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Series Preface

Our goal in creating the Methods & New Frontiers in Neuroscience Series is to
present the insights of experts on emerging experimental techniques and theoretical
concepts that are, or will be, at the vanguard of neuroscience. Books in the series
will cover topics ranging from methods to investigate apoptosis, to modern tech-
niques for neural ensemble recordings in behaving animals. The series will also
cover new and exciting multidisciplinary areas of brain research, such as computa-
tional neuroscience and neuroengineering, and will describe breakthroughs in clas-
sical fields like behavioral neuroscience. We want these books to be what every
neuroscientist will use in order to get acquainted with new methodologies in brain
research. These books can be given to graduate students and postdoctoral fellows
when they are looking for guidance to start a new line of research.

The series will consist of case-bound books of approximately 250 pages. Each
book will be edited by an expert and will consist of chapters written by the leaders
in a particular field. The books will be richly illustrated and contain comprehensive
bibliographies. Each chapter will provide substantial background material relevant
to the particular subject. Hence, these are not going to be only “methods books.”
They will contain detailed “tricks of the trade” and information as to where these
methods can be safely applied. In addition, they will include information about
where to buy equipment, Web sites that will be helpful in solving both practical and
theoretical problems, and special boxes in each chapter that will highlight topics
that need to be emphasized along with relevant references.

We are working with these goals in mind and hope that as the volumes become
available, the effort put in by us, the publisher, the book editors, and individual
authors will contribute to the further development of brain research. The extent to
which we achieve this goal will be determined by the utility of these books.

Sidney A. Simon, Ph.D.
Miguel A. L. Nicolelis, M.D., Ph.D.
Duke University
Series Editors
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Foreword

In theory, theoretical and practical neuroscience should be the same. In practice,
they are not. Everybody knows that to bring about their convergence, theoretical
neuroscientists should become familiar with the experimental literature and the
practical aspects of neuroscience research. Lately it has become increasingly clear
that experimental neuroscientists must also become more familiar with theoretical
tools and techniques. Experimentalists have the advantage of knowing that they work
on the real nervous system. However, only half of the experiments can claim to be
the real nervous system. The other half is the working model on which the experiment
is based. The informal models employed by experimentalists in the design of exper-
iments and interpretation of results are becoming too complex to remain informal. 

Experimental neuroscientists, even those studying subcellular events such as
synaptic transmission and intracellular signaling, find themselves with working
models consisting of tens to thousands of interacting components, each with its own
dynamics. The components are nearly always engaged in interactions forming feed-
back loops, and they quickly evade attempts to predict their behavior using the
experimentalist’s traditional intuitive approach. Luckily for experimentalists wishing
to escape from this predicament, the tools of formal model building have become
much more accessible. Skill at cracking the tough integrals is still valued, but not
truly essential for the experimentalist trying to refine his working hypothesis into a
formal model. It has become possible (at least in theory) for every trained scientist
to begin an experimental project with a simulation of the experiment. This formal
model can be manipulated to determine if the ideas behind a complex project are
consistent and if all the possible experimental outcomes are interpretable. After the
experiment, the model makes a quantitative description to which the results may be
compared. The model becomes a curve to place over the data points. In addition to
the advances in availability of fast computers and modeling software, experimentalists
wishing to generate formal models look for examples of successful work by others.
Of course, there are the traditional examples of experimental model making, for
example, the series of papers on the action potential by Hodgkin and Huxley. While
these papers are still outstanding examples of how to proceed in general, the com-
putational techniques employed there are increasingly out of date. Experimentalists
may additionally choose to study some or all of the examples in this book. They are
concerned with problems of current interest, spanning the range from molecular
models of single ion channels and interacting members of intracellular signaling
pathways to complex models of active dendrites and networks of realistic neurons. 

Practical modeling involves some methodological concerns such as accuracy
and efficiency of computation, fitting multidimensional experimental data to theo-
retical outcomes, and selection and correct use of simulation software. The chapters
cover a theoretical issue within the context of a practical experimental problem, and
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they include methodological information on modeling related to the individual
problem. Each contains a lesson in generation and evaluation of a formal model,
but also presents contemporary findings within the context of a problem of current
interest. They will be valuable to both experimentalist and theoretician, but especially
to those seeking to escape this classification.

Charles Wilson, Ph.D.
University of Texas
San Antonio, Texas
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Introduction

Over the last decade computational neuroscience has entered the mainstream. Some
of us still remember the early 1980s when one had to explain to the average
neuroscientist what modeling was about (not to be confused with the fashion indus-
try). Nowadays the Society of Neuroscience has poster sessions on modeling of
specific brain systems and computational neuroscience meetings attract hundreds of
participants. Several specialized institutes, graduate courses, and summer schools
have been created and targeted funding programs exist in most industrial nations.

Nevertheless, modeling too often remains the prerogative of specialized research
groups or of theoreticians leading an isolated life at the fringe of an experimental
lab. This segregation of experimentalists and theoreticians in the field of neuroscience
impedes scientific progress. Therefore, the contributors to this book strongly believe
that experimentalists should become part-time modelers, as well. If training pro-
grams give neuroscience students the opportunity to play with passive and active
computer models of neurons (the neuroscience equivalent of Lego� and great fun,
too), this practical experience may lead to application of models during later research
projects.

While self-evident to physicists, not every biologist realizes that the use of
quantitative models is a fundamental ingredient of all exact sciences. The more
complex the system under investigation, the higher the probability of counterintuitive
findings and the higher the need for quantitative models. Given that the brain is one
of the most complex systems being studied, modeling is particularly important in
neuroscience. Surprisingly some neuroscientists still believe that they can do without
modeling, forgetting that they are already using a qualitative mental model, such as,
for example, “this calcium current is important in bursting” or “this synapse is
uniquely placed to influence the cells’ firing pattern,” etc. Quantifying such a mental
model and making it explicit in mathematical expressions is as important toward
proving or falsifying a hypothesis as demonstrating that blocking the calcium current
stops bursting. The model may, for example, show that the system is not completely
understood (“what terminates the bursting?”) or that intuition about it was wrong
(“low input impedances at the site of contact make the synapse ineffective despite
its unique place.”).

We hope that this book will help many experimentalists to take their first steps
along this exciting, though sometimes arduous, path. It is conceived to help both
the beginning modeler and the more advanced one, but it assumes that you are
already a neuroscientist. Different from many other computational neuroscience
books, we do not explain the basic neuroscience needed to understand the examples,
though we provide references to the basic literature in case you need to refresh your
memory. Conversely, not many assumptions are made about your mathematical
skills. We have tried to keep the mathematics to an introductory level, though this
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was not entirely possible in Chapters 3, 4, and 12. To help you get started, the first
chapter introduces the basic mathematical skills required to understand the most
important tools of the trade, differential equations and parameter optimization.

The rest of the book is organized in an increasing scale of description: from
molecular reactions, to synapses and cells, then to networks, and finally to simula-
tions of musculoskeletal systems. While every chapter can be read separately, they
are extensively cross-referenced. We have minimized overlap between the chapters
and the later ones build on the earlier ones. A novice in the field should read them
consecutively; more experienced modelers may read back and forth. The experienced
modeler will also enjoy the extensive coverage of topics which have not been
included in other computational neuroscience methods books: molecular reactions,
stochastic modeling of synapses, neuronal morphology, including its development,
and musculoskeletal systems. In between, one finds the more classical topics of
diffusion, Hodgkin–Huxley equations, passive and active compartmental models,
small circuits and large networks. But in each of those chapters, the authors have
provided unique insights or novel approaches which have not been covered else-
where.

All chapters have in common the fact that they are primarily geared toward
realistic models, i.e., models which represent the simulated system in detail and use
many parameters to do so. This does not imply that we believe such models are
intrinsically better than more abstract models with only a few parameters, in fact
several chapters (3, 7, 10, and 11) explicitly describe more abstract models too. But
for the experimentalist, realistic models are more accessible because their parameters
often correspond to directly measurable quantities and the mathematical tools are
highly standardized. Therefore we believe that this class of models is most likely to
be useful to the readers of this book and that it is worthwhile to devote an entire
book to this approach.

And then there is, of course, the CD-ROM. Have you inserted it in your drive
yet? On almost every computer platform you should be able to start playing imme-
diately. The contributors have worked very hard to make their chapters come alive
on the CD-ROM. The software provided allows you to get an intuitive feeling for
the equations and models described and even allows you to start your own modeling
project. We have also set up a Web site www.compneuro.org which contains updates
to the software and additional examples and models.

If we succeed in our mission, soon you will be the proud parent of a realistic
model. You may then discover that not everyone approves of your modeling effort.
Criticisms can be divided into two categories: those by die-hard experimentalists
and those by true theoreticians. The first will typically ask, “How can you be sure
your model is correct?” The reasoning developed above should already provide a
good motivation why modeling is useful and hopefully your own experience will
add to the story. But over time I have become slightly more aggressive in my response
to this recurring question. I now ask, “How can you be sure your experiment is
correct?” and then point to barium currents being used to characterize calcium
channels, slice experiments done at room temperature to predict circuit properties
in vivo, etc. Almost all experiments are done on reduced preparations that are
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considered to be physical models of the real nervous system. This considered, the
difference between a mathematical model and experiment becomes less extreme.

A more challenging criticism to respond to is “realistic models are useless
because they do not provide insights in the underlying principles; analytical models
are the only way to understand how the brain computes.” Of course, there is a basic
truth in saying that a realistic model may be as complex as the real preparation and
therefore does not provide a simple, succinct description. However, the practice of
using realistic models demonstrates that they provide a better understanding of the
often counterintuitive dynamics of nervous systems. And while it would be ideal to
translate these insights into more abstract model descriptions (e.g., Chapter 11), it
may be too early to do so in the many instances where the system is not entirely
understood. Because, after all, how can we be sure the analytical model describes
the relevant properties? Just imagine using a rate coding model in a system where
spike timing is important. Realistic models suffer less from this problem because
they are based on more comprehensive descriptions of the biophysics and biochem-
istry of the system.

Finally, I wish to thank the many people who made this book possible. This
includes, of course, all the contributing authors who did a great job and patiently
accepted a “rookie” editor. Sadly, one of the invited authors, Joel Keizer, passed
away before the writing started, but fortunately, Greg Smith carried the load by
himself. Robert Cannon did much of the hard work, including writing the simulator
code and creating most of the tutorials on the CD-ROM. Without Robert or the series
editors, Drs. Sidney Simon and Miguel Nicolelis, who were so kind to ask me to
be an editor, you would not be reading this book now. Last but not least, I thank
Barbara Norwitz, Publisher at CRC Press, who was not only a great help, but was
also so kind to accept several delays in manuscript submissions.

Erik De Schutter, M.D., Ph.D.
University of Antwerp

Antwerp, Belgium
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Material Available on the 
CD-ROM

The CD-ROM contains images, data files, simulation scripts, and software for the
models described in the text. It is organized as a self-contained Web site with one
section for each chapter in the book. To view the Contents Page, direct your Web
browser at the file index.html which can be found in the top directory of the
CD-ROM.

Most of the chapters are associated with demonstration programs on the
CD-ROM which allow you to investigate the models interactively. This is
indicated by the small CD-ROM symbol. You can then find these demon-

strations by going to the section corresponding to the chapter in the Contents Page.
As we keep improving the software, more demonstration programs may be available
on the CD-ROM than are listed in the book, so do not hesitate to peruse.

Most of the demonstration programs are written in Java, which allows you to
run them on any computer platform. The easiest way to use them is through a Java-
enabled Web browser provided it is compatible with Java version 1.1.7. This includes
Netscape 4.5 or later for Windows and UNIX platforms and Internet Explorer 4 for
Windows platforms. See the Software section on the Contents Page for further details
about other operating systems.

The demonstration programs are Java applets derived from a larger interactive
modeling package called Catacomb, also included on the CD-ROM in the Software
section. Whereas the applets present only one view of a model and access to some
of the parameters, Catacomb affords free exploration of its properties and even
allows such models to be created from scratch through the graphical user interface.
Java engines in Web browsers have program size and security restrictions and are
often slower (ten times or more on some platforms) than stand-alone Java engines.
It may therefore be more convenient to run the demonstrations directly from the
Catacomb environment. This requires a platform specific Java engine which is
available free for most systems. Full details of how to obtain and install Java,
including the necessary files where permitted by copyright, can be found in the
Catacomb installation instructions on the Contents Page. When running the stand-
alone version of Catacomb, exactly the same demonstration models as in the Web
version can be found under the “models” menu on the main window. Notice that
you still need to go to the Contents Page for non-Java software and additional text
or illustrations.

Several chapters also contain simulation scripts for the GENESIS
(ht tp : / /www.bbb.ca l tech .edu /GENESIS /genes i s .h tml )  o r  NEURON
(http://www.neuron.yale.edu/) simulation environments. For convenience, parts of
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these Web sites are mirrored on the CD-ROM, including all material necessary to
install the software and run the various simulation scripts.

Finally, we keep improving the software and the additional material available
on the CD-ROM. You can find instructions on how to update your software in the
Software section on the Contents Page or by going to our Web site at  http://www.
compneuro. org.

Robert C. Cannon, Ph.D.
Institut de Neurobiologie de la

Méditerannée
INSERM, Unité 29
France
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1.1 INTRODUCTION

Modeling is casting systems into formula.1 In this chapter we briefly introduce the
mathematical tools that are essential to comprehend and apply the techniques
described in later chapters. In particular, we focus on two aspects: differential
equations, which describe the dynamics of a system (Sections 1.2–1.3), and optimi-
zation algorithms that can be used to obtain the parameters to such equations
(Sections 1.4–1.5).

A system in a steady state can generally be described with algebraic equations.
This means that the value of an unknown variable is completely defined by the
applied input and by the values observed, or calculated, for the other variables. For
example, the equation V  =  I Rin expresses the electrical potential V over an ohmic
membrane resistance Rin when applying a constant current I.

Biological systems are rarely in a steady state. Because of their intrinsic dynam-
ics they reach the steady state imposed by a constant input only asymptotically with
time. As a consequence, the state of the system depends on the time elapsed since
the input was applied. When the inputs are fluctuating continually, furthermore, the
values observed for a variable will keep changing with time, unless sophisticated
equipment is used such as a voltage clamp circuit.

This time-dependent behavior of biological systems is described with differential
equations. Differential equations express the rate of change of a variable as a function
of the current status of the system, i.e., in terms of the values of the state variables
and of the input (see e.g., Equation 1.1).

Differential equations are also used to describe the variation of a quantity along
the spatial dimensions of a system. Examples in this book are particle diffusion
(Chapter 3) and electrotonic propagation (Chapter 8). Particle or current injection
at a single position can maintain a gradient of concentration or voltage even when
a steady state is reached, i.e., when the concentration (Section 3.3) or voltage
(Section 8.2) at each single position no longer varies with time.

1.2 HOW TO READ DIFFERENTIAL EQUATIONS

1.2.1 ORDINARY DIFFERENTIAL EQUATIONS (ODES)

The simplest type of differential equation describes the evolution of a single depen-
dent variable, say V, relative to a single independent variable, say t. Consider a
system obeying

(1.1)

with the ordinary derivative of V with respect to t denoted and defined by

(1.2)

dV t
dt

V t I t Rin( ) = − ( ) + ( )
τ

,

dV t
dt

dV
dt

V V V
V t t V t

tt

( ) = = = = = +( ) − ( )
→

˙ ' lim .( )1

0∆

∆
∆

© 2001 by CRC Press LLC



Equation 1.1 specifies how the value of V decreases at a rate proportional to V itself,
and how V increases proportionally to the applied input. Many biological systems
can be described with this kind of differential equation, at least so long as their state
variables remain bounded within certain intervals. Examples are a passive membrane
around its resting potential (Chapter 8) and Ca2 +  buffering in the excess buffer
approximation (Section 3.2.1.2). For the sake of clarity, we consider here Equation 1.1
as a minimal model of an isopotential membrane compartment with V, t, and I
denoting the transmembrane potential, time and the applied current, respectively.
The parameters τ and Rin are the membrane’s time-constant (in seconds) and resis-
tance (in Ohm). From Equation 1.1 it follows that V changes at a rate inversely
proportional to τ. We mention only that in reaction kinetics it is customary to use
the inverse of τ, i.e., rate constants; time then appears in the denominator of the
parameter’s units (Chapters 2 and 3).

Mathematically spoken Equation 1.1 is an ordinary differential equation (ODE)
because V is ordinarily differentiated with repect to a single independent variable
t. The ODE is first-order because V (1) is the highest-order derivative, and linear
because V and its derivative appear only in linear expressions, i.e., they are not
raised to a power or multiplied with other dependent variables. Rearranging
Equation 1.1 gives

(1.3)

The left- and right-hand side now describe the intrinsic dynamics of the system and
the input applied to it, respectively. If the input is zero, the ODE is called homoge-
neous.

At steady state, V no longer varies with time, by definition. The steady state
value V∞ to which the variable V evolves during the application of a constant current
I can therefore be calculated by putting to zero the time-derivative in Equation 1.1,
giving

V∞  =  I Rin , (1.4)

where V∞ denotes the value of V after infinite time t. Hence, the algebraic equation
at the beginning of this chapter can be regarded a special instantiation of the ODE
Equation 1.1. From Equations 1.1 and 1.4, it is also clear that V always changes in
the direction of its steady state: if V is larger than the steady-state value, its rate of
change becomes negative (this is the right-hand side of Equation 1.1) and its value
decreases.

As a modeler, we want to calculate the value of V at any time t. For the linear,
first-order ODE Equation 1.1 with constant input I

(1.5)

τ dV t

dt
V t I t Rin

( ) + ( ) = ( ) .

τ dV
dt

V V t= − ( )∞ ,
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the analytical solution is

(1.6)

where V0 is the steady-state value of V before time t0 , when the constant input I is
being applied. Figure 1.1 shows a graph of this solution, and a geometrical inter-
pretation of how this solution satisfies Equation 1.5.

Of course, in a system described with multiple variables, a single variable V
does not change in isolation. The change of each other variable relative to dt or dV
must therefore be cast into differential equations too, resulting in a system of ODEs
describing the entire model. For example, in an active membrane model, a small
change in potential can change the conductance of the voltage-gated channels, which
in turn affects the membrane potential (Section 5.2.1). Note that an nth order ODE
can also be rewritten as a system of n first-order ODEs by a substitution of variables.
For example, a second-order ODE  aÿ  +  by·  +  cy  =  d is equivalent to a system
of two first-order ODEs: y·  =  z and az·  +  bz  +  cy  =  d.

FIGURE 1.1 Graphical interpretation of ODE Equation 1.1. A constant input is applied
from t = 0 to t = 200, during which V rises from its zero resting level V0 to the new steady-
state V∞ (horizontal broken line). After the input is withdrawn, V returns to the old steady-
state V∞ = V0. The tangent at each point (t,V(t)) of the graph has a slope equal to the derivative
dV/dt, and intersects the steady-state curve V = V∞ at t + τ. At three points rectangular triangles
are drawn. The vertical side of each triangle is the difference between the actual value of V
and the steady-state value V∞ , and hence represents the right-hand side of Equation 1.5.
Elementary geometry shows that this vertical side has indeed a length equal to |τdV/dt |.
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1.2.2 PARTIAL DIFFERENTIAL EQUATIONS (PDES)

If Equation 1.1 describes the membrane voltage in a single, isopotential compart-
ment, then extending this point neuron to a one-dimensional cable yields the fol-
lowing cable equation3

(1.7)

with a partial derivative denoted and defined as

(1.8)

Equation 1.7 is called a partial differential equation (PDE) because V is partially
differentiated with respect to two independent variables t and x. The variable x
represents the position along the cable and has the dimension of a length; the
parameter λ has consequently also the dimension of a length.

Equation 1.7 describes how the local membrane potential V at a particular
position x changes with time t through the effect of three processes, listed at the
right-hand side (see also Section 8.2). The first two terms at the right-hand side of
Equation 1.7 represent, as in Equation 1.1, the voltage decay due to leakage of
current through the membrane and the local input, experimentally applied or intrin-
sically generated by ionic channels, respectively. The last term describes electrotonic
propagation along the cable.

Extending the model to three spatial dimensions requires that the partial deriv-
ative of V with respect to x be replaced by

which is also denoted as

where

is called the Laplacian operator in (orthogonal) cartesian coordinates2 (see
Section 3.3.1.1 for the Laplacian in spherical coordinates).
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Note that the steady-state solution of the PDE Equation 1.7 is a second-order
ODE

1.3 HOW TO SOLVE DIFFERENTIAL EQUATIONS

1.3.1 ORDINARY DIFFERENTIAL EQUATIONS (ODES)

Equation 1.9 is the canonical form of a first-order ODE. The right-hand side of
Equation 1.1 is abbreviated as f (V,t), i.e., a function of the dependent variable V and
the independent variable t

(1.9)

Using Equation 1.9, it is possible to calculate the rate of change (dV/dt) of variable
V for all possible values of V and t, but not the value of V itself. Indeed, the solution
V (t) remains ambiguous unless an “anchor” value of V at a particular time is given.
This value is called, by convenience, the initial condition

V(t  =  0)  =  V0 . (1.10)

The problem described jointly by Equations 1.9 and 1.10 is called an initial-value
problem. A solution gives the value of V at any time t.

In exceptional cases, such as for Equation 1.1 with a constant input IRin, ana-
lytical integration rules yield for the dependent variable V an expression in terms of
elementary functions of the independent variable t, like Equation 1.6. When stimuli
are used that cannot be represented as integrable functions, or when the models
become more realistic,4 the differential equations need to be solved numerically. A
numerical solution is a table of pairs (ti, V (ti)) for discrete time instants ti.

In numerical integration, the limit constraint in the definition of a derivative
(Equation 1.2) is relaxed. More particularly, the derivative is replaced with
a finite difference, reducing the ODE Equation 1.9 to an algebraic equation

of which V(t + ∆t) is the unknown variable. For example,

gives the forward-Euler rule

(1.11)
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Equation 1.11 calculates V at t + ∆t through a linear extrapolation of V at t (see
Figure 1.2, upper panel). At t = 0, Equation 1.11 reads

V(∆t) = V(0) + ∆t  f(V(0),0) = V0 + ∆t  f(V0,0)

using Equations 1.9 and 1.10. At t = ∆t, V(2∆t) is calculated starting from the value
of V(∆t). Repeating this procedure k = ti/∆t times yields the value of V at any discrete
time ti.

It is important to realize that relaxing the limit constraint of a derivative induces
an error. The order of magnitude of this error can be evaluated indirectly by reference
to the error induced by truncating a Taylor series. To understand this, remember that,
in a small interval around t, a smooth function y can always be approximated to any
desired accuracy by a polynomial so that y(t + h)  =  a  +  bh  +  ch2  +  dh3  +  … .
The value of a can be determined by evaluating the equation for h = 0, and hence
equals y(t). The value of b is determined by evaluating for h = 0 the equation that
results when both sides are differentiated with respect to h. The coefficient of each
higher-power term of h is found in succession by repeated differentiation and eval-
uation of the polynomial equation, yielding the well-known Taylor-series expansion

(Please note that superscripts to h indicate powers, whereas superscripts to the
function y indicate orders of differentiation.)

If this series converges, then truncating it after the term containing the nth
derivative y (n) is said to induce an error of order hn +1 (also denoted O(hn +1)). Because
the principal truncated term is proportional to hn +1, its value will decrease zn +1 times
when h is taken z times smaller.

It is now possible to describe formally the error which solving Equation 1.11
induces at each integration step, i.e., the error on V(t + ∆t) assuming that there is
no error on V(t). To this end, the value of V(t + ∆t) calculated formally with the
integration rule Equation 1.11 is compared to the theoretically correct value of
V(t + ∆t) obtained with the Taylor-series formalism (Equation 1.12)

(1.12)

From this comparison, Equation 1.11 is equivalent to the Taylor-series expansion of
V(t + ∆t) truncated after the first derivative V (1). Relaxing the limit constraint in
Equation 1.11, therefore, induces a local truncation error with a principal term
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proportional to (∆t)2. In general, when the principal term of the difference between
the calculated and the theoretical value of V(t + ∆t) is proportional to (∆t) n + 1, the
rule is said to have a local truncation error of order (∆t) n + 1 (denoted O((∆t) n + 1)),
to be accurate through terms of order (∆t)n (O((∆t) n)), or in brief to be a method
of order n. The forward-Euler integration rule Equation 1.11 is therefore first-order.

FIGURE 1.2 Numerical integration of ODE Equation 1.1 using Euler’s rules (Equations 1.11
and 1.14). A single integration step calculates V(t + ∆t) from V(t = 50) using step sizes ∆t = 25
and ∆t = 75. In forward-Euler (Equation 1.11; upper panel), the values V(t + ∆t) are found
through linear extrapolation along the tangent through (t, V(t)). If ∆t > τ (with τ = 50 in this
particular example),V(t + ∆t) overshoots the steady-state value V∞ (horizontal dashed line).
This does not only yield a very inaccurate value of V(t + ∆t), but causes also instability. In
backward-Euler (Equation 1.14; lower panel), the new point (t + ∆t, V(t + ∆t)) lies on the
straight line connecting (t, V(t)) with (t + ∆t + τ, V∞). The value V(t + ∆t) never overshoots
the steady-state V∞ , irrespective of the size of ∆t.
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As mentioned above, the local truncation error induced by applying
Equation 1.11 is the error on V(t + ∆t) provided that the value of V(t) is correct.
However, only the value V(t) at t = 0, given by Equation 1.10, is correct so that only
V(∆t), calculated in a single step from V0, has an error equal to the local truncation
error. This error inevitably propagates, and accumulates with the local error induced
at each further integration step, so that all values of V(t + ∆t) at t > 0 are calculated
from increasingly erroneous values of V(t). The actual resulting error on V(t + ∆t),
called the global truncation error, is therefore larger than the local truncation error.
It has an order of magnitude that depends primarily on two factors: the order of
magnitude of the local truncation error, which is generated at each integration step
and which is O((∆t)2) for Equation 1.11, and the number of applied integration steps,
i.e., the number of intermediate values of V calculated since t = 0. This number
equals t/∆t and is thus inversely proportional to ∆t. From both dependencies together,
the actual error on V(t + ∆t), or the global truncation error of Equation 1.11, appears
to be of order ∆t instead of order (∆t)2. In general, a numerical integration method
of order n, using an integration step size ∆t, produces values of V with an error
approximately proportional to (∆t)n.5–8

Although Equation 1.12 might suggest that higher-order accuracy can be
obtained only by evaluating higher-order derivatives, which are not explicitly given
in the problem statement Equations 1.9 and 1.10, this is not strictly the case.1 Higher-
order accuracy can be achieved by iteratively evaluating the first derivative, i.e., the
function f in Equation 1.9. In general, a method of order-n evaluates then n times
the function f at every integration step. A popular method of this kind is the fourth-
order Runge–Kutta rule

(1.13)

with

The function f, which is the first derivative and hence the slope of V (see
Equation 1.9), is now evaluated four times in the interval [t, t + ∆t]: once at t (F1)
and t + ∆t (F4), twice at t  +  ∆t/2 (F2 and F3) (see numbered symbols in Figure 1.3).
The resulting values F1, F2, F3 and F4 are then averaged to calculate V(t + ∆t). It
can be shown9 that this weighted sum in Equation 1.13 reduces the error on V(t + ∆t)
to order five; hence the rule, due to Runge and Kutta, is of order four.
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The above forward-Euler and Runge–Kutta rules are explicit rules. Indeed, in
Equations 1.11 and 1.13, the unknown variable V(t + ∆t) appears only at the left-
hand side of the equation, so that its solution is explicitly given. In implicit rules,
V(t + ∆t) appears on both sides of the equation. If, for example, the following finite-
difference approximation is used for the derivative

the first-order rule becomes

V(t + ∆t) = V(t) + ∆t f (V(t + ∆t), t + ∆t), (1.14)

which is called the backward-Euler rule (Figure 1.2, lower panel). A hybrid of
forward- and backward-Euler is the trapezoidal rule

(1.15)

which is of order two, i.e., its local and global truncation error are O(∆t)3 and O(∆t)2,
respectively.

In order to retrieve the unknown variable V(t + ∆t) from an implicit rule, an
equation needs to be solved (e.g., Equations 1.14 or 1.15). When a system of ODEs
is to be integrated, a system of equations has to be solved. In matrix notation, this
requires an inversion of the matrix of coefficients, which is computationally hard
and impractical, except when the matrix is sparse, i.e., when most of its coefficients
are zero. In that case, efficient substitution rules exist to solve the system of
equations. An example is the tri-diagonal matrix that results when the cable equation
(Equation (1.7)) is discretized.10,11,12

As an illustration, we apply the above integration schemes to the ODE
Equation 1.1, giving:

forward-Euler (1.16)

backward-Euler (1.17)

trapezoidal (1.18)
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Finally, a simple method for solving first-order ODEs was introduced by
MacGregor,13 and is commonly called exponential Euler (Chapter 2). Applied to our
problem Equation 1.1, the rule reads

(1.19)

FIGURE 1.3 Numerical integration of ODE Equation 1.1 using a fourth-order Runge–Kutta
rule (Equation 1.13). A single integration step from time t to t + ∆t comprises four linear
extrapolations from the same starting point (t, V(t)) (open circle at t) but along lines with
different slopes, labeled F1 through F4. The four extrapolations are drawn separately, but
shifted vertically to avoid overlap. Each extrapolation yields a different presumptive value of
V(t + ∆t), shown as a large open symbol at t + ∆t. Eventually, the rule returns a value V(t + ∆t)
that is a weighted mean of these four presumptive values, according to Equation 1.13. This
mean point is not drawn, but lies exactly on the curved line. The values F1, F2, F3, and F4

are the slopes of the “tangents” to the curve at the points labeled 1, 2, 3, and 4, respectively.
The slope of the tangent at a particular point can be calculated by evaluating the right-hand
side of Equation 1.1. For this example, the tangents can also be determined geometrically
following the same procedure as that used in Figures 1.1 and 1.2 (not shown).
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This explicit, first-order method is more accurate and stable than forward Euler, to
which it reduces when the exponentials in Equation 1.19 are replaced by the first
two terms of their series expansion,

By substituting t + ∆t for t in Equation 1.6, it can be seen that Equation 1.19 calcu-
lates the exact solution of Equation 1.1, irrespective of the size of ∆t provided the
input I is constant.

1.3.2 PARTIAL DIFFERENTIAL EQUATIONS (PDES)

Integration of the second-order PDE Equation 1.7 introduces two more constants of
integration. Two more constraints are therefore needed to produce a unique solution.
These constraints are called boundary conditions. In the present case they can be
given as the steady-state values V∞(x) at two points x1 and x2 (usually the end-points
of the cable), as the steady-state value V∞(x) and its first derivative dV∞(x)/dx at a
single point x1, or as combinations of these. The initial condition V(x, t = 0) must
now also be specified at each position x. Numerical integration of Equation 1.7
requires in addition a finite-difference approximation of the second-order partial
derivative, for example

(1.20)

By summating the Taylor–series equations for V(x + ∆x) and V(x – ∆x), this finite-
difference approximation can be shown to have a truncation error of O((∆x)2).14

Equation 1.20 can then be incorporated into one of the temporal integration schemes
from above. Combining Equation 1.20 with the trapezoidal rule Equation 1.15 yields
the method first proposed by Crank and Nicolson.14 This Crank–Nicolson method
is second-order in both space and time, with a local truncation error of
O((∆t)3 + (∆t)(∆x)2) and a global truncation error of O((∆t)2 + (∆x)2).15 Note that
when the cable is discretized into N–1 intervals of width ∆x, a system of N equations
with N unknowns (V(xi , t + ∆t), i  =  1...N) results.

1.3.3 ACCURACY AND STABILITY

As explained above, a solution obtained through numerical integration is
expected to be more accurate if a higher-order rule and a smaller integration
step are used. It should be kept in mind, however, that the order of a rule

only states how the error scales with the integration step size (linear for first-order
rules, quadratic for second-order rules, etc.). The actual magnitude of the error cannot
be predicted, and depends on the actual problem to be solved.7,16
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Moreover, the expected higher accuracy of higher-order methods cannot always
be exploited to use larger integration steps. Indeed, instability puts an upper limit
on the integration step size that can be used with any explicit rule. In the examples
above (Equations 1.16 and 1.18), the coefficient of V(t) becomes negative when the
integration step is too large (∆t > τ in the forward-Euler rule, Equation 1.16, and
∆t > 2τ in the trapezoidal rule, Equation 1.18). As a result, the value of V can change
sign at every integration step, and grow unbounded (Equation 1.16) or show damped
oscillations around the solution (Equation 1.18). When a system contains processes
with different time constants, the integration step size must be small enough to
ensure stability of the fastest process (i.e., with the smallest τ), even if this process
produces such a negligible contribution that igoring it would hardly affect the
accuracy of the solution. For such systems, called stiff systems, implicit integration
methods are preferred, which do not suffer from instability (Figure 1.2). Finally,
when PDEs like Equation 1.7 are solved with explicit rules, the size of the temporal
integration step that is critical for stability (∆tc) does not only depend on the system’s
parameters (λ and τ in Equation 1.7), but also on the size of the spatial integration
step ∆x. For the PDE Equation 1.7, ∆tc is proportional to (∆x)2.6,8

1.4 FITNESS MEASUREMENTS

1.4.1 THE PROBLEM TO SOLVE

In modeling equations, which describe changes in variables over time, often contain
unknown parameters. For example, if we assume the probability p for a channel to
be in the open state to be a sigmoid function of the membrane potential V, the
mathematical form is (Section 5.2.2)

(1.21)

The problem is to determine the values of the parameters a and b for the specific
channel we are interested in to model (a representing the membrane potential for
half-open probability and b determining the slope of p in a). In this case, a and b
are not experimentally measurable quantities and their estimation may require com-
plex experimental protocols such as voltage clamp. Such experiments will measure
some discrete points of the sigmoid relationship of Equation 1.21, but for modeling
purposes we need to determine a and b in order to be able to evaluate p for any
value of V.

This type of problem is a fitting problem, where one likes to describe a finite
number of experimentally obtained data points by a continuous function. To address
this question we decide which mathematical form to use (e.g., Equation 1.21) and
identify the number and type (integer or float) of the parameters to be determined.
We then make a first guess about the values of these parameters. Using these values
we calculate a large number of points of the chosen function. On these points, a so-
called fitness function is applied to numerically estimate “how good” the fit is
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compared to the experimental data. The idea is to use this fitness measurement to
correct the initial guess of the parameters so that the next one will give a better fit.
Thus, using an iterative scheme, we hope to converge to an acceptable solution for
a and b.

One can easily understand that in this general procedure, two steps are of
fundamental importance.

1. The fitness function must ideally return an error value equal to 0 if the
fit is perfect and to 1 (for a normalized function) if the fit is extremely poor.

2. The optimization procedure, i.e., the correction scheme that guesses the
parameter values from iteration to iteration, must ensure that the fitness
coefficient will converge to a minimum value.

Fitness measurement and optimization protocols are not necessarily coupled and
can be viewed as separate problems, although the performance of the optimization
scheme in converging rapidly to a “good” solution clearly depends on the quality
of the fitness function.

We first describe the general problem of fitness measurement, the objective of
which is to use both the experimental data available and the model under construction
to estimate how good a given model is at reproducing the data. Next, we give a
short overview of some efficient optimization algorithms.

1.4.2 THE FITNESS COEFFICIENT

Suppose that you can experimentally measure the relationship between an indepen-
dent variable x and a dependent variable y. Standard numerical acquisition procedures
give you a set of N data points (xi, yi), and the repetition of experiments will lead
to points that are averaged responses associated with a standard deviation. This
relationship could be a current-voltage (I/V) curve, a current-frequency (I/f) curve
or a voltage-dependent activation function (V/p). Suppose that you have a model
(some equation) suitable to reproduce this relationship with adjustable parameters.
The problem is then to find good values for the parameters, so that the equation will
give a good estimation of y for any value of x. A fitness measure, or fitness coefficient
quantifies the goodness of this estimation. We first present some standard fitness
measurements and then expose new directions in fitness measurement for the case
of time-dependent functions.

1.4.3 LEAST SQUARES AND CHI-SQUARE ERROR COEFFICIENTS

One of the most commonly used fitness coefficients is known as least squares. Given
the experimental relationship yreal(x) and the model representing it ymodel(x), the least-
square error is given by

(1.22)E y x y xreal i i
i

N

= ( ) − ( )( )
=
∑ model

2

1

.

© 2001 by CRC Press LLC



This measure is a maximum likelihood that quantifies the probability of getting
the experimental data with the model for a given set of parameters. Several important
statistical assumptions are made in this equation. First, it is assumed that the exper-
imental measurement errors are independent for each experimental point yi , and
second that these measurements are distributed around the true model following a
Gaussian with the same standard deviation σ at each measurement point. In the case
of non-equal standard deviations, one should use an extended form of Equation 1.22,
called the chi-square estimator

(1.23)

Several statistical methods exist11,17 to deal with cases where the error measure-
ment of y is not normally distributed (so-called robust statistical estimators, and
Monte Carlo simulation for a known distribution reference).

If least-squares and chi-square coefficients are by far the most commonly
used fitness functions for non-time-dependent functions, they are not very
satisfactory for time-dependent functions. The direct fitting of time-depen-

dent data series, such as intracellular recording samples, may lead to specific prob-
lems. The most crucial problem is to obtain the correct time phase between the data
points and the model. This point is illustrated in Figure 1.4 where the least-square
coefficient is calculated between two finite samples of intracellular recordings.
Although the two sets of raw data are strictly identical, the coefficient strongly
depends on the time phasing between them. In practice, using this coefficient for
optimization purposes requires a procedure to phase-lock the data, which can be
difficult for complex signals such as bursting, pseudo-periodic spiking or even a
non-periodic signal. We can see from Figure 1.4 that for zero phase-locking, the
coefficient is low, as expected for identical models, but that for anti-phase-locking
the coefficient becomes much larger. Therefore, for time-dependent signals a differ-
ent fitness measurement is needed.

1.4.4 A NEW METHOD BASED ON PHASE PLANE TRAJECTORIES

Let us take the case of a neuron for which the only experimental data available are
finite time samples (seconds or minutes) of intracellular membrane potentials
obtained during different current clamp protocols. It is always possible to build a
generic model of the neuron we are studying (for instance based on the
Hodgkin–Huxley formalism, see Section 5.2.1). This usually requires some hypoth-
esis about the number of compartments required (Chapter 9) and about the type of
the different voltage-dependent channels involved. Of course, many of the model
parameters will be unknown. One can apply the general framework of any fitting
and optimization scheme, but in this case, the fitness function will have to assign a
fitness coefficient between two sets of membrane potentials sampled over time (one
coming from experimental data, the other from the model’s behavior).
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We recently developed a new method based on the concept of trajectory density
in a phase plane to compute a robust fitness coefficient. The principle of a phase
plane is to exclude the time parameter by plotting one time-dependent variable
against another time-dependent variable. In the case of an intracellular sample V(t),
one possibility is to use as the other variable the first time-derivative

·
V(t), so that

the coordinates of points in this plane will be (V,
·

V). This derivative can be
estimated using

(1.24)

FIGURE 1.4 Phase dependence of the least-square estimator. The least-square estimator is
computed between two identical current clamp time series produced by a spiking
Hodgkin–Huxley model neuron (see Section 5.2.1). Depending on the phase relationship
between the spikes, the least-square fitness value changes. For zero phase locking
(phase = 0,1,2) the least-square value is close to 0 but for non-zero phase locking the coef-
ficient increases rapidly. In solid line the same computation is made using a different estimator
based on a trajectory density measurement (see text for details).
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Color Figure 1.1* illustrates such a representation for a simple Hodgkin–Huxley
spiking neuron (A1, A2). We see that the classical way of plotting the membrane
potential is replaced by trajectories in the (V,

·
V) plane, where specific features of

the signal, such as periodicity, become a closed loop that is easily recognizable and
can be analyzed geometrically. Note that each spike describes one loop and that if
several spikes are present their successive loops superimpose. It is then possible, for
each point of the plane to count how many times it has been hit during the entire
recording. This value (coded by a color scale in Color Figure 1.1, A3) is called a
trajectory density. It can also be viewed as the average time being spent at a given
membrane potential and with a given slope (derivative) during the whole recording.
To compute this density numerically, we define a flag function η(x,y) (a function
returning 1 if x and y are equal). This function between a given point x(Vx ,

·
Vx) of

the phase plane and a given point y(Vyt
,

·
Vyt

) of the raw data can be defined as

(1.25)

Then for each point x(Vx ,
·

Vx) of the phase plane we define its normalized trajectory
density as

(1.26)

T is the time duration of the recording and N the number of discrete points in each
set. In practice we also have to digitize the phase plane in small squares  ∆V × ∆V,

·

and normalize δ(x,y) by this product. We can define more formally this density in
the continuous case as

(1.27)

where ∆() is the delta function. This delta function (also called Dirac function) is
an ideal impulse with infinite amplitude but infinitely small width, which implies
that its value is zero except for zero arguments.

We are now ready to define the fitness coefficient based on trajectory density
functions. Given two time series (a recorded membrane potential and a model's
activity), we sum the squared density differences of the two series over the entire
plane, so we write:

(1.28)

* Color Figure 1.1 follows page 140.
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This equation can be viewed as the least-squares estimator between the two
trajectory densities.

To validate our fitness function, we tested it in a single-parameter search
mode using a Hodgkin–Huxley model spiking neuron (Section 5.2.1). We
first run the model with a fixed value of the maximal conductance for

potassium –(gK = 20 mS/cm2) (Chapter 9), and then use the model's activity produced
with this value as a “fake” experimental recording. Figure 1.5 shows the fitness
coefficient obtained when the reference was compared with the model using a linear
increase of –gK between 0 and 40 mS/cm2. We can clearly see that a minimum of
the fitness function appears for a –gK value that is equal to the –gK used as reference
(20 mS/cm2). No pre-processing of the signal was done prior to fitness measurement
(both reference and model voltage were computed for 0.5 s simulated time and using
a 0.05 ms integration step). We have done several other one-dimensional systematic
parameter scans, with different durations and resolutions and with different param-
eters (maximal conductance, half-activation potential of voltage-dependent gating
variable, passive properties, etc.) and we were always able to retrieve with good
accuracy the value used in the reference recording.

1.5 PARAMETER SEARCH ALGORITHMS

1.5.1 SEARCHING PARAMETER SPACE

Given the experimental data and a model, we can now measure how well the model
reproduces the experiment with a particular parameter set. Our next goal is to find
the parameter set that gives the lowest fitness coefficient. This problem is a classical
optimization problem, where we like to find the minimum of a function, in our
case the fitness function.11 The basic constraints are (1) we do not know a priori
the shape of the fitness function f, and (2) we do not want to calculate this function
for all the possible values of the model’s parameters. We need a clever way to
travel in parameter space and retrieve the best sets. How can we design a computer
scheme that will always converge to a minimum point, with as little computer time
as possible? Note that even if there is no guarantee that the minimum found is
global (truly the lowest possible point) or local (the lowest within a neighborhood),
we want to be reasonably sure that there are no better solutions around.

Different kinds of methods can be used18,19 depending on two main factors:
(1) Do we have more information than just the value of f? More specifically, can
we sense the slope in the nearest neighborhood (can we compute the partial deriv-
atives), so as to guess where the best downward parameter direction can be found?
That direction gives information about how we should change the model’s parameters
to get a better fit (to decrease the fitness coefficient and eventually reach a minimum).
(2) During our scheme, can we accept transient increases of the fitness coefficient?
This allows the search algorithm to escape from small local minima in the parameter
space and to converge to a better solution (to reach a lower minimum and eventually
the global one). A common metaphor to sketch this problem is to imagine a ball
rolling down in a basin. We can imagine that small irregularities in the landscape
(small bumps) will stop the ball very far from the trough of the basin. A way to
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avoid this problem is to shake the ball with some random force to give it a chance
to escape from this little trap. In optimization techniques, it is often very useful to
introduce some noise (randomness) in the procedure, either in the choice of the
parameters or in the fitness coefficient itself.20,21 This strategy is efficient for bumpy
parameter spaces, which is frequently the case when dealing with real experimental
data.

1.5.2 PARAMETER SEARCH METHODS WITHOUT RANDOMNESS

1.5.2.1 Downhill Simplex

This general method does not require a computation of the derivative of the function
that needs to be minimized.11 It is usually efficient and fast. Starting from any random
vector of N parameters (the first guess), the idea is to construct a geometrical figure
called a simplex made of N + 1 points in the N-dimensional parameter space. Usually,
the different points of this simplex figure are chosen along the N unit vectors, but
the distance between the points can be random. The optimization process per se
consists of the evaluation of the fitness coefficient at each point of the simplex, and
then a move of the point of worst fit in the direction of the points of better fit.
Different algorithms exist to change the distance between points but they all apply
successive contractions and expansions to the simplex figure in one or more dimen-

FIGURE 1.5 Validation of the trajectory density fitness function. Scan of maximal potassium
conductance –(gK) and measure of the fitness coefficient between a Hodgkin–Huxley spiking
model using this –gK value and the same model using a fixed reference value –(gK set to
20 mS/cm2). A minimum value for the coefficient is found (B) when –gK reaches the value
used in the reference. For lower (A) or higher (C) values of –gK, the fitness coefficient is higher.
Any optimization scheme that will find this fitness minimum will give a correct estimate of
the –gK used in the reference. Note that no phase locking is required in this example.
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sions. These allow an adaptive search in the parameter space, thus reducing as much
as possible the number of iterations needed to converge. When the algorithm comes
close to a solution, the simplex contracts to approach the minimum. One often
compares this process to the “crawling” of an amoeba-like geometrical figure.

1.5.2.2 Conjugate Gradient Method

This is probably the most popular optimization scheme, but it requires the compu-
tation of the function and its partial derivatives (used to compute the gradient). One
can understand that being able to sense the slope of the function in the different
parameter directions (the gradient) gives important information about where to go
to find the minimum of the function. Thus, following the steepest gradient is intu-
itively and mathematically a reliable way of finding the route to the minimum value
of the function. Of course computing the gradient requires computing the derivative
and this can be a time consuming process, but one usually worth doing. The gradient
descent method is often coupled with the concept of conjugate directions. This is
based on the notion that to explore any multi-parametric function, we need to search
in several directions (because there are several parameters in the model). Conjugate
directions are non-interfering directions along which one can optimize without taking
too much risk of redundancy with respect to the other directions already searched.
This avoids cycling problems and inefficient computing.

Practically, the algorithm goes as follows. Start from an initial point P in
N-dimensional parameter space and then try to minimize along the line from P in
the direction of the steepest downhill gradient. Each time you move in one direction
to its minimum, you change direction for a conjugate one in respect to the previous
one and if possible to all previous traversed directions. Several efficient algorithms
exist. They are particularly good for smooth (no irregularities) functions that have
a quadratic form (a function where variations are governed by a square law). To
minimize a more complex fitness function with a lot of local minima, you might be
interested in other methods making use of noise and randomness.

1.5.3 PARAMETER SEARCH METHODS WITH RANDOMNESS

1.5.3.1 Random Walk

This method is quite straightforward. After choosing an initial center of exploration
(first guess), this point is considered as the mean of a Gaussian distribution with a
given variance. The next point is then randomly picked up from this distribution. If
the fitness coefficient at this point is the best so far, it is set as the next center for
further exploration. If not, another point is again randomly chosen. During this
process, the variance is slowly decreased until it reaches a minimum value, then
eventually re-expanded. Together with the random selection of the model’s param-
eters, successive cycles of shrinkage and extension of the variance give a chance to
escape from local minima.22
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1.5.3.2 Genetic Algorithms

These methods are inspired by evolutionary processes.23–25 First a random population
of vectors each describing a parameter set is chosen (the first guesses) and then the
model is evaluated for each of them. The fitness coefficient is computed for each of
these vectors. During the optimization scheme, a parameter set may be conserved
into the next generation (next iteration) with a probability that depends on its fitness
value. In addition, at each generation some degree of crossover (mixing of param-
eters between sets) together with some random variation (analogous to a mutation
process) occurs. After several generations, the best parameter sets (corresponding
to the best fitness coefficients and therefore to a higher probability of transmission
to the next generation) start to dominate the population. This strategy is extremely
powerful although it requires a lot of model evaluations and consequently compu-
tation time. It may be the most effective method for large neuronal models.18,23

1.5.3.3 Simulated Annealing

The experimental evidence behind this method comes from thermodynamics and
the control of cooling of liquid matters in order to obtain a crystalline structure (low
energy states) as perfect as possible which avoid amorphous states (higher energy
states). If one slows down the cooling and controls the liquid to solid transition, one
gives a better chance to the atoms to find their lowest energy arrangement. The core
of the optimization procedure is often based on a classic gradient descent or simplex
method, but with a temperature parameter (or annealing schedule) that adds some
noise to the fitness value. As the algorithm converges, the temperature parameter is
slowly decreased. Here also, the noise allows escaping from local minima. Different
schemes are described using slight variations of the same general principles. A recent
comparison of optimization methods for conductance-based neuron models found
simulated annealing to be the most effective method.18

1.6 CONCLUSION

The most commonly used fitting procedure by both modelers and experimentalists
is still the trial-and-error method of a fit-by-eyes fitness evaluation. It would be unfair
to say that no successful work has been done with this principle, which is based on
the impressive capacity of the brain to estimate the goodness-to-match between
experimental data and a model. Nevertheless, it is clear that automated parameter
search methods become necessary due to the large amount of data available and the
increasing complexity of models made possible by these data. It is unrealistic to
suppose that one could process all these data comparisons by manual procedures.
More exciting is the real perspective of having automated methods to build complete
models out of detailed sets of current clamp or voltage clamp data. Furthermore,
the use of fast computing techniques (parallelism, analog computing through analog
VLSI models,26 etc.), broaden these perspectives to very fast or even real time
optimization and model construction.
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2.1 INTRODUCTION

The inside of a cell is a remarkable environment in which to find computation. At
first glance, it is as if a thick soup somehow manages not only to keep track of many
unique signals but also to have them interact in specific ways to give rise to com-
putation. This feat is accomplished through a mapping of signal identity onto molec-
ular identity. In this mapping lies the power of the cellular computer. Every chemical
reaction is a molecular transformation, and computation is born through this manip-
ulation of chemical symbols.

In a chemical plant, or for that matter, in the conventional “Harvard” computer
architecture, the instructions are neatly separated from the raw materials or data
respectively. In the cell, however, computation merges seamlessly with all aspects
of cellular chemistry. The cellular machinery of the cytoskeleton and protein traf-
ficking are as much a part of the signaling apparatus as they are substrates for the
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signaling to act upon. The all encompassing nature of cellular signaling means that
it touches upon most disciplines of biology. It also makes it hard to separate the
wood from the trees, that is, understand the overall biological function in terms of
the individual enzymatic reactions. A central theme of this chapter is how simulations
may help to bridge this gap. As is done in this book, we can identify three main
levels of analysis of biological signaling: “well stirred” (i.e., point or non-diffusive)
systems, spatially structured reaction-diffusion systems (Chapter 3), and stochastic
models dealing with probabilities of individual molecular events (Chapter 4). One
could think of these as beginner, intermediate and advanced topics in the subject.
The well-stirred analysis is reasonably well-characterized experimentally, and is
comparatively straightforward to specify and solve. It is also necessary to first specify
the basic reactions before introducing additional details such as space and probabil-
ity. The emphasis in this chapter is to develop methods for building empirically
accurate models of signaling at the level of well-stirred cells. Test-tube biochemistry
is relatively simple to simulate, and programs for modeling enzyme kinetics have
existed since the days of punch-cards. The difficulties in scaling up to tens of
signaling pathways and thousands of reactions are not computational, but have to
do with interface design and most of all with converting experimental data into
kinetic parameters in a model. The general approach outlined in this chapter is to
modularize the problem in terms of individual signaling pathways, usually involving
just one key signaling enzyme. The grand picture is built up by drawing upon a
library of models of individual pathways. This fits well with standard experimental
approaches, and also lends itself to plug-and-play upgrades of complex models as
more complete individual enzyme models are developed.

2.2 METHODS

2.2.1 EQUATIONS

Signaling pathways are fundamentally based on chemistry. A description of
signaling in terms of a series of chemical reactions is therefore about as
general as one can get in the domain of the well-stirred cell. Fortunately,

the numerical methods for handling such reaction systems are simple and fast enough
to embrace this generality without having to make compromises. Furthermore, the
reaction formalism appears to work well even for empirical and approximate models,
as we shall see below. As experimental data are frequently incomplete, this is
important in adopting this formalism for biochemical models. Our starting point for
such models is the basic reaction:

(2.1)

This can generalize to any number of terms on either side, and any stoichiometry.
Reactions of order greater than two are uncommon, and when they are encountered

A B X Y+                … …
k

k
f

b

+ +
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they are often a reflection of incomplete mechanistic data. At the molecular level,
higher-order reactions would require a simultaneous collision between multiple
molecules. The probability of this is extremely low. Instead, apparent high-order
reactions typically proceed through fast intermediate reaction steps.

Two rules govern Equation 2.1:

d [A]/dt = – kf · [A] · [B]... + kb · [X] · [Y]… (2.2)

and

d [A]/dt = d[B]/dt = – d[X]/dt = – d[Y]/dt… (2.3)

or equivalently,

[A0] – [A] = [B0] – [B] = [X] – [X0] = [Y] – [Y0]… (2.3a)

[A] + [B] + … + [X] + [Y] + … = constant (2.3b)

Equation 2.2 is the differential equivalent of the rate equation. The various forms
of Equation 2.3 express the stoichiometry of the reaction and are equivalent to
conservation of mass.

For small systems of equations, it is useful to use the mass conservation rela-
tionship directly to reduce the number of differential equations:

[B] = [B0] – ([A0] – [A]). (2.4)

For large, extensively coupled systems, however, keeping track of the conser-
vation relationships among many diverging reaction pathways is cumbersome and
does not save much computation. In this case it may be simpler to write out the full
differential equation for each reaction component and solve each independently,
secure in the knowledge that the differential equations embody the stoichiometry.

d[B]/dt = – kf · [A][B]… + kb ·[X] · [Y]… (2.5a)

d[C]/dt = + kf · [A][B]… – kb ·[X] · [Y]… (2.5b)

d[D]/dt = + kf · [A][B]… – kb · [X] · [Y]…. (2.5c)

An added advantage of this approach is that it lends itself to modular and object-
oriented simulation schemes. Suppose we have an additional reaction

(2.6)A P
k

k
Q Rf

b

+ + … …                + +2

2
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The equation for A alone would need to change to incorporate the additional terms:

d[A]/dt = – kf [A][B]… – kf 2 [A][P] + kb · [X] · [Y]… + kb2 · [Q] · [R] (2.7)

If one relies on the differential equations to maintain stoichiometry, it is possible
for numerical errors to introduce embarrassing problems with stoichiometry and
mass conservation. This can be turned to our advantage, by using conservation as a
test for numerical accuracy and as a quick empirical way of deciding if the time-
steps need to be shorter.

The prototypical reaction scheme for a Michaelis–Menten enzyme1,2 crops
up frequently in signaling interactions:

(2.8)

This is readily represented by two reactions in sequence. The final reaction is
conventionally assumed to be unidirectional. This is a good approximation for
most systems with low product concentrations, though it is also reversible. The
Michaelis–Menten scheme is so common that the modeler may wish to represent it
as a self-contained module (Box 2.1).

Box 2.1 Useful Equations

1. Michaelis–Menten Equation and Relationship to Rate 
Constants

Standard formulation:

(1) (From Equation 2.8)

Where S is substrate, E is enzyme, E.S is enzyme-substrate complex, and P is product.

Vmax = maximum velocity of enzyme = k3 . (2)

Derivation: Substrate is saturating, so all of E is in E.S form. So

Vmax · [Etot] = [E.S] · k3 = [Etot] · k3 (3)

The units of Vmax  come in a variety of forms, due care is necessary in conversion
as described below.

(continued)
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Box 2.1 (continued)

Km = (k3 + k2)/k1 (by definition) (4)

In most kinetic experiments, only Vmax and Km are obtained for a given
enzyme. This means that we are short one parameter for constraining k1, k2, and
k3 . An assumption which seems to work well is

k2 = k3 ∗ 4 (5)

This is not entirely arbitrary. In many enzymes k2 >> k3. If k2 is small
compared to k3 then a large proportion of the enzyme will be in the complex
form, assuming Km is fixed. In such cases it may be better to explicitly model
the enzyme reaction as a series of conventional reaction steps, rather than hide
the enzyme complex. The factor of four keeps the amount of enzyme complex
fairly small while avoiding extreme rate constants which might cause numerical
difficulties. In previous studies, this factor has been varied over a range from
0.4 to 40, with very little effect on the simulation results.11

2. Standard Bimolecular Reaction

(6)

Where A and B are reactants and C is the product. Note that this is completely
reversible. The equilibrium dissociation constant is

Kd = kb /kf (by definition) (7)

So, if B is limiting, and half of B is bound, then at equilibrium:

[A][Bhalf] · kf = [Chalf] · kb = [Bhalf] · kb (8)

Since the other half of B has been converted to C. So we get the standard
relationship for Kd :

[ABhalf ] = kb /kf = Kd (9)

or, Kd is that conc of A at which half of B is in the bound form. Obviously the
association or binding constant is

Ka = kf /kb = 1/Kd (10)

A B
k

k
C
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2.2.2 INTEGRATION METHODS

Three characteristics of biological signaling reactions help select between integration
methods:

1. Reaction loops
2. Rates spanning at least three orders of magnitude
3. Very large numbers of reactions

Reaction loops are a very common motif: even enzyme reactions contain such
a loop (Figure 2.1). Other situations include interconversion between states of a
system, and when an enzyme can be reversibly bound to multiple activators.

These loops make it difficult to apply implicit integration methods (see Section
1.3) efficiently to reaction systems. As described above, reaction loops can be
eliminated through conservation relationships but this may give rise to other com-
putational problems. For non-looping systems, it is sometimes possible to order the
implicit solution matrix in a manner that can be solved using backward elimination
in order (N) operations. This was described for branching neuronal models by Hines3

and is utilized in Chapter 9. In the presence of loops, however, one needs to solve
the matrix of reactions, which takes order (N3) operations in the general case.4

Iterative methods and clever ordering of the matrices can reduce this requirement
somewhat, but implicit integration remains computationally expensive for large
reaction systems. This is unfortunate, as the wide range of time-constants (point 2
above) means that one needs to use time-steps of the order of the fastest rate in the
system unless one is using implicit methods.5 Higher-order integration methods,
especially with variable timestep, may be useful in solving reaction systems under
many conditions. Runge–Kutta and Bulirsch–Stoer are among the techniques that
have been examined.4 However, both methods are non-local, that is, they are difficult
to decompose in a modular manner. They may also suffer from instability or drastic
speed reduction when confronted with abrupt stimuli typical of experimental manip-
ulations. The wide range of reaction rates also slows down such methods (see
Equation 1.19). The exponential Euler method6 is a simple integration scheme
predicated on the assumption that variables will follow exponential decay time-
courses. This happens to fit well with most reaction systems, and the simplicity of
the method makes it easy to implement in a modular fashion. It is also extremely
robust and can handle abrupt stimuli gracefully. It is, of course, not as efficient as

FIGURE 2.1 Reaction loops. (A) Enzyme reaction; E, Enzyme; S, Substrate; P, Product.
(B) States of a voltage-gated ion channel. (C) Activation scheme for a G-protein coupled
receptor: R, Receptor; L, Ligand; G, G-protein.
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the higher-order methods operating at their best, and does not have built-in variable
time-step calculations. These can sometimes be imposed from above if the modeler
knows when a particular simulation is expected to be in a slowly changing state.

Box 2.2 Useful Conversions

1. Biological Ratios (for Mammalian Cells)

Proportion of protein to cell weight: 18% (Reference 17, pp. 92) (11)

Proportion of lipid to cell weight: 3% (Reference 17, pp. 92). (12)

Approx. 50% of membrane weight is protein (up to 75% in some organelles) 
(Reference 17, pp. 264). (13)

So maybe 3% of cell mass is membrane protein. (14)

2. Concentration and Other Units

When working within a single compartment, it is simplest to use standard
concentration units such as µM. However, transfers between compartments or
to and from the membrane are best handled using the number of molecules.
Indeed, the concentration of a molecule in the membrane is a somewhat tricky
quantity.

To illustrate, we will consider conversion of standard enzymatic units to
number units in a cubical model cell of 10 µM sides.

Vol of cell = 1e-6 µl (15)

1 µM in cell will have 1e-18 moles ~ 6e5 molecules/cell (16)

Vmax of 1 µmol/min/mg will convert to Mwt/6e4 #/sec/# (17)

where Mwt is the molecular weight of the enzyme and numbers/cell are repre-
sented by the # symbol. The units can be interpreted as “# of molecules of
product formed per second per # of enzyme molecules.”

Similarly, rates for binding reactions will need to be scaled to the appropriate
units. For reaction 6 above:

(18)

(continued)
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2.2.3 SOFTWARE

Given that chemical rate equations entail the simplest kind of differential equations,
it is not surprising that there is a plethora of useful software available for carrying out
the numerical modeling (e.g., Matlab, Mathematica, others). Assuming that all pack-
ages do a reasonable job with the numerical integration, the choice of method should
be governed more by availability and familiarity than by small differences in efficiency.
For most models and modern computers, simulation times are likely to be much faster
than real time, and one has the luxury of using whatever method is most convenient.
Therefore, the real challenge in specifying complex networks of signaling pathways
is user-interface and data management related. There are rather fewer packages
designed specifically for handling large numbers of chemical reactions in a friendlier
format than simply entering rates and differential equations (XPP, Vcell, GENE-
SIS/kinetikit). Given the interest in the field, such packages are likely to evolve rapidly.

Box 2.2 (continued)

Take
kb ~ 1/τ sec–1 (19)

Then

kf = kb /Kd ~ 1/(τ ∗ Kd ∗ 6e5) sec–1# –1 (20)

So the units of Kd would be #.

These equations give us the rates kf and kb in terms of Kd and τ, and would
be a good place to start refining a model to fit an experimental concentration-
effect curve.

Box 2.3 Recurring Biochemical Motifs in Signaling

There are a few specific motifs that recur in models of biological signaling, and
are worth examining more closely.

1. The Two-State System

Several enzymes, especially the protein kinases, can be reasonably well modeled
as two-state systems: either completely on or completely off. The level of activity
of the system is determined simply by the proportion of the enzyme in the “on”
state. For example, protein kinases typically have an autoinhibitory domain,
which binds to and blocks the active site. Activators of the enzyme, to first
approximation, simply release this block.11 As modeled for PKC, one plausible
mechanism for such an enzyme is for the activators to bind to the inactive
enzyme, and convert it to the active state. Similar “switches” seem to take place
in many enzymes by phosphorylation. (Figure B2.1A).

(continued)
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Box 2.3 (continued)

2. The Empirical Enzyme

A remarkably good empirical description for an enzyme about which little is
known is simply that each activator “turns on” a distinct level of activity
(Figure B2.1B). This mechanism is relatively easy to relate to experimental data,
but it does lead to a proliferation of activity states and enzyme sites with different
rates. PLA2 is an enzyme which has been modeled in this manner.11

3. The Unregulated Enzyme

If a pathway has an enzyme whose activity is unlikely to be saturated, and which
does not undergo any known regulation, it is safe to treat it as a simple unidi-
rectional reaction with a fixed rate constant (Figure 2.1C). This situation fre-
quently arises in degradative pathways of second messengers (e.g., DAG
and AA).

4. The Reaction Loop

This is a common trap for the unwary. Consider the quite plausible scheme for
G-protein coupled receptor activation as illustrated in Figure 2.1C. There is a
strong constraint on the rates: the product of the Kds around the loop must always
be one. The proof of this is left as an exercise for the reader. (Hint: Consider
free energy.) There is no problem with reaction loops where there is an energy-
releasing step, such as phosphorylation or ATP hydrolysis.

5. Buffers

Almost all test-tube experiments rely on buffers (see also Section 3.2.1). For
example, the standard way to obtain a concentration-effect curve, either exper-
imentally or in a simulation, is to buffer the control molecule at a series of
concentrations and monitor the resulting effect on the target. A good chemical
buffer is actually quite unpleasant to model. By definition, a good buffer must
a) be able to compensate for the largest chemical concentration changes that
may happen in the system, and b) do so faster than other reactions. Ca2+ buffering
systems, for example, have large amounts of avid chelators like EGTA with
balancing amounts of Ca2+. Cooperative binding makes such buffers even more
effective. Accurate models of such buffered systems therefore require very small
timesteps. If one is willing to settle for a perfect rather than a realistic buffer, it
is almost embarrassingly easy to do so numerically: Simply fix the concentration
of the molecule at the target level. One drawback of such perfection is that any
one-way reaction fed by such buffers will quite happily build up infinite levels
of product.

(continued)
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2.3 PARAMETERIZATION

Parameterization is by far the most difficult aspect of modeling signaling pathways
(and most other biological systems as well). In developing a model one has to draw
a balance between known biological detail, and the applicability of such detail to
the problem at hand. This is constrained further by the availability of data, and the
sheer scale of the problem of modeling extremely complex systems.

2.3.1 FROM TEST-TUBE DATA TO MODELS

Cellular signaling is complex both in terms of the number of players, and the
properties that emerge from their interactions. A systematic reductionist approach
to cataloging and characterizing the major pathways may seem daunting. Neverthe-
less, the admirably quantitative traditions of biochemistry have led to the accumu-
lation of a remarkably complete base of data for many signaling molecules. Within
the constraints of test-tube chemistry, it is possible to derive faithful models of many
individual pathways. For example, the major protein kinases PKC,7 PKA,8 CaMKII,9

and MAPK10 have each been well-characterized. Such data are essential for devel-
oping internally consistent models of pathways. It is significant, however, that the
data are complete enough that independently developed models of the pathways are
also consistent.10,11 Further validation of these models can be done by examining
their predictive capacity in composite models. For example, the MAPK response to
EGFR stimulation involves the receptor and its immediate signaling cascade, the
Ras pathway as well as the MAPK cascade (see Equation 2.10 below). Replication
of such complex signaling sequences suggests that one can reasonably scale up the
reductionist approach to larger problems.

Box 2.3 (continued)

FIGURE B2.1 Models of enzymatic regulation. (A) Two-state enzyme where either of
two activators form the same active state. (B) Empirical enzyme. Each activator produces
a distinct activity level. (C) Unregulated enzyme. A simple unidirectional reaction suffices.
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In order to scale up from a collection of rate constants to a framework which
can tackle interesting biological problems, a necessary first step is the development
of a library of models of individual pathways11 (http://www.ncbs.res.in/
~bhalla/ltploop/ or http://piris.pharm.mssm.edu/urilab/). The next stage is to merge
relevant pathway models into a composite simulation of the system of interest,
inserting system-specific interactions and parameters where necessary. This is a
multi-step process. Where experimental results involving combinations of a few
models are available, these can provide excellent constraints on model parameters.
Finally, the composite model is explored with a variety of stimuli, emergent prop-
erties are examined, and explanations for known phenomena are sought.

2.3.2 DATA SOURCES

Primary data for model building come from three principal kinds of experimenal
publications. The first category of paper tends to be very qualitative, and is frequently
of the form of “Gene A expressed in cell type B activates pathway C.” Nevertheless,
such data is critical for establishing the mechanisms of the pathway and the causal
sequence of signaling events. It is instructive to follow the early literature on the
MAP Kinase cascade (Reviewed in Reference 12). Initial studies indicated co-
activation of various stages of the cascade. Intermediates were suspected, but not
identified.

(2.9)

It is a measure of the rapid pace of the field that by 1992, some clear experiments
were done which established the current version of our understanding of the cascade.13

(2.10)

In the laboratory, as well as in model development, such studies are usually
followed by quantitative analyses which put some numbers onto the mechanistic
arrows. A typical paper in this category would seek to purify a newly identified
signaling molecule, verify its mechanism of activation in the test tube, and obtain rate
constants. For enzymes this purification usually involves a sequence of chromato-
graphic separations leading to ever higher specific activities and lower yields. Table 2.1
illustrates such a purification sequence for MAPK (adapted from Reference 14).

Such papers provide not only activity parameters, but also an estimate of con-
centration of the signaling molecule in the preparation. These numbers are, of course,
interdependent. The good news is that the degree of purification affects the activity
and concentration in inverse proportion, so one does have a good estimate of total
cellular enzyme activity even if concentration values are inaccurate. The bad news
is that most regulatory interactions require a good estimate of concentration. Con-
tinuing with our MAPK example, it turns out that the concentrations for MAPK in
the hippocampus are some ten times that in most other neural tissues.15 Such system-
specific parameters greatly complicate quantitative modeling. As discussed below,

EGF EGFR→ → → →?  Activator (phosphorylated ?)  MAPK

EGF EGFR GRB p ras Raf→ → → → − → →       MAPKK  MAPK2 21 1
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there are still more fundamental difficulties in extracting system-specific parameters
using most current experimental approaches.

The third category of paper, in which detailed reaction mechanisms and kinetics
are analyzed, is much to be treasured. Such papers typically contain numerous
concentration-effect curves for enzyme activation and binding of molecules, often
with estimates of time-course.8,16 These curves tightly constrain parameters and
reaction mechanisms.

2.3.3 ITERATIVE PARAMETERIZATION

An overview of the process of parameterization is provided in the flowchart
in Figure 2.2. The key aspect of this flowchart is that it is iterative. We start
with a simple, plausible mechanism for a signaling molecule and results for

a specific interaction involving it. Once this is parameterized to satisfaction, another
interaction may be considered. This elaboration of the reaction mechanism will
usually mess up the first stage of parameterization, which must be repeated, until
now both interactions behave well. In systematic experimental papers, interactions
are often examined in a progressive sequence which fits very well with such an
iterative approach. The process of parameterization is illustrated in a worked example
for developing a model of PKC (Box 2.4). There is a great deal of similarity between
this process and the Towers of Hanoi: each additional interaction may mean that the
modeler must go through the whole process again. It is well to apply Occam's razor
ruthlessly to prune elaborate mechanisms: do not assume any reactions unless the
data demand it. The reader is invited to work out the number of iterations required
to match, for example, five graphs of experimental results, assuming that each new
graph introduces reaction changes that require adjustment to all previously fixed
parameters. This iterative process of model development typically goes through 50
or more versions for each new pathway modeled. A similar process may be needed
to refine models in the light of new data or to incorporate additional mechanistic
details such as cytoskeletal interactions.17

TABLE 2.1 
Purification Series for MAPK

Purification
Stage

Volume 
(ml)

Total 
Protein 

(mg)

Total 
Activity 

nmol.min–1

Specific
Activity 

nmol.min–1.mg–1

%
Recovery Purification

Cytosol 366 11488 1241 0.108 100 1
DEAE-
cellulose

432 5490 898 0.16 72 1.5

Phenyl-
Sepharose

70 28 378 13.5 30 125

Mono-Q 10 0.05 46.9 938 3.8 8685
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FIGURE 2.2 Parameterization flowchart. The “Incorporate” and “Bail out” routines are
indicated on top.
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2.3.4 PARAMETER SEARCHING

Several of the stages in the flowchart require parameter estimation based on fits
between simulated and experimental data. This is an aspect of modeling that is
especially suited to judicious automation. Parameter searching can be done in three
main ways: user-guided, brute force, and automated. The user-guided approach takes
advantage of human insight into the system to select the best of a small number of
versions of the model. Rather complex judgments, for example, about the shape of
a stimulus response curve, typically enter into such searches. It is obviously a labor
intensive and somewhat subjective method. Nevertheless, it is often the best approach
especially in the initial stages of refining a simulation. The brute force and automated
searching methods both require a measure of the “goodness” of a given set of
parameters and this can be difficult to define. Obvious methods include mean-squared
error of the simulation results as compared to experimental data. The key requirement
for such a measure of “goodness” of fit is that it should improve monotonically and
smoothly as the simulation improves. Often the mean-squared term (Equation 1.22)
behaves well near the best fit, but does not help much if the parameters are signif-
icantly off. More sophisticated measures may behave better but are correspondingly
harder to set up. Brute force methods are effective if there are only a few parameters
to examine, and if each simulation runs rather quickly. In this approach each param-
eter is scaled up and down in small increments which are expected to span the range
of interest. If there are N parameters each run for M scales, then the number of
required simulations = M^N. A practical upper limit for N is typically four, using
an M of 3 or 4. A variety of automated methods exist, such as simplex, gradient
descent, and conjugate gradient.4 These methods as well as genetic algorithms have
been compared for neuronal models.18 It is difficult to provide a general prescription
here; each specific problem has its own unique features. The only common rule is
not to let the searches proceed blindly. The modeler usually has a pretty good feel
for reasonable parameters, and can catch the search algorithm when it threatens to
launch off into the realm of the absurd.

Box 2.4 PKC Parameterization

PKC is a “mature” enzyme: it has been studied in sufficient depth that most of
the relevant data are available. Here we use it as an example of the parameter-
ization process. We start with the following mechanistic data:7

• PKC is activated by Ca2+, AA, and DAG. We will examine only the
first two for this exercise.

• PKC, like many serine/threonine kinases, is kept in the inactive form
by an inactivation domain on the kinase itself which contains a
pseudo-substrate. (Figure B2.2A) Normally the protein folds over
onto itself so that the pseudo-substrate domain covers the catalytic
site and prevents access to other substrates. Activators unfold the
protein and expose the catalytic site. This suggests that we could model

(continued)
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Box 2.4 (continued)

 it as a two-state enzyme, where the activity is always the same when
open, and different activators open different fractions of the total
enzyme (or open it for different times).

• Membrane translocation is known to be involved in PKC activation.

• The time-course of activation of PKC is under 10 sec. Ca2+ activation
is under 1 sec.7,26

In order to model the kinase, we go sequentially through the data plots in
Figure B2.3. The solid lines represent experimental data.26

1. Basal Activation (Figure B2.3A). Inspecting the plot, we first note
that there is a basal level of activation even at very low Ca2+. This
amounts to about 5% of maximal activity. Ignoring the 1 nM Ca2+,
we can set up this activity by postulating a basal reaction where 5%
of the cytosolic enzyme goes to the active state. So,

kf1/kb1 ≈1/20 (1)

Setting this to a 1 sec time course,

1 sec ≈ 1/(kb1 + kf1) (2)

Solving:

kb1 ~ 1/sec, kf1 ~ 0.05/sec (3)

2. Ca2+ Activation. The curve in Figure B2.3A appears to have a half-
max of about 1 µM Ca2+. Unfortunately this produces nothing at all like
the desired curve. The maximal activity with Ca2+ stimulation alone is

only about 30% of peak PKC, whereas a simple Ca-binding reaction will give us
100% activity. This is a situation where the known mechanistic information about
membrane translocation gives us a useful hint. Let us keep the half-maximal
binding where it was, at about 1 µM Ca2+ (Reaction 2), and assume that the
membrane translocation step (Reaction 3) is what allows only 1/3 of the kinase
to reach the membrane. This additional degree of freedom lets us match the curves
nicely. The final parameters are pretty close to our initial guesses:

kf2 = 0.6/(µM.sec),  kb2 = 0.5/sec (4)

kf3 = 1.27/sec, kb3 = 3.5/sec (5)

(continued)

© 2001 by CRC Press LLC



Box 2.4 (continued)

It is important to keep in mind that this is still just an empirical model
for the true reaction mechanisms. Although we can justify the additional
reaction step by invoking membrane translocation, strictly speaking we
do not have any direct experimental basis for this. Indeed, a blind param-
eter search will quite effectively utilize the two additional parameters to
give us the desired curve, without any insight into mechanistic details.

3. Matching the AA activation in the absence of Ca2+. Examination of
the curves (Figure B2.3B) indicates that the activation is almost linear
in this concentration range. Therefore, almost any large Kd  should do
as a starting point. After a little exploration, values of

kf4 = 1.2e-4 /(µM.sec), kb4 = 0.1/sec (6)

seem reasonable. We use a slower 10-sec time-course for the AA
binding steps.

4. Matching AA activation with 1 µM Ca2+. A quick run with the previous
version of the model shows that it is not able to account for the synergistic
activation of PKC by AA and Ca2+ combined (Crosses in Figure B2.3C).
We therefore must introduce this synergy in the form of combined
binding of Ca2+ and AA to the kinase (Reaction 5). We already have
Ca2+- and AA-bound forms of the kinase. Which should we use as the
starting point? Given that Ca2+ binding is faster, it is reasonable to use
the Ca2+. PKC form as our first intermediate, and subsequently bind AA
to this to give our synergistically active form. Furthermore, this combined
form should account for the bulk of the kinase when both Ca2+ and AA
are present, so its reaction should have a much tighter affinity for AA
than does the PKC-AA reaction. Working through the matches, we find
that a tenfold increase in affinity produces a good match:

kf5 = 1.2e-3/(µM.sec), kb5 = 0.1/sec (7)

5. Matching Ca2+ activation with fixed 50 µM AA. This is the test of
the completeness of our model. In principle we have already accounted
for all combinations of Ca2+ and AA activation. As it turns out, our model

does indeed do a good job of replicating this curve, without adding any further
reactions (Figure B2.3D). Not only is our model empirically able to match the
previous figures, it has been able to generalize to a new situation. This improves
our confidence in the model being applicable to other signaling situations as
well. Our final model is shown in Figure B2.2B. As an exercise, the reader is
invited to try to match further interactions involving DAG.

(continued)
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Box 2.4 (continued)

FIGURE B2.2 Activation of PKC. (A) Activation of PKC. In the inactive form it is
folded over at the hinge region H so that the catalytic site C is covered by the pseudosub-
strate P. When activated, the catalytic site is exposed. (B) Reaction scheme for PKC
activation model. The cytosolic form can undergo any of reactions 1, 2 or 4. The active
form of PKC is formed by each of the reactions 1, 3, 4, or 5.

FIGURE B2.3 PKC Regulation: experimental (solid lines) and simulated (dashed lines).
(A) Basal and Ca-stimulated activity. (B) AA-stimulated activity without Ca. (C) AA-
stimulated activity in the presence of 1 µM Ca. Crosses indicate curve obtained without
using a separate reaction to represent synergy. (D) Ca-stimulated activity in the presence
of 50 µM AA. The simulated curve was predicted from the model based on panels A–C.
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2.4 MODEL INTEGRATION

A well-designed library of pathway models would ideally be plug-and-play: one
should be able to take individual pathway modules and connect them together as if
one were drawing a block diagram. For this to work, the interactions between path-
ways should be incorporated into the pathway models themselves, rather than pasted
on after the composite simulation has been assembled. This principle makes the
parameterization process relatively independent of subsequent use of the pathways.
It is also cleaner in the sense that emergent properties of the system are not suscep-
tible to being built in by tweaking all parameters together. Three common motifs
for inter-pathway interactions are second messengers, multimer formation, and cova-
lent modification.

Interactions between pathways via second messengers are trivial to implement:
cAMP produced by any of the 15-odd adenylyl cyclases (or applied through a pipette)
will activate PKA identically.

Multimer formation (such as binding of Ca4.CaM to CaMKII) or dissociation
of multimers (as in G-proteins) is somewhat more involved. One complication is
that all components of the multimer may undergo modification of activity in a
substrate-specific manner. For example, the catalytic activity of the G-protein alpha
subunit is different in isolation, and when bound to target enzymes.19 Furthermore,
the GTPase activity depends on which target enzyme it is bound to. Another difficulty
is that unlike second messengers, every participating protein in a multimer may be
present in multiple isoforms. Such detailed data may be difficult to obtain, and
incorporation of all isoform permutations into a library can be difficult.

Communication between pathways through covalent modification, such as by
phosphorylation, is still more problematic. First, enzyme-substrate interactions are
often highly specific. The isoform permutation problem mentioned above is more
problematic. In addition to specificity of rates for enzyme action, there is also isoform
specificity of signaling responses following covalent modification. Determination of
the signaling responses due to a specific enzyme-substrate pair often boils down to
educated guess work: Can one assume that the phosphorylation rates for PKC-α on
ACII are the same as for PKC-β on ACIII? Second, covalent interactions are often
modulatory rather than switch-like. Unfortunately, the modulatory effects are typi-
cally applicable for a specific activity state of the enzyme. An example of this
situation might be the experimental result that MAPK phosphorylates PLA2 to
increase its activity some threefold.20 Closer examination of the methods reveals that
the activity was measured in 5 mM Calcium. It would now be useful to know what
happens over a more physiological range of Ca2+. Yet more detailed models would
need to incorporate increase in activity as compared to other activators of PLA2 as
well. Practically speaking, pathway interactions may involve even more parameters
than the pathways themselves.

Model integration, that is, converting a set of models of individual pathways
into a network, is still a long way from the ideal plug-and-play situation. Current
models may have to fall back on the following compromises between the modular
library approach and completely uninhibited parameter tweaking.
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• Depending on data sources, it may be simpler to develop two or more
tightly coupled pathways as a single unit. The MAPK pathway is a
sequence of three kinases, with interspersed inhibitory phosphatases.
These reactions are so tightly coupled that in experiments as well as in
modeling, it is simplest to treat them as a single entity.

• Data may be more readily available for a series of pathways than for the
individual elements. The EGFR pathway and the MAPK cascade in
Equation 2.10 illustrate a situation where the direct outputs of the EGFR
are difficult to measure, but a good deal of data are available for MAPK
activation by EGF (e.g., Reference 21. Given the input (EGF) and the
output (MAPK activity) and known parts of the pathway (Ras, MAPK),
one can solve for the unknown (EGF pathway). In other words, the MAPK
pathway just acts as an output “black box” in our parameter selection
process for the EGF pathway.

• In several cases (e.g., MAPK → PLA2), the individual models are well
defined and the composite effect is known but the details of the interaction
are not. Here the interaction strength is the unknown which can be param-
eterized while the structure of the individual models are kept fixed.

The final step of model integration, when several individual pathway models are
merged into a grand simulation, is precisely the point at which models scale beyond
the grasp of most unaided human minds. Well-designed interfaces play a key role
at this stage. First, they can provide sanity checks for trivial problems like duplication
of enzymes in different pathway models, or incompatible units. Second, they allow
quick checks for convergence of molecule concentrations to reasonable steady-state
values. Most importantly, the interface should make it easy for the modeler to match
simulations against experiments which provide data for an entire network of path-
ways. This is, after all, the purpose of the entire exercise.

2.4.1 MODEL EVALUATION

Model evaluation involves at least two questions: How good is the data; and, how
good is the model? The “garbage in, garbage out” rule means that the first sets
fundamental limits to accuracy. This is reflected in the flowchart above. Error bars,
while they inspire confidence in a given experiment, may not be the best way of
evaluating data accuracy. It is common for different groups to have widely divergent
results for the same enzyme, each internally accurate to around 10% (Table 2.2).

Subtle differences in the methods may lead to severalfold differences in rates.
One useful rule of thumb is that enzyme rates in vivo are likely to be higher than
test-tube rates: all else being equal, choose the highest reported rate. Multiple data
sources for the same parameter are extremely valuable as they provide a feel for the
range of values and often a range of conditions and supplementary results. The
preferred technique for model evaluation is to test its predictive capacity. Within a
paper, some plots may contain mutually redundant data, though it would be all but
impossible to derive one from the other without explicitly making a model. As part
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of the iterative process described earlier, one might imagine approaching each new
graph in a paper hoping that the existing interactions and model are already capable
of predicting it (Figure B2.3D). The disparity between results from different papers
usually makes it difficult to accurately predict a figure in one paper completely from
another. One should, however, be able to adapt a model to a specific paper with
relatively little effort if the model is fundamentally sound. It is worth making a
distinction here between the fundamental mechanisms and rates of a model (which
should be the same for a given enzyme) and the actual concentrations in a given
experiment. In test-tube experiments in particular, concentrations are entirely up to
the experimenter. This lays a particular onus on the modeler to accurately model
experimental conditions. This seemingly trite recommendation is nontrivial. For
example, consider a two-state enzyme whose activity is measured using a test
substrate and a concentration-effect curve for levels of product. 

An obvious shortcut in simulating such an experiment would be to simply
measure (in the simulation) the levels of the active form of the enzyme.
There are at least two pitfalls here. First, experiments to measure enzyme

activity often utilize saturating substrate levels. If the enzyme acts on some other
regulatory component the substrate will competitively inhibit this other enzyme
activity (Figure 2.3A). Unless the substrate assay is modeled explicitly, this com-
petitive interaction will be missed. Second, the mechanism for regulation of the
enzyme usually assumes that the enzyme-substrate complex is a transient, and is
present at very low levels. This assumption breaks down at saturating substrate levels.
Here we would have to explicitly include the enzyme-substrate complex as a par-
ticipant in other interactions. (Figure 2.3B).

Steady state data often account for most of the parameters in a simulation of
signaling pathways. Such experiments can often be replicated by more than one
possible reaction mechanism. Models based on such data are clearly poorly con-
strained. Experimental designs which explicitly incorporate time-series
measurements22 provide much tighter constraints on model parameters.

TABLE 2.2 
Phosphorylation of Neurogranin by PKC 

Source Km (µM)
Vmax

(min–1)

Paudel et al., JBC 268, 6207, 1993 16.6 ± 4.7 643 ± 85
Huang et al., ABB 305, 570, 1993 (Using PKC β) 26.4 ± 1.3 285 ± 11

Note: Both sets of experiments were run at 30°C; however, Huang et al. separately
measured rates for the α, β, and γ isoforms of PKC (β isoform reported here).
The methods used in each paper appear tightly controlled and reliable.
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2.5 COMPLICATIONS AND FUTURE DIRECTIONS

A cynic would identify two serious problems with current attempts to model sig-
naling pathways. The first is that there is not enough detail in the models. The second
is that there is too much. The first criticism refers to the fact that biological systems
are far more intricate and computationally rich23 than crude test-tube chemistry
allows. As described much more comprehensively in subsequent chapters, our simple
differential equations are only a first approximation to the three-dimensional, com-
partmentalized, stochastic events in a real cell. Even at the very limited level of
well-stirred biochemistry, current models barely begin to describe the known menag-
erie of signaling molecules. The second problem relates to the limitations of exper-
imental data. It is perhaps presumptuous to attempt to devise models involving
dozens of signaling pathways given the current state of our knowledge. Thus far, no
more than two or three signaling molecules have ever been simultaneously monitored
in real time in vivo.24 There is also a growing recognition that macroscopic, test-
tube experiments are seriously flawed as models of cellular signaling. Cellular
chemistry is not a point process, or even simply diffusive. Complex sequences of
reactions are known to occur in an assembly-line fashion on cytoskeletal scaffolds.25

Such reactions are not necessarily well-described by bulk concentrations, rates, or
even mechanisms.

From a practical viewpoint, both problems are addressed by the simple obser-
vation that many models do indeed replicate and predict experimental data. These
models are therefore, at least, empirically useful. To the extent that such models
remain faithful to biology, they promise to provide the theoretical counterpart to the
biology of signaling. It is increasingly evident that such a theoretical understanding
will be critical to overcoming two of the major difficulties in the field: complexity

FIGURE 2.3 Effects of high substrate concentrations. (A) Competitive inhibition of forma-
tion of P1 by high levels of S2. The reaction runs for 100 sec, with 1 µM of S1 and 1 µM of
enzyme. (B) Shifted activation curve depending on substrate levels. The inactive enzyme I
and activator A start out at 1 µM. When substrate levels approach saturation the amount of
free enzyme declines, leading to the shift in the curve. Any other reaction depending on the
activator would be affected. In both cases all enzyme rates are set to 0.1, so Vmax = 0.1 and
Km = 2.
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and patchy experimental data. In concert with web-based databases of signaling
pathways (URLs in Section 2.7), the methods described in this book form an emerg-
ing framework for a quantitative approach to studying cellular signaling.

2.6 GLOSSARY OF ABBREVIATIONS

PKC Protein Kinase C
PKA Protein Kinase A
CaMKII Calcium Calmodulin Activated Protein Kinase Type II
MAPK Mitogen-Activated Protein Kinase
AA Arachidonic Acid
DAG Diacylglycerol
cAMP cyclic Adenosine MonoPhosphate
CaM Calmodulin
GTP Guanosine TriPhosphate
ACII, ACIII Adenylyl Cyclases Type II, III
PLA2 Phospholipase A2
EGF Epidermal Growth Factor
EGFR Epidermal Growth Factor Receptor
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Modeling Signaling Pathways

Lauffenberger, D. A. and Linderman, J. J., Receptors: Models for Binding, Trafficking and
Signaling, Oxford University Press, New York, 1993.

Thomas, R. and Thieffry, D., Developing a logical tool to analyse biological regulatory
networks, in Computing with Biological Metaphors, Paton, R., Ed., Chapman and Hall,
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Bray, D., Protein molecules as computational elements in living cells, Nature, 376, 307, 1995.
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Alberts, B., Bray, D., Lewis, J., Raff, M., Roberts, K., and Watson, J. D., Molecular Biology
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2.8 URLs

Kinetic Simulation Software

GENESIS/kinetikit: http://www.bbb.caltech.edu/GENESIS
XPP: http://www.pitt.edu/~phase/
Vcell: http://www.nrcam.uchc.edu

Models and Databases of Pathways

Signaling pathways, concentrations and rates from U.S. Bhalla and R.I. Iyengar, 1999:
http://www.ncbs.res.in/~bhalla/ltploop/ or http://piris.pharm.mssm.edu/urilab/
Genomics database of pathways: http://www.genome.ad.jp/kegg/
Cross-reference records of signalling molecules: http://bioinfo.mshri.on.ca.
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3.1 CALCIUM SIGNALING IN NEURONS AND OTHER 
CELL TYPES

Chemical reaction and diffusion are central to quantitative neurobiology and bio-
physics. An obvious example is action potential-dependent chemical neurotransmis-
sion, a process that begins with influx of Ca2+ through presynaptic Ca2+ channels.
As Ca2+ ions diffuse away from the mouth of voltage-gated plasma membrane Ca2+

channels and into the cytosolic milieu, “domains” of elevated intracellular Ca2+

concentration activate proteins associated with neurotransmitter release.1 These Ca2+

domains are formed in the presence of ubiquitous Ca2+-binding proteins of the
presynaptic terminal. By binding and releasing free Ca2+, endogenous Ca2+-binding
proteins and other “Ca2+ buffers” determine the range of action of Ca2+ ions,
influence the time course of their effect, and facilitate clearance of Ca2+.2 Here and
throughout this chapter, “Ca2+ buffer” refers to any Ca2+-binding species, whether
an endogenous Ca2+-binding protein, an exogenous Ca2+ chelator (e.g., BAPTA or
EGTA), a Ca2+ indicator dye, or molecules like ATP and phospholipids with non-
specific but important Ca2+ buffering capacities (see Box 3.1).

While Ca2+ influx via voltage-gated Ca2+ channels of the plasma membrane is
a major source of cytosolic Ca2+ in neurons, another source is the endoplasmic
reticulum (ER), a continuous membrane-delimited intracellular compartment that
plays an important role in Ca2+ signaling. In many neurons, the ER has integrative
and regenerative properties analogous to those of the plasma membrane. For exam-
ple, when metabotropic receptors of the plasma membrane are activated, they stim-
ulate the production of the intracellular messenger, inositol 1,4,5-trisphosphate (IP3),3

which promotes Ca2+ release from intracellular stores by binding and activating IP3
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receptor Ca2+ channels (IP3Rs) located on the ER membrane.4 In addition to this
IP3-mediated pathway, a second parallel mechanism for Ca2+ release is subserved
by ryanodine receptors (RyRs), intracellular Ca2+ channels (also on the ER) that are
activated by cyclic ADP ribose. Importantly, both IP3Rs and RyRs can be activated
and/or inactivated by intracellular Ca2+, leading to what has been called a “Ca2+

excitability” of the ER.5,6 This Ca2+ excitability is the physiological basis for prop-
agating waves of Ca2+-induced Ca2+ release (CICR) that can be observed in neurons
and other cell types via confocal microfluorimetry. For a review, see References 7,
8, 9, and 10.

Box 3.1

Representative Cytosolic Ca2+ Buffers
k + k– K D

Name (µµµµM–1s–1) (s–1) (µµµµM)b (µµµµm2/s)c Ref.a

Endogenous
Troponin-C 90, 100 300, 7 3, 0.05–0.07 d 1
Sarcolemmal — — 1100, 13 — 2
phospholipids

Calmodulin 500, 100 470, 37 0.9–2.0, 0.2–0.4 32 1
Calbindin-D28K 20 8.6 0.4–1.0 27 3
Parvalbumin 6e 1 0.00037 36 1

Exogenous
EGTA 1.5 0.3 ~0.2f 113 4
BAPTA 600 100 0.1–0.7 95 5
Fura-2 600 80–100 0.13–0.60 30–95g 5,10
Ca2+ Green-1 700 170 0.19–0.25 84 6
Ca2+ Green-1 dextran ~700 ~170 0.24–0.35 20 7

a For a review, see References 7, 8, and 9. 
b A range indicates that measurements were made under different experimental conditions; values
for distinct binding sites are separated by a comma. 
c In some cases estimated using the Stokes–Einstein relation. 
d The troponin complex is immobile due to its association with actin. 
e Even slower physiologically because magnesium must dissociate (with a time constant of approx-
imately 1 sec) before Ca2+ can bind.1
f EGTA is strongly dependent on pH variation near 7.0.7

g As much as 65–70% of fura-2 may be immobilized.10

Source: Modified from Reference 21. With permission.
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1. Falke, J., Drake, S., Hazard, A., and Peersen, O., Molecular tuning of ion binding

to Ca2+ signaling proteins, Q. Rev. Biophys., 27, 219, 1994.
2. Post, J. and Langer, G., Sarcolemmal Ca2+ binding sites in heart: I. Molecular
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(continued)
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Recent experimental evidence indicates that intracellular Ca2+ release events in
neurons mediated by IP3Rs and RyRs can be spatially localized, forming “localized
Ca2+ elevations” analogous to Ca2+ domains formed during Ca2+ influx. To give just
one example, repetitive activation of the synapse between parallel fibers and Purkinje
cells evokes synaptic activity that produces IP3 in discrete locations. In these neurons,
subsequent IP3-mediated Ca2+ release from intracellular stores is often localized to
individual postsynaptic spines, or to multiple spines and adjacent dendritic shafts.11

Spatially localized Ca2+ release also occurs in non-neuronal cell types. In fact,
localized Ca2+ release events called Ca2+ “puffs” were first observed in the immature
Xenopus oocycte, where Ca2+ puffs mediated by IP3Rs can be evoked in response
to both flash photolysis of caged IP3 and microinjection of non-metabolizable IP3

analogue.12,13 Similarly, localized Ca2+ release events known as Ca2+ “sparks” are
observed in cardiac myocytes.14,15 Ca2+ sparks are mediated by RyRs located on the
intracellular Ca2+ store of muscle cells, the sarcoplasmic reticulum (SR). During
cardiac excitation-contraction coupling, Ca2+ sparks activated by Ca2+ influx through
sarcolemmal Ca2+ channels are the “building blocks” of global Ca2+ responses that
cause muscle contraction.16

The remainder of this chapter is organized as follows. First, we describe the
governing equations for the reaction of Ca2+ with buffers and the buffered diffusion
of Ca2+. Numerical simulation of Ca2+ domains (and related analytical approxima-
tions) are covered in Section 3.3, where these methods are subsequently used to
quantify the effect of indicator dye properties on the appearance of localized Ca2+

elevations such as Ca2+ sparks. In Section 3.4, reaction-diffusion equations are used
to simulate propagating Ca2+ waves, the macroscopic properties of which are shown
to depend on the discrete nature of Ca2+ release. Because of the many commonalities

Box 3.1 (continued)

3. Koster, H., Hartog, A., Van Os, C., and Bindels, R., Calbindin-D28K facilitates
cytosolic Ca2+ diffusion without interfering with Ca2+ signalling, Cell Calcium,
18, 187, 1995.

4. Tsien, R., New Ca2+ indicators and buffers with high selectivity against magne-
sium and protons: design, synthesis, and properties of prototype structures, Bio-
chem., 19, 2396, 1980.

5. Pethig, R., Kuhn, M., Payne, R., Adler, E., Chen, T., and Jaffe, L., On the
dissociation constants of BAPTA-type Ca2+ buffers, Cell Calcium, 10, 491, 1989.

6. Eberhard, M. and Erne, P., Calcium binding to fluorescent calcium indicators:
calcium green, calcium orange and calcium crimson, Biochem. Biophys. Res.
Commun., 180, 209, 1991.

7. Kao, J., Practical aspects of measuring [Ca2+] with fluorescent indicators, Methods
Cell Biol., 40, 155, 1994.

8. Baimbridge, K., Celio, M., and Rogers, J., Ca2+-binding proteins in the nervous
system, Trends Neurosci., 15, 303, 1992.

9. Heizmann, C. and Hunziker, W., Intracellular Ca2+-binding proteins: more sites
than insights, Trends Biochem. Sci., 16, 98, 1991.

10. Blatter, L. and Wier, W., Intracellular diffusion, binding, and compartmentaliza-
tion of fluorescent Ca2+ indicators indo-1 and fura-2, Biophys. J., 58, 1491, 1990.
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between Ca2+ regulatory mechanisms in neurons and myocytes, the mathematical
and computational methods presented are readily applied to cellular neuronal models.

3.2 THEORETICAL FOUNDATION

Reaction-diffusion equations are often used to simulate the buffered diffusion of
intracellular Ca2+, an important process to include in biophysically realistic neuronal
models. In this section, we first consider temporal aspects of Ca2+ signaling by
writing and analyzing a system of ordinary differential equations (ODEs) for the
reaction kinetics of Ca2+ interacting with Ca2+ buffer. Secondly, theoretical issues
related to spatial aspects of Ca2+ signaling are explored by extending these equations
to include diffusion of Ca2+ and buffer.

3.2.1 EQUATIONS FOR THE KINETICS OF CALCIUM BUFFERING

3.2.1.1 Single Well-Mixed Pool

We begin by assuming a single well-mixed pool (e.g., the cytoplasm of a neuron)
where a bimolecular association reaction between Ca2+ and buffer takes place,

(3.1)

In Equation 3.1, B represents free buffer, CaB represents Ca2+ bound buffer, and k+

and k– are association and dissocation rate constants, respectively. If we further
assume that the reaction of Ca2+ with buffer follows mass action kinetics, we can
write the following system of ODEs for the change in concentration of each species
(see Chapter 2),

(3.2)

(3.3)

(3.4)

where the common reaction terms, R , are given by

(3.5)

and J represents Ca2+ influx. Both R and J have units of concentration per unit time;
for example, if t is measured in seconds and [Ca2+] is measured in µM, then J has

Ca B CaBk

k
2+ + ← →

+

−

d Ca

dt
R J

2+[ ] = +

d B
dt

R[ ] =

d CaB
dt

R[ ] = −

R k Ca B k CaB= − [ ][ ] + [ ]+ + −2
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units of µM s–1. If the current, iCa , through a collection of plasma membrane calcium
channels generates a [Ca2+] increase in cellular volume, V, then the rate of Ca2+

influx is given by

(3.6)

where F = 9.648 × 104 coul/mol is Faraday’s constant; and V* and iCa
* are volume

and current measured in microliters and pA, respectively. Note that the reaction
terms, R, appear in Equations 3.2 and 3.3 with the same sign, because association
and dissociation of Ca2+ and buffer results in a commensurate loss or gain of both
species. Conversely, R occurs with opposite sign in Equations 3.3 and 3.4. By
defining the total buffer concentration, [B ]T , as [B ]T � [B ] + [CaB], and summing
Equations 3.3 and 3.4, we see that d[B ]T /dt = 0, i.e., total buffer concentration is
constant. This implies that the Ca2+-bound buffer concentration is always given by
the conservation condition, [CaB] = [B ]T – [B], and Equation 3.4 is superfluous.

Though we have simplified our problem by eliminating an equation, those that
remain are nonlinear and a general analytical solution to Equations 3.2 and 3.3 is
not known. Because of this, a computational approach is often taken in which these
equations are numerically integrated. There will be several concrete examples of
such simulations in this chapter; however, let us first consider two simplifications
of Equations 3.2 and 3.3 that come about when buffer parameters are in select
regimes: the so-called “excess buffer” and “rapid buffer” approximations.

In the excess buffer approximation (EBA),17–19 Equations 3.2–3.4 are simplified
by assuming that the concentration of free Ca2+ buffer, [B], is high enough that its
loss (via conversion into the Ca2+ bound form) is negligible. The EBA gets its name
because this assumption of the unsaturability of Ca2+ buffer is likely to be valid
when Ca2+ buffer is in excess, as might be the case when modeling the effect of
high concentrations of exogenous Ca2+ chelator (e.g., EGTA) on an intracellular
Ca2+ transient. Following a description of the EBA (see below), we present a
complementary reduced formulation, the rapid buffer approximation (RBA).20–22 In
the RBA, Equations 3.2–3.4 are simplified by assuming that the reaction kinetics
(association and dissociation rates) are rapid processes compared to the diffusion of
Ca2+. Although the derivations of the EBA and RBA presented here are heuristic,
these approximations can be obtained in a more rigorous manner using the techniques
of regular and singular perturbation of ODEs.23,23B

3.2.1.2 The Excess Buffer Approximation

We begin our derivation of the EBA by recalling that the association and dissociation
rate constants for the bimolecular association reaction between Ca2+ and buffer can
be combined to obtain a dissociation constant, K,

(3.7)

J
V

i
FV

i
V

M sCa Ca= = = ×( ) −σ µ
2

5 1824 106 1.
*

*

K k k= − +/
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This dissociation constant of the buffer has units of µM and is the concentration of
Ca2+ necessary to cause 50% of the buffer to be in Ca2+ bound form. To show this,
consider the steady states of Equations 3.2–3.4 in the absence of any influx (J = 0).
Setting the left hand sides of Equations 3.3 and 3.4 to zero, we solve for the
equilibrium relations,

(3.8)

and

(3.9)

where [Ca2+]∞ is the “background” or ambient free Ca2+ concentration, and [B]∞
and [CaB]∞ are the equilibrium concentrations of free and bound buffer, respectively.
In these expressions, K is the dissociation constant of the buffer, as defined by
Equation 3.7. Note that higher values for K imply that the buffer has a lower affinity
for Ca2+ and is less easily saturated.

If we assume that the buffer is unsaturable, that is, we assume that changes in
[Ca2+] due to influx (J) give rise to negligible changes in free buffer concentration,
then we can write [B] ≈ [B]∞ and [CaB] ≈ [CaB]∞ . Substituting these values into
Equation 3.2 gives,

(3.10)

which can be rearranged to give,

(3.11)

a linear equation for [Ca2+] that is approximately valid in the excess buffer limit.
Equation 3.11 expresses the fact that in a compartment where Ca2+ buffers are in
excess (i.e., one in which Ca2+ influx does not significantly perturb the free and
bound buffer concentrations), elevated [Ca2+] will exponentially decay to its steady
state value, [Ca2+]∞ , with a time constant given by τ = 1/k+ [B]∞ . Conversely, if the
Ca2+ concentration is initially at the background level ([Ca2+]initial = [Ca2+]∞ ), Ca2+

influx (J) into a compartment with unsaturable buffer results in an exponential
relaxation of [Ca2+] to a new value,

(3.12)

[ ]B
K B

K Ca
T

∞ +
∞

= [ ]
+ [ ]2

CaB
Ca B

K Ca
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[ ] [ ]
+ [ ]∞

+
∞

+
∞

2

2
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dt
k Ca B k CaB J

2
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+
+ +

∞
−

∞
[ ] ≈ − [ ][ ] + [ ] +
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k B Ca Ca J

2
2 2

+
+

∞
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∞
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Because we have assumed that the Ca2+ buffer is unsaturable, a single well-mixed
compartment modeled using Equation 3.11 will never “fill up.” In spite of this
limitation, an exponentially decaying well-mixed pool is commonly used in neuronal
models.24

3.2.1.3 The Rapid Buffer Approximation

The RBA is an alternative to the EBA that is based on entirely different consider-
ations. If the equilibration time of a buffer is fast compared to the time-scale of
changes in [Ca2+] expected due to Ca2+ influx,20 we can make a quasi-steady-state
approximation25 and assume that changes in buffer concentration occur in such a
manner that Ca2+ and buffer are essentially always in equilibrium (i.e., R ≈ 0). The
following equilibrium relations result,

(3.13)

and

(3.14)

Using Equations 3.13 and 3.14, we can express the total (free plus bound) Ca2+

concentration, [Ca2+]T , as a simple function of [Ca2+],

(3.15)

Using Equations 3.13 and 3.15, two quantities can be defined that are of particular
interest. The first is the “buffer capacity,” i.e., the differential of bound Ca2+ with
respect to free Ca2+,

(3.16)

where the second equality is found by differentiating Equation 3.13. The second,
which we will refer to as the “buffering factor,” is the differential of free Ca2+ with
respect to total Ca2+, that is,

(3.17)
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which can be derived from Equation 3.15 by calculating d[Ca2+]T /d[Ca2+] and
inverting the result. The significance of κ and β becomes apparent when
Equations 3.2 and 3.4 are summed to give 

(3.18)

which using Equations 3.17 and 3.18 implies

(3.19)

where β is always some number between zero and one (β ≈ 1/100 is not unreasonable,
but the exact value depends on [Ca2+] and buffer parameters). Equation 3.19, the
RBA for a single well-mixed compartment, quantifies the degree to which rapid
buffers attenuate the effect of Ca2+ influx (J) on [Ca2+].

Although both β and κ are in general functions of [Ca2+], in certain circum-
stances this dependence can be weak (see Box 3.2). For example, when the [Ca2+]
is high compared to the dissociation constant of the buffer ([Ca 2+] >> K),
κ approaches zero and β approaches one, reflecting the fact that nearly saturated
buffers will have little effect on [Ca2+]. When [Ca2+] is low compared to the
dissociation constant of the buffer ([Ca2+] << K), κ and β are approximately constant. 

Box 3.2

The Relationship Between κ, β, and Deff in Low and High Ca2+ Limits20,26

Quantity and Formula Low Ca2+ ([Ca2+] << K ) High Ca2+ ([Ca2+] → ∞)
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+
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3.2.2 REACTION-DIFFUSION EQUATIONS FOR THE BUFFERED

DIFFUSION OF CALCIUM

3.2.2.1 The Full Equations

To explore spatial aspects of Ca2+ signaling we extend Equations 3.2–3.5 to include
multiple buffers and the diffusive movement of free Ca2+, Ca2+-bound buffer, and
Ca2+-free buffer. Assuming Fickian diffusion in a homogenous, isotropic medium,
we write the following system of reaction-diffusion equations,20

(3.20)

(3.21)

(3.22)

where the reaction terms, Ri , are given by

(3.23)

i is an index over Ca2+ buffers, and Equations 3.21 and 3.22 represent pairs of
equations (two for each type of Ca2+ buffer that is being modeled).

Because Ca2+ has a molecular weight that is small in comparison to most Ca2+-
binding species, it is reasonable to assume that the DBi ≈ DCaBi � Di . Given this,
Equations 3.21 and 3.22 can be summed to give,

(3.24)

where [Bi]T � [Bi] + [CaBi]. Thus, providing that the [Bi]T profiles are initially
uniform and there are no sources or sinks for Ca2+ buffer, the [Bi]T will remain
uniform for all time. Thus, we write the following equations for the buffered diffusion
of Ca2+,

(3.25)
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(3.26)

where

(3.27)

and Ri is expressed in terms of the free species, Bi , using [CaBi] = [Bi]T – [Bi] (as
in Section 3.2.1.1). Of course, if any of the buffer species being considered happens
to be stationary, Di = 0 and the Laplacian term does not enter into the right hand
side of Equation 3.26.

3.2.2.2 The Reduced Equations and Effective Diffusion 
Coefficient

To give some intuition for the behavior of Equations 3.25–3.27, we follow Sections
3.2.1.2 and 3.2.1.3 and consider two reduced formulations. In the case of excess
buffer, the equations for the buffered diffusion of Ca2+ become17

(3.28)

while in the limit of rapid buffer, we have20

(3.29)

Although the derivation of Equation 3.29 is beyond the scope of this chapter,20

it allows us to quantify the effect of rapid buffers on Ca2+ diffusion. For example,
the pre-factor of the Laplacian term in Equation 3.29 can be identified as an effective
diffusion coefficient, Deff, given by,

(3.30)

with κ and β defined as above. Note that Deff is a monotonic increasing function of
[Ca2+]. When [Ca2+] is much higher than the dissociation constant of a buffer, the
buffer is saturated and Deff is approximately equal to the free Ca2+ diffusion coeffi-
cient, Dc (see Box 3.2). When [Ca2+] is low compared to the dissociation constant
of a buffer, Deff is approximately
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(3.31)

Equation 3.29 can be generalized to the case of multiple buffers, and buffer
parameters can be constrained by requiring that Deff be consistent with experiment.20,27

When stationary buffers alone are under consideration (Db = 0) and [Ca2+ ] is very
low or high, Equation 3.19 is formally equivalent to the cable equation (see
Chapter 8).26 Furthermore, provided Db < Dc (a physiologically reasonable assump-
tion), Deff will necessarily be less than or equal to Dc, that is,

(3.32)

Thus, Ca2+ buffers (whether stationary or mobile) always reduce the effective dif-
fusion coefficient for Ca2+. However, Equation 3.29 shows that the effect of rapid
Ca2+ buffers on Ca2+ transport is complicated by a non-diffusive contribution that
is negative for all values of the Ca2+ gradient.20,28,29

3.3 MODELING CALCIUM DOMAINS AND 
LOCALIZED CALCIUM ELEVATIONS

3.3.1 NUMERICAL SOLUTION OF THE FULL EQUATIONS

3.3.1.1 Geometry of Simulation and Initial and Boundary 
Conditions

To complete a reaction-diffusion formulation for the buffered diffusion of Ca2+, a
particular geometry of simulation must be specified and Equations 3.25–3.27 must
be supplemented with boundary conditions and initial concentration profiles. In this
section we will describe a numerical model of a Ca2+ domain (or local Ca2+ eleva-
tion) due to a point source for Ca2+ that represents either a single Ca2+ channel (or
a tight cluster of channels).

The case of a single point source can be greatly simplified by assuming spherical
symmetry. Position in a spherical polar coordinate system is specified by (r, θ, φ),
where r is the radius (distance from the point source), θ is the declination, and φ is
the azimuthal angle. In these coordinates, the Laplacian is given by

(3.33)

However, spherically symmetric concentration profiles will not have any functional
dependence on the declination (φ) or azimuthal angle (θ), so Equation 3.33 sim-
plifies to
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(3.34)

This assumption of spherical symmetry is justified when considering Ca2+ release
from deep within a cell (where the elevated Ca2+ profile does not interact with
boundaries) or Ca2+ influx through a plasma membrane Ca2+ channel (because
hemispherical symmetry is equivalent to spherical symmetry with an adjusted source
amplitude).30

A reasonable initial condition for this simulation is a uniform “background”
Ca2+ profile of [Ca2+]∞ = 0.1 µM. We further assume that all buffers are initially in
equilibrium with Ca2+ and we require buffer far from the source to remain in
equilibrium with Ca2+ at all times,

(3.35)

and

(3.36)

Near the source, we enforce the boundary conditions,

(3.37)

and

(3.38)

implying an influx of free Ca2+ at rate σ (expressed in units of µmoles/s and related
to current by Faraday’s law, σ = iCa / z F).

3.3.1.2 A Finite Difference Method for Solving the Full 
Equations

With the governing equations, geometry, and initial and boundary conditions spec-
ified, our model of a localized Ca2+ elevation is completely formulated. It remains
to present a numerical scheme that will implement this model. For simplicity this
section describes the forward Euler finite difference scheme for solving
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Equations 3.25–3.27 with initial and boundary conditions as in Section 3.3.1.1. For
review of more elaborate numerical methods (e.g., Crank–Nicolson-like implicit
schemes) applied to neuroscience problems see References 24 and 31. Important
issues that arise during the implementation of multidimensional numerical schemes
are discussed in Reference 32.

We begin the description of the numerical scheme by choosing J + 1 mesh points

(3.39)

and writing a finite difference approximation to the Laplacian,

(3.40)

where Uj
n is an approximation to the function u (rj , tn), u represents the concen-

tration of Ca 2+ or buffer, tn is discrete time, and tn = n∆t. In this expression, ∆rj

is defined by ∆rj = rj – rj–1 for 1 ≤ j ≤ J. Similarly, rj + 1/2 and rj – 1/2 are defined as
rj + 1/2 = rj + ∆rj + 1 / 2 and rj – 1/2 = rj – ∆rj / 2.

Because rj occurs in the denominator of Equation 3.40, this expression is unus-
able when rj = 0. At the origin (rj = 0, j = 0) a finite difference approximation to
the Laplacian is given by,33

(3.41)

where in agreement with Equation 3.38 we have used a reflective (or no flux)
boundary condition 

in its discrete form,  This is intuitive when u represents buffer, because
buffer cannot be transported via diffusion either into or out of the domain of the
simulation. When u represents Ca2+, Equation 3.37 is satisfied by incrementing the
Ca2+ concentration at the origin by Jrel ∆t every time step in accordance with the
time-dependence of σ and the volume that this mesh point represents (a sphere of
radius ∆r/2), and Faraday’s law (see above). Thus,

(3.42)
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where iCa
* is measured in pA and ∆r* is measured in micrometers. The units of

Equation 3.42 are reconciled by noting that 1 pA = 5.182 × 10–18 mol/s, 1 µm3 = 10–15

liters and A = coul/s.
Finally, if we impose an absorbing boundary condition for each species far from

the source (r = Rmax), then we can write the following forward Euler numerical
scheme,

(3.43)

where UJ + 1
n is given by the equilibrium value, [U]∞ , when needed for the Laplacian.

3.3.1.3 A Representative Simulation of a Localized Ca2+

Elevation

Color Figure 3.1* shows an example of a simulation of a local Ca2+ elevation
performed using the numerical method just described. In this calculation, 250 µM
stationary buffer was included in addition to 50 µM mobile buffer (both with K of
10 µM). A source amplitude of 5 pA corresponds to a cluster of IP3Rs or RyRs (see
legend for other parameters). Essentially, Color Figure 3.1 is a snapshot of the
concentration profiles for each species in the problem after an elapsed time of 1 ms.
Note the elevated [Ca2+] near the release site (red line). Because some of the free
Ca2+ that enters the simulation at the origin reacts with buffer, the concentration of
bound buffer (solid green and blue lines) is elevated near the source. Conversely,
the concentration of free buffer (dashed lines) decreases near the source.

Color Figure 3.1 demonstrates an important difference between stationary and
mobile Ca2+ buffers. By following the free and bound buffer profiles toward to source
until these profiles cross, one finds the distance at which the buffer is 50% saturated.
This distance is almost 0.3 µm for stationary buffer while it is much less, about 0.2
µm, for mobile buffer. In this simulation, stationary buffer is more easily saturated
than mobile buffer, in spite of its fivefold higher concentration.

3.3.2 ESTIMATES OF DOMAIN CALCIUM

3.3.2.1 Estimating Domain Ca2+ Using Steady-States to the 
Full Equations

If buffer and source parameters are appropriately specified, simulations such as Color
Figure 3.1 can be used to estimate domain Ca2+. Computer simulations suggest that
Ca2+ domains approach a steady-state value very quickly after Ca2+ channels open,
usually in less than a microsecond (see Box 3.3). This fact makes steady-state
solutions of Equations 3.25–3.27 particularly relevant. Because numerical solution
of steady-state profiles is computationally less intensive than solving time-dependent
reaction-diffusion equations, this approach is common.34,35,35B

* Color Figure 3.1 follows page 140.
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Assuming a single buffer and spherical symmetry, steady-states of
Equations 3.25–3.27 will satisfy the following two coupled ODEs,

(3.44)

(3.45)

with boundary conditions given by Equations 3.35–3.38.
If buffer is stationary (Db = 0), the first term of Equation 3.45 is zero, implying

the equilibrium relations, Equations 3.13 and 3.14. Substituting these into
Equation 3.44 gives,

(3.46)

When this equation is integrated twice (using Equations 3.35 and 3.37, the boundary
conditions for Ca2+, to identify integration constants), we find that the steady-state
Ca2+ profile is

(3.47)

Because Equations 3.46 and 3.47 also arise in the absence of buffer ([Bm]T = 0), we
see that stationary buffers do not affect the steady-state Ca2+ profile in a Ca2+ domain.

In the following two sections, we return to Equations 3.44 and 3.45 without
making the assumption that Ca2+ buffer is stationary. We consider these equations
in the two asymptotic limits introduced in Sections 3.2.1.2 and 3.2.1.3. In both the
excess and rapid buffer limits, analytical steady-state solutions for the Ca2+ and
buffer profiles near an open Ca2+ channel have been derived that give insight into
the effect of buffers on Ca2+ domains.

3.3.2.2 The Steady-State Excess Buffer Approximation

As in Section 3.2.1.2, we begin by assuming that the mobile buffer is unsaturable
([B] ≈ [B]∞ for all r). Equation 3.44 then simplifies to,17

(3.48)
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The solution of this linear equation is the steady-state EBA,

(3.49)

where the length constant, λ, is given by

(3.50)

Comparing Equations 3.47 and  3.49 we see that high concentrations of free mobile
buffer ([B]∞) and large association rate constants (k+) lead to restricted Ca2+ domains
(see Box 3.4).17,18,19,30 This helps us to understand the efficacy of rapid exogenous
Ca2+ buffers (such as BAPTA) over buffers with slower kinetics (such as EGTA)
during the experimental manipulation of Ca2+ domains.

3.3.2.3 The Steady-State Rapid Buffer Approximation

The steady-state RBA near an open Ca2+ channel can be derived by subtracting
Equations 3.44 and 3.45 to give

(3.51)

Box 3.3 The Time Scale of Calcium Domain Formation

Example 1. Ignoring for the moment the effect of Ca2+ buffers, a quick calcu-
lation allows one to estimate the time scale for formation of a Ca2+ domain.
Assuming spherical symmetry and a point source for Ca2+ turned on at time
zero, the Ca2+ profile (in the absence of buffer) is given by36,37

(1)

Using erfc(0.005) ≈ 0.99, neglecting [Ca2+]∞ , and assuming Dc = 250 µm/s,
calculate how much time must elapse for Ca2+ to achieve 99% of its steady-
state value at a distance of 10 nm, 100 nm, or 1 µm from the source.

Example 2. Using the numerical solver for the full equations
(Equations 3.25–3.27) for the buffered diffusion of Ca2+, set [Bi]T = 0
and confirm the values you obtained.

Example 3. Choose realistic buffer parameters (see Box 3.1) and repeat the
simulation. Does Ca2+ buffer strongly affect the time it takes for [Ca2+] to achieve
99% steady-state?
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which, similar to Equation 3.46, can be solved by integrating twice to obtain,

(3.52)

Using the boundary conditions, Equations 3.35–3.38, the integration constants, A1

and A2 , are found,

(3.53)

where [B]∞ is given by Equation 3.8. As in Section 3.2.1.3, we now assume that
buffer kinetics are rapid and the equilibrium relation is approximately valid.20 Using
Equation 3.14 we substitute for [B] in Equation 3.53 to give an implicit expression
for [Ca2+],

(3.54)

which using the quadratic formula gives the steady-state RBA,

(3.55)

Box 3.4 Predicted Restriction of Calcium Domains

Example 1. Compare the steady-state RBA solution (Section 3.3.2.3,
Equation 3.55) and the unbuffered Ca2+ domain (Equation 3.47). The difference,

(1)

is a negative valued function of r expressing the attenuation of domain Ca2+ by
rapid mobile Ca2+ buffer. By calculating limr→0 ∆[Ca2+], it can be shown that
the decrease in domain Ca2+ due to the presence of a rapid mobile buffer near
the source is,22

(2)

This result suggests that the ability of a mobile buffer to decrease domain Ca2+

is dependent on the background Ca2+ concentration, because changes in [Ca2+]∞
will affect [B]∞ . The mathematically inclined reader may be interested in con-
firming this result.
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3.3.2.4 The Validity of the Steady-State Excess and Rapid 
Buffer Approximations

In the derivations of both the EBA and RBA presented above, assumptions have
been made that may be more or less valid depending on the buffer parameters and
source amplitude of interest. By comparing numerically calculated steady-state
solutions of the full equations (Equations 3.44 and 3.45) to the analytical approxi-
mations given by the EBA and RBA (Equations 3.49 and 3.55), the conditions for
the validity of both approximations can be investigated (see Box 3.4). As suggested
by their names, the EBA tends to be valid when [B]T is large compared to the
dissociation constant of the buffer, K. Conversely, the RBA tends to be valid when
the association and dissociation rate constants of the buffer are large.

The derivations of the EBA and RBA presented in Sections 3.3.2.2 and 3.3.2.3
are heuristic, as were the derivations that first occurred in the literature.17,22 Impor-
tantly, the EBA and RBA can be rigorously derived by nondimensionalizing
Equations 3.44 and 3.45, identifying small dimensionless parameters, and perform-
ing perturbation analysis.23,23B Using this approach, the EBA and RBA have been
shown to be the first order terms of two different asymptotic expansions of the
steady-state to the full equations, Equations 3.25–3.27. Higher order terms have been
derived, expanding the parameter regime over which each approximation is valid.23

Such mathematical analysis and related numerical studies21 have shown that the EBA
and RBA are seldom in agreement. However, for many choices of buffer and source
parameters, one or the other of these approximations is often valid (see Box 3.5).

The complementarity between the EBA and RBA can be understood in the
following way. The EBA assumes unsaturable buffer, and as a consequence the buffer
profile predicted by the EBA is unperturbed near the source, that is,

(3.56)

Box 3.4 (continued)

Example 2. Estimate the decrease in domain Ca2+ due to the presence of excess
buffer. If

it can be shown that

where λ is given by Equation 3.50 in Section 3.3.2.2. Confirm this result.
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Conversely, the RBA assumes local equilibrium between Ca 2+ and buffer,
Equation 3.14. Because limr→0 [Ca2+] = ∞ (this follows from Equation 3.37), the
buffer profile predicted by the RBA saturates near the source, that is,

(3.57)

In general [B]∞ is not zero and either Equation 3.56 or 3.57 (but not both) may be
in agreement with solutions of the full equations, Equations 3.44 and 3.45 (the
correct result). Thus, for any given set of buffer and source parameters, we do not
expect both the EBA and RBA to be simultaneously valid. Furthermore, Equations 3.56
and 3.57 suggest that the EBA is likely valid when the source amplitude is small,
because the buffer profile will be relatively unperturbed near a weak source. Con-
versely, the RBA is likely valid when the source amplitude is large, because a strong
source promotes buffer saturation. (See Box 3.5 and Reference 23.)

Box 3.5 The Validity of the EBA and RBA

The validity of the EBA and RBA can be determined by comparing these
analytical approximations (Equations 3.49 and 3.55) to numerically calculated
steady-state solutions of the full equations, Equation 3.44 and 3.45.

For example, Figure B3.1A shows a semilog-y plot of a simulated Ca2+

domain (see legend for parameters). The solid line is calculated using the full
equations and the dotted line is the RBA, which is accurate enough that the two
curves are indistinguishable. The free buffer profile is plotted in Figure B3.1B.
Near the source, the RBA (dotted line) slightly overestimates the degree of buffer
saturation (cf. solid line).

Figure B3.1C and D show similar calculations. Here buffer and source
parameters are chosen so that the EBA is valid. The EBA (dotted line) slightly
underestimates the Ca2+ domain and neglects some saturation of buffer predicted
by the full equations (solid line). Note that the EBA Ca2+ domain is much smaller
than the RBA domain. This reflects the restriction of the EBA Ca2+ domain by
excess buffer (see Section 3.3.2.2) but also a reduced source amplitude in
Figures B3.1C and D, compared to A and B.

Example 1. Using the numerical solver for the steady-state to the full
equations, reproduce the free buffer profile shown in Figure B3.1B.
Confirm that the steady-state RBA predicts this profile accurately.

Example 2. Now gradually decrease the source amplitude until the free
mobile buffer near the source is approximately 50% saturated. With this reduced
source amplitude, does the steady-state RBA accurately predict the free Ca2+ or
buffer profiles? Does a strong source increase or decrease the validity of the
steady-state RBA?

(continued)

lim .r RBAB→ [ ] =0 0
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Box 3.5 (continued)

Example 3. Using parameters as in Figures B3.1C and D, vary the source
amplitude between 0.01 pA and 100 pA. For each value you use, compare the
steady-state EBA to the steady-state of the full equations. Does a strong source
increase or decrease the validity of the EBA?

Examples 2 and 3 suggest that the RBA and EBA can be understood as
“strong”and “weak source” approximations, respectively, where strong and weak
are defined by the ability of a Ca2+ source to locally saturate mobile buffer.23

FIGURE B3.1 Comparison of RBA and EBA estimates (dotted lines) of steady-state
Ca2+ and free buffer profiles to the numerically calculated exact result (according to
Equations 3.44 and 3.45, solid lines). (A) Using parameters where the RBA is marginally
valid, the Ca2+ profile (solid line) overlays the estimate given by the RBA (dotted line,
covered by solid line). (B) The free buffer profile as estimated by the RBA (dotted line)
completely saturates near the source (small r), although in the steady-state full equations
predict free buffer, B, is only 96% saturated. (C,D) As A,B using a different set of
parameters for which the EBA is marginally valid. In D the free buffer profile is relatively
unperturbed from the background concentration of 500 µM. Parameters for (A,B): iCa
= 10 pA, [B]T = 50 µM, k+ =100 µM–1 s–1, k– =103 s–1, Dc = 250 µm2/s, Db = 75 µm2/s,
[Ca2+]∞ = 0.1 µM. Parameters changed for (C,D): iCa = 0.1 pA, [B]T = 500 µM, k+ =10
µM–1 s–1, k– =102 s–1. Note that A and C are semilog-y plots while B and D are
semilog-x plots.
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3.3.3 MODELING THE INTERACTION OF LOCALIZED CALCIUM

ELEVATIONS AND INDICATOR DYES

3.3.3.1 Including Indicator Dyes in Simulations of Localized 
Ca2+ Elevations

Although the analytical steady-state approximations discussed above give insight into
the effect of Ca2+ buffers on Ca2+ domains, simulations of the dynamics of localized
Ca2+ elevations such as Ca2+ sparks usually begin with time-dependent full or reduced
equations for the buffered diffusion of Ca2+ (see Section 3.2.2). Simulations are most
realistic when the binding of Ca2+ with indicator dye is explicitly accounted for in a
reaction-diffusion formulation such as Equations 3.25–3.27. For example, in a numer-
ical model of Ca2+ spark formation and detection in cardiac myocytes,38 the Ca2+

indicator, fluo-3, was included among four endogenous Ca2+-binding species, includ-
ing calmodulin and troponin C as well as two additional low-affinity, high-capacity
non-specific Ca2+-binding sites provided by the SR and sacrolemmal membranes.
Equations 3.25–3.27 were numerically solved giving concentration profiles for all
the species in the problem, including Ca2+-free and Ca2+-bound fluo-3. Although
more complex models of the relationship between indicator and fluorescence are
available (e.g., see model of fura-2 fluorescence in Reference 39), Smith et al. (1998)
assumed the fluorescence of fluo-3 is directly proportional to the concentration of
bound indicator. In order to account for the optical blurring inherent in confocal
(line scan) imaging, they calculated a spatially-averaged Ca2+-bound indicator profile
given by,

(3.58)

where G is a multidimensional Gaussian representing the point spread function of
the confocal microscope and the integral is taken over the simulation volume. In
this expression, and for the remainder of this section, we emphasize the idea that
indicator dyes are mobile Ca2+ buffers by using [B] and [CaB] to represent the
concentration of Ca2+-free and Ca2+-bound fluo-3, respectively. In Equation 3.58,
Yoffset and Zoffset represent the degree to which the origin of the spark is out of register
with the center of the point spread function, and x is distance along the line scan.
In Smith et al. (1998), “smeared” Ca2+-bound indicator dye profiles given by
Equation 3.58 were normalized by the background fluorescence (proportional to
[CaB]∞ given by Equation 3.9) and reported as [CaB]avg /[CaB]∞ .

Figure 3.1A uses these methods to simulate the time course of fluo-3 fluores-
cence in the presence of a 2 pA source for free Ca2+ of 15 ms duration. For other
parameters see Reference 38. When 50 µM indicator is simulated (solid line), the
spatially averaged fluorescence peaks around 2 times background and has a decay
time constant of approximately 25 ms, similar to experiment. Figure 3.1D shows
the Ca2+ and Ca2+-bound indicator profiles (before spatial averaging) at a time of
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10 ms, just before the source turns off. As expected, the indicator fluorescence is
elevated where [Ca2+] is greatest.

3.3.3.2 Indicator Dye Properties and the Appearance of 
Localized Ca2+ Elevations

In addition to the simulation of a Ca2+ spark using standard parameters (solid line),
Figure 3.1A presents a study of the effect of total concentration of indicator ([B]T)

FIGURE 3.1 Effects of indicator dye parameters on Ca2+ spark properties. Source amplitude
is 2 pA for 15 ms and simulated fluo-3 has K of 1.13 µM. (A,B,C) Time course of normalized,
blurred fluorescence signal ([CaB]avg/[CaB]∞), with Yoffset = 0.5 mm and Zoffset = 0 mm. (A)
From top to bottom: indicator dye concentration ([B]T) is 50, 100, 250, 500 and 1000 µM.
Note that [CaB]avg /[CaB]∞ is greater when there is less indicator. (B) From top to bottom,
mobility of the dye, Db, takes values of 0 (immobile), 20, 40, 100, and 200 µm2/s. (C) From
bottom to top, the association rate constant k+ of indicator is increased from 8 to 40, 80, 160
and 800 µM–1s–1 (K held constant by varying k –). (D) Ca2+ (solid and dotted lines) and CaB
(dashed lines) profiles at t =10 ms. Parameters as in A, except that Yoffset = Zoffset = 0. Uppermost
CaB profile and lowermost Ca2+ profile use [B]T =1000 µM. Dotted line shows the Ca2+

profile with no fluo-3. Other parameters as in Reference 38. (Modified from Reference 38.
With permission.)
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on the fluorescence time course during a Ca2+ spark. Adding higher concentrations
of indicator ([B]T = 100 – 1000 µM) has the counter-intuitive effect of decreasing
the peak normalized fluorescence signal. This occurs because higher concentrations
of indicator effect the free Ca2+ profile, causing it to be more restricted (see
Figure 3.1D and Box 3.4). In addition, Figure 3.1A shows that high concentrations
of indicator accelerate the decay of the simulated Ca2+ spark.

Changing indicator dye properties (such as mobility, Db, and rate constants, k+

and k –) also have a profound effect on Ca 2+ spark appearance (see Figure 3.1B and
C). For example, the mobility of an indicator can decrease the peak amplitude of
the Ca 2+ spark, but improve the degree to which the peak of the spark is in register
with the termination of Ca2+ release.38 Thus, the use of immobile dyes (e.g., dextran-
based Ca 2+ indicators)40 may have both advantages (greater fluorescence) and
disadvantages (distorted kinetics). Similarly, spark brightness and width can be
increased by using indicators with faster reaction kinetics. Because Ca 2+ indicator
dyes are mobile Ca 2+ buffers, they are able to significantly perturb the underlying
free Ca 2+ profile, even when used at moderate concentrations (see Figure 3.1D).
Figure 3.1 demonstrates that indicator dye properties are a primary determinant of
the appearance of localized Ca 2+ elevations.38 Perhaps this is not surprising con-
sidering the ability of mobile buffers to perturb the time course of global Ca 2+

transients.20,39,41,42

3.4 MODELING PROPAGATING CALCIUM WAVES

3.4.1 LOCALIZED CALCIUM ELEVATIONS ARE THE BUILDING

BLOCKS OF GLOBAL SIGNALS

Spatially localized Ca2+ elevations are important cellular signals that allow highly
specific regulation of cellular function. Many cellular processes (including synaptic
transmission, activity-dependent synaptic plasticity, and regulation of neuronal excit-
ability) can be initiated by [Ca2+] changes in the absence of a global Ca2+ response.
However, localized Ca2+ elevations are also of interest as the building blocks of
global Ca2+ signals (such as Ca2+ oscillations and propagating waves of Ca2+-
induced Ca2+ release) that are observed in neurons and other cell types. For a review,
see References 10 and 7, respectively.

The sections that follow describe a mathematical model for propagating Ca2+

waves in cardiac myocytes. The methods discussed are readily applied to simulations
of neuronal Ca2+ waves, but note that the model presented reflects the fact that RyR-
mediated Ca2+ release is responsible for Ca2+ waves in cardiac myocytes. Readers
interested in modeling IP3-mediated Ca2+ release may consult several early models
of IP3-mediated Ca2+ responses43,44,45 as well as two models of the IP3R46,47 highly
constrained by experimental data from single channel planar lipid bilayer
experiments4 and Ca2+ responses of the immature Xenopus oocyte during flash
photolysis of caged IP3.48 Particularly useful starting points are the discussion of
ligand-gated channels in Chapter 5 and a minimal model of IP3R kinetics49 that has
been used in models of Ca2+ oscillations in pituitary gonadotrophs.50,51,52 For a review
see References 5 and 6.
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3.4.2 DESCRIPTION OF A TWO-COMPARTMENT MODEL WITH

BUFFERING

3.4.2.1 A Continuum, Two-Compartment Model

This section develops a model of propagating Ca2+ waves in cardiac myocytes by
modifying the reaction-diffusion equations presented above in several ways. While
Section 3.3 assumed spherical symmetry in calculations of Ca2+ domains and local-
ized Ca2+ elevations, here we simplify a model with (potentially) three spatial
dimensions by assuming that variations in Ca2+ and buffer concentration occur only
in the longitudinal direction (see Figure 3.2). With this geometry in mind, we write
a system of reaction-diffusion equations in which the [Ca2+] in the myoplasm and
SR of a cardiac myocyte are distinguished,

(3.59)

(3.60)

(3.61)

(3.62)

(3.63)

(3.64)

Equations 3.59–3.64 are the skeleton of a “two compartment” model for propagating
Ca2+ waves that will be fleshed out below (see Figure 3.2 for diagram, buffer
parameters are chosen following Reference 52B). These equations represent a “con-
tinuum model,” because at every intracellular “point” a certain volume fraction is
assigned to each compartment. Note the factor Vrel = VSR /Vmyo in Equation 3.62, the
relative volume occupied by the SR and myoplasm.

As mentioned in Section 3.2.2.2, the RBA20 can be used to reduce
Equations 3.59–3.64 to transport equations for [Ca2+]myo and [Ca2+]SR similar
to Equation 3.29. The κ’s and β’s that occur in these reduced equations are

similar to Equations 3.16 and 3.17, but generalized to account for multiple buff-
ers.28,52C Regardless of whether full or reduced transport equations are used, the
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dynamics of [Ca2+]myo and [Ca2+]SR are driven by the fluxes Jrelease and Juptake that are,
in turn, functions of [Ca2+]myo and [Ca2+]SR. The following two subsections elaborate
on the mathematical form of these fluxes.

3.4.2.2 Ca2+ Release

The release flux includes two terms, Jrelease = JRyR + Jleak , a passive leak with the form,

(3.65)

as well as the flux due to CICR via the RyR

(3.66)

FIGURE 3.2 Diagram of compartments and fluxes for propagating Ca2+ wave simulation
shown in Figure 3.4. Assuming no transverse variation in [Ca2+], two variables of interest are
[Ca2+]myo and [Ca2+]SR, both functions of time and longitudinal distance, x. Ca2+ is translated
from the SR to the myoplasm (and back) via RyR-mediated Ca2+ release, a passive Ca2+ leak,
and resequestration by Ca2+-ATPases. The model also includes the important association of
free Ca2+ with Ca2+-binding species in each compartment, and longitudinal diffusion of Ca2+

and buffer in both myoplasm and SR.
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where fO is the fraction of open Ca2+ release sites at any given time (see Chapter 5
for a general treatment of modeling the dynamics of voltage- and ligand-gated
channels). The dynamics of fO are implemented using a two-state model, N ↔ R,
based on the six-state model release site shown in Figure 3.3. This two-state model
is derived using the separation of time scales of activation and inactivation of Ca2+

release sites.53,54 The non-refractory state, N, consists of two open and two closed
states (C0, C1, O0, O1) that rapidly equilibrate and the refractory state, R, consists
of two equilibrated closed states (C2, C3). The structure and rate constants of the
model were chosen in agreement with experiment.54,55,56

3.4.2.3 Ca2+ Uptake

Uptake of Ca2+ due to Ca2+-ATPases of the SR membrane can be modeled as an
instantaneous function of [Ca2+]myo ,57

(3.67)

where we assume Michaelis–Menten kinetics (see Chapter 2), Kuptake is 184 nM, m
is 3.98, and  Athough plasma membrane Ca2+-ATPases can
be modeled in a similar manner, we neglect Ca2+ efflux here. Na+/Ca2+ exchange
(see References 58 and 59 for models) is not included, because of its minor role in
regulating cellular Ca2+ transients in rat ventricular cardiac myocytes.60

FIGURE 3.3 State diagram of the model Ca2+ release site used in Figure 3.4. Note the
domain Ca 2+-mediated transition from state O1 to O2 (process B). The simulations of
Figures 3.4 and 3.5 use [Ca2+]d = 5 µM. Other release site parameters as in Table 1 of
Reference 54. With permission.
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3.4.2.4 Initial Conditions

The final step in our description of a two compartment, continuum model of prop-
agating Ca2+ waves in cardiac myocytes is the specification of initial conditions.
When the dynamics of the Ca2+ release flux, a passive leak, and resequestration by
Ca2+ ATPases are combined in a single well-mixed pool model, the ODEs have a
stable steady state with [Ca2+]myo ≈ 0.08 µM, and [Ca2+]SR ≈ 28.34 µM (fO ≈ 0, fN ≈ 1).
Let’s refer to these values as [Ca2+]myo

∞ and [Ca2+]SR
∞ , respectively, and use them as

spatially uniform initial conditions throughout the simulation. To trigger a propa-
gating Ca2+ wave, [Ca2+]myo will be elevated to [Ca2+]trigger

myo ≈ 0.2 µM in the leftmost
region of the model myocyte. If we wish to locally conserve total intracellular Ca2+,
we must decrease [Ca2+]SR in this region according to,

(3.68)

where

(3.69)

(3.70)

and expressions similar to Equations 3.69 and 3.70 define ∆[Ca2+]T,SR and
[Ca2+]T,SR . Note that Equation 3.70 is a generalization of Equation 3.15 for
multiple buffers and that substituting Equation 3.70 into Equation 3.68 gives

an implicit expression for  in terms of  To choose initial
conditions in a consistent manner, Equation 3.68 must be numerically solved (e.g.,
using Newton’s method).61

3.4.3 SIMULATIONS OF A PROPAGATING CALCIUM WAVE

3.4.3.1 A Traveling Wave of Ca2+-Induced Ca2+ Release

The solid lines of Figure 3.4A show a snapshot of (t = 0.5 s) of a simulated Ca 2+

wave (see Section 3.4.2). The Ca 2+ wave is propagating from left to right with a
velocity of approximately 50 µm/s. Figure 3.4B shows the fraction of non-refrac-
tory release sites (fN) as a function of position in the model myocyte. Most of the
release sites are nonrefractory (fN ≈ 1) in the region of the myocyte being invaded
by the propagating Ca 2+ wave, and the decrease in fN as the wave passes represents
Ca 2+-inactivation. The beginnings of a slow recovery to the non-refractory state
can be seen at the leftmost portions of Figure 3.4B. Note that the model predicts
a rightward traveling depletion wave in the SR (see Figure 3.4C).
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The dotted lines in Figure 3.4 are the result of a simulation identical to the one
described above, except that [Bi]T for each buffer was increased by 20%. Comparison
of the solid and dotted lines in Figure 3.4A shows that this increase in [Bi]T has the
effect of decreasing the amplitude of the free Ca2+ signal at the peak of the wave
(see Box 3.6). In the presence of additional buffer, the Ca2+ wave also travels at a
slower velocity than the control wave (~40 µm/s).

The effect of increased [Bi]T on Ca2+ wave amplitude and velocity can be
understood by considering the reduced equations for [Ca2+]myo and [Ca2+]SR (similar
to Equation 3.29) that are obtained when the RBA is applied to Equations 3.59–3.64.
Considering such equations, rapid Ca2+ buffers can be shown to have three distinct
effects.28 First, in a two compartment model, the release and uptake fluxes are scaled
by a factor of β (different for the myoplasm and SR). Thus, when [Bi]T is increased
in the myoplasm, βmyo decreases, and the effect of SR Ca2+ release on [Ca2+]myo is
minimized. Secondly, when [Bi]T is increased, the effective diffusion coefficient for
Ca2+, Deff, is reduced as discussed in Section 3.2.2.2. This decrease in Deff may

FIGURE 3.4 Simulations of propagating Ca2+ waves in a cardiac myocyte per-
formed using a generalization of Equation 3.29 appropriate for a two compartment,
continuum model with multiple buffers.28 Solid lines show [Ca2+]myo, [Ca2+]SR, and

fraction of non-inactivated release sites (fN) as a function of spatial position at t = 0.3 sec.
Dotted lines show a similar calculation with the total concentration of each buffer increased
by 20%. Ca2+ excitability of the model myocyte generates a trigger wave. Other wave
phenomena are obtained when the homogenous system is oscillatory or bistable.52C Release
site and cellular parameters as in Figure 3.3 and Reference 52B, respectively.
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contribute to a slower propagation velocity of the wave. Thirdly, Equation 3.29
indicates that the effect of rapid Ca2+ buffers on wave speed is complicated by a
non-diffusive sink effect that allows mobile Ca2+ buffers to quickly clear Ca2+

gradients.20,28,29,62

3.4.3.2 Spark-Mediated Propagating Ca2+ Waves

Experimental observations of propagating Ca2+ waves in cardiac myocytes14,15 indi-
cate that the simulations in the previous section may be oversimplified, because the
Ca2+ release flux described by Equation 3.66 does not account for the discrete nature
of Ca2+ release. In this section we account for the inhomogeneous nature of the

Box 3.6 The Effect of Rapid Calcium Buffers on Calcium 
Wave Propagation

The CICR wave simulation can be used to investigate the effect of rapid
Ca2+ buffers on Ca2+ wave propagation.

Example 1. Using parameter values from Color Figure 3.1, include in the
myoplasmic compartment two Ca2+ buffers, one stationary (Bs) and one mobile
(Bm). Notice that both the stationary and mobile buffer have the same dissociation
constant (Ks = Km = 10 µM), and that the diffusion coefficient for the mobile
buffer is much less than that of free Ca2+ (Db = 75 µm2/s << Dc = 250 µm2).
For simplicity, use the same parameters in the SR compartment. Set [Bs]T =
250 µM and [Bm]T = 50 µM (in both the myoplasm and SR) and confirm that
you are able to initiate a propagating Ca2+ wave.

Example 2. Now vary the fraction of stationary versus mobile buffer in the
myoplasmic compartment from 100% stationary to 100% mobile, making sure
that [Bs]T + [Bm]T = 300 µM remains constant. What is the effect of buffer
mobility on the amplitude of the Ca2+ wave? What is the effect on the propagation
velocity of the wave? Attempt to rationalize your observations by considering
the functional dependence of Deff on [Bs]T and [Bm]T (see Section 3.2.2.2,
Equation 3.30).

Example 3. Now keeping the fraction of stationary versus mobile buffer
in the myoplasmic compartment fixed (5/6 stationary and 1/6 mobile), increase
[Bi ]T . In computer simulations of Ca 2+ waves in the immature Xenopus oocyte,
the width of trigger waves remains relatively constant as [Bi]T is increased,
while the wave amplitude and wave speed both decrease.28 Do you observe
similar effects?

Example 4. In Example 3, did you remember to choose the initial condition
for [Ca2+]SR (in the region where the Ca2+ wave is initiated) in accordance with
Equation 3.68? When the total myoplasmic buffer is increased,  will
decrease if  is fixed and initial conditions are chosen to locally
conserve total Ca2+.

Example 5. What are the consequences on wave amplitude and velocity
when [Bi]T in the SR is increased?

[ ]Ca SR
trigger2+

[ ]Ca myo
trigger2+
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myoplasm in cardiac myocytes by letting the maximum conductance for the RyR be
a periodic function of spatial position. That is, we redefine vryr in Equation 3.66 so
that it takes values of either one or zero, where values of one represent the localization
of RyRs to the junctional SR (near T-tubules and Z-lines). All other parameters in
the problem remain spatially uniform.

Because in this section we wish to highlight the consequences of discrete Ca2+

release for the macroscopic properties of Ca2+ waves, we account for buffering in
the simplest way possible (using constant valued effective diffusion coefficients for
Ca2+ in the myoplasm and SR) and constant buffering factors for both compartments.
Admittedly, these assumptions are made as a matter of convenience; nevertheless,
we write

(3.71)

(3.72)

where the hats indicate constant quantities. If we further assume that
 total cell Ca2+ (weighted by volume fraction) is locally conserved,

and we can use this fact to eliminate the equation for [Ca2+]SR. That is, if we define

(3.73)

Equations 3.71 and 3.72 imply that [Ca2+]T is a constant and thus [Ca2+]SR can be
expressed as,

(3.74)

Using Equations 3.65 and 3.66, we now rewrite the Ca2+ release flux as

(3.75)

Figure 3.5 shows a snapshot of a simulated spark-mediated Ca 2+ wave based on
Equations 3.67, 3.71, and 3.75. Elevated [Ca 2+]myo in the center initiates two
propagating waves, one moving left and the other right. A depletion wave in the
SR is also observed (a consequence of Equation 3.74).
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The simulation shown in Figure 3.5 differs from that in Figure 3.4 in several
ways. As described above, we have for simplicity assumed constant (and equivalent)
effective diffusion coefficients in the myoplasm and SR. This assumption, made
primarily for convenience, allowed us to eliminate the transport equation for [Ca2+]SR.
In this respect, Figure 3.5 is less realistic than Figure 3.4, which accurately accounts
for the effects of Ca2+ buffers. On the other hand, Figure 3.4 assumes a homogenous
Ca2+ release flux, while Figure 3.5 explicitly models the elementary Ca2+ release
events, Ca2+ sparks, that are the building blocks of propagating Ca2+ waves. An
array of 50 spatially discrete Ca2+ release sites are included in Figure 3.5 (note that
the crest of the wave has a distinct sculpted form). Color Figure 3.2* shows a
“waterfall” plot of the same simulation. The reciprocal of the slope of the wave front
is the wave speed, approximately 70 µm/s, in agreement with experiment.
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FIGURE 3.5 Snapshot of two spark-mediated Ca2+ waves 200 ms after initiation with
elevated [Ca2+] at center. (A,C) Profiles of [Ca2+]myo and [Ca2+]SR as a function of spatial
position. (B) Diagram shows Ca2+ fluxes in the model. A passive Ca2+ leak, Jleak (upward
large arrow), and active Ca2+ uptake, Jpump (downward large arrow), are modeled as homo-
genous fluxes. The Ca2+ release flux, Jryr (small upward arrows), is inhomogeneous and takes
nonzero values only at discrete locations separated by approximately 2 µm, the intra-sarco-
meric distance. Release site and cellular parameters as in Figure 3.3 and Table 2 of Reference
54, respectively. (From Reference 54. With permission.)
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Box 3.7 The Velocity of Spark-Mediated Calcium Wave

The velocity of conventional reaction-diffusion trigger waves is proportional to
the square root of the diffusion coefficient for the activating species (here Ca2+).
Luther’s equation expresses this relationship,63,64

(1)

where τchem is a time constant associated with the autocatalytic process leading
to the reaction- diffusion wave. However, the velocity of simulated spark-medi-
ated waves has been reported54,65 to be proportional to the diffusion coefficient,
that is,

(2)

where d is the inter-site separation. Thus, it appears that Ca2+ release site
separation influences the macroscopic properties of spark-mediated Ca2+ waves.
(For detailed analysis of the transition from spark-mediated waves to continuous
reaction-diffusion waves, see Reference 66.)

Example 1. Using the spark-mediate Ca2+ wave simulation, vary the diffu-
sion coefficient and confirm the proportionality given by Equation  2. Also
confirm Equation  2 using the minimal “Fire-Diffuse-Fire” model65,66 of Ca2+

wave propagation (see Reference 66 for description of model).
Example 2. Consider the velocity of wave propagation as a function of the

inter-site separation. First, fix the effective diffusion coefficient, D, and vary the
inter-site separation distance, d. (Note that when d is changed, vryr is adjusted
so that the maximum possible Ca2+ release rate per unit length remains constant.)
Using D = 30 µm2/s, begin with d ≥ 2 µm and confirm that the velocity decreases
linearly as the site separation distance gets larger. Next, decrease the site sepa-
ration, d, until the velocity of propagation saturates. When d = 0 there is no
inter-site separation and the velocity you observe should be the velocity of the
continuum reaction-diffusion wave (vcont).

Example 3. Consider the point at which the saturation of propagation veloc-
ity became evident. When D/d ≈ vcont , the velocity of the Ca2+ wave should be
nearly vcont .65 Conversely, Ca2+ wave propagation is likely saltatory when D/d
<< vcont. Confirm these predictions.
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4.1 INTRODUCTION

The function of the nervous system can be investigated at widely different scales,
and computational approaches can range from space-filled atomic resolution (e.g.,
molecular dynamics simulations of protein structure) to space-independent methods
(e.g., information theory applied to spike trains). At the level of cellular and sub-
cellular signaling, models can be tailored to different questions that require different
levels of structural realism. For example, neuronal excitation can be addressed using
isopotential compartmental models (Chapters 5–9), biochemical networks of signal-
ing pathways might be simulated using well-mixed assumptions (Chapter 2), and
certain types of reaction-diffusion problems can be handled using spatial simplifi-
cations and boundary conditions that allow effectively one-dimensional (1-D) ana-
lytic and/or finite difference approaches (Chapter 3).

At some level of reaction-diffusion problems, however, realistic 3-D cell struc-
tures become critical components of quantitative modeling. For example, if identi-
fication of pre- and postsynaptic factors that contribute to synaptic function, vari-
ability, and crosstalk are of interest,3,8,11,15,22,23,33 then incorporation of actual
ultrastructure into the model cannot be avoided. Similarly, if quantitative simulations
of realistic Ca+2 dynamics in and around dendritic spines are the goal, then the
shapes, sizes, and other biophysical properties of real intra- and extracellular spaces
will have to be included in models. Thus, a realistic, fully 3-D approach is required
for quantitative modeling of microphysiology, i.e., cellular physiology that includes
3-D ultrastructural organization (intra- and extracellular diffusion spaces, site den-
sities and distributions of macromolecules), movements of mobile molecules (sig-
naling ligands, ions, gases, free water), and biochemical reactions (transition paths,
reaction rates).

In this chapter we illustrate Monte Carlo methods for realistic 3-D modeling of
synaptic microphysiology. We begin with a discussion of the steps required to create
a microphysiological model, and then briefly compare the two alternative computa-
tional paradigms that can be used to simulate the model, finite element versus Monte
Carlo (Section 4.2). Although the general power and increased realism of Monte
Carlo methods have been recognized for many years,9,13,21 inadequate computer
resources precluded many applications until the recent explosion in speed, memory,
and storage capacity. We will describe in this chapter MCell, Monte Carlo simulator
of cellular microphysiology. MCell is freely available and can be obtained for
a wide variety of UNIX, Windows, and MacIntosh environments, see
http://www.mcell.cnl.salk.edu or http://www.mcell.psc.edu. With MCell highly real-
istic synaptic simulations can be run on present-day workstations given suitably
optimized algorithms and run-time conditions. In addition, very large-scale projects
can be run on increasingly accessible parallel processing resources if necessary.
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The definition and control of model input and output parameters, simulation oper-
ations, and critical run-time optimizations are covered in Section 4.3. The theoret-
ical foundation of simulation operations and numerical accuracy is discussed in
Section 4.4. Finally, Sections 4.5 and 4.6 illustrate the use of MCell’s diffusion,
reaction, and optimization features to simulate quantal current generation1,5 together
with neurotransmitter exocytosis30–32 at a realistic neuromuscular junction33 and
neuronal cell body.

4.2 GENERAL BACKGROUND ON DESIGN AND 
SIMULATION OF MICROPHYSIOLOGICAL 
MODELS

4.2.1 MODEL DESIGN

Quantitative microphysiological modeling is in its infancy, largely because realistic
3-D models necessarily entail a “scaled-up” computational approach compared to
simpler models, and can rapidly escalate into supercomputing territory. In essence,
such modeling encompasses four steps, each of which can require considerable
computing resources and expertise: reconstruction, model visualization and design,
simulation, and visualization and analysis of results. The third step is the primary
focus of this chapter; the third and fourth together can involve large-scale parameter
fitting and sensitivity analyses (i.e., the sensitivity of a model output quantity to the
value of one or more input parameters, Chapter 1, and see also Reference 32).

To simulate a realistic microphysiological system, a representation of the rel-
evant cellular and subcellular structures must first be generated at very high reso-
lution. It is not necessary (nor presently possible) to include the 3-D structure of
each molecule, but their positions in space with respect to diffusion boundaries
(i.e., cell and organelle membranes) must either be known and included in the
model, or predicted by comparison of simulation results to experimental data. The
requisite model of cellular structures thus requires a highly accurate 3-D recon-
struction, most likely at the EM rather than light level. While light level methods
for single cells are fairly well established (Chapter 6), EM level reconstruction of
intra- and extracellular spaces for use with simulations is new ground, and is heavily
dependent on large-scale computer graphics algorithms. Some of the issues intro-
duced by the need for high resolution and accuracy are outlined in Reference 33,
and a general treatment of surface representation and visualization can be found in
Reference 28, which also includes the Visualization Toolkit software. Another
extremely useful software package for model visualization and multidimensional
data analysis is IBM DataExplorer (OpenDX, which includes extensive documen-
tation and tutorials; http://www.research.ibm.com/dx).

4.2.2 SIMULATIONS BASED ON MICROPHYSIOLOGICAL MODELS

Regardless of the methods used to create a microphysiological model, it must be
designed so that it subsequently can be imported into a simulation program. At this
level of detail and realism, an interactive link between model design and simulation
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is not a trivial problem, nor is a general solution presently available. For the simu-
lation methods covered in this chapter, the present state of the art is a combination
of the above graphics software and a Model Description Language (MDL) covered
in Section 4.3.

The simulation program itself can be based on one of two general numerical
paradigms, finite element (FE) or Monte Carlo (MC). Both methods have been
utilized heavily in computational chemistry and physics but have not yet become
commonplace in computational biology, again largely due to the effort involved in
first creating the model to be simulated. As outlined below, the FE approach is a
3-D extension of familiar methods based on differential equations (Section 1.1),
while the MC approach is altogether different. With a set of equations one predicts
the idealized average behavior of a system, while with MC methods one uses random
numbers and probabilities to simulate individual cases of the system’s behavior. This
use of random numbers to “throw dice” and make decisions led Ulam and Von
Neumann to coin the “Monte Carlo” appellation in the days of the Manhattan
Project.21 Specifics of MC methods vary according to the problems being investi-
gated, but the results invariably include some form of quantitative stochastic noise
that reflects the underlying probabilistic algorithms. In some situations this noise is
an undesired drawback and must be reduced by averaging across multiple simula-
tions, but in other cases (especially biology) the variability itself may be of great
interest (e.g., synaptic current variability) and may contain useful information.

FE Methods — With FE simulations, a 3-D space is subdivided into contiguous
volume elements, or voxels. Well-mixed conditions are assumed within each voxel,
and differential equations that describe mass action kinetics are used to compute
fluxes between and reaction rates within each voxel.29,34 The methods for solution
of the equations are essentially no different than has been described in preceding
chapters for problems of reduced dimensionality. High numerical accuracy can be
achieved by finely subdividing both space and time, i.e., by using fine spatial and
temporal granularity.

As long as the voxels of a FE model are arranged in a regular 3-D grid, their
implementation in a simulation can be relatively straightforward, but with realistic
cellular structures the grid must be extremely fine and/or must be irregular in shape.
With an extremely fine grid the voxels are small and numerous, and the computa-
tional expense can grow to be very large (e.g., hydrodynamics and turbulence
simulations). With irregular voxels the design of the grid itself becomes an additional
large-scale problem, and the dependence of numerical accuracy on grid properties
becomes more difficult to assess.

As voxel size decreases, the product of voxel volume and reactant concentration
is likely to yield only fractional amounts of molecules. Mass action equations still
predict the average behavior of the system, but the stochastic nature and sometimes
non-intuitive variability of interactions on the molecular scale are ignored. In
principle, some degree of stochastic behavior can be incorporated into equation-
based methods,2,10,18 but at this stage the alternative MC modeling approach becomes
highly appealing.

MC Methods — For 3-D reaction-diffusion problems MC methods replace
voxels and sets of differential equations with stochastic molecular events simulated
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directly within the reconstructed volume of tissue. Individual ligand molecules dif-
fuse by means of random walk movements, which reproduce net displacements that
in reality would arise from Brownian motion. Movement trajectories can be reflected
from arbitrary surfaces that represent cell and organelle membranes, and thus a
quantitative simulation of diffusion in complex spatial locales is obtained without
the use of voxels. In addition, reaction transitions such as ligand binding, unbinding,
and protein conformational changes can be simulated probabilistically on a molecule-
by-molecule basis, using random numbers to throw the dice and test each different
possibility against a corresponding MC probability. Tests for binding are performed
each time a diffusing ligand molecule “hits” an available binding site, and successful
tests for unbinding are followed by newly generated random walk movements. Hence,
combined reaction and diffusion can be simulated in any arbitrary 3-D space. The
MC modeling approach thus is very general, and in a sense is easier to implement
for complex structures than the FE approach. In addition, MC simulations reproduce
the stochastic variability and non-intuitive behavior of discontinuous, realistic 3-D
microenvironments that contain finite numbers of molecules.

4.3 GENERAL MONTE CARLO SIMULATIONS: 
SPECIFIC ISSUES OF DESIGN AND EXECUTION

4.3.1 A MATTER OF SCALE

While sets of differential equations can be evaluated numerically in a variety of
ways (Andrew Huxley first computed the Hodgkin–Huxley equations for action
potential generation using a mechanical hand-cranked calculator), and models based
simply on coupled differential equations can be designed and run within equation-
solving software environments (e.g., Matlab or Mathematica), the scope and char-
acteristics of general MC simulations dictate a very different approach. Until
recently, MC simulation programs in neuroscience were tailored specifically to a
single problem and a simplified structure.1,5–7,11,15,35 For fully arbitrary and realistic
reaction-diffusion simulations, on the other hand, one must first generate a high-
resolution 3-D reconstruction and populate it with molecular constituents (as outlined
briefly in Section 4.2.1), and then a representation of the complete model (e.g., 5–50
Mbytes for a synaptic reconstruction) must be read and simulated. If the simulation
program itself is based on computationally “naïve” MC algorithms, the time required
to run large-scale simulations will be overwhelming (say, months to years) on even
the fastest existing computers. With highly optimized algorithms, however, the same
simulation might literally run in minutes on a workstation (Section 4.5).

Here we illustrate the design and simulation of realistic MC models using MCell
and its Model Description Language (MDL). Both are presently unique tools — MCell
as a highly optimized simulation program, and the MDL as a high-level user interface
and link between the steps of reconstruction, model design, simulation, and output
of results. We outline the underlying concepts and operations in detail so that: (1)
the non-programmer can begin to run complex simulations with a minimum of effort;
(2) an understanding of MC methods precludes major mistakes in the choice of input
parameter values which may lead to profoundly degraded numerical accuracy; and
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(3) one could, in principle at least, write a general MC simulation program from
scratch (although we expect the 20+ years of aggregate theoretical, programming,
and development work will dissuade even the most adventuresome).

4.3.2 INPUT AND OUTPUT PARAMETERS

Input parameters for a MC simulation include those that define the micro-
physiological environment (simulation objects, e.g., surfaces, positions of
molecules, etc.), together with those that specify how the simulation is

actually run (e.g., the length of the MC time-step ∆t, the number of time-step
iterations, and run-time optimizations). For MCell in particular, simulations are
designed and controlled using its MDL user interface, in essence a simple program-
ming language designed for generality, readability, and easy use by programming
novices. The MDL and MCell’s program flow are summarized in Figure 4.1 and
Boxes 4.1 and 4.2. Specific examples follow in Sections 4.5 and 4.6.

Random Number Seed — In a sense, the “first” input parameter for a MC
simulation is a seed value for generation of random numbers. This seed value
determines the values of the random numbers used in the simulation (Section 4.3.4),
and hence determines the outcome of decisions made during the simulation. When
an MCell simulation is started, the seed value is specified together with the name
of an MDL input file.* As shown schematically in Figure 4.1, the input files are
parsed (read and interpreted), the specified simulation conditions are initialized, and
then time-step iterations begin.

Arbitrary Surfaces — To be used with MC random walk and binding algo-
rithms, arbitrary surfaces are created from polygon meshes. Meshes that represent
reconstructed pre- and postsynaptic membranes can easily contain of order 106

individual polygons (mesh elements, MEs; Figures 4.1, 4.3, and 4.4), and each ME
may be subdivided to obtain discrete effector tiles (ETs) that can be used to model
stationary molecules (see below).** It is important to note that meshes generated
for use with MC simulations must be exact, i.e., must “hold water.” If vertices shared
by adjacent MEs do not agree exactly, then random walk movements will pass
through the gaps no matter how small. Reconstructions created just for visualization
purposes or for use with compartmental equation-based models do not share this
requirement, and typically are inadequate for MC simulations.

Surface Properties and Ligand Molecules — In order to simulate an imper-
meable membrane, individual MEs of a surface must be reflective to diffusing ligand
molecules. On the other hand, it is often necessary to place stationary molecules
(i.e., ETs) on surfaces that do not constitute diffusion boundaries. For example, the
acetylcholinesterase (AChE) molecules in the example of Section 4.5 are located on
a transparent surface that represents the synaptic basal lamina within the synaptic

* The specified input file itself often makes reference to other additional MDL files that contain objects
and parameter definitions to be included in the simulation (see INCLUDE_FILE keyword statement in
Box 4.2).
** With MCell, spatial dimensions are given in µm, and polygon meshes are created from a
POLYGON_LIST object (Box 4.2). Each ME can have any number of vertices but must be convex (all
internal angles less than 180°) and exactly planar. Triangular MEs are used most often (guaranteed convex
and planar), and a ME must be triangular if it contains ETs.
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cleft. Ligand molecules (acetylcholine, ACh) thus are able to diffuse through the
basal lamina unless they encounter and bind to an AChE site. Section 4.5 also shows
how transparent surfaces may be used to sample the concentration of diffusing
molecules (ACh and choline, Ch, obtained after hydrolysis of ACh by AChE) in
restricted regions of space. Each type of ligand molecule used in a simulation is
minimally defined by a diffusion coefficient value (DL),* which, together with the
value of ∆t, determines the distribution of step lengths used for random walk
movements (Sections 4.4.1 and 4.4.2).

FIGURE 4.1 General Overview of MCell Simulations. Several examples of simulation
objects include: (1) ovoid polygon mesh (similar to the simplified nerve cell body used in
Section 4.6); (2) complex polygon mesh (synaptic vesicle and exocytotic fusion pore, see
Section 4.5); (3) spherical source of ligand molecules; (4) surface that creates ligand molecules
at rate k; and (5) reaction mechanisms for acetylcholine (A), acetylcholine receptors (R), and
acetylcholinesterase (E, Section 4.5). Objects (1) and (4) illustrate barycentric subdivision of
mesh elements (triangles with heavy black outlines) to create effector tiles (smaller triangles)
that cover the surface completely and may contain effector sites (shaded triangles) in different
chemical states (light vs. dark shading). Program flow and operations during initialization
(light gray box) and time-step iterations (dark gray box) are detailed in Figures 4.2A and
4.2B, respectively. MDL, MCell Model Description Language.

* Each type of ligand molecule is defined by two user-specified input parameters, an arbitrary name and
a diffusion coefficient value (cm2 · s–1; see DEFINE_LIGAND object in Box 4.2). Multiple predefined
(see SPHERICAL_RELEASE_SITE object in Box 4.2) or arbitrary initial distributions of diffusing
molecules can be used. An arbitrary initial distribution can be created within a closed polygon mesh (to
shape the distribution), and then the bounding mesh can be removed (or changed from reflective to
transparent) in order to initiate outward diffusion (see Section 4.3.3). In addition, different temporal
patterns can be designed to trigger the release of different amounts and types of ligand molecules (see
DEFINE_RELEASE_PATTERN object in Box 4.2, and Sections 4.5 and 4.6).
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Box 4.1 Introduction to the MCell Model Description 
Language (MDL)

MDL files consist of user comments, user-defined variables, keywords (capital-
ized), keyword statements, and keyword statement blocks that have subordinate
statements enclosed in braces (see Box 4.2 for general syntax).

User comments are begun with “/*” and ended with “*/ ”. Comments can
be nested (comments within comments), and are ignored when the file is parsed.

User variables are defined by equating an arbitrary name to a value. Names
are typically given in lower case to distinguish them from upper case keywords.
Types of variables include text, text expressions, numerical values, numerical
expressions, and numerical arrays (elements may be values or expressions).
Numerical expressions may include a variety of standard math functions.
Examples:

user_id = “qwerty” /* definition of a text variable named user_id */
output_file = “run_001.” & user_id /* text expression named output_file with elements 

joined by the & operator; result would be 
“run_001.qwerty” */

k_plus = 1.5e8   /* definition of a numerical variable named k_plus */
new_k_plus = k_plus*SQRT(3) /* numerical expression named new_k_plus, uses the 

square root operator */
location = [0, 1, 0]    /* definition of numerical array named location */

Keyword statements and blocks are used to:
• Define Values for Simulation Parameters. As illustrated in Box 4.2,

two statements are required for every simulation, to define the time-
step value and the number of time-step iterations. Many optional
statements can be used to define other parameters and run-time opti-
mizations.

• Define Logical Objects. Logical objects have no physical location,
and specify sets of input parameters for different types of ligand
molecules, ligand release patterns, and chemical reaction mechanisms.
Logical object definitions begin with a keyword that contains the word
DEFINE.

• Design Templates for Physical Objects. Physical objects have a loca-
tion in space, and include various types of surfaces and ligand release
sites. The user specifies an object name, and the first keyword
describes the object. Physical objects are initially invoked as templates
that can be modified in various ways, and only exist in a simulation
if instantiated (see below).

• Design Metaobject Templates. Physical object templates can be
grouped into metaobjects, which in turn can be grouped into unlimited
levels of higher order metaobjects.

(continued)
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Box 4.1 (continued)
• Instantiate Physical Objects and Metaobjects. Creates actual simula-

tion objects from templates.
• Output Data for Visualizations and Animations. See page 97 and

Box 4.2.
• Output Reaction Data Statistics. See Box 4.2.
• Output Other Data. Uses syntax and formatting similar to the C

programming language. Allows arbitrary file creation and write oper-
ations, printing of messages to the command line window, and con-
version of numerical values to text variables.

Box 4.2 General MDL File Organization

The left column shows an abbreviated version of an MDL file, as explained
briefly in the right column. MDL keywords are capitalized, and italics indicate
names, values, or expressions that would be supplied by the user. Subordinate
statements within statement blocks have been omitted, and their positions are
indicated by ellipsis marks. When the simulation is started, the file is read
(parsed) from top to bottom. Some calculations for initialization are performed
while parsing, so there is some order-dependence to the file layout.

/* comment to describe purpose of  Comments can appear anywhere to document the 
MDL file */ file.

variable_name_1 = text_expression User-defined variables can appear anywhere 
variable_name_2 = numerical_expression between statement blocks.
variable_name_3 = numerical_array

INCLUDE_FILE = text_expression Include files can appear anywhere between 
statement blocks and should be documented 
consistently for submission to an online repository 
(see MCell web sites).

/* Required keyword statements */
TIME_STEP = numerical_expression Value given in seconds.
ITERATIONS = numerical_expression Total number of time-step iterations.
/* Optional keyword statements */
EFFECTOR_GRID_DENSITY = Global value for barycentric tiling (tiles · µm–2).
numerical_expression

PARTITION_X = [numerical array] Positions along x-axis to insert spatial partitions.
PARTITION_Y = [numerical array] Positions along y-axis to insert spatial partitions.

PARTITION_Z = [numerical array] Positions along z-axis to insert spatial partitions.
CHECKPOINT_INFILE = text_expression Name of checkpoint file to read during 

initialization.
CHECKPOINT_OUTFILE = Name of checkpoint file to write before stopping.
text_expression

CHECKPOINT_ITERATIONS = Number of checkpoint iterations to run before 
numerical_expression stopping

(continued)
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Effector Sites and Reaction Mechanisms — Individual ligand-binding or other
stationary molecules (e.g., receptors, transporters, or enzymes) are simulated by
using effector sites (ESs) on MEs of surfaces. Each ES is an ET that has a chemical
reaction mechanism (see below) associated with it. Effector sites used in conjunction
with arbitrary polygon mesh surfaces and reaction mechanisms constitute one of the
most powerful and unique features of MCell simulations. When the user specifies
that a ME contains a particular type of ES at some density, σES (sites · µm–2), MCell:

1. Covers the ME with a triangular grid of ETs using a method called
barycentric subdivision (Figure 4.1). The number of ETs (NET) depends
on the area of the ME (AME) and a global input parameter, the effector
grid density σEG (tiles · µm–2).* With barycentric tiling, the area of an ET
(AET) is given exactly by AME /NET, and approximately by AEG = 1/σEG.
AME, on the other hand, depends only on how the surface was constructed.

2. Uses random numbers to decide which of the available ETs are ESs (the
ratio (σES · AME)/(NET) gives the probability that an ET is an ES). Note that
different types of ESs (e.g., different subclasses of glutamate receptors)
can be intermixed on the same ME.

Since ESs occupy positions on surfaces in a real 3-D space, reaction mecha-
nisms** used in MC simulations can encompass the polarity (directionality) of

Box 4.2 (continued)
/* Optional logical object definitions */
DEFINE_LIGAND {…} Requires user-specified name and diffusion 

coefficient.
DEFINE_RELEASE_PATTERN {…} Timing and amount of ligand release.
DEFINE_REACTION {…} Chemical reaction mechanism associated with ESs.
/* Optional physical object templates */
name_1 BOX {…} For simple structures and/or ligand sampling.

May include ESs.
name_2 POLYGON_LIST {…} For complex polygon mesh structures.

May include ESs.
name_3 SPHERICAL_RELEASE_SITE Spherical distribution of ligand molecules 
 {…} (arbitrary diameter). May be associated with a 

release pattern.
/* Optional metaobject templates */
name_4 OBJECT {…} Hierarchical groups of physical objects and/or 

other metaobjects.
/* Instantiation statement(s) */
INSTANTIATE name_5 OBJECT {…} Create an instance of a physical object. May include 

geometric transformations.
/* Optional visualization and reaction 
statistics output */

VIZ_DATA_OUTPUT {…} See example models (Sections 4.5 and 4.6).
REACTION_DATA_OUTPUT {…} See example models (Sections 4.5 and 4.6).

* See EFFECTOR_GRID_DENSITY keyword statement in Box 4.2.
** See DEFINE_REACTION object in Box 4.2, and Sections 4.5 and 4.6.
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ligand binding and unbinding, as well as the typical state diagram and associated
rate constants that define transitions between different chemical states (Figure 4.1).
For example:

1. If an ES on a reflective polygon mesh is used to model a receptor protein
on the plasmalemma, binding and unbinding could be defined to occur
on the extracellular side of the surface.

2. An ES used as a transporter protein could bind molecules on one side of
the surface and unbind on the other side.

3. An ES that represents an enzyme localized on an intra- or extracellular
scaffold (transparent surface) could bind and unbind from either side.

With MCell’s MDL, rate constants are input as conventional bulk solution values,
in units of (M–1 · s–1) for bimolecular associations (i.e., ligand binding, k+n values in
Figure 4.1), or (s–1) for unimolecular transitions (i.e., ligand unbinding [k– values],
transformation [k2], destruction [k3 and k4], or de novo production [k], as well as
ES conformational changes [α and β]). When the simulation is initialized
(Section 4.3.4), bimolecular and unimolecular rate constants are converted into MC
probabilities (pb and pk values, respectively; Sections 4.4.3–4.4.5).

Output of Visualization and Reaction Data — Since diffusion and all reac-
tion transitions (events) occur on a molecule-by-molecule basis in a MC simulation,
it is possible to track the statistics of each and every kind of event in a space- and/or
time-dependent manner (e.g., the number of ESs in a particular state, the number
of ligand molecules in a sampled volume, fluxes, transitions). In addition, it is often
necessary to visualize snap-shots of a simulation, or create an animation from
successive snap-shots. Thus, the amount of output information can be enormous. As
illustrated in Sections 4.5 and 4.6, MCell’s MDL includes unique facilities for
selective filtering, formatting, and timing of output.*

4.3.3 MAXIMIZING FLEXIBILITY AND EFFICIENCY THROUGH CHECKPOINTING

Given the nature of realistic MC simulations, computer time can be lengthy even
with highly optimized algorithms. Premature termination of a simulation, with
concomitant loss of results (e.g., because one’s present allotment of time on a multi-
user computer is used up), can be avoided through the use of checkpointing. As
indicated by the feedback loop in Figure 4.1, checkpointing is a general technique
that allows a running program to be stopped and restarted at specified checkpoints
(hence the name).**

* See VIZ_DATA_OUTPUT and REACTION_DATA_OUTPUT in Box 4.2. Supported formats for
visualization output include: IBM DataExplorer (open source, http://www.research.ibm.com/dx), Pixar
RenderMan (proprietary, http://www.pixar.com), Blue Moon Rendering Tools (shareware, adheres to
the RenderMan interface standard, http://www.bmrt.org), rayshade (open source, ftp://graphics.stan-
ford.edu/pub/rayshade), povray (open source, http://www.povray.org), irit (open source,
http://www.cs.technion.ac.il/~irit).
** At each checkpoint, all the information required to restart is saved in a checkpoint file. With MCell
simulations, each checkpoint (given as a number of time-step iterations) and checkpoint file name is
specified with a keyword statement in the MDL input file (Box 4.2).
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One simple use of checkpointing is to subdivide a lengthy simulation into a
sequence of shorter runs, and thereby avoid premature termination. A more powerful
adaptation is to introduce one or more parameter changes when the simulation
restarts. It is also possible to reuse intermediate results saved at different checkpoints.
In this way computation time can be reduced dramatically, and simulation conditions
can branch from a common point into parallel tracks in which one or more input
parameters are varied. Examples of changes that can be incorporated into an MCell
checkpoint sequence* include: existing surfaces can be removed and new surfaces
can be added; existing surfaces can be moved (e.g., to simulate an expanding
exocytotic fusion pore that joins a synaptic vesicle to a presynaptic membrane30);
surfaces can be changed from reflective to transparent or absorptive, etc.; new ligand
molecules and effector sites can be added; new reaction mechanisms can be added;
existing reaction mechanisms can be modified; the simulation time-step can be
changed; the type and amount of information to be output as results can be changed.

4.3.4 INITIALIZATION, OPTIMIZED RANDOM NUMBER

GENERATION, AND TIME-STEP EVENTS

Initialization — Figure 4.2A summarizes how an MCell simulation is initialized
before time-step execution begins. In essence, initialization includes: (1) instantiation
(creation) of pre-existing objects from preceding checkpoint data (if any); (2) instan-
tiation of new simulation objects; and (3) set-up of runtime optimizations. As
outlined below and demonstrated in Section 4.5.2, the user must specify runtime
optimizations efficiently to run large-scale realistic simulations, because this can
decrease the required computer time by orders of magnitude.

Random Numbers — Since random numbers are used to make decisions even
during initialization (e.g., to place ESs on MEs), a stream of available values is set
up when initialization begins (Figure 4.2A). A computer’s “random” numbers in
reality are “pseudorandom” because they are computed as a deterministic stream
using a mathematical algorithm and an initial seed value (for background informa-
tion on various algorithms, see References 14 and 19). Each number in the stream
is actually a sequence of binary bits, and the best algorithms return not just statis-
tically uncorrelated numbers, but also uncorrelated bits within each number.
Although most programming languages include built-in functions that compute
pseudorandom numbers, the underlying algorithms generally are not adequate to
produce uncorrelated bits. MCell therefore uses a self-contained, 64-bit crypto-
graphic-quality algorithm that has been tested at the bit level, and also includes 3000
pre-defined seed values. The advantages are: speed, because the bits in each “single”
random number can be subdivided to obtain multiple values for the computational
price of one (a random number can be split and used to pick both a distance and
direction for a random walk movement, Section 4.4.2); and reproducibility, because

* Modifications to input parameters in successive MDL files used for a checkpoint sequence can be set
up by the user in advance, and/or the MDL can be used to introduce incremental parameter changes. In
addition, users familiar with operating system script files (e.g., UNIX shell scripts or DOS batch files)
can use them for an additional level of flexibility and automation (Figure 4.1).
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a given seed produces the same stream of values, and therefore identical simulation
results, regardless of the computer platform or operating system.

Time-Step Events — During each simulation time-step, many decisions must
be made between different possible events that can occur to reactant molecules,
where reactant includes all existing ligand molecules, bound ligand-ES complexes,
and any unbound ESs currently in a chemical state that can undergo a unimolecular
reaction transition. A list of all reactants is created when a simulation is initialized
(Figure 4.2A), and subsequent time-step events and program flow are summarized
in Figure 4.2B. Most computation time for a simulation is consumed by diffusing
molecules, because their movement trajectories, or rays (a radial distance lr and
direction ξ), must be traced through space to determine whether the ray intersects
a ME of a surface. If not, the ligand molecule is simply placed at the endpoint of
the ray for the duration of the time-step. If so, the final result depends on the presence
or absence of a reactive ES at the point of intersection (PI), and/or the properties of
the ME, as outlined in Figure 4.2B. If the ligand molecule is neither absorbed by
the surface nor retained at PI because of a bimolecular reaction, then its movement
must be continued. After passing through or reflecting from the ME (transparent or
reflective ME, respectively), the search for an intersection begins again and this
process of ray marching continues until the molecule is either absorbed, reacts with
an ES, or travels a total distance lr and remains at the resulting endpoint of motion
for this time-step.

4.3.5 ADDITIONAL RUN-TIME OPTIMIZATIONS: SPATIAL

PARTITIONS AND FAST REALISTIC RANDOM WALK METHODS

Spatial Partitions — As illustrated in Figures 4.2 and 4.3, MCell’s ray marching
algorithms also include a run-time optimization called spatial partitions. In the
absence of partitions, every ME must be checked for a potential intersection every
time a diffusing molecule moves. Thus, the computer time for a simulation is roughly
proportional to the total number of MEs, i.e., a simulation with 100,000 MEs would
require ~1000-fold more computer time than one with 100, and a simulation of one
synaptic current at a reconstructed synapse might run for weeks or months. With
spatial partitions, however, the number of MEs has very little impact on computer
time, and simulations of currents in realistic synaptic structures can run in minutes
(Section 4.5.2).

Spatial partitions are transparent planes (Figure 4.3) that the user places along
the x, y, and/or z axes* to create spatial subvolumes (SSVs). When the simulation
is initialized, the partitions are inserted and the MEs included within each resulting
SSV are determined (Figures 4.2A and 4.3). The user’s goal is to arrange a sufficient
number of partitions so that each SSV includes no more than a few MEs. During
time-step iterations, the SSV in which each ligand molecule currently resides is
always known (Figure 4.2), so the search for intersections during ray marching can
be limited to those MEs included in the ligand molecule’s current SSV, as well as

* See PARTITION_X, PARTITION_Y, and PARTITION_Z keyword statements in Box 4.2.
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the boundaries of the SSV itself. If a ligand molecule passes through an SSV
boundary, ray marching simply continues in the new SSV using an updated list of
MEs and boundaries (Figure 4.2B).

As simulations grow in structural complexity, and therefore include an increasing
number of MEs, the number of spatial partitions can be increased to keep the average
number of MEs per SSV about constant. Under these conditions, MCell’s execution
speed will also remain nearly constant, i.e., independent of the number of MEs.
Since partitions influence only the simulation’s execution speed, and not the random
number stream, net ligand displacements, nor reaction decisions, simulation results
are identical regardless of partitioning.

Random Walk — While most of the computational expense incurred for dif-
fusing molecules arises from ray marching, another significant component is gen-
eration of the random walk rays themselves. The simplest (and least realistic) random
walk algorithm uses a constant step length and chooses a positive or negative x, y,

FIGURE 4.2A Flowchart of Initialization Operations. In general, initialization includes set-
up of: (1) random numbers; (2) pre-existing and new objects; (3) run-time optimizations such
as spatial partitions and random walk look-up tables; (4) calculation of probabilities and
scaling factors for reaction transitions; and (5) a reactant list that is traversed during the first
time-step (Figure 4.2B). To help the user optimize the placement and number of spatial
partitions (Sections 4.3.5 and 4.5.2), MCell writes an output file (n_ME-n_SSV.dat) that can
be used to create a frequency histogram for the number of mesh elements included in spatial
subvolumes (see Figure 4.5B).
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FIGURE 4.2B Flowchart of Time-Step Operations. During each time-step, a list of valid
reactants is traversed. Depending on each reactant’s identity, random numbers are used either
to generate a random walk movement and test for possible bimolecular associations (gray
box), or to test for possible unimolecular transitions. Additional operations may include release
of new ligand molecules and output of visualization data. Specified reaction statistics and
checkpoint data are written to output files after the last iteration.
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and z displacement for each movement.9 Movements are generated rapidly, but
molecules occupy positions on a 3-D Cartesian lattice. For accurate simulation of
diffusion, the granularity of the lattice must be very fine compared to the size of
any restrictive structures through which the molecules move. Fine granularity
requires a very small step length, and hence a very small simulation time-step. The
smaller the time-step, the more time-step iterations are required, and thus the advan-
tage of rapidly generated movements is negated.

The most realistic random walk algorithm computes a random radial direction
and step length for each movement. Because the step lengths are obtained from a
theoretical diffusion distribution (Section 4.4.1) and the molecules do not move along
a lattice, accurate simulation of fluxes through restrictive structures can be obtained
with a longer time-step than is required with simpler algorithms. However, the
trigonometric and numerical integration operations required for each movement are
very time-consuming, so the overall execution speed is very slow. MCell achieves

FIGURE 4.3 Example of Spatial Partitions and Subvolumes. A spherical polygon mesh
surface is shown with spatial partitions (transparent planes) along the x, y, and z axes. Spatial
subvolumes (cuboids) are created between the partitions, and under optimal conditions each
subvolume includes (wholly or partly) no more than a small number of mesh elements
(Section 4.3.5). The search for collisions between diffusing ligand molecules and mesh ele-
ments (ray tracing and marching, Figure 4.2B) then can be restricted to individual subvolumes,
dramatically increasing execution speed (Section 4.5.2). As shown for clarity, each partition
extends just beyond the dimensions of the sphere. In an actual simulation, however, partitions
extend to the bounds of available space (~10151 µm ≅ ∞), and may be placed anywhere along
each axis.
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the same maximal realism and accuracy with the speed of the simplest algorithm
by using extensive look-up tables for equally probable radial step lengths (lr) and
direction vectors (ξ). The values in each table are computed only once when the
simulation is initialized (Figure 4.2A), and thereafter are chosen as required (Figure
4.2B) using a subdivided random number (Section 4.3.4). MCell’s random walk
algorithms are outlined more fully in the following section, as is the calculation of
pb and pk values used in testing for possible reaction transitions during time-step
iterations (Figure 4.2B).

4.4 THEORETICAL FOUNDATION

4.4.1 ANALYTIC DIFFUSION THEORY FOR NET RADIAL

DISPLACEMENTS

An actual diffusing ligand molecule initially at point P1 at time (t = 0) has some
thermal velocity and undergoes Brownian movements (i.e., collides with water
molecules) on the sub-ps timescale at room temperature.4 After many collisions
accumulate over a longer time interval (t = ∆t), the difference between the molecule’s
ending position P2 and initial position P1 yields a net radial displacement (distance r)
in a random direction. To calculate the theoretical distribution of net radial displace-
ments (that will be used to generate random walk step lengths), we start from Fick’s
second law, i.e., the diffusion equation for concentration C at any point in space as
a function of time:

(4.1)

If a concentration gradient exists in only one dimension (ϑ), whether linear (x, y,
or z) or radial (r), Equation 4.1 reduces to:

(4.2)

which can be solved analytically for certain sets of boundary conditions. For a point
source of M molecules and a time interval ∆t, the solution is9

(4.3)

Equation 4.3 gives the theoretical ligand concentration (molecules per unit vol-
ume) as a continuous function of time and radial distance (and appears in similar
form in Chapter 3). Multiplying Equation 4.3 by the volume of a spherical shell
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(4πr2 dr) gives the amount of ligand (Nr, number of molecules) contained in the
shell at time ∆t:

(4.4)

Dividing both sides of Equation 4.4 by the total amount of ligand (M) gives the
fractional amount (Nr /M) in the shell, or the fractional probability (pr) of a net radial
displacement between r and (r + dr) for a single diffusing molecule. Hence:

(4.5)

The mean radial displacement
-

(lr) is obtained from the expectation value of r,
i.e., by integrating across all probability-weighted values of r, and is:

(4.6)

If P1 is defined as the origin of a Cartesian coordinate system and a set of radial
displacements in random directions is evaluated, the average (±) x, y, and z compo-
nents for the set are all equal to

-
(l⊥), where:

(4.7)

Because of radial symmetry, the same result is obtained for (±) no
matter how the Cartesian axes are rotated around P1. In general, then,

-
l⊥ is the average

value of (±) ∆ψ, where ψ is any arbitrary axis that passes through P1. For a plane at
any arbitrary location in space, there exists an axis ψ that is perpendicular (normal)
to the plane. Thus, the average increase or decrease in distance between a diffusing
molecule and the plane (measured with respect to ψ) is given by

-
l⊥. Comparison of

Equations 4.6 and 4.7 shows that
-
l⊥ is equal to

-
lr /2.

4.4.2 OPTIMIZED BROWNIAN DYNAMICS RANDOM WALK

The probability distribution function of Equation 4.5 can be rewritten for a dimen-
sionless parameter s, where s is defined as :

(4.8)

When an MCell simulation begins, Equation 4.8 is integrated to obtain a large set
of equally probable values of s (1024 under default conditions), and these values
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are stored in a look-up table. Thereafter, each time a radial step length lr is needed
for a random walk movement, a random number is used to pick a value of s from
the table. To convert from s to lr , the chosen value of s is multiplied by the scaling
factor (which has units of distance).

A second look-up table is used for an extensive set of equally probable radial
directions (>130,000 by default). These directions are stored as the x, y, and z
components of unit vectors (ξ) that radiate out from a point and are spaced evenly
from each other. An initial subset is computed to fill one octant of a unit sphere,
and then is reflected to fill the remaining seven octants. This symmetrical replication
of the initial subset guarantees the complete absence of directional bias, which is
critical because even a tiny net bias can accumulate over thousands of time-steps to
produce substantial drift. Once random numbers have been used to pick lr and ξ for
a random walk ray, the x, y, and z components of ξ are multiplied by lr . The results
then are added to the (x, y, z) values of the molecule’s initial position (P1) to find a
possible endpoint of motion (P2). Finally, the ray is traced and marched as required
(Figure 4.2B).

As introduced briefly in Section 4.3.5, simpler random walk algorithms can be
designed in many ways, but the MCell method has the following advantages (which
also distinguish it from our own earlier algorithm used with MC simulations):5

1. Realism — movements are radially symmetrical during each individual
time-step, and under default conditions are essentially free of discernible
spatial granularity.

2. Speed — no penalty is incurred for realism, because numerous optimiza-
tions make it as fast or faster than simpler, less realistic methods.

3. Numerical accuracy — extensive sets of radial distances and directions
are available for each movement, so concentration gradients are repro-
duced accurately within distances as small as twice the mean radial step
length

-
lr (Equation 4.6). Thus, to simulate diffusion through a constriction

like an exocytotic fusion pore, the time-step ∆t need only be chosen so
that

-
lr is about twofold smaller than the radius of the pore.30,33

4. Adjustability — although the default numbers of radial step lengths (1024)
and directions (~130,000) are sufficient for almost any conceivable cir-
cumstance, the user can increase or decrease either value, or even replace
the look-up table for direction vectors with directions chosen at random
for each movement (full machine precision, slower execution).

4.4.3 GENERAL OVERVIEW OF MONTE CARLO PROBABILITIES

Monte Carlo binding and unbinding probabilities were first introduced in simulations
of a simplified vertebrate neuromuscular junction that contained regular rectangular
junctional folds, and therefore simple rectangular grids for binding sites.5 The sim-
ulation program was soon merged with another developed independently at about
the same time,33 and after extensive generalization the earliest version of MCell was
created;30,31 (see References 26 and 33 for a more complete historical overview).
Simulation of highly realistic rather than simplified models is now possible after

4D tL∆
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much additional optimization and development. Here we present detailed general
derivations of the MC probabilities for bimolecular (pb) and unimolecular (pk) reac-
tion transitions (see Chapter 2, Box 2.1 for an overview of reaction mechanisms),
as required for the new methods and capabilities. This is important but difficult
ground for newcomers, and luckily the practical “take-home” message can be sum-
marized simply: For a given set of input conditions, simulation results will converge
to the correct answer as a single input parameter, the time-step ∆t, decreases. Unlike
FE simulations, there is no separate parameter (i.e., voxel size and shape) that
determines the simulation’s spatial granularity. Instead, spatial granularity decreases
hand-in-hand with decreasing temporal granularity, because random walk distances
become smaller as ∆t becomes smaller.

Each time that a reactant molecule is tested for possible chemical transitions
(Figure 4.2B), the value of a single random number (κ) is compared to the relevant
MC probability value computed during initialization (Figure 4.2A). Each probability
value is subdivided into fractional amounts if the reactant has more than one available
transition path. For example, in the reaction mechanisms of Figure 4.1:

1. A random walk ray for a diffusing A molecule might intersect (“hit”) an
ES in the R0 state, and A then would be tested for binding to either of
two independent binding sites defined by parallel transition paths and the
bulk solution rate constants k+1 and k+2. Each of the two rate constants
would be used to compute a fraction of pb, the MC probability for bimo-
lecular association (see below). In general, each ES can represent a mol-
ecule with an arbitrary number of binding sites.

2. A ray might hit an ES in the E state, which has a single available binding
site, and hence a single rate constant would be used to compute pb.

3. An ES in the A2R3 state might be tested simultaneously for unbinding
from either binding site, or isomerization to the (A2R4) state. The three
rate constants k–3, k–4, and β would each be used to compute a fraction
of pk, the MC probability for a unimolecular transition.

4.4.4 THE MC PROBABILITY OF UNIMOLECULAR TRANSITIONS

Derivation — As illustrated in Figures 4.1 and 4.2B, MCell simulations pres-
ently can include five different types of unimolecular transition. In each case (e.g.,
the A2R3 → A2R4 isomerization in Figure 4.1), the transition is governed by a first-
order rate constant k that has units of inverse time (s–1). In general, if initial state
S0 can undergo one of n different possible transitions:

(4.9)

and the reaction proceeds for some time ∆t, the total probability (pkt) that a single
molecule in the S0 state undergoes any transition is given by (Box 4.3):

---->S1 k1 S0

k2

k
n

S2

Sn
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(4.10)

and the fractional probabilities of each individual transition are:

(4.11)

Implementation, Validation, and Accuracy — Since pkt is the probability of
any transition during ∆t, the probability of no transition is (1 – pkt). The decision
between all possible events (including no transition) is made with maximal run-time
efficiency by comparing the value of a single random number (0 ≤ κ ≤ 1) to the
cumulative set of probabilities (pk1, pk1 + pk2, …, pkt, 1).*

MCell results for unimolecular transitions can be verified with a simple simu-
lation of Equation 4.9, i.e., one that starts with a set of ESs in state S0, and then
tallies:** (1) the number of all transitions from S0 per time-step ∆t, to verify the
expected exponential distribution of lifetimes for the S0 state (with a mean value of
τ, Box 4.3); and (2) the number of ESs in each state after each time-step, to verify
the expected proportions (Equation 4.11). For high numerical accuracy, the value of
∆t used for the simulation must be small compared to τ. Of course, the MCell output
will also include stochastic noise, the magnitude of which will depend on the absolute
number of ESs. Such noise can be reduced by averaging across multiple simulations
run with different random number seeds, and will decrease by a factor  where
ns is the number of simulations.

4.4.5 THE MONTE CARLO PROBABILITY OF BIMOLECULAR

ASSOCIATIONS

Derivation — For a simulation of bimolecular association between ligand A
and receptor R with n possible binding sites:

(4.12)

fractional values of pb are used to test for binding to any one of the available sites
each time a random walk ray hits an ES in state R (Figure 4.2B). The total number

* If κ ≤ pk1, then the first possible transition occurs. If pk1 < κ ≤ (pk1 + pk2), then the second possible
transition occurs, and so on. If κ > pkt, then no transition occurs.
** See REACTION_DATA_OUTPUT in Box 4.2 and COUNT statements in Sections 4.5 and 4.6.
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of times that a particular ES is hit during a time-step ∆t can range from zero to any
(+) integer value, depends on the local concentration-dependent flux of A molecules
into the ES, and shows stochastic variability across successive trials. The average
number of hits per time-step (NH) thus is a (+) real number that approaches zero as
either ∆t or the concentration of A approaches zero.

Box 4.3 Derivation of the MC Probability for Unimolecular 
Transitions

If the reaction of Equation 4.9 (Section 4.4.4) proceeds for any time t from an
initial concentration (S0)o, the total probability (pkt) that a single molecule in the
S0 state undergoes a transition is given by the fraction of (S0)o that undergoes
any transition during time t:

(1)

The general rate equation depends only on time and (S0):

(2)

and hence can be integrated directly to obtain pkt. From Equation 4.2:

(3)

and the solution is

(4)

From Equation 4 the lifetime of S0 is exponentially distributed with a mean value 

(5)

From Equations 4 and 1:

(6)

as given in Equation 4.10 (Section 4.4.4).
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Since pb is the probability that binding occurs at any one of the available sites
after a single hit, the probability that binding does not occur after a single hit is
(1 – pb). The probability that binding has not occurred after a total of NH hits is
(1 – pb)NH, and thus the total probability (pbt) that binding has occurred during ∆t,
i.e., after any one of the NH hits,* is given by:

pbt = 1 – (1 – pb)NH (4.13)

In order for the binding kinetics of a MC simulation to be quantitatively correct,
the average instantaneous binding rate must equal the idealized binding rate pre-
dicted by mass action kinetics. Therefore, the value of pbt must equal a corresponding
probability (pt) calculated from mass action rate equations. For a short interval of
time ∆t:

(4.14)

where (A)o is the local concentration of ligand molecules around a single R molecule
at the beginning of ∆t (Box 4.4). To calculate pb for use in MC simulations,
Equation 4.13 thus is set equal to Equation 4.14 (see Box 4.5):

(4.15)

and then Equation 4.15 must be solved for pb. Doing so directly yields a ligand
concentration-dependent expression for pb, which would make pb a space- and time-
dependent parameter specific to each ES during a running MC simulation. The
resulting computational cost would be staggering. Fortunately, however, as ∆t
approaches 0, pb, and NH must also approach 0, and under such conditions the term
(1 – pb)NH in Equation 4.15 approaches (1 – NH · pb).** After substitution and rear-
rangement:

(4.16)

* A concrete analogy to this probability problem goes as follows: Roll a six-sided die 3 (i.e., NH) times.
What is the probability that a 1 is not obtained on any of the three trials? The probability of rolling a 1
(i.e., pb) is 1/6, and so the probability of not rolling a 1 is (1 – 1/6 = 5/6) for the first trial and the second
trial and the third trial. Thus, the probability that a 1 is not obtained within three rolls is (5/6) · (5/6) · (5/6),
or (5/6)3, i.e., (1 – pb)NH. The probability that a 1 will be rolled (i.e., binding will occur) within three
trials therefore must be 1 – (5/6)3, or 1 – (1 – pb)NH as given in Equation 4.13.
** At the limit of ∆t = 0, ligand molecules make no movements at all, and hence no hits can occur. With
NH = 0, both (1 – pb)NH and (1 – NH · pb) evaluate to unity. For small non-zero values of NH, the agreement
between the two terms is especially close if pb is also small (and pb, like NH, decreases as ∆t decreases).
For example, if both NH and pb are 0.1, the two terms agree to within 0.05%.
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As mentioned above, the term NH in Equation 4.16 is determined by the local
concentration-dependent flux (J) of A molecules into one ES. For small ∆t, J (and
therefore NH) is directly proportional to (A)o, and after substitution of a final expres-
sion for NH (Box 4.6) into Equation 4.16:

(4.17)

where Na is Avogadro’s number, AET is the area of an ET, and DL is the diffusion
coefficient of ligand A. The expression for pb in Equation 4.17 is independent of
free ligand concentration, and therefore can be implemented very efficiently in
simulations.

Box 4.4 Bimolecular Associations: Derivation of ζ

If the reaction of Equation 4.12 (Section 4.4.5) proceeds for some time t from
initial concentrations (A)o, (R)o, and (AR)o, the mass action probability (pt) that
a single R molecule becomes bound is given by the fraction of (R)o that becomes
bound, i.e., 

(1)

or simply 

(2)

if

(3)

(as used below). The general rate equation for production of the n bound states is

(4)
(continued)
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Box 4.4 (continued)

but Equation 4 cannot be integrated directly to obtain (AR)t because (A), (R),
and (AR) are functions of space as well as time. In Equation 4, the quantity (DA

+ DR), i.e., the sum of the diffusion coefficients for A and R, is implicitly included
in the values of k+, together with the sizes and shapes of the molecules, and the
activation energy for each binding reaction. If at least one of the diffusion
coefficients is large but the k+ values are small (e.g., because the activation energy
is large), then the rate of reaction is not “diffusion-limited,” i.e., the solution is
always “well-mixed” because the rate of binding is slow compared to the rate
of diffusion. Under such conditions, appreciable spatial concentration gradients
do not form as binding proceeds, so the partial differentials of Equation 4 can
be replaced with ordinary differentials:

(5)

Since the concentration terms in Equation 5 are independent of space, by
definition they are equally valid for the bulk solution and at the local level in
the vicinity of single molecules. Equation 5 can be integrated to determine (AR)t:

(6)

After integration, final analytic expressions for pt are

(7)

 or

(8)
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If the MEs of a surface have different shapes and sizes (which is generally the
case for reconstructions), the value of AET, and hence pb, is different for each ME.
The exact values of AET are determined at the time of barycentric subdivision, and
are slightly smaller than the approximate value, AEG (which itself is the inverse of
σEG, the global effector grid density; Section 4.3.2 and Box 4.2). A factor

(4.18)

is calculated for each ME during initialization (Figure 4.2A), and a final expression
for pb is:

(4.19)

Box 4.4 (continued)

From Equations 7 and 8, the probability (pt) that a single R molecule becomes
bound during an arbitrarily long interval of time (t) depends on all the k+ values,
(A)o, and (R)o; pt = 0 for t = 0, and for t = ∞, pt = 1 if (A)o ≥ (R)o, or pt =
(A)o /(R)o if (A)o < (R)o.

If the interval of time is very short, so that t = ∆t and (ARi)∆t is much less
than both (A)o and (R)o, then 

(9)

Equation 4.3 then becomes:

(10)

and after integration:

(11)

Thus, for a short interval of time ∆t:

(12)

where (A)o is both the instantaneous local concentration of ligand molecules in
the immediate vicinity of a single R molecule, and the average bulk solution
ligand concentration.
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where the term fsi is used to account for the polarity of binding to each of the n
possible binding sites (as specified in the reaction mechanism for the ligand molecule
and ES; see Sections 4.5 and 4.6). If binding can occur after a hit to either side of
the ET, then both “poles” of the ES are valid surface area for binding and the value
of fsi is unity. If binding can only occur after a hit to one particular side of the ET,
then only the “positive” or “negative” pole of the ES is valid surface area, and fsi is
0 if the invalid pole is hit, or 2 if the valid pole is hit. The value of 2 in the latter
case compensates for the apparent twofold reduction in NH.

Box 4.5 Bimolecular Associations: Equating pbt to pt

Equation 12 in Box 4.4 was derived under conditions in which concentration
gradients are absent at all times. If this is not true, the expression for pt still
holds in small local regions where the concentration change is negligible, but
on the macroscopic scale Equation 4 in Box 4.4 must be evaluated numerically
using either finite element or MC methods. With a finite element approach, space
is subdivided into small volume elements (voxels), and the contents of each
voxel are assumed to be well mixed. The rate of reaction within each voxel is
computed using an ordinary differential equation like Equation 5 in Box 4.4,
and the flux between voxels is computed from concentration differences and the
values of DA and DR. With MCell’s MC algorithms, ligand fluxes and binding
depend only on random walk movements and intersections with individual ESs,
and hence are always local on the spatial scale of the random walk and the
temporal scale of ∆t (see Box 4.6). The binding probability pb is calculated by
equating pbt to pt ≅ ζ (Equation 4.15, Section 4.4.5), so the MC binding rate
satisfies the requirements of mass action kinetics at all points in space. If, for a
particular geometric arrangement of ESs, the effective rate of ligand diffusion
happens to be fast compared to the rate of binding, the formation of concentration
gradients during binding will be negligible and the MCell simulation will match
the analytic prediction of Equations 7 or 8 in Box 4.4. If the relative rate of
diffusion is not fast, however, the rate of binding in the simulation will depend
on both space and time, as idealized in Equation 4 in Box 4.4 (rather than
Equations 7 or 8) for an infinite number of molecules.

Box 4.6 Bimolecular Associations: Derivation and Use of 
NH to Compute pb

In principle, the instantaneous flux of ligand molecules into a surface (“hits”
per unit time) depends on the net velocity (v, distance per unit time) of the
molecules toward the surface, the surface’s area (As), and the instantaneous
ligand concentration (A) adjacent to the surface:

(1)
(continued)
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Box 4.6 (continued)

where Na is Avogadro’s number, and the factor (1/2) accounts for the fraction
of molecules that have a net velocity away from the surface. The number of hits
during an interval of time t is obtained by integrating Equation 4.1:

(2)

In an MCell simulation, ESs occupy ETs on MEs, and each side (front and
back) of an ET has some area, AET. Thus, A in Equation 2 is 2 · AET. The average
radial distance traveled by each ligand molecule during a time-step ∆t is

-
lr

(Equation 4.6, Section 4.4.1), but the average net displacement (∆ψ)– toward or
away from any ME (a portion of a plane) is

-
l⊥ (Equation 4.7, Section 4.4.1).

Therefore, half of all ligand molecules move toward the ME with an apparent
velocity of v =

-
l⊥/∆t. Substituting into Equation 2:

(3)

As ∆t decreases, the distance
-
l⊥ decreases, and hence the population of ligand

molecules that can reach the ET becomes increasingly restricted to the local region
of space adjacent to the ET. This reduces the sampling of any static or changing
concentration gradients in the region. Therefore, as ∆t decreases, the flux of A into
the ET is determined by a concentration (A) that approaches the instantaneous
concentration (A)o adjacent to the surface, and Equation 4.3 becomes:

(4)

The (A)o term in Equation 4 has the same meaning as (A)o in Equation 4.16
(Section 4.4.5), and thus the two terms cancel when Equation 4 is substituted
into Equation 4.16 to obtain pb:

(5)

After Equation 4.7 (Section 4.4.1) is used to substitute for
-
l⊥ in Equation 5:

(6)

as given in Equation 4.17 (Section 4.4.5). Thus, pb depends on (see
Box 4.7).
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Implementation, Validation, and Accuracy — Since pb gives the probability
that binding occurs to any one of n binding sites, (1 – pb) gives the probability that
no binding occurs. As discussed previously for unimolecular transitions, the decision
between all possible events is made by comparing the value of a single random
number (0 ≤ κ ≤ 1) to the cumulative set of probabilities (pb, pb1 + pb2, …, pb, 1).

Equation 4.19 shows how pb depends on the value(s) of k+ and three additional
user-specified input parameters; pb is directly proportional to k+ and σEG, inversely
proportional to  and directly proportional to (Box 4.7). The parameter
σEG is usually set to a fixed value such as the maximum packing density of receptor
proteins in plasma membrane (e.g., 10–15 × 103 µm–2), and k+ and DL ordinarily are
constrained by experimental or theoretical estimates. The user thus can vary ∆t to
adjust the value of pb, which is one determinant of a simulation’s numerical accuracy.

In general, ∆t should be chosen so that pb << 1, or, as a rule of thumb, not
greater than ~0.5 to obtain errors less than 1–2% (relative amounts of bound and
unbound reactant states). The user must be aware that an inappropriately long time-
step can cause pb to exceed 1, in which case numerical errors can be quite large in
favor of unbound reactants. If k+ is increased and/or DL is decreased appreciably
(e.g., during a search of parameter space to fit experimental data), the resulting
increase in pb may require a concomitant decrease in ∆t to maintain accuracy. Also,
if the free ligand concentration, and therefore NH, varies in time and space (e.g.,
during ligand release from a synaptic vesicle), then (in principle) the numerical

Box 4.7 Bimolecular Associations: Dependence of pb on 

The dependence of pb on arises because ζ (Equation 4.15, and the numer-
ator of Equation 4.16, Section 4.4.5) is directly proportional to ∆t, but NH

(denominator of Equation 4.16, Section 4.4.5) is proportional to . If both ζ
and NH were linearly dependent on ∆t, pb would be independent of the simulation
time-step. The dependence of NH on arises because the apparent velocity
of ligand molecules toward ESs is inversely proportional to . Over time ∆t,
where ∆t is longer than the time between actual Brownian collisions (sub-ps
scale at room temperature), a real diffusing molecule follows some tortuous path
between a starting position P1 and ending position P2. The total path length is
determined by the molecule’s real thermal velocity and scales directly with ∆t,
but the average radial distance

-
(lr) between P1 and P2 scales with , as does

the average axial displacement
-

(l⊥) measured with respect to any plane’s normal
axis ψ (see discussion of Equations 4.6 and 4.7, Section 4.4.1). Since a random
walk approximation of Brownian motion replaces the molecule’s actual tortuous
path with straight-line radial movement between P1 and P2, the apparent velocity
of motion toward any plane (distance traveled per unit time;

is less than the real thermal velocity and changes as 

∆t
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accuracy varies in time and space for a given value of pb. This follows from the
approximation used between Equations 4.15 and 4.16, i.e., that (1 – pb)NH approaches
(1 – NH ⋅ Pb) as NH and pb decrease with decreasing ∆t. For reasonable values of ∆t,
the overall effect of free ligand concentration on accuracy is likely to be very small.
If necessary, however, checkpointing can be used to change ∆t during the course of
the simulation. Such an adaptive time-step would be shorter during those times when
free ligand concentration is high, thus maintaining accuracy.

The validity of Equation 4.19 and MCell’s binding algorithms can be tested by
comparing a simple simulation of Equation 4.12 to the time course of binding
predicted by mass action rate theory (Equations 7 or 8 in Box 4.4). For example, if
the ligand molecules and ESs are distributed uniformly to simulate well-mixed
conditions, the MCell results will converge to the analytic expectation as ∆t is
decreased. On the other hand, a simulation run with arbitrary non-uniform ligand
molecule and/or ES distributions will converge to results that accurately reproduce
the influence of diffusion on the time course of binding.33 In general, this type of
result cannot be obtained analytically, and is the typical aim of MCell simulations
(see Box 4.5).

4.4.6 THE HEURISTICS OF REVERSIBLE REACTIONS AND MULTIPLE

BINDING SITES

If a reaction mechanism includes only irreversible transitions, and ESs can bind only
a single ligand molecule, each reactant can undergo no more than one transition per
∆t. Thus, the MCell reaction algorithms (Figure 4.2B) are strictly first-order under
such conditions. With reversible reactions and/or multiple binding sites per ES,
however, the algorithms are higher-order, i.e., individual molecules may undergo
multiple “sub-∆t” transitions during each time-step. Thus, some degree of hidden
reversibility is introduced. For example, an ES initially in the AR1 state (Figure 4.1)
might unbind to reach the R0 state at some point during a time-step, and then later
during the same time-step might bind 1 or 2 ligand molecules to begin the next
iteration in the AR1, AR2, or A2R3 state.

In principle, first-order and higher-order algorithms converge to the same result
as ∆t decreases, but if the higher-order approach can be suitably balanced for
complex cyclic reactions, its advantage is higher numerical accuracy for a given
value of ∆t. Different higher-order approaches can be tested by simulating simple
and complex reactions at equilibrium, and then comparing the fractional amounts
of each reactant to analytic predictions or to a finite difference simulation of the
corresponding rate equations. As indicated in Figure 4.2B, MCell’s algorithms use
an optimized set of rules to make decisions regarding sub-∆t transitions, and addi-
tional details can be found in Reference 33.
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4.5 EXAMPLE MODEL: ACETYLCHOLINE EXOCYTOSIS 
AND MINIATURE ENDPLATE CURRENT 
GENERATION AT A REALISTIC NEUROMUSCULAR 
JUNCTION

4.5.1 LOGISTICS OF DESIGN, INPUT, AND OUTPUT

Medium- to large-scale reconstructions and simulations of single synapses
or neuropil can be used to investigate pre- and postsynaptic factors that
contribute to synaptic variability. As one example, Figure 4.4A shows a

realistic medium-scale model of rat diaphragm neuromuscular junction. The model
consists of pre- and postsynaptic membrane surfaces, a transparent basal lamina
layer that follows the postsynaptic contour inside the cleft space, and 30 ACh vesicles
arrayed above the openings into six junctional folds that have highly variable topol-
ogy. The size and time course of simulated miniature endplate currents (mEPCs)
varies significantly from one release site to another.33

As illustrated for the postsynaptic membrane in Figure 4.4B, each of the surfaces
in the model is a polygon mesh that has been optimized for MCell simulations and
visualization, i.e., each ME is a nearly equilateral triangle.33 It is important that the
front and back faces of each ME are oriented consistently so that the polarity of
ESs on the surface is also consistent. Figure 4.4C shows how the right-hand-rule
is applied to MEs as they are imported from the MDL file, to distinguish the front
from the back face. In this model, the total number of MEs for nerve, muscle, and
basal lamina surfaces exceeds 54,000. For large-scale synaptic reconstructions
presently in development, this number can easily increase by more than an order
of magnitude.

Figure 4.4D shows the MEs that comprise the muscle membrane, together with
glyphs that indicate ESs for acetylcholine receptors (AChRs) on the surface
(~91,000). As discussed in Section 4.3.2, each ME has been covered with ETs (not
shown) using barycentric subdivision and a global effector grid density (σEG) that in
this case is 10,000 µm–2. The position and area of each ET (AET ≅ 1/ σEG = 100 nm2)
is indicated approximately by the position and size of the AChR glyphs (8.5 nm
diameter). The membrane surface is actually composed of three different meshes
that fit together exactly (Section 4.3.2), i.e., a top, middle and bottom portion with
respect to the depth of the folds (muscle-membrane.mdl), and AChR ESs are present
on the top two parts at different site densities. On the tops of the folds, the site
density is 7250 µm–2 (~66,000 AChRs), and in the middle region is about 70% less
(~25,000 AChRs). Thus, about 70% or 20% of all ETs are occupied by ESs in the
top and middle regions, respectively, as can be seen in Figure 4.4D by the relative
spacing of glyphs located either above or down inside the fold. Aside from AChR
ESs, the model also includes ~59,000 AChE sites distributed throughout the basal
lamina (1800 µm–2), and ~5800 choline (Ch) reuptake sites (ChRs) in the nerve
membrane (1000 µm–2). The ChRs bind Ch molecules inside the cleft (where they
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FIGURE 4.4 Realistic Neuromuscular Junction: Model Design and Acetylcholine
(ACh) Exocytosis. (A) Model surfaces, and possible locations of ACh release indi-
cated by synaptic vesicles. (B) Optimized polygon mesh for the muscle membrane

surface. The entire mesh is composed of individual mesh elements (MEs) that are nearly
equilateral triangles. (C) Each ME is defined by its vertex positions and an ordered list of
connections between the vertices. This diagram shows how the right-hand-rule is applied to
the list of connections to determine the front and back faces of the ME. The first connection
extends from vertex 0 to vertex 1 and so on (vertex numbering is arbitrary), and the normal
vector (ψ) defined by the right-hand-rule passes through the ME from back to front. (D) Closer
view of muscle membrane with nerve and basal lamina surfaces removed. Individual MEs
are subdivided into effector tiles, and each tile may contain an effector site as indicated by
glyphs that represent acetylcholine receptors (AChRs, see text). (E) Snap-shot of muscle
membrane during the simulation, showing bound AChRs (lighter gray) close to the point of
ACh release (for more detailed views and explanation, see Color Figures 4.1–4.3). (F) The
time course of SV emptying during ACh exocytosis is shown by the solid curve (see text).
The corresponding time course of ACh appearance in the cleft can be simulated using
incremental release during time-steps (circles), to obtain the desired cumulative release
(squares). (G) Example of output from one simulation, showing the amount of free ACh in
the entire synaptic cleft, and the number of AChRs in the double-bound open conformation
(A2R4 state). Panels A, B, D, and E were rendered with IBM DataExplorer.
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are produced by ACh hydrolysis) and release them on the opposite (intracellular)
side of the nerve membrane. The site densities and distributions used for AChR and
AChE ESs are from EM autoradiographic measurements,24,25,27 while the density for
ChRs is an illustrative guess.

Exocytosis of ACh from one synaptic vesicle (SV) was simulated using a time
course of vesicle emptying (Figure 4.4F) predicted by rapid fusion pore expansion.30

An explicit model of the vesicle and expanding fusion pore can be simulated with
MCell using checkpointing (Section 4.3.3), but requires a sub-ns time-step as the
ACh diffuses out through the constrictive pore. As detailed elsewhere31.33 and shown
in Figure 4.4F, the same time course of release can be obtained with a time-step on
the µs scale if the actual vesicle and pore are replaced by incremental releases of
ACh directly within the cleft under the (missing) pore (release–sites.mdl). Aside
from allowing a much longer time-step and thus far fewer iterations, this method
also side-steps the need for checkpointing, and hence the simulation runs as fast as
if all the ACh were released instantaneously.

The reaction mechanisms for AChR and AChE ESs are as shown in Figure 4.1.
The illustrative reaction for Ch reuptake is simply reversible binding followed by
rate-limiting translocation and release across the nerve membrane (reaction–mech-
anisms.mdl). To obtain the predicted size and time course of an mEPC, the number
of AChR ESs in the A2R4 state is output for each time-step. This is shown for the
rising phase and peak in Figure 4.4G, together with the amount of free ACh in the
entire cleft. To visualize a snap-shot of the simulation (e.g., Figure 4.4E), the
positions of each ME, ES, and ligand molecule must be output along with current
state information for the ESs and ligand molecules. For an animation that shows the

FIGURE 4.5 Relationship Between Computer Time, Memory (RAM) Use, and Spatial
Partitioning. (A) Ten simulations were run using increasing numbers of spatial partitions to
create increasing numbers of spatial subvolumes (SSVs; abcissa). For each simulation, the
log-log plot shows the: (1) time required for initialization of SSVs and all other simulation
objects (circles); (2) time required to execute the time-step iterations (open squares); (3) total
run time (closed squares); and (4) peak memory use during the simulation. (B) Frequency
distributions (log-log scales) for mesh elements (MEs) contained in SSVs, shown for three
of the partitioning conditions (labeled a, b, and c) used in A. With few partitions and SSVs
(a), many of the SSVs contain 900 or more MEs, making ray tracing and ray marching
(Figure 4.2B) extremely inefficient and execution speed extremely slow. With an optimal
number and size (see text) of SSVs (c), most of the SSVs contain fewer than 10 MEs, and
no SSV contains more than 20. Thus, execution speed is faster by orders of magnitude.
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spatial evolution of the mEPC (i.e., “saturated disk” formation),5,16,17,26,33 state infor-
mation must be output repeatedly for multiple time-steps. Figures 4.4 and 4.6 and
Color Figures 4.1–4.6* show examples of 3-D renderings done with IBM DataEx-
plorer or Pixar RenderMan.

FIGURE 4.6 
(continued)
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FIGURE 4.6 (Continued) Detailed simulation results (average of 2000 simulations).
(A) Positions of transparent boxes used to sample acetylcholine (ACh) and choline (Ch)
concentrations during the simulations. (B) Time course of ACh and Ch concentration sampled
in primary and secondary cleft. (C and E) Amounts of unbound and bound AChE and AChR
intermediates (states are labeled as in Figure 4.1). (D, F, and G) Selected examples of absolute
transition rates (number of transitions from starting to ending state per time-step; ∆t = 0.5 µs).
Results are summed for the two single-bound AChR states, as indicated by the AR1,2 label.
(H) Examples of net transition rates (forward transitions minus reverse transitions per time-
step) for AChR states. Note the change from positive to negative values during the mEPC
rising phase or at time of peak amplitude (cf. A2R4 curve in E). (I) Detail of AChR opening
transitions. Noisy results from one simulation are shown for comparison with the averaged
curves labeled “All” and “Initial.” “All” indicates all transitions, and is the same curve as
shown previously in G on an expanded scale. “Initial” indicates a subset of all transitions,
i.e., A2R3 > A2R4 transitions that were not preceded by occupation of the A2R4 state during
the previous time-step. In terms of single channel kinetics, “Initial” transitions are those that
initiate a burst of openings, versus those that occur within a burst after a “flicker” closure.
Here the difference between All and Initial is small because the channel opening probability
(β/(β + k–1 + k–2), Figure 4.1) is small and flickering is rare, but for other channels and/or
rate constant values the difference can be large. The time course of the mEPC is determined
by the time course of Initial openings, and direct prediction of such transition subtypes can
only be obtained from Monte Carlo simulations.
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4.5.2 RUN-TIME LOGISTICS

Using a present-day workstation to simulate one complete mEPC in the absence of
spatial partitions (i.e., where the entire model space constitutes a single SSV), the
computer memory and time requirements are approximately 50 MBytes and 1 week,
respectively (Figure 4.5A).* As the number of spatial partitions (which require
memory) is increased in all three dimensions, the resulting SSVs contain fewer MEs
(Figure 4.5B), and therefore the efficiency of ray marching (Section 4.3.5) is
increased substantially. As a result, computer time drops precipitously and memory
use increases gradually, until optimal conditions are obtained with ~500,000 SSVs
(condition (c) in Figure 4.5A and B). At this point the required computer time is
only ~100 seconds, and memory use has increased to ~80 MBytes. Thus, for only
a 60% increase in memory, computer time drops by about 3.5 orders of magnitude.
If even more spatial partitions are added, the distance between adjacent partitions
becomes smaller than the mean random walk step length

-
lr (Equation 4.6), and

diffusing ligand molecules pass through a partition with virtually every movement.
This introduces additional operations per time-step (Figure 4.2B), and hence com-
puter time increases again slightly (by ~3-fold for the right-most point in
Figure 4.5A). With very numerous partitions and SSVs, however, memory use can
increase dramatically (e.g., to over 1 GByte as shown for ~30 million SSVs).
Nevertheless, Figure 4.5A shows that most of the benefit obtained with spatial
partitions is achieved with far fewer than are required for the shortest possible
computer time. Hence, memory use and computer time can be “titrated” as needed
for any model and computer system, with little reduction in overall throughput.

4.5.3 DETAILED OUTPUT

In this particular model, diffusing ACh molecules cannot escape from the synaptic
cleft space, and so a simple count of all free ACh molecules gives a spatial summation
within the entire cleft volume (Figure 4.4G). To quantify the concentration of
diffusing molecules in any particular region of space, a transparent box (or any other
closed transparent mesh) can be placed in that region, and then the free ligand
molecules can be counted within the box.** Figure 4.6A shows four such sampling
boxes located in the primary cleft under the central synaptic vesicle indicated in
Figure 4.4. In addition, another box is located just beneath the first four, i.e., at the

* This computer time figure reflects ACh release from a corner vesicle if the entire structure shown in
Figure 4.4A is enclosed in an absorptive bounding box. The presence of the bounding box has essentially
no effect on the amplitude of the mEPC regardless of vesicle position, but with release from a corner a
significant fraction of diffusing ACh and Ch molecules are removed by absorption rather than hydrolysis
and reuptake. With release from a central vesicle (e.g., as labeled in Figure 4.4) about fourfold more
computer time is required because far fewer molecules are absorbed, and therefore far more ray marching
is required before the simulation completes.
** As detailed in Figure 4.2B, each time a diffusing ligand molecule crosses a transparent ME, the event
is detected. The direction of crossing is also known, and for a fully closed mesh would be either from
outside to inside or vice versa. Thus, the number of molecules that enter and exit an enclosed space can
be counted during each time-step, and the amount remaining within the space at the end of each time-
step can be specified as output.
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entrance to the secondary cleft created by the underlying junctional fold (ligand–sam-
pling–boxes.mdl). To improve the signal-to-noise ratio of results shown in Figure
4.6, the simulation was run 2000 times with different seed values and the results
were averaged (~45-fold reduction of noise, see Figure 4.6I). With one present-day
single-processor workstation this requires 1–2 days of computer time, but since each
simulation is an independent computation, many processors can be used simulta-
neously.

The time course of sampled ACh concentration is shown in Figure 4.6B, and
such simulation results can be compared to increasingly sophisticated experimental
estimates.3,8,22,23 The difference between the primary and secondary cleft concentra-
tions illustrates a steep ACh gradient across the height of the primary cleft (~50 nm),
but the gradient persists only during exocytosis and the early rising phase of the
mEPC (Figures 4.4F and G and 4.6E). The concentration of Ch sampled in the same
volumes is far lower at all times, reaches its peak much later, and is virtually identical
in both regions, reflecting relatively slow Ch production within the cleft spaces by
AChE sites (despite AChE’s fast catalytic turnover number, 16,000 s–1 in this exam-
ple).20 Figure 4.6C and E show the temporal evolution of each AChE and AChR
state, and the remaining panels illustrate detailed output of reaction transition rates.
Such data is presently being used to investigate pre- and postsynaptic factors that
influence synaptic noise and variability, and to generate functions that can be incor-
porated into compartmental models of neuronal function. Snap-shots of an individual
simulation are shown in Color Figures 4.1–4.3 for selected times at which different
reactants are present at peak concentrations or amounts.

4.6 EXAMPLE MODEL: POTENTIAL SPATIAL AND 
TEMPORAL INTERACTION OF NEURONAL 
GLUTAMATERGIC CURRENTS

The preceding example focuses on the detailed time course and variability
of quantal currents at a peripheral synapse. Here the focus is potential spatial
and temporal interaction between central glutamatergic synapses on an

interneuron. The model is strictly qualitative and is used as a conceptually interesting
and considerably smaller scale example than the preceding.

The model surfaces consist of an inner and outer ovoid (Color Figure 4.4), with
the inner representing the nerve cell body, and the outer defining a closed bounding
layer of intercellular diffusion space (total of 470 MEs for the two surfaces). In
reality of course, the nerve cell would have processes and the diffusion space would
extend out between many different surrounding neural and glial elements. Effector
sites representing glutamate receptors with long-lived desensitization states are
present on the nerve cell (AMPA GluR; reaction mechanism shown in Figure 4.7A
obtained from Reference 12), and reuptake sites (transporters) are present on the
surrounding surface (as for preceding example, simple reversible binding followed
by rate-limiting translocation and release).
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FIGURE 4.7 Glutamate Receptor Reaction Mechanism and Simulation Results. (A) Reaction
mechanism with three primary closed states (C0, C1, and C2), one open state (O), and three
desensitized states (C3, C4, and C5). Timing of Glu release from three different sites is
indicated (2000 molecules per release). (B) Amount of free Glu in the intercellular space that
surrounds the model cell. (C and D) Evolution of bound GluR states. Early release events
potentiate to open channels, but at late times almost all GluRs are in the C4 desensitized state
(see Figure 4.12). (E) Evolution of bound Glu reuptake (transporter) sites. T0 is unbound, T1
is reversibly bound, and T2 is the rate-limiting state that transports and releases Glu molecules.
At late times, transporter sites are saturated due to the slow rate of release.
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Three different sites are defined for quantal Glu release to represent different
presynaptic boutons, and the MDL is also used to define a train of release events at
each site (frequencies of 36, 41, or 48 Hz; for simplicity, instantaneous release is
used rather than a release function). Figure 4.7A shows the composite timing of
release from the three sites during the simulation, which on a present-day workstation
requires about 4 hours of computer time for the conditions illustrated here (140,000
iterations for a total elapsed simulation time of 140 ms). Snap-shots are shown for
two selected early times and one late time when desensitization predominates (Color
Figures 4.4–4.6).

As shown in Figure 4.7B, free Glu builds up in the intercellular space over the
course of subsequent release events. For the initial ~30 ms, release events potentiate
to produce an increased number of open GluR channels, but thereafter the Glu
reuptake sites become saturated and the GluR’s are driven almost exclusively into
desensitized states for the remainder of the simulation. This model is not included
here to make quantitative realistic predictions, but rather to point out the important
need for accurately determined 3-D input parameters, e.g., reconstructed diffusion
spaces, release positions, receptor and reuptake site densities and distributions. All
of these factors, together with all of the rates for transmitter release, diffusion,
reuptake, and receptor activation and desensitization, will determine the physiolog-
ical behavior of the system. As increasingly accurate experimental determinations
of these input parameters become available, realistic 3-D MC simulations will be
increasingly important to a quantitative understanding of nervous system function.
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5.1 INTRODUCTION

The selective permeability of neuronal membranes to ions is the basis of various
processes central to neurophysiology, such as the maintenance of a membrane
potential, the genesis of neuronal excitability and the action of neurotransmitters
and modulators. The rules governing ionic permeabilities were explored by Hodgkin,
Huxley, Katz, and others several decades ago. It was demonstrated that the ionic
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permeability of the membrane can be highly dependent on the membrane potential.
Hodgkin and Huxley1 characterized these properties of voltage dependence and
provided a mathematical model which proved that these properties were sufficient
to account for the genesis of action potentials. The model of Hodgkin and Huxley
was based on simple assumptions, reproduced well the behavior of the currents, and
its parameters are easy to determine from experimental data. This explains why
Hodgkin–Huxley models are still widely used today, almost 50 years later.

Hodgkin and Huxley postulated that the membrane currents result from the
assembly of gating particles freely moving in the membrane. The molecular com-
ponents responsible for ionic permeabilities have been later identified as being
transmembrane protein complexes containing a pore permeability specific to one or
several ionic species as reviewed in Reference 2. These ion channels can have their
permeability modulated by various factors, such as voltage or the binding of a ligand.
The sensitivity of some ion channels to voltage is a fundamental property that
constitutes the core mechanism underlying the electrical excitability of membranes,
and is still today an important matter of investigation.3 Several types of voltage-
dependent ion channels have been identified and are responsible for a rich repertoire
of electrical behavior essential for neuronal function.4

The biophysical properties of ion channels have been characterized in depth
following the development of single-channel recording techniques.5 Single-channel
recordings have shown that ion channels display rapid transitions between conduct-
ing and non-conducting states. It is now known that conformational changes of the
channel protein give rise to opening/closing of the channel. Conformational changes
of ion channels can be described by state diagrams analogous to the conformational
changes underlying the action of enzymes. Markov models are based on such
transition diagrams and have been used for modeling various types of ionic currents
based on single-channel recordings.5 This formalism is more accurate than
Hodgkin–Huxley models, but its drawback is the greater difficulty to estimate its
parameters from experimental data. On the other hand, Markov models can also be
used to draw simplified representations of the current, which only capture the most
salient properties of voltage-dependent or synaptic interactions, more adequate for
representing currents when simulating networks involving thousands of cells.6

Thus, there exist various formalisms of different complexity to model ionic
currents. Which formalism to adopt for modeling a given current depends on the
experimental data available and its accuracy, as well as on the desired level of
precision in the behavior of the model. We illustrate these aspects in this chapter by
considering different types of formalisms to model processes such as the action
potential and voltage-clamp recordings of the T-type calcium current in thalamic
neurons. For both cases, we show the similarities and differences between the
different models, how well they account for experimental data, and which is the
“minimal” model required to reproduce electrophysiological behavior.
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5.2 DIFFERENT FORMALISMS TO MODEL
ION CHANNELS

5.2.1 THE HODGKIN–HUXLEY MODEL

The formalism of Hodgkin and Huxley was introduced in 1952 to model the ionic
interactions underlying action potentials. In a remarkable series of experiments on
the squid giant axon, they determined that ionic conductances can be activated or
inactivated according to the membrane potential. They used the technique of voltage-
clamp, introduced earlier by Cole, to record the ionic currents generated at different
voltages. They identified the kinetics of two voltage-dependent currents, the fast
sodium current, INa, and the delayed potassium rectifier, IK, mediated by Na+ and
K+, respectively. A mathematical model was necessary to establish that these prop-
erties of voltage-dependence were sufficient to explain the genesis of action poten-
tials. The model introduced by Hodgkin and Huxley1 incorporated the results of
their voltage-clamp experiments and successfully accounted for the main properties
of action potentials.

The starting point of the Hodgkin–Huxley model is the membrane equation
describing three ionic currents in an isopotential compartment:

(5.1)

where Cm is the membrane capacitance, V is the membrane potential, gL, gNa, and
gk are the membrane conductances for leak currents, Na+ and K+ currents, respec-
tively, and EL, ENa, and EK are their respective reversal potentials, which are given
by the Nernst relation. For example, for K+ ions:

(5.2)

where R is the gas constant, T is the absolute temperature in degrees Kelvin, Z is
the valence of the ion (Z = 1 for K+ ions, Z = –1 for Cl– ions, etc.), F is the Faraday
constant, [K]o and [K]i are the concentration of K+ ions outside and inside of the
membrane, respectively (see Chapter 3).

The next step is to specify how the conductances gNa(V) and gK(V) depend on
the membrane potential. Hodgkin and Huxley hypothesized that ionic currents result
from the assembly of several independent gating particles which must occupy a
given position in the membrane to allow the flow of Na+ or K+ ions. Each gating
particle can be in either side of the membrane and bears a net electronic charge such
that the membrane potential can switch its position from the inside to the outside
or vice-versa. The transition from these two states is therefore voltage-dependent,
according to the diagram:

C
dV
dt

g V E g V V E g V V Em L L Na Na K K= − −( ) − ( ) −( ) − ( ) −( ),

E
RT
ZFK

o

i

= [ ]
[ ]ln
K
K
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(5.3)

where α  and β are respectively the forward and backward rate constants for the
transitions from the outside to the inside position in the membrane. If m is defined
as the fraction of particles in the inside position, and (1 – m) as the fraction outside,
one obtains the first-order kinetic equation:

(5.4)

If one assumes that particles must occupy the inside position to conduct ions,
then the conductance must be proportional to some function of m. In the case of
squid giant axon, Hodgkin and Huxley1 found that the nonlinear behavior of the Na+

and K+ currents, their delayed activation, and their sigmoidal rising phase were best
fit by assuming that the conductance is proportional to the product of several of such
variables:1

(5.5)

(5.6)

where –gNa and –gK are the maximal values of the conductances and m, h, n represent
the fraction of three different types of gating particles in the inside of the membrane.
This equation allowed voltage-clamp data of the currents to fit accurately, which
can be interpreted to mean that the assembly of three gating particles of type m and
one of type h is required for Na+ ions to flow through the membrane, while the
assembly of four gating particles of type n is necessary for the flow of K+ ions.
These particles operate independently of each other, leading to the m3h and n4 forms.

When it was later established that ionic currents are mediated by the opening
and closing of ion channels, the gating particles were reinterpreted as gates inside
the pore of the channel. Thus, the reinterpretation of Hodgkin and Huxley’s hypoth-
esis was that the pore of the channel is controlled by four gates, that these gates
operate independently of each other, and that all four gates must be open in order
for the channel to conduct ions.

The rate constants of α(V) and β(V) of m and n are such that depolarization
promotes opening the gate, a process called activation. On the other hand, the rate
constants of h are such that depolarization promotes closing of the gate,* a process
called inactivation. Thus, the experiments of Hodgkin and Huxley1 established that
three identical activation gates (m3) and a single inactivation gate (h ) are sufficient

* Therefore closing of the entire channel because all gates must be open for the channel to conduct ions.

outside

V

V

inside
m

m

( )
( )

( )
( )

α

β
,

dm
dt

V m V mm m= ( ) −( ) − ( )α β1 .

g g m hNa Na= 3

g g nK K= 4 ,
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to explain the Na+ current’s characteristics. The K+ current does not have inacti-
vation and can be well described by four identical activation gates (n4 ).

Taking together all the steps above, one can write the following set of equations:1

(5.7)

The rate constants (αi and βi) were estimated by fitting empirical functions of voltage 

to the experimental data.1 These functions are given in Table 5.1.

Note that the Hodgkin–Huxley model is often written in a form more convenient to 
fit to experimental data. Equation 5.4 can be rewritten in the following form:

(5.8)

TABLE 5.1
Rate Constants of the Hodgkin–Huxley Model

Gate Forward Rate Constant Backward Rate Constant

m

h

n

Note: The rate constants are given for the variables m, n, h as in Equation 5.7. The
rate constants are those estimated by Hodgkin and Huxley1 in the squid giant axon
at a temperature around 6˚C. In the original study, the voltage axis was reversed in
polarity and voltage values were given with respect to the resting membrane poten-
tial (Vr here).

C
dV
dt

g V E g m h V E g n V E

dm
dt

V m V m

dh
dt

V h V h

dn
dt

V n V n
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m m

h h

n n

= − −( ) − −( ) − −( )

= ( ) −( ) − ( )

= ( ) −( ) − ( )
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α β

α β .
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V V

V V
=
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=
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1

τ
,

© 2001 by CRC Press LLC



where

(5.9)

(5.10)

The Hodgkin–Huxley equations then become:

(5.11)

where m∞ is the steady-state activation and τm is the activation time constant of the
Na+ current (n∞ and τn represent the same quantities for the K+ current). In the case
of h, h∞ , and τh are called steady-state inactivation and inactivation time constant,
respectively. These quantities are important because they can be determined easily
from voltage-clamp experiments (see below).

5.2.2 THERMODYNAMIC MODELS

In Hodgkin and Huxley’s work, the rate constants α(V) and β(V) were fit to the
experimental data by using exponential functions of voltage obtained empirically.
An alternative approach is to deduce the exact functional form of the voltage-
dependence of the rate constants from thermodynamics. These thermodynamic
models7,8,9 provide a plausible physical basis to constrain and parameterize the
voltage-dependence of rate constants, which are then used to fit voltage-clamp
experiments.

Generally, it is assumed that the transition between two states of the channel
correspond to a conformational change of the ion channel protein. Consider a
transition between an initial (I) and a final (F) state, with a rate constant r(V) that
is voltage-dependent:

(5.12)

According to the theory of reaction rates,10,11 the rate of the transition depends
exponentially on the free energy barrier between the two states:

(5.13)

m V V V V∞ ( ) = ( ) ( ) + ( )[ ]α α β/

τ α βm V V V( ) = ( ) + ( )[ ]1/ .

C
dV
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g V E g m h V E g n V E
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dt
m V m V

dh

dt
h V h V
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n V n V
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m

h

n

= − −( ) − −( ) − −( )

= ( ) −( ) ( )

= ( ) −( ) ( )

= ( ) −( ) ( )

∞

∞

∞
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/
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τ

τ
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.
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∆ / ,
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where r0 is a constant and ∆G(V) is the free energy barrier, which can be written as

(5.14)

where G*(V) is the free energy of an intermediate state (activated complex) and
G0(V) is the free energy of the initial state, as illustrated in Figure 5.1. The relative
values of the free energy of the initial and final states (G0 and G1) determine the
equilibrium distribution between these states, but the kinetics of the transition depend
on the size of the free-energy barrier ∆G(V). Systems with a smaller energy barrier
(Figure 5.1, dashed line) correspond to faster kinetics because a larger proportion
of molecules will have the required energy to form the activated complex and make
the transition.

In ion channels, these different states correspond to different conformations of
the ion channel protein. How the transition rates between these conformational states
depend on membrane potential is given by the voltage-dependence of the free energy
barrier, which is in general difficult to evaluate. The effect of the electrical field on
a protein will depend on the number and position of its charged amino acids, which
will result in both linear and nonlinear components in the free energy. Without

FIGURE 5.1 Schematic representation of the free energy profile of conformational changes
in ion channels. The diagram represents the free energy of different states involved in a
transition: the initial state, activated complex, and final state. The equilibrium distribution
between initial and final states depends on the relative value of their free energy (G0 and G1).
The rate of the transition will be governed by the free energy barrier ∆G, which is the free
energy difference between the activated complex and the initial state. If the energy barrier is
smaller (dashed line), the kinetics of the reaction are faster because a larger proportion of
ion channels will have the required energy to make the transition. (Modified from
Reference 15.)
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assumptions about the underlying molecular structure, the free energy of a given
state can be written as a Taylor series expansion of the form:

(5.15)

where Ai , Bi , Ci … are constants specific to each conformational state. The constant
Ai corresponds to the free energy that is independent of the electrical field; the linear
term Bi V refers to the interaction between electrical fields with isolated charges and
rigid dipoles.7,8,9,12 For example, linear terms in V will result if the conformations
differ in their net number of charges, or if the conformational change accompanies
the translation of a freely-moving charge inside the structure of the channel.2,8

Nonlinear terms result from effects such as electronic polarization and pressure
induced by V 8,9,12 or mechanical constraints in the movement of charges due to the
structure of the ion channel protein.15

Thus, each conformational state of the ion channel protein will be associated
with a given distribution of charges and will therefore be characterized by a given
set of coefficients in Equation 5.15. This is also true for the activated state, which
is a particular case of conformation. Applying Equations 5.13–5.15, the rate constant
becomes:

(5.16)

where a = A* – A0, b = B* – B0, c = C* – C0, … represent differences between the
linear and nonlinear components of the free energy of the initial and activated states,
according to Equation 5.15).

Considering the particular case of a reversible open-closed transition

(5.17)

where C and O are respectively the closed and open states, and α and β are the
forward and backward rate constants. Applying Equation 5.16 to forward and back-
ward reactions leads to the following general expression for the voltage dependence:

(5.18)

where a1, a 2, b1, b2, c1, c2, … are constants specific of this transition. It is important
to note that these parameters are not necessarily interrelated because the three
different conformations implicated here (initial, activated, final, as in Figure 5.1)
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may have very different distributions of charges, resulting in different coefficients
in Equation 5.15, and thus resulting in different values for a1 … c2. In the following,
this general functional form for the voltage dependence of rate constants will be
called the nonlinear thermodynamic model.

In the “low field limit” (during relatively small transmembrane voltages), the
contribution of the higher order terms may be negligible. Thus, a simple, commonly
used voltage dependence equation results from the first-order approximation of
Equation 5.18 and takes the form:

(5.19)

In the following, this form with simple exponential voltage dependence of rate
constants will be called the linear thermodynamic model.

A further simplification is to consider that the conformational change consists
of the movement of a gating particle with charge q.1,13 The forward and backward
rate constants then become:

(5.20)

where γ is the relative position of the energy barrier in the membrane (between 0
and 1). The constants α0 and β0 can be equated to a fixed constant A by introducing
the half-activation voltage VH, leading to:

(5.21)

This form was introduced by Borg-Graham13 for modeling the gating of ion channels.
Its parameters are convenient for fitting experimental data: VH and q affect the steady-
state activation/inactivation curves, whereas A and γ only affect the time constant
with no effect on steady-state relations.

The drawback of models in which the rate functions are simple exponentials of
voltage is that these functions can reach unrealistically high values, which leads to
very small time constants and possibly aberrant behavior. One way to solve this
problem is to force an artificial saturation of the rate constants14 or impose a
minimum value to the time constant.13

Another possibility is not to limit the approximation of Equation 5.18 to linear
terms, but include higher-order terms in the voltage dependence of the free energy.15

For example, the quadratic expansion of Equation 5.18 can be written as:

α α

β β

V e

V e

a b V RT

a b V RT

( ) =

( ) =

− +

− +

0

0

1 1

2 2

( )/

( )/ .

α α

β β

γ

γ

V e

V e

qFV RT

qFV RT

( ) =

( ) =

−

− −

0

0
1

/

( ) / ,

α

β

γ

γ

V Ae

V Ae

qF V V RT

qF V V RT

H

H

( ) =

( ) =

− −

− −

( ) /

( ) ( ) / .1

© 2001 by CRC Press LLC



(5.22)

and similarly, its cubic expansion:

(5.23)

where A, b1 … d2 are constants as defined above.
In addition to the effect of voltage on isolated charges or dipoles, described in

Equation 5.19, these forms account for more sophisticated effects such as the defor-
mation of the protein by the electrical field8,9 or mechanical constraints on charge
movement.15 It also allows the model to capture more complicated dependence on
voltage than the simple exponential functions of Equation 5.19, which may result
in more realistic behavior (see below).

Finally, another way to impose a minimal value for the time constant is to
consider that the gate operates via two successive transitions:

(5.24)

where C1 and C2 are two distinct closed states of the gate. The second transition
does not depend on voltage, and therefore acts as a rate-limiting factor when α and
β are large compared to k1 and k2. In this case, the system will be governed essentially
by k1 and k2, which therefore impose a limit on the rate of opening/closing of the
gate. On the other hand, when α and β are small compared to k1 and k2, the system
will be dominated by the first transition, while the two states C2 and O will be in
rapid quasi-equilibrium. Although this system apparently solves the problem of
having a minimal time constant while still conserving the voltage dependence of the
gate, it is nevertheless unrealistic that the simple exponential representation for α
and β permits the first transition to occur arbitrarily fast at some voltages.

Reaction schemes involving multiple states, such as Equation 5.24, are reminis-
cent of another class of models, called Markov models, which are described in more
detail below.

5.2.3 MARKOV MODELS

Although the formalism introduced by Hodgkin and Huxley1 was remarkably for-
ward-looking and closely reproduced the behavior of macroscopic currents, the
advent of single-channel recording techniques revealed inconsistencies with exper-
imental data. Measurements on Na+ channels have shown that activation and inac-
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tivation must necessarily be coupled,16,17,18 which is in contrast with the independence
of these processes in the Hodgkin–Huxley model. K+ channels may also show an
inactivation which is not voltage-dependent, as in the Hodgkin–Huxley model, but
state-dependent.19 Although the latter can be modeled with modified Hodgkin–Hux-
ley kinetics,20 these phenomena are best described using Markov models, a formalism
more appropriate to describe single channels.

Markov models assume that the gating of a channel occurs through a series of
conformational changes of the ion channel protein, and that the transition probability
between conformational states depends only on the present state. The sequence of
conformations involved in this process can be described by state diagrams of the
form:

(5.25)

where S1 … Sn represents distinct conformational states of the ion channel. Defining
P(Si, t) as the probability of being in a state Si at time t, and defining P(Si → Sj) as
the transition probability from state Si to state Sj according to:

(5.26)

leads to the following equation for the time evolution of P(Si, t):

(5.27)

This equation is called the master equation.9,21 The left term represents the
“source” contribution of all transitions entering state Si, and the right term repre-
sents the “sink” contribution of all transition leaving state Si. In this equation, the
time evolution depends only on the present state of the system, and is defined
entirely by knowledge of the set of transition probabilities. Such systems are called
Markovian systems.

In the limit of large numbers of identical channels, the quantities given in the
master equation can be replaced by their macroscopic interpretation. The probability
of being in a state Si becomes the fraction of channels in state Si, noted si, and the
transition probabilities from state Si to state Sj become the rate constants, rij, of the
reactions

(5.28)
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In this case, one can rewrite the master equation as:

(5.29)

which is a conventional kinetic equation for the various states of the system.
Stochastic Markov models, as in Equation 5.27, are adequate to describe the

stochastic behavior of ion channels as recorded using single-channel recording
techniques.5 In other cases, where a larger area of membrane is recorded and large
numbers of ion channels are involved, the macroscopic currents are continuous and
more adequately described by conventional kinetic equations, as in Equation 5.29.22

In the following, only systems of the latter type will be considered.
It is to be noted that Markov models are more general than the Hodgkin–Hux-

ley formalism, and include it as a subclass. A Markov scheme can be written for
any Hodgkin–Huxley scheme, but the translation of a system with multiple inde-
pendent gates into a Markov description results in a combinatorial explosion of
states. For example, the Markov model corresponding to the Hodgkin–Huxley
sodium channel is:23

(5.30)

The states represent the channel with the inactivation gate in the open state (top)
or closed state (bottom) and (from left to right) three, two, one, or none of the
activation gates closed. To be equivalent to the m3 formulation, the rates must have
the 3:2:1 ratio in the forward direction and the 1:2:3 ratio in the backward direction.
Only the O state is conducting. The squid delayed-rectifier potassium current mod-
eled by Hodgkin and Huxley1 with four activation gates and no inactivation can be
treated analogously,23,24 giving

(5.31)

ds
dt

s r s ri
j

j

n

ji i
j

n

ij= −
= =

∑ ∑
1 1

,

C C C O

I I I I

m

m

m

m

m

m

h h h h h h h h

m

m

m

m

m

m

3 2 1

3 2 1

3 2

2 3

3 2

2 3

α

β

α

β

α

β

α β α β α β α β

α

β

α

β

α

β

.

C C C C O
m

m

m

m

m

m

m

m

4 3 2 1

4 3

2

2

3 4

α

β

α

β

α

β

α

β
.

© 2001 by CRC Press LLC



5.3 MODELS TO GENERATE ACTION POTENTIALS

We now use some of the formalisms reviewed above and compare them in similar
situations. The voltage-clamp behavior of the sodium channel and the genesis of
action potentials are taken as examples to illustrate the differences between these
formalisms.

5.3.1 MODELS OF NA+ AND K+ CURRENTS UNDERLYING

ACTION POTENTIALS

We will compare the model of Hodgkin and Huxley1 with two Markov models of
Na+ channels. A nine-state Markov model was proposed by Vandenberg and Beza-
nilla:25

(5.32)

This particular nine-state model was selected to fit not only the measurements of
macroscopic ionic currents available to Hodgkin and Huxley, but also recordings of
single channel events and measurements of currents resulting directly from the
movement of charge during conformational changes of the protein (called gating
currents).2 The voltage dependence of the transition rates was assumed to be a simple
exponential function of voltage, as in Equation 5.19.

To complement the sodium channel model of Vandenberg and Bezanilla, we
also examined the six-state scheme for the squid delayed-rectifier channel, used by
Perozo and Bezanilla:26

(5.33)

where again rates were described by a simple exponential function of voltage (see
Equation 5.19).

The third class of model considered here comprise simplified Markov models
of Na+ and K+ currents. The model for the Na+ channel was chosen to have the
fewest possible number of states (three) and transitions (four) while still being
capable of reproducing the essential behavior of the more complex models. The
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form of the state diagram was based on a looped three-state scheme in which some
transitions were eliminated, giving an irreversible loop:6,27

(5.34)

This model incorporated voltage-dependent opening, closing, and recovery from
inactivation, while inactivation was voltage-independent. For simplicity, neither
opening from the inactivated state nor inactivation from the closed state was per-
mitted. Although there is clear evidence for occurrence of the latter,28 it was
unnecessary under the conditions of the present simulations. Rate constants were
described by

(5.35)

with c1 = c2 to yield a model consisting of nine total parameters.6

The simplified K+ channel model consisted of a single open or conducting state,
O, and a single closed state C:

(5.36)

Here, the rates r1(V) and r2(V) had a sigmoidal voltage dependence similar to
Equation 5.35.6

5.3.2 NA+ CURRENTS IN VOLTAGE-CLAMP

The models reviewed above are characterized by different complexities, ranging
from a two-state representation as shown in Equation 5.36 to transition diagrams
involving many states, see Equation 5.32. The two-state description is adequate to
fit the behavior of some channels,6,13,29,30,31 but for most channels more complex
models must be considered. To illustrate this point, we compared three different
models of the fast sodium channel underlying action potentials (Figures 5.2 and 5.3).

Responses among the three sodium channel models were compared during
a voltage-clamp step from rest (–75 mV) to a depolarized level of –20 mV
(Figure 5.2). For all three models, the closed states were favored at

hyperpolarized potentials. Upon depolarization, forward (opening) rates sharply
increased while closing (backward) rates decreased, causing a migration of channels
in the forward direction toward the open state. The three closed states in the
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Hodgkin–Huxley model and the five closed states in the Vandenberg–Bezanilla
model gave rise to the characteristic delayed activation and sigmoidal shape of the
rising phase of the sodium current (Figure 5.2D). In contrast, the simple model,
with a single closed state, produced a first-order exponential response to the voltage
step and was, therefore, not sigmoidal.

These models generate different predictions about single-channel behavior. The
steady-state behavior of the Hodgkin–Huxley model of the macroscopic sodium
current is remarkably similar to that of the model of Vandenberg and Bezanilla,25

but there are important differences in the relationship between activation and inac-
tivation. First, in the Hodgkin–Huxley model, activation and inactivation are kinet-
ically independent. This independence has been shown to be untenable on the basis

FIGURE 5.2 Three kinetic models of a squid axon sodium channel produce qualitatively
similar conductance time courses. A voltage-clamp step from rest, V = –75 mV, to V = –20 mV
was simulated. The fraction of channels in the open state (O, thick solid line), closed states
(C, thick dashed lines), and inactivated states (I, thick dotted lines) are shown for the
Hodgkin–Huxley model,1 a detailed Markov model,25 and a simple Markov model.6 (A)
Hodgkin–Huxley model of the sodium channel (Equation 5.30). The activation (m) and
inactivation (h) gates were deduced from other states and are indicated by thin lines. (B)
Markov model of Vandenberg and Bezanilla25 (Equation 5.32). Individual closed and inacti-
vated states are shown (thin lines), as well as the sum of all five closed states (C), the sum
of all three inactivated states (I) and the open state (O). (C) Simplified three-state Markov
model6 (Equation 5.34). (D) Comparison of the time course of open channels for the three
models on a faster time scale shows differences immediately following the voltage step. The
Hodgkin–Huxley (H–H) and Vandenberg–Bezanilla (detailed) models give smooth, multiex-
ponential rising phases, while the three-state Markov model (simple) gives a single exponen-
tial rise with a discontinuity in the slope at the beginning of the pulse. (Modified from
Reference 6; parameters given in the CD-ROM.)
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of gating and ion current measuerments in the squid giant axon.16,17,18 Consequently,
Markov models that reproduce gating currents, such as the Vandenberg–Bezanilla
model examined here, require schemes with coupled activation and inactivation.
Likewise, in the simple model, activation and inactivation were strongly coupled
due to the unidirectional looped scheme (Equation 5.34), so that channels were
required to open before inactivating and could not reopen from the inactivated state
before closing.

A second difference is that, in the Hodgkin–Huxley and Vandenberg–Bezanilla
models, inactivation rates are slow and activation rates fast. In the simplified Markov
model, the situation was reversed, with fast inactivation and slow activation. At the
macroscopic level modeled here, these two relationships gave rise to similar time
courses for open channels (Figure 5.2 A–C).12 However, the two classes of models
make distinct predictions for single-channel behavior. Whereas the Hodgkin–Huxley
and Vandenberg–Bezanilla models predict the latency to first-channel opening to be
short and channel open times to be comparable to the time course of the macroscopic
current, the simplified Markov model predicts a large portion of first-channel open-
ings to occur after the peak of the macroscopic current and to have open times much
shorter than its duration.

FIGURE 5.3 Similar action potentials produced using three different kinetic models of squid
fast sodium and delayed-rectifier potassium channels. (A) Single action potentials in response
to 0.2 ms, 2 nA current pulse are elicited at similar thresholds and produce similar wafeforms
using three different pairs of kinetic models: Hodgkin–Huxley1 (dashed line), detailed Markov
models25,26 (dotted line), and simplified kinetic models (solid line). (B) Repetitive trains of
action potentials elicited in response to sustained current injection (0.2 nA) have slightly
different frequencies. Sodium channels were modeled as described in Figure 5.2. The detailed
Markov potassium channel model had six states26 (Equation 5.33), and the simple model of
potassium channel had two states (Equation 5.36). (Modified from Reference 6; parameters
given in the CD-ROM.)
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5.3.3 GENESIS OF ACTION POTENTIALS

Despite the significant differences in their complexity and formulation, the
three models of the sodium channel all produced comparable action poten-
tials and repetitive firing when combined with appropriate delayed-rectifier

potassium channel models (Figure 5.3) These simulations thus seem to perform
similarly for fitting the macroscopic behavior of Na+ and K+ currents.

However, these three models generated clear differences when compared in
voltage-clamp (Figure 5.2), and still larger differences would be expected at the
single-channel level. Thus, which model to choose clearly depends on the scope of
the model. If the detailed behavior of voltage-clamp experiments or single-channel
recordings are to be reproduced, Markov models are certainly the most appropriate
representation. However, if the goal is to reproduce the qualitative features of mem-
brane excitability, action potentials, and repetitive firing, all models seem equivalent,
except that simpler models are faster to compute. Thus in this case, simplified two-
or three-state schemes or the Hodgkin–Huxley model would seem most appropriate.

5.4 FITTING MODELS TO VOLTAGE-CLAMP DATA

The different formalisms reviewed above are now applied to a concrete example of
voltage-clamp experiments. We consider the T-type (“low-threshold”) calcium cur-
rent responsible for bursting behavior in thalamic neurons.32

5.4.1 VOLTAGE-CLAMP CHARACTERIZATION OF THE T-CURRENT

Whole-cell voltage-clamp recordings of the T-type calcium current were obtained
from thalamic relay neurons acutely dissociated from the ventrobasal thalamus of
young rats (P8-P15). All voltage-clamp recordings were at a temperature of 24˚C.
The methods were described in detail in Reference 33. 

The T-current is transient and has activation/inactivation characteristics similar
to the Na+ current, but is slower. Its voltage range for activation/inactivation typically
occurs around rest. These properties are illustrated in Figure 5.4. A series of voltage
steps from a hyperpolarized level (–100 mV) to various depolarized levels reveal
an inward current that activates and inactivates in a voltage-dependent manner
(Figure 5.4A1). Interrupting this protocol before complete inactivation generates
tail currents (Figure 5.4A2), which reveal the deactivation characteristics of the
current.

The fitting of these current traces was performed as follows. The most optimal
template (determined by difference in residuals) included two activation gates and
one inactivation gate, leading to the m 2h format in Hodgkin–Huxley equations.33

To measure activation, the influence of inactivation must be as minimal as possible.
We assumed that activation is essentially complete in 10 ms, and that there is
negligible inactivation (these assumptions were checked by calculating the expected
activation and inactivation at various voltages). We used the amplitude of the tail
current, which reflects the number of channels open at the end of the depolarizing
step, as a measure of activation (m2). The values obtained using this procedure were
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very close to those obtained by fitting Hodgkin–Huxley equations to current traces.33

The advantage of the tail current approach is that the driving force is the same for
all measurements, thereby providing a direct measure of normalized conductance.
This type of procedure leads to estimates of steady-state activation (Figure 5.4B).
The time constants were estimated by fitting exponential templates to the current
traces (Figure 5.4C).34

The inactivation characteristics of IT are shown in Figure 5.5. A series of holding
potentials given at various voltages, before applying a command potential at –30 mV,
show different current traces that contain similar activation but different levels of
inactivation (Figure 5.5A1). A particular feature of the T-current is that the recovery
from inactivation is very slow (Figure 5.5A2). Estimated steady-state relations for
several cells using similar protocols are shown in Figure 5.5B, and the time constants
are shown in Figure 5.5C.

Thus the T-current in thalamic relay neurons has activation and inactivation
characterized by relatively slow time constants, and a slow recovery from inactiva-
tion, almost an order of magnitude slower than inactivation. In the following, we
examine different representations to model the behavior of this current.

FIGURE 5.4  Voltage-clamp recordings of the T-current in dissociated thalamic relay neurons.
(A) Voltage-clamp protocols for activation (A1) and deactivation (A2). Command potentials
at various levels were given after the cell was maintained at a hyperpolarized holding potential,
leading to the activation of the current. (B) Steady-state activation obtained from the tail
currents in A2, which were fit to a m2h template. (C) Time constants obtained using a similar
procedure. Different symbols correspond to different cells. (Modified from Reference 34,
where all details were given.)
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5.4.2 HODGKIN–HUXLEY MODEL OF THE T-CURRENT

The voltage-clamp behavior shown above was first modeled by a
Hodgkin–Huxley type representation in which rate constants were fit to
experimental data using empirical functions of voltage.34 Due to the nonlin-

ear behavior of calcium currents (the internal and external Ca2+ concentration differ
by about four orders of magnitude), they were represented using the constant-field
equations, also known as the Goldman–Hodgkin–Katz equations.35

(5.37)

where
–
PCa (in cm/s) is the maximum permeability of the membrane to Ca2+ ions,

and G(V, Ca2, Cai) is a nonlinear function of voltage and ionic concentrations:

FIGURE 5.5  Voltage-clamp characterization of T-current inactivation in dissociated thalamic
relay neurons. (A) Voltage-clamp protocols for inactivation (A1) and recovery from inacti-
vation (A2). In A1, the cell was maintained at different holding potentials then stepped to
–30 mV to activate the T-current with different levels of inactivation. In A2, the current is
reactivated after being fully inactivated. The full recovery took about 1 second (recovery time
constant of about 300 ms). (B) Steady-state inactivation calculated by the peak of currents in
A1. (C) Inactivation time constants obtained by fitting a m2h template to the data. The recovery
time constants were obtained by fitting a single-exponential to the recovery experiment
(dashed line in A2). Different symbols correspond to different cells. (Modified from Reference
34, where all details were given.)

I P m hG V Ca CaT Ca o i= ( )2 , ,
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(5.38)

where Z = 2 is the valence of calcium ions. Cai and Cao are the intracellular and
extracellular Ca2+ concentrations (in M), respectively.

The variables m and h represent, respectively, the activation and inactivation
variables and obey first-order equations similar to Equation 5.8. Their steady-state
relations were fit using Boltzmann functions (Color Figures 5.1A and 5.1B, blue
curves),* leading to the following optimal functions:

Similarly, the voltage-dependent time constants were estimated by fitting expo-
nential functions to the values determined experimentally (Color Figures 5.1C and
5.1D blue curves), leading to the following expression for activation:

(5.39)

and for inactivation:

(5.40)

Here, two different functions were fit to the time constants τh obtained from inacti-
vation protocols (V > = –81) or recovery from inactivation (V < –81).

The temperature dependence of these empirical functions was adjusted according
to the following rule:

(5.41)

where Q10 is the experimentally determined change of time constants for a 10 degree
difference in temperature. For the T-current in thalamic neurons, Q10 was determined
as equal to 5 for τm and 3 for τh.36

The behavior of this model is shown in Figure 5.6. The model accounted well
for all protocols of Figures 5.4 and 5.5, with activation and recovery from inactivation
shown in Figures 5.6A1 and 5.6A2, respectively. However, in this model, τm and τh

were fit using empirical functions of voltage. Similar to the work of Hodgkin and
Huxley,1 this approach leads to a model that accounts well for the current-clamp
behavior of the T-current in thalamic neurons37 (see below).

* Color Figure 5.1, follows page 140.
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FIGURE 5.6 Voltage-clamp behavior of different models of the T-current. Left panels:
activation protocol (identical to Figure 4A1); right panels: protocol for the recovery from
inactivation (identical to Figure 5A2). (A) Empirical Hodgkin–Huxley type model. (B) Linear
thermodynamic model. (C) Nonlinear thermodynamic model. (D) Markov model. In all cases,
the same density of T-channels was used (

–
PCa = 3 × 10–6 cm/s). (Modified from Reference 15.)
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5.4.3 LINEAR THERMODYNAMIC MODEL OF THE T-CURRENT

Another possibility is to deduce the functional form of rate constants from thermo-
dynamic arguments. The first of such models is the linear approximation (Equation
5.19), which corresponds to Equation 5.37 above, but with a functional form dictated
by a linear voltage-dependence of the free energy barrier. Constraining the fitting
using rate constants described by Equation 5.19 (Color Figure 5.1, green curves)
led to the following optimal expressions:

(5.42)

(5.43)

(5.44)

(5.45)

where γm = 0.90 and γh = 0.25. The steady-state relations and time constants are
obtained as in Equations 5.9–5.10.

This model provided a good fit of the steady-state relations (Color Figures 5.1A
and 5.1B, green curves) but the fit to time constants was poor (Color Figures 5.1
C and 5.1D, green curves). In particular, it was not possible to capture the saturation
of τm and τh to constant values for depolarized membrane potentials. This poor fit
had catastrophic consequences, as illustrated in Figure 5.6B. Due to the near-zero
time constants at depolarized levels, the current activated and inactivated too fast
and led to peak current amplitudes that were over an order of magnitude smaller
than the Hodgkin–Huxley model at same channel densities (compare A and B in
Figure 5.6). We conclude that linear thermodynamic models do not provide an
acceptable behavior in voltage-clamp for the T-current.

A possible way to resolve this inherent limitation is to add an artificial minimum
value to the time constant,13 but this possibility was not considered here in order to
stay within a physically plausible formalism. Instead, we illustrate below that this
problem can be solved by including higher-order voltage-dependent contributions
in the free energy barrier.15

5.4.4 NONLINEAR THERMODYNAMIC MODEL OF THE T-CURRENT

Nonlinear thermodynamic models assume that the free energy barrier depends non-
linearly on voltage (see Equation 5.18) and that each conformational state involved
has its own dependence on voltage, independent of other conformational states.15

The consequence is that the coefficients a1 … c2 in Equation 5.18 can take any value
independently of each other. Using these nonlinear expressions to fit the voltage-
clamp data of the T-current led to better fits. The quadratic expansion still provided
a poor fit of the time constants, although better than linear fits (not shown). Accept-
able fits were obtained for a cubic expansion of the rate constants, given by:

α γm m V RT= +( )[ ]0 049 444 54 6. exp . /

β γm m V RT= − −( ) +( )[ ]0 049 444 1 54 6. exp . /

α γh h V RT= − +( )[ ]0 00148 559 81 9. exp . /

β γh h V RT= −( ) +( )[ ]0 00148 559 1 81 9. exp . / ,
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(5.46)

The best fit of this nonlinear thermodynamic model is shown in Color Figure
5.1 (red curves) and was obtained with the following parameters: Am = 0.053 ms–1,
Vm = –56 mV, bm1 = –260, cm1 = 2.20, dm1 = 0.0052, bm2 = 64.85, cm2 = 2.02, dm2 =
0.036, Ah = 0.0017 ms–1, Vh = –80 mV, bh1 = 163, ch1 = 4.96, dh1 = 0.062, bh2 = –438,
ch2 = 8.73, dh2 = –0.057. Color Figure 5.1 (red curves) shows that this model could
capture the form of the voltage dependence of the time constants. In particular, it
could fit the saturating values for the time constants at depolarized levels, in a manner
similar to the empirical functions used for the Hodgkin–Huxley type model (Color
Figure 5.1, blue curves). Nonlinear expansions of higher order provided better fits,
but the difference was not qualitative (not shown).

Using these rate constants with Equation 5.37 produced acceptable voltage-clamp
behavior, as shown in Figure 5.6. All protocols of activation (Figure 5.6C1),
deactivation (not shown), inactivation (not shown), and recovery from inactivation
(Figure 5.6C2) showed a voltage-dependent behavior similar to the experimental data.

5.4.5 MARKOV MODEL OF THE T-CURRENT

To illustrate the Markov representation, we have used a model of the T-current
introduced by Chen and Hess.38 This model was obtained based on voltage-clamp
recordings and single-channel recordings of the T-current in fibroblasts, and the
following optimal scheme was proposed:38

(5.47)

Here, only ka, kd, kf , and kb are voltage-dependent while the other rates are constant.
Thus, activation occurs through one voltage-dependent step (ka, kd) and one voltage-
independent step (ko, kc), the latter being rate-limiting if ka and kd reach high values.
Similarly, inactivation occurs first through a voltage-independent step (ki, k–i), fol-
lowed by a voltage-dependent transition (kf , kb) and a voltage-independent return
to the closed state (kr , k–r).
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Fitting the parameters of Markov models to experimental data is in general diffi-
cult. It is not possible to obtain an analytic expression for both time constants and
steady-state relations due to the high complexity of the model. In general, the activation
and inactivation will be described by multiexponential processes with several time
constants, and how to relate these multiple time constants with the time constants
estimated from experimental data (Figures 5.4 and 5.5) is not trivial. Rather, the
parameters of Markov models are deduced from various experimental considerations
(see below). It is also possible to directly fit the Markov model to the original voltage-
clamp traces by minimizing the error between the model and all experimental traces.
Although in principle more accurate, this procedure is difficult to realize in practice
because of the complexity of the model (11 parameters here).

The choice of these parameters was guided by the following considerations:38

(a) the value of ki must be close to the saturating value of the rate of inactivation
at depolarized membrane potentials (Figure 5.5C), and k–1 must be much smaller
to insure complete inactivation; (b) kc must be close to the fastest activation time
constants at negative potentials (Figure 5.4C), while ko must be large (>1 ms–1) to
be compatible with the short bursts of opening in single-channel recordings;38 (c) the
sum kr + k–r determines the rate of recovery from inactivation at negative membrane
potentials; (d) the values of ka and kd were adjusted to obtain the best fit to activa-
tion/inactivation voltage-clamp recordings using a thermodynamic template with a
linear dependence of the free energy on voltage:

(5.48)

where q = 3.035 is the net charge of a gating particle. As this scheme is cyclic,
microscopic reversibility imposes that the clockwise product of rate constants equals
the anticlockwise product, which in turn imposes that the voltage dependence of kf

and kb must be the same as that of ka and kd. The optimal values of the rate constants
were (all units are ms–1):

(5.49)
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Here, the parameters were adapted to recordings of the T-current in thalamic neurons.
An additional parameter, s = –5 mV, was introduced to shift the voltage dependence
to adjust the model to the thalamic T-current.

Simulation of this model was performed with the above expressions for rate
constants, and the T-current was described by the following equation:

(5.50)

where [O] is the fraction of channels in the open state. Simulated voltage-clamp
experiments (Figure 5.6D) show that the Chen and Hess model reproduced well the
activation characteristics of the T-current (Figure 5.6D1) as well as its slow recovery
from inactivation (Figure 5.6D2). However, this model did not fit quantitatively the
T-current of thalamic neurons because it was based on single-channel recordings of
the T-current in fibroblasts, which is different than the “neuronal” T-current. For
analysis, see Reference 38. Obtaining a better Markov representation of the thalamic
T-current would require constraint of the model by single-channel recordings.

5.4.6 COMPARISON OF THE DIFFERENT MODELS

The different models for the T-current reviewed above were compared in current-
clamp. A single compartment model of the TC cell was generated, using the same
parameters as in Reference 39, and containing leak currents and the T-current
according to the following equation:

(5.51)

where Cm = 0.88 µF/cm2 is the membrane capacitance, gL = 0.038 mS/cm2 and EL

= –77 mV are the leak conductance and its reversal potential, and IT is the T-current
as given by Equation 5.37. These parameters were obtained by matching the model
to thalamic neurons recorded in vitro.39

Using this model, the genesis of low-threshold spike (LTS) was monitored
through return to rest after injecting hyperpolarizing currents. The empirical
Hodgkin–Huxley type model of the T-current generated LTS in a grossly all-or-none
fashion (Figure 5.7A). The linear thermodynamic model (Figure 5.7B) did not
generate LTS, consistent with the very small amplitude of the current evidenced
above (Figure 5.6B). On the other hand, the nonlinear thermodynamic model
(Figure 5.7C) and the Markov model of the T-current (Figure 5.7D) presented a
behavior more consistent with the Hodgkin–Huxley type model. The peak amplitude
of the LTS was compared between different models in Figure 5.7E. Although the
shape of the LTS was not identical, Hodgkin–Huxley and nonlinear thermodynamic
models produced remarkably similar peak amplitudes (filled circles and triangles in
Figure 5.7E). Therefore, we conclude that nonlinear thermodynamic models provide
fits of comparable quality to empirical Hodgkin–Huxley models, but their form is
physically more plausible.

I P O G V Ca CaT Ca o i= [ ] ( ), ,

C
dV

dt
g V E Im L L T= − −( ) − ,
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FIGURE 5.7 Low-threshold spikes generated by different models of the T-current. Com-
parison of the same current-clamp simulation for four different models of the T-current: an
empirical Hodgkin–Huxley type model (A), a linear thermodynamic model (B), a nonlinear
thermodynamic model (C), and a Markov model (D). The simulation involved injecting
hyperpolarizing current pulses of various amplitudes (–0.025, –0.05, –0.075, –0.1, –0.125,
and –0.15 nA) and of 1 sec duration. At the end of the pulse, the model generated a low-
threshold spike upon return to rest. (E) Peak amplitude of low-threshold spikes (LTS)
generated by the different models of the T-current. All simulations were done with the same
single-compartment geometry, which contained leak currents in addition to the T-current
(identical parameters as in Reference 39). The density of T-channels was identical in all
cases

–
(PCa = 5 × 10–5 cm/s) and was in the range of densities estimated from rat ventrobasal

thalamic neurons.39 (Modified from Reference 15.)
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5.5 CONCLUSION

In this chapter, we have compared different representations for modeling voltage-
dependent currents and delineated some of the differences between these represen-
tations. In the case of sodium channels, models of increasing complexity, from
simplified two-state representations to multistate Markov diagrams, can capture
some of the features of sodium channels and of action potentials. Which model to
choose depends on the type of experimental data available and its level of precision.
It is clear that a two-state scheme cannot capture the features of single-channel
recordings, which require Markov models of sufficient complexity to account for
the data. On the other hand, we showed that even simplified two- or three-state
representations can capture phenomena such as action potentials.6 If the principal
requirement is to generate action potentials, it is therefore not necessary to include
all the complexity of the most sophisticated Markov diagrams of channels, and
simplified representations appear sufficient. This simplistic approach may be ade-
quate for models involving large-scale networks of thousands of cells, for which
computational efficiency is a more important concern than reproducing all the
microscopic features of the channels.

In the case of the T-current, we have shown that various formalisms, such as
empirical Hodgkin-Huxley type models, thermodynamic models, and Markov mod-
els, can capture the behavior of the T-current in voltage-clamp and generate low-
threshold spikes. In this case, Markov models are probably more accurate because
they also account for single-channel recordings, while Hodgkin–Huxley type models
do not. The voltage-clamp data shown here were obtained in thalamic neurons33 and,
for the particular case of these data, they were best modeled by a Hodgkin–Huxley
type model in which rate constants were fit to experimental data using empirical
functions of voltage. The best physically plausible approach to capture these data
is to use templates taken from nonlinear thermodynamic models, which provide a
fitting of comparable quality to empirical functions (compare blue and red curves
in Color Figure 5.1). Therefore, we conclude that nonlinear thermodynamic models
should be used to yield representations that are consistent with experimental data
while having a plausible biophysical interpretation.
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6.1 INTRODUCTION

To achieve realistic simulations of biological neurons anatomically correct morpho-
logical reconstructions of the desired cell type need to be obtained first. If significant
errors are made in the reconstruction, the resulting passive and active properties of
the simulated neuron could substantially deviate from the real cell. For example, if
the diameter of a thin dendrite was traced at 0.5 µm but the actual diameter was 0.8
µm, an error of 60% for the surface area and of 156% for the cross-sectional area
would result. Of course, the surface area is proportional to the cell capacitance and
total membrane conductance, and the cross-sectional area to the axial conductance,
which are important parameters describing the passive structure of neural models
(Chapter 8). Errors of similar magnitude easily result from omitting the surface area
of dendritic spines. Other major sources of error in reconstructions include the
degradation of neurons during recording, shrinkage artifacts during histological
processing, the omission of faintly stained distal processes from the reconstruction,
and just the limitations in the resolution of light microscopy if this technique is used
without further validation. This chapter is aimed at providing a step by step descrip-
tion of the techniques that can be used to reduce such problems and to obtain optimal
morphological reconstructions for modeling.

6.2 OVERVIEW OF TECHNIQUES

The process of obtaining a reconstructed neuron for modeling typically begins with
the injection of a dye during intracellular recording. Alternatives are juxtapositional
staining during extracellular recordings in vivo, or anatomical stains that do not
require recording, such as the Golgi method. Staining during intracellular recording
is preferable because the obtained membrane potential traces are very useful as
templates for tuning the model later on (see Chapters 8 and 9). The stained neuron
is most commonly visualized with a histological procedure following fixation of the
tissue. Fluorescent dyes, however, can be used to visualize neurons before fixation
or histological processing take place. Although fluorescent stains are generally not
ideal to obtain a detailed reconstruction of the neuron, they can be useful to control
for shrinkage artifacts occurring later on. The most widely used technique for
visualizing neurons is the injection of biocytin or neurobiotin followed by coupling
to avidin-HRP and some variant of a peroxidase reaction with a chromogen to result
in a darkly stained neuron. The darkly stained neuron can then be traced under a
microscope with a motorized stage using reconstruction software such as Neurolu-
cida (MicroBrightField). Last, the morphology files resulting from this process need
to be converted into a format that compartmental simulation software can read.
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6.3 TECHNIQUES TO RECONSTRUCT NEURONS FOR 
SIMULATION

6.3.1 FILLING AND STAINING NEURONS WITH BIOCYTIN IN

BRAIN SLICES

6.3.1.1 Slice Preparation

The slice preparation method and composition of the slice medium have to be
optimized differently for different brain structures. Individual methods to optimize
slice quality can not be covered within this chapter, and the literature for the
respective brain structure should be consulted. To reconstruct neurons with the
biocytin method it is useful to begin the slicing procedure by deeply anesthetizing
the animal and then perfusing through the heart with ice-cold slice medium. This
washes out erythrocytes from brain capillaries. Erythrocytes contain endogenous
peroxidase activity and are therefore darkly stained during the histological protocol
described below. Although a fast perfusion (<1 min after breathing stops) is often
advantageous for the physiological quality of slices as well, there may be circum-
stances where a perfusion is not possible. In these cases, erythrocyte staining that
obscures the visibility of stained neurons can be reduced by an additional step during
histological processing (see below).

6.3.1.2 Injection of Biocytin

When sharp intracellular electrodes are used, the pipette solution should contain
2–4% biocytin (Sigma) by weight in 1M potassium acetate. This is about the limit
in the amount of biocytin that can be dissolved in 1M potassium acetate, and slight
warming may be required to get the substance fully dissolved. To fill a neuron,
biocytin needs to be ejected with current pulses at the end of the recording. Positive
current pulses of 200 ms duration and an amplitude of 1–4 nA applied for 5–10
minutes at 1–3 Hz are usually suitable for filling.1,2

With whole cell recording a concentration of 0.5–1% biocytin in the pipette is
sufficient and ejection with current is not required. Bulk fluid exchange during
recording usually results in a good fill within 5 minutes. Extended recording periods
(>45 min) are not recommended when an optimal morphological reconstruction is
desired, because the neuron tends to degrade slowly due to dialysis in the whole
cell configuration. The soma may swell, and dendrites may attain a beady or puffy
look after prolonged recordings. Similar symptoms can also be due to cell degrada-
tion close to the surface of the slice and to progressive slice degradation with time
after slicing. The look of dendrites with such poor quality is displayed in Figure 6.1.
For optimal histological reconstructions, recordings of moderate duration early in
the experiment and of cells deep in the slice are likely to give the best results. A
recording of 15 minutes is usually fully sufficient to give a complete dendritic fill
and to stain local axon collaterals if present.

Neurobiotin (Vector Labs) can be used instead of biocytin, and is reputed to
have some advantageous properties such as being more soluble and to iontophorese
more easily. Background staining that sometimes occurs due to ejection of dye during
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the approach of a cell with positive pressure (whole cell recording) may also be
reduced with Neurobiotin. The possible disadvantages of biocytin are rarely signif-
icant in the experience of the author, however, and the higher expense of purchasing
Neurobiotin may not be justified. In addition, a report that Neurobiotin may alter
electrophysiological properties of neurons has been published.3

6.3.1.3 Fixation of Slices

When only a light-microscopic reconstruction is desired, the slice can be fixed in
4% paraformaldehyde or in a 10% formaldehyde solution. For convenience, prepared
stabilized and buffered fixatives can be purchased, for example from Sigma
(HT50-1). When a verification of dendritic diameters with electron microscopy is
desired, a suitable EM fixative such as 2.5% paraformaldehyde, 1.25% glutaralde-
hyde, and 15% picric acid in buffer needs to be used.4 Other authors use less picric
acid and more aldehyde fixative.5,6 For good EM quality it is also essential to avoid
prolonged incubation of slices before fixation or extended periods of dialysis during
whole cell recording. To obtain good EM ultrastructure from cells recorded in the
slice remains a challenge in the best of cases.

6.3.1.4 Histological Processing of Slices

Slices may be left in the fixative for a few hours up to several weeks. Since the
visualization of biocytin depends on binding with avidin inside the filled cell, access
of the avidin to the cell needs to be ensured. One method is to resection the slice
before histological processing.2,6 A vibratome is suitable to resection slices that have

FIGURE 6.1 (A) A pair of neurons was recorded simultaneously from globus pallidus (GP)
in a slice from a 16-day-old rat. Both cells were filled with biocytin during whole cell recording
and processed with the Vector ABC method. The morphological quality of one neuron (open
arrow) was much better than that of the second one (solid arrow), although both neurons were
recorded for the same duration with an identical technique. The most likely explanation for
the difference in this case is that the more degraded neuron was somewhat more damaged
during the slicing procedure and had started to degrade before recording. The electrophysi-
ological quality of this cell was also poor. (B) The dendrite of another GP neuron of poor
quality is shown at increased magnification. The arrows point to typical signs of degradation,
such as beads and patchy staining.

100 µm

A B

25 µm
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been embedded in agar. To do so, it is important to put the slice flat on a glass slide
before embedding to be able to obtain good sections from the entire slice. Overall,
however, the author does not recommend resectioning slices, because as a result
parts of the stained neuron may be lost and the cell likely will extend through several
sections. This may cause serious problems when tracing the morphology of the
neuron due to differential shrinkage and deformation of individual sections. In
addition, keeping track of many small branches across sections can be challenging.
An alternative to resectioning is permeabilizing membranes throughout the entire
slice. This can be done by including 0.1% Triton-X-100 (Sigma #T-9284) in the
incubation step of histological processing. The full sequence of steps of histological
processing to stain neurons using the Vector ABC kit is listed in Box 6.1. Slices can
be treated individually in small vials that need 1–2 ml of solution for each step. The
Vector peroxidase substrate (Vector SK-4700) may be replaced by a standard diami-
nobenzidine reaction with Ni++ intensification. The author prefers the ease of use
and low toxicity of the Vector product.

6.3.1.5 Mounting and Clearing of Thick Slices

A major problem in obtaining good morphological reconstructions of neurons is
tissue shrinkage. Some shrinkage is unavoidable during fixation, and correction
factors may need to be determined for this reason (see below). Additional severe
shrinkage as well as tissue deformation occurs when thick slices are dried on
microscopic slides and dehydrated with increasing alcohol concentrations before
clearing with xylene (Figures 6.2 and 6.3). Although this procedure results in very

Box 6.1 Histological Processing of Slices to Stain Neurons 
Filled with Biocytin

1. Rinse fixed slice three times in 0.01 M potassium phosphate buffered
saline (KPBS, pH 7.4).

2. ONLY IF ANIMAL WAS NOT PERFUSED: Incubate in 1% H2O2 +
10% Methanol + 2% albumin in 0.1 M KPBS for 30 min at room
temperature while gently shaking to reduce endogenous peroxidase
activity. Then rinse three times in KPBS, as above.

3. Incubate slice in 0.1 M KPBS with 2% bovine albumin (Sigma
A-2153) and Vector ABC solutions (Vector Pk-4000) overnight in
refrigerator while gently shaking. If slices need to be permeabilized,
add 0.1% Triton-X100 (Sigma T 9284). Note that the ABC kit A and
B solutions need at least 30 min to form a complex after mixing before
they can be used. 

4. Rinse thoroughly five times with KPBS.
5. Use Vector substrate kit (SK-4700) or a standard diaminobenzidene

(DAB) protocol for the final peroxidase reaction. If DAB is used,
prepare a solution of 0.06 % NiCl, 0.05% DAB, and 0.06% H2O2 for
immediate use. Staining takes 10–15 minutes. It should be discontin-
ued earlier if the non-specific background stain becomes very dark.
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clear slices and thus highly visible neurons, the accompanying tissue deformation
and shrinkage is usually unacceptable. Two alternative protocols can be used. The
first protocol consists of clearing floating slices in increasing concentrations of
glycerol.7,8 A one hour immersion in 50% glycerol (Sigma) in buffered water fol-
lowed by one hour immersion in 90% glycerol is sufficient. Slices are then mounted
and coverslipped in 100% glycerol. This method results in reasonable visibility and
little additional shrinkage. Stained neurons, however, tend to fade over the next
several weeks. The fading can be largely eliminated by using Immu–Mount (Shan-
don, Inc.) instead of glycerol. Evaporation of the mounting medium over time can
remain a problem even when the slides are sealed with nail-polish. The second
method makes use of osmium to harden slices before they are dehydrated. While
this method uses highly toxic osmium, and care needs to be taken to obtain flat
slices, it can result in stable and clearly visible stained neurons with minimal tissue
shrinkage.9 A commercially available 4% osmium tetroxide solution (Ted Pella) is
diluted to 0.02–0.2% in phosphate buffer and slices are incubated for 5 minutes to
2 hours depending on slice thickness and the amount of desired tissue hardening.
The more osmium is used, the darker the tissue will get, which may ultimately
obscure stained neurons. After hardening during osmification, slices can be dehy-
drated with increasing alcohol concentrations, cleared with xylene, and coverslipped. 

6.3.2 FILLING AND STAINING NEURONS WITH BIOCYTIN IN VIVO

6.3.2.1 In Vivo Intracellular Recordings

Such recordings are typically performed with sharp electrodes, and the same dye-
ejection technique as described above for slice recordings with these electrodes can
be used. A key to successful intracellular recording in vivo is the reduction of brain
pulsations, for example by pouring wax over the exposed brain surface after inserting
the electrode.10 The wax is prepared by mixing paraffin (Electron Microscopy Sci-
ences 19280) with light mineral oil (Fisher 0121) in a waterbath until the mixture
has a melting point just above body temperature. The wax is kept melted at this
temperature in a waterbath during the experiment. A syringe w/o needle can be used
to pour the liquid around inserted electrodes, where it quickly hardens.

At the end of the experiment, the animal is typically perfused with buffered
saline followed by fixative. The brain should be cut with sections as thick as possible
(e.g., 100 µm) to prevent the need for tracing neurons across many sections. Sub-
sequent tissue processing is identical to that of brain slices.

In vivo recordings are common in invertebrate preparations. The dye injection
and histological techniques described here are generally applicable to invertebrate
preparations as well. Brain sections are usually replaced by whole-mounts of a
ganglion etc., and the tissue can be treated following the guidelines above. 

6.3.2.2 Juxtapositional Staining

Extracellular recordings can be used to fill neurons in vivo with the technique of
juxtapositional staining.11 Recordings are obtained with a glass capillary pulled for
intracellular recording, but broken to a tip diameter of 1.5–3.0 µm. Breaking can be
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done by mounting the pulled capillary on a micromanipulator and then advancing
the tip into a vertical rough glass surface at an angle of approximately 60 degrees.
The process is best done under the microscope using a 20× or 40× objective. This
electrode can be filled with 0.5 M or 1.0 M NaCl and 3% biocytin. Extracellular
recordings need to be obtained in close proximity to the cells, which can be confirmed

FIGURE 6.2 (A) Picture of a cerebellar cortical Purkinje cell recorded from a slice of a
14-day-old rat and filled with biocytin. This image was taken after fixation and staining, but
while the slice was still in buffer solution. (B) Picture of the same cell after drying on a glass
slide, dehydration, and coverslipping. It is clear that the shape of the cell has become distorted
in a non-uniform way. The upper left dendrite in particular looks stretched.

FIGURE 6.3 Picture of a globus pallidus dendrite. This cell was lightly air-dried on a glass
slide, and then dehydrated using alcohol and xylene before coverslipping. The open arrow
points at a straight segment of dendrite coursing in the xy plane. The solid arrow points at a
segment of dendrite that is ascending in the z-axis. This segment is curled up due to the large
shrinkage of the entire slice in the z-axis. Curled dendrites frequently are common when
severe shrinkage of slices occurs, indicating that individual processes do not shrink at the
same rate as the slice in which they are embedded.
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by a large spike size. Following recording, biocytin is ejected with 5–20 nA positive
current pulses. The action potential firing of neurons should accelerate during the
applied pulses to indicate close proximity of the electrode tip to the neuron. In a
not completely understood fashion the recorded neuron takes up some of the ejected
dye and nicely stained cells may be obtained.12 The histological processing is
identical to the case of intracellularly injected neurons.

6.3.3 OTHER METHODS TO OBTAIN NEURON MORPHOLOGIES

6.3.3.1 Photoconversion of Fluorescent Dyes

In some studies neurons may be filled with fluorescent dyes for particular reasons.
For example, the dye may be used for imaging or for localizing dendrites during
recording. Fluorescent dyes can subsequently be photoconverted to form a dark
reaction product using DAB.13 This technique is unlikely to achieve the quality of
direct biocytin fills, however. In most instances it seems more advisable to inject
biocytin along with the fluorescent dye for later use of the ABC protocol to obtain
a dark stain (see above). In some cases injected biocytin may be conjugated to a
fluorescent label (e.g., Cy3-conjugated avidin) to allow confocal imaging. If subse-
quently processed with the ABC protocol, a dark stain can still be obtained.14

6.3.3.2 Golgi Method

Clearly one of the most successful anatomical techniques ever invented, the Golgi
method allows the intense full staining of individual neurons in fixed tissue. Most
commonly, the rapid Golgi technique that was already known to Cajal is used. Tissue
is exposed first to potassium dichromate and then to silver nitrate. For a recent
reference to a detailed protocol of the rapid Golgi procedure see Reference 15. A
black deposit fills a small number of neurons fully. Why particular neurons are filled
while most others are not remains unknown even after 100 years of use of this
technique. A large disadvantage of the Golgi method for neuronal modeling is that
physiological data for the stained neurons are not available. Using this technique
for modeling is thus not generally recommended. It may be the best technique in
special cases, however, like generating models of neurons in human tissue. In
addition, a larger sample of cells than could be obtained with intracellular recording
might be desirable for the study of morphological variability.

6.3.3.3 Filling Individual Neurons in Fixed Tissue

Individual neurons in already fixed tissue can still be filled with dyes. Both fluores-
cent dyes such as Lucifer Yellow,16 and dyes for a later peroxidase reaction like HRP
or biocytin17 can be used. To monitor the success of injection, the presence of a
fluorescent dye is desirable. A conjugate of biocytin and tetramethylrhodamine
(Molecular Probes) appears particularly useful.18 In distinction to the Golgi tech-
nique, one can aim for particular types of neurons with this technique, or stain the
detailed morphology of neurons that have previously taken up a retrograde tracer.
As with the Golgi technique, however, electrophysiological data are missing, which
makes the obtained morphologies less than ideal for compartmental modeling.
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6.3.4 CROSS-VALIDATION OF SHRINKAGE ARTIFACTS AND

DENDRITIC DIAMETER

6.3.4.1 Rationale

From the time the brain is removed until coverslipping, neurons may undergo
significant changes in morphological structure (Figure 6.2). Even just the event of
slicing a brain and subsequent incubation may change the morphology significantly
by triggering the growth of a sizable proportion of dendritic spines within hours.19

Thus, it may be difficult to obtain cell morphologies that fully preserve the in vivo
situation from slice tissue. A comparison with cells of the same type obtained from
perfused brains can help judging the presence of slice artifacts such as swelling or
spine growth. Both in slices and in perfused brains, neuron morphologies will get
distorted to a varying degree during fixation and subsequent histological processing.
Before relying on the obtained morphology, some cross-validation of this process
is advisable. Of course, the need for such a validation depends on the accuracy that
the modeler desires to achieve with morphological reconstructions. 

6.3.4.2 Assessing Fixation Shrinkage 

Fixation shrinkage of an entire slice can be assessed by measuring slice size and
thickness before and after fixation. Shrinkage factors are estimated from these
measurements and applied to the obtained neural reconstructions. These methods
assume, however, that shrinkage was uniform throughout the slice and that individual
cells shrink at the same rate as the entire slice. This assumption may not hold true
in some cases. Shrinkage at the edge of a slice can be different than in the center,
leading to a distortion of cells. Also, individual dendrites may curl up rather than
shrink (Figure 6.3), and curled dendrites may retain their original length. To assess
these possibilities it is desirable to obtain pictures of the filled cell before and after
fixation. A fluorescent dye such as Lucifer Yellow or rhodamine (Molecular Probes)
can be injected during recording. These dyes diffuse throughout a neuron within
minutes. It should be noted that Lucifer Yellow in particular is highly phototoxic
and neurons can not be exposed to ultraviolet light during electrophysiological
recordings. After recording but before slices are fixed, the neuron can be visualized
using the correct filter set for the dye used, and pictures can be taken. Water
immersion lenses with long working distances are practical to use. For cells with
fine dendrites or cells deep in the slice it may be necessary to obtain images with
a confocal microscope. After taking a set of pictures of the cell, the tissue is fixed.
A second picture of the cell is then taken. Comparing between the pictures before
and after fixation, the amount of fixation related shrinkage and distortion of the filled
cell can be determined. If precise measurements in the diameter of dendritic pro-
cesses are desired, measurements should be calibrated by imaging fluorescent beads
of known diameter (Molecular Probes). Following histological processing and cov-
erslipping, a third set of pictures can be taken to assess further shrinkage and
deformation.
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6.3.4.3 Electron-Microscopic Methods for Detailed Analysis 
of Thin Processes and Dendritic Spines

The accuracy of EM is much higher, of course, than that even of confocal techniques.
The strength of this technique in the process of making accurate anatomical recon-
structions for modeling lies in the ability to make good estimates of the shape and
diameter of fine dendrites and spines. Spines can not be traced during LM recon-
structions and are often added during the modeling process either just as additional
membrane surface or as stereotypical appendages of two compartments each (see
Chapter 9).22 EM measurements of spines allow for improved accuracy of the
assumed spine characteristics. Since the surface area of spines can contribute more
than 50% of the total membrane area of a neuron like in the case of the cerebellar
Purkinje cell, a good sample of EM spine measurements may aid greatly in the
modeling process. Neurons can be carried to the EM level even after preceding LM
analysis.4,5 Thus, neurons can be traced using LM reconstruction software (see
below) and then particular dendritic areas can be singled out for EM analysis. To
allow for the use of EM, care has to be taken to preserve tissue ultrastructure as
well as possible. The fixative to be used (see above) should be made fresh. Triton
needs to be avoided during incubation with avidin. To make sections more permeable,
a quick freezing protocol can be used instead. The tissue is cryoprotected (e.g., with
25% sucrose, 10% glycerol in 0.05 M phosphate buffer at pH 7.4) and then rapidly
frozen to –80°C and thawed again after 20 min. Slices can be mounted in glycerol
for reconstruction under LM, and then washed into phosphate buffer for EM pro-
cessing. To identify the same dendritic sections with EM that were measured before
with LM, a careful alignment strategy is required. Landmarks such as blood vessels
or dendritic junctions can be used, and additional marks can be placed by making
razor nicks or pinholes in the epoxy-embedded block. The location of these marks
can be identified under LM and later used to verify EM positioning.

6.3.4.4 High-Voltage EM Tomography

Three dimensional imaging of small pieces of dendrite and spines can be achieved
with EM methods, when the sample is tilted at various angles under the EM
microscope.23,24 Few scientists have direct access to the required equipment, how-
ever. The use of this technique may still be possible through the National Center
for Microscopy and Imaging Research under Dr. Mark Ellisman in San Diego
(http://www-ncmir.ucsd.edu/us.html), which does allow access to its superb equip-
ment. Software that will make the use of the Center’s instruments possible across
the Internet are under development. Beyond pushing the envelope of EM technology,
the obtained high-resolution images of small dendrites and spines may be of partic-
ular use to modelers concerned with the intracellular spatial and temporal dynamics
of calcium and second messengers or with the dimensions of synaptic contacts (see
Chapter 4). Modeling detailed intracellular diffusion processes is becoming an active
area of research, since these processes have important implications, for ion channel
and synaptic dynamics (Chapter 3). 
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6.3.5 USING THE LIGHT MICROSCOPE TO

TRACE STAINED NEURONS

6.3.5.1 Limitations

Light microscopy (LM) is limited by the optical resolution that can be obtained. The
fundamental limit is approximately 0.6 * λ / N.A. where λ is the wavelength of the
light and N.A. is the numerical aperture of the objective used.25 For a typical wave-
length of 500 nm and a numerical aperture of 1.0 the limit in resolution is thus 0.3
µm. Numerical apertures of up to 1.5 can be achieved with oil-immersion objectives,
but the working distances of high N.A. lenses are relatively short, and generally do
not allow focusing deep enough to visualize stained cells in thick brain slices. Water
immersion lenses with long working distances and a N.A. of close to 1 are sold both
by Zeiss and Olympus. A resolution limit of 0.3 µm does not mean that thinner
structures are not imaged. Rather, a thin line of 0.1 µm structure will have an apparent
diameter of about 0.3 µm due to light diffraction. This effect leads to an apparent
increase in diameter of small dendrites that can lead to a significant error in estimates
of axial resistance and membrane surface area. When cells with abundant small profiles
are reconstructed for the purpose of accurate passive modeling, a calibration of pro-
cesses with small diameters using EM is therefore recommended. This is particularly
relevant when accurate reconstructions of axon collaterals are desired.

Another problem can arise when processes take a vertical course through the
slice, especially underneath or above the soma. Such profiles may be missed alto-
gether, or the reconstruction may suffer in accuracy. If neurons have a preferred
orientation in the target tissue, a slice orientation perpendicular to this orientation
should be considered. Cerebellar cortical Purkinje cells provide an extreme example
of this point, since these flat cells with extensive branching in two dimensions only
would appear as a single line in a horizontal or frontal slice and can not be recon-
structed at this orientation at all.

6.3.5.2 Standard LM Reconstruction Technique Using 
Neurolucida

The cell reconstruction system Neurolucida is sold by MicroBrightField, Inc. To
our knowledge, this system is the only commercially available option for 3-D
computerized single cell reconstructions at the present time. The Eutectics system that
is known to many investigators has been discontinued. Most major brand microscopes
can be fitted with Neurolucida. A motorized xyz stage is required. It is typically
acquired together with Neurolucida, since only a limited number of stage types are
supported by the software. A total Neurolucida system including this hardware and
computer system (without microscope) can be expected to cost around U.S. $26,000.
Several labs have also developed their own reconstruction software, and may make it
available in certain circumstances. Information about one of these products (TRAKA)
developed in Zürich can be found at http://www.ini.unizh.ch:80/~jca/. The following
description is based on the use of Neurolucida.
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To allow tracing thick slices, a microscope objective with a long working distance
and a high magnification such as a Zeiss 63x water immersion objective (N.A. 0.9)
needs to be installed. If tissue sections are below 100 µm thick, the working distance
of a 100x oil immersion objective is likely sufficient, and such an objective with an
N.A. of greater than 1.0 will provide superior optical resolution. During the instal-
lation of Neurolucida great care has to be taken that the stage movement and optical
properties of the objectives to be used are properly calibrated. Large errors can result
otherwise. It should be noted in particular, that the vertical movement of the micro-
scope stage by some number of µm does not mean that the specimen is scanned
vertically by the same number of µm. Due to the different optical diffraction indexes
of glass, oil, and water the movement of the stage can be very different from the
distance traversed inside the optical sample. Correction factors need to be determined
and set in the software to allow for accurate reconstructions along the z-axis. 

To accurately trace the microscopic image of a cell it is required that this image
is superimposed with the computer reconstruction. This can be done in two ways
with Neurolucida. Either the Lucivid system (MicroBrightField) is used to super-
impose the computer drawing onto the microscope image inside the microscope
optics, or a camera is mounted on the microscope and the cell image is superimposed
with the reconstruction on a computer screen. The latter method is preferred by the
author, since looking at a screen is less strenuous than looking through a microscope,
and an additional magnification of the image that can be provided by the camera
system is useful in judging dendritic diameters. 

The actual tracing of a single neuron can take between 30 minutes and several
days, depending on the complexity of the neuron. To begin a reconstruction, the
soma is traced as a 2-D contour around its circumference. Dendrites and axons are
attached to the soma and consist of chains of tubular segments. Branch points can
be inserted in the reconstruction and subbranches are traced consecutively. The
diameter of each segment is chosen to match the superimposed microscope image.
This match can be somewhat subjective, and a reconstruction of the same cell by
several people can show instructive differences (Figures 6.4, Table 6.1). Processes
with thin diameters are particularly prone to large differences when reconstructed
by different people. To optimize this process, a sample of thin diameter processes
should be cross-checked with other means (see above) and the personnel performing
the reconstructions should be instructed to use the resulting criteria of choosing
optimal process diameters. The choice of segment boundaries is another subjective
factor in performing reconstructions. Obvious reasons for starting a new segment
are a change in process diameter, or a bend in the process. Following a process
smoothly in the z-axis requires coordinated use of the z-axis control and the tracing
device (mouse or digitization tablet). If the z-axis is only moved when the process
becomes quite out of focus a stair-case reconstruction of the process in the z-axis
may result. Another problem with the z-axis is the occurrence of a small drift over
time. Therefore, when the reconstruction returns to a major branch point several
minutes or even hours after it has been placed, a mismatch in the z-axis position of
the in-focus image with the previous position stored by the computer may have
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developed. The current in-focus z-axis position recorded by the computer should be
checked against the previous one, and the current z-axis position should be adjusted.
If this schedule is not adhered to, an otherwise perfectly good looking reconstruction
will suddenly show large vertical excursions at branch points when it is later rotated
with other software. While editing such mistakes has become possible with version
3 of Neurolucida, it is still a cumbersome process prone to failure. Because problems
may develop over the course of the reconstruction, it is advisable to save backup
copies of work in progress.

6.3.5.3 Confocal Microscopy for Neurolucida Reconstructions

A confocal module can be purchased with the Neurolucida software that allows
reconstructions as described above out of confocal stacks. Confocal microscopy has
so far not been a good tool to reconstruct detailed morphologies of entire neurons,
however. This is largely due to the fact that at the high resolution required for tracing
fine branches, a full confocal representation of a neuron will literally extend over
hundreds if not thousands of confocal stacks (John Miller, personal communication).
In addition, photobleaching generally limits the amount of time fluorescent neurons

FIGURE 6.4 Four pictures of the same globus pallidus neuron reconstructed by different
people. Some differences in dendritic diameters used can be discerned. The resulting large
differences in cell properties and especially cell surface area are listed in Table 6.1. 
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can be visualized. Nevertheless, confocal microscopy can achieve approximately 1.4
times improvement in resolution compared to traditional light-microscopic images.26

This high resolution can aid in the reconstruction of sample areas of the neuron
containing thin profiles.

6.3.6 STATISTICAL DESCRIPTION OF NEURONAL RECONSTRUCTIONS

When Neurolucida is used for neuronal reconstructions, the companion software
Neuroexplorer (MicroBrightField) is available for a statistical description of the
traced neuron. The geometry of the neuron can be drawn as a dendrogram, which
is a good visual representation of the branching structure of a neuron. Tables of the
number, length, surface area, and volume can be constructed for processes of any
order, where order signifies the number of branch points between the soma and the
respective process. If a sample of neurons has been reconstructed, the distribution
of these values can be plotted to examine whether there are distinct anatomical
subpopulations of neurons within the sample. A clear bimodal distribution of the
mean dendritic length, distance between branch points, or surface area per dendrite
likely indicates the presence of two distinct cell types in the recorded sample.
Measures of total membrane surface and total dendritic length should be interpreted
with care in neurons obtained from brain slices, since truncated or missing dendrites
have a large impact on these measures.

TABLE 6.1 
Cell Statistics of Four Reconstructions of the Same GP Neuron

Rec. A Rec. B Rec. C Rec. D

Length Dendrite 1 (µm) 1160 1226.3 1378.1 1307.1
Surface Area Dendrite 1 (µm)2 4829.09 5230.72 4963.62 4344.62
Branch Points Dendrite 1 8 8 11 15
Length Dendrite 2 (µm) 540.6 508.4 481.3 650.6
Surface Area Dendrite 2 (µm)2 1899.23 1931.47 1057.34 2321.12
Branch Points Dendrite 2 4 3 5 6
Length Dendrite 3 (µm) 1107.5 1158.4 1133.1 1268.7
Surface Area Dendrite 3 (µm)2 3980.27 4204.36 2641.09 4147.13
Branch Points Dendrite 3 7 7 8 9
Length Dendrite 4 (µm) 1249.6 1251.9 1242.7 1385
Surface Area Dendrite 4 (µm)2 5352.67 5535.01 3723.33 5007.53
Branch Points Dendrite 4 11 9 11 20

Note: Pictures of the reconstructions are shown in Figure 6.4. The surface area of the cell
in particular is quite variable between reconstructions. All people performing these recon-
structions had previous experience in the use of Neurolucida. Specific instructions as to
how to trace thin processes were not given.
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6.3.7 CONVERSION OF MORPHOLOGICAL DESCRIPTION TO

COMPUTER SIMULATIONS

6.3.7.1 File Conversion

The morphology files created by Neurolucida or other reconstruction pro-
grams need to be converted to a different file format before they can be
used as cell description files for the most popular compartmental simula-

tion packages, GENESIS (http://www.bbb.caltech.edu/GENESIS) and NEURON
(http://www.neuron.yale.edu). The morphology file formats of all of these applications
have in common that one line in the file describes the diameter, size, and absolute
location of a single cylindrical compartment. Manual editing therefore is feasible to
convert between the specific reconstruction and simulation file formats. Except
possibly for very small cells manual conversion is not recommended, however.
Automated conversion tools can be written in script languages such as Perl. For
conversions from Neurolucida v3 file format to compartmental representations used
by NEURON or GENESIS a free Java application named CVAPP is available on
the CD-ROM. In addition to providing file conversion routines, this application is
a general cell editor and display tool (Figure 6.5). These features can for example
be used to cut away reconstructed axons, if axonal modeling is not intended. Note,
however, that the axon can make an important contribution to the passive properties
of small neurons, especially if local branching is abundant. Matching fast time
constants of a neural recording to a passive model without axon may yield substantial
errors in the resulting choice of passive parameters. An example of a minimal cell
in Neurolucida asci file format (cell.asc) and in GENESIS morphology file format
(cell.p) after conversion with CVAPP is given in Box 6.2. The resulting GENESIS
file demonstrates the use of a hierarchical naming scheme for the branching structure
of the cell. If a modeler needs to make a new conversion tool, this structure could
be used as a model. Hierarchical naming is useful, for example, to reflect the logical
position of each compartment in the dendritic tree of a neuron. In GENESIS this
naming scheme allows that particular areas of the dendrite or branch orders are
quickly identified in the simulation and endowed with particular properties, such as
a unique ion channel distribution.

6.3.7.2 Recompartmentalizing the Electrotonic Structure of 
the Obtained Morphology

Neural simulations are dependent on the correct electrotonic representation of a
neuron, not the exact 3-D shape such as angles at branch points. The segmentation
of a neuron as it is drawn during reconstruction under the microscope is very unlikely
to be a good electrotonic representation of the cell. Long straight stretches of a
dendrite can be drawn as a single segment, while curvy parts may be broken into
many very small parts. For optimal simulation performance all compartments should
have approximately the same electrotonic length, i.e., l / (Rm/Ri)1/2 should be constant,
where l is the actual length of a compartment, and Rm and Ri are the specific
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membrane and axial resistance, respectively. The actual electrotonic length of a
compartment should never exceed 0.1 length constants, but much smaller values
may be required, especially when the membrane resistance decreases radically due
to the opening of active conductances. A value of 0.01 length constants may serve
as a good rule of thumb. The conversion utility CVAPP mentioned above contains
an algorithm that recompartmentalizes a neuron to a specific desired electrotonic
length per compartment.

FIGURE 6.5 Image of the user interface provided by the Java cell viewer cvapp. A globus
pallidus neuron is displayed in the cell window. Neurons can be rotated in 3-D, and morphol-
ogy files can be written in different formats.

Box 6.2 Neurolucida and GENESIS Morphology File 
Formats

A: Neurolucida asci representation of a small cell. Segment endpoints are given
in absolute x,y,z coordinates and diameter.
; V3 text file written for MicroBrightField products.
(Sections)
("CellBody"

(continued)
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Box 6.2 (continued)
(Color DarkRed)
(CellBody)
( –0.93 3.57 0.00 0.12) ; 1, 1
( 3.14 3.57 0.00 0.12) ; 1, 2
( 4.42 1.04 0.00 0.12) ; 1, 3
( 4.30 –1.38 0.00 0.12) ; 1, 4
( 2.56 –2.42 0.00 0.12) ; 1, 5
( –0.35 –2.30 0.00 0.12) ; 1, 6
( –2.09 –1.84 0.00 0.12) ; 1, 7
( –2.67 0.23 0.00 0.12) ; 1, 8
( –2.33 2.88 0.00 0.12) ; 1, 9

) ; End of contour
( (Color Yellow) ; [10,1]

(Dendrite)
( 0.93 3.69 0.00 1.40) ; Root
( 0.93 6.22 0.00 1.40) ; R, 1
( 1.28 9.45 0.00 1.40) ; R, 2
( 2.09 12.56 0.00 1.40) ; R, 3
( 2.67 15.90 0.00 1.40) ; R, 4
(
( 10.00 21.77 0.00 1.16) ; R-1, 1
(
( 20.35 22.12 0.00 0.93) ; R-1-1, 1
Normal

 |
( 11.39 29.37 0.00 0.70) ; R-1-2, 1
 Normal

 ) ; End of split
 |

( –5.93 27.42 0.00 1.05) ; R-2, 1
 Normal

 ) ; End of split
) ; End of tree
( (Color Blue) ; [10,1]

(Dendrite)
( 4.42 –0.12 0.00 1.63) ; Root
( 22.09 –0.35 0.00 1.63) ; R, 1
(
( 27.91 9.68 0.00 1.16) ; R-1, 1
 Normal

( 35.35 –7.83 0.00 0.93) ; R-2, 1
 Normal

) ; End of split
) ; End of tree

B: Same cell in genesis morphology file format after conversion with cvapp.
The soma contour has been replaced by a single spherical compartment. The
coordinate scheme for dendritic compartments is retained.
// genesis
//

(continued)
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6.3.7.3 Databases of Neuronal Morphologies

It is highly desirable that scientists interested in compartmental simulations
should be able to share reconstructed morphologies, given that it requires a
lot of effort and time to obtain neural reconstructions of high quality. In this

regard the on-line archive of reconstructed hippocampal neurons in Southampton27 is
a promising start. Other efforts of constructing shared neuron databases are under way,
but only few labs participate in donating their data. Interesting approaches by several
groups can be visited on line (http://www.nervana.montana.edu/projects/neurosys;
http://ycmi.med.yale.edu/SenseLab; http://www.bbb.caltech.edu/hbp). Several issues
likely need to be clarified before such databases become widely popular. One issue
is that of quality control, for example by including an assessment of possible errors
with morphologies contained in databases. A crucial issue is that of who should finance
installing and maintaining such databases. Last not least, a strategy to reward authors
for submitting data to common databases needs to be designed. While these issues
will likely require general changes in the process of how science operates, the con-
tribution of each investigator towards such goals may provide important stepping
stones. To reach the goal of increasingly complex realistic simulations of brain struc-
tures a high degree of cooperativity between investigators is certainly in order.

6.4 LIST OF SUPPLIERS

Electron Microscopy Sciences, 321 Morris Rd., Box 251, Fort Washington, PA, 19034, (800)
523-5874, fax: (215) 646-8931, http://www.emsdiasum.com.

Box 6.2 (continued)
// Cell morphology file for GENESIS.
// Written by cvapp (http://www.neuro.soton.ac.uk/cells/#software).

*absolute
*asymmetric
*cartesian

// End of cvapp-generated header file.

*origin 0.706 0.756 0

*compt /library/soma
soma none 0.706 0.756 0 6.067
*compt /library/dendrite
p0[1] soma 1.28 9.45 0 1.4
p0[2] p0[1] 2.09 12.56 0 1.4
p0[3] p0[2] 2.67 15.9 0 1.4
p0b1[0] p0[3] 10 21.77 0 1.16
p0b1b1[0] p0b1[0] 20.35 22.12 0 0.93
p0b1b2[0] p0b1[0] 11.39 29.37 0 0.7
p0b2[0] p0[3] –5.93 27.42 0 1.05

p1[1] soma 22.09 –0.35 0 1.63
p1b1[0] p1[1] 27.91 9.68 0 1.16
p1b2[0] p1[1] 35.35 –7.83 0 0.93

© 2001 by CRC Press LLC



Fisher Scientific, Pittsburgh, PA., U.S.A., (800) 766-7000 fax: (800) 926-1166,
http://www.fishersci.com.

MicroBrightField, Inc., 74 Hegeman, Ave, Colchester, VT, 05446, U.S.A., (802) 655-9360,
fax: (802) 655-5245, http://www.microbrightfield.com.

Molecular Probes, Inc., 4849 Pitchford Ave., Eugene, OR, 97402-9165, U.S.A., (541) 465-
8300, fax: (541) 344-6504, http://www.probes.com.

Olympus America, Inc., Two Corporate Center Dr., Melville, NY, 11727-3157, U.S.A., (631)
844-5000, http://www.olympusamerica.com.

Shandon, Inc., 171 Industry Dr., Pittsburgh, PA, 15275, U.S.A., (800) 547-7429.
Sigma-Aldrich, Inc., SIGMA, P.O. Box 14508, St. Louis, MO, 63178, U.S.A., (800) 325-3010,

fax: (800) 325-5052, http://www.sigma-aldrich.com.
Ted Pella, Inc., P.O. Box 492477, Redding, CA, 96049-2477, U.S.A., (800) 237-3526,

fax: (530) 243-3761, http://www.tedpella.com.
Vector Laboratories, Inc., 30 Ingold Rd., Burlingame, CA, 94010, U.S.A., (650) 697-3600,

fax: (650) 697-0339, http://www.vectorlabs.com.
Carl Zeiss, U.S.A., (800) 233-2343, fax: (914) 681-7446, http://www.zeiss.com/micro. Note:

Expect shipment delays of several months.
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INTRODUCTION

The two methods described in this chapter focus on the development of neuronal
geometry and interneuronal connectivity. The first model for dendritic geometry is
based on a stochastic description of elongation and branching during neurite out-
growth. This model allows the user to generate random trees by means of (Monte
Carlo) computer simulations. Using optimized parameters for particular neuron
types, the geometrical properties of these modeled trees can be made to correspond
with those of the empirically observed dendrites. The second model for the devel-
opment of nerve connections describes competition for neurotrophic factors. This
model is formulated in terms of differential equations, which can be studied analyt-
ically using well-known tools for nonlinear system analysis.

7.1 MODELING DENDRITIC GEOMETRY

Interest in the geometry of dendritic branching patterns stems from a variety of
reasons. Anatomists are interested in the morphological characterization and differ-
ences among neuronal classes as well as in the morphological variations within these
classes. Developmental neuroscientists seek to discover the rules of development
and the mechanisms by which neurons attain their final morphological appearance.
Physiologists are interested in how dendritic morphology is involved in synaptic
connectivity within neuronal networks, and in the integration and processing of
postsynaptic potentials. Computer scientists are interested in algorithms for gener-
ating tree structures. The enormous amount of structural and functional variation
with which nature confronts us is a major challenge providing strong motivation to
search for “fundamental rules” or minimal parsimonious descriptions of architecture,
development, and function. Modeling the geometry of dendritic branching patterns
can provide answers to a variety of morphological, physiological, and developmental
questions. A variety of approaches have been developed. In these modeling
approaches, a distinction can be made between reconstruction and growth models.

Reconstruction models use the abstracted geometrical properties of a set of
observed trees, and provide algorithms for randomly generating trees with identical
statistical geometrical properties. A typical example is given by the work of Burke
et al.,1 who developed a parsimonious description on the basis of empirically
obtained distribution functions for the length and diameters of dendritic branches
and for the diameter relations at bifurcation points. Random dendrites are generated
by a repeated process of random sampling of these distributions in order to decide
whether a traced neurite should branch, and for obtaining the diameters of the
daughter branches. The modeled dendrites obtained in this way conform to the
original distribution functions of shape characteristics. An important assumption in
this approach is that the sampled shape properties are independent from each other.
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Hillman2 emphasized the statistical correlation of segment diameters across branch
points and their relation to segment lengths as fundamental parameters of neuronal
shape. Tamori3 postulated a principle of least effective volume in deriving equations
for dendritic branch angles. A sophisticated implementation of the reconstruction
approaches by Hillman, Tamori, and Burke has recently been developed by Ascoli
et al.4 in L-Neuron, a modeling tool for the efficient generation and parsimonious
description of dendritic morphology (http://www.krasnow.gmu.edu/L-
Neuron/index.html). This modeling tool implements local and recursive stochastic
and statistical rules into the formalism of L-systems. Kliemann5 followed a different
approach by considering all the segments at a given centrifugal order as individuals
of the same generation, which may or may not give rise to individuals in a subsequent
generation (by producing a bifurcation point with two daughter segments). Mathe-
matically, such a dendritic reconstruction can be described by a Galton–Watson
process, based on empirically obtained splitting probabilities for defining per gen-
eration whether a segment will be a terminal or an intermediate one. Applications
of this method to dendrites grown in vitro can be found in Reference 6.

Growth models, in contrast, aim at revealing rules of neuronal growth in relation
to the geometrical properties of the trees emerging from these rules. The outgrowth
of neurons proceeds by the dynamic behavior of growth cones—specialized struc-
tures at the tips of outgrowing neurites that mediate neuritic elongation and branch-
ing.7 Mature neurons have attained their morphological features as result of this
process. Growth models include these processes of elongation and branching. Several
implementations have been studied, differing in the level of detail of the mechanisms
involved. Topological growth models focus on the branching process only and ignore
all metrical aspects of dendrites. They have shown how the probability of occurrence
of topologically different tree types depends on the rules for outgrowth. These rules
include, for instance, (1) growth by sequential or synchronous branching and (2)
random selection of segments participating in the branching process, based on
uniform or order- and type-dependent branching probabilities. Examples of such
topological approaches are in References 8, 9, 10, and 11 for a review. Metrical
growth models include rules for both branching and elongation of segments. These
models allow the study of both metrical and topological properties of the generated
dendrites, in relation to the growth assumptions, and have been developed in
References 11, 12, 13, and 14.

The studies reviewed above concern phenomenological approaches in the sense
that both the reconstruction and the growth models are based on simple probabilistic
schemes, still aiming at the reproduction of the empirically obtained geometrical
characteristics. A point of distinction is that the growth models are based on a
developmental process in time and as such are able to include mechanisms that
depend on time, and on the growing tree itself, such as its size. Reconstruction models
do not include this dimension, and the underlying probabilistic schemes are based
on empirical correlation and distribution functions of the shape parameters of par-
ticular sets of trees. Growth models should, in principle, be able to describe groups
of trees, reconstructed at different time points during development, using the same
set of parameters. Reconstruction models, however, may need different sets of opti-
mized parameter values for each age group. Additional to these phenomenological
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approaches, models have been and are being developed which include more detailed
intracellular and local environmental mechanisms and processes in dendritic growth
models. Such biophysical and biochemical processes concern, for instance, the
polymerization of the intracellular cytoskeleton15 and neuritic tension and lateral
inhibition.14

The growth model described in this chapter includes branching and elongation
as stochastic processes. The stochasticity assumption is based on the notion that the
actual behavior of growth cones, mediating elongation and branching, is subject to
so many intracellular and extracellular mechanisms that a probabilistic description
is appropriate. The stochasticity assumption, thus, does not imply that the processes
involved are stochastic by themselves, but only that their outcome can be described
as such. The model has a modular structure, evolved in the course of time by
separately studying the branching process (a) with respect to the choices of the
segments at which branching events occur, (b) with respect to the time pattern of
the branching events, and (c) by finally including the elongation of the segments.
Each phase was validated by comparison with specific empirical findings. The
modular structure of the model facilitates the optimization of the model parameters,
which will be illustrated in this chapter. The model allows the generation of random
dendritic trees, and it will be shown how these trees conform in their geometrical
properties to empirical observations. This will be illustrated for a set of rat cortical
pyramidal cell basal dendrites and for a small set of three cerebellar Purkinje cell
dendritic trees from the guinea pig.

7.1.1 GEOMETRY OF DENDRITIC TREES

Typical shape characteristics of dendritic trees are the number of terminal tips
(degree) or branch points, the lengths and diameters of the segments between these
branch points and tips, and the connectivity pattern of the segments (topological
structure). A distinction is made between terminal segments (ending in tips) and
intermediate segments (ending in a branch point) (Figure 7.1). Related shape prop-
erties are path lengths (total length of the path from the dendritic root to a branch
point or terminal tip) and the number of segments at a particular centrifugal order.
The centrifugal order of a segment is equal to the number of branch points on the
path from the dendritic root up to the segment, thus indicating the position of the
segment in the tree. The embedding of the segments in 3D space and their irregular
shapes, although prominent features of dendritic trees, are not dealt with in this
chapter. The topological asymmetry of a given tree αn with n terminal segments will
be quantified by means of the tree asymmetry index At defined as

being the mean value of all the n – 1 partition asymmetries Ap(rj, sj) in the tree.
Partition asymmetries indicate, at each of the n – 1 bifurcation points, the relative
difference in the number of bifurcation points rj –1 and sj – 1 in the two subtrees
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emerging from the jth bifurcation point.11 The partition asymmetry Ap at a bifurcation
is defined as Ap(r, s) = |r – s|/(r + s – 2) for r + s > 2, with r and s denoting the
number of terminal segments in the two subtrees. Ap(1,1) = 0 by definition. Note
that a binary tree with n terminal segments has n – 1 bifurcation points. The elements
of a tree are further illustrated in Figure 7.1.

7.1.2 DENDRITIC GROWTH MODEL ASSUMPTIONS

Basic actions in the growth model are elongation and branching of segments,
assumed to be independent stochastic processes in time. At each branching event a
bifurcation is formed at the tip of a terminal segment, from which two new daughter
terminal segments emerge. Elongation is assumed to occur at terminal segments
only. The branching probability of a terminal tip is assumed to depend on the
momentary number of tips in the growing tree and on its position in the tree. The
branching process results in a proliferation of tips, and this process fully determines
the final variation among dendritic trees with respect to the number of terminal
segments. The branching parameters can be derived from the shape of empirical
terminal segment number distributions. The topological structure of a fully grown
dendrite is determined by the sequence of particular segments at which branching
occurs. The segment lengths are determined both by the elongation rates of the
segments and by the elapsed time between successive branching events. Segment
length distributions can therefore only be studied once the branching process has
been optimized. No developmental rules have been incorporated for the diameter of
segments. Rather, these diameters will be assigned to the segments once the skeleton
tree has been grown.

FIGURE 7.1 (A) Elements of a topological tree, with a distinction of branch points, terminal
tips and root, intermediate and terminal segments. Segments are labeled according to (B) the
number of tips in their subtrees (degree) and (C) their distance from the root (centrifugal
order).
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7.1.3 DENDRITIC GROWTH MODEL EQUATIONS

7.1.3.1 Branching Process: Describing the Variation in the 
Number of Segments and the Variation in Topological 
Tree Types

First, we describe the branching process on a series of time bins, without specifying
explicitly the duration of each bin. The branching probability of a terminal segment
at time bin i is given by

(7.1)

with N denoting the total number of time bins in the full period of development and
ni denoting the actual number of terminal segments or tips (degree) in the tree at
time bin i.10 The parameter B denotes the expected number of branching events at
an isolated segment in the full period, while parameter E determines how strongly
the branching probability of a terminal segment depends on the number of tips in
the tree. Such a dependency turns out to be essential for reducing the proliferating
effect of the increasing number of tips on the total branching rate of the tree.10

Parameter γ denotes the centrifugal order of the terminal segment while

is a normalization constant, with a summation over all n terminal segments. Param-
eter S determines how strongly the branching probability of a terminal segment
depends on the proximal/distal position of the segment in the tree. For S = 0, all
terminal segments have equal probabilities for branching, a mode of growth called
random terminal growth. The frequency distribution of tree types produced by this
mode of growth has an expected value for the tree asymmetry index of 0.46 for
large trees.11 For S ≠ 0, the branching probability of a segment depends on its position
in the tree, resulting in more symmetrical trees when S > 0 and more asymmetrical
trees when S < 0. The number of time bins N can be chosen arbitrarily, but such
that the branching probability per time bin remains much smaller than unity, making
the probability of there being more than one branching event in a given time bin
negligibly small.

The distribution of the number of terminal segments in dendritic trees after a
period of growth can be calculated by means of the recurrent expression

(7.2)
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with P(n,i) denoting the probability of a tree of degree n at time bin i with
P(1, 1) = 1, and p(n) denoting the branching probability per time bin of a terminal
segment in a tree of degree n, with p(n) = B/NnE.10 A tree of degree n at time-bin
i emerges when j branching events occur at time bin i – 1 in a tree of degree n – j.
The recurrent equation expresses the probabilities of all these possible contributions
from j = 0, …, n/2. The last two terms express the probability that, in a tree of
degree n – j, j terminal segments will branch while the remaining n – 2j terminal
segments will not do so. The combinatorial coefficient

expresses the number of possible ways of selecting j terminal segments from the
existing n – j ones.

7.1.3.2 Elongation Process: Describing the Variation in 
Segment Lengths

Elongation was initially included in the branching model by assigning an elongation
rate to growth cones at the time of their birth (i.e., after a branching event) which
was randomly chosen from a predefined distribution. This implementation was
successful in describing the mean and standard deviation of segment length distri-
butions of basal dendrites of rat cortical pyramidal neurons.10 This agreement with
empirical data was obtained by additionally assuming that the elongation rate dif-
fered during two phases of dendritic development, the first with branching and
elongation, the second with elongation only.

Recent studies have also focused on the shape of the segment length distribu-
tions, showing that the first implementation of the elongation process resulted in
monotonically decreasing length distributions for intermediate segments. Empirical
distributions of different cell types, however, consistently show intermediate seg-
ment length distributions with a modal shape.13,16 In reconstructions of stained
neurons, short intermediate segments apparently occur less frequently than was
expected. Nowakowski et al. first noticed this phenomenon and suggested a transient
suppression of the branching probability immediately after a branching event.13

Such a reduction indeed resulted in a correct shape for the intermediate segment
length distributions.13 Implementing such an assumption in our approach has a
drawback, however, in that it interferes with the branching process as described by
the parameters B and E and consequently with the shape of the degree distribution.
Therefore, we followed a different approach by giving daughter segments an initial
length immediately after a branching event, and letting them further elongate at a
slower rate. The elongation process is then split into a process associated with a
branching event and a subsequent elongation process. Such an implementation
becomes plausible by considering that a branching event is not a point process in
time, but rather proceeds during a certain period of time during which a growth
cone splits and the daughter branches become stabilized.

n j

j
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7.1.3.3 Time

Continuous time enters into the model when elongation rates are used. Thus far, the
branching process (and the associated initial segment length assignments) were
defined on a series of time bins, without specifying the time-bin durations. For the
mapping of the time bins onto real time, the total duration of the branching and
elongation period needs to be defined as well as the type of mapping, which we will
assume to be linear.

It will be shown in the examples in this chapter that these assumptions result in
a correct description of the segment length distribution while maintaining the proper
shape of the degree distribution. The initial length, given to new daughter segments,
is determined by random sampling of a predefined distribution. Both for the elon-
gation rate and for the initial length we have chosen a gamma distribution (Box 7.1).
Such a distribution is expected for distances between Poisson distributed branching
events along the path of an outgrowing neurite.17

7.1.3.4 Segment Diameter

Segment diameters have not been modeled as part of the growth process, but are
assigned to the skeleton of the full grown tree. A power law relationship will be
assumed, relating the diameters of the segments at a branch point. By the power
law relation, the diameter of a parent segment (dp) relates to the diameter of its
daughter segments d1 and d2 as

(7.5)

Box 7.1 The Gamma Distribution
A gamma distribution has the form

(7.3)

for x > α, β > 0, γ > 0, while the gamma function Γ(γ) is defined by
Γ(γ) = ∫o

∞ e–ttγ–1dt.18 The cumulative distribution is given by G(x; α,
β, γ) = ∫α

x g(x; α, β, γ)dt with G(∞; α, β, γ) = 1. Parameter α indicates
the start of the distribution (offset), β a scaling unit, and γ the shape
of the distribution. The mean value of the distribution is given
by –x = α + βγ and the SD is given by σx = . The modus of the
distribution is at x = α + β(γ – 1). For a given choice of the offset α,
the parameters β and γ can be estimated from the mean and SD of a
distribution by

(7.4)

For ease of interpretation, we will characterize a gamma distribution
by the parameters α, –x, and σx.
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with e denoting the branch power exponent. According to this relation, the diameter
of an intermediate segment di relates to the number n and diameter dt of the terminal
segments in its subtree as di = n1/edt, independent of the topological structure of the
subtree.

7.1.4 DENDRITIC GROWTH MODEL PARAMETERS

The model includes the parameters B, E, and S defining the branching process; the
parameters ,  and define the offset, mean, and SD, respectively, of the
gamma distribution for the initial lengths; and the parameters αυ, –υ, and συ
define the offset, mean, and SD, respectively, of the gamma distribution for the
sustained elongation rates. At a branching event, initial lengths are assigned to both
newly formed daughter segments by drawing random samples from the initial length
distribution , and elongation rates are assigned to both daughter segments by
drawing random samples from an elongation rate distribution gυ. These elongation
rates hold until new branching events occur at the respective segments. In addition
to establishing the sustained elongation, we must specify the duration of the period
of branching and elongation Tbe and of the subsequent period of elongation only Te.

7.1.4.1 Parameter Estimation

A summary of the parameters in the dendritic growth model is given in
Table 7.1. Finding the optimal parameter values needed to describe a par-
ticular set of observed dendritic branching patterns is a multidimensional

optimization task. The modular character of the model and the assumption of inde-
pendent branching and elongation, however, make it possible to optimize branching
and elongation processes separately. Plots of shape properties versus parameter
values offer additional material for manually finding reasonable parameter estimates.
This will be described below.

Parameter S — Parameter S can be estimated from the value of the topological
asymmetry index. Figure 7.2A illustrates how the expected value of the asymmetry
index depends on the value of parameter S and the number of terminal segments in
the tree. The equations used to calculate the tree-asymmetry index are reviewed in
Reference 11. Note that these equations are derived for the more general case in
which intermediate segments also may branch. In the present study we assume
terminal branching only. Alternatively, parameter S can be estimated from the mean
centrifugal order of the tree. Figures 7.2B and C show how the mean centrifugal
order depends on the parameter S and the number of terminal segments in the trees.

Parameters B and E — Parameters B and E can be estimated from Figure 7.3,
illustrating the mapping from branching parameters B and E to the expected mean
and SD values of the predicted degree distribution. The estimation proceeds by
plotting the observed mean and SD in the figure and finding the coordinates of this
point in the B, E grid.

Metrical parameters  for the initial length and 
for the sustained elongation rate — Once the branching process is defined, we

α lin
lin , σ lin

glin

glin

αα σσl in lin in
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need further specification of the gamma distributions for the initial lengths and
for the sustained elongation rates gυ. The parameters in both and gυ must be
estimated from the empirical intermediate and terminal segment length distributions,
and the path length distribution. Good estimates are, however, not directly obtained
from these distributions but require a process of optimization. Some considerations
may help in finding reasonable estimates when using a manual approach. The length
of intermediate segments in the model is determined by (1) the initial length assigned
after a branching event, (2) the elongation rate assigned to this segment, and (3)
the time elapsing before the segment experiences the next branching event. A seg-
ment becomes a terminal segment when it fails to undergo branching before the end
of the growth period.

Terminal segments are generally longer than intermediate segments, both when
compared for the whole tree and when compared for a given centrifugal order within
the tree, e.g., References 19, 20, 21. Many dendritic trees also show a decrease of
terminal segment length with increasing centrifugal order.19 These findings can be
explained by considering that terminal segments of a given centrifugal order have
had more time, on the average, to elongate than have intermediate segments of
similar order, and that this time decreases for increasing order.17 This phenomenon
occurs only when segments show sustained elongation in addition to the initial length

TABLE 7.1 
Summary of Parameters Used in the Dendritic Growth Model

Parameter Aspect of Growth Related to

B Basic branching parameter Segment number
E Size-dependency in branching Segment number
S Order-dependency in branching Topological structure

Initial length—offset Segment length

Initial length—mean Segment length
Initial length—SD Segment length
Elongation in “branching/elongation 
phase”—offset

Segment length

Elongation in “branching/elongation 
phase”—mean rate

Segment length

Elongation in “elongation phase”—offset Segment length

Elongation in “elongation phase”—mean rate Segment length
Coefficient of variation in elongation rates Segment length

Terminal segment diameter—mean Segment diameter

Terminal segment diameter—SD Segment diameter

Branch power—mean Segment diameter

Branch power—SD Segment diameter

Note: Note that the segment diameter parameters are not part of the growth model, but used
afterwards to assign diameter values to the skeleton tree produced by the model.

α lin

lin (µm)
σ lin

αυbe

υ µbe ( m/ h)

αυe

υ µe ( m/ h)

cυυ

dl (µm)

σdt
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assigned to the daughter segments after branching. The length difference in terminal
segments of lowest and highest order can thus be used to obtain an estimate of the
sustained elongation rate during the period of branching. In the examples described
in Section 7.2.6, we will see that rat neocortical pyramidal cell basal dendrites show

FIGURE 7.2 (A) Expected value of the tree asymmetry index for a set of trees as a function
of the growth parameter S, calculated for trees of degree 5, 10, 20, 50, 100, 500, and (B)
mean value of the centrifugal order of segments as a function of the growth parameter S,
calculated for trees of degree 10, 20, 30, 40, 50, 100, 150, 200, 250, 300, 350, 400, 450, and
500. Panel (C) expands the area –0.2 < S < 0.2.
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such differences whereas guinea pig cerebellar Purkinje cells do not (see also
Figure 7.4). Terminal segments may become much longer than intermediate ones
when dendritic development includes a period of branching and elongation, followed
by a period of elongation only. Additionally, the elongation rates need not be equal
during these two periods.

The variation in path lengths is the final outcome of all stochasticity in elongation
and branching. The SD of the path length distribution can be used to estimate the
variation in the sustained elongation rates. These considerations help in estimating
the parameters αυ, –υ, and συ in the gamma distribution gυ. The modal shape of the
intermediate segment length distribution is determined by the initial length distri-
bution and the sustained elongation rate. Estimates of the parameters in must
be obtained using Equation 7.4 for a given choice for the length offset αlin

 and
considering the choices for the parameters in gυ.

Diameter parameters — The segment diameters in a tree have not been
modeled as part of a developmental process, but have been directly assigned to the
full grown skeleton tree by means of the following procedure. First, terminal
segment diameters dl are assigned by random sampling the observed diameter
distribution (or a normal distribution based on the observed mean-SD values).
Then, traversing the tree centripetally, at each bifurcation the diameter of the parent
segment is calculated by means of Equation 7.5, using (a) the diameters of the
daughter segments and (b) a branch power value e obtained by randomly sampling
the observed branch power distribution.

FIGURE 7.3 Mapping of the (B, E) parameter grid onto the (mean, SD)-plane. The map
is obtained by calculating for many pairs of (B, E) model parameter values the mean and SD
of the degree distribution, as produced by the model, which are subsequently plotted as a
point in the (mean, SD)-plane. The continuous lines connect points in the (mean, SD)-plane
with equal E value, the dotted lines connect points with equal B value. The map is calculated
for a fine (panel A) and a course degree (panel B) scale.
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FIGURE 7.4 Length of intermediate and terminal segments plotted versus their centrifugal
order, for S1-rat cortical layer 2/3 pyramidal cell basal dendrites (panels A and B) and for
guinea pig cerebellar Purkinje cell dendritic trees (panels C and D).
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7.1.5 DENDRITIC GROWTH MODEL EXAMPLES

7.1.5.1 Application to S1-Rat Cortical Layer 2/3 Pyramidal 
Cell Basal Dendrites

In S1-rats, the outgrowth of the layer 2/3 pyramidal cell basal dendrites starts at
about 1 day after birth and continues with branching and elongation up to about
day 14, followed by a period of elongation up to about day 18.16 The geometrical
properties of these dendrites are given in Table 7.2 and the segment length distribu-
tions in Figure 7.5 as hatched histograms. How segment lengths depend on centrif-
ugal order is displayed in Figure 7.4 (A and B).

Estimation of parameter S — Interpolation from the observed asymmetry index
of 0.41 in Figure 7.2A results in an estimate of S ≈ 0.5.

Estimation of parameters B and E — These parameters can be estimated from
the mean and SD of the observed degree distribution when plotted as the point (4.04,
2.04) in Figure 7.3. Estimates of the corresponding coordinates in the B, E-grid are
then obtained of B = 2.52 and E = 0.73.

Estimation of and gυυυυ — The observed distribution of intermediate segment
lengths (Figure 7.5A) does not have a clearcut offset. We have assigned therefore
a value of zero to the offset parameter αlin

. The difference in length between highest
and lowest order terminal segments is about 50–60 µm (Figure 7.4B). Given a total
duration of branching of 312 h (13 days), we obtain a rough estimate of υbe ≈ 0.2
µm/h for the sustained elongation rate in the first developmental phase of branching
and elongation. Values of = 6 µm and = 5 µm, for the initial length distribution
in combination with a sustained mean elongation rate of 0.2 µm/h during this first
phase, turned out to result in a good fit of the shape of the intermediate segment

FIGURE 7.5 Comparison of (A) intermediate and (B) terminal segment length distributions
of observed S1-rat cortical layer 2/3 pyramidal cell basal dendrites (hatched histograms) and
model generated trees (continuous lines) for the parameter values given in Table 7.3.
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length distribution. The shape of the terminal segment length distribution was fitted
by assuming a mean elongation rate of 0.86 µm/h during the elongation phase. A
coefficient of variation of 0.47 and a zero value for αυ were additionally assumed.

Diameter parameters — Diameter assignments can be made according to the
procedure described in Section 7.1.4.1, using parameter values –e =1.6, σe = 0.2,

–
dt =

0.6 µm, and = 0.1.2,21

Statistical properties of model-generated trees — The shape properties
of 10,000 model trees are given by their mean and SD and compared to
experimental values in Table 7.2. An excellent match is obtained. Unfortu-

nately, empirical data for the total dendritic length was not available. Not only the
mean and SD, but also the shapes of the distributions matched closely, as is seen in
Figure 7.5 for the length distributions of intermediate and terminal segments.

TABLE 7.2 
Comparison of Shape Properties from Experimental 
Observations of S1-Rat Cortical Layer 2/3 Pyramidal Cell Basal 
Dendrites and of Model Simulated Trees 

Observed Model Predicted

Shape Parameter Mean
Standard 
Deviation Mean

Standard 
Deviation

Degree 4.04 2.04 4.05 2.02
Asymmetry index 0.41 0.24 0.4 0.23
Centrifugal order 1.86 1.2 1.85 1.19
Total dendritic length 527.6 265
Terminal length 110.7 45.2 112.62 44.8
Intermediate length 22.0 17.9 23.6 18.0
Path length 163.8 48.1 164.6 45.0

Obtained with optimized values of the growth parameters.

TABLE 7.3 
Optimized Values for Growth Parameters to Match the Statistical Shape 
Properties of S1-Rat Cortical Layer 2/3 Pyramidal Cell Basal Dendrites

Growth Parameters

B E S (µm) (µm/h) (µm/h) cυυ

2.52 0.73 0.5 0 6 5 0 0.2 0 0.86 0.47

Note: Note that υbe and υe define the sustained elongation rates during the first period of branching and
elongation with a duration of 312 h (13 days), and the second period of elongation only with a duration
of 96 h (4 days), respectively.

σdt

ααin

lin
σσlin

ααυυbe

υυbe

ααυυe

υυe
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7.1.5.2 Application to Guinea Pig Cerebellar Purkinje Cell 
Dendritic Trees

The second example concerns the analysis of three guinea pig Purkinje cell dendritic
trees, fully reconstructed by Rapp et al.22 who analyzed in detail their physiological
properties and made them available via the http://leonardo.ls.huji.ac.il/~rapp. The
geometrical properties of these cells have been calculated from these reconstructions,
and their means and SD are given in the 2nd and 3rd columns of Table 7.4.

Estimation of parameter S — Interpolation from the observed asymmetry index
of 0.50 in Figure 7.2A results in an estimate of S ≈ –0.15. Interpolation from the
observed mean centrifugal order of 13.7 in Figure 7.2C results in an estimate of
S ≈ –0.14.

Estimation of parameters B and E — The values for the mean and SD of the
observed degree distribution (436, 31.8) form a point in the map in Figure 7.3. The
B, E coordinates of this point can be obtained by reference to the B-E grid. A manual
estimate of B = 95 and E = 0.69 has been used. Note that the mean and SD of the
degree distribution are based on only three observations. More observations are
needed in order to obtain a stable estimate for the location of the point in Figure 7.3
and, consequently, for the estimate of the corresponding B, E coordinates.

Estimation of  and gυυυυ — Figure 7.4C, D shows that segment lengths do
not depend on centrifugal order, and that intermediate and terminal segments have
approximately equal length. Similar findings have been obtained for Purkinje cell
dendritic trees in mice8 and in rats.19 It is therefore reasonable to assume that
segments in the Purkinje cells have not (or only moderately) undergone sustained
elongation, and that the observed segment length distributions (almost) fully reflect
the initial lengths at the time of their origin. According to this reasoning, we can

TABLE 7.4 
Comparison of Shape Properties from Experimental 
Observations of Guinea Pig Cerebellar Purkinje Cell Dendritic 
Trees and of Model Simulated Trees 

Observed Trees 1+2+3 Model Trees

Shape Parameter Mean
Standard 
Deviation Mean

Standard 
Deviation

Degree 436 31.8 436 32
Asymmetry index 0.5 0.01 0.49 0.02
Centrifugal order 13.7 5.1 13.8 5.9
Total length 9577 1105 9265 683
Terminal length 11.3 8.8 10.6 7.5
Intermediate length 10.6 7.5 10.6 7.6
Path length 189.3 64.1 166 66

Obtained with optimized values of the growth parameters.

glin
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estimate the gamma distribution  from the mean and SD of the intermediate
segment length distribution (Table 7.4). The length offset αlin has been estimated
from the observed distribution to be αlin = 0.7 µm.

Diameter parameters — Segment diameters can be assigned according to the
procedure, described in Section 7.1.4.1 with parameter values –e = 2.0, σe = 0.3,

–
dl

= 1.1 µm and  = 0.1.2

Examples of trees, produced with the estimates for the growth parameters
(Table 7.5), are given in Figure 7.6.

Statistical properties of model-generated trees — Statistical properties of
tree shapes, obtained by simulating 100 trees, are given in the 4th and 5th
column of Table 7.4 An excellent matching is shown in both the mean and

SD of the different shape parameters between the modeled and observed dendritic
trees. Also the shapes of the distributions closely match, as is shown in Figure 7.7
for the length distributions of intermediate and terminal segments.

7.1.6 DISCUSSION

The two examples discussed have shown that the model for dendritic outgrowth is
able to reproduce dendritic complexity, as measured by many geometrical properties
to a high degree of correspondence. The basic assumptions are (1) randomness and
(2) independence in branching and elongation. The modal shape of the intermediate
segment length distributions could be described by dividing the elongation process
into a first phase associated with branching events, and implemented in the model
by the assignment of an initial length to newly formed daughter segments, and a
second phase of sustained elongation. Guinea pig Purkinje cell segment lengths
turned out to be well described by the initial segment length assignments only. In
contrast, rat pyramidal cell basal dendrites required, in addition to the initial segment
length assignments a sustained elongation (with different rates for the first period
of elongation and branching, and a second period of elongation only). The shape
characteristics of the guinea pig Purkinje cells were based on dendritic reconstruc-
tions of only three cells. The empirical data for the mean and SD of the degree,
asymmetry index, and total length consequently have modest stability and this could

TABLE 7.5 
Optimized Values for Growth Parameters to Match the Statistical Shape 
Properties of Guinea Pig Purkinje Cell Dendritic Trees 

Growth Parameters

B E S

95 0.69 –0.14 0.7 µm 10.63 7.53

Note: Parameters B, E, and S define the branching process, and , , and  define the
gamma distribution for the initial segment lengths.

glin

σdt

αα
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be the explanation for the difference in total length SD between observed and
modeled trees (Table 7.4).

The description of dendritic outgrowth as a stochastic process, defined by
branching and elongation probabilities, is the reflection of a complex of molecular,
biochemical, and cellular processes. It is therefore surprising that a limited set of
growth rules and parameters (especially in the case of the Purkinje cells) suffices

FIGURE 7.6 Examples of trees randomly produced by the growth model for parameter
values, optimized for guinea pig cerebellar Purkinje cells, as given in Table 7.5. Note that the
diameters of the branches are not produced by this model, but randomly assigned.

FIGURE 7.7 Comparison of (A) intermediate and (B) terminal segment length distributions
of observed guinea pig Purkinje cells (hatched histograms) and model generated trees
(continuous lines) for the parameter values given in Table 7.4.
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to describe dendritic complexity with such a high level of accuracy. The phenom-
enological approach, along with the quantified probability functions presented here,
are first steps toward a further quantification of these processes underlying neurite
outgrowth and neuronal morphogenesis.

The model is useful, since it can produce any number of dendritic trees with
realistic variations in the number of segments, topological structure, and intermediate
and terminal segment lengths. Segment diameters are assigned using a branch power
rule. These model dendrites can then be used in neural simulators for studying
structure–function relationships in dendrites (see Chapters 8 and 9).

7.2 COMPETITION FOR NEUROTROPHIC FACTOR IN 
THE DEVELOPMENT OF NERVE CONNECTIONS

The development of connections between neurons and their target cells often involves
an initial stage of hyperinnervation followed by elimination of axons.23 In some
cases, elimination continues until the target is innervated by just a single axon,
whereas in most other cases, several innervating axons remain. An example of single
innervation is the innervation of skeletal muscle fibers.24 The cells that act as targets
for the innervating axons appear to release limited amounts of neurotrophic factors,
which are taken up by the axons via specific receptors at their terminals and which
affect the growth and branching of the axons.25,26 An important class of neurotrophic
factors is the neurotrophin family, with NGF (nerve growth factor) as its best
characterized member.

Competition among innervating axons for neurotrophic factors is thought to be
involved in axonal elimination and the generation of different patterns of innerva-
tion.23 There is, however, little understanding of the nature of the competitive process
and the underlying mechanisms. Computational models of activity-dependent devel-
opment of nerve connections (e.g., of the formation of ocular dominance columns)
typically enforce competition rather than model it explicitly.27 The first way in which
this can be done is to enforce synaptic normalization. Consider n synapses, with
efficacies si, impinging upon a given postsynaptic cell. Then, synaptic normalization
is the constraint that

where K is some constant and p is usually taken to be 1 or 2. Following a phase of
Hebbian learning, which changes the values of si, the new efficacies are forced to
satisfy the normalization constraint.

A second approach is that of Bienenstock et al., which does not impose synaptic
normalization.28 Here, a modified Hebb rule is used, which has the effect that inputs
driving a postsynaptic cell below/above a certain threshold firing level cause a
decrease/increase in synaptic efficacy. The threshold itself is a time-averaged func-
tion of the activity of the postsynaptic cell. This modified Hebb rule results in

s Ki
p

i

n∑ = ,
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temporal competition between input patterns, rather than spatial competition between
different sets of synapses.

In most existing models29–33 of the development of nerve connections that try to
explicitly model the putative underlying mechanism, competition is based on a fixed
amount of neurotrophin that becomes partitioned among the individual synapses or
axons, i.e., there is no production, decay, and consumption of the neurotrophin. This
assumption is biologically not very realistic. Our approach, similar to that of Jeanprêtre
et al.34 in a model for the development of single innervation, considers the production
and consumption of neurotrophin. By formulating a model that incorporates the
dynamics of neurotrophic signalling (such as release of neurotrophin, binding kinetics
of neurotrophin to receptor, and degradation processes) and the effects of neurotrophins
on axonal growth and branching, competitive interactions emerge naturally. Our
approach has similarities to that of Elliott and Shadbolt, although they do not model
all the processes involved in a dynamic fashion (e.g., neurotrophin release and binding
kinetics).35

7.2.1 THE MODEL

The simplest situation in which we can study axonal competition is a single target
at which there are a number of innervating axons each from a different neuron. Each
axon has a number of terminals, on which the neurotrophin receptors are located
(Figure 7.8). In order to model competition, we break it down into a number of
subprocesses. First, neurotrophin needs to be released by the target into the extra-
cellular space. From there it will be removed partly by degradation and diffusion,
and partly by binding to the neurotrophin receptors at the terminals of the innervating
axons. The binding of neurotrophin to its receptor is a reversible reaction: the forward
reaction produces the neurotrophin-receptor complex, and the backward reaction
dissociates the complex back into neurotrophin and unoccupied receptor. The neu-
rotrophin-receptor complex is then taken up by the axons and is also subject to
degradation. Receptor as well as neurotrophin are thereby removed. Therefore, we
also need to consider the insertion of new receptors into the axon terminals, as well
as turnover of unoccupied receptors. Finally, the growth and branching of each axon
is affected by the amount of bound neurotrophin (neurotrophin-receptor complex)
the axon has across its terminals.

7.2.1.1 Release and Removal of Neurotrophin

Because the binding of neurotrophin to receptor is what triggers the biological
response, we describe, for each axon i, the time-dependent change of the axon’s total
amount of neurotrophin-receptor complex. The total amount of neurotrophin-receptor
complex an axon has over all its terminals, Ci for axon i, increases by binding of
neurotrophin to receptor, and decreases by dissociation and degradation. Thus, for the
rate of change of Ci, we can formulate the following differential equation:

(7.6)
dC
dt

k LR k C Ci
a i i d i i i i= −( ) −, , ,ρ
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where L is the extracellular concentration of neurotrophin, Ri is the total number of
unoccupied receptors that axon i has over all its terminals, ka,i and kd,i are the
respective association and dissociation constants of the reversible binding of neu-
rotrophin to receptor, and ρi is the rate constant for degradation of the complex.

The total number of unoccupied receptors and the concentration of neurotrophin
in the extracellular space are not constants, but rather change in time. The total
number of unoccupied receptors that an axon has over all its terminals, Ri for axon
i, increases by the insertion of new receptors into the terminals as well as by
dissociation of the neurotrophin-receptor complex; it decreases by the binding of
neurotrophin to receptor and by receptor turnover. Thus, 

(7.7)

where φi is the rate of insertion of new receptors and γi is the rate constant for
turnover. 

FIGURE 7.8 Single target with three innervating axons. The target releases neurotrophin
that is bound by neurotrophin receptors at the axon terminals (From Reference 46. With
permission.)

dR
dt

R k LR k Ci
i i i a i i d i i= − − −( )φ γ , , ,
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The concentration of neurotrophin in the extracellular space, L, increases by
the release of neurotrophin from the target and by the dissociation of neurotrophin-
complex into neurotrophin and receptor; it decreases by the binding of neurotro-
phin to receptor and by degradation. Thus,

(7.8)

where σ is the rate of release of neurotrophin, δ is the rate constant for degradation,
n is the total number of innervating axons, and υ is the volume of the extracellular
space (L is a concentration, while Ri and Ci are defined as amounts). The rate of
release of neurotrophin, σ, could depend on the level of electrical activity in the
target.

Equations 7.6 and 7.7 are similar to the ones used in experimental studies for
analyzing the cellular binding, internalization, and degradation of polypeptide
ligands such as neurotrophins.36

7.2.1.2 Axonal Growth

The binding of neurotrophin to receptor triggers the biological response. Many
studies have shown that neurotrophins locally increase the arborization of axons,
which will consequently cause an increase in the number of axon terminals.37 It is
reasonable to assume that increasing the number of axon terminals, on which the
neurotrophin receptors are located, will increase the axon’s total number of
neurotrophin receptors. Other effects induced by neurotrophins that are likely to
increase the total number of axonal neurotrophin receptors are (i) increasing the
size of axon terminals38 and (ii) upregulating the density of neurotrophin receptors.39

In order for the total number of receptors to be able to increase in response to
neurotrophins, the total number of unoccupied receptors that is inserted into the
axon per unit time, φi, must increase in response to bound neurotrophin. We assume
that the larger the amount of bound neurotrophin, Ci, the larger φi will be. That is,
φi is an increasing function, ƒi(Ci), of the amount of bound neurotrophin, Ci. We
call function ƒi(Ci) the growth function. Compared to the dynamics of the other
processes involved, axonal growth takes place on a relatively slow time scale. To
account for this, φi must lag behind its target value given by ƒi(Ci). This lag can be
modeled by the following differential equation:

(7.9)

where the time constant τ of growth is of the order of days. The value of φi will
follow changes in ƒi(Ci) (as a result of changes in Ci) with a lag; at steady-state,
φi = ƒi(Ci).

dL
dt

L k LR k Ca i i d i i
i

n

= − − −( )
=

∑σ δ υ, , / ,
1

τ φ φd
dt

Ci
i i i= ƒ ( ) − ,
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The precise form of the growth function, ƒi(Ci), is not known; we therefore use
a general increasing function that can admit a range of different forms depending
on its parameters. The effects of the form of the growth function on competition
can then be studied. We use the general growth function

(7.10)

This is an increasing function that saturates towards a maximum, αi. Parameter
Ki is the value of Ci at which the response is half its maximum. Using this general
growth function, we can distinguish a number of different classes of growth functions
(Figure 7.9).

Class O: for m = 0, ƒi (Ci) is a constant (ƒi (Ci) = αi/2) and independent of the
level of bound neurotrophin, Ci.

Class I: for m = 1 and large Ki (Ki � Ci), growth is linear over a large range
of Ci (ƒi(Ci) ≈ αiCi/Ki).

Class II: for m = 1 and smaller values of Ki (Ki � Ci), the growth function is
a Michaelis–Menten function (ƒi(Ci) = αiCi /(Ki + Ci)) (see Section 2.2.1).

Class III: for m = 2 the growth function is a Hill function 

which is sigmoidal.
Within each class of growth function, the specific values of the parameters (αi

and Ki), as well as those of the other parameters, may differ among axons. Various

FIGURE 7.9 Growth function ƒ(C) = αCm/(Km + Cm) for the different classes described in
the text. For class O, α = 300; for class I, α/K = 1.5; for classes II and III, α = 300 and K =
100 (From Reference 46. With permission.)
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factors in the innervating axon, some dependent on and some independent of its
electrical activity, may influence the values of these parameters. For example, the
finding that increased presynaptic electrical activity increases the number of neu-
rotrophin receptors40 implies that increased electrical activity affects growth (i.e.,
higher αi or lower Ki) or neurotrophic signalling (e.g., lower γi) or both. As the level
of electrical activity and other factors can vary among innervating axons, there will
be variations in parameter values among axons.

The whole model thus consists of three differential equations for each axon i,
Equations 7.6, 7.7, and 7.9, and one equation for the neurotrophin concentration,
Equation 7.8. By means of numerical simulations and mathematical analysis, we
can examine the outcome of the competitive process. Axons that at the end of the
competitive process have no neurotrophin (Ci = 0; equivalent to φi = 0) are assumed
to have withdrawn or died, while axons that do have neurotrophin (Ci > 0; equivalent
to φi > 0) are regarded as having survived.

7.2.2 UNITS AND PARAMETER VALUES

All parameters in the model have a clear biological interpretation. For the numerical
simulations, the parameter values were taken from the data available for NGF.
Because the high affinity NGF receptor mediates the biological response, the asso-
ciation and dissociation constants of this receptor were taken: ka = 4.8 × 107 [M–1

s–1], kd = 1.0 × 10–3 [s–1].41 The rate constant for the turnover of receptor, γ, was
calculated from the receptor half-life;42 γ = 2.7 × 10–5 [s–1]. The rate constant for
the degradation of neurotrophin-receptor complex, ρ, was calculated from the half-
life of complex;43 ρ ≈ 2.0 × 10–5 [s–1]. The rate constant for degradation of neurotro-
phin in the extracellular space, δ, was estimated using data on neurotrophin concen-
tration changes following blockade of axonal transport;34 δ ≈ 1.0 × 10–5 [s–1]. The
standard value used in the model for the rate of release of neurotrophin was set at
σ ≈ 2.0 × 10–16 [M s–1], which is well within the range of values given in References
34 and 44. Based on data on the time course of the growth of the number of receptors,
τ was set at 2 days.45 Parameter υ, the volume of the extracellular space around the
target cell in which neurotrophin is released, acts as a scale parameter and was set
at 1.7 × 10–11 v[l].1

The values of Ri, Ci, and Ki are in number of molecules; the value of L in [M]
(= [mol 1–1]). The values of αi and φi are expressed in [number of molecules h–1].
Time is in hours [h]. Only the value of αi varies among axons. Unless otherwise
indicated, the initial value of all φi is 10.0 [molecules h–1]. The initial values of Ri,
Ci, and L are such that when keeping all φi at their initial value, the system is in
equilibrium.

7.2.3 EXAMPLES OF RESULTS AND PREDICTIONS

For an extensive overview of the results of the model, see Reference 46. Here we
restrict ourselves to a few examples. The model (with growth functions of classes
II and III) accounts for the experimental finding that increasing the amount of
neurotrophin increases the number of surviving axons.47,48 In the model, elimination
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of axons takes place until either one or several axons survive, depending on (among
other parameters) the rate of release of neurotrophin, σ: the larger σ, the more axons
survive (Figure 7.10a, b).

FIGURE 7.10 Results with class II of the growth function (a, b, c). (a) Single innervation.
The axon with the highest value of αi among the initial five axons survives. α1 = 700, α2 =
400, α3 = 300, α4 = 200, α5 = 100, and K = 500. (b) Multiple innervation with a rate of
release of neurotrophin, σ, that is 35 times higher than the standard value. Other parameter
values are the same as in a. (c) Relationship between the rate of release of neurotrophin (in
units of the standard value) and the number of axons with Ci > 10 at t = 504, for K = 500
(filled squares), and K = 150 (open squares). Other parameter values are the same as in a.
(d) Coexistence of equilibrium points of single and multiple innervation, in a system of two
innervating axons (n = 2), with a class III growth function. The variables (Ri, Ci, i = 1.2)
and L are at quasi-steady state. The bold line depicts the solutions of the equation dφ1/dt =
0 and the light line those of dφ2/dt = 0. (The lines φ1 = 0 and φ2 = 0 are also solutions of
dφ1/dt = 0 and dφ2/dt = 0, respectively, but are not drawn.) The intersection points of these
nullclines are the equilibrium points of the system. Vectors indicate direction of change. Filled
square indicates stable equilibrium point, and open square unstable equilibrium point. Note
that φi > 0 ⇔ Ci > 0 (axon i present) and φi = 0 ⇔ Ci = 0 (axon i eliminated). The stable
equilibrium point at (φ1 = 0, φ2 = 0) is not indicated as it is too close to another, unstable
point. Which of the stable equilibria will be reached depends on the initial values of φi, and
the sizes of the basins of attraction of the equilibria, which are sensitive to the values of the
competitive strengths, βi. Parameters: α1 = α2 = 300, K = 30.
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The axons having a survival advantage are the ones with the highest value for
the quantity βi defined as (ka,i(αi/Ki – ρi))/(γι(kd,i + ρi)), which we interpret as the
axon’s competitive strength. Because βi contains parameters that may be affected
by the axon’s level of electrical activity (e.g., αi), the axons having a survival
advantage will be the most active ones provided that variations due to other factors
do not predominate.

In agreement with the model, in skeletal muscle, stable states of single and
multiple innervation can coexist, as with class III of the growth function (Figure
7.10d). Persistent multiple innervation is found in partial denervation experiments
after reinnervation and recovery from prolonged nerve conduction block.49 In terms
of the model, conduction block changes the competitive strengths of the axons,
which changes the sizes of the basins of attractions of the different equilibria. This
can cause the system to go to an equilibrium of multiple innervation, while under
normal conditions single innervation develops. When the conduction block is
removed, the system will remain in the basin of attraction of the multiple innervation
equilibrium, i.e., multiple innervation persists.

Our analyses suggest that of the many axonal features that change during growth
in response to neurotrophin (degree of arborization and, consequently, number of
axon terminals; size of terminals; and density of receptors) the consequent change
in the axon’s total number of neurotrophin receptors, changing its capacity for
removing neurotrophin, is what drives the competition. The model predicts that
axons that are in the process of being eliminated will have a relatively small number
of neurotrophin receptors.

The type of dose-response relationship between neurotrophin and total number
of neurotrophin receptors (i.e., the growth function), which is crucial in our model
for determining what patterns of innervation can develop, can be determined exper-
imentally in vitro by measuring, for different concentrations of neurotrophin in the
medium, the total number of terminals of an axon or, more specifically, the axon’s
total number of neurotrophin receptors.46 The model predicts that the type of growth
function will determine the relationship between the concentration of neurotrophin
and the number of surviving axons. For example, the smaller the value of Ki, the
lower the concentration of neurotrophin needed to rescue more axons (Figure 7.10c).

7.2.4 CONCLUSIONS

Our model of competition links the formation of nerve connections with the under-
lying actions and biochemistry of neurotrophins. The model accounts for the devel-
opment of single and multiple innervation, as well as several other experimental
findings, and makes testable predictions. Although the parameter values were taken
from the data available for NGF, mathematical analysis shows that our results are
general and do not depend on specific choices of the parameter values.46

The model can be extended in several ways. In reality, axons can have more
than one target. In the model, the rate of insertion of receptors could then be different
for branches innervating different targets. This will also cause competition within
axons between different branches in addition to competition among axons.30,31
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In the present model, we have assumed that the concentration of neurotrophin
is homogeneous in the extracellular space that surrounds the target; in other words,
all innervating axons “sense” the same concentration. This assumption may not be
realistic, especially if the target is large (e.g., a neuron with a large dendritic tree,
onto which the axons impinge). This can be taken into account in our model by
modeling the extracellular space as a collection of “compartments,” into which
neurotrophin is released locally from the target. Some of the compartments will have
an innervating axon, which removes neurotrophin molecules locally. In addition,
there will be diffusion of neurotrophin between compartments (see Chapter 3). For
preliminary results of such a model, see Reference 50.
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8.1 INTRODUCTION

This chapter is not intended to be a rigorous review of passive cable modeling
theory, nor is it a comprehensive review of the relevant literature. There are already
many publications covering the first task.1–5 Instead, I shall focus here on the
practical details of passive cable modeling that often get swept under the carpet,
and I shall try to offer some guidance to would-be passive cable modellers, based
on my own experience.

8.2 WHAT IS PASSIVE CABLE MODELING?

Neurons have treelike morphologies. Their cell membranes are lipid bilayers with
proteins floating around in them, some of which are transmembrane channels. The
lipid part of the membrane has an extremely low conductance per unit area. Many
of the channels are voltage- or calcium-dependent, and are capable of changes in
their conductance in the millisecond to second time scale. Others have an effectively
constant conductance. As a result, each small patch of membrane is electrically
equivalent to a variable resistor (in series with a battery) in parallel with a capacitor,
connecting the interior of the cell with the extracellular space (earth). The passive
membrane conductance and capacitance is that part of the membrane conductance
and capacitance which is effectively constant during a response, and can be approx-
imated by a fixed resistor and capacitor, respectively (Figure 8.1).

FIGURE 8.1 Electrical representation of an isopotential patch of passive membrane. The
membrane is assumed to behave like a resistor and capacitor in parallel, discharging to earth.
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The cytoplasm within a process of a neuron is composed of water, electro-
lytes, charged proteins, cytoskeleton and other obstructions such as
organelles and endoplasmic reticulum (among other things). The latter ingre-

dients probably raise cytoplasmic resistivity above the 50–70 Ωcm (in the case of
mammals) that would be predicted from the composition of its electrolytes alone.
Each short tube of cytoplasm can be thought of as being electrically equivalent to
a resistor, which connects one short cylindrical patch of cell membrane to the next.
A passive dendrite or axon can therefore be represented as shown in Figure 8.2, by
parallel R–C pairs to earth coupled on the intracellular side by axial resistances.
This approximation is valid provided every part of a given patch experiences approx-
imately the same voltage and if radial (as opposed to axial) current flows in the
cytoplasm are negligible. Cable theory, a related analytical theory, has generated a
set of differential equations resting on the same key assumptions:1–3,6

A. Each cylindrical neural process can be simplified into a 1-dimensional cable,
with current flowing both across the membrane and down the core.

B. The extracellular space is isopotential.

Different parts of the neuron have different structures, and may therefore have
different membrane capacitance and conductances per unit area, as well as different
cytoplasmic resistivities (Ri.). It is well-established now that different parts of neurons
have different channel densities, and electron microscopic evidence and other con-
siderations suggests that thinner dendrites may have higher cytoplasmic resistivities
than fatter ones. Total membrane capacitance per unit area has a voltage and fre-
quency dependent component caused in part by the gating currents in transmembrane
channels, and so will also vary from branch to branch. Passive membrane capacitance
per unit area (Cm) is unlikely to vary so much, although in principle the lipids and
proteins and other membrane components may be nonuniform. The passive mem-
brane conductance per unit area (Gm) and its reciprocal Rm are quite likely to be
nonuniform, indeed there is mounting experimental evidence that this can be so.

Cm, Rm, and Ri are frequently referred to as the specific passive parameters,
because they correspond to unit areas and length respectively.

A neuron’s morphology can be brought alive in a computer simulation by
converting it into an electrically equivalent structure, and then giving that structure
various inputs and measuring its responses. The equivalent structure is essentially a
branching tree of axial resistors, mimicking the cytoplasm, all connected together
in a way that mirrors the morphology. At the connection between each pair of axial
resistors are a capacitor and variable resistor in parallel to earth, mimicking the
membrane. This is a compartmental model, a discrete numerical approximation to
the branched cable that is electrically equivalent to the cell. A passive compartmental
model is one lacking components that are rapidly modulated by voltage or simulated
chemical concentration changes. Analytical solutions exist for many kinds of inputs
into passive branching cable structures,1–4 but these are all essentially numerical
approximations too, albeit in many cases more efficient and accurate computationally
than the equivalent compartmental simulations.
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The most important property of passive electrical cables is that different points
experience different voltages, and the cables acts as a low pass filters, attenuating
and smoothing voltage transients as they travel along the branches. A simple sche-
matized example is shown in Figure 8.3. Charge is injected suddenly into one point
of a single cylindrical passive cable. The corresponding voltage transients at either
end are traces A and B (semi-log plot). Generally speaking, realistic axial resistances
are much smaller than membrane resistances, so the charge travels rapidly down the
cable, equalising (roughly speaking) along its length. This corresponds to the rapidly
falling early components of trace A, the transient at the input site, and the rising

FIGURE 8.2 Compartmental electrical representation of a segment of passive cable. Several
isopotential membrane patches are connected in series via axial resistances. The extracellular
space is assumed to be isopotential; radial current flows (perpendicular to axial resistances)
within the cytoplasm of each compartment are ignored. This is a discrete numerical approx-
imation to a continuous cable.
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phase of B, the transient at the far end. As the charge equalizes, so the voltages at
the two ends (and points between) converge. At later times, the membrane discharges
slowly to earth, via its R-C components. This corresponds to the single exponential
decay seen on the semi-log plot (the straight line part).

Local shunts (see below) or nonuniformities in the specific membrane parameters
complicate the picture. Instead of equalizing, charge redistributes, but never reaches

FIGURE 8.3 Schematic illustration of charge equalization (redistribution) within a uniform
passive cable (sealed ends). An impulse of current is injected at A. The charge rapidly spreads
axially, then discharges more slowly through the membrane. Upper panel shows semi-log
plots of the responses at the two (sealed) ends of the cable. As charge redistributes, response
at injection site (A) decays rapidly while response at far end (B) builds up. At later times,
both responses superimpose (charge has equalized), and decay as membrane discharges more
or less uniformly to earth.

B

A

B

A

++
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

++

+

+

+

++
+++

B

A

charge

point

+++++

ln(V)

t

DISCHARGE

MEMBRANE

EQUALIZATION

CHARGE

© 2001 by CRC Press LLC



an approximately uniform distribution, because some parts of the cable are discharg-
ing to earth faster than others. The direction of axial charge flow can even reverse
during a response. Different points in the cable continue to experience significantly
different voltages throughout the response.

Side branches off a cable can drain off charge (load effects), leading to more
attenuation of signal but sealed ends can bottle charge up (end effects), leading to
less attenuation of signals. In a heavily branching tree, large, fast signals in one
branch lead to much smaller slower transients at distant locations.

The theory of passive cable modeling tells us that responses to transient current
and voltage inputs are made up of a number of exponentially decaying components,3

with different time constants τi and amplitudes Ai, where i indexes the components.
The time constants hold for the entire cell, but the amplitudes vary with the input
and recording positions, and the time course of the input. If the geometry is complex,
there may be a large number of components contributing to response waveforms
over the time interval of interest.6 The index of the slowest component is 0 by
convention, and τ0 is commonly called the membrane time constant. If the membrane
parameters are uniform, τ0 equals RmCm.

8.3 WHAT IS THE POINT OF PASSIVE CABLE 
MODELING?

There are three main points:

1. To produce an electrical skeleton onto which active (time-varying) con-
ductances can be grafted, as part of trying to build up a realistic compu-
tational model of a cell. If you get the passive skeleton wrong, you could
run into all sorts of problems once you go active.

2. To reconstruct signals that originated in one part of a passive neuronal
tree, but which have been recorded at another point, perhaps because of
technical constraints. The most common example is the reconstruction of
synaptic currents or conductances which have been heavily filtered
(slowed and attenuated) by intervening dendritic cables before being
recorded at the cell body.7

3. As a toy for neuroscientists to build up their intuitions and understanding
of neuronal cables via play. One should interact with simpler passive
cables and compartmental models before graduating to active compart-
mental models, where the number of parameters can rapidly get out of
hand.

8.4 SHUNTS

A shunt is a point conductance in parallel to the membrane conductance,
either to earth, or with a reversal potential. Pathological shunts can be caused
by localized damage, for example, there may be a physical gap between a

sharp electrode and the membrane. Such a shunt is expected to have a reversal
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potential near zero. In addition, even tiny gaps can let in calcium or sodium ions
which will switch on calcium- or sodium-activated potassium conductances. The
high ionic concentration near the tip of a hyperosmotic sharp electrode may also
cause the effective local membrane conductance to increase. The latter two kinds of
shunt might be expected to have negative reversal potentials — in theory close to
the resting membrane potential or the potassium reversal potential. Natural shunts
can be caused by high local densities of intrinsic membrane conductances or synaptic
conductances. Different kinds of shunt can coexist at a given location, and their net
reversal potential will be a weighted average of the individual reversal potentials.
The shunt conductance at a given point is commonly abbreviated to gshunt. The most
common location is the soma. Shunts can exacerbate problems of model nonunique-
ness (see below), by introducing extra model parameters.

8.5 SPACE CONSTANTS AND ELECTROTONIC 
LENGTH

Suppose a constant current is injected at one point in a cylindrical cable
which extends to infinity. The space constant λ is the distance along the
cable over which the steady state voltage decays to 1/e of its value at the

injection site. This is given by (√Rm d/4Ri), where d is the diameter of the cable.3

Another ubiquitous parameter in the field is L or electrotonic length, namely the
physical length of a finite segment of cable divided by the space constant of its
infinite extension. See below for common misconceptions about L.

8.6 IS PASSIVE CABLE MODELING TRIVIAL? 
COMMON ERRORS AND PITFALLS

Unfortunately passive cable modeling is not as trivial as it may seem at first sight
and is all too easy to slip up, which has resulted in a somewhat confused picture in
the literature. Even obsessive studies may have made potentially serious errors.8

8.6.1 FITTING A PASSIVE CABLE MODEL TO ACTIVE DATA

8.6.1.1 Linearity

A passive cable structure with current or voltage inputs is a linear system, that is,
if you double the input, the output should also double, if you multiply the input by
–1, you should get –1 times the output. The response to two stimuli is given by the
sum of the responses to the individual stimuli. Linear scaling tests8 should always
be performed before using electrophysiological data for passive cable modeling, but
rarely are. Many experimenters believe it is sufficient to operate in a roughly linear
part of a cell’s steady-state I-V curve, but this risks missing rapid voltage-dependent
conductances which turn off at later times, while distorting responses at early times.

Conductance inputs however do not behave linearly in a passive system, a
fact often forgotten by inexperienced modellers. If you simulate a synaptic
conductance, then double it, you won’t get twice the response, because of
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a reduced driving voltage, and because of the local increase in net membrane
conductance. The responses to very small conductances, however, can scale approx-
imately linearly, if these two effects are negligible.

8.6.1.2 Reciprocity

If you inject an input into one point on a passive cable tree, and record from
another point, then swap input and recording sites, you end up with the same
response (Box 8.1). This feature of passive cables allows an extremely

powerful check on whether a real neuron is behaving approximately passively, if it
possible to record simultaneously from several points on the cell. This is routinely
possible in a number of cell classes now.

Box 8.1 An Intuitive Explanation for Reciprocity

This is based on the physical and mathematical similarity between diffusion and
the spread of charge along cables. First, convert each cylindrical segment of
cable into an electrically equivalent bundle of shorter, thinner cylindrical cables,
all identical and connected together in parallel at both ends. The bundle of short,
thin cables must have the same total surface area and axial conductance as the
original segment. Choose a “lowest common denominator” or “universal” diam-
eter, such that all segments of the original tree can be converted into an equivalent
parallel bundle of thin cables with the universal diameter. Fatter original cables
will have more universal cables in their equivalent bundle, thinner original cables
will have fewer.

Suppose some charge is injected instantaneously at one point (A) in the
original tree (spread evenly between its equivalent bundle). Each ion injected
does a random walk along the cables. The voltage at another location B at a
particular time t after the injection is proportional to the number of ions at B at
time t. This is proportional to the number of possible routes or trips starting at
A and ending at B, with a journey time t, divided by the total number of possible
routes of trip duration t from A to anywhere in the tree.

To a first approximation, the total number of possible trips of duration t
originating from B and ending anywhere is the same as the total number originating
from A and ending anywhere — once the trip length is significantly longer than
the distance between A and B, the starting point is more or less irrelevant. The
number of trips from B to A having trip duration t is exactly the same as the
number of trips from A to B of the same length, therefore, the direction is irrelevant.

Since the voltage at at time t in response to the charge being injected at B
is proportional to the number of trips of duration t starting at B and ending at
A, divided by the total number of possible trips of duration t starting from B
and ending anywhere, it can be seen that the A→B response has to be the same
as the B→A response — i.e., there is reciprocity — except at extremely early
times. The situation is complicated by leakage of charge through the membrane,
but a similar argument can still be followed. For a more rigorous discussion of
trip-based algorithms and Feynmann path integrals see Reference 9.
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8.6.1.3 Sag

Short pulses or impulses of current or voltage are often used to probe real neurons’
passive cable properties. Unfortunately, simulations and experiments have shown
that cells with the h-conductance, or hyperpolarization-activated conductance, are
capable of generating impulse responses that scale linearly with the input current
but show a strong undershoot at late times (40–200 ms), which also scales approx-
imately linearly (deviations from linear scaling cannot be picked out from experi-
mental noise). This is clearly incompatible with passive cables. Simulations of this
effect are shown in Figure 8.4,10 which shows semi-log plots of short pulse responses
of a simplified cortical layer 2/3 pyramidal neuron with a uniform h-conductance
density. As the soma is held at progressively more hyperpolarized voltages, the
decays speed up, and show stronger negative deviations at late times (sag). In fact
the responses undershoot, although this cannot be seen on the semi-log plots. What
is frightening though is the fact that in the presence of realistic amounts of noise
on the traces it would appear that the responses were scaling linearly with the input.
An actual experimental example is shown in Color Figure 8.1*: scaled and super-
imposed short pulse (+0.5, –0.5, +1, –1 nA × 0.5 ms) responses from a real CA1
cell superimpose very well, even at late times when the responses are clearly sagging
below the blue dashed line.

Linear scaling is clearly a necessary, but not a sufficient condition for classifying
responses as passive. It is obvious from their long pulse responses that neurons like
those in Color Figure 8.1 are not behaving passively: the responses sag back toward
baseline at late times, and undershoot once the current is turned off (Figure 8.5).
There is also clear inward rectification, input resistance increases with depolariza-
tion, and equal increments of current lead to smaller increments in voltage in the
hyperpolarizing direction.

At least sag or undershoot can be picked up easily in relatively clean data
(averages of large numbers of responses, taken in presence of neurotransmitter
blockers). Fitting passive models to responses of models including sag can lead to
potentially serious errors in the optimal passive parameters. Ri and Cm tend to be
roughly right, but Rm and somatic shunt (if included) can be underestimated.10 If
transfer responses (inject at one point, record at another) are being fitted, the prob-
lems can get worse.11 Nevertheless, if it is thought that the specific passive parameters
are roughly uniform (e.g., no somatic shunt), and if fits are restricted to early parts
of the responses (say less than 25 ms), well before sag appears, then the optimal fit
parameters can be roughly correct.

8.6.1.4 Creep

This is the opposite of sag or undershoot, and is much harder to pick up. Instead of
sagging back towards baseline, the voltage response to a long pulse of current creeps
slowly away from rest, taking a long time to reach a steady state. Short pulse
responses scale linearly with the input — and so appear to be passive — but do not
demonstrate clear exponential decay at late times.

* Color Figure 8.1 follows page 140.
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An example from a cat spiny stellate cell is shown in Color Figure 8.2.* The
effective decay time constant of the short pulse responses appears to get steadily
slower at progressively later times. There is no portion of the response showing
clean single exponential decay. These cells have extremely simple geometries, with
all the dendrites having roughly the same lengths and diameters. In fact, the cells
can be well approximated by equivalent cylinder representations.3 Intermediate time
constant response components with large amplitudes can generate slow bends in
responses, but are hard to generate from such simple cell geometries.10,12 When fits
are attempted to responses such as those in Color Figure 8.2, the results are very
poor, often with nonsensically high Ri s.

Creep can be caused by persistent sodium currents, and perhaps by other kinds
of conductance: the only requirement is a slowly depolarization-activated conduc-
tance with a reversal potential above rest, or a slowly hyperpolarization-activated

FIGURE 8.4 Semi-log plot of somatic responses of a model incorporating h-current. The
morphology was a simplified representation of a cortical layer 2/3 pyramidal cell, with kinetic
parameters slightly modified from Reference 24, details in Reference 10. The soma was held
at three different membrane potentials and ±1 nA, 0.5 ms pulses were injected into the soma.

* Color Figure 8.2 follows page 140.
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conductance with a reversal potential below rest (i.e., the opposite of the h-conduc-
tance). Creep should be apparent from long pulse responses: they will not scale
linearly. An example from the spiny stellate cell above is shown in Figure 8.6. The
scaled responses do not superimpose and the charging and discharging curves have
different time courses. The cell shows strong inward rectification, and the apparent
time constant increases with depolarization.

FIGURE 8.5 Long pulse responses in current clamp of same CA1 cell as in Color Figure 8.1
show pronounced sag and rebound overshoot. Increments of 0.1 nA. Notice how sag becomes
more pronounced at more hyperpolarized voltages, resulting in inward rectification of steady-
state responses. Responses scaled by 1/current would not superimpose.

FIGURE 8.6 Long pulse responses in current clamp from same spiny stellate cell as in Color
Figure 8.2, scaled by 1/current. Notice how responses show strong inward rectification: time
constants and amplitudes increase at more depolarized potentials.
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In short, it is important to test that a cell’s responses appear to be passive at
both short time scales and long time scales — using both impulse (short pulse)
response linear scaling and long pulse response linear scaling. The long pulse on
charging transient (approach to steady-state) should also superimpose with the
inverted off discharging transient (approach to rest). Major et al.8 made the potential
mistake of not testing long pulse linear scaling, which may have compromised their
results. Fitting active data to passive models can lead to horrendous errors and
misleading conclusions, most famously perhaps that layer five pyramidal cells in
cortex are effectively isopotential. This is now known to be completely wrong, thanks
to multi-pipette recordings from single cells.11

The golden rule is — if it moves, block it. Pharmacological agents should be
used to render a cell passive before taking data for passive cable modeling purposes.
We now know a lot about which conductances are partially activated around rest,
and all of these should be blocked, if possible. A wide range of agents are available,
the most useful including ZD7288 (Tocris Cookson)13 for blocking the h-conduc-
tance (10–20 mM) and TTX (for blocking persistent and other sodium conductances
which might cause creep). Useful blockers for A-currents include 4-AP14 and for
T-type calcium currents include amiloride15 and cadmium (150 µM — nonspecific
for all calcium channels). Intracellular QX-314 and cesium block a wide range of
sodium and potassium channels as well as h-channels, but a worry remains about
use of these agents, since they are associated with use-dependent and voltage-
dependent block and relief of block, which can artifactually distort response wave-
forms, as well as causing nonstationarity. Short and long pulse response linear scaling
and stationarity tests should pick up this problem.

8.6.2 FITTING A STATIONARY MODEL TO NONSTATIONARY DATA

Data averaging is commonly performed in order to improve signal-to-noise ratios
for the small signals commonly used for passive cable modeling. If the recorded
cell’s physiological properties are changing over time, because of wash-out of
channels, or because of some other pharmacological effect, or worse still, because
of instability in the recording, it is easy to average together responses which
correspond to quite different electrical systems. The worst case might be if the seal
of a patch pipette to the soma, for example, was unstable, and kept springing a leak
for a few hundred milliseconds at a time. One might not spot this, and average
together the responses of two quite different electrical systems — one with a large
shunt at the soma, and one without. This can distort the response waveforms and
lead to bizarre fit parameters, for example an excessively high Ri. For this reason
it is essential to inspect data by eye, and to ensure that any data that is averaged
together is behaving in a stationary manner, namely, the underlying electrical
behavior of the cell is constant over the averaging period. If voltage clamp is being
used, nonstationarity in the series resistance is a particular problem and can mess
up cable modeling data. This is one reason not to use voltage clamp transients for
cable modeling.
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8.6.3 USING LONG PULSES ALONE, OR IGNORING SERIES

RESISTANCE

Impulse responses are the time derivative of long pulse (step) responses and therefore
are more sensitive to the cable properties of the cell in question. There is more
information (for a given signal-to-noise ratio) in an impulse response than in a long
pulse response, because the early components, which are most sensitive to Ri and
Cm, are larger for impulses.

Another problem with long pulses is that it is very hard to estimate series
resistance (bridge balance) in a distributed cable system, because the cable generates
fast electrical response components which blend into those of the electrode. As a
result, there is no clear breakpoint between the electrode’s response and the cell’s
response, and bridge balance is subjective guess-work, whether it is performed in
current clamp or voltage clamp mode. Basically, just as with voltage clamp, using
current clamp long pulse data introduces series resistance as another model param-
eter. For current clamp data, the series resistance parameter can be eliminated in
two equivalent ways: (a) fit the charging curve relative to the steady-state voltage
level achieved during the pulse, ignoring the baseline, and the initial fast change in
voltage which could be due to the electrode or (b) fit the discharging curve relative
to the voltage baseline (there is no voltage drop across the electrode once the current
is switched off), ignoring the steady-state level and initial fast drop in voltage. In
other words, choose a fit interval that steers well clear of the capacitative/bridge
imbalance artifacts.

8.6.4 IGNORING NONUNIQUENESS

Because it seems quite probable that some of the specific passive electrical param-
eters, namely Cm, Ri and Rm may be nonuniform, it is quite likely that many different
models of the cell may fit the experimental data equally well, while leading to
significantly different predictions. This danger has to be taken on board at the start
of any passive modeling study, particularly when sharp electrodes have been used
and may have caused local shunts at impalement sites (see above).

8.6.5 MORPHOLOGY-RELATED ERRORS

These days, the most credible passive cable models of individual cells are those that
combine high-quality morphology (see also Chapter 6) with high quality physiolog-
ical data from the same cell. Many morphologically related errors are possible. The
first, and most worrying is swelling. It is important to preserve the osmotic balance
within the cell, particularly if one is using multiple channel blockers to passify it.
The main cause of this is the fact that the bulk of the intracellular anions are actually
large relatively fixed negatively charged protein molecules, which cannot diffuse out
of the cell and into the recording electrode or pipette. The pipette solution on the
other hand contains free anions (e.g., chloride, methylsulphate or gluconate). Com-
mon symptoms of osmotic stress are unstable recordings, disappearance (loss of
contrast) of the soma and apical trunk when viewed under D.I.C. or dark field
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microscopy, and collapse of dendritic spines into shafts, or even beading of dendrites
(Chapter 6, Figure 6.1) and leak of indicator out of the cells. Loss of spines and
beading may only be apparent after the event, when filled cells are processed
histologically. The solution is straightforward; reduce the osmolarity of the filling
solution. 0.5 M K-Methylsulphate is recommended for sharp electrodes (resistances
around 100 MΩ) or 270 mOsm patch filling solutions.

Swelling is particularly insidious, because it may reduce the early components
of the impulse responses, and may lead to nonstationarity in the data. Worse still,
once the electrode or patch pipette is withdrawn, the cell may recover to some extent,
so if it is fixed more than half an hour later, its final morphology may be very
different to that actually responsible for the impulse responses recorded.

Other morphological errors occur when tissue is processed, most commonly
shrinkage — relatively straight dendrites develop wiggles (Chapter 6, Figure 6.3)
in the case of HRP and biocytin fills, when the tissue is being dehydrated. Wiggle
is relatively easy to measure, and the measured lengths of dendrites can be com-
pensated accordingly.

More insidious is the fact that dendrites often appear fatter at the surfaces of
processed sub-sections than in the centres, because of differential diffusion of
reagents. This is a particular problem with biocytin fills. Triton-processed tissue can
develop small puffs of reaction product which look like tiny dendritic spines that
can easily lead to spuriously high spine counts. The majority of dendrites have
diameters around 0.5–0.8 µm in most vertebrate central neurons, but the resolution
of the light microscope is only around 0.2 µm, making diameter measures doubly
prone to error. Single spine areas have only been estimated for a comparatively small
number of spines using EM, and densities can be unreliable because of occlusion.
In other words, most morphological measurements, while better than nothing, need
to be taken with a pinch of salt.

What is particularly troubling is the simple fact that axial resistance is propor-
tional to 1/(diameter)2, so a –0.2 µm error in a 0.6 µm diameter dendrite can lead
to the axial resistance being out by a factor of between about 0.5 and 2, a fourfold
range of uncertainty in the worst-case scenario (0.82 = 0.64, 0.62 = 0.36, 0.42 = 0.16).
Diameters can be measured with more precision using high voltage EM, or serial
EM, but the effort involved is prodigious, and the tissue reaction and shrinkage
problems remain.

Luckily, one can still produce an electrically correct model of a cell, even if the
morphology has some kind of uniform systematic error like all the diameter are out
by a given factor, providing one directly fits the responses of the model to the
responses of the corresponding real neuron. If the diameters are twice what they
should be, the optimal fit Ri will end up being four times what it should be, but the
axial resistances themselves will be correct: the specific passive parameters can trade
off with morphological errors, so the battle is not lost. However, transplanting
parameters from one cell in one study with one set of morphological errors into
another cell from another study with another set of morphological errors could lead
to potentially misleading models and conclusions.
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8.6.6 FIT REJECTION, UNDER-FITTING AND OVER-FITTING

The noise in real neurons is badly behaved for two reasons. First, it is dominated
by changes in membrane potential that last for similar lengths of time to impulse
responses, and second it is non-Gaussian. It is not like nice, well-behaved white
noise. Even if one blocks all known neurotransmitters (which one should do, to
abolish spontaneous PSPs which contribute much of the noise, as well as lowering
Rm in some preparations), substantial noise remains. This is probably caused in part
by a combination of single channel noise,14 seal instabilities, and maybe spontaneous
transient osmotic rupturing of dendrites or spines.

When one compares the response of a model with the real data, it is not trivial
to decide when the model produces a good fit. One can inspect the two waveforms
by eye, to see if they superimpose well. However, one can cheat, by making sure
the data is quite noisy, allowing plenty of slope for poor fits to appear OK (under-
fitting). If the data is slightly distorted by slow noise, one can also end up over-
fitting — the optimal fit will not actually be the model closest to the real cell. To
be rigorous, one should explore a range of models, and devise some objective
statistical test to reject some and not others. One straight forward (if tedious) test
is to compare fit residuals with similar stretches of baseline noise, obtained using
the same length of baseline voltage (to estimate holding voltage), same number
averaged. One needs to get an idea of the 95% confidence limits of the maximum
and average deviation from zero of such noise traces, by comparing several of them,
and then apply these confidence limits to the fit residuals. Any residual escaping
from the 95% confidence band is likely to be as a result of a misfit, and can be
rejected.8 However, one should not get too obsessed by these random errors, in the
light of the huge number of possible systematic errors already discussed.

8.6.7 INCORRECT OR INADEQUATE CAPACITANCE COMPENSATION

If the capacitance compensation dial is set incorrectly, this can distort the early
components, and in bad cases, all components of the impulse or long pulse responses.
For example, undersetting capacitance compensation can lead to waveforms with
boosted early components which require artefactually high Ris to fit them. The best
way round this problem is to keep solution levels low both inside and outside pipette,
use sylgard on pipettes if necessary, optimally set “cap. comp.,” record data, and
then record some data with cap. comp. deliberately under-set, just to get an idea of
how safe the responses are at early times.

8.6.8 MISUNDERSTANDING THE RELATIONSHIP BETWEEN

ELECTROTONIC LENGTH AND CABLE FILTERING

Having arrived at a model of a cell, there are still many mistakes one can
make. For example, the concept of electrotonic length is much misunder-
stood. In a finite cable with a sealed end (the most usual assumption), the

steady-state voltage does not fall to 1/e of its starting value after one space constant:
the sealed end causes the decay to be more gradual than in the situation where the
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cable extends to infinity. More importantly, however, transients are attenuated much
more strongly by cables than are steady-state signals. The space constant is, in effect,
frequency dependent. If a sinusoidal signal is injected into a cable, its attenuation
by the cable increases as the frequency rises. Put another way, the effective space
constant decreases with frequency.16,17 The early parts of fast voltage transients (e.g.,
most postsynaptic potentials) are much more dependent on Ri and Cm than they are
on Rm, which principally influences the decaying phase at later times (see Parameter
Dependencies section below). As mentioned, side loads cause additional attenuation.
As a result, L is a dangerous guide as to what filtering effect a cable has on signals.
It is far better to model the situation explicitly, exploring an appropriate range of
assumed parameters.

The commonly assumed rule of thumb for compartmental modellers, that
one needs about 10 or 20 compartments per space constant for reasonable
accuracy, is another version of the misconception that electrotonic distance

is somehow equivalent to filtering effect or attenuation. The number of compart-
ments required for a given degree of accuracy should increase with the speed of
the transient — the safest course of action is to explicitly check the accuracy of
simulations by double checking with different numbers of compartments and dif-
ferent time steps.

8.7 RECOMMENDED PASSIVE MODELING RECIPES

The previous section highlights some of the many possible pitfalls in practical passive
cable modeling. There are no doubt many others as the topic is a minefield for the
unwary. The following is the recommended recipe for how to do passive cable
modeling of a given cell type. This section is by no means the last word. Good
cooks start with the recipe, then try and improve on it and adapt it to their own tastes.

8.7.1 STEP 1: KNOW THE ROUGH MORPHOLOGY

Fill some cells you are interested in modeling, with biocytin or neurobiotin or HRP,
or some fluorescent indicator, then ask are the dendrites all of similar lengths and
diameters? If not, see if length/√(diameter) is similar between dendrites. If it is
(which is rare), you can get very excited, and start using much of the equivalent
cylinder cable theory developed by Rall and others,1,3 but do not forget the warnings
above. Also, beware of exponential fitting and exponential peeling routines as they
are error-prone and sensitive to fit intervals. We will assume in what follows, that
your cell has some long dendrites and some short dendrites, and that its morphology
cannot be well approximated by an equivalent electrical cylinder.

8.7.2 STEP 2: IMPULSE RESPONSES AND LONG PULSE RESPONSE

BEHAVIOR

Next, record from single cells, preferably with patch pipettes, but “dilute” sharp
electrodes will do (e.g., 0.5 M potassium methylsulphate), and record long pulse
responses over a range of membrane potentials close to resting, say between –80
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and –60 mV. Add neurotransmitter blockers (e.g., 100 µM APV, 20 µM CNQX,
100 µM picrotoxin, 10 µM CGP55845A,18 and/or anything else that seems relevant).
Put in pulses of both polarities, to explore all of this 20 mV range. For pyramidal
neurons, steps of 0.05 nA are useful, duration 200–400 ms.

Scale the on and off responses by 1/(current injected), invert the off responses,
and superimpose. Are there any signs of non-linearity? Look for inward rectification
(bigger responses in depolarizing direction), sag, creep and any other active behavior.
Then attempt to block these with pharmacological agents: 10–20 mM extracellular
ZD7288 for sag/undershoot.13 Intracellular gluconate can reduce sag too.19 Attack
inward rectification with TTX, and if necessary intracellular QX-314 and cesium,
although the latter two may have their own problems (above). Any signs of A-current
or T-type calcium currents and these should be dealt with too.

Once the long pulse responses are behaving passively, check the responses to
0.5 ms short pulses, say averages of 50–100. The current should be adjusted so that
the response is around 5 mV at 1–2 ms after the current turns off. +0.5 nA and
–1 nA × 0.5 ms current pulses seem to work well for cortical and hippocampal
pyramidal cells, but for smaller cells you will need smaller currents. Inspect the
responses using both normal and semi-logarithmic axes (ln(V) vs. t). If the short
pulse responses pass linear scaling tests by eye, then, if you are obsessive, you could
try comparing subtracted waveforms with equivalent subtracted noise waveforms to
see if there are any significant differences, as suggested above for comparing fit
residuals to noise.8

Do not forget reciprocity tests if you are using multi-site recording and stimu-
lation. Move the input and recording sites around, and see if you still end up with
the same response. If not, something is wrong.

8.7.3 STEP 3: GET THE MORPHOLOGY RIGHT

Once you are sure you have developed the right pharmacological cocktail for making
the cells behave passively around rest, check you are still able to get good fills, and
that there are no signs of swelling or other problems. The most important thing is
to get the pipette solution osmolarity right, perhaps by trial and error, but for
mammalian brain slices, around 270–275 mOsm is a good starting point and sig-
nificantly below what many people use. Very low series resistances are not neces-
sarily an advantage. Aim for approximately 15–25 MΩ. The higher the series resis-
tance, the slower the cell will swell.

8.7.4 STEP 4: OBTAINING TARGET WAVEFORMS FOR DIRECT

FITTING

Now combine pharmacology, filling and impulse responses. Put in as many impulse
responses as you can, leaving plenty of time between trials for noise measures and
for tails of responses to decay back to baseline. Just to double check, use at least
two sizes and polarities, e.g., –1 nA and +0.5 nA. Stimulate and record from as
many points on the cell as possible. If linear scaling still holds, pool the data
(weighting by signal-to-noise ratios), normalize to + 1 nA, and form a grand average
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(average of averages) for your target waveform. If the responses do not scale linearly,
you must throw the cell away. Do not waste time reconstructing it.

8.7.5 STEP 5: RECONSTRUCTION

There are various ways of reconstructing cells, some manual, some semi-automated.
Choose the one you like best, but whatever you do, measure diameters and spine
densities as carefully as you can, e.g., under high power oil immersion, or with a
high resolution 2-photon or confocal microscope with as high a zoom as is consistent
with the resolution limit. Measure lengths and do not forget wiggle factors and 3-D
pythagorean corrections (manual reconstruction). Try not to miss out or misconnect
dendrites as this can have disastrous consequences. For small neurons with a highly
branched axon it may be necessary to reconstruct the axon also. If you suspect you
may have lost a subsection then throw away the cell. If you have the resources,
calibrate some of your measurements with serial EM or high-voltage EM (see
Section 6.3.3.4).

In the case of spiny neurons, carry out a spine collapse procedure,8 to incorporate
the spine area morphologically into dendritic shafts while conserving their axial
resistance and electrical geometry. Let F (the folding factor) be the ratio of total
surface area (spines + shaft) to dendritic shaft area alone, for a particular cylindrical
dendritic segment. Multiply the segment length by F2/3 and the diameter by F1/3.
This simplification leads to a massive reduction in the number of compartments or
segments in a model, and even bigger savings in computer time, without significantly
altering the responses of noninput segments. The approximation works because spine
necks most likely have resistances at least two orders of magnitude smaller than the
spine head membrane. Alternatively, spines can be incorporated electrically by
multiplying Cm and dividing Rm by F.2 If this is done on a segment-by-segment
basis, as it should be (because spine densities can vary substantially from one
dendrite to another), this procedure has the possible disadvantage of introducing
nonuniform Cm and Rm. However this is not a serious problem for most compart-
mental modeling packages. In addition, analytical solutions exist for branched cables
with nonuniform passive parameters.21 Spines receiving synaptic inputs (particularly
large conductances) should probably be modelled explicitly, to ensure the correct
voltage swings and reductions in driving force occur (see Chapter 9).

Next, produce a morphology file that can be input into a modeling package with
fitting facilities. Do not forget to measure the soma.

8.7.6 STEP 6: AUTOMATED DIRECT FITTING

Inject the same current (or 1 nA, if data normalized as suggested above) into the
model as was injected into the cell, at the same point(s), and record from the same
point(s) as during the real experiment. Select a fit interval, say 2 ms from the pulse
end to when the response falls to 0.5 mV. (Check that the response doesn’t alter
within the fit interval when the cap. comp. dial is deliberately mis-set). Starting with
Cm = 1 µF/cm2, Ri = 200 Ωcm, Rm =10,000 Ωcm2, and a uniform distribution of all
these parameters, systematically explore the parameter space under control of a
simplex or other fitting algorithm (see Chapter 1).
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A schematic example of direct least-squares fitting is shown in Color
Figure 8.3* (semi-log plots). The target data is the noisy green transient.
The initial guess (fit 1) is the red line. A simplex routine crawls amoeba-

like around the parameter space trying various parameter combinations. It compares
the target transient with the responses from models with the parameters it has chosen,
gradually homing in on a region of the parameter space which gives better fits. Fit
20 is still poor, but by fit 50 the simplex algorithm has chosen parameters which
yield a response quite close to the target. By the 100th iteration, the fit has converged
on an optimal set of parameters, yielding a response that matches the target waveform
closely over the entire fit interval (2 to 50 ms in this case).

See if you can make the model responses superimpose with the target data. If
you can, then decide whether you need to do fit rejection statistics to get a range of
acceptable fits, and whether you ought to confront the possibility of nonuniform
electrical parameters, such as a somatic shunt or lower somatic Rm.

If you cannot get good fits, see if nonuniform parameters can rescue you. Start
with a somatic shunt conductance as another free parameter of the fitting, and see
if that helps. If that fails, try various distribution functions of Rm or Ri, Cm is unlikely
to vary much over the cell, but that is a possibility if all else fails. Double check
your morphology, linear scaling and other tests of passive behaviour, and the absolute
scaling of your data. It is easy to amplify electrical data by a different factor to what
you thought. Check the calibration of your system with model cells (R-C networks),
supplied with most commercial amplifiers.

8.8 OTHER TIPS AND TRICKS

8.8.1 MANUAL FITTING

Select a plausible set of starting values for Cm, Rm, and Ri. Ensure that Cm Rm is equal
to the apparent τ0 of the target data. Obtain the model response to the current injected
experimentally (normalized to 1 nA if that’s what you did for your grand average).
Then “peel” the target and model responses to obtain A0 and τ0 , the apparent
amplitudes and time constants of the slowest component of each.3 You need to plot
ln(V) against t, then –1/slope of the straight line component at late times is τ0 , and
exp(intercept) is A0. You need to be careful with the fit interval you use. Use the
same interval for both target and model. Choose intervals that lead to nice straight
line portions of semi-log plot for tens of ms. Exponential fitting routines can do the
job, but make sure you check the fits with semi-log plots. Bad fits can look decep-
tively good with normal axes. Beware: exponential fitting and peeling3 are notori-
ously ill-conditioned or error prone. Tiny changes in fit intervals can lead to huge
changes in the exponential amplitudes and time constants, which is why direct fitting
is preferable where possible.

We know that A0 is proportional to 1/Cm in a passive cable tree with uniform
specific electrical parameters.6 We also know that A0 is independent of Rm and Ri in
the uniform case. So, you need to multiply Cm by (model A0)/(target A0).

* Color Figure 8.3 follows page 140.
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You then need to multiply Rm by (target τ0/model τ0) × (old Cm /new Cm), to
compensate for any errors in initial membrane time constant, and the change in Cm.
How to adjust Ri? Theory says that the time constants of the early components are
proportional to RiCm, therefore you need to compare target and model τ1 and τ2 ,
obtained using the same fit intervals for both data and model, and adjust Ri as follows.
Work out the median of (target τ1/model τ1) and (target τ2/model τ2) and any other
early components you believe you can reliably extract from the data (ignore outlying
ratios; the more peels, the more unreliable the result). Multiply Ri by (old Cm/ new
Cm) × (median early τ ratio).

Next run the model with the new parameters, and compare with the target
data. You may need to do a few more iterations until you are satisfied, or
until you cannot reject the fit statistically. If the late components match well,

but the early components cannot be matched up by the above procedure, try playing
with Ri empirically. If the data has slower (bigger) early components than the model,
try increasing Ri incrementally until a match is obtained. If the model has slower
early components than the data, try reducing Ri. If you cannot obtain good fits this
way, or you suspect there are nonuniform parameters, you really need to use direct
fitting. If that fails, try introducing a somatic shunt for example, and allow it to be
a free parameter.

8.8.2 PARAMETER DEPENDENCIES

Parameter dependences have been discussed in the literature at some
length.6,8 An intuitive illustration is shown in Figure 8.7 (semi-log plots).
If Ri is doubled, the late components are unaffected but the early components

get slower (this is because fast time constants are proportional to Ri ; charge equal-
ization is slowed down by increasing axial resistances).

If Rm is doubled, the early components are unaffected, but the final time constant
is doubled (slow time constants are proportional to Rm, discharge through the mem-
brane is impeded by increasing membrane resistance, but axial charge equalization
is not). A0 is unaffected (the intercept of the final straight line part with voltage axis
is the same). The other components’ amplitudes Ai are also independent of Rm.

Doubling Cm produces more complicated changes to the waveform: the ampli-
tudes of all components (Ai) are halved (amplitudes are inversely proportional to
capacitance), for example, A0 is halved, as can be seen by the intercept of the straight
line part of the response with the V axis. Also the time constants of all components
(which are proportional to Cm) are doubled and both early and late components can
be seen to be slower. Charge equalization and membrane discharge are slowed.
Equalization is slowed because charge flows down axial resistances onto membrane
capacitances as it spreads (see Figure 8.2).

Inserting a 5 nS point shunt conductance (gshunt ) at the recording site causes
the final decay to speed up, and decreases its amplitude A0 (as can seen from the
intercept of the straight line part of the response with the V axis). The very early
components are little affected though. Notice that while an increase in Cm causes
A0 to decrease and τ0 to increase, an increase in the recording site shunt causes
both A0 and τ0 to decrease.
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8.8.3 TRICKS FOR REDUCING NONUNIQUENESS

8.8.3.1 Nucleated Patches

Clearly a sphere is easier to measure than a complex tree. Patch onto a cell of the
class of interest, go whole-cell, then apply negative pressure while you withdraw

FIGURE 8.7 Illustration of parameter dependence, using a single cylinder model with default
parameters (solid lines): length 1000 µm, diameter 5 µm, Cm = 1 µF/cm2, Ri = 200 Ωcm,
Rm = 20,000 Ωcm2, no shunt; input is 1 nA × 0.5 ms.
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the pipette.22 If you are able to pull large approximately spherical chunk of membrane
out of the soma, possibly including the nucleus, you are in a position to estimate
Cm. First measure the diameter of the sphere, then inject currents of various ampli-
tudes and measure the voltage responses. Capacitance = 1/A0, and resistance = τ0A0.
Alternatively, do it all under voltage-clamp with an amplifier that can cancel and
measure the cell capacitance (e.g., an Axopatch 200B). If we assume that nothing
has happened to the membrane, the measurements were reasonably accurate, and
the nuclear membrane has stayed disconnected from the cell membrane, then we
can obtain an independent estimate of Cm. If we assume that there are no leaks from
pulling off dendrites or the rest of the soma, then we can also get an estimate of
somatic Rm , but this seems a little dangerous.

8.8.3.2 Raising Input Resistance

If we introduce a somatic shunt conductance, as a simple case of nonuniform Rm,
the magnitude of this conductance is limited to the input conductance of the cell.
The higher the input conductance, the more scope for nonuniqueness, because the
shunt could be anything between zero and the input conductance. The shunt could
be negative as well, if we allow dendritic Rm to be lower than somatic Rm . Anything
that reduces input resistance is good, because it reduces the range over which the
shunt can vary. Various tricks can be used to do this:

1. Cooling (Andrew Trevelyan, unpublished).
2. Adding further channel blockers.
3. Working on cells from younger animals.

8.8.3.3 Multi-Site Stimulation and Recording

It is now routinely possible to record from two, three, or even four points simulta-
neously on a single neuron,11 using a combination of imaging and dendritic whole-
cell recordings. The more passive responses one can record, the more information
one has to constrain non-uniqueness, and to pin down passive electrical parameters.
Fit rejection statistics should be applied, just as they are with single site responses.

However, routine recording from sub-micron diameter dendrites (the majority)
is not possible with patch pipettes. This is where voltage sensitive-dyes might come
to the rescue. By a bizarre twist of fate, the very weakness of the intracellularly-
applied voltage-sensitive dye technique23 could be turned into a strength from the
point of view of passive cable modeling. After 50 or so optical trials lasting approx-
imately 50 ms, phototoxicity occurs, which appears to be caused by some kind of
disabling of most of the cell’s ion channels. The cells turn into passive trees with
intact morphology. No blebs or blow-outs occur as seen with phototoxicity caused
by overexposure to more water-soluble dyes such as calcium indicators or fluores-
cein. Optical responses can be recorded from these passified cells. Unfortunately,
only time course information, not voltage amplitude information is currently obtain-
able, but work is in progress to test various means of calibrating the optical signals.
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8.9 CONCLUSIONS

Modellers and experimenters alike ignore passive cable modeling at their peril. It is
a fundamentally important subject that all cellular and computational neuroscientists
should have at least a superficial understanding of this technique. Most neurons do
not behave passively but this does not mean that passive cable theory is unimportant.
The opposite is true. It is just like saying that the foundations of a house do not
matter just because they are buried under other more interesting structures. Get the
foundations wrong, and the whole edifice collapses. The same could be true of
computational neuroscience. Passive cable theory and practice are one of the foun-
dations, but, we have not gotten it right yet. There is much more work to be done,
but there are exciting new technological breakthroughs that could help us in the next
few decades, or perhaps sooner.

It would help the field if the hordes of voltage-clampers currently analyzing
conductance after conductance would pay serious attention to space and voltage-
clamp errors6,16,17 before trying to do their experiments or analyze their data. The
active conductance literature is cluttered with pseudo-quantitative studies claiming
to have measured Hodgkin–Huxley parameters (see Chapter 5) or equivalent for
various conductances, but in most cases the data are severely compromised by cable
problems, making the task of active compartmental modellers next to impossible.
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9.1 INTRODUCTION

Over the last decade the view of how neurons process synaptic input has shifted
fundamentally. Previously the common view was that in most neurons largely passive
dendrites collect synaptic charge and convey it in a non-linear but still straightfor-
ward manner to the soma.1,2 Recently, it has become accepted that entirely passive
dendrites do not exist.3 The interaction between dendritic voltage-gated conductances
and synaptic input has become a major topic of research where quantitative modeling
plays an important role.4,5 But it is not trivial to construct a detailed morphologically
correct model with active membrane. Therefore this chapter is built around the
question “what is the right level of complexity for a model of an active neuron?”
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9.2 POINT NEURON MODELS

The simplest spiking neuron models possible are those without any representation
of morphology. In the literature such models are called point neuron models. Because
of their numerical efficiency they are often used in simulations of neural networks
(see Chapters 10, 11, and 12). Only a few parameters need to be tuned to replicate
the spiking pattern of real neurons in great detail. The main weakness of point neuron
models is the absence of dendritic synaptic integration2 which may be essential for
the interaction of neurons in a network. In the following, we will provide a brief
introduction to point neuron models. Chapters 10 and 11 contain additional practical
advice on how to construct and constrain such models.

Three classes of point neuron models can be distinguished: firing-rate models
(described in Section 11.4.2), integrate-and-fire models and conductance based models.

9.2.1 INTEGRATE-AND-FIRE MODELS

Integrate-and-fire models are completely phenomenological. They try to replicate the
generation of spikes in response to synaptic input without representing the underlying
biophysics. In its vanilla form the model computes the change in voltage V(t) over a
membrane capacitance CM which integrates the varying synaptic current I(t):

(9.1)

In the absence of synaptic input, V(t) equals the resting potential which is usually
set to zero. Whenever V(t) reaches a threshold Vth, an action potential is triggered
(but not computed) and V(t) is reset to rest. As Equation 9.1 by itself would allow
for infinitely high firing rates (Figure 9.1) an absolute refractory period is added.
After a spike, V(t) is clamped to rest for a fixed period tref . This leads to a saturating
mean firing frequency ƒ (Figure 9.1) of:

(9.2)

In most models the synaptic inputs are simulated as current pulses (e.g., Refer-
ence 6) and not as conductance changes (see Section 10.2). As CM is constant each
synaptic input provides for a fixed increase ∆V which may be weighted by the
strength of the connection.

The standard integrate-and-fire unit integrates synaptic input over an infinite
time which is not realistic. This problem can be solved by adding a leakage current
to the equation:

(9.3)

CM
dV t

dt
I t( ) = ( )

ƒ =
+

I
CMV t Ith ref

CM
dV t

dt
V t
RM

I t( ) = − ( ) + ( )
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In this leaky integrate-and-fire model voltage will decay back to rest with a time
constant RM·CM if no input is present. As demonstrated in Figure 9.1 leaky inte-
grate-and-fire models show a current threshold: below this value (Ith = Vth /RM) no
spiking occurs. Above the threshold the mean firing frequency is now given by:

(9.4)

Additional refinements to integrate-and-fire models have been proposed, for
example an adapting conductance which mimics the effect of potassium currents on
spike adaptation.7 An excellent recent review of these models and their properties
can be found in Reference 8.

9.2.2 CONDUCTANCE BASED MODELS

Though one can extend integrate-and-fire models to mimic complex firing patterns,
it is not obvious how to relate the necessary parameters to the voltage-clamp data
which are often available. Conductance based models are more closely based on the
biophysical properties of neurons. In a conductance based model, the change in

FIGURE 9.1 Relation between synaptic current I and firing rate ƒ in three different integrate-
and-fire models. In a basic integrate-and-fire model without refractory period, ƒ is given by
I/CM Vth (dotted line). Adding a refractory period tref results in a f-I curve that saturates at
fmax = 1/tref (broken line). In a leaky integrate-and-fire model (solid line), I has to exceed a
threshold current Ith in order to trigger spikes. The following parameters were used: CM =
0.1 nF, Vth = 20 mV, tref = 5 ms and RM = 80 MΩ (resulting in fmax = 500 Hz and Ith = 0.25 nA).
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membrane voltage V(t) is determined by the sum of n ionic currents and an externally
applied current I(t):

(9.5)

Each Ohmic current is computed as the product of a conductance gi which may
be variable (voltage or ligand gated) or not (the leak) and a driving force (V(t) – Ei).

An electrical circuit representation of such a model can be found in Figure 9.2.
Membrane conductances can be divided into three groups: the leakage conductance
gleak, voltage-dependent conductances and ligand-activated ones which are usually
synaptic. Voltage-dependent conductances are often represented using the
Hodgkin–Huxley formalism (see Section 5.2) as gvd (V,t) = –gvd mphq where –gvd is the
maximum conductance, given by the density of the channels in the membrane multi-
plied by the single channel conductance, and m and h are the activation and inactivation
variables. In the case of ligand-gated channels, gsyn is usually computed using an alpha
or double exponential equation (see Section 10.2). The reversal potential Ei is often
assumed to be constant and given by the Nernst equation (Chapter 5, Equation
5.2). Sometimes it is necessary to simulate the effect of changes in ionic concen-
tration on the current, which often implies using Goldman–Hodgkin–Katz equa-
tions (see Section 9.4.5). Notice that only one V(t) is computed thus it is assumed
that this model is isopotential (no voltage gradients exist).

The classic example is still the Hodgkin–Huxley model (see Reference 9 and
Section 5.2.1) where n = 3 (fast sodium current, delayed rectifier and leak). Another

FIGURE 9.2 Circuit diagram of an isopotential compartment in a conductance based model.
The total current across the membrane is given by the sum of five different types of current:
a capacitive current, a leakage current, synaptic and voltage dependent channel currents, and
an injection current.

CM
dV t

dt
g t V t E I ti

i

n

i
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simple model often used are the Morris–Lecar equations (see Chapter 10, Box 10.3).
The properties of the Hodgkin–Huxley model have been extensively studied
(reviewed in References 10 and 11). Unfortunately it has also been abused in the
modeling literature. One should remember that this is a model of an axon, not of a
neuron. Therefore it is not realistic to plug the Hodgkin–Huxley equations into a
neuron model and call this a “realistic first approximation.” Many vexing problems
exist with the original Hodgkin–Huxley equations which limit their usefulness for
biophysically realistic neuron models. For example, they have a minimum firing rate
under conditions of constant current input;12 the model cannot fire at less than 50
Hz using standard parameters. While one can “linearize” the Hodgkin–Huxley model
(i.e., make the initial part of the ƒ(I) curve linear with an origin at zero) by adding
noise,12 it is more realistic to use equations derived for the particular neuron that is
being modeled. The first such set of equations was derived for a gastropod neuron.
To model this neuron’s firing pattern three sets of equations (fast sodium current,
delayed rectifier and A current) were needed,13 giving rise to a linear ƒ(I) curve for
small current amplitudes. Finally, the Hodgkin–Huxley model works only at low
temperatures. If one corrects the rate constants for body temperature (compared to
the 6°C temperature at which the measurements were made; see Chapter 5,
Equation 5.41) no action potential generation is possible.

The art of making good conductance based point neuron models is described in
detail in the next chapter.

9.3 MODELS WITH A REDUCED MORPHOLOGY

Point neuron models assume that all currents flow across a single patch of membrane.
This seriously limits the number of phenomena they can reproduce. In particular
point models cannot simulate dendritic spike initiation or dendritic synaptic integra-
tion which both depend on the existence of voltage gradients within the neuron. It
may not be necessary, however, to simulate the complete morphology of the neuron.
Modeling a reduced morphology greatly diminishes the number of model parameters
which need to be defined and increases computation speed. But choosing the best
approach requires trade offs.

9.3.1 LIMITATIONS OF REDUCED MORPHOLOGIES FOR ACTIVE MODELS

A set of simple rules can be used to reduce some passive dendritic trees to an
equivalent cable.1,2 This is generally not possible for active dendrites. The basic
problem is that the local impedance in the “reduced” dendrite is different from that
in the branches of the original one. Take for example the once popular ball and stick
model where the soma is approximated by a membrane patch (equivalent to a
spherical compartment of the correct size; using Equation 9.5) which is attached to
a single equivalent cylinder representing the dendrite (Figure 9.3A). The somatic
and dendritic compartment are each isopotential and connected to each other via the
dendritic axial conductance (see below, Equation 9.8). In such a model the load that
the dendrite imposes upon the soma is represented accurately giving a correct
approximation of the somatic input impedance. But this is not the case in the dendrite.
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The cylindrical dendritic compartment now has quite a large membrane surface and
thus a low impedance, while small branches of the complete dendrite have a very
high impedance.

Consequently, when ionic channels are added to such a ball and stick model
their density (expressed as –gi) can be close to the real density in the soma, but in
the equivalent dendrite much lower densities have to be used to obtain realistic
voltage transients. This is not simply a scaling problem. If the interaction between
many channels is required to replicate, for example, dendritic spike generation all
the –gi values will need to be tuned together specifically for this reduced model (see
below). This also includes synaptic conductances –(gsyn) which, if the model is to be
used in a network simulation, have additional restrictions because of network scaling
requirements (Section 11.3.4). While the final model may replicate the firing behav-
ior of the neuron, it will be restricted in its use. For example, it cannot be expected
to generate realistic voltage clamp responses because the –gi parameters do not have
the true values. Nor can these models replicate the full range of rise times for somatic
postsynaptic potentials as all synaptic input is received at the same electrotonic
distance from the soma (see Reference 14 for an analytical method to compute this
in passive dendritic trees).

One solution to these problems would be to use an intermediate class of models,
not representing the full morphological complexity but with still more than two
compartments. While a number of recipes on how to do this have been proposed,15,16

all suffer from the local impedance problems described above. An advantage of
using more than one compartment to represent the dendrite is that this allows for a
better spatial separation of synaptic inputs and thus enhances the realism of a model

FIGURE 9.3 Schematic representation of ball and stick model (A) and Pinsky and Rinzel
model (B). The ball and stick model is a morphological approximation. The Pinsky and Rinzel
model is a phenomenological rather than a morphological model.
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that receives layered inputs (e.g., on the apical dendrite in a pyramidal neuron, see
Section 11.4 and References 17 and 18 for examples).

9.3.2 PHENOMENOLOGICAL REDUCED MODELS

The previous section may have seemed an advisory not to use reduced models. In
fact, we believe that these can be quite useful provided one realizes their intrinsic
limitations. Therefore it is better to think of them as phenomenological models
instead of as models with a reduced morphology.

A nice example can be found in the work of Pinsky and Rinzel19 who could
approximate the full firing behavior of an active membrane 19-compartment cable
model of a CA3 pyramidal neuron18 with just two active compartments and a
coupling conductance (Figure 9.3B). This was achieved through a separation of
voltage-gated channels over two regions: a somatic region with currents supporting
a classic action potential and a dendritic one with calcium and calcium-activated
currents able to generate a dendritic spike. The interaction between these two com-
partments allows the model to generate burst firing which is not possible in the
isolated compartments because coupling current has to flow back and forth. A
somatic action potential triggers the dendritic spike, current flowing back from the
dendrite then triggers the second action potential, etc. This scheme will not work in
a single compartment expressing all the voltage-gated channels, because a somatic
after-hyperpolarization is required to remove the inactivation of the sodium channel
at the same time that the dendritic spike is depolarizing the dendrite (see
Reference 19 for a more detailed analysis).

The behavior of the model is governed by two equations describing the change
of somatic and dendritic voltage Vs and Vd:

(9.6)

(9.7)

The two compartments are connected to each other by a coupling conductance gc.
All currents are scaled according to the relative contribution of somatic and dendritic
compartment (p and 1 – p; the scaling for the voltage dependent currents is factored
in gi).

In itself this model may not seem very different from the ball and stick model
of Figure 9.2A, but conceptually it is because it does not try mimic morphology. The
second compartment exists only to generate more complex firing behavior than
possible in a single compartment model. The spatial components of the model are
embedded in the parameters p and gc which have no direct relation with the actual
size or shape of the neuron. In fact, Pinsky and Rinzel point out that a morphologically
realistic value for gc is too weak to produce bursting behavior. A typical value for p
is 0.5 which indicates that the somatic compartment represents more than the soma
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alone. Besides the compactness of the model it also has the advantage that its behavior
can be related to simple parameters. Depending on the value of gc different bursting
and firing patterns can be observed.19

9.4 COMPARTMENTAL MODELS WITH ACTIVE MEMBRANE

Ideally all models used to study the integration of synaptic input and its effect on
neuronal firing should represent both the complete dendritic morphology and all
voltage and ligand gated channels. This is best done with compartmental models
(Section 8.2, References 1, 2, and 20) because of their great flexibility in specifying
morphologies (Chapter 6) and channel equations (Chapter 5). These models can then
be used to investigate the mechanisms by which synaptic currents and voltage-gated
channels interact, and how morphology influences these processes. Many examples
can be found where these models were used to quantitatively confirm a conceptual
hypothesis.4,21,22 But one can also use them to perform experiments “in computo,”23

where the model is used as an easily accessible preparation whose complex prop-
erties are investigated. An example of the benefits of such an approach is given in
Box 9.1. Whatever the use of the model, a big advantage is that all the variables can
be directly related to experimentally measurable quantities which allows for easy
interaction between simulation and experiment (see also Section 10.4).

Unfortunately the wider use of large active membrane compartmental models is
hampered by the difficulty in constraining their parameters (Sections 9.4.6 and 9.4.7)
and by the heavy computational load they impose. The latter is becoming less of a
problem because popular simulation packages (like GENESIS and NEURON, see
Chapter 10, Box 10.2) are optimized for these computations and because fast com-
puters are not expensive anymore. As a consequence simulations of the Purkinje cell
model described in Box 9.1 which took over an hour to compute a decade ago now
take a minute. However, the time needed to construct such a model has diminished
much less as it still requires a lot of hand tuning. The automatic parameter search
routines described in Section 1.5 have not yet proved their use for such large models.

9.4.1 BASIC EQUATIONS AND PARAMETERS

A compartmental model is a spatial discretization of the cable equation (Section 8.2).
The dendritic structure is subdivided into many compartments so that both its
morphology is faithfully replicated and that each compartment is small enough to
be considered isopotential (see below). The change of voltage in each compartment
is described by an ODE that is derived from Equation 9.5 by adding the current
flow between connected compartments:

(9.8)

Note the addition of the j subscript to all terms denoting that this equation refers
to one compartment of many, with parameters specific to each (e.g., CMj), and that
this compartment is connected to m other compartments k with a connecting cyto-
plasmic resistance RIj,k .
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Box 9.1 Predictions Made by a Purkinje Cell Model

We will briefly describe results obtained with our Purkinje cell model
to demonstrate the power of the in computo experimental approach. The
model is a fully active compartmental model of a cerebellar Purkinje

cell53 based on morphological data provided by Rapp et al.30 The basic model
contains 1600 electrically distinct compartments37 to which a variable number
of spine compartments can be added. Ten different types of voltage-gated chan-
nels are modeled, resulting in a total number of 8021 channels in all compart-
ments. Channel kinetics are simulated using Hodgkin–Huxley-like equations
based on Purkinje cell specific voltage clamp data or, when necessary, on data
from other vertebrate neurons. The soma contains fast and persistent Na+ chan-
nels, low threshold (T-type) Ca2+ channels, a delayed rectifier, an A-current, non-
inactivating K+ channels and an anomalous rectifier. The dendritic membrane
includes P-type and T-type Ca2+ channels, two different Ca2+-activated K+ chan-
nels and a non-inactivating K+ channel. The P-type Ca2+ channel is a high-
threshold, very slowly inactivating channel, first described in the Purkinje cell.
Ca2+ concentrations are computed in a thin submembrane shell using fast expo-
nential decay. See Section 9.4.8 and Reference 37 for a description on how the
model was tuned to reproduce the in vitro firing behavior (Figure
B9.1A).

In the simulations presented here we reproduce the typical in vivo firing pattern
of Purkinje cells (Figure B9.1B) by applying combined random activation of exci-
tatory and inhibitory contacts, mimicking the background activity of parallel fiber
and stellate cell synapses respectively. Under these conditions the model shows a
normal and robust irregular firing behavior over a wide range of firing frequencies
which can be evoked by many different combinations of the background input
frequencies.32 The background inhibition is essential for the generation of in vivo
Purkinje cell firing patterns in the model, and the temporal average of the total
inhibitory current (i.e., the sum of all individual synaptic currents) must exceed that
of the total excitatory current.32,54 The inhibition suppresses spontaneous dendritic
spiking (which is not observed in vivo) and reduces the fast regular somatic spiking
caused by intrinsic plateau currents in the model.23 Note that the requirement of
net synaptic inhibition does not fit the integrate-and-fire model of neuronal spiking:
the Purkinje cell dendrite acts most of the time as a current sink, not as a current
source. Subsequent experimental studies have confirmed that background inhibition
is essential to suppress dendritic spiking55 and to obtain irregular somatic spiking.56

A study using dynamic voltage clamp protocols (Chapter 10, Box 10.1) in slice
showed that the Purkinje cell firing pattern could be changed to a typical in vivo
one only if the simulated synaptic current had an inhibitory component larger than
the excitatory one,57 again confirming a model prediction.

In another series of studies the in vivo effect of synchronous activation of a
small number of excitatory parallel fiber inputs was simulated. The first such
study  demonstrated  that  parallel  fiber  input  can  activate voltage-gated Ca2+

                                                                                                                    (continued)
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The basic properties of such a compartment in the case where it is passive have
been described in Chapter 8 (Figures 8.1 and 8.2). Equation 9.8 extends this to the
active case, represented by the first term of its right-hand side.

Box 9.1 (continued)

channels on the spiny dendrite58 (Color Figure 9.2*). This activation of Ca2+

channels has an important functional consequence: it amplifies the somatic
response to synchronous input. First, even though the Purkinje cell receives
over 150,000 parallel fiber inputs, activating about 100 of them synchronously
is enough to reliably evoke a spike (Color Figure 9.1*).59 Second, the ampli-
fication is not the same for each synchronous input of the same size. It depends
on its location on the dendritic tree: distant focal inputs get amplified more
than proximal ones, which effectively cancels the passive cable attenuation
(Section 8.2) and makes the somatic response largely independent of input
location.58 This differential amplification is caused by the differences in local
morphology of proximal and distal dendrite and by the P-type Ca2+ channel
activation threshold of about –45 mV being close to the dendritic membrane
potential in vivo. In the distal dendrite the input impedances of the small
branches favor the recruitment of additional Ca2+ channels, caused by a spread-
ing of partial Ca2+ channel activation to neighboring branches which leads to
a larger amplification. Conversely, in the proximal dendrite, the soma and
smooth dendrite act as current sinks preventing the depolarization of neigh-
boring branches, which limits the amplification to that by the Ca2+ channels
at the location of synaptic input only. Finally, the graded amplification also
depends on the excitability of the dendritic tree which varies over time due to
the background inputs.59

Is experimental confirmation for these predictions available? When the first
predictions were made58 no experimental evidence for parallel fiber activated
Ca2+ influx existed, but confocal imaging experiments confirmed this shortly
afterwards.60 However, these studies also seemed to contradict the increased
distal amplification by spreading of Ca2+ channel activation. In these experi-
ments, larger parallel fiber inputs caused more local Ca2+ influx without any
spreading of the Ca2+ signal into neighboring dendrites, contrary to what the
model predicts. This difference may be explained, however, by the relatively
hyperpolarized state of the neuron in the experimental slice conditions. As shown
in Color Figure 9.2A, the model shows identical behavior when simulated
without background input (resting membrane potential of –68 mV) while in the
presence of such input (mean membrane potential –54 mV) the Ca2+ signal does
spread with larger focal excitation (Color Figure 9.2B). Therefore final validation
of some model predictions will require experimental techniques which allow
visualization of dendritic activity under in vivo conditions.

* Color Figures 9.1 and 9.2 follow page 140. (continued)
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  Box 9.1 (continued)

FIGURE B9.1 Simulation of Purkinje cell firing pattern under two very different con-
ditions. (A) The model was tuned to reproduce the typical firing pattern in slice which is
demonstrated here for two different somatic current injection levels (sharp electrode,
duration of current injection shown by the bar). Notice the regular firing and the delayed
appearance of bursting for the 2 nA current injection. See Reference 37 for details.
(B) Simulated in vivo firing pattern due to combined random excitatory (rates indicated,
only 1% of parallel fibers simulated) and inhibitory (1 Hz) background input. Notice the
irregular firing and absence of bursting. See References 32 and 54 for more details.
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We will briefly develop the additional equations needed to compute the param-
eters for Equation 9.8. Note that in practice these computations are usually handled
by the simulation software which reads in the neuron morphology from a file
(Chapter 6, Box 6.2). As described in Section 8.2, the passive properties of a neuron
can be described by three cell specific parameters: Cm, Rm, and Ri which are defined
for units of surface area and length. Assuming that the compartment is cylindrical
with length lj and diameter dj gives the following equations:

(9.9)

 (9.10)

 (9.11)

 (9.12)

Two remarks need to be made about the above equations. First, we have defined
the leak conductance GMj in Equation 9.11 instead of its inverse, the membrane
resistance RMj. This is more convenient as the leak current now becomes one of the
currents of Equation 9.8 with a fixed gleak= GMj.

Second, one has to be careful how to compute cytoplasmic resistance. There are
two ways in which one can approach this (Figure 9.4): using asymmetric compart-
ments (GENESIS nomenclature,24 called 3-element segments in Reference 25) or
symmetric compartments (4-element segments; this is the only type available in the
NEURON simulator). The difference between these two approaches is where to
compute Vj: at the boundary of the compartment (asymmetric) or at its center
(symmetric). As Vj is assumed to be constant across the compartmental membrane
this may seem rather irrelevant, but it does determine how the cytoplasmic resistance
should be computed (Figure 9.4). For the asymmetric case this resistance is taken
across one resistor with diameter dj and length lj (Equation 9.12). For symmetric
compartments it is taken across two resistors in series with diameters dj, dk, and
lengths lj /2, lk /2 (Equation 9.12). In the case of an unbranched cable RIj,k is the sum
of the two values. In the case of branch points on a symmetric compartment
Equation 9.12 should be replaced by:

(9.13)

where the summation is over all q compartments at the same side as compartment k.
Using symmetric compartments gives a more accurate spatial discretization but
results in a more complex solution matrix.
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Equation 9.8 is repeated for each compartment leading to a system of coupled
ODEs (Section 1.2). In general, this is a stiff system for which implicit solution
routines like the Crank–Nicholson method are preferred. Ordering the compartments
in a specific way — introduced by Hines,26 and performed automatically by most
simulation packages — reduces the number of off-diagonal elements and decreases
the complexity of the solution matrix.27 An extensive analysis of the Crank–Nicholson

FIGURE 9.4 Circuit diagram of a symmetric (A) and an asymmetric (B) compartment in
an unbranched section of a multi-compartmental conductance based model. In the symmetric
compartment, the cytoplasmic resistance between two compartments RIj,k is given by the sum
of half of the individual resistances RIj and RIk. In the asymmetric compartment, the com-
partmental voltage Vj is measured at the compartment boundary and RIj,k equals RIj.
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solution method, its boundary conditions and its accuracy can be found in Reference
28.

To solve Equation 9.8 the conductances gi,j (and, if variable, the reversal poten-
tials Ei,j) must also be computed. Computing gi,j introduces additional sets of ODEs
with voltage-dependent rate factors (Equation 5.7 in Chapter 5). As Vj appears in
the equations describing the rate factors (see Table 5.1) this could make integration
cumbersome and require iterative solutions of both sets of ODEs for each time step
until Vj converges. Because the rate constants determining the voltage dependence
of ionic channels are usually several order of magnitudes larger than ∆t, one can
assume for their calculation that Vj is constant over one integration step. This makes
it possible to solve the two sets of ODEs in parallel, a solution approach implemented
in GENESIS and NEURON (see References 28 and 29 for more detail).

9.4.2 ADDING SPINES

A large part of the membrane surface of most neurons consists of spines, over 50%
in the case of Purkinje cells.30 It is not possible to measure these faithfully using
light microscopy (Chapter 6) and omitting them will lead to large errors in the fitted
cable parameters (Section 8.7), typically leading to unphysiologically large values
for Cm .

Spines can be included in two ways: explicitly by adding them as separate
compartments or implicitly by collapsing their membrane into that of the
compartment they are attached to. Modeling all spines explicitly is not

practical as this can easily increase the number of compartments by an order of
magnitude or more. Nevertheless it is better to explicitly model spines at the sites
of excitatory synaptic contact in the model because the input impedance at a spine
is much higher then at the dendritic shaft (Figure 9.5). Many spines have voltage-
gated channels but these must be included in the model only if the Ca2+ concentration
in the spine is of interest (Section 9.4.5) or if the density or properties of the channels
are different from those on the dendritic shaft. Otherwise the activation of the
channels on the dendritic shaft will result in almost identical results as those in a
model with active spines (Figure 9.5). If the only goal is to approximate the voltage
transfer function it is sufficient to use two electrical compartments for the spine: a
spine head coupled to a much thinner spine neck.

The spines which are not represented as separate compartments should be col-
lapsed into the membrane surface of the compartments. For cylindrical compartments
Equation 9.9 is replaced by:

(9.14)

where Ssp is the mean surface area of the spines (which should match that of the
explicitly modeled spines), fsp is the spine density and Nsp the number of explicitly
modeled spines. Equation 9.14 is implemented by specific commands in GENESIS
morphology files (*add_spines, *fixed_spines). The spine density is best expressed
in spines/µm2 as this takes into account that small diameter branches have less spines.31

j j j sp sp j spS d l S S N′ = + ƒ −( )π
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The spine collapsing procedure only affects CMj and RMj (Equations 9.10–9.11), not
RIj,k (Equations 9.12–9.13), as it is assumed that spines do not participate in the axial
current flow inside the compartment.

9.4.3 THE NUMBER OF SYNAPTIC CONTACTS

How many spines should be modeled explicitly? A better question is to ask how
many synaptic contacts should be modeled. One is usually forced to simulate only
a fraction of the inputs because modeling all of them (~10,000 excitatory contacts
for pyramidal cells, ~200,000 for cerebellar Purkinje cells) is not practical. Even if
computer memory and speed allow for it (which is now the case even for inexpensive
computers) it does not make much sense to model all synapses. First, the number
of compartments modeled is usually much smaller so that 10–100 synaptic contacts
will have the same isopotential postsynaptic target. Second, how should the activation
of so many synapses be computed? If the model is embedded in a network simulation,
the other neurons will control synaptic activation, but in general, network models

FIGURE 9.5 Voltage traces in the Purkinje cell soma, a spine and the attached dendritic
shaft for activation of a synaptic input at different locations. There is a notable difference
between the activation of spines and the activation of dendritic shafts in the model, but only
a very small effect of Ca2+ channels on the spine head (inset). The dendritic branch receives
many random synaptic inputs (mimicking the in vivo situation, see Section 9.4.3) resulting
in a very noisy trace, in contrast to the somatic trace which is much less noisy because of
dendritic filtering; sosp, somatic voltage during activation of a spine; spsp, voltage in the
activated spine; dsp, dendritic voltage for activation of the attached spine; dd, dendritic voltage
for direct activation of the dendritic shaft; dasp, dendritic voltage for the activation of an
active spine with CaP channels; d-, dendritic voltage without activation of either the shaft or
an attached spine. Synaptic input was on the spine or the dendritic shaft –(gsyn = 2 nS, time
indicated by arrow). The active spine had a CaP channel on its head with the same –g as on
the dendrite. Rest of the model as in Reference 32.

1 mV

1 ms

dd

dsp

dsp

dasp

dd0.1 mV

0.1 ms

sosp

spsp

d-

© 2001 by CRC Press LLC



do not represent the full density of cells so that the number of contacts will be small
(see Section 11.3.4). If a single cell model is simulated, one is usually forced to use
random activation of most of the synaptic contacts. For conditions of little synaptic
saturation due to temporal summation (small –gsyn and low activation rates ƒsyn) the
total synaptic drive A onto the cell can be approximated by:

(9.15)

This relation suggests that one can compensate changes in the number of
synapses simulated (Nsyn) by inversely scaling –gsyn or ƒsyn. For the Purkinje
cell model described in Box 9.1 it has been shown that, using this procedure,

interspike interval distributions remain constant over a range of Nsyn values.32 There-
fore, assuming low –gsyn and low ƒsyn, Equation 9.15 can be used to change the number
of synaptic contacts as desired or to estimate how the synaptic activation rates in
the model compare to physiological ones. Note that Equation 9.15 holds only for
asynchronous activation of synapses: the Nsyn synapses should be activated indepen-
dently from each other. A rule of thumb is that it is not useful to model more than
one synaptic contact of a particular receptor type on each compartment. To simplify
the model and increase computation speed most simulators allow multiple connec-
tions to a single postsynaptic target. All these connections have the same –gsyn but
they can have independent weights and be activated independently in the context of
a network simulation. Computing multiple activations requires convolution of the
synaptic conductance over time.17,33

9.4.4 WHAT ABOUT THE AXON?

Until recently most single cell models did not include a representation of the axon.
Nowadays it is customary to include at least the axon hillock. There are several
reasons for doing so. As slice experiments have demonstrated that action potentials
tend to originate in the axon hillock or even further down in the axon34 it is better
to include the first axonal segments in the model. Usually only the unmyelinated
first part is included, but, using the proper low capacitance values for myelin and
high Na+ channel densities and low Rm for the nodes of Ranvier,35 it is possible to
include longer segments.

Including the axon hillock is especially important if one wants to model back
propagating action potentials,22 though it is not trivial to make such models fit
measured values for Na+ channel densities.36 If one does not simulate an axon hillock
spikes are initiated in the soma of the model. Because of the low impedance of the
soma this requires unphysiologically large densities of somatic Na+ channels (e.g.,
Reference 37).

Another reason to include the axon may be that unmyelinated axons impose a
large capacitative load on the neuron which must be included in the model if its Cm

is to be correct. An equivalent cable approach1,2 can be used to model the axon
beyond the spike initiation zone. However, in some cases it may be of interest to
model the morphology of the axon in some detail. For example invertebrate axons
often have multiple spike initiation sites (Section 10.4). Very few detailed axon

A N gsyn syn syn≈ ƒ
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models exist as it is often assumed that spike conduction can be simply represented
as delays (Section 11.3.2). Existing axonal models demonstrate how the morpho-
logical complexity of axons can influence their filtering properties38 and determine
the distribution of time delays.39

9.4.5 MODELING IONIC CONCENTRATIONS

The activation or inactivation of many channels depends on ionic concentrations,
for example calcium for the ubiquitous Ca2+-activated K+ channels. Moreover, in
some cases the flux through channels may change the local ionic concentration
significantly so that Ei is not constant (Equation 9.8). As a consequence, models of
changes in ionic concentration may have to be included. General approaches are
covered extensively in Chapter 3. Here we will consider the choice of models only
and focus on simulating the intracellular calcium concentration.

Until recently little experimental data were available on calcium concentrations
inside neurons. Therefore these were often modeled using an “exponentially decay-
ing pool.” This corresponds to the excessive buffer approximation of Section 3.2.1.2
and requires only two parameters: an effective volume v to scale the Ca2+ influx J
(Chapter 3, Equation 3.6) and a decay time constant τ (Section 3, Equation 3.11).
This purely phenomenological approach is used in most compartmental models
because it is often adequate to replicate the behavior of Ca2+-dependent channels
(see also Box 9.1). If several kinds of Ca2+-dependent processes co-exist it may not
be possible to tune the model with a single type of calcium pool, in this case one
can opt to model multiple pools with different decay time constants.40

The exponentially decaying pool can not be expected to give realistic values for
the intracellular calcium concentration, or at its best only for the concentration in a
thin submembrane shell where it can not be measured accurately in most experi-
ments. In order to compare the simulated concentrations to experimental data, to
study the interaction with intracellular release processes or to compute the effect of
buffering, a full model of buffered calcium diffusion has to be implemented. The
techniques for doing so are described in Section 3.3.1.

The dimensionality of the calcium model is determined by that of the gradients
simulated. The distances over which Ca2+ gradients can exist are much smaller than
for voltage gradients.41 As a consequence, if the sources of calcium influx are
distributed smoothly along the length of the simulated dendrite, it is usually sufficient
to model a one-dimensional gradient from the membrane to the core of the com-
partment using concentric shells with a thickness of 0.1–0.2 µm. The assumption
of a one-dimensional gradient will not be correct if calcium influx occurs at “hot
spots” which create additional gradients along the length of dendrite. A practical
guide to both one and two-dimensional modeling of calcium concentrations in
neuronal models can be found in Reference 42.

Calcium concentrations have also been modeled in spines, assuming that a
correct approximation can be obtained by one-dimensional diffusion along the length
axis of the spine.43,44 While such models have provided insights into the relation
between calcium influx and LTP induction one should realize that they are very
crude approximations of reality. As for transmitter diffusion (Chapter 4), stochastic

© 2001 by CRC Press LLC



models of three-dimensional calcium diffusion45 may be needed to simulate these
processes correctly, given that a spine contains an average of only one or two Ca2+

ions at rest.
Besides controlling Ca2+-dependent processes, calcium concentrations should

also be used for the computation of calcium currents. Because of the rectifying effect
of the large Ca2+ gradient across the cell membrane calcium currents can not be
considered Ohmic35 and should therefore not be modeled as the product of a voltage-
dependent g and a driving force (V - E) (Equation 9.8). The best way to model
calcium currents is to use the Goldman–Hogkin–Katz equation (GHK, Chapter 5,
Equation 9.38 and Reference 42). The Nernst equation (Chapter 5, Equation 5.2)
does not give a correct approximation for calcium currents because it still assumes
a linear current, but it can be used to model changes in external potassium
concentrations46 as the transmembrane K+ gradient is much smaller. To have the
current through the Ca2+ channels reverse at the correct voltage (about 50 mV) the
small outward K+ current through these channels35 needs to be modeled with a second
GHK equation. The use of GHK equations to compute the voltage-dependent frac-
tional Ca2+ current through NMDA channels is described in Chapter 11, Box 11.2.

9.4.6 HOW TO START CONSTRUCTING THE MODEL

Good active membrane compartmental models constitute a synthesis of data about
a particular neuron type. This implies that the first step in constructing such a model
is to become completely familiar with all available data. Traditionally this involves
searching the literature, but it is hoped that neuroinformatics databases as a source
of original data will aid modelers in the future. Soon it may no longer be necessary
to measure data points with a ruler on a small published graph.

Ideally one would want to use only data obtained from the specific neuron type
in one animal species. For active membrane models it is not possible to obtain all
the data in a single recording, as can be done for passive membrane models (Chapter
8). At least one should obtain a good morphological reconstruction (Chapter 6) and
basic passive cable parameters for this particular morphology (Chapter 8) and as
many current clamp and voltage clamp (Chapter 5) data as possible. But after all
this is done it seems to be inevitable that, even in the case of extensively studied
preparations, some of the necessary data are missing. Therefore model building can
already be useful before the model is finished as it may guide future experimental
research (see Section 10.4). However, often it is not feasible to wait for the missing
data or the data may be technically difficult to acquire. Examples of the latter are
the equations for the fast Na+ current, which is difficult to voltage clamp accurately
because of its fast kinetics and large amplitude, and spine densities and sizes which
can only be obtained using electron microscopy. In such instances one is forced to
improvise, which usually involves using data from different animal species or from
other neuron types. For example many modelers have implemented Na+ channel
equations derived from the original Hodgkin–Huxley equations (for example Ref-
erences 18, 37, 46, and 47). However, as pointed out before (Section 9.2.2), these
equations describe a squid axon so it would seem more logical to use data from
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mammalian neurons.48,49 As a rule of thumb one should try to complement missing
data with data obtained in the most closely related system.

At this stage of model construction familiarity with the experimental literature
is particularly important. It may be that somebody voltage clamped the channel you
need but only studied activation, not inactivation. Data from different sources will
need to be combined and it may not be trivial to select the particular data set which
will be used for the inactivation data. If the choice is not clear it may be worthwhile
to implement and compare different solutions or to consider the inactivation kinetics
a free parameter. If possible one should get a first hand experience of the in vitro or
in vivo firing pattern of the neuron (record yourself or assist during a recording)
because published traces sometimes overemphasize particular aspects of the neuron’s
normal behavior.

If good experimental data are available one may be faced with the opposite
problem: which data set to select for parameterization? It would seem logical to fit
to the mean values and curves, but in practice this does not always work. For example,
in some models channel kinetics equations based on a particular experiment gave
better results than those based on the mean over all experiments, presumably because
the voltage-dependences of activation and inactivation were related in a way that
was lost in the averaging.37

A related issue is how much of the data to include in the model. Typical active
membrane models incorporate five to ten different ionic channel types18,21,37,40,46 while
recent advances in molecular technology suggest that to include all expression
variants and different states of regulation the number should be at least one order
of magnitude higher. More quantitative studies of the effects of incorporating mul-
tiple variants of the same channel type are needed, but at present this does not seem
necessary unless it is the specific focus of the modeling study (e.g., neuroendocrine
modulation of firing patterns). With about ten different channels active membrane
models are already very complex systems which are sometimes difficult to tune and
little is to be expected from adding an extra channel equation which differs only
slightly in its kinetics. The channels which are implemented in the model should be
seen as representative members of a larger family.

As already mentioned, it is generally not possible to get all data from the
experimental literature. The remaining data become the free parameters of the model;
usually these include the densities –(gi) of the channels and the time constants of the
calcium pool(s). Patch clamp experiments can provide –gi values for the soma and
thicker parts of dendrites. In practice, for reasons not completely understood, these
values often need to be modified to make the model reproduce physiological behav-
ior.4,36 Converting patch clamp data into –gi also requires estimating the size of the
patch which introduces a source of error. Nevertheless patch clamp measurements
are useful to constrain the range of acceptable –gi values. Voltage clamp experiments
can give an estimate of the maximum total conductance of a particular channel type
(summated over all compartments; see also Reference 5 for an interesting experi-
mental approach), but it is important to be aware that space clamp problems and
side effects of pharmacological blocks may influence these measurements. The
passive cable parameters are often found separately (Chapter 8) but as it may not
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be possible to constrain them completely some of them can also be free parameters
(within a range) during the tuning of the active membrane model.

9.4.7 PARAMETERIZING THE MODEL

Compartmental modeling may seem plug-and-play. Once you have collected your
morphology, cable parameters and channel kinetics you plug them into your favorite
simulator and the model is ready. In practice things are not so simple. The data
obtained are often not in a form suitable for modeling. They first need to be converted
into equations and as these usually take standard forms this means finding the correct
parameters. Many of these issues have been covered in preceding chapters. In this
section we will give some practical advice on parameterization and in the next one
we will consider methods to test the model’s accuracy.

An important issue in parameterization is standardization. Everything should be
in the same units (unless the simulator software converts it for you) and obtained
under the same conditions. Many experimental data are obtained at room tempera-
ture. Will this also be the temperature for the model or should it operate at body
temperature? In the latter case the channel kinetics need to be scaled (Section 5.4.2)
accordingly. Were the channel kinetics obtained at physiological concentrations? If
not, it may be possible to estimate the concentration effects on voltage-depen-
dency.35,50 Was the shrinkage identical for the stained neuron and the preparation
which was used to measure spine densities? Were they both corrected for shrinkage
(Section 6.4.3)? The list of possible errors or omissions is long and if one is not
familiar with the experimental techniques used it may be useful to ask assistance
from an experienced colleague.

At the level of the model itself it is important to decide in advance which spatial
and temporal scales need to be represented accurately. The differential equations
used in these models are not very suitable to simulate events which occur in the
µsec range or on a sub-µm scale (see Chapter 4) so it does not make much sense
to try to reach parameter accuracy at this level. Conversely, very long time constants
(in the sec range) may be omitted from the model if other processes on this time
scale (e.g., second messenger regulation of channels) are not simulated.

To obtain accurate results the equations need to be discretized correctly (Section
1.3.3). The rule is to use the largest possible values of ∆x and ∆t for which a decrease
does not change the model behavior, because this increases computation efficiency.
Compartment size (∆x) is determined by two factors: the morphology and a maxi-
mum electrical size (they are assumed to be isopotential). One tries to represent all
the branch points in a morphology accurately, but it may not be necessary to keep
all small differences in diameter considering inaccuracies in the measurements
(Chapter 6, Table 6.1). If one combines multiple measurements along an unbranched
segment into a single compartment care should be taken to use the same total
membrane surface (Equation 9.9) and RI (Equation 9.12) as for the corresponding
number of smaller compartments. A rule of thumb for passive compartments is to
take a maximum electrical size of 0.1 λ (Section 8.5, Reference 20), but it is not
entirely clear what should be taken for active ones as the voltage-gated channels
make λ variable over time.37 A possibility is to start discretizing at 0.05 λpassive and
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to check if the model behavior changes if smaller ∆x are used. NEURON handles
spatial discretization automatically, but GENESIS is less flexible in this respect.
Similarly, models are usually run with time steps ∆t in the order of ten µsec (if
calcium diffusion processes are included they need to be in the one µsec range), but
the effect of using smaller time steps should be checked. Note that it is necessary
to check for accurate use of ∆x and ∆t repeatedly while the model parameters are
being tuned.

Finally, not every parameter needs to be resolved at the compartmental scale.
For example, in a large model it is not practical to tune all conductances –gij for each
individual compartment. Instead the model can be subdivided into functionally
defined zones where the –gi values are equal,37 reducing the number of different
parameters by more than an order of magnitude.

9.4.8 HOW TO TEST THE MODEL

Ideally the accuracy of the model should be checked with two separate sets of tests.
The first set will be used to tune the parameters during the development of the model,
the second to evaluate the faithfulness of the resulting model.

It is important to clearly define which behaviors the model is required to repro-
duce. If one wants to use automatic parameter search methods (Section 1.5) these
requirements have to be formalized by a fitness function (Section 1.4) which may
be the weighted sum of many separate fitness scores.51 Designing a good fitness
function can be very difficult and may need a lot of hand tuning. It is important not
to overfit the model either. As it will be based on data from many different sources
it is of little value to tune it until it reproduces one particular spike train with perfect
precision. An alternative are statistical approaches like the density trajectory-based
fitness function of Section 1.4. In general one should not expect active models to
attain the same degree of accuracy as passive membrane models (Chapter 8). They
should represent a class of neurons, not reproduce one particular experiment.

The most commonly used method is to manually tune the model and visually
evaluate the simulation traces. For complex models with many free parameters this
may be the only practical solution as automatic search methods have not yet been
shown to work for models with thousands of compartments. An advantage of manual
tuning is that the modeler develops a feeling for the model properties and its
parameter sensitivities at the same time. A hybrid approach may also be useful, first
finding a proper range of parameter values manually and then fine tuning them
automatically.

As described in Section 10.4.3 one should perform a parameter range study at
the end of the tuning process, whether it was done automatically or not. Such a
study can not validate a model but by giving insights into the importance of the
different parameters it may indicate potential problems. For example, the size of the
leak conductance should not be a critical parameter, if it is the model that is probably
lacking one or more K+ channels. This procedure will also provide insight into the
uniqueness of the model. In particular, if two disjoint regions of parameter space
both give good results one should try to understand if this is realistic. In the best
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case this might indicate that further experiments are needed to better constrain the
model, in the worst case it may point to a fundamental flaw.

In the older literature it was considered important for the model behavior to be
robust against large changes in parameter values. This is not a realistic requirement
for active membrane models as it may be important for a neuron to keep its opera-
tional range close to a bifurcation point (like a switch from regular firing to bursting)
which can only be achieved in a tight parameter range. In biological neurons many
intracellular processes exist to continually adapt channels properties and densities
and these may be employed by nature to keep some parameters in a small range.52

The best way to validate the final model is to test if it can reproduce behaviors
for which it was not tuned. For example, the Purkinje cell model (Box 9.1,
References 32 and 37) was tuned to reproduce the responses to intracellular

current injection in vitro. Subsequently it was demonstrated that the same model
could also reproduce responses to synaptic activation of four different kinds of inputs
obtained either in vitro or in vivo. Although the latter required the tuning of a few
additional free parameters (the –gsyn) it indicated that the basic active membrane
model remained faithful under different circumstances. For example, the model was
able to reproduce the complex spike in response to climbing fiber excitatory input
which involves widespread activation of voltage-gated channels in dendrite and
soma. We think that this approach is employed too rarely. While the exact procedure
will depend on the preparation, it should always be possible to divide the experi-
mental data into a set that is used for the tuning and a set for subsequent testing.
The disadvantage may seem that the model is less accurately tuned but a careful
check of the model’s faithfulness is an essential prerequisite for it to produce reliable
insights into the functioning of the neuron that is being simulated.
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10.1 INTRODUCTION

Small networks of neurons, particularly those from invertebrate preparations where
it is possible to work with identified neurons, are attractive objects for modeling
using conductance-based or “realistic” neuron models. Often there is the possibility
of using voltage clamp techniques to characterize the membrane currents of the
component neurons and their synaptic interactions, so that sensible conductance-
based model neurons can be constructed. Moreover, for small networks it is often
possible to quantify precisely the network behavior that one wishes to simulate in
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the network model so that a benchmark for model performance can be established.
The aim of this chapter is to provide some tools useful in modeling synaptic
interactions in small network models and to lay out a strategy for using these tools
in constructing network models. Particular attention is given to the processes of
parameterization and model testing. There is above all an emphasis on the interactive
nature of realistic modeling with the model being developed from experimental
observations and in turn generating predictions that are experimentally testable. The
chapter also presents an example from our own work that we hope illustrates this
strategy. The chapter ends with a discussion of how abstract models can inspire,
supplement, and illuminate the more realistic models developed with the tools and
strategy presented here.

10.2 PHENOMENOLOGICAL MODELING OF 
SYNAPTIC INTERACTIONS

The detailed methods for modeling synaptic interactions developed in Chapters 4
and 5 are not practical in most network models. The level of experimental detail
necessary for such models is often not available and the computational overhead is
steep. Several approaches have been used to simplify models of synaptic interactions
for use in network simulation. Since we are considering only conductance based
models here the relevant approach boils down to relating some measure of presyn-
aptic activity to fractional transmitter release, ƒsyn, activating the postsynaptic con-
ductance, –(gsyn). For the parameter, –gsyn, to have physiological meaning as the max-
imal postsynaptic conductance (ƒsyn) should be constrained to vary between 0 and
1, but this need not be the case in practice. Then postsynaptic current is calculated
in the normal way described in Chapter 5,

(10.1)

where ESyn is the reversal potential of the postsynaptic current and VPost is the
postsynaptic membrane potential. The trick of course is to pick the right measure
of presynaptic activity and to correctly specify the dynamics of ƒSyn.

10.2.1 SPIKE-MEDIATED SYNAPTIC TRANSMISSION

In networks where spiking activity dominates synaptic interactions, the appropriate
measure of presynaptic activity is the occurrence of a presynaptic spike. Spike
occurrence and thus spike timing (tspike) is easily specified by setting a voltage
threshold and an appropriate synaptic delay (tdelay) can then be implemented. (Spike
detection and synaptic delays are standard parts of software packages such as
GENESIS.) For spike mediated synaptic transmission, Equation 10.1 becomes

(10.2)

I g V ESyn Syn Syn post Syn= ƒ −( ) ,

I t V g V E t t tSyn Syn post Syn Syn
spikes

spike delay, .( ) = −( ) ƒ − +( )( )∑
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The detection of a presynaptic spike then triggers an appropriate time course
for ƒSyn(t). The dynamics of ƒSyn(t) must then be specified of course. The simplest
method is to use the so called alpha function,1

(10.3)

This function rapidly rises to its peak at tp and falls more slowly after that. It
can be used to roughly fit the time course of most spike mediated synaptic potentials,
if some estimate of the time to peak (tp) of the postsynaptic current is available.

If voltage clamp data is available on the time course of individual spike mediated
postsynaptic currents (PSCs), then it is possible to fit it with exponential functions
to derive rising and falling time constants. One can then use a dual exponential
function to specify the dynamics of the postsynaptic conductance. A common form
used e.g. by the GENESIS simulator2 is

(10.4)

Here τ1 corresponds to the falling time constant of the postsynaptic current and
τ2 corresponds to the rising time constant and this equation can be fitted directly to
PSCs and the parameter A adjusted so that ƒSyn approaches unity at the peak of the
PSC. A simpler and more intuitive form is used in our own simulations:3

(10.5)

Here τrise is explicitly the rising and τfall the falling time constant extracted by fitting
single exponential functions to the rise and fall of PSCs.

In using all these methods it must be emphasized that the relevant parameters
are to be derived from voltage clamp data, i.e., individual PSCs. The rise and fall
of postsynaptic potentials will be governed by the prevailing membrane time constant
(see Section 8.2), which for the fall of individual subthreshold PSPs is the resting
membrane time constant.

10.2.2 GRADED SYNAPTIC TRANSMISSION

In many invertebrate neuronal networks and in the vertebrate retina, the slow wave
of polarization of a neuron is effective in mediating presynaptic Ca2+ entry and
synaptic release. In fact some neurons may not spike at all or if they do, spikes may
be relatively ineffective in causing synaptic release. In such networks, presynaptic
spike activity is obviously an inadequate measure for gating release in a model
network. One commonly used strategy is to relate the postsynaptic activation variable
to presynaptic membrane potential in a graded fashion. An example of this method

ƒ ( ) = −( )
Syn

p

t t
t

t
t

e p .
/1

ƒ ( ) =
−

−( ) >− −
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e e
τ τ
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can be found in a recent model of the crab stomatogastric system,4 which we adapt
here to be consistent with the notation developed above.

(10.6a)

(10.6b)

(10.6c)

(10.6d)

where κ determines the steepness, and Vκ the midpoint of the sigmoidal relation
between presynaptic potential (Vpre) and the fractional transmitter release, ƒSyn ,
activating the maximal postsynaptic conductance, –(gSyn). τrise rise determines the rise
time of the synaptic current when the Vpre is high, and τfall determines its decay time
when Vpre is low, and λ and Vλ determine the steepness and midpoint of this sigmoidal
relation respectively. This form is indeed quite flexible and can accommodate both
graded (predominant in the Int1 to LG synapse) and spike-mediated (predominant
in the LG to Int1 synapse) synaptic transmission with suitable adjustment of the
parameters. For example, to implement rapid spike-mediated transmission κ and Vκ
are adjusted so that the relation between ƒSyn and Vpre is steep (large κ) and has a
depolarized midpoint (positive Vκ). Thus spikes, and spikes only, will reach potentials
that result in ƒSyn being greater than zero and a spike will push ƒSyn nearly to unity.
Now spikes will produce discrete PSPs which rise with τrise and fall with τfall, given
adjustments to λ and Vλ that parallel those to κ and Vκ. If κ and Vκ are adjusted so
that the relation between ƒSyn and Vpre is shallow (small κ) and has a midpoint
relatively near the presynaptic resting potential (Vκ relatively near vpre–Rest), transmis-
sion will be smoothly graded with Vpre . Making τrise suitably long will prevent much
contribution to transmission from spikes, while making τrise and τfall vanishingly
small will make transmission an instantaneous function of Vpre and allow both spikes
and subthreshold changes in membrane potential to contribute to transmission.

The great simplicity and flexibility of Equation 10.6 for modeling synaptic
transmission make them ideal for incorporation into dynamic current clamping
programs5,6 (Box 10.1).

In our own work on reciprocally inhibitory heart interneurons from the leech,
we faced a neuronal circuit in which both spike-mediated and graded synaptic
transmission were substantial.3,7–9 A simple model in which presynaptic membrane
potential was the factor that governed graded synaptic transmission like
Equations 10.6, would not have allowed us to express the complex dynamics of
this transmission. More importantly, such a model would not have allowed us to
effectively separate spike-mediated and graded transmission so that their relative

I g V ESyn Syn Syn post syn= ƒ −( )

τƒ ∞( ) = ( ) −V
df
dt

f V fpre pre Syn

f V V Vpre pre∞( ) = + −( )[ ]



1 1/ exp κ κ

τ τ τ λ λf pre rise fall preV V V( ) = + + −( )[ ]



/ exp1
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contributions under different conditions could be assessed. We had data relating low-
threshold Ca2+ currents measured in the presynaptic neuron to graded synaptic
transmission measured as postsynaptic currents, but no such data relating high-
threshold Ca2+ currents to spike-mediated release. On the other hand, we did have
data on the time course of individual spike-mediated IPSCs. We thus chose to model
spike-mediated transmission using Equations 10.2 and 10.5. To model graded trans-
mission we chose to relate presynaptic Ca2+ entry via low-threshold channels to
synaptic release. Thus the graded synaptic current is given by

(10.7a)

Box 10.1 Dynamic-Clamp and Voltage-Clamp with 
Realistic Waveforms

Dynamic-clamp is a hybrid technique in which an artificial conductance is added
to a neuron by computing in real time the current that would flow through a
given conductance and then injecting that current into the neuron in real time.5

The current is calculated using the standard current equation I = g(Vm – Erev)
and the dynamics of the conductance change can be implemented in any form
according to the type of current (e.g., voltage-gated or synaptic) simulated. For
example, to create an artificial synaptic interaction using Equations 10.6, two
neurons A and B that have no synaptic interaction are recorded with sharp
microelectrodes or with whole cell patch electrodes. An artificial synapse is then
created from cell A to cell B via a computer by assigning cell A’s membrane
potential to Vpre and cell B’s membrane potential to Vpost and assigning appro-
priate parameters to Equations 10.6. These potentials (digitized using an A to D
converter) are then used to calculate ISyn on the fly. ISyn is injected (using a D to
A converter) into cell B. These types of artificial synapses have been successfully
used to study the oscillatory properties of reciprocally inhibitory two cell
networks22 and the interaction between pattern generating networks that operate
at different periods.16

Voltage-clamp with realistic waveforms has also been used to study pattern-
generating networks.8 This technique is not really different from ordinary volt-
age-clamp methods, but the emphasis is on the choice of voltage command
waveforms that mimic physiological activity. For example in our analysis of
oscillation by reciprocally inhibitor pairs of heart interneurons, we imposed a
waveform that closely approximated the slow wave of membrane potential of
these neurons during normal activity. This waveform allowed us to assess the
amount of low-threshold Ca2+ currents that flow into a presynaptic neuron and
the resulting graded synaptic transmission during normal activity
(Figure 10.2A1). Traversing the same voltage range with a slightly altered wave-
form greatly augmented the Ca2+ currents and graded transmission
(Figure 10.2A2).

I g V ESynG SynG SynG post Syn= ƒ −( )
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(10.7b)

(10.7c)

(10.7d)

(10.7e)

(10.7f)

(Numerical constants derived from data on leech heart interneurons. All units
are SI, i.e., MKS).
C is a parameter adjusted so that ƒSyn(t) comes appropriately close to unity

during peak low-threshold Ca2+ currents. P is the internal “concentration” of Ca2+

(in Coulombs) in an unspecified volume that directly contributes to synaptic release.
Presynaptic low-threshold Ca2+ currents (ICa) govern the build-up of P. Two currents
contribute to ICa, ICaF , and ICaS, both of which are specified by Hodgkin–Huxley
equations (see Section 5.2.1). The voltage-dependent variable A is a variable thresh-
old reflecting Ca2+ entry via ICa that does not directly contribute to P, and B is a
buffering rate constant that governs the removal of P.

Figure 10.1 shows how an earlier version of this model of graded transmission7

fitted the voltage clamp records upon which it was based. As can be seen the fit is
quite accurate. This earlier version however failed under network model conditions,
yielding transients during slow changes in membrane potential that are never
observed in physiological recordings. The fault lay in the voltage dependent variable
A because it was given instantaneous dynamics. This fault was ameliorated in
Reference 3 and the model was further refined in this current version (Hill et al.,
unpublished) by additional data8 as discussed in Section 10.4.3 below. The older
version is illustrated here to emphasize that model output may be very accurate in
simulating the data upon which it is based but fail to yield meaningful results under
other conditions. The implications of using independent models for spike-mediated
and graded synaptic transmission in simulating leech heart interneurons will be
discussed. Suffice it to say at this point that the separation of these two modes of
transmission led to biological insights that would not have been possible had they
been fused into a single model of the type embodied in Equations 10.6.

10.2.3 SYNAPTIC PLASTICITY

Synaptic plasticity is easily accommodated in any of the models of synaptic transmis-
sion discussed above by introducing a plasticity variable MSyn, which is usually an

f t
P

C PSynG( ) = +

3

3

dP
dt

I BPCa= −

I I I ACa CaF CaS= − − −( )max ,0

dA
dt

A V Apre=
( ) −∞

0 2.

A V
e
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explicit function of a pre and/or postsynaptic variable and time. Thus for spike mediated
synaptic transmission (and ignoring the synaptic delay, tdelay) Equation 10.1 becomes

(10.8)

The essence of any model of synaptic plasticity will of course be the choice of
pre and post synaptic variable upon which MSyn depends. (The product MSyn ƒSyn is
often lumped into a single function.) There is a rich literature of models of synaptic
plasticity at neuromuscular junctions.10 Moreover, several sophisticated models of
synaptic plasticity suitable for use in network simulations have been developed which
use physiologically important variables such as presynaptic Ca2+ and cAMP levels11

as variables which influence presynaptic release, i.e. influence release functions such
as ƒSyn MSyn. A more general, albeit less physiological method has been employed
by Abbott and co-workers.12 In this method, ƒSyn describes the postsynaptic response
to an individual isolated presynaptic spike, e.g., using Equation 10.4. Now a series
of scaling factors which are functions that depend only on the timing of a particular
spike with respect to previous spikes is used to adjust the amplitude of individual

FIGURE 10.1
Graded inhibitory synaptic transmission in leech heart interneurons: fitting the rela-
tion between the presynaptic low-threshold Ca2+ currents and postsynaptic conduc-
tance. Both cells of a reciprocally inhibitory pair were voltage-clamped. Presynaptic

low-threshold Ca2+ currents (left) and postsynaptic currents (right) evoked by voltage steps
(1.5 s) in the presynaptic cell from a holding potential of –60 mV (Vhold) to the step potential
indicated (preVm). The postsynaptic cell was held at –35 mV (Vhold). The saline contained 0
Na+ and 2 mM Ca2+. Superimposed lines are simulated values of current (from Reference 7).

pre Vm
(mV) Presynaptic Ca2+Current Postsynaptic Current
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postsynaptic responses (PSCs) in response to a presynaptic spike train. In its most
general form:

(10.9)

Each scaling factor recovers with a single exponential time constant between
spikes. These scaling functions are derived from data generated with random pre-
synaptic spike trains by a learning algorithm that steadily improves the quality of
the prediction. Scaling functions are then tested with an arbitrary presynaptic spike
train different from the training one. In practice, the number of scaling functions
needed will depend on the number of processes that contribute to plasticity, e.g.,
only one scaling function was needed to describe short-term facilitation at a crab
neuromuscular junction13 but three to describe plasticity at rat cortical synapses,
where both facilitation and two forms of depression are present.12

Spike-mediated transmission between leech heart interneurons displays a simple
form of short-term plasticity that illustrates how a phenomenological approach can be
applied to modeling such plasticity. As illustrated in Figure 10.2B, during normal
bursting activity, the amplitude of spike-mediated IPSCs varies throughout a burst of
action potentials. Previous work14 had shown that this plasticity was related to the
membrane potential from which each presynaptic spike arose and that this effect waxed
and waned with an exponential time course. Similar modulation of spike-mediated
transmission by baseline presynaptic membrane potential has been observed at other
synapses. We chose to model this phenomenon as simply as possible, because we had
no direct data on the cellular mechanisms involved. The voltage dependence expressed
in standard Hodgkin–Huxley equations for voltage-gated currents (see Section 5.2.1)
seem easily adapted to this need and easily implemented in our modeling software
(GENESIS). Thus MSyn in Equation 10.8 is governed by

(10.10a)

(10.10b)

(All units are SI, i.e., MKS.)
This simple adaptation of a pre-existing form adequately modeled the observed

voltage-dependent modulation observed at these synapses (Figure 10.2B). Obviously
it should be possible to develop expressions for Msyn like Equations 10.10 to incorporate
synaptic plasticity into graded synaptic transmission models like Equations 10.6.

The decision to incorporate synaptic plasticity into a network model ultimately
rests on the question to be asked. Obviously if one is modeling a neuronal network
to explicate the cellular mechanisms for learning, then it is imperative to incorporate
synaptic plasticity. On the other hand, in rhythmically active networks it may not
be important to incorporate plasticity, if such plasticity is only expressed at transients

M A A ASyn
p p p= …
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τSyn
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and only steady-state behavior is being considered.4 In our own work, we chose to
incorporate synaptic plasticity (Equations 10.10) in considering the steady-state
behavior of the leech heartbeat motor pattern generator, because such plasticity
occurs on a cycle by cycle basis.

FIGURE 10.2 A. Graded inhibitory synaptic transmission in leech heart interneurons.
Presynaptic Ca2+ currents and postsynaptic currents evoked by realistic waveforms in heart
interneurons. Both cells of a reciprocally inhibitory pair were voltage-clamped and one (pre)
was driven with a realistic waveform repetitively (three-cycle average illustrated). The other
was held at –40 mV (post). The waveform on the left closely approximates the slow-wave of
normal activity in heart interneurons, while the one on the right goes through the same range
of voltage but jumps into the depolarized state. The slow upward trajectory of the left-hand
waveform inactivates low-threshold Ca2+ currents, which are thus subdued, as is the postsyn-
aptic response. The right-hand waveform evoked more Ca2+ current and a larger postsynaptic
response. The saline contained 0 Na+ to suppress spikes. Dotted lines mark 0 in the current
traces and –50 mV in the voltage traces, as adapted from Reference 8. B. Spike-mediated
transmission in leech heart interneurons varies in amplitude throughout a burst according to
the baseline level of depolarization. (B1) Normal bursting activity in a reciprocally inhibitory
pair of heart interneurons. Only the spikes of the right cell HN(R,4) are indicated as small
vertical lines. Dashed line indicates –50 mV. (B2) The left cell HN(L,4) cell was held at
–55 mV in voltage clamp. Spike-mediated IPSCs from the opposite cell are apparent on top
of a graded IPSC (slow wave) and EPSCs (downward blips between the two barrages of
IPSCs) resulting from electrical coupling with the HN(L,3) cell are apparent. Rhythmic
activity persists in the HN(R,4) cell despite the lack of spike activity in the HN(R,4) cell,
because this preparation contains more anterior ganglia and thus the HN(4) cells are linked
in the pattern-generating network of Figure 10.4. Again, the spikes of the right cell HN(R,4)
are indicated as small vertical lines. (B3) Histogram of 9 barrages of IPSCs from the HN(L,4)
cell in the HN(R,4) cell. The time indicated is from the first spike in the HN(L,4) burst. (B4)
Expansion of the first part of the record of B2, illustrating individual IPSCs. Thick line
indicates the waveform of the underlying graded IPSC, as adapted from Reference 8.
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10.2.4 ELECTRICAL COUPLING

In some neuronal networks electrical coupling contributes significantly to network
function and it must be included. In it simplest form electrical coupling, which is
non-rectifying, can be expressed by

(10.11)

where V1 is the membrane potential of the referent (receiving) cell (cell 1) and V2

is the membrane potential of the coupled cell, cell 2. Rectification is easily handled
by conditional statements, e.g., specifying that if (V1 – V2) > 0 then Ielec = 0 will
make an electrical synapse rectifying from cell 2 to cell 1.

10.3 BASIC MODELING STRATEGY FOR SMALL 
CIRCUITS

Small networks afford the opportunity to use realistic conductance based modeling
techniques (described in Chapter 5) without straining the computational power and
speed of current PC’s. Moreover, there are a number of software packages (including
GENESIS, NEURON, and SNNAP) available to facilitate such modeling on PC’s
(Box 10.2). Nevertheless, there are still compromises to be made on how much detail
is incorporated into any particular network model; not enough detail will certainly
lead to false conclusions, whereas too much detail wastes valuable time and diverts
attention from the significant parameters that affect network function. Another
important consideration is the generality which one wishes to achieve. The addition
of idiosyncratic details will limit applicability to other networks. The choices that
the scientist makes about what to include and what to exclude will ultimately
determine usefulness of the model both as an experimental tool and in terms of the
insights into basic biological mechanisms that it can afford.

The realistic modeling of small networks basically boils down to solving the
following current balance equation for any given single-compartment neuron model
or any single compartment within a neuron model:

(10.12)

where IIon represents membrane currents (e.g., voltage-gated and leak currents), ISyn

synaptic currents, and IInject injected currents (or the current from connected com-
partments). Many of the details of which we speak above are basically the compart-
mental structure of the component neuron models, and the details of the equations
that describe IIon and ISyn.

I g V V I Ielec elec elec elec1 1 2 2 1= −( ) = −,
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10.3.1 NEURONAL MORPHOLOGY

The full morphological detail of the component neurons (see Chapters 6, 8, and 9)
is almost never implemented in small network models; rather simplifications are
made to increase computational efficiency and to focus attention on circuit interac-
tions. In our own work modeling the leech heartbeat motor pattern generator network,
we chose to ignore the morphological complexity of the heart interneurons and treat
each cell as a single isopotential compartment. This simplifying assumption was
taken for several reasons.

Box 10.2 Choice of Modeling Software

The choice of a software package for model development is a difficult step.
Often this choice is dictated by local expertise with a particular package or in
computer programming. Our model is now in its third generation, with each
generation implemented using different software. Generation I was implemented
in Nodus,23 a well-conceived general simulation package which now has limited
developmental support and expandability. Generation II was implemented in
Neurolab, a home grown product. The current generation III is implemented in
GENESIS [2] (http://www.bbb.caltech.edu/GENESIS ) a general simulation
package with a large user base and user support group (BABEL) and near infinite
expandability owing to its object oriented nature. Our experience with these
three packages clearly inclines us towards the use of a widely used and supported
package like GENESIS, NEURON,24 or SNNAP.25 Each of these packages has
its strengths and limitations. GENESIS has a strong tutorial base that makes
learning to use the package step-by-step, easy, and fun. The tutorials can be used
as the bases of research grade simulations, and network models are easily
implemented. The tutorial on the leech heart interneuron network associated
with this chapter was developed in GENESIS. The user interface beyond the
tutorials leaves much to be desired (point-and-click-ers need not bother), and
the software runs only under UNIX or LINUX. NEURON (http://www.neu-
ron.yale.edu) has a well developed user interface, numerous user workshops,
and runs under both Windows and UNIX/LINUX, but has limited facility with
networks and is not as easily expanded to fit particular needs. SNNAP runs
under UNIX/LINUX, Windows and has been recently ported to JAVA. It has a
very well-developed graphical user interface, and is particularly useful for mod-
eling network where synaptic plasticity is a focus of attention. LINUX on PC’s
while initially off-putting to a generation of Windows or Mac OS users is a
superior environment for network modeling, owing to its stability, fully devel-
oped multitasking (including usage of dual processors), infinite regulated
expandability, cheap availability, and ease of installation on all current PCs (Red
Hat or VA). Fast dual processor PCs running GENESIS (or NEURON) are
extremely economic, fast, and efficient vehicles for small network modeling.
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1. We lacked detailed knowledge of the distribution of voltage-gated and
synaptic conductances within the neurons.

2. The available data suggested that these neurons are electrically compact
and receive a limited number of inputs with widely distributed synaptic
contacts (as in many invertebrate ganglion cells synaptic inputs and out-
puts occur cheek by jowl on the same neuritic branches). 

3. The large number of voltage-gated and synaptic currents that were to be
incorporated into each model neuron demanded computational efficiency.
Similar considerations have often caused other workers modeling motor
pattern generating networks to use model neurons with one or a few
compartments.4

Ultimately, the level of morphological detail included must depend both on the
available data and on the experimental questions asked of the model. If there is
evidence for example of segregation of electrical activity within neurons that influ-
ences circuit behavior, then morphological detail adequate to accommodate such
segregation must be incorporated (see below). Nevertheless, it may be beneficial to
start by using neurons comprising few compartments, with the view that additional
morphological complexity can be added as data becomes available and when com-
parison to experimental data points out model discrepancies that may have a mor-
phological basis. This was certainly our own strategy.

10.3.2 INTRINSIC MEMBRANE CURRENTS

The necessary experimental data on the important intrinsic membrane properties of
the component neurons that form the network must be gathered and appropriately
described mathematically. Much of these data are likely to be voltage clamp records
for which there are established procedures for obtaining accurate mathematical
descriptions (see Chapter 5). In some cases, voltage clamp data may not be available
for all cells or all currents in particular cells, and current equations must be boot-
strapped from current clamp recordings. It is then efficient to start from an existing
mathematical description of a related current or the same current from a related
neuron. For example, it is often the case in invertebrate neuronal networks that no
data on the fast Na+ current (INa) that mediates spikes is available, because of space
clamp limitations of voltage clamps applied to the cell body. In our own work, our
response to this problem was to adapt the fast Na+ current from the squid (i.e., the
original Hodgkin–Huxley equations for INa) to fit the types of spikes observed in
leech heart interneurons.

In several preparations, there are particular neurons for which there are accurate
mathematical descriptions of voltage-gated currents that can serve as bootstrapping
resources for modeling voltage-gated currents in neurons for which voltage clamp
data is unobtainable or fragmentary. For example, for the well-studied stomatogastric
neuronal networks of crustaceans, the crab LP neuron serves this role.15 Often these
current descriptions are incorporated into libraries in simulation packages such as
GENESIS and are easily modified to bootstrap related currents.2

© 2001 by CRC Press LLC



10.3.3 SYNAPTIC CONNECTIONS

In Section 10.2, we presented methods for modeling synaptic interactions in network
models and discussed considerations that would dictate the choice of one method
over another. Ultimately the data available on a particular synaptic connection will
dictate the detail that can be incorporated into its description. Often this data is
limited to current clamp measurements which do not justify going beyond the
simplest descriptions (e.g., Equations 10.2 and 10.3 or 10.6).

10.3.4 PARAMETERIZATION

Once an appropriate level of detail has been incorporated into a model then param-
eterization is of paramount importance. These parameters include the values such
as those that determine voltage-dependence of time constants and activation variables
for voltage-gated currents, and the maximal conductances and reversal potentials
for all currents. Parameterization can be thought of as tuning to experimental data,
which in principle seems simple, but in practice is difficult. Much of the data on
intrinsic membrane currents and synaptic interactions that is incorporated into the
model will be generated in biophysical experiments under artificial experimental
conditions, but the network model will ultimately be compared to current clamp
records during normal physiological activity. The procedures for establishing
whether the model conforms well to the observed behavior of the biological network
are of necessity ad hoc and dictated by the experimental question which the model
is to address.

First, as many model parameters for intrinsic membrane properties and synaptic
interactions as possible should be fully specified by the data. This process will
inevitably leave some parameters unknown or unconstrained. These free parameters
must then be tuned to produce realistic cellular and network activity and produce a
canonical or benchmark model. It is then important to determine the sensitivity of
the model’s output to the values chosen for these free parameters and if feasible to
map the entire free parameter space. This procedure will allow the modeler to
determine whether model behavior is robust, i.e., not overly sensitive to the choice
of particular values chosen for free parameters. It is possible that the values of the
chosen parameters are very close to a bifurcation in system behavior. By bifurcation
is meant a point in parameter space where system behavior spits along different
fundamental mechanisms of network operation. Alternatively, the model might be
extraordinarily sensitive in some way to a particular parameter so that careful
measurement of that parameter must be undertaken to constrain better the parameter.
Sensitivity analysis can also aid in the identification of parameters critical to proper
network function. In performing sensitivity analyses, it is necessary to first determine
an output variable of the model that is important to proper network function in the
biological system and then determine its sensitivity to free parameter changes. In a
rhythmically active network, such a measure would be cycle period which can be
expected to vary smoothly over a physiologically relevant range.

To map the parameter space, free parameters are individually varied over a range
of ± 100% from the initial chosen value and the effect on the output variable
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determined. In a rhythmically active network, for example, there may be regions of
such a parameter space where rhythmicity becomes erratic or breaks down altogether
(the point at which this occurs is a bifurcation), whereas in other regions the period
remains constant or varies smoothly. Moreover, one must realize that by varying a
single parameter at a time one is only taking sections of a multidimensional param-
eter space controlling that output variable. (The dimension of the space is equal to
the number of free parameters, N, plus 1.) Within the whole multidimensional space,
changes in one parameter may compensate for changes in a second, have little or
no effect on changes in the second, or exacerbate the action of changes in the second.
To ensure that a canonical model can serve as a useful benchmark for study of the
biological system which it models, the values of the free parameters should be well
within the range where the models and the biological system are similar. It is then
useful to determine the sensitivity of the canonical model output variable to a small
(around ± 5–10%) change in each parameter from the canonical value as a percent
change in output variable per percent change in the parameter. For example, in a
model of the interaction of the pyloric and gastric networks in the crustacean
stomatogastric ganglion4 maximal conductances of all synaptic currents (and certain
voltage-gated currents) were free parameters and the output variable used was gastric
period. Parameter changes of +10% from canonical values were imposed and sen-
sitivity was assayed as:

(10.13)

This analysis showed that model period was not very sensitive to most parameters
(the absolute value of Speriod < 1.25) but identified a key synapse that was important
in determining model period. Large parameter sweeps then could be used to assay
the role of this synapse in controlling model period. The order in which one
performs these assays — mapping parameter space and sensitivity analysis — is
arbitrary and the process in often iterative. Regardless, some similar assessment of
parameterization seems a necessary precondition to producing a useful model of
any small network.

10.3.5 MODEL TESTING

An overriding principle that has guided our own use of realistic network modeling
is that it should interact directly with biological experiment. Thus an important
aspect of model development is model testing through experiment. Model testing is
of necessity idiosyncratic to the model. Sensitivity analysis can help identify key
parameters that influence network function and generate experimentally testable
predictions. In small networks, it is often possible to alter key parameters such as –g
of voltage-gated and/or synaptic currents using dynamic current clamping5

(Box 10.1) and thus test directly model predictions generated during parameter
sweeps.16 Alternatively, voltage clamping with realistic voltage waveforms (i.e.,
waveforms that mimic activity measured with intracellular or whole-cell voltage
recordings during normal network function) can be used to test directly current flows
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predicted in the model (Figure 10.2A).8 Equally important as adequate model testing,
however, is the realization that such network models are a means to help understand
network function and not in themselves an end. The type of modeling described
here is an iterative process: experiment, model, experiment, model, experiment.

10.3.6 MODEL EXPANSION AND COMPROMISES

In modeling a small neuronal network it is useful to take a step by step approach.
Most experimentalists have a strong sense of how the network, upon which they
work, functions, and these hunches can help in model development. One may start
by identifying key elements in the network and focusing initial modeling attempts
on them. For example, in the work on the interaction of the pyloric and gastric mill
networks,16 the entire pyloric circuit was represented as a rhythmic synaptic input
to key gastric model neurons. This simplification was tenable because the purpose
of the model was to help explicate how pyloric input influences gastric period. Thus
feedback from the gastric circuit to the pyloric circuit was not directly relevant. This
simplification increased computational efficiency and did not influence model per-
formance or interpretation. Future expansion of this model might now involve
inclusion of the modulatory feedback to explore its functional consequences and
will necessitate modeling key pyloric neurons. Let the model fit the question; detail
for the sake of detail can impede progress, but all the details necessary to answer
the questions asked of the model must be included.

10.4 LEECH HEARTBEAT TIMING NETWORK: 
A CASE STUDY

To further explicate the modeling process described we will illustrate the process
by example. There is a tremendous literature on modeling small networks, to which
the reader may refer to find examples from his/her own field. We will pass over this
rich literature in this chapter and use only our own work, in the area that we know
best, motor pattern-generation, to exemplify an approach which we believe can be
particularly fruitful. The essence of this approach is the close interplay of modeling
and experiment, so that insights derived from experiments are used to ameliorate
the model and model prediction guide that choice of experiment.

10.4.1 EXPERIMENTAL BACKGROUND

A network of seven bilateral pairs of segmental heart (HN) interneurons produces
rhythmic activity (at about 0.1 Hz) that paces segmental heart motor neurons, which
in turn drive the two hearts (see References 17 and 18 for a review). The synaptic
connections among the interneurons and from the interneurons to the motor neurons
are inhibitory. The first four pairs of heart interneurons can reset and entrain the
rhythm of the entire pattern-generating network of interneurons. Thus this network
is designated the timing network (eight-cell network) for heartbeat. The other three
pairs of heart interneurons are followers of these anterior pairs. Two foci of oscil-
lation in the timing network have been identified in the third and fourth ganglia,
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where the oscillation is dominated by the reciprocal interactions of the third and
fourth pair of HN interneurons respectively. Reciprocally inhibitory synapses
between the bilateral pairs of HN interneurons in these ganglia (Figure 10.3A),
combined with an ability of these neurons to escape from inhibition and begin firing,
pace the oscillation. Thus each of these two reciprocally inhibitory heart interneuron
pairs can each be considered an elemental oscillator (two-cell oscillator) and these
interneurons are called oscillator interneurons. The HN interneurons of the first and
second ganglia act as coordinating interneurons, serving to couple these two ele-
mental oscillators, thus forming the (eight-cell) timing network for the system
(Figure 10.4). When the third and fourth ganglia are separated by cutting the con-
nective, each isolated 3rd and 4th ganglia contain a segmental oscillator (six-cell
oscillator) that consists of a pair of reciprocally inhibitory oscillator interneurons
(elemental oscillator) and the active "stumps" of the coordinating neurons which
provide additional inhibition. Invertebrate axons may emit neuritic branches (input
and output) at several sites within the CNS and thus have multiple (electrotonically
distant) sites of synaptic input, spike initiation, and synaptic output. Under normal
conditions, the coupling between the segmental oscillators causes the activity of the
HN(3) oscillator to lag that of the HN(4) oscillator on the same side by about 15%
in phase (Figure 10.4).

Coupling between segmental oscillators by the coordinating neurons is quite
strong. Repetitive current pulses that alter the cycle period of one segmental oscillator
can entrain the entire beat timing network to a range of frequencies faster and slower
than the system’s natural state. For example, imposing a train of current pulses on
an HN(3) cell can lock the HN(4) pair to an artificially high frequency. The segmental
oscillators are mutually entraining. The phase lag between the segmental oscillators
is a function of the entrainment conditions. For example, when an HN(3) pair entrains
an HN(4) pair to a low frequency, the driving pair (HN(3)) lags behind the driven
pair. Conversely when one pair entrains the other to a high frequency, the driving
pair leads.

Several ionic currents have been identified in single electrode voltage clamp
studies that contribute to the activity of oscillator heart interneurons.18 These include
two low-threshold Ca2+ currents (one rapidly inactivating (ICaF) and one slowly
inactivating (ICaS), three outward currents (a fast transient K+ current (IA) and two
delayed rectifier-like K+ currents, one inactivating (IK1), and one persistent (IK2), a
hyperpolarization-activated inward current (Ih) (mixed Na+/K+, Erev = –20 mV), a
low-threshold persistent Na+ current (IP) and a leakage current (IL). The inhibition
between oscillator interneurons consists of a graded component (ISynG) that is asso-
ciated with the low-threshold Ca2+ currents and a spike-mediated component (ISynS)
that appears to be mediated by a high-threshold Ca2+ current. Spike-mediated trans-
mission varies in amplitude throughout a burst according to the baseline level of
depolarization8 (Figure 10.2B). Graded transmission wanes during a burst owing to
the inactivation of low-threshold Ca2+ currents. Blockade of synaptic transmission
with bicuculline leads to tonic activity in oscillator heart interneurons and Cs+, which
specifically blocks Ih, leads to tonic activity or sporadic bursting.

This wealth of detailed information demanded modeling to both organize the
plethora of data, facilitate insights into the interactions between membrane properties
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FIGURE 10.3 (A) Simultaneous intracellular recordings showing the normal rhythmic
activity of two reciprocally inhibitory heart (HN) interneurons that compose an elemental
(half-center) oscillator in an isolated ganglion preparation. Heart interneurons are indexed by
body side (R, L) and ganglion number. (B) Synaptic conductances and some major intrinsic
currents that are active during a single cycle of the third generation model of a heart inter-
neuron elemental oscillator model (half-center). The graded synaptic conductance (gSynG) is
shown at the same scale as the total synaptic conductance (gSynTotal) which is the sum of the
graded and spike-mediated conductances. The slow calcium current (ICaS), the hyperpolariza-
tion-activated current (Ih), and the persistent sodium current (IP) are shown to the same scale.
Note that IP is active throughout the entire cycle period. Dashed lines indicate –50 mV in
voltage traces, 0 nA in current traces, and 0 nS in conductance traces. Inset: elemental
oscillator circuit. Black balls indicate inhibitory synapses.
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and synaptic connections that determine network function and guide future experi-
mental exploration. The general availability of voltage clamp data for oscillator
interneurons made conductance based modeling an obvious choice.

10.4.2 TWO-CELL OSCILLATOR MODEL:
THE ELEMENTAL OSCILLATOR

Our approach in modeling this system was to start with an elemental oscillator and
then build up to the entire timing network (Figure 10.4). This decision was influenced
by three considerations. First, very little voltage clamp data was available on the
coordinating interneurons, whereas there was strong database for the oscillator
interneurons. Second, we wished to explore the potential of the two-cell oscillator,
both for its own intrinsic interest and its ability to provide general insights into how
oscillations are generated by reciprocally inhibitory neurons. Third, we were con-
vinced we would need the insights into how oscillations were generated in the two-
cell oscillator to guide our interpretations of activity within the timing network
(eight-cell network).

The first step in the modeling process was the development of standard
Hodgkin–Huxley representations of each voltage-gated current using meth-
ods like those described in Chapter 5. For equations used in our current

implementation of this model (third generation) see the CD-ROM. Synaptic trans-
mission between the oscillator neurons involves spike-mediated and graded trans-
mission that both show complex dynamics which depend on membrane potential

FIGURE 10.4 Circuit diagram showing inhibitory synaptic connections among the HN
interneurons of the timing network. Coordinating neurons HN(1) and HN(2) are functionally
equivalent and are lumped together in the diagram. The HN(1) and HN(2) neurons receive
synaptic inputs, initiate action potentials, and make synaptic outputs at sites located in the
third and fourth ganglia (open squares). Timing network activity recorded intracellularly from
left coordinating neuron HN(2) and oscillator neurons HN(3) and HN(4).

Timing Network

G2

G3

G4

1,2

1,2

1,2 1,2

3 3 1,2

1,2

4 4

HN(L,2)

HN(L,3)

HN(L,4)

Phase Lag

20m
V

5 s

Timing Network Activity

© 2001 by CRC Press LLC



and low-threshold Ca2+ currents respectively. Equation 10.5 fitted to unitary IPSCs
was used to describe the postsynaptic conductance associated each action potential.
The fraction of the postsynaptic maximal conductance reached after each spike was
made a function of the past membrane potential to reflect the fact that spike-mediated
transmission varies in amplitude throughout a burst according to the baseline level
of depolarization (Equations 10.10). Graded synaptic transmission was represented
by a synaptic transfer function, which related postsynaptic conductance (the result
of transmitter release) to presynaptic Ca2+ build-up and decline, via low-threshold
Ca2+ currents and a Ca2+ removal mechanism respectively (Equations 10.7). Each
cell was modeled as a single isopotential compartment with a leak conductance and
a membrane capacitance (Section 10.3.1). Thus each cell in our model
Equation 10.11 becomes:

(10.14)

10.4.3 PARAMETERIZATION AND MODEL TESTING

The development of our second generation model3,19 best illustrates our process of
parameterization and model testing. All the characterized voltage-gated and the
synaptic currents (this generation of the model did not include the dependence of
spike-mediated transmission on baseline membrane potential) were incorporated in
the model. Free parameters in the model were the maximal conductance –(gion) for
each current (voltage-gated or synaptic). The –gion’ s were adjusted to be close to the
average observed experimentally. The reversal potential, Eion, for each current was
determined experimentally and they were considered fixed. The final parameter
values, used in the canonical model, were chosen so that the model activity closely
approximated that of biological neurons, specifically during normal oscillations, in
the passive response to hyperpolarizing current pulses, and in the reaction to current
perturbations. The model cells were also required to fire tonically when all inhibition
between them was blocked.18

At this point in the modeling process, we explored the dependence of model
behavior to the choice of free parameters. We chose cycle period of the oscillation
as the output variable for this analysis. In the biological system, period is variable
depending on the preparation and its modulatory state but normally varies only over
a constrained range (7–14 sec). First, free parameters were individually varied over
a range of ± 100% from the canonical value and cycle period was determined. We
found that some parameter settings gave rise to oscillations that were fundamentally
different from those observed both in the biological system and in the canonical
model. These oscillations had periods that were relatively insensitive to further
variation in the parameter that gave rise to them, whereas the period during the more
biologically relevant oscillations varied smoothly with the varied parameter. More-
over, in the first type of oscillation synaptic transmission was dominated by its graded
component, whereas in the more biological similar oscillation it was dominated by
its spike-mediated component. We had revealed a bifurcation in model behavior and
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delineated a region of parameter space where model behavior diverges fundamentally
from that of the biological system. This observation focused our attention on such
parameters as –gSynG and –gCaS for future experimental study. The former determines
the strength of graded transmission directly and the latter determines it indirectly by
being the primary avenue for presynaptic Ca2+ entry and thus graded transmitter
release. To ensure that the canonical model would serve as a useful benchmark for
study of the biological systems, we made sure the values of the free parameters were
well within the range where the models and the biological system were similar. We
then determined the sensitivity of the canonical model period to a ± 5% change in
each parameter from the canonical value as a percent change in period per percent
change in the parameter (see Equation 10.13). Only in the case of –gK1 and –gSynS was
this sensitivity greater than 0.5. This rather low value means that a 1% change in a
parameter causes only a 0.5 % change in period. The observed sensitivity to –gK1

and –gSynS was expected because gK1 controls spike rate and thus indirectly the amount
of inhibition and gSynS directly controls the amount of inhibition. Thus the canonical
model was parameterized in a way that small parameter differences did not alter
model behavior in fundamental ways.

Analysis of current flows during this activity (see Figure 10.3B for generation
III model activity and currents) indicated that graded transmission to the antagonist
cell occurs only at the beginning of the burst period. The low-threshold Ca2+ currents
that mediate this inhibition inactivate significantly during the later part of the inhib-
ited period due to the slow rise of the membrane potential trajectory to the burst
phase. This observation constituted a significant model prediction. Thus graded
inhibition helps turn off the antagonist neuron, but sustained inhibition of the antag-
onist neuron is spike-mediated. The inward currents in the model neurons act to
overcome this inhibition and force a transition to burst phase of oscillation. IP is
active throughout the activity cycle providing a persistent excitatory drive to the
system. Ih is slowly activated by the hyperpolarization caused by synaptic inhibition,
adding a delayed inward current that drives further activation of IP and eventually
the low-threshold Ca2+ currents (ICaS and ICaF). These regenerative currents support
burst formation. IP, because it does not inactivate, provides steady depolarization to
sustain spiking, while the low-threshold Ca2+ currents help force the transition to
the burst phase but inactivate as the burst proceeds, thus spike frequency slowly
wanes during the burst. Outward currents also play important roles, especially the
IK s. IK2, which activates and deactivates relatively slowly and does not inactivate,
regulates the amplitude of the depolarization that underlies the burst, while IK1,
which activates and deactivates relatively quickly and inactivates, controls spike
frequency.

We gathered several insights from this effort. The broad parameter sweeps
illuminated which parameters were instrumental in establishing the period of the
system. In particular, the strength of synaptic inhibition –(gSynS) and the maximal
conductance of Ih

–(gh) appear to set oscillation period because they cause smooth
monotonic changes in period over a broad range without producing bifurcations in
model behavior. During normal activity graded synaptic transmission is repressed
and spike-mediate transmission is dominant. The various inward currents provide
excitatory drive at different phases in the oscillation; ICaS during the burst phase, Ih
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during the inhibited phase, and IP during both phases. Moreover, two obvious flaws
were apparent in the model. Spiking activity was at significantly higher frequency
than in the biological neurons and the transitions to the burst phase were too abrupt
with no overlap in the firing of the two model neurons. Spike rate had to be adjusted
by reworking the fudged equation for INa. The abruptness of the transition to the
burst phase and the lack of overlapping spiking in the mutually inhibitory model
neurons indicated that plasticity (sensitivity to baseline membrane potential) in
spike-mediated transmission might play a significant role. These realizations led to
a new phase of model testing and experimental measurement.

We applied voltage clamp waveforms that directly mimicked the slow wave of
their membrane potential oscillation to individual oscillator neurons under conditions
where individual voltage-gated and synaptic currents were isolated (Figure 10.2A;
Box 10.1). These tests showed that the first model prediction was correct; graded
transmission was repressed through inactivation of low-threshold Ca2+ currents dur-
ing the inhibited period by the slow rise of the membrane potential trajectory to the
burst phase. They also gave us more accurate estimates of –gSynG and –gCaS. We
reassessed the amount of the other inward currents active during the realistic wave-
forms and came to realize that IP was even more active during the inhibited phase
than suggested by the model. We also directly measured the plasticity in IPSC
amplitude during normal activity in oscillator neurons and quantitatively related
these changes to baseline membrane potential (Figure 10.2B). The confirmation of
model prediction experimentally increased our confidence in the model and the
measurements led directly to the generation III canonical model illustrated in Figure
10.3. The new better estimates of –gSynG and –gCaS restrict greatly the volume of
parameter space in which the non-biological oscillations occur. The modulation of
spike-mediated transmission by presynaptic potential decreases the abruptness of
the transition between the inhibited and burst phases and increases the amount of
overlap between spiking activity in the two model neurons.

10.4.4 BUILDING THE TIMING NETWORK

We constructed a model of the beat timing network (the four anterior pairs of heart
interneurons) based on our third generation two-cell elemental oscillator model that
corresponds to the reciprocally inhibitory pairs of interneurons in the 3rd and 4th
ganglia (Figure 10.3). The coordinating interneurons of the 1st and 2nd ganglia that
couple the segmental oscillators were modeled, like the oscillator interneurons, as
single compartments. Less physiological data is available for the coordinating inter-
neurons than for the oscillator interneurons. Therefore, these neurons were modeled
simply so that they exhibit spiking behavior similar to the biological neurons. They
contain only INa, IK1, IK2, leak, and receive and send only spike-mediated synaptic
inhibition. The coordinating neurons are capable of initiating spikes at sites in both
the 3rd and 4th ganglia (Figure 10.4). In the present network model we have not
included this detail and have considered the coordinating fibers to be single com-
partments that receive inhibition from ipsilateral HN(3) and HN(4) neurons. In this
first generation timing network model, we specifically chose not to include every
biological detail in order to better understand the basic operation of the system. In
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the future we can include these details if they appear to be important to the function
of the system.

This model was developed to assist and augment our experimental analysis of
the mechanism by which the intersegmental phase lag seen in Figure 10.4 is
generated. To explore the generation of this phase difference, we first created two
six-cell oscillators that correspond to single elemental oscillators in the 3rd and 4th
ganglia and their coordinating fibers (processes of HN(1) and HN(2) cells) within
one ganglion (Figure 10.5). These six-cell models each comprise a segmental
oscillator, because each contains all the neuronal elements involved in oscillation
in a single isolated 3rd or 4th ganglion. The six-cell oscillators behave very similarly
to the two cell elemental oscillators except the additional spike-mediated inhibition
from the coordinating neurons slow the oscillator down (~25%). Second, two such
segmental oscillators were combined to form a single eight-cell oscillator that is
equivalent to the beat timing network (Figure 10.5). An advantage of this approach
is that it is possible to determine the inherent cycle periods of the segmental
oscillators in isolation before coupling them to determine the ensemble behavior of
the eight-cell network.

Preliminary results suggest that phase lag may be generated by differences in
the inherent cycle periods of the segmental oscillators (Figure 10.5). The inherent
cycle periods of the segmental oscillators were varied by altering the maximal
conductance –(gh) of Ih, the hyperpolarization-activated current in model HN(3) and
HN(4) oscillator neurons. A decrease in Ih from the canonical level led to an increase
in the cycle period of a segmental oscillator. (We can also generate differences in
the period of the segmental oscillators by manipulating other maximal conductances
such as IP.) When two segmental oscillators with different inherent periods were
combined the cycle period of the eight-cell network was very close to that of the
faster oscillator’s period. The faster oscillator consistently led the slower one and
as the difference in inherent oscillator cycle periods was increased the phase lag
between the oscillators also increased. Preliminary results also suggest that phase
lag may also be generated by oscillators with asymmetric inhibitory synaptic con-
nections. For example, a reduction in the maximal conductance for the synapses
from the coordinating neurons to the HN(4) oscillator neurons created a system in
which the HN(4) segmental oscillator led the HN(3) segmental oscillator.

Important experimental predictions of these analyses are that there will be
inherent period differences between the HN(3) and the HN(4) segmental oscillators
and that the coupled systems will have the period of the faster segmental oscillator.
These predictions can be tested in biological experiments in which the segmental
oscillator are reversibly uncoupled and recoupled by reversible blockade of action
potential conduction between the ganglia.

10.5 ABSTRACT MODELS

A drawback of the approach that we have outline above is that often the networks
that are modeled seem very idiosyncratic to the organism or circuit phenomenon
studied. Thus realistic models appear to lack relevance to other workers. This
drawback can be circumvented by the creative modeler through model reduction or
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FIGURE 10.5 Strategy for construction of the timing network model and its activity. The eight-cell model of the timing network was constructed by
combining two six-cell segmental oscillators that in turn are composed of single elemental oscillators and their synaptic connections with the coordinating
fibers. Compare the model network and its activity to Figure 10.4. The phase lag between activity in the model HN(3) and HN(4) oscillators is about
14%, and the timing network’s activity has a cycle period of about 8.8 s. The period of the uncoupled HN(4) segmental oscillator is 8.8 s and that of
the uncoupled HN(3) oscillator is 9.8 s. The activity of the model HN(1) cell (not shown) is very similar to that of the model HN(2) cell. Black balls
indicate inhibitory synapses.
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by attacking the same network in parallel with more abstract models. As an example,
we will explore the development of an abstract model of a reciprocally inhibitory
elemental oscillator that paralleled the development of our own model of the leech
heartbeat elemental oscillator. We also refer the reader to References 4, 16, and 20
for an experimentally based and tested realistic model that was used as the basis of
an abstract model to explicate basic principles of oscillation in reciprocally inhibitory
networks.

The configuration of two reciprocally (or mutually) inhibitory neurons (or groups
of neurons) that produce alternating oscillation, observed in the elemental heartbeat
oscillator from the leech, is a basic circuit building block which is thought to form
the basis of oscillation in many motor pattern-generating networks. This circuit
configuration has come to be known as a half-center oscillator. A theoretical frame-
work for understanding how reciprocally inhibitory neurons oscillate (i.e., how half-
center oscillators work) was developed in Reference 21. Their model neurons are
minimal. Each contains a synaptic conductance which is a sigmoidal function of
presynaptic membrane potential with a set threshold and instantaneous kinetics, a
constant leak conductance, and a voltage-gated postinhibitory rebound current, Ipir.
Ipir was originally envisioned to be a T-like Ca2+ current (low-threshold, inactivating)
but its expression in the model can accommodate an h current (hyperpolarization
activated inward current) also. Two different modes of oscillation appear in the
model, release and escape. For the release mode to occur the synaptic threshold
must be above the steady state membrane potential of the uninhibited neurons. In
the release mode the inactivation of Ipir erodes the depolarized or active phase of a
neuron so that it falls below threshold for synaptic transmission. Consequently its
partner is released from inhibition and rebounds into the active depolarized state.
For the escape mode to occur the synaptic threshold must be below the steady-state
voltage of the neurons when uninhibited. This condition can be accomplished simply
by increasing –gpir. In the escape mode, once inactivation of Ipir is removed by the
hyperpolarization associated with inhibition, it activates and overcomes the main-
tained synaptic current so that the neuron escapes into the active phase and thus
inhibits its partner. This analysis is extended in Reference 21 (see Box 10.3).

Real neurons, such as leech heart interneurons, display more complicated intrin-
sic membrane properties and plastic synaptic interactions, but nevertheless these
simplified models serve as a useful vantage point from which to view richer biolog-
ical systems and realistic models. Thus it appears that the leech heart interneuron
half-center oscillators (both the biological oscillators and the model oscillators)
operate predominantly in the escape mode although forces that promote release are
at work. Spike-mediated transmission gradually wanes during a burst because of the
slowly declining envelope of depolarization during the burst phase which slows spike
frequency and down modulates IPSP amplitude (Figures 10.2B and 10.3B). Never-
theless, whenever Ih is sufficiently activated to overcome the waning synaptic current,
a transition from the inhibited (active) state to the burst (inactive) state occurs, which
is consistent with an escape mechanism.
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Box 10.3 Morris–Lecar Equations and Phase Plane Analysis

Skinner et al.22 have extended the analysis by Wang and Rinzel21 of an half-
center oscillator using model neurons based on the Morris–Lecar equations.26

These equations represent a simplified mechanism for producing regenerative
potentials of various durations, single or repetitive, spontaneous or evoked (cur-
rent injection). These model neurons have proved very useful in the dynamical
systems analysis of small neural networks. Each Morris–Lecar neuron contains
a low-threshold, non-inactivating Ca2+ (inward) current with instantaneous
dynamics, a slow K+ (outward) current and a leak current.

For each model cell:

(1)

(2)

and

(3)

(4)

(5)

The V#’s are parameters that determine the voltage-dependence of the cur-
rents while gA’s are the maximum conductances of the ionic currents. N and V
are the state variables. V is the membrane potential, and N is the activation
variable of the slow K+ current. M∞ is the instantaneous activation variable of
the Ca2+ current, i.e., it is assumed that Ca2+ activation instantly reaches M∞. M∞
is not a state variable because it is not time dependent. Both M∞ and N∞ show
a sigmoidal dependence on voltage. The relative simplicity of this system makes
it a favorable subject for dynamical systems analysis. Because it has just two
state variables it is possible to apply a powerful geometrical approach called
phase-plane analysis.27,28
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Box 10.3 (continued)

A complete description of phase-plane analysis is beyond the scope of this
chapter. In this analysis, the state variables of the systems are plotted in a two
dimensional space called the phase-plane. Thus phase-plane analysis is limited to
systems consisting of no more than two state variables. Some techniques permit
the reduction of systems of three (or more) state variables if two of the state
variables share a similar time dependence while the third changes much more
rapidly or slowly. For an excellent example see Reference 20. Thus only highly
simplified models of neuronal networks can be analyzed as such, and examples
are limited. In the case of the Morris–Lecar model neurons, the phase plane is the
V–N plane. The differential equations that describe the state variables are set equal
to 0 and fixed curves called nullclines are plotted in the phase plane. For the
Morris–Lecar model neurons, the N nullcline defined by Equation 2 is

(6)

Thus the N nullcline is the steady state activation curve of the slow K+ current.
The V nullcline defined by Equation 10.1 is

(7)

Thus the V nullcline is essentially the steady state I-V relation of the currents
other than the K+ current in the model neuron, normalized by the maximal K+

current at any given voltage. Biologically relevant parameterizations of
Morris–Lecar neurons have steady-state I-V relations that are distinctly N-shaped
(cubic-like) reflecting a strong contribution of the inward Ca2+ current. The
intersections of these nullclines define equilibrium points (stable or unstable)
that govern the trajectories through time of the state variable in the phase plane.
Many oscillatory neural models demonstrate isolated stable orbital trajectories
in the phase plane called stable periodic orbits or limit cycles. A description of
the techniques and application of phase plane analysis can be found in
Reference 27. Phase-plane analysis is supported by the software package XPP
(http://www.pitt.edu/~phase).

In Skinner et al.’s22 model, two identical Morris–Lecar neurons are connected
with each other through an inhibitory synaptic conductance, which is described
by a steep sigmoidal function of presynaptic membrane potential with a set
threshold and instantaneous kinetics.

For this system Equation 1 is modified to

(8)

(continued)

dN dt N N
V V

V
/ , tanh= = = +

−











∞0

1
2

1 3

4

dV dt

N I g V V g M V V g V Vext L L Ca Ca K K

/ ,

/

=

= − −( ) + −( )( )( ) −( )∞

0

C
dV
dt

I
g V V g M V V

g N V V g S V V
ext

L L Ca Ca

K K syn syn

= −
−( ) + −( )

+ −( ) + −( )














∞

∞

© 2001 by CRC Press LLC



Box 10.3 (continued)

and

(9)

V is the membrane potential of the "transmitting or presynaptic" cell, Vthresh and
Vslope are parameters that determine the voltage-dependence of the synaptic
current, gsyn is the maximum conductance of the synaptic current, and S is the
activation variable of the inhibitory synapse. Such model neurons can oscillate
between a depolarized plateau and a sustained inhibitory trough. These oscilla-
tions can be thought of as reflecting the underlying slow wave of membrane
potential when fast changes are ignored (e.g., spikes and spike mediated synaptic
potentials). Thus they correspond to systems where there is a plateau of depo-
larization during a spike burst and dominant graded synaptic transmission. Each
neuron is two-dimensional, i.e., has two state variables V and N. To use phase-
plane analysis, each neuron is treated separately and one takes advantage of the
instantaneous kinetics and steep voltage-dependence of the synaptic interaction.
In the limit when the synaptic activation is infinitely steep and instantaneous,
the model neurons have two mutually exclusive states (inhibited and not inhib-
ited) with instantaneous transitions between them (Figure B10.1). Two mutually
exclusive V nullclines can be drawn in the V – N plane, one with the synaptic
current activated defined by Equation 8

 (10)

and one with the synaptic current deactivated corresponding to Equation 7. The
N nullcline remains unchanged and is given by Equation 6. Now the system
moves through time on trajectories that jump from one V nullcline to another
as the synapse onto the model neuron analyzed activates and deactivates. In
practice, the requirement for infinite steepness can be relaxed somewhat without
fundamentally altering model behavior.

This phase-plane analysis allows a further subdivision of the oscillation modes
depending on whether the escape or release21 is intrinsic or synaptic.22 If the release
is due to a cessation of synaptic transmission (crossing synaptic threshold), it is
synaptic release, but if it is due to termination (deactivation of the inward current,
activation of the delayed rectifier, or both) of the depolarized plateau, it is intrinsic
release. If the escape is due to the commencement of synaptic transmission (crossing
synaptic threshold), it is synaptic escape, but if it is due to expression of the
depolarized phase (crossing plateau threshold), it is intrinsic escape. Varying the
synaptic threshold causes transitions between the modes.

(continued)
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Box 10.3 (continued)

Figure B10.1A illustrates the phase-plane for a parameterization of the
system that leads to oscillation by the intrinsic release mechanism. There are
two V nullclines, the upper corresponding to the free uninhibited model neuron
(Equation 7) and the lower corresponding to the inhibited model neuron
(Equation 10). There is one N nullcline, which is the same for both the free and
inhibited model neurons. The movement of the system through time follows the
trajectory marked by arrowheads. Figure B10.1B shows the alternating voltage
oscillations of the two model neurons. During the oscillation movement through
the phase plane is such that the free cell reaches the end of its depolarized plateau
at k+ and jumps down in membrane potential (V) to k releasing the inhibited
cell. At that moment the opposite inhibited cell would be jumping to its depo-
larized plateau corresponding to a jump from p to p+ in its phase plane, therefore,
the cycle continues.

FIGURE B10.1 A half-center oscillator comprising two mutually inhibitory Mor-
ris–Lecar model neurons. The parameterization of the system illustrated leads to oscil-
lation by a mechanism of intrinsic release. (A) Above is the phase-plane portrait, N versus
V, for one model neuron. The dashed vertical line marks the synaptic threshold (Vthresh

Equation 9) and the dotted vertical lines mark the transition voltages at which the model
cell jumps from one V nullcline to the other. Small arrowheads mark movement of the
system along the V nullclines and large arrowheads mark jumps from one V nullcline to
the other. (B) Below is voltage (V) versus time for the two model cells (horizontal dashed
line marks the synaptic threshold Vthresh). Model parameters were gsyn = 6 µS/cm2, Iext =
0.4 µA/cm2, φN = 2 × 10–6 msec–1, Vslope = 0.001 mV, [gK 20, gCa 15, gL 5 — all µS/cm2],
[VCa –100, VK –80, VL –50, Vsyn –80, V1 0, V2 15, V3 0, V4 15 – all mV], C 1 µF/cm2 (from
Skinner et al., J. Compu. Neurosci., 1, 69, 1994).

Phase–plane

Intrinsic Release Mechanism

.................

..

.................

..

. .

. .

cell 1

cell 2

0 mv

j(k+)

V nullclines

N nullcline

f(V)

f'(V)
g(V)

k+

p p

V (mV)
Vthresh

N

0.8

0.6

0.4

0.2

0
0 50-50

A.

B.

© 2001 by CRC Press LLC



10.6 CONCLUSIONS

In our approach to modeling small networks, there is a close interplay of modeling
and experiment, so that insights derived from experiments are used to ameliorate
the model and model prediction guide that choice of experiment. We have tried to
provide the tools and the rationale for following this approach in this chapter. Part
of this approach is also to use more abstract models, to focus thought, and concentrate
insight. The use of abstract modeling in conjunction with more realistic models has
an added value. By concentrating the essence of network function into more abstract
models and by using these models to interpret results from realistic models, porta-
bility is achieved that is the hallmark of good theoretical science.
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11.1 INTRODUCTION

Linking molecular and cellular phenomena to behavior requires the development of
large scale network models, to understand how cellular phenomena influence the
functional dynamics of neural networks. These types of network models will be
essential for understanding the mechanism for changes in behavior caused by exper-
imental manipulations such as the administration of drugs or knocking out of genes.

Models of large networks of neurons have not achieved the same level of
experimental constraint obtained in models of single cell processes or small net-
works. This results from the multitude of additional variables at the network level,
including the strength and pattern of both excitatory and inhibitory synaptic con-
nectivity, as well as the relative properties and numbers of different types of neurons.
At the same time that the parameter space expands, the experimental constraints on
parameter space decrease due to sparse information about network dynamics. How-
ever, the renewed focus on local field potentials and the rapid development of
simultaneous recording from multiple units1,2 will provide experimental constraints
for more accurate development of network models.

This chapter will provide an overview of available techniques for combining
realistic simulations of individual neurons into large networks, with an emphasis on
linking properties of more abstract network models to those of networks of com-
partmental simulations. The chapter will start with a review of some existing types
of models, with a particular emphasis on scaling problems relating small networks
to large biological systems. The latter portions of the chapter focus on specific
examples of two types of large scale models — one type focused on the dynamics
of encoding and retrieval of sequences of spiking activity, and the other type focused
on the lumped dynamics of large populations. Both types are drawn from recent
work on the hippocampal formation.

11.2 PRACTICAL ISSUES

11.2.1 SOFTWARE

For development of network simulations utilizing realistic compartmental repre-
sentat ions of  s ingle  neurons,  the GENESIS simulat ion package;3

(http://www.bbb.caltech.edu/GENESIS) provides a script language with extensive
functions focused on implementing network simulations with complex compartmen-
tal simulations of individual neurons. As an alternative, the NEURON simulation
package also provides a script language which in recent years has started to focus
more on providing functions for development of network simulations;4

(http://www.neuron.yale.edu).
A number of software packages are available for development of abstract

network simulations. These include implementations of associative memory func-
tion and competitive self-organization as well as use of the backpropagation
algorithm in the software developed with the original PDP books.5 This
sof tware  has  been  updated recent ly  under  the  name of  PDP++;6

(http://www.cnbc.cmu.edu/PDP++/PDP++.html). Other packages with
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documentation include a recent book from the Oxford Cognitive Neuroscience
course7 and the neural networks package in MatLab.

11.2.2 CHOOSING PARAMETERS

Choice of parameters for simulations of large networks often requires information
obtained from anatomical studies, including numbers of different neuronal subtypes,
and connection probabilities between different types of neurons. Unfortunately,
many anatomical studies do not focus on providing quantitative data, and this type
of information is only available in a subset of publications. For the hippocampal
formation of the rat, the numbers of neurons within specific subregions and the
percent connectivities for different pathways have been summarized.8,9 Parameters
for axonal conduction velocities are available from in vivo and in vitro physiological
experiments. Similarly, for piriform cortex, the conduction velocities and connec-
tivity probabilities have been determined from a range of physiological and anatom-
ical studies.10–12

Unfortunately, parameters for the connectivity of large networks are often not
described in sufficient detail. The role of interneurons provides a particular problem,
as it is not entirely clear how to subdivide these into different classes. A number of
different biochemical and morphological characteristics have been described for
interneurons, but their correlation with connectivity and electrophysiological prop-
erties is not fully described.13

11.2.3 EVALUATION OF MODELS

Different sets of experimental data have been utilized to constrain the structure of
large scale models. More abstract neural network models usually focus on data at
a behavioral level,5,14 or address the dynamics of information processing using
illustrative examples that are not directly related to any specific set of experimental
data.15,16

More realistic models must address multiple different levels of constraint. In
particular, many large scale network models start with single cell simulations which
directly replicate intracellular recording data from individual neurons.17–19 These
detailed single cell recordings are then combined in a network simulation to address
data involving network interactions. Many models have focused on the lumped
dynamics of a full population of neurons, allowing simulation of local field potential
recordings at a network level. These include models of oscillatory dynamics observed
using field potential recording in brain slice preparations and whole animals.12,20–23

Other models have addressed phenomena observed during single unit recording,
such as the phasic firing properties of neurons relative to the theta rhythm.24–26 The
dynamics of networks can also be analyzed in terms of experimental data on inter-
spike intervals, auto-correlations and cross-correlations.27,28 These type of data can
demonstrate dynamical interactions within a subpopulation of neurons, even if the
population is not sufficiently large for synaptic interactions to influence the local
field potential. This provides another source of experimental constraints on simula-
tions which utilize spiking neuron models, as these ISI and correlograms can be
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generated by the simulations and fitted with available experimental data. These
techniques have been utilized to explore the mechanisms underlying generation of
gamma frequency oscillations in neuronal circuits.23

Few models have addressed both the network physiological level as well as
behavioral function. Usually, models addressing specific functional properties of a
network focus on these properties without simultaneously addressing physiological
data at a systems level — often because physiological data at a systems level is not
available. In many cases, models of behavior are based on general anatomical
features of a specific system, but use very abstract representations of individual
neurons. For example, many simulations of hippocampal memory function follow
the overall structure of the hippocampus without replicating single cell physiology
in any detail.29–31 More realistic neurons have been utilized in simulations of how
excitatory intrinsic connections can mediate associative memory function, but data
are not available to match these associative properties to physiological record-
ings.19,32,33 Both behavioral and physiological data has been obtained on rat spatial
navigation, and recent modeling work addresses this data on both levels.24–26

11.3 NETWORK VARIABLES

11.3.1 PATTERNS OF CONNECTIVITY

The connectivity in large scale network simulations of neuronal structures usually
includes several basic components summarized in the following sections, using
standard terminology.34

11.3.1.1 Principal Cells

The principal cells in a network simulation are usually excitatory glutamater-
gic cells, which activate other cells through glutamatergic synaptic currents.
In simulations of cortical structures, these principal cells are usually pyra-

midal cells.12,17

11.3.1.2 Afferent Input to Principal Cells

In network simulations, it is necessary to include some means by which principal
neurons are excited by afferent input. The pattern of afferent connectivity can vary
from single input lines for each principal neuron to very broadly distributed patterns
of afferent connectivity. Simulations of the primary visual cortex usually focus on
modifications in the pattern of this afferent connectivity, as these modifications
provide the properties of feature detection and topography modeled in those simu-
lations,35 though recent models have shown that intrinsic connections make an
important contribution to orientation tuning.36,37 In contrast, models of three layered
cortical structures such as hippocampus and piriform cortex do not focus on specific
patterns of afferent input. These models utilize broadly distributed afferent input12

or specific predetermined patterns of input32,33 while emphasizing the role of intrinsic
connections in mediating associative storage of the input activity.
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11.3.1.3 Intrinsic Connections

The term “intrinsic” refers to connections within a region. Excitatory intrinsic
connections provide a dominant synaptic influence within many regions of the brain.
For example, within neocortical structures, intrinsic synapses make up a much larger
percentage of excitatory synapses on an individual pyramidal cell than do excitatory
afferent inputs from the thalamus.38 The pattern of connectivity of these intrinsic
inputs provides a dominant influence on the activation dynamics and functional
properties of large scale networks, and many different patterns of connectivity have
been utilized. In networks focused on modification of afferent input, the intrinsic
connections are relegated to a minor role,35 but these intrinsic connections play an
important role in simulations of physiological network dynamics17 and associative
memory function,33,39 as well as certain aspects of stimulus selectivity.36,37 Many
abstract simulations of network function utilize fully connected networks, in which
every unit is connected to every other unit.15,16 However, realistic simulations must
address the problem of incomplete connectivity between the individual elements in
a network — the sparseness of intrinsic connectivity within cortical networks. Many
simulations have a probability p = 1 of connectivity between individual simulated
neurons. Biological networks have much sparser connectivity, with values of p no
larger than 0.05. This is an important parameter in our example of scaling problems
discussed below.

11.3.1.4 Interneurons

Interneurons are neurons with connectivity limited to a specific neuronal
region. This primarily includes inhibitory neurons, though some inhibitory
neurons project to other regions40 and some excitatory neurons remain lim-

ited to one region (e.g., spiny stellate cells in visual cortex). Most large scale network
models contain only one or two classes of inhibitory interneurons with no differences
in intrinsic properties of these neurons. The primary difference in these models
concerns the primary source of excitatory drive on these interneurons.

11.3.1.5 Feedforward Inhibition

The term feedforward inhibition refers to inhibition activated predominantly by the
afferent input to a region. In network models, excitatory afferent input not only
contacts principal cells, but also provides distributed afferent input to inhibitory
interneurons. This feedfoward inhibition serves to scale the level of inhibition to the
strength of afferent input. If the network receives strong excitatory input, inhibition
increases proportionately to limit the range of changes in activation, or to provide
a strong inhibitory rebound after the initial excitatory input.12

11.3.1.6 Feedback Inhibition

Feedback inhibition refers to inhibition activated predominantly by output from the
principal cells of the network. In simulations of cortical networks, pyramidal cells
activate interneurons which then contact the same population of pyramidal cells.
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This feedback inhibition can play a role in maintaining activity in the range of an
equilibrium state,41 or it can mediate oscillations with a time course corresponding
to the feedback inhibition — for GABAA synaptic currents this corresponds to
oscillations in the gamma frequency range.12,23,42,43

11.3.2 AXONAL DELAYS AND SYNAPTIC TRANSMISSION

Combining realistic simulations of individual neurons in a network requires dealing
explicitly with the time delays of axonal transmission and synaptic transmission. In
more abstract models, changes in the output function of individual units are usually
transmitted instantaneously to other units, simplifying the analysis of network
dynamics. Recent research has provided some analytical tools for describing net-
works with time delays on individual connections,44 but these techniques have not
been utilized for more realistic simulations. Large scale network simulations of
realistic neurons usually contain some representation of the spatial topography of a
network and the transmission time between spike generation at a presynaptic neuron
and the synaptic conductance change at a post-synaptic neuron.

In most simulations, synaptic connectivity is represented by a parameter scaling
the maximal conductance –(gsyn) of the ligand-gated channel activated after genera-
tion of a presynaptic spike (see Box 11.1 and Section 10.2.1 for description of
synaptic potentials). This can be initialized to a fixed value for all connections in a
network or can be an exponentially decaying function of the distance between pre-
and postsynaptic elements. The rate of decay of this exponential function can be
used to determine the spread of connections from any given point in the network.
A separate parameter may be utilized to provide different weight values for individual
synapses using this type of ligand-gated channel. In our simulations we initialized
all weights to a fixed low value. Weights of excitatory synapses onto pyramidal cells
could then potentiated by a Hebbian learning mechanism as described below. Many
simulations utilize random variation of the transmission delays and synaptic weights
around a mean value. This random component can be generated from either a
uniform, a gaussian or an exponential probability distribution. In the simulations of
sparse networks described here, the existence of connections was determined on a
random basis.

11.3.3 SYNAPTIC PLASTICITY

Whereas some network simulations have been designed primarily to focus
on replicating the lumped activation dynamics of distributed networks,12,20

many network simulations focus on some aspect of the adaptive properties
of a network. One major class of models focuses on simulations of associative
memory function based on modification of intrinsic connections.19,32,33 Another major
class concerns formation of feature detectors and topography based on modification
of excitatory afferent input connections.35 Both these types of models implement
changes in the weight of individual synapses — altering the –gsyn of the synaptic
current induced by an individual presynaptic spike.
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Box 11.1 Modeling Hebbian Learning

In the GENESIS simulation package, learning is implemented by use of the
“hebbsynchan” object. This object allows the weight of a connection to be altered
in a manner similar to NMDA-dependent long-term potentiation. Long-term
potentiation (LTP) is simulated by increasing the weight whenever both the pre-
and postsynaptic activities are above a given threshold (separate LTP thresholds
exist for pre- and postsynaptic activities). Long-term depression (LTD) is sim-
ulated by decreasing the weights whenever one activity is above the threshold
and the other is below a separate threshold for induction of long-term depression
(in our simulations, these thresholds were set so that only LTP, but not LTD
could occur). The presynaptic activity is represented by a dual exponential
waveform that is generated by a spike in the presynaptic neuron. The rise time
constant of this waveform was set to be 20 msec and the decay time constant
was set to 50 msec. This slow decay is consistent with the slow decay of current
through the NMDA-receptor channel.46 This allows the presynaptic activity to
remain above threshold for a relatively long time (50–100ms depending on decay
rate and threshold) after generation of a presynaptic spike. The postsynaptic
activity is the average of postsynaptic membrane potential over a brief period
(3 msecs in our simulations). Thus, if postsynaptic membrane potential crosses
the postsynaptic threshold within the time window that the presynaptic activity
is above threshold, the weight is increased in proportion to the pre and postsyn-
aptic activities, and a weight change is made. Figure B11.1 shows the magnitude
of potentiation as a function of the interval between pre- and postsynaptic spiking
for the hebbsynchan parameters used in the simulations. Only AMPA synapses
onto excitatory cells were allowed to undergo learning in our simulations.

FIGURE B11.1 Magnitude of synaptic potentiation as a function of the interval between
pre- and post-synaptic firing. Maximum potentiation occurred when the postsynaptic
spike fired 20–30 ms after the presynaptic spike.
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In more abstract simulations, useful adaptive properties arise from modification
of synapses based on the Hebbian learning rules, in which the change in strength
of a synapse is proportional to the product of both pre-synaptic and post-synaptic
activity. Associations between stored features can be formed if the neurons activated
by each individual feature are active at the same time, resulting in strengthening of
the excitatory synapses between these two neurons. This property of synaptic mod-
ification can be obtained if modification depends upon calcium influx through
simulated NMDA receptor channels, which are activated by a combination of pre-
synaptic transmitter release and postsynaptic depolarization.45,46 The functional prop-
erties of abstract networks are also greatly enhanced by the decay of connections
when presynaptic activity is present without postsynaptic activity, or vice versa.47,48

This property of synapses has also been demonstrated in the form of long-term
depression.49 More abstract learning rules based on minimizing an error between
actual and desired output have been used extensively in connectionist models,5 but
have not been implemented in a manner consistent with known biological principles
in realistic networks.

More biophysically realistic representations of synaptic modification commonly
are based on the biophysical properties of the NMDA receptor. The computational
modeling of the NMDA receptor involvement in synaptic plasticity is summarized
in Box 11.2.

Box 11.2 Modeling the NMDA Conductance

The time course of synaptic conductances are commonly modeled as an alpha
function or as a dual exponential equation, as described in Section 10.2.1 Since
the NMDA conductance is known to depend upon postsynaptic membrane poten-
tial too, an additional control factor k(V) needs to be added. So, using the dual
exponential equation, we can write the NMDA conductance equation as

where –g is a scaling factor, and gpeak is the height of the unscaled equation at

The voltage dependence of the NMDA conductance results from a voltage
dependent block of the channel by Mg2+, which blocks the channel pore at
hyperpolarized potentials. The kinetic scheme for this binding reaction (see
Section 2.2.1) is

(continued)
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11.3.4 SCALING ISSUES

Current computing resources available to most researchers do not allow for simu-
lations of mammalian brain regions to contain the same number of units as are
present in the real network. Detailed simulation of such large networks would require
too much time and too much memory to be practical at this stage. Thus, anyone
performing large scale network simulations must address the problem of scaling
down the size of the network to a smaller number of modeled units. This is a difficult
issue, because many of the functional properties of networks depend upon sufficient
convergence of inputs to allow individual units to spike. If a network is reduced in
size without altering the connection probability or connection strength, individual
units will never receive sufficient synaptic input to go over threshold.

Box 11.2 (continued)

where AR* is the agonist (glutamate)-receptor complex that is not occupied by
Mg2+ and is in the open (conducting) state and ARMg2+ is the agonist-receptor
complex blocked by Mg2+ and no longer conducting. The Mg2+ block is thought
to occur on a time scale much faster than the formation and dissociation of the
agonist-receptor (AR*) complex. Thus, the above reaction is at equilibrium and
the fraction of channels in the conducting state (fopen) is given by

Ascher and Nowak72 showed that the voltage dependence of the rate con-
stants in the above kinetic scheme is given by k–/k+ = 8.8 10–3 * exp(V/12.5),
where V is in mV. Thus,

where η = 0.1136 /mM and γ = 0.08 /mV. Thus, k(V) is a sigmoidal function
of voltage. The time constants for the NMDA conductance waveform are usually
taken to be τ1 = 60–80 ms and τ2 = 0.67 ms. Other studies have used a value of
0.33 /mM for η and 0.06 /mV for γ based on physiological measurements.73

References 23, 46, and 74 provide examples of the use of NMDA channels in
compartmental models of neurons. A complete model of the NMDA synapse
requires three Goldman–Hodgkin–Katz (or constant field, see Section 5.4.2)
equations to compute each of the three separate ion fluxes through the channel
(Na+, K+ and Ca2+),46,75 with a permeability given by gsyn . A simpler alternative
is to compute the voltage-dependent fractional Ca2+ current (relative to the total
Isyn) off-line76 or to assume it is constant.73
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11.3.4.1 Scaling Connection Probability

One means of compensating for the reduced synaptic drive on individual units in
a smaller network is to increase the percentage connectivity. As noted above, most
abstract simulations utilize full connectivity (probability of excitatory connections
between individual units p = 1). This provides effective function in simulations of
associative memory function.19,39 Network function can still be obtained with mod-
erate reductions in connection probability, but associative function is completely
lost at levels corresponding to the actual connectivity within structures such as
hippocampal region CA3. Though this region has the highest excitatory intrinsic
connectivity of any cortical region, the percentage connectivity is only 4%, whereas
the function of a network of 100 simulated neurons drops off rapidly below 20%
(see below).

11.3.4.2 Scaling of Connection Strength

Another means of compensating for reduced synaptic drive on individual neurons
is to increase the strength of individual synaptic connections. In most simulations,
this requires a serious deviation from the available physiological data on strength
of individual synapses. Most simulations utilize some combination of both increased
connection probability and increased connection strength in order to obtain sufficient
activity. If the peak conductance of synaptic currents is maintained constant, the
number of simulated neurons inducing this current can in specific networks be varied
over several orders of magnitude without changing the steady-state network dynam-
ics.23 However, when the number of synapses inducing the current drops below a
certain value, the dynamical properties can change dramatically.

11.4 FUNCTIONAL DYNAMICS

11.4.1 FACTORS INFLUENCING FUNCTION IN LARGE SCALE

REALISTIC NETWORKS. EXAMPLE: SEQUENCE STORAGE

In this example we discuss how sparse neural networks with biologically
realistic representations of neuronal elements, connectivity patterns and
learning rules can store and recall temporal sequences of spatial patterns of

activity, a task which might be integral to the role of the hippocampal formation in
episodic memory.26,50 This model allows quantification of the contribution of specific
physiological and anatomical parameters to the mechanisms of memory. A biolog-
ically detailed simulation of region CA3 of the hippocampus was constructed using
GENESIS.3

11.4.1.1 Single Cell Model

In modeling large networks, simplified compartmental models of single cells make
simulations more manageable in terms of computing resources and time. These
simplifications include using a small number of compartments, reducing the number
of branches in the dendritic tree of a neuron, omitting certain ligand- and voltage-
gated conductances, and placing synaptic (ligand gated) conductances on a limited
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number of compartments instead of distributing them diffusely. The gain in compu-
tation speed comes at the expense of biological accuracy of the network and,
therefore, the amount of simplification has to depend upon the objectives of the
simulation. We include several ligand- and voltage-gated conductances found on
actual CA3 pyramidal neurons in our single cell model, although we did not include
realistic single cell morphology in the model. The model firing behavior is shown
in Figure 11.1. Some simpler 3 compartment models containing only sodium and
delayed rectifier potassium conductances were also tested for their performance in
the sequence storage/recall task. For more discussion on issues related to modeling
single cells see Chapter 9.

The network had populations of excitatory (pyramidal) and inhibitory
(GABAergic) neurons. These were similar to the compartmental models
used previously in simulations of the hippocampal CA3 region.17,26 Pyrami-

dal cells had five compartments and interneurons three. The input resistance and
membrane time constant of these cells as measured by a hyperpolarizing current
step (50 pA) were 60 MOhms and 25 ms for excitatory cells and 140 MOhms and
35 ms for inhibitory cells.

Both pyramidal cells and interneurons received excitatory synapses from other
pyramidal cells in the network. On pyramidal cells these excitatory synapses acti-
vated AMPA and NMDA receptors in the proximal apical compartment, whereas on
interneurons only AMPA receptors were used. Furthermore, AMPA synapses
between pyramidal neurons could undergo Hebbian learning, whereas no learning

FIGURE 11.1
Response of simulated pyramidal cell to current injections of –50, 50, 100, 200 and
500 pA. This is the more complex cell model.
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was employed at AMPA synapses onto interneurons. Inhibition was provided by
GABAA and GABAB type IPSPs. GABAB inputs arrived on the proximal apical
compartment, and GABAA inputs on the soma compartment of both pyramidal cells
and interneurons. Time constants and maximum conductances of synaptic channels
are listed in Table 11.1. These parameters have the same general magnitude as
parameters utilized for simulations of cortical synaptic currents in other studies,12,51

but in vitro studies demonstrate differences in these time constants for different
structures. These time constants are often obtained at non-physiological tempera-
tures, requiring alteration of the time course based on estimations of the Q10 to obtain
the faster time courses which would be present at physiological temperatures23 (see
Section 5.4.2)

11.4.1.2 Network Model

The hippocampal CA3 model consisted of a sparsely connected network of excitatory
and inhibitory neurons. For computing axonal delays, we allowed conduction delay
to vary with distance, and assumed an axonal conduction velocity of 0.5 m/s for
both excitatory and inhibitory cells. We used 20 microns as the distance between
neighbouring neurons in our simulations, and computed distance based upon the
location of units within a one dimensional array of units.

In all simulations, a sequence consisted of five orthogonal spatial patterns, with
each pattern encoded by the firing of five neighboring excitatory (pyramidal) neu-
rons. Thus, 25 pyramidal neurons in all were used to encode the sequence, and these
will be referred to as sequence neurons, since they were directly activated by external
(afferent) input to the network. The remaining cells in the network that did not
receive afferent input will be referred to as background neurons. A pattern was
presented to the network by causing the appropriate sequence neurons to fire by
means of a large and brief (2 ms) depolarizing pulse, representing afferent input.
Successive patterns in a sequence were presented at intervals of 100 ms, simulating
the arrival of inputs at the theta frequency. Each sequence was presented only once
to the network and, thus, very high learning rates were employed to enable single
trial learning. For hippocampal circuits, physiological and behavioral data suggest
that episodic information can be encoded during a single event. Thus, other models

TABLE 11.1 
Parameters for Synaptic Channels Used in the 
Network Models in this Chapter

Type –gsyn (µS) τ1 (ms) τ2(ms) Esyn (mV)

AMPA 4 1–2 2 0
NMDA 20 0.67 80 0
GABAA 100 1 3–5 –70
GABAB 1 30 90 –90

Note: See Chapter 10, Equations 10.1 and 10.4 for symbols used.
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of region CA3 have also focused on single trial learning,50 whereas models of
neocortical learning commonly use multiple interleaved presentations of input stim-
uli.35 A single behavioral trial may involve holding of the sequence in some buffer
(perhaps in entorhinal cortex) which would allow learning to proceed with several
presentations of the sequence over a longer period. At the start of a trial, weights
of all excitatory synapses were initialized to a low, uniform value. The sequence
was then presented and strengths of AMPA synapses were allowed to increase
constituting the learning phase of the task which lasted up to 100 msec beyond the
last pattern in the sequence. Activity in the network was then terminated, synaptic
weights were no longer allowed to vary and the first pattern of the sequence was
presented to test the network's ability to recall the stored sequence.

Output performance of the network was assessed by looking at the activity of
sequence neurons that coded the spatial patterns in the sequence. There were five
sequence cells per pattern. The performance measure (PM) for a pattern q was given
by: PMq = (Nqc / 5) - (Nnc / (Ni – 5)), where Nqc = number of input layer cells belonging
to the pattern that fired, Nnc = number of sequence cells not belonging to the pattern
that fired, Ni = total number of sequence cells.25 For the sequence, PMs was the
average of the performance measures for each pattern in the sequence, excluding
the first pattern that was used to cue recall, i.e.,

where Nq = Number of patterns in the sequence. If all sequence cells fired at some
point, PM for that pattern would be zero. If only the sequence cells belonging to
the pattern fired, PM would be a maximum of 1, and if only sequence cells not
belonging to the pattern fired, PM would be a minimum of –1.

11.4.1.3 Demonstration of Scaling Issues

We began with a simple network model to show that a fully connected network
could learn to store a sequence. Each cell had only three compartments with the
middle (soma) compartment containing Na+ and K+ conductances to generate action
potentials. The network consisted of 25 excitatory and 0 inhibitory cells. Initial
weights of excitatory synapses were very low (0.0005 for all connections), preclud-
ing spread of activity in the network subsequent to activation of sequence cells by
afferent inputs.

As shown in Figure 11.2, for a fully connected network, performance of the
network in recalling the input sequence when given the first pattern is perfect
for high learning rates and drops off sharply as the learning rate decreases.

Figure 11.2A shows a raster plot of network activity for a fully connected network
of 25 excitatory neurons (simple model) with learning rate = 5000, showing perfect
recall (with a performance measure value of 1.0). Note that the full sequence of
patterns is retrieved by the network after input of the retrieval cue, however the rate
of retrieval is more rapid due to the faster conductances of the modified AMPA
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channels. This is consistent with available data suggesting that the place cells
activated during a slow transition through different locations over several theta cycles
may subsequently fire in a more rapid sequential manner.25,27,50

Figure 11.2B shows that the performance of the network falls dramatically
as the network is made sparser (as connection probability, p, is reduced).
Even for high learning rates, decreasing the connection probability to values

below 0.5 causes a dramatic decrease in the performance measure. These simulations
and related analytical work demonstrate that sparse networks require the participa-
tion of background neurons (those not directly receiving afferent input) to complete
the functional pathways connecting one spatial pattern to another in a sequence.
Given the low connectivity percentage of real biological networks, an understanding
of the mechanisms for generation of stable background activity patterns is important.

To enable the participation of background neurons, network size was increased
to 500 simple modeled pyramidal cells out of which only 25 received direct afferent
input to code the five spatial patterns (5 cells/pattern). No synaptic inhibition was
included in the model. The initial weights (weights at the start of the learning phase)
of synapses between pyramidal cells were varied to activate background neurons to
various extents. Connection probability of pyramidal neurons was also varied to try
to find an optimum combination of these parameters. As shown in Figure 11.3,
increasing the initial weight improved sequence recall, but performance was still
poor for sparse networks (p < = 0.4). Furthermore, input cells (pyramidal neurons

FIGURE 11.2 (A) Raster plot of network activity for the simple model of 25 fully connected
excitatory neurons showing perfect recall. Each line corresponds to the somatic membrane
potential for an individual neuron in the network. Pyramidal cells 0–24 were activated in five
successive patterns. Weights were allowed to potentiate during the learning phase. The entire
sequence could be perfectly recalled by the network after input of the retrieval cue (the first
pattern in the sequence), giving a performance measure value of 1.0. (B) Network performance
of the simple model in recalling a stored sequence, as a function of the sparsity of the network
and the learning rate of the AMPA synapse. Performance was poor for sparse networks (low
connection probability), even with high learning rates.
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that received direct afferent input to code the sequence), continued firing in a
sustained manner even after completion of sequence recall. Thus, introduction of
background activity appeared to necessitate the introduction of inhibitory mecha-
nisms to control activity levels in the network. Enhancement of excitatory connec-
tions to facilitate the participation of background neurons also increases the propen-
sity for runaway excitation in the network.

Another approach used previously,26 could be to simulate the differential mod-
ulation of membrane potential by acetylcholine (ACh) and GABA. ACh depolarizes
pyramidal neurons, thereby bringing them closer to threshold and enabling unpo-
tentiated, weak excitatory synapses to cause them to fire. We simulated ACh-medi-
ated depolarization in the network by reducing the amount of leakage conductance,
so that the resting potential was about –60 mV during the learning phase. No ACh
modulation was used during the recall phase and resting potential was –70 mV. To
control the amount of activity in the network, synaptic and intrinsic inhibitory
mechanisms were introduced. Synaptic inhibition was provided by two populations
of feedback interneurons, one activating GABAA and the other GABAB conductances
on pyramidal neurons. Both conductances had the same gsyn value. The probability
of forming a connection between a pyramidal cell and an interneuron (p – > i) was
set to 0.2 and the reciprocal probability (i – > p) to 0.3. Intrinsic inhibitory mecha-
nisms included an AHP current and another calcium-dependent potassium current.17

As expected, an intermediate level of inhibition was needed to produce the
optimum level of background activity that resulted in the best recall performance of

FIGURE 11.3 Network performance in a larger model for recalling a stored sequence as a
function of network sparsity and initial (pre-learning) weights of excitatory synapses. Perfor-
mance was poor for sparse networks (p < 0.3), even with high initial weights. For more dense
networks (p = 0.6), performance improved with increasing weights. However, this resulted
in sustained firing of cells and eventually a population burst during the recall phase of the
trial. The network was composed of 500 excitatory cells (simple model) and no inhibitory
cells. Learning rate was 4000.

0
0.002

0.004
0.006

0.008
0.01

0.2

0.3

0.4

0.5

0.6

0.7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

initial weightp->p connection probability

pe
rf

or
m

an
ce

 m
ea

su
re

© 2001 by CRC Press LLC



the network. This inhibition could be provided by just the AHP alone, the synaptic
inhibition alone, or a combination of the two (Figure 11.4A). Too little inhibition
resulted in population bursts in the network which degraded performance, whereas
too much inhibition prevented background cells from participating in the coding
scheme. Therefore, a crucial issue is the adjustment of inhibition (synaptic and
intrinsic) in the network such that the level of background activity is optimal for
network performance. The ideal situation would be one where the level of inhibition
dynamically adjusts itself to maintain a given activity level in the network for small
perturbations in excitatory strength, connection probability (p – > p), or number of
excitatory cells in the network. Auto-regulation of neuronal activity parameters has
been suggested and utilized in some models.52 As seen in Figure 11.4A, the best
performance measure was ~0.8, and not yet perfect with the above scheme. This
resulted because background firing was not uniformly distributed across the sequence
and was weak during the last two patterns.

The problem of obtaining evenly distributed background activity was solved by
combining the cholinergic depolarization with a phasic oscillation in membrane
potential at theta frequency. This replicates the effect of combined cholinergic
modulation and GABAergic input from the medial septum driving theta frequency
oscillations in the hippocampus.53 The incorporation of these theta frequency oscil-
lations allowed the background activity to be evenly distributed across the individual
elements of the sequence during learning, and therefore to contribute to effective
retrieval of the full sequence, even in a very sparse network (p = 0.1) as shown in
Figure 11.4B. The progressive increase in depolarization of neurons across the theta
cycle ensured that only a specific subset of background neurons were activated, after
which feedback inhibition would prevent activation of additional neurons, and intrin-
sic adaptation would prevent reactivation of the same neurons on the following cycle.
This network contained 200 pyramidal cells, and 40 of each type of inhibitory cell.
Strengths of recurrent connections were too weak, prior to learning, to cause spread
of activity in the network, until depolarization was provided to the background
neurons, bringing them over threshold to participate in the encoding of the sequence.

This phasic change in depolarization could also be effective in gating the output
from the hippocampus. In conditions where multiple sequences are being retrieved
in region CA3, the phasic increase in depolarization would allow neurons receiving
a combination of layer II entorhinal input and intrinsic connectivity to fire first,
before any spurious background activity. If this mechanism is coupled with sequence
readout in the entorhinal cortex layer III which starts with a desired goal location,
then it would allow sequence retrieval in region CA1 to be guided by a destination.
An alternate approach to the use of background neurons would be the use of a more
broadly distributed subthreshold afferent input, which only causes neurons to come
over threshold when intrinsic connectivity matches afferent input, thereby ensuring
that the only neurons activated by a sequential input are those which are intercon-
nected. Oscillatory changes in the magnitude of long-term potentiation which are
out of phase with the excitatory feedback transmission but in phase with excitatory
afferent input allow an effective separation of retrieval dynamics and new encoding.
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FIGURE 11.4 (A) Network performance in recalling a stored sequence as a function of synaptic inhibition (GABAA and GABAB) and intrinsic inhibition
(spike after-hyperpolarization). Performance was better when network activity was controlled with either one form of inhibition in large amounts, or a
combination of the two in smaller amounts. The network had 100 excitatory cells (complete cell model), and 10 each of GABAA and GABAB type inhibitory
cells. Background cells received ACh modulation (see text). Connection probabilities are given in the text. The learning rate was 500. (B) Perfect recall
by a sparse network (p = 0.1) when oscillatory depolarizing input is provided to background neurons. Raster plot shows spike activity in a subset of 100
pyramidal neurons during learning (0–0.5 sec) and recall of a sequence of five patterns. Evenly distributed recruitment of background neurons enabled
accurate retrieval of the sequence even in a sparse network. (C) The voltage in one of the background neurons of the sparse oscillatory network.
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11.4.2 LINKING ABSTRACT MODELS TO REALISTIC MODELS.
EXAMPLE: ATTRACTOR DYNAMICS AND OSCILLATIONS

In contrast to the example of sequence storage described above, numerous simula-
tions of large networks focus on how the average activity of a large population of
neurons changes over time. These simulations often focus on attractor dynamics and
oscillations which can also be described in simpler, more abstract simulations.

11.4.2.1 Attractor Dynamics in Continuous Firing Rate 
Models of Memory

Numerous abstract network simulations of episodic memory function have been
developed.30,31,54 These models simulate aspects of human performance in memory
tasks using networks inspired by the anatomy of the hippocampal formation. The
memory function of these simulations arises from attractor dynamics due to strong
recurrent excitation in simulations of hippocampal region CA3 which drives the
network into specific learned patterns of activity. The term attractor refers to the
fact that input patterns which differ with regard to individual features (different
initial conditions) can elicit the same final pattern of neuronal activity (the same
attractor). Attractor dynamics provide a mechanism whereby the memory retrieved
can be independent of variation in the retrieval cue.

Early attractor models limited the maximal output level of neurons with a
sigmoid function which approached an asymptotic maximum of output no matter
how high the input.15,16 This was critized as unrealistic, since recordings from cortical
structures show that neurons do not fire much above 100 Hz,55 whereas during current
injection, a neuron can be driven to rates over 300 Hz.56 Thus, if attractor dynamics
exist, they must limit firing rate without relying on the maximum firing rate of
individual neurons. Newer attractor models addressed this issue in various ways,
including balancing excitatory and inhibitory influences on neurons.41,57,58 These
models used a continuous firing rate representations, in which an analog variable
approximately represents the number of neurons firing during one time step, and
instantaneous synaptic effects, in which the output of one unit immediately affects
the firing of another unit (in proportion to a synaptic weight variable). These models
avoid the problem of temporal variability caused by the use of spiking output.

In describing the activity of biological networks, it is useful to model the activity
of populations of excitatory units and inhibitory units separately, rather than allowing
individual units to send out both excitatory and inhibitory connections,16 which does
not occur in real neural circuits. Dynamics of the mathematical representation used
here were first studied by Wilson and Cowan,58–60 and this type of representation
has been used to study the dynamics of cortical networks including piriform cortex43

hippocampus41,61 and somatosensory cortex.62

Changes in the average membrane potential of the population of excitatory and
inhibitory neurons are described by the following equations:
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or

(11.1)

These equations show the change in average membrane potential (a) of the
excitatory population and average membrane potential (h) of the inhibitory
population (where zero is resting potential). These averages correspond to

the membrane potential determined by synaptic input. η  represents the passive
decay of membrane potential, and is the inverse of the average membrane time
constant. The summed firing rate of the excitatory population is computed by a
threshold linear function [a – θ]+ of average membrane potential. These firing rates
are zero when membrane potential is below θ and increases linearly (a – θ) for
values above θ. The same function is used for inhibitory firing rate. A represents the
afferent input to a population of neurons. W represents the average strength of
excitatory synapses arising from cortical pyramidal cells and synapsing on other
excitatory neurons, and W' represents excitatory synapses on inhibitory interneurons.
H represents the average strength of inhibitory synapses on pyramidal cells, and H'
represents inhibitory synapses on inhibitory interneurons. The simplified system is
summarized in Figure 11.5A. This simplified system can be analyzed using standard
stability descriptions for coupled differential equations.63 In particular, the stability
of certain states depends upon values of the trace T = (W – η) + (–H′ – η′) and the
determinant K = (W – η)(–H′ – η′) + W′H.

The equilibrium states of networks of this type have been evaluated previ-
ously.41,58 When the trace < 0 and the determinant > 0, the network has stable
equilibrium states. These can be obtained by algebraically solving for a or h, after
setting da/dt = dh/dt = 0. Real biological networks probably only enter equilibrium
states for brief periods, but the network may be continuously moving toward par-
ticular stable equilibrium states. If we assume I = A – ηθ and A′= H' = 0, then the
average excitatory membrane potential during this equilibrium state is:

(11.2)

An example of the response of such a network to input is shown in
Figure 11.5B. The network approaches an initial equilibrium state during
the presence of afferent input A, and after removal of this afferent input, it
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evolves to a different, lower self-sustained equilibrium state. The attractor dynamics
of this system have been used in a number of simulations of modulatory influences
in cortical structures.41,64 This simplified representation also allows analysis of oscil-
latory dynamics. In particular, if the trace = 0 and the determinant > 0, then stable
limit cycle oscillations will be obtained due to the feedback interaction between
excitatory and inhibitory neurons. The fast time constant of inhibition results in
oscillation frequencies in the gamma range.

The intrinsic adaptation of neurons can be represented in a manner similar to
feedback inhibition, with γ representing activation of voltage-dependent calcium
currents above a threshold θ, Ω representing the decay of intracellular calcium
concentration, and µ representing calcium activation of calcium-dependent potas-
sium currents. These parameters can be adjusted to model adaptation properties of
real pyramidal cells.41 The equations take this form:

or

(11.3)

Similar dynamics appear for these equations. When the trace of these equations
(W-η-Ω) equals 0, sustained limit cycle oscillations appear. The slower time constant
of calcium decay results in slower oscillations which could correspond to the fre-
quencies of theta rhythm oscillations. This could be an effective model of theta
oscillations which appear in slice preparations of hippocampus,65 though in vivo
oscillations appear to be forced by septal input.53 Interestingly, even for higher values
of W, these slow frequency oscillations appear due to crossing of the threshold for
activation of calcium channels.

If both intrinsic adaptation and feedback inhibition are incorporated in the
same model, then numerous types of interactions can be obtained. Transitions
between these states might commonly occur in cortical circuits due to mod-

ulatory effects of acetylcholine, which has been shown to change the strength of the
excitatory feedback connections W.41 As shown in Figure 11.5C, changing just the
magnitude of W causes the network to show a number of different dynamical states.
For small W = 0.10, the network shows strongly damped theta oscillations. For
W = 0.11, the equations representing intrinsic adaptation have trace = 0, and sustained
limit cycles at theta frequency appear in the model. For W = 0.13, threshold crossing
results in theta cycles, with nested gamma cycle oscillations due to feedback inhibi-
tion at the peak of each theta cycle. Thus, gamma depends upon sufficient excitatory
activity in the network. Gamma oscillations appear with a theta envelope in structures
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such as piriform cortex66 and hippocampus,67 possibly because the relatively homo-
geneous excitatory connections in these structures cause synchronous phases of
excitation, thereby restricting the periods of gamma. For W = 0.15, the stability of
the equilibrium between excitation and inhibition dominates, and theta rhythm oscil-
lations no longer appear. For W = 0.19, the trace of the interaction between excitatory
and inhibitory neurons is near zero, so the network should show gamma frequency
limit cycles in the absence of adaptation. However, adaptation pushes activity below
threshold and causes longer stretches between cycles. For W = 0.3, the interaction of
feedback excitation and inhibition becomes unstable, and the network shows explo-
sive bursts of activity terminated by feedback inhibition bringing the network below
threshold. Adaptation influences the interval between these explosive bursts. These
explosive increases could correspond to the sharp waves observed after periods of
theta frequency oscillations in rats,68 which appear during lower levels of acetylcho-
line. The transition from theta to sharp waves to quiescence could reflect the decrease
in acetylcholine levels in hippocampus, resulting in a progressive increase in W
combined with a loss of pyramidal cell depolarization.

11.4.2.2 Attractor Dynamics and Oscillations in Spiking 
Network Models

Is it possible to obtain attractor dynamics in networks of realistic spiking neurons?
With spiking output the relative timing of spiking of individual neurons plays an
important role in the temporal variability of input to other units. This makes it much
more difficult to enter and maintain an attractor state. If neurons are all deterministic
and have the same parameters, they will tend to spike in synchrony and will show
oscillatory states rather than fixed point attractor dynamics. The ideal case is that
of completely asynchronous firing, in which different neurons within a population
evenly cover the full range of possible spike times, ensuring that the excitatory
feedback within the population stays uniform across time. In networks of determin-
istic neurons, this can be approximated most effectively by distributing parameters
around specific values so that neurons are less likely to fire in synchrony. For
example, if neurons have mutual excitatory connections, but one neuron receives
slightly stronger input than another, then the neuron receiving slightly stronger input
will fire slightly in advance of the other.

Another means of dealing with the problem of spike timing is to utilize network
oscillatory dynamics as a sort of clock to control the relative spike timing of
individual neurons. In particular, fast feedback inhibition mediated by simulated
GABAA receptors will cause networks to fire in the gamma frequency range. This
can then limit the maximal firing rate of a network to the gamma frequency range.
However, networks that utilize this technique have utilized structured patterns of
point to point inhibitory effects, analogous to those used in Hopfield networks, by
coupling each excitatory neuron with a single inhibitory neuron.19 This is an unre-
alistic feature. Other networks have obtained attractor dynamics by limiting the
maximal excitatory synaptic transmission between neurons by having synapses
become weaker at higher frequences.33 Further analysis of attractor dynamics in
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FIGURE 11.5 (A) Simplified network for mathematical analysis. a represents the average
membrane potential of a sub-population of excitatory neurons, and h represents the average
membrane potential of a population of inhibitory neurons. See text for other symbols used.
(B) Attractor dynamics in a continuous firing rate network with substractive inhibition. Plot
showing the activity (a) of a single neuron across time for different values of the synaptic
parameters. With no excitatory feedback (W = 0), the network shows only a passive increase
in activity when afferent input is present. With no feedback inhibition (H = 0), the network
shows explosive growth of activity. With a proper balance of excitatory and inhibitory feedback 
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spiking networks is essential to understanding the relevance of abstract attractor
networks to the function of real neuronal systems.

Oscillatory dynamics similar to those observed in the abstract network also
appear in networks of spiking neurons. In particular, gamma frequency oscillations
have been demonstrated due to interactions of excitatory and inhibitory units in such
networks.12,23 However, many of the spiking network models focus on inhibitory
interaction between interneurons.21 In the abstract network, the trace cannot be set
to zero with inhibitory connections alone,58 but gamma frequency oscillations can
be obtained due to threshold crossing. Theta frequency oscillations have also been
demonstrated in networks of spiking neurons, simulating the effects of carbachol
modulation in the slice preparation.20 These theta frequency oscillations appear to
result from the same interaction of feedback excitation and intrinsic adaptation
resulting in oscillations in the abstract network described above.

11.5 FUTURE DIRECTIONS

Further development of large-scale network simulations is essential to understanding
the link between experimental data at a cellular and molecular level and the signif-
icance of this data for behavioral function. Large-scale simulations will progress
towards addressing both behavioral and systems physiological data. This will be
most feasible in areas where both types of data have been gathered simultaneously
from awake behaving animals. This includes models of hippocampal formation
single unit activity and behavioral function during performance of spatial navigation
tasks,27 modeling of entorhinal and perirhinal single unit activity during performance
of delayed non-match to sample tasks,69 and modeling of piriform cortex single unit
activity during performance of olfactory discrimination task.70 Models must become
increasingly sophisticated in addressing data at these multiple levels.

In particular, realistic models must take advantage of single cell properties
beyond what is already simulated in an integrate and fire model. The bursting and
adaptation properties of single neurons are important, and should contribute more
substantively to the functional dynamics of network models. Initial work has dem-
onstrated that modulation of adaptation could influence the speed of learning39 and
theta frequency oscillations20 and that modulation of bursting properties could con-
tribute to setting network dynamics for associative retrieval.19 Behavioral data on
the effects of various drugs demonstrate that modulatory influences on single cell
properties have a strong influence on the function of cortical networks.71 Many of
these modulatory effects cannot be represented by simple integrate and fire neurons.

FIGURE 11.5 (continued)
(W = 0.016, H = –0.06) the activity grows to a certain level that can be sustained in the absence
of afferent input. (C) Dynamical properties of continuous firing rate network with different
values for W representing cholinergic modulation of feedback excitatory transmission. These
could correspond to different behavioral states associated with different levels of cholinergic
modulation. For high levels of acetylcholine, synaptic transmission is weak (W = 0.11) and
oscillations resembling theta rhythm appear. For lower levels of acetylcholine, synaptic trans-
mission is strong (W = 0.3) and events resembling sharp waves appear. See text for further
discussion.
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Addressing these types of modulatory influences will be an important area for further
simulations of large scale networks of realistic neurons.
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12.1 INTRODUCTION

All neuronal structures interact with their surroundings in one way or another. For
example, single neurons send and receive synaptic signals, cortical networks com-
municate with other networks via a multitude of projections, spinal circuits send
signals to muscles and receive sensory feedback, etc. In experimental setups, a
neuron or a network may sometimes be studied in isolation but in general the
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environment must also be taken into account to establish the right conditions for
normal operation. When experiments are done in vitro, this normally implies that
the neuron or network is deprived of the natural input and output and, thus, works
in isolation. In vivo experiments, on the other hand, may be able to keep most of
the surroundings intact.

In the case of simulation studies the same consideration arises. Most models
used in computational neuroscience to date correspond to an in vitro situation where
the operation of the system under study is described and analyzed with no or very
limited interaction with surrounding structures. However, there is now a growing
need for what could be referred to as situated models, i.e., models that incorporate
in vivo-like operating conditions. In some cases this may simply be a matter of
extending the simulations to include surrounding neuronal structures, perhaps using
much simpler neuron models for these peripheral parts. In other cases it may be
necessary to incorporate completely new kinds of models.

For neural networks which interact closely with body mechanics via muscles
and mechanosensors, models which describe the mechanical movement itself as well
as actuators and sensors become imperative. This applies evidently to studies of
classical motor functions like, for example, locomotion and posture control. Many
sensory systems are also tightly coupled to motor acts and may therefore need a
proper representation of the neuro-mechanical interaction. In this chapter we will
describe some techniques to simulate the working environment for networks that
interact with a mechanical environment. This relates in part to the methods used in
the area of biomechanics. We should, however, keep in mind that the objective here
is to provide a reasonable representation of the working environment, which means
that we may allow ourselves to do rather drastic simplifications to the models of the
mechanical subsystem.

In biomechanics it is common to distinguish between kinematic and dynamic
descriptions of the motion. A kinematic model describes how the different parts of
the body move in terms of positions, angles, velocities, etc. Such variables can
often readily be measured, for example by using a video camera setup. The kine-
matic model is primarily useful for describing the movement itself, but is seldom
enough for relating the motion to the neural activity. A dynamic model is more
complete in that it also includes the underlying forces and torques. In most cases,
a dynamic model is required to predict the motion that results from neuronal
activation of muscles.

In this chapter, we will describe how a dynamic model of the body can be
formulated so that it can be used to compute the motion as a result of our simulated
motoneuronal activity. We will also discuss how the neuronal and mechanical
models can be interconnected via model muscles and mechanoreceptors to form a
complete feedback loop.

12.2 THEORETICAL FOUNDATION

In order to assemble a complete model for neuro-mechanical simulation the neuronal
models described in earlier chapters may be used but they need to be complemented
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with models for body mechanics, muscles and, possibly, mechanoreceptors. In this
section, we will go through these additional models one by one to provide the
necessary pieces to complete this model jigsaw puzzle.

12.2.1 BODY MECHANICS

Before any mathematical model can be formulated for the body movements, we
have to describe the body in a reasonably simplified way. Creatures, in general,
come in an almost unlimited number of forms and it is not feasible to build a
theoretical framework which covers every possible alternative. Instead, we will focus
on a typical modeling situation, bearing in mind that in practice one may have to
make several modifications to this framework to adapt it to the problem at hand.

Our primary assumption will be that the body can be regarded as a number of
stiff sub-bodies, segments, interconnected via joints. These sub-bodies may typically
correspond to limb segments, in the case of limb movements, or even separate bones
of the skeleton. For bodies (or parts of the body) that are not naturally segmented
in this way, it may, nevertheless, be possible to use the same technique by doing an
artificial subdivision into sufficiently small segments. This method has been sug-
gested for, for example, fish and snake bodies.

The segmented view of the body is not suitable for animals that utilize a
hydroskeleton such as worms and snails. For these animals the pressure within body
sections becomes essential and has to be simulated properly as it is generated by
the contraction of several surrounding muscles. We will not go into the details of
such models in this text but will focus on the more classical segmented systems.1

The neuronal system influences the movements of the linked segments via
muscles; here considered in two forms: linear and angular. A linear muscle applies
a pulling force between two insertion points located on different segments. In reality,
most muscles apply force to the skeleton via a complex system of tendons, which
means that this simplistic view of a linearly pulling muscle may not be adequate.
In many cases it is more appropriate to use an angular model where the muscle
directly generates torque around a joint.

In addition to the geometry of the segment model, it is necessary to decide on
the physical parameters for each segment. This is comparatively simple since the
only parameters needed are the mass and moment of inertia along with the location
of the center of gravity. In the case of a full 3-D model, it is also necessary to know
the direction of the principal axes of inertia which in practice is often evident from
symmetries of the segments. It is generally practical to introduce a local coordinate
system for each segment with the origin located at the center of gravity and the
coordinate axes pointing in the principal directions of inertia. Things fixed to a
segment, particularly joint and muscle insertion points, may then be expressed as
constant positions in this local coordinate system.

The actual shape of a segment only becomes relevant in two situations: detec-
tion of contact with other objects and for graphical visualization of the resulting
motion. Both these situations can normally be taken care of outside of the core
simulation machinery.

© 2001 by CRC Press LLC



Another aspect to consider when designing a mechanical model is whether it is
necessary to incorporate the full 3-D motion or if a 2-D model is sufficient. In
general, the mathematical description as well as the numerical solution becomes
substantially simpler in 2-D. In some rare cases it may even be possible to reduce
the model to a one-dimensional system. Examples of this include single-joint limb
movements and pure horizontal or vertical eye movements.

12.2.1.1 Joints

The motion of completely independent segments would be trivial but not that inter-
esting to simulate. What makes the mechanical model complex is the presence of
joints which restrict how the segments may move in relation to each other and
introduce inner forces which have to be deduced from the system as a whole. Joints
can be of several different forms but they all have in common that they impose
restrictions on how two joint segments may move in relation to each other. Such a
restriction is called a kinematic constraint since it constrains the positions and
velocities, i.e., the kinematic configuration, which may be reached during the motion.

In technical systems there are both sliding and rotational joints but in biome-
chanical systems the former are very rare. In a 2-D model, only one type of rotational
joint is possible and it simply fixates one point in the first segment to another point
in the second. The two segments are still able to rotate in relation to each other
around the joint and their relative position can be described by a single variable,
typically an angle.

In a 3-D model there are several possible variants of rotational joints and they
may all be useful in biological models. The purest 3-D joint is the spherical joint
which joins two points, as in the 2-D case, without any further restrictions. The
human shoulder may be regarded as such a joint. Since the segments are free to turn
in many ways around their common point, the relative position is not that trivial to
describe. In fact, three angles are necessary to fully specify this kind of joint
configuration and if not treated cleverly, this may be the cause of some rather tangled
mathematics.

Another prevalent kind of 3-D joint is the coaxial or hinge joint. Here, the
segments are only free to rotate around a common axis, like in the human knee.
Again, it is sufficient to use one angle to describe the configuration since only one
degree-of-freedom is left open. To characterize a hinge joint it is necessary to specify
not only a point but also a direction within the local coordinate system of each
segment. This direction forms the common axis of rotation.

A third, less common, type of rotational joint is the universal joint where two
axes are involved, one from each segment. The motion is constrained such that the
angle between the two axes is constant, often at right angle. The universal joint has
two degrees-of-freedom and, thus, requires two angles to parameterize.

The constraints imposed by all the joints mentioned can be expressed as a set
of algebraic equalities. This is important since it allows a uniform mathematical
treatment which is independent of the precise configuration. All rotational joints
specify that one point in the first segment coincides with another point in the second.
The global coordinates for that point can therefore be expressed in two separate
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ways, one from the state variables describing the location of the first segment and
another correspondingly from the second. As these coordinates have to be identical
this constitutes an equality that has to hold during the entire motion. For hinge and
universal joints, additional equalities emerge from the requirement on the angle
between the two axes. The constant angle may be expressed in terms of a constant
scalar product between unit vectors in the two directions, which again constitutes a
simple algebraic equality.

12.2.1.2 External Forces

Besides direct muscle forces and inner forces emerging at the joints, segments are
normally subject to a multitude of external forces originating from the mechanical
surroundings. First of all, most movements take place within the gravity field of the
earth. Gravity is easily incorporated into the mathematical model by adding a vertical
force at the center of gravity for each segment. For water-living animals, buoyancy
counteracts gravity and should be subtracted from the gravity vector. Gravity is
proportional to the segment mass while buoyancy is proportional to its volume. Note,
however, that the center of gravity and the center of buoyancy do not necessarily
coincide. Thus, the two forces may have to be applied at different points.

Direct contact with other objects, such as foot-to-ground contacts during walking
or a hand touching an object, is trickier to simulate properly. There are special
problems associated with the simulation of contact forces. First, the kinematic
constraints depend on whether or not the body is in contact with the object (which
may be the ground). Second, the impacts may give rise to shock waves, which are
not handled correctly by most numerical integrators.

With the numerical simulation methods we are suggesting here, the kinematic
constraints are represented explicitly in a way which makes it possible to add and
remove individual constraints while the simulation is running. One way of modeling
contact is to add a new joint at the point of contact and include the corresponding
constraints dynamically. A special problem is then to determine when this contact
point should be removed again. One option is to calculate the contact force and
check its direction.

The problem of shock waves arises when the impact forces at touchdown are
very high giving rise to short duration, high amplitude forces throughout the body.
Such a shock wave almost instantaneously changes the velocities of all segments.
In less severe cases, when the body or object is compliant, it may be sufficient to
use very small time steps right after the impact. In general, however, it may become
necessary to utilize a separate method that explicitly calculates the velocity changes
throughout the body. Friction between the body and ground/object is another phe-
nomenon that may have to be taken into consideration but handling this properly
becomes rather complex and is left out of our current framework.

For animals moving in water it may also be necessary to take the viscous and
inertial forces of the water into account. A similar need arises when studying rapid
movements in air, for example insect wing movements. The Navier–Stokes equations
provide the mathematical tool for describing this properly. They state the relationship
between the local flow field and the pressure (see Reference 2 for an introduction).
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Numerical simulation of these equations is, however, no simple matter and generally
requires substantial simplifications to be tractable. For larger animals the main
problem is that a very thin boundary layer is formed around the body where the
flow field changes rapidly. To adequately represent this numerically, extremely dense
spatial grids are required and that can easily make the computational burden enor-
mous. State-of-the-art methods for Navier–Stokes simulations rely on the use of
non-uniform grids, which move or change shape during the motion.

It may be possible to use simplified models of the forces from the surrounding
water. One technique is to ignore all dynamic effects of the flow and simply use the
corresponding static drag force, which is proportional to the square of the velocity
of each segment. Another technique is to use an “added-mass” model where the
mass of each segment is increased to accommodate the water that has to move with
it. Which approximation is adequate will vary from case to case and we will therefore
not go deeper into this issue.

12.2.2 MUSCLE MODELS

The force produced by a muscle is primarily a function of its length, velocity and
level of activation. In the most simplistic models the muscle force is assumed to be
a linear function of all these variables. In reality the relationship is more complex
but linear models are often sufficient for the purposes we are addressing here. The
classical model of Hill3 describes these three linear mechanisms as operating inde-
pendently in the production of the force. The muscle is regarded as being composed
out of three parallel components: a contractile (force generating) component, an
elastic component and a viscous component. A serial elastic component may also
be included (Figure 12.1).

Measured data on muscle force production are normally presented in terms of
force-length and force-velocity diagrams. The parameters for a linear muscle model
can then be estimated directly from the slope of the curves in the appropriate part
of the diagrams. One parameter that is hard to measure experimentally is the scaling
factor between motoneuron activity and force production. In most cases the moto-
neuron pool is simulated with a reduced number of neurons, which means that there
is also a need to scale the activation itself properly. This is typically done by tuning
this free parameter so that the resulting force becomes correct for some known level
of activation of the motoneurons. Such a known calibration point may be maximal
activation, mean activation during a rhythmic task, etc.

In the simplified muscle models we are considering here, the dynamics of the
muscle activation is ignored and thus, the instantaneous activation level is used to
set the force generated. This simplification, however, becomes a complication when
the activation comes from spiking model motoneurons. The spike rate somehow has
to be converted into a continuous muscle activation value. This may be achieved by
incorporating a single-compartment passive “motor unit” with a proper time con-
stant, which receives the motoneuron output and gives a smooth enough signal to
control the instantaneous force.

Pairs of muscles often work in an antagonistic fashion around one joint to be
able to generate torques in both directions. This is, for example, the case with flexor-
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extensor pairs of muscles in limb movement where one muscle flexes the joint while
another extends it. Such pairs of muscles may be lumped into one force or torque
generator in the mechanical model, thus reducing the complexity of the simulation.

12.2.3 MECHANORECEPTORS

Mechanoreceptors sense features of the mechanical state and translate this into
neuronal activity which is fed back into the neuronal network by synaptic connec-
tions. In most circumstances it is relatively simple to provide a reasonable model
for these receptors. As always, if a detailed account of the receptor properties is
needed it may be necessary to use a sophisticated model also for this stage and this
may become arbitrarily complex.

The first simplification that should be considered is whether the receptors can
be regarded as pure input-output devices or if it is necessary to take some internal
state of the receptors into account. In many cases it is sufficient to regard the
mechanoreceptors as a simple transformation from mechanical state to neuronal
activity levels. This greatly simplifies the simulation since the receptors themselves
need not enter the numerical simulation machinery but can be handled separately
as a function applied at each time step.

However, receptor activation is often not linear. Saturation effects and other non-
linearities are commonplace and can often not be ignored. With a pure input-output
model, non-linearities are trivial to incorporate. Measured calibration curves can,
for example, be used directly by entering the measured values in a table and inter-
polate during the simulation to get fairly accurate activation values.

In practice, the trickiest part of incorporating mechanoreceptors may in fact be
to get the appropriate mechanical state values in the first place. Most state variables
that may influence these receptors are explicitly represented in the mechanical part
of the simulation and pose no problem. This is normally the case for such variables
as positions, angles and velocities. Other parts of the mechanical state, such as forces,
torques, pressures, etc. may not be explicit in the simulation method and then have
to be deduced from the variables available.

FIGURE 12.1 Schematic showing the parallel contractile, elastic, and viscous components
of a model muscle. A serial elastic component is also included. See References 20 and 21
for more details. (Graphics by Tomas Ekeberg.)
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The output of the receptors needs to be converted into a form suitable as input
to our neuronal simulation models. One simple technique is to enter the receptor
activation as a membrane current in a modeled sensory neuron. If necessary, it may
also be possible to formulate a model where the true activation method of the receptor
is mimicked more closely. One example of such a technique is to use a membrane
leakage, which depends on the stretch or force applied.

12.3 SIMULATING THE MECHANICAL MODEL

12.3.1 CHOICE OF STATE VARIABLES

First thing to do when putting the mechanical model in mathematical clothes is to
choose a kinematic parameterization, i.e., a set of state variables which uniquely
defines the positions and velocities of all the segments. There are many ways of
doing this parameterization and the choice is important because it affects how
complex the mechanical model will be to formulate and simulate.

One seemingly natural choice is to use a set of state variables that only describe
motions that are actually possible, that is, in accordance with the kinematic con-
straints imposed by the joints. This is the case if we, for example, use joint angles
to describe the relative position between neighboring segments. In this type of
description, each degree of freedom corresponds to one state variable such as an
angle or a position. The drawback with this kind of natural parameterization is that
the corresponding equations of motion typically become very complex unless the
system is extremely simple.

A perhaps less obvious alternative is to use a redundant state representation in
combination with a set of algebraic constraints. The redundant representation then
has more degrees-of-freedom than the mechanical system itself but the constraints
restrict the solutions to a subspace of the correct dimensionality. For example, the
position of each segment can be represented with six values (in 3-D) or three values
(in 2-D) independently of any joints. The kinematic constraints from the joints are
then incorporated by utilizing a solution method, which ensures that the state does
not diverge from the allowed configuration.

The advantage with the redundant parameterization technique is that the state
variables for each segment can be made independent to make the dynamic equations
very simple, for example linear. The drawback is that the differential equations
describing the dynamics have to be complemented with a set of algebraic equations
imposing the kinematic constraints. The numerical simulation technique used thus
has to be able to handle such differential-algebraic equation systems. In practice,
the advantages often make the redundant systems the best choice.

The use of angles to represent the orientation of the segments may seem straight
forward, but it inevitably introduces trigonometric dependencies into the equations.
In 2-D, this is not so much of a problem but in 3-D things may become quite
complex. An alternative is then to utilize pure Cartesian coordinates to completely
do away with angles.4 The orientation of each segment is then represented via a set
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of orthogonal unit vectors, i.e., the base vectors of the local coordinate system. These
vectors are stored using Cartesian coordinates in the global coordinate system.

The Cartesian representation is highly redundant. For example, 12 values are
used to represent the position and orientation of a segment in 3-D, a system with
only 6 degrees of freedom. Extra constraints are therefore required to restrict the
solutions to allowed values. These extra constraints emerge from the restriction that
base vectors have unit length and are mutually orthogonal. It is straightforward to
formulate this as a new set of algebraic constraints that are added to our set of
kinematic constraints. Numerically, the same simulation machinery can handle both
sets of constraints. One disadvantage with the Cartesian representation is that the
number of state variables increases. In practice, however, the simpler equations make
up for the burden to compute the extra state variables.

12.3.2 EQUATIONS OF MOTION FOR A PLANAR SYSTEM

We will now look more in detail into how a planar (2-D) mechanical model can be
formulated mathematically and simulated numerically. By necessity, this will force
us to use a mathematical formalism, which may be hard to follow for a more
biologically oriented reader. In particular, we will make use of partial differential
equations and compact matrix notation.

As argued earlier, redundant representations are normally preferable because
they can make the dynamic equations simpler. In the 2-D case the pure Cartesian
representation may not pay off and we generally save that technique for 3-D problems
where angles cause more problems. Here, we will use a set of state variables where
the position of each segment is described in terms of the location of its center of
gravity (x,y) and one additional angle ϕ determining its orientation (Figure 12.2).
That this is a redundant representation should be obvious since we can select values
which position the individual segments independently, possibly violating any kine-
matic constraints enforced by the joints.

FIGURE 12.2 For a planar system, the position of each segment can be described by three
state variables which also defines the location of a local coordinate system. The joint between
the two segments is at a fixed position in both local systems. (Graphics by Tomas Ekeberg.)
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The dynamics of each segment is given by Newton’s equations:

where m is the mass and I the moment of inertia. The right hand sides are the forces
ƒ and torques φ, which act on the segment. To simplify the mathematical formulation,
these equations are often written in matrix form:

where

For a system of interconnected segments, the dynamic equations for each seg-
ment are simply combined into a larger system of equations of the same form, except
that we have to include the inner forces,

–Γ, acting at the joints.

Incorporation of joints in 2-D is straightforward since there is basically only
one type of joint: rotation around a common point. As we have argued above, the
kinematic constraint equations should be derived from the fact that this common
point may be mathematically expressed in terms of the location of each of the two
segments involved in the joint. Let us call the two segments, A and B. The common
point is of course fixed within the local coordinate systems of both A and B. To
make the equations simpler, we will use polar coordinates 〈αA ,βA〉, and 〈αB ,βB〉 for
the location of the common point in each of these coordinate systems. Since this is
the same point, both the x and y coordinates have to be equal:

This constitutes our algebraic constraint equations corresponding to the joint
between segments A and B. In general, by constructing similar equations for all
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joints and moving all terms to the left hand side, these kinematic constraints can be
collected in one compact vector equation:

The inner forces
–Γ emerge at the joints and are related to the constraint equation

we have just formulated. In fact, the vector
–Γ is always of the form GTλ– where G

is the Jacobian matrix corresponding to the kinematic constraint equation and λ– is
a vector which scales the different constraints appropriately. A Jacobian matrix can
be regarded as the generalization of a derivative for vector-valued functions. It is
the matrix comprised of all the partial derivatives of each component with respect
to each component of the argument vector:

The components of the vector λ– are uniquely defined since they must be chosen so
that the constraint equation is fulfilled. Thus, the entire mechanical system can be
written as the following differential-algebraic equation system:

12.3.2.1 Numerical Solution Techniques

Since we are faced with a differential-algebraic equation system, we can not simply
use an ordinary differential equation solver to simulate the system we have just
described. The problem is that the factors λ– are unknown and have to be computed
at each time step so that the solution adheres to the constraint equation:

Once we have a method to compute the values of λ– , any standard differential
equation solver, such as the Runge–Kutta method, can be applied to the remaining
pure differential equation:
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Fortunately, the values of λ– can be calculated from the equations we already have.
First, we note that the constraints have to be fulfilled at all times. Therefore, we
may take derivatives with respect to time of the constraint equation and still have a
valid equation. The first derivative yields:

The second time derivative gives us:

The trick is now to eliminate by substituting from the dynamics equation, i.e.,

which results in:

or

This may look complicated but in fact this is a simple linear equation system
where our unknowns λ– can easily be solved using standard techniques, e.g., Gaus-
sian elimination. The only potential problem with this equation is that the inverse
of the mass matrix M is needed. The way M has been constructed, however, guar-
antees that it is a diagonal matrix, which is trivial to invert.

Once λ– is known, it is straightforward to integrate the dynamic equation

over time using conventional techniques.

12.3.2.2 Potential Problems with the Numerical Solution

There is one serious problem associated with the solution method just described. If
the solution for some reason diverges from the kinematic constraints, there is no
guarantee that the solution method will bring the values back toward kinematically
correct solutions again. In fact, numerical errors will always enter the solution and
gradually accumulate until the simulation eventually breaks down due to instabilities.

Gq̇ = 0

Gq Gq˙̇ ˙ ˙+ = 0

˙̇q ˙̇q

˙̇ ,q M f GT= +( )−1 λ

GM f G GqT− +( ) + =1 0λ ˙ ˙

GM G GM f GqT− −( ) = − −1 1λ ˙ ˙ .

Mq f GT˙̇ = + λ
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The underlying reason behind this problem is that we have not been utilizing the
kinematic constraints directly but only via their second time derivatives. This means
that the accelerations will follow the constraints while the positions and velocities
may drift away so that, for example, two segments are no longer coinciding at a
common joint. In fact, the drift of the velocities is far more problematic and generally
needs to be compensated for unless the simulation time is very short.

Fortunately, there is a rather simple cure to this problem suggested by
Alishenas.5,6 The idea is to bring the positions and velocities back to the subspace
defined by the constraints by projecting them to the closest point in this subspace.
It is generally sufficient to do this for the velocities so we will restrict our description
to this method here.

Let’s assume that we, after some time of simulation, have the velocities which
are not perfectly coherent with the constraints. We may then compute a vector x– by
solving

Note that the matrix (GM–1G T) has already been used in the ordinary computations
and need not be computed again. The vector x– is now used to calculate a new set
of velocities

These new velocity values are guaranteed to meet the constraints while being
as close to as possible. They may therefore replace in the dynamic simulation.
This velocity stabilization is comparatively inexpensive in terms of computation.
Furthermore, it is not necessary to apply this projection at every time step since it
takes a while for the errors to accumulate. Application at every tenth step is typically
sufficient to ensure a stable simulation.

12.3.3 EQUATIONS OF MOTION FOR A 3-D SYSTEM

The simulation technique we have just described for a planar mechanical system
can in principle also be used in the 3-D case but many things in the mathematical
formulation become far more complex. In particular, the use of angles for segment
orientation results in complex trigonometric dependencies. We will here sketch an
alternative method, which in general is better for 3-D systems.

As argued before, we can use a pure Cartesian parameterization of the mechan-
ical state. The location of each segment is then described by twelve variables: three
for the location of the center of gravity and three coordinates for each of the three
directions corresponding to the principal axes of inertia (Figure 12.3).
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Here, we have introduced the unit vectors which form the basis
for the local coordinate system.

The equation of motion still has the form

Provided that the unit vectors are selected to point in the
principal directions of inertia, the mass matrix becomes a simple diagonal matrix:

The force vector ƒ
–

now has the following interpretation:

where the different φ’s represent external torques around various axes.
This representation has twelve variables describing the location of each seg-

ment and needs extra constraints to limit the degrees of freedom to six, which
is what is expected for a fixed object in 3-D space. The constraints are obtained
from the requirement that the vectors should be orthogonal unit
vectors:

FIGURE 12.3 The location of each segment is described by the position of the center of
gravity and the orientation of the base vectors defining the local coordinate system. Here, a
hinge joint is constraining the relative movements of the two segments by stipulating one
common point and one common axis. (Graphics by Tomas Ekeberg.)
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These extra constraints are added to the kinematic constraints derived from the
joints to form a –g-function which includes all the constraints. Thus, the constraints
are condensed down to the same form as before:

12.3.3.1 Numerical Solution

Simulations of complex mechanical systems are traditionally caught in a computa-
tional dilemma. Counteracting forces that vary rapidly with position or velocity often
cause problems because even small numerical errors give rise to large reacting
accelerations. This constitutes what is known as a stiff system and makes it necessary
to take extremely small time steps to ensure numerical stability unless implicit
numerical integration techniques are employed. Implicit methods, however, gener-
ally require a full non-linear equation system to be solved at each step. For a complex
mechanical system this may be an overwhelming task.

A traditionally separate problem is that the constrained dynamic motion is
described by a differential-algebraic system, which needs to be resolved. In the 2-D
method described above we solved this by computing the unknown factors λ– . A
simpler way to handle the constraints would be to regard them as very stiff coun-
teracting forces, which would ensure that the motion proceeds according to the
constraints. The mathematics then becomes simpler but we definitely end up with
a stiff system, even if the underlying mechanical system is not stiff by itself. Thus,
this really necessitates the use of implicit integration.

An elegant way to solve this dilemma has been suggested by de Jalón and co-
workers.7,8 They noted that by using the Cartesian representation, all the constraints
emerging from joints of any kind are simple second order equations. The Jacobian
matrix, being the partial derivatives of the constraints, is therefore always a linear
function of the positions. This makes the implicit integration techniques tractable
and, thus, makes it possible to utilize the straightforward technique of stiff counter-
acting forces to handle the constraints.

The traditional way of integrating the equations of motion is to first solve the
accelerations and then use them to calculate the velocities and positions. Problems
with drift and instabilities can, however, be avoided by instead using the positions
as primary variables. To achieve this, velocities and accelerations are replaced by
appropriate difference approximations:

Here, h is the time step and ·q̂  and q̂̈  are expressions calculated from the state
variables of the previous time step. Note that the positions and velocities of the step
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only enter as constants. The only remaining unknowns are the positions at the next
time step, which have to be solved from the equations of motion.

The implicit solution method typically involves two stages. First a predictor
step is taken which gives a reasonable guess for the positions in the next time
frame. This can typically be a simple extrapolation using the known positions and
velocities from the previous step. Next, a corrector is applied which improves the
new position iteratively by means of Newtons method.9 Normally, only a single
iteration is necessary.

12.4 SOFTWARE

There are a number of commercial software packages available for mechanical multi-
body simulations. The most famous product of this sort is the ADAMS simulator
(http://www.adams.com). The primary market for these products is the mechanical
industry and there is generally little support for biomechanical models per se. There
are a few products on the market aimed especially for biomechanical modeling. One
example is SIMM “Software for Musculoskeletal Modeling” (http://www.musculo-
graphics.com). Typically, these packages are not designed to support interaction with
a neuronal model, normally running in another simulator. One would, however,
expect future versions of these commercial packages to support our needs as the
interest from both neuroscience and biomechanics is growing. At present, however,
we are forced to either write our own simulators or arrange a clever interface to the
existing packages.

12.5 EXAMPLES

12.5.1 LAMPREY SWIMMING

The lamprey has been used as a model animal for vertebrate locomotion in
a number of studies.10 The spinal rhythm generating neuronal network has
been characterized in detail and constitutes one of the best known vertebrate

circuits. A number of simulation studies have also been done of this system from
single neuron models11,12 up to extensive network simulations.13,14 Since the spinal
circuit communicates directly with the mechanics via muscles and mechanoreceptors
a natural extension of the simulations was to incorporate also the mechanical sub-
system.15,16

The swimming motion of the lamprey is basically horizontal: lateral undula-
tions of the body travel from head to tail with increasing amplitude and propel
the body forward. In the neuro-mechanical simulation studies a planar mechanical
model was therefore used, where the motoneurons activate longitudinal muscles
located on each side of the body. The mechanical model is based on a chain of
interconnected segments with muscles pulling on each side in an antagonistic
fashion. Stretch receptors sensing the curvature of the body synapse into the rhythm
generating circuit. Linear, stateless models were used for both muscles and mech-
anoreceptors.

© 2001 by CRC Press LLC



The mechanical part of the simulation was handled with the technique we have
just described for planar systems. One extra complication was that the forces from
the surrounding water could not be neglected in order to mimic the true motion
pattern. Since the lamprey is several decimeters long while the boundary layer of
quickly varying water velocities is only a fraction of a millimeter, using the
Navier–Stokes equations was considered too risky. Instead, the static drag force was
used as an approximation, which is also much simpler to compute from the local
velocities of the body segments.

The neuronal system itself was modeled with simple non-spiking cells to be
able to simulate the activity along the entire spinal cord. The parameters for these
simplified neurons where in fact derived from earlier more detailed simulation
studies comprising multi-compartment neurons with appropriate channel dynamics.

The integrated neuro-mechanical model of the lamprey could be used to address
a number of scientific questions. The role of the sensory feedback could be studied
by tampering with the feedback and studying the effects. The effect of different
kinds of control input from the brainstem could be mimicked to explain how various
motor behaviors come about. Later, a 3-D model of lamprey swimming has been
constructed to make neuro-mechanical studies of pitch and roll turns possible.17

12.5.2 MAMMALIAN WALKING

The neuronal control of four-legged walking is a complex task, which
involves a number of simultaneously operating mechanisms. Only fractions
of the neuronal circuitry is known in any detail while a considerable amount

of knowledge is available on the systems level. Neuro-mechanical simulations can
here play a role as a way to put known neuronal mechanisms in a context to see
whether they are sufficient to explain the observed behavior and perhaps indicate
where to search for missing pieces of information.

In a series of simulation studies of mammalian walking, manually designed
neuronal circuits were used to implement mechanisms known from experimental
data.18,19 These networks are critically dependent on sensory feedback for their
operation, which made it necessary to incorporate the mechanical system into the
simulations. While the neuronal models as such are general enough to describe many
different species of walking mammals, it was necessary to fix the parameters of the
mechanical system to describe an animal with realistic proportions. Since most
experimental data on walking is available from the cat, model parameters, such as
segment weights and sizes, where set to resemble a cat.

The body was regarded as a system of nine segments, two for each leg and one
for the trunk. Knee joints where represented by hinge joints, thereby restricting the
knee motion to a back-forward swing. The hip was a two degree-of-freedom uni-
versal joint, which allowed both back-forward and sideways (abduction-adduction)
motions. Each leg was actuated by three angular muscles, each representing the net
effect of several real muscles working around a common joint. The muscle param-
eters where linearly controlled directly from the simulated motoneuron output.
Mechanoreceptors were incorporated to sense joint angles and ground contact. This
mechanical information was conveyed via transfer functions to neuronal activation
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levels in special sensory neurons, which could then synapse onto the rest of the
network.

A Cartesian representation was used for the mechanical system to avoid the
more complex mathematics of a state description built on angles. The numerical
integration technique described by de Jalón was utilized with additions to handle
ground contact. The mechanical simulation and the neuronal controller were run as
two separate communicating programs on a workstation and the resulting motion
could be observed in close-to-realtime in a graphics window. One advantage with a
system running that fast is that it becomes possible to interact with the simulation,
e.g. by perturbing the motion and observing the reaction.

This system has been used to address questions regarding, e.g., coordination of
muscle activation for a single leg at different walking speeds, leg coordination and
posture stabilization.
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