherent complexity, the 
design of an appropriate neural network predictor for a real-life problem is of- 
ten a time consuming trial-and-error procedure. In order to shorten the design 
process, as well as to improve the overall prediction accuracy, different sources of 
prior knowledge are directly embeddable into the neural network models, including, 
among others, information theory, dynamical system analysis, and stochastic analy- 
sis. Each of them has specific advantages but is also prone to  various shortcomings. 
Nevertheless, the combiriation of different sources of prior knowledge is likely to 
provide a more robust predictor, likely to exploit the strengths of each individual 
knowledge source and to circumvent its weaknesses (Fletcher and Obradovic, 1993). 
This was illustrated by embedding stochastic analysis in the neural network design 
process in the context of an artificially generated, nonlinear, deterministic time 
series (Mackey-Glass data) and a real-life, non-stationary, stochastic time series 
(entertainment video traffic data). 

ind irec t ly  em- 
beddable sources are also worth considering. The chapter briefly illustrates the 
usefulness of known properties of the target function to be learned and describes 
in more detail different non-stationarity detection methods which incorporate var- 
ious amounts of prior knowledge, and which significantly improve the efficiency of 
the neural network predictors. A novel accuracy-based distribution change detec- 
tion method has been shown to provide sigriificaritly more accurate results than 

In addition to the direct sources of prior knowledge, different 



10.4 Conclusions 357 

traditional statistics-based techiques (Drossu and Obradovic, 199613). 

APPENDIX 

A.  Minimixation of a Mutual Informntion Upper. Bound 

Applying Equation 10.5 to the components of the output vector leads to 

(10.40) 

Adding up the left and the right hand sides of the previous d expressions for the 
mutual information. we obtain 

(10.41) 

Applying the chain rule for entropies (Deco arid Obradovic, 1996), we obtain 

(10.42) 

It can be shown that the mutual inforriiatiori is always greater or equal to zero, with 
equality holding only when its variables are independent , thus uncorrelated (Deco 
arid Obradovic, 1996). Therefore, we can express the statistical independence of the 
components of the output vector as 

d 

H ( Y J  - H(y) = 0. (10.43) 
i= 1 

Due to the imposed condition of no inforniation loss between input and output 
in the decorrelation transfomiatiori, rriiriimizirig the mutual information between 
the components of the output vector can be reduced to iriiriiniizing E:=, H ( y z ) .  
According to Gibbs’ secorid theorem (Deco and Obradovic, 1996), the entropy of 
a clistributiori is uppw bouiidecl by the eritropy of a normal distribution with the 
same variance. ‘Ihrefore,  instead of attempting to minimize H(y,), we can 
attempt to minimize the sum of d Gaussian distributions with individual variances 
equal to the variaiicw of their corresponding non-Gaussian distributions. Sirice the 
entropy of a iiiiivxia,te Gatussiari clistribution is given by 

d 

1 
2 

~j ( x )  = -1ri(27rea2), (10.44) 

with 0’ b i n g  thtt variaiice of the Gaussian distribution, the minimization process 



358 Data Mining Techniques for Designing Neural Network T i m e  Series Predictors 

reduces to  minimizing the cost function 

(10.45) 

which can be easily implemented using the gradient descent non-linear optimization 
technique. 

B. Cumulant Expansion of the Output Distribution 

A more general approach for decorrelating the components of the output vector 
is provided by the cumulant expansion of the output distribution. The moment 
generating function or characteristic function of a univariate distribution is given 
as the Fourier transform of its probability density function (Gardiner, 1983), 

(10.46) 

where j = a. We can observe that the derivatives of the moment generating 
function evaluated at  the origin can be expressed in terms of moments (this explains 
also the function's name), since 

and hence, 

where m(n) represents the moment of order n defined as 

(10.47) 

(10.48) 

(10.49) 

Therefore, assuming that all the moments exist and are finite, the moment gen- 
erating function can be expanded in a power series around the origin, expressed 
as 

(10.50) 

Similarly, the moment generating function of a multivariate distribution can be 
expressed as 

+(a) = S,,(i.ie'-%. (10.51) 

The inverse Fourier transform of the moment generating function will therefore 
provide the probability density function, 

(10.52) 



10.4 Conclusions 359 

with d representing trhe dimension of the vector of random variables. In accordance 
with this inversion formula, the moment generating function determines the prob- 
ability density function with probability 1. Therefore, the independence condition 
expressed as 

can also be expressed as 

The natural logarithm of the characteristic function is named the cumulant gener- 
ating function, 

$(w) = ln+(w). (10.55) 

Assuming that all the higher order moments exist and are finite, we can expand 
the cumulant generating function in a power series around the origin, expressed 
as (Gardiner, 1983) 

(10.56) 

where the quantities << xi1 x$ . . . xy >> represent the multi-dimensional cumulants 
of the variables 21, x2,. . . Zd, and 6 (n ,  E:=, i k )  represents Kronecker's delta func- 
tion, which is 1 if Et=, z l ,  equals n and 0 otherwise. In a similar fashion, we can 
also expand a univariate cumulant generating function in a power series in terms 
of uni-dimensional cumulants, 

(10.57) 

with << xp >> representing the uni-dimensional cumulants. Condition 10.54 can 
also be expressed in terms of cumulant generating functions as, 

which is equivalent to  

i= 1 

(10.58) 

(10.59) 

The last condition can be made explicit by using Equations 10.56 and 10.57 and 



360 Data Mining Techniques for Designing Neural Network Time Series Predictors 

hence rewritten as, 

(10.60) 

The method of computing the multi-dimensional cumulants << 21x2.. . x, > of 
any desired order n can be presented in an algorithmic fashion as (Gardiner, 1983): 

Write a sequence of n dots, ....... . Divide this sequence into p + 1 subsequences, each enclosed in angular brackets, 
with p varying from 0 to n - 1, 

< .. >< ... >< ....... > . . . < . > . (10.61) 

Replace the dots by the symbols x1 , . . . , x,, in such a fashion that all the dzflerent 
expressions occur, thus 

< 2 1  >< x2x3 >= < 21 >< 23x2 > 
# < 2 3  >< x1x2 >, 

where 
0 

(10.62) 

(10.63) 

(10.64) 

with J: = ( 2 1 ,  2 2 , .  . . , x , ) .  

For every p ,  take the sum of all the terms containing p + 1 subsequences and call 
this sum C P ( x l ,  22,. . . ) 2, ) .  

Compute the multi-dimensional cumulant as 
n-1 

<< 21x2.. .x, > = (-l)Pp!cP(x1,x2,.  . . ) X J .  (10.65) 
p=o 

In cases in which a cumulant contains a repeated term, like << x:x2x3 >, compute 
<< ~ 1 x 2 ~ 3 ~ 4  >> and in the resulting expression set x4 = 21. 

Although cumulants of whichever desired order can be computed theoretically, 
in practice cumulants of order four will rarely be exceeded. The first four multi- 



10.4 Conclusions 361 

dimensional cumulants can be expressed as: 

(10.66) 

whereas the uni-dimensional cumulants up to fourth order are 

<<x,'>> = < x , >  
<x;>> = < x ; > - < x , > 2  

<< x; >> =< x; > -4 < xp >< x, > - 
<< xp >> = < xp > -3  < x; >< 2, > +2 < 2,  > 3  (10.67) 

3 < z; >2 +12 < x? >< x, > 2  -6 < x, > 4 .  

Replacing the x i ' s  by yi's, to indicate the components of the output vector, 
the independence condition Equation 10.60 can be rewritten by replacing the 
expressions for the multi-dimensional and the uni-dimensional cumulants, resulting 
in 

Considering additionally that the mean of the output vector has been removed, the 
previous condition can be further expressed as (Deco and Schurmann, 1995) 

(10.69) 



362 Data Mining Techniques for Designing Neural Network T ime  Series Predictors 

The 6,...j denote Kronecker’s delta, which equals 1 only when all the subscripts are 
equal to each other and equals 0 otherwise. Since the previous relation has to be 
satisfied for all a, the terms inside each summation must be equal to  zero. Hence, 
for all i, j ,  k ,  1 

(10.70) 

According to  (Deco and Schurmann, 1995), the previous conditions can be expressed 
in the equivalent form 

< yayj >= 0, 
< yyiyjyk >= 0, 
< yiyjykyi >= 0, 
< y:yj > -3 < y: >< y; >= 0, 

if (i # j ) ,  

if (i # j v i # k ) ,  
if ({i # j v i # k v i # l }  A 1 L )  , 

if (i # j ) ,  

with L being the logical expression 

L = { (i = j A k = 1 A j # k )  v 
(i = k A j  = 1 Ai # j ) v  
( i = l A j = k A i # j )  }. 

(10.71) 

(10.72) 

These conditions can be imposed by using gradient descent non-linear optimization 
applied to the cost function 

with a,  p, y, and 6, representing the inverses of the number of elements in their 
corresponding summat ions. 

C. AR(p) Approximation by a Neural Network 

Consider the approximation of an AR model of order p by a feedforward neural 
network with p input units, p hidden units and a single output unit. It is assumed 
that each hidden unit uses an activation function of the form f(x) = 1/(1+ e- f lz ) ,  

whereas the output unit uses the identity function i ( x )  = x as its activation 
function. In this neural network, for all i , j  E (1,. . . , p } ,  let us set the hidden 
unit biases to  

Bi = 0, (10.74) 



10.4 Conclusions 363 

and the input-to-hidden layer weights to 

where 6,, is Kronecker’s delta function. Using the notation from Figure 10.2, on 
input (xt-1,. . . , x t P p ) ,  the neural network output can be written as 

P P 

(10.76) 
i= 1 i=l 

where cfl yi = I?. On the same input, the AR(p)-based predictor outputs 

P P 

i=l i= 1 

Equation 10.76 approximates Equation 10.77 for any combination of inputs that are 
small enough if each g(x t - i )  approximates the corresponding h(xt-i). Expanding 
g ( z t - i )  in a Taylor series around the origin and keeping just the terms up to order 
1, we obtain 

(10.78) w i  PWi 
g(zt-2) 2 g(0)  + g’(0)zt-2 = - + yi + -zt-i 

2 4 
Hence, setting g(xt-i) = h(zt-i) leads to 

Wi yz = -- 
2 ’  

(10.79) 

(10.80) 

So, the neural network with p inputs, p hidden units and interconnection parameters 

(10.81) 

where i , j  E (1,. . . , p } ,  approximates an AR model of order p with parameters 
91 , * . - 7 9 p .  

For the Approximation 10.78 to be reasonably accurate, xt-i has to be close to  
zero. For xt-i E [-1,1], the maximum relative error when approximating h(xt- i )  
(given in Equation 10.77) by g ( z t - i )  (given in Equation 10.76), with W i  and yi 

computed according to Equations 10.79 and 10.80, respectively, is 8% for P = 1, 
2% for ,B = 0.5 and 0.08% for /? = 0.1. 



364 Data Mining Techniques for Designing Neural Network Time Series Predictors 

D. Chi-square and Kolmogorov-Smirnov Tests 

In the Chi-square test, the data range of the two data sets to be compared is 
divided into a number of intervals (bins). Assuming that Ri and Si represent the 
number of data samples in bin i for the first and the second data set, respectively, 
the Chi-square statistic computes 

with the sum taken over all bins. The complement of the incomplete gamma 
function, 

where 

is then evaluated and a small value of Q (close to 0) indicates that it is unlikely 
that the two distributions are the same. Here, v represents the number of degrees of 
freedom which in the case when the two sets have the same number of data samples 
(E Ri = Si),  equals the number of bins minus one. If the previous restriction is 
not imposed, than v equals the number of bins. 

The Kolmogorov-Smirnov (K-S) test measures the absolute difference between 
two cumulative distribution functions S N ~  and S N ~  with N I  and N2 data points, 
respectively. The K-S statistic computes 

The function QKS defined as 
00 

j=1 

is computed for 

= D( JN, + 0.12 + O . l l / J N , ) ,  

where N ,  is the effective number of data points, 

Nl N2 
Ni + N2’ 

N, = 

A small value of QKS (close to 0) indicates that it is unlikely that the two 
distributions are the same. 



References 365 

Copyright Acknowledgment 

Figure 10.17 was reprinted with permission from J .  of Computational Intelligence 
in Finance, @ Finance & Technology Publishing, PO Box 764, Haymarket, VA 
20168, from (Drossu and Obradovic, 199613). 

References 

Abecasis, S. M. and Lapenta, E. S. 1996. Nonstationary time-series forecasting 
within a neural network framework. Neuro Ve$t Journal, 4(4):9-16. 

Abu-Mostafa, Y .  1995a. Financial applications of learning from hints. In Advances 
in Neural Information Processing Systems, eds. J. D. Cowan, G. Tesauro, and 
J .  Alspector, vol. 7, pp. 411-418. 

Abu-Mostafa, Y. 1995b. Hints. Neural Computation, 7:639-671. 
Anderson-Sprecher, R. 1994. Model comparisons and R2. The American Statisti- 

Barlow, H. B. 1989. Unsupervised learning. Neural Computation, 1:295-311. 
Barron, A. R. 1993. 

sigmoidal function. IEEE Transactions on Information Theory, 39( 3) :930-945. 
Box, G. E. P., Jenkins, G. M., and Reinsel, G. C. 1994. 

Forecasting and Control. Third Edition. Prentice Hall. 

system for the S&P 500 index. Neurocomputing, 10(3):275-290. 
Connor, J .  T. ,  Martin, R. D., and Atlas, L. E. 1994. Recurrent neural networks and 

robust time series prediction. IEEE Transactions on Neural Networks, 5( 2):240- 
254. 

Cybenko, G. 1989. Approximation by superpositions of a sigmoidal function. 

Deco, G. and Brauer, W. 1995. Nonlinear higher-order statistical decorrelation by 

Deco, G. and Obradovic, D. 1996. A n  Information- Theoretic Approach to Neural 
Computing. Springer. 

Deco, G. and Schurmann, B. 1995. Learning time series evolution by unsupervised 
extraction of correlations. Physical Review E, 51 (3):1780-1790. 

Drossu, R., Lakshman, T. V., Obradovic, Z., and Raghavendra, C. 1995. Single and 
multiple frame video traffic prediction using neural network models. In Computer 
Networks, Architecture and Applications, eds. S. V. Raghavan and B. N. Jain, 
pp. 146-158. Chapman and Hall. 

Drossu, R. and Obradovic, 2. 1996a. Efficient design of neural networks for time 

cian, 48(2): 113-1 17. 

Universal approximation bounds for superposition of a 

Time Series Analysis. 

Chenoweth, T. and Obradovic, 2. 1996. A multi-component nonlinear prediction 

Mathematics of Control, Signal, and Systems, 2:303-314. 

volume-conserving neural architectures. Neural Networks, 8(4) :525-535. 



366 Data Mining Techniques for Designing Neural Network T ime  Series Predictors 

series prediction. IEEE Computational Science and Engineering, 3( 2) :78-89. 
Drossu, R. and Obradovic, Z. 1996b. Regime signaling techniques for non-stationary 

time-series forecasting. Neuro Ve$t Journal, 4(5):7-15. 
Fahlman, S. and Lebiere, C. 1990. The cascade-correlation learning architecture. In 

Advances in Neural Information Processing Systems, ed. D. S. Touretzky, vol. 2, 

Fletcher, J. and Obradovic, Z. 1993. Combining prior symbolic knowledge and 
constructive neural networks. Connection Science: Journal of Neural Computing, 
Artificial Intelligence and Cognitive Research, 5(3-4):365-375. 

Gardiner, C. W. 1983. Handbook of Stochastic Methods. Springer. 
Grassberger, P. and Procaccia, I. 1983. 

pp. 524-532. 

Measuring the strangeness of strange 
attractors. Physica D, 9:189-208. 

Haykin, S. 1994. Neural Networks. A Comprehensive Foundation. MacMillan. 
Jurgens, H. 0. P. H. and Saupe, D. 1992. Chaos and Fractals: New Frontiers of 

Science. Springer. 
Lapedes, A. and Farber, R. 1987. Nonlinear signal processing using neural networks: 

Prediction and system modeling. Technical Report, LA-  UR8'7-2662, Los Alamos 
National Laboratory. 

Liebert, W. and Schuster, H. G. 1989. Proper choice of time delay for the analysis 

Mangeas, M., Muller, C., and Weigend, A. S. 1995. Forecasting electricity demand 
using nonlinear mixture of experts. In World Congress on  Neural Networks, 

Papoulis, A. 1984. Probability, Random Variables, and Stochastic Processes. Second 

of chaotic time series. Physics Letters A ,  142: 107-1 11. 

vol. 2, pp. 48-53. 

Edition. McGraw-Hill. 
Pineda, F. and Sommerer, J .  C. 1993. Estimating generalized dimensions and 

choosing time delays: A fast algorithm. In Time Series Prediction: Forecasting 
the Future and Understanding the Past, eds. A. S. Weigend and N. A. Gershenfeld, 
pp. 367-385. Addison-Wesley. 

Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P. 1992. 
Numerical Recipes in C. Second Edition. Cambridge University Press. 

Redlich, A. N. 1993a. Redundancy reduction as a strategy for unsupervised learning. 
Neural Computation, 5:289-304. 

Redlich, A. N. 199313. Supervised factorial learning. Neural Computation, 5:750- 

Sjoberg, J., Hjalmarsson, H., and Ljung, L. 1994. Neural networks in system 
identification. In Proc. 10th IFA C Symposium on  System Identification (SYSID)  
'94, vol. 2, pp. 49-72, Copenhagen, Denmark. 

Sjoberg, J., Zhang, Q., Ljung, L., Benveniste, A., Deylon, B., Glorennec, P., 
Hjalmarsson, H., and Juditsky, A. 1995. Nonlinear black-box modeling in system 

766. 



References 367 

identification: A unified overview. Automatica, 31 (12):1691-1724. 

Mathematics, eds. D. Rand and L. Young, pp. 366-381. Springer. 
Takens, F. 1981. Detecting strange attractors in turbulence. In Lecture Notes  in 

Weigend, A. S., Mangeas, M., and Srivastava, A .  N. 1995. Nonlinear gated experts 
International for time series: Discovering regimes arid avoiding overfitting. 

Journal of Neural Systems, 6:373-399. 
Werbos, P. 1992. Neural networks, system identification and control in the chemical 

process industries. In Handbook of Intelligent Control. Neural, Fuzzy, and Adap- 
tive Approaches, eds. D. A. White and D. A. Sofge, pp. 283-356. Van Nostrand 
Reinhold. 

The Roots of Backpropagation: From Ordered Derivatives to  Werbos, P. 1994. 
Neural Networks arid Political Forecasting. John Wiley and Sons. 

Wolf, A., Swift, J. B., Swinney, H. L., and Vastano, J .  A. 1985. 
Lyapunov exponents from a time series. Phlysica D, 16:285--317. 

Determining 



This page intentionally left blank 



11 Extraction of Decision Trees from Artificial 
Neural Networks 

Gregor Schmitz, Chris Aldrich and Francois Gouws 

Despite the fact  that neural networks can represent complex systems with a high 
degree of accuracy, they are usually di f icul t  to  interpret. This  can constitute a severe 
limitation in practice, where reliability and comprehensibility of the model m a y  be 
of critical importance. I n  this chapter, a novel knowledge- based neurocomputing 
algorithm ( A N N - D  T )  is  therefore proposed, which is  designed to  extract binarg 
decision trees f rom trained neural networks. I n  contrast to  existing techniques, A N N -  
D T  can extract rules f rom feed-forward neural networks with continuous inputs as 
well as continuous outputs, while not  making any assumptions regarding the neural 
network or the .features of the data. The  selection of attributes based o n  an  analysis 
of the significance of attributes with regard to  the output of the neural network 
is  also proposed and compared to  the standard methods using information entropy 
criteria for  discrete outputs or variance minimisat ion for continuous outputs. The  
A N N - D T  algorithm compared favorably with 103, C4.5 and a regression tree evolved 
with CART’S splitting procedure. 

11.1 Introduction 

The development and application of artificial neural networks has grown signifi- 
cantly in recent years, owing to their ability to  represent non-linear relationships 
that are difficult to model by means of other computational methods. In addition, 
neural networks do not require a priori knowledge with regard to the distributions 
of data, are easy to implement, are robust under the influence of noise, and can be 
parallelized where rapid computation is critical. 

Despite their attractive qualities, neural network models are notoriously difficult 
to interpret. As a consequence, erroneous assumptions during model development 
can remain undetected during development and even application. Moreover, neural 
networks have large degrees of freedom in the assignment of weights, so that 
two completely different sets of weights can yield nearly identical outputs. This 
drastically complicates the analysis and comparison of similar processes that are 



3 70 Extraction of Decision Trees from Artificial Neural Networks 

modeled or controlled by different neural networks. The lack of transparency of 
neural networks is a major barrier to their implementation in a number of fields, 
such as medicine and engineering where mission critical applications demand a high 
degree of confidence in the behavior of relevant models. 

In order to overcome this limitation, various attempts have previously been made 
to develop explanatory facilities for neural networks, an area which concerns the 
use of explicit knowledge within the neurocomputing paradigm. The majority of 
these approaches have been based on the generation of explicit rules explaining 
the behavior of the neural network. Unfortunately, most rule extraction techniques 
require special training methods and architectures for neural networks, or are based 
on assumptions that tend to restrict the ability of the neural network to  generalize 
the underlying relationships in the data. 

A more general algorithm not subject to  these limitations is therefore proposed 
in this chapter. Like other knowledge-based neurocomputing algorithms, it enables 
the characterization of the behavior of the neural network by means of a set of 
heuristic rules. Unlike other algorithms however, this algorithm does not depend 
on any assumptions with regard to the structure of the neural network or the 
input-output data. Since neural networks are generally better able to approximate 
complex relationships between continuous variables, the rules extracted from the 
network also tend to be more accurate in some cases than those derived direct 
from the data by other machine learning methods, such as ID3 (Davis et al., 1977; 
Quinlan, 1986), C4.5 (Quinlan, 1993) or CART (Breiman et al., 1984). 

11.2 Extraction of Rules from Neural Networks 

The extraction of rules from neural networks can be classified as decompositional, 
pedagogical and eclectic (Andrews et al., 1995; Craven and Shavlik, 1994), based 
on the approach used to characterize the internal model of the network in terms 
of a set of explicit rules. Decompositional techniques such as those used by (Towel1 
and Shavlik, 1993; Fu, 1991; Gallant, 1993) focus on extracting rules separately 
for each unit of the neural network. With these techniques the activation of the 
individual neurons is approximated in terms of threshold functions, by assuming 
that the units are either maximally active or inactive. Each non-input unit in the 
neural net can therefore be interpreted as a step function or a Boolean rule, so 
that the rule extraction problem is reduced to finding conditions under which 
certain rules are valid. The drawback of this approach is that the architecture of 
the neural network and training procedures may have to be simplified to realize this 
approximation. This may lead to inadequate models. In addition, hard-thresholding 
of the units can make them sensitive to noise in the data. Although this problem 
can be alleviated by making use of soft thresholding (Sethi, 1995), these and other 
similar methods constrain the distributed non-discrete internal states of a neural 
network and prevent the use of many advanced network implementations. 

In the approach taken by pedagogical techniques, the rules that map inputs 



11.2 Extraction of Rules from Neural Networks 371 

to outputs are extracted directly, even for multilayered neural networks. The 
neural network is thus essentially treated as a black box. An example of this 
is Tlirun’s method (Thrun, 1994, 1995) called validity interval analysis (VIA), 
which uses linear programming to determine if a set of constraints placed on a 
network’s activation values is consistent. The technique does not approximate the 
activation levels of the hidden units as threshold functions, but it is assumed that 
these activatioris are independent of one another. This assumption is not always 
appropriate and hence the algorithm does not always find maximally general rules. 
Other techniques such as those developed by Pop et al., as well as by Craven and 
Shavlik are in their current state limited to discrete inputs /(Pop et al., 1994; Craven 
and Shavlik, 1994). Furthermore, Craven and Shavlik’s technique is implemented 
using either the VI analysis (Thrun, 1995) or the K T  method described by Fu (Fu, 
1991), whereby it is implicitly assumed that the activations of the hidden layers are 
independent, or that they can be treated as threshold functions. 

Saito and Nakano (Saito and Nakano, 1988) have likewise pursued a pedagogical 
concept by searching for combinations of input values which activate a given output 
unit. This resulted in a search space that grew exponentially with the number of 
input variables. which limited the number of rules that could be explored. A similar 
approach was recently followed by Narazaki et al., where regions were defined. the 
boundaries of which were based on the signs of the partial derivatives of the neural 
network function, as well as on the class predicted by the neural network (Narazaki 
et al., 1996). 

Eclectic techniques combine elements of the two basic approaches discussed 
above. These methods, such as exemplified by the DEDEC (Tickle et al., 1994) and 
BRAINNE systems (Sestito and Dillon, 1992), draw inferences from the magnitudes 
of the weights in a neural network. This has to be done carefully, as certain weights 
in a neural network can be large, but nevertheless insignificant to  the final outcome, 
owing to cancellations of their contributions in higher layers of the network. 
Interdependent! inputs tend to complicate this problem even further (Masters, 1993). 

Based on the above descriptions, the ANN Decision Tree (ANN-DT) algorithm 
proposed in this chapter can be seen as pedagogical, although it does not suffer 
from the drawbacks of the above strategies. Two variants of the algorithm are 
investigated, which differ only with regard to the way in which variables, features or 
attributes and associated split points are selected. Instead of atternpting to extract 
rules from the original data or interpreting the internal structure of neural networks, 
as mentioned above, t,he proposed techniques are based on sampling of a (neural 
network) model of the original data, which is subsequently used as a basis for the 
extraction of rules. The idea of sampling the neural network was introduced recently 
by Craven and Shavlik (Craven and Shavlik, 1994), for discrete inputs and outputs 
and was extended by Craven and Shavlik’s TREPAN algorithm (Craven and 
Shavlik, 1996). The TREPAN algorithm grows nodes in a best first order (Craven 
and Shavlik, 1996) and uses the greedy gain ratio criterion (Quinlan, 1993) to  
evaluate M-of-N splits. It is therefore limited to discrete outputs. The method that 
will be discussed in this chapter can be applied to data sets where both the inputs 



3 72 Extraction of Decision Trees from Artificial Neural Networks 

and outputs can assume discrete or continuous values. A variant of the ANN-DT 
algorithm, applicable to discrete output data only has been applied previously to  
characterize froth structures in a flotation plant (Schmitz et al., 1996). As will 
be shown below, the significance analysis proposed in this chapter has a distinct 
advantage over greedy attribute selection criteria as far as problems requiring look- 
ahead criteria are concerned. 

11.3 ANN-DT Algorithm for Extraction of Rules from Artificial Neural Networks 

The ANN-DT algorithm generates a univariate decision tree from a trained neural 
network, as indicated in Figure 11.1. A given decision node in the tree returns ‘true’ 
if the node’s single specified variable has a higher value than a certain threshold and 
‘false’ otherwise. For each node the algorithm decides on which variable to  partition 
the set of data, after which the threshold of that variable has to be determined. This 
is accomplished by examining the responses of the neural network in the feature 
space and conducting a sensitivity or significance analysis of the different attributes 
or explanatory variables pertaining to  these responses in order to  construct the 
decision tree. 

Figure 11.1 A simple univariate binary decision tree. 



11.3 A N N - D T  Algorithm for  Extraction of Rules from Artzficial Neural Networks 373 

11.3.1 Training of the Artificial Neural Networks 

Figure 11.2 gives a schematic representation of the ANN-DT algorithm. The first 
stage of the algorithm consists of training a suitable neural network on a set of 
training data. The ability of the neural network to generalize the underlying trends 
in the data is typically assessed via cross-validation on a separate set of test data. 
In this particular investigation both multilayer-perceptron and radial basis function 
neural networks were used, each of which is briefly described below. 

1 1 .3 .1 .1  Multila yer Perceptrons 

In general a multilayer perceptron consists of a layer of input nodes, one or more 
hidden layers of inner product nodes and an output layer. Each layer is completely 
connected to the previous layer by a set of weights. Input signals propagate through 
the network from the input layer onwards to the output layer in a feed-forward 
manner (Haykin, 1994). 

The multilayer perceptron is usually trained by gradient descent methods (Wer- 
bos, 1974), in which the error is propagated backwards through the network (Rumel- 
hart and McClelland, 1986). The frequently used error is the root-mean square er- 
ror, however, especially for classification problems, cross-entropy and other error 
functions (Humpert, 1994) seem to be able to improve backpropagation learning. 

11.3.1.2 Radial Basis Function Networks 

It can be shown that classification of non-linearly separable patterns can be im- 
proved if the input space is mapped into a new space of higher dimension. This 

Figure 11.2 
an artificial neural network. 

A diagrammatic representation of the algorithm to extract rules from 



374 Extraction of Decision Trees from Artificial Neural Networks 

non-linear mapping effectively transforms a non-linearly separable problem into a 
linearly separable one. This is the basic idea behind a radial basis function network 
(Powel, 1985; Broomhead and Lowe, 1988). The general structure of the radial ba- 
sis function (RBF) network is y (x) = W O  + ci wi@i (x, C i )  where Ci E 8' is the 
centre of the hidden layer or basis node i and @i is the activation of the node. This 
activation is usually a Gaussian function of the form exp (w) , where 1 . 1  is the 
Euclidean norm defined in gd and d is the width of the basis node. If there are more 
hidden layer nodes than input features, the hidden layer of the radial basis function 
network performs a non-linear mapping of the inputs to the higher-dimensional 
feature space. 

Training the radial basis function network entails finding a suitable set of basis 
nodes such that the problem becomes linearly separable or can be well approximated 
by a linear combination of the basis functions' activations. Owing to the fact that 
the training of the connection weights (w) of the output layer can be done by 
iterative or direct numerical solutions to the least squares problem, the most difficult 
task is finding a good set of basis functions. The centre co-ordinates are usually 
determined by an unsupervised clustering phase such as k-means clustering of the 
input data (Moody and Darken, 1989), while the distance to the nearest cluster 
centre are then used as the widths of the basis functions. 

11.3.2 Induction of Rules from Sampled Points in the Feature Space 

If the rules are generated by a systematic search through the input or feature space, 
as can be done by the methods of Thrun, Fu, Gallant, and Saito and Nakano, their 
number can be overwhelming for many real-world problems (Thrun, 1994, 1995; 
Fu, 1991; Gallant, 1993; Saito and Nakano, 1988). Even when the feature space 
is properly bounded, decision boundaries generated by the neural network which 
are not parallel to the boundaries of the feature space can lead to an intractably 
large number of rules required to represent the behavior of the network to some 
arbitrary degree of accuracy. For example, Thrun (Thrun, 1994) reported that over 
8000 rules were needed to describe the movements of a robot arm. Consequently 
restrictions to the depths of these kinds of searches have to be imposed. Even with 
these constraints the nuniber of rules can remain large. For example, Saito and 
Nakano found that more than 400 rules were extracted for just one output unit in 
a neural network with 23 possible outputs (Saito and Nakano, 1988). 

It may therefore be necessary to increase the granularity of the rules in order to 
improve their intelligibility. This can be done by limiting the depth to which the 
rules can be induced or by pruning the rules afterwards as will be discussed later. 

ANN-DT uses a form of sampling, which can similarly lead to numerous rules 
depending on the number of sample points that are generated. However, it is 
necessary to ensure that the sampled points are restricted to those regions of the 
(often high-dimensional) search space on which the neural network model is based. 
This is accomplished by taking the distribution densities of points in the feature 
space into account, not only during sampling of the network, but also when the 
resulting branches of the trees require pruning. 



11.3 ANN-DT Algorithm for Extraction of Rules from Artificial Neural Networks 375 

11.3.3 Interpolation of Correlated Data 

An artificial data set is generated by randomly sampling the input or feature space, 
and computing target or class labels for these sampled points by means of a neural 
network assumed to model the underlying trends or decision boundaries in the data 
satisfactorily. 

To ensure that the newly generated data have the same distribution as the 
original training data and do not only reflect the behavior of the particular neural 
network model, it is essential that sampling is only allowed in the neighborhood 
of points or clusters present in the training data set. This can be accomplished by 
using a nearest-neighbor method, in which the distance of a sampled point to the 
nearest point in the training data set is calculated. If this distance is larger than a 
predetermined critical value, the sampled point is deemed unlikely to be typical to  
the data in the training set and is discarded. 

For continuous variables the normal Euclidean distance is used as a distance 
measure. For discrete data a measure of similarity is defined and inverted. Various 
measures of similarity can be defined (Krzanowski and Marriott, 1995). For mixed 
data the Euclidean distance or a metric defined by Gower can be used (Gower, 
1971). In cases where there are few discrete variables, the data sets belonging to 
the various possible combinations of the discrete variables can be treated separately. 
The reader is referred to (Krzanowski and Marriott, 1995) for a discussion on this 
topic. 

In this investigation the critical distance was based on the distances between 
points in the training data set. In relatively small data sets with N data points, all 

distances can be calculated. In larger data sets this becomes computation- 
ally expensive, in which case a random sample of a number of interpoint distances 
can be used. The critical distance was subsequently set equal to the average dis- 
tance between the points and their respective k ( =  10) nearest neighbors in the 
training data set. Each artificially generated exemplar is subsequently presented to  
the neural network, from which a corresponding output value is computed. 

11.3.4 Selection of Attribute and Threshold for Splitting 

11 .3 .4 .1  Gain Ratio Criterion 

Consider a set S of n exemplars with m corresponding discrete output classes 
{Cl, C2, - - - Cm}. Let P (Ci, S) be the proportion of exemplars in S which are in 
class Ci . The class entropy of any subset SI, of S is defined as (Quinlan, 1986): 

(11.1) 

Assume that a value T of a particular attribute X has been chosen which splits 
S into two subsets S1 and S 2  . The average class entropy after such a partitioning 



3 7'6 Extraction of Decision Trees f rom Artificial Neural Networks 

is: 

Iskl 
2 

E ( X , T , S ) = - ) : - - x I ( S l c )  
k = l  IS1 

(11.2) 

The information gain generated by the split can now be defined as: 

G ( X , T , S ) = I ( S ) - E ( X , T , S )  (11.3) 

It was found that when Equation 11.3 is maximized by the selection of the 
attribute and the threshold it is biased towards features with a large number of 
values (Quinlan, 1988; White and Liu, 1994). A normalized measure of information 
gain performed more satisfactory (Quinlan, 1988; White and Liu, 1994). The 
normalization factor for an attribute X was defined by Quinlan as: 

IskI  I ( X ,  S) = - - log, 
k = l  IS1 

where n is the number of possible outcomes 
information gain, or gain ratio, is now given by 

(11.4) 

of the attribute. The normalized 

(11.5) 

The attribute, together with the numeric threshold T ,  which will result in the 
maximum information gain ratio is selected for the Boolean splitting test. 

For continuous outputs and a least absolute deviation measure, the attribute 
and threshold are selected in order to minimize the normalized standard deviation 
( N S D )  averaged over the different branches in the same way as the entropy. 

IskI 

S 

2 

N S D  = -Stdev (Ok) 
k = l  

(11.6) 

where 01, are the outputs of the data set Sk. 

For continuous output and a least squares error measure the attribute and thresh- 
old are selected which cause the maximum decrease in the normalized variance 
(NS2) over the two branches. 

Isk/  (11.7) N S 2  = -Stdev2 (Ok)  S 

By minimizing the normalized variance or standard deviation the resulting 
branches effectively reduced the RMS error or the sum of absolute errors (Breiman 
et al., 1984). For discrete outputs Equation 11.5 maximizes a normalized measure of 
information entropy gain. If one of these error or entropy criteria is used to select the 
attribute as well as the threshold, the algorithm will be referred to asANN-DT(e). 

2 

k = l  



11,3 ANN-DT Algorithm for  Extraction of Rules from Artificial Neural Networks 377 

11.3.4.2 Analysis of Attribute Significance 

An alternative method to those discussed above can be used for the selection of 
attributes. This method examines the significance of the various inputs on the 
behavior of the neural network. Consider a neural network model or functional 
relationship f between attributes (inputs) and classes (outputs) that is evaluated at  
a set of points S lying inside a domain D. If the magnitudes of the partial derivatives 
of the function with respect to  the inputs are to be a measure of the significance, it 
is implicitly assumed that the variables can change freely and independently from 
one another. For the analysis of experiments where the influencing factors can be 
varied independently, this assumption is valid. However, if the measured attributes 
are correlated this is not appropriate as far as the system represented by the neural 
network is concerned, as the change in one input feature may be accompanied by 
a change in another covariant feature. 

These interrelationships need to be taken into account by focusing on the vari- 
ations of f that actually occur inside the domain D. This can be done by looking 
at the Variation of f when moving between the points of S. Define the absolute 
variation v ( f )  of the function f ( x )  between the points i and j as the absolute 
value of the directional derivative of f (x) integrated along a straight line between 
the two points. Thus 

(11.8) 

where U is the unity vector in direction xi - xj . 
This variation can be computed between all pairs of points in S .  When an at- 

tribute is insignificant to  the function for the domain D ,  the variation in the func- 
tion will be unrelated to the variation in the attribute. Note that for a function 
where the effect of one attribute is cancelled out by another covariant attribute, 
e.g. f (x) = 2 1  - 2 2  + sin{x3} and a domain in which 21 M 2 2 ,  only variations in 
the other attributes, in this case 2 3 ,  will cause notable variations in f (x) . There- 
fore variations in the attributes with more influence, i.e. 2 3 ,  will correlate with the 
absolute variations in f ( x ) ,  while the variation in the attributes such as 21 and 
2 2  will be uncorrelated with v ( f ) .  Thus a measure of the significance o ( f ) ,  of an 
attribute a for a function f over a data set S would be the correlation between the 
absolute variation of the function and the absolute variation of that attribute taken 
between all possible pairs of points in S:  

o ( f ) ,  = correlation ({vij ( f ) } ,  {vij ( a ) } )  for all pairs i,j 

(11.9) 

At a given node the attribute with the maximum significance for the neural network 



378 Extraction of Decision Trees from Artificial Neural Networks 

function over the data set of the particular node was selected. In cases where 
Equation 11.9 led to excessive computations, the result was approximated using 
a randomly selected subset of data pairs. This attribute selection approach is 
henceforth referred to as the ANN-DT(s) variant of the algorithm. 

The threshold at  which the selected attribute is split is chosen by minimizing the 
gain ratio, the normalized standard deviation or the normalized variation depending 
on the type of error that is to be minimized. 

11.3.5 Stopping Criteria and Pruning 

A two-way split is generated, dividing the current set of data into two subsets. This 
splitting process continues recursively, successively splitting the data into smaller 
subsets. For discrete output data recursion halts when a node contains data with 
only one output class. Where data with continuous outputs are being used, recursion 
is terminated when the standard deviation or the variance is zero. 

Recursion can also be prematurely terminated when a certain stopping criterion 
is met. Such stopping criteria prevent tree branches from being created where the 
outcome of one of the sub-branches would not be significantly different from the 
outcome of the other. These so called pre-pruning methods are usually implemented 
for two reasons. The first is to prevent the tree from modeling noise in the data 
and the second is to improve tree intelligibility. Many neural network architectures 
and training algorithms are available which can adequately compensate for noise in 
the training data. Therefore in the context of rule extraction from neural networks 
pre-pruning techniques are primarily used to improve the intelligibility of rules. 

Statistical tests are applied to the outcomes of the data contained in the two new 
branches. For discrete outcomes the Pearson’s x2 (chi-square) test (Hays, 1988) 
can be used to find out whether the outcome class of a record is not independent 
from the branch into which the record is to be put. Where continuous outputs are 
concerned, an F-test (Hays, 1988) can be used to ascertain whether the mean output 
of the records of each of the two sub-branches are significantly different from each 
other. Both these tests show whether continued recursion would be meaningful or 
not. If the selected termination criterion fails at  some confidence level a, the current 
node is converted into a terminal node. Note that the X2-test becomes less accurate 
as the number of data points per subset decreases (Hays, 1988). For the ANN-DT 
algorithm the outcomes stem from a neural network, which usually has continuous 
outcomes even when trained on data with discrete outputs. Therefore both the 
X2-test and the F-test may be applied simultaneously as stopping criteria. In the 
ANN-DT algorithm both tests had to fail before a terminal node was formed. These 
stopping criteria can fail at  a certain tree depth, even though future splits further 
down the tree could become statistically significant again. To prevent premature 
cessation of tree growth as a result of the above tests failing, these tests were only 
applied to nodes occurring below a certain minimum depth in the tree. 

Three other criteria were applied to prevent unnecessarily large, and therefore 
incomprehensible trees from being formed. The first was that the tree could only 



i l .4  Splitting Procedures of 103, C4.5, and CART 379 

grow to a user-defined maximum depth. The second was a so-called lower branching 
limit. This criterion prevents a node containing less than s,,, exemplars from 
splitting, or nodes containing less than nmiTL exemplars from being formed. The 
third criterion, applicable to data having continuous outputs, prevents nodes from 
splitting if the variance of the output of the node falls below some threshold (vth). 

11.4 Splitting Procedures of ID3, C4.5, and CART 

The ID3 and C4.5 algorithms generate classification trees from data by recursively 
splitting the data until a stopping criterion is reached in all the terminal nodes. 
ID3 and C4.5 use the gain ratio to determine the attribute on which to split the 
data set. The C4.5 algorithm by default prunes the trees using the resubstitution 
error rate (Quinlan, 1993) with a confidence limit of 25%. Furthermore C4.5 has 
the ability to  group discrete attribute values together (Quinlan, 1993) and various 
other advanced options. However apart from the pruning mechanism, C4.5 with 
default settings does not differ appreciably from the ID3 algorithm. As a further 
comparison to the ANN-DT algorithm the trees generated by the ID3 algorithm 
were also pruned statistically. 

The CART algorithm follows a different splitting procedure based on the min- 
imization of a given error measure. The least-squares regression version of the 
CART algorithm, used in this chapter, forms a regression tree by iteratively split- 
ting nodes on an attribute and threshold value in order to minimize the weighted 
variance (Breiman et al., 1984) over the branches. This is the same as minimizing 
the normalized variance of Equation 11.7. 

The variant of CART used in this chapter did not make use of the minimal error 
complexity pruning (Mingers, 1989) and cross-validation estimates (Breiman et al., 
1984), but pruned trees statistically instead. It should be noted that all pruning 
techniques, including those using cross-validation (CART or C4.5), can also be 
applied to the trees developed by the ANN-DT algorithm. 

~~ 

1 1.5 Illustrative Examples 

The performance of both the ANN-DT(e) algorithm and the ANN-DT(s) variant 
was compared to that of the ID3 and C4.5 algorithm on a number of classification 
problems and to an algorithm using CART’S splitting criteria on continuous output 
data. Three-fold cross-validation was used where the data sets contained few 
exemplars. 

The neural networks used for the problems considered in this chapter were 
multilayer perceptrons with hyperbolic tangent transfer functions and weights 
trained with the generalized delta learning rule with momentum, as well as radial 
basis function neural networks. The hidden layers of the radial basis function neural 



380 Extraction of Decision Trees from Artificial Neural Networks 

networks were trained with the k-means clustering algorithm and their output layers 
with the generalized delta learning rule. 

Except for the problems pertaining to artificial data (Examples 1 and 4) the 
ANN-DT algorithm sampled the trained neural network 20 times for every training 
point. In other words, for every original training point, 20 sample points were 
synthesized for querying the trained neural network. It should be noted that during 
the integration steps, the ANN-DT(s) algorithm made additional queries to  the 
neural network in order to  determine the most significant inputs. 

Two trees were built by the ANN-DT algorithm for each classification problem. 
The growth of the first tree was not constrained by any stopping criterion, whereas 
specific stopping criteria and pruning methods were applied during the formation 
of the second tree. In particular the maximum depth to which the second tree could 
grow was limited to 6. Statistical pre-pruning commenced at  a depth of 3 with a 
confidence level a of 95%. The lower branching limit criterion was also implemented. 
The minimum number of exemplars required for a split, Smin, was set at  10 and 
the minimum number of exemplars that a particular node had to contain, nmin, 

was set at  2. 
The same stopping criteria were used for those examples consisting of data with 

continuous outputs. A further stopping criterion, i.e. the minimum output variance 
required to continue splitting, vth, was also implemented. The threshold value was 
0.0025. The experiments with ID3 and the CART variant used the same settings as 
ANN-DT, except that smin was set to 4. This is in fact implicitly enforced because 
nmin was set to 2. For all examples other than example 4 (discussed below) the 
results of the various algorithms on the validation sets were found to be fairly 
insensitive to changes in the above-mentioned settings. 

11.5.1 Example 1: Binary Classification of Points in a Circular Domain. 

In the first example a simple artificial data set was analysed. It consisted of points in 
two dimensions homogeneously distributed on a square with sides of unit length and 
bottom left corner at  the origin, as shown in Figure 11.3. A decision boundary was 
defined by a quarter circle with centre at  the origin and radius 0.8, which separated 
the points in the square into two classes. The class was designated as positive if the 
points were located outside the perimeter of the circle, and negative otherwise. The 
training set consisted of 100 exemplars of the form [z, y, [CLASS], where z and y 
denoted the co-ordinates of the points, and CLASS the group membership of the 
points (designated by 0 or 1). A radial basis function neural network with 20 hidden 
nodes was trained on the 100 points. For the extraction of rules from the neural 
network with ANN-DT(s) and ANN-DT(e), 1000 points lying randomly inside the 
square space were used to sample the trained neural network for its corresponding 
outputs. A decision tree was also extracted from the training data by means of the 
ID3 algorithm. 

This case study was extended to study the influence of noise on the performance of 
the decision tree algorithms. A set of data consisting of 300 exemplars was corrupted 



11.5 Illustrative Examples 381 

1 .o 

0.8 

0.6 

0.4 

0.2 

0.0 
0.0 0.2 0.4 0.6 0.8 1 .o 

Figure 11.3 The training patterns of case study 1.1. A decision boundary is 
defined by the quarter circle with centre a t  the origin and radius 0.8, which separates 
the points in the square into two classes, as indicated by (+) and ( 0 )  markers. 

through inversion of the outcome class of randomly selected exemplars in the data 
set. The percentage of noisy sample points in the training data sets were 0, 5, 10, 15, 
20, 25, 30 and 35.  The data set used for testing the neural networks and decision 
tree algorithms trained on the noisy data, consisted of a set of 2000 exemplars 
which did not contain any noise. For comparative purposes, a hyperbolic tangent 
backpropagation neural network with 14 hidden nodes, as well as a radial basis 
function neural network with 40 hidden nodes were also evaluated. 

11.5.2 Example 2: Characterization of Gas-Liquid Flow Patterns 

Transitions between various fluid flow patterns are of substantial importance for 
many technical applications that rely on pressure, as well as heat and mass transfer. 
Reiman et al. have conducted experiments with multiphase fluid flow systems (air 
and water) in horizontal pipes yielding 175 experimental observations. Depeiicling 
on the flow pressure ( P ) ,  diameter of the pipe ( D ) ,  superficial liquid velocity ( U L )  

and superficial gas velocity ( u G ) ,  flow regimes characterized by slug flow or non-slug 



382 Extraction of Decision Trees from Artaficial Neural Networks 

flow could develop, including transitional phases such as slug-annular and slug-wave 
flow) (Reimann et al., 1992). A backpropagation neural network with 4 input nodes, 
3 hidden nodes and a single sigmoidal output node was trained with the generalized 
delta rule to distinguish slug flow from non-slug flow, given exemplars of the form 
[P, D ,  UL, ZIG, IFLOW], where FLOW denoted either slug or non-slug flow. 

11.5.3 Example 3: Solidification of ZnC12 

This data set consisted of 108 exemplars obtained from an experiment where zinc 
chloride is hydrolysed in watery ammoniacal-ammonium chloride solution (Limpo 
et al., 1995). Three phases of zinc chloride can occur, viz. Zn(NH3)2C12, Zn(OH), 
and Zn(OH),.,Clo,4. Usually only one phase is present, but under certain conditions 
more than one phase can occur. The objective of this example is to predict the 
expected formation of the three phases from the temperature of the solution ("C), 
the concentration of chloride anions (Cl-), the concentration of zinc cations (Zn2+) 
and the ammonia concentration (NH3). 

The outputs are non-exclusive and therefore for each of the three phases a 
multilayer perceptron with 4 input nodes, 5 hidden nodes with hyperbolic tangent 
transfer functions and a hyperbolic tangent output node was trained on the data. 
Separate decision trees were likewise induced on each of the three outcomes to  
indicate whether a specific phase was present or not. 

11.5.4 Example 4: Sine and Cosine Curves 

This is a synthetic problem with four inputs, three continuous ( 8 ,  x, s )  and one ( 4 )  
discrete. The single continuous output (y) is given by Equation 11.10. 

y = sin (47r8 - 4) + an: + bs + CE (11.10) 

with 0 5 (8, x, s )  5 1 and the discrete variable 4 assuming either the value 0, or 
;, while E was a random variable with a normal distribution with zero mean and a 
standard deviation of unity. 

A training set of 300 uniformly distributed random data points were generated 
with equation pararneters a = 0.3, b = 0.0 and c = 0.2. Note that although the 
parameter b is zero, and the influence of variable s therefore non-existent, the 
various algorithms will still have to deal with what will essentially be a nuisance 
variable. The test set consisted of 1200 points for which the outputs were computed 
without the error term, i.e. c = 0. 

This is a difficult problem to solve for algorithms such as CART that use a 
greedy heuristic to induce the decision tree, because the data points need to be 
split on attribute 4 and several times on 8 (not necessarily in that order). Initially 
nothing is gained in terms of reducing the error from a split on 8 and only after 
several splits on 4 is the error reduced significantly. Algorithms employing greedy 
heuristics have difficulty finding good solutions under these circumstances. Other 
than possibly reducing the variance resulting from the error term, a split on x will 
reduce the variance only marginally. Moreover, the noise factor, CE, causes methods 



11.5 Illustrative Examples 383 

that produce rules that are supported by insufficient numbers of exemplars to 
overtrain. Since the initial splits do not reduce the error, premature pruning would 
give undesirable results. Therefore the F-tests were only applied at  the second last 
possible level. For example, for a maximum depth of 6 the F-test was only applied 
at a depth of 5. The minimum number of data exemplars required for a continued 
splitting (sm,,,) was set a t  4 for the ANN-DT algorithms (and for the variant of 
CART by default). Even so, different settings of sm,, did not change the results of 
any of the techniques appreciably. 

A multilayer perceptron with 20 hyperbolic tangent hidden nodes was trained 
on the data generated by Equation 11.10. The ANN-DT(e) and ANN-DT(s) algo- 
rithms were used to extract rules from the trained neural network. For 5 different 
experiments thc effect of the number of sample exemplars on the> ciiiality of the ex- 
tracted rules was examined. Different numbers of sample points wtsl c’ used to query 
the trained neural networks, viz. 0, 250, 500, 1000 and 1500 exemplars. 

In another experiment the effect of noise on the performance of the algorithms 
was examined. The noise factor c was therefore set at different levels, specifically 
0.0, 0.1, 0.2 and 0.3. In this experiment the number of sample exemplars used to 
query the trained neural networks was held constant at 500 exemplars. 

11.5.5 Example 5: Abalone Data 

This data set was obtained from a study aimed at  predicting the age of abalone 
based on the physical characteristics of the specimens examined (Reimann et al., 
1992). The data have 8 inputs, namely the sex of the specimen (male, female 
or infant), the length, the diameter, the height, the total weight, the shucked 
weight, tjhe weight of the viscera and finally the shell weight of the specimen. The 
current method to determine the age of a specimen is to cut the specimen’s shell 
through the cone, stain the shell and then count the number of shell rings using 
a microscope. This is a time-consuming task and therefore it would be useful to 
obtain a specimen’s age from the more easily obtainable physical characteristics. 
The data were obtained from the UCI Repository of Machine Learning Databases at 
Irvine. Records with missing data were removed. The data consisted of 3133 training 
records and 1044 records for evaluation of the trained models. In our experiment 
the sex input feature was encoded as { 1; O} for type male, (0; l} for type female and 
{0;0} for the infant type. Although the output is actually discrete (the age is an 
integer ranging from 1 to 30) it was decided to treat the output as continuous and 
the root-mean-square error was minimized. After performing some experiments on 
the training data, it was decided to use a multilayer perceptron with 6 nodes in the 
hidden layer, arid trained for a total of 5000 epochs. 

11.5.6 Example 6: Sap Flow Data in Pine Trees 

This data set consisted of 9 continuous inputs, namely temperature, relative hu- 
midity, differential vapor pressure, photoactive radiation, leaf mass, height of the 



384 

ID3 
Pruned 

91.2 

63.9 
(4.5) 

88.0 
(2.8) 

Extraction of Decision Trees from Artificial Neural Networks 

c4.5 

91.2 

72.1 
(4.1) 

89.2 
(2.4) 

Table 11.1 The percentage of examples classified correctly on the test data set 
by the various algorithms. The standard deviations of this percentage over the 3 
cross-validation sets (where applicable) are indicated in brackets. Where indicated 
statistical pruning was done with an Q value of 0.05. C4.5 used error reduction 
pruning with a 75% confidence limit. 

(1.9) 

Case 
Study 

(1) 

(2) 
Slug- 

(3) 

Circle 

Flow 

Solidi- 
fica- 
tion of 
ZnC12 

(2.3) 
92.9 

Case Study 
Sin-Cos 

ANN ANN-DT(e) ANN-DT(s) CART (statistically pruned) 
86.1 79.9 83.2 36.6 

ANN- 

Pruned 
97.2 

68.3 

DT(e) 

(5.5) 

(2.0) 
91.4 

Abalone 
Pine 

ANN- 
D T b )  

97.9 

72.4 
(2.55) 

91.4 
(2.2) 

57.0 48.4 46.5 45.5 
90.4 83.7 79.7 83.4 

ANN- 

Pruned 
97.0 

69.9 

DT(4 

(3.1) 

(3.7) 
80.6 

ID3 

94.6 

69.8 
(2.2) 

(3.5) 
87.7 

Table 11.2 The percentage of variance explained (100 x R2 ) by the various 
techniques on the continuous case studies. On all the decision trees statistical 
pruning was used with an Q value of 0.05. 

tree, diameter at breast height, xylem pressure potential, the season, as well as the 
sap flow rate, which is a continuous output. An ellipsoidal basis function network 
with 20 axis-parallel ellipsoidal basis function networks was trained with an evolu- 
tionary algorithm. The decision trees were extracted from this neural network with 
the ANN-DT algorithm. The data consisted of 6612 records of which two-thirds 
were used for training and the remainder for testing the various algorithms. The 
decision trees were all grown to a maximum depth of 7. 

11.6 Results 

The results obtained with the various algorithms as specified previously are sum- 
marized in Tables 11.1-11.6. 

For classification problems (examples 1, 2 and 3) Table 11.1 contains the classi- 
fication score out of a 100, and for the continuous outcomes (examples 4, 5 and 6) 
the score is given in Table 11.2 in terms of the coeffcient of determination (Hays, 



11.6 Results 

Case Study 
Sin-Cos for c = 0.3 

385 

ANN-DT(e) ANN-DT(s) CART * 
84.0 87.2 28.5 

Table 11.3 

given as the percentage of examples classified the same as the neural network. 
The fidelity of the various algorithms of Table 11.1. The fidelity is 

Case Study 

Circle 
Slug-Flow 
Solidification of 
ZnClz 

Table 11.4 

respect to the neural network output. 
The fidelity of the continuous case studies in terms of 100 x R2 with 

ANN ANN- ANN- ANN- ID3 ID3 c4.5 
DT(e) DT(e) DT(s) DT(s) Pruned 

25 15 27 15 8 5  5 
65 33 179 33 33 8 8 
38 20 41 15 6 4  4 

Pruned Pruned 

I Abalone I 84.4 I 79.7 I 81.0 I 
I Pine I 92.2 I 87.0 I 86.3 I 

* An algorithm based on CART’S splitting procedure and statistical pruning 

1988). The formula used is: R2 = 1 - C ( y p - y t ) 2  (Yt-y;T,g)2 , where y, is the predicted value 

value of the outcomes. The corresponding fidelity to the neural network is given in 
Table 11.3 and 11.4, while Tables 11.5 and 11.6 contain the number of leaves in the 
decision trees, which is an indication of the complexity of the trees. For these binary 
trees the number of internal nodes is equal to one less than the number of leaves. 
For the case studies using cross-validation, the standard deviation of the accuracies 
over the three cross-validation runs are indicated in parenthesis in Table 11.1. For 
Example 1 the results reported in Table 11.1 are those pertaining to  the data with- 
out noise. The results pertaining to  Example 4 in Table 11.2 are associated with 
a noise factor of 0.3 and 1000 sample points in addition to  the original training 
points. Note that these sample points of ANN-DT have been synthesized from the 
original training data and therefore no unfair advantage was given to any of the 
algorithms for any of the experiments. 

of the outcome, yt is the target value o F the outcome, and yavg is the average target 



386 

Case Study 
Sin-Cos 
Abalone 

Extraction of Decision Trees f rom Artificial Neural Networks 

ANN-DT(e) ANN-DT(s) CART * 
54 37 29 
37 35.5 31 

Table 11.6 

induced by the algorithms. 
The number of leaves for continuous case studies of the decision trees 

I Pine I 196 I 146 I 200 I 
* An algorithm using CART’S splitting procedure and statistical pruning. 

11.6.1 Example 1: Binary Classification of Points in a Circle 

From Table 11.1 it can be seen that on the 2000 test points the two methods ANN- 
DT(e) and ANN-DT(s) achieved a classification accuracy which is similar to that 
obtained by the neural network. The fidelity of the two algorithms with respect to 
the radial basis function network is also very high and stays high after rule pruning. 
Notably more exemplars are classified incorrectly by the ID3 and C4.5 algorithm 
(resulting in a statistically significant difference between the ANN-DT and ID3, 
C4.5 algorithm). However, the techniques making use of the neural network also 
derived more rules. To illustrate this, Figures 11.4 and 11.5 show, as overlapping 
blocks, the respective decision regions obtained for these data by the ID3 algorithm 
and ANN-DT(e). 

It can be seen that the regions identified by means of the ANN-DT(e) algorithm 
follow the contour of the circle more closely than those obtained with the ID3 al- 
gorithm. Closer inspection of the training points (indicated in the figures) shows 
that the ANN-DT(e) algorithm interpolates better than the ID3 algorithm. How- 
ever, this comes at  a cost because the contour of the circle is not easily described 
by axis-parallel decision rules. The ratio of rules obtained after statistical prun- 
ing ((24.5 has its own default form of pruning) by ANN- DT(e) and ID3 remained 
roughly the same. However, pruning tended to erode the classification accuracy of 
the ID3 algorithm more than that of the ANN-DT(e) method. 

Figure 11.6, Figure 11.7 and Figure 11.8 show the classification results of the 
algorithms both with and without statistical pruning for the different noise settings. 

The corresponding numbers of rules obtained by the different algorithms em- 
ployed are given in Figure 11.9, Figure 11.10 and Figure 11.11. 

The results confirm that the ANN-DT(e) and ANN-DT(s) algorithms are as 
robust to noise as the neural networks from which they extracted rules. In contrast, 
the ID3 algorithm relies on pruning to handle the effects of noise. Even when 
pruning is employed the ID3 and C4.5 algorithm still performed significantly 
worse than the ANN-DT algorithms on virtually all noise levels, as indicated in 
Figure 11.7. The performance of the rules derived and pruned by ID3 and C4.5 is 
initially worse than that of the other algorithms but does not decrease as fast as 
the performance of the rules derived with the other algorithms. 



11.6 Results 387 

1.0 

0.8 

0.6 

0.4 

0.2 

0.0 

0.0 0.2 0.4 0.6 0.8 1 .o 

Figure 11.4 The decision boundaries for the case study in example 1, derived by 
ID3 and compared to the actual decision boundary of the problem indicated by 
the arc. The rectangular regions are those that were identified by the algorithm as 
members of class 1, while the light regions indicate the areas ID3 identified as class 
0. The training points of class 1 are marked by a ‘ 0 ’  and those of class 0 by an ‘ X ’ .  

11.6.2 Real World Classification Tasks: Examples 2 and 3 

The fidelity of the rules derived by the ANN-DT algorithms is for all these case 
studies notably higher than that of the rules obtained using either ID3 or C4.5. 

Note that for Examples 2 and 3 the rules evolved by the ANN-DT(e) and the 
ANN-DT(s) algorithms are more accurate than those induced by ID3 and C4.5 
algorithm but by a smaller margin than in the previous examples. Note too that 
the ANN-DT(e) algorithm performed slightly better than the ANN-DT(s) variant. 
A paired t-test was performed containing each of the three cross-validation results 
of the real-world classification problems (9 in total). This was to see whether the 
higher accuracy of t,he unpruned decision trees evolved by the ANN-DT(e) method 
is significantly different from the accuracy of the trees evolved by the ANN-DT(s), 
ID3 or C4.5 algorithm. With the double-sided t-test (Hays, 1988) it was found 
to be true with a 94% confidence level for ID3, with 91% confidence for ANN- 



388 Extraction of Decision Trees from Artificial Neural Networks 

1.0 \I 
I. f X  X 

0.8 

0.6 

0.4 

0.2 

0.0 

0.0 0.2 0.4 0.6 0.8 1.0 

Figure 11.5 
as derived by the ANN-DT(e) algorithm. 

The corresponding decision regions of the case study in example 1, 

DT(s) but with less than 90% confidence for the C4.5 algorithm. Furthermore, the 
improvement of the results obtained by ANN-DT(s) over those of the ID3 algorithm 
was not significant at  a 90% confidence level. 

The number of rules derived by the ANN-DT algorithm is much greater than 
the number of rules generated by ID3 and C4.5 respectively. Although this number 
could be reduced by statistical pruning it was found in Example 3 that after pruning 
the trees evolved by the ANN-DT algorithm are no longer more accurate than the 
C4.5 decision trees or the unpruned ID3 decision tree. It seems that for this case 
study the extra information that is contained in the neural network and not in the 
ID3 or C4.5 decision trees cannot be represented by both intelligible and accurate 
axis-parallel rules. 

In contrast, the ANN-DT(e) algorithm achieves a higher classification score 
on Example 3, both with and without statistical pruning. As three independent 
decision trees and neural networks were induced for each of the three non-exclusive 
outcomes, the three outcomes will be assumed independent. Under this assumption 
a paired t-test can be performed on the nine results obtained (three outcomes 
for every cross-validation run) to  see whether the ANN-DT(e) algorithm performs 
significantly differenty from the ID3 or C4.5 algorithms. The classification scores of 



11.6 Results 389 

Figure 11.6 Classification accuracy on the test data versus percentage of noisy 
patterns for the data in example 1. The ANN-DT(s) and ANN-DT(e) techniques 
were used to extract the rules from the backpropagation network, while the ID3 
algorithm extracted the rules directly from the data. No pruning was applied to  
any of the evolved decision trees. 

Figure 11.7 
noisy patterns in case study 1 (after pruning). 

A graph of classification accuracy on test data versus percentage of 



390 Extraction of Decision Trees from Artificial Neural Networks 

Figure 11.8 The classification of the decision trees induced by the algorithms in 
case study 1, based on the use of a radial basis function neural network, and plotted 
against the percentage of noisy patterns. 

Figure 11.9 
versus the percentage of noisy patterns in case study 1. 

The corresponding number of leaves for the decision tree methods 

the pruned ANN-DT rules were significantly higher (at over 95% confidence level 
for a two-sided t-test) than both those of the unpruned and pruned sets of rules 
derived by ID3 or C4.5. The same result was also true for the ANN-DT(e) algorithm 



11.6 Results 391 

Figure 11.10 The numbers of leaves of the decision trees induced by the algo- 
rithms in case study 1, based on the use of a multilayer perceptron, and plotted 
sgainst the percentage of noisy patterns. 

Figure 11.11 
based on the use of a radial basis function neural network. 

The numbers of leaves induced by the algorithms for case study 1, 



RULE 1 

IfZn < 0.54 

tlirri 0 Prob.= 0.89. Size = 18.7% 

RULE 2 

L i t i d  NHq < 0.24 

ifCl <3.1I 
C l r i d  Zn < 0.54 
~ t i d  NHq 2 0.74 
r l i r w  I Prob.= 0.93. Size = 30.9% 

RULE 3 

$Cl 2 3.1 1 
( I d  CI < 3.61 
u r i d  Zn < 0.54 
~ t i d  NH,  2 0.23 
t i t i d  NH,  < 0.57 
r h c w  0 Prob.= 1 .OO. Size = I .O% 

RULE 4 

(fTemp. < 35 
riticl c1- 2 3. I 1 
und Cl < 3.61 
uric1 Zn < 0.32 
r l t i d  NHq 2 0.57 
rlieri 1 Prob.= 1 .OO. Size = 0.3% 

RULE 5 

ifTemp. < 35 
rrr i t l  c1 2 3.1 1 
tiritl c1 < 3.61 
tiritl Zn 2 0.32 
arid Zn < 0.54 

t l w i  0 Prob.= 0.95. S u e  = 1.0% 

RULE 6 

ifTenip. 2 35 
orid CI 2 3.1 1 
urid Cl < 3.6 I 
aritl Zn < 0 54 

thcw 1 Prob.= 0.82, Size = 3.4% 

RCJIX 7 

~ t l d  NHq 2 0.57 

otid NHq 2 0.57 

rfCl 2 3.61 
t i t i d  Zn < 0 54 

rlirri 0 Prob.= 1 .OO, Size = 1.8V 

RULE 8 

rfZn 2 0.54 

l i t i d  NHq 2 0.74 

r l i r r i  0 Prob.= 0.98, Si7e = 43.1% 

Figure 11.12 The rules evolved by the ANN-DT( c )  algoritliiii for esaiiiplt~ 3 for 
the prcwiicc (1) or ahseiice (0) of the Zn(OH)2  plisse iii thc solidificatioii of ZiiC12 . 
Tlic 'Size' givcii 1)clow each rule indicates t lie pcrcciit agc of t l i e  ~ ~ ~ i i i p l a r s  cov(wd 
1)y the rule. Tlic probabilitj, is the ratio of tlic iiiiiii1)cr of cxmpla r s  iii tlic (loiiiiiiaiit 
class to t 1 1 0  tot a1 l lull l~~er of c~selllplars. 

wit h u t  priiiiiiig. A tj~pical set of st atist icallj. pruned riilcs dcri\wl 1)y tlic ANN- 
DT( e )  algoritlirii indicating tlie foriiiat ion of Z n (  OH), is givcii iii Figiirc 11.12. 

11.6.3 Example 4: Sine and Cosine Curves 

Tlic fidelity and accuracy (of ANN-DT(s)  aiid ANN-DT(e)) .  givcii iii tcriiis of tlic 
cocfficiciit of dcteriiiiiiatioii (R'), for (liffereiit iiiiiiilicrs of iiciiral iictn-ork saiiiplc 
points. arc plotted iii Figure 11.13. 

Tlie iiuiiiher of riiles obtairied by the rcyxctivc algorit liiiis for t l i c  test riins is 
g i l w  iii Figure 11.14. 

The figurcs show that the ANN-DT(s)  algoritliiii o1)taincvl sat isfactorj- rcsiilts. 
even if only a few saiiiplc points are a\xilal)le for traiiiiiig. Iii coiitrast. iii siicli a 
sitiiatioii tlie ANK-DT( e)  algoritliiii aliiiost coiiiplett~ly fails to captiiro t lit.  oi.cra11 
trends in t lie data. Furt licrriiorr., eveii wit 11 iio cst  ra saiiiplc poiiit s lwyoiid t 11~. 

trairiiiig points (iii wliich c ;we the 1 1 ~ i i r ~ l  1ictn.orks oiily pcrforiiis iioisc filt criiig) 
t lie ANN-DT(  s) algoritliiii yields sat isfactory results. HS u ~ ) l l  as pcrforiiiing 11111c11 
bet tcr tliaii tlic ANN-DT(  c)  algoritliiii. This iiiiplics that tlic sigiiificaiicc aiialysis 
eiialiles tlic ANN-DT(s)  iiietliod to place the attribiitw 0 aiid H liigli 111) iii  tlic 



11.6 Results 

/ 

393 

Y - 

\ .  - - -X - - A"-DT(e) fidelity c x 

E 

E4 

0.6 

0.5 

0.4 

+ A"-DT(e) 

/ 1 4 -A"-DT(s)-fidelity I 1 ,,/ 

0.3 -k I I I 

0 500 1000 1500 

Number of extra sample points 
Figure 11.13 The accuracy on the test data versus the number of sample points 
beyond the training points used by the ANN-DT(s) and ANN-DT(e) algorithms to 
sample the trained multilayer perceptron of case study 4. The dashed line indicates 
the fidelity with respect to the niultilayer perceptroii from which the rules were 
extracted. The noise factor was held constant at 0.3. 

decision tree. If one considers this example 4 as a whole, these attributes clearly 
have the greatest influence on the outcome of the neural network. For c = 0.3 and 
with 1000 sample points, ANN-DT(s) calculates o ( . f ) H  as 0.45 arid o ( f )+  as 0.30 
at the first split. The other two attributes each had a level of significance less than 
0.02. It can be seen from the decision tree in Figure 11.15 that 4 is selected once 
at tree depth of 1 and twice at a tree depth of 2. 

The greedy attribute selection measure of ANN-DT(e) arid CART splits only 
relatively late on the attribute 4 ,  because a split on this attribute causes very little 
immediate gain. Not shown in the figure is that  CART splits the data on t,his 
attribute once at a depth of 2, 3 and 4 and ANN-DT(e) even lower at a depth 
of 3, 4 and 5. After too many splits on irisigriificarit attributes the data are too 
sparse to pick up any underlying trends. This shortcoming of the greedy attribute 
selection measure that is used by CART cannot be coniperisated for at a later 
stage by pruning. Pruning will attempt to replace a sub-branch by leaves, but will 
not recalculate existing splits. Noise will make this task even harder. That is why 
CART'S performance decreases further with added noise, as can be observed from a 
plot of the algorithm's performance against the noise as indicated in Figure 11.16. 

Figure 11.14 and Figure 11.17, which give the respective number of rules obtained 
by each of the algorithms, reveal that  the simpler trees generated by the ANN-DT(s) 



394 Extraction of Decision Trees from Artificial Neural Networks 

Figure 11.14 
algorithms against the number of additional sample points in case study 4. 

The number of rules induced by the ANN-DT(s) and ANN-DT(e) 

algorithm are also associated with better performance. 

11.6.4 Example 5 and 6: Abalone and Pine Data 

For the Abalone problem the ANN-DT algorit,hms perform notably worse than 
the neural network, although still slightly better than the variant of the CART 
algorithm. A paired t-test on the square errors of the 1044 test points showed that 
this improvement is significant with a 98% confidence level for the ANN-DT(e) 
method. A further run with different initial states confirmed the result. For the Pine 
data set both ANN-DT(e) and CART performed similarly, and both significantly 
better than the ANN-DT(s) algorithm. For both case studies the complexity of the 
trees as indicated by the number of leaves generated by the various algorithms in 
Table 11.6 is very similar. 

11.7 Discussion 

ANN-DT successfully extracted a faithful rule representation from the trained 
neural network on all the case studies. In particular the ANN-DT(e) variant seemed 
to be more capable with regard to  classification problems, while the ANN-DT(s) 
method was shown to be more robust for continuous output data. 

An interesting result is that the rules induced by the ANN-DT algorithm are more 
accurate than those induced by the ID3 algorithm or variant of the CART algorithm 



11.7 Discussion 395 

a = e  
Threshold = 0.39 

a = @  
Value = Xrz 

a=*  a = @  a = e  u = x  
Value = rr12 value = d2 Threshold = 0.1 1 Threshold = 0.54 

a = X  u = s  
/ / 

a = e  a = e  
Threshold = 0.14 Threshold = 0.092 Thrcsbold = 0.71 Threshold = 0.23 

a = e  output output output output output output output 
Thrcshold=O.15 0.59 0.40 0.97 0.96 0.90 0.79 0.92 

output output 
-0.30 -0.065 

Figure 11.15 The decision tree extracted by the ANN-DT(s) algorithm from the 
trained neural network for case study 4 with c = 0.3 using 1000 points to  sample 
the neural network. If attribute a < Threshold the right sub-tree applies, else the 
left sub-tree is valid. 

using the same pruning techniques. A similar result was also found by Craven 
and Shavlik, who compared the TREPAN (Craven and Shavlik, 1996) algorithm 
to classification trees induced by C4.5 (Quinlan, 1993) and ID2-3 (Limpo et al., 
1995). The results indicate that for many problems the inductive techniques like 
C4.5 and CART do not use all the information that is contained in the original 
data. A possible source of this loss of information is that the technique splits the 
data recursively into branches in such a way that the data to  be processed in the 
underlying brariches are isolated from one another. This means that any trend that 
might exist between the inputs and the output of the data which are distributed 
over points belonging to different branches will not be discovered by the algorithms. 
It also means that points not complying with this trend as a result of noise cannot 
be identified and a rule can arise out of these exceptions that does not generalize 
very well. 

If it is assumed that the neural network detects these trends and does not 
overtrain on outliers in the data, the ANN-DT(e) and ANN-DT(s) algorithms are 
evolved on data where these exceptions are already removed. Moreover, the more 
densely sampled points help in identifying the exact threshold value at  which the 
data should be split. The C4.5 and CART algorithm can only estimate this value 



396 Extraction of Decision Trees from Artificial Neural Networks 

Figure 11.16 A plot of the accuracy of the algorithms for different noise factors 
in the test data of case study 4. The dashed line indicates the fidelity with respect 
to the neural network, a multilayer perceptron from which the rules were extracted. 
The size of the data set with which the ANN-DT(s) and ANN-DT(e) algorithms 
sampled the neural network beyond the 300 training points, was held constant a t  
500. All the decision trees were pruned statistically with an a value of 0.05. 

to lie somewhere between two points of that subset of the original data points that 
belongs to the branch in which the next split is to be made. This subset is much 
denser in the case of the ANN-DT(e) and ANN-DT(s) algorithms. 

Moreover contours, such as class boundaries that extend over different branches 
of the tree, can be continued over the regions where there is very little training 
data or no data to  support them. This is because the neural network does not split 
the data and can extend such a decision boundary between the training points via 
interpolation. The ANN-DT algorithm can sample in these regions and produce 
additional rules to cover these regions. Such behaviour is illustrated in Figure 11.4 
and Figure 11.5. Unfortunately the higher accuracy in such cases is also associated 
with more rules. For the same reasons the ANN-DT algorithms also tend to  maintain 
a significant higher fidelity with respect to the neural network. 

From the classification results (Case Studies 1-3) it can be seen that the unpruned 
ANN-DT(s) algorithm produced significantly larger trees than the ANN-DT(e) 
algorithm, while also yielding a slightly lower classification. This can possibly be 
attributed to  the fact that the significance analysis for classification problems could 
find high correlations between the output and one of the variables, even when the 
variations in the output that correlate with the variations in the attribute do not 
cause a change in the class. Consider the case in which all outputs of the sampled 
neural network with a value of higher than 0.5 will belong to class 1 and those 
with a lower output value than 0.5 to class 0. Then a change from 0.1 to  0.4 in the 
output is weighted by the significance analysis as much as a change from 0.4 to  0.7, 



11.8 Qualitative Analysis 397 

Figure 11.17 The numbers of rules induced by the algorithms in case study 4. 

despite the fact that in the latter case a shift in class occurred and in the former not. 
This causes splits in the data that are non-optimal in terms of separating points 
of different classes from one another. The gain ratio criterion on the other hand is 
computed only from the class values (either 0 or 1). 

11.8 Qualitative Analysis 

Both ANN-DT(s) and ANN-DT(e) can be applied to any non-parametric model, 
other than feed-forward neural networks, without making any assumptions about 
the model’s internal states or the nature of the data. 

The computational time of the ANN-DT algorithm scales linearly with the neural 
network size and is only dependent on the time it takes the neural network to  assign 
a label to  a data point. However, the algorithm’s computational time does suffer 
from the curse of dimensionality. In order to  achieve a higher density of points than 
that of the training points, progressively more sample points are required as the 
dimensionality of the data increases. This problem can be reduced somewhat by 
initially using fewer sample points and growing the tree from a node in a best-first 
manner. This is performed in the TREPAN algorithm (Craven and Shavlik, 1996) 
by presenting the node that is most likely to increase fidelity with sufficient samples. 
Naturally the number of these sample points also needs to  grow exponentially with 
the dimensionality of the data in order to  achieve the same accuracy, as once a split 
is made in the tree it cannot be adjusted later. 

In case study 4 it was seen that using the significance analysis in attribute 



398 

selectioii caii hold sigriificaiit advatrit agcs o \ ~ r  t 1ic grcw1)- vai-iaiiec crit c>rioii. For t liis 
particular probleiii specification wc krion. that altlioiigli siiiglc splith 011 at tri1)iitcs 
Q aiid 8 do iiot caiisc’ a significant d ~ c r ~ a s ( ~  in tlit. iioi-iii;ilizul iTariatioii of tl iv 
clata. cliaiiges iii these attributes are iievertliclcss corrolatcd ivitli c-li;iiigch iii tlic 
outpiit of the neural rietnwrk and will tlirwforc. 1 i a 1 ~  a liigli of i.aliic.. This is agaiii 
tmscd on the assiiiiipt ioii that the neural iictwork has lcariit t lic iiiikiio\vii fiiiict ioii 
represeiited 1 ) ~ .  t lie data.  The sigiiificaiicc aiialysis t licroforc l c ~ ~ i s  froiii t lio t ra i l id  
neural iietwork fiiiictioii wliicli at tribiitcs 1ial.c tlic most iiifliiciicc ovcr tlic (lata sot 

co\.cred by a particiilar node. The grccdy split t iiig c-ritcria of CART ai ic l  ANN- 
DT(e) oii the other liaiid, do iiot coiiipeiisatc for t lic pcrioclicit>. of tlic fiiiict ioii 
with respect to the attribute 8. The ANN-DT(c) algoritliiri coiild iisc ac1clitioii;il 
sample poiiits t o  obt aiii a respectahlc perforiiiaiiw. wliorcw t 1iv CART algoritliiii 
iio longer has sufficient data points t o  idciit ify t l i e  pcrioclic fiiiict ioiial lwlia\.ior. aftcr 
perfoririiiig the iiiit ial grccdy splits. Altlioiigli case st iidy 4 coiiccriird a sj-iitlict ic,  
data sct, such periodic response of tlie outpiit to oiic of tlic attri1)iitcs ivitli rclat i\.cly 
sparse noisy data  caii also occiir in real mw-ld data scts. Tlic fact tliat 1)otIi ANY- 
DT( e )  and espclcially ANN-DT( s) could o~~crco~r ic  siicli a pit fdll is at lcast i i i  t licory 
a sigriificaiit benefit of tlie ANN-DT algorit l i i i i  coiiiparccl to t lir. CART algorit 11111.  

11.9 Conclusions 

0 A iiew iiietliod has lieeii de\Telopcd to extract cqilicit IF-THEN riilch froiii a traiiic>(l 
feed forward rieural iietwork, regardless of tlic striictiirc of the iicta.ork. It ivas foiiiicl 
tliat these rules arc significantly inore reprcwiit at ivtl of tlie 1wliaIior of t lic iiciii.;il 
iictwork tliaii riiles extracted from tlie traiiiiiig clata aloiic. 
Alternatively, the algorithiii caii be iisecl as a 1iic)tliod to cstract riilcs froiii clat ii 
sets. These rules appear to be of coiiiparable acciirac>. as tliosc o1)taiiiccl n-it 11 

C4.5 aiid an algorithiii using procedures siiiiilar to CART‘S split t iiig a i ( 1  priiiiiiig 
algorit l i in .  However in some cases a significant iiiipro\wiwiit coiild 1)c o1)taiiiccl 
with the ANN-DT algorithiii. Priiriiiig caii iii soiiic cascs siiiiplif>. t lit. t rws. n-liilc 
ret aiiiirig relatively liigli acciiracy. 

In order to  focus the extracted rulcs on tlie relcvaiit do1iiaiii. it is iiiiportaiit to 
saiiiple the iieiiral network on data siiiiilar to the origiiial traiiiiiig clata w t .  

The ANN-DT algorit h i  tended to prodiice soiiiewliat iiiort’ cc)iiipl(~x t r w s  for 
classification problems t liaii ID3 and C4.5. 
For classification prohleiiis the ANN-DT(c1) algoritliiii. wliicli sclcct s at tri1)iit cs a i i d  

split poiiits using a gain ratio criterion, appeared to pcrforiii lwttcr tliaii tlic ANN- 
DT(s) algoritliiii. especially in terms of tlie iiuiii1)cr of riilcs cstractcd. Tliv lattcr 
algoritliiri hascs tlic sclcctioii of attributes and split poiiits 011 it sigiiificaiicc aiial>-his 
of tlicl iripiit attributes. Uiilike a seiisitivitJ- aiial>.sis that oiilj- coiihi(1us t lit. partial 
deri\.at ives, the sigiiificaiicc aiialysis takes t lie corrclat ioiial st riict iirc of t l i v  clat ii 
into account . 

0 

0 

0 

0 



References 399 

0 For a problem with continuous outputs it was demonstrated that the significance 
analysis of ANN-DT(s) could correctly identify the most important attributes, 
whereas a greedy error driven procedure, such as used in ANN-DT(e) and stan- 
dard decision tree techniques (e.g. CART), failed to identify the attributes. The 
significance analysis would therefore seem to be a suitable splitting criterion near 
the root of the decision tree, whereas a greedy splitting criterion would better split 
the lower branches of the tree. 

References 

Andrews, R., Diederich, J., and Tickle, A. B. 1995. Survey and critique of techniques 
for extracting rules from trained artificial neural networks. Knowledge-Based 
Systems, 8( 6) :373--383. 

Breiman, L., Friedman, 3. H., Olshen, R. A., and Stone, C. J. 1984. Classification 
and Regression Trees. New York: Chapman & Hall. 

Broomhead, D. S. and Lowe, D. 1988. Multivariable functional interpolation and 

Craven, M. W. and Shavlik, J. W. 1994. Using sampling and queries to extract 
rules from trained neural networks. In Proceedings of the 11 th International 
Conference on  Machine Learning, San Francisco. 

Craven, M. W. and Shavlik, J. W. 1996. Extracting tree-structured representations 
of trained networks. Advances in Neural Information Processing Systems 8. 

Davis, R., Buchanan, B. G., and Shortliffe, E. 1977. Production rules as a rep- 
resentation for a knowledge-based consultation program. Artificial Intelligence, 

Fu, L. M. 1991. Rule learning by searching on adapted nets. In Proceedings of the 
Ninth National Conference on  Artificial Intelligence, pp. 590- 595, Anaheim. 

Gallant, S. I. 1993. MIT Press 
Cambridge MA: MIT Press. 

adaptive networks . Complex Systems, 2 : 3 2 1-35 5. 

8( 1): 15-45. 

Neural Network Learning and Expert Systems. 

Gower, J. C. 1971. A general coefficient of similarity and some of it’s properties. 

Haykin, S. 1994. Neural Networks: A comprehensive foundation. 866 3rd Avenue 
Biometrics, 27:857-872. 

NY 10022: Macmillan College Publishing Company. 
Hays, W. L. 1988. Statistics. Orlando Florida 32887: Holt, Rinehart and Winston 

Humpert, B. K. 1994. Improving backpropagation with a new error function. Neural 

Krzanowski, W. J. and Marriott, F. H. C. 1995. Kendall’s Library of Statistics 2 

Limpo, J. L., Luis, A., and Cristina, M. C. 1995. Hydrolysis of zinc chloride in 

Inc. 

Networks, 7(8):1191-1192. 

Multivariate Analysis, vol. 2. London: Arnold Publishers. 



aqueous aiiiiiioiiiacal aiiiiiioiiiiiiii chloride solutions. 
243. 

H~ydrorrictcllliir:cly, 38:235 

blasters, T. 1993. Practical Neural Network Recipcs in C++. Boston hIa 
,4 c adeiii i c Press. 

hliiigers, J. 1989. Ail empirical coiiiparisoii of pruiiiiig iiict hods for dccisioii t rcc' 

iiidiictioii. Machine Learning, 4:227 243. 
hfoody, J .  aiid Darken, C. J. 1989. Fast lwriiiiig iii iietn.orks of loc.allj.-t i i i iccl  

processing iiiiits. Neural Corriyutcitiori. 1 (4):281 294. 
Narazaki. H.. i iktanahe, T., ancl Yaiiiairioto, Al. 1996. Rwrpiiisiiig kiiowledge 

in iiciiral rietworks: An explaiiatory riiccliaiiisrii for iiciiral iir.tn.orks i i i  clata 
classificatioii prohleiiis. IEEE Transactions on Systems. A l t r i i  c i r i d  Cyhr r - i i c ~ t r c ~ s .  

26(1B):107- 117. 
Pop, E.. Haj.w..arc-l. R., mid Diedericli. J .  1994. RIILENG: ostractiiig riilcs froiii a 

trained artificial iieiiral network by stcprvise iiegittioii. QC'T NRC. 
P o ~ w l ,  hl .  J .  D. 1985. Radial h i s  functions for niultivaria1,le i i i t~~r1~~) l~~t io i i :  A 

review. In IAIA Conference on Algorithms for- the ci~)pi'o.riiIiatioIi o f  fiiric?ioiis 
u n d  Data, eds. J.  C. hlasoii aiid AI. G. Cox. pp. 143 167. Osford. CT.Ii. CTiiivcrsitJv 
Press. 

Quiiilaii, J. R. 1986. Iiiductioii of decision trees. Alachirie Lcci~.niri!l. 1:Hl 106. 

Quiiilaii, J .  R. 1988. Decision trees aiid iriiilti-valiitd a t t r ihi tw.  A l c z ( ~ I i / n (  Iiitc l l / -  
gerice, 11:305- 318. 

Iiaufinaiiii. 
Quiiilaii. .J. R.  1993. C4.5: Programs for. Alachine Lcnrni~ig. Sail I\Iateo CA4: hlorgaii 

Reiiiianii. J., John, H.. aiid Seeger. \TT. 1992. Traiisitioii froiii slug to aiiiiiil~r floiv 
i i i  horizontal pipes. hlultiphase Scicriw a i i d  Technolo,qy, 6 .  

Riiinelhart, D. E. aiid hIcClellaiid, J. L.. eds. 1986. Pcirallel Distr-ibiitioii Pro( 
E.rplorution 771 the Microstructure of Cogriitiori 1. Cain1)ridgc: AIIT Prc.ss. 

Saito, K .  and Nakaiio. R .  1988. illedical diagiiostic expert systciiis 1,ascd oil PDP 
iiiodel. In  Proceedirigs of IEEE International Confermire o r 1  L V c j i i r ~ ( i l  ,Vt ti1wr.X.s. 
pp. 255-262, Sari Diego. vol. 1. 

Schmitz, G. P. J., Aldricli, C., aiid Goiiws, F. S. 1996. Extracting dccisioii trcc:, froiii 
artificial neural networks. Proceedings of Minerals P Matericzls '96, 1 :250 257. 
Somerset \Vest, South Africa. 

Sestito, S. and Dillori, T. 1992. Autoiiiatd kiiowlcdgc acqiiisitioii of riilcs ivit 11 ('011- 

tiiiiioiisly valued attributcs. 111 P r u c w d i n y s  of the 12th Int(  Ix(itioiici1 Coiifc I Y  I I ( V  

on  Expert Systems arid their Applications, pp. 645 656, Avigiioii Fraiicc. 

Setlii, I. K. 1995. N~iiral  irnpleiiieiitatioii of tree classifiers. IEEE Trriiisric.t/oris O H  

cs. 25(8):1243 12-19. Systerns. Af (1 1 1 ,  a n d  Cybe r - r i  

Tliriin, S. 1994. Extracting provable correct rules froiri artificial iiciiral iictu-orks. 
Tech. rep., Institut fiir Iiiforiiiatik 111 Uiiiversitiit Bonii, Boiiii, Gcriiiaiiy. 



References 

Thrim, S. 1995. Extracting rules from artificial neural networks with distributed 
representation. Advances in Neural Information Processing Systems, 7. 

by rule extraction from neural networks. QUT NRC. 
Tickle, A. B., Orlowski, M., and Diederich, J. 1994. DEDEC: Decision detection 

Towell, G. and Shavlik, J. W. 1993. Extracting refined rules from knowledge based 
neural networks. Machine Learning, 13:71-101. 

Werbos, P. J. 1974. Beyond regression: New Tools for prediction and analysis in 
the behavioural science. Ph.D. thesis, Harvard University, Harvard University 
Cambridge MA. 

White, A. P. and Liu, W. Z. 1994. Bias in information-based measures in decision 
tree induction. Machine Learning, 15:32 1-329. 



This page intentionally left blank 



12 Extraction of Linguistic Rules from Data 
via Neural Networks and F’uzzy Approximat 

Andrzej Lozowski and Jacek M. Zurada 

Rule extraction is an  important issue within Knowledge-Based Neurocomputing. 
Large sets of data, usually produced by  experiment, can be interpolated easily 
with neural networks, providing a means for generalization. Based on  generalized 
knowledge, many useful conclusions concerning the analyxed experiment can be 
drawn. This, however, indicates a great need for representing the knowledge in a 
readable and intuitive form. Soft quantization of factors taking part in the analysis 
allows representation of the generalizations b y  a set of linguistic rules. The rules 
determine a reasoning algorithm for a fuxxy system approximating the network 
function and inasmuch, they provide expert knowledge created automatically. 

12.1 Introduction 

Soft computing techniques extensively use numerical data which characterize in- 
put /output relationships of various systems that support decision-making, advis- 
ing, and diagnostics. These techniques have been successfully applied in engineering, 
medicine, chemical analysis, control, agriculture, financial and insurance manage- 
ment, and many other areas. Unlike formal and mathematically rigorous types of 
analysis and design, soft computing techniques possess features allowing the de- 
scription of cause-effect relationships in terms of verbal statements and common 
sense rules. Informal notation is especially suitable for acquiring information from 
experts in a given field, who are not always used to giving a precise explanation of 
facts and algorithmic routines for solving given tasks. Yet, they often have years 
of experience and intuitive knowledge that is extremely difficult to  grasp within 
restrictive formalisms. This kind of knowledge emerges as a result of learning from 
examples. 

Neural networks play a significant role in modeling systems for which no an- 
alytical formulas are known. Effective tools for system identification are usually 
crucial for successful control. Although neural networks require quantitative exam- 
ples for learning in the form of numerical data describing the desired input/output 



4 04 Extraction of Linguistic Rules from Data via Neural Networks and Fuzzy Approximation 

Figure 12.1 Neural network classifier for the XOR problem. The network is 
assumed to perform a smooth mapping 31 = --2122. Hence, this simple decision 
system gives an answer yes if 31 > 0 or an answer no if 31 < 0. 

mapping, the significance of neural networks in soft computing is rooted in their 
unique ability to interpolate nonlinear relations even in a multidimensional space. 
Moreover, neural networks are fairly tolerant to  noise in the data, which becomes 
an issue when modeling involves a process of measurement. In such cases efficient 
model identification may require a careful validation of the model under construc- 
tion, especially when the data is limited or incomplete. Nevertheless, an effort in 
this direction is usually beneficial in that a smooth interpolation outperforms a 
simple data-driven look-up table. 

With models developed through learning from abundant data, the user can input 
facts and compute the system's outputs. This, however, provides no interpretation, 
justification or explanation of responses. The rules embedded in models are not 
directly accessible. Another domain of soft computing, namely fuzzy approximation, 
is much more reasoning-oriented and allows one to  uncover the rules in a very 
suitable linguistic form. A closed-form algorithm for rule extraction from data can 
be derived within the framework of the fuzzy reasoning system. 

Earlier fuzzy inference methods have been based on learning directly from 
examples (Takagi and Sugeno, 1985). Later approaches have focused on generating 
rules by adaptive-network-based fuzzy models (Sun, 1994). Genetic algorithms 
have also been employed for generating compact linguistic if-then rules (Ishibuchi, 
1995). In our approach, we facilitate the modeling of relationships in data via 
multilayer perceptron networks followed by a rule generation algorithm applied 
to  the smoothed neural network model. 

12.2 Fuzzy Rule Extraction Algorithm 

Learning results in an approximation of the input/output relationships of a given 
system. The approximation allows for imitating actions of the observed system 
based on the acquired data. The learning process is considered to  be completed 
once the imitated actions of the system are within expected tolerances. To describe 
the system actions requires an informative representation of the learning results. 
I t  should reveal the entire process of reasoning used by the approximating model. 
Assuming that the system is a classifier, its actions can be described by a set of rules 
of the form T + Q (Viktor and Cloete, 1995). Each rule is an implication that relates 
an input instance T to  an output instance Q. In general, both the input instance 



12.2 Fuzzy Rule Extraction Algorithm 4 05 

Table 12.1 The data set used for developing an XOR classifier. There are 16 
input pairs (x1,52), which sample the input space. The neural network responses 
are denoted by yl and classified as crisp values el E {no ,  yes}.  

-0.4 
-0.4 
-0.3 
-0.3 
-0.2 
-0.2 
-0.1 
-0.1 
0.1 
0.1 
0.2 
0.2 
0.3 
0.3 
0.4 
0.4 

-0.3 -0.12 
0.2 0.08 

-0.4 -0.12 
0.3 0.09 

-0.2 -0.04 
0.1 0.02 

-0.1 -0.01 
0.4 0.04 

-0.3 0.03 
0.3 -0.03 

-0.1 0.02 
0.4 -0.08 

-0.4 0.12 
0.2 -0.06 

-0.2 0.08 
0.1 -0.04 

7~ = ( n - l , n - 2 , .  . . ) and the output instance .g = ( @ I ,  ~ 2 , .  . . ) are multidimensional. 
Hereafter, Greek letters are used for describing the instances in a linguistic form. 

In order to introduce the rule extraction algorithm, a simple XOR decision system 
will be used as an example. XOR is a logical function and the extracted rules are 
expected to agree with its truth table. The decision system is shown in Figure 12.1. 
It uses two inputs x = ( 2 1 , ~ )  and provides one output y 1 .  Roman letters denote 
numerical values. Although the nature of the rules is logical, they are extracted 
from systems that use numerical data. Therefore, the exemplary problem of XOR 
is introduced in terms of real-valued numbers (Zurada, 1992). Its function can be 
performed by a neural network. For simplicity, the neural network in Figure 12.1 is 
already assumed to perform function y 1  = - 2 1 2 2 .  Note that this function precisely 
evaluates the logical XOR considering numbers -1 and 1 as no and yes, respectively. 
Other values of the output are classified as no or yes depending on the sign of y 1 ,  

that is no for the negative sign and yes for positive. 
Typically, real-life systems need to be identified by inspecting their actions for 

various inputs. In the XOR example, the input space can be sampled using several 
input data points. These data are shown in Table 12.1. The output value 9 1  is 
evaluated for each input instance ( 2 1 )  2 2 )  and then classified as no or yes. The 
result of this classification is denoted by el, which is the linguistic output instance. 

For the sake of rule creation, the system input should be expressed in terms of 
linguistic variables. In other words, the correspondence between numerical values 



Extractaon of Linguastic Rules from Data w a  Neural Networks a n d  Fiizzy Appro.rimcitiov 

0.5 P -0.5 

-0.5 0 0.5 
Figure 12.2 Fuzzification of the XOR decision systciii inputs. Iiipiits .1'1 aiid .rl 

are characterized by fuzzy iiunibers 7r1 E { N ,  2, P }  aiid ' i ~ 2  E { ,Y. 2. P } ,  respect ivclj.. 
The graphs represent nieinbersliip fiirictions p T T I  ( X I )  and p T 2  ( . r 2 ) .  For cwmiple, 
p v ( . r ~ )  = 0.5 at . r ~  = -0.25. 

(s1 . .r2) and crisp input instances ( ~ 1 ,  ~ 2 )  should be establisl~ed. A \ ~ r \ .  suitahlc 
approach to  soft quaiit ization of tlie input leads t lirougli clianging t lie iiiput doiiiaiii 
froin real-valued into fuzzy (Zadeh, 1965; Sun, 1994). Fuzzy iiiiiiibers pro~.ide an 
excellent link between linguistic input /out put rules aiid iiiinierical iriappiiigs that 
handle only cont iriuoiis variables. Approxiriiat ing the oliject of interest wit 11 a fiizzy 
sq-stern offers an opportunity to create fuzzy rules that caii he iised for descrihiiig 
the act ions in the linguistic form 

Depending on tlie complexity of the input space, a fiizzificat ion scheine for 
the inputs can be inore or less complex. In the XOR exaniple a set of three 
fuzzy riunibers is constructed arbitrarily. Input instances ~1 arid ~2 take \ d u e s  

from the set { N ,  2, P } .  These letters stand for u e p t i i l e ,  zero, and yositirle. The 
corresponderice between the numerical values .rl and the fuzzy niinil~crs T, is defined 
by selecting menibership functions p T z  ( . T ? ) .  As shown iii Figure 12.2 triaiigular 
nienibership functions are chosen. Linguistic variable .Tl = ( p , y ( . r l ) ,  pz(.r,) .  p p ( . r l ) )  

describes input .rl by three nuinhers indicating the degrce of nieiiibersliip of that 
input to classes N ,  2, and P.  A1ernt)ersliip functions can liave valur~s Ix3tnwii 0 
and 1. Their centers are selected such that etrery point in the data set, slioum in 
Table 12.1, can be unanibiguouslj. represented by linguistic variables .i-l and .i-2. 

Assume now that tlie input doniain of the XOR classifier is sainpled at various 
points as shown iii Figure 12.3. Nuinerical coordinates .rl aiid .r2 of tlie points 
are indicated on the bottoni and on the right side of the array. The corrcspoiicling 
linguistic variables Sl and S2 label the top aiid the left side of the arra~.. All tlic 
points from Table 12.1 can he found at appropriate locations in this arra)., wliere 
tlie output iiistanccs 710 or yes are placed. The topolog?. of t lic3 classificr's dccisioii 
regions caii be clearl?. seen. Decision region D,, is a set of all the inpiit iiistaiices 
( X I .  .r2), for which the output instance eqiials @ I .  Hence, thc decisiori region D,,,, is 
the region of the input space where .r1 < 0 and .r2 < 0, or .rl > 0 and .r2 > 0. All 



12.2 Fuzzy Rule Extraction Algorithm 

I 

0.6 
0.4 
0.0 

0.4 
0.6 
0.0 

0.2 
0.8 
0.0 

0.0 
0.8 
0.2 

0.0 
0.6 
0.4 

0.0 
0.4 
0.6 

0.0 
0.2 
0.8 

jE: 

-0.3 

"4 
0.80.20.0 0.60.400 0.40.60.0 0.20.80.0 0.00.80.2 0.00.60.4 0.00.40.6 0.00.20.8 

no Yes -0.4 

no Yes 

0.4 

0.3 

0.2 

0. I 

x2 
-0.1 

-0.2 

no I I yes I -0.3 

-0.4 

-0.4 -0.3 -0.2 -0.1 0.1 0.2 0.3 0.4 

X 1  
Figure 12.3 Decision regions in the input space. Every rectangular block, where 
the output class el is marked as yes or no, represents an input instance as shown 
in Table 12.1. For example, instance z1 = -0.4 and 2 2  = -0.3 is marked by no 
since y1 = -0.12 < 0. In terms of linguistic variables this instance is represented by 
membership values 21 = [0.8,0.2,0.OIT and 2 2  = [0.6,0.4,~1.0]~. 

the points outside this area constitute the decision region Dyes. 
In order to create rules describing actions imitating the XOR decision system, 

input instances need to be expressed in terms of fuzzy numbers 7r i  E { N ,  2, P }  
rather than linguistic variables & involving membership values. Note that each 
rectangular block of the array in Figure 12.3 allows nine (32 )  combinations of 
the fuzzy numbers ( ~ 1 , 7 r 2 ) .  Every combination determines a pair of membership 
values (pT1 ( X I ) ,  pT2 ( 2 2 ) ) .  Consider, for example, point (-0.4, -0.3). Its linguistic 
coordinates are 51 = (0.8,0.2,0.0) and 52 = (0.6,0.4,0.0). The membership 
function values assigned to this point equal p ~ ( - 0 . 4 )  = 0.8, pz( -0 .4 )  = 0.2, 
pp(-0.4) = 0.0, and p ~ ( - 0 . 3 )  = 0.6, pz(-0.3) = 0.4, pup(-0.3) = 0.0. Therefore, 
instance ( N ,  N )  would be validated by a membership pair (0.8,0.6), instance ( N ,  2) 
would be validated by (0.8,0.4), and so on. 

In fuzzy reasoning, the instances are assigned t-norms of the membership pairs (Zu- 
rada and Lozowski, 1996). For simplicity, a min function is selected as a t-norm oper- 
ator. Thus an instance (7r1,7r2) gets validated by a single number min(pnl (X I ) ,  pTz ( 2 2 ) ) .  

In this manner, t-norms for the exemplary instances ( N ,  N )  and ( N ,  2) of the point 
( 2 1 , 5 5 2 )  = (-0.4, -0.3) are equal to 0.6 and 0.4, respectively. These two t-norm val- 



12.2 Fuzzy Rule Extraction Algorithm 407 

0 6 

0 4 

no 
0 4  

0 6  

0 0  

0 2 
o x  
0 0  

0 n 
0 2 

o n  
0 6  

0 4  

no 
04 
0 6  

0 0  
0 2  
0 n 

Figure 12 

L N Z P ]  

0.n 0.2 0.0 

no 

~~ 

-0.4 

0.4 

0.3 

0.2 

0. I 

x 2  
-0.1 

4 . 2  

-0.3 

-0.4 

-0.3 -0.2 -0. I 0. I 0.2 n.3 0 4  

X 1  

3 Decision regions in the input space. Every rectangular block, w nere 
the output class el is marked as yes or no, represents an input instance as shown 
in Table 12.1. For example, instance 2 1  = -0.4 and 2 2  = -0.3 is marked by no 
since y1 = -0.12 < 0. In terms of linguistic variables this instance is represented by 
membership values 51 = [0.8,0.2, O.OIT and 5 2  = [0.6,0.4,0.0]'. 

the points outside this area constitute the decision region Dyes. 
In order to create rules describing actions imitating the XOR decision system, 

input instances need to be expressed in terms of fuzzy numbers ni E { N ,  2, P }  
rather than linguistic variables 5i involving membership values. Note that each 
rectangular block of the array in Figure 12.3 allows nine (32) combinations of 
the fuzzy numbers (7r1 , 7 4 .  Every combination determines a pair of membership 
values (p,, (XI), p n 2 ( x 2 ) ) .  Consider, for example, point (-0.4, -0.3). Its linguistic 
coordinates are 51 = (0.8,0.2,0.0) and 5 2  = (0.6,0.4,0.0). The membership 
function values assigned to this point equal p ~ ( - 0 . 4 )  = 0.8, pz(-0.4) = 0.2, 
pp(-0.4) = 0.0, and p ~ ( - 0 . 3 )  = 0.6, pz(-0.3) = 0.4, pp(-0.3) = 0.0. Therefore, 
instance ( N ,  N )  would be validated by a membership pair (0.8,0.6), instance ( N ,  2)  
would be validated by (0.8,0.4), and so on. 

In fuzzy reasoning, the instances are assigned t-norms of the membership pairs (Zu- 
rada and Lozowski, 1996). For simplicity, a min function is selected as a t-norm oper- 
ator. Thus an instance (XI, 7r2) gets validated by a single number min(pTl (XI), pT2 (22)). 
In this manner, t-norms for the exemplary instances ( N ,  N )  and ( N ,  2)  of the point 
( 2 1 , ~ )  = (-0.4, -0.3) are equal to  0.6 and 0.4, respectively. These two t-norm val- 



12.2 Fuzzy Rule  Extraction Algorithm 4 05 

P 

Figure 12.5 

'III 

P 

0.8 n2 z 

001 N 

N 

0.6 

0.6 

0.0 

X l  p 7 - q  
Lists of s-norms (here, maxima of the minima of membership values) 

for output classes el = no  and el = yes. Each input instance ( m , r 2 )  is represented 
by the value of the membership function pn,(el) and pyes(el). These values are the 
maxima of the figures included in the corresponding blocks in Figure 12.4. 

0.0 < E < 0.2: 0.2 < E < 0.4: 0.4 < E < 0.6: 
7l-1 r 2  e1 7r1 r 2  e1 Tl r 2  el 

N N no N N no N N no 

N Z yes N P yes N P yes 
N P yes P N yes P N yes 
Z N yes P P n o  

Z Z no 

Z P no 

P N yes 
P Z yes 
P P no 

Figure 12.6 XOR rule creation for selected uncertainty margins E .  Comparing 
output membership function values for classes yes and no (in Figure 12.5), a rule 
( 7 r l , r 2 )  j el is created provided that the difference between the output membership 
function values for classes yes and no is significant, namely Ipyes(el) - pno(e l ) l  > E .  

Rule ( ~ 1 , m )  * no is created if p l L o ( e l )  > p y p s ( e l ) .  Rule ( 7 r 1 , m )  3 yes is created 
otherwise. Rules created with three different uncertainty margins are shown. 

the rule set. If the difference is larger than E ,  then either rule (7r l ,7 r2)  + no or 
( ~ 1 , 7 r 2 )  =+ yes is included in the rule set, depending on which one determines a 
greater s-norm. 

It can be seen that the uncertainty margin E controls the number of rules 
extracted from the XOR decision system example. The maximum number of rules 
is created when E = 0. Increasing E lowers the number of rules by eliminating 
the less decisive ones. Finally, with E = 1 no rule can be created, since the 
membership functions are bounded between 0 and 1. Rule sets extracted from the 
XOR classifier wit,h various uncertainty margins are shown in Figure 12.6. Note 
that for E E [0.2,0.4] the rules recover the XOR truth table. 



12.3 Gentamycin Dosage Problem 

Tlie rule extract iori algoritliiri iiit roduced in the previous sect ioii lias 1)cc l i  iisccl iii 

the prohlerii of prcdictiiig an appropriate dose of gciitaiiiyciii ( a  iiicdiciiic usc(1 to 
treat kidiicq. diseaso) (LozoIvski et al.. 199611). Tlic rcqiiirccl ttiiioiiiit of (lriig c i t i i  1~ 
est iiiiated by a t rairied physician based on a fen. para-\liic.tcrs kliou-ri by iiiqwet ion 
or bj. iiieasiirmit’iit, such 11s: a person‘s wciglit, height. l )od~,  siirfacc arc’a. scs. a i i ( 1  

age. Tlic history of treatirierit is also iiiiporttiiit as are factors like tlicl ctosago t i i i iv 
interval, recent geritaiiiyciii dose levels. gaitaniyciii pctik an(1 t roiigli coiicciit ration 
levels, serum creat iiiiiie, arid creat iiiiiic clearaiice. 

Given so riiariy input factors, estiiiiat iiig the accuratc dosagc of gciit aiiiyciii is not 
a simple task. Still. tlie appropriate dosage of gcwtaiiiyciii is of g rwt  iiiiport aiie(\ i l l  

achieving t lit. desired peak aiid trough Ievcls of t lic gciit aiiiyciii coiicciit rat ioii in a 

pat ieiit ’s 11ody. Siiriplifyirig, givcii an iiistaiicc of wlofiuit paraiiicttcrs (I<arayi~iii is  
and Venctsaiior>oiilos, 1994), tlie problei~i is to prodiet t 111. iiiiioiiiit of gciit aiiiyciii 
iieedcd to produce t lie desired peak aiid trough coiicciit rat ioii Icvcls. 

BJ. irispectioii of correlation coef€icic>rits 1)etu-ccIi t lit) inpiits tiii(1 out piits. t 1irw 
parameters were’ fourid tlie most significant iii the ol)scr\xt ioii of t rcat iiiciit: t 110 

body weight, seriiiii creat iiiiiie, aiid peak coiicciit rat ion. Tlicsc. paraliictcrs will 1 ) ~  
referred to as the systeiri inputs X I ,  . r 2 ,  aii t l  ,r:j. Tlio t m i  output. y l .  is tlic 
predict ioii of t lie iieccssary geiit airi!.ciii doso at  a t i i i ic .  

A data set of iiiCasIirCiiieiits, each consist irig of tlic tlircc pat iciit cliaractwis- 
tics ailcl routiiit dosage lt~rels, was iisctl as a traiiiiiig stit for a 1iciira1 iiotu-ork 
classifier with t liree inputs arid oiic output. A fi‘agiiioiit of tlicw data is slioiv~i 
i r i  Figure 12.7(a). For the sake of fuzzy rulc cstract ioii tlir. iiipiit fiizzificm lia\.t> 

becm forriitd iisiiig t lie st aiidard t riatrigiilar irieiiil)c~rsliip fuiict ioii sliapt’s ( s w  Fig- 
ure 12.7(h)). Each iiiput has been quaiitized into t1irt.c classes wit 11 cciitcrs of gra\,ity 
located in the iiiiddle aiid at  both ends of tlic range of c-lialiges of tlic inpiit (Sctioiio 
arid Liu, 1996). 

Rules for the gentariiyciii dosage liavc. tlicii 11eeii crcatcd with tl io iiiiccrt ailit)- 
riiargiri E = 0.01. Totally uiidecidable riilw were sii1)scqiiclit 1)- prii i iwl  froiii t 1ic ~.iilc 
sets. Tlie resiiltiiig rule set reduced to a clisjiirictivc> iioririi\l foriii (Sliavlik. 1994: 
Towell aiid Sliavlik, 1993: Cralwi aiid Slii-t\.lik, 1994) is show11 iii Tal)lc 12.2.  Tlio 
rules can be represented grapliically oil a ciibc ivliosc cor~icrs aiid siclcs corrtyx)~icl  
t o  iiiput instances while t lie output classificat iori is iiitlicatcd iii t Iircc. grq.-lc~\-cls 
(see Figure 12.8). Iii tlie figure. variables .r1, .r2, aiid ,i*:3 are tlic \wtical. Iiorizoii- 
t a1 arid axial dimeiisioris, respect iveli.. Rouglily, this diagraiii slion-s a iiioiiot onic 
relationship between t h  dose a ~ i d  a linear coliibiiiat ioii of t lic iiipiits. E\wi t lioiigli 
iricreasing the nuinber of fuzzy classes at the inputs aiid t lie out piit w-oiild iiiiprovc. 
the approximation of the iicural network iiiappiiig. t lic siiiall set of rii1c.s proviclcs 
ari iridicat ioii of t lie solution to  t lie dosagc pro1)leiii. 



12.3 Gentamycin Dosage Problem 

Weight Serum Peak Dose 
creat inirie , Pq (XI ) 

lW 80 

130 
100 0 -~ __ 

100 
38.2 

57.6 

81.2 

66.0 

110.0 

38.2 

59.9 

55.3 

75.7 

61.2 

42.2 

72.6 

63.0 

68.0 

63.5 

52.8 

85.5 

92.5 

83.0 

60.0 

63.7 

(4 

0.5 

0.6 

2.2 
1.2 

0.6 

0.7 

0.9 

0.7 

0.8 

1.5 

0.6 

0.7 

0.7 

0.6 

1.4 

1.4 

0.6 

0.8 

2.0 

0.6 

4.0 

4.8 

11.4 

3.1 

8.0 

4.5 

5.7 

4.4 

5.0 

7.6 

1.8 

6.5 

3.5 

3.8 

3.4 

5.7 

3.0 

2.4 

7.6 

3.6 

80 

80 

80 

80 

90 

80 

80 

100 

80 

120 

60 

80 

80 

80 

70 

60 

- l L L ? !  
75.0 1 1  1.8 

0.4 I .3 2.2 

1.8 7.6 13.4 

50 95 140 

Figure 12.7 Gentarnycin dosage problem. (a) Fragment of the measurement data 
set. The recornmended drug dose yl depends on parameters x l ,  2 2 ,  and 2 3  which 
remain under systematic observation. (b) Fuzzification scheme of variables 2 1 ,  2 2 ,  

Q, and y1 for the rule extraction. 

Table 12.2 Linguistic rules for gentamycin dosage in disjunctive normal form. 
Weight Serum creatinine Peak 

Thigh 

low 
- 

~ 

low 

1 high 

7 low  

medium 

high 

high 

high 

71ow 

high 

1 l o w  
low 
medium 
~ 

low 

medium 

7 low 

high. 

low 

medium 

low 

medium 

low 

low 

medium 

high 

medium 

low 

high 

Thigh 

medium 

high 

high 

Dose 
low 

low 

medium 

medium 

medium 

medium 

medium 

medium 

medium 

high 

high 

high 



Extraction of Linguistic Rules from Data via Neural Networks and Fuzzy Approximation 

Figure 12.8 Graphic representation of the rules. The cube represents the three- 
dimensional parameter space for weight, serum creatinine, and peak value in terms 
of fuzzy numbers {low, medium, high}3. Black, grey, and light-grey nodes indicate 
low, medium, and high drug dosage required. 

12.4 Iris Flower Classification Problem 

Iris is a well known benchmark problem concerning classification of flowers (Duch 
et al., 1997; Lozowski et al., 1996a). Three Iris flower classes are known: Setosa, 
Versicolor, and Virginica. The classification is based on four leaf attributes, namely, 
sepal length, sepal width, petal length, and petal width. These attributes, denoted 
by 2 1 ,  2 2 ,  2 3 ,  and 2 4  were measured in millimeters and collected in the Iris database 
shown in Figure 12.9(a). Proper classifications, encoded by variables y1, y2, and 3 3 ,  

form the output for a decision system. A neural network classifier has been trained 
first using the data. Given an unseen input instance, the trained network is able 
to  classify the instance as having features of one of the flower types. The network 
output response is considered as a valid classification provided that only one output 
is positive, whereas the other two remain negative. The positive output indicates 
the flower type. 

Figure 12.9(b) shows the fuzzification scheme used for rule extraction from the 
network. Following the algorithm described in the previous section, the classifier 
input is encoded in terms of fuzzy numbers. Using the uncertainty margin E = 0.01 
rules of two different kinds can be obtained. A fully decidable rule provides 
an output instance which has one yes and two no’s, such as ( 7 r 1 , ~ 2 , ~ 3 , 7 r 4 )  + 
(yes, no, no) indicating Setosa. Another kind of a rule can have one no and two “no 
information” entries, denoted by symbol “-” , in the output instance. An example of 
such a rule is ( n ~ ,  7i2,7r3, 7r4) + (no, -, -), which excludes Setosa from consideration 
at  a given input instance. 

Rules extracted from the Iris classifier are presented in Figure 12.10 in disjunctive 
normal form. The number of rules have been reduced by grouping together input 



12.4 Iris Flower Classification Problem 413 

50 33 14 02 
64 28 56 22 
65 28 46 15 
67 31 56 24 
63 28 51 15 
46 34 14 03 
69 31 51 23 
62 22 45 15 
59 32 48 18 
46 36 10 02 
61 30 46 14 
47 32 13 02 
65 30 52 20 
56 25 39 11 
65 30 55 18 
58 27 51 19 
68 32 59 23 

(4 

1 -1 -1 
-1 -1 1 
-1 1 -1 
-1 -1 1 
-1 -1 1 

1 -1 -1 
-1 -1 1 
-1 1 -1 
-1 1 -1 

1 -1 -1 
-1 1 -1 

1 -1 -1 
-1 -1 1 
-1 1 -1 
-1 -1 1 
-1 -1 1 
-1 -1 1 

I \hart medium long xx 
I 

30 60 80  100 A ' 

t I thin medium wide 

I I I  b 
20 32 'is I,:, x? 

I hhort medium long 

' 2 0  30 70 I00 

thin I inedium wide 

' I  12 25 

(b) 
100 A J  

Figure 12.9 Iris problem: (a) The data set used for neural network training. 
Variables x l ,  x2, x3, and 2 4  are the rrieasiirements of the leaf attributes: sepal length, 
sepal width, petal length, arid petal width, given in millimetcrs. The classifier has 
three outputs y l ,  y2, and y:j assigned to t,hree Iris species: Setosa, Versicolor, and 
Virginica; (b) Fuzzificatiori scEieIrie of the Iris classifier inputs. 



4 14 

Figure 12.10 Linguistic rules for tlie Iris classification prolileiii. Input iiistaiiccs 
X I ,  ~ 1 .  rt3, and r4 refer to tlie Iris attril~utes: sepal length. scpal m-idtli. pc>tal lciigtli. 
arid petal widtli, respectivdy. Output iiistaiiccs ill , 0 2 .  a i d  Q:% dctcriiiiiic~ tlw p l a i t  
spccics: Setosa. Versicolor, arid Virgiiiica. 



12.5 Concluding Remarks 

thin 

short 

med. 

med. wade 

long 

sht 

md 

lng  

St. St. St. 
St. St. St. 
- - - 

7r1\7r21 th md wd 

sht 

md 

lng 

Ve. Ve. - 
Ve.Ve. - 
- - - 

7r1\7r2l th md wd 

md sht I Ve. ve. St. St. St. 
I 

Ing 1 - - - 

7r1\7r2I th md wd 

--- _ _ _  

Ve. Ve. St. 
Vi. Ve. Vi. 

Vi. Vi. Vi. 
Vi. Vi. Vi. 

Vi. Vi. - 
Vi. Vi. Vi. 

Vi. Vi. Vi. 
Vi. Vi. Vi. 

Figure 12.11 Iris rule diagram for a quick reference. 

instances for which a class negation, denoted by “l”, or a “don‘t care” entry, 
denoted by “-”, were possible to use. Large sets of rules may be inconvenient 
to read in a tabular form. A more readable quick reference diagram for the Iris 
rules is shown in Figure 12.11. It is a four-coordinate array organized as embedded 
matrices. The inner matrices label the flower sepal measurements 7rl and 7r2, while 
the outer matrix describes the petal measurements 7r3 and 7r4. 

12.5 Concluding Remarks 

The method of extracting crisp rules from data or a trained neural network discussed 
above is one of many approaches in the area of soft computing. The rules have the 
form of those used in fuzzy reasoning. The neural network may become a necessary 
element if the training data is noisy, since the neural network provides filtration 
of the training data and thus the number of conclusive rules becomes reasonable. 
Even one noisy data point would cause an enormous increase in the number of 
created rules if the rules were obtained based on the training data instead of the 
network outputs. Here we assume that the network is trained with a sufficiently 
large final MSE to allow smooth filtration of data (Zurada and Malinowski, 1993; 
Zurada et al., 1994). 



410’ 

Xloreover, b j r  choosiiig the paranleter E, tlie iiuiii1)cr of rulcs (aft cr priiiiiiig t lir) 
tot all!. unclecidable ones) can 1x1 adjusted: t lie i i i i i i i l~cr  of riilcs is rclat td  to t lic 
acciiracj. of a fuzzy classifier using the created riilcs. Tlic aim is to cxt ract kiiou-lcdgc) 
froiii tlic a classifier (Ishikawa, 1996: Yasui et al.. 1995). iiot to hiiild its rcplica, siiiw 
it is irior‘c iiiiportaiit for the rules to be as compact as possi1)lc c’ iwi  i f  classificatioii 
ivith such rules is less t liaii optiiriuiii. The iiiiiiieric coiiiplesity of t hc riilc cxtract ion 
algorithiri increases with the ~iuirilier of fuzzy classw uscd for cach iiiput a i d  wit 11 

tlic iiiiiii1)cr of inputs ivith a factor larger tlian 1. Hon.cvcr. tlic a1gc)ritliiii prcsciitccl 
is rclati\~c~ly iiiserisitivc to tlic size of the training data, aiicl evcw large data sots can 
be hariclltxl eficierit 1y. 

References 

Craven. AI. i\’. and Shavlik. ,J. \T’. 1994. Lcariiiiig sj~iiil)olic* riilcs iisiiig artificial 
iiciiral iietnvrks. Iii Procmxliiigs of the 10th Iritcrrtot/oit(il Cori.fe>ir itcc or1 A f t r ( * h i r i r  

Lenrnirig. pp. 73 80. Aiiiherst, hlass. 

Ducli, \IT.. Adairiczyk, R., aiid Grahczewski, Ii. 1097. Extract ioii of crisp logical 
riilcs iisiiig corist riict ive coiist rained 1)ackpropagat ioii iirlt ~vorks .  Iii Prwc r t l i  r i g s  

of the 1997 I~ i t~rno t io i iu l  ConfPrcvcc o r 1  Neuml AVr~triwr*ks (IC,VAT‘97). i.01. 3 ,  pp. 
2384 2389, Hoiistoii, Texas. 

Isliihuchi. H. 1995. Selcctiiig fuzzy if-t lien riilw for classificat ioii prohlciiis iisiiig 
gmetic algoritlinis. IEEE Trnristictioris on Ftizzg S,ystc~ins, 3(  3):260 ‘270. 

521. 
Isliikawx. hI. 1996. Structural leariling with forget tiiig. Nrrirnl iVc twor-ks .  9(3):509 

Karayiaiiiiis, N. B. aiid Veiietsaiiopoulos. A. K. 1994. Decisioii iiiakiiig iisiiig iitiiral 
net works. Neurocomy ut mayq. 6:363-373. 

Lozowki, A..  Cliolewo. T. J.,  aiid Ziiratda, ,J. AI. 1996a. Crisp rulc cxtractioii froiii 
perccptroii iietcvork classificrs. Iii Procccclritgs of t h t  199G IEEE Irite i w c i t i o r 1 c i l  

Con f e w  n ce on N P  i i  rul Net uiorks (ICNN‘96). Pleu (I ry, Pa 11 ~1 n ri d Spc’citr 1 Sf S S I  o r i s .  

pp. 94 99, ili’asliiiigtoii DC. 
Lozowski. A., Cliolewo, T. J.. aiid Zurada, J. A l .  19961). Syiiibolic riilc rt.I>rcsciitatioii 

in neural network iiiodels. In Proceediiigs of the Second Coil fmJ?tcc or) 
Networks a n d  Their Apphcntions, vol. 2. pp. 300-305. Szczyrk. Poland. 

Setiono. R. arid Liu, H. 1996. Sy~riholic represciitatioii of rieiiral iietworks. IEEE 
Computer, 29(3):71 77. 

Shavlik. J .  if7. 1994. Conibiiiiiig syiiiholic aiitl rieiiral leariiiiig. M(ich/r,c Le ( 1 r r t i i t . q .  

141321-331. 

Sun, C. T. 1094. Riile-hsc) structure ideiitificat ion iii ail adapt i\,c-iict~~ork-l,~iscc~ 
fuzz)- infererice systwii. IEEE Transnctioiis on Fuz;:y S,ystcius. 2( 1):G-l 73. 

Takagi, T. aiid Siigeiio. hl .  1985. Fuzzy ideiit ificatioii of systeiiis aiid its applicatioii 



References 417 

to modeling and control. I E E E  Transactions on  Systems,  M a n  and Cybernetics, 

Towell, G. G. and Shavlik, J. W. 1993. Extracting refined rules from knowledge- 

Viktor, H. L. and Cloete, I. 1995. Extracting DNF rules from artificial neural 
networks. In From Natural to  Artificial Neural Computation, eds. J. Mira and 
F. Sandoval, Lecture Notes in Computer Science, pp. 374-381. Berlin, Germany: 
S p ringer- Ve r 1 ag . 

Wang, L. and Mendel, J. M. 1992. Generating fuzzy rules by learning from examples. 
I E E E  Transactions on  Systems, Man,  and Cybernetics, 22( 6 ) .  

Yasui, S., Malinowski, A. ,  and Zurada, J. M. 1995. Convergence suppression and 
divergence facilitation: New approach to prune hidden layer and weights in feed- 
forward neural networks. In Proceedings of the I E E E  International Symposium 
on  Circuits and Systems,  vol. 1, pp. 121-124, Seattle, WA. 

15( 1):116-132. 

based neural networks. Machine Learning, 13:71-101. 

Zadeh, L. A. 1965. Fuzzy sets. Information and Control, 8:338-353. 
Zurada, J. M. 1992. Introduction to  Artificial Neural Systems. Boston: PWS. 
Zurada, J. M. and Lozowski, A. 1996. Generating linguistic rules from data using 

neuro-fuzzy framework. In Proceedings of the Fourth International Conference 
o n  Soft Coniputzng ( I IZUKA '961, pp. 618-621, Iizuka, Fukuoka, Japan. 

Zurada, J. M. and Malinowski, A. 1993. Sensitivity analysis for pruning of training 
data in feedforward neural networks. In Proceedings of Australian- New Zealand 
Conference o n  Intelligent Information Systems,  pp. 288-292, Perth, Australia. 

Zurada, J .  M., Malinowski, A.,  arid Cloete, I. 1994. Sensitivity analysis for mini- 
mization of input data dimension for feedforward neural network. In Proceedings 
of the I E E E  International Symposium a n  Circuits and Systems,  pp. 447-450, 
London, England. 



This page intentionally left blank 



13 Neural Knowledge Processing in Expert 
Systems 

JiZ Simal and Jifi Cervenka 

I n  this chapter knowledge- based neurocomputing is applied to expert systems. Two 
main approaches to represent the knowledge base, namely explicit and implicit 
representations are first introduced and compared in rule- based and neural expert 
systems, respectively. Then, several possible integration strategies that make an  
eflort to eliminate the drawbacks of both approaches in hybrid systems, are surveyed. 
To illustrate the full power of knowledge-based neurocomputing, the main ideas of the 
prototypical, strictly neural expert system MACIE will be sketched. Here, a neural 
network is enriched b y  other functionalities to achieve all required features of expert 
systems. Neural knowledge processing will further be demonstrated on  the system 
E X P S Y S  which exploits the powerful backpropagation learning to automatically 
create the knowledge base. I n  addition, E X P S Y S  introduces interval neuron states to 
cope with incomplete information and provides a simple explanation of the results. 
The chapter concludes with an EXPSYS application to a toy economic problem 
which is compared to a parallel conventional rule- based solution. 

13.1 Knowledge Representation in Expert Systems 

In this section we discuss the difference between explicit and implicit representation 
of knowledge in expert systems. We focus mainly on two typical representatives 

of these different approaches. Namely, we compare rule-based systems and neural 
networks. To make our exposition self-contained we will first recall some basic 
notions from expert systems (Biondo, 1990; Giarratano and Riley, 1993; Ignizio, 
1991; Jackson, 1990) to motivate representation issues. 

1. This research was supported by GA CR Grant No. 201/98/0717 and partially by grants 
MSMT CR OK--304 and INCO-COOP 96-0195. 



4 20 

13.1.1 Expert Systems 

1 3 . 1 . 1 . 1  Definition and Requirements 

The represent at ion of large amounts of kiiowledgc wliicli would eiisiire their in- 
tegrity. coiisistcricy, and effecti1.e exploit atiori is one of t hc iiiaiii issucs of artificial 
iritelligeiice. For this purpose expert sjvst enis have I)ceii proposed to ~ i i a i i a p  kiiowl- 
edge processing. An expert s y s t e m  is a cornputer prograiii t liat perforriis a coiiiplc~s 
decisioii-making task within a particular narrow problem d o r n n i ~  t liat is noriiiallj, 
done by a liuriiari expert. It is based on the idea of taking oil the kiio~vlcdgc froiii a 
specialist aiitl expressing it iii an appropriate represciit atioii to cxploit t I i r 3  kiion-1- 
edge in the same way as the huniaii expert does aiid ahove all with tlic sa i i i~  rcsult. 

ten1 can replace an expert wlio caii lw too espeiisi\.c arid soiiic~tiiiies 
eveii iiot available to advise. aiialyze, consult. c-liagiiose. cxplaiii, forccast . justify. 
nioiiitor, plan, etc. 

A tjypical exainple of the type of program iiit roduced above is N c-liagnost ic iiicclical 
expert systein. Its doniairi is usually confined to a particular arca of iiiedical 
expertise liaridlcd by a physiciari---a specialist, e.g. an internist. Tlic 
help to diagnose a subclass of diseases aiid possil>lj- ad1,ise the iiiaiiii(~ of t litir 
t reatmcrit . Iii t lie scquel we will use medical examples to illustrate soinc kt.j, coiictyts 

teni design. However, it must be statcd h r ~ c  that for tlic sakc of clarity 
all these examples will be oversiiiiplificd froiii a iiitdical poiiit of \icn-. 

tciii applicatiori for a 

Gciicrallj., t lie expert sj-stem is required to possess t lic follou-iiig fiiiict ioiial 

Fiirtherriiore, in Sect ioii 13.3.5. we will present an expert 
real-ivorld ecoiioriiic prol~leiii. 

feat urcs: . A user of the expert system usually presents liis particular problciii iii iiiteractivc 
mode. The sjysteiii builds an internal model of this casc aiid asks qiicstioiis to acqiiirc 
new iiiforniatioii which is most relevant for solviiig t lie task. Iri our esaiiiple of t 1 1 ~  

diagnostic riitdical expert system, the user first presciits basic iiiforiiiat ion ahoiit 
a patient's condition to tlic program. e.g. the apparcwt syriiptoriis of a paticwt's 
coiiiplaiiit s. Then the system asks adtlit ioiial qiicst ioiis or r~coiiiiiieiids rclcvant 
inetfical exairiinat ions to improve its iriterrial iiiodcl of t lie pat itwt 's coiiditioii m-liicli 
is firially used to infer a diagnosis. The system sliould hsk its qiiestioiis in tlic ordcr 
of their relelraiice for the case being exairiiiied, e.g. it sliould iiot rcquirc all paticnts 
to be X-rayed first. . The expert system slioiild infer a soliit ion for the probleiii cvcii froni iiicoiiiplct r> 

or iiiiprccise inforniat ioii, e.g. when the user replics "I (lon't kiiom-" to soiiio of t lic 
questions or ivlieii soiiic nunierical values are only detcriiiiiicd lvithiii i i i t  (m.als. ctc. 
The coriclusioiis of the program are usiiallj. m,aliiat ecl hj- coiificlenccs gi\.cii as N 

perceiitage wliicli riieitsiire the credibility of a solution. For t lic mcclical tspcrt  
systtrii, soiiic iiiforiiiat ion oi i  the patient's aiiaiiincsis, sjmptoriis or resiilth of 
lahoratory analyses inay iiot be available, c.g. 1)ccaiisc of t liv pat iciit 's iiia1)ility 



13.1 Knowledge Representation in Expert Systems 421 

to describe his symptoms, lack of time to carry out a particular test, insufficient 
laboratory equipment, contra-indications that disable required examination, etc. 
In spite of this, the system should always infer some diagnosis and compute its 
confidence, which obviously also depends on the input completeness and accuracy. 
For example, the medical system infers the diagnosis of hepatitis with a 58% 
confidence having been told that the patient has yellow skin and the results of 
urine and blood tests (for bilirubin) recommended by the system are unknown. 
After providing the program with these results the diagnosis confidence can either 
increase, e.g. up to 95%, or hepatitis is excluded. . The expert system should also provide the user with some explanation of its 
conclusions to  justify the inference and to give the user insights into the problem or 
to avoid fatal errors caused by the computer solution. The system usually exhibits 
how the conclusions have been reached by a sequence of internal logical steps 
which lead to its results. For example, the user of the medical system can ask 
why the program recommends, with high confidence, to take out the appendix by 
an operation. The system explains this conclusion by the acute appendicitis which 
has been inferred by a typical stabbing abdomen pain. 

13.1.1.2 Modular Architecture 

In Section 13.1.1.1, the definition of the expert system as well as the requirements 
for its functional features have been presented from an external perspective. We 
now turn to the description of the internal modular structure of expert systems. Of 
course, the expert system is a computer program and therefore its architecture can 
differ as the case may be. However, the following major parts of the expert system 
are usually distinguishable: . The knowledge base is a typically large static data structure which contains 
all the important information about the problem domain, i.e. knowledge from the 
area of program expertise, and thus, it is problem-oriented. This base models an 
expert’s knowledge which may not only be exact but it can also be intuitive, 
imprecise, incomplete, and even questionable or contradictory. The representation 
of such a knowledge base in a computational framework is the main concern of this 
chapter. For example, the knowledge base of the medical expert system consists of 
a specialist physician’s knowledge. This iricludes, for example, sets of symptoms 
and characteristics indicating particular diseases, together with procedures for 
differentiating between them and therapeutical schemes for their treatment. This 
knowledge, of course, comprises not only known facts about diseases but also subtle 
techniques for their diagnosis gained by long practical experience. Therefore, it is 
difficult to express in a computer-acceptable representation. . The facts or fact base is typically a small dynamic data structure which contains 
information about a particular problem which is currently being solved by the 
system. It includes the input facts provided by the user as well as the solutions of 
subproblems or partial solutions, i.e. the corresponding inferred conclusions with 



Neural Knowledge Processmg in Expert Systems 

confidence concerning the considered task. Thus. the fact base serve's as ail iiitcriial 
model of the case at hand which is built by tlie sjysteni to s o h ~  this probleiii. The 
niaiiiier of representing facts in this base is iisiially the saiiic, or at least coiisistciit 
with the kiiowledge base representation. Iii 0111- inedical systeiii cxaiiiple, t lie fact 
base contains iiiforrriatioii about a patient’s coiiditioii aiid his diagnosis wit 11 the 
confidence being inferred so far. 

The inference engine is tlie controlling procedural part of the expert systeiii. 
It consists of cooperating progranis which establish the geiieral riicclianisiii of 
reasoning and inference. The inference crigiric exploits kiiowledge froiii t lie ficld 
of expertise which is stored in the knoa.ledge base to huild an internal iiiodcl of 
the currently solved problein in the fact base. Besides making t lie propcr irifereiices 
to develop the model internally. it collects relevant input facts iiito t lic fact I)asc 
interactively from the user. This means that the infcreiice migiiie dct eriiiiiies t lie 
appropriate qiiest ions which the user is asked to obtaiii relevant iiiforriiat ioii about 
the case at hand. This inforinat ion slioiild at teiiipt to coiiiplete t lie iiiotiel and 
consequently. increase confidence of the coricliisions. Furt lieriiiore. t lie iiifmwce 
engine is problem-iiideperitlent . i.e. it iniplcnierits a general inference algorit 11111 

which should still ~7ork for other knowledge bases froin difftwiit probleni doniaiiis 
providing that their representation format is preserved. The empty espert systciii 
which does riot contain a particular knowledge base. is called ail c.rpcrf s y s f c m  shel l .  
Such a shell coiisisting only of the infererice eiigiiie of the diagiiost ic iiictiical expclrt 
system can be exploited for doing other diagiiostics. e.g. the diagnostics of a ~iiiclcar 
power plant operation after a rele\,aiit kiiowledge base is crcattd.  . The explanat ion mechanism traces t lie operation of t lie iiifcreiicc ciigiiic aiid 
exploits it to explain a particular conclusion wlieii it is asked. . The user interface of the expert system links tlic inference eiigiiic to tlie cxtcriial 
enviroiinierit , i.e. it collects and preprocesses iriforrriat ioii about t lie problc~iii at liaiicl 
and outputs the results. 

13.1.2 Explicit Knowledge Representation and Rule-Based Systems 

The most difficult part of building the expert systeiii is tlie coiistriictioii of its 
knowledge base. This task is usually &me by krioullrdgc erigincers who cooperate 
with specialists in the problem domain to acquire relevaiit kiiowlcdge. In a coii- 
vent ional approach tlie represent at  iori of this iiiforiiiat iori is based on a syiiibolic 
expression of the hunian expert’s knowledge. skills, aiid experience. This is called 
the explicit knowledge reyresentufion because the espert kiiowlcdg,c is foriiiulated iii 

a coniprehensible way. Typicallj,, the krion.ledge representat ioii is specified by a data 
format in which the information is expressed to IN stored iii the kiiowldgc base. 
This format should accoiriodat e the riat iirally iiiiprecise aiid iricoriiplet c charact cr 
of t lie expert knowledge. The kriowledgc I m c )  rcpresciit at ion also dctmiiiiics lion. 
inforrriat ion is processed bj. the infererice ciigiiic. The kiioivledgc mgiiiccr iioriiiallj, 
spends a lot of effort and t inie bj. coiisult iiig t lie cxpert to (1eI)iig tlic kiio~vlcclge 



13.1 Knowledge Representation in Expert Systems 4 23 

base, since, the specialist is usually unable to transform his knowledge immedi- 
ately to a prescribed formalism, and the explicit representation formalism of the 
knowledge base may riot be entirely adequate for all types of expert knowledge. 

There are many ways of representing the expert knowledge explicitly. Traditional 
expert systems generally employ so-called IF- THEN rules to represent this infor- 
mation and hence, these programs are called rule-based systems. For example, the 
most famous expert system MYCIN (Buclrianan and Shortliffe, 1984), which diag- 
noses microbial diseases of blood, is also based on rules. The rules usually have the 
following form: 

IF <condition> THEN <conclusion> (<confidence>) 

The condition is typically a logical expression which contains relevant variables 
whose values can be inferred from the fact base or are acquired from the user. 
The conclusion determines the new value of some variable providing that the 
corresponding condition is satisfied. The probabilistic nature of the rule is expressed 
by its percentual confidence. For example, the knowledge base of our hypothetical 
medical system can include the following rule: 

IF (skin-color=yellow) and (bilirubin-blood-tests=true) 
THEN hepatitis=true (0.9) 

which means that the diagnosis hepatitis is concluded with 90% confidence if the 
patient’s skin is yellow and his blood tests are positive. 

The inference engine usually examines several rules to satisfy their conditions 
starting with those rules whose conclusions are of main interest to the user. If a 
condition of some rule is fulfilled, i.e. the values of relevant variables in the fact 
base meet the condition with sufficiently high confidences, then this rule is applied 
so that a new value of the variable from the conclusion can be inferred and its 
confidence computed. This information is stored in the fact base. The conclusion 
confidence depends on the confidences of facts which are tested in the condition 
and on the Confidence of the rule itself. The confidence manipulations are based 
on fuzzy logic. In the above-mentioned example of the IF-THEN rule, suppose 
that the confidence of the fact that  a patient has yellow skin is 0.8 and that his 
bilirubin blood tests are positive with confidence 0.95. Then the conjunction of the 
condition is satisfied with the confidence which is determined as the minimum of 
these confidences, i.e. min(0.8,0.95) = 0.8. The resulting confidence of the diagnosis 
of hepatitis is computed as the product of this value and the confidence of the rule, 
i.e. 0.8 x 0.9 = 0.72. 

In order to determine whether the conditions are satisfied, the inference engine 
recursively exanlines those rules whose conclusions affect the conditions of the 
current rules being checked. If such rules are not found, the user is asked about 
relevant facts. Note that the order in which the rules are examined is given by the 
recursive calls. This inference engine strategy is called backward chaining which is, 
for example, employed in MYCIN. An alternative approach is forward chaining in 
which the values of initially known variables are being completed by applying those 



4 24 

13.1.3 Implicit Knowledge Representation and Neural Networks 



13.1 Knowledge Representation i n  Expert Systems 425 

with a numerical weight. First, we will describe the function of a single neuron. 
A neuron j collects its real inputs from the outputs yi of incident neurons i E j ,  
where j ,  denotes the set of all neurons which are connected to neuron j .  Let these 
connections be labeled with the real weights wji for i E ,it-. Moreover, denote by 
wjo the so-called bias of neuron j which can be viewed as the weight of a formal 
input yo = 1 whose value is constantly 1. Then, the so-called excitation leuel <j of 
neuron j is computed as the weighted sum of its inputs: 

(13.1) 

The state, i.e. the output, y j  of the neuron j is determined from its excitation level 
by applying an activation function o as follows: 

Y.j = o(<j )  

where 

-1 for [ < 0 
1 for 2 0 a(<> = 

(13.2) 

(13.3) 

1s the hard limiter. 
Furthermore, we will restrict ourselves to the most widely used neural network 

architecture-the feedforward neural network which we outline briefly. In this 
network, neurons can be grouped into a sequence of layers so that neurons in one 
layer are connected only to neiirons in subsequent layers. The first so-called input 
Zaper which consists of ri input neurons serves as the input for the network while 
the last so-called output layer composed of rn output neurons is used for the output. 
The intermediate layers are called hidden Zqers and they include hidden neurons. 
The computation proceeds from the input layer via hidden layers up to the output 
layer. At the beginning the states of tlie input neurons are set to the input of the 
network. In a general step, suppose that all neuron outputs are determined up to a 
certain layer, then the states of neurons in the next layer are computed according 
to Equations (13.1) arid (13.2). At  the end the states of output neurons represent 
the output of the network. 

It is clear that the function y(w) : RTL -+ 8" computed by a neural network 
(briefly, the network function) is parametrized by the vector w of all its weights 
which is called the confiyuration of tlie network. Neural networks learn this func- 
tion, i.e. are "programmed," from example data-the so-called training patterns. 
A training pattern is a pair (x, d)  of a sample input x E Rn with the corresponding 
desired output d E The patterns create the so-called training set 

which is used during the learning phase to adapt the configuration automatically 
so that the new network function is consistent with T ,  i.e. y(w,xk) = dk for 
k = 1 , .  . . , p .  In addition, the network function should generalize the implicit rules 



4 26 

froiii t lie traiiiiiig set aiid rcspoiid rtasoriably to prcl\.ioiisl>. iirisc~cii inpiit s. 

Tliere arc iiiaiiy loariiirig riilcs arid heiirist ics i i sd  iri riciiral iictworks. Tliq, 
usually niiiiiiriim a11 error lietM-ccii t he act iial iictwork fiirict ioii aiiel t hr. clcsir(d 
bcliaj.ior wliich is specificxl by a traiiiiiig set. Givcw a traiiiiiig stlt (13.4).  tlic orror 
E(w) of tlic iietwork fiirictioii y with rcspcct t o  T is c i c f i i ~ d  as a fiiiictioii o f  w iii 

t lie followiiig way: 

(13 .5)  

wliere !j,,(w, x k )  is tlic actual state of tlic output iiciiro11 j for tlic iiipiit x k  (aii(1 
tlie coiifigurat ioii w )  while (lkJ is tlic correspoiidiiig clcsirc.cl valiic. Tlic task o f  
tlic lwriiiiig algorit liiii is to riiiiiiiriizc tlic error ( 13.5) in t lic coiifigiirat ioii  spa(^^. 

i.e. to find w n.liich iiiiriiiiiizcs E(w).  This rc~pros(~rits a rioii-trivial opt iiiiizat iori 
task l x ~ a i i s ~  t licl crror iiicludes t lie coiiiplcs iioii-liricar iictn.ork fiirict iori. Gracliciit 
iiict hods c ~ 1 1  he applicd h t w  providcd tliat t 1ic gracliciit of t lic orror fiiiict iori E (  w ) 
caii lw coiiipiited. For this piirposc~. tlic hard liiiiitcr ( 13.3) is ~ ~ i ) ~ ~ r ~ ) s i i i i ~ i t ~ l ( l  nit11 ii 

cliffiwiittahllc actilyat ioii fiiiictioii . c.g. l iypcrhlic t arig~iit : 

(13.G) 

The gradiciit coiiiputat ioii caii be acliicvccl l q -  tlic ivcll-kiion.11 ~)clc'X.l)i.oi)~J!/cJt"'lr 

algoritliiii (Ruiiielhart et al., 1986). Hon.eiw. t lie n.liolc lcariiiiig pi~occ~ l i i rc~  is R 

veq. coiriplc>s tiiii~-coiisiiriiiiig opt iiiiizatioii pro(*css in wliicli t lie iriiplicit krio\vlcclgc~ 
coiit aiiitd iii the traiiiiiig sot is aiitoiiiat ically lcarrit aiid rcpr~~scritcd 1))~ u-ciglit 
parariict ers. 

As we liave iiiciitioiicd al)ovc, to perforiii t hc (ksircd task tlic iietxvork fiiiict ioii 
sliould not oiily iwniorize t lie t raiiiiiig set but it slioiild gciicralizc t l i c  r i iks  fl-oii i  t I i c  

traiiiiiig set in order to be able to deri\.e soliitioiis for siiiiilar iiipiits. It is kiioa.11 tliat 
t lic gerieralizat ioii ability of the iictm.ork depeiids or1 t lie c i w h r t c  c.t i i u  ( t o p o l o ! / g ) .  
i.e. oil the i i i i i i i lxr of iieiiro~is aiid their pat tcrii of i ichvrk coiiri~ct ioris. n-liicli 
also cletcririiiir~s the diriiciisioii of coiifigiiratioii. If t 110 arcliit rlctiirc is rich oiioiigli, 
thcii t lie rict~vork car1 iiieiiiorizc t lie traiiiiiig set witlioiit pro1)lciiis. lioivo\.cr. i t  i i ia> .  

respoiid incorrectly to prc>viously uiiscwi iiipiits. This is callccl oiw$t t i r~g .  0 1 1  t 111. 

other liaiid, poor architcx-tures a r ~  prol)al)l>. too weak to solvcl coriiplcs tasks. It lias 
h c w i  cxpeririicwt ally coiifirriiccl tliat, for a particular task, t l icrc csist s ail bsopt iriial" 
arcliitecturc wliicli is stroiig eiiougli to solve tlic prol)l(~iii wild. at tlio saiiio tiiiiv. it 
geiieralizcs n.ell. This arcliit clct iirv is iisiiallj. searclictl iii such i\ n.a>- t Iiat diffcwiit  
rietwork arcliitc~ctiires arc adaptcd to tlic traiiiiiig set. Tlicii, tliosc riotn.orks aro 
evrtliiatcd, iisirig tlic so-callcd tes t  set wliicli is a part of tlic trairiiiig sct tliat is r io t  

iiscd for learniiig. Tlic arcliitectiirc~ wliosc fiiiictioii is tlic r~iost coiisistciit ivitli tlic 
test sct is cliosc~ii to pcrforrii tlic task. 

In riciiral cxpert s>.steriis, tlit  iiscr iiitclrfacc ciicoclcs tlic iripirth aricl oiitpiits of  
ttwi by tlie stattls of tlie iripiit arid out put ritv~"1s arid t lic kiiowlcc1g:c 1)asc 



13.1 Knowledge Representation in Expert Systems 427 

is implemented by a neural network configuration. This means that instead of elab- 
orating artificial rules with the aid of an expert, the neural network automatically 
adapts to example inferences during a learning phase and the network function 
generalizes implicit rules from the training set. The set of example inferences which 
is encoded into a training set can be generated by observing solutions of domain 
experts to the problem. In our medical example the clinical records of patients can 
be exploited for this purpose where symptoms and test results in each case present 
a sample input and the corresponding diagnosis and treatment recommended by 
a physician is the desired output. For example, we can define the following inputs 
and outputs of the medical system: 

INPUTS: TEMPERATURE,ANOREXIA,CHOLESTEROL,SKIN-COLORySCLERAE-COLORy 
. . . ,  LIVER-TENDERNESS,BLOOD-TEST,URINE-TEST 

OUTPUTS: DIAGNOSIS,HOSPITALIZE, . . .  

Then, an example of such inference pattern can look like: 

[(38.2,YES,NORMAL,YELLOWYYELLOW, . . .  
. . . ,  H1GH,unknown,(B1L1RUB1N,UR0B1L1N0GEN3), 
(HEPATITIS,YES, . . .  11 

Thus, after the network is trained, the expert knowledge is distributed in numerical 
weights throughout the network without identifying the purpose of any weight or 
neuron within this representation. This is called the implicit knowledge representa- 
tion because the expert knowledge cannot be extracted easily from the knowledge 
base without additional processing. 

Furthermore, the inference engine in neural expert systems collects all inputs 
for the neural network. Then it evaluates the network function using (13.1), (13.2) 
for these inputs and obtains t,he corresponding outputs from which the conclusions 
are decoded. It is clear that, during the network computation, the neuron states 
implement the fact base. 

13.1.4 Comparison of Rule-Based and Neural Expert Systems 

In Sections 13.1.2, 13.1.3, two different approaches to representing the knowledge 
base in expert systems have been introduced, namely rule-based and neural expert 
systems. Now, we compare these systems from various perspectives. 

13 .1 .4 .1  Task Size 

The size of a knowledge base (and even fact base) and its complexity are not 
limited in rule-based systems. It can include plenty of rules which serve as a way to 
solve very large and complex problems. The system can generate many questions 
including irrelevant, ones which can upset the user. An example of a medical system 
is known which always started its consultation with the question ‘(Is the patient 
alive?’ Furthermore, a large rule-based system can create a lot of various auxiliary 



011 the other liaii(1. it has bee11 proveii (Sinia, 1996) evcii for R \.crj. siiiiplc 
fixed feedforward arcli i t t~ture that backpropagat ioii lcariiiiig is iiii NI'-liard 1)rol)- 
leiii. Therefore, leariiiiig larger tasks caii be iiit ract ablc iii 1i~iira1 cspc1i.t 
Pratct ical experiirieiits prove that t lie leariiiiig proc~ss  is very t iiiic-c'oiisiiiiiiiig ( CIXW 

weeks of PC coinpiitation) aiid it is possible to iiiaiiagc tasks oiilj. 111) to liiiiiclrc(ls 
of iicuroiis aiid t rainiiig pat teriis. Tliercforc>, t lie size of a iieiiral kiion.lcclgr. 1 ) i w  

is liiiiited arid iieural expert systems arc siiitablc3 for part ial sii1)prol)lviiis \\.it 11 H 

very restricted problein doiiiaiii. They caii 1x1 liiikcd in it liicrarchy to liaiidlc. liirgcr 
tasks. 

13. 1.4.2 Knowledge Acquisition and Editing 

The main difference betiveeii the rule-based aiid neiiral approacli to cspcrt 
desigii is found iii their kiiowledge acqiiisit ion. 111 rule-11ascti 
engiiieer toget her with ail expert from a prohleiii doiiiaiii foriiiiilat cs t hc part  iciilar 
riiles, evaluates coiifideiices for t lieiii ancl dcl)iigs t lit) rcsiilt iiig kiion.lctlgc. l)asc 
to acliie1,e a reasoiiable perforiiiaiictl of t lic iiift.reiicc ciigiiicl. For cwiiiiplc. t 1ic 
appropriate order of riiles is found and coiifitir.iiccs arc r d i i i d .  This is ii \-cry 
t irric-coiisiiiriiri~ process (even years) ancl a sat isfact ory rcsiilt is iiot giiaraiit ~ ( 1 .  
hIoreover, furt hcr edit irig can tcaiise uiidesircd side-cffects. Tlic cq)lici t kiiou-lcclgc 
represeiitatioii in tlicsc sjvsteiiis coiifiiies their applicaliility to tlic pro1)lciiis that arc 
sufficieiitly uiiderstood aiid wlicre the rules arc available ailcl adcqiiatc to soli-c t 1iv 

task. 
Iii iieural expert systciiis, the expert kiiowlcdgc is iiicliicltd iiiiplicit 1y iii t lie t i.aiii- 

iiig set, which consists of example infereiices, and aii expCrt is gmcwlly iiot i i w -  

essary to create the iieiiral kiiowlcxlge 1)ase. Thc t raiiiiiig sc.t slioiild iiicliidc a w i i -  

soiial~le iiiiiiiber (due to leariiiiig tiiric) of rcprcstiit at ivc pat t criis wliicli siifficiciit 1). 
cover t lie probleiii doinaiii. Tlicir coiiibiiiat ioiis aiid gciicralizatioii is left for t 1ic 
leariiiiig phase. Therefore, the neural approach is iiiorc siiita1)lc for pro1)lmis iii 

ivliicli a data set is aLrailaIile ant1 where tlicre is a lack of ri i l~s.  It is also possi1)lc 
to select tlie representative pattcmis autoinaticallj, froiii a large datalxisc. 1)j. iisiiig 
clustcr aiialj.sis. Oil the other liaiid, it is better to apply the riilc-bawl systmii t liiiii 
try to traiislate a coiiiplete set of rules iiito a traiiiiiig sct 11ecaiisr oiic riilc ciiii u)vw 
ail uriiriaiiagealile airiouiit, of data. The iiiaiii advaiit a g : ~  of t 110 iiciiral approiicli is 
that tlie kiiowledge liase, wliicli is iiiiplwiciited by a iicwral iictnwrk, is crcat rv l  

autoiriat icallj. by a leariiiiig algorit hiri aft cr  t lie t raiiiiiig set is prq)ar(d.  Tlirwforc.. 
buildiiig a iieural expert systeiri takes only a few w c k s  or irioiitlis. h1or~)vor .  tlitl  

editing of a iieural kiiowledge base caii easily be acliievctl by addit ioiial lwriiiiig. 

13.1.4.3 Partial Matching 

The prolileiri of partid rri(itchi7i.q appears in riik-lxwd sj-stciiis ~ . l i ~ i i  no coiidit ioii 
of all rules in the kIiowldgc3 base is eiit irelj- sat isficcl iii t Iic fact l~sc., t i l t  lioiigli 
the coriditioiis iriatch the facts partially. The iiifereiicc eiigiiic is soirict i1iit.s til)lc 



13.1 Knowledge Representation in Expert Systems 429 

to  exploit the partially satisfied rules to infer reasonable conclusions, e.g. by using 
fuzzy logic. In neural expert systems, this problem corresponds to the situation 
where the presented input for the network has not occurred in the training set. 
Supposing this input is from the problem domain which was covered sufficiently 
by the training set and the neural network generalizes well, then the conclusion 
provided by the network is a good solution for the problem at hand. We contend 
that neural networks are especially suitable for partial matching. 

13. I .4.4 Incomplete Information 

Incomplete or even imprecise input information is handled in rule-based systems 
by using confidence calculations and fuzzy logic. The system gradually builds 
the internal model of the case currently being solved on the basis of a possibly 
incomplete set of input information which is being acquired from the user step-by- 
step while it provides partial hypotheses and conclusions. 

On the other hand, in neural expert systems, all network inputs (including 
unknown and irrelevant inputs) have to be specified to  compute the network 
function, i.e. to perform the inference and to get the relevant solution of the 
case at  hand. This makes operating with incomplete information difficult or even 
impossible (Drucker, 1990). Sometimes, the input and output neuron state can 
be interpreted as confidence in the corresponding facts to cope with imprecise 
information in neural networks. However, this should be taken into account in 
the training set to let the network generalize the confidence calculations during 
learning. 

13.1.4.5 Explanation Capabilities 

Due to explicit knowledge representation the rule-based systems have perfect 
explanation capabilities. It is sufficient to display the process by which the inference 
engine has reached the conclusions, which are transparent and comprehensible due 
to the explicitness of its logical steps. On the other hand, the implicit knowledge 
base representation in neural expert systems makes such an explanation difficult or 
even impossible. The expert knowledge is distributed in the network configuration 
and the neural network is used only as a “black box” to compute its outputs for 
given inputs without justifying these conclusions. 

As it can be seen from the preceding comparison of rule-based and neural expert 
systems, their advantages and disadvantages are complementary. If knowledge is 
explicitly represented, its acquisition and the creation of the knowledge base for 
an expert system must be done manually. The debugging of rule-based systems 
is difficult and time-consuming. On the other hand, for the same reason these 
systems work well with incomplete information and provide excellent justification 
of inference. The opposite is true for a neural expert system whose knowledge 
base, despite its limited size, is created automatically by learning from example 



4 30 Ne urd Kn  o uilerlge Processany 171 Expert Systen1.s 

inferences in a relat ivclj, short t iiiic. Ho~revcr, these sjyst ems do not allon. irifcwiicc) 
from iricoiiiplete iriforriiatioii easily and have lit t lc or no esplaiiatioii capability. 

13.2 Neural Networks in Expert Systems 

In this sect ion we will briefly survey several possit)le iiitegrat ioii strategies of explicit 
and neural knowledge represeiitat ions in hybrid syst eiiis. Then ive will fociis 011 a 
strictly riciiral approach to illustrate iriforiiiatioii processiiig wit liiii the fraiiicwurk 
of t lie kiiou~ledg:e-i)ascd rieurocomput iiig paradigiii. Sonic applications of ~ i c ~ i r a l  
expert sjysteriis will be iiient ioiied. 

13.2.1 Hybrid Systems 

The advantages arid disadvantages of explicit and implicit kiiom.le.dgc base rq)ro- 
sent at  ions n.hicli have been denioxist rated by riilc-l);isccl ancl iiciiral mpcrt  syst cwis 
in Sect ion 13.1 are coiiipleirierit ary. Thercforc, t I i c w  is ii iiat iiral t c ~ d e i i c y  to iiit 0- 

gratt. t lic advantages of bot li represent at  ioii approaclics i r i  hybrid systeiiis. Hyhritl 
systerris attempt to integrate the explicit kiio\vlcclgc n.itli iicwral iietnwrkb to copc 
sixiiiiltaricoiislj, with clifferexit types of ixiforniat ion. 111 t l i t  followiiig various iiite- 
grat iori st ratcgics (Caudill, 1991) will be disciisscd ancl illiist rat NI t)). exaiiiples of 
existing systems. 

19.2.1.1 Divide and Conquer 

Orici of t he simplest ways of cornhiiiirig rieiiral networks aiitl riilc-l)ascd sjyst eiiis is ii 
ctiztictr-unct-conqiLer strategy. A large prohlcm is broken into pieces Lvliicli are sol\.ed 
separately by iising tlie most appropriate iiietliotls. AA siibtask in \vliich riilcs art) 
kiion.ri arid just ificatiori of inference is required, is suitable for a rule-based soliit ioii. 
The other part of the probleni, where only data  are availal>lt.. caii be processed 
by rieiiral network t ccliiiologj~. Somet iriies, a riciiral solution does not eve11 i i r w l  
m y  explariatioii becaiise tlie solution itself gives reasons for t lie coiiclusio~is, e.g. 
the optimization process is justified 1 ) ~ .  its result. Thus, in the iiiodular cxpcrt 
sj,steIii architecture, the> problcin is first partitioned. i.e. the inputs are dist rihiitcd 
to respective rule-based and ne.ura1 network iriodiilcs. Thcw t licse niodiilcs rvork iii 

parallcl to sol\,c relevant subt asks. Fiiially, their solut ioiis arc’ collcctccl to proviclc 
the user with resulting conclusions. 

For example, in the daily schetluliiig of large riuriihers of delivery trucks it iiiust 
be determined what packages shoiild be combined on each truck and n.hat the iiiost 
efficient route is for that truck to follow for all its stops. This coniples problcixi caii 

he iiatiirally divided into tn.o siibtasks: grouping the packagcs into t riicks n-liicli 
can he solved hy rules aiid route schedulirig where a11 opt irniziiig ii(wra1 iictivork 
is enip1oj.t.d t o  find ari efficient path for each truck. The final 



13.2 Neural Networks in Expert Systems 431 

been proposed by researchers Bigus and Goolsbey (Caudill, 1991) works very well 
indeed. 

13.2.1.2 Embedded Neural Network 

Another method of implicit and explicit knowledge integration is to make the 
neural network a part of the rule-based system. For example, the network can 
evaluate conditions of some rules. This approach is especially suitable for pattern 
matching, e.g. for visual or signal inputs, etc. where logical expressions cannot be 
applied. Thus, the neural network is employed for a rule matching process to decide 
whether a rule is applicable for the case at hand. Similarly, the applications of some 
rules can be executed by neural networks. The network can develop the internal 
model of the currently solved problem by inferring new facts and re-computing the 
confidences in the fact base or simply by performing the particular desired action 
(as in an application such as robot-arm control). Besides the network function 
computation. this can even iricludc the neural learning aiid adaptation to the 
particular problem. In this way, the rieural rietworks are embedded into a rule-based 
system to implement, some rules or their parts while the remaining ones represent 
classical explicit knowledge. Such a hybrid system is controlled by a procedural 
inference engine. 

Furthermore, even some parts of the conventional inference engine can be imple- 
mented by neural networks. For example, the selection of the most effective rule 
from a particular set of applicable rules is usually done by some heuristics. Several 
neural network architectures, e.g. Kohonen networks, respond with a single-best- 
response category and thus. they can be exploited for the best rule selection task. 
In this case, the neural network is embedded into the inference engine of a rule- 
based system to perform some of its heuristics. In addition, since in the embedded 
approach the application of rules still follows a logical sequence, the explanation 
capability is preserved. 

An example of the embedded approach is a hybrid system COLE (COnnectio- 
nist Logic programming Environment) (Kasabov and Petkov, 1992a,b) which is an 
empty experimental rule- based system. It is implemented in Prolog and, in addition, 
includes neural network simulators as objects for which three predicates are defined: 
create-net, train-nct, recall-net. It is clear that a hybrid rule-based system which ex- 
ploits neural networks to solve partial siibtasks can be built using COLE. A similar 
example is a hybrid production system COPE (COnnectionist Production systems 
Environment) (Kasabov, 1993) which employs forward chaining. The application of 
a production rule in COPE can again involve commands to cope with neural net- 
works. This integration method can also be applied in the above-mentioned expert 
system FEL-EXPERT (Mafik et al., 1992) whose knowledge base representation 
is based on inference networks. In a medical application of FEL-EXPERT, neural 
networks are substituted for parts of the inference network (Druiieck?, 1992). Yet 
another interesting example of the ernbedded approach is a rule-based system for 
robotic control (Handelman et al., 1989) which initially finds acceptable first-cut 



N e w d  Knowledge Processwig in Expert Systciris 

solut ions and siiiiult aneonsly supervises t lie t raiiiiiig of iieiiral iiet work hy r.xa~iiplcs 
provided by rule- bascd task cxeciit ion. The result iiig iiit egrat c d  system is coiit rollcti 
by tlie rule-based part aiid eiia1)lcs a riat ural dii-isiori of labor. 

13.2.1.3 Neural Implementation of Explicit Knowledge 

Aiiotlier strategy is to traiisforiii explicit kiiowledge, e.g. rules, iiito a iicural iietwork 
in order to wake use of neural network advaiit ages like parallclisrii, conipet it iori, 
cjyclic (recurreiit) architect tire. gradient riiiriiriiizat iori, partial iiiatcliiiig, additiorial 
learning, etc. The iieuroiis in the created iiet work rclpreseiit iiiicrocoricept s, p r o p -  
sit ioiis, etc. arid the coririectioiis aiiioiig t litm cxpress causal relat ioiisliips. logical 
depcdeiicies. arid so on. Siricc the architect urc is built froiii explicit kiiowlc~lgc 
each iiciiroii aiid connect ioii have their own purposes in tlie iic3twor.k aiid t liiis. t lie 
explicit krion.ledge represerit at ion is prcscr*v~l alt liougli a iieiiral iietwork is iit i- 
lized. The infererice iii this network is achieved t)? iic~iral network coiiiput at ioiial 
dyiiariiics wliich can he iiiterpreted iii logical teriiis due to t hc. cxplicitiiess of t lie 
kiiowledge. Hence, justification of conclusions is guaranteed i r i  such sj-stenis. 

For example, the systeiri R UDICON (Sariiad, 1988) iinplciiimt s rule-llased ar- 
chitect ures using feedforward iieural networks in which iridividual laycrs reprcscnt 
parts of rules. Kasabov and Sliislikov describe siiiiilar approaches ( I i a s a h ,  aiitl 
Sliisliko\., 1993: Kasabov. 1994). Or tlie so-called fu:z,y cogr, 1'C rnclps (Kosko. 
1987: Styhliiiski arid hkyer, 1988; Taber and SiegSel. 1987) are geiicrall!. cyclic net- 
works where iieurons represent pheiioriieiia arid coiincct ions are 1al)clctl Jvit 11 sigiis 
to express positive or iiegat ive causal relat iorisliips. Tlic coniput at iorial net n.ork 
dyiiaiiiics iiiodel the actual developiiient of a studied case. Aii applicatioii of t lic 
fuzz!. cogiiiti1.e iiiap to iiiodelliiig the political situatioii iii Soiit 11 Africa has b t w i  

described (Kosko, 1987). Aiiot lier exariiple of ~icural iiiipleiiieiit at iori of explicit 
knowledge employs again a cyclic network architecture (Naramki arid Ralcscu. 
1992) which is created aiialyt ically from rules by iiieaiis of mat licriiat ical progra~ii- 
iiiing. Thus. the iieuroiis represent proposit ions aiid constraint equations aiid t lit. 
violat ion of corist raiiit s is formulated as ail ciiergy fiiiict ion. The iiifereiice is real- 
ized as a riiiiiiriiizatioii process of the eiiergj. fuiictioii to search for a triitli i ~ l i i c 3  
tlistrihutioii that achieves opt iiiiiiiii coiisisteiicy with t lie kiiowledge. Iii coiit rast 
to t lie coiiveiit ioiial microscopic inference t ecliiiiyiic 11asecl oil local arid pieccn.isc 
evaluat ioiis of t lie knowledge, this met hod is macroscopic in that t lie wliolc sct of 
knowledge is takeii iiit o coiisiderat ion siriiult aiieously. 

13.2.1.4 Incorporating Rules into Neural Networks 

The opposite approach to tlie preceding two strategies (see Scictioris 13.2.1.2, 
13.2.1.3) is to incorporate explicit kriowlcdgc into a iiciiral rietwork after it lias b t w i  

traiiicd froiri cxariiplc tiat a to iriiprove its geiicralizat ion capabilit!,. This st ratcgy is 
suitable iii tlie case when a traiiiiiig set is arailablc. as well as n . 1 1 ~ ~  scvcral isolatccl 
rules are kiiowii. Of course, the neural network sliould generalize t hcse rules during 



13.2 Neural Networks in Expert Systems 433 

learning from training patterns, however, it can fail to  respond correctly in a few 
cases with respect to these rules. It is because the number of all the instances covered 
by these rules can be unmanageably large and thus it is impossible to  include all 
of them into the training set to  ensure perfect network function consistency with 
these rules. In addition, some of these rules may be essential for expert system 
applicability because breaking them is inadmissible or even dangerous. For example, 
in a medical system application a wrong diagnosis can endanger a patient’s life. 
Therefore, it is important to have a method for incorporating rules into an already 
trained neural network while preserving the implicit knowledge which has been 
acquired from data. However, the knowledge representation in such an improved 
system is still implicit and hence the explanation of inference is problematic. 

For example, Kasabov presents a method in which the weights of a two-layered 
neural network are adjusted to  incorporate rules after the network has been trained 
(Kasabov, 1991). Namely, the weights associated with the connections leading 
from those input neurons which represent related facts within the condition of 
the rule, to those output neurons corresponding to relevant conclusions in this rule, 
are strengthened. This rnethod improves the network generalization of the corre- 
sponding rule. Significantly better generalization of the explicit rules which can 
be expressed as differentiable functions can even be achieved during backpropa- 
gation learning using training pattern derivatives (Sima, 1994). Thus, the error 
function (13.5) includes an additional term which penalizes the discrepancies be- 
tween the actual and desired derivatives of the network function. In another exam- 
ple (Maznjr, 1995) of this approach, rules are implemented as a separate so-called 
rule neural network using techniques from Section 13.2.1.3. Then the trained neural 
network is integrated with this rule network so that the rule network has a higher 
priority. This guarantees perfect network responses if a condition of some rule is 
satisfied and, at the same time, the computation of the original trained network is 
performed if this is not the case. 

13.2.1.5 Rule Extraction from Neural Networks 

It is also possible to  use neural networks for rule extraction to  replace human 
specialists for knowledge acquisition in rule-based systems. In this case, a neural 
network is trained from data to solve the problem acceptably well and then it 
is analyzed to  extract a set of rules from the trained network with the aid of a 
training set. The rule-extraction process is tedious and the results may not be 
quite what one expects, but it is feasible. The resulting rules form tthe knowledge 
base of a rule-based system, perhaps after being refined or extended by a human 
expert. This approach can significantly shorten the rule-based system development 
time. Another exploitation of rule extraction is the explanation of inference in 
neural expert systems or even neural knowledge debugging. The rules which are 
extracted from the trained neural network are presented to  a human specialist who 
can identify the rules which are incorrect. These rules are then used to  generate 
the appropriate training patterns which, after being additionally learnt, correct the 

. n  . .  1. . . .1. 



4 34 

The relation betwwii iiipiits mid oiit puts is iisiially a l ia l jm~l  i l l  a traiiio(1 iioiiral 
network to extract rdcs .  For ~xaliiplc,  tlic so-ciillccl wlntiori  fur tor  (Saito a i i d  

Nakaiio, 1988: Krysiak, 1991 ) has t ) w i i  iiit rodi icd in iiicdical (liiigiiost ic syst uiis 

based on fecclforn.art1 iietworks. Naiiidy. ciciiotc 1))~ C (  S ,  D ,  P )  tlic c l imp’  i l l  a 1 1  

outpiit valiic of diswse D lvliert a sj-niptoiii S of a patieiit P (i.c. ii  triiiiiiiig 
patterii) is switclied froiii on to on, Surii(S. D )  is a siiiiiiiiittioii of C ( S .  D.  P )  
for all patients (i.cl. o\‘cr tlie traiiiing sct) aii(1 ,Z’(S) doiiotcs tlic ~ i i i i i i I ) ( ~  of 
sivitclics of a sjmptorii S .  Tlieri the relatioii factor is proportional to tlic. fravtioii 
Sum( S. D)/.\-( S). Similar statistical tecliiiiqiiw i l l  tlic iiotwork fiilictioii aii;tlj.sis 
have hecii iisecl to gmerate riilcs wliicli arc r~asoi ia1)I~ ill plij.sic%ilis‘ opiiiioiis. 
Or the so-called ( ~ i i i ~ s c i l  /ridc.r (Eiihiitsii ct al.. 1991) is d c f i i i c ~ l  to 1~ t l i r> partial 
derivative of a part iciilar iictwork oiitpiit by iiipiits. This iiic1t.s slioiild i i iwhi i r ( \  

the degree of the caiisal rclat ioiiship bctwccii t l i t  inpiit a i d  oiit piit i i ( ~ i r o i i s .  Tliv 
caiisal iriclcs is cvaliiatcci for average trainiiig pat toriis to goiicrittc. tlic rcl(>lxiit 
rules. Aiiotlier ttdiiiiquc of rule extraction mploits t l ic so-callctl strurtirinl  I (  ( i r . r i r r r g  

ii1itJi f o r y ~ t t i r i y ,  sec Cliaptcr 5 and (1sliikan.a. 1996). 111 t liis Iii(’t I ioc l .  adclit ioiial 
perialtj- criteria are iiicliicled iii the orror fiiiictioii ( 13.5) to clc.l(.tcl c.oiiiic>c*t ioiis 
a i d  iic~iroiis wit 11 lit t lc coiit ribiitioli and to forcc t 1ic Iiiddoii iioiiroiis to I ia \ . o  

bipolar states in tlic coritiiiiious irioclel (scc (13.6)).  Tliiis, a roiigli skclctal iirltil-ork 
arcliitectiiw is obt aiiicd aiid t lie (list ribiited wprosciit at ioii i i i  lii(l(l(w iiciiroiis is 
clissipatcc1 diiring leariiirig from cxaiiiplc clat a.  This ~iiaI)Ios cst ract ioii of c y ) l i ( . i t  
rules froiii t lie sparse arcliit cct iirv aiid clcarer iiciiral rq)rtwiit at ioii. hlorc~ovcr, t lit. 

riile extract ion can bc pcrforiiiccl c’\-c~i for t ra i l id  cyclic iiciiral 1ir.t n.orks. Tlicw 
networks arc conipiitatioiiallj! cqiiivalciit with finit(> aiitoiiiata ~z.lioso trailsit ioii 
furict ioiis arc’ cliscmwcxl hj. applying cliisteriiig algorit liiiis i l l  t 111. iicltwvrk oiit ])lit 

spaccl, scc Cliapter 3 (Oriiliri aiid Gilw. 19%). 

13.2.1.6 Fuzzy-Rule Completion an Neural Networks 

The neural irnpleriieiit atioii of explicit krio\vledgc dcscrilwcl iii Sect ioii 13.2.1.3 
can he coiiihined with rule-extract ion iiietliocls ( s w  Scct ioii 13.2.1.5) t o  coliipl(~tc 
fuzq- rules arid to  autoiiiatc t lic coiiipiitat ioii and (1cl)iiggilig o f  t Iioir c o ~ i f i d ~ ~ i w s  

diiriiig rieiiral leariiing. In tliis coiiibiiicd stratcgy the network n.it 11 \wioiis typos o f  
constrailits is first iiiit ialixecl from explicit fuzzy riiles wliic*li aro iivail:il)l(~ ;is ;i first- 
cut probleni solution. This iiieaiis that t lie furict ioiis of rcspcct i\-c i ic i iroi is  osplicit 1). 
evaluate t liese rules aiid tlicir parts. or combiiie t lieiii, e.g. t lit. iiciiroiis coiiipiit (> 

prescribed fuzzy logic opclrat ions. Hciice. these iieiiron fiiiict ioiis iiiay coiiiplct vly 
differ froiii Equatioris 13.1 aiid 13.2. Fiirt hermore. the coiiiicct ions mioiig ~iciiroiis 
are now labeled with corifideiices. certainty factors or possibility iiiwisiiws. otc‘. 

wliicli are partially cst iniat cd froin the given riilcs, or t 1ir.y a r ~  cliosc~i riiii(10iiily. 
These coiifi(1cwct’ paraiiiotcw wprwont tlic’ 1it.tm.ol-k coiifigiiixtioii an(1 i i i a j -  1~ 
restrictccl (or mwi f i s c d )  n.itliiii spccific i1iterv;ils t o  prcscrvc tlicir fiizzy-qiiaiit it?. 
iriterprctatiori. This, tlic architcctiirc imd tlic wiiipiitat ioii;il c1j.iiwliiic.s of t l iv  
created iicltwork cxplic-it lj- iiiiplcmcnt tlic set of riiles and tlicir fiizzy (*oiiil)iiiiit ioiis. 



13.2 Neural Networks in Expert Systems 4 35 

The knowledge representation in such networks is fully explicit because, in fact, the 
origirial fuzzy rules are wired into the network and the role of individual neurons 
arid connections is identifiable. In addition, the architecture of the network may 
be enriched (or even entirely constructed) with “empty” rules, i.e. with additional 
neurons arid connections whose parameters will be specified during learning. 

Then, the network which has been initialized from fuzzy rules is trained from 
example data to complete, revise and refine the original explicit knowledge. 
Besides the regular training set, even the original rules may be exploited to  generate 
training patterns in order to strengthen the prior explicit knowledge. During 
the learning process, only the parameters of rules (e.g. confidences) are adapted 
within specific bounds while the rules themselves are preserved due to the shape of 
neuron functions and the fixed network architecture. For this purpose, the learning 
algorithm (e.g. backpropagation) is tailored to the specific network function. After 
the network has been trained, the adapted or even new rules can be extracted 
easily because the knowledge representation is explicit in this network. In this 
way, the confidences of fuzzy rules can be determined or refined using neural 
learning heuristics. This combined strategy can be modified if the extraction of 
rules is not needed. In this case the initial network implementation of rules does 
not require an explicit knowledge representation and the classical neural network 
function without constraints, e.g. Equations 13.1 and 13.2, can be employed. Then 
the explicit representation is lost during the network adaptation and rules can be 
restored only by applying the techniques from Section 13.2.1.5. 

For example, this combined strategy can be applied to tune certainty factors 
in MYCIN-like expert systems using backpropagation learning algorithm (Lacher 
et al., 1992). Similarly, the belief measures are accommodated in probabilistic logic 
and Bayesian networks which may be implemented as neural networks (Chen, 
1987). The combined method is also widely employed to refine or derive fuzzy 
rules arid fuzzy controllers (Berenji and Khedkar, 1992; Jang;, 1992; Lin and Lee, 
1991; Yager, 1994). Furtherrriore, rules for string-to-string mapping can be extracted 
from a trained neural network with representation restrictions (McMillan et al., 
1991). Implicit neural network implementation of rules (without the necessity of 
rule extraction) to refine expert system performance using neural learning has also 
been used by (Yang and Bhargava, 1990). 

13.2.2 Neural Expert Systems 

As we have seen in Section 13.2.1, various integration strategies of explicit and 
neural knowledge representations are possible. We now focus on a strictly neural 
approach to exploit the full power of knowledge-based neurocomputing and to 
illustrate neural knowledge processing. Neural expert systems attempt to weaken 
the disadvantages of implicit representation by introducing heuristics which analyze 
neural networks to cope with incomplete information, to explaiii conclusions and 
to generate questions for unknown inputs. This means that neural networks are 
enriched by other functionalities so that they have all required features of expert 



N t ' ~ r ( ~ 1  Knou1ledgc Processing in Expert Systcir,s 

systems. Furtherniore, they caii still be linked into hybrid sj.stciiis to niaiiagc. larger 
tasks. 11F will sketch tlie iiiaiii ideas of t lie prototj.pica1 riciiral expert sjystciii 
hIACIE to introduce this approach. 

13.2.2.1 M A  CIE 

'iVe briefly outliiie the architecture of tlie historically first real ncural clxpcrt sjvstcrli 
&ell hIACIE (hIAtrix Controlled Iiifereiice Engine) proposed by (Gallant, 1988). 
This system is based on t lie discrct e feedforward ncural iietwork iii ivliicli iicairc)~is 
compute the function described by Eqiiat ioiis 13.1 - 13.3. Moreover, liiddeii ~ieiiroiis 
are, in fact, output neurons aiid hence their purposes are giveii 1)j. t l i c  applicatioii. 
The inputs of tlie system represent user's itiisu'ers to questioiis and they iiiay liave 
only two values, either "yes" or "iio" which arc' ciicodcd by 1 or - 1. rcspcctivcly. by 
using the states of input iieurons (similarly for outputs). Iri addition, a11 iinknowii 
state is ericoded by 0. 

The network corifigiirat ion, i.e. the iieiiral kiiowledge lime is created froiii t raiiiirig 
pat terns using the so-called pocket n1,yorithm (e.g. , sec' t lic paper (Gallaiit . 1988) 
for details) which computes relevant integer weights. This itlgorit h i  works only for 
a single layer of iieiiroiis aiid that is why all states of 11eiiroiis iii the fwdforivard 
network sliould be prescribed by t raiiiing pat t ems, iiicludiiig liiclclcii rieiiroiis. Tlic 
siiiipler leariiiiig task niay avoid t lie efficiciicy problciiis aiid siiinilt aiir~oiisly t lie 
visible liiddeii iieiiroiis serve as a better irit erpret at ioii of iiiiplicit riciiral kiiowlcdgc 
represeritat ioii. However, soiiiet iiiics auxiliary hiddcii iieiiro~is m.i t 11 raiiclo~ii weights 
must be added to haridlc) iiiore coiiiplicated tasks. 

111 the case where all inpiits are known. the iiiferencc eiigiiic of hIACIE simply 
computes the network fuiict ion, i.c. all outputs. This caii be vicnwl as it forward- 
chaiiiiiig strategy. However. as usual in expert systmiis. a iisw prcseiits inpiit 
facts about the currently solved case gradually aiid t h i s  soiiie of t he iiiput s are 
temporarily iirikriowri or may reriiaiii uiik1ion.n. For ail iiicoiiipletc iictwork iiipiit H 

riiodificd iiiferericc heuristic is performed. The state ,yj of iieiiroii .j is coiiiputccl as 

follows supposing that the outputs ,yI of all rieuroiis i E j +  has becii dctc~riiiincd. 
First , two auxiliary values h"0117N, aiid ~ ~ ~ A ~ - Z ~ l ~ ~ l ~ ~ ~ O 1 l - ~ ~ - j  a r t  coiiipiitcd: 

(13.7) 

A I A , ~ _ u i ' l ; l ~ i l r o \ l ~ ~ ~ j  = I u ' j z (  . (13.8) 
f E j t ;  y,=o 

Further, if lArNO\17Nj I > A I ~ 4 X - U * ~ ~ l ~ - ~ l r O \ l ~ ~ ~ ~ ,  then the possible coiitrihiitioiis of 
incident iieuroiis i E j ,  with currently uiikiiowri states (i.e. .yI = 0) to tlic cxcitatioii 
level t j  (sec (13.1)) canriot influence the state y j  urhicli is giiwi by known outputs 



13.2 Neural Networks in Expert Systems 437 

(yi E {-1,1}) of incident neurons: 

{ if K N O W N ~  < o  
Y j  = if KNOWNj  > 0 .  

(13.9) 

In the opposite case, if lKNOWNjI 5 MAX-UNKNOWN,.,  then the possible 
contributions of incident neurons with currently unknown states to  the weighted 
sum may change the state y j  and thus, y j  = 0 is set to be unknown. This inference 
method allows MACIE to reach conclusions although only a fraction of the input 
values is known. 

In MACIE, the confidence of the neuron state y j  is also defined to be a real 
number Conf(yj) within the interval [-1,1] which expresses the inclination of the 
state y j  to -1 or 1, respectively. For input neurons or neurons with known states 
the confidence equals the state, i.e. Con f (yj) = gj. For the remaining non-input 
neurons j with unknown states g j  = 0, the confidence C o n f ( y j )  is determined as 
follows: 

(13.10) 

Thus, the unknown outputs can be partially evaluated and preliminary conclusions 
with confidences can be inferred. 

The confidence is also used in the heuristics of generating questions for the most 
relevant unknown inputs. Here, the backward-chaining strategy proceeding from the 
output layer to  the input layer is employed. At the beginning, the output neuron j 
with unknown state, y j  = 0 and with the maximum absolute confidence \Con f (yj) I 
is found, i.e. 

j = arg max IConf(yk)  I . (13.11) 
k O U t p U t ,  y k  =o 

In a general step when neuron j is inspected, the incident preceding-layer neuron 
i E j ,  with unknown state IJ~ = 0 and with the maximum absolute influence Jwjil 
on the underlying neuron j is determined, i.e. 

If i is an input neuron, then the user is asked for its unknown value, otherwise 
the general step, now with the inspected neuron j replaced by the above-selected 
neuron i, is repeated. 

Finally, the MACIE system provides a simple justification of inference by generat- 
ing the IF-THEN rules. During a consultation, the user may ask for an explanation 
why a particular value of output neuron state is -1 or 1, respectively. For exam- 
ple, assume that the system is asked to explain the state y j  = 1 (analogously for 
y j  = -1) of the output neuron j. Then the minimal subset of its incident neurons 
i E j ,  whose states ensure the state y j  = 1, regardless of the remaining ones, is 
determined in the following way. Let I = {i E j,. ; wjiyi > 0) be a set of incident 



4 38 

is clciteririiricd. Bwaiiw t lic iiiclaiiings of lii(l(1tw i i ~ i i r ~ i i s  iii RIACIE art' kiioivii.  t 1ic 
followiiig IF-THEK riilc caii be cxtractcd to justify tlic iiifcrcliiw of !/,, = 1: 

13.2.2.2 Applications 



13.3 EXPSYS-An Example of a Neural Expert System 439 

network was tested on previously unseen patterns and it correctly identified 92% 
of the patients with infarction and 96% of the patients without infarction. This 
is substantially better than the performance reported for either physicians or any 
other analytical approach. 

The first version of the empty neural expert system EXPSYS (see Section 13.3) 
has been applied to diagnostics of protection warnings for the cooling system in 
nuclear power plants (Sima, 1992a). After training on 112 patterns the generaliza- 
tion of the system was approved on a test set of about 300 patterns where more 
than 90% of conclusions were accepted by an expert who had been disappointed by 
previous experience with rule-based systems. 

A neural-network classifier for detecting vascular structures in angiograms was de- 
veloped by (Nekovei and Sun, 1995). The classifier consists of a feedforward network 
window in which the center pixel is classified using gray-scale information within 
the window. The network was trained by using the backpropagation algorithm on 
75 selected points from a 256 x 256 digitized cineangiogram. The three-layer network 
shows good generalization to  the entire cineangiogram and other images, includ- 
ing direct video angiograms. In a comparative study, the network demonstrates 
its superiority in classification performance. Its classification accuracy is 92%, as 
compared to 68% accuracy derived by the application of a maximum-likelihood 
estimation method. 

A medical neural expert system for automated brain signal diagnosis has been 
presented by (Moreno et al., 1995). A training set, as well as the test set, consisted 
of data extracted from EEG signal and diagnoses carried out by expert neurologists. 
The neural approach has been shown to have better performance over traditional 
statistical classifiers. In addition, the integration of neural networks in a higher-level 
knowledge-based system for brain signal interpretation has been discussed. 

A collection of neural networks called PROMNET which are interfaced to a com- 
puterized medical record, has been built by (Bassrae, 1995). Clinical narratives were 
subjected to automated natural language processing, and relations were established 
between 14323 diagnoses and 31381 patient findings which were grouped into clin- 
ical entities to train PROMNET using the Widrow rule. The dictionary contains 
about 20000 words and the neural network recognizes more than 2800 disorders. 
PROMNET makes a clinical decision in a few seconds with a sensitivity of 96.6% 
and specificity of 95.7%. Thus, PROMNET is a powerful inference engine that learns 
from clinical narratives and interacts with medical personnel or patients in natural 
language. This system is comparable with the current standard, viz. Internist. 

~~ 

13.3 EXPSYS-An Example of a Neural Expert System 

In this section we will demonstrate the neural knowledge processing on the empty 
neural expert system EXPSYS (Sima, 1995) in more detail. The architecture of 
EXPSYS has been inspired by the system MACIE (see Section 13.2.2.1) whose 
ideas are adapted for feedforward neural networks trained with the backpropaga- 



Ne I L I ~  Kri ou! ledge  P r o c e s s  i n g  in Expc rt S ys t cm s 

tioii algorithiri. This, the iieiiral network used iii EXPSYS diffcrs froiii t liat of 
hIACIE in two ways: learning liiddeii iieuroiis is feasiblc alt horigli t licir \.aliic)s a r c  
iiot prescribed by training pattcriis aiid further, the activatioii fiiiictioii (13.6) is 
differeiitiahlc. According to Equation 13.6 arhitrary rcal iiiiiiibcrs h~twccii - 1 iiii(1 

1 may represciit the liidderi Iicuroii states which arc’ fiirtlicr iiscci as iiipiits for i i e i i -  

roiis iii the following layer. Hence, it would be airihigiious and iiicoiisistciit for t 1ic 
incoiriplete iriforrriatio~i processiiig withiii EXPSYS to detcrliiiiio t l i ~  cliscrctc stiltvs 
(either -1 or 1) of hidden Iieuroiis as in hlACIE according to Eqiiatioii 13.9. Tlicrc- 
fore, i i i t e r d  states of neurons covering all tlieir potcwtial \,aliics itrc iiit roclii(~v1 i i i  

EXPSYS aiid propagated througliout the network to copc with iiiiprc(*iw m(1 iii- 

coriipletc iiiforiiiat ion. The backpropagat ioii algoritliiii, o i l  o i i c  lia1id. cliiiliiiiitc~s 
the weak lcarriiiig of hIACIE and iinproves t he geiicralizat ioii cal)al)ility of t 110 i i c i i -  

ral network, anti 011 the other hand. it iiiakes tlic explicit iiitclrprotatioii of liiclclcii 
neurons difficult. Aforeover, the usage of a coiit iiiiious activatioii fiiiict ion coiiipli- 
cates the infererice eiigine aiid explariat ioii licurist ics. Thus t lic tciisioii lwtnwii t lic 
implicit arid explicit represent at ions also appears iri  ii(~ira1 expc.rt sjyst ciiis. 

13.3.1 Interface 

13.9.1.1 Data Types 

After one has decided to use iieiiral network tecliiiologj. for 1)uildiiig a i l  csport 
systeiii by applying the iieural expert systeiii sliell EXPSYS (Siiiiii aiid Xcriicla. 

1993). the iiriportarit issue is to choose the iriost suita1)lc iiiput aiid out piit \~arial)lcs 
which should best describe the problem. The inputs of the systeiii slioiild c o \ w  all 
iiiiport ant inforinat ioii which is sufficient to solve t lie pro1)lciii. 0 1 1  t lie ot liw Iiaii(1. 
the iiiput variables should iiot be duplicated or irrelevant lwcausc iiicrcasing t 1ic 
iiuinber of inputs decreases the efficiency of the tcm. Oiie can evcii cxploit soiiio 
statistical methods to discover the iiiput irrelevancies aiid duplicates from clat a.  
The out put variahles represeiit the probleiri soliit ions aiid syst c i i i  coiicliisioiis. 

Furt herrriore, the types of these inpiits and outputs slioiild appropriatclly lw 
defined bj. a user. Tlic sjysteiri EXPSYS supports tlirec 1)asic data tjycs: t 1ic 
nuinerical type (i.e. real riiiirihers or integers), t he scalar typc with iiscr-clcfiiiccl 
values aiid the set. The doriiain of the iiuiiicrical type is spccifitd 1)y H rtwl (iiitcgc’r) 
interval. The doiiiaiii of the scalar type is defined by a vcctor of possiblc valiios 
which are chosen by a user. Siiriilarly. for the set type tlie i i i i i \ w w  of possil)l(> 
elenieiits is givcii by a vector of t hesc elerrierits. The tliff(wiicc bctn.ccii t 111. S<*iIl;ir 
arid set types is that the scalar valiie is exactly one itciii froiii the doiiiaiii ivliilt> 
any subset (including the empty set) of elciiieiits froiii t lit) uiiilw-sc iiiaj~ a p p w r  i i i  

the set type. 
For example, iii a siiiiplified iiicdical pro1)lcwi tlic inputs aiicl oiit piits ail(] tlivir 

types are cllose11 as follo\vs: 

INPUTS: TEMPERATURE: real of C36,421 



13.3 EXPSYS-An Example of a Neural Expert System 441 

SKIN-COLOR: scalar of (NORMAL,YELLOW) 
SCLERAE-COLOR: scalar of (NORMAL,YELLOW) 
LIVER-TENDERNESS: scalar of (NORMAL,HIGH) 
CHOLESTEROL: scalar of (LOW,NORMAL,HIGH) 
URINE-TEST: set of (BILIRUBIN, UROBILINOGEN) 

OUTPUTS: DIAGNOSIS: scalar of (HEALTHY,PSEUDO-JAUNDICE, 
OBSTRUCTIVE-JAUNDICE,HEPATITIS) 

13.3.1.2 Encoding 

The interface of EXPSYS encodes the input and output values into the states of 
input and output neurons, respectively. The states of neurons with the activation 
function (13.6) are within the interval [-1,1] and hence only the values from this 
range are used for this purpose. Three possible ways of coding are supported: 
floating point, unary and binary codes. Almost any combination of a variable type 
and coding is allowed (excluding unary-coded numerical type) where a binary-coded 
real value is, in fact, integer. We will describe only the natural combinations of type 
and coding, which are floating-point for reals, unary-coded scalar type and binary- 
coded set, while the remaining ones are similar and their descriptions can be found 
in (Sima, 1995). 

A numerical value may be encoded directly using the real state of one neuron, 
i.e. floating point representation. However, the values of variables should somehow 
be normalized because remarkably different scales of two variables would require 
different scales of the corresponding weights in the network configuration and con- 
sequently complicate the learning process. Therefore, the domain of the numerical 
type, say [a,  b ] ,  is linearly mapped to the neuron state [-1,1]. Hence, a real value 
x E [a,  b] is encoded by the state 

x - a  
y = 2- - 1 E [-1,1] 1 

b - a  
(13.14) 

The scalar type with the domain of k possible values is encoded in unary code 
using k neurons where each neuron is reserved for one value. Thus, a particular value 
is encoded in such a way that all states of k neurons are set to -1 except the only 
one which corresponds to this value and has state 1. Similarly, each element from 
the universe of the set type corresponds in the binary code to one neuron whose 
state is 1 if this element is in the set, otherwise it is -1. Hence, the number of 
neurons needed to encode the set with possibly up to  k elements is k .  For example, 
the empty set is encoded by all k states being -1. 

The method of encoding the inputs and outputs is crucial for learning and it may 
even influence its tractability (Bluni and Rivest, 1992). The training task is easier 
when more significant features of the problem can be extracted, preprocessed and 
presented to the network in the simplest form. Besides normalizing numerical values, 
the expert knowledge about the problem can be useful for deciding which code is 
suitable to use for individual inputs and outputs to  create appropriate knowledge 



442 Neural Knoullcdge Processing in Expert Systcrris 

representations. Compressed representat ion saves the n u i i i h -  of input and out piit 
neurons (i.e. the network size) but, on tlie other hand, it employs hidden nciirons 
for its decoding. Therefore, t lie sparse unary code is always recoiiiiiitnded pro\,ic-lrd 
that tlie nuniber of input arid output iieuroiis is niaiiageahlc. For esaniplc. evc’ii tliv 
iiiinierical variable can be represented with tlie scalar type including itcins siicli as 
low, riiedium. high, etc. 

13.3.1.3 Incomplete information 

tern EXPSYS liandles incomplete iiiforniat ioii by introducing intcrval st atcs 

of iieiiroiis (Sinia. 1992a). The interval state is an?. non-eiiipty (clveii one-point) 
subinterval of [-1. 11. Then a crisp value is reprcscwted by one-point iiitcrvals. c.g. 

[ 1, 11 stands for 1. Further. an uiiknown ~raliie is ciicoded 1)). coiiiplet 0 iiitcrvals 
[- 1, 11. Even the iniprecise \ d u e  can be expressed by using intcrid iieuroii states. 
For example. this is straightforwml for tlie iiunicrical type, or for t lie I)iiiary-coclcd 
set an unknolvn nienibership of part iciilar elenient s can be encoded hy correspond- 
ing complete intervals; see EXPSYS -Studerits’ Software Projcct (EXPSJ‘S, 1994) 
for details. In our medical exainple the values are encoded its folloivs: 

[ ( [ -0 .2 , -0 .21,  38.4 
c-1, -11 , c1 , 11 , YELLOW 
[-I , -11 , , 11 , YELLOW 
c-1, -11 9 c1, 11 , 
c-1, 11 Y c-1 Y 11 , c-1,11 , 
[1,11 , CL11 1 ,  (BILIRUBIN,UROBILINOGEN) 

HIGH 
unknown 

( [-1,-1], [-1,-13, [-1,-13, [1,1] ) I HEPATITIS 

13.3.2 Neural Knowledge Base 

13.3.2.1 Interval Neuron Function 

As we lia\.e already nientioiied the kriowledge base of EXPSYS is a fecc-lforn.ard ncu- 
ral network trained with the backpropagatioii algorithm. Hence. tlie functions ( 13.1). 
(13.2), arid (13.6) of iieiiroiis are differeritiahle. 111 addition, this fuiictioii is gm- 
eralized to intervals to cope Ivitli incomplete iriforiiiation (see Sectioii 13.3.1.3). 
The interval iieuron state is the iriininial interval ivhich covers all its possible \xl- 
ues with respect to iriconiplete interval inputs. This property should be prcser~.cd 
throughout t lie network coniput at ion. Therefore, the interval function of nciirons 
should preserve inonotonicity with respect to interval inclusion. Nanicl,~,, if an iiipiit 
value is made iiiore accurate, i.e. the corresponding i n t e n d  is narrorvecl doivii to a 
subinterval (e.g. down to a one-point interval). then the output intervals iiiay oiily 
contract arid t lie new intervals are subsets of the preceding ones. Tlius. tlic output 
intervals c o \ w  all possible results for all possible spccificat ions of inconiplctc> iiipiit s. 

In what folloivs the corresponding interval function of neiiroiis is deriiwl. 



13.3 EXPSYS-An Example of a Neural Expert System 44 3 

Let [ai, bi] be the interval states of neurons i E j ,  which are connected to the 
neuron j .  The interval excitation level [aj) pj]  and the interval output [aj ,  b j ]  of the 
neuron j are determined so that they meet the following requirement. For any single 
inputs yi E [ai,  b i ] ,  for i E j + ,  from the given interval states, the corresponding 
unique output yJ of the neuron j computed by (13.1)) (13.2), and (13.6) must fall 
in the output interval, i.e. y j  E [nj ,  b j ] .  Hence, the lower bound aj of the excitation 
level (13.1) is determined as its minimum for yi E [ai,  b i ] .  The corresponding 
contribution of the i-th neuron (i E j + )  to this minimum is wjiai if the weight 
wji > 0 is positive and it is wjibi for negative weights wji < 0. Similarly, the upper 
bound pj is computed: 

Further, formula (13.2) for the output y j  can be rewritten easily for the interval 
output [a j )  b j ]  because the activation function (13.6) is increasing: 

It is obvious that the interval function (13.15)-( 13.17) coincides exactly with 
the original single-state function (13.1), (13.2), arid (13.6) for one-point intervals 
and, simultaneously, it satisfies the rnonotonicity with respect to interval inclusion. 
However, this interval neuron function is not sniooth as required for gradient- 
based learning, namely the bounds (13.15), (13.16) of the excitation level are 
not differentiable with respect to weights at the points with a zero weight. In spite 
of that it is possible either to compute one-sided derivatives when a discontinuity 
of derivatives appears, and thus the gradient method can still be tailored to t,liis 
case (Bdohl&vek, 1997) or the interval function (13.15)-(13.17) can also be made 
differentiable by a continuous approximation of the monotonicity property (Sil-na, 
1992b). Although the strict monotonicity property is partially lost in the latter case 
the system EXPSYS employs this approximate approach as follows. 

To make the interval bounds (13.15)) (13.16) of the excitation level differentiable, 
the auxiliary continuous sigmoid functions 

1 
1 + e c X  

s ( x )  = ____ s(x )  = 

are introduced to approximate the weight signs: 

1 
1 + ex (13.18) 

0 for wji >> 0 
(13.19) 

1 for wji << 0 .  

Note that s ( x )  = S(-x) and s ( x )  + S(z) = 1 for every real x. Thus, the Equa- 



tioiis 13.15 aiid 13.16 for tlic iiitcrval mcitatioii l c \ ~ l  caii 1 ) ~  rcwrittcii: 

(13.20) 

(13.22) 

(13.23) 



13.3 EXPSYS-An Example of a Neural Expert System 44 5 

(13.27) 

(13.28) 

This function is employed by hidden and output neurons during the computation 
of the interval network function except by those output neurons which encode 
the expert outputs using a floating point (see Section 13.3.1.2). For these output 
neurons the activation function aJ is not applied, instead the output intervals equal 
the interval excitation levels, i.e. uJ = aJ, b, = p, and, for example, A, = 1 for 
the auxiliary sigmoid functions s, S. It is because the activation function a, tends 
to saturate the output 9, towards its limits of -1 or 1, and hence the medium 
state values which represent current numerical outputs in floating point would be 
discriminated against. Thus, the underlying interval network function depends on 
the network configuration (w, A)  which consists of all weights and gain parameters 
within the network. 

19.3.2.2 Learning Algorithm 

Before the learning process starts the user of EXPSYS must specify the architecture 
of the feedforward neural network. It suffices to determine the number of hidden 
layers and the number of hidden neurons in each layer since the number of input and 
output neurons is given by the number of expert inputs and outputs by their types 
and the way they are encoded (see Sections 13.3.1.1 and 13.3.1.2). In addition, it is 
implicitly assumed that every neuron in one layer is connected to all neurons in the 
next layer. Thus, by specifying the hidden layers the network size is established (see 
also Section 13.1.4.1) which should correspond to the complexity of the problem to 
achieve the best generalization capability as it has been described in Section 13.1.3. 
Typically, one or two hidden layers are used in which the number of neurons is of 
the same order as the number of input and output neurons. 

Furthermore, the file of example inferences must be provided to the learning 
algorithm. The interface of EXPSYS can be used either to create or to load this 
file. The example inferences are immediately transformed to the training set by 
encoding the input and output values using the input and output neuron states 
(see Section 13.3.1.2). These example inferences may even include incomplete 
information which is encoded using interval training patterns as described in 
Section 13.3.1.3. The principles of selecting appropriate training patterns to cover 
the problem domain were introduced in Sections 13.1.3 and 13.1.4.2. The third 
version of EXPSYS even has a preprocessing procedure for automatic selection of 
representative patterns from larger files based on Kohonen networks; see EXPSYS - 
Students’ Software Project (EXPSYS, 1994) for details. One should also riot forget 
to reserve a subset of example inferences for the test set which is used in EXPSYS to 
evaluate the network outputs with generalization confidences (see Section 13.3.2.3). 



44 0' 

Tliiis, the training sct of i~iterval pat terns lias the follon.iiig foriii: 

wlicrc for tlic k-t 11 training pattcrii Xk is t l i c  vcctor of iiitcrvals of i~ipiit-~i(wroii 
st at c s  allcl 

is tlic corrcsporidi~ig desircd vector of intervals [ . 4 k , .  I ? k , l ]  of tlic Iictn-ork oiit piit:, iii 

wliicli .j clcnotcs the relc\.aiit output rieiiron. Tlic m-or  E( w,  A)  of tlic ~ictwork fiiiic- 
tiori, dcptwlirig 0 1 1  the corifigiiration (w,  A )  wit11 respect t o  tlic training w t  (13.29)- 
CRII  lw gtiicralizccl for iritcrvals. Bccaiisc t lic iritcrval iiotuwrk fiirict ion iiit rodiicwl in  
Scctiori 13.3.2.1 approsi~iiatt~lj- prcscrvos tlic ~iiolioto~iicit~. of tlic iiitcrval iiicliisioii. 
this error c1tq)cnds orilj- 0 1 1  t l i c  boiiricls of rc~lcvn~it iiit orvals: 

I' 

E(w. A)  = E ~ ( w .  A)  
k =  1 

(13.31 

wlierc Ek(w. A)  is a partial error witli rcspe'ct to tlie k-tli traiiiiiig pattern: 

whore [ { I , (W,  A. Xk), b,(w, A. Xk)] is tlic actiial iiitcrval statc of the oiitpiit 11~~11roii 

,j coiiipiittd for the i i i t cnd  iripiit Xk. while tlic iictwork configiiratioii i:, ( w ,  A ) .  
minimizes t lie ( n o r  fiiiictioii ( 13.31 ) in 

t lie configiirat iori space iisirig t lie following graditwt niot hod. At t lir. lwgiiini1ig 
t lic rv~iglits w(O) arc clioscii raiicionily close to zero aiicl t lie gaiii p a r a i i i ~ t ( n  A(")  
around 1, for iristance. Then. at  thrl ciiscretc aclaptatiori time t = 1. 2. . . . tlic i i e w  

coiifigiiration (w(') ,  A ( ' ) )  is coriipiitcci as follows: 

Tlic lcariiirig algoritliin of EXPSYS 

(13.33) 

(13.34) 

(13.35) 



13.3 EXPSYS-An Example of a Neural Expert System 44 7 

To iniplement the gradient method (13.33) the partial derivatives from (13.34) 
and E from (13.35) must be determined. For this purpose, the backpropagation 
strategy is generalized for the interval network function (Sima, 199213). For nota- 
tional simplicity we will describe the formulas only for the network without output 
neurons which encode floating point. The generalization for the opposite case is 
straightforward and can be found in (Sima, 1995) . First, the rule for the derivative 
of the sum is used for (13.31): 

d X  I 

(13.36) 

To compute E, @ the chain-rule for composite function derivatives is applied: 
dX, 

(13.37) 

(13.38) 

Thus, the following derivatives from (13.37)) (13.38) can be calculated directly using 
the explicit form (13.24)-( 13.28) of the interval neuron functions: 

(13.39) 

(13.42) 

(13.43) 

The computation of the remaining derivatives e, in (13.37)) (13.38) starts 
in the output layer and it is propagated back to the input layer as the name 
“backpropagation” suggests. So, first assume that j is an output neuron. Then, 
the relevant derivatives can be directly calculated from (13.32) as follows: 

= aj(w, A, X,) - A k j  - d bj = bj(w, A, X,) - Bkj  . 
dEk 

daj 
(13.44) 



Neural Knowledge Processin,g in Expert Systems 

Further, let j be a hidden neiiron and denote by j +  tlie set of iieiiro~is to u-hicli 
the connections froin the neuron j lead. hloreover. assume that the values of tlic 
partial derivatives %, % have been coniputed for all neurons r E j - .  Then tlic 
chain-rule for the derivative of a composite function can be applied again: 

This completes the gradient computation as we11 its tlie description of t lie learning 
algori t h i .  

13.3.2.3 Expert Checking 

After the feedforward neural network has leariit tlie training set of iiitcrval pat tcrns. 
it is necessary to check whether tlie created neural kriow1edg.t. 1)ase call 1)c csploitccl 
to infer usable conclusions from it. This can be done by a liiiniaii expert ~vlio caii 
evaluate the quality of the system answers in typical situations, or by the test sct 
which is used for coniput ing generalization confidences of individual expert out puts. 
A generalization confidence of a particular expert output is a fraction of the niiniber 
of patterns from the test set. whose desired values for the respecti1.e output coincide 
with its actual values computed by the inference engine (see Section 13.3.3) for the 
corresponding inputs, over the size of the test set. Typically, the iiciiral knou.1cdg.e 
base is not perfect after the first learning and it is further debugged. This can e v c ~ ~  
iiicliide a change of the network architectiirc (see Sectioii 13.1.3) and n e ~ v  lcariiing 
from the beginning. Usually, additional training of the nctn.ork suffices to iniprovc 
its generalization capability. In this case, the mist akeii network responses s c r \ ~  for 
creating the appropriate training pat terns which are leariit addit ionallj- to correct 
the network function. It is useful to iterate the cj7cle of learning and testing until 
the neural network inference is siifficieritly accurate. At t hc end of iieiiral knowl-lcdgc 
base checking the generalization confidences of all expert outputs are conipiit c(l by 
using the test set. 

13.3.3 Inference Engine 

After the neural knowledge base is created it is used for tlic iriferciicc from geiicrally 
incomplete inputs. During a consultation, the user of EXPSE'S prcsents soiiie 
(typically not all) values of inputs to the systeni that provides hini u.ith the partial 
conclusions and their confidences. These part ial coiicliisioris are gradually iiiade 



13.3 EXPSYS-An Example of a Neural Expert System 44 9 

precise, refined and the confidences increase when the user completes the inputs. 
The inference engine always re-computes the outputs and their confidences after 
every input value is presented. An example of the inference in the medical expert 
system follows: 

TEMPERATURE = unknown 
SKIN-COLOR = YELLOW 
SCLERAE-COLOR = NORMAL 
LIVER-TENDERNESS = NORMAL 
CHOLESTEROL = unknown 
URINE-TEST = unknown 

> DIAGNOSIS = PSEUDO-JAUNDICE conf.: 0.86 ---- 

We now describe how the inference engine of EXPSYS works. The expert inputs 
including unknown ones, are encoded using the interval states of input neurons by 
the system interface (see Sections 13.3.1.2 and 13.3.1.3). Then the interval network 
function is computed according to (13.24)-( 13.28) to  find out the corresponding 
interval excitation levels and the interval states for all output neurons which are 
used to determine the expert outputs and their confidences. Further, we again 
restrict ourselves to unary and binary coded outputs while the description of the 
floating point case can be found in (Sima, 1995). Hence, the states of output neurons 
should represent only two values, either 1 or -1. However, the actual state y j  of the 
output neuron j computed by (13.24) is a number within the interval [-1,1] (even 
-1 < y j  < l),  due to  the continuity of the activation function (13.27). Therefore, 
the actual output should be rounded off. For this purpose, the optional so-called 
separation parameter 0 < y < 1 is introduced so that the state y j  E [y, 11 of output 
neuron j is considered as 1 and similarly, the output y j  E [-1, -71 is interpreted 
as -1 while the state y j  E [-y,y] means an unknown value. It is clear that the 
separation parameter controls the precision of the network output. 

For the output neuron j the separation parameter Sj  for its excitation level is 
computed by applying the inverse of the activation function (13.27): 

(13.47) 

In the sequel, assume that X j  > 0 and hence S j  > 0 while the opposite case is 
similar. Now, comparing this parameter S j  with the bounds aj 5 pj ( X j  > 0) of 
the interval excitation level (13.25), (13.26) for the output neuron j ,  the positive 
confidence 0 5 c: 5 1 of the rounded output v ~ j  = 1 as well as the negative 



4 50 

confidence 0 5 c,- 5 1 of tlic. rounded output 1 9 ,  = -1 are (wliipiitccl as follon-,s: 

1 for d,l 5 (1.) 

for (1, < 6, < 3.) 
0 ot licrwise 

1 for 3,) 5 -6,) 
- 6 J  - c ' J  for < -6,) < 3) 

0 otherwise. 

CJ = 

(13.48) 

(13.49) 

Finally, tlie rouiidcd state 11,) of the output lieuroil j togctlior witli its so-c*;tllocl 
in fewrice corifiderice c s J  is dcterriiiiird from t lic doiiiiiiaiit coiificl(~i1cc~: 

( 13.50) 

(13.51) 

Then, every (knowii) out put of the t q w r t  systciii is clc~coclc~l froiii t l iv  corrry)oii(l- 
ing kiiowri rounded states of output iieiiroiis aiid it is associatccl wit 11 t l iv co~i f i ( lc~ i ic~~.  

This corifiderice is coniputed as a product of t lir. iiifcwwcc. co~ifidcwc*w of rolm-aiit 
coding states iiiult iplied by t lie corrtqiondiiig gciicralizat ioii coiifid~iicc~ ( s w  SN*- 
tiori 13.3.2.3). It caii happen that tlic roiiiidccl statcls of rclt>\xiit outpiit iiciiroiis 
do riot reprcseiit an). code of an cspcrt oiitpiit \,aliic (scc Scctioii 13.3.1.2). c1.g. 
therc are more states equal to 1 iii iiiiary code or soiiio of tlic 1101iroii statcs ;ire 1111- 

known (sec (13.50)). In these casw the correspoiidiiig cspcrt outpiit is coii,siclcwcl HS 
unkiiouw or even iiriprecise: see EXPSYS St iidcwt s' Softlvarc Project (ENPSE'S. 
1994) for details. 

13.3.4 Explanation of Conclusions 

Tlic neural expert syst eni EXPSYS pro\.idcs a siriiplc csplaiiat ioii of t l i c  cwiic-liisioris 
Ivliich are inferred by the infcrciicc cngiiic. Diiriiig a consult at  ion tlic i i s ( ~  c a i i  ask 
\vhy a particular out put value has bccii coiicliidcd. EXPSl'S dotoriiiiiiw a l i h t  o f  
selected input values wit li their relative percent iial influclice. ~ i i ~ a s i i r c h  ivliicli l i a ~ - c >  

most 1y influenced tlie inference of the undcrlyirig out piit. Thiis. t lic (.orrc.s~)oiicliiifi 
total ( influence is distrihuted only to  tlic irifliiciicc. iiiwsiirw of tlicw st)lcc*tccl 
inputs while the influence of reniaiiiiiig iriputs is Iicglt~ctccl. 111 oiir i i idical  ~ s a i i i p l ~  
we can obtain: 

DIAGNOSIS = OBSTRUCTIVE-JAUNDICE ? 

----> URINE-TEST = (BILIRUBIN) 51% 

CHOLESTEROL = HIGH 27% 
TEMPERATURE = unknown 22% 



13.3 EXPSYS-An Example of a Neural Expert System 4 51 

The results of the explanation can be exploited not only for the justification of 
the inference, but it is also possible to debug the neural knowledge base by means 
of them (see Section 13.3.2.3). For example, using the explanation of incorrect 
answers the appropriate example inferences can be proposed which, after being 
additionally learnt, correct the expert system behavior. In addition, the explanation 
of the conclusions is used in EXPSYS for generating questions for unknown inputs 
(see Section 13.3.4.2). 

13.3.4. I Explanation Heuristics 

The explanation heuristics for the output which is encoded by using floating point 
representation is based on the causal index (Sima, 1995) and will again be omitted 
here. The explanation heuristics for the unary and binary coded expert output 
employs a backward-chaining strategy and discovers the dominant influences of 
neurons on the underlying output. For its description an auxiliary data structure, 
namely a LIST of records Z is used. The record 2 consists of the following three 
items: 

Z.N ... neuron identification number 
Z.S ... influence sign (-1 or 1) 
Z.M ... influence measure 

The list of records is ordered according to  2 .N  in such a way that neurons in one 
layer always precede neurons in the preceding layers, e.g. the output neurons are 
at  the top of LIST.  Moreover, the records with the same Z.N follow each other in 
this list. Furthermore, the following operations are implemented for LIST:  

insert(Z) ... insert 2 into LIST with respect to the ordering 
get(Z) 
LIST? 

... get the first (top) record Z from LIST 

... access (buffer) variable to the first (top) record in LIST 

Denote by Y the set of output neurons encoding the given (known) expert output 
value for which an explanation was asked. At the beginning of the explanation 
procedure the records for these output neurons j E Y are created and inserted into 
LIST.  Their rounded states (13.50) represent influence signs and their inference 
confidences (13.51) determine influence measures. In addition, the variable Fq for 
an influence of the expert system input q ( q  = 1, .  . . , x) on the underlying output is 
introduced and initialized by zero. For the detailed description of the explanation 
heuristics a Pascal-like pseudocode will be used: 

{ initialization } 
LIST t empty list; 
forevery j E Y do 

Z.N t j ;  
2.S t vj ;  
Z.M t cj; 



Neural Knowledge Processing in Expert System.s 

insert  (2)  
enddo; 

forevery q = 1, .  . . .: do Fq t 0 enddo: 

In a general step tlie total influence. sign and measure of the iieiiroii. whose 
records are at top of the LIST ,  are deterrniiied from its iiiiiltiple occiirrc~iicw. 
Namely, in the course of the explanation procediire it niay cveii happen that one of 
these records considers the current neuron to have a posit i\-e iiiflueiicc sigii wliicli 
should explain t lie underlying expert out put, wliile t lie otlicr oiic prefers t lie saiiie 
neuron to have a negative sign for the saiiie reason. This is caused by the dtwsc 
network architecture in which a hiddeii iieuroii may influence two different neiiroiis 
in tlie followiiig layer oppositely. Thus, the sign associated wit 11 tlie doiiiiiiarit 
iiifluerice measures is assigned to this neiiron and its result iiig influeiicc ineawrc is 
evaluat,ed with respect to this sign. Furthermore, if the current iie~iroii is froiii t lic 
input layer (i.e. L I S T  contains only input iieiirons). tlieii its contribiitioii to Fcl is 
added: 

repeat { geiieral step } 

{ multiple occurrences of one neuron in L I S T  } 
A l l  t 0; A 1 2  t 0: 
repeat 

get  (2) ;  
if 2.S = 1 then A l l  t A l l  + 2 . M  

endif 
else h12 t A12 + 2 . A l  

until LIST  .IV # Z.N;  
if ,111 > A12 then 2.S t 1 else 2.S  t -1 endif; 
2 . A 1  t ( A l l  - A l 2 l :  

if 2 . N  is input neuron 
then 

q t expert input coded by neiiroii 2.LV; 
Fq t Fq + 2 . M  

If the current neuron j is not from the input layer, then the contribiitioiis R, of 
incident neurons i E j ,  to its excitation level (13.25), (13.26). i iani~ly citlicr to 
or to J1 depending 011 the associated influence sign. are deteriiiiiird. Fiirt licr. only 
those neurons i E j ,  whose contributions R, lia\.c coiisisteiit signs are sclectcd. 111 
particular, assume the gain parameter A,) > 0 is positive (siniilarly for A, < O j ,  
i.e. tlie activation function 0, is increasing and aJ 5 , j J .  Now, if tlic iiifliieiiw sigii 
2.S = 1 is positive then all iieiiroiis with positive coiitribiitioiis R, > 0 are sclectcd 
otherwise all iieiiroiis with negative coiitribiit ions R, < 0 arc clioscw: 

else { Z.AV is non-input neuron } 



13.3 EXPSYS-An Example of a Neural Expert System 4 53 

{ contributions to excitation level of 2.N } 
j t Z.N;  
forevery i E j ,  do 

if Z.S = 1 then Ri t wji("(wji)ai + sj(wji)bi)  

endif 
else Ri t wji(sj(wji)ai + ~ j ( w j i ) b i )  

enddo; 

{ selection of contributions with consistent signs } 
I t {i E j ,  ; z.s x XjRz > 0); 

Furthermore, only the neurons i E I with dominant contributions Ri are included 
into LIST .  For this purpose the neurons in I are sorted with respect to the asso- 
ciated absolute contributions 1 Ri I into a non-increasing sequence. Then sufficient 
neurons from the beginning of this sequence are selected such that the sum of their 
absolute contributions is enough to  equal or exceed the sum of the remaining ones. 
The influence signs of these selected neurons i are determined from the correspond- 
ing weights wji t,o strengthen the original sign associated with neuron j. Namely, 
providing that the gain parameter X j  is positive (similarly for X j  < 0) then if 
the weight wji is positive then the influence sign assigned to  neuron i is positive 
otherwise it is negative. Similarly, the influence measures of the selected neurons 
correspond to their absolute contributions IRi I multiplied by the original influence 
measure associated with neuron j. This completes the general step: 

{ selection of dominant contributions } 
sort I = { i l ,  . . .  , z T }  so that [Rill 2 IRi,I 2 ...lRirI; 
" t- min I 2 IRik  I } ;  
I' t { i l , .  . . , i r t } ;  

{ insertion of influential neurons into LIST } 
forevery i E I' do 

Z1.N t i; 
if 2.S x Xjwji > 0 then 21.S t 1 else Z1.S t -1 endif; 

insert(Z1) 
21.M t 2.M x IRzI; 

enddo 

endif { end of non-input neuron processing } 

until LIST = empty { end of general step } 

By using the preceding procedure, the influences Fq 2 0 of expert inputs 
q = 1, .  . . , x on the given output value which is being explained are determined. 
Again, only the dominant influences are considered. For this purpose, they are 



4 54 

I 

(13.5') 
k =  1 k=: '+  1 

Iii  order iiot to ovorloacl tlic iiscr the iiiiiiihcr of  iiifliiciit ial iiipiits is fiirtlicr rest rictccl 
t o  L = riiiii( z' .  10). Thus, tlic desired list of iiiputs wliicli liavc iiiostlj. iiifliir.iicwl 

the) iiiitierlj,irig expert output \ d u e  is (11 , . . . . (11, n.itli tlir. corrcspoiicliiig prlrwiitiial 
iiifliieiice iiieasiires: 

k =  l , . . .  . L .  ( 13.753 ) Ffi A AICjA = 100 
C L  F% 

The limitation of t lie above-descrihed explanat ioii liciirist ics is t litit  i t  is iiiipossil)lr> 
to  gi1.e reasons for ail unknown expert out put \ d i i c  1 ) ~ ~ ~ a i i s ~  t 1iv iiifliiuicv sigiis of 
t lie respective neurons cannot lw dttcriiiinccl. 

13.3.4.2 Question Generating 

Iii EXPSYS the explanation lieuristics dcscri1)cd iii Swtioli 13.3.4.1 is i i s c ~ l  for  
generating qiic.stions for relcvaiit uiikiiowii expert systc.111 iiipiit s. Tlio st rat c>gy is 
to ask for such an iiiikiiowii iiipiit that .  givcii its t-aliic. t l iv coiiiplt~tr~iiws ~ i ( 1  

coiifideiices of expert systoiii oiitpiits n-oiilcl Iiiost ly iiicrc2-\sc aftw t lirl i i c x t  i i i f r w i i w .  

This is iiot only a. iiiat tclr o f  one qiicstion hiit of a s c q i i r ' l i c ~ l  o f  qiir'st ioiis I ) ( ~ * a i i w  t 1ir. 

user caii respond that the itiisw'cr to tlic first qiicst ion is iiiikiio\vii.  Tliiis. all k i i o ~ v i i  

expcrt oiit piit values are gradiially explaiiied and t Iic cori.clsI)oiicliiig por(wit iia1 

infliirwcc. measures (1 3.53)  are tidclctl scparatcly for cacli i i i i k ~ i o w - i i  iiipiit . Tlirlii t l i t> 

sequciice of quest ioiis for iiiikiion'ii iripiit id i ics  is givcii l)y a clccrcwiiig orclor of 

these stiiiis. If no iiiikrion.ri iripiit lias iiifliiciicccl t lie k i i o w i  oiit piit viilii(>s ac*cwrcliiig 
to t lie explanat ioii lieurist ics, thcri a raridoiii scqiiciicc of qiicst ioiis for all i i l i k i i o n . i i  

inputs is gciieratccl. 

13.3.5 Example of Application 

The three versions of the neural export syst eiii slicll EMPSl'S litivc lwtw siicccssfiilly 
applied to solve sevcwd real-world problcliis: the3 diagiiostics of pi-otcctioii \variiiiigs 
for tile cooliiig system iii iiuclear power plaiits (Siiiia. 1992a): tlir. (Iiagiiost ics 
and progress predict iori of liercdit ary rriuscular diseases. iiaiiiclj. Diicheiiiir>*s aii(1 

Becker's dystrophy (Siiria arid N c ~ i i d a .  1993); tlicl diagiiost ics of w r  (liwiiws o i i  t lic 
basis of brainstem auditory evoked poteiitials (hIcchlovii, 1994): aiid otliws. 111 this 
paragraph t lie applicat iori of EXPSYS to a. toy ccoiioiiiic pro1)loiii is w i i i p a r r ~ l  \\.it11 
t hc rule-based system soliition to dciiioiistratc tlio ciiffermccs i i i  t 1ic prowssiiig o f  
iiiiplicit arid explicit kiiou-lcclgt~ represent atioiis. 



13.3 EXPSYS-An Example of a Neural Expert System 4 55 

13.3.5.1 Problem Description 

Consider the problem of developing a banking expert system that would decide, 
after screening some personal data of an applicant, whether he is to be granted 
credit or not. Our example will be based on Japanese credit screening data (JCS 
Data, 1992). This data set contains examples of people that were or were not granted 
credit from a Japanese banking company. 

As the first natural step towards this goal we need to choose which iterns of 
personal data are relevant for our decision making. However, as we employ an 
existing data set, this choice was made for us beforehand. Thus, our expert system 
will examine the following information: whether the applicant has a job and if so, 
how long he is with the current company, the item that the loan is for, sex, age, 
marital status, region he lives in, bank deposit, monthly loan payment and, finally, 
number of months to pay off the loan. 

The data set has 125 example inferences: 85 positive (people that were granted 
credit) and 40 negative (people that were rejected). All examples are complete. 

13.3.5.2 Applying E X P S Y S  

Our task of applying EXPSYS to this problem has to start with definition of data 
types. We used the following definition: 

INPUTS: JOBLESS: scalar of (N0,YES) 
ITEM: scalar of (PC,CAR,STEREO,JEWEL,MEDINSTRUMENTS, 

SEX: scalar of (FEMALE,MALE) 
UNMARRIED: scalar of (N0,YES) 
PROBLEM-REGION: scalar of (N0,YES) 
AGE: real  of [0,1501 
MONEY-IN-BANK: rea l  of C0,9991 
MONTHLY-PAYMENT : rea l  of CO , 1001 
MONTHS-TO-PAYOFF: rea l  of [0,601 
YEARS-AT-COMPANY: real  of C0,991 

BIKE,FURNITURE) 

OUTPUT: CREDIT: scalar of (N0,YES) 

Then one of our example inferences appears as follows 

Since we chose unary encoding for the attribute ITEM, binary encoding for all the 
other scalars and natural floating-point encoding for reals, we obtain altogether 16 
neurons in the input layer and 1 neuron in the output layer. 

The crucial moment in the learning process of a neural network is making a deci- 
sion about a particular network architecture and finding some good representative 
subset of the set of patterns. 



4 50’ 

A s  i t  first a t tw ip t ,  w.‘c piit 10 iiciiroiis iii tlic oii(’ ;tilt1 oiily liiciclcw la).cr. Tli(>ii 

\vo split tlic pat tcriis iiito two parts: oiic coiitaiiiiiig ])at tcriis iisctl i i i  t l io pro(.cw 
of lcariiiiig. tlic ot licr pat tcriis iisecl for tcst iiig iitltkvork I)c’rforiii~tii<’c‘. Iii oiir ( ~ t w  

tlie lwtriiiiig sct has 62 patteriis (42 of tliciii positi\,c) ai ic l  tlic tostiiig sot 63 ( 4 3  o f  
tliciii posit i1.c). 

Tliiis, ivc started tlie leariiiiig proc(~1iiro with a 16 10 1 ;ircliitcc*tiirt1. Aftcr 
approsiiiiatcly 7 hours of lcarriiiig oil a 133 AIHz Peiit iiiiii PC tlic> lcariiiiig tilgoi’it l i i i i  

got stuck with ail crror of roiiglily 5 aiid tlirce iiiilcariit~l I)at tcriis. B). twiiiiiiiiiig 
tlicse patteriis ~ v e  foiiiitl that two of tliciii arc’ aliiiost coiitra(1ictoi.)- ;tilt1 tliat t l iv 
tliircl pattcrii is tlic only positii,e esaiiiplc of a pcrsoii ivitlioiit tt jol) iii t l i t> \vliolc 
lcwriiirig sclt. ,4s a iicst stcp, we oiiiittccl two pattcriis froiii t l i v  lwriiiiig set: o i i c ’  

of t lic coiit radictory pat tcriis aiici t lic positive. jo1)lcss wtiiiipl(~. a i l c l  r(~lt>:triiwl t 110 

n-liolc sct. Aftor 2 lioiirs t lie net lcariicd all tlic ~~siiiiil)lcs ~ i i d  oii(l(v1 n-itli a i l  o i w i .  

of 0.2. This iic>twork c ificcl roiiglily 70% pat ttmis of t lirl tcst sct w i w c - t  1)~. 1f-c 
obtaiiicd \‘cry siiiiilar rcsiilts for arcliitcctiir(>s with tivo (16 8 4 1 )  aii(1 tlircc ( 16 
6 4 4 1) liiclclcw la?-crs. Tlic iictivork with arcliitw’tiiro 16 8 4 1 s l i o ~ ~ ~ l  tl io lwst 
gciicralizatioii 011 tlic tcst set: 71%. 

\‘(>t 71% gciicralizatioii coiifidencc is qiiitt> iiiisat isfactor)-. As sovoral vtii-iat ioiis of 
t lit) iicitwork arcliitcct iirc clid iiot iiifliiciicc t lic quality of goiicwlizatioii vcr). i i i i i c l i .  

t lic lcariiiiig sot was pro1)ahl~~ ill-choscii 
As a sccoiicl a t tmipt .  ~ v c  cliose tlic 16 8 4 1 ;trcliitcctiiw a i i d  cliviclccl t l iv pattwiis 

iiito lcariiiiig, aiixiliarj. arid tcst scts Lvitli 42. 42 aiid 3 1 pattcriis. rwpo(*t i\-c.lj-. Tlic 
piirpmo of t lic aiisiliai*j, sot n’as to s m ~ - ( ’  a s  a r~soiircc of i i c ~ v  c~aiiil)lc i i i f c w i i ( w  

froiii wliicli i t  n.oul(l 1)t. possil)lc> to clra~v :tppropi.iatc> pattcriis t t i i (1  ciiricli t 1 1 0  

lcariiiiig sct. Tlic iict tlicii 1tvii.iiccl diiriiig ail itorat i1.c pi’ocws coiiiprisiiig t l i rw 
s tq)s ,  iiaiii~l). (rc)lcariiiiig tlic ciirrciit lwriiiiig sct , clicckiiig t l i t)  pvrforiiimco of t 1ic 
iiet oil t 1ic tcst set aiid siicccssivc iiioclificat ioii o f  tlic lcariiiiig sot. Tlir. 1v:ti.iiiiig w t  
was iiiodifiecl 11). iwiioviiig coiit iiigciit i i i i l ~ ~ t r i i ~ d  pat tcriis a i i ( 1  aclcliiig soiiic ])tit t ~111s 

froiii tlic aiisiliwry sot that  n.crc “siiiiilar” to t liosc iiiisclassitiocl ii i  t lic t (1st w t .  
\fTo itcratcd tlic wliolc process tlirw tiiiics (scc Swtioii 13.3.2.3). -4ftc.i. t l i v  tirst 

riiii. tlic iict gciicwlizd on 68% of cases froiii tlic tcst sct. Fiiially. aftcr tlic tliircl 
riiii. n ’ ~  obtaiiicd 93% gciicralizatioii coiifidmce o i l  t lic test svt ( o f  41 pat toilis). 
Iii tlic last rim ivc iiscd 72 pattcriis iii tlic lcariiiiig sot. Lwriiiiig i i i  cacli riiii took 
approsiriiately 6 8 lioiirs. 

Hcrc IW caii give soiiie exariiples of EXPSYS iiifcwiiccs. For iiist a i iw.  ivlicii 

it dicl iiot captiirc t lit. kiio\vlcclgc1 \vcll. 

tciii u-itli t lic followiiig iiicuiiiplctc iiiforiiiat ioii: 

ITEM = BIKE 
SEX = FEMALE 
PROBLEM-REGION = YES 
MONEY-IN-BANK = 9.5 
YEARS-AT-COMPANY = 7.5 

it i i i f c w  



13.3 EXPSYS-An Example of a Neural Expert System 457 

---- > CREDIT = NO conf.: 0.77 

Now we can ask for an explanation of the inference and we obtain the following: 

CREDIT = NO ? 

> YEARS-AT-COMPANY = 7.5 54% 
MONTHLY-PAYMENT = unknown 20% 
ITEM = BIKE 15% 
MONEY-IN-BANK = 9.5 11% 

---- 

Not having a human expert at hand, we can judge the quality of inference only 
by confronting it wit,h the data. However, this is rather a vague strategy and may 
require application of various types of methods for retrieving inforniatiori from data. 
In our simple example, we easily inspected the data and noted some obvious facts. 
For example, the average length of present occupation of people who were granted 
credit is 9.2 years, whereas for those not granted it is only 2.4 years. Moreover, 70% 
of people applying for a loan for a bike were rejected and the average amount of 
bank deposits for the accepted applications was 81.6 units. Thus we can conclude 
at least that the above inference is not in contradiction with the data. 

Now we can present an example of a positive inference: 

JOBLESS = NO 
ITEM = MEDINSTRUMENTS 
AGE = 58 
MONEY-IN-BANK = 70 

MONTHLY-PAYMENT = 1.5 
YEARS-AT-COMPANY = 36.5 

> CREDIT = YES ---- conf.: 0.75 

and its explanation: 

CREDIT = YES ? 

> ITEM = MEDINSTRUMENTS 35% 
MONTHLY-PAYMENT = 1.5 27% 
JOBLESS = NO 21% 
SEX = unknown 10% 
PROBLEM-REGION = unknown 7% 

---- 

We can also specify a value of an up-to-now unknown attribute so as to obtain 
a higher confidence rate of the inference, e.g. we can add a value of attribute 
PROBLEM-REGION and we obtain: 

PROBLEM-REGION = NO 
---- > CREDIT = YES conf. : 0.93 

Again, by inspecting the data, we find that 80% of people applying for a loan for 
a PC were granted credit, 75% of applicants that have a job also obtained credit, 
as well (76 of people that live in a non-problem region. For other attributes, 



N c  i i  r n  1 K I )  o 11 1 cdgc Proc.css i r i g  I 71 Erpcrt Sys t c in  s 

Table 13.1 Network intcrval statcs for tlie positive iiifcrciicc csa111plc. 

Expert System Input I Input Layer 1 1  Hidden Layers 

JOBLESS = NO 

ITEM = MEDINSTRUMENTS 

SEX = unknown 
UNMARRIED = unknown 
PROBLEM-REGION = unknown 
AGE = 58 
MONEY-IN-BANK = 70 
MONTHLY-PAYMENT = 1.5 
MONTHS-TO-PAYOFF = unknown 
YEARS-AT-COMPANY = 36.5 

1-1. -11 
[-1. -11 
[-1. -I]  
[-I ,  - I ]  
[-I3 - I ]  

11 
[-I ,  -11 

1-0.227. -0.2271 
[-0.86, -0.861 
[-0.97, -0.97] 
[-1.11 

First LaycI 

[ - 1 ? O.GfiG] 

“1.3 19. O.T>OG] 
[ - 0 . 5 2 3 .  -0.0391 

output 

[-0.992. 11 

l iowc~~cr,  tlic dcpciiclcricics are riot so clear. At least w conic’ to t lic coiicliisioii t liat 
t lie iiifcwiice pt‘rforriicd by t lic cspert 

At this poiiit, it is iristriictivc to use the a h ~  csaiiiplc of positivc iiift.rciicc 
to dcriioiistratc t lie perforiiiaiic--e of t lie EXPSYS int crval ii~iiroii fiiiict ion ( s w  

Soctioii 13.3.2.1). lfTe illiistrate this n.itli va1iit.s of iictn.ol-k iiitorval statcis for tlic 
positivo exaiiiplc iii Tal)le 13.1 aiid, for coiiiparisoii, valiics of iiitori.al states for t lic 
swiiie cxmiple wftcr spccificwt ioii of oiic iiiorc at t riblit (1 (iiwinel>-. PROBLEM-REGION 
= N O )  iri Table 13.2. 

The first coluiiin of both tables coiitaiiis the expcrt systciii iiiput (i.e. valiios of 
at  t r i h t e s )  , tlie second coliiiiin corit aiiis their correspoiidiiig ciicodiiigh as iiit orval 
states of input iieuroiis (for details oii iiipiit ciicodiiigs scc Sectioii 13.3.1.2). Tlic 
third coliiiriii corit aiiis values of iriterixl states of iiciiroiis in 1)ot 11 liicldcii laycw 
eight iieiiroiis in t lie first liidcicii layer arid four iicwwiis in t l i c  wcorid hiclclcii layer. 
Thr. last coliiniii contains the interval state and ciscitat ion l c \ ~ ~ l  of the oiitpiit iioiiroii 

t ogct 1it.r n.it 11 filial results of iiifcwiice. 
\lre cicscribe here briefly the steps of tl ic iiifereiicc procdi i rc  for t lie cxaiiiplc iii 

Table 13.1: the case for Tahlc 13.2 is siiiiilar (for dctails oii t lic iiifcwiico eiigiiic 
see Section 13.3.3). Siiicc \ve chose tlie value of tlie separation para i i t~ tor  ;t to 1)c 

0.4 and the gain parariicter of the output iieiiroii is X = 6.094. we ohtairi tlic valiie 
of tlie separation paraiiicter of the output iieuroii S = 0.139 1 ) ~ .  Eqiiatioii 13.47. 
Tlicw. for t l ic iiitcr\.al ~xcitwtioii lovcl of tlic oiitpiit ii(~iroi1 [o .  .’] = [-0.915. 4.5481. 
w get the positivc confidciice r+ = O.8Oi‘ and thcl ricgativc coiifideiic(~ c = 0.142 
from Equations 13.48 aiid 13.49, respcct i\,c>ly. Now a.c (’ail clctcriiiiiic t hr. roi i i idcd 

oiitpiit of tlic oiitpiit iiciiroii 1 1  = I hy (13.50) and tlic iiifcrciicc coiificlciic-c ( a  = 0.807 

tcrii clocs not coritraclict t l i r i  data.  



13.3 EXPSYS-An Example of a Neural Expert System 4 59 

Table 13.2 
specified. 

Interval states for the positive example with one more attribute 

[-I, -11 

[-I, -11 

[L 11 

[-1,-11 

“7 -11 

[-1, -11 
[-I, -11 
[-I, 13 
[-I, 11 

1-0.227, -0.2271 
[ - 1 3 - 1 1  

I Expert System Input I Input Layer 1 1  Hidden Layers 

First Layer 

[0.706,0.939] 

[0.045,0.933] 

[-0.686, -0.4031 

[-0.947,0.992] 

[-1,0.886] 
[-1, -0.9971 
[-0.372,0.344] 
[0.357,0.45] 

Second Layer 

JOBLESS = NO 

[-I, 11 
[-0.263, -0.2631 

ITEM = MEDINSTRUMENTS 

[-0.528, -0.0511 
[0.281,1] 

SEX = unknown 
UNMARRIED = unknown 
PROBLEM-REGION = NO 
AGE = 58 
MONEY-IN-BANK = 70 
MONTHLY-PAYMENT = 1.5 
MONTHS-TO-PAYOFF = unknown 
YEARS-AT-COMPANY = 36.5 

1 - 1 3  -11 I I  
output 

[0.889,1] 

a = 0.465 
p = 4.559 
v = l  
c = l  
conf.= c x 0.93 
conf.= 0.93 

according to (13.51). Finally, by multiplying the inference confidence c by the above- 
mentioned generalization confidence 0.93 we obtain the resulting confidence 0.75 
(see Section 13.3.2.:3). 

By comparing values in Table 13.1 and Table 13.2 we can see how specify- 
ing a previously unknown input influences network interval states. Particularly, 
Table 13.2 shows the network states after setting the value NO to  the attribute 
PROBLEM-REGION, which was left unknown in Table 13.1. Thus the states of the neu- 
rons in the input layer differ only for the neuron which encodes the value of the 
PROBLEM-REGION at,tribute and which becomes [-1, -11 in Table 13.2. When com- 
paring states of the neurons in hidden layers we can observe that several intervals 
have contracted. Namely, the intervals of the second and the fourth neurons in the 
first hidden layer arid the intervals of the first and the fourth neurons in the second 
hidden layer show substantial contraction. Indeed, we can also observe that some 
neurons shifted their interval states slightly and thus do not preserve the strict 
monotonicity property (see Section 13.3.2.1). The interval state of the output neu- 
ron shows the biggest contraction. However, it is the value of the interval excitation 
level of the output neuron which is relevant for the expert system output. Here, the 
lower bound of the excitation level a increases from -0.915 in Table 13.1 to  0.465 
in Table 13.2, and thus becomes greater than the separation parameter 6 = 0.139. 
This forces the rounded output U = 1 with inference confidence c = 1 and resulting 
confidence 0.93. 

We conclude this paragraph by listing the questions that are generated by the 
system together with the measures of their influence on a particular output. Since 



there is only oiie outpiit i i i  tlie systciii, the o r d c ~  iii U-hicli tlic qiicstioiis art' 
geiicrated coiiicides with d(vcasiiig sigiiificaiicc of iiidi\ridual i i i ik i io~vi i  iiiput s ( S(Y 

Sectioii 13.3.4.2). This is deirioiistratcd for tlic casc wlicw all iiipiit attribiitcs arc 
left iiiikiiowii: 

CREDIT = YES ? (conf.: 0.48) 
---- > YEARS-AT-COMPANY = unknown 56% 

MONTHS-TO-PAYOFF = unknown 20% 
ITEM = unknown 13% 
MONEY-IN-BANK = unknown 11% 

13.3.5.3 Comparison with a Rule- Based Solution 

The tJaparieso credit screeiiirig data (JCS Data. 1992) also coiitaiiis N cloiiiaiii 
theory i.e. iriforriiatioii obtaii id by iiiterviewiiig baiikiiig wpcrts wlio iiiakv cl(>- 
cisioiis about graiit iiig credits. This iriforiiiat ioii. t raiisforiiicd to s c ~ ~ w i l  rulcs. rq) -  
resents t lic kiiowlcdge 1)ase of a rule-t)ascd 1)aiikiiig expert t (11 1 1  11-1 1 icl 1 (w 11 1 i i i w  

tlie trustworthiiicss of people appl\.iiig for a loan. Tlic list of r i i l t ~  fol1on.s: 

#1: IF jobless=yes & sex=male 
THEN credit=no 

#2: IF jobless=yes & sex=female & unmarried=yes 
THEN credit=no 

#3: IF jobless=yes & item=bike & sex=female & unmarried=yes 
THEN credit=no 

#4: IF jobless=yes & sex=female & unmarried=no & 

THEN credit=no 
#5: IF problem-region=yes & (years-at-company <= 10) 

THEN credit=no 
#6: IF (age > 59) & (years-at-company < 3) 

THEN credit=no 
#7: IF creditono 

THEN credit=yes 

& (money-in-bank < monthly-payment * months-to-payoff) 

Two aspect,s can be obscued here. First. 110 co i i f id t~ i i c~~  for iiitlividiial rulcs six' 

used in this simple example. This iricaiis that all riiles 1i;tvc al)solutc \didity. Sccoiicl. 
tlie riiles foriri a cliaiii of exclusioiis i.e. each riilc rcljects a class of applicaiits for 
a loan. 

Sirice we are riot iii coiitact with tlic lxmkiiig expert, the oiilj, wa~' to vcrify 
validity of the above rules is to test tlieir perforiiiaiicc o i i  tlic data wt .  For this 
purpose we havo iricorporatcd tlic riiles into ail cinpty cxpclrt 
eiriploycd tlic Prolog-l)asccl systciii AIIIiE (Eisciistadt aiid Bra-\\,slian-. 1'390: AIIKE. 
1990). Tests have shoivii that thc rules err 011 25 c~xaiiiplc~s out of 125. Ho~vcvcr, it is 
important to distinguish between positive arid iiegat ive iiiisclassificat ioiis. Tlicre arc 



References 

22 examples wrongly classified by the system as yes ,  whereas only 3 were wrongly 
classified as no. With respect to the exclusive form of the rules this means that 
the rules are incomplete rather than incorrect. Thus, through the consultation of a 
banking expert we could devise additional exclusive rules that would set aside the 
remaining wrongly classified positive cases. 

When comparing neural and rule-based approaches to building an expert system 
for granting credits, we must confine ourselves only to comparison of performance 
with respect to the data set. Having done so, we can conclude that the neural 
solution is not worse than the rule-based one. Particularly for the rules contained 
in the Japanese credit screening data (JCS Data, 1992), we observe that the neural 
solution shows much better performance. 

Nevertheless, the main purpose of this application example is to demonstrate 
some key differences between neural and rule-based approaches in the process of 
developing an expert system. From this point of view it appears that the main 
difference consists of  creating and debugging the knowledge base. While the rule- 
based solution has been proposed by banking experts who made an effort to 
express their credit granting strategy analytically, the neural approach issues from 
particular examples of their credit granting decisions in practice. On the basis 
of these examples the representative training pat terns have been selected and 
an adequate neural network architecture was determined. It has been confirmed 
that these two optional parameters are crucial for neural network learning and 
generalization, and their debugging represents the important part of the neural 
knowledge base development. Thus, instead of improving the analytical solution 
the neural knowledge engineer trains different network architectures using various 
training sets to achieve the best performance of the neural inference engine on 
the test set. It follows that knowledge-based neurocomputing exploits a different 
methodology when applying statistical techniques rather than the formal logic 
which is used in conventional rule-based systems. 

In addition, the application has also demonstrated that the expert system func- 
tionalities of EXPSYS which analyze implicit neural knowledge can compete with 
a rule-based solution. Particularly, the neural expert system decides about credit 
granting when only incomplete personal data of applicants is available. Further- 
more, the system asks additional questions to  complete the information about an 
applicant which is most relevant for the resulting decision. Finally, the system sim- 
ply explains why the loan is provided or rejected. Thus, we can conclude that the 
neural expert system EXPSYS represents a respectable alternative to rule-based 
systems. 

References 

Bassge, C.-F. 1995. Automated diagnoses from clinical narratives: A medical system 
based on computerized medical records, natural language processing, and neural 
network technology. Neural Networks, 8(2):313-319. 



Neural K n  o ulledge Proccss i i ig  2 11 E.rpei.t Sys t e 111 s 

Baxt, FY. G. 1990. Use of aii artificial iiciiritl iietnwrk for data analj 
decision-iriaking: The diagiiosis of acute coroiiary occliisioii. 1Vr~iiroI 

2 (4) :380 -389. 
Bdohltivek, R.  1997. Backpropagatioii for iiiterval pattcrris. Nr>urnI II'r tiilork Tl'orltl. 

7( 3):335 34G. 

Bereri-ji, H. R.  aiid Kliedkar, P. 1992. Lcariiiiig aiid tiiiiiiig fiizzj. logic coiit rollcm 
through reinforceiiieiit s. IEEE Traiisnct ?oris o r i  Ne  11 rvl  Xet ii~)r.ks. 3 ( 5) : 724 740. 

Biondo, S. J. 1990. Fund(irnenta1s of Expert S,ysterris Tech7iology: Pririctplt s cir i t l  

Concepts. Norwood, N J: Ahlex Puhlisliiiig Co. 
Blixin. A. L. arid Rivest. R. L. 1992. Training a 3-riodc Iieural iitltwvrk is NP-  

complete. Neural Networks. 5( 1):117-127. 

Buclianan, B. aiid Shortliffe, E. 1983. Rule-Based Eq)c 1.t Systr i r i s .  Rcading. hI.4: 
Addisoii-\I'esley. 

Caiidill, hI.  1991. Expert rietworks. Byte, 16(10):108 116. 
Clieii, S. 1987. Aiitoiiiated reasoiiiiig oii rirwral iivtn-orks: A pro1)ahiIist ic approach. 

In Proceedirigs of the IEEE Iriterncitioncil Corifc,r(~ri(*r~ or1 N c i i r ~ i l  Arc tiilorks. Snri 
D i c y ,  vol. 11, pp. 373 378. 

of the Internation(i1 ,Joiiit Coriference ori Nciirril 
Drucker, H. 1990. Iiiipleiiientat ion of iiiiiiiiiiiiiii error tqicr t  systoiii. 111 Prorr r d / r i g , s  

t(il(ir.k*~ IcJCNiY*90, Snii D/r!lo. 
vol. I, pp. 291-296. 

Druieck9, P. 1992. E:rpei.t System !or Aled icn l  Di(iposti( 's .  h1;istc.r tlicsis. Dqxirt- 
merit of Cont 1-01 Eiigiriceririg, Faculty of Electrical EiigiiieeriIig. C z t ~ l i  Tc.c*liiiical 
University, Prague. 

Duda. R. 0. ancl Re\~oh,  R. 1983. AI arid decision making: Tlic PROSPECTOR 
. ~ 1 .  If-. Rciti i iai i .  exp e r ierice . In A rt zfic in 1 Iii t f~ 11 ig e n rc. A y p  11 CO t i o 71 s f o 7' B 11 s I 71 c 

Norwood. NJ:  Ahlex Publisliiiig Co. 

Eiseiistadt, hI.  arid Brayshaw, AI. 1990. ,4 kIiowlcdgc eiigiiiwring toolkit. Bgtc. 
15( 10):268 -282. (12):364 370. 

Eiibutsu, I., Baha, K.. arid Hara. N.  1991. Fuzzy riilc cstractioii froiii a iiiiiltilaycwd 
i i r ~ i l  iieural iietrvork. Iri Proceediii!js of the Iritrmicittoricil ,Joirit Corifr I Y  i i ( ~  o r i  

Networks IJCNN'91. Secittle. vol. 11. pp. 461 465. 
EXPSYS 1994. EXPSYS -Students ' Softwr~rc. Pr~i.)r cf .  Dcpart iiiciit of Softil-iiw 

Engineering, Faculty of hIat heiiiatics aiid Plij.sics, Cliarlcs LTiiivcrsitj: Pragiic>. 

Fauset t , L . V . 1 994. FTL ri (1 n in en t a Is of Ne 11 r ( i  1 N c  t t iw  r k s  : A rch I t ert i i  7 . r ~  s . .4 lg o 1- i  t i i  I I i s. 

Gallant, S. I. 1988. Coiiriectioriist expert systeiiis. Corrirriiiii/c~nt~oiis of tht .-I C.11. 

and .ilppZicntions. Englewood Cliffs. N J :  Preiiticc\-Hall. 

31(2):152-169. 

Gallant, S. I. 1993. N e i ~ i ~ i l  Netulork Le(ir*riiii,q (in(! E.rpri? S,ystcrris. Cmiil)i%lgo. A I A :  

Giarrataiio, J .  arid Riley. G. 1993. Expcrt Systerns: Pr/riciplc~s ( i r i d  Pr*tirt/cc. Bostoii, 

hIIT Press. 



References 4 63 

MA: PWS Publishing. 
Handelman, D. A., Lane, S. H., and Gelfand, J .  J. 1989. Integration of knowledge- 

based system and neural network techniques for autonomous learning ma- 
chines. In Proceedings of the International Joint Conference on Neural Networks 
IJCNN’89, Washington, vol. I, pp. 683-688. 

Haykin, S. 1994. Neural Networks. New York: Macmillan College Publishing 
Company. 

Hecht-Nielsen, R. 1990. Neurocomputing. California: Addison-Wesley. 
Hertz, J., Krogh, A., and Palmer, R. G. 1991. Introduction to the Theory of Neural 

Computation, vol. I of Lecture Notes, Santa Fe Institute Studies in the Sciences 
of Complexity. California: Addison-Wesley. 

ters. Neurocomputing, 5 (4-5) :211-2 19. 

mentation of Rule- Based Expert Systems. New York: McGraw-Hill. 

HoEejS, J .  and Kufudaki, 0. 1993. Neural networks with local distributed parame- 

Ignizio, J .  P. 1991. Introduction to Expert Systems: The Development and Imple- 

Ishikawa, M. 1996. Structural learning with forgetting. Neural Networks, 9(3):509- 

Jackson, P. 1990. Introduction to Expert Systems. California: Addison-Wesley. 
Jang, J. S. 1992. Self-learning fuzzy controllers based on temporal back propagation. 

521. 

IEEE Transactions on Neural Networks, 3(5):714-723. 
JCS Data 1992. Japanese credit screening data. Machine Learning Reposi- 

tory, University of California, Irvine, ftp://ftp.ics.uci.edu/pub/machine-learning- 
databases/credit-screening/. 

Kasabov, N. K. 1991. Expert systems based on incorporating rules into neural 
networks. Technical University in Sofia, Bulgaria. 

Kasabov, N. K. 1993. Hybrid connectionist production systems: An approach to 
realising fuzzy expert systems. Journal of Systems Engineering, 1:15-21. 

Kasabov, N. K. 1994. Connectionist fuzzy production systems. In Proceedings of 
the Fuzzy Logic in Artificial Intelligence: IJCAI ’93 Workshop, Chambery, France, 
vol. 847 of LNAI, pp. 114-127, Berlin. Springer-Verlag. 

Approximate reasoning with hybrid 
connectionist logic programming systems. In Proceedings of the International 
Conference on  Artificial Neural Networks ICANN’92, eds. I. Aleksander and 
J. Taylor, pp. 749-752. Elsevier Science Publisher B. V. 

Kasabov, N. K. and Petkov, S. H. 1992b. Neural networks and logic programming- 
a hybrid model arid its applicability to building expert systems. In Proceedings 
of the loth European Conference on Artificial Intelligence ECAI’92, ed. B. Neu- 
mann, pp. 287-288. John Wiley & Sons. 

A connectionist production system 
with partial match and its use for approximate reasoning. Connection Science, 

Kasabov, N. K. and Petkov, S. H. 1992a. 

Kasabov, N. K. and Shishkov, S. I. 1993. 



4 64 Neural Kn,ouiledge Processing in Expert Systcnis 

5( 38~3)  : 275-305. 
Kosko, B. 1987. Adaptive inference in fuzzy knowledge networks. In I '~*oceedii igs of 

the IEEE International Conference on Neural Netiilorks, Sair Die!go, vol. 11. pp. 
261 -268. 

Krysiak, A. 1991. Application of parallel connect ioiiist niodcl in niedical t3xlm-t 
system. Institute of Computer Science, Polish Acadeniy of Sciciices. 

in expert networks. IEEE Transactions on Neural Networks. 3( 1):G'Z 72. 

decision system. IEEE Transactions on Computers. 40( 12): 1320 1336. 

hlagaxine, 4(2):4-22. 
hlaiik, V.. VlCek, T., Kouba, Z., Laianskf, J.. arid Lhotskli, L. 1992. Expert systeiii 

FEL-EXPERT version 3.5: Description and user's rnariual. Technical Report TR- 
PRG-IEDS-06/92, FAW Linz-Hagenberg-Prague-Vienna. 

hlaiik, V., Vltek, T., S e d i d ,  I., hlaiikovh. T., Hyanek, , J . ,  Canipr, V., Tjoa. A .  RI., 
and Gierlinger, C. 1993. FEL-EXPERT applications -sonic pilot case st udics. 
Technical Report TR-PRG-IEDS-13/93. FAU' Linz-H~geiiherg-Prag~ie-~~ieiiiia. 

Ilaiik. V., Zdrrihal. Z.. Kouba, Z.. and Lhotsk6, L. 1990. The FEL-EXPERT 
project: Applications in education. In Proceedings of the CEPES- I 'NESCO 
Intern at ion a1 Symposium: Artificial In telligen ce in High er Edrica t ion, Berlin. 
Springer-Verlag . 

Lacher, R. C., Hniska, S. I., and Kuncicky. D. C. 1992. Back-propagation lcarriiiig 

Lin, C. T.  arid Lee. C. S. G. 1991. Neiiral-rict~~?rork-~~~sed fuzzy logic control and 

Lippiiiaiiri. R. P. 1987. An introduction to conipiit ing wit 11 ric31ral nets. l E E E  -4 SSI' 

hlazri$. AI. 1995. Integrating Rule-Based a n d  Neural Approaches to Expert System 
Design. Master thesis, Department of Software Engincw-iiig, Facult>. of hfat hc- 
mat ics and Physics, Charles University, Prague. 

hIcDerinott, J. 1981. R1: The forniative years. A I  Magazine, 2(2):21-29. 
hfchlillan, C., hlozer. hl. C., and Smolensky, hl. 1991. Learning explicit rules ill a 

neural network. In Proceedings of the International Joint Con ference on Neural 
Networks IJCNN'SI ,  Seattle, vol. 11, pp. 83-88. 

hleclilov&, S. 1994. Applications of Neural Networks. hInster thesis. Depart nient of 
Coiit rol Engineering, Faculty of Electrical Engineering, Czech Technical Uni\w- 
sity, Prague. 

AIIKE 1990. Mike: hficro interpreter for knowledge eiiginecring. ftp://hcrl.open. 
ac. uk/ pub/software/src/ hlIKEv2.03/. 

Miller, R. A.. Pople, H. E., and hlyers, J. D. 1982. INTERNIST-I. an experiniental 
cornputer-based diagnostic consultant for general internal inediciiie. New England 
Journal of hfedicine, 307:468-476. 

hlitra, S. aiid Pal, S. E(. 1995. Fuzzy multi-layer perceptroil. infereiiciiig and rule 
generatioii. IEEE Transactions o7r Neural Netulorks, 6( 1):51-63. 

hloreno, L., Piiieiro, J. D., Sarichez, J. L., hfaiias, S., hleriiio, J. J., Acosta, L., arid 



References 4 65 

Hamilton, A. 1995. Using neural networks to improve classification: Application 
to brain maturation. Neural Networks, 8(5):815-820. 

Mozer, M. C. 1987. Rambot: A connectionist expert system that learns by example. 
In Proceedings of the IEEE International Conference on  Neural Networks, San 
Diego, vol. 11, pp. 693--701. 

Narazaki, H. and Ralescu, A. L. 1992. A connectionist approach for rule-based 
IEEE Transactions on  Neural inference using improved relaxation method. 

Networks, 3( 5) : 741-751. 
Nekovei, R. and Sun, Y .  1995. Back-propagation network and its configuration for 

blood vessel detection in angiograms. IEEE Transactions on Neural Networks, 

Omlin, C. W. and Giles, C. L. 1996. Extraction of rules from discrete-time recurrent 
6( 1):64-72. 

neural networks. Neural Networks, 9( 1):41-52. 
Rojas, R. R. 1996. Neural Networks: A Systematic Introduction. Berlin: Springer- 

Verlag. 
Rumelhart, D. E., Hinton, G. E., and Williams, R. J. 1986. Learning internal repre- 

sentations by error propagation. In Parallel Distributed Processing: Explorations 
in the Microstructure of Cognition, eds. D. E. Rumelhart and J. L. McClelland, 
vol. I, pp. 318-362. Cambridge, MA: MIT Press. 

Saito, K. and Nakano, R. 1988. Medical diagnostic expert system based on the 
PDP model. In Proceedings of the IEEE International Conference on  Neural 
Networks, San Diego, vol. I, pp. 255-262. 

Samad, T. 1988. Towards connectionist rule-based systems. In Proceedings of the 
IEEE International Conference on Neural Networks, San  Diego, vol. 11, pp. 525- 
532. 

Sima, J. 1992a. The multi-layered neural network as an adaptive expert system 
with the ability to work with incomplete information and to provide justification 
of inference. Neural Network World, 2( 1):47-58. 

Sima, J. 199210. Generalized back propagation for interval training patterns. Neural 
Network World, 2( 2) : 167-1 73. 

Sima, J. 1994. Generalized back propagation for training pattern derivatives. Neural 
Network World, 4( 1):91-98. 

Sima, J. 1995. Neural expert systems. Neural Networks, 8(2):261-271. 
Sima, J. 1996. Back-propagation is not efficient. Neural Networks, 9(6):1017-1023. 
Sima, J. and Neruda, R. 1993. Designing neural expert systems with EXPSYS. 

Technical Report V-563, Institute of Computer Science, Academy of Sciences of 
the Czech Republic, Prague. 

Sima, J. and Neruda, R. 1994. The empty neural expert system and its application 
in medicine. In Proceedings of the 12th European Meeting on  Cybernetics and 
Systems Research, Vienna, ed. R. Trappl, vol. 11, pp. 1825-1832, Singapore. 



Neural Knowledge Processing 271 Erpert Systems 

World Scientific. 
Simpsoii. P. K.  1990. Artificial Neural Systems: Foundations, Paradigrns. .4ppl1ra- 

tions, and Implementations. New York: Pergainon Press. 

Styblinski, hl .  A. and hleyer, B. D. 1988. Fuzzy cognitive niaps, signal flow 
graphs, arid qualitative circuit analysis. In Proceedings of thc IEEE Inter.natio7icil 
Conference on Neural Networks, San Diego. vol. 11, pp. 549 556. 

Taber. IV. R. arid Siegel, hl .  A. 1987. Estiriiatiori of expert n.eights usiiig fuzz). 
cognitive maps. In Proceedings of the IEEE Internatio72al Co~iference on Neural 
Neturorks, San Diego. vol. 11, pp. 319-326. 

networks. Neural Networks, 7(8):1273 1283. 
Yager, R .  R. 1993. hlodelling arid formulating fuzz- knowledge bwcs using ntviral 

Yarig, Q. arid Bhargava, V. K. 1990. Builtliiig expert systciiis by a riiodificd perccp- 
t roii network with rule-t ransfer algorit hnis. In Proctirdings of the  In tcr-nut io i i  (11 
Joint Conference on Neural Networks IJCNN’90. San Diego, vol. 11. pp. 77 82. 



Index 

absolute variation, 377 
accuracy 

of ANN-DT(e)/-(s), 392 
accuracy-based signaling, 350, 353 
activation function, 209, 229, 268,425, 

440, 441 
differentiable, 426 
gain parameter, 444 
hard limiter, 425 
hyperbolic tangent, 426 
softmax, 233 
steepness, 444 

acyclic DOG, 119 
adaptive 

learning, 159, 177 

Runge-Kutta, 276 

data, 48, 49 
knowledge, 48, 50 

adjoint network, 138 
agent, 2, 9, 13, 21, 46 
AI, see artificial intelligence 
AIC, 161, 183 
algorithm 

network structure, 178 

adequate 

cascade-correlation, 132 
constructive, 45, 224 
for encoding DFA, 74 
learning, 92, 130, 445 
MofN, 11 
pocket, 226, 229, 234, 237 
pruning, 45 
structure learning, 130 
supervised learning, 130 
tower construction, 157 

algorithm 

K T  rule extraction, 477 
almost reversible cellular automata, 

328 
ALVINN, 33 
ambiguous FFA, 87 
analytical modeling, 291 
AND/OR graph, 242 
ANN 

-DT, 19, see Section 11.3 
-DT(e), 19, 376 

see network, neural network, 1 
-DT(s), 19, 378 

approximation function, 17 
AR, 335 

ARCA, 328 
architectural classes, 29 
architecture, 7, 426 

appropriate, 64 
distributed, 29, 30 
hybrid, 7, 29, 32, 229 
localist, 29 
restrictions, 9 
translational, 7, 8, 29, 31 
unified, 7, 29 

linear, 337 

arity, 120 
ARMA, 335 
arrival rate, 327 
artificial intelligence, 2, 63, 420 
artificial neural network, 1, see ANN, 

decision tree, see ANN-DT 
network, neural network, 3 

artificial neural system, 1 
attractor, 94, 332 
attribute 

greedy selection, 393 



Index 

nominal, 183, 184 

fiinct ion, 177 

extraction, 11 
frontier-to-root tree, 119 
fuzzy, 13 
pushdown, 13 

autocorrelation, 352 

automata, 6, see finite-state automata 

automated reasoning, 6, 31 
autonomous 

differential equation. 262 
learning. 294 

autoregressive moving average, 335 
axis-parallel decision regions, 19 

backpropagation. 137, see Section 4.9.1 , 
230, 232, 274, 426 

gerieralizatioii ability, 165 
learning, 156, 166. 168 
NP-hard, 428 
rccurrerit . 137 
through structure. see BPTS 
through time, 92 
through time network, 118. 130 

strategy, 451 

approach, 161 
learning, 156. 166. 168 
network, 435 
perspective, 160 

backwrard chaining, 423, 437 

Bayesian, 424 

belief measure, 435 
b enchnia r k 

BEXA, 8, 207 
bias. 36, 425 
bias- vari ance 

nested spirals, 217 

dilemma, 102 
trade-off, 36 

tree, 134 
vector, 127 

binary 

binary decision tree, 19 
binary input 

unit, 182 
bindings, 5 
biological account. 4 
black box. 66, 153. 201, 295, 429 
blackboard, 32 
BoltzCONS. 6, 30, 121 
Booleaii function, 145, 177 
boundary decision, 223. 226. 229 
bounds, 82 
BPTS. 14 
BPTT, 92, 159. 168 

learning, 168 
BRAINNE, 180, 371 
buffer network, 15, 168 

gerieralizatioii, 174 
prediction, 172 

C4.5. 19, 49. 50, 178, 181, 207, 370. 

capacity dimciision. 332 
CART. 19. 370, 379. 382 
cascade-correlation, 45. 225 

algoritliiii. 132 
lcariiiiig, 8, 11, 157 
net\vork. 143. 329 
recurrent, 13 
recurrent iietwork. 118, 119. 141. 

143 
recursive. 132, see Sectioii 4.7.3 

Cascade2, 45 
causal index. 434, 451 
causal relationship, 432 
certainty, 87, 438 

chainprocessirig. 8, 33 
chaos, 275 
chaotic differential equations. 17, 252 
chaotic process, 352 
chaotic time series. 18 
CHARM, 121 
CHCL, 30 
Chi-square test, 346, 364 
Chomsky hierarchy, 70 
CLARION, 6. 30, 35 

379, 386 

factor. 31, 46. 214, 434, 435 



Index 4 69 

classification rules, 207 
CLIPS, 8 
cluster, 95, 97 
clustering 

CN2, 49, 207 
coarse coding, 5, 30 
cognitive, 6 

unsupervised, 374 

perspective, 4 
science, 4, 189, 200 

COLE, 431 
combinat ion 

of heterogeneous experts, 230 
of multiple experts, 230 

combiner, 220, 238 
combiner network, 16 
combining approach, 218 
common object resource broker archi- 

compactness, 102 
competitive approach, 244 
competitive integration, 236, 239, 347 

of heterogeneous experts, 232 
competitive learning, 233 
complete knowledge, 435 
complex decision region, 234 
complexity, 14, 182 
component 

component graph, 139 
composite structures, 5 
compositionality, 35 
comprehensibility, 312 
comprehensible 

form, 2 
knowledge, 18 

tecture, see CORBA 

strongly connected, 139 

compressor-reconstructor couple, 123 
computational complexity, 1 18 
computational power, 14, 63, 118, 141 
conceptual structures, 12 1 
concurrent 

conditional entropy, 329 
confidence, 423, 429, 434 

learning, 194 

configuration, 36 
hint-based, 38 

configuration space, 426 
connection represents relation, 121 
connectionist 

expert system, 31, 219, 424, 438 
production system, 30 
semantic model, 5 
symbol processing, 12 
symbol processing ( CSP) , 29 

inter-module, 188, 198 
intra-module, 188 

connect ions 

consistent, 100 
consistent DFA, 100 
constant decay, 157 
constraint equation, 432 
constructive 

constructive algorithm, 224 
constructive learning, 154, 157 
CONSYDERR, 6 , 3 0  
context layer, 168 
context-free language, 72, 102 
continuous 

algorithm, 45 

activation function, 440 
discriminant function, 82 
input, 165, 166, 181, 182, 372, 

output, 166, 372, 378, 379, 383 
sigmoid functions, 443 

law, 313, 314 

383 

control, 291 

crisp linear, 317 
nonlinear, 315 
time optimal, 315 

target, 296 
theory, 292 

controller, 298 
fuzzy, 292 
knowledge, 297 
requirements, 292 

convolution-based model, 121 
cooperate, 298 



Index 

cooperative coinbinat ion 
of heterogeneous experts. 230 
of multiple experts, 230 

cooperative conibincr network, 2-1-1 
COPE, 431 
coprocessing, 8, 33, 34, 293, 298 
CORBA, 21 
correlation, 132, 377 
correlation dimeiision, 332 
corresponding, 385 
cost function, 123, 303, 306. 358 
couple, 120 
coupling 

loose, 32 
tight, 32 

covariaiit attribute, 377 
crisp control law, 300, 321 
crisp linear control law, 317 
criterion function. 157 
critic. 298 
cross-ent ropy, 334 
cross-validat ion, 36, 379 
cuniulant expansion, 330. 358 
cut-point , 210 
cyclic 

network, 432 
neural network, 434 

cyclic DOG, 120 
cyclic graph, 135. 137. 138 

learning, 139 

Darwiiiisrn, 4 
data 

adequate, 48. 49 
deficient. 50 
mining. 8,  21 
sampling, 334 

data-driven learning, 27, 28 
DCPS, 30, 121 
de-trending preprocessing, 326 
decay, 160, 161, 164 

constant, 157 
exponential, 155, 157 

decay rate, 168 

decision 
bouridar)-, 223, 226. 229. 374, 375, 

rcgion, 207, 221. 223, 245. 386, 
381, 396 

406 
con1plcx. 23-1 
noiiliiiear, 19 

tree, 6. 9. 16, 18. 31, 3-1, 134. 230, 
231, 372. 380 

extraction. 11 
generation, 231 

declarat ivc knowlcdgc. G 
deconipositioiial. 98, 370 

approacli, 10 
knowlcdgc extraction, 11 
met 11od. 67 
rule est ract ioii, 370 
tecliriiqiics, 370 

decorrelat ion, 35i  
DEDEC. 371 
deficient 

data, 50 
knon.ledge. 49 

definite iiieinory iiiacliiiic. 71 
dcfuzzificatioii. 309 
defuzzificd, 301 
dcgree of integration. 8 
degrees of freedom, 299, 302. 31-1 
deleted connections. 159 
deletion 

uniiecessary coniiect ions, 156 
iiiiiieccwary iiiiit s. 156 

derivative, 126, 132. 133. 140. 156, 
253, 260. 133 

descript or 
reduced, 123 
void. 123 

algorithin. 45 
destructive learning, 154 
detailed halaiicc, 136 
deterniiriistic chaos. 333 
deterininistic finite-state autoniata, 69 

destructive 



Index 4 71 

DFA, 72, 73, 75--83, 99, 100, 103, 104, 
106 

encoding, 82 
encoding algorithm, 74 
extraction, 98, 99 
extraction algorithm, 100 

DFA extraction 
theoretical foundation, 101 

diagonal matrix, 156 
differentiable activation function, 426 
differentiable manifold, 331 
differential equation, 16, 31, 293, 331, 

334, 338 
autonomous, 262 
linear, 286 
nonautonomous, 262 
normal form, 262 
Riccati-system, 262 
second order, 270 

dimensionality, 332 
direct expert embedding, 229 
directed ordered graph, 119 
directional derivative, 377 
directly embedded. 229 
DISCIPLE, 28 
discovery 

of boolean functions, 162 
of rules, 157 
with hidden units clarification, 157 

attribute, 379 
feedforward neural network, 436 
input, 181, 182, 372 
output, 371, 375, 378, 383 
probabilities, 334 

discrete 

discretizatiori t,echnique, 232 
discretize attributes, 232 
discretized variable, 328 
discriminant function, 82, 86 
dissipative system, 332 
distance 

critical, 375 
metric, 375 

distance metric, 236 

distributed, 429 
architecture, 29, 30 
artificial intelligence, 21 
connectionist production system, 

processing, 2 1 
representation, 121, 157, 158, 178, 

434 

5 

distribution, 375 
divide-and-conquer, 430 
DMM, 71 
DOAG, 119, 135 
DOG, 119, 120, 135 

acyclic, 119 
domain 

and range transformations, 16 
prior knowledge, 45 
theories, 207 
transformation, 220, 238 

valence, 120 
duplicate examples, 42 
dynamic 

shortcomings, 245 

configuration, 44 
programming, 18, 296, 304 
variable binding, 22 

system, 16, 293 
systems theory, 63 

dynamically-driven, 92 

dynamical 

EBNN, 44 
eclectic, 370 

approach, 11 
knowledge extraction, 11 
rule extraction, 370 
techniques, 371 

ellipsoidal basis function, 384 
Elman 

network, 143 
recurrent network, 118, 141 

memory, 95 
neural network, 431 

embedded 



4 72 I n  dcx 

enitxltliiig 
experts dircctly, 219, 229 
t rallsforlllcd expert s, 2 19 

enibeddirig cliiiicw4ori, 331 
ei i i  pi r i c a 1 lea r 1 i i I ig , 20 7 
eiicode, 2 
encoded, 20 
encoding, 86 

FFA, 86 
fuiictiori, 124, 135 
prior kriowledgc~, 16 

eiiergj. fiiiictiori, 77. 432 
eiigiiieeriiig perspective, 7 
entropy. 334. 375 

functiori, 328 
iiiiiiiiriiirii ltarriiiig. 164 

equivalence classes, 96 
error, 426, 446 
error furictioii, 92, 132. 233 

gradient, 426 
ES (expert, system). 2 
Euclideaii distance, 375 
evideiice, 310 
excitatioii level, 425, 436 
excitation level different iahle, 443 
exclusive or. 196. 197 
expaiisive tree graiiir~iar, 142 
expert 

exparision, 224 
iiicreriieiit al, 224 
integration, 222 
niult iple, 220 
network, 424 
siiigle, 220, 224 
syriibolic, 228 
unit. 225, 229 

coiiiiectioiiist , 219. 424 
explaiiat ioii, 4 19 
explaiiat ion Iiicdiaiiisrii. 422 
fact base, 321 
hybrid, 20 
infererice eiigiiie. 422 
internal modular stnicturc. 421 

expert syst,em, 2, 16, 20, 218, 229, 420 

lllodlllar. 430 
hIl'CIN-likc , 435 
llellral. 20, 424 
rulc-l)ased, 33 
sliell. 322 
user iiitorfacc. 422 

iiicoriiplctc), 218 
iricoiisistcwt. 218 

expertise 

explaiiatioii, 66, 419, 421, 429, -131. 

explaiiatioii licurist ic. 451 
explaiiat ioii iiic>cliaiiisIii, 422 
explaiiat ion-hscd lcwriiiiig. 27 
explicit kiiowlcclgc. 432 
exploratory data aiialysis. 18, 327 
exporieiitial clccay. 155. 157 

EXPSYS. 12, 20, 119. 438 433. 445. 
436, 3-18 451. 454 456. 458. 
461 

leariiiiig alguri t liiii. 446 
extract kiiowledge. 2 
extraction, 6 

433 

weight. 155 

algoritlini, 96 
fuzzy rule, 11 
knowlcclge. 10. 298 
of automata, 11 
of decision tree. 11 
rule. 10 

F-test. 346 
fact base, 421 
factorial. 328 

cotlc, 327. 328 
leariiiiig. 328 
represcwt at ioii, 328 

factorial approximat ioii. 328 
fan-out . 82 
feat iire extract ion. 90 
feature vcctors, 5 
fecdback loops, 1G8 
ft.etlforn.arc1 Iiciiral iictwork. 1 18. 425 
FEL-EXPERT, 424. -131 



Index 4 73 

FFA, 83, 86, 87, 89-91 
ambiguous, 87 
unambiguous, 88 

of ANN-DT(e)/-(s), 385,386,392, 
fidelity, 67, 385, 386 

396 
final information statistic (FIS), 161 
financial forecasting, 39 
finite 

state space, 306 
finite automata, 434 
finite memory machine, 72 
finite-st ate 

automata, 13, 31, 41, 65, 66, 145, 
146 

deterministic, 69 
fuzzy, 83 

language, 65 
machine, 70, 144 

first order differential equation, 252 
FIS (final information statistic), 161 
fixed points, 76 
FLARE, 49 
FMM, 72 
FOCL, 28 
forecasting, 326, 345, see prediction, 

348 
one-step-ahead, 281 

formal language, 13, 63, 65, 90, 145 
forward chaining, 423 
forward-chaining strategy, 436 
four-layer network, 286 
FRA, 119, 142, 143 

14 
FRAO, 145 
frontier- to-root 

(frontier-to-root tree automata), 

tree automata, 6, see FRA, 119, 

tree automata with output, 145 
142 

FSA, 145 
FSM, 145 
fully distributed approach, 5 
fully integrated hybrid system, 229 

fully-integrated, 219 
function approximation, 144 
fuzzification scheme, 406, 412 
fuzzy, 308 

approximation, 404 
automata, 13 
cognitive maps, 432 
control, 292 
control rule, 321 
controller, 435 
encoding, 89 
FFA encoding, 88 
finite-state automata, 83 
knowledge, 84 
logic, 83, 423, 429, 434 
membership function, 19, 85 
module, 292 
network state, 87 
number, 19, 406 
regular language, 86 
relation, 298, 299, 308 

for negative knowledge, 300 
for positive knowledge, 300 

relations, 17 
representation, 86 
rule, 17, 20, 434 
rule extraction, 11 

pedagogical, 19 
sets, 310 
sigmoidal discriminant, 88 
system, 7, 83 
system architecture, 17 

fuzzy-rule completion, 434 
FYNESSE , 7,8,  17, see Chapter 9, 292 

gain parameter, 444 
gain ratio, 376 
GAL, 45 
gating network, 16, 232, 233, 244, 347 

multi-layer, 234 
single-layer, 234 
weight update, 233 

Gaussian radial basis function, 258 
GEMINI, 28 



Index 

general trees. 134 
generalizatioii, 6. 154. 426, 445 

of hackpropagatioii, 165 
of SLF. 165 

corifideiice. 345, 448 
saniple size, 68 
valid, 68 

ability, 165 

gerieralizat ion coiifideiice, 450 
geiieralized 

predict ioii error (GPE) , 16 1 
SLF, 159, 166 
SLF network, 15 

generalized tliiiiciisioii, 332 
gel it a I nj-c i I 1 ,  2 0 
geonietric traiisforiiiat ioii, 197 

GID3*, 231 
GPE (generalized predict ion error). 

161 
gradient method, 426 
gradient of the error fiiiictiori, 426 
gradient-based learning, 433 
grarriniar, 100 
grairiiiiat ical iiiference. 70 
graph, 7 

sequence. 198 

eiicodiiig. 118, 124 
RAAhl,  124 
represent at ion, 123 
structure, 14 
traiisduction. 14, 124, 126 

GSLF, 166, 168 

hard liiiiiter. 426 
HDE, 224, 225, 228, 233, 242 
Hessian matrix, 156 
heterogeneous experts 

heuristic, 431, 435 
hidden layer, 425 
hidden Iieuroii. 325 
hidden units, 157 
high-order gates. 95 
higher order neural networks, 180 

cooperative conibinat ion. 230 

higher-order iiiodifid logistic iietn-ork, 

11 i g h e r- o r d c r i i c  11 I- a 1 r i c t work . 2 6 2 
higher-orcler radial I)asis fiiiiot ioii iict- 

hint. 36, G6, 68. 103. 233, 345 

11 i i i t - I>asc~ 1 

17, 286 

work, 17 

nialicious. 106 

coiifigiirat ioii. 38 
prcyroccssiiig. 33 
tecliriiqiies, 38 
traiiiiiig. -1 1 

121 
holographic rediictd rcprtwrit a t  ioiis, 

HQH. 356 
hybrid 

arcliitcctiirc, 7 ,  29, 32 .  229 
cxpcYt systci11. 20 
iiiodcl, 18. 83 
llcural 11f?t\vork. 17 
productioii systerii. 431 
rulc-l>~isccl s)'stcwi. 431 
systcrri, 7 ,  32, 83. 106. 218. 219. 

225. 228, 234, 238. 292. 436 
fiilly iiitcgratccl, 229 

hyperbolic t raiisfer fiinct ioiis, 379 
llyperplallc~, 226. 229 

detcriiiiiiat ioii froiii t~xaiiiplcs, 224 
liyiperrect aiigles. 209 

ID3, 19, 49, 178. 184. 232. 370. 379. 

IDNN, 71 
IF-THEN riilcs, -123 
igiioranccl. 300. 301 
IAfLP (Interpret al)lc> hlult i-Laj-cr Pcr- 

iiiiprecise iiiforiiiat ioii, -140 
iiicoiiiplete iiiforiiiat ioii. 326. 430. 442 
iiicoiisist erit kiioivlcdgc. 300, 3 10 
iiicorrc~t prior knowldgc~, 13 
iiicrcmiciital, 236 
iiicrciiieiital leariiiiig. 134. 157 
i I i fe r e i i ce 

386 

cept ron) , 1 I 



Index 4 75 

confidence, 450 
engine, 422, 449 
grammatical, 70 
heuristic, 436 
network, 424, 431 

infinite input tape, 73 
infinite stack, 72 
information 

criterion, I61 
imprecise, 440 
incomplete, 440 

information dimension, 332 
information gain, 376 
information theory, 327 
Informativeness, 121 
initial 

knowledge, 27 
complete, 27 
correct, 27 

initial condition 
sensitivity, 10 1 

INNATE/QUALMS, 33 
INNS (Incremental Neuro-Symbolic sys- 

tem), 8 
INNS system, 11 
input, 425 

continuous, 165, 166, 181, 182, 
383 

correlated, 377 
covariant, 377 
delay line, 71 
discrete, 181, 182, 372 
encoding, 441 
entropy, 329 
layer, 425 
neuron 

state, 436 
significance, 377 
symbolic, 18 1 

input-delayed neural network, 71 
integrated model, 219 
integrated system, 229, 432 
integration, 16, 148, 201, 439 

competitive, 236 

decision tree, 230 
degree, 8, 32 
hierarchical, 201 
knowledge, 298 
mode, 32 
multi-step, 265 
multi-step numerical, 270 
multiple expert, 229, 238 
of heterogeneous experts, 232 
single-step, 265, 278 
strategy, 7, 21, 430, 435 
symbolic, 230 

intelligent system, 106 
inter-module connections, 188, 198 
interactive activation model, 5 
Internist, 439 
Internist-I, 424 
interpretation, 295 

knowledge, 298 
of forgetting, 159 

interval network function, 445 
interval neuron function, 442 
interval neurons, 20 
interval states of neurons, 442 
intra-module connections, 188 
invariance transformation, 346 
invertible, 336 
IOE, 28 
iris classification, 20, 165, see Sections 5 

IRO, 45 
IS-A hierarchy, 5 

and 6.4, 181, 412 

Jacobian, 329 
joint probability, 328 
Jordan network, 15, 168 

learning, 170 
prediction, 170 

k-means clustering, 380 
Kaplan-Yorke conjecture, 334 
KBANN, 28, 38, 181, 214, 224, 228, 

242 
KBC, 46, 50 



In  dcx 

KBC-KBT. 50 
KBCNN, 28, 214 
KBN (kiiowledge- based iieiirocoiiiput- 

KBNN, 35 
KBS, 2 

KBT, 47 
KEX, 4 i  
KEX-KBC. 39. 51 
kidney disease, 20 
kiiowlcdge, 1 

iiig). 3 

(systeiii kiio~~-ledgc-hased). 2 

n priori, 295, 309. 317 
control, 314 
crisp control. 299 

statistical iiiforiiiat ioii, 300 
fuzzy colltrol, 299 

acquisit ioii, 178 , 428 

base. 66, 218, 237, 421, 426 
coiripletioii. 435 
coiltroller, 297 
deficient. 49 
differeiitial cqiiat ioii, 275 
tlirec t emhddiiig, 32 7 
oilcoding prior. 2 
engiiieers, 422 
extraction, 10, 18, 66. 96, 218, 

adequate, 48, 50 

298, 308, 314, 327 
DFA, 96 
indirect, 345 

final. 9 
fiizzy relatioii, 300 
iiiibeddiiig. 18 

direct, 18 
iiidirect , 18 

imprecise, 420, 429 
iiicoiiiplete, 420, 429 
iiicoiisistciit, 300. 310 
indirect embeddiiig, 327 
iiisertioii of prior, 14 
iiitegratioii. 208, 295. 298, 317, 

interpretation, 298 
431 

riegativc. 301 
partial. 220. 302 
pieceiiiclal. 38 
positive, 301 
prior. 9. 14. 39. 20i, 225. 338. 335 
refillr~r~lcllt. 67, 68. 273. 435 

iiciiral iictwork. 102 
refiiieiiient of prior, 14 
reorgaiiizat ioii, 19 1 
represent at ioii 

coiiiprclieiisil~lc. 422 
explicit, 419. 422 
implicit, 319, 424, 427 
iiiadeqiia t c. 3 24 

revision. 67, 273. 435 
stocliastic , 338 
syiiillolic. 207 
syiiihlic iiijclct ion , 200 
teiiiporal syiiihlic, 13 
typw of (1 priori. 299 
iiiicertaiii. 83 
validatioii. 8 
verification. 8 

kiio~~rleclgc-l)~iscd 
conccpt11al llc~ural 11ct\vork (I<BCYN). 

181 
coiifigiiratioii. 37 
iieiiral iictm.ork ( K B N N ) .  33 
iieurocoiriI)utiiig. 1. 3. 28. 34. 370. 

neurocoiiiput iiig ( I iBN) .  28 
iieiirocoiiipiit iiig systciii. 148 

traiiiiiig, 47 

330. 335 

systt111. 2, 20. 219 

kiiom.lcdge-data t raclc-off. 27 
kiio~~led~;t.-tlriv~~ii lcxmiiiig. 28 
kiiom-letlgc~-fre.c, 12 
knowledge- frcc t cchiiiqiic, 44 
k i iow led ge- i i i  t ci is i ve t ccli 11 i (1 i ic  . 3 7 
kiiou.lcdRe-priiiie(l, 12 

ttdiiiiquc3’s. 38 
kiio~~lcdgc-ricli , 13 
Kolionen 11et\vork, 431, 445 
k‘oliiiogorov-Siiiiriiov test . 346. 364 



Index 4 77 

KT, 371 
algorithm, 181 

label space, 127 
labeled 

directed graph, 122 
graph, 118 
graphs, 14 
tree, 144 

lacunarity, 334, 335 
language, 72 

context-free, 72 
lateral inhibition learning, 156, 164 
layer, 159, 425 
layers of society, 200 
learning, 63 

adaptive, 159 
algorithm, 92, 130, 445 

autonomous, 294 
backpropagation, 156, 166, 168 
Bayesian, 156, 166, 168 
bounds, 147 
BPTT, 168 
by dynamic programming, 297 
cascade-correlation, 8, 11, 157 
concurrent, 194 
constraints, 345 
constructive, 154, 157 
control, 293 
controller, 292 
cost function, 345 
cyclic graph, 139 
data-driven, 27, 28 
destructive, 154 
empirical, 207 
entropy minimum, 164 
explanation-based, 27 
from examples, 294 
from queries, 225 
gradient- based, 443 
heuristic, 426 
human, 189 
incremental, 134, 157 

of EXPSYS, 446 

knowledge-driven, 28 
lateral inhibition, 156, 164 
minimurn entropy, 155 
natural language, 65 
on-line, 346 
progressive, 200 
Q-Learning, 307 
real-time, 139 
reinforcement, 6, 18 
requirements, 296 
rule, 426 
second-order network, 92 
sequential, 190 
SLF, 154 
structural, 154, 165 
supervised, 134, 328 
TD, 307 
temporal difference, 307 
unsupervised, 134 
value iteration, 306 
with cycles, 137, see Section 4.9 
with forgetting, 157 
with hidden units clarification, 158, 

with selective forgetting, 158 
164 

learning controller, 292 
learning rate, 446 
least squares error, 376 
letter perception, 5 
linear AR, 337 
linear differential equation, 286 
linear model, 291 
linear output layer, 85 
linear stochastic model, 338 
linear units, 197 
linguistic rules, 302 
linguistic terms, 302, 310 
linguistic variables, 405 
local expert, 230-232 

architecture, 181 
network, 232 

local minima, 147, 186, 196, 309 
local representation, 5 
localist, 5 



localist arcliittlctiirc, 29 
localist reprcwiitat ion, 121 
localist /clistril)iitecl arcliitcct iire. 29 
logic 

predicat c. 22 
proposit ioiial, 208 

logical tcriii. 119. 127 
loiig-teriri dtpoiiclc.iicy. 94 
looselj. coiipled, 2 19 

1om.c~ hraiicliiiig limit. 379, 380 
LRAAAI, 28, 121 

Iictwork, 122 

argllllicllt, 77 
L y ap 11 11 01’ 

cl i 11 i cii s i o 1 1 .  3 3 3 
expoiirmt, 332, 333 
first wqmiciit . 333 
sccoricl t q ) o i i m t ,  333 

AlA, 335 
iiiacliiric leariiiiig. 8, 218. 370 
LIACIE, 6, 20, 31. 436 438 

confidcllcc, 437 
hlackey-Glass, 338 

data,  339 
iiiacroscopic. 432 
iiialicious, 105 
iiialicious liiiits. 14 
maiiifold, 332 

maxinially gcricral rulcs, 371 
iiiaxirriuiii 

diffcwwtial)lc, 331 

depth, 379. 380 
likelihood, 161 
sig ii i fica ii ce , 3 7 7 

rileail of maxima. 301. 317 
defuzzificat ion. 309 

riieaii sqiiarcl error (LISE). 154 
iii~asiire of siiiiilarit?; 375 
111ct alcvel 

iiietaprocessirig, 8, 33 
prior kIion.lcdgc, 45 

syiii1)olic. 33 
I i i ic rosco p i c i i i  fer c i  i co t ocl i i i i q I 10, 4 3 ‘2 
AIIKE. 4GO 
i i i i i i i i i i i z~  wror, 426 
iiiiiiiiiiiiiii  ciit ropy lcariiiiig. 155 
niistiiro of  local cspc3rts. 232 
iri ist  iircs of  mpcrt  s. 186 
AIL-SAIART, 28 
11 1 0  d cl 

fiill?. iiitc>grwtcd. 8 
liiiwr, 291 

sclcct ioii, 161 
stallcl-aloiic. 7 
tightly coiiplccl. 7 
traiisforiiiat ioiial. i’ 

iictwork. 17, 2G8. 281 
iiiiit. 268 

looscly <*Oll])lCCl, i- 

iiiodifi(d logistic 

1110c1111ar (Ypc’rt systolll. 430 
lliodlllar llc~t\vork. 197. ‘200 

flat, 197 
iiitcr-iiiocliilc, 188 
llellral, 38 
11111111)(’r of 1itJ.Cl’h. 198 
reorgaiiizatioii o f  striictiirccl. 191 
scqllellcc, 197 
strllctllrccl. 186. 194 
Sl11)Sf~t. 198 

inod 11 1 it r s t 1’1 1(’t 11 1 . C Y  1 11(’1 1ra 1 1 t n.orks. 
15 

1110 (-1 11 1 c 1 a>.ers 
Ilullll>cr of.  198 

hlofh’ algoritliiii. 11. 181 
llloliiellt Ull1 paralllet Pr, 446 
hIONK‘s problem, 180, 181. 18-1 
iiioviiig averago. 335 
hISE. 15-1. 415 
AISE,,, 161 
iiiiilti-regiiiic tiiiic scries. 3-17 
iiiiilti-stcy 

iiitcy?ptioii, 2G5 
iiitegratioii tcsts. 17 

mult i-step riii~iic~ical iiitc.grat ioii. 270 



Index 4 79 

multilayer perceptron, 373 
multiple expert, 220 
multiple expert integration, 229 
multiple experts, 16 

cooperative combination, 230 
multiple experts integration, 238 
mutual information, 329,330,334,357 

MYCIN, 423 
MYCIN-like expert system, 435 

independent, 335 

NAR, 336 
NAR-based predictor, 336 
NARMA, 336 
NARMA-based predictor, 336 
natural language 

natural language learning, 65 
nearest-neighbor , 375 
negative knowledge, 301 
network 

processing, 31 

backpropagation through time, 118, 
130 

Bayesian, 435 
cascade-correlat ion, 143 
configuration, 425, 429, 436 
cooperative combiner, 244 
dynamics, 76 
expert, 424 
four-layer, 286 
function, 425 
gating, 232, 244, 347 
inference, 424 
information criterion, 161 
Kohonen, 431, 445 
modified logistic, 281 
radial basis function, 281 
skeletal, 164 

network information criterion, 162 
neural expert system, 12,20,424,426, 

neural graph transductions, 14, 126 
neural knowledge base, 436, 442 
neural network, 424 

436 

architecture, 327 

complexity, 182 
cyclic, 137, 434 
discrete feedforward, 436 
experts, 347 
feedforward, 118, 425 
finite impulse response, 70 
higher order, 180, 262 
infinite impulse response, 72 
input-delayed, 71 
knowledge refinement , 102 
recurrent, 65, 133 
sparse recurrent, 77 
tapped delay, 65 

neural tree, 6, 45, 118, 134, 143 
architecture, 14 

neural value iteration, 307 
neuro-fuzzy system, 292 
neurobiological perspective, 4 
neurocomputing, 1 

knowledge-based, 34 
neuron, 424 

interval state, 440 
recurrent, 14 
recursive, 14 
state, 436, 441 

design for time series, 327 

neuron represents component, 121 
neuronal symbol processing, 4 
neurosymbolic integration, 7, 12, 28, 

NIC, 161, 162 
NNFIR, 13, 70 

29 

(neural network finite impulse re- 
sponse) architectures, 13 

(neural network infinite impulse 
NNIIR, 13, 72 

response) architecture, 13 
node 

complexity, 146 
node-complexity, 145 
noise, 326, 356, 380 
noise factor, 382 
nominal attribute, 183, 184, 208 



Index  

nominal value, 2 10 
non-Euclidean space, 331 
non-st at ionary, 326 
non-stationary time series. 18, 346 
noIiautorioIiious 

differential equation, 262 
nondeterministic state transition, 101 
nonlinear 

decision regions, 19 
dynamical systeni, 17 
system identification arid control, 

65 
nonlinear control law, 313, 315 
nonlinear dynamics. 94 
11 or rn a1 ized 

standard deviation, 376 
variance. 376 

backpropagat ion, 428 
NP-hard 

NSP (neuronal syrnbol processing). 4 

OBD. 160, 164, 166 
objective function, 10 
Occam’s Razor. 100 
OIL, 47 
on-line, 93 
on-line learning, 346 
on-line learning techniques, 326 
one-hot encoding, 74 
one-sided derivative, 443 
one-step-ahead forecasting, 278, 281 
optimal brain 

damage, 45 
surgeon, 45 

optimal brain damage 
(OBD), 156 

optimal brain surgeon 
(OBS), 156 

optimal integration, 239 
ordinary differential equations, 252 
orthogonal. 211, 214 
orthoriornial internal representat ion, 

75 
outliers. 339, 395 

output,, 425 
continuous, 166, 378. 379. 383 
decorrelat ion. 330 
delay line, 72 
discrete, 371. 378, 383 
encoding, 44 1 
layer. 425 
neuron 

state, 436 
symbolic, 18 1 

overfitting, 326 

parallel dist ributetl processing, 1 
parity problem, 196 

partial 
higher order, 196 

derivative. 377, 434, 436 
domain knowledge, 16. 37 
knowledge, 220, 252. 302 
matching, 428 

partial prior knowledge. 68, 94 
PDA, 72 
PDP, 1 
pedagogical. 370 

algorithm, 37 1 
approach, 11 
fuzzy rule extraction, 19 
methods, 67, 370 
rule extraction. 370 

cheap Bayesian algori t hni, 164 
complexity. 155 
quadratic weights. 164 
sum of squares, 155 

percept ron 
multilayer. 373 

periodic orbit. 94 
phase portrait. 332 
phase space. 102. 331 
phoneme recognit ion, 65 

penalty terni, 10, 154-158. 201 

piecemeal 

piecewise stationary time series. 347 
knowledge, 38 



Index 481 

pocket algorithm, 20, 226, 229, 234, 

polynomial approximations, 253 
positive knowledge, 301 
possibility, 301 

measure, 434 
theory, 310 

probabilities, 233 

237, 436 

posterior 

power series, 253 
pre-pruning, 378 
predicate 

logic, 22 
prediction, see forecasting, 342 

direct, 342 
horizon, 331, 342 
incremental, 342 
interval, 346 
model, 326 
of time series, 169 
retrain, 348 
REUSE scenario, 348, 350 
spatial, 331 
structure, 331 
switch, 348 
SWITCH scenario, 350 
system, 331 

NAR-based , 336 
NARMA-based , 336 

hint-based, 43 
layer, 261 

information, 161 
network structure, 157 
probabilities, 233 
theories, 178 

predictor 

preprocessing, 221, 330, 338 

prior 

prior knowledge, 36, 39, 45, 66, 102, 
103, 207, 225, 338, 435 

DFA insertion, 103 
embedded directly, 229 
encoding, 2 
incorrect. 103 

integration, 229 
malicious, 103 
partial, 68, 94 
rule insertion, 103 
sources of, 229 

probabilistic logic, 435 
procedural knowledge, 6 
processing 

connectionist, 1 
production rule, 20, 95, 207 
PROMNET, 439 
proposition equation, 432 
propositional 

logic, 208 
rule, 15 

propositional rule, 31 
categorical, 31 
probabilistic, 31 

Prospector, 424 
pruning, 100, 240, 380, 386, 393, 410 

algorithm, 45, 154 
pushdown automata, 13, 72 

Q-learning, 6, 307, 308 
QHQ, 352 
quadratic criterion, 156-158 
quantization, 98, 406 
query, 225 

Rl/XCON, 424 
RAAM, 30, 121 
radial basis function, 374 

radial basis function network, 281 
RAMBOT, 438 
random noise, 333 
random weight, 436 
range 

range transformation, 222, 229, 230 
RAPTURE, 28 
RBCN, 10 
RBCN (rule-based connectionist net- 

network, 17, 258, 269, 281, 386 

transformation, 220 

work), 10 



4 82 Index  

real valued at tributes. 232 
real-time, 93 

dynaniic prograniiriing, 296, 306 
learning, 139 
on-line training, 92 
recurrent learning, 92. 131 
recurrent network, 118 

real-t inie recurrent learning, see RTRL 
receptive field, 5 
recurrent 

cascade correlation, 14 
learning 

network. 5 
neural network, 15, 41. 63, 65, 84, 

real-time, 131 

103, 135, 336 
NAR, 336 
KARhIA. 336 
second-order, 85 
sparse . 88 

neuron, 14, 118, 120, 129 
recurrent network, 72. 74, 92, 159 

cascade-correlation, 118, 119, 141, 

Elman, 118, 141, 168 
for sequences, 118 
Jordan. 168 
real-time, 118 
second-order, 92 
simple, 118, 168 
structure, 166 

143 

recursive 
cascade-correlat ioii, 132 
distributed representations, 30 

recursive neuron, 9, 14, 127, 129. 131 
reduced descriptor, 121 
reduced dirnensionality, 221 
reduction, 121 
refine knowledge, 2, 435 
region 

regression, 45 
regression tree, 379 
regular 

decision, 245 

graniniar, 70 
language. 41, 70. 77 

regularizatioii, 36. 43 
paraniet er, 1 60 
term, 10. 156 

(RL) ,  304 

crisp. 297 
fuzzy, 297 

relatioii factor, 434 
relatiorial conditions. 214 
Renyi dinicnsions, 332 
reorganization 

reinforcement learning, 6, 18, 304 

relation 

knowledge. 191 
niodular structured network, 191 

repeated forecasts. 281 
represent at ioii 

distributed, 43-1 
structured, 117 
vector-based, 117 
with fuzzy relations, 299 

representatioii of aiitoriiata, 66 
represent at ioiial adequacy, 12 1 
represent at ional properties. 83 
restriction, 82 
RETRAIN scenario, 339, 350 
retraining, 100 
REUSE scenario. 348, 350 
revise knowledge, 2,  435 
revive, 159 
Riccat i-system, 262 
RL, 304 
RhlS (root nieaii square), 376 
root n i~a i i  square (RhIS). 376 

RTRL, 14, 92. 93 
RUBICOK;, 30, 432 
rule, 423 

base, 228 

discovery. 157, 178. 182 
extraction, 370. 378, 380, 433 
generalizatioii, 6 

RSA? 3-1 

symbolic. 228 



Index 483 

Goedel-type (logical implication), 

incorporation, 433 
Mamdani-type (logical conjunc- 

tion), 310 
maximally general, 371 
production, 20 
propositional, 15 
pruning, 374 
representation, 209 
specialization, 6 
strength , 75 
verification, 105 
Widrow, 439 

404 
decompositional, 10, 370 
DFA, 95 
eclectic, 10, 370 
K T  algorithm, 181 
pedagogical, 10, 370 
pedagogical fuzzy, 19 
recurrent network, 95 

310 

rule extraction) 6, 10, 20, 178, 308, 

rule neural network, 433 
rule- based 

connect ionist 
modeling, 213 
network, 213 

connectionist network, see RBCN 
expert system, 33 
system, 30, 34: 419, 423 

embedded, 431 
RuleNet, 181 
rules, 432 

classification, 207 
production, 207 

adaptive, 276 
Runge-Kutta 

s-norm, 408 
sample, 380 
sampling, 374 
sampling rates, 343 
SCANDAL, 12, 45 

schemas, 200 
SCP (connectionist symbol process- 

SCRAPS/", 32, 33 
search, 44 
search tree, 96 
search-based technique, 44 
second-order 

differential equation, 270 
form, 93 
recurrent network, 92 
recurrent neural network, 85 
weight, 74, 77, 87, 88 

selective forgetting, 158, 164 
self-learning controller, 17 
semantic representation, 5 
sensitivity, 439 
sensitivity analysis, 372 
separation parameter, 449 
sequence, 294 

recurrent network for, 118 
sequential finite-state machine, 70 
sequential learning 

multiple-module network, 191 
sequential machine, 71, 72 
SETHEO, 28, 33, 148 
shortcomings 

SHRUTI system, 5 
sigmoid activation function, 214 
sigmoid function, 127, 142, 146, 166, 

168, 197, 210 
sigmoidal discriminant, 76 
sigmoidal function, see sigmoid func- 

sigmoidal unit, see sigmoid function 
signaling 

ing), 29 

of domain transformation, 245 

tion 

accuracy-based, 353 
statistics-based, 353 

signaling technique 
statistics based, 348 

significance, 377, 393 
significance analysis, 372 
simple recurrent network, 5, 14, 118 



4 84 Index 

single expert, 220 
single layer, 336 
single-step 

integration, 265, 278 
integration tests. 17 

skeletal network, 157, 164, 182, 200, 
434 

skeletal structure. 158 
skeleton, 120 
skeletonization. 156 
SLF. 10, 11, 15, 157. 166 

(structural learning with forget- 

generalization ability, 165 
ting). 154 

sliding window, 346 
society of mind, 200 
soft computing, 21. 403 
softriiax activation function, 16, 233 
sources of prior knowledge, 229 
sparse recurrent neural network, 77, 

spatio-temporal pat terns, 13 
specialization, 6 
specificity, 439 
specificity-generality dilemma, 118 
spirals 

split, 376, 393 
SRAAhI network. 122 
stability, 76. 86, 88, 136, 292 
stable encoding, 84 
stable finite-state dynamics, 78 
stable fixed point. 76 
standard deviation, 3 78 

normalized, 376 
standard neuron, 118. 120 
state, 425, 441 
state space, 301, 331 

continuous. 296 
state space exploration, 96 
state transit iori function, 124 
stationary, 125 
stationary tiriie series, 335 
statistical methods, 440 

88 

benchinark, 2 17 

statistical pruning. 386 
stat istics-based sigiialing, 348 
steepness. 444 
step size, 253 
st ochmt ic analysis, 338 
st ochast ic inet hod. 335 
stocliastic prior knowlcdge. 341 
stopping criteria. 380 
st rategy 

st roiigly connected component . 139 
structural 

knowledge represent at  ion. 200 
learning, 154, 165 
learning with forgetting. 157 
learning wit 11 forget tiiig (SLF), 

paraiiieters, 169 
structural learning with forget t iiig. 434 
structural paranicters, 177 
structured 

forn.ard-cliaiiiiiig, 436 

154 

connect ioiiist approach. 5 
domain, 120 
induction, 53 
knowledge, 53. 252 
representation, 117 

Student's t-test. 346 
s u b-s y nib ol i c . 5 
subprocessing, 8. 33 
Subset algorithni. 181 
supersource. 119 
supervised learning. 134 
supervised iiiodel. 1 18 
sllpport, 30 1 
SIVITCH scenario, 343 
symbol 

mmipulat iori, 2 
processing, 6 
systeiiis. 148 

inputs and outputs, 181 
knowledge, 63, 207 
knowledge representat ion, 13 
label, 127 

syiiibolic, 422 



Index 485 

machine learning, 145 
metaprocessing, 33 
perspective, 6 
represent at  ion, 2 

symbolic expert , 228 
symbolic rule base, 228 
symbolic system, 148 
SYNHESYS, 32, 34 
system 

fuzzy, 7 
hybrid, 7, 218, 219, 223, 225, 228, 

234 
systematicity, 121 

t-norm, 407 
Takens’ theorem, 333 
Tangentprop, 42, 44 
tapped delay line, 71, 95 
tapped delay neural networks, 65 
target 

odd, 345 
target function, 120 

invariance, 345 
odd, 345 
properties, 327, 345 

taxonomy, 4 
Taylor coefficients, 253 
TDNN, 65 
teacher forcing, 139 
team learning, 9 
technique 

decomposi t ional , 370 
eclectic, 371 
hint-based, 38 
knowledge-free, 44 
knowledge-int ensive, 37 
knowledge-primed, 38 
pedagogical, 370 
search-based, 44 
translational, 37 

technology S-curve, 22 
telescopic technique, 145 
temporal 

credit assignment , 293 

credit assignment problem, 303 
effects, 296 
symbolic knowledge, 13 

temporal credit assignment, 17 
tensor product, 121 
test set, 445, 448 
TheoNet, 31 
theorem prover, 33 

theoretical foundations, 64 
theoretical models of computation, 63 
threshold logic, 209 
tightly-coupled, 219 
time delay, 334 
time horizon, 281 
time optimal control law, 315 
time series, 33, 168, 218, 274, 325- 

329, 331, 334, 335, 338, 342, 
346, 347, 352, 353, 356 

SETHEO, 28 

accuracy, 326 
chaotic, 274, 327 
continuous, 334 
data sampling rate, 331 
delayed, 335 
discrete, 334 
forecasting, 17, 274, 275 
Mackey-Glass data, 327 
multi-regime, 347 
non-stationary, 18, 346 
nonlinear, 327 
piecewise stationary, 347 
predicting, 274, 275 
prediction, 18, see time series fore- 

quasi-periodic, 338 
stationary, 335 
time frame, 326 
univariate, 330, 331 

time-varying system, 65 
TODAM2, 121 
TOPGEN, 10, 28 
topological index, 118, 147 
topological sort , 126 
topology, 426 

casting, 169, 327 



In dez 

tot a1 criterion. 1 5 7-- 1 5 9 
total LAZS error functioIi, 133 
tower constructiori algorithm. 157 
training 

hint-based, 41 
training algorithm. 92 
training data present at ion. 94 
training pattern, 425 
training set, 425 
trajectory, 94, 331, 332 
transform explicit knowledge, 432 
transformation, 16, 262, 303, 309 

decorrelat ion, 33 1 
domain, 220 
geometric, 197 
invariant, 345 
inverse, 33 1 
range. 220 
without information loss, 329 

approach, 2 19 
models, 31 

architecture, 7. 8, 29, 31 
technique, 37 

automata. 132 
frontier-to-root , 142 
theory. 141 

complexity, 385 
decision, 31, 34, 230 
grammar, 14 

transformational, 219, 228 

translational 

tree 

TREPAN, 371 
tuple, 119 
Turing machine, 73 

unambiguous FFA, 88 
uncertain 

knowledge, 83 
uncertainty margin, 20 
unified 

approach, 12 
architecture, 7, 29 

uniform retraining, 346 

UNIAIEAI, 28 
unit 

univariate 

ii n k now n 

linear. 197 

time series, 330 

region, 225 
state, 436 

clustering. 374 
learning, 134 

user intcrfacc, 422. 426 

unsupervised 

valence of domain. 120 
valid gerieralizat ion, 68 
validity interval analJ-sis, 371 
value 

iteration, 307 
iieural, 307 

va r i a 11 le- b i 11 d i ng pro 1 )1 eii i , 5 3 
variance, 36. 378 

variation, 377 
vector-based representation. 11 7 
VIA (ididity interval analysis). 371 
virtual examples. 42, 345 

nor 11 1 a1 i z cd . 3 76 

V L I ,  8. 208 
VLlANN,  208 

algorithm, 209 

M'ATTS, 33 
weight, 425 
weight decay 

weight sign, 443 
weight strength, 76, 89. 105 
weighted variance, 379 
white box. 154 
WHY, 28 
wide-sense st at ioiiary, 352 
IVidrow rule, 339 
winner take all, 233 

exponential, 155 

XOR. 196, 197 

zero mean, 335 




