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Preface

The main purpose of this book is to provide a fairly uniÞed and self-contained treat-

ment of the computational (mathematical) theory of the nervous system, starting

from atomic level modelling of single channels, Þnishing with modelling attention

and en route using many concrete biological systems such as the Hypothalamo-

Hypophysial system, weakly electric Fish, the barrel cortex, ßy motion vision etc. as

examples. The emphasis is on models that are closely tied with experimental obser-

vations and experimental data. This is reßected by many chapters where an in-depth

mathematical theory intermingles with up-to-date experimental result.

After a century of research, our knowledge of the phenomenology of neural func-

tion is staggering. Hundreds of different brain areas have been mapped out in various

species. Neurons in these regions have been classiÞed, sub-classiÞed, and reclassi-

Þed based on anatomical details, connectivity, response properties, and the channels,

neuropeptides, and other markers they express. Hundreds of channels have been

quantitatively characterized, and the regulation and gating mechanisms are begin-

ning to be understood. Multi-electrode recordings reveal how hundreds of neurons

in various brain areas respond in concert to stimuli. Despite this wealth of descrip-

tive data, we still do not have a grasp on exactly how these thousands of proteins are

supposed to accomplish computation.

A vast majority of neurons respond to sensory or synaptic inputs by generating

a train of stereotypical responses called action potentials or spikes. Deciphering the

encoding process which transforms continuous, analog signals (photon ßuxes, acous-

tic vibrations, chemical concentrations and so on) or outputs from other neurons into

discrete, Þxed-amplitude spike trains is essential to understand neural information

processing and computation, since often the nature of representation determines the

nature of computation possible. Researchers, however, remain divided on the issue

of the neural code used by neurons to represent and transmit information.

On the one hand, it is traditionally assumed that the mean Þring rate of a neu-

ron, deÞned as its averaged response to stimulus presentation, is the primary variable

relating neuronal response to a sensory stimulus. This belief is supported by the ex-

istence of a quantitative causal relationship between the average Þring rate of single

cortical neurons and psychophysical judgements made by animals trained to perform

speciÞc tasks. The highly variable temporal structure of neural spike trains observed

in vivo further strengths the view that any statistic other than the averaged response is

too random to convey information. Recent Þndings have indicated that spike timing

can be precise and have demonstrated that the Þne structure of spike intervals can

potentially convey more information than a Þring rate code, providing evidence for

temporal coding. The precise relative temporal relationships between the outputs of

c© 2004 by CRC Press LLC



different neurons also appears to be relevant for coding in certain cases.

Presently, it is unclear which, if any, is the universal coding strategy used in the

brain. In summary we simply lack a coherent view of how a neuron processes in-

coming signal, emits spikes, and then controls our daily activity, despite a century

long of research. In this book, we attempt to present our current views on the issue.

In contrast to other Þelds in biology, mathematical thinking and methodology have

become entrenched in neuroscience since its very beginning, as is witnessed by the

classical work of Hodgkin and Huxley. Indeed, important developments in mathe-

matics, and particularly in statistics (for example, point processes theory), have their

roots in this Þeld. Therefore, it will not be surprising that the mathematical analysis

of the models studied in this book is often not simple, although to a large extent only

calculus, linear algebra, and some basic probability theory are needed. The book is

aimed at the level of the Þnal year of undergraduate, graduate students or researchers.

In general, we had a reader in mind, who is interested in the theoretical aspects of

neuroscience and has a fair knowledge of basic mathematics and a certain ßuency in

algebraic manipulations.

The book opens with a chapter that introduces the basic mathematical concepts

used in computational neuroscience. This chapter may serve as an introduction to

the Þeld for students from mathematical or physical sciences, and for biology or

neuroscience students who are already acquainted with neuroscience, but feel a need

for a theoretically oriented and rigorous introduction.

Chapter 2 deals with computer simulations of ion channel proteins. It reviews

brießy the key properties of ion channels for which there is structural information,

and discusses different simulation approaches. The next two chapters are devoted to

modelling calcium and an important neuronal transmitter: nitric oxide. Calcium has

been called the ubiquitous second messenger due to its widespread use in cellular

signaling pathways. Calcium plays a role in many different cells for processes such

as the release of hormones or neurotransmitters, cell motility or contraction, and

the control of gene expression and development. Neurotransmitter release in nerve

terminals is mediated by calcium. Calcium is also thought to play a role in synaptic

plasticity and learning. Chapter 4 presents a general account of models of nitric oxide

(NO). NO is a kind of neurotransmitter that acts, through diffusion, over volumes that

potentially contain many neurons and can facilitate signalling between neurons that

are not synaptically connected.

In Chapter 5, a general theory based upon the Markov chain for analyzing single

channel activity is presented. The information in a single channel record is contained

in the amplitudes of the openings, the durations of the open and shut periods, and

correlations between them. We use this information to try to identify the nature

of the kinetic mechanism of the channel and to estimate rate parameters governing

transitions between the various states of such a mechanism. In Chapter 6, we look at

the biophysical basis of random Þring observed in the nervous system. The chapter

intends to bridge the gap between stochastic single channel activity and single neuron

activity.

Whereas the Þrst six chapters are focused on spikes and subcellular activity, the

emphasis in Chapter 7 and Chapter 8 is more on analyzing bursting activity. Chap-



ter 7 is concentrated on the Hypothalamo-Hypophysial system where a relatively

simple output signal is observed: the strength of hormone release. The importance

of bursting activity is presented in another example, the electrosensory system of

South American weakly electric Þsh which has proven to be extremely well suited

for combined neuroethological and computational studies of information processing

from systems neuroscience to the characteristics of ion channels. It Þrst gives a brief

introduction to the electrosensory system, describes in detail the in vivo Þring prop-

erties of electrosensory pyramidal cells in the hindbrain of these Þsh, and reports on

the potential behavioral role of bursts. Next, it presents results of in vitro studies

that have elucidated some of the cellular mechanisms underlying burst generation in

pyramidal cells. This is followed by a discussion of detailed compartmental models

that successfully reproduce in vitro bursting and reduced models offering a dynam-

ical systems perspective on burst mechanisms. It is concluded by comparing burst

Þring in weakly electric Þsh to other systems.

As we have mentioned before, a typical feature of a nervous system is the vari-

ability observed in single channels, in spikes, in local Þeld potentials and in reaction

times. How to tackle and make sense of the experimental data is a challenging task

for every theoretician. In Chapter 9, statistical methods of point processes are intro-

duced to handle experimental data (spike trains). It is shown how any point process

model may be characterized in terms of its conditional intensity function. The au-

thors then apply the likelihood methods in two actual data analyses: a spike train

time-series from a retinal ganglion neuron and the spatial receptive Þelds of a hip-

pocampal neuron recorded while a rat executes a behavioural task on a linear track.

Commencing from Chapter 10, spiking neuronal networks are employed as tools

to explore various function of the nervous system. In Chapter 10, how to build up

a biologically realistic model is demonstrated. The requirements for biologically-

detailed, realistic network modelling is discussed. The requirements are divided

into those for the neurone models, the synaptic models, the pattern of connections

between cells, the network inputs. To illustrate these requirements a model of the

granule cell layer in the cerebellum and a model of olfactory bulb are are presented.

Chapter 11 and Chapter 12 deal with two important aspects: temporal and spa-

tial dependence of neuronal activity. Spike-timing-dependent plasticity (STDP) is a

plasticity rule based on the timing of pre- and postsynaptic spikes. Recent experi-

ments provide ample biological support for this plasticity rule. STDP gives detailed

predictions for naturalistic inputs and makes it feasible for the Þrst time to directly

compare plasticity rules for naturalistic inputs with experimental data. Therefore it is

important to develop a theory to establish the fundamental properties of this plastic-

ity rule and the favorable interplay between theory and experiments will likely make

STDP an important area of study. Chapter 11 seeks to summarize recent results in

these directions and place them in a coherent framework in comparison to Hebbian

rules based on rates. Chapter 12 reviews work related to two perspectives on corre-

lated activity: the high-level approach at which function serves to guide the analysis,

and the low-level approach that is bound to the biophysics of single neurons.

Information theory has been widely used and played an important role in neuro-

science. Chapter 13 introduces the series expansion method of estimating mutual



information, which is speciÞcally tailored to the case of sparsely responding neu-

rons. It is applied to a popular model system - the somatosensory cortex of the rat -

where the number of evoked spikes per stimulus is also small, and has thereby been

able to study issues of spike timing and population coding in a rigorous manner.

Although our sensory systems are composed of auditory, somatosensory, taste and

olfaction, and vision, the most studied and perhaps the best understood one is vision.

Chapter 14 explores the amazing ßy motion vision system. It summarizes our current

understanding of ßy motion vision with an emphasis on modelling rather than on the

large set of available experimental data. After giving an overview of the ßy motion

vision system, the next part of the chapter introduces the correlation-type of motion

detector, a model for local motion detection that has been successfully applied to ex-

plain many features of motion vision, not only in ßies but also in higher vertebrates

including man. This is followed by an outline of how local motion signals become

spatially processed by large-Þeld neurons of the lobula plate in order to extract mean-

ingful signals for visual course control. In a Þnal section, the chapter will discuss in

what directions current research efforts are pointing to Þll in the missing pieces.

Recent advances in neurophysiology have permitted the development of biophysi-

cally-realistic models of cortical recurrent local networks. Those models have proved

to be valuable for investigating the cellular and network mechanisms of informa-

tion processing and memory in cortical microcircuits. Recurrent network models of

spiking neurons are highly non-linear and display a variety of interesting dynami-

cal behaviors, such as spatially organized Þring patterns, synchronous oscillations

or coexistence of multiple attractor states. It is notoriously hard to predict, solely

by intuition, the behaviour of such networks. Moreover, these large-scale network

models routinely consist of many thousands of spiking neurons, so their computer

simulations are time-consuming. Therefore, it is highly desirable to develop and

mathematically analyze simpliÞed yet faithful mean-Þeld theories that are derived

from these biophysically-based models. In Chapter 15, the authors review the mean-

Þeld theory of recurrent cortical network models in which neurons discharge spikes

stochastically with high variability and interact with each other via biologically re-

alistic synapses. Using the theory, models of working memory (active short-term

memory) are discussed.

Chapter 16 describes memory systems in the brain based on closely linked neuro-

biological and computational approaches. The neurobiological approaches include

evidence from brain lesions which shows the type of memory for which each of the

brain systems considered is necessary; and analysis of neuronal activity in each of

these systems to show what information is represented in them, and the changes that

take place during learning. The computational approaches are essential in order to

understand how the circuitry could retrieve as well as store memories, the capacity of

each memory system in the brain, the interactions between memory and perceptual

systems, and the speed of operation of the memory systems in the brain.

All chapters before tried to describe, explore and reveal mechanisms behind the

nervous systems. In Chapter 17, the authors intend to model motor control and thus

close the gap between sensory inputs and motor output.

A key challenge for neural modelling is to explain how a continuous stream of



multi-modal input from a rapidly changing environment can be processed by neural

microcircuits (columns, minicolumns, etc.) in the cerebral cortex whose anatomical

and physiological structure is quite similar in many brain areas and species. How-

ever a model that could explain the potentially universal computational capabilities

of such microcircuits has been missing. In Chapter 18, the authors propose a compu-

tational model that does not require a task-dependent construction of neural circuits.

Instead it is based on principles of high dimensional dynamical systems in combina-

tion with statistical learning theory, and can be implemented on generic evolved or

found recurrent circuitry. This new approach towards understanding neural compu-

tation on the micro-level also suggests new ways of modeling cognitive processing

in larger neural systems. In particular it questions traditional ways of thinking about

neural coding.

Selective visual attention is the mechanism by which we can rapidly direct our

gaze towards objects of interest in our visual environment. From an evolutionary

viewpoint, this rapid orienting capability is critical in allowing living systems to

quickly become aware of possible prey, mates or predators in their cluttered visual

world. It has become clear that attention guides where to look next based on both

bottom-up (image-based) and top-down (task-dependent) cues. As such, attention

implements an information processing bottleneck, only allowing a small part of the

incoming sensory information to reach short-term memory and visual awareness.

That is, instead of attempting to fully process the massive sensory input in parallel,

nature has devised a serial strategy to achieve near real-time performance despite

limited computational capacity: Attention allows us to break down the problem of

scene understanding into a rapid series of computationally less demanding, localized

visual analysis problems. Chapter 19 addresses the issue of how to model attention

mechanisms.

Finally, I would like to express my sincere thanks to Seongsook Choi and the

people from CRC Press for their help and support during the arduous and lengthy

process of Þnalizing this project. The work was supported by the UK Science and

Engineering Research Council.
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1.1 Introduction

This chapter contains a mathematical foundation for the chapters follow. Compu-

tational neuroscience is a highly interdisciplinary subject and various mathematical

languages are used to deal with the problems which arise. We sketch a mathemat-

ical foundation and provide references which can be consulted for further details.

We also demonstrate how to mathematically and rigorously formulate certain neuro-

science problems. The basic topics we intend to cover are deterministic dynamical
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system theory [53, 85], stochastic dynamical system theory [32, 38] and a few extra

topics related to information theory [4, 11] and optimal control [26, 52].

Excellent books or recent reviews containing an introduction to Neuroscience

are [3, 36, 66]. One of the central topics in Computational Neuroscience is the

coding problem [1, 50, 51]: how does the nervous system encode and then decode

information? Early theories of coding in the nervous system focused on rate coding,

as in conventional neural network theory, in which the average frequency of action

potentials carries information about the stimulus. This type of coding, which was es-

tablished in the firing responses of such cells as motoneurons and sensory receptors

have become associated with the integrate-and-fire mode of operation of a nerve cell

where timing is not a key factor. This corresponds to neuron models with stochastic

activity, as discussed in Section 1.3. The idea of coding has also been developed

in the past few decades that time intervals between impulses in patterns of action

potentials play a key role; this manner of information delivery has become known

as temporal coding and is suitably described by a deterministic dynamical system

(Section 1.2).

1.2 Deterministic dynamical systems

1.2.1 Basic notation and techniques

Let us introduce some basic terms such as attractor, attractive basin, bifurcation,

Lyapunov exponent, Lyapunov function; and some basic techniques such as Laplace

transformation.

Suppose that X(t) is a dynamical variable, for example, the membrane potential of

a neuron at time t. An attractor A of X(t) is a set of states such that X(t) ∈ A,t > 0

if X(0) ∈ A. Examples are fixed point attractors and limit cycle attractors. The

resting potential of a neuron is usually a fixed point attractor, and spikes are limit

cycle attractors. In most cases, we need to know not only the attractors, but also

their attractive basins. If we can think of a (fixed point) attractor as the bottom of a

bowl, then its attractive basin will be the bowl itself. A ball starting from anywhere

inside the bowl (attractive basin) rolls down to its bottom (attractor) and stays there.

Hence the attractive basin of an attractor A is the set of initial values from which

X(t) will finally converge to A. For example, when a neuron receives subthreshold

stimuli, the membrane potential may finally settle down to a certain value, say A

(fixed point attractor). In other words subthreshold stimuli are in the attractive basin

of the attractor A. A suprathreshold current stimulus is in the attractive basin of

spikes.

The behaviour of a dynamical system X(t) depends on a parameter l and might

change substantially when l passes through a critical point l0. For example, when

l < l0, X(t) may have only one attractor; but when l ≥ l0, there might be two

attractors for X(t). Such a point is called bifurcation point. For example, l could be
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the (constant) current input to a neuron. When l < l0, the neuron is silent (without

spiking) and the only attractor is a fixed point attractor. When the stimulus is strong

enough l > l0, the neuron emits spikes, and the attractor is a limit cycle. The various

properties at the bifurcation point can be further classified into different categories

(see [85] for more details).

Another very useful quantity to characterize a dynamical system is a Lyapunov

exponent. Consider a one-dimension dynamical system

dX(t)/dt = l X(t).

X(t) exhibits two distinct behaviours. If l is larger than zero, X(t) will become

infinity; otherwise it will remain finite. In particular, when it is less than 0, X(t) will

converge to zero. For a high order dimensional dynamical system satisfying

dX(t)/dt = SX(t)

Quantities corresponding to l are the eigenvalues of the matrix S. When all eigen-

values are real, we can assert that X(t) converges if the largest eigenvalue is negative,

and diverges if the largest eigenvalue is positive. For a nonlinear dynamical system,

we can have a similar picture if we expand it locally at an attractor. Hence from the

sign of the largest Lyapunov exponent we can tell whether the dynamical system is

stable or not. An attractor of a dynamical system is called a strange attractor if its

largest Lyapunov exponent is positive (page 186, [85]).

To check whether a given dynamical system is stable or not is not a trivial issue.

One of the most widely used quantities is the Lyapunov function. A Lyapunov func-

tion is such that the dynamical system will move downwards along the trajectory of

the system, i.e. d(X(t))/dt < 0. For a given system, however, how to construct a

Lyapunov function is not always straightforward (see for example [16]).

Many neuronal models are relaxation oscillators which may be roughly described

as follows. Consider a seesaw as shown with a container on one side (A) in which

electricity (water) can be held. If the container is empty, the other side (B) of the

seesaw touches the ground. From a tap, water is dripping into the container and at a

certain water level, point B rises and point A will touch the ground. At this moment

the container empties itself, the seesaw bounces quickly back to its original position

and the process starts again. Such an oscillation is characterized by intervals of time

in which very little happens, followed by short intervals of time in which notable

changes take place.

For a function f (t) defined on [0,•), the Laplace transformation of f (t) is the

function F(s) defined by the integral

F(s) =

∫ •

0
exp(−st) f (t)dt

We denote the Laplace transformation of f (t) as L ( f )(s). The idea behind Laplace

transforms is to simplify the problem. After applying Laplace transformation to a

linear differential equation, we have to apply the inverse Laplace transformation to

obtain the solution.
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1.2.2 Single neuron modelling

We introduce point model, cable model and multi-compartment model. The dynam-

ics of individual neurons are governed by a multiplicity of state variables, including

membrane voltage, channel activation parameters, intracellular ion concentrations,

and cell morphology etc.

Point model

• Simplified models. The simplest model of a neuron is the integrate-and-fire

model, an equivalent description of the seesaw model in the previous section.

If V (t) is the membrane potential and V (t) ≤Vthre (threshold), then

dV (t)/dt = −V(t)−Vrest

g
+ I (1.1)

where I is input current and g is the membrane time constant. When V (t) =
Vthre we have V (t+) = Vrest , the resting potential. A refractory period Tre f can

be introduced if we define V (t + Tre f ) = Vrest .

Another widely used model is called the FitzHugh-Nagumo (FHN) model. It

has two variables which satisfy

{

dv/dt = K[−v(v−a)(v−1)−w]+ I

dw/dt = b[v− cw].

Here v is the membrane potential and w is the recovery variable, a ,c,K,b are

all constants. Typical parameters are a = 0.2,c = 2.5,K = 100,b = 0.25.

When dw/dt = 0, i.e. w = bv/c, the model is usually called the reduced FHN

model, or the Landau model in physical literature. Introducing a threshold to

the reduced FHN model as in the integrate-and-fire model, the model is called

the IF-FHN model [18]. Comparing with the integrate-and-fire model, the IF-

FHN model has a nonlinear leakage term K(v− 1)(v− a)+ b/c. Due to the

nonlinear leakage term, some interesting properties including more sensitive

to correlated inputs than the IF model have been reported [6, 23].

• Biophysical models. Consider the Hodgkin-Huxley model, which is the basis

of most other biophysical models.

The Hodgkin-Huxley model is written by

CdV/dt = −gNam3h(V −VNa)dt −gKn4(V −VK)

−gL(V −VL)+ I. (1.2)

The term m3h describes the sodium channel activity and n4 reflects the potas-

sium channel activity. Equations about m,n,h and parameters gNa,gk, gL, VNa,

VK , VL used in the Hodgkin-Huxley model are in Appendix A. Other channels

may be included in the Hodgkin-Huxley model, the most commonly being
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the calcium channel. In Chapter 3, the authors present a detailed review on

modelling calcium.

The model exhibits different behaviours in response to external current inputs.

A response may be described by an F − I curve, where F is the output fre-

quency and I is the input current. When F − I is continuous, it is termed Type I

neuron (the integrate-and-fire model is of this type); when F− I is not continu-

ous, it is Type II neuron (the Hodgkin-Huxley is of this type). Mathematically,

the Type I neuron is usually due to a saddle-node bifurcation, whereas the Type

II neuron is due to a Hopf bifurcation.

Cable model In point models, we ignore the geometric properties of cells. One

way to include cell morphology in modelling is to treat cell segments as cylinders,

as described in the cable Equation (1.11).

Multi-compartment models Another way to include cell morphology is with a

multi-compartment model. According to actual neuronal anatomy, a biophysical

model of a few hundred compartments may be appropriate and it is a formidable

task to analyze such a model. Models with only a few compartments have been

investigated and it is surprising that such simplified models usually fit more compli-

cated models well [12, 56]. Here we consider two-compartment models, composed

of a somatic and a dendritic compartment.

• A two-compartment abstract model (see the integrate-and-fire model before).

When the somatic membrane potential Vs(t) is below the threshold Vthre,

⎧

⎪

⎪

⎨

⎪

⎪

⎩

dVs(t)/dt = −1

g
(Vs(t)−Vrest)+ gc

Vd(t)−Vs(t)

p

dVd(t)/dt = −1

g
(Vd(t)−Vrest)+ gc

Vs(t)−Vd(t)

1− p
+

I

1− p

(1.3)

where 1/g is the decay rate, p is the ratio between the membrane area of the

somatic compartment and the whole cell membrane area, Vd is the membrane

potential of the dendritic compartment, gc > 0 is a constant.

The properties of the two-compartment model above have been examined by a

few authors, see for example [62]. We have reported that a two-compartment

model is naturally a slope detector [21, 34, 46].

• A two-compartment biophysical model. A simplified, two-compartment bio-

physical model, proposed by Pinsky and Rinzel [56] is described here. They

have demonstrated that the model mimics a full, very detailed model of pyra-

midal cells quite well.
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The Pinsky-Rinzel model is defined by

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

CmdVs(t)/dt = −ILeak(Vs)− INa(Vs,h)− IK−DR(Vs,n)

+gc
Vd(t)−Vs(t)

p
CmdVd(t)/dt = −ILeak(Vd)− ICa(Vd ,s)− IK−AHP(Vd ,q)

−IK−C(Vd,Ca,c)+
I

1− p
+ gc

Vs(t)−Vd(t)

1− p
[Ca]′ = −0.002ICa−0.0125[Ca]

(1.4)

All parameters and other equations of ionic channels can be found in [56], [Ca]
is the calcium concentration (see Chapter 3 for a detailed account of modelling

calcium activity).

1.2.3 Phase model

It is relatively easy to characterize deterministic neuronal models, in comparison

with models with stochastic behaviour which are described in the next section. One

of the popular ways to carry out such an analysis is by means of the so-called phase

model [15, 42, 69].

Models When the spiking output of a cell is approximately periodic, the under-

lying dynamics may be described by a single variable known as the phase, usually

denoted by q (t) ∈ [0,2p ]. As q changes from 0 to 2p , the neuronal oscillator pro-

gresses from rest to depolarization to spike generation to repolarization and around

again over the course of one period.

Within the phase description framework, sometimes we are able to calculate and

understand how the detailed description of the synaptic interactions among neurons

can effect their spiking timing and, thus, lead to the formation of spatially and tem-

porally patterned electrical output. More specifically,

dqi

dt
= wi +

N

Â
j=1

Gi j(q j −qi), i = 1, · · · ,N. (1.5)

where qi is the phase of the ith neuron, wi is the initial phase and G is the interaction

between neurons. Even though the reduction to a phase model represents a great

simplification, these equations are still too difficult to analyze mathematically, since

the interaction functions could have arbitrarily many Fourier harmonics, which is

always the case in an actual situation, and the connection topology is unspecified

and largely unknown in biology.

The Kuramoto model corresponds to the simplest possible case of equally weighted,

all-to-all, purely sinusoidal coupling

Gi j(q j −qi) =
K

N
sin(q j −qi). (1.6)

Many theoretical results are known for the Kuramoto model, as briefly described

below.
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Synchronization The properties of the Kuramoto model have been intensively

studied in the literature [69]. Let us first introduce two parameters which characterize

the synchronization of a group of oscillators

r(t)exp(iy) =
1

N

N

Â
i=1

exp(iqi) (1.7)

Geometrically r(t) is the order parameter describing the synchronization among neu-

rons. Numerically, it is shown that when the coupling strength K between neurons

is smaller than a constant Kc, the neurons act as if they were uncoupled. r(t) decays

to a tiny jitter of size of order 1/
√

N. But when K exceeds Kc, the incoherent state

becomes unstable and r(t) grows exponentially, reflecting the nucleation of a small

cluster of neurons that are mutually synchronized, thereby generating a collective

oscillation. Eventually r(t) saturates at some level being smaller than 1. For some

most recent results on the Kuramoto model, we refer the reader to [54].

A detailed computation on how two neurons synchronize their activity has also

been carried out in [86]. They found that inhibitory rather than excitatory synaptic

interactions can synchronize neuron activity.

1.3 Stochastic dynamical systems

1.3.1 Jump processes

The observed electrical potentials of neurons as determined either by extracellular

or intracellular recording are never constant. The same is true for grossly recorded

field potentials and brain recordings such as the electroencephalogram. Often such

recordings of potential exhibit quite sudden changes or jumps. If the sample paths

of a continuous time random process have discontinuities then it is called a jump

process. A process may be a pure jump process, like a Poisson process or a random

walk, or there may be drift and or diffusion between the jumps.

Motivation for using jump processes in neurobiological modelling sprang primar-

ily from observations on excitatory and inhibitory synaptic potentials (EPSPs and

IPSPs). Examination of, for example, motoneuron or pyramidal cell somatically

recorded EPSPs may show a rapid depolarization of several millivolts relative to

resting potential, followed by an exponential decay with a characteristic time con-

stant [70]. A complete understanding of these events requires the use of complex

spatial models, (see below) but in the majority of studies attempting to model neu-

ronal electrophysiological properties in the last several decades, spatial extent has,

regrettably, been ignored, probably because of the unwillingness of but a few theo-

rists to confront partial differential equations rather than ordinary ones.

Putting aside the matter of spatial versus point models, if N = {N(t),t ≥ 0} is a

simple standard (unit jumps) Poisson process, with rate parameter l , then a simple
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one-dimensional model for the subthreshold (less than Vthre ≈10-20mV) depolariza-

tion of a single neuron can be written as the stochastic differential equation (SDE)

dV = −V −Vrest

g
dt + aEdN, V < Vthre, V (0) = V0, (1.8)

where g is the time constant of decay and aE > 0 is the magnitude of an EPSP (c.f.

Equation (1.1)). In the very small time interval (t,t + Dt], either N and hence V

jumps, with probability l Dt or doesn’t; if it doesn’t then V decreases according to

dV/dt = −V/g .

A characteristic of a Poisson process is that the (random) time T between jumps

or events has an exponential distribution with mean 1/l :

Pr{T ≤ t} = 1− exp(−l t), t ≥ 0.

We may suppose that jumps still occur at rate l , but that the jump size is random

with probability density f(u) or a distribution function F(u). This gives a compound

Poisson process X . This means that jumps with amplitudes in (u,u + du] occur with

a relative rate of f(u)du or an absolute rate of l f(u)du. We let N(du,t) count

the number of such events in (0,t] and the total contribution of these events will

be uN(du,t), being jump amplitude multiplied by the number of jumps with this

amplitude. The whole compound Poisson process will be obtained by integrating

over all possible amplitudes

X(t) =
∫ −•

−•
uN(du,t),

where the total jump or event rate is of course
∫

l f(u)du = l .
The above leaky integrate and fire model (1.8) may thus be extended to include an

arbitrary distribution of postsynaptic potential amplitudes:

dV = −V

g
dt +

∫ −•

−•
uN(du,dt), V < Vthre, V (0) = V0. (1.9)

Since the positions of inputs are not distinguished in such point models, the input

here could arise from many separate excitatory and inhibitory synapses. The repre-

sentation [79]

V (t) = V (0)exp(− t

g
)+

∫ t

0
exp

(

− t − s

g

)

∫

uN(du,ds),

enables us to find the mean of the unrestricted potential at time t

E[V (t)] = E[V(0)]exp

(

− t

g

)

+ m1(1− exp

(

− t

g

)

)

where m1 =
∫

uf(u) is the mean postsynaptic potential amplitude. Similarly, the

variance is found to be

Var[V (t)] =
m2

2
(1− exp

(

−2t

g

)

),

© 2004 by Chapman & Hall/CRC



where m2 is the second moment of f .

For the model (1.8) analytical solutions for the firing time (ISI) are difficult to

obtain because they involve differential-difference equations. These were first solved

in [72] and later using analytical and numerical methods for excitation and inhibition

in [10]. Such discontinuous processes had been neglected because it was easier to

deal with differential equations, which arise in the theory and properties of diffusion

processes (see below). However, with the great power of the desktop computers

now available, it is a simple task to quickly estimate the interspike time distribution

generated by a model such as (1.8) or (1.9) using simulation.

We may add physiological realism to (1.9) by including synaptic reversal poten-

tials. These make postsynaptic potential amplitudes smaller when the equilibrium

potentials for transmitter-induced conductance changes are approached [73]. This

gives,

dV = −V

g
dt +(V −VE)

∫ −•

−•
uNE(du,dt)+

+(V −VI)

∫ −•

−•
uNI(du,dt), V < Vthre, V (0) = V0,

(1.10)

where VE and VI are the reversal potentials for excitation and inhibition and NE and

NI give the input frequency and amplitude distributions.

A spatial model may similarly be constructed with jump processes [77] using the

linear cable equation on (a,b)

∂V

∂ t
= −V +

∂ 2V

∂x2
+(V −VE)

nE

Â
i=1

d (x− xE,i)aE,i
dNE,i

dt

+(V −VI)
nI

Â
j=1

d (x− xI, j)aI, j

dNI, j

dt
.

(1.11)

This gives a better representation of a neuron than either (1.9) or (1.10) because now

the postsynaptic potentials have finite rise times according to experimental data and

separate spatial locations for inputs are distinguished. Here there are nE excitatory

synaptic inputs at positions xE,i, i = 1, ...,nE with amplitudes aE,i and nI inhibitory

synaptic inputs at positions xI, j, j = 1, ...,nI with amplitudes aI, j and it is assumed

that all excitatory (inhibitory) inputs have the same reversal potential, which is often

the case. A region of low threshold is chosen as a trigger zone, at say x = 0, and

boundary conditions must be imposed at x = a and x = b. A realistic boundary

condition at the soma could be a lumped-soma, being a capacitance and resistance in

parallel to represent somatic membrane.

General jump process point model with drift

Multidimensional continuous time Markov processes are well suited for describ-

ing much of the electrophysiological and biochemical behavior of neurons and net-

works of neurons, especially when neuronal spatial extent is ignored. Thanks mainly

to Itô [35], Feller and Kolmogorov, the analytical theory of such processes and their

representations by stochastic integrals (or equivalently stochastic differential equa-
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tions) was rigorously developed in the middle of the 20th century. Consider a deter-

ministic differential equation for the n-vector X(t) of the form

dX(t)

dt
= f(X(t),t),

with initial value X(0). Interrupting the deterministic trajectories there may be super-

imposed jumps of various amplitudes and frequencies, both possibly time-dependent

or depending on the values of the components of X(t), representing synaptic inputs.

The function f is called the drift and with the discontinuous components representing

synaptic inputs of various amplitudes and frequencies we have

dX(t) = f(X(t),t)dt +

∫

h(X(t),t,u)N(du,dt),

N being a Poisson random measure defined on subsets of Rn × [0,•). Such a general

system covers all non-spatial conductance-based models such as Hodgkin-Huxley or

approximations like Fitzhugh-Nagumo with almost every possible pattern of synap-

tic input. For more details in relation to neuronal modelling and extensions to the

spatially distributed case see [77, 79].

1.3.2 Diffusion processes

Diffusion processes are an abstract approximation to empirical processes which have

the advantage of being less cumbersome to analyze than processes with jumps. Pro-

viding the postsynaptic potentials as seen at the soma are not very large and are fairly

frequent, a diffusion model should perform reasonably well.

The simplest diffusion model

The simplest diffusion process employed for modelling a neuron is based on the

unrealistic perfect integrator model and hence is only of historical interest. Unfor-

tunately it is the only diffusion model which can be solved exactly for all parameter

values. It consists of a Wiener process (Brownian motion) with drift and was in-

troduced by Gerstein and Mandelbrot [28]. Consider a random walk consisting of

the difference of two Poisson processes NE and NI , corresponding to excitatory and

inhibitory input respectively,

dX = aEdNE −aIdNI ,

where aE ≥ 0 and aI ≥ 0 are the magnitudes of steps up or down. Since, using the

properties of Poisson random variables, the mean of X(t) is E[X(t)] = (lEaE −lIaI)t
and its variance is Var[X(t)] = (lEa2

E + lIa
2
I )t, a diffusion approximation V to X is

given by

dV = (lEaE −lIaI)dt +
√

(lEa2
E + lIa

2
I )dW, V < Vthre, V (0) = V0.

(Note that W, a standard Wiener process, is equivalent to a standard Brownian motion

B).
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Putting m = lEaE −lIaI and s 2 = lEa2
E + lIa

2
I , it can be shown that V will reach

Vthre > V (0) with probability one if and only if m ≥ 0; that is, the net excitatory

drive is greater or equal to the net inhibitory drive. This is not true for more realistic

models. When m ≥ 0 the probability density of the time for V to get from a value

V (0) < Vthre to threshold is the inverse Gaussian

f (t) =
(Vthre −V(0))√

2p s 2t3
exp

[

− (Vthre −V (0)− mt)2

2s 2t

]

,t > 0.

Gluss model - Ornstein-Uhlenbeck process (OUP)

The jump process model with exponential decay given by (1.9) can be similarly

approximated by a diffusion model which is, for subthreshold V

dV =

(

−V

g
+ m

)

dt + s dW. (1.12)

This defines an Ornstein-Uhlenbeck process, which as a neuronal model was first

derived and analyzed by Gluss in 1967 [31]. Here V has continuous paths and, if

unrestricted, the same first and second moments as the jump process. Both processes

may get to the same values, such as a threshold for an action potential, at about

the same time, but in many cases this will be far from the truth, depending on the

values of the four parameters lE ,aE ,lI and aI – see [81] for a complete discussion.

Thus extreme caution must be exercised if using a diffusion model such as (1.12) to

obtain input-output relations for neurons. For example, it was found in [27] that an

inhibitory input can drive the model to fire faster, with a fixed excitatory input, but

this is simply due to the error introduced by the diffusion approximation. Roy and

Smith [63] first solved the difficult problem of obtaining an exact expression for the

mean firing time in the case of a constant threshold. Even recently this model has

attracted much attention [18, 29, 44]. The OUP has also been shown to be a suitable

approximation for channel noise, see for example [75], Chapter 5 and Chapter 6.

The general theory of diffusion processes is broad and often quite abstract. Such

fundamental matters as (appropriate) definition of stochastic integral and boundary

classifications are important but generally outside the domain of most computational

neuroscientists [38]. Fortunately such matters can be sidestepped as most modelling

is pragmatic and will involve trial and error simulation methods using software pack-

ages. However, it is useful to realize that diffusion processes, whether of one or

several dimensions, have an associated linear partial differential equation satisfied

by the transition probability function or its density. This is also true for Markov

jump processes, but the corresponding equations are more complicated and far less

studied.

Analytical theory for diffusion processes

Letting X(t) be a vector with n components, all neuronal ordinary differential

equation models in which the input current is approximated by white noise have the

general form

dX(t) = f(X(t),t)dt + g(X(t),t)dW(t),
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where f also has n components, g is an n×m matrix and W is an m-vector of (pos-

sibly) independent standard Wiener processes. This form covers nonlinear models

such as Hodgkin-Huxley, Fitzhugh-Nagumo etc. and certain network approxima-

tions. Let p(y,t|x,s) be the transition probability density function of the process X,

defined with s < t through, p(y,t|x,s)dy) = Pr{X(t)∈ (y,y+dy)|X(s)= x}. Then p

satisfies two partial differential equations. Firstly, the forward Kolmogorov equation

(sometimes called a Fokker-Planck equation)

∂ p

∂ t
= −

n

Â
k=1

∂
∂yk

[ fk(y,t)p]+
1

2

n

Â
l=1

n

Â
k=1

∂ 2

∂yk∂yl

[

(g(y,t)gT (y,t))kl p
]

,

where superscript T denotes transpose. Secondly, holding forward variables fixed

gives the backward Kolmogorov equation

∂ p

∂ s
= −

n

Â
k=1

[ fk(x,s)]
∂ p

∂xk

− 1

2

n

Â
l=1

n

Â
k=1

(g(x,s)gT (x,s))kl

∂ 2 p

∂xk∂xl

.

We may write this as

∂ p

∂ s
+ Lx p = 0,

to define the operator Lx which is useful in finding first passage times such as the

time to reach a specified electrophysiological state – see [79] for details.

An example - analytical results for the OUP

For the model (1.12), the analytical theory is simple and the resulting differential

equations are easily solved. Putting the time unit as the membrane time constant, the

forward equation is

∂ p

∂ t
= − ∂

∂y
[(−y + m1)p]+

m2

2

∂ 2 p

∂y2
.

In Feller’s terminology, the points at y = ±• are natural boundaries and p must

vanish there. All other points are regular so they are visited with probability one

in a finite time. The unrestricted process is Gaussian and its distribution is easily

found using the mean and variance for (1.3.2). If a threshold is put at y = Vthre,
an absorbing condition p(Vthre, t|x,s) = 0 gives a solution from which the neuronal

firing time distribution can be found. Alternatively one may solve on (−b,Vthre)
with Vthre,b > 0 the equation for the mean exit time from M(x), starting at x, from

(−b,Vthre)

LxM(x) =
m2

2

d2M

dx2
+(m1 − x)

dM

dx
= −1

with boundary conditions M(−b) = M(Vthre) = 0. Letting b → • gives the mean

time for the neuronal depolarization from rest to get to the threshold for an action

potential. The solution (using the Laplace transformation introduced in the previous

section) is in a series of parabolic cylinder functions [63].
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Spatial diffusion process models - SPDEs

If the postsynaptic potentials are not too large and fairly frequent, a diffusion ap-

proximation for a spatial model such as (1.11) may be employed. Linear models

of this kind may involve distributed one-parameter white noises representing each

synaptic input or group of synaptic inputs

∂V

∂ t
= −V +

∂ 2V

∂x2
+(V −VE)

nE

Â
i=1

d (x− xE,i)
(

aE,ilE,i + |aE,i|
√

lE,i
dWE,i

dt

)

+(V −VI)Â
nI
j=1 d (x− xI, j)

(

aI, jlI, j + |aI, j|
√

lI, j

dWI, j

dt

)

.

Simplified versions of this and similar models were analyzed in [83, 84]. Alterna-

tively, if the synapses are very densely distributed, a two-parameter white noise may

be employed as an approximation:

∂V

∂ t
= −V +

∂ 2V

∂x2
+ f (x, t)+ g(x,t)

∂ 2W

∂ t∂x
,

where W (t,x) is a standard two-parameter Wiener process. For details see [84].

1.3.3 Jump-diffusion models

It is possible that some inputs to a neuron, including channel noise are frequent and

of small amplitudes whereas others are less frequent and large amplitude, such as

occur at certain large and critically placed synapses or groups of synapses of the

same type. Such a model was introduced in [74] and in its simplest form has the

stochastic equation

dV = −Vdt + aEdNE + aIdNI + s dW, (1.13)

where the unit of time is the time constant. The corresponding equations for the n-th

moments of the firing time for an initial potential x can be obtained by solving:

s 2

2

d2Mn

dx2
− x

dMn

dx
+ lEMn(x + aE)+ lIMn(x−aI)− (lE + lI)Mn(x)

= −nMn−1(x),

n = 1, . . . , with M0 = 1. Here lE ,lI are the mean frequencies of excitation and

inhibition, respectively. However, for particular parameter values, solutions can be

readily obtained by simulating the Poisson and white noise inputs. Neuron models

with correlated inputs can be exactly written as Equation (1.13) [19, 68, 90].

1.3.4 Perturbation of deterministic dynamical systems

One of the key topics addressed in the theory of differential equations or dynamical

systems is the asymptotic (large time) effect of a small disturbance or perturbation on
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a reference solution or orbit, such as an equilibrium point or limit cycle. The funda-

mental methods employed for deterministic systems are called Lyapunov’s first and

second methods. For stochastic dynamical systems, which have an extra dimension,

results on stability are naturally more difficult to obtain [5]. Here we consider the

effects (or methods of determining them) on some neuronal systems of perturbations

with small Gaussian white noise.

Firing time of a model neuron with small white noise

Consider an OUP model with threshold Vthre and stochastic equation

dV = (−V + m)dt + s dW.

It should be noted that in the absence of noise and in the absence of a threshold, the

steady state potential is m . If m ≤ Vthre the deterministic neuron never fires whereas

if m > Vthre the firing time is

T = TR + ln

(

a

a −1

)

,

where a = m/Vthre and TR is the refractory period. If we define the small noise pa-

rameter e 2 = s/Vthre then using perturbation techniques ([87] the mean and variance

of the firing time can be found to order e 2 as follows.

Steady state well above threshold.

When a >> e + 1,

E[T ] ≈ TR + ln

(

a

a −1

)

− e 2

4

[

1

(a −1)2
− 1

a 2

]

,

Var[T ] ≈ e 2

2

[

1

(a −1)2
− 1

a 2

]

.

These results show clearly how small noise reduces the mean interspike interval.

Steady state well below threshold.

When a << 1− e , the expectation of the interspike interval is

E[T ] ≈ TR +
e
√

p

1−a
exp

[

(1−a)2

e 2

]

,

and the variance is

Var[T ] ≈ e 2p

(1−a)2
exp

[

2(1−a)2

e 2

]

,

Many other results are given in the aforementioned reference, which includes an

exhaustive study of the dependence of the coefficient of variation of T on the input

parameters.

Differential equations for moments under Gaussian white noise perturbations

Ordinary differential equations have been derived for the asymptotic moments of

the dynamical variables in a general system of coupled (nonlinear) stochastic differ-

ential equations with white noise perturbations of the form

dX j = f j(X,t)dt +
m

Â
k=1

g jk(X, t)dWk
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where the Wk are standard Wiener processes – see [61]. For example, consider the

Fitzhugh-Nagumo system

dX = [ f (X)−Y + I]dt + b dW

dY = b[X − cY ]dt,

where f (X) = kX(X − a)(1−X). The means of X and Y , denoted by m1 and m2

respectively, satisfy the equations

dm1/dt = f (m1)−m2 + f ′′(m1)S1/2 + I(t)

dm2/dt = b(m1 − cm2)

where S1 is the variance of X . Denoting the variance of Y by S2 and the covariance

of X and Y by C12 we also have

dS1/dt = 2 f ′(m1)S1 −2C12 + b 2

dS2/dt = 2b(C12 − cS2)

and

dC12/dt = bS1 −S2 +C12[ f ′(m1)− cb].

This system of five ordinary differential equations may be easily solved and for small

b gives good agreement with moments from simulations (see [82]). The method can

also be used for small biological neuronal networks.

White noise perturbation of spatial nonlinear neuronal models

The analysis of spatial neuronal nonlinear model equations under the effects of

white noise perturbations has been performed for both scalar and vector forms of the

Fitzhugh-Nagumo model. In all cases a perturbation expansion was used to obtain

the moments of the dynamical variables. As a simple example consider the Fitzhugh-

Nagumo system without recovery driven by white noise of small amplitude:

ut = uxx + f (u)+ e(a + bWxt)

where W is a two-parameter Wiener process. An expansion in powers of e

u = u0 +
•

Â
k=1

e kuk

yields a recursive system of linear stochastic partial differential equations for the

uk. Solving the system recursively yields series expressions for the moments and

spectrum of the potential. These results, results on the full Fitzhugh-Nagumo system

of SPDEs and a general result on perturbation of a nonlinear PDE with white noise

are derived in [76, 78, 80].

A general approach to analyze dynamical systems with small perturbations has

been developed in recent years called large deviation theory. Basically, it is a gen-

eralization of the well-known Kramer’s formula [60]. A general description is con-

tained in [27], see also [2, 14].
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Finally a few remarks on the relationship between deterministic and stochastic dy-

namical systems. A deterministic neuron model is a special case of a stochastic neu-

ron model. When the noise term vanishes, a stochastic neuron model automatically

becomes deterministic. Usually there is a correspondence between the notations

of stochastic and deterministic dynamical systems. For example, for the Lyapunov

exponent introduced in the previous section for the deterministic system, we can in-

troduce analogous notation for a stochastic dynamical system (see for example [55]).

With the help of the Lyapunov exponent, we can understand some phenomena such

as how stochastic but not deterministic currents can synchronize neurons with differ-

ent initial states [20, 49].

1.4 Information theory

The nervous system is clearly a stochastic system [65], so we give a brief introduc-

tion of information theory [67]. Since neurons emit spikes randomly, we may ask

how to characterize their input-output relationships. The simplest quantity is the cor-

relation between input and output. However, information theory, with its roots in

communication theory, has its own advantage.

1.4.1 Shannon information

Intuitively, information is closely related to the element of surprise. Hence for an

event A, we define

S(A) = − log2(P(A))

as the (Shannon) information of the event A, so that the information in a certain event

is zero.

For a discrete random variable X with P(X = j) = p j, its entropy is the mean of

its information, i.e.,

H(X) = −
n

Â
j=1

p j log2(p j)

When X is a continuous random variable its entropy is thus given by

H(X) = −
∫

p(x) log2 p(x)dx

where p(x) is the density of X . The notation of entropy in information theory was

first introduced by Claude Shannon, after the suggestion of John von Neumann. “You

should call it Entropy and for two reasons: first, the function is already in use in

thermodynamics under that name; second, and more importantly, most people don’t

know what entropy really is, and if you use the word entropy in an argument you will

win every time!”.
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1.4.2 Mutual information

For a random vector X, let fX(x) be its probability density. For two random vec-

tors X,Y, denote HX(Y) as a measure of the information content of Y which is not

contained in X. In mathematical terms it is

HX(Y) = −
∫

p(y|x) log p(y|x)dy

where p(y|x) is the conditional density of Y, given X. The mutual information be-

tween X and Y is

I(X,Y) = H(Y)−HX(Y) =

∫ ∫

f(X,Y)(x,y) log
f(X,Y)(x,y)

fX(x) fY(y)
dxdy

where the information content of Y which is also contained in X. In other words, the

mutual information is the Kullback-Leibler distance (relative entropy): the distance

between (X,Y) and X,Y, where X,Y are treated as independent variables. The mu-

tual information measures the distance between possibly correlated random vectors

(X,Y) and independent random vectors X,Y.

From the definition of mutual information, we would expect that there is a close

relationship between mutual information and correlation. In fact we have the follow-

ing conclusions. If X and Y are normally distributed random variables, then

I(X ,Y ) = −1

2
log(1−r 2)

where r is the correlation coefficient between X and Y .

From recorded neuronal data, to calculate the mutual information between two

random vectors X and Y is usually not an easy task when one of them is a random

vector in a high dimensional space. To estimate the joint distribution of X,Y from

data is already a formidable task in a high dimensional space. See Chapter 13 for a

detailed account on how how to overcome the difficulties.

1.4.3 Fisher information

The Fisher information is introduced from an angle totally different from the Shan-

non information. For a random variable with distribution density p(x; q ), the Fisher

information is

I(q ) =
∫

(

∂ p(x; q )/∂q

p(x; q )

)2

p(x; q )dx

where q is the parameter which could be multi-dimensional.

Example 1 Let us assume that

T ∼ E[T ]exp(−t/E[T ]), t ≥ 0

where T is the interspike interval and E[T ] is the expectation of T . Suppose that

E[T ] depends on a parameter l . The Fisher information with respect to l [45] is
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defined by

I(l ) =
1

E[T ]

∫ •

0

(

∂ log p

∂l

)2

exp

(

− t

E[T ]

)

dt

=
1

E[T ]

∫

(

(E[T ])′

E[T ]
− (E[T ])′t

(E[T ])2

)2

exp

(

− t

E[T ]

)

dt

=
[(E[T ])′]2

[E[T ]]2

(1.14)

where (E[T ])′ is the derivative with respect to the parameter l .

For a Poisson process with E[T ] = 1/l , we have I = 1/l 2 = (E[T ])2. The larger

E[T ] is, the larger the Fisher information. Of course, when E[T ] is a nonlinear

function l , we see that I(l ) = 0 whenever l satisfies (E[T ])′ = 0.

The Fisher information is useful since it is related to the variance of an estimate d
of g(l ). Assume that we have

E[d ] = g(l )+ B(l )

where B(l ) is the bias of the estimate d . We then have the following information

inequality

Var(d ) ≥ [g′(l )+ B′(l )]2

I(l )
(1.15)

The information inequality is often called Cramer-Rao inequality. However, it seems

the inequality was first discovered by Frechet (1943), and then rediscovered or ex-

tended by Darmois (1945), Rao(1945) and Cramer (1946) ([45], page 143). The

information inequality gives us the lowest bound for an estimate d can attain.

Coming back to the example above, from Equation (1.14) we see that the Fisher

information is zero whenever (E[T ])′ is zero. In other words, when E[T ] reaches its

maximum or minimum points, depending on the parameter l , the Fisher information

vanishes. This leaves us a question of how to estimate the values of l with (E[T ])′ =
0. In fact, these values could be most interesting since neurons fire with their highest

or lowest rate. In [17], we have discussed in details on how to estimate (decode) the

input information when its Fisher information vanishes.

In the framework of maximum likelihood estimate, the Fisher information asymp-

totically (when the sample sizes are large enough) gives the confidence interval of

an estimate. In Chapter 9 the authors explore the applications of the maximum like-

lihood estimates to neuronal spike train data.

1.4.4 Relationship between the various measurements of information

After introducing various measures of information, we are interested in knowing the

relationship between them [37, 45].

Let X1,X2, · · · ,Xn be an identically and independently distributed samples from a

density f (x,q ) and let Sn(p) be the Shannon information of the sample, i.e.,

Sn(p) = E

[

∫

log
p(q |X1, · · · ,Xn)

p(q )
dp(q |X1, · · · ,Xn)

]

,
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where p(q ) is a prior distribution. Then, as n is large enough, we have

Sn(p) ∼ k

2
log

n

2pe
+

∫

p(q ) log
|I(q )|1/2

p(q )
dq

Hence the optimal prior is the Jeffreys prior which is proportional to
√

I(q ).

1.5 Optimal control

Cortical activity related to some simple motor movements might be relatively easier

to characterize than high brain functions such as memory and attention etc. [25, 39,

40, 58]. To understand biological movement control is of great potential applications

in robot control, as reviewed in Chapter 17. Here we present some examples to

illustrate optimal control theory and refer the reader to Chapter 17 for more details.

In theory, (stochastic) optimal control is a well developed area, with wide and

successful applications in finance. In general, to find an optimal control signal is

reduced to solve the Hamilton-Jacobi-Bellman (HJB) equation [52]. However, the

HJB equation is usually difficult to solve, even numerically [43]. In the simplest

case, i.e., when the control problem is an open loop control, we can analytically

obtain the solution of the control problem (see [71] for some recent results with a

feedback control).

1.5.1 Optimal control of movement

The Model

We consider a simple model of saccadic movement. Let x1(t) be the position of

eye (in degrees) and x2(t) be its velocity (degree/sec) [24]. We then have

⎧

⎨

⎩

ẋ1 = x2

ẋ2 = − 1

t1t2
x1 −

t1 + t2

t1t2
x2 +

1

t1t2
ū

(1.16)

where t1,t2 are parameters and ū is the input signal as defined below. However, we

are more interested in general principles rather than numerically fitting of experimen-

tal data. From now on, we assume that all parameters are in arbitrary units, although

a fitting to biological data would be straightforward. In matrix term we have

dX = AXdt + dU (1.17)

where

A =

⎛

⎝

0 1

− 1

t1t2
−t1 + t2

t1t2

⎞

⎠ (1.18)
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and

dU =

⎛

⎝

0
l (t)dt + l (t)a dWt

t1t2

⎞

⎠

with Wt being Brownian motion, l (t) is the control signal, and a > 0 (see Section

1.3). Basically, under the rate coding assumption, a = 1/2 corresponds to Poisson

inputs [57, 77] (also see Section 1.3). We call a < 1/2 sub-Poisson inputs, and

a > 1/2 supra-Poisson inputs.

Here is the control problem.

• For a fixed, deterministic time T , find l (s) ∈ L 2a [0,T +R] which minimizes

∫ T+R

T
var(x1(t))dt (1.19)

subject to the constraint

E[x1(T )] = D for t ∈ [T,T + R] (1.20)

The meaning is clear. Equation (1.20) ensures that at time T , the saccadic movement

stops at the position D and keeps there for a while, i.e., from time T to T +R. During

the time interval [T,T + R], it is required that the fluctuation is as small as possible

(Equation (1.19)).

When a > 1/2, define

⎧

⎪

⎪

⎨

⎪

⎪

⎩

b12(t − s) =
t1t2

t2 − t1

[

exp

(

−1

t 2
(t − s)

)

− exp

(

−1

t 1
(t − s)

)]

b22(t − s) =
t1t2

t2 − t1

[

1

t1
exp

(

−1

t 1
(t − s)

)

− 1

t2
exp

(

−1

t 2
(t − s)

)]

,

so the solution of the optimal control problem is

l (s) =

∣

∣

∣m1 exp
( s

t 1

)

+ m2 exp
( s

t 2

)∣

∣

∣

1/(2a−1)
sgn

[

m1 exp
( s

t 1

)

+ m2 exp
( s

t 2

)]

(

∫ T+R

0
b2

12(t − s)dt

)1/(2a−1)

(1.21)

with m1, m2 being given by

⎧

⎪

⎪

⎨

⎪

⎪

⎩

Dt2 exp

(

T

t 2

)

=

∫ T

0
exp

( s

t 2

)

· A(s)

B(s)
ds

Dt1 exp

(

T

t 1

)

=

∫ T

0
exp

( s

t 1

)

· A(s)

B(s)
ds.

(1.22)

with

A(s) =
∣

∣

∣m1 exp
( s

t 1

)

+ m2 exp
( s

t 2

)∣

∣

∣

1/(2a−1)
sgn

[

m1 exp
( s

t 1

)

+ m2 exp
( s

t 2

)]

© 2004 by Chapman & Hall/CRC



and

B(s) =

(

∫ T+R

0
b2

12(t − s)dt

)1/(2a−1)

.

The control problem with a = 1 discussed in this subsection is first proposed

in [33], see also [64]. Their numerical results show an excellent agreement with

experimental data. The basic principle: task optimization in the presence of signal-

dependent noise, is intriguing and possibly functional meaningful in motor control.

Unfortunately, the results are not degenerate only when the inputs are supra-Poisson.

To illustrate the point, we next consider a simpler control problem.

1.5.2 Optimal control of single neuron

Controlling neuron activity is another interesting area of research, with possible ap-

plications in medicine such as in the treatment of Parkinson’s disease [8].

The Model

The neuron model we use here is the classical integrate-and-fire model [9, 77], as

in Section 1.3. When the membrane potential V is below the threshold Vthre, it is

given by

dV = −Vt −Vrest

g
dt + dIsyn(t) (1.23)

where the synaptic input is

Isyn(t) = aE

nE

Â
i=1

Ei(t)−aI

nI

Â
j=1

I j(t)

with Ei(t), Ii(t) as point processes (Poisson process being a special case), aE >
0,aI > 0 are magnitude of each EPSP and IPSP, nE and nI are the total number of

active excitatory and inhibitory synapses. Once V crosses Vthre from below a spike

is generated and V is reset to Vrest , the resting potential. The interspike interval of

efferent spikes is

T = inf{t : V (t) ≥Vthre}
In the following developments, we further assume that Vrest = 0,aI = 0 and use

diffusion approximations to approximate synaptic inputs [77], as in Section 1.3

disyn(t) = aE l (t)dt + aE l a (t) ·dWt

where Wt is a standard Brownian motion and a > 0. When a = 1/2, the input is a

Poisson process. The larger the a is, the more randomness the synaptic inputs are.

For a fixed time Tf , let us define

I(l ) = var(V (Tf )),

i.e., I(l ) is the variance at the end-point Tf of the membrane potential with the input

signal l (t). Then we have the following.
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• Control problem:

To find a synaptic input l (s) satisfying

E[V (Tf )] = Vthre, (1.24)

I(l ∗) = min
l

I(l ). (1.25)

The meaning of the optimal control problem is as follows. Suppose that we intend

to drive a neuron to fire with a fixed frequency, say 1000/Tf Hz so that we can

fix the time Tf . Equation (1.24) satisfies the requirement. The second requirement

Equation (1.25) indicates the we intend to determine an optimal (control) signal so

that the variance of the membrane potential at time Tf attains its minimum value,

among all possible control signals. Here all possible control signals (l (t)) mean all

possible positive function of time t. The more difficult mathematically and indeed

more realistic problem is to insist that with a stochastic input

E[T ] = Tf

and seek to minimize I1(l )= Var[T ]. Although minimizing the variance of the mem-

brane potential is not the same as minimizing the variance of the interspike interval, it

is likely for most physiologically realistic inputs that the relationship between them is

monotonic. Hence we proceed on the reasonable assumption that when the variance

of the membrane potential reaches its minimum value, the corresponding variance of

interspike intervals attains its minimum as well.

Optimal control

We have the following conclusions

• For a > 1/2, the unique optimal control signal l (s) is

l (s) =
(2a −2)Vthre

(2a −1)ag

[

1− exp

(

−Tf (2a −2)

g(2a −1)

)] · exp

(

Tf − s

(2a −1)g

)

(1.26)

for 0 ≤ s ≤ Tf . In particular, when a = 1, we have

l (s) =
Vthre

aTf

exp

(

Tf − s

g

)

. (1.27)

• For a = 1/2, the unique optimal control signal l (s) = d0(s), the delta function

at time zero.

• For a < 1/2, the optimal control signal l (s) = dy(s), the delta function at

y ∈ [0,Tf ]. Hence the solution is not unique.

As a direct consequence of the results above, we have
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Figure 1.1

Optimal control signals (l ∗(t)) with a = 0.6,0.7, · · · ,1.2,10. Tf = 20 msec.

• For a > 1/2,

I(l ∗(s)) = a2−2aV 2a
thre

∣

∣

∣

∣

2a −2

(2a −1)g

∣

∣

∣

∣

2a−1

·
∣

∣

∣

∣

(

1− exp

(

−Tf (2a −2)

g(2a −1)

))∣

∣

∣

∣

1−2a

.

(1.28)

In particular, when a = 1, we have

I(l ∗(s)) =
V 2

thre

Tf

. (1.29)

• For a = 1/2,

I(l ∗) = aVthre exp

(

−Tf

g

)

. (1.30)

• For a < 1/2,

I(l ∗) = 0. (1.31)

Having found the optimal control signals, we can further discuss how to imple-

ment them on a neuronal basis [22].

In conclusion, we find that task optimization in the presence of signal-dependent

noise is promising in applications to motor and neuron control problems [7]. How-

ever, the optimal problem turns out to be degenerate with Poisson and sub-Poisson

inputs. With a biologically reasonable feedback (for example, the reversal poten-

tials are the natural form of feedback), we would expect that the optimal problem

becomes not degenerate.
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Figure 1.2

Optimal variance I(l ∗) against a for Tf = 20,40,100,500. Right is the same as

left, but Tf = 20 is shifted towards left with 0.3 units, Tf = 40 with 0.2 units, and

Tf = 100 with 0.1 units.
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Appendix A: The Hodgkin-Huxley Model. The remaining equations in the Hodgkin-

Huxley model are as following (see [9, 13]).

dn

dt
=

n• −n

tn

,
dm

dt
=

m• −m

tm

,
dh

dt
=

h• −h

th

and
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, m• =
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1
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)+ 1

The parameters used in Equation (1.2) are C = 1,gNa = 120,gK = 36,gL = 0.3,Vk =
−77,VNa = 50,VL = −54.4.
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2.1 Introduction

2.1.1 Scope of this chapter

This chapter deals with computer simulations of ion channel proteins. I review

briefly the key properties of ion channels for which there is structural information,
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and discuss different simulation approaches. In my opinion, the general goal of sim-

ulations of ion channels could be stated as follows:

The goal of simulation studies is to link the structure of ion channels in atomic

detail to ion currents, including a fundamental understanding of how ion channels

are controlled by external factors such as voltage, ligand binding, ion gradients, pH,

and interactions with toxins and other blockers.

Simulations can be used to study ion channels at different levels of detail. At

the highest level of detail, all individual atoms are included in the simulation, but

a connection to macroscopic observables like voltage-current relationships is hard

to make. At intermediate levels of detail, protein and ions are treated as individual

particles but solvent is not. At this level a direct link between simulation and ex-

periment is now feasible. Finally, at the lowest level of detail, both ions and solvent

are treated implicitly, as mean fields, and the channel itself may be either atomic

detail or simplified as well. At this level of approximation it is computationally easy

to calculate macroscopic properties, but it is challenging to obtain accurate results.

Recently, simulations have also begun to study interactions of toxins and other small

molecules with ion channels, providing an additional possible link with experimen-

tal work. I conclude with a review of selected recent applications to a number of

model ion channels and give a brief outlook of how simulations might contribute in

the future to a better understanding of how ion channels work.

2.1.2 Ion channels

Ion channels are found in all organisms, in a staggering variety. In higher organisms,

they play an important role in e.g. cell excitability [58], maintaining and regulating

osmotic balance, and signal transduction. Ion channels in excitable cells occur in

a wide variety and are usually grouped based on the ions they primarily conduct:

e.g., sodium channels, potassium channels, or calcium channels. An alternative clas-

sification considers their control mechanism: voltage-gated, ligand-gated, cyclic-

nucleotide gated etc. Many ion channels are involved in diseases termed ‘chan-

nelopathies’, in which ion channels are defective in some way [8]. Because of the

central role of many ion channels in cell physiology, ion channels are also major

targets for drugs and drug development.

The basic function of ion channels is simple: they conduct ions. Broadly speaking,

ion channels have three fundamental properties:

1. Conductance, or current-voltage relationships at specific conditions. These

relationships can be almost linear, but they can also show features such as

saturation and rectification (preferential current in one direction), and they can

show very complex behaviour in the presence of multiple types of ions. Many

ion channels conduct ions close to the maximum rate allowed by diffusion.

2. Selectivity. Most ion channels preferentially conduct one type of ion over an-

other. Selectivity is an intriguing property. The difference between potassium
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and sodium in radius and electronic properties is small, but certain potassium

channels are more than a 1000-fold selective for potassium over sodium. ‘Va-

lence selectivity’ refers to selectivity for e.g., divalent ions such as calcium

over sodium or potassium, and ‘charge selectivity’ is selectivity for cations

over anions or vice versa. Most specific cation channels do not conduct chlo-

ride, whereas chloride channels do not conduct cations. Others, such as the

nicotinic acetylcholine receptor, are only somewhat selective.

3. Gating. The ion channels of excitable membranes are controlled by their envi-

ronment, including voltage, ion concentrations, and ligand-binding. The pre-

cise mechanism of gating is not yet known, although there is much evidence

for voltage-gated channels that points to specific parts of the sequence, and the

crystal structure of a large part (although not the voltage-sensitive part) of a

voltage-gated potassium channel is known [54].

Bacteria contain homologues of many of the channels from higher organisms. Ion

channel activity (conductance of ions) is also exhibited by a wide variety of other pro-

teins that are not normally considered ion channels, such as bacterial and mitochon-

drial porins, gap junctions, bacterial toxins such as alpha-haemolysin, and ion chan-

nels formed by the aggregation of peptides such as gramicidin, alamethicin, mellitin,

and several designed peptides. In addition to these ‘natural’ channels, many organic

and inorganic compounds have been designed that form supra-molecular aggregates

with clear ion channel activity. Although neither these artificial ion channels nor

pore forming toxins etc. are directly relevant for ion channels in the nervous system,

they form important model systems for theoretical understanding of the molecular

basis of the properties of these physiologically more relevant ion channels, primarily

because they are simpler.

Until recently, the molecular basis of selectivity, the high conductance of some

channels, and of gating was inferred indirectly from electrophysiology and other ex-

periments. Experimentally, the channels can be studied at the single-molecule level

by the techniques of electrophysiology, often combined with site-directed mutagen-

esis and the use of specific blockers [8, 58]. For the purpose of simulations, more

detailed structural information is usually required. In recent years, our understand-

ing of the structural reasons underlying ion channel properties has increased signif-

icantly. Currently the high-resolution crystal structure of two potassium channels, a

chloride channel, and two mechano-sensitive channels are known. An overview of

some of the solved structures is given in Figure 2.1.

Potassium channels vary in complexity but are generally tetrameric with 2-6 trans-

membrane helices per monomer. The known structures are of bacterial homologues.

KcsA is a tetrameric channel with 2 transmembrane helices per unit. Figure 2.2

shows the topology of KcsA. The pore-lining segment of the helices M1 and M2

(called S5 and S6 in more complex channels) and the ‘pore helix’ P is conserved

across potassium channels as well as most likely in sodium and calcium channels. In

the crystal structures of KcsA, 20-30 residues of each of the terminal sequences are

missing [40].
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Figure 2.1

The structure of a number of ion channels: A. Gramicidin A; B. Model of an

alamethicin channel with six helices; C. OmpF porin; D. The large conductance

mechanosensitive channel MscL; E. The potassium channel KcsA. In all cases, dif-

ferent monomers have different colors. Figures 2.1, 2.2, 2.4, 2.6, 2.8 were made with

the program VMD.
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Figure 2.2

Schematic structure of the KcsA channel, with the pore lining M2 helices, the outer

M1 helices, and the pore-helices P. A. View from the extracellular side; B. View from

the side. The spheres indicate some of the positions where ion density is found in

the crystal structure.
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More complex potassium channels have large extra-cellular domains instead of

these relatively short sequences. The structure of some of these domains has been

solved separately, for example the T1 and beta domains of a voltage gated potas-

sium channels [54]. A key missing piece at the moment is a structure of the other

transmembrane helices of voltage-gated channels with 6 helices per subunit. The

structures of KcsA currently known are all in the closed state. At the moment one

structure of an open potassium channel is known: MthK is a calcium-gated potas-

sium channel that was trapped in the open state by the presence of calcium [65].

Other channel structures that are known experimentally are two chloride channels

[41] and two mechanosensitive channels [9, 29]. Several modelling and simula-

tion studies have considered the large conductance mechanosensitive channel MscL

[17, 45, 55, 106], but to date no simulation studies of the chloride channels have

appeared. All of these channels are from bacteria, but the potassium and chloride

channels have significant homology to eukaryotic channels. Homology modelling

techniques may be used to build molecular models of at least parts of these channels.

For example, as mentioned above two out of the six helices that make up the trans-

membrane domain of the voltage-gated Kv channels, share homology with KcsA,

and models of the inner two helices of such channels have been build (recently re-

viewed by [25]). Similarly, the pore parts of voltage-gated sodium channels and

calcium channels are also likely to be homologous to KcsA. If we try to link con-

ductance properties to such models an additional degree of uncertainty is introduced

by the use of homology models rather than ‘real’ structures. For this reason I do not

consider homology models in this chapter, although clearly the proteins modeled are

physiologically very important, and often are important drug targets. As more tem-

plate structures become available and computational procedures improve, this type

of modelling is expected to become increasingly important and useful.

A final important class of channel proteins for which structural information is

available but which is not related to the potassium/sodium/calcium channels or the

chloride channels is the class of ligand-gated channels. These include neurotrans-

mitter gated channels such as the nicotinic acetylcholine receptor, GABA receptors,

and glycine and serotonin receptors. A lower resolution structure of the nicotinic

acetylcholine receptor has been obtained from electron crystallography studies [117].

This protein is a hetero-pentamer consisting of a mixture of homologous subunits.

It probably has 4 transmembrane helices per protein, and has large domains out-

side the membrane. The extracellular domain is highly homologous to a recently

discovered water-soluble acetylcholine binding protein, the structure of which was

solved by crystallography [22]. The pore-lining helices by themselves aggregate

into a channel with conductance properties reminiscent of those of the full channel

[84]. Several models of this peptide channels have given an idea of what it looks

like [71, 80]. Combined with the low-resolution structure of the full protein and the

high-resolution structure of the acetylcholine-binding domain, models/structures of

the full channel as well as homologous proteins are likely to appear soon.

Most simulation and modelling systems have used a set of well-characterized

model systems, ranging in complexity from an infinitely long featureless cylinder

to the actual potassium channel KcsA. The literature on these channels is quite ex-

© 2004 by Chapman & Hall/CRC



tensive, and the references given here are mostly just examples of recent papers or

reviews. Popular model systems include simple geometric shapes; gramicidin A, a

very well studied peptide antibiotic [92]; alamethicin, another channel forming pep-

tide [114]; the leucine-serine peptides LS2/LS3 [72], designed peptides that form

channels; channels formed by the pore-lining helices of the nicotinic acetylcholine

receptor (M2d ) [71, 80]; the transmembrane segment of Influenza A M2, a four-

helix proton channel [47]; and OmpF, a large and stable bacterial porin [61, 62, 89].

The structures of OmpF and gramicidin A are known experimentally, and reasonable

models based on experimental constraints can be constructed for the others. Below I

focus mainly on gramicidin A, alamethicin, OmpF porin, and KcsA.

2.2 Simulation methods

Computer simulations make it possible to explore dynamic aspects of ion channels

that cannot be addressed directly by the methods of structural biology. For exam-

ple, X-ray diffraction provides a time- and space-averaged structure of a membrane

protein in a specific crystal environment, whereas with simulations we can explore

the structural dynamics of a single channel protein molecule embedded in a realistic

model of the bilayer environment. In this section, different simulation methods that

are currently applied to ion channels are reviewed briefly. Several recent reviews

have described various aspects of channel permeation calculations in more detail,

and contain references to older reviews [32, 70, 91, 93, 111].

Ion channels can be described at many different levels of detail, and a major con-

sideration of any simulation study is its choice of level of detail. In principle one

could treat the entire system (channel, water, ions, membrane) quantum mechan-

ically, taking the distribution of all electrons in the system into account. This is

currently not possible in practice, and in general not desirable even if it would be

possible because it seems unlikely electronic detail everywhere in the model is rel-

evant for the process (ion conduction) that we would like to study. Mixed quantum

mechanics and molecular mechanics (QM/MM) simulations are becoming increas-

ingly feasible for proteins, such as enzymes in which the active site is modelled by

quantum mechanics but the environment is modelled classically [27], or rhodopsin

where the chromophore and its direct environment are treated by quantum mechanics

[90]. This approach has not been widely applied to ion channels [51] and, indeed,

it remains unclear whether this level of detail will prove necessary. The majority of

channel simulations could be conveniently divided into two categories: atomistic and

coarse–grained. In atomistic simulations all (or most) of the atoms in a simulation

system are treated explicitly. For a system made up of a channel molecule embedded

in a small (ca. 100 Åx 100 Å) patch of lipid bilayer with water and ions on either side

this amounts to ca. 50,000 atoms or more. Such simulations have become possible

in recent years following developments in accurate simulations of pure lipid bilayers
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Figure 2.3

Different schemes to separate interesting from less interesting regions in simula-

tions. A. The partitioning of a system for BD calculations proposed by Im and Roux.

Reproduced with permission from [63]. B. The partitioning of the system used by

Burykin et al. The area within the black square is explicitly represented in the sim-

ulation. Reproduced with permission from [23]. Simulation methods used in both

studies are different, but have in common that the interior of the protein is treated in

most detail, whereas remote regions of the solvent and membrane are treated in very

little detail.
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[96, 102, 116], faster computers, and more efficient algorithms. With current com-

putational resources system sizes are limited to about 100,000 – 200,000 atoms and

simulation times of up to 10–100 ns, although this of course depends critically on

available computers and software. For some very wide or simplified channels, this

means a conductance can be calculated from an MD simulation [35], but in general

this time scale is insufficient to get accurate average currents, even when ignoring all

other sources of errors inherent in MD simulations.

An alternative approach is to use a coarse grained simulation in which the simu-

lation system is considerably simplified. Often, but not always, the protein is treated

in explicit atomic detail, whereas the surrounding environment is treated as a contin-

uum. In these approximations, simulation techniques are usually either Monte Carlo

or Brownian dynamics, combined with continuum electrostatics theories to incorpo-

rate the effects of the atomic detail that is ignored in these calculations. Various mean

field approaches allow simulation times to be comparable to experimental times for

ion permeation. Brownian dynamics in particular simulates the dynamics of ions

and can reach microseconds or longer, long enough to accurately calculate a current.

However, as detailed below, significant difficulties remain regarding the choice of

the best mean field model and the connection between the results of short timescale

atomistic simulations and long timescale mean field simulations. In some of the

most interesting recent methodological studies, different levels of detail are used for

different parts of the system; for example, the inside of a channel is described in as

much detail as possible, whereas bulk water and membrane away from the channel

are highly simplified. Two examples are shown in Figure 2.3.

2.2.1 Molecular dynamics

The most common atomistic simulation technique as applied to ion channels is

molecular dynamics (MD) [56]. In MD simulations the interactions between all

atoms in the system are described by empirical potentials. An example of a common

potential function is:

V (rN) = Â
bonds

ki

2
(li − li,0)

2 + Â
angles

ki

2
(qi −qi,0)

2

+ Â
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2
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)

(2.1)

This potential function contains harmonic terms for bonds and angles, a cosine

expansion for torsion angles, and Lennard-Jones and Coulomb interactions for non-

bonded interactions. The constants ki are harmonic force constants, li, is the current,

li,0 the reference bond length, qi the current, qi,0 the reference angle, Vn,n and g
describe dihedral angles (rotations around a central bond), e and s are Lennard-

Jones parameters (a different pair for each possible combination of two different
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Figure 2.4

Snapshot of an ion channel from an MD simulation of alm K18 (see Section 2.3.3).

The 8 helices are shown as blue ribbons; the lipids are shown in purple, water in

blue. Chloride ions are green spheres, potassium ions red spheres. (See color insert.)

atom types), qi and q j are (partial) atomic charges, and ri j is the distance between

two atoms. Using this potential function the forces (the derivative of the potential

with respect to position) on all atoms in the system of interest are calculated and

used to solve classical equations of motions to generate a trajectory of all atoms in

time. An example of a simulation system is given in Figure 2.4. This system contains

a model ion channel, an explicit lipid bilayer, water, and salt.

This trajectory is the primary result of the simulation, from which specific details

of the system can be analyzed. This is an exciting idea, because atoms can be fol-

lowed as they move in real time on a timescale of up to ca. 100 ns, although longer

simulations have also been reported. In principle, any properties that depend on co-

ordinates, velocities or forces can be calculated, given sufficient simulation time. No

assumptions are required about the nature of the solvent, there is no need to choose

dielectric boundaries because all atoms are explicitly present, and in principle all

interactions (water-ions, water-protein, water-lipid, lipid-protein etc.) are incorpo-

rated. This method automatically includes the dynamics of the ion channel protein

itself as well as any dynamic effects of the lipids on the ion channel.

Molecular dynamics simulations have been applied by many groups, to a large

selection of ion channels as well as to homology models of complex ion channels [91,

111]. Although atomistic simulations have the significant advantage of providing a

detailed view of ion, water and protein dynamics, it remains challenging to link such

simulations with macroscopic observed properties. Molecular dynamics simulations
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so far have been useful for a number of problems:

1. MD simulations have shown how the properties of water and ions in narrow

channels change significantly compared to bulk. In particular, in many cases

water molecules are strongly oriented due to local electric fields from the pro-

tein. Examples of this may be found in porin [112] and channels formed by

parallel helix bundles [111]. In addition, water and ion diffusion coefficients

are significantly lower than in bulk, which is relevant for coarse-grained sim-

ulations.

2. MD simulations have given insight into the actual process of ion motion in

potassium channels, as well as into local structural changes that may explain

the experimentally observed differences between e.g. sodium and potassium in

the potassium channel, or different types of ions in gramicidin A (see below).

3. MD simulations have been useful to construct models of channels for which

the structure is not known, when such simulations are combined with other

modelling techniques and experimental data (see [25] for a review).

4. MD simulations have begun to give detailed insight into the interactions of

small molecules and toxins with ion channels (e.g. [36, 46]).

5. MD simulations can be used to make models of states of ion channels that are

not present in crystal structures. The open channel models for KcsA of Biggin

and Sansom are a good example of this [15].

6. MD simulations give insight into the effect of the environment (lipids) on the

channel protein and vice versa (e.g. [85, 113]). This is an important aspect

because there are few other techniques available to study this directly.

7. MD simulations can be used to provide parameters and other information for

more course-grained simulations. This is potentially a very powerful use of

molecular dynamics simulations that has been applied in a number of cases.

Two recent examples can be found in interesting studies of OmpF [61] and

KcsA [23].

Nonetheless, there are several important caveats and limitations that have to be

taken into account. An obvious limitation is the combination of system size and

simulation length, which is mainly determined by available computer power and

software efficiency. In particular, the maximum time scale of ca. 100 ns is not enough

to accurately determine the average number of ions passing through a channel, except

for very wide channels such as porins or simplified geometrical models. This means

that by timescale alone one of our primary objectives, connecting atomic models with

current-voltage curves, is still mostly out of reach of MD simulations. A second

limitation is inherent in the specific choice of algorithms used. For example, it is

now quite clear that electrostatic interactions must be accurately calculated, but due

to their 1/r dependence (long-ranged compared to the system size) this entails a

certain degree of approximation. Several methods have been proposed (e.g. [114, 23]
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for references), the most popular of which currently is Particle Mesh Ewald [95],

although in my opinion this may not be the final answer for membrane systems due

to its artificial symmetry. More fundamentally, the simple potential functions used

might not be accurate enough for important details of e.g. ion-protein interactions

across a range of ions [66]. Although any potential energy function could be used

in principle, including much more complex versions than the one shown in Eq. 2.1,

parameterizing more complex functions is a daunting task and there might not be

sufficient experimental data to test the parameters.

Certain crucial aspects of ion channel function are hard to incorporate in MD sim-

ulations of periodic systems with tens of thousands of atoms. One problem is that

incorporating transmembrane potential differences is not straightforward, although

a reasonable and promising approximation has been developed [35]. Clearly, this

is crucial if we want to calculate current-voltage curves. A second problem is that

ionic concentrations are difficult to model. Even uniform low salt concentrations are

not straightforward to represent in a simulation, because it is difficult to sample the

motion of the 27 K+ and 27 Cl− ions that would make up a 0.15 M KCl solution

in a simulation with 10,000 water molecules. Such a simulation would also ignore

the effect that the lipids have on the local salt concentration near the bilayer [28],

which differs significantly from the bulk concentration. Biologically relevant con-

centrations of calcium or protons are even more problematic: in a typical simulation

system a physiological calcium concentration in the micromolar range would corre-

spond to much fewer than 1 ion. Modelling the effect of pH has similar problems

with concentration and the additional problem that it is hard to make protons hop

between different groups in a classical potential. Usually, pH is incorporated by cal-

culating the pKa of ionisable residues and adjusting the protonation state of ionisable

amino acids according to the desired pH.

Finally, the starting models used for simulations are rather critical at the moment.

Most simulations of ion channels have been carried out on a handful of crystal struc-

tures, including gramicidin A, OmpF, a mechanosensitive channel, and the potassium

channel KcsA. From an ion channel perspective KcsA is by far the most interesting

of these, but the crystal structure initially had a fairly low resolution, which caused

some uncertainty in the starting structures for the simulations. Simulations have also

been done on homology models of various channels, in which case it becomes even

more important to carefully consider the sensitivity of the results obtained to changes

in the model [26].

Before examining continuum models, I would like to mention a class of simula-

tions based on semi-microscopic models that combine fully atomistic detail in parts

of the system with long-range electrostatic corrections based on a series of models

that treat the environment as a lattice of rotating dipoles [23, 78, 6]. This method

appears quite accurate and flexible, but is not implemented in most of the common

software packages for molecular dynamics simulations.
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2.2.2 Continuum electrostatics

Theories based on a continuum or field description of ion channels operate closer

to the level of measurements of channel current-voltage (I-V) curves, and indeed

their main advantage is that it is possible to calculate actual IV curves, and from the

IV curves properties like selectivity with only modest computational effort. In recent

years, a number of papers have applied electrostatic and electrodynamic theory to ion

channels. Much of this work has been reviewed, e.g. by [70, 33, 43, 64]. The relative

merits of different approaches, most notably those based on kinetic models, transport

equations and on Brownian dynamics, have been hotly debated in a discussion in the

Journal of General Physiology (1999, vol. 113). Rate models, which describe ion

permeation in terms of movement across barriers between binding sites, have a long

history in ion channels [58]. They might be most useful in helping to infer details

of channel structure from experimental observations, rather than vice versa, and are

outside the scope of this chapter. In general, continuum theories for ion channels

are based on similar theories from physical chemistry, developed for macroscopic

systems such as electrolyte solutions. I will outline the Poisson-Nernst-Planck theory

and then focus on Brownian dynamics.

Poisson-Nernst-Planck

The Nernst-Planck equation describes flux of ions driven by an electrochemical

potential gradient across the ion channel [58]. The flux Ji of particles (i.e. ions) of

type i is given by:

Ji(r,t) = −Di(r)

[

△ni(r,t)+
ni(r,t)

kT
△mi(r)

]

(2.2)

where Di(r) is the spatially dependent diffusion coefficient, ni the number density

and mi(r) the external potential acting on the particles. Particles move under the

influence of a chemical potential gradient. This general formulation enables incor-

poration of arbitrary factors that influence effect ion permeation as long as they can

be expressed as a chemical potential. Such factors might include e.g. interactions be-

tween the walls and ions, or interactions between ions at short distances [74]. When

applied to ion channels in the steady state limit, the arbitrary chemical potential mi(r)
gradient usually has been replaced by the electrostatic potential gradient. Perhaps

this could be exploited in improvements to this theory as applied to ion channels, as

numerical methods and modern computers should allow quite complex potentials of

mean force. When the electrostatic potential gradient is used in stead of the chemi-

cal potential, the resulting equation is the Nernst-Planck equation for ions of type I

(simplified to flux in one dimension, z)

Ji(z) = −Di

(

△ni(z)+
qini(z)

kT
△f(z)

)

(2.3)

where Di is the diffusion coefficient of species i,ni is the position dependent number

density, qi the charge, and f the electrostatic potential. In this form, the driving

forces for ion permeation are a concentration gradient and an electrostatic potential
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gradient. The flux Ji is related to the current Ii carried by ion type i by Ii = qiFSJi,

where qi is the charge of ion type i,F is Faraday’s constant, S is the channel cross

sectional area (as the flux through ion channels is calculated per area, not per volume

element), and Ji is the flux in the z-direction of ion i, assuming the channel axis is

parallel to the z-axis. (Note that this leaves us with a problem of how to define S for

a channel of non-uniform geometry). The Nernst-Planck equation for current can be

rewritten in integral form as:

Ii = ziF
cout,i − cin,i exp(ziF△V/(RT ))

∫ d

0

exp(ziFf(z)/(RT ))

Di

dz

(2.4)

where cout,i is the extracellular concentration of species i, cin,i is the intracellular

concentration of species i, △V is the transmembrane potential difference, f is the

electrostatic potential, d is the thickness of the membrane, and the extracellular

membrane face is at z = 0. In principle, this equation relates the measured current

(I) to the transmembrane potential (V), with as input parameters the ion concentra-

tions outside the channel and the electrostatic potential profile f(z). However, this

potential profile is generally not known and difficult to calculate.

As a first approximation, this potential can be assumed to be linear (i.e. the field

everywhere in the channel is the same), leading to the classical Goldman-Hodgkin-

Katz solution of the Nernst-Planck Equation [58]. This is a strong approximation.

An improvement is to calculate the electrostatic potential in the ion channel from the

Poisson equation and the (partial) charges on all atoms of the ion channel plus the

induced charges due to the different dielectric constants of the protein, membrane

and solvent. The assumption then becomes that permeating ions do not significantly

change the local electrostatic potential. For many channels this is unrealistic. By

using the Poisson-Boltzman equation instead of the Poisson equation, the shielding

due to the presence of salt can be taken into account. However, the Poisson-Boltzman

theory is only valid in equilibrium, which is not normally the case in ion channels

[43], and at low concentrations, whereas a typical charge density in an ion channel

is in the molar range. A second approximation is that the Boltzmann factor is not

determined by the mean electrostatic potential, as assumed in the PB theory, but

rather by the potential of mean force between ions. In particular, this means that

at short distances from ion i, the potential of mean force does not vary smoothly as

z jf(r j) for all distances larger than the ion diameter, but has a more complicated

behaviour. An example of PB calculations on a channel is given in Figure 2.7 in

Section 2.3.3, where the effect of ionic strength and one of the input parameters for

PB calculations (the Stern exclusion radius) is investigated for a model ion channel.

The Nernst-Planck and Poisson equations can be solved simultaneously, with ap-

propriate boundary conditions to take into account the transmembrane difference

in electrochemical potential. This means that the local electrostatic potential in the

channel depends on the fixed charges of the protein, the permeating ions, the induced

charges due to the different dielectric constants of the membrane and the solvent, and

the boundary conditions. The resulting equations are often referred to as Poisson-

Nernst-Planck (PNP) equations in the literature on ion channels. They consist of
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Poisson’s equation for the ion channel system:

△.[e(r)△f(r) = −4p

[

r(r)+
N

Â
i=1

zieni(r)

]

(2.5)

(where the first term on the right-hand side is the charge density of the fixed charges

in the channel and the membrane, and the second term is the average charge density

of the mobile charges) combined with the steady-state equation for drift-diffusion to

accommodate the fluxes of the mobile ions:

0 = △.Ji = △.

[

−Di(△ni(ni(r)+
ni(r)

kT
△mi(r))

]

; i = 1, · · · ,N (2.6)

Here mi(r) is the chemical potential. In its simplest form, this could just be zief(z),
which assumes the chemical potential can be approximated by the electrostatic po-

tential and only depend on z, the depth inside the channel and membrane. In this

case, ions interact through the average potential f(z). However, like before mi(r)
can also include other interactions, providing a way to improve the theory. In these

equations, ci,Ji,zi, and Di are respectively the concentrations, fluxes, valences, and

diffusion constants of the ion species i. These two equations are coupled, because

the flux changes the potential due to the mobile charges, and the potential changes

the flux. In practice, they are solved simultaneously to self-consistency using numer-

ical methods. When all the fluxes Ji are zero, and ni ∼ exp(−zief/(kT )), again with

f the average potential, these equations reduce to the normal Poisson-Boltzmann

equation. Thus, the PNP equations are an extension of the PB equation, and the

same assumptions as in PB theory underly PNP. To single out one assumption: ions

interact with each other only through the average charge density. This may be prob-

lematic, as in ion channels these interactions are discrete: a binding site with an

average occupancy of 0.25 will enter the average charge density as a charge of 0.25,

but this does not reflect the real situation. It may be argued that this may not be

too serious a problem in that the ion channel walls have such a high charge density

that ion-ion interactions are less important, and the average charge density is good

enough. However, this remains to be determined in specific cases.

2.2.3 Brownian dynamics

A different approach, that maintains some of the benefits of atomistic simulation,

is provided by Brownian dynamics (BD). In BD, typically ions and the ion channel

are represented explicitly whereas solvent and lipids are represented implicitly (see

also Figure 2.3). In these simulations, ions move stochastically in a potential that

is a combination of ion-ion interactions, ion-protein interactions, and a mean field.

These three components can be treated at different levels of complexity, analogous

to the calculation of the electrostatic potential for use in the Nernst-Planck equation.

In Brownian dynamics simulations the trajectories of individual ions are calculated

using the Langevin equation:

mi
dvi

dt
= −givi + FR + qiEi + Fs (2.7)
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where mi,qi,vi are the mass, charge and velocity of ion i. Water molecules are not

included explicitly, but are present implicitly in the form of a friction coefficient

migi = kT/Di and a stochastic force FR arising from random collisions of water

molecules with ions, obeying the fluctuation-dissipation theorem. The term qiEi is

the force on a particle with charge qi due to the electric field Ei at the position of

particle i. In a first approximation, this field is due to the partial charges plus an

applied external field arising from the transmembrane potential. However, this term

should also include the effect of multiple ions and reaction field terms (image charge

effects) due to moving ions near regions with a low dielectric constant. Finally, FS

is a short-range repulsive force between ions and possibly between ions and protein.

This short-range force could be modelled as a hard sphere potential or as the repul-

sive part of a Lennard-Jones potential. When the friction is large and the motions are

overdamped, the inertial term midv/dt may be neglected, leading to the simplified

form

vi =
Di

kT
(qiEi + Fs)+ FR (2.8)

This is the approximation made in Brownian dynamics. This form has been used

in several ion channel simulations. When the free energy profile changes rapidly

on the scale of the mean free path of an ion, the full Langevin equation including

inertial effects must be used. BD simulations require only a few input parameters:

in its simplest form the diffusion coefficients of the different species of ions and

the charge on the ions. However, the model can be refined. The ion channel is

present as a set of partial charges, and some form of interaction potential between

the mobile ions and the protein must be specified (see above). The result of BD

simulations is a large set of trajectories for ions, from which macroscopic properties

such as conductance and ion selectivity can be calculated by counting ions crossing

the channel. In addition, the simulations yield molecular details of the permeation

paths for different types of ions. Such simulations have been performed of a series

of different systems, including simplified ion channel models [11, 31, 34, 75, 82],

gramicidin A [42], KcsA [23, 30] and OmpF porin and mutants [61, 86].

Although Brownian dynamics simulations are conceptually simple, in practice

they can give rise to a number of problems for which there may not be an obvious so-

lution. Representing all solvent effects by a random force and a diffusion coefficient

is a drastic simplification, particularly for narrow regions where ions interact very

strongly with one or two highly oriented water molecules. A recent study on grami-

cidin suggested continuum electrostatics calculations cannot provide a potential for

Brownian dynamics that is accurate enough to reproduce the experimental data on

gramicidin A [42]. Such calculations require several parameters such as dielectric

constants whose values cannot be derived from basic principles [23]. In the con-

text of pKa calculations for titratable amino acids by continuum calculations this has

been addressed in great detail, and it has been shown that the dielectric constant for a

protein depends on the approximations made; it might best be chosen differently for

different types of interactions [101]. Brownian dynamics simulations so far do not

take protein flexibility into account, but there is evidence from MD simulations that

this can be quite critical for e.g., potassium channels and gramicidin A. Finally, even
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if continuum electrostatics theory provides the field inside the channel with sufficient

accuracy to get realistic currents, calculating the field is computationally challeng-

ing. Only recently was the important reaction field contribution (due to image forces

caused by moving permeating ions from a high to a lower dielectric environment)

incorporated in simulations of realistic 3D ion channel models [23, 32, 61].

2.2.4 Other methods

One of the biggest problems of PNP and its equilibrium sibling PB is probably that

the short-range potential of mean force is not correct, which leads to incorrect in-

teractions between ions and protein and between ions and other ions. Similarly, in

BD the short-range interactions between ions and ion and protein are not correct

because of the continuum representation of the solvent. However, there are other

theories, taken from the physical chemistry of ionic solutions, that go beyond PB

that improve on this aspect of the simulations. In principle, one would like to use a

theory that included e.g. the finite size of ions and single filing of ions and water,

using techniques from statistical mechanics of electrolytes. A number of interesting

recent papers have started to explore application of more advanced statistical me-

chanical approaches to channels and channel-like systems. These methods include

Monte Carlo [50], density functional theory [49], and calculations using the mean

spherical approximation for electrolytes [83]. Some applications of these methods

are reviewed below.

2.3 Selected applications

2.3.1 Simplified systems

Clearly, the availability of high-resolution ion channel structures has been the key

factor spurring rapidly growing interest in simulations and theory of ion channels.

Perhaps one of the most significant other developments in the rapidly growing in-

terest in the theory of ion channels is the influx of methods from other areas, such

as the physics and physical chemistry of fluids in confined geometries and of elec-

trolyte solutions. Initial efforts to combine these theories with biological problems

in the area of channels have already given very interesting results, and I think we can

expect much progress from continued work in this area. Simulations of simplified

pore models, ranging for inifinitely extended cylinders to artificial pores with atomic

detail, such as a carbon nanotubes, have contributed greatly to a better understanding

of basic physical principles that affect selectivity, diffusion, collective behavior of

ions and water in narrow pores and similar phenomena. Without trying to be exhaus-

tive, it is interesting to consider a few recent studies on highly idealized systems that

consider different aspects of simulations of channels.
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Hydrophobic pores. The nicotinic acetylcholine pore has a significant hydropho-

bic stretch. Recent structures of aquaporin and glyceroporin also show that part of

the water/glycerol permeation pathway is hydrophobic. Why might this be? One

possibility is that a hydrophobic pore allows control of gating by reversibly filling

and emptying. Beckstein et al. performed simulations of an artificial channel in a

membrane made of ‘methane-like’ atoms, basically hydrophobic spheres that were

harmonically restrained to generate pores of varying lengths and geometry. They

found that there is a limiting radius of the pore below which water no longer fills the

channel. Only a slight increase in the radius will make the channel fill with water.

Introducing dipoles in the channel walls to make the pore lining more hydrophobilic

makes it more favourable for water to fill the pore. Interestingly, the pore seems to

fill and empty in rapid bursts [10]. Similar behavior was observed in simulations

of a carbon nanotube in water. This tube alternated between completely filled and

completely empty, with very rapid filling and emptying [60].

These studies might be relevant for the gating of the nicotinic acetylcholine recep-

tor, where small changes in the radius of the hydrophobic part of the channel might

switch the channel between open and closed. It is also interesting in the context of

water permeation through aquaporins [38, 107]. A third recent study considered wa-

ter dynamics in a narrow perfectly cylindrical channel in a dielectric slab [3]. This

study solved a number of technical problems with combining atomistic detail (wa-

ter) with continuum electrostatics concepts (low dielectric slab as membrane). It

also showed that at a certain (realistic) threshold radius, the channel fills intermit-

tently with water. The probability of this happening increased strongly when an ion

was present, which might also be related to gating mechanisms.

These studies all used molecular dynamics simulations. Simplified models have

also been used to study the effect of geometry of narrow channels on the distribution

of ions, using a number of other statistical mechanics methods, including Monte

Carlo simulations and density functional theory. Without going into further details,

one study showed that by size alone sodium/potassium selectivity could arise, even

without electrostatic effects, given certain radii for the channel [49]. A caveat here

might be that this is a highly idealized channel. Other simulations considered the

selectivity mechanism of calcium channels, for which the structure is not known [18,

48, 83]. It appears that a simple combination of different charge and different size

for calcium and sodium ions can account for much of the observed selectivity effects

in calcium channels, without invoking any specific details of the channel structure.

The main detail used in these calculations was the knowledge that there are 4 highly

conserved glutamate residues (the signature of calcium channels) close to each other

in a narrow volume.

Comparison of continuum methods on model systems. Another useful appli-

cation of simplified geometrical models is to compare different methods. Chung,

Kuyucak and coworkers in particular have compared several methods to simulate

ion channels, both in idealized geometries and realistic channels like gramicidin A

and KcsA. Moy et al. [82] compared the results from Poisson-Boltzmann theory

with Brownian dynamics in different geometries, including a catenary shape similar

to that of the acetylcholine receptor. In these calculations, a spherical, cylindrical or
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catenary-shaped region of high dielectric is embedded in a region of low dielectric.

The force on a test ion at different locations in the models is calculated using both

methods, which provides a sensitive test with instructive results. The force on an

ion in the center of a spherical cavity with a radius of 20 Å in 0.5 M NaCl solution

(Debye length 4.3 Å) is nearly 0, both in BD and PB. As the ion is moved closer to

the wall, the repulsive force from BD persists up to about 2 Debye lengths from the

walls, whereas the PB solution shows a force of almost 0. Close to the wall, the BD

force increases steeply but the PB force is a factor of 4 less. The problem appears

to be that counter ions in the PB case provide shielding, even though there is no

physical space for counter ions [82]. In the two more complicated cases (a channel-

like cylinder with rounded edges and a catenary shape) similar effects were seen.

In wider channels the difference in maximum force between PB and BD decreased.

Thus, when force profiles are integrated, PB underestimates the height of the barri-

ers in the electrostatic potential energy profile. In a second paper, PNP theory was

compared with BD in the same model cylindrical channels and also in a potassium

channel-like geometry [34]. When the channel diameter became less than 2 Debye

lengths (n.b. the Debye length is 8 Å in 150 mM KCl), the PNP approach severely

overestimated shielding. Overall the results provide clear examples of the dangers of

failing to treat ions as discrete entities within confined spaces.

2.3.2 Gramicidin A

Gramicidin A is a peptide ion channel that has long served as a model for theoretical

work on ion channels, partly because of its simple structure and partly because it was

the only high-resolution structure known (Figure 2.1A). It has an unusual structure

with a mixture of L and D amino acids. Because it can be chemically synthesized it

has been modified in many ways. Two examples are the replacement of tryptophans

with fluorinated equivalents [5] and the incorporation of a photoactive switch [19].

Although the structure of gramicidin is rather unusual, it does provide a pore lined

with carbonyl groups, similar to those found in potassium channels. There is a vast

literature on theoretical studies of gramicidin A, and I only present a few papers

that illustrate important points learned from gramicidin A. Other reviews include

[92, 111, 68, 4, 119].

In a pioneering study, Aqvist and Warshel [7] calculated a free energy profile for

sodium in the gramicidin channel based on the electrostatic Protein Dipoles Langevin

Dipoles (PDLD) model, a semi-microscopic model midway between an all-atom rep-

resentation and a continuum model, and found reasonable well depths and barriers.

They compared the results from this model with free energy perturbation calcula-

tions of the solvation of Na+ in bulk water and inside the channel, yielding similar

results when the induced dipoles due to the low dielectric membrane environment

were taken into account. An important aspect of this work is that the low dielec-

tric environment from the membrane was taken into account explicitly. This allows

an estimate of the significant effect of this term (ca. 10 kcal/mol), which has not

always been included in later simulations. Several molecular dynamics simulations

have suggested that ion permeation is coupled to motions of the channel. Roux and
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Karplus found that there is a ‘peristaltic’ change in conformation as a cation passes

along the channel [94], displacing the carbonyl oxygens of the peptide backbone to-

wards the channel axis. Deformability of the channel seems to play an important

role in the dynamics and energetics of permeation of the channel by water and by

ions. A reaction path simulation by Elber and coworkers also showed that the mo-

tion of a permeating sodium ion is coupled to motions of water and the channel.

Their calculations suggest that Na+ does not take a straight path through the chan-

nel, and questions the validity of a potential of mean force calculation for a single

ion at different locations in the channel [44].

More recently, gramicidin A has been used as a test system for a variety of elec-

trostatics, Brownian dynamics and molecular dynamics simulations. The first PNP

calculations on a realistic channel used gramicidin A [69, 24, 59]. These calcula-

tions reproduced some of the properties of the experimental IV-curves but it is not

so clear how critical these tests are. A recent detailed study tried to obtain reason-

able free energy profiles from continuum electrostatic theory but was unable to find a

combination of parameters (mainly dielectric constants for water, channel, and envi-

ronment) that gave a satisfactory profile that would give a conductance comparable

to experiment [42]. De Groot et al. used molecular dynamics simulations to ex-

plain why a particular form of gramicidin makes an excellent water channel [39].

Gramicidin A is found in at least two different forms, and there has been some con-

troversy regarding which form is the main ion channel form, although the so-called

head-to-head dimer is now almost universally thought to be the ion channel form [4].

The simulations of De Groot et al. suggest that by removing a formyl group from

the N-terminus, the double helix form rather than the head-to-head dimer becomes

dominant, and is a better channel for water transport. Tang and Xu used gramicidin

to test the effect of the anaesthetic halothane on the structure and dynamics of the

channel [108]. They found some changes in the dynamics of the channel in the close

presence of halothane, which might be a mechanism for general anaesthetics that

could modulate ion channels in neuronal membranes in a similar fashion.

Clearly, the well-known structure of gramicidin A and the vast amount of experi-

mental data, including many chemical modifications, means this channel will remain

an important system to test theoretical methods on.

2.3.3 Alamethicin

Alamethicin (Alm) is a 20-residue Aib-rich channel-forming peptide, a member of

the family of peptaibols. It has been intensively studied by experimental and com-

putational methods (reviewed in [111, 114]). There exist several variants, includ-

ing covalently linked dimers of alamethicin [118] and peptides in which the Aib

residues have been replaced by Leu [97]. Alm forms channels with well-defined

conductance levels that are correspond to channels formed by different numbers of

peptides. Breed et al. have constructed models of these channels formed by 4 to 8

helices [21]. We have done a number of simulation studies in a palmitoyl-oleoyl-

phosphatidylcholine lipid bilayer on these and related channel models [110, 114] to

examine the conformational stability of N = 4 to 8 helix bundle models, and to at-

© 2004 by Chapman & Hall/CRC



Figure 2.5

Current-voltage curves for alamethicin K18 as function of pH. Many independent

measurements have been superimposed. The green data indicate that K18 is cation

selective at high pH (positive reversal potential, where the current equals 0), red is

not selective (intermediate pH), whereas yellow and blue are anion selective (low

pH). See [20] for more details. Figure provided by Dr. Woolley. (See color insert.)

tempt to link the models with experimental conductance data. The simulations are of

duration comparable to the mean passage time of a single ion through such a channel

(ca. 5 ns is equivalent to an ionic conductance of 250 pS at 125 mV). Although these

simulations have suggested strongly which experimental conductance levels corre-

spond to which aggregation number of helices, a more reliable method to connect an

atomistic model to conductance levels is highly desirable. Because of its simplicity,

alamethicin has also been a useful test system to investigate the effect of different

simulation algorithms [114], and for one particular system (N6, a parallel hexameric

bundle) a simulation has been extended to 100 ns [109], one the longest simulations

on a channel to date. In this fashion we obtained a validated ‘best guess’ model for

at least one conductance level of the Alm channel, which should prove useful as the

basis for future more in depth calculations of channel electrostatics and permeation

models.

Woolley and coworkers designed an interesting variant of alamethicin, called K18

[105]. In this peptide, the glutamate/glutamine in position 18 has been replaced by

a lysine that points into the pore, and two alamethicin peptides have been covalently

coupled. The resulting peptide shows preferential stabilization of half the channel

levels of normal alamethicin, suggesting pairs of helices insert simultaneously and

contribute to the channels. This makes it easier to determine the number of helices

in a given measured conductance level. A second interesting property of K18 is that

it forms channels with a pH dependent selectivity [20].
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Figure 2.6

Models and a simulation system for alamethicin K18. A, B: starting model; C: full

simulation system, including salt, lipids and water. Reproduced with permission

from [115].

The maximum anion selectivity of the putative octameric conducting state is ob-

tained at pH 7 or lower. Since no change in selectivity is seen between pH 7 and

pH 3, and since protons are expected to be in equilibrium with the open state of the

channel during a selectivity measurement, the channel should be fully charged (i.e.,

all 8 lysines protonated) at pH 7. An example of single channel I-V measurements

is shown in Figure 2.5. This work poses several questions that simulations might be

able to address. First, what is the structure of these channels? Because of the sim-

ple sequence of alamethicin we can be somewhat more confident of models of this

channel than of models of complex physiological ion channels. A modeled structure

is shown in Figure 2.6.

Second, can we link the models to the measured pH-dependent selectivities? Third,

why is the channel not more selective for anions, even with 8 charged lysines point-

ing into the channel? To address these questions a number of computer simulations

of the system has been performed, of 10 ns each of the octameric bundle in a lipid

bilayer environment, with either 0, 4, or 8 lysines charged in the absence of salt, and

with 8 lysines charged in the presence of 0.5 M or 1 M KCl. Without salt present

and with all lysines charged, on average 1.9 Cl− ions are inside the channel and the

channel significantly deforms. With 0.5 M KCl present, 2.9 Cl− ions are inside the

channel. With 1 M KCl present, 4 Cl− ions are present and the channel maintains

a regular structure. Poisson-Boltzmann calculations on the same system showed the

effect of ionic strength on the calculated electrostatic potential in the channel (Figure

2.7). The barriers in these graphs can be linked to a conductance through the Nernst-

Planck equation. Clearly, the results are rather sensitive to the exact algorithm used
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Figure 2.7

Electrostatic potential profiles calculated from the linear Poisson-Boltzmann equa-

tion (A-C) and the non-linear Poisson-Boltzmann equation (D-F) for three different

values of the ionic strengths and different Stern radius values (solid line 1 Å, dotted

2 Å, long dashed 3 Å). Linear: A) 10 mM; B) 100 mM; C) 1 M; non-linear: D) 10

mM; E) 100 mM; and F) 1M. Reproduced with permission from [115].

(linearized or non-linear PB calculation) and the Stern exclusion radius (a zone in

which no ions are assumed to be present). These calculations did not consider differ-

ent choices of dielectric constants, although these are non-trivial. In the reasonable

case in Figures 2.7D, 2.7E, 2.7G PB calculations on models of the octameric channel

predict an average of 2 to 4 Cl− ions near the lysine residues as a function of ionic

strength, comparable to the numbers found from MD simulations.

These counterions lower the apparent charge of the channel, which may underlie

the decrease in selectivity observed experimentally with increasing salt concentra-

tions. We suggested that to increase the selectivity of Alm K18 channels, positive

charges could be engineered in a narrower part of the channel. Because Alm K18

is essentially a designer channel, and artificially synthesized, new versions of this

channel can be created, redesigned with the knowledge of the simulations in mind.

2.3.4 OmpF

Porins form large trimeric pores in the outer membrane of Gram-negative bacte-

ria, which passively transport small molecules down their concentration gradients.

They can either be general porins or transport specific substrates such as maltose.

OmpF is a general diffusion pore from the outer membrane of E. coli that transports
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Figure 2.8

A. Simulation model of OmpF porin in a dimyristoyl-phosphatidyl-choline bilayer.

The total system contains about 70,000 atoms. B. Close up of the eyelet region of

one of the OmpF monomers. There is a significant separation of positive charges

(blue) and negative charges (red) across the eyelet, resulting in a large local electric

field. (See color insert.)

molecules up to ca. 650 dalton. It shows gating behavior, but the molecular basis

and the physiological relevance of this phenomenon are not known [88]. OmpF is

weakly cation selective, and its selectivity depends on the ionic strength of the so-

lution. OmpF has been extensively studied by electrophysiology methods, although

not all of this data is straightforward to interpret in terms of the properties of a single

protein. Nonetheless, OmpF is an attractive model pore for calculations because its

high-resolution structure is known, as are structures of a range of mutants with al-

tered electrophysiological properties. This combination of high-resolution structures

and electrophysiological data allows systematic testing and calibrating of simulation

methods. Experimentally, OmpF is relatively easy to work with because it is present

in high concentrations in the outer membrane and it is very stable. Mutations are

also comparatively easy to make, which hopefully will facilitate testing of predic-

tions from simulations. Structurally, OmpF is a 16-stranded betabarrel, consisting of

three monomers. Porins have relatively long loops on the extracellular side and short

turns on the intracellular side. The L3 loops folds back into the pore and forms the

so-called eyelet region or constriction zone (Figure 2.8).
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The arrangement of oppositely charged residues on opposite walls of the narrowest

region of the pore creates a strong transverse electrostatic field, which is expected to

have a profound effect on the behaviour of ions, water, and permeating molecules in

this region.

OmpF has been the topic of a number of realistic molecular dynamics studies

[62, 88, 89, 112] as well as Brownian dynamics [86, 100] and PNP calculations

[61]. The crystal structure of OmpF embedded in a simulation model for molecular

dynamics simulations, including lipids and solvent is shown in Figure 2.8. The BD

and PNP calculations use the same protein structure but replace the membrane and

water by regions of different dielectric constants.

An MD simulation of the weakly cation selective porin OmpF in a POPE bilayer

[112] was the first simulation of a complex protein channel in a full bilayer environ-

ment. The simulations (of 1ns duration) revealed complex, non-bulk properties of

water within the transbilayer pore. Within the pore, water diffusion coefficients were

reduced by up to 10x relative to bulk. The transverse electrostatic field in the pore re-

sulted in a high degree of alignment of the water dipoles. This would be expected to

reduce the dielectric in this region, in agreement with the experimental studies cited

above. The local field within the pore reached a maximum of ca. 109 V/m. At such a

field strength the water will not behave as a linear dielectric medium. This should be

taken into account in mean field treatments of such ion channels. In a followup study

the orientation of permeating small dipolar molecules was studied. Both alanine and

glucose strongly oriented in the narrow part of the pore, but not appreciably outside

this part [89]. Im and Roux described in great detail the permeation of cations and

anions obtained from atomistic MD simulations of OmpF in a bilayer with 1M KCl

[62], based on a 5 ns simulation. They found different permeation paths for cations

and anions in most of the channel (Figure 2.9).

This is consistent with a number of Brownian dynamics of ion flow through OmpF

that showed that cations and anions follow distinct pathways with little overlap

through the pore [86, 100]. It appears that anions probably require cations to per-

meate efficiently. OmpF is slightly more favourable for cations than for anions, but

ion pair formation counteracts this to some extent. Preliminary simulations of the

same system with different salt concentrations and an applied electric field have also

been described by Robertson and Tieleman [88].

Although OmpF is a wide pore with a very large conductance, the MD calcula-

tions so far have not been long enough to calculate reliably a conductance. However,

several continuum methods and BD have also been applied to OmpF. A recent study

by Im and Roux compared ion distributions obtained from the non-linear Poisson-

Boltzmann equation, Brownian dynamics and MD in OmpF. All three methods gave

very similar results, with as most conspicuous feature the separation of cations and

anions in two distinct sets of pathways through the channel that was observed in the

earlier MD study. This is interesting, because it shows that treating OmpF as a rigid

protein and the solvent as a dielectric constant seems a reasonable approximation,

probably because of the large size of the pore. PNP and BD were used to calculate

the conductance and the reversal potential (a measure of the selectivity of the chan-

nel). PNP and BD gave similar results, both close to the experiment, for the reversal
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Figure 2.9

Ion distributions in OmpF porin. Two well-separated specific ion pathways with a

left-handed screw-like fashion can be distinguished. The potassium ions are magenta

and the chloride ions are green. MD. A superimposition of 100 snapshots of ions ev-

ery 50 ps from the 5 ns trajectory. All the ions in two other pores were superimposed

into one pore by rotations; BD. A superimposition of 300 snapshots of ions every

60 ps from the 60 ns trajectory; PB. An ion distribution 3D-grid map. (Left) View

from perpendicular to the threefold symmetric axis. (Middle) Left view rotated by

120 degrees. (Right) Left view rotated by 240 degrees. Reproduced with permission

from [61].
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potential, but PNP overestimated the conductance by about 50% [61].

2.3.5 The potassium channel KcsA

The bacterial potassium channel KcsA was the first structure of a potassium channel

to be solved [40] (Figures 2.1E, 2.2) and has been a prime target for simulation and

modelling studies. There now is a considerable body of evidence that suggests this

bacterial channel shares its main features with eukaryotic potassium channels, in-

cluding evidence from toxin binding studies [79], conductance measurements [73],

and from direct substitution of the KcsA filter in Shaker and inward rectifier potas-

sium channels [77]. This last experiment is especially impressive: replacing the en-

tire pore section of the voltage-gated Shaker channel by the pH-gated KcsA results

in a voltage-gated hybrid channel.

The overall shape of KcsA resembles a truncated cone with a central pore running

down the centre. The wider end of the cone corresponds to the extracellular mouth

of the channel. The transbilayer pore is formed by a bundle of eight TM helices, four

M1 and four M2 helices. The selectivity filter with the K channel signature motif

TVGYG is located near the extracellular mouth of the channel. This filter contains

distinct ion binding sites that are well resolved in the crystal structures [120]. Below

the selectivity filter is a central water-filled cavity, which also shows a well-resolved

ion-binding site in the high-resolution structure [120]. The pore-lining M2 helices

constrict the intracellular mouth to form a putative gate region where the pore ra-

dius falls to ca. 1.1 Å (i.e. less than the Pauling radius of a K+ ion, 1.3 Å). The

recent structure of the calcium-gated potassium channel MthK in an open state sug-

gests which considerable conformational changes take place upon gating. This new

structure has to my knowledge not yet been exploited in published simulation and

modelling studies, but this will only be a matter of time. Several groups have built

models of what an open version of KcsA might look like, using a variety of meth-

ods including purely theoretical methods [15] and extensive mutagenesis with spin

labelling for ESR measurements [76].

There now have been quite a number of MD simulations based on the 1998 struc-

ture of KcsA, with varying degrees of approximation of the protein and its environ-

ment [91, 111, 98, 99]. A simplified model of KcsA with an atomistic filter and the

remainder of the protein treated as a hydrophobic continuum was used by Allen et

al. [2]. The whole protein, with restraints on parts of the protein to compensate for

the missing membrane environment, with water molecules within the pore at either

mouth has been simulated in a number of studies, e.g., [16]. In a next step up in com-

plexity, the unrestrained protein has been simulated embedded in a bilayer-mimetic

environment made up of a ‘slab’ of octane molecules [53] or of hydrocarbon-like

atoms [6]. Finally, several studies have attempted a more realistic representation

of the environment of KcsA, including a fully solvated phospholipid bilayer, e.g.,

[12, 103] and other more recent studies. Thus, although it remains to be established

what level of detail is necessary to get (sufficiently) accurate results, there is a rea-

sonable body of simulation data upon which to draw. Below I consider some of the

results obtained.
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Figure 2.10

Overview of the simulation system (A), including a definition of the four sites (S1 to

S4) in the selectivity filter (B). (A) The KcsA channel (shown using two polypeptide

chains out of the four) is embedded in a lipid bilayer. The structure of KcsA can

be thought of as made up of a selectivity filter formed by the TVGYG-motifs of the

P-loop, a central cavity, and an intracellular gate where the cavity-lining M2 helices

pack closely together so as to occlude the central pore. (B) The water molecules and

K+ ions in the filter are in the configuration: W(S0)-K1(S1)-W(S2)-K2(S3)-e(S4)-

W(C), where S0 is the extracellular mouth, C is the cavity, and e indicates that a

site is empty. This corresponds to the initial configuration of simulation KA13C.

Reproduced with permission from [104].
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2.3.5.1 Diffusion of ions in the channel

Given the presence of multiple K+ ions within the selectivity filter of KcsA, a number

of simulations looked at the spontaneous motions of different configurations of K+

ions and water molecules in the filter. Several MD simulations of more than 1 ns

duration have been carried out, e.g., [12, 14, 103, 104]. It is interesting to compare

these simulations to see which sites within the filter are most often occupied by the

ions. In the crystal structure the two K+ ions within the filter occupied S1 and (S3

or S4). The recent 2.0 Å structure actually shows 7 different binding sites, with ion

density (at high K+ concentration) in sites S1-S4 as well as two more sites somewhat

outside the filter on the extra cellular side and one ion in the cavity. Comparing the

various simulations, the preferred sites when two ions are present in the filter are:

(i) S2 and S4 [103]; (ii) S2 and S4 [1] (iii) S1 and S3 [53]; (iv) S2 and S4 [6]; and

(v) S2 and S4 (with a 3rd ion at S0) [12]. Interestingly, two independent simulations

predicted there was a favourable location for a potassium ion outside the filter, which

was confirmed by the recent high-resolution crystal structure [13, 104]. As discussed

below, several free energy calculations [6, 13, 23] have suggested that the difference

in free energy between K+ ions at S2 and S4, and at S1 and S3 is quite low. This is

consistent with the high permeation rate of potassium ions.

In the multi-nanosecond simulations concerted motions of the K+ ions in the fil-

ter were seen. This is illustrated in Figure 2.11, from which it can be seen that the

K-W-K (i.e., ion-water-ion) triplet moves in a concerted fashion [104]. This is di-

rect evidence for concerted single-file motion within a K channel selectivity filter.

Clearly this complicates attempts to simulate ion flow through K channels as a dif-

fusion process. It is also significant that in most simulations [1, 12, 103, 104] small

(generally ca. 0.5 Å) changes in conformation of the backbone carbonyls occur. In

particular, a ‘flipping’ of the carbonyl of V76 is observed. This is important, as it

indicates that the conformation of the selectivity filter is not static, but can undergo

dynamic changes on a timescale comparable to that of passage of the ions through

the filter. Indeed, at low potassium concentrations (3 mM), ions are seen in the crys-

tal structure mainly at S1 and S4, with some deformation of the filter consistent with

observations in MD simulations. This may complicate mean field approaches, which

thus far do not take protein flexibility into account, to simulation of ion permeation

through KcsA.

2.3.5.2 Energetics of permeation

A number of groups have used atomistic simulations to explore the energetics of

permeation of KcsA. Allen et al. have calculated free energy profiles for K+ and

Na+ ions in a somewhat simplified model of a K channel, based on a channel-shaped

hydrophobic pore onto which a model of the KcsA filter is grafted [2]. Their results

broadly support the ‘rigid filter’ model of K channel selectivity (see below). How-

ever, the sensitivity of the results to initial assumptions of the rigidity of the filter is a

little unclear. In a subsequent paper the same authors [1] using a complete model of

the protein (but omitting the surrounding bilayer) found that the free energy differ-

ences between K+ and Na+ were about half those with the simplified model. Several
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Figure 2.11

Trajectories (along the pore axis) of K+ ions (thick black lines) and water molecules

(gray lines) for two simulations with different starting configurations in sites S1-S4:

(A) KA13C; (B) KA02C; Note that, for clarity, not all water molecules within the

filter are shown. The locations on z (pore axis) of the four sites (S1 to S4) defined

by the geometric center of the 8 oxygen atoms are indicated by the thin black lines.

At each point in time, the origin of the coordinate system is defined as the center of

gravity of the 16 oxygen atoms that line the selectivity filter. The black arrow in B

indicates the time at which a K+ ion enters the selectivity filter from the extracellular

mouth (S0) of the channel. Reproduced with permission from [104]
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other groups have calculated potentials of mean force for ions in the selectivity filter.

Åqvist and Luzhkov [6] showed that occupancy of sites S2 and S4 of the filter (see

Figure 2.11) by two K+ ions was more favourable (by ca. 2 kcal./mol) than occu-

pancy of sites S1 and S3. Other configurations were of higher free energy. Thus, a

permeation model based on switching of pairs of K+ ions between these two con-

figurations was proposed. Berneche and Roux used umbrella sampling to calculate

a two-dimensional free energy map describing possible pathways for translocating

ions and suggest a plausible mechanism involving correlated motions of at least 3

ions and water on a relatively flat energy landscape [13]. A third study, by Burykin

et al., also calculated potentials of mean force using free energy perturbation [6].

As such calculations are becoming increasingly feasible on standard computers, it

seems likely there will be significant progress in this area in the near future.

2.3.5.3 Selectivity

Why are potassium channels so selective for potassium over sodium? The key differ-

ences between potassium and sodium appear to be only a small difference in radius

and in polarizability. On the basis of the X-ray structure of KcsA it has been sug-

gested that a ‘rigid’ selectivity filter provides stronger cation-oxygen interactions for

K+ ions than for Na+ ions. Thus, the energetic cost of dehydrating K+ ions is repaid

by ion/protein interactions, while ion/protein interactions are too weak to balance the

cost of dehydrating Na+ ions. Several simulations have tried to address this question,

and suggest the picture might be somewhat more complex.

The deciding factor for selectivity in channels is that of the free energy of perme-

ation; i.e., how the free energy of the system varies as different species of ion pass

through the channel. The potential energies at various points along the central pore

axis, which are much easier to calculate than free energies, are a first approximation.

Even with this type of calculation a difference between K+ and Na+ ions can be

observed [16]. However, for a more quantitative description free energy calculations

are needed. Such calculations can yield the difference between two species of ions

at a particular location, in addition to the full potential of mean force for moving a

particular type of ion (as in the previous section). Allen et al. calculated that the

free energy (for a K+ → Na+ transformation) is positive within the filter region [1],

which means it is more favourable for a potassium ion to be in the filter than it is

for a sodium ion. However, the exact figure arrived at was somewhat sensitive to

the nature of the restraints applied to the filter during the simulation. Åqvist and

Luzhkov [6, 78] have performed more detailed free energy perturbation calculations.

Their results also supported the ‘rigid filter’ model of K channel selectivity. How-

ever, it should be noted that in all three of these simulation studies it is not clear that

the filter had time to fully ‘relax’ around the different species of cation. Longer MD

simulations of KcsA with K+ ions or with Na+ ions in the filter suggest that the filter

may be able to alter its conformation such that Na+ ions can bind tightly within (and

thus block) the filter. The geometry of interaction of Na+ ions with the filter appears

to be different from the geometry of interaction of K+ ions [104].

Furthermore, long simulations with either K+ or Na+ ions at the extracellular
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mouth of the filter suggest a degree of selectivity in terms of which ions enter the

filter [52, 104]. It is clear that very careful simulations are required to obtain the

correct balance of ion/water, ion/protein and protein deformation energies. There is

experimental data for other cations, e.g., rubidium [81]. In principle these could be

simulated too, but they require additional testing of parameters because they are not

commonly used in biomolecular simulations.

Clearly, it is becoming possible to carry out detailed numerical studies on potas-

sium channels. The simulation results are sensitive to dynamic structural details and

depend on simulation lengths and model accuracy, which might explain some of the

differences in results from different labs. The fact that dynamic structural changes

appear important will probably cause problems with respect to the use of restrained

models (i.e., those omitting a lipid bilayer) to calculate permeation energetics. If

such models are to be used, then care must be taken as to the strength and nature

of the restraints. It also means simulation lengths need to be carefully checked to

ensure sufficient sampling.

2.3.5.4 Interactions with toxins

Although I have not considered simulations of homology models of potassium chan-

nels in detail, I would like to emphasize a relatively new direction in simulations of

potassium channels for which the full structure is not known. Potassium channels

and related channels show strong binding to certain toxins, either small molecules

or peptides. The voltage-gated Shaker channel and other eukaryotic voltage-gated

channels interact strongly with scorpion toxins such as charybdotoxin and agitoxin.

The channel and toxin form very specific complexes with dissociation constants in

the nanomolar range. For this reason, these toxins as well as others for different

channels have been used extensively to probe the functional properties of ion chan-

nels. By combining site-specific mutations in the toxin and in the channel, structural

information on the channel (as the structure of many toxins is known) can be inferred

from cooperative effects of mutations on the binding constant [57]. The resulting in-

formation is a form of low-resolution structural information on the channel as well

as on the mode of interaction between the toxin and the channel. Now that there

are several high-resolution structures of potassium channels, molecular modelling

and simulation studies can be used to understand how these toxins bind and interfere

with channel function. Several recent studies have constructed models of voltage-

gated channels and their interactions with toxins, and one study used the double

mutant data to at the same time refine the model of the ion channel using several

molecular-dynamics based techniques.

Cui et al. used Brownian dynamics simulations to dock the scorpion toxin Lq2, a

member of the charybdotoxin family, in a model of a voltage-gated potassium chan-

nel [37]. Lq2 has the interesting property that it blocks three families of potassium

channels (voltage gated, calcium activated and inward rectifying channels), so that

it is likely to interact with a common set of amino acids in the ion channels. This

study used all 25 NMR structures for the toxin and studied their interactions simply

by generating trajectories of the two proteins, without internal degrees of freedom

© 2004 by Chapman & Hall/CRC



in the proteins, and analyzing the results. The main result is a good suggestion for

the mode of docking, given the homology model for the potassium channel. Similar

studies have been carried out on related channels and toxins.

Eriksson and Roux recently used the experimental data on agitoxin-Shaker inter-

actions to refine a homology model of Shaker, and at the same time to determine

how the toxin binds to the channel [46]. This method is significantly more involved,

and uses thermodynamic data from double-mutant cycles to restrain the modes of

interactions and the possible models. Their main result is a model of Shaker and a

detailed description of how the toxin interacts with Shaker, including an explanation

for some ambiguous experimental data. Without going into specific details of the

results, this is an interesting development: it opens a range of new experimental data

for use in model building and model validation, as well as a range of new conduc-

tance data that e.g., BD simulations should be able to reproduce when the effects of

the toxin is incorporated in BD simulations for cases where the toxin does not block

completely.

These are technical uses, of interest in the context of this review, but of course

there are also more practical implications for drug design. Ion channels already are

an important target for drugs, or an important target for drugs to avoid (to prevent

side effects). Two interesting examples of the use of double mutant cycle analyses,

homology modelling and docking, followed by synthesis of new peptides with higher

specificity as predicted by the theoretical work can be found in the work of Kalman

et al. on voltage gated channels from T-lymphocytes [67] and from Rauer et al. on

voltage and calcium gated channels from the same cells [87].

2.4 Outlook

Progress in modelling and simulation of ion channels in the last 5 years has been phe-

nomenal. I think this progress has been inspired by a number of factors, including

the availability of crystal structures of physiology relevant ion channels, the obvi-

ous relevance of ion channels for biomedical and pharmaceutical research, the (at

first sight) comparatively simple function and basic science of ion channels, the de-

velopment of efficient and sophisticated simulation and modelling software, and the

rapid increase in computer power available to an increasing number of researchers.

In spite of this progress, we are still short of being able to link microscopic atomistic

structures to macroscopic properties of ion channels. Nonetheless, there are several

reasons to be optimistic about future work in this direction.

Molecular dynamics simulations include all atomic detail and can deal with pro-

tein flexibility and conformational changes. They have been successfully used in a

large number of studies to simulate local changes in structure and diffusion of water

and ions, as well as to calculate potentials of mean force for ions in channels that

can be used for BD simulations or kinetic theories. MD simulations are limited in
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time scale, system size, and the accuracy of the description of atomic interactions.

The time scale that is accessible depends mostly on the speed of computers, soft-

ware, and algorithmic improvements, all of which combine to allow simulations of

several orders of magnitude longer than currently possible. The accuracy of cur-

rent parameter sets might not be high enough to, for example, distinguish accurately

between different cations. However, the potential function in Equation 2.1 is not

a fundamental property of molecular dynamics, and much more complex functions

could be used, including potential functions that incorporate essential electronic ef-

fects. Other improvements might be developed, perhaps based on a combination

with semi-microscopic models, to deal more accurately with transmembrane poten-

tials and differences in concentrations.

Brownian dynamics simulation is currently the most feasible way to link an ion

channel structure to macroscopic properties, but it requires a description of the free

energy profile for ion permeation and does not take protein flexibility into account.

The latter might or might not be important for physiologically relevant channels.

A description of the free energy profile is not easy to obtain. In most applications

so far, only electrostatic interactions (combined with a simple short-range potential)

were taken into account, calculated from Poisson or Poisson-Boltzmann equations.

Free energy profiles for permeation have been calculated from MD simulations but

these do not yet appear to be accurate enough. Nonetheless, these problems should

be surmountable.

The limitations and prospects of mean field models depend on what they are being

used for. I am not optimistic about the use of mean field models in which both ions

and water are represented implicitly but a protein structure is represented in atomic

detail, because the transition between mean field and atomic detail in one system

is very large, and occurs on very short length scales. In many or maybe most ion

channels specific interactions with ions and water appear important. In more sim-

plified models, in which the protein is also simplified, mean field models are very

interesting. They can suggest basic mechanisms for properties like selectivity, inde-

pendent of atomic detail. Solving mean field models computationally only requires

a fraction of the computational effort of molecular dynamics or Brownian dynamics

simulations.

Combining methods from both atomistic and coarse-grained levels, using infor-

mation from more detailed methods in less detailed methods that are closer to ex-

perimental data seems a promising approach to understanding the properties of ion

channels in atomic detail. A start has been made in the last few years, with exciting

first results. As methods are developed further and additional experimental informa-

tion becomes available, simulations should be able to provide detailed insight into

ion channel structure-function relationships.
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3.1 Introduction

Calcium has been called the ubiquitous second messenger due to its widespread use

in cellular signaling pathways. Calcium plays a role in many different cells for pro-

cesses such as the release of hormones or neurotransmitters, cell motility or contrac-

tion, and the control of gene expression and development. In neurons, many of these

functions have been observed. Intracellular calcium plays a crucial role in hormone

release in pituitary gonadotropes. Neurotransmitter release in nerve terminals is me-

diated by calcium. Calcium is also thought to play a role in synaptic plasticity and

learning. The cooperation between computational models and experimental studies

has lead to greater understanding of neuronal calcium dynamics.

Neurons vary significantly in their size, shape, and function. Hence, the role of

© 2004 by Chapman & Hall/CRC



Figure 3.1

Schematic representation of the different fluxes that contribute to neuronal calcium

dynamics: calcium influx across the plasma membrane through calcium channels

(Jpm), calcium efflux across the plasma membrane (Jefflux) via calcium pumps

(JPMCA), and exchangers (JNaCa), release from intracellular calcium stores via

either ryanodine receptors (JRyR) or IP3 receptors (JIP3R), sequestrations of cal-

cium into the ER by calcium pumps (JSERCA,) calcium binding proteins (Jbuffer),

and mitochondrial calcium handling (Jmito) by the uniporter (Juni) and Na+−Ca2+

exchange (JNaCaX).

calcium signaling in neurons will vary between different types of neurons. This work

will describe general principles used to model neuronal calcium that can be applied

not only to a variety of neurons, but to other cells as well. Specific examples will be

used when possible to demonstrate the features mentioned.

Calcium is maintained at a very low level in resting cells (∼0.1 mM) compared to

extracellular calcium (∼2.0 mM). This 10,000-fold difference results in a large elec-

trochemical gradient from the outside to the inside of the cell. Furthermore, calcium

in the internal stores is also much higher than resting cytosolic calcium (∼1.0 mM).

Given these two large gradients, calcium can be quickly brought into the cytosol

via calcium channels and signal various events, such as contraction, secretion, gene

expression, etc. There are several mechanisms used by the cell to maintain low cy-

tosolic calcium at rest and to allow transient increases in calcium that are mentioned

in the next paragraph and described below.
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There are several common features that play a role in cellular calcium signaling

(Figure 3.1). These include calcium influx across the plasma membrane through

calcium channels (Jinflux), calcium efflux across the plasma membrane (Jefflux)

via calcium pumps (JPMCA), and exchangers (JNaCa), release from intracellular

calcium stores (Jrelease) via either ryanodine receptors (JRyR) or IP3 receptors

(JIP3R), sequestrations of calcium by internal stores (Juptake or JSERCA), calcium

binding proteins (Jbuffer), mitochondrial calcium handling (Jmito) by the uniporter

(Juni) and Na+-Ca2+ exchange (JNaCaX), and diffusion of calcium (Jdiffusion).

The change of calcium concentration with respect to time is simply a sum of the

fluxes that arise from these features

d[Cai]

dt
= Jinflux + Jefflux + Jrelease + Juptake + Jbuffer + Jmito + Jdiffusion

(3.1)

To correctly describe cellular calcium dynamics, biophysically accurate mathe-

matical representations for the above are needed. This chapter will first describe

these common features of calcium signaling and their mathematical representation.

Moreover, specific examples of how the cellular microscopic ultrastructure provides

a framework in which these components can yield complex behaviors.

3.2 Basic principles

Calcium Buffering

Calcium is maintained at a very low level in resting cells. This is due in part to

the presence of calcium buffers that bind approximately 90-99% of the total calcium

found in the cytosol. These buffers are typically calcium binding proteins, such as

calbindin, calretinin, calmodulin, calsequestrin, calcineurin and parvalbumin, or the

negative charges associated with the cellular membranes [25, 47]. These buffers

are quite fast so that they have the effect of binding almost all the calcium that enters

cytosol. This has the effect of reducing the amplitude of changes in cytosolic calcium

concentration.

Another effect of calcium buffers is its effect on calcium mobility. While the

majority of calcium buffers are stationary or fixed to an immobile component of the

cell, there are also mobile buffers that diffuse throughout the cytoplasm. Calcium

indicator dyes are typically mobile buffers (exogenous buffers). Due to the high

concentration of calcium buffers, a calcium ion can only diffuse a short distance

before being immobilized by binding to a calcium buffer. The net effect is that

the effective diffusion constant of calcium in the cytoplasm is 36 mm2/s while the

calcium diffusion constant in cytoplasmic extracts is 223 mm2/s [2]. This reduction

in calcium mobility by calcium buffers has to be included in any realistic model of

spatial calcium signaling.

The reaction of calcium (Ca) binding to a buffer (B) can be described as a chemical
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Figure 3.2

Reaction of calcium binding to a buffer.

equation as in Figure 3.2: in which calcium binds to buffer with a forward rate con-

stant k f and unbinds with a backward rate constant kb. This buffering flux describing

the rate of change for calcium can be represented by the equation

Jbuffer = −k f [Ca][B]+ kb[CaB] (3.2)

In addition to the [Ca] balance equation, it is necessary to describe [B] and [CaB] by

differential equations for their rate of change. If it is assumed that the total amount of

buffer ([Btotal]) remains constant, then we can assume that ([Btotal] = [B] + [CaB]),

which allows the reduction of the total number of differential equations by one for

each buffer. Typically the rate constants k f and kb are very fast compared to other

cellular processes. This requires for a very small time step to be used when solv-

ing the differential equations associated with buffering. Because of the difference in

time scale between these reactions and other cellular processes, this will increase the

computational time necessary to solve the problem. A solution to this problem is the

rapid buffering approximation, suggested by Wagner and Keizer [53], which assumes

that the buffering reaction (Eq. 3.2) is in equilibrium. Using a steady state approx-

imation with the differential equations describing buffering, and the chain rule, the

equation describing the rate of change for total cytosolic calcium with respect to

time can be broken down into a term for the rate of change for the free calcium with

respect to time multiplied by the rate of change of the total calcium with respect to

the free calcium. This yields a buffering factor b that scales the other fluxes in the

calcium balance equation to account for the fraction of other fluxes that is not bound

by the buffer.

b =

(

1 +
[B

S,total]KS,eq

(KS,eq +[Ca])2
+

[B
M,total]KM,eq

(KM,eq +[Ca])2
+

[B
E,total]KE,eq

(KE,eq +[Ca])2

)−1

(3.3)

where KS,eq,KM,eq, and KE,eq are the disassociation constants for calcium and the sta-

tionary, mobile, and exogenous buffers, respectively. The total concentrations for the

stationary, mobile, and exogenous buffers are [B
S,total], [B

M,total], and [B
E,total],

respectively. Additional terms can be added to account for different buffers and cal-

cium binding dyes on calcium dynamics. The rapid buffering approximation also

accounts for the effect of buffering on diffusion by altering the diffusive flux to

Jdiffusion = DCa

! 2[Ca]

!x2
(3.4)
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to

Jdiffusion = b

[

(DCa + gMDM + gEDE)
! 2[Ca]

!x2

−2
{

gMDM

KM,eq+[Ca]
+ gE DE

KE,eq+[Ca]

}

D[Ca] ·D[Ca]
]

(3.5)

with

gl =
[B

l,total]Kl,eq

(Kl,eq +[Ca])2
, with l = M,E (3.6)

where Kl,eq,Dl are the calcium disassociation constant and diffusion constant for

species l = M,E for mobile and exogenous buffers respectively [23, 53]. The buffer-

ing factor scales the flux to account for the calcium binding effect of the buffers. The

first term in the square brackets represents the diffusive transport of calcium. The

last term in the square brackets represents the uptake of calcium by mobile buffers as

free calcium moves down its concentration gradient and is a non-diffusive term. The

approach assumes that the sum of the concentrations of bound and unbound buffer at

any given point in space remains constant. Other equilibrium approaches for approx-

imating buffering have been suggested by Zhou and Neher [56] and are evaluated for

accuracy, i.e., under what conditions they can be used, by Smith [46]. These have

not been discussed here for brevity, but the reader should seek the sources mentioned

for more details.

The principles described above can be applied to models for neurons. Neher [37]

developed an equation for the effective diffusion constant based on these principles

that can be used to calculate the diffusion profile of a calcium flux release from a

channel. This profile would fall off more sharply in the presence of calcium buffers.

With this, the distance between a release site and channel activated by calcium can

be calculated by determining the concentration of an exogenous buffer with known

calcium dissociation constant, such as BAPTA, at which the activation of the calcium

sensitive signal is abolished upon stimulation. For example, in chick dorsal root gan-

glion cells, calcium enters via voltage gated calcium channels. This method suggests

that calcium-activated chloride channels are 50-400 nm distant and the ryanodine

receptors are 600 nm distant [55].

While the buffering of the charges of the cellular membranes can be approximated

by the rapid buffering approximations above, this fails to account for the effect of

the electrical charges on diffusion of charged particles. For this purpose, a model of

electrodiffusion based on the Nernst-Planck electrodiffusion equations can be used.

This approach has been used to describe diffusion in membrane-restricted spaces

such as the cardiac diadic junction by Soeller and Cannell [48].

3.2.1 Intracellular calcium stores

The main intracellular calcium store is the endoplasmic reticulum (ER). This is

known as the sarcoplasmic reticulum (SR) in muscle cells. The major calcium han-

dling components in the ER are the calcium release channels, the calcium uptake

pumps, and the calcium buffers in the ER lumen.
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The ER has two calcium release channels, the ryanodine receptor (RyR) and the

inositol 1,4,5-trisphosphate receptor (IP3R) [43, 54]. The RyR releases calcium from

the ER in response to an increase in calcium. This positive feedback of calcium

release is termed calcium-induced calcium release. There are three major isoforms

of the RyR, RyR1, RyR2 and RyR3, which differ in their biophysical properties [18].

RyR1 is the main isoform in skeletal muscle. RyR2 is the most common isoform in

heart and brain. RyR3 has been found in many tissues including brain, lung epithelia,

diaphragm, and smooth muscle [29]. All three isoforms have been detected in the

nervous system [18].

The IP3R is a calcium release channel that is activated by both cytosolic inositol

1,4,5-trisphosphate and cytosolic calcium and is inhibited by very high cytosolic

calcium levels. The three isoforms of the IP3R are called Type I, Type II, and Type

III. Type I is found in neurons and is dramatically enriched in Purkinje Neurons [45].

Type II is found in glia cells, but not neurons [45]. Type III is found in neurons, but

not glia [45].

The modelling of the calcium release channels (IP3R and RyR) uses the same for-

malism used for membrane ionic channels. In this case, the flux through the channel

is the product of the channel permeability (or conductance) and the driving force.

The channel permeability is typically the product of the channel open probability

(Popen) and some maximal permeability Ḡ .

Jrelease = ḠPopen([CaER]− [Cai]) (3.7)

The open probability (Popen) of a channel can be determined in a number of ways:

1) An empirical expression of its dependence on allosteric regulators such as calcium

can be used; 2) A Hodgkin-Huxley type formulation of gating variables can be im-

plemented; or 3) A Markov state model of the channel can be constructed and where

Popen would be the fraction of channels in the open state. With the Markov state

model either a deterministic or stochastic approach can be implemented.

The SR sequesters cytosolic calcium through the sarcoplasmic and endoplasmic

reticulum calcium ATP-ase (SERCA). SERCA consumes ATP and pumps calcium

into the ER (or SR) against a concentration gradient. There are different isoforms of

SERCA found in different tissues. For example, SERCA2 and SERCA3 are found

in Purkinje neurons, SERCA1a is found in skeletal muscle, and SERCA2b is found

in heart muscle [6, 35]. The action of SERCA has typically been modeled as a

saturating pump with sigmoid kinetics.

JSERCA =
Vmax[Cai]

2

K2
M +[Cai]2

(3.8)

where KM , the calcium dissociation constant, is the calcium concentration at which

the pump rate is half the maximum pump rate (Vmax). This representation of the

pump requires a leak term to ensure calcium homeostasis at resting intracellular cal-

cium. The leak is typically formulated as a passive leak

Jleak = kleak([CaER]− [Cai]) (3.9)
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where kleak is the leak rate constant.

More recent studies of the SERCA pump in cardiac cells have suggested that part

of the leak out of the SR is partially due to a backward flux through the SERCA

pump [44]. This can be represented by

JSERCA =

Vmaxf

(

[Cai]

Km f

)h f

−Vmaxb

(

[Cai]

Kmb

)hb

1 +

(

[Cai]

Km f

)h f

+Vmaxb

(

[Cai]

Kmb

)hb
+kleak([CaER]− [Cai]) (3.10)

The first term in the numerator of Eq. (3.10) describes the forward rate of the pump

with maximal rate Vmaxf , binding constant Km f , and cooperativity k f . The second

term in the numerator describes the backward rate of the pump with maximal rate

Vmaxb , binding constant Kmb, and cooperativity kb. The second term in Eq. (3.10)

describes the passive leak out of the SR with kleak being the leak rate constant.

Calcium in the SR lumen is buffered by the large amounts of low affinity calcium

binding proteins resulting in a large calcium reserve in the SR. Typical SR calcium

binding proteins are calsequestrin and calreticulin. They can be modeled in the same

way at the cytosolic calcium binding proteins.

3.2.2 Calcium channels

In addition to the calcium channels found in the ER, there are different types of

calcium channels that allow calcium entry across the cell membrane, namely, the

L-type calcium channel, the N-type calcium channel, P/Q-type calcium channels,

the NMDA (N-methyl-D-aspartate) receptor, and store operated channels. The L-,

P/Q- and N-type calcium channels are voltage gated calcium channels, i.e. they open

when the cell membrane depolarizes. The P/Q-type calcium channels deactivate

with time. The N-type and L-type calcium channels not only deactivate with time,

but undergo calcium-dependent inactivation. The NMDA receptor is a ligand gated

pore, activated by glutamate, in which a voltage dependent block by magnesium is

relieved during depolarization [21, 44].

3.2.3 Calcium pumps and exchangers

In order for calcium homeostasis to occur, calcium must be removed from the cell

in an amount equal to that which enters. Thus, if calcium entry through channels

occurs, there must be calcium extrusion mechanisms such as calcium pumps and

exchangers. The main calcium pump in the plasmalemmal is the plasmalemmal

calcium ATPase (PMCA). The PMCA hydrolyzes ATP to pump calcium up a con-

centration gradient. The typical formulation for this flux is

JPMCA =
Vmax[Cai]

2

K2
M +[Cai]2

(3.11)
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where Vmax is the maximal pump rate and KM is the calcium dissociation constant

for the pump or the calcium concentration at which the pump is working at half its

maximal rate.

Another set of calcium extrusion mechanism is the calcium exchangers. One such

exchanger is the Na+−Ca2+ exchanger. This pump exchanges three sodium ions for

one calcium ion making it electrogenic in nature, i.e., it carries a current across the

plasma membrane and must be included in any equation for membrane potential. In

forward mode, the Na+−Ca2+ exchanger uses the sodium gradient to bring in three

sodium ions and extrude one calcium ion. However, this exchanger has a voltage

dependence with the property that under depolarized conditions it can bring in one

calcium ion and extrude three sodium ions in what is termed reverse mode. This

current has been formulated by Luo and Rudy [28] for cardiac myocytes as

INaCaX = kNaCa
1

K3
m,Na +[Na0]3

1

Km,Ca +[Cai]

·
{

exp

(

h
VF

RT

)

[Nai]
3[Ca0]− exp

(

(h−1)
VF

RT

)

[Na0]
3[Cai]

}

· 1
1+ksat exp((h−1)VF/(RT))

(3.12)

where kNaCa is the scaling factor for the current, ksat is the saturation factor of the

current at very low potentials, V is membrane potential, F is Faraday’s constant,

R is the ideal gas constant, T is the absolute temperature, Km,Na is the dissociation

constant for external sodium, Km,Ca is the dissociation constant for internal calcium,

and h is the position of the energy barrier controlling voltage dependence of the

current.

3.2.4 Mitochondrial calcium

The mitochondria also regulate calcium in the cell. They sequester, store, and release

calcium and thus are in effect a calcium store (Figure 3.3). A large electrochemical

potential is maintained across the inner mitochondrial membrane mainly through

the respiration driven proton pumps. The uniporter (Juni) uses this energy gradient

to move calcium into the mitochondria. Calcium in the mitochondria is buffered

through precipitation when it combines with inorganic phosphate to form calcium

phosphate (Jbuffer). Calcium is extruded from the mitochondrial by sodium-calcium

exchange (JNaCaX).

Mitochondrial calcium uptake is complicated by its rapid uptake mode in which

calcium is sequestered very quickly if cytosolic calcium is high [9, 49]. This condi-

tion might occur at places where the mitochondria are near the ER calcium release

channel [36, 38] or calcium influx through voltage-gated calcium channels [50]. Re-

cently, Beutner and co-workers have found a ryanodine receptor in the mitochondria

that when blocked with ryanodine, suppresses mitochondrial calcium uptake [8]. It

is possible that this channel plays a role in rapid uptake of calcium.

Modelling of mitochondrial calcium dynamics can be the topic of a manuscript

in itself. In the limited space here, it suffices to mention a few of the more recent
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Figure 3.3

Schematic representation of mitochondrial calcium dynamics. Shown are the fluxes

for calcium uptake by the uniporter (Juni), calcium extrusion by Na+ −Ca2+ ex-

change (JNaCaX), and calcium buffering (Jbuffer) through precipitation with phos-

phate (Pi).
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models in this area. Magnus and Keizer [30] proposed a model for mitochondrial

calcium dynamics that included the processes that generated the membrane poten-

tial across the inner mitochondrial membrane since this is responsible for powering

the calcium uniporter. This is a comprehensive model and has been incorporated

into the pancreatic b cell [31, 32]. One of the key predictions of the model is that

when cytosolic calcium rises, it increases mitochondrial calcium, which reduces the

mitochondrial membrane potential resulting in decreased ATP production. More re-

cently, this model has been incorporated by Fall and Keizer [16] into a model of

calcium signaling to show how mitochondrial calcium dynamics affected calcium

signaling. Depending on the parameters chosen, the DeYoung-Keizer model [13]

can give oscillatory or bi-stable calcium dynamics. The addition of the mitochon-

drial model to a DeYoung-Keizer model [16] tuned to give bi-stable behavior results

in a model with oscillatory calcium dynamics. Furthermore, the model predicts that

increasing metabolism slows the frequency of calcium oscillations consistent with

experiments [26].

This latter finding was also modeled by Falcke and co-workers [15]. They added

a simplified model of uniporter and Na+ −Ca2+ exchange to the Tang and Othmer

model [51] for calcium signaling. They simulated energization of the mitochondria

by increasing the maximal calcium uptake rate for the uniporter.

Finally, a recent model for the effects of mitochondrial calcium dynamics on cel-

lular calcium signaling was developed for sympathetic neurons by Colegrove and co-

workers [10]. Once again, simple formulations for mitochondrial uptake and release

were implemented into a model for neuronal calcium dynamics. The model sug-

gested that the mitochondria will accumulate calcium even under low amplitude fluc-

tuations of cytosolic calcium and that the impact of mitochondrial calcium dynamics

on cytosolic calcium is influenced greatly by non-mitochondrial calcium handling

mechanisms. Furthermore, the model predicted that the buffering and non-buffering

modes of mitochondrial calcium dynamics correspond to two different calcium sig-

naling regimes.

3.3 Special calcium signaling for neurons

Thus far, the mechanisms of calcium signaling described are general and can be ap-

plied to many different cell types. Neurons are specialized cells that are varied in

their function and morphology. This results in many calcium handling features de-

signed to perform specific functions. Although some of them functions might be

specific to neurons, the constructs to describe these are often found in other cells.

These features occur in different parts of the neuron, namely, the soma, nerve ter-

minal, dendrites and dendritic spines, and axon. In the next section, three specific

calcium signaling mechanisms will be discussed: local calcium signaling, the con-

trol of gene expression by calcium, and cross-talk between channels mediated by
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calcium.

3.3.1 Local domain calcium

Local calcium domains have been demonstrated to be crucial to neuronal function.

For example, the secretion of neurotransmitter in nerve terminal is critically depen-

dent on the activation of specific voltage gated calcium channels, but not on release

from internal stores [4, 5]. In PC 12 cells (rat pheochromocytoma cells), calcium

entry across the plasma membrane through voltage gated channels is essential the

secretion of catecholamines [3]. Calcium release from internal stores does not trig-

ger secretion of catecholamines even in the presence of membrane depolarization in

calcium free medium. This suggests that the elevation of calcium close to the plasma

membrane calcium channels is essential for secretion.

The requirement of calcium entry might also depend on the specific voltage gated

calcium channels involved. In mouse or neonatal rat motor nerve terminals, exper-

iments have indicated that neurotransmitter release is activated by the opening of

P/Q-type calcium channels but not by either L- or N-type calcium channels [42, 52].

Not only is calcium necessary for synaptic vesicle release, there is also evidence

that elevated calcium in the nerve terminals is also necessary for the synaptic vesicle

endocytosis also [11].

To model this, one must consider local domains of elevated calcium (Figure 3.4).

In the discussion above, the vesicles respond to calcium local to specific voltage

gated calcium channels in the plasma membrane. Bulk elevations of calcium do

not activate vesicle exocytosis, but the high local calcium that occurs during plasma

membrane voltage gated channels does. This suggests voltage gated channels are in

close proximity to the vesicles as depicted in the figure as P/Q type channels. Other

voltage gated channel types (N-type) or release from internal stores is more distant

and does not activate vesicle fusion.

This has been modeled by Bertram and co-workers [7]. In their model, they ex-

plored the effect of overlapping calcium microdomains in activating vesicle fusion.

They used a deterministic set of reaction-diffusion equations to describe the sys-

tem. They concluded that calcium current cooperativity increases with the number

of channels in the release site. Furthermore, they found that this increase is much

less than the increase in the number of channels, giving an upper bound on the in-

crease in cooperativity. Another interesting prediction was that the calcium channel

cooperativity was an increasing function of channel distance.

Another model describing transmitter release in the mammalian CNS was pro-

posed by Meinrenken and co-workers [33]. In this work, the effect of the spatial

distribution of clusters of voltage-gated calcium channels on vesicle release was ex-

plored. In this model, vesicles at different locations are exposed to different calcium

concentrations resulting in different release probabilities. The authors suggest that

this spatially heterogeneous release probability has functional advantages for synap-

tic transmission.

A third model of calcium dynamics in the synapse of the frog saccular hair cell

has been proposed by Roberts [40, 41]. In this model, an array of calcium channels
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Figure 3.4

Schematic representation of calcium dynamics in the nerve terminal. Synaptic vesi-

cles are found near the synaptic cleft. Voltage gated calcium channels (P/Q-type) are

located near the vesicle so that their activation leads to high local calcium near the

vesicle initiating vesicle fusion. Other calcium entry (N-type channels) and release

from the ER through ryanodine receptors will elevate nerve terminal calcium, but

not activate vesicle fusion. Also shown are the pumps that return calcium to resting

levels.
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and calcium activated potassium channels is modeled along with the endogenous

mobile buffer calbindin. Also, the calbindin captures calcium microseconds after it

enters the cells and carries it away from the channel mouth. This in effect, causes

calcium to quickly reach a steady state level near one or more open channels. Fur-

thermore, it restricts the area in which calcium is elevated, i.e., it causes calcium

to fall off more steeply as the distance from the channel increases. It also showed

that a calcium binding molecule with a calcium dissociation constant and diffusional

properties similar to calbindin is necessary to simulate the experimental results.

3.3.2 Cross-talk between channels

Another area in which local domains of calcium is important is the communication

or cross-talk between ion channels (Figure 3.5). In such situations, ion channels are

located in close proximity so that calcium entry through one channel causes high

local calcium concentrations that can act on other nearby channels of the same or

different types. Sometimes this will occur in a subspace bounded by cell membranes

and organelles, and other times not. The calcium concentration in the local domains

can easily be 100 times that of the bulk cytoplasm. In Figure 3.5, calcium-activated

chloride channels are located in close proximity to voltage gated calcium channels.

The ryanodine receptors in the ER are located at some slightly further distance. Un-

der highly buffered, low level activation of the voltage gated channels might activate

the chloride channels but not the ryanodine receptors as observed by Ward and co-

workers [55].

This has been modeled extensively in the area of excitation-contraction (EC) cou-

pling in cardiac cells on the cellular level [24]. In EC coupling, opening of voltage-

gated L-type calcium channels in the cell membrane allows calcium entry that trig-

gers release from internal stores via the ryanodine receptor. This process is termed

calcium-induced calcium release. In this system, the L-type calcium channel and the

ryanodine receptors are situated in a membrane restricted subspace with only 12-15

nm between the membranes containing the two types of channels. In these cellular

models, the domain is treated as a small compartment that contains ion channels and

buffers, and communicates with the bulk cytoplasm. The group behavior of these

ion channels is modeled, which smooths the rapid changes of calcium fluxes due to

channel opening. In these models, since the time scale of calcium dynamics is much

slower than the kinetics of the buffers, the rapid buffering approximation should be

used.

Another approach is to model the details of this compartment in cardiac cells [39,

48]. These models also contain ion channels and buffers, and also communicate

with the bulk myoplasm. However, they are generally stochastic to simulate ion

channel dynamics and do not include whole cell calcium dynamics. Since a small

number of channels is modeled, there are rapid changes in the calcium fluxes. This

results in large time dependent changes in calcium requiring a small time step. This

necessitates that the buffering equations be solved dynamically rather than with a

steady-state approximation.

Calcium induced calcium release has also been observed in neurons [1, 22, 55].
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Figure 3.5

Schematic representation of one possible local calcium signaling scenario. Close

association of the ER and cell membrane form a subspace where ion channel cross-

talk can occur. Here, calcium entry through the voltage gated calcium channels can

trigger adjacent calcium-dependent chloride channels or farther ryanodine receptors.
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In these systems calcium entry through voltage gated calcium channels activates cal-

cium release from ryanodine receptors located in the ER. A model to describe this

phenomenon can use the same principles and formulations used in the work on car-

diac cells described above. In fact, the work of Albrecht and co-workers [1] presents

a model to explain their experimental results. They construct a simple model that

includes two dynamic equations for the calcium concentrations in the ER and cy-

tosol, RyR calcium release, SERCA pumps, and calcium entry and extrusion across

the plasma membrane. Their model demonstrates that there can be a low-gain mode

of CICR that operates under weak stimulation and a high-gain mode of CICR that

operates at high cytosolic calcium.

3.3.3 Control of gene expression

Calcium has long been thought to play a role in controlling gene expression. Early

research in this area suggested that calcium elevations and oscillation could con-

trol gene expression through frequency encoding [19]. Concrete evidence of fre-

quency encoding of gene expression activation by calcium oscillations was shown in

T-lymphocytes concurrently by Dolmetsch and co-workers [14] and Tsien and co-

workers [27]. A viable mechanism for this frequency encoding of gene expression

has been proposed in a computational model by Fisher and co-workers [17] that in-

volves the activation of calcium dependent transcription factors, NFAT and NFkB,

and their translocation into the nucleus (Figure 3.6). At rest NFAT is located in the

cytoplasm and is phosphorylated (Figure 3.6 in oval). The activation of NFAT in-

volves the activation calcineurin (C), a calcium/calmodulin-dependent phosphatase,

which binds to NFAT. Calcineurin then dephosporylates NFAT, allowing its translo-

cation into the nucleus. A similar set of reactions can occur in the nucleus. The

nuclear form of dephosphorylated NFAT is the transcriptionally active form and is

shown in the box in Figure 3.6. The model describes the different steps in these

biochemical pathways and derived differential equations using the laws of mass ac-

tion applied to these pathways. Translocation of the transcription factors across the

nuclear membrane is also treated as a biochemical reaction. The rate constants can

be determined by experimentally determined equilibrium constants and reaction half

times.

Activity-dependent gene expression has also been observed in neurons. Neurons

are able to differential between different types of stimulus, i.e., inputs that engage

synaptic transmission are much more effective that inputs that do not [34]. Experi-

ments in hippocampal neurons have shown that the calcium-dependent activation of

calcineurin (and hence NFAT) is critically dependent on calcium entry through L-

type calcium channels [20]. This again involves local calcium signaling in the nerve

terminals that can have global effects. This synapse-to-nucleus signaling that leads

to gene expression might play a role in synaptic plasticity and memory [12, 20]. A

similar approach as presented in the work by Fisher and co-workers as described

above would provide a good way to describe this phenomenon.
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Figure 3.6

The biochemical reaction scheme for activation of the calcium-dependent transcrip-

tion factor calcineurin. The top half of the figure described nuclear reactions (sub-

script n) and the bottom half describes cytosolic reactions (subscript c). At rest,

NFAT is phosphorylated. Upon activation by calcium, calcineurin (C) binds NFAT

and dephsophorylates by allowing its translocation into the nucleus. The transcrip-

tionally active form of NFAT is dephosphorylated and nuclear and is enclosed in a

box. The resting form is the phosphorylated cytoplasmic state, which is enclosed in

an oval.
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3.4 Conclusions

Calcium dynamics is a complex non-linear phenomenon that has benefited greatly

from mathematical modelling. The basic mechanisms of calcium signaling, such

as buffering, the endoplasmic reticulum, plasma membrane channels and exchang-

ers, and mitochondria can be modeled using very simple or biophysically detailed

representations. These can be combined to describe the complex morphologies and

structures that give rise to calcium signaling in neurons. A few of these structures

have been discussed such as vesicle fusion in the nerve terminal and submembrane

spaces. Calcium also can play a role in complex biochemical signaling pathways

such as those controlling gene expression.

Modelling efforts such as these have contributed to the fundamental understanding

of cellular function. With the models, hypotheses about the mechanisms can be

tested making way for new experiments to test predictions of the models. The models

can then be further refined to reflect the new experimental data. In this fashion,

continued interplay between modelling and experimental science will lead to greater

advances in the study of neuronal function.
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4.1 Introduction
While the transmission of electrical signals across neuronal networks is a fundamen-
tal aspect of the operation of nervous systems, and this feature has traditionally been
the main focus of computational neuroscience [10, 23], neurochemistry adds many
dimensions to the picture. For instance, it is now recognised that nitric oxide (NO)
is a novel kind of neurotransmitter that acts, through diffusion, over volumes that
potentially contain many neurons and can facilitate signalling between neurons that
are not synaptically connected [14, 46, 47]. This chapter aims to demonstrate that

c
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computational and mathematical modelling have an important role to play in trying
to understand this particularly interesting mode of signalling.

Traditionally, chemical signaling between nerve cells was thought to be mediated
solely by messenger molecules or neurotransmitters which are released by neurons
at synapses [22] and flow from the presynaptic to postsynaptic neuron. Because most
neurotransmitters are relatively large and polar molecules (amino acids, amines and
peptides), they cannot diffuse through cell membranes and do not spread far from the
release site. They are also rapidly inactivated by various reactions. Together these
features confine the spread of such neurotransmitters to be very close to the points of
release and ensure that the transmitter action is transient. In other words, chemical
synaptic transmission of the classical kind operates essentially two-dimensionally
(one in space and one in time). This conventional interpretation is coupled to the
idea that neurotransmitters cause either an increase or a decrease in the electrical
excitability of the target neuron. According to a traditional view of neurotransmis-
sion therefore, chemical information transfer is limited to the points of connection
between neurons and neurotransmitters can simply be regarded as either excitatory
or inhibitory. In recent years a number of important discoveries have necessitated a
fundamental revision of this model. It is now clear that many neurotransmitters, per-
haps the majority, cannot be simply classified as excitatory or inhibitory [17]. These
messenger molecules are best regarded as modulatory because among other things
they regulate, or modulate, the actions of conventional transmitters. Modulatory
neurotransmitters act in an indirect way by causing medium and long-term changes
in the properties of neurons by influencing the rate of synthesis of so-called second
messenger molecules. By altering the properties of proteins and even by changing
the pattern of gene expression, these second messengers cause complex cascades of
events resulting in fundamental changes in the properties of neurons. In this way
modulatory transmitters greatly expand the diversity and the duration of actions me-
diated by the chemicals released by neurons.

However, when coupled with this expanded picture of the nervous system, it is
the recent discovery that the gas nitric oxide is a modulatory neurotransmitter that
has opened entirely unexpected dimensions in our thinking about neuronal chemical
signaling [14, 15, 19]. Because NO is a very small and nonpolar molecule it dif-
fuses isotropically in aqueous and lipid environments, such as the brain, regardless
of intervening cellular structures [47]. NO therefore violates some of the key tenets
of point-to-point chemical transmission and is the first known member of an entirely
new class of transmitter, the gaseous diffusable modulators (COandH2Sare the other
two identified examples (see e.g., [4]. NO is generated in the brain by specialised
neurons that contain the neuronal isoform of the calcium activated enzyme, nitric ox-
ide synthase or nNOS [3]. NO synthesis is triggered when the calcium concentration
in nNOS-containing neurons is elevated, either by electrical activity or by the action
of other modulatory neurotransmitters. NO activates the synthesis of cyclic-GMP,
an important second messenger which regulates a wide variety of cellular processes
in target neurons, some of which underlie synaptic plasticity [19]. Hence NO is in-
volved in many neuronal functions from visual processing to memory formation and
blood flow regulation [16, 19, 46].
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The existence of a freely diffusing modulatory transmitter suggests a radically
different form of signalling in which the transmitter acts four-dimensionally in space
and time, affecting volumes of the brain containing many neurons and synapses. NO
cannot be contained by biological membranes, hence its release must be coupled
directly to its synthesis. Because the synthetic enzyme nNOS can be distributed
throughout the neuron, NO can be generated and released by the whole neuron. NO
is therefore best regarded as a ‘non-synaptic’ transmitter whose actions moreover
cannot be confined to neighbouring neurons [18, 33]. So not only can NO operate
over a large region, it can also mediate long-lasting changes in the chemical and
electrical properties of neurons within that volume [2, 41].

Because nNOS is a soluble enzyme and thus likely to be distributed throughout
a neuron’s cytoplasm, the whole neuron surface is a potential release site for NO.
Thus the morphology of NO sources, as well as the presence of structured sinks
(such as blood vessels), will have a major influence on the dynamics of NO spread.
Understanding this dynamics is clearly a very important part of a more general un-
derstanding of volume signalling processes. However, because the NO molecule is
so small and non-polar it is very difficult to gather accurate empirical data in this
area. Therefore it is natural to turn to computational modelling to shed light on
volume signalling.

Somewhat ironically, many of NO’s characteristics that complicate its empirical
investigation, make it much easier to model than many conventional neurotransmit-
ters whose large size and polarity make them impermeable to cell membranes. Thus
while these molecules also diffuse, their movement is restricted to the extracellu-
lar space near their release site and to model their spread would therefore require
accurate modelling of the morphology of the extracellular space and any local in-
homogeneities. In contrast, because of NO’s minute size and non-polarity it can be
assumed as a good first approximation to diffuse isotropically through most brain
tissue and so the morphology of the synaptic cleft and other surrounding matter need
not be modelled. This means that complex factors such as tortuosity and viscosity,
which affect the movement of larger molecules, do not need to be included in the
governing equations.

This chapter demonstrates how to model NO diffusion from continuous structures
of biologically realistic dimensions. The central part of the chapter describes and
justifies in some detail the methods used to build such models. It then goes on to
show how these models provide insights into a number of salient functional questions
that arise in the context of volume signalling. Chief among these is how large a
volume can be affected, and for how long, from various NO generating neuronal
structures. Finally, work on more abstract computational models of neural networks
incorporating functionally active diffusing neuromodulators is introduced. These
networks serve as the nervous system of autonomous robots, generating sensorimotor
behaviours in these devices, and thus help to give insights into possible functional
roles of gaseous diffusing modulators in real nervous systems.
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4.2 Methods
This section gives a detailed overview of the methods used to model the diffusion of
NO in the CNS.

4.2.1 Equations governing NO diffusion in the brain

The rate of change of concentration in a volume element of a membrane,
within the diffusional field, is proportional to the rate of change of con-
centration gradient at that point in the field.Fick’s second law (Fick
1855)

The equations governing diffusive movement can be understood by considering
the motion of individual molecules. In a dilute solution, each molecule behaves
independently of the others as it rarely meets them, but is constantly undergoing col-
lisions with solvent molecules which move it in random directions. Thus its path
can be described as a random walk∗ resulting in a net transfer of molecules from
high to low concentrations at a rate proportional to the concentration gradient. This
process is captured by what is commonly known as Fick’s first law, that in isotropic
substances the rate of transfer of diffusing substance through unit area of a section
is equal to the product of the diffusion coefficient,D, and the concentration gradient
measured normal to the section [8]. While in some casesD depends on concentra-
tion, it can be taken to be constant for dilute solutions [8]. As this is the case for
diffusion of NO in the brain [45], we will only consider these situations. Represent-
ing the concentration at a pointx and timet asC(x, t), the following equation for
diffusion in the brain (Fick’s second law) can then be derived from Fick’s first law:

∂C(x, t)
∂ t

= D

(

∂ 2C(x, t)
∂x2 +

∂ 2C(x, t)
∂y2 +

∂ 2C(x, t)
∂z2

)

(4.1)

or, more generally:

∂C(x, t)
∂ t

= D ∇ 2C(x, t) (4.2)

While the above equations govern the diffusive element of NO’s spread, they do
not take into account its destruction. NO does not have a specific inactivating mech-
anism, and is lost through reaction with oxygen species and metals, as well as heme
containing proteins [25, 44]. This means that the movement of other molecules and

∗Diffusion processes are thus amenable toMonte Carlomethods, where a (in the case of diffusion) uni-
form probability distribution, representing the probability of a molecule moving in a given direction,
together with a random number generator are used to calculate the path of each molecule. However, the
relatively long running times to achieve a good approximation render this method inappropriate for our
needs [1].
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receptors and their interactions need not be modelled and instead a more general loss
function can be used. Thus we have:

∂C(x, t)
∂ t

−D ∇ 2C(x, t) = −L(C,x, t) (4.3)

where the term on the right-hand side is the inactivation function. This function
will be composed of a global component for general, background NO reactions,
L1(C), and spatially localised components,L2(C,x, t), representing structures which
act as local NO sinks such as blood vessels. The kinetics of these reactions are not
understood perfectly [47], but empirical data indicates either first or second order
decay [25, 27, 28, 43, 45], as represented by:

Li (C,x, t) = ki (x)×C(x, t)n (4.4)

wheren is the order of the reaction and is equal to either 1 or 2, referred to as first or
second decay order respectively, andki is the reaction rate, commonly given in terms
of the half-life t1/2 = ln(2)/ki . The reaction may also depend on the concentration
of the oxidative substance (usually oxygen), but, apart from very special cases (as in
[7], for example), this can be assumed to be constant and is left out of the equation
as it is subsumed by the reaction rate constant.

Values for the half-life of NO have been determined empirically and are depen-
dent on the chemical composition of the solvent within which NO is diffusing. For
instance, the half-life of NO in the presence of haemoglobin (Hb) is reported as be-
ing between about 1msand 1µs, depending on the Hb concentration [23, 26, 28, 44].
In contrast, half-life values used for extravascular tissue, normally associated with
background NO consumption, are more than 1000 times longer, ranging from 1 to
> 5s [29, 31, 43, 47].

The order of the reaction is also dependent on the nature of the diffusive environ-
ment. In environments where there is a high concentration of Hb, as in NO sinks,
recent work by Liu et al. [28] has shown that the reaction of NO with intact red
blood cells exhibits first order kinetics, which is in agreement with earlier measure-
ments [23, 26, 44]. Similarly, for modelling the global part of the loss function, as
would be seen in most extravascular regions of the brain, measurements of NO loss
are also consistent with first order decay [25, 28, 43]. Although second order de-
cay has been used for extravascular NO comsumption [27, 45], in these models NO
is diffusing in vitro in an air-saturated aqueous solution which is molecular-oxygen
rich (unlike intact extravascular brain tissue). Thus the dynamics of decay are taken
from empirical data in molecular-oxygen rich environs and are unlike those in the
intact brain. As we are concerned with modelling NO diffusion in the brainin vivo,
we have therefore used first order decay to model global NO loss in extravascular
tissue as well as in localised sinks. This gives us the following widely used equation
[24, 25, 26, 43, 44, 47] for diffusion of NO in the brain:

∂C(x, t)
∂ t

−D ∇ 2C(x, t) = −k(x) C(x, t) (4.5)
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referred to as themodified diffusion equation. A production term can also be added
to the right-hand side of Equation 4.5 though this is often factored into the solution
later via the initial conditions (see Section 4.2.2).

Under certain conditions and for some source morphologies, Equation 4.5 can be
solved analytically (the analytical solution), although this usually involves some nu-
merical integration. Since the more complex a system is, the more numerical integra-
tion is required, this approach is often impractical and, in general, radial symmetry
is required for tractability. If the analytical solution cannot be derived, a numeri-
cal approximation method must be used [26]. That is not to say that the numerical
solutions are somehow ‘worse’ than the analytic ones or that they are simply crude
approximations to the true solution [39]. Rather, they can usually be made as accu-
rate as desired, or as accurate as the situation warrants given the unavoidable errors
in empirical measurements of diffusion parameters. Indeed, as all the analytic so-
lutions presented here required numerical integration they are also approximate and
all results have been derived to the same degree of accuracy. However, a numerical
approximation is always an approximation to the analytical solution and so it seems
sensible to use the latter if its calculation is tractable. A more practical reason for do-
ing so is that when it is available, evaluating the analytical solution normally requires
much less computational power. Our approach therefore is to use the analytical so-
lution whenever possible and, when not, to employ finite difference methods. In the
next two sections, we discuss these techniques.

4.2.2 Analytic solutions to the diffusion equation

God does not care about our mathematical difficulties. He integrates
empirically.Albert Einstein.

In this section we discuss how analytic solutions to the diffusion equation are
generated. The solution for a point-source is given first and we then show how
solutions for other simple structures are derived from this. We next state the solutions
thus obtained for hollow spherical and tubular sources and finally give some details
of the numerical integration techniques used to calculate these solutions.

4.2.2.1 Modelling NO diffusion from a point-source

As stated earlier (Section 4.2.1), the dynamics of diffusion are governed by the mod-
ified diffusion equation. Assuming that there are no local NO sinks present and only
global decay is acting, this equation becomes:

∂C
∂ t

−D∇ 2C = −λC (4.6)

whereC is concentration,D is the diffusion coefficient andλ the decay-rate [8]. We
first generate theinstantaneous solution, that is, the solution for an instantaneous
burst of synthesis from a point source positioned at the origin of some co-ordinate
system. To do this we envision an amountS0 of NO being deposited instantaneously
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at the origin at timet = 0. We then solve the diffusion equation under this initial
condition, which gives us the following equation describing the evolution of the con-
centration of NO from a point [8]:

CP(r, t) =
S0

8(πDt)3/2
exp

(−r2

4Dt

)

e−λ t (4.7)

whereCP(r, t) is the concentration of NO at timet at a point(r,θ,φ), defined in a
spherical polar coordinate system. Note, however, thatCP depends only on time and
the distance from the point source,r, as the system is radially symmetric.

The solution for a point-source which emits NO continuously, thecontinuous so-
lution, is derived from the instantaneous solution for a point source, described earlier,
in the natural way, via the principle of superposition of linear solutions [8]. First we
define the ‘strength’ of a source to be its rate of NO production. Next we define
the concentration at timet ′ and distancer from the origin, due to an instantaneous
source of unit strength to bef (r, t ′). Thus, if a source emits NO continuously at a
rate governed byS(t), we have:

C(r, t) =
∫ t

0
S(t − t ′) f

(

r, t ′
)

dt′ (4.8)

This can be understood by seeing that the contribution at timet′ ≤ t is due to an
instantaneous pulse of NOt ′ seconds previously, withS(t− t ′) the amount of NO per
second produced at timet − t ′ that is,t ′ seconds earlier. Thus, in Equation 4.8, the
most recent pulses of NO are responsible for the lower limit of the integration, whilst
the oldest pulses account for the upper limit. Similarly, we can derive the solution
for times after a source which emitted NO continuously has stopped synthesising.
If the source synthesises forT seconds and, as before, the instantaneous solution is
f (r, t ′), then the concentration at a distancer from the source,t1 seconds after it has
stopped synthesising is:

C(r, t1 +T) =
∫ t1+T

t1
S(t1 +T − t ′) f

(

r, t ′
)

dt′ (4.9)

wheret1 > 0. This approach is valid since the diffusion equation is linear and the
principle of superposition of linear solutions therefore applies.

4.2.2.2 Modelling NO diffusion from a symmetrical 3D structure

To model the spread of an amount of NO produced instantaneously throughout a con-
tinuous structure, we use methods developed in the field of thermodynamics which
are readily applicable to modelling diffusion [6]. The main technique is to build
up solutions for complicated structures from summation of contributions from point
sources distributed throughout the structure. Of course, we are not implying that
there are an infinite number of NO sources in the structure, but they are small enough
that we are justified in imagining that they are uniformly distributed throughout the
source with some densityρ (see Section 4.2.4.3). Hence for a spherical source,M,
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of radiusa, the method is to sum the contributions to the concentration at a point in
spacey, from all the points within the sphere as described below.

a
θ

θ+δ θ
φ

r+δ r

φ+δ φ

r0

Figure 4.1

The elementX (see Equation 4.10) of a sphere of radiusa containing the points(r ′,θ ′,φ′)
where:r ≤ r ′ ≤ r +δr; θ ≤ θ ′ ≤ θ +δθ andφ ≤ φ′ ≤ φ+δφ. X is outlined by solid lines
with dashed lines denoting radii and surface of the sphere.

Take a volumeX within the sphere containing the points(r ′,θ ′,φ′) where:

r ≤ r ′ ≤ r +δr; θ ≤ θ ′ ≤ θ +δθ; φ ≤ φ′ ≤ φ+δφ. (4.10)

as shown in Figure 4.1. If this element,X, is relatively small (i.e., ifδr, δθ andδφ
are sufficiently small), we can approximate its volume with:

VX ≈ r2sinθ δθ δφ δr (4.11)

with the error in the approximation getting smaller as the dimensions of the element
(δr, δθ andδφ) are reduced and the error becoming zero in the limit of the dimen-
sions becoming vanishingly small. Now, the amount of NO produced per second in
a volumeV of NO-producing tissue is:

SV = Q×NV (4.12)

whereQ is the amount of NO produced per second from a single NO producing unit
andNV is the number of these units withinV. This number is simply the product of
the volume ofV andρ, the density of units inV. Hence for the element,X (Figure
4.1), we have a strength/second term,SX, of:

SX = Q×NX = Q×ρVX ≈ Qρ r2sinθ δθ δφ δr (4.13)

In this equation,r, θ andφ are variables whilst the productQρ, the concentration
of NO produced per second, is independent of the particular shape of the structure
being studied and so can be determined by empirical experiments as in [47].
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Making δr, δθ andδφ vanishingly small makes the approximation in Equations
4.11 and 4.13 exact and we can assume that the contribution to the concentration at
a point,y = (r̃,0,0), from the volumeX is as if from a point source at the point:
x = (r,θ,φ). Inspecting Equation 4.7 we see that the concentration depends on the
time after synthesis and the distance betweenx andy, ‖ x− y ‖. Substituting this
and our strength/second term,SX, from Equation 4.13 into Equation 4.7 we obtain
the concentration of NO aty due tox at a timet after synthesis:

CP(‖ x−y ‖, t) =
Qρ r2sinθ drdθ dφ

8(πDt)3/2
exp

(− ‖ x−y ‖2

4Dt

)

e−λ t (4.14)

Now, to get the concentration aty due to the whole sphere we must sum up the
contributions from all the pointsx = (r,θ,φ) inside the sphere,M, (i.e., 0≤ r ≤
a; 0≤ θ ≤ π and 0≤ φ ≤ 2π) as shown below:

CS(a, r̃, t) = ∑
x∈M

CP(‖ x−y ‖, t) (4.15)

=
∫ a

0

∫ π

0

∫ 2π

0

Qρ r2sinθ
8(πDt)3/2

exp

(− ‖ x−y ‖2

4Dt

)

(4.16)

·e−λ t drdθ dφ (4.17)

Using:

‖ x−y ‖2= r̃2 + r2−2r̃r cosθ (4.18)

and noting that there is radial symmetry so that the concentration at any pointz =
(r̃,θ,φ) at a distance of ˜r from the origin is equal to the concentration aty = (r̃,0,0),
we therefore obtain:

CS(a, r̃, t) = Qρ e−λ t
[

1
2

(

erf

(

a+ r̃

2
√

Dt

)

+erf

(

a− r̃

2
√

Dt

))

− 1
r ′

√

Dt
π

(

exp

(

(a− r̃)2

4Dt

)

−exp

(

(a+ r̃)2

4Dt

))

]

(4.19)

where:

erf(x) =
2√
π

∫ x

0
exp

(

−u2) du (4.20)

for the concentration at a distance ˜r from the centre of a solid sphere of radiusa at
a timet after synthesis. This leads naturally to the solution for a hollow sphere of
inner radiusa and outer radiusb:

CH(a,b, r̃, t) = CS(b, r̃, t)−CS(a, r̃, t) (4.21)
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The analytical method outlined also yields the concentration at distance ˜r from the
centre of an annulus of inner radiusR1 and outer radiusR2 at a timet after synthesis:

CA(R1,R2, r̃, t) =
Qρ
2Dt

e−λ t exp

(−r̃2

4Dt

)

∫ R2

R1

exp

(−r2

4Dt

)

I0

(

r r̃
2Dt

)

dr (4.22)

where I0(x) is the modified bessel function of order zero [6].
These ‘instantaneous’ solutions can then be integrated over the appropriate time

intervals to get the solutions for the evolution of concentration of NO synthesised for
a finite time interval, in the same way as for the point source (as in Equations 4.8
and 4.9). In these cases, however, as the volume term has already been implicitly
factored into the integrals, we replaceQρ, the concentration/second at each instant,
with S̃(t), a function which, for each timet, gives the value ofQρ t seconds after
the start of synthesis. Traditionally, instantaneous switch-on and off of synthesis has
been assumed meaning thatS̃(t) will be a square wave with maximum value ofQρ.
This has the advantage of simplicity sinceS̃(t) is now constant and can be moved
outside the integral in Equations 4.8 and 4.9. Obviously, such a mechanism of re-
lease is not strictly biologically plausible but, in the absence of experimental data on
the kinetics of nNOS activationin vivo and given the insensitivity of the diffusion
process to small scale heterogeneity [35], this is a reasonable approximation. How-
ever, if numerical integration techniques are being used, more complicated strength
functions can be used to model the time-course of NO synthesis. For instance, in
[34] we used a strength function relating the amount of NO released to the amount
of depolarisation caused by an action potential.

4.2.2.3 Numerical integration of analytical solutions

As mentioned previously, numerical integration is generally required to generate the
analytic solutions especially if any reasonable inactivation is included. We will now
describe the methods used for the results detailed below, but a full review of numer-
ical integration techniques can be found in, for example, [9].

Equation 4.19 requires numerical integration over time. This was performed by
the ‘quad8’ function in the programming language Matlab, which uses an adaptive
recursive Newton Cotes 8 panel rule [9] to a relative accuracy of 0.1%. This is an ex-
tension of theextended trapezoidal rulein which the integral ofy(x) betweenxA and
xB is estimated by dividing the range intoN sections of widthh, and approximating
the area under the curve in each segment by the area of a trapezium, giving:

∫ xB

xA

y(x) = h

[

1
2

y0 +y2 +y3 + . . .+yN−1 +
1
2

yN

]

+O

(

(xB−xA)3y′′

N2

)

(4.23)

whereyi = y(xA + ih). While this method is robust for functions that are not very
smooth, it is relatively slow and the ‘quad8’ function achieves much faster conver-
gence by adaptively changing the positions and weightings of the estimatesyi in
Equation 4.23. However the extra speed comes at the cost of a loss of accuracy over
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the less smooth areas of the integrand near the temporal origin. This means that the
integration procedure must be modified for cases where the lower limit of integration
in Equation 4.19 is less than 1msto include the following analytical approximation
for the second part of the integral:

∫ ε

0
Qρe−λ t 1

r

√

Dt
π

[

exp

(

(a− r)2

4Dt

)

−exp

(

(a+ r)2

4Dt

)]

dt (4.24)

≃ Qρ
(

1+e−λε )

2

[

h

(

(r −a)2

4D
, r,ε

)

−h

(

(r +a)2

4D
, r,ε

)]

(4.25)

where:

h(k, r,ε) =
∫ ε

0
1
r

√

Dt
π e−

k
t dt

= 2
3r

√

D
π

(

e−
k
ε
√

ε (ε −2k)+2
√

πk3erfc
√

k
ε

) (4.26)

erfc(x) = 1−erf(x) (4.27)

and noting that att = 0 the instantaneous solution is:

CS(a, r, t) =

⎧

⎨

⎩

Qρ for r < a
Qρ/2 for r = a
0 else

(4.28)

In the abovea is the radius of the sphere,r is the distance from its centre andε ≤ 1ms.
Solutions for the hollow sphere and when the lower limit of integration is greater than
zero can be derived from the above equations.

The approximation in Equation 4.24 is based on the principle that iff min[0,ε] is
the minimum value attained by a functionf (t) over the range[0,ε] and f max[0,ε] is
the maximum off (t) over the same range then:

∫ ε

0
f (t)g(t)dt ≃

f min[0,ε] + f max[0,ε]

2

∫ ε

0
g(t)dt (4.29)

which has a maximum error of:

f max[0,ε] − f min[0,ε]

2

∫ ε

0
g(t)dt (4.30)

Thus, the actual value of the error is dependent on the parameter values used but, for
the parameters used here, the errors are small enough to keep the solutions to within
a relative accuracy of 0.1%.

The continuous solution for the tubular source (Equation 4.22) has to be inte-
grated over both space and time, necessitating a slightly different approach since
multi-dimensional integration is significantly more time-consuming and can mag-
nify errors and instabilities in the methods used [37]. While Monte-Carlo integration
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can be used, it is inappropriate for our needs due to the asymptotically slow conver-
gence. Due to the accuracy requirements and relative smoothness of the function,
the approach we have taken is to use successive applications of one-dimensional in-
tegration. In this method, to evaluatey(x, ti) for each abscissa,ti , of an iteration of
the outer integration of

∫ ∫

y(x, t)dxdt, we must perform one whole numerical in-
tegration overx using that value ofti to evaluatey(x j , ti) at eachx j . This means
that if it takesN function evaluations to get a sufficiently accurate estimate for the
one-dimensional integral, we will need aroundN2 evaluations to achieve the same
accuracy for the two-dimensional integral. Moreover, since it is good practice for ac-
curacy reasons to use simple numerical integration routines, the exponential growth
in the number of operations needed is exacerbated by the slow convergence of these
methods. Given these considerations, solutions for reasonably complicated func-
tions requiring greater than double integration is probably best handled with one of
the numerical methods discussed in the next section.

For the results detailed here, the extended trapezoidal rule given in Equation 4.23
[37] was used for the outer integration (over time) with the inner integration (over ra-
dial distance) performed by the ‘quad8’ function to speed up convergence. However,
to ensure accuracy, we checked the solutions by performing both inner and outer in-
tegrations using the extended trapezoidal rule. In evaluating the continuous solution
for the tubular source, it should be noted that att = 0 the instantaneous solution is:

CA(R1,R2, r, t) =

⎧

⎨

⎩

Qρ for R1 < r < R2

Qρ/2 for r = R1 , r = R2

0 else
(4.31)

Solutions were accurate to a relative accuracy of 0.5%. Accuracy of solutions for the
tubular and spherical sources were further checked using the numerical integration
package in the programming language Maple which is very accurate and accounts
for improper integrals correctly, but is too slow for general use.

4.2.3 Modelling diffusion of NO from an irregular 3D structure

4.2.3.1 Finite difference methods for diffusive problems

From the previous section it is clear that the analytical method is not tractable for
many situations which we might want to investigate. In particular, modelling irreg-
ularly shaped sources and sinks is inappropriate and other numerical techniques for
solving the partial differential equations (PDEs) governing the spread of NO must be
used. For diffusive problems evolving over the short time-scales associated with NO
diffusion in the brain, one recommended approach is to use finite differences [1, 37].

These methods proceed by approximating the continuous derivatives at a point by
difference quotients over a small interval, for instance replacing∂x

∂ t by:

δx
δt

=
x(t +∆t)−x(t)

∆t
(4.32)
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In this way, given some initial conditions forx at t = t0, we can define a recurrence
relation:

x0 = a,xn+1 = xn +∆t f (xn, tn) ,where:xn = x(tn) , tn = t0 +n∆t (4.33)

which can be solved iteratively. The error in the approximation is dependent on the
size of∆t, the step-size, with schemes being said to benth order accurate in a given
variable (or variables), meaning that the error is essentially a constant multiplied by
the step-size raised to thenth power [1]. As well as governing this truncation er-
ror, one must also ensure that the spatial and temporal step-sizes used do not make
the set of equations unstable, resulting in erroneous answers. For instance, explicit
difference equations (DEs), where the values at time-stepn+ 1 are calculated us-
ing only values known at timen as in Equation 4.33 above, tend to have stability
problems. Thus, compartmental models, a common finite difference method used to
solve the diffusion equation (Equation 4.2) [14, 24, 26], are hampered by the fact
that for stability:

D∆t

(∆x)2 ≤ 1
2n (4.34)

whereD is the diffusion coefficient,n is the spatial dimension and∆x and∆t are the
spatial and temporal step-sizes respectively [37]. This puts a limitation on the size
of the time-step to be used which, in less abstract terms, means that, in one space
dimension, it must be less than the diffusion time across a cell of width∆x.

However, different schemes have different stability properties and so the restric-
tive bounds of the compartmental model can be avoided. For instance, implicit DEs,
where values at timen+1 are defined in terms of each other, are often stable for all
step-sizes. However, while explicit DEs are inherently easy to solve as the solution
is simply propagated forward in time, implicit DEs require the solution of a set of
simultaneous Equations [30]. In order to avoid computationally intensive routines, it
is therefore important that the DE is designed so that the resulting system of equa-
tions is tridiagonal.† One such equation, known as the Crank-Nicholson scheme, is
recommended for diffusive problems in one space dimension [37]. Applied to the
one-dimensional version of Equation 4.2 we have, using the notation of Equation
4.34:

un+1
i −un

i

∆t
= D

[

(

un+1
i+1 −2un+1

i +un+1
i−1

)

+
(

un
i+1−2un

i +un
i−1

)

(∆x)2

]

(4.35)

†A tridiagonal system of equationsAx = b is one where the matrixA is tridiagonal, that is, where the
elements ofA, ai j , equal 0 ifi > j +1 or j > i +1. In other words, if the row and column number differ by
more than one, the entry must be zero. The entries are otherwise unrestricted. In non-mathematical terms
this means that the resulting equations can be solved quite straightforwardly in O(n) operations where n
is the number of equations, which in the context of difference equations equates to the number of spatial
points at which the equation is to be evaluated.
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whereun
i is the concentration at timen∆t and positioni∆x. This scheme is second

order accurate in space and time while maintaining stability for all choices of∆t.
This equation can be generalised for higher spatial dimensions quite easily but the

resulting systems of equations are no longer tridiagonal and so much more compu-
tationally expensive to solve. As the number of operations required to solve multi-
dimensional DEs increases exponentially with the dimension (as in numerical inte-
gration), this method is impractical [1]. Generalising explicit schemes in this way is
feasible due to the speed with which they can be solved. However the limit on the
step-sizes that can be used while ensuring stability (Equation 4.34) becomes even
more restrictive obviating this approach as well.

To get around these problems one can use a second class of techniques, known as
alternating-direction implicit(ADI) methods. The basic idea in these schemes is to
split up a single time-step inton sub-steps, one for each spatial dimension. For each
one of these sub-steps we evaluate only one spatial derivative at the advanced time
step which ensures that the resultant sub-system is tridiagonal, and thus solving for
each coordinate direction in turn. To see the general principle consider the following
generalisation of Equation 4.35 the two-dimensional diffusion equation:

∂u
∂ t

= D

(

∂ 2u
∂x2 +

∂ 2u
∂y2

)

(4.36)

Defining:

un ≡ ui, j,n ≡ u(i∆x, j∆y,n∆t) (4.37)

δ2
x un ≡ δ2

x ui, j,n ≡ ui+1, j,n−2ui, j,n +ui−1, j,n (4.38)

δ2
y un ≡ δ2

y ui, j,n ≡ ui, j+1,n−2ui, j,n +ui, j−1,n (4.39)

where∆x,∆y and∆t are the spatial and temporal step-sizes respectively, we have:

un+1/2−un
1
2∆t

= D
(

δ2
x un+1/2 +δ2

y un
)

(4.40)

which is tridiagonal. This is solved everywhere and the solution for the half time-step
is then used in the following difference:

un+1−un+1/2
1
2∆t

= D
(

δ2
x un+1/2 +δ2

y un+1
)

(4.41)

to solve for the full time-step. This results in a scheme which is stable, second order
accurate in space and time and only requires solution of tridiagonal systems. Such
methods, while certainly requiring a significant amount of computation, are at least
practical and have been used extensively for diffusive IVPs [1, 37].

Before detailing the specific difference schemes used, it should be noted that the
major issue in using difference equations for multi-dimensional diffusive DEs is that
of computational power. As well as the number of operations required scaling expo-
nentially with the number of dimensions, so do the memory (RAM) requirements.
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One could attempt to alleviate this by reducing the problem’s size by using large
spatial and temporal scales and offsetting the loss of accuracy incurred by employing
higher-order (in terms of accuracy) methods. However, unless the DE is extremely
stable, using too high an order can introduce spurious solutions and for second order
initial value problems, such as the diffusion equation, Press et al. [37] recommend
that one should go no higher than second order in space and time. Thus for multi-
dimensional DEs one must resign oneself to long running times, high memory re-
quirements and a certain loss of accuracy. If this is not practical a lower dimensional
model can in some circumstances be used to approximate higher dimensions [45].

4.2.3.2 Finite difference schemes used

For the numerical solutions given here, we used the alternating direction implicit
(ADI) method in two and three space dimensions [1]. This is recommended for
diffusive problems as it is fast, second-order accurate in space and time, uncondi-
tionally stable and unlike simpler schemes, allows for examination of the solution at
all time-steps [1, 30, 37]. The equation to be approximated is:

∂C
∂ t

−D∇ 2C = P(�x, t)−S(�x)C−λC (4.42)

where:

P(�x, t) =

{

Qρ for points inside the source during synthesis
0 else

(4.43)

and:

S(�x) =

{

η for points inside sinks
0 else

(4.44)

where a sink is a local high concentration of an NO-binding moiety such as a heme-
protein. Thus in two dimensions we have [1]:

un+1/2−un
1
2∆t

= D
(

δ2
x un+1/2 +δ2

y un
)

+P(i, j,n)

−
(

λ +S(i, j)
2

)

(

un+1/2 +un
)

(4.45)

un+1−un+1/2
1
2∆t

= D
(

δ2
x un+1/2 +δ2

y un+1
)

+P
(

i, j,n+ 1
2

)

−
(

λ +S(i, j)
2

)

(

un+1 +un+1/2
)

(4.46)

Extending these equations to three space variables leads to a method that is unsta-
ble for any useful spatial and temporal scales [1] and so the following variant is used.
Instead of taking three third-steps one generates three subsequent approximations for
the solution at the advanced time-step, the third one being used as the actual solution.
We obtain the first approximationu∗n+1 at time-stepn+1 in the following way [1]:

u∗n+1−un

∆t = D
[

1
2δ2

x

(

u∗n+1 +un
)

+δ2
y un +δ2

z un
]

+P(n)− λ
2

(

u∗n+1 +un
) (4.47)
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where Equations 4.37-4.39 have been extended in the obvious way so that, for in-
stance:

un ≡ ui, j,k,n ≡ u(i∆x, j∆y,k∆z,n∆t) (4.48)

δ2
z un ≡ δ2

z ui, j,k,n ≡ ui, j,k+1,n−2ui, j,k,n +ui, j,k−1,n (4.49)

The second approximationu∗∗n+1 is then calculated using the first via:

u∗∗n+1−un

∆t = D
[

1
2δ2

x

(

u∗n+1 +un
)

+ 1
2δ2

y

(

u∗∗n+1 +un
)

+δ2
z un

]

+P(n)− λ
2

(

u∗∗n+1 +un
) (4.50)

and the final solutionun+1 with:

un+1−un
∆t = D

2

[

δ2
x

(

u∗n+1 +un
)

+δ2
y

(

u∗∗n+1 +un
)

+δ2
z (un+1 +un)

]

+P(n)− λ
2 (un+1 +un)

(4.51)

In the above the reaction term for a sink has been dropped as this was not used with
a three-dimensional model, though its inclusion is straightforward.

The two-dimensional ADI equation was implemented with spatial scale of 1µm,
on a square grid of size 1000× 1000 and time step 1ms. The three-dimensional
version also used a space-step of 1µm, but on a cubic 300×300×300 grid with a
time-step of 4ms. The effects of the step-sizes were checked by running the equa-
tions with smaller scales and were found to be negligible (< 0.5% relative error).
The equations were run using Neumann boundary conditions with the gradient at the
edge of the grid set to be constant. However, to ensure that the size of the grid and
boundary condition did not affect the results significantly, we checked the simula-
tions by rerunning them with a flat gradient at the boundary. The equations were
written in C. For full details of the implementation see [35].

4.2.4 Parameter values

The values of the main parameters used here, the diffusion coefficient,D, the decay
rates,λ andη , and the concentration rate,Qρ, warrant some discussion. We also
discuss the choice of an NO threshold and the localisation of nNOS.

4.2.4.1 Diffusion coefficient and decay rate

The value ofD in an aqueous salt solution has been measured as 3300µm2s−1 [29].
This value has been used widely [24, 44, 47] and has also been derived with reference
to a model [45]. It is reasonable to assume that it will not be significantly affected in a
lipid or protein aqueous medium due to the very small molecular dimension and non-
polarity of NO. In addition, because NO is dilute, D is assumed to be independent of
NO concentration and constant [45] and so we use this value throughout.

The value of the decay rate used gives a half-life of 5s, which is that recorded for
dissolved NO perfused over living tissues in oxygenated saline solution (Moncada
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et al. 1989). Whilst other rate constants can be used, these are basically dependent
on the oxidising environment in which NO is diffusing. If this is other than a simple
environment, with at1/2 ≪ 5s, it should be treated more carefully [7, 45], whilst
anything longer has hardly any effect over the spatial and temporal scales examined
here [47]. We have thus made the simplifying assumption that the background half-
life is 5s. For strong NO sinks,η , has a value of 693.15s−1 equivalent to a half-life
of 1mswhich was chosen as a conservative value based on the rate of NO uptake by
a nearby haemoglobin containing structure such as a blood vessel [23, 28].

4.2.4.2 NO production rate

The value of the synthesis rateQρ is a more open question and several values have
been determined via different models. Before these are discussed, however, it should
be noted that the effect of this parameter is purely one of scale as it is a constant
which simply multiplies the concentrations. Thus, whatever the actual value of this
parameter, the qualitative nature of the results is unchanged and it is easy to see what
effect a different value would have simply by rescaling.

There are two determinations ofQρ that have underpinned NO diffusion mod-
elling to date, both of which are based on the experimental findings of Malinski et al.
[29]. Both results are measurements of NO from endothelial cells of a rabbit aorta,
one in vivo and the otherin vitro. The first measurement is the concentration of
NO produced from stimulated cells of the aorta 100µmaway after diffusion through
muscle cells. The second measurement is taken at the surface of a single endothelial
cell in culture stimulated to produce NO.

Vaughn et al. [45] chose to use thein vivo determination. This is a very complex
situation since the reaction with smooth muscle has to be taken into consideration and
the size of the synthesising region is unknown and to complete the calculation many
simplifying assumptions had to be made. One of these was that NO was produced at
the surface of the endothelial cells only, which could seriously alter the results and
renders the production rate gained unusable in the models we employed.

We, like Wood and Garthwaite [47], base our model on thein vitro determina-
tion. However, unlike Wood and Garthwaite [47], who used a point-source model to
represent a spherical neuron of diameter 1µm, we employed a structure-based anal-
ysis. For this task, we used a hollow sphere of inner radius 6, outer radius 10, with
the result that a value forQρ of 1.32× 10−4molµm−3s−1 is needed to generate a
maximum concentration of 1µM on the surface of the sphere. These dimensions are
chosen to approximate an average endothelial cell but are not incredibly significant
[35]. Also, the endothelial cell will not be spherical but again, due to the insensitivity
of the results to changes of dimension and given that there is no other data available,
this approximation was deemed sufficient. Significantly, the resultant value forQρ
is about 300 times less than that used previously. Moreover, the peak concentration
is attained after about 14 seconds - a result which agrees closely with the empirical
data of Malinski et al. [29] but which was unexplained when the point-source model
was utilised [26, 35]. The determination of the production rate is discussed in more
detail in [35].
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4.2.4.3 Distribution of nNOS in neurons

When modelling NO formation one must know where the NOS is located and this
differs depending on the type of NOS examined. Here we are mainly concerned
with nNOS and so we should say a few words on its distribution within neurons.
In the literature nNOS is often referred to as being located on the membrane, as it
is frequently shown to be associated with postsynaptic density protein-95 (PSD-95)
which in turn is linked to the NMDA-receptor which is membrane-associated (see,
for instance [41]. This is consistent with NO acting as a retrograde messenger to
induce LTP or LTD in the pre-synaptic neuron. Thus it is natural that nNOS’s po-
sition near the NMDA receptor is emphasised but this should not be taken to mean
that there is no nNOS elsewhere. Indeed, nNOS is a soluble enzyme and will be dis-
persed throughout the cytoplasm, as demonstrated by NADPH-diaphorase staining
[32]. A similar story is true of eNOS which, while it does have an affinity for the
membrane, will also be found at positions throughout the endothelial cell [11]. Thus
in our model we have made the assumption that nNOS is spread evenly within the
synthesising region with a uniform source density which we have denoted asρ.

4.2.4.4 The NO threshold concentration

To quantify a threshold concentration for effective NO signalling, one first has to
specify a particular molecular signalling pathway. Here we follow the thinking of
Vaughn et al. [44] who chose the soluble guanylyl cyclase-cyclic GMP (sGC-cGMP)
signalling pathway, the major signalling pathway for NO in the brain [16, 38]. The
equilibrium dissociation constant[42] for NO for sGC is 0.25µM and this value
defines a threshold concentration for NO.

4.3 Results
In this section we apply the methods detailed above to investigate the properties of
an NO signal produced by neuron-like morphologies. In so doing, we examine a
number of salient functional questions that arise in the context of volume signalling.
In particular, we highlight the importance of the morphology of the source in deter-
mining the spatial and temporal extent of an NO volume signal. While a number of
previous models of NO diffusion in the brain have been published, they are broadly
one of two types: point-source models (see for instance [24, 47]) or compartmental
models [14, 25, 26], neither of which address the impact of the source structure on
the diffusional process. The shortcomings of these approaches are discussed in detail
in [35, 36], but we will summarise the main points here.

In a point-source model, as the name suggests, one models NO diffusing from a
source as if it were being produced at a dimensionless point at its centre. It is not
difficult to see intuitively that problems might arise from the fact that a point source
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is therefore by definition singular. The singular nature of the solution represents a
fundamental problem to modelling sources with morphology which can be appreci-
ated by examining the steady-state solution for the 3D point source used by Wood
and Garthwaite [47]:

C(r) =
S
r

exp

(

−r

√

ln2
Dt1/2

)

(4.52)

wherer is the distance from the source andS is a constant determined by the pro-
duction rate of the source. The first thing to note is that the concentration at the
sourcer = 0 is infinite. Although the central concentration itself could be ignored,
the ramifications of having a singularity at the heart of the solution causes many
complications and unrealistic results [34]. Firstly one must decide at what distance
from the centre the model is deemed to be ‘correct’, necessarily a somewhat arbitrary
choice. The approach taken by Wood and Garthwaite [47] was to use the surface of
the neuron and only consider points outside the cell. This highlights a second prob-
lem, namely that the internal concentration is indeterminate which in turn means that
obtaining a meaningful solution for hollow structures is impossible [34]. Finally, as
the concentration in Equation 4.52 is dependent on the distance from the source only,
this model cannot be used to address the impact of different source morphologies as
sources with the same value ofS but different shapes and sizes will yield identical
results.

In compartmental models, on the other hand, one can include some notion of the
source morphology. However, while such models do give valid insights into the over-
all role of a diffusing messenger they are a form of explicit finite difference model
[1] and are thus hampered by the limit on the duration of the time step employed
given in Equation 4.34 [30]. This limitation necessitates the use of relatively large
compartments leading to gross approximations. In view of this, we believe a more so-
phisticated form of numerical approximation, such as the one presented here, should
be employed when the complexity of the morphology makes an analytical solution
impractical.

4.3.1 Diffusion from a typical neuron

We first examine the solution for a simple symmetrical structure representing, for
example, a neuronal cell body in which NO is synthesized in the cytoplasm but
not in the nucleus. We have therefore examined the solution for a hollow spherical
source of inner radius 50µm(the nucleus) and outer radius 100µm(cell body). These
dimensions, though large for many neurons especially in vertebrates, do correspond
to the dimensions for some identified giant molluscan neurons whose cell bodies
synthesise NO and have been shown to mediate volume signaling [33].

Of course we are not suggesting that neurons are perfectly spherical but rather
that hollow spheres are a useful approximation for neurons. They can, for exam-
ple, tell us about the importance of morphological irregularities. For instance, if
one had a cell which was mainly spherical but had a lot of small-scale variability
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Figure 4.2

Concentration of NO plotted against time after synthesis for a hollow spherical source of
inner radius 50µm and outer radius 100µm for a 100msburst of synthesis. Here the solid
line depicts the concentration at the centre of the cell (0µm), whilst the dotted line shows
the concentration at 225µm from the centre. Because the absolute values attained at the two
positions differ from one another markedly, the concentration is given as a fraction of the peak
concentration attained. These peak values are 7.25µM (centre) and 0.25µM at 225µm. The
cell and the points at which the concentration is measured are depicted to the left of the main
figure. Note the high central concentration, which persists for a long time (above 1µM for
about 2s. Also, there is a significant delay to a rise in concentration at distant points which
is more clearly illustrated in the expanded inset figure. The square-wave shown beneath the
inset figure represents the strength function.

in its outer structure, we could use two ideal models, one with the outer radius set
to the minimum radius and the other with outer radius set to the maximum. In this
way analytical solutions can be employed to see whether or not the irregularity has
a significant effect. In fact we have seen that due to the speed of diffusion of NO,
small-scale irregularities (±2.5% of source size) have a negligible effect [35]. Using
such an approach we can also investigate the sensitivity of the diffusional process
to other parameters such as boundary conditions whose complexity make the ana-
lytical solution intractable. Thus, if we have to make simplifications to a model to
render derivation of the analytical solution tractable, we can tell whether or not these
simplifications generate gross inaccuracies.

The solution for the hollow sphere was examined for a burst of synthesis of dura-
tion 100ms, with results shown in Figures 4.2 and 4.3. There are two points of note,
namely the length of time for which the concentration in the centre of the sphere
remains high and the significant delay between the start of synthesis and the rise of
concentration for points distant from the source (Figure 4.2). The cause of these phe-
nomena can be seen on examination ofFigure 4.3.During the synthesis phase, the
concentration outside the cell rises very slowly. In the nucleus, however, a ‘reservoir’
of NO starts to build up (Figure 4.3A), albeit relatively slowly when compared to the
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Figure 4.3

Concentration of NO plotted against distance from the centre of a hollow spherical source
of inner radius 50µm and outer radius 100µm for a 100msburst of synthesis starting at time
t = 0. The graphics underneath each plot depict the structure. A. Concentration of NO at times
t = 25, 50 and 100ms, two time points during and one at the end of synthesis. B. Concentration
of NO after synthesis at timest = 175, 300 and 1.5s. The reservoir effect following the end of
synthesis is clearly seen as the centrally accumulated NO is trapped by the higher surrounding
concentrations.

rise in the synthesising area (the cytoplasm). After the end of synthesis, this reser-
voir continues to fill up for about 200msas the NO in the cytoplasm diffuses away
from its point of origin to points of lower concentration in the nucleus. However, the
concentration outside the cell still rises slowly as the NO is dissipated over a larger
volume. Later, the situation changes somewhat, as we are now in the position where
the concentration in the nucleus is roughly equal to the concentration in the cyto-
plasm, giving a wide flat peak to the concentration profile. Until this point, the NO
which had diffused into the centre had been ‘trapped’ and could not be dissipated due
to the higher concentration present in the surrounding cytoplasm. Now though, we
see this reservoir spreading away from the cell in a wave of high concentration which
starts to raise the distal concentrations to significant levels. However, the concentra-
tion at the centre remains high and does not spread outwards very quickly since the
concentration gradient is virtually flat, meaning there is very little diffusive pressure
on the NO in this area. It is this effect that produces the unexpected time delay at
distant points.

Examination of the concentration at 225µm from the centre of the cell (Figure
4.2), shows that it remains low until about 400ms after synthesis has stopped. It
peaks shortly afterwards and stays relatively high for a relatively long period. This
has implications for the temporal dynamics of NO-signalling in a neurobiological
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context. For example, suppose there was an NO-responsive neuron at a distance of
225µm from the centre of the source neuron. Assuming a threshold concentration
of 0.1µM this neuron would not be affected until 600msafter the end of synthesis
and would continue to be affected for a period of about 4s. Such a process could
be used to introduce a time delay in NO-mediated neural signalling. The high cen-
tral concentration also has implications for neural signalling as the effect of the NO
synthesising event remains long after this event has passed.

There is another interesting factor seen in these results, namely the temporal dy-
namics of the solution in the cytoplasm during synthesis. Here it is enough to note
that the concentration continues to rise for a very long time of continuous synthe-
sis before a steady-state is approached. Thus, though much of the work using point
source models has considered solutions at steady-state such considerations may be
inappropriate in the context of real structures.

4.3.2 Effect of neuron size
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Figure 4.4

Threshold distances for NO generated by single fibres of different diameters. The threshold
distance is defined as the distance at which concentration of NO drops below 0.25µM, the dis-
sociation constant for soluble guanylyl cyclase [42]. A. Illustration of threshold distances for
several fibres. Numbers inside circles represent fibre diameters in microns. For comparison,
the fibres have all been drawn the same size with the threshold distance shown in multiples of
the fibre diameter. B. Threshold distance as a function of fibre diameter plotted against fibre
diameter. Note the sharp reduction in threshold distance for fibres of diameter less than 10µm.

The effects reported above are generated by the relatively large dimensions typical
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of some molluscan neurons. Questions therefore arise as to whether similar phenom-
ena are present for smaller neurons such as those found in mammalian brains. In [34]
we showed that reducing the radius of the cell can have a significant and somewhat
counter-intuitive effect on the signalling capacities of neurons. In particular, for hol-
low spherical cells whose inner radius is half the outer radius and which synthesise
NO for 100ms, the signalling capacity slowly increases as the cell size is reduced,
peaking for 30− 40µm diameter cells. Below this size, however, there is a steep
almost linear decline in the threshold distance and sources of 10µm diameter or less
have a very limited signalling capacity.

To further examine this effect, we studied the maximum region around a source
which could be affected via the NO-cGMP signalling pathway during and after the
generation of NO from tubular sources of various sizes. The affected region is de-
fined by the volume within which the concentration is above the threshold concen-
tration, as discussed in Section 4.2.4.4, and is given in multiples of fibre diameter.
This is because the important comparator is the number of potential neuronal targets
within the affected region and this depends on their size. A similar phenomenon to
that seen in spherical sources is seen for these NO-expressing fibres (Figure 4.4):a
slow rise in the affected region as the diameter is reduced, peaking at a fibre diame-
ter of 20µm, followed by a steep decline thereafter indicating that small fibres (4µm
diameter or less) are unable to generate an effective NO signal. Moreover, for such
small sources, the affected region is not increased significantly by increasing the du-
ration of NO synthesis, since a steady-state situation is rapidly approached. Thus
for a source of diameter 3µm or less, a threshold concentration will not be achieved
anywhere for no matter how long NO is synthesised (Figure 4.5).

4.3.3 Small sources

Sources which are too small to generate a threshold concentration individually may
affect larger regions if they behave as if they were a single larger source with the
attendant temporal and spatial phenomena associated with a source of the combined
shape and size. An example of this is provided by endothelial cells which act as a
multicellular complex of many very small cells (Vaughn et al. 98a). In many other
locations in the brain, though, there are many instances in the brain of well-separated
NO sources below the critical size required for a volume signal. It would seem
therefore that NO from these sources cannot have a functional role. In determining
the range of influence of a source, however, it was assumed that each source is acting
on its own. What if instead, NO is derived from many small separated sources acting
in concert?

In this section, we study this situation, analysing the dynamics of the NO cloud
such sources produce. In particular, we examine networks of axonal fibres with di-
ameters of a few microns or less and the functional extent of the volume signal they
generate. A knowledge of the characteristics of such a signal could be crucial in help-
ing to understand NO’s neuromodulatory role, since this type of source is found in
many places in the brain. For instance, while NO producing neurons account for only
about 1% of cell bodies in the cerebral cortex, their processes spread so extensively,
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Figure 4.5

Maximum concentration reached on the surface of fibres of different diameters for synthesis
bursts of length 0.1,1,5 and 10s. The dotted line shows the threshold concentration. The
surface concentration is the maximum concentration achieved outside the fibre and so if this is
less than threshold, these cells cannot affect any others via the NO-cGMP signalling pathway.
This is the case for fibres of diameter less than 3.5µm. Note that for cells of this size steady-
state is approached after about 5s of synthesis, and that the smaller the fibre, the sooner this
situation occurs.

that almost every neuron in the cortex is exposed to these small fibres the vast major-
ity of which have diameters of a micron or less [2, 11]. Another example is found in
the locust optic lobe where there are highly ordered sets of nNOS-expressing 2µm
diameter fibres [12].

An illustration of how co-operation can occur in a model of fibres in the locust
optic lobe is provided byFigure 4.6which shows the spatial extent of the NO signal
generated by a single fibre of 2µm diameter and by ordered arrays of four, nine and
sixteen identical sources separated by 10µm. As can be seen in the figure, an ordered
array ofN2 fibres is a 2D arrangement ofN×N fibres. As the fibres are parallel the
solution is symmetric along the z-axis (out of the page) and so we give results only
for cross-sectional slices in a plane perpendicular to the direction of the fibres. The
single fibre does not achieve an above threshold signal principally because the great
speed of NO diffusion means that NO will spread rapidly over a large volume. So
while NO does not reach threshold anywhere, the volume occupied by NO at a sig-
nificant fraction of threshold is large relative to the source size. Thus NO derived
from small and well-separated individual sources can summate to produce an effec-
tive NO cloud. But what are the characteristics of such a signal and what do they
imply for the way NO functions? For instance, do we still see the reservoir and delay
effects characteristic of signals from single larger sources?

The first thing that one notices from Figure 4.6 is that while the centre effect is still
present with NO accumulating in the centre of mass of the sources, the concentration
profile appears to be flatter. This can be seen more clearly inFigure 4.7where an
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Figure 4.6

Volume over threshold (0.25µM) generated by NO synthesising fibres of 2µm diameter or-
ganised in ordered arrays separated by 10µmafter 1 second of synthesis. The fibre dimensions
and spacing have been chosen so as to approximate the arrangement of the nNOS-expressing
fibres in the optic lobe of the locust [12]. The upper graph shows the volume over threshold
per unit length of the fibres. The lower four graphs show the concentrations of NO (dark =
low, light = high) in a two-dimensional slice through the fibres which project out of the page.
Here we see how NO from several sources can combine to produce above threshold concen-
trations (areas inside the white boundaries) which extend away from the synthesising region.
Scale bar is 50µm.

ordered 10×10 array of 2µm fibres separated by 36µm. The effect of the spacing
between the sources is further illustrated inFigure 4.8,where the area over threshold
generated by 100 fibres is shown as a function of the total cross-sectional area of
source. What is immediately obvious from Figure 4.8 is that if one’s goal is to reach
the largest number of potential targets with a given volume of source fibres, then
one should use a dispersed source rather than one single source. While the optimal
spacing that should be used is dependent on the length of synthesis (and the number
of sources [35], results for fibres arranged contiguously so that 100 fibres act as one
20×20µmsource (the first points on the x-axis in Figures 4.8A-B), arealwayslower
than those for dispersed sources (unless the sources are dispersed so widely that they
fail to interact). Indeed can affect a volume over twice the size of a solid source
simply by dispersing them correctly. Thus, in terms of the extent of the NO signal,

© 2004 by Chapman & Hall/CRC



50 100 150 200 250 300 350

0.15

 0.2

0.25

Distance (µm)

C
on

ce
nt

ra
tio

n 
(µ

M
)

Threshold
0.625s
0.65s
0.675s

0 0.2 0.4 0.6 0.8 1
  0

 25

 50

 75

100

Time (s)

A
re

a 
ov

er
 th

re
sh

ol
d 

(x
10

3  µ
m

2 )

0.675s 

0.65s 

0.625s 

B C 

Figure 4.7

Concentrations of NO at several time points during NO synthesis in a line through the centre
of ordered arrays of NO synthesising fibres of diameter 2µm. B. NO concentrations generated
by 100 fibres separated by 36µm after 0.625,0.65 and 0.675s of NO synthesis. The dashed
line shows the threshold concentration. C. Area over threshold due to 100 fibres separated by
36µm for NO synthesis of length 1s plotted against time after synthesis. Here even though
there has been 600msof synthesis, just 100msmore extends the affected region from virtually
nothing to over 50000µm2.

there is a big advantage in using separated sources.
What about the temporal dynamics of the NO signal? Examining the time-course

of the NO signal generated by an array of 100 fibres spaced 36µm apart, we see a
delay until areas reach an above threshold concentration as we did for single sources
(Figure 4.7). This time, however, rather than the delay being for points outside the
source only, here there is a delay untilany point is affected by NO, after which
there is a very steep rise in the volume affected. This is a common feature of sig-
nalling from dispersed sources because the summation of NO from several separated
fibres means that the concentration in and around them is, in a sense, averaged and
hence, smoothed. Thus due to the dynamics of diffusion one tends to get a relatively
even concentration within the synthesising region with small peaks around the fibres
themselves (Figure 4.7). In conjunction with the use of a threshold concentration,
this means that there will come a point when the concentration in a region around
the fibres is just sub-threshold and a small increase in the general level of NO will
result in large areas rising above threshold, as shown in Figure 4.7. We refer to this
feature as theinteractioneffect.

Again, the impact of the interaction effect will vary depending on the spacing used
and a large range of temporal dynamics can be seen (Figure 4.8B).In particular, the
delay before the start of interaction can vary from nothing to more than a second, with
the delay growing as the spacing is increased. This means that a system with optimal
spacing, in terms of extent of the affected region, will experience a considerable
delay before the region begins to be affected, with the total area affected suddenly
rising sharply at the end of the delay. This raises the intriguing functional possibility
of a system which is completely unaffected by NO for a given length of time (a
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Figure 4.8

Area over threshold as a function of the total cross-sectional area of source for different num-
bers of evenly spaced fibres of diameter 2µm. A. Affected area against spacing for 100 fibres
for NO synthesis of length 0.5, 1 and 2 seconds. B. Affected area over time due to 100 fibres
arranged as a single source (spacing = 2) or separated by 40 or 50µm for 2 seconds of NO
synthesis. Note the delay till effective co-operation of the separated sources.

period which would be tunable by changing the spacing), but once past this point,
large regions are rapidly ‘turned-on’ by the cloud of NO.‡

Another factor which affects the length of the delay is the thickness of the fibres
used. Examining the delay from plexuses composed entirely of fibres of various fixed
diameters, we see that the delay is longest for the thinnest fibres (Figure 4.9).This is
because the fibres are now too small to achieve an above threshold signal singly and
so must cooperate, although the subsequent rise in the affected area is not as steep
as for ordered arrays. This is expected since the random nature of the plexus means
that the distribution of concentrations is less uniform and the interaction effect is
less pronounced. Examining the delay for plexuses of other diameters we see that it
rises steeply to that seen for the 1µm plexuses showing that the interaction needed
is much greater for the smaller fibres (Figure 4.9A). As a property of a signal, the
obvious role for such a delay is as a low pass filter since there has to be nearly
200ms of synthesis before the thin plexus will respond. In the case of the signal
mediating increased blood flow, this means that there would need to be significant
sustained activity before blood flow increased, whereas for a thick plexus blood flow
would react to every short burst of neuronal activity. Other features seen to vary
with fibre thickness are maximum concentration, how centred a cloud is on a target
region, and the variability of concentrations over a region; all of which have sensible
interpretations in terms of neuronal signalling to blood vessels.

‡A form of signalling which might also be useful in an artificial neural network (see Section 4.4).
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Figure 4.9

Mean results for plexuses composed entirely of fibres of diametersd = 1,2,3,4 or 5µm in a
100×100×100µm3 synthesising volume for 1 second of NO synthesis. Results averaged over
30 random plexuses grown generated using the growth algorithm detailed in [35]. A. Mean
delay until interaction against diameter of plexus fibres. B. Mean volumes over threshold
both in total and inside the synthesising volume against diameter of plexus fibres. C. Mean
maximum concentration obtained against diameter of plexus fibres. D. Mean concentrations
seen in a 1d line through the centre of either thin (1µm) or thick (5µm) plexuses.

4.4 Exploring functional roles with more abstract
models

The computational models presented above require huge numbers of iterated calcu-
lations and inevitably place heavy demands on processing resources. Hence it is not
yet feasible to build models of whole neuronal networks at that level of detail and
run them in real time, or anything even vaguely approaching it. Therefore, in paral-
lel with the detailed modelling work, we have developed a class of computationally
fast artificial neural networks (ANNs) that incorporate a more abstract model of sig-
nalling by diffusing neuromodulators. Such networks have been used as artificial
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nervous systems in autonomous mobile robots and have allowed us to start exploring
the properties and potential functional roles of this kind of signalling in the genera-
tion of behaviour [20, 21]. We have named this class of ANNs GasNets. Our work
with these networks is briefly introduced in this section.

Since as yet we have no deep formal theory for such systems, we have found
the use of stochastic search methods (such as evolutionary algorithms) to be a very
helpful tool in this exploration. We have used the methods of evolutionary robotics to
explore the suitability of this class of networks for generating a range of behaviours
in a variety of autonomous robots [20, 21].

4.4.1 The GasNet model

In this strand of our work we have attempted to incorporate into ANNs, in an ab-
stracted form, some of the richness and complexity that characterises the temporal
and spatial dynamics of real neuronal signalling, especially chemical signalling by
gaseous transmitters. As these systems operate on different temporal and spatial
scales to electrical signalling, we have developed models in which electrical and in-
direct chemical signalling are controlled in ANNs by separate processes. Thus, we
developed the GasNet, a standard ANN augmented by a diffusing virtual gas which
can modulate the response of other neurons.

The ‘electrical’ network underlying the GasNet model is a discrete time-step, re-
current neural network with a variable number of nodes. These nodes are connected
by either excitatory (with a weight of +1) or inhibitory (with a weight of -1) links
with the output,On

i , of nodei at time-stepn described by the following equation:

On
i = tanh

[

kn
i

(

∑
j∈Ci

w ji O
n−1
j + In

i

)

+bi

]

(4.53)

whereCi is the set of nodes with connections to nodei andwji = ±1 is a connection
weight. In

i is the external (sensory) input to nodei at timen, andbi is a genetically set
bias. Each node has a genetically set default transfer function parameter,k0

i , which
can be altered at each time-step according to the concentration of the diffusing ‘gas’
at nodei to givekn

i (as described later in the section on modulation).

4.4.2 Gas diffusion in the networks

In addition to this underlying network in which positive and negative ‘signals’ flow
between units, an abstract process loosely analogous to the diffusion of gaseous mod-
ulators is at play. Some units can emit virtual ‘gases’ which diffuse and are capable
of modulating the behaviour of other units. The networks occupy a 2D space; the
diffusion processes mean that the relative positioning of nodes is crucial to the func-
tioning of the network. The original GasNet diffusion model is controlled by two
genetically specified parameters, namely the radius of influencer and the rate of
build up and decays. Spatially, the gas concentration varies as an inverse expo-
nential of the distance from the emitting node with a spread governed byr, with
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the concentration set to zero for all distances greater thanr (Equation 4.54). The
maximum concentration at the emitting node is 1.0 and the concentration builds up
and decays from this value linearly as defined by Equations (4.55 and 4.56) at a rate
determined bys.

C(d, t) =

{

e−2d/r ×T(t) d < r
0 else

(4.54)

T(t) =

{

H
( t−te

s

)

emitting
H

[

H
( ts−te

s

)

−H
( t−ts

s

)]

not emitting
(4.55)

H(x) =

⎧

⎨

⎩

0 x≤ 0
x 0 < x < 1
1 else

(4.56)

where C(d,t) is the concentration at a distanced from the emitting node at timet.
te is the time at which emission was last turned on,ts is the time at which emission
was last turned off, ands (controlling the slope of the functionT) is genetically
determined for each node. The total concentration at a node is then determined by
summing the contributions from all other emitting nodes (nodes are not affected by
their own concentration, to avoid runaway positive feedback).

A variant on this diffusion model, based on the cortical plexus diffusion described
earlier in this chapter, involves diffusion of a uniform concentration ‘cloud’ centred
on some genetically specified site distant from the emitting node. This reflects the
spatial separation of the main plexus and the body of the controlling neurons. The
cloud suddenly turns ‘on’ or ‘off’, depending on the state of the controlling neuron,
in keeping with the plexus mode of signalling described earlier.

4.4.3 Modulation

In a typical GasNet model [36], each node in the network can have one of three dis-
crete quantities (zero, medium, maximum) of N possible receptors. Each diffusing-
neurotransmitter/receptor pairing gives rise to a separate modulation to the properties
of the node. The strength of a modulation at nodei at timen, ∆Mn

j , is proportional to
the product of the gas concentration at the node,Cn

i and the relevant receptor quantity,
Rj as described by Equation 4.57. Each modulation makes some change to one or
more function parameters of the node. All the variables controlling the process are
again set for each node by an evolutionary search algorithm.

∆Mn
j = ρiC

n
i Rj (4.57)

A number of different receptor linked modulations have been experimented with,
including:

• Action of receptor 1 : increase gain of node transfer function

• Action of receptor 2: decrease gain of node transfer function
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• Action of receptor 3: increase proportion of retained node activation from last
time step

• Action of receptor 4: if above a threshold switch transfer function of node for
sustained period

Most GasNet variants were found to be highly evolvable and capable of the robust
generation of sensorimotor behaviours (often visually guided) in noisy environments
[20, 21]. Indeed, it has been shown that most forms of GasNet are significantly
more evolvable than all other forms of ANN tested over a wide range of continu-
ous sensorimotor tasks. The operation of the networks was often subtle, making
use of intricate dynamics involving continuously shifting modulation patterns [40].
Particular functional modules such as oscillators and low-pass ‘noise’ filters were
frequently discovered and used by the evolutionary process. The inherently flexible,
and generally loose, coupling between two processes with distinct spatial and tempo-
ral properties (the chemical and the electrical) makes these systems highly evolvable
and endowed with a powerful kind of plasticity [36]. Future work will increase the
biological veracity of the networks while maintaining their abstract computationally
tractable nature. They can then be used to illuminate more specific biological ques-
tions than they have to date.

4.5 Conclusions
This chapter has concentrated on the details of how to build computational models
of NO diffusion in the nervous system and has demonstrated how such models can
give important insights into the phenomenon of volume signalling. This kind of
signalling cannot be dealt with in a simple point-to-point connectionist framework;
our tools and concepts for understanding the operation of neuronal circuitry making
use of such signalling must be expanded. The work presented here is intended as a
contribution to that expansion.
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5.1 Introduction
Biological cells are enclosed by a phospholipid bilayer, a few nanometres thick, that
is almost impermeable to water and water soluble molecules. Ion channels are pro-
teins embedded in the membrane that control the movement of ions across the mem-
brane. The channel protein, also a few nanometres wide, is arranged in a roughly
circular array that spans the membrane with a central aqueous pore that can open

© 2004 by Chapman & Hall/CRC



under certain conditions, allowing electrically charged ions to pass through the pore
under the influence of a small electrical potential difference between the intracellular
and extracellular sides of the membrane. Typically, different kinds of channels allow
the passage of different ions, such asNa+, K+, Ca2+ or Cl−. The flow of these
charged ions constitutes a flow of electrical current.

The opening and closing of ion channels is called gating. The major types of gat-
ing mechanism arevoltage gated(where channels respond to changes in the mem-
brane potential) andligand activated(where channels are activated by binding with
molecules of certain chemicals): other types of channel may respond to changes in
temperature or stretching by a mechanical force.

All electrical activity in the nervous system appears to be regulated by ion channel
gating, see for example [2]. Channels play a role in many diverse activities including
thought processes; transmission of nerve signals and their conversion into muscular
contraction; controlling the release of insulin, so regulating the blood glucose level.
Understanding their behaviour increases our understanding of normal physiology
and the effect of drugs and toxins on an organism, especially the human body. It
is therefore an important step towards developing treatments for a wide variety of
medical conditions such as epilepsy, cystic fibrosis, and diabetes, to name but a few.

Measurements of electrical currents that are the superposition of currents through
very large numbers of channels are calledmacroscopic measurements. For example,
in the decay of a miniature endplate current at the neuromuscular junction several
thousand channels are involved, a large enough number to produce a smooth curve
in which the contribution of individual channels is impossible to see. Early exam-
ples include [1, 64, 71]. In this case the time course of the current is often a sim-
ple exponential. Forms of macroscopic measurements include (a) relaxation of the
current following a sudden change in membrane potential (voltage jump), and (b)
relaxation of the current following a sudden change in ligand concentration (concen-
tration jump). In these cases too, it is common to observe that the time course of
the current following the jump can be fitted by an exponential curve, or by the sum
of several exponential curves with different time constants. An example is shown in
Figure 5.1.

If, on the other hand, we record from a fairly small number of ion channels, the
fluctuations about the average behaviour become large enough to measure. Sup-
pose, for example, that there are 400 channels open on average: then the number
of channels open will vary by random fluctuations between about 340 and 460. In
[52, 53, 72] they showed how these fluctuations (or ‘noise’) could be interpreted in
terms of the ion channel mechanism. An elementary discussion is given in [27].

Since the pioneering patch-clamp experiments of Neher and Sakmann [65], the
techniques being further refined by [45], it has become routinely possible to observe
electric currents of a few picoamperes flowing through a single ion channel in a
biological membrane. A great deal of information about how this remarkable feat is
achieved is given in [70]. Apart from noise and some inertia in the recording system,
it soon becomes clear that we are essentially observing the opening and closing of
a pore in the macromolecule that forms the channel. When the channel is open
there is a current of approximately constant amplitude; when the channel closes the
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Figure 5.1

Relaxation after a jump in conditions: a mixture of two or three exponentials.

Figure 5.2

An example of current through a single ion channel

current stops; an example is given in Figure 5.2. Methods of extracting the idealised
open and closed intervals from the noise are discussed in [35]; see also Section 5.6.
There are channels in which there are identifiable sublevels of conductance but in this
chapter we will deal almost exclusively with the common case of just two observable
current levels, corresponding to channel open and channel closed.

The information in a single channel record is contained in the amplitudes of the
openings, the durations of the open and shut periods, and correlations between them.
We use this information to try to identify the nature of the kinetic mechanism of the
channel and to estimate rate parameters governing transitions between the various
states of such a mechanism. In order to do this we need to develop a mathematical
model to describe the operation of any postulated mechanism and then use mathemat-
ical techniques to predict observable behaviour that the mechanism would exhibit. In
this way we can confront theoretical mechanisms with observed data.

In this chapter we give a brief introduction to such models and what can be pre-
dicted from them. Inevitably, we shall need to introduce some mathematics but we
will try to keep this as simple as possible and not go into too much detail.
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5.2 Some basic probability
Activity at the level of individual molecules can be described by probabilistic laws.
We need, therefore, to begin with a few basic ideas about probability. The general
notationProb(A|B) denotes the probability of the eventA conditional on the eventB
having occurred; we talk about the probability of the eventA givenB. We shall need
a couple of simple results from probability theory.

First, the multiplication rule of probability says that for any two eventsA, B the
joint probability

Prob(A and B) = Prob(A)Prob(B|A),

i.e., the probability of one event multiplied by the conditional probability of the other
given the first.

An extension of this is theTotal Probability Theorem, which says that given a
set ofmutually exclusive events, Ai (one of whichmust occur, but only one), the
probability of any other eventB can be written as

Prob(B) = ∑
i

Prob(Ai)Prob(B|Ai)

These simple results can be used to solve a vast number of problems in probability
theory, including most things we need to describe channel behaviour.

5.3 Single channel models
All of the mechanisms that we shall consider suppose that an ion channel consists of
a single macromolecule that can exist in a number of different chemical states, either
by itself or in association with molecules of some specific chemicals. For example,
one or two molecules of an agonist may be attached to a receptor on the channel or a
molecule of a channel blocker, such as a local anaesthetic, may block the pore of an
open channel and prevent the passage of ionic current.

The transition rate between two chemical states always has the dimensions of a
rate or frequency, vizs−1. For a reaction that involves only a single molecule (e.g., a
conformation change) the transition rate is simply thereaction rate constantdefined
by the law of mass action. The same is true of dissociation (unbinding) of a single
molecule of a ligand that is bound to a receptor. For a reaction in which a free ligand
binds to a receptor, the law of mass action states that the transition rate in this case is
the product of therate constantand the free ligand concentration.

The assumption that the transition rates are constant, i.e., they do not change with
time, involves the assumption that the free concentration does not change with time;
this is usually not true in daily life but is often approximately true in well-controlled
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Figure 5.3

CK mechanism.

experiments. Similarly, the channel-shutting rate constant is known to be dependent
on membrane potential (for muscle-type nicotinic receptors), so it will stay constant
only if the membrane potential stays constant (i.e., only as long as we have an effec-
tive voltage clamp).

5.3.1 A three-state mechanism

If a ligand must be bound before the ion channel can open, at least three discrete
states are needed to describe the channel mechanism. The mechanism of Castillo
and Katz [22], the CK mechanism, has two shut states and one open state; this is
usually represented as in Figure 5.3 whereR represents a shut channel,R∗ an open
channel, andA represents the agonist molecule. The states have been numbered
to facilitate later mathematical representation. State 1 is the open state in which an
agonist molecule is bound to a receptor on the channel; in state 2 a molecule is bound
but the channel is shut; in state 3 the channel is shut and its receptor is unoccupied.
The rate constants are shown next to each possible transition.

A single channel makes transitions between its states in a random fashion and the
transition rates will determine the probability distributions that describe the occu-
pancy times of the various states and the states into which the transitions take place.
In the CK mechanism, for example, the shutting rate,α , of an open channel must be
interpreted in a probabilistic way: roughly, we can say that the probability of an open
channel shutting in the next small interval of time∆t, is approximatelyα∆t. More
precisely, we can interpret the transition rate as

α = lim
∆t→0

Prob(channel shut att +∆t| channel open att)/∆t

Thus the transition rate is thought of as the limit of a conditional probability over a
small time interval. Notice that this is supposed to be the same at whatever timet
we start timing our interval, and also to be independent of what has happened earlier,
i.e., it depends only on the present (time t) state of the channel. This is a fundamental
characteristic of our type of random process (a homogeneous Markov process).

More generally, we can define any transition rate in this way. Denote byqi j the
transition rate from statei to statej. Then, for j not equal toi,

qi j = lim
∆t→0

Prob( channel in statej at timet +∆t| channel in statei at timet)/∆t
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Figure 5.4

CK mechanism with four states.

Thus, for small∆t, the conditional probability is given approximately by

Prob( channel in statej at timet +∆t| channel in statei at timet)/∆t ≃ qi j ∆t

It is convenient to defineqii as minus the sum of the transition rates away from state
i: that isqii = −∑k�=i qik. Then the probability of remaining in the same state is

Prob( channel in statei at timet +∆t| channel in statei at timet)
= 1−Prob(moving to some other state)
≃ 1−∑

k�=i

qik∆t = 1+qii ∆t

If there arem states, them×m square matrixQ, whose elements areqi j , is called
the transition rate matrix orQ-matrix. The elements in each of its rows sum to zero.
For example, theQf-matrix for the CK model is

Q =





−α α 0
β −(k−1 +β) k−1

0 k+1xA −k+1xA



 (5.1)

Note that, as discussed above, the transition rate for binding is the product of the
rate constantk+1 and the ligand concentrationxA. Each of the other transition rates
is given simply by the appropriate rate constant.

When the channel leaves statei it moves into statej with probability−qi j /qii .
Thus, for example, when the channel leaves state 2 (shut with a bound molecule) it
opens, with probabilityβ/(k−1 +β), or the bound molecule dissociates, with prob-
ability k−1/(k−1 +β).

5.3.2 A simple channel-block mechanism

Suppose that the open channel in the CK model can be blocked by a molecule of a
blocker substance, whose concentration isxB. The model that had two shut states
and one open state now has an additional shut state, so it can be represented as in
Figure 5.4
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The Q-matrix now becomes

Q =









−(α +k+BxB) α 0 k+BxB

β −(β +k−1) k−1 0
0 k+1xA −k+1xA 0

k−B 0 0 −k−B









(5.2)

Note that the transition rate from open to blocked, like the binding transition, is
given by the product of the rate constant and the drug concentration, this time the
blocker concentrationxB. Now when the channel is observed to be shut we cannot
tell whether it is blocked or closed, although we do know that the proportion of shut
times that are blocked isk+BxB/(α + k+BxB), the probability of leaving state 1 for
state 4 rather than state 2. Moreover, depending on the relative values of some of
the transition rates (for example ifk−B is somewhat greater thanβ), it may be that
short shut times are more likely to be the result of blocking and long shut times more
likely to be the result of shutting, i.e., a sojourn among the pair of shut states(2,3).

5.3.3 A five-state model

We now consider a model, introduced by [29], that has been used by several authors
to describe the nicotinic acetylcholine receptor. In this mechanism there may be one
agonist molecule (A) or two molecules (A2) bound to the shut receptor (R) or the
open receptor (R∗). In the following diagram that represents this model three shut
states(3,4,5) are shown on the bottom row and two open states(1,2) on the top; on
the right two agonist molecules are bound, one in the middle and none on the left. If
it were possible for the channel to open in the absence of bound agonist then there
would be another open state at the top left of the diagram.

Note that the rate constant for binding one molecule when the channel is free is
written as 2k+1 because there are two free receptor sites; similarly, the dissociation
rate constants for the unbinding of one of two occupied receptor sites are written as
2k−2 (for the closed channel) and 2k∗−2 (for the open channel) (seeFigure 5.5).

The transition rate matrix is

Q =












(α1 +k∗+2xA) k∗+2xA 0 α1 0
2k∗−2 −(α2 +2k∗−2) α2 0 0

0 β2 −(β2 +2k−2) 2k−2 0
β1 0 k+2xA −(β1 +k+2xA +k−1) k−1

0 0 0 2k+1xA −2k+1xA













(5.3)
In particular, suppose thatk+1 = 5×107M−1s−1;k+2 = k∗+2 = 10k+1, so that when

one agonist molecule is bound the second receptor site is more likely to bind another
agonist molecule; dissociation rates for the shut conformationk−1 = k−2 = 2000s−1.
Suppose the opening and shutting rates of the singly occupied state areβ1 = 15s−1,
α1 = 3000s−1 while those for the doubly occupied state areβ2 = 15000s−1, α2 =
500s−1: thus the singly occupied state is slow to open and quick to shut, while
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Figure 5.5

A five-state model.

the doubly occupied state opens very much more quickly and closes somewhat more
slowly than the singly occupied state. Take the agonist concentration asxA = 100nM.

There is one more rate constant to fix, the dissociation ratek∗−2 from the doubly
occupied open state. To obtain this we appeal to the principle ofmicroscopic re-
versibility. This states that, in the absence of a source of energy, a system will move
to thermodynamic equilibrium in which each individual reaction will proceed, on
average, at the same rate in each direction. In particular, if there is a cycle in the re-
action, there can be no tendency to move round the cycle in one particular direction.
In the model under consideration the states 1,2,3,4 form a cycle and the assumption
of microscopic reversibility implies that the product of transition rates around the
cycle are the same in both directions, i.e.,k∗+2xAα22k−2β1 = α1k+2xAβ22k∗−2. Then,
with the constants previously defined,k∗−2 = k∗+2(α2/β2)(k−2/k+2)(β1/α1) = 1/3.

With these values the transition rate matrix becomes

Q =





























−3050 50
... 0 3000 0

0.667 −500.667
... 500 0 0

· · · · · · · · · · · ·
... · · · · · · · · · · · · · · · · · ·

0 15000
... −19000 4000 0

15 0
... 50 −2065 2000

0 0
... 0 10 −10





























(5.4)

The reason for partitioning of the above matrix will be explained later. As men-
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tioned before, when the channel leaves state i it moves into state j with probability
−qi j /q− ii . Thus, if we divide the non-diagonal elements of each row of the ma-
trix Q by minus the diagonal element on that row, we get a new matrix whose rows
represent conditional probability distributions of the next state to be entered. The
diagonal elements must be zero.

In this model we get the matrix













0 0.0164 0 0.9836 0
0.0013 0 0.9987 0 0

0 0.7895 0 0.2015 0
0.0073 0 0.0242 0 0.9685

0 0 0 1 0













(5.5)

Thus, for example, a channel in state 4 (AR) has a probability of 0.0073 of opening
(move to state1), probability 0.0242 of binding a second agonist molecule but has a
very high probability of 0.9585 of losing its agonist molecule (move to state 5). In
contrast, a doubly occupied channelA2R (state 3) has a probability of 0.7895 of
opening (move toA2R∗, state 2) rather than losing one of its agonist molecules.

There are many similar models that can be constructed in this way, but the above
will suffice for this chapter. Some models can get quite large: Rothberg and Magleby
[68] have considered a 50-state model for a calcium-activated potassium channel.
Ball [20] has studied a model based on molecular structure that has 128 states of
which 4 are open: by exploiting assumptions of symmetry this effectively reduces to
a model with 3 open states and 69 closed states – still quite big!

Although we shall see that it is possible to eliminate some models for a particular
mechanism on the basis of observable characteristics, a certain amount of indeter-
minacy arises because we cannot see everything that a channel does (we cannot see
which individual state the channel is in, only if it is open or closed). It is possible
that two or more distinct models may give rise to the same observable features under
fixed conditions, see for example [38, 40, 55]. However, further discrimination be-
tween models is possible by observing the same channel under different conditions,
changing voltages or agonist concentration.

5.4 Transition probabilities, macroscopic currents
and noise

In order to predict macroscopic currents and the behaviour of noise measurements,
we first need to study some transition probabilities for a single channel.
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5.4.1 Transition probabilities

Assuming that we know the current state of the system, it is useful to predict the state
that the system might be in at some time t later. LetX(t) denote the state occupied
by the mechanism at timet then, for i, j = 1 to m and t > 0, we define transition
probabilitiespi j (t) by

pi j (t) = P(X(t) = j|X(0) = i)

Then by the total probability theorem, if we consider the situation at timest and
t +∆t,

pi j (t +∆t) = ∑
k

pik(t)Prob(X(t +∆t) = j|X(0) = i andX(t) = k)

But the Markov property implies that the condition in the second factor of this
expression can be replaced by the conditionX(t) = k only (the most recent thing
known) so that we have, approximately,

pi j (t +∆t) = ∑
k�= j

pik(t)qk j∆t + pi j (t){1+q j j ∆t}

Then the derivative

p′i j (t) = lim
∆t→0

{pi j (t +∆t)− pi j (t)}/∆t = ∑
k

pik(t)qk j

or, if the square matrixP(t) has elementspi j (t) we have the matrix differential equa-
tion

P′(t) = P(t)Q (5.6)

which has formal solution

P(t) = exp(Qt), t > 0 (5.7)

The initial value isP(0) = I , an identity matrix, becausepii (0) = 1 as the system
cannot move anywhere in zero time.

So what is the exponential of a matrix? We can define it by a matrix version of the
usual series expansion

exp(Qt) = I +
∞

∑
n=1

tn

n!
Qn

A ‘cookbook’ approach to programming the calculations of this matrix function is
provided in [32] but, theoretically, the nicest result arises from the so-called spectral
expansion of the matrixQ = −∑m

i=1λiA i , whereλi the are the eigenvalues of the
matrix−Q. The spectral matricesA i may be calculated from the eigenvectors ofQ.
The details need not concern us here but the important thing to note is the property
that

A iA j = 0, i �= j; A2
i = A i
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If we substitute the spectral form into the series expansion for the exponential, we
see that

exp(Qt) =
m

∑
i=1

exp(−λit)A i (5.8)

5.4.2 Macroscopic currents and noise

Now let πi(t) = Prob(X(t) = i) be the probability that a channel is in statei at time
t. Then, using once again the total probability theorem and conditioning on the state
occupied at time zero,

πj(t) = ∑
i

πi(0)pi j (t)

which can be expressed in matrix terms as

π(t) = π(0)P(t) (5.9)

whereπ(t) = (π1(t),π2(t), · · · ,πm(t)) is a row vector of occupancy probabilities. In
equilibrium conditions the occupancy probabilities should be constant (independent
of time). To find this, set the derivative ofπ(t) to zero to get

0 = π′(t) = π(0)exp(Qt)Q = π(t)Q

If we omit t, because we now suppose it is independent oft, the row vector,π, of
equilibrium occupancies satisfies

0 = πQ together with∑
i

πi = 1 (5.10)

because the probabilities must sum to one.
Now suppose that the current flowing through a single channel is given bygammai

when the channel is in statei; let the row vectorγT = (γ1,γ2, · · · ,γm). If there is
a large number,N, of similar channels, the macroscopic current can be predicted
asN times the expected current through a single channel: thus, using the spectral
expansion (5.8),

I(t) = N∑
i

πi(t)γi = Nπ(t)γ = Nπ(0)P(t)γ

= Nπ(0)exp(Qt)γ = ∑m
i=1wi exp(−λit)

(5.11)

where the scalar weightwi = Nπ(0)A iγ.
Because the rows of the matrixQ all sum to zero, it follows that one of the eigen-

values, sayλ1, is zero and so the first term in the above expression will be the con-
stantw1. Also, at least for reversible processes, it can be shown that all the other
eigenvalues are real positive numbers.

Some of the transition rates in the matrixQ depend on the agonist concentration
and/or the voltage difference across the membrane; they do so in an explicit manner
for the effect of agonist in agonist gated channels (see, for example, the Q-matrices
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for the three models introduced in Section 5.3). If we observe the macroscopic cur-
rent following a jump in agonist concentration or voltage applied in such a way that
these are held constant at the new values after the jump, then the current relaxes as a
mixture of(m−1) exponential components towards the constant valuew1.

The time constants of these components, the eigenvalues of the matrix−Q, depend
on the values of all of the rate constants that pertain in the conditions following the
jump. They have, in general, no simple physical significance, although in particular
cases they may approximate some physical quantity such as mean open lifetime.
Observation of the current therefore tells us something about the number of states the
channel may occupy: thus, for example, we expect to see 2 components in the CK
model, 3 in the simple channel blocker model and 4 in the 5-state model. However,
it often happens that some components of the mixture correspond to large values of
λ and small values ofw (i.e., very short lived components with very small weight)
so that they may be very difficult to detect in practice. The number of states may
therefore be greater than 1 plus the apparent number of components in the relaxation
observed in experiments.

When we consider the analysis of noise experiments in equilibrium conditions,
similar arguments lead to an expression for the autocovariance function of the current
fluctuations in the form

C(t) = Cov(I(s), I(s+ t)) =
m

∑
i=2

α i exp(−λit)

which is a mixture of exponentials with the same(m−1) time constants as for the
relaxation equations. Details may be found in [28].

5.5 Behaviour of single channels under equilib-
rium conditions

In this section we consider probability distributions that describe the behaviour of
a single channel under equilibrium conditions of constant ligand concentration and
voltage difference.

5.5.1 The duration of stay in an individual state

We are interested in the length of time for which the system stays in a particular
state, for example the single open state in the CK model. Each time the channel
opens the duration of its stay in the open state varies. These durations are random
variables, and we wish to find the probability density function (pdf) that describes
this variability. This is a functionf (t), defined so that the area under the curve up to
a particular time t represents the probability that the duration (or lifetime) is equal to
or less thant. Thus, if we denote a random lifetime byT, the cumulative distribution
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(or distribution function), which is usually denotedF(t), is the probability that a
lifetime does not exceedt: it is given by

F(t) = Prob(T ≤ t) =
∫ t

−∞
f (s)ds

Conversely, the pdf can be found by differentiatingF(t). Thus,

f (t) =
dF
dt

= lim
∆t→0

[F(t +∆t)−F(t)]/∆t

= lim∆t→0[Prob( lifetime is betweent andt +∆t ]/∆t

In order to derive this function it is convenient to introduce the function

R(t) = 1−F(t)

This is just the probability that a lifetime is greater than t, and so it is often called the
survivor functionor thereliability function.

Now, a channel that is open at timet = 0 will remain open throughout the interval
from 0 to t + ∆t if it remains open from 0 to t and then remains open for a further
time ∆t. Thus

R(t +∆t) = Prob(T > t +∆t)
= Prob( open throughout 0 tot)Prob( open att +∆t|open att)
= R(t)(1−Prob( shut att +∆t|open att))

This is an example of the general multiplication rule of probability and also uses the
crucial Markov assumption, discussed earlier, that the conditional probability used
here depends only on the channel being open at time t and not on the behaviour prior
to that time: that is

Prob( open att +∆|open throughout 0 to t) = Prob( open att +∆t|open att)

Then
dR
dt

= lim
∆t→0

R(t +∆t)−R(t)
∆t

= − lim
∆t→0

R(t)Prob(shut att +∆t|open att)/∆t = −αR(t)

As long asα is a constant (not time dependent), the solution of this equation is

R(t) = exp(−α t) (5.12)

becauseR(0) = 1 (i.e., channel cannot move out of the open state in zero time). Then
the cumulative distribution function isF(t) = 1−R(t) = 1−exp(−α t).

The required pdf for the open-channel lifetime is the first derivative of this, i.e.,

f (t) =
dF
dt

= −dR
dt

= α exp(−α t) for t > 0 (5.13)

The density is, of course zero fort < 0.
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state 1 2 3 4 5
mean 0.328ms 1.997ms 52.6µs 0.484 ms 100ms

Table 5.1 Mean lifetimes of sojourns in individual states.

This pdf is described as anexponential distribution, or exponential density, with
mean 1/α . It is a simple exponentially decaying curve. The exponential distribution
has a central role in stochastic processes like the Gaussian distribution has in large
areas of classical statistics.

For any pdf the mean is given by

mean=
∫ ∞

−∞
t f (t)dt

or where, as here,f (t) = 0 for t < 0 the lower limit may be taken as zero. Then

mean=
∫ ∞

0
t f (t)dt (5.14)

which is 1/a in this case.
The above argument concerned the single open state in the CK mechanism. A sim-

ilar argument may be used in general, so lifetimes in theith state of any mechanism
have an exponential distribution

pdf f (t) = −qii exp(qii t); for t > 0

and
mean= −1/qii (5.15)

remember that−qii is the sum of the transition rates away from statei.
In particular, from Equation (5.1), lifetimes of the unbound shut state (state 3) in

the CK mechanism have an exponential distribution with mean 1/k+1xA and life-
times in the occupied shut state (state 2) have an exponential distribution with mean
1/(k−1+β). In the latter case each lifetime will end with a transition into state 3 (by
dissociation of the bound ligand from the receptor) with probabilityk−1/(k−1 + β)
or a transition into state 1 (by a conformation change that results in the channel
opening) with probabilityβ/(k−1 +β).

Similarly, for the 5-state model, the reciprocals of (minus) the diagonal elements
of (5.4) give the mean lifetimes of sojourns in individual states as in Table 5.1.

5.5.2 The distribution of open times and shut times

If there is only one open state, as in the CK model or the simple channel-block model,
the distribution of the duration of open times is just the distribution of sojourns in a
single state. If there is more than one open state then an open time starts when the
channel leaves a shut state for an open state, takes a tour round various open states
and then enters a shut state. For example, in the 5-state model an open time might
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start with a transition from state 4 to state 1, make several transitions back and forth
between states 1 and 2 then end with a transition from state 1 to state 4 or from state
2 to state 3; alternatively, an open time might start with a transition from state 3 to
state 2 then continue in a similar manner to that previously described.

To solve this problem it is convenient to arrange that all the open states be labelled
as states 1,2, · · · mo wheremo is the number of open states; the shut (or closed) states
having the highest numbered labelsmo +1 to mo +mc = m. Then the Q-matrix can
be partitioned in the form

Q =

(

Qoo Qoc

Qco Qcc

)

(5.16)

whereQoo , a square matrix of dimensionmo×mo, contains all the transition rates
between open states;Qcc contains all the transition rates between closed states;Qoc,
Qco contain, respectively, the transition rates from open to closed states and from
closed to open states. These partitions for the 5-state model are shown in Equation
(5.4).

Now let Ro(t) be a matrix function whoseijth element, wherei and j are open
states, is

Prob(X(t) = j and channel open throughout time 0 to t|X(t) = i).

Then, by an argument similar both to that used in deriving the matrix functionP(t)
in Equation (5.7) and that used in deriving the reliabilityR(t) in Equation (5.12), we
can show that

Ro(t) = exp(Qoot) t > 0 (5.17)

To get the reliability function of open times we have to sum over the possible open
states that the channel might be in at time t and also, with a suitable weight function,
sum over the states that an open time might start in: so we get

Ro(t) = Prob( open time> t) = Φoexp(Qoot)uo (5.18)

In this equationuo is a column vector ofmo 1’s andΦo, the row vector of prob-
abilities for the initial state of an open time, is given (in a different notation) by
Colquhoun and Hawkes (in [29], Equation 5.4) as

Φo = πcQco/πcQcouo (5.19)

whereπc is a row vector corresponding to the part of the equilibrium occupancy
vector that deals with the closed states only, i.e., the equilibrium occupancy vector
see Equation (5.10) is partitioned asπ = (πo,πc).

We get the probability density function of open times by differentiating the relia-
bility function

fo(t) = −R′
0(t) = −Φoexp(Qoot)Qoouo (5.20)

Then mean open time is given by

µo = −ΦoQ−1
oo uo (5.21)
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where, as usual, the inverse of a matrix is denoted by raising it to the power -1. The
results for the duration of a sojourn in a single state, Equation (5.15), are obviously
obtained from this whenQoo is replaced by a scalarqii . A very important thing to
notice is that, if we carry out a spectral resolution of the matrix−Qoo, we see that,
like the derivation of the relaxation equation 5.11, the probability density function
fo(t) can be expressed as a mixture of exponential components with time constants
given by themo eigenvalues of−Φoo. Note that, unlike the matrix−Q, it will not
normally have a zero eigenvalue.

Similarly, just by interchangingo andc, we get the probability density of shut
times as

fc(t) = −Φcexp(Qcct)Qccuc

with mean shut time
µc = −ΦcQ−1

cc uc

uc is a column vector ofmc 1’s andΦc a row vector of probabilities for the initial
state of the shut time calculated by an expression like Equation (5.17) with the o and
c interchanged. This can be expressed as a mixture of exponential components with
time constants given by themc eigenvalues of the matrix−Qcc.

So the distributions of open times and shut times tell us something about the num-
bers of open states and shut states, again with the caveat that we might not be able to
distinguish all components from an experimental record.

5.5.3 Joint distributions

Useful information about the structure of a channel mechanism may be obtained by
looking at joint distributions of adjacent intervals: for example, does a long open
interval tend to be followed by a short shut interval or vice versa? The problem can
be approached by defining a transition density matrixGoc(to) which has dimension
mo×mc and whoseijth element is a joint probability/probability density for the du-
ration of an open time,To, and the shut state that the system moves to when the open
time ends, all conditional on starting in theith open state: i.e.,

gi j (to) = lim
∆to→0

Prob(to ≤ To ≤ to +∆to and enterjth closed state

| starting inith open state)

This is given simply by

Goc(to) = Ro(to)Qoc = exp(Qoot)Qoc (5.22)

If we are only interested in the shut state that is entered at the end of the open
time, and not the duration of the open time, we can integrate the above expression
with respect toto to obtain a transition probability matrix

Goc =
∫ ∞

0
Goc(to)dto = −Q−1

oo Qoc (5.23)
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The joint probability density of an open timeTo and the immediately following shut
time Tc is given by

ΦoGoc(to)Gco(tc)uc (5.24)

Similar results may be obtained for any pair of intervals, for example two successive
open times (separated by a single shut time) have joint probability density

ΦoGoc(to1)GcoGoc(to2)uc

See [34] for examples of detailed study of such joint distributions.
The value of looking at joint distributions to distinguish between mechanisms was

demonstrated practically by McManus et al. [21, 58, 59, 60].
We can also use these matrices to build up a likelihood for a complete sequence

of open times and shut times: if there areM pairs of open and following shut times
(t j ,sj ) this takes the form

Φo

M

∏
j=1

[exp(Qoot j)Qocexp(Qccsj)Qco]u (5.25)

This can be maximised to estimate the parameters of a given model and to test the
fit of a model to data – see [17, 38, 49] for details. Using all the information in
this way removes some identifiability problems that can occur when using marginal
distributions only, see [37], although some identifiability problems may remain.

5.5.4 Correlations between intervals

One way of studying these joint distributions is to look at correlations between the
durations of adjacent intervals. The Markov assumption implies that if the system is
in a specified state at time t, the future evolution of the system is independent of what
happened before time t. The lifetimes of sojourns in individual states are therefore
independent of each other. Correlations between open times or shut times can occur,
however, if there are at least two open states and two shut states. It can be shown that
the correlation between the duration of an open time and the nth subsequent open
time has the form

ρn = ∑wiλ n
i

where the number of terms in the summation isV −1. Theλi are those eigenvalues
of GocGco that are neither zero nor one. Similar results hold for correlations between
the durations of shut times and between shut times and open times.

V is known as the (vertex) connectivity of the mechanism and is a measure of the
extent to which the set of open states and the set of shut states are connected to each
other: it is defined as the smallest number of states that need to be removed (together
with any links that they have) in order to separate the set of open states and the set
of shut states. We can do this in both the CK model and the simple channel block by
removing just one state (either state 1 or state 2), soV = 1 and all durations of open
times and shut times are uncorrelated, indeed they are mutually independent.
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Figure 5.6

An example showing four bursts of openings containing brief shuttings and separated
by longer gaps between bursts.

In the 5-state model we need to remove at least two states to separate the open and
shut states: we could remove any of the pairs(1,2),(3,4),(1,3) or (2,4). SoV = 2
and correlations would die away with lagn as a single geometric term.

Correlations between intervals are useful in telling us something about the con-
nectivity between open and shut states.

The results on correlations were given by Fredkin et al. [38] and were extended
by Colquhoun and Hawkes [30], Ball and Sansom [16], Ball et al. [7], Ball and Rice
[13] among others.

Colquhoun and Hawkes [30] also studied the distribution of openings and shut-
tings after a jump in agonist concentration or voltage. The first latency (time to first
opening) has a different distribution to subsequent shut time durations. IfV > 1
there continue to be differences among the subsequent durations of both open and
shut times; ifV = 1, however, all open time durations have the same distribution
(no matter if it is the first, second etc. opening after the jump) while all shut times
apart from the first latency have the same distribution. This happens because of the
independence of the various intervals.

Results on the distribution of openings and shuttings as a result of a finite pulse,
rather than a single jump, were discussed in [33].

5.5.5 Bursting behaviour

It is usually the case that openings seem to occur in bursts of activity: a sequence of
openings will be interspersed with brief shuttings and then there will be a long shut
period before the activity starts again. This behaviour can often be largely explained
by dividing the shut states into two categories: short-lived shut states and long-lived
shut states. For example, in the simple channel blocker, if the rate constantk−B is
large then the duration of a stay in the blocked state will be very short and a burst
of openings will most likely consist of oscillations between the open and blocked
states. An example of bursting behaviour is shown inFigure 5.6.

Considering the 5-state model as another example, we see that the mean duration
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of a stay in state 5, the unbound state, is very much longer than that in any other state
(see Table 5.1). Then shut times (gaps) within bursts of openings are almost certainly
sojourns within the pair of shut states (3,4); gaps between bursts will consist of any
sojourn within the shut states that includes at least one visit to state 5. Colquhoun
and Hawkes [29] provide a detailed treatment of bursting behaviour in general and
the 5-state model in particular. For this particular case the distribution of gaps within
bursts is a mixture of two exponentials (because there are two short-lived shut states)
with a mean of 57.6µs whereas the distribution of gaps between bursts is more
complex and has a mean duration of 3790ms.

Actually the information concerning gaps between bursts is rather dubious because
it is possible that there is more than one channel in the recording environment so
that, while the activity within a burst of openings almost certainly arises from one
channel, different bursts may arise from different channels, making the mean inter-
burst gap shorter than it should be. This is one reason why it is of interest to study the
behaviour of bursts, as the information arising from within a burst should be fairly
reliable. In addition, burst behaviour provides evidence about the finer structure of
the underlying process.

Other distributions derived include those for:

• The number of openings per burst (a mixture of 2 geometric distributions with
mean 3.82);

• The duration of a burst (a mixture of 4 exponentials with mean of 7.33ms);

• The total open time per burst (a mixture of 2 exponentials with a mean of
7.17ms);

• The distribution of individual openings within a burst (the first, second etc.).

Some results for the 5-state model are shown in parentheses.
If we have data from a channel that really comes from a 5-state model it should

be possible to infer from the empirical distributions discussed above that there are at
least two open states, at least two short-lived shut states and at least one long-lived
shut state.

Methods for studying empirically whether bursting activity takes place are given
by Ball and Sansom [14], Ball and Davies [6] and Ball [3].

5.6 Time interval omission
One big problem in observing single channel records is that, because of noise and
inertia in the recording system, very short events, openings or shuttings, are likely
to be missed. One can see that this is to be expected by looking at the examples in
Figure 5.6andFigure 5.7.The results then get distorted because, for example, what
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appears to be one long open time may actually be two or three open times separated
by shut times that are too short to be distinguished. This is known as the problem
of time interval omission (TIO). One way of coping with this problem is to study
the total burst length or the total open time per burst, as these should not be very
sensitive to missing short shut times.

In order to take account of missed events when dealing with the individual open-
ings and shuttings it has been the custom to assume that there is a critical constant
dead-time,ξ , such that all open times or shut times greater than this are observed ac-
curately but times less than this are missed (note that a safeξ value can be imposed
retrospectively on recorded data). We then work withapparent open timesdefined
as periods that start with an open time of duration greater thanξ which may then be
extended by a number of openings separated by shut periods each of duration less
thanξ ; they are terminated at the start of a shut period of duration greater thanξ .
Apparent shut times may be similarly defined.

A number of people presented approximate solutions for the distributions of ap-
parent open times and apparent shut times before Ball and Sansom [15, 16] obtained
exact results in the form of Laplace Transforms and also considered the effect of
TIO on correlations between interval durations. Exact expressions for the probabil-
ity density function of apparent open times and shut times were found by Hawkes et
al. [46]. These are fine for small to moderate values of time t, but when trying to
compute them they tend to be numerically unstable for larget. These results were
also studied by Ball, Milne and Yeo [9, 10] in a general semi-Markov framework. In
a series of papers, Hawkes et al. [46] and Jalali and Hawkes [50, 51] obtained asymp-
totic approximations that are extremely accurate for values oft from very large right
down to fairly small; for smallt the exact results are readily obtainable, so that the
distributions are obtained over the whole range. Ball [3] studied these approxima-
tions further and showed mathematically why they are so very good. It is interesting
to note that, if the true distribution is a mixture ofk exponentials, then the approxi-
mation to the distribution of apparent times allowing for TIO is also a mixture ofk
exponentials: the time constants are, however, different.

These methods were subsequently applied by Colquhoun et al. [34] to study the
effect of TIO on joint distributions of apparent open and shut times. They also used it
to calculate the likelihood of a complete series of intervals and used this to estimate
the parameters of any postulated mechanism - thus generalising the work of Ball and
Sansom [17], who used similar methods for the ideal non-TIO case. For a given
model, TIO can induce some indeterminacy in the process of estimating parameters.
For data recorded under fixed conditions there can be two sets of parameters that
seem to fit the data about equally well: typically afast solutionand aslow solution.
A simple example is given by Colquhoun and Sigworth [35]. These can, however, be
discriminated by observing the same channel under different conditions of voltage
and/or ligand concentration, see [5, 20, 75].

Colquhoun et al. [33] and Merlushkin and Hawkes [62] studied the TIO problem
in the context of recording apparent open and shut intervals elicited by a pulse of
agonist concentration or voltage change.
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5.7 Some miscellaneous topics

We conclude with a few topics that should be mentioned briefly but which are too
advanced to be considered in detail in this introductory chapter.

5.7.1 Multiple levels

Almost all of the foregoing refers only to channels that are open or closed. Quite
a few channels, however, show two or more different levels of current, presumably
corresponding to different states of the mechanism. Examples are given in [44] and
[73], the latter showing a channel with four conductance levels in addition to the shut
states.

It is perfectly possible to ignore this and just analyse the system as open or closed,
but this loses information. Li et al. [57] obtained some theoretical results for a
chloride channel with two conductance levels (corresponding to one state each) and
four shut states, of which one was short-lived. Ball, Milne and Yeo [12] give a gen-
eral treatment of a multilevel system in which they derive burst properties including
distributions of total charge transfer, and total sojourn time and number of visits to
each conductance level during a burst. Building on unpublished work of Jalali, Mer-
lushkin [61] has studied various apparent sojourn distributions allowing for TIO in
the multilevel case.

Multiple levels sometimes arise from the presence of more than one channel: if so,
they are usually treated as acting independently. However, Ball et al. [8], Ball and
Yeo [19] and Ball, Milne and Yeo [11] introduced models for systems of interacting
channels.

5.7.2 Hidden Markov Methods of analysis

A number of authors have applied signal processing methods, met in other areas such
as speech processing, to the original noisy signals obtained from patch clamp exper-
iments. These Bayesian or Hidden Markov methods have been used to extract the
ideal step-function signals (representing opening and shutting) from the noise: in this
task they work reasonably well at low signal to noise ratios where threshold methods
work poorly. They are also used to estimate parameters in the models directly with-
out identifying the individual open times and shut times. These techniques can cope
with multilevel records as well as simply open/shut as illustrated inFigure 5.7.

Notable contributions in this area include [22, 25, 26, 36, 41, 42, 43, 54, 56, 63,
66, 67]. Venkataramanan and Sigworth [74] introduced a method of dealing with the
problem of baseline drift that can badly affect application of this method. Markov
Chain Monte Carlo (MCMC) methods of Bayesian analysis were applied by Ball et
al. [4] and Hodgson [48].
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Figure 5.7

(A) shows a simulation of an ideal record from a mechanism with 4 conductance
levels (B) shows the record with added noise (C) shows the signal recovered from
the noise by HMM techniques - compared with the original it is remarkably good,
missing just 4 very brief events.
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6.1 Introduction

The trajectory of the membrane potential in a cortical neuron is very noisy. The se-
quence of events which generate this variability is summarized inFigure 6.1.Unlike
the input of a sensory receptor, that of a cortical cell is complex and not completely
controllable, or even knowable, in experiments. The process of generating the mem-
brane potential signal begins with a set of effectively stochastic presynaptic action
potential trains converging on some 104 synaptic terminals, distributed over the den-
dritic tree of the neuron. Each of these spike trains drives a highly unreliable and
stochastic process of transmitter release at each terminal. The released transmitter
then opens ion channels whose opening and closing behaves exactly like a stochas-
tic (Markov) process, as described in detail in the chapter by Alan Hawkes. As the
membrane potential then changes, other Markovian ion channels whose transition
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1. Irregular presynaptic
spike trains

2. Unreliable transmitter
release

3. Stochastic ion
channel gating

4. Fluctuating V(t)

Figure 6.1

A summary of the noise sources contributing to the fluctuating membrane potential
of cortical neurons.

rates are highly voltage-dependent, open and close, generating postsynaptic action
potentials. The dynamics of synaptic integration are thus nonlinear, because of this
voltage-dependence, and are permeated with noise at each stage. In this chapter, I
will focus on the steps in the production of the noisy membrane potential which oc-
cur at the level of the single neuron, i.e., steps 2 through 4 in Figure 6.1. For a review
of ideas about step 1, see the chapter by Salinas and Sejnowski in this volume.

The biophysical mechanisms involved are central to understanding the reliability
of synaptic integration, and hence the strategies used to transmit and transform neural
information. What is encoded by the times at which spikes occur? The precision or
reliability of responses of individual cells is responsible for the degree ofsynchrony
in a connected population of neurons. How precise and how stable can coherent
firing amongst cells be? Does dynamical behaviour resulting from the interaction of
noise and nonlinearity, such as stochastic or coherence resonance [21], play a role in
cortical information processing? Being able to answer such questions will depend
on an understanding of the biophysics of firing variability.

6.2 Typical input is correlated and irregular
Because of the difficulty of recording from large numbers of neurons simultaneously
across the cortex, much of what we know about the synaptic input to cortical cells
is inferred from the firing of single cells. Firing patterns in the functioning cor-
tex are themselves highly variable. In some situations, firing resembles a Poisson
process, with an exponential distribution of interspike intervals [8, 12, 31]. Burst
firing is evident [39], and there is evidence for weakly periodic firing during certain
states of consciousness or sensory stimulation [54, 58]. Overall firing variability is
characterised by measures such as the coefficient of variation of interspike intervals,
CV(ISI), the ratio between the standard deviation and the mean of interspike inter-
vals. CV(ISI) can be high – higher than the value (1) expected for a Poisson point
process, a completely random point process of uniform rate.
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The input collected from individual presynaptic neurons is small, with unitary ex-
citatory postsynaptic potentials (EPSPs) typically less than a millivolt at the soma.
Assuming that such inputs converge asindependentstochastic point processes, mod-
elling has suggested that with the number required to fire the postsynaptic cell, the
total input would actually be smooth enough that the firing of the postsynaptic cell
would be far more regular than is actually observed [56]. Some increase in firing
variability might be generated by balanced independent excitation and inhibition
[52]. However, it appears (as one might expect from the high local connectivity
in the cortex) that a major factor in high firing variability is the quite synchronous,
correlated firing of local presynaptic neurons. It is not correct to assume that in-
puts are independent. Large transients of local population activity i.e., synchronous
network firing events, are observed during sensory responses ([2, 5, 7, 64]). Fur-
thermore, experiments in which single cells are stimulated with current [60] or more
naturally, conductance stimuli [1, 27] constructed from elementary synaptic events,
show that it is necessary to group these in correlated bursts to generate the required
level of postsynaptic firing variability. This conclusion is supported by modelling
studies, e.g., [17]. A full discussion of the structure of local population activity in
the cortical network is outside the scope of this chapter. For the present purpose, it is
enough to observe that cellstypically fire in response to strong fluctuations in input,
produced by correlated activity in the surrounding network. The high variability of
interspike intervals results from the irregularity of the times of these synchronous
firing events, and the contrast between shortintraburst and longinterburst spike in-
tervals. The onset of a strong input fluctuation essentially resets the coherence of
spike timing. Later in this chapter, therefore, I will focus on the transient response
to a single input fluctuation, as a distinct unit of activity.

6.3 Synaptic unreliability

Cortical excitatory synapses are highly noisy. In the experiment shown inFigure 6.2,
five closely-spaced action potentials followed by a single delayed one, are delivered
to a presynaptic pyramidal cell, and the EPSP responses are recorded in a postsy-
naptic cell. Although a depressing trend is evident in the ensemble average (bottom
trace), the responses from spike to spike, and from trial to trial, are seen to be highly
variable in amplitude. There are numerous failures to release transmitter in response
to presynaptic action potentials, although estimates of the overall probability of re-
lease vary greatly [13, 23, 26].

The distribution of amplitudes of response at a given synapse is wide – when
responses to single presynaptic APs, separated by at least several seconds, are mea-
sured, there is evidence for a quantal or multimodal distribution of amplitudes [16].
However, whatever this distribution of amplitudes is, it is not uniform in time during
a sequence of synaptic responses. For example, immediately following a release,
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5mV

2mV

500ms

Figure 6.2

An ensemble measurement of EPSPs in a layer 2/3 pyramidal neuron. Top 6 traces:
individual trials. Red trace, ensemble average. Dotted lines indicate times at which
presynaptic neuron is stimulated. Recording by Ingo Kleppe, Dept. of Physiology,
University of Cambridge. (See color insert.)

there is an increased probability of failure, and vice versa [59]. In other words, there
are significant correlations over time in thevariability at individual synapses, as in-
deed there are in the mean synaptic response. These have been shown to extend
over surprisingly long time scales, of several minutes or more during natural-like
spike trains [35]. Further understanding of the variability or reliability of individual
synapses over time during complex, natural input, is an important goal. One might
think that the effect of synaptic fluctuations will beaveraged awaybecause there are
large numbers of synapses per cell. However even if many inputs are active, only
one completes the job of taking the voltage over threshold. As will be discussed fur-
ther below, the nonlinear threshold behaviour of neurons means that the properties
of essentiallyany input fluctuations, however small, can determine the firing pattern
of the cell – it all depends on the proximity of the spike generation mechanism to its
threshold.

© 2004 by Chapman & Hall/CRC



6.4 Postsynaptic ion channel noise
The variability introduced by ion channel gating in the postsynaptic cell is rather bet-
ter understood than synaptic unreliability (see chapter by Hawkes). Single-channel
recording has shown in great detail how single ion channels operate as probabilistic
machines, or Markov processes with a reasonably small number of discrete states,
corresponding to distinct conformations of the ion channel protein [29]. Single chan-
nel properties of ion channels – their conductance and average opening duration –
were first estimated, before the advent of the gigaohm-seal patch-clamp, by analysing
the current or voltage noise produced by channel gating. The properties of this noise
have therefore been well characterised and extensively measured [11]. The effects of
ion channel gating noise in neurons have recently been reviewed in [66].

If channels in an identical population of sizeN are independent, and have a single
conducting current leveli then at steady-state, then the population current variance
σ2 = iI − I2/N, whereI is the mean population or macroscopic current. The size of
fluctuations therefore scales with the square root of the size of the population cur-
rent, for small open channel probability. For large numbers of channels, the noise
amplitude is distributed normally. How big are the populations of channels? This
question is complicated by the fact that they are distributed over large electrical dis-
tances within the cell. It is thelocal population of channels, in particular around any
site of AP initiation, which is relevant. The density of sodium channels in layer 5
pyramidal neurons appears to be fairly uniform in the soma and dendrites, at around
several channels per square micrometre, but is probably much higher in the proximal
axon, where it is thought that many action potentials initiate [61]. Both calcium and
sodium action potentials can, however, be initiated in the remote dendrites. There
are several types of potassium channels, the density of which tapers off with dis-
tance from the soma in pyramidal neurons [36], but is probably in the region of 0.1
to 1 channels per square micrometer. Less is known about the density of functional
calcium channels in cortical pyramidal neurons, but in hippocampal pyramidal neu-
rons densities of 1 to 10 channels per square micrometer of high and low voltage
activated calcium channels [40]. The noise from persistent Na channels, because of
their maintained activation around threshold, appears to be particularly important in
controlling firing patterns in entorhinal cortical cells [65]. However, it is important
to realise that the population of open channels is in general much smaller than the
total. Channel noise becomes most powerful in its effects when only a very small
proportion of channels are open [51]. This is because the size of fluctuations relative
to the mean conductance is highest under these conditions.

Another important quantity in determining the variance of channel noise is the
size of the single channel conductance. Amongst voltage-gated channels, this varies
from a few pS for a low voltage-activated calcium channel to about 200 pS for a maxi
calcium-activated potassium channel. At the excitatory synapse, the AMPA receptor
has a single channel conductance of around 10 pS [63], while the NMDA receptor
has a conductance of 35 to 50 pS [47].
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Figure 6.3

Spectrum of NMDA receptor current noise at a single synapse. The spectrum follows
a sum of two Lorentzian components, with corner frequencies of 25 Hz and 110 Hz.
From [47] with permission.

Equally important, though, is thetiming, or frequency distribution of the fluc-
tuations. The membrane time “constant” (which is actually dynamically-varying)
determines the low-pass filtering of the input signal. Low frequencies in the noise
e.g. below 100 Hz are much more effective in distorting the membrane potential
than higher frequency fluctuations. Under stationary conditions, channel noise is
essentially a linear stochastic process: its autocorrelation function (or equivalently
power spectrum) contains all the information available to predict its time course. The
autocorrelation function is a sum of exponential components whose rates are given
by the eigenvalues of the kinetic matrix (see chapter by Hawkes). Correspondingly,
the power spectrum is a sum of Lorentzian components. Almost always, though,
for actual channels, the power of one or two of these components is dominant. For
example,Figure 6.3shows the noise through NMDA receptor channels at a single
synapse [47]. The power of the lower frequency component is more than ten times
that of the higher frequency component.

Roughly speaking, this first component corresponds to the correlation due to the
mean open lifetime of channels or predominant burst lifetime. For purposes of mod-
elling the function of this noise, therefore, it is often enough to consider a single
exponentially-correlated process. A continuous stochastic process which has an ex-
ponential autocorrelation, with amplitudeσ and correlation time constantτ , is the
Ornstein-Uhlenbeck (OU) process [18, 24],ξ (t), which can be generated by numer-
ically solving:

τ
dξ
dt

=
−ξ
τ

+c1/2gw(t) (6.1)
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wheregw(t) is Gaussian white noise, and the standard deviation ofξ is
√

cτ/2, and
c is a constant.

This generates stationary noise. However, real channel noise is usually not sta-
tionary: for example, transmitter-activated channels have transition rates which de-
pend on the changing transmitter concentration, and voltage-activated channels have
voltage-dependent transition rates. To account for such nonstationarity with high
accuracy, it is necessary to use stochastic simulations of populations of channels,
modelling the state transitions of all channels in each population [9, 55]. One may
also use an OU process which is nonstationary inσ andτ to approximate the stochas-
tic Hodgkin-Huxley system [19]. However, since as described later, a great deal of
spike-time variance is generated by noise in a limited band of membrane potential –
around threshold – then a stationary OU noise source or sources may be a reasonably
accurate yet simple model for predicting firing variability. An OU process is also a
good model for synaptic noise, composed of large numbers of small, identical EPSPs
or IPSPs which have a fast onset and decay exponentially and whose arrival times
are a Poisson process [1].

6.5 Integration of a transient input by cortical neu-
rons

Cortical neurons fire in response to fast-fluctuating stimuli with much more precision
(i.e., with reproducibly-timed action potentials in an ensemble of identical trials),
than in response to constant stimuli [41]. In cortical neurons, precision has been
found to improve as the frequency of sinusoidal stimulation is increased up to about
25 Hz [44]. InAplysianeurons, it has been demonstrated that the precision depends
on the presence of frequencies close to the preferred firing frequency of the cell at the
mean level of current [32], an effect which is probably general to many neurons. It
is clear that in an ensemble of responses to a complex fluctuating stimulus, astrong
fluctuation forces coherence across trials by compelling the cell to spike, putting it in
a particular dynamical state within a tightly-delimited interval of time. Most of the
influence of the preceding history is lost. This is because voltage-gated channels are
forced into an activated dynamical state, and the temporarily high conductance of the
neuronal membrane allows a high rate of dissipation, or leak of charge stored on the
membrane capacitance. In this section, I will discuss the variability of response of a
cortical neuron during a single large input fluctuation, from the moment of complete
coherence at the beginning of the fluctuation, until the input has decayed sufficiently
that the cell is silent. This discussion is based on [48].

Figure 6.4shows the response of a pyramidal cell to a burst of excitatory synaptic
conductance, an exponentially-decaying transient in the rate of arrival of excitatory
synaptic conductances. The conductance stimulus is delivered using the technique of
conductance injection, or dynamic clamp [49, 53]. This technique is ideal for inves-
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Figure 6.4

Spike time variability in responses of a layer V pyramidal neuron to a natural-like
burst conductance input. (A) An example membrane potential response to a burst
conductance input at the soma. (B) Conductance input consisting of a train of uni-
tary AMPA+NMDA conductance transients, generated by a nonstationary Poisson
process with an exponentially declining rate. Initial peak rate was 2500 Hz, time
constant was 500 ms. Total number of unitary input events was 1222. AMPA (thin
trace) and NMDA (thick trace) conductance components are shown separately. The
NMDA input is subject to a further voltage-dependent block (seeFigure 6.8). (C)
Raster display of 32 trials with the same stimulus. From [48] with permission.
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Figure 6.5

Spike time variance plots for 2 types of cortical neuron. (A) a regular-spiking (ex-
citatory, pyramidal) neuron, stimulated by a ramp current decaying from 500 pA to
0 in 3 s. (B) another regular-spiking neuron, stimulated by a ramp current decaying
from 500 pA to 0 in 4.5 s. (C) a fast-spiking (inhibitory, basket) neuron, stimulated
by a ramp current decaying from 400 pA to 0 in 4 s. (D) a regular-spiking neuron
stimulated by a steady current of 100 pA. From [48] with permission.

tigating the variability of neuronal integration, because unlike natural synaptic input,
it can be delivered precisely and repeatedly to the neuron, yet is electrically realis-
tic. The excitatory input shown here has two fractions, due to AMPA and NMDA
glutamate receptors, each of which are activated during every unitary synaptic event.
Because of the intrinsic differences in the receptor kinetics, NMDA receptor con-
ductance outlasts the much more rapid AMPA conductance. However, the amount of
NMDA conductance injected is voltage-dependent, and is sharply reduced by depo-
larization (see Section 6.7). In the experiment inFigure 6.4,the jitter of spike times
is at first low, but towards the end of the response rises very rapidly, so that the final
spike is scattered over some 100 ms. What is going on here? This will be the focus
of the rest of the chapter.

Within a burst response like this, progressive accumulation of spike time variance
is opposed by the regrouping effect of the fluctuations in the stimulus. While there
is some correlation of each spike time with the previous spike time in the same re-
sponse, there is also some tendency for spikes to be driven by particular fluctuations.
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To remove the latter effect, we can instead deliver smoothly decaying ramps of cur-
rent. The variance of the time of occurrence of spikei is determined as:

vi =
1
Ni

∑
j,n j≥i

(ti j − t̄i)
2 (6.2)

whereti j is the time of spikei in responsej, Ni is the number of responses withi or
more spikes,n j is the total number of spikes in responsej, andt̄i is the mean time
of spikei. The slope of this quantity with time is the rate of generation of spike time
variance.

Figure 6.5A-Cshows, in several different cells, that the accumulating variance
goes through two phases as the stimulus decays, a low-variance stage, and a high-
variance stage. The variance in the late stage begins to approach that of a Poisson
process - that is the increment in variance per spike approaches the square of the
mean spike interval. In contrast, with a steady plateau stimulus, there is, apart from
slight initial adaptation, a steady rate of variance generation.

6.6 Noisy spike generation dynamics
What is the biophysical basis of these two stages of variance generation? Although
we know that there are many different voltage-gated channels which activate and
deactivate over different timescales in cortical neurons [42], many of these are at
much slower time scales than the spike. Initiation of axonally-propagated spikes is
dominated by populations of fast Na channels and fast K channels, in a restricted
site in the neuron, around the soma and initial segment of the axon [57]. The qual-
itative features of this two-stage behaviour are displayed by a model as simple as
an isopotential patch of membrane with stochastically-simulated Na and K channels
whose states and transition rates are derived from the deterministic Hodgkin-Huxley
model (for details of the model, see [9]). In this model, voltage-dependent proba-
bilistic transitions between channel states are simulated explicitly, and the level of
voltage noise increases as the area of membrane (and therefore number of channels)
is reduced. At four different membrane areas, the two stages of rising spike time
variance are clearly seen in response to the same decaying ramp of current density
(Figure 6.6).

An essential difference between the two stages of rising variance is now seen:
the gradient of the early stage is highly sensitive to the noise level, increasing in
inverse proportion to membrane area, while that of the late, high variance stage is
almost independent of membrane area. Mean firing frequency decays only slightly
during the burst. The point of transition between low and high variance stages is also
sensitive to the noise level. Perhaps surprisingly, the higher the membrane area (i.e.
the lower the noise level), theearlier the transition. This effect leads to a crossover
of the relationships at about 270 ms (indicated by an arrow).

© 2004 by Chapman & Hall/CRC



Spike time (ms)

V
a
ri
a
n
c
e

(m
s

)
2

200

400

600

800

1000

0
0

100 200 300 400 500

50 m� 2

100 m� 2

200 m� 2

500 m� 2

Figure 6.6

Spike time variance plots for stochastically-simulated Hodgkin-Huxley membrane.
Areas of membrane are indicated by symbol. The stimulus current density decayed
linearly from 50 mA/cm2 to 0 over 0-500 ms. Channel density 60 Na channels/µm2,
18 K channels/µm2, capacitance 1µF/cm2. The point of crossover is indicated by
an arrow (see text). Modified from [48].

To gain further insight, it is useful to reduce the Hodgkin-Huxley equations from
a 4-variable model (m, h, n, andV) to a 2-variable model, and to specify separate
terms for the noise and the dynamics, i.e. to use a Langevin equation. Well-known
2-variable spiking models are the FitzHugh-Nagumo (FHN) model and the Morrris-
Lecar models (ML1 and ML2). These both have a fast variable (V) reflecting both
voltage and sodium channel activation, which vary together, and a slow variable
(W) reflecting inactivation and potassium channel activation [22]. O-U noiseξ (t) is
added to the derivative ofV, which is also a function of the stimulus current I:

V̇ = F(V,W, I)+ ξ (t) (6.3)

Ẇ = G(V,W) (6.4)

Studying the trajectory of these variables under the influence of noise at different
levels of background current reveals the different nature of the two stages of variance
(Figure 6.7).At high stimulus values(at mean stimulus values well above the thresh-
old or bifurcation point for repetitive firing), i.e. early in the transient response, the
vector field defined by the nonlinear functionF and the linear or nonlinear function
G is such that motion is consistently fast, following a limit cycle, whoseposition
in phase space, rather than essential shape, is perturbed by the noise. At low mean
stimulus values, well below threshold, spiking still occurs, as a result of the noise,
but the quality of the motion is quite different – there is a slow, thoroughly random

© 2004 by Chapman & Hall/CRC



−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−1

−0.5

0

0.5

1

1.5

2

V

W

Figure 6.7

Phase trajectory of the variables in the FitzHugh-Nagumo model at two different
(steady) stimulus levels: 0.5 (thin, black) and 0.15 (thick, gray) with Ornstein-
Uhlenbeck noise,σ=0.075,τ=1. See [48] for details of the FHN model.
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walk around the stable fixed point (corresponding to the resting potential) punctu-
ated by occasional excursions around the excited spike trajectory. The generation of
spikes under this condition can be described by Kramer’s formula for thermal motion
escaping from an energy well [9, 38] – because there is essentially a constant escape
probability at each instant of time, then spiking occurs as a Poisson process.

Thus, in the response of a cortical neuron to a single decaying transient there is, at
a certain point, a switch from low variability to high variability, from fast motion to
slow motion, from a uniformly perturbed limit cycle to occasional escapes from an
attractive basin. The trajectory of slow motion is much more sensitive to noise than
is the fast motion. This difference also explains the phenomenon of coherence res-
onance, or autonomous stochastic resonance, in which an excitable set of equations
such as the FHN model goes through a maximum in minimum CV(ISI) at a certain
amplitude of driving noise [45, 46].

6.7 Dynamics of NMDA receptors
Another important factor in firing variability is the nature and timing of the unitary
synaptic conductance, in particular of its NMDA receptor-mediated component. As
mentioned above, excitatory synapses between cortical cells have a large NMDA
receptor-mediated fraction of conductance [28, 34], which has two distinctive fea-
tures. It is much slower in its time course than the AMPA-receptor-mediated phase
(Figure 6.8B),and the conductance is highly voltage-dependent, as a result of block
by extracellular magnesium ions [3]. At hyperpolarized potentials, the channel is
blocked but it unblocks rapidly as the membrane potential rises. The NMDA re-
ceptor conductance is believed to cause a large amount of the variability of spikes
within synaptically-driven bursts, because stimulating cortical neurons with conduc-
tance injection indicates that activation of the NMDA receptor conductance at the
synapse can roughly double the jitter of spikes [27].

Figure 6.8Aanalyses the effect of NMDA receptor input using a Morris-Lecar
class 1 model (see [48] for details), perturbed by stationary OU noise. The relation-
ship between CV(ISI) and firing frequency is plotted when the model is stimulated
by a constant level of AMPA or NMDA activation. In this case, the only differ-
ence between the two mechanisms lies in the voltage-dependent nonlinearity of the
NMDA conductance. This is seen to reduce variability above a firing frequency of
about 10 Hz. This seems to happen because the nonlinearity lowers the threshold for
fast motion.

What about the effect of the slow kinetics of the NMDA phase in natural synaptic
input? Figure 6.8Cshows that when stimulating the Morris-Lecar model with a
Poisson train of unitary excitatory postsynaptic conductance transients, increasing
the NMDA content of unitaries has a very powerful effect on variability, increasing
it greatly. This is essentially because the input varies more slowly as its NMDA
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Figure 6.8

Effects of NMDA receptors on firing variability in the Morris-Lecar class
1 (ML1) model. (A) Relationship between CV(ISI) and firing frequency
with variation in the level of NMDA or AMPA receptor activation. (B)
Dependence of CV(ISI) (indicated by gray level) and firing frequency on
EPSP rate and the proportion of NMDA receptor input. Each unitary
conductance had two fractions:gAMPA(t) = 0.1

(

e−t/2−e−t/0.5
)

, gNMDA(t) =

r[0.062e−t/46+0.038e−t/235−0.1e−t/7)]/[1+0.6e−0.06V ], where r is the ratio of
maximal NMDA conductance to maximal AMPA conductance. Current density is
in units of µA/cm2. V in mV. Conductance inµmS/cm2. No OU current noise is
added.
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Type 1 and type 2 dynamics shift to high variance at different points in a noisy tran-
sient stimulus (top). Type 1 neuron switches to high variance when mean stimulus
current level is above the threshold level (θ), while type 2 neuron switches when
mean stimulus is below threshold.

content is raised, so that more time is spent poised in the late high-variability stage
of firing. This figure also illustrates the high variability associated with slow motion
just above threshold, discussed above.

NMDA channels are highly regulated by their subunit expression, by phosphoryla-
tion, by extracellular glycine levels, and by factors such as intracellular polyamines
and pH [50]. Thus it is likely that the precision and reliability of spiking is con-
stantly being tuned by modifying the balance between AMPA and NMDA receptor
activation at excitatory synapses.

6.8 Class 1 and class 2 neurons show different
noise sensitivities

The manner in which the switch between early and late stage variability happens,
depends on the threshold behaviour of the neuron. There are two major classes of
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simple threshold behaviour in neurons [30]. Class 2 neurons show an abrupt, hard
onset of repetitive firing at a high firing frequency – they cannot support regular low-
frequency firing. Class 1 neurons show a continuous transition from zero frequency
to arbitrarily low frequencies of firing. Squid giant axons, and both the classical
Hodgkin-Huxley model and the FitzHugh-Nagumo model, are class 2, crab nerve fi-
bres and gastropod neurons are class 1. The Morris-Lecar model can show both types
of behaviour, depending on its parameters. Class 1 behaviour appears with a strong
enough nonlinearity in the steady state dependence ofW on V. With enough posi-
tive curvature, this relationship can result in a saddle-node bifurcation at threshold
(the disappearance of two fixed points of the dynamics as the current is increased),
creating a situation where the limit cycle just above threshold passes through the ex-
tremely slow region of the two-dimensional phase plane where the stable and saddle
fixed points have just disappeared [15].

The threshold in a class 2 neuron occurs in a different manner. Here there is
only one fixed point, which switches from stable to unstable at (or above) thresh-
old. Oscillations which decay around the fixed point below threshold, blow up above
threshold until the trajectory finds a surrounding limit cycle. In a FHN cell, this cor-
responds to a subcritical Hopf bufurcation. The phase point then migrates outwards
to find an already existing limit cycle – so that there is an abrupt onset of a high firing
oscillation.

Here, we are concerned with when and how the neuron switches to the late stage
of high variability in a transient response. The two classes of neuron behave very
differently in this respect (Figure 6.9).Class 1 dynamics begins to enter the late high
variability stage when the fluctuations in the stimulus begin to touch the threshold,
i.e., on the lower envelope of the noise – trapping inslow motionbegins at this
point. Class 2 dynamics, on the other hand, means that the subthreshold oscillations
just below threshold arefast motionof roughly the same period as the spiking limit
cycle. The late stage does not begin until fluctuations are only occasionally reaching
threshold from below, i.e., on the upper envelope of the noise. Thus the two classes
show a quite different and, in a sense, opposite sensitivity to the amplitude of noise.
Increasing the amplitude of noise accelerates the onset of the late high-variability
stage in class 1 neurons, because noise fluctuations touch threshold sooner, while
it retards the onset of late stage in class 2, because with larger fluctuations it takes
longer for the mean current to decay to the point where fluctuations only occasionally
touch threshold from below.

6.9 Cortical cell dynamical classes
How is this discussion of dynamical classes relevant to cortical neurons? Two of the
principal cell types of the cortex, regular-spiking, RS (pyramidal, excitatory) cells,
and fast-spiking, FS (inhibitory, basket) cells, appear to be of class 1 and class 2, re-
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Figure 6.10

Time delay representation of phase space in responses of cortical neuron near thresh-
old. (A) a fast-spiking neuron stimulated by a constant current of 150 pA. (B) a
regular-spiking neuron stimulated by a constant current of 300 pA. From [48] with
permission.
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spectively. It is well known that regular-spiking neurons support extremely low fre-
quency regular firing [10], which is class 1 behaviour. Erisir et al. [14] describe how
FS neurons begin repetitive firing “with abrupt onset” for increasing levels of steady
stimulus current. We have also observed that fast-spiking neurons have an abrupt
onset of regular firing, and when held near the threshold switch between episodes of
quite high frequency firing and subthreshold oscillations at a similar frequency (inset
of Figure 6.10[48]). This is typical class 2 behaviour.

To better illustrate the difference between dynamical classes, we examined delay
representations [33, 43] of near-threshold responses to steady current injection in RS
and FS cells. There is no added noise, only intrinsic noise, essentially ion channel
gating noise. Three-dimensional representations are shown in Figure 6.10. Trajec-
tories in this space did not reproducibly self-intersect, suggesting that even with this
small number of time delay dimensions, there is a 1:1 transformation of the motion of
the principal underlying dynamical variables [62]. Using lags of 1 and 10 ms to un-
fold movement at fast and slow timescales, FS neurons (Figure 6.10A) showed two
patterns of perturbation – uniform perturbation of the spike loop (horizontal limb)
and noisy resonant loops (inset) in a basin from which there are intermittent escapes
to spike. In RS neurons (Figure 6.10B), uniform perturbation of the spiking loop is
also seen, but as for the class 1 model, subthreshold movement lacks fast oscillation
structure, and is a very slow drift of random movement (inset). Thus, variability of
firing in two major types of cortical neurons, RS and FS, also appear to follow the
qualitative patterns shown by class 1 and class 2 models, respectively.

6.10 Implications for synchronous firing
The explosion of variability in the late stage must be partly responsible for breaking
up transient synchrony of firing in the local cortical network. As soon as adaptation,
inactivation and synaptic depression bring the level of firing down to a critical point,
the entry of many cells into the late stage would destroy thecoherenceof firing
which is itself essential for maintaining the high level of input to each cell during
the transient. Pyramidal RS cells appear to associate inputs from different layers
and areas in the cortex, via the back-propagation activated dendritic calcium spike
mechanism [37]. Class I dynamics of RS neurons, with its early entry into the late
stage, might allow relatively easyswitchingbetween different tempos in their inputs.
It may also promote the generally high level of firing variability in the cortex [25] –
probably over 50% of cortical cells are class 1 RS neurons.

On the other hand, class 2 FS neurons, which inhibit each other and other RS
neurons locally, are implicated in promoting synchronous firing [6, 20]. They are
coupled together by electrical synapses or gap junctions, which helps to synchronise
their action potentials precisely. The nature of class 2 dynamics may mean that the
phase of rhythmic firing is quite stable even when the mean stimulus goes subthresh-
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Figure 6.11

Relative precision of spikes in a transient response for a class 2 neuron compared
to a class 1 neuron. Morris-Lecar models as in [25]. Noiseσ = 0.3, τ=1. ML2
stimulus: ramp from 30 to 22µA/cm2 in 100 ms, ML1 stimulus: ramp from 11.5 to
7 µA/cm2 in 100 ms.

© 2004 by Chapman & Hall/CRC



old, because strong subthreshold oscillations could keep the rhythm intact until the
stimulus moves above threshold again. For a class 2 neuron, there is more of a ten-
dency for spikes to drop out without a wide dispersion of spike times: this is because
the late stage is more restricted and has a harder onset than for class 1 neurons. This
is illustrated inFigure 6.11,where we show that changing the class of the Morris-
Lecar model from 1 to 2 can greatly reduce the dispersion of the final spikes – class
2 neurons intrinsically prefer to stay coherent or be silent, while class 1 neurons have
a smooth transition between the two extremes.

6.11 Conclusions
It is clear that, to understand firing variability, it is very important to consider both the
dynamics of spike generation, and the nature and parameters of the noise sources in
cortical neurons. Using more sophisticated and more quantitatively exact dynamical
models, for example taking account of higher-order patterns spiking such as bursting
and slower processes such as dendritic calcium spikes, will uncover a much greater
range of excitable behaviour shaped by noise in the cortex. Which phenomena are
functionally important will be made clear as we find out more about the cortical
network firing patterns of awake, behaving animals. An important principle which
should also be considered is the energetic cost of precise firing, and how this has
been adapted to [4]. There is still a great deal of theoretical and experimental work
to be done in order to arrive at a satisfactory understanding of firing variability in the
cortex.
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7.1 Introduction

Information in the brain is carried by the temporal pattern of action potentials (spikes)

generated by neurons. The patterns of spike discharge are determined by intrinsic

properties of each neuron and the synaptic inputs it receives; modulation of either of

these parameters changes the output of the neurons, and, through this, the behavior

or physiology of the organism. Computational models of brain function have princi-

pally focussed on how patterns of connectivity contribute to information processing,

but most models largely neglect the different intrinsic properties of different neuronal

phenotypes.

7.1.1 The scale of the problem

Computational models of single neurons that realistically reflect intrinsic membrane

properties can be extremely complex, and hence building large-scale realistic mod-

els of neuronal networks is computationally intense. A typical neuron may make

10,000 synaptic contacts with other neurons, and receive a similar number of inputs.

Each neuron expresses a large number of channels that contribute to its membrane

excitability – including several different classes of Ca2+, K+ and Na+ channels,

and each neuronal phenotype differs in its exact composition of membrane channels.

Neurons also differ from each other morphologically, in the distribution of channel

types in different cellular compartments, and in intracellular properties that influence

channel function. A model of a single neuron incorporating all these factors will have

a very large number of parameters that must be estimated with reasonable precision

from experimental observations, but many of which must be guessed for particular

cell types, as the detailed information is not available. Moreover, experimental ob-

servations of biophysical parameters are typically made in vitro in conditions that

are different from in vivo conditions. The relative scarcity of afferent input in in

vitro preparations must always be taken into account, but beyond this, biophysical

measurements often require interventions that fundamentally disturb cell properties.

For example, measurements of membrane potential often derive from patch-clamp

recordings, which may involve dialysis of the neuronal cytoplasm, altering the com-

position of the intracellular fluid, changing ion gradients and diluting second messen-

ger systems. Measurements of intracellular Ca2+ involve introducing fluorophores

into the cell that effectively function as additional Ca2+ buffers. Thus measurements

of many variables require consideration of the context in which they are measured.

How many neurons must be included in a realistic network model is far from

clear. The human brain is commonly estimated to contain about 2 ×1010 neurons,

but a rat gets by with perhaps 107 neurons; the major source of this discrepancy

is of course in the size of the neocortex. The neocortex, however, is one of the

parts of the brain about which we understand least, substantially because the func-

tions that we think it is principally involved in are, in general, not very amenable

to reductionist experimental testing at the single cell level. In the rat brain, prob-
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ably around 106 neurons are in the hypothalamus, and this region controls a wide

diversity of clearly definable functions that are much more amenable to experimen-

tal investigation. Different neuronal groups in the hypothalamus control the release

of different hormones from the pituitary gland – oxytocin; vasopressin; prolactin;

growth hormone; the gonadotrophic hormones; adrenocorticotrophic hormone (that

in turn controls steroid secretion from the adrenal glands); thyroid stimulating hor-

mone (that controls the functions of the thyroid gland); and melanocyte-stimulating

hormone. The hypothalamus also controls thirst, feeding behavior (including specific

appetites such as sodium appetite), body composition, blood pressure, thermoregu-

lation, and much instinctive or reflex behavior including male and female sexual

behavior and maternal behavior. These functions involve highly specialised cells

with specific properties; cells for instance that have receptors or intrinsic properties

that enable them to respond to glucose concentration, or the osmotic pressure of ex-

tracellular fluid, or to detect specific blood-borne signals released from peripheral

tissues, such as leptin from fat cells, angiotensin from the kidney, and ghrelin from

the stomach. Many of these cells in turn signal to other neurons using distinct chem-

ical messengers: neurotransmitters, neuromodulators and neurohormones but also

other types of signalling molecule, that are transduced by specific receptors that can

occur in multiple forms even for one given signalling molecule.

Estimating the number of distinguishable neuronal phenotypes in the rat hypotha-

lamus is imprecise, but there seem likely to be up to 1,000, each of which may be

represented by about 1,000 to 10,000 individual neurons. This may seem a high esti-

mate of diversity, but let us consider. The ventro-rostral extent of the hypothalamus

is bounded by the organum vasculosum of the lamina terminalis (OVLT). This re-

gion is highly specialised in lacking a blood-brain barrier; how many cell types it

contains we do not know for sure, but they include a highly specialised population

of osmoreceptive neurons [1]. Another area lacking a blood-brain barrier marks the

dorso-rostral extent of the hypothalamus – this is the subfornical organ and it con-

tains amongst its neurons (there seem to be at least six types) a population of spe-

cialised angiotensin- processing neurons. Between these, the preoptic region of the

hypothalamus contains several identified nuclei and many different neuronal popula-

tions; one small but interesting population comprises about 700 luteinising-hormone

releasing hormone (LHRH) neurons; these are remarkable cells, they are born in

the nasal placode and migrate into the brain late in development, and are essential

for controlling pituitary gonadotrophic secretion and thereby are essential for sper-

matogenesis in males and ovarian function in females [2]. Though very scattered

throughout the preoptic area they nonetheless discharge bursts of electrical activ-

ity in synchrony to elicit pulsatile secretion of gonadotrophic hormones from the

pituitary. Most of these project to the median eminence, the site of blood vessels

that enter the pituitary, but some LHRH neurons project to the OVLT – why, we do

not know. The preoptic region also includes a sexually dimorphic nucleus larger

in males than in females. In the midline periventricular nucleus are neurosecretory

somatostatin neurons that provide inhibitory regulation of growth hormone secre-

tion, alongside growth-hormone releasing-hormone neurons of the arcuate nucleus.

Caudal to the periventricular nucleus is the paraventricular nucleus; this contains
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thyrotropin-releasing hormone neurons that indirectly regulate the thyroid gland;

corticotrophin-releasing hormone neurons that indirectly control the adrenal gland,

magnocellular vasopressin neurons that control the kidney and magnocellular oxy-

tocin neurons that are responsible for controlling parturition and lactation; in ad-

dition, smaller, centrally projecting oxytocin neurons regulate gastric function, and

centrally projecting vasopressin neurons that regulate body temperature and blood

pressure, some of which project into the spinal cord (as do some oxytocin neu-

rons, a subpopulation that seems to be involved in penile erection). Below this, the

suprachiasmatic nucleus is the body’s principal circadian pacemaker; one popula-

tion of neurons here makes vasoactive intestinal peptide, another makes vasopressin;

these cells are governed by clock genes that confer 24-h cyclicity on their behav-

ior. Behind the suprachiasmatic nucleus is the arcuate nucleus, that in addition to

growth-hormone releasing-hormone neurons contains leptin-sensitive neuropeptide

Y neurons that regulate feeding, dopamine neurons that regulate the secretion of pro-

lactin, opioid (b -endorphin) neurons that impact on many neuronal systems through

extensive central projections, and a large population of centrally projecting somato-

statin neurons of unknown function. Above this, the ventromedial nucleus contains

specialised glucoreceptive neurons, and alongside it the lateral hypothalamus con-

tains orexin neurons; orexin is linked to sleep and wakefulness, and orexin knock-out

results in narcolepsy.

We have not gone far in the hypothalamus yet, and we have described only some

of the best-known populations, and neglected subpopulations of interneurons and

many distinctive subnuclei. In addition, the individual cells vary even within a given

population: these homogeneous populations are far from clones. Moreover, individ-

uals in one population interact to differing extents with individuals of many other

populations, and these interactions differ from cell to cell even within a population.

The populations are not fully interconnected but neither are they as separable

as we would like. Take for instance the magnocellular oxytocin neurons of the

hypothalamus-and we probably know as much or more about these as about any

cells in the brain (see [3]). These are simple neurons in many respects; there are

about 3,000 of them in the rat brain, and each has a single axon that projects to the

neural lobe of the pituitary gland. Oxytocin, released from the nerve endings in the

pituitary, controls milk let-down in response to suckling, and it controls the progress

of parturition by its actions on the uterus. But in the rat, oxytocin also controls the

excretion of sodium at the kidney. Moreover, centrally released oxytocin is involved

in maternal behavior, sexual behavior, and affiliative behaviors generally, and stress

responsiveness, and the magnocellular oxytocin system is involved in these behav-

iors through secretion of oxytocin from its dendrites rather than from classical nerve

endings. Dendritic secretion unfortunately does not parallel secretion from axonal

endings – the mechanisms underlying dendritic secretion differ in important ways

from those that govern axonal secretion. The diversity of roles played by oxytocin

shows both that the oxytocin neurons receive very functionally diverse inputs, and

also that they influence many other neuronal populations, including some to which

they are not synaptically connected, even indirectly. It would be dangerous to think

that oxytocin neurons are exceptionally complicated, just because we know more
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about them than other neurons; in fact, from what we do know of other neurons,

oxytocin neurons are, if anything, rather simple.

Thus models of any function or part of the brain must take due account of the diver-

sity of neuronal phenotypes. In particular, models that seek to understand informa-

tion processing must take account of the diversity of electrophysiological phenotypes

exhibited within interconnected populations. The number of distinct electrophysio-

logical phenotypes may be less than the number of chemically definable phenotypes

alluded to, but the degree of difference between phenotypes can be striking. For

example, magnocellular vasopressin neurons discharge spikes in a distinctive phasic

pattern, alternating between periods of silence and periods of stable spike discharge,

and these cells function as true bistable oscillators. Other cells, such as those in

the suprachiasmatic nucleus, exhibit highly regular discharge activity, whereas the

spontaneous activity of oxytocin neurons appears quasi-random. Other cells dis-

play intrinsically oscillatory discharge activity, or display a propensity to discharge

in brief rapidly adapting bursts. Each of these radically different electrophysiolog-

ical phenotypes has significant consequences for information processing within the

networks of which they are a part (see [4]).

7.1.2 Strategies for developing computationally concise models

The number of parameters involved in modelling any single neuron to biophysical

accuracy is large, at least 100 parameters would seem necessary; to build a realistic

network model, these must be estimated for each cell type in the network. Even with

the huge computational power available now, the computational task involved in sys-

tematically assessing models of such complexity is daunting, if this is to involve a

rigorous assessment of the robustness of model performance for variable parameter

values. The uncertainties and inaccuracies in estimating individual parameters are so

large as to make the utility of the effort questionable. The purpose of any model is

to understand a system by simplifying it, revealing the key, important variables. It

makes little sense to try to build a model of the brain that is as complex as the brain.

Clearly, we need to develop computationally simple models of neurons that preserve

essential properties and discard those which have no major impact upon their infor-

mation processing functions. However, it is not always clear which properties of a

neuron are important and must be included in any model, and which, for the moment,

can be neglected.

The conventional approach to understanding the role of intrinsic membrane prop-

erties in neurons has been to study channel properties in detail through experiments

on isolated cells in vitro, and then to speculate about how these might contribute to

spike patterning or neuronal responses in vivo. However, rather than look at mem-

brane properties and speculate about how they might influence firing patterns, it is

also possible to look at spontaneous firing patterns to see how they can be modelled

most simply, and then look for explanations in terms of the known intrinsic proper-

ties [5]. What we describe here is an illustration of this approach. We are not seeking

to build a complex model of an oxytocin cell by attempting to incorporate all known

features of these cells. Instead, we seek a minimalist, computationally concise rep-
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resentation of its information-processing functions in a way that is both biologically

referrable in its parameters and quantitatively accurate in its match to experimental

data, while being also founded on explicit assumptions in a manner that gives it true

predictive and explanatory power.

7.2 The hypothalamo-hypophysial system

The magnocellular neurosecretory neurons of the hypothalamus are concentrated in

the supraoptic and paraventricular nuclei; axons from these cells project to the pos-

terior pituitary gland (also known as the neural lobe, or neurohypophysis) where the

hormones that they synthesize, oxytocin and vasopressin, are released into the circu-

lation. These hormones are released in response to spikes that are generated at the

cell bodies and conducted along the axons; hormone release from these neurosecre-

tory terminals is analogous to neurotransmitter release from conventional neurons,

but unlike transmitter release, hormone release occurs in such large amounts that it

can be measured very easily. The soma and axons of the magnocellular neurons are

readily identifiable and accessible for experimental manipulation through a wide va-

riety of in vivo and in vitro experimental approaches. Thus, they are one of the few

groups of central neurons in which changes in activity pattern can be related to the

physiological stimulus and the precise neuronal response to the stimulus, the state of

the organism and the hormonal secretion, respectively (see [5, 6, 7, 8, 9] for reviews).

Through its role as the antidiuretic hormone, vasopressin is primarily concerned

with body fluid homeostasis. Vasopressin is released in response to increased plasma

osmotic pressure, and in response to reduced plasma volume, and it acts on the

kidney to promote conservation of water by concentrating the urine, and to restrict

plasma volume by vasopressor actions on blood vessels. The classical roles of oxy-

tocin are in lactation and parturition. At parturition, oxytocin stimulates uterine con-

tractions to promote parturition. During lactation, oxytocin is released in response

to suckling in a pulsatile manner, and promotes milk let-down from the mammary

gland. Oxytocin is also released in response to increased osmotic pressure, hypov-

olemia, and gastric distension, reflecting a secondary role at the kidney to stimulate

sodium excretion in response to increased sodium intake. Oxytocin and vasopressin

also have intriguing behavioral actions. These are intriguing first because oxytocin

and vasopressin released into the blood does not re-enter the brain, which is protected

by a blood-brain barrier; so these behavioral effects are mediated by central release

of vasopressin and oxytocin. The oxytocin and vasopressin cells have few axonal

endings within the brain, but they can release very large amounts of these peptides

from their dendrites. The behavioral actions seem remarkable apposite to the pe-

ripheral roles of the hormones. Oxytocin for instance promotes maternal behavior

after parturition, seen in rats as nest building and retrieval of young. These behav-

ioral actions are typical of the effects of central injection of peptides endogenous
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to the hypothalamus in being complex behaviors expressed over a prolonged period

after brief central exposure to the peptide. Interestingly, these behavioral effects ap-

pear to be exerted via neuronal receptors expressed in regions where there is little

or no innervation by oxytocin-containing fibres, suggesting that neurohormonal-like

secretion from dendrites may be the important modulator of behavior.

7.2.1 Firing patterns of vasopressin neurons

When vasopressin cells are activated by a rise in osmotic pressure, their spike dis-

charge activity consists of alternating periods of activity and silence lasting tens of

seconds each, so called phasic firing (Figure 7.1A). Vasopressin cells fire phasically

when their mean discharge rate exceeds 3 Hz; at lower firing rates no clear pattern

is discernible. Phasic firing is important in vasopressin cells, but not because of the

apparently obvious temporal patterning. Different vasopressin cells discharge asyn-

chronously, so while the output of individual cells is pulsatile, the net output of the

whole population is continuous. Phasic patterning optimises the efficiency of se-

cretion from nerve terminals. In response to trains of electrical stimuli, vasopressin

release from nerve endings is facilitated as the frequency of stimulation increases,

but fatigues as the duration is extended. The frequency-facilitation of release is as-

cribed to a facilitation of Ca2+ entry at the nerve terminals, resulting in part from

a broadening of spike duration at high frequencies of stimulation, in part from de-

polarisation caused by accumulation of K+ in the extracellular clefts, and in part

from a progressively more complete invasion of the arborised terminal field of an

axon during repetitive stimulation, resulting finally in a greater Ca2+ influx through

voltage-gated channels to trigger enhanced exocytosis. The facilitation of secretion

is transient; stimulation sustained for longer than about 20s results in a steep de-

cline in hormone release, which probably reflects inactivation of Ca2+ entry into the

terminals. This fatigue is readily reversed, and a 20s rest period will allow a new

stimulus again to evoke efficient release. Phasic firing appears to make optimal use

of the properties of the terminal membranes to enable hormone release to occur with

minimal expenditure of energy on spike generation.

Phasic firing is the result of intrinsic membrane properties. The bursts are not

passive responses to a phasically patterned input, nor do they reflect spontaneous os-

cillations of membrane potential. Instead, the bursts are regenerative, in that the first

few spikes of a burst trigger prolonged activity. The bursting depends on intracellu-

lar Ca2+; blockade of Ca2+ entry or chelation of intracellular Ca2+ will block phasic

firing. At the start of a burst, a small but long-lasting depolarising after-potential

(DAP) follows each spike, and these DAP’s summate, bringing the membrane po-

tential close to the spike threshold. After the first few spikes, a depolarising plateau,

reflecting a persistent inward current, sustains a burst (Figure 7.1B). The plateau can

be viewed as an alternative state of the resting potential. When depolarised by about

10 mV from its normal resting potential of about −70mV, a vasopressin cell will tend

to settle at a new, more depolarised resting (plateau) potential, which is sustained by

a constant depolarising current, and which is close enough to the spike threshold

for EPSP’s to frequently trigger spikes. The DAP after each spike brings the mem-
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(A) Typical example of phasic discharge pattern in a vasopressin neuron charac-

terised by succession of silent periods and active periods. Mean burst duration

varies considerably between vasopressin cells, and the bursts occur asynchronously

amongst the population of vasopressin cells. (B) Intracellular recording from a va-

sopressin cell in vitro. Spikes arise in these cells when EPSPs summate to bring the

membrane potential above spike threshold. Phasic bursts occur because a sustained

plateau potential, depolarising the vasopressin cell by typically about 7 mV, produces

a sustained increase in excitability. The plateau is, however, itself activity dependent.

(C) Typical example of firing pattern in an oxytocin cell, identified by its activation

in response to i.v. injection of 20 mg/kg of CCK. During suckling of pups, brief and

high frequency bursts of spikes are superimposed upon the slow and irregular back-

ground activity. These bursts occur synchronously amongst all oxytocin cells in the

hypothalamus.
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brane potential back into the range for activating the low threshold, non-inactivating

currents, so plateau potentials normally are triggered by, and maintained by, spike

activity. The vasopressin cell is bistable, in exhibiting two alternative stable states:

the normal resting potential, and the plateau potential; it is either active in a burst, or

it is silent – and it repeatedly oscillates between these states.

An essential component of phasic activity is activity-dependent inactivation of

the plateau, which allows the vasopressin cell to fall silent after a burst until DAP

conductances are activable again. This makes the cell a bistable oscillator: it will

tend not to stay in either stable state indefinitely, but will alternate between the two.

Bursts evoked by current injection or by antidromic stimulation are followed by

an activity-dependent after-hyperpolarisation resulting from a slow, Ca2+-dependent

K+-conductance which functions as a feedback inhibitor of spike activity; this chan-

nel type can be identified by use of the toxin apamin; in the presence of apamin, the

afterhyperpolarisation (but not the HAP) is blocked; as a result, bursts are more in-

tense but phasic firing is still present, so this after-hyperpolarising mechanism does

not alone account for burst termination.

7.2.2 Implications of membrane bistability for responsiveness to
afferent input

The membrane properties of vasopressin cells are reflected in distinctive features of

their behavior. Electrical stimuli applied to the axons evoke spikes that are prop-

agated antidromically to the cell bodies. Just as spontaneous spikes are followed

by a DAP, so are antidromic spikes, and brief trains of antidromic spikes can trig-

ger full bursts of activity in vasopressin cells. Interestingly, trains of antidromic

spikes can also stop established bursts, through exaggerating the activity-dependent

inactivation of the plateau potential. Low-frequency antidromic spikes on the other

hand produce the interesting effect that cells appear to compensate for the additional

evoked spikes by a matching reduction in spontaneous discharge. Vasopressin cells

thus defend their firing rate against perturbations, probably via an intrinsic after-

hyperpolarisation (AHP), which acts as a feedback inhibitor of spike activity. An-

tidromic activation mimics particular effects of synaptic excitation – consequences

of spike activity per se follow whether the spikes are induced by synaptic input or by

direct stimulation. Thus excitatory inputs may trigger a burst if a vasopressin cell is

silent, or may stop a burst if a cell is active, or may have no effect if it is weak enough

to allow the cell to defend its firing rate effectively. Similar paradoxical effects are

observed with inhibitory stimuli.

So vasopressin cells fire in bursts, and bursts release vasopressin efficiently. Burst-

ing reflects an intrinsic membrane bistability, and this property causes vasopressin

cells to respond to inputs in a complex manner. Vasopressin cells require tonic synap-

tic input in order to function normally, but are individually relatively insensitive to

changes in the level of input, except that small changes can, rather unpredictably,

trigger transitions between activity and silence. One role of synaptic input is thus to

permit the expression of patterns of activity in vasopressin cells – without synaptic

noise, this behavior cannot be displayed.
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Signals and noise are often thought of as mutually incompatible. However, the

reliability of information transfer can, in some systems, be paradoxically enhanced

by noise, a phenomenon referred to as stochastic resonance. Background activity in

neurons in the absence of an identifiable signal associated with that activity, what

we might call neural noise, may not merely reflect activity in neurons poised at the

threshold of responsiveness, but may play a role in fashioning the behavior and signal

sensitivity of target neurons. One implication of this is that when removal of an

input impairs the response of a neuron to a stimulus, we cannot infer, from this

observation alone, that the input encodes any information about the stimulus. Some

neurons may play an important role even if they carry no identifiable information,

and their output is unaffected by physiological stimuli, if their activity provides a

level of synaptic noise which is important to support key dynamical behavior, either

in neuronal networks or in single cells.

7.2.3 Firing patterns of oxytocin cells

Unlike vasopressin neurons, oxytocin neurons never discharge phasically. Under

most circumstances they discharge continuously, at between 0 and 12Hz, but an im-

portant exception to this is seen during lactation, when, in response to suckling, in

addition to the background activity that resembles that seen in non-lactating animals,

oxytocin cells display occasional high frequency discharges of spikes at up to 100Hz

for 2 to 4s (Figure 7.1C). In the rat, these milk-ejection bursts occur every 5 to 10min,

for as long as the suckling continues, and occur synchronously between all oxytocin

cells in the hypothalamus. At all other times, no correlation is apparent between the

discharge activities of neighbouring oxytocin cells. Thus, normally, oxytocin cells

appear to behave autonomously, but in some circumstances they discharge in a man-

ner reflecting positive-feedback interaction amongst the population. At present, it

is believed that this interaction reflects a labile dendro-dendritic interaction between

oxytocin cells that provides a variable level of weak mutual excitatory interaction.

Dendritic release of oxytocin is activity dependent, but it is also modulated by in-

tracellular signalling mechanisms. Importantly, the amount of activity-dependent

oxytocin release is determined largely by extrinsic priming factors.

7.2.4 Intrinsic properties

Magnocellular neurons have a resting membrane potential of between 55 and 70mV,

an input resistance of between 50 and 250MW, and membrane time constants ranging

between 9 and 18ms. Single electrode voltage-clamp recordings measured steady-

state current-voltage (I-V) relations that were nearly linear between 100 and 60mV

when performed from a holding potential near 60mV. Varying the holding potential

and the application of various channel blockers, resulting in changes in the I-V re-

lationship, show a variety of Ca2+ and K+ currents. In particular, whole-cell patch-

clamp recordings have revealed at least five different components in the voltage-

dependent Ca2+ currents in magnocellular neurons: a T-type current with a low

threshold of activation (−60mV), rapid inactivation at peak amplitudes (∼40ms),
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high sensitivity to Ni2+; a low threshold L-type channel with a threshold of around

50mV, slowly inactivating (∼1300ms), and sensitive to nifedipine; a R-type cur-

rent, threshold of 50mV, inactivation of ∼200ms, and insensitive to toxins; a P-type

current, non-inactivating, and blocked by w-agatoxin IVA; and an N-type-current,

slowly inactivating (∼1800ms), blocked by wconotoxin GVIA.

In both oxytocin cells and vasopressin cells, every spike is followed by a hyper-

polarising afterpotential (HAP), which lasts between 50 to 100ms, and results from

a rapidly activated Ca2+-dependent K+ conductance, similar to the current termed Ia

in other cells. The Ia can be activated when a cell is depolarised following a period of

hyperpolarisation, and it serves as a damper to space successive spikes. Accordingly,

the HAP sets an upper limit on the maximal firing rate which can be achieved during

a depolarising stimulus, and in the case of magnocellular neurons the HAP is large

and long lasting, and this upper limit is accordingly quite low. Under most circum-

stances oxytocin and vasopressin cells will not sustain a discharge rate exceeding

15Hz for more than a few seconds, and the minimum interval between successive

spikes is very rarely less than about 30ms. Oxytocin cells adhere to this limit un-

der all circumstances but one: during milk-ejection bursts they dramatically escape

this limit. The outward current underlying the HAP is evoked by a depolarising

voltage current pulse from a threshold of 75mV, reaches the peak within 7ms and

subsequently decays monotonically with a time constant of 30ms. Steady-state inac-

tivation is complete at potentials positive to 55mV, and the inactivation is removed

following tens of milliseconds at hyperpolarised voltages. Further, the Ia is strongly

dependent on extracellular Ca2+, whereby its influx during a spike may contribute

to the repolarisation, as well as to the peak and initial phase of the HAP. Indeed, its

amplitude appears to be directly proportional to the external concentration of Ca2+.

In contrast to the HAP, which is evoked by single spike, trains of spikes are fol-

lowed by a prominent afterhyperpolarisation (AHP). The magnitude of the AHP is

proportional to the number of spikes during the preceding spike train, with an expo-

nentially progressing onset and a maximum after the first 15 to 20 spikes, regardless

of the frequency at which spikes were evoked. The steady-state amplitude increases

logarithmically between 1 and 20Hz. The AHP lasts hundreds of ms, and its du-

ration also depends on the duration and frequency of the spike train. The AHP is

associated with a 20 to 60% decrease in input resistance, shows little voltage de-

pendence in the range 70 to 120mV, and is proportional to the extracellular Ca2+

concentration. These observations led to the conclusion that the AHP results from

the activation of a slow, voltage-independent Ca2+-dependent K+ conductance, the

IAHP. The distinction between the IAHP and the Ito (and correspondingly between

the post-train AHP and the post-spike HAP) is made since the ionic currents are

pharmacologically distinct. The Ito is less sensitive to tetraethyl ammonium, but

is reduced by 4-aminopyridine and dendrotoxin. In contrast, IAHP is blocked by

apamin, with the effect of a threefold increase in the mean firing rate of sponta-

neously active neurons. Pharmacologically, the AHP appears to have a fast com-

ponent and a slow component; the fast AHP is blocked by apamin, while the slow

AHP is blocked by charybdotoxin, and is affected by low concentrations of tetraethyl

ammonium. Apamin generally blocks small-conductance (SK) Ca2+-dependent K+
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channels, while charybdotoxin blocks big-conductance (BK) Ca2+ dependent K+

channels, as well as some other K+ channels.

7.2.5 Intracellular Ca2+ concentration

In response to any spike activity, there is a large Ca2+ entry into oxytocin cells and

vasopressin cells via several different voltage-gated Ca2+ channels. In addition, in-

tracellular Ca2+ stores can be mobilised via second messenger pathways to give very

large increases in intracellular Ca2+ concentration ([Ca2+]i) (see [10, 11, 12, 13]).

The dynamics of Ca2+ change differ between the cell types, as they differently ex-

press Ca2+ binding protein calbindin [4]. Oxytocin cells contain more calbindin

than vasopressin cells, allowing them a higher Ca2+ buffering capacity, which pre-

vents generation of DAPs and therefore phasic firing. DAPs and phasic firing can

be evoked in oxytocin cells by neutralising calbindin or by increasing [Ca2+]i. Con-

versely, phasic firing neurons can be switched to continuous firing by introduction of

exogenous calbindin or by chelation of intracellular Ca2+. The amplitude of DAPs

depends on Ca2+ influx through voltage-dependent Ca2+ channels of L- and N-

types, but also on Ca2+ release from intracellular Ca2+ stores, notably thapsigargin-

sensitive stores, located in the endoplasmic reticulum.

Both vasopressin and oxytocin cells have thapsigargin-sensitive intracellular Ca2+

stores. In oxytocin cells, oxytocin itself induces an increase in [Ca2+]i by activat-

ing IP3 pathway-coupled oxytocin receptors, which results in the release of Ca2+

from thapsigargin-sensitive stores. Oxytocin apparently does so without any strong

accompanying depolarisation. In vasopressin cells, vasopressin also induces a Ca2+

response, but in a more complex way. Vasopressin-induced [Ca2+]i increase mainly

involves an influx of Ca2+ via voltage-dependent Ca2+ channels of L-, N- and T-

types, as it can be reduced by specific blockers of these channel types. In addition

to Ca2+ coming from the extracellular medium, part of the response to vasopressin

is also due to release of Ca2+ from thapsigargin-sensitive intracellular stores. The

complexity of vasopressin actions probably results from activation of several types

of receptors coupled to different intracellular messenger pathways. Vasopressin re-

ceptors (described so far) comprise V1a and V1b type receptors, which are coupled

to phospholipase C (PLC), and V2-type receptors, which are coupled to adenylyl cy-

clase. Agonists of both V1a- and V2- receptor types can induce a [Ca2+]i increase

in vasopressin cells. In addition, inhibitors of PLC and adenylyl cyclase pathways,

by blocking the production of intracellular messengers IP3 and cAMP, decrease the

Ca2+ response to vasopressin. Vasopressin clearly can depolarise vasopressin cells

to induce Ca2+ entry via voltage-gated channels, but also induces some liberation

of Ca2+ from intracellular stores, and can also probably hyperpolarise vasopressin

cells via Ca2+ -activation of Ca2+-dependent K+ channels; in practice, it seems that

the actions of vasopressin on vasopressin cells are state-dependent; when applied on

vasopressin cells in vivo, vasopressin tends to excite silent or slow firing cells but it

tends to decrease the firing rate in active cells.
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7.2.6 Implications

To build a realistic biophysical model of an oxytocin cell or a vasopressin cell from

the bottom up, there are in principle a very large number of basic membrane prop-

erties to be incorporated. Apart from the Na+ and K+ conductances that underlie

the generation of the spike, there are a large number of Ca2+ conductances and K+

conductances that appear to play specific, potentially important roles, and since sev-

eral of the latter are Ca2+ -dependent, the intracellular Ca2+ dynamics, involving

buffering and mobilisation of intracellular Ca2+ stores also need to be included. The

disposition of these conductances in different cellular compartments is poorly un-

derstood, and other conductances, in particular to chloride, and non-specific cation

conductances, are also important, as may be the precise cellular topology. To build

a network model it would also be necessary to incorporate elements reflecting the

nature of stimulus-secretion coupling and the different underlying mechanisms at

dendrites and nerve endings; vasopressin cells, for instance, express different popu-

lations of Ca2+ channels at the soma and nerve terminals.

On the other hand, we might take an approach that is consciously simplistic, in-

corporating progressively only those features of cells that are essential to explain

particular behaviors, and incorporating these in a minimalist way. We need to set

a verifiable objective: to develop computational models that mimic cells so closely,

that for specific defined attributes, they are essentially indistinguishable in their be-

havior from real cells. In the example shown hereon, we look at the normal discharge

patterning of oxytocin cells and seek a minimalist quantitatively accurate model of

this. To be a good model, the spike output of the model cell must be indistinguishable

from outputs of real cells by any statistical analysis that is applied.

7.3 Statistical methods to investigate the intrinsic
mechanisms underlying spike patterning

7.3.1 Selecting recordings for analysis

Before starting the analysis of the firing activity, we must select suitable recordings.

Stationarity is an essential prerequisite for the analysis to be meaningful. A series is

stationary if there are no systematic trends or rhythmic variations. We started with

stable, long recordings (up to 3h) of spontaneous activity from identified rat oxy-

tocin cells in vivo, and from these, stationary recordings, or long stationary stretches

from recordings that were not stationary throughout, were chosen. Stationarity was

checked with the help of bicubic splines, a series of smooth cubic curves fitted over

short stretches of activity, then joined with the same slope at the joints to form one

continuous curve. One way of looking at temporal patterns is by looking at the time

between consecutive spikes (interspike intervals). Interspike intervals provide infor-

mation about the relationship between spikes in a way easily accessible for statistical
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scrutiny. The interspike interval histogram is a graphical representation of the distri-

bution of the occurrence of intervals of a variable length. The distribution allows a

first indication about spike patterning in an individual neuron.

7.3.2 Interspike interval distributions

For both oxytocin cells and vasopressin cells, the interspike interval distribution is

skewed, with a single mode and a long tail (Figure 7.2). For vasopressin cells, modes

are in the range 40 to 60ms, and for oxytocin cells, in the range 30 to 80ms. The tail

of each distribution (>200ms) can be well fitted by a single exponential, and extrap-

olation of this exponential shows a deficit of intervals below the curve in the range

0 to 40ms, consistent with the effect of a HAP. For vasopressin cells, there is an

excess of intervals above the curve in the range 40 to 100ms (Figure 7.2B), consis-

tent with the effect of a DAP. No such excess is observed in oxytocin cells (Figure

7.2A), indicating that oxytocin cells display little or no DAP when normally active

in vivo. The good exponential fits for oxytocin cells indicate that, to a first approxi-

mation, beyond about 80 ms after any given spike the arrival time of the next spike

is essentially random. Thus the activity of oxytocin cells is dominated by factors

affecting the probability of spike occurrence that are independent of previous spike

history, i.e., the mean resting potential and the rate of synaptic input; and a reduction

in excitability following each spike that decays over 40 to 80ms, consistent with the

expected effects of a post-spike HAP. This inference is more clearly apparent from

the construction of hazard functions (Figure 7.3): these describe cell excitability as

a function of time elapsed since a spike, by calculating the probability of cell firing

per unit elapsed time from the interspike interval data. For oxytocin cells the hazard

function shows a low probability of firing (reflecting the HAP) for about 50ms, and

a constant hazard thereafter; vasopressin cells show a sequence of low probability

followed by high probability before return to constant hazard.

7.3.3 Modelling

To test this inference, we [15] modelled oxytocin cells and vasopressin cells by

a modified leaky integrate and fire model [16]. EPSPs and IPSPs generated ran-

domly and independently at mean rates RE and RI produce perturbations of mem-

brane potential that decay exponentially. These summate to produce a fluctuating

membrane potential. When a fluctuation crosses a spike threshold, T , a spike is

generated, followed by a HAP, modelled as an abrupt, exponentially decaying in-

crease in T = T0(1 + k exp(−l t) where t is the time since the last spike, T0 is the

spike threshold at rest, and k and l are constants. Intracellular recordings from

oxytocin cells reveal EPSPs and IPSPs of 2 to 5mV that last for 5 to 10ms; we as-

sumed that EPSPs and IPSPs at rest were of equal and opposite magnitude (at T0)

with identical half-lives. Oxytocin and vasopressin cells have resting potentials of

about −62mV with a spike threshold of about −50mV, and are depolarised in direct

response to hyperosmotic stimulation following shrinkage, resulting in inactivation

of specialised non-adapting stretch-sensitive K+ channels [17]. In vivo, the peak
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Representative inter-spike interval distributions from an oxytocin cell (A) and a va-

sopressin cell (B) showing exponential curves fitted to the tails of the distributions

and extrapolated to lower interval values. Both oxytocin cells and vasopressin cells

show a deficit of intervals below the fitted curve in the region 0-30 ms, reflecting the

presence in both cells of a strong post-spike hyperpolarisation (the HAP). For vaso-

pressin cells, but not for oxytocin cells, such extrapolations revealed a large excess

of intervals above the fitted curve in the range 30 to 150ms, reflecting the presence

in vasopressin cells only of a depolarising afterpotential (DAP) following the HAP.

activation (at ≈ 12Hz) is attained after osmotic stimulation has raised extracellular

[Na+] by ∼10mM, producing a direct depolarisation of ≈3 to 5mV. The equilibrium

value for T , T0, was thus set at 12mV for the simulations shown, and simulations

were conducted over 1mV below to 5mV above this level. We conducted simula-

tions with parameter values systematically spanning the ranges above, restricted to

output ranges (0 to 16Hz) consistent with the behavior of oxytocin cells.

7.3.4 Simulating oxytocin cell activity

We found that the inter-spike interval distribution from each oxytocin cell could be

closely matched by a model cell with a resting potential (T0) of 12mV below spike

threshold subject to random EPSPs of 4mV amplitude and 7.5ms half-life (Figure
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Figure 7.3

Left panels: inter-spike interval distributions from two oxytocin cells (top) and two

vasopressin cells (bottom), each of which is modelled by a modified leaky-integrate-

and-fire model neuron (see text). The histograms from the model cells are super-

imposed on the original cell data. Right panels: hazard functions plotted from the

same data for each cell and each model neuron superimposed. The interspike inter-

val distributions of oxytocin cells and vasopressin cells can be fit remarkably well

with relatively simple models, that in the case of oxytocin cells mimic the effects of a

HAP only, and for vasopressin cells that mimic the effects of a HAP and subsequent

DAP.
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7.3). Each cell could be closely fitted by varying just l and IE . The fits were not

unique; good fits could be achieved for different values of EPSP size (2 to 5mV) or

half-life (3 to 20ms), or for different values for T0 by changes in RE , or for different

values of k by adjusting l . Similarly, the shape of the distribution is little affected

if the model is challenged not with EPSPs alone but with a mixture of EPSPs and

IPSPs. However, for a chosen value of k, every distribution could be characterised

by a unique l , and by T0, RE and RI , which affect the output rate but have little other

effect on the shape of the distribution in the relevant range.

For vasopressin cells, inter-spike interval distribution could be well fitted by the

output of a similar model cell with the addition of a component to mimic the effect of

a slow DAP, modelled as an abrupt, exponentially decaying increase in T = T0(1 +
k exp(−l t) where t is the time since the last spike (Figure 7.3). Adding this to

the oxytocin model produces a sequence of fast HAP followed by a slow DAP. Of

course this simple model does not reproduce phasic firing, only the characteristic

distribution of inter-spike intervals. Essentially, phasic firing does not occur in this

simple model because it incorporates no mechanism for burst termination or burst

refractoriness, hence once a burst is triggered it may continue indefinitely, or once

ended may be retriggered immediately.

But leaving aside the vasopressin cell model for the present, the good fit of a sim-

ple model to oxytocin cell data enabled us to test the hypothesis that the oxytocin cell

response to osmotic stimulation arises from an increase in synaptic input combined

with a direct depolarisation, with no change in the intrinsic mechanisms that gov-

ern post-spike excitability. If so, then it should be possible to fit inter-spike interval

histograms from any one oxytocin cell at different levels of activity with a common

l . This proved true for each cell tested (Figure 7.4). We then studied how the firing

(output) rate of model cells changes with the synaptic input rate, and with increasing

depolarisation.

7.3.5 Experimental testing of the model

In a healthy adult, above a fixed threshold, vasopressin release varies linearly with

osmotic pressure over a wide dynamic range. The relationship between the plasma

concentration of vasopressin (v) and osmotic pressure (x) fits the equation v = ax+b,

where b is the threshold osmotic pressure or set point, and a is the slope of the

osmoregulatory mechanism. When the behavior of individual vasopressin cells and

oxytocin cells is studied, it is strikingly apparent that individual neurons also show

a linear increase in firing rate in response to increased osmotic pressure, that this

linearity is apparent throughout the normal dynamic range of their spike activity, and

that the slope of the response is relatively constant between cells even when their

spontaneous firing rates differ markedly (Figure 7.5A).

However, in the absence of IPSPs, an increase in EPSP rate produces a non-linear

increase in output (over the physiological output range), and this is true broadly re-

gardless of the parameter values within the ranges as described above. Elaborating

the model to incorporate a reversal potential for EPSPs (of 38mV) does not signif-

icantly alter this conclusion. The effective dynamic range of oxytocin cells is from
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Figure 7.4

Comparison between model inter-spike interval distributions (lines) at different lev-

els of synaptic input, and distributions observed in an oxytocin cell at different times

during infusion of hypertonic saline (points). Oxytocin cell inter-spike interval dis-

tributions were constructed over 1000s, model cell distributions over a simulated

25000s, normalised for comparison. Oxytocin cell distributions correspond to mean

firing rates of 12.8Hz, 9.3Hz 4.8Hz and 2.5Hz. Model cell distributions were con-

structed for equal average numbers of EPSPs and IPSPs, over a range of PSP frequen-

cies that matched the range in firing rates observed during the period of recording

analysed, producing output rates close to the average firing rates of oxytocin cells. A

single value of l (0.08) produces good fits for this cell at all levels of activity.

about 0.5Hz (lower range of spontaneous rates) to about 10Hz (peak sustained rates).

This range was spanned in the model cells by a narrow range of RE typically by a

change in RE from 110/s to 180/s. Osmotic stimulation is accompanied by a direct

depolarisation of 3-5mV [17], and an equivalent change in T0 leads to a compression

of the range of RE needed. This suggests that tonically active cells subject to EPSP

input alone will respond strongly to osmotic stimuli as a result of the direct osmotic

depolarisation, even with no change in synaptic input. Furthermore, similar changes

in RE from a different initial rate, but accompanied by the same osmotic depolari-

sation, result in very different amplitudes of responses. This suggests that oxytocin
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cells that differ in initial firing rate as a result of differing initial EPSP rates will

respond in a divergent manner to a subsequent identical stimulus (Figure 7.5B–D).

Although these inferences are broadly independent of assumptions about EPSP

size, half-life, and resting potential, they are not consistent with experimentally ob-

served behavior. Osmotic stimulation is accompanied by large increases in the activ-

ity of afferent neurons. Moreover, the inference of divergent responsiveness of cells

with different initial firing rates is not consistent with the consistency and linearity

of the neuronal responses observed in vivo.

However, in model cells, the relationship between output rate and input rate be-

comes shallower as the ratio of IPSPs to EPSPs is increased, and this is true both

for models that assume that EPSP and IPSP size are independent of voltage, and for

models that incorporate appropriate reversal potentials for both. Comparing simula-

tion results of models with and without reversal potentials, it is apparent that while

the latter are less sensitive to synaptic input, it is equally true for both models that

a high proportion of IPSPs produces a linearisation of the input-output relationship

[18]. We therefore conducted simulations combining a direct depolarisation with an

increase in balanced input, comprising equal average numbers of EPSPs and IPSPs

(Figure 7.3). Under these conditions, model cells that differ in initial output rate as a

result of differing initial input rates respond similarly to a given stimulus.

The simple oxytocin cell model described here indicates that an increase in IPSP

frequency that accompanies either an increase in EPSP frequency or a steady depo-

larising influence, will moderate the rate of increase in firing rate, will linearise the

input-output relationship, will extend the effective dynamic range of the output neu-

ron, and will tend to make the response of a neuron to a given input independent of

the initial firing rate. The theoretical analysis thus indicated that a high proportional

activation of inhibitory input confers appropriate characteristics upon the responses

of magnocellular neurons to osmotic inputs. Thus this model produced the highly

counter-intuitive prediction that when magnocellular neurons are excited in response

to an increase in osmotic pressure, that increase reflects not only an increase in exci-

tatory input but also an increase, of equal or greater magnitude, in inhibitory input.

This counter-intuitive prediction was then tested, and supported first by direct mea-

surement of a large increase in the release of the inhibitory neurotransmitter GABA

in the supraoptic nucleus during osmotic stimulation, and second by studies of the

effects of blocking GABA neurotransmission on the responses of oxytocin cells to

osmotic stimulation.

7.3.6 Firing rate analysis

As can be seen above, we might conclude from the shape of the interspike interval

distribution that spontaneous firing of an oxytocin cell is a renewal process effec-

tively Poissonian except for the effect of the HAP. However, weak, slow activity-

dependent influences might not be apparent from the interspike interval histogram,

as to exert a significant influence, they would require summation of the effects of sev-

eral spikes occurring in a short period. Since we are interested in periods of activity

as opposed to individual spikes, we can take one of two approaches: we can anal-

© 2004 by Chapman & Hall/CRC



25

min

4 mV

2 mV

0 mV

50 75 100 125

15

10

16

12

8

4

0
0

16

12

8

4

0
0 40 80 120 160 2004020 60 80 100

5

0
0

15

10

5

0

0 200100 300

RE (EPSPs/s) RI, RE (EPSPs/s)

RE (EPSPs/s)

400

A B

C D

CCK

F
ir

in
g
 r

a
te

 (
H

z
)

0%25% 50%

75%

100%

125%

150%

O
u
tp

u
t 
ra

te
 (

H
z
)

4 mV

2 mV

0 mV

Figure 7.5

(A) Response of a typical oxytocin cell to a linear increase in plasma osmotic pres-

sure, induced by an slow intravenous infusion of hypertonic saline administered in

the period marked by the double headed arrow. This recording also shows the tran-

sient excitation induced by intravenous injection of CCK. Note the striking linearity

of the increase in firing rate. (B) Relationship between the output rate of a model

oxytocin cell and EPSP rate RE . The different lines show the effect of adding IPSPs

in proportion to the EPSPs. For a balanced input, comprising equal average num-

bers of EPSPs and IPSPs, the input-output relationship is shallower and more linear

than for EPSPs alone. (C,D) Relationship between output rate and RE , for values

of resting potential varying in 0.4mV steps from the standard value (62mV), The

double-headed arrows connect points corresponding to an output rate of 1Hz at the

initial resting potential to points corresponding to 10Hz at a membrane potential de-

polarised by 4mV. This line thus indicates the apparent dynamic range of oxytocin

cells in response to osmotic stimulation in vivo. (C) shows simulations for a cell

stimulated by EPSPs alone, (D) shows simulations for a cell stimulated by an equal

number of EPSPs and IPSPs. Adapted from [16].

yse serial dependence between average firing rate measured in successive short time

intervals; or we can look at serial dependence of instantaneous interspike interval

length on the past discharge activity.
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What would we expect if spikes were generated wholly independently of the previ-

ous incidence of spikes? For a renewal process, the probability of an event occurring

at any given time is independent of the timing of preceding events. In particular:

1. The tail of the inter-spike interval distribution should be well described by a

single negative exponential (i.e. except where the refractory period of the cell

prevents firing).

2. Data should show invariant statistical characteristics when shuffled randomly.

3. As the variance of the event frequency (s 2) equals the mean of the event fre-

quency (m) for a Poisson process, the index of dispersion (s 2/m) should be

close to 1 (if the relative refractory period is relatively small), and should be

independent of bin-width.

We analysed recordings from oxytocin cells to investigate how they deviate from

randomness by each of these criteria. For each cell, the sampled firing rates (sam-

pled in successive short time intervals, e.g., 1s bins) were expressed as a distribution,

showing the relative frequency of the occurrence of particular firing rates. These dis-

tributions are typically bell-shaped, with the peak around the mean firing rate, and a

rather symmetrical spread. In the next step the interspike intervals were shuffled ran-

domly creating a new recording. We recalculated the firing rates - again for 1s bins

- and compared the new distribution of firing rates to the original distribution. If the

original distribution is based on randomly occurring intervals, than further randomi-

sation should have no effect. However, in the overwhelming majority of cases, the

distribution of randomised firing rates was wider than the distribution of observed

firing rates (Figure 7.6). In other words, the observed firing rate distribution was

more uniform than would be expected if there were no serial dependence between

interspike intervals.

If randomisation did not consistently affect the shape of the distribution we might

have reasonably concluded that there were no activity-dependent influences that had

a significant influence on spike patterning beyond those that influence the interspike

interval distribution. Since it does, we can conclude that activity-dependent mech-

anisms underlie the spontaneous activity of oxytocin cells. The mechanisms are

weak in the sense that their effects are not readily apparent in the interspike interval

distribution, but are apparent on a time scale of 1s. In other words, variations in

average activity of the order observed from second to second are enough to produce

discernible feedback effects on spike activity.

7.3.7 Index of dispersion

We stated above what we expect from the index of dispersion if spike arrival would

be generated independently of previous spikes. The index of dispersion is the ratio

of the variance of firing rate to the mean firing rate. For a Poisson distribution, the

variance of the event frequency equals the mean, and the index of dispersion = 1, and

is independent of bin width. The closer to 0 the index of dispersion, the more ordered
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Observed firing rate distribution (dark area) and randomised firing rate distribution

(white area). The figure shows the analysis of a stationary stretch of a recording

of the activity of an oxytocin neuron. Firing rates were calculated in 1 s bins and

the shaded curve shows the distribution of firing rates in these 1s bins. The original

interspike intervals were randomised and from the randomised data new second by

second firing rates were calculated. The white curve shows the distribution of firing

rates from the randomised data. The firing rate distribution has a higher peak, but

is narrower than the randomised firing rate distribution, indicating that the sample

is more uniform than would be expected from a completely random sample. The

discrepancy between the two distributions is a first indication for structure in the

firing pattern.

the underlying series. An index of dispersion above 1 suggests that the series is more

irregular than a Poisson process, and could be an indication of heavy clustering.

We calculated the index of dispersion for oxytocin cells, using different bin sizes;

the index of dispersion differed with varied bin widths in a characteristic way: for

very small bins the index of dispersion was high, (average value 0.7 ± 0.05), but

decreases when the bin width increases. Thus, when looking at the recording at a

very short time scale such as 0.06s, firing appears to be near random, but, when

looking at increasingly longer periods (up to 2s), the firing appears to be more and

more ordered. The firing appears to be most ordered when looking at a time scale

of 4 to 8s, where the index of dispersion is the smallest (0.27 ± 0.4). Since the

index of dispersion depends on bin size, the generation of spikes is not independent

of previous activity.

7.3.8 Autocorrelation analysis

Autocorrelation refers to the serial dependence of observations in a stationary time

series; autocorrelation coefficients measure the correlation between observations at

different lag times. In our case, the observations are firing rates for a specified period

of time, or window, and to calculate the autocorrelation coefficient of lag n, the

observation at time t is compared to the observation at time t +n. For small windows
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(0.06 to 1s), a negative autocorrelation was found for most oxytocin cells, but for

larger window sizes, this negative autocorrelation disappears. Thus, at small time

scales (0.06 s to 1s), periods of relatively high activity are likely to be followed by

periods with relatively low average activity, and vice versa. Thus the average firing

rate over long periods of time is much more regular than would be expected from the

local variability in firing rate.

This type of analysis can be logically extended to serial dependence of interval

length. The simplest approach is to consider how the length of a given interval d t

depends upon the history of previous spike activity the preceding intervals t2, t3,t4,
t5, · · · When oxytocin cell recordings are analysed in this way, there is a negative

relationship between t1 and t2 + · · ·+ tn, the slope of which is typically maximal for

n between 5 and 10, and which approaches 0 as n exceeds about 20. This indicates

that for oxytocin cells firing at typical background rates, there is a negative effect

of discharge rate upon spike activity through mechanisms slow enough to summate

over 5 to 10 spikes in 1 to 2s (Figure 7.7).

It should be remembered that the biological message encoded by a single oxytocin

cell is only the contribution that that cell makes to the secretion from the oxytocin

population as a whole. The overall secretion rate has considerable biological signif-

icance, and the rate must be maintained at an appropriate and steady average level

for prolonged periods when necessary for regulating sodium excretion (natriuresis),

but local second-by-second variability in the secretory rate of individual neurons is

of no biological significance unless such changes occur synchronously throughout

the population (as during reflex milk ejection). For oxytocin cells therefore, what

is important for natriuresis is only that they accurately maintain an average steady

state activity when measured over long periods. Oxytocin cells clearly have activity-

dependent negative-feedback mechanisms that ensure long term stability of average

firing rate.

7.4 Summary and conclusions

Although the interspike interval distributions of oxytocin cells seem to suggest that

spike arrival times (during spontaneous activity) are largely independent of previous

firing activity (except for the refractory period), closer analysis shows otherwise.

Firing rate analysis demonstrated that the index of dispersion did not equal 1 and was

not independent of bin width. Further, while the activity appears to be nearly random

at a small time scale, over a scale of several seconds it appears much more ordered.

The analysis of serial dependence showed that on a small time scale the activity is

clustered, but on a larger time scale the activity is more homogenous. Thus on a

short and medium time scale the cell possesses a memory and balances the activity,

whereby periods of short intervals tend to be followed by periods with longer ones,

and vice versa. However, on a long time scale the activity is rather homogenous.
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Figure 7.7

(A) Schematic diagram illustrating the technique of constant-collision stimulation

(CCS). Spontaneous extracellular spikes are recorded from a supraoptic neuron.

(continued).
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Figure 7.7

Each spontaneous spike triggers the application of an electrical stimulus pulse to

the neural stalk, which initiates an antidromic spike in the axon of every supraop-

tic neuron, since all supraoptic neurons project to the pituitary via the neural stalk.

The antidromic spike evoked in the axon of the recorded neuron is extinguished by

collision but other antidromic spikes persist to invade the cell bodies of most neigh-

bouring neurons, and thence activates intranuclear connections and dendritic release

of oxytocin. [19]. (B) Every interspike interval (t1) in a selected recording period

was paired with its predecessor (t2) and preceding intervals t3, t4, · · · . to study the

dependence of current activity upon preceding activity-B shows the analysis of a

representative oxytocin neuron, the mean t1 (± standard error) is plotted against t2
before (left upper panel) and after (right upper panel) CCS, and the corresponding

interspike interval distributions before and after CCS (bottom panel). CCS stimula-

tion induces an increase in the proportion of short intervals, as seen in the interspike

interval histograms, and an increase in clustered firing, as shown by the positive re-

lationship between t1 and t2. (C) Example of the mean t1 (± standard error) against

t2, or t2 + t3, or t2 + t3 + t4 + t5 (with linear or polynomial trend lines) for a represen-

tative neuron in control conditions (upper panels), during CCS (middle panels), and

during CCS + thapsigargin (bottom panels). From the top left panel in C it seems

there is little influence of t2 upon t1, there is a negative regression, but with a very

shallow slope. However, this weak influence is long-lasting and so summates with

successive spikes, because in looking at t1 vs. t2 + · · ·+ t5, there is now a strong

inverse correlation. During CCS this negative relationship is still present but is pre-

ceded by a positive relationship, indicating a short-lasting positive feedback action

superimposed upon the normal slow negative feedback.

These results demonstrate structure in sequences of interspike intervals, and from its

characteristics we may conclude it to be the effect of the AHP.

Thus sufficient information seems to be available from the characteristics of spon-

taneous discharge activity to produce concise computational models that can mimic

this behavior closely when they incorporate features that appropriately describe the

impact of intrinsic, activity-dependent mechanisms. Such models are unique de-

scriptors of a particular neuronal phenotype, and are by design well-matched to ex-

perimental data, but are also capable of generating fresh insight into cell properties,

testing the coherence and feasibility of biological hypotheses, and capable of gener-

ating novel and counter-intuitive predictions.

We have concentrated on demonstrating this approach for an example neuron with

limited network connectivity. The oxytocin cell is an output neuron, with few axonal

collaterals to make any recurrent connection with other neurons in the CNS, hence

activity-dependent influences in activity primarily reflect intrinsic cell properties in

normal circumstances. However, this approach is potentially particularly appropri-

ate for analysing the behavior of neurons where activity-dependent influences are

mediated by interactions with other neurons. As far as the analytical approach is

concerned, this is indifferent to whether activity-dependent influences reflect intrin-
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sic properties or external feedbacks, and concise models can be equally indifferent

to this where it helps to collapse mini-neuronal networks into single elements.

As considered above, oxytocin neurons normally function autonomously, but dur-

ing suckling in lactating rats, oxytocin cells show dramatically different behavior that

reflects weak pulse coupling through dendro-dendritic interactions [19, 20]. These

weak, mutually excitatory interactions have been extensively studied experimentally.

The underlying mechanisms are complex: oxytocin is released from the dendrites in

response to a rise in intracellular Ca2+, but little oxytocin release normally results

from spike activity. However, agents that liberate Ca2+ from intracellular stores

also cause a large mobilisation of dendritic stores of oxytocin into readily-releasable

stores that are subsequently available for activity-dependent release. One such agent

is oxytocin itself, which triggers Ca2+mobilisation from thapsigargin-sensitive stores

in the endoplasmic reticulum after binding to specific oxytocin receptors on oxytocin

cells. Thus dendritic oxytocin can enable subsequent activity-dependent oxytocin re-

lease. Oxytocin released around the dendrites has multiple other effects, in particular

inhibiting glutamate release from afferent excitatory synapses and attenuating the ef-

fect of synaptically-released GABA by post-synaptic actions. Oxytocin is released

in very high concentrations around the dendrites and in CSF has a long half-life,

making it a neurohormonal-like messenger within the brain that can potentially act

at distant sites and over a prolonged time scale, though local expression of peptidases

may protect some sites of potential action.

Dendritic release of signalling molecules is far from unique to the oxytocin cells;

dendritic release has been demonstrated in a number of systems and for a variety of

molecules including vasopressin and dopamine, and may be a wholly general phe-

nomenon, at least for peptidergic transmitters. The capacity of peptides to act at a

distance through their long half-life in the brain, their ability to act at low concentra-

tions through G-protein coupled receptors linked to a diversity of neuromodulatory

actions, and the remarkable ability of peptides to selectively induce the expression of

coherent behaviors, makes it important to integrate their effects into models of brain

function. To model dendritic influences within biophysical frameworks is of course

possible, but it may be as revealing and helpful to analyse and model their impact,

rather than the underlying mechanisms.

The impact of activity-dependent positive feedback on the normal spontaneous

activity of oxytocin cells should be apparent from the above-described statistical

analyses; but there is no visible impact, or any impact overlaps with and is fully oc-

cluded by activity-dependent negative feedback (mediated by the AHP). To look at

the potential for activity-dependent positive feedback in the network we can, how-

ever, look at how the structure of discharge activity is altered in defined experimental

conditions. First, we can look at the effect on the activity of an oxytocin cell of syn-

chronised activation of its neighbours through the technique of constant-collision

stimulation. This reveals the existence of a rapid and transient mutual excitation that

is normally masked by the HAP except when synchronous activation of neurons en-

hances this effect. Second we can look at the consequences of priming the releasable

pool of oxytocin in the dendrites by treatment with the intracellular Ca2+ mobilising

agent thapsigargin. Thapsigargin, like constant-collision stimulation, reveals weak
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mutual excitation, though whereas constant-collision stimulation amplifies this ef-

fect by the artificial synchronisation of electrical discharge, thapsigargin does so by

amplifying the releasable pool of oxytocin in the dendrites. As these actions are in-

dependent, they can be combined with additive or synergistic effect, giving rise to a

clear and strong appearance of positive-feedback excitation, and with that, clustered

firing, including occasional intense bursts of activity.

In oxytocin cells, priming of dendritic release switches the behavior of oxytocin

cells from being a population of autonomous neurons whose individual activity is

governed by their synaptic inputs independently of their neighbours, to being a

loosely-coupled population in which synchronous bursts of activity erupt through

mutual excitatory excitation, while at the same time, external influences on activity

are suppressed. This capacity for functional re-wiring of neuronal networks provides

a possible explanation for how peptides can initiate long-lasting, coherent behavioral

responses.

To summarise: neurons exhibit a wide diversity of electrophysiological pheno-

types that have important consequences for how they process information. Neurons

have several modes of communication with other neurons, as well as fast transmitter-

mediated interactions via conventional synapses, neurons can release peptides and

other substances from dendrites that have a neurohormonal-like action over a wide

target area, the specific targets being defined by their expression of specific receptors.

Neurohormonal actions have limited target specificity compared to neurotransmit-

ters, where the target is restricted to the particular synapses. Neurohormonal actions

also have limited temporal specificity, requiring integrated release over extended pe-

riods of time. The actions of neurohormones, however, can include organisational

influences on networks, changing the strength of interactions by priming releasable

reserves. While we have shown this for the releasable pools of oxytocin in dendrites,

similar mechanisms may apply generally, perhaps including priming of release from

synapses.

To model such a functional architecture we need concise models of individual neu-

rons that accurately encapsulate their electrophysiological phenotype. For a model,

the phenotype of a neuron may express not merely its intrinsic properties but also

those properties conferred upon its behavior that are intrinsic to the network; models

must be concerned with activity-dependent influences on a cell’s behavior, but need

not be concerned whether those influences result from a cell’s intrinsic membrane

properties or from recurrent network connections. However, the electrophysiolog-

ical phenotype may be functionally plastic under the influence of certain types of

signal, including in particular neurohormonal signals.

This chapter has discussed in particular examples of hypothalamic neurons. We

have argued that the diversity of neuronal phenotypes is great, and we need models

to understand the functional implications of the differences. We have argued that

for this we do not necessarily need complex biophysical models, but we do need

quantitatively accurate, computationally concise representations of the electrophys-

iological phenotypes. It may be questioned whether there is not some difference

between the hypothalamus and other regions of the brain, such as the neocortex. Of

course there are differences. Most importantly, we know some of the things that the
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hypothalamus does; sometimes in great detail, including why, and what we don’t

know is generally amenable to hypothesis and testing. We also know that what the

hypothalamus does is important. But we need strong conceptual frameworks, with

predictive power, to build our understanding.
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8.1 Introduction

Neurons in many sensory systems tend to fire action potentials intermittently with

spikes grouped into bursts of high-frequency discharge. Functionally, bursts have

been implicated in many different phenomena, such as efficient transmission of sen-

sory information [76], regulation of information flow during slow-wave sleep [116],

selective communication between neurons [58], epileptic seizures [84], and synaptic

plasticity [94]. In recent years, evidence has accumulated that bursts indeed encode

sensory information and that they may even be more reliable indicators of important

sensory events than spikes fired in tonic mode [47, 76, 82, 86, 99, 107, 128]. To un-

derstand the biological relevance of bursts and the cellular mechanisms underlying

their generation, a wide variety of approaches are needed. In vivo recordings from

neurons in awake/behaving animals allow investigating how different firing modes

affect behavioral performance. In vitro experiments, on the other hand, offer a greater

control over the preparation and are best suited to study cellular mechanisms of burst-

ing. Finally, various levels of modeling can summarize experimental findings, test

our understanding of mechanisms, and inspire new experiments. In this chapter, we

will follow this line of investigation and review a number of recent studies of burst

firing in weakly electric fish.

The electrosensory system of South American weakly electric fish has proven to

be extremely well suited for combined neuroethological and computational studies

of information processing from systems neuroscience to the characteristics of ion

channels. In this review, we will give a brief introduction to the electrosensory sys-

tem, describe in more detail the in vivo firing properties of electrosensory pyramidal

cells in the hindbrain of these fish, and report on the potential behavioral role of

bursts. Next, we present results of in vitro studies that have elucidated some of

the cellular mechanisms underlying burst generation in pyramidal cells. This is fol-

lowed by a discussion of detailed compartmental models that successfully reproduce

in vitro bursting and reduced models offering a dynamical systems perspective on

burst mechanisms. We conclude by comparing burst firing in weakly electric fish to

other systems.

8.1.1 What is a burst?

Spike bursts have been described in a large number of systems. Voltage traces from a

selection of bursting neurons are displayed in Figures 8.1 and 8.5. As is evident from

these examples, bursts can occur on a wide range of time scales and vary in their fine

temporal structure. Because the biophysical mechanisms underlying bursts can be

so diverse, it comes as no surprise that no unique definition of bursts exists. We will

use the term here for the basic event that is part of every burst definition: a burst

is a series of action potentials fired in rapid succession, set off in frequency against

the rest of a spike train. In an interspike interval (ISI) histogram, burst spikes will

typically fall into one peak at short intervals with the rest of the intervals forming
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either a shoulder to this peak, a low plateau or a second, smaller peak at larger values

(Figure 8.2a) [40, 86]. This very general definition has been used in many systems to

classify spike sequences as belonging to bursts or not. However, other criteria can be

applied as well, as illustrated in Figure 8.2b-d (see, e.g., [13, 28, 37, 49, 51, 60, 78,

95, 127, 131]). The specific choice of criterion will largely depend on the properties

of the system under study.

8.1.2 Why bursts?

We can now ask in more detail why some nerve cells generate bursts. The answer

may not be the same for every cell type, and there may even be different uses for burst

firing within the same neuron under different behavioral conditions. At a mechanis-

tic level, evidence has been accumulating that the reliability of synaptic transmission

can be significantly enhanced for spikes arriving in rapid succession at the presy-

naptic terminal [76, 113, 120, 128, 129, 132]. The physiological consequence of

increased transmission probability for burst spikes is noise filtering, where isolated

presynaptic spikes can be conceived as noise and bursts as signal [41, 76]. Under this

scheme, burst firing can improve the reliability of information transmission across

synapses. A recent alternative and complementary proposal states that bursts may be

a means of selective communication between neurons [58]. If postsynaptic neurons

display membrane oscillations with cell-specific frequencies, the interspike intervals

within a given presynaptic burst may determine which of the postsynaptic cells will

be induced to spike.

But what is it that is signaled by bursts? In the case of relay cells of the lateral

geniculate nucleus, it has been shown that bursts as well as spikes generated in tonic

mode encode visual information [99]. A current hypothesis states that bursts may

signal the detection of objects to the cortex while tonic firing may serve in the en-

coding of object details [46, 99, 107]. Another possibility is heightened selectivity

of burst spikes compared to isolated spikes as observed in cells in primary auditory

cortex that show sharpened frequency tuning for bursts [35]. In Section 8.3 of this

chapter we will review recent work on weakly electric fish showing that spike bursts

of pyramidal cells at an early stage of electrosensory processing extract behaviorally

relevant stimulus features more reliably than isolated spikes.

8.2 Overview of the electrosensory system

Electrosensation may seem exotic to us, but it forms an essential part of the sensory

world for a number of animal taxa. It allows them to navigate, detect approaching

predators and prey, and to communicate (for recent reviews see [10, 124]). Fur-

thermore, some of its properties make for interesting comparisons with other, less

exotic, sensory systems: Similar to the auditory system, the electrosensory system
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Figure 8.1

Examples of spike bursts observed in various preparations. a) The R15 neuron of

Aplysia generates slow membrane potential oscillations on which bursts of action

potentials ride (adapted from [6]). b) Rebound bursts in response to hyperpolariz-

ing current pulses from a depolarizing holding potential in thalamic relay neurons

(arrow indicates resting potential; adapted from [59]). c), d) Two types of bursting

behavior in cortical neurons of the cat (called intrinsically bursting and chattering

cells, respectively; adapted from [43]).
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Figure 8.2

Examples of criteria used to assign spikes to bursts. a) A dip in the ISI histogram

separates burst interspike intervals from longer interburst intervals (arrow; same cell

as in Figure 8.5). b) Joint ISI plots clearly identify initial spikes of a burst (right

rectangle) from intraburst spikes (left square; adapted from [99]). c) Bursts may

be defined by computing a surprise factor that measures their deviations from the

expected patterns of spontaneous independent spikes (adapted from [73]). d) Spike

train autocorrelation functions of bursting neurons sometimes show clear peaks that

are eliminated by treating bursts as single events (gray line; adapted from [86]). A

similar definition has used the power spectrum of spike trains (Fourier transform of

the autocorrelation function; see [4]).
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is specialized in processing fast variations in stimulus amplitude and phase. It is

quite fascinating that electrosensory processing in fish and auditory processing in

barn owls and bats have evolved similar computational algorithms for time coding

(e.g., [21, 66, 67]). The multiple two-dimensional topographical representations of

the sensory surface (electroreceptors in the skin of the fish) within the brain are found

similarly in the visual system where there are multiple topographical representations

of the retina [62]. Additionally, the principal electrosensory neurons in the hindbrain

come as ON- and OFF-types, have center-surround receptive fields, and as in the case

of mammalian thalamic neurons (e.g., [29, 107, 111]), their responses are shaped by

descending feedback.

8.2.1 Behavioral significance of electrosensation

Electroreception comes in two types, passive and active. The passive sense takes ad-

vantage of the electric fields generated by living organisms or, as has been shown in

sharks, the electromagnetic field of the earth (e.g., [63]). Unlike passive electrosen-

sation and most other sensory modalities, active electrosensation relies on signals

originating from the animal itself. The fish generates an electric field through dis-

charge of an electric organ extending along most of the caudal part of its body (Fig-

ure 8.3). The Gymnotiformes are one of two groups of teleosts that independently

evolved active electrosensing [88]. Fish of the two Gymnotiform genera treated here,

Eigenmannia and Apteronotus, produce a quasi-sinusoidal electric organ discharge

(EOD) waveform with frequencies between 200 and 1200 Hz, the exact range being

species-specific.

Objects or animals with impedance different from that of water perturb the electric

field surrounding a fish. Electroreceptors in the skin monitor these distortions and

thus provide information about obstacles, approaching predators, or prey (Figure 8.3;

[2, 89, 90]). Nearby conspecifics also engage in electric communication, for example

in the context of courtship [48, 55, 87]. Thus, the active electrosense allows weakly

electric fish to forage and to communicate under conditions when other senses are

more or less useless as is the case in their natural habitat: They are nocturnal animals

and live in turbid tropical freshwaters, which strongly limits the usefulness of vision.

Similar to echolocation in bats, active electrosensation opens an ecological niche

that is safe from most diurnal predators. Additionally, it opens a new channel for

intraspecific communication.

8.2.2 Neuroanatomy of the electrosensory system

Two sets of primary afferents transmit information on electric field perturbations

from electroreceptors in the skin to the first central processing stage in the hindbrain,

the electrosensory lateral line lobe (ELL). So-called T-receptor afferents fire strictly

phase-locked to each cycle of the EOD, thus carrying information about phase distor-

tions [103]. We will, however, focus on the amplitude-coding pathway that involves

a different set of afferents, P-receptor afferents. These nerve fibers fire action po-

tentials in a probabilistic fashion (thus the ”P”) depending on EOD amplitude (see
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Figure 8.3

Objects in the vicinity of a weakly electric fish distort the self-generated electric

field. The ensuing change in current flow across the skin - the electrosensory image

of the object - is monitored by electroreceptors. a) The sketch is a snapshot of the

isopotential lines of the electric field at the peak of an EOD cycle with an object of

low conductivity distorting the field. b) Short section of the quasi-sinusoidal EOD

waveform of Apteronotus albifrons recorded as the potential difference between an

electrode next to the head and one close to the tail. c) Sketch illustrating the rela-

tionship between amplitude modulation waveform (AM) and the underlying EOD

carrier signal.
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Figures 8.3c and 8.4b). Several thousand P-receptor afferents carry information from

all parts of the body to the ELL [22]. There, each individual fiber trifurcates and

terminates in three adjoining somatotopic representations of the fish’s skin, the cen-

tromedial (CMS), centrolateral (CLS), and lateral (LS) segments of the ELL [53]

(Figure 8.4a).

P-receptor afferents directly synapse onto one set of principal output cells of the

ELL, the basilar pyramidal cells or E-units (E-xcited; Figure 8.4). The other set of

output neurons, the non-basilar pyramidal cells, or I-units (‘I-inhibited’), receives

indirect feedforward input from the afferents via inhibitory interneurons [81]. Con-

sequently, E-units fire action potentials in response to increases in electric field am-

plitude, whereas I-units fire in response to decreases [102] (Figure 8.4b). The spatial

receptive fields of pyramidal cells are more complex than their direct connections

with primary afferents would suggest: E-units have an excitatory center and an in-

hibitory surround and vice versa for I-units. This is analogous to ON- and OFF-cells

in the visual system [7, 11, 102, 109]. A prominent feature of both types of pyrami-

dal cells is their extensive apical dendrites that extend far into the molecular layer of

the ELL (Figure 8.4a). Here, pyramidal cells receive proprioceptive input and mas-

sive feedback from higher centers of electrosensory processing. Descending control

via the apical dendrites has been shown to play a role in oscillatory responses of

pyramidal cells, in gain control, in shaping receptive field size, in adaptive filtering

of predictable sensory patterns, and may also be involved in a sensory searchlight

mechanism [9, 14, 16, 31].

8.2.3 Electrophysiology and encoding of amplitude modulations

Behaviorally relevant amplitude modulations of the electric field induced by objects,

prey, or conspecifics cover a frequency range of up to 80 Hz [8]. With their tonic

response properties and firing rates in the range from 50 to 600 spikes per second,

P-receptor afferents appear well suited to encode these amplitude modulations by

changes in instantaneous firing rate [8, 91, 98, 133] (see Figure 8.4b). This was

confirmed in studies applying linear stimulus-estimation algorithms to the responses

of P-receptor afferents to stochastic modulations of electric field amplitude [23, 40,

70, 86, 130]. Up to 80% of the stimulus time course can be recovered from single

primary afferent spike trains. Therefore, it seems that, prior to entering the hindbrain,

electrosensory information is faithfully encoded and undergoes very little processing.

What kind of processing takes place in the ELL? One hypothesis could be that

single pyramidal cells perform even better at transmitting detailed information on

the stimulus time course than P-receptor afferents by averaging out noise over 5 to

20 primary afferents converging onto them [7, 110]. This does not seem to be the

case when amplitude modulations are presented over large areas of the body sur-

face, mimicking communication signals. Linear stimulus estimation from pyramidal

cell spike trains in Eigenmannia yielded poor results compared to primary afferents

[40, 68, 86]. Since neighboring pyramidal cells receive input from overlapping areas

of the fish’s skin, it is conceivable that the information is conveyed in a distributed

manner. However, even when stimulus estimation was based on pairs of spike trains
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from simultaneously recorded pyramidal cells with overlapping receptive fields, the

fraction of the stimulus recovered was still well below the fraction encoded by sin-

gle primary afferents [68]. Recent studies in the CLS and LS of the related weakly

electric fish Apteronotus leptorhynchus, however, indicate that pyramidal cells may

not act as a homogeneous population in this respect. Bastian and coworkers found

that the efficiency for encoding global amplitude modulations scales with the spon-

taneous firing rate of pyramidal cells (3-50 Hz) [11]. Furthermore, the spatial extent

of the stimulus seems to affect how much information a cell can transmit about the

amplitude modulations [11]. Thus, it seems possible that a subset of pyramidal cells

is able to transmit information on the electric stimulus time course, and that the spa-

tial extent of stimuli affects the response properties, probably via feedback input to

the apical dendrites [31]. However, even the best performing cells observed so far do

not improve on the performance of P-receptor afferents [11, 39, 40, 86, 130].

In summary, compared to the primary afferents, pyramidal cells of the ELL are

poor encoders of the stimulus time-course. Hence, the question remains, what kind of

information do most ELL pyramidal cells transmit to the next stage of electrosensory

processing?

8.3 Feature extraction by spike bursts

8.3.1 Bursts reliably indicate relevant stimulus features

Despite their generally poor performance at encoding the time course of amplitude

modulations, inspection of pyramidal cell spike trains shows that their responses are

selective (Figure 8.5). E-units typically fire isolated spikes or short spike bursts in

response to upstrokes in stimulus amplitude whereas I-units fire in response to down-

strokes. Bursts consist of 2 to 10 spikes with a mean of about 3 spikes per burst. On

average, roughly 60% of the spikes fired by a given cell occur in bursts [40]. Spatially

extended upstrokes and downstrokes in amplitude are known to be integral parts of

the electrosensory input eliciting the so-called Jamming Avoidance Response (JAR

[52]). In case of the JAR, the signals of two conspecifics interfere, creating a beat

pattern extending over a large part of the body. To avoid low-frequency beats, which

affect the fish’s ability to electrolocate, nearby animals can actively increase the dif-

ference between their EOD frequencies. Localized upward and downward deflec-

tions in EOD amplitude moving across the sensory surface, on the other hand, may

signal the presence of prey [89]. Thus, global as well as local up- and downstrokes in

amplitude are presumably important electrosensory events. It therefore seems plau-

sible that pyramidal cells could signal the occurrence of these temporal stimulus fea-

tures without transmitting detailed information on the stimulus time course. Various

methods are available to quantify neuronal classification performance, for example

neural network models that learn the optimal stimulus pattern eliciting spikes (e.g.,

[74]). A more direct approach derived from signal detection theory uses a linear op-
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Figure 8.4

Processing of amplitude modulations of the electric field by P-receptor afferents and

pyramidal cells in the ELL. a) P-receptor afferents enter the hindbrain via the oc-

tavolateral nerve (VIII) and trifurcate to form three somatotopic maps of the body

surface (LS: lateral segment; CLS: centrolateral segment; CMS: centromedial seg-

ment). A fourth map (medial segment, MS) is formed by passive electrosensory

input, which is not treated here. The cross-section through the hindbrain of Eigen-

mannia shows the layered organization of the ELL maps with the deep neuropil layer

(dnl) containing the primary afferent fibers, and the somata of the pyramidal cells

forming a distinct dark layer (pyr). Basilar pyramidal cells receive direct input from

P-receptor afferents onto their basilar dendrite, while non-basilar pyramidal cells

receive indirect inhibitory input via interneurons. In the molecular layer (mol) de-

scending inputs connect onto the apical dendrites of pyramidal cells (adapted from

[86]). b) Raster plots of spike trains of P-receptor afferents, E- and I-cells in response

to sinusoidal amplitude modulations (top trace).
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Figure 8.5

Pyramidal cells tend to fire spikes in short bursts. Intracellular recording of an I-

type pyramidal cell in the CMS stimulated with random amplitude modulations (top

trace). Note the coupling of spike bursts and isolated spikes to downstrokes in am-

plitude (adapted from [86]).

eration on the input signal followed by a threshold computation. Thus, the specific

issue of interest is whether burst spikes perform better at extracting stimulus features

than spikes occurring in isolation.

8.3.2 Feature extraction analysis

To quantify how well a spike train discriminates stimulus patterns, one first needs

to estimate the optimal stimulus feature for eliciting spikes. Here, we describe the

application of a Euclidian pattern classifier to this problem (see [40, 86] for a slightly

more general method). First, the spike train, x(t), and the stimulus, s(t), are binned

so as to allow a maximum of one spike per bin. A variable rt is defined to take the

value 1 if the time bin ending at t contains a spike and the value 0 if it does not contain

a spike. Stimulus segments, st , ending at time t and comprising ∼ 100 bins prior to

time t are assigned to one of two ensembles, P(s|r = 1) and P(s|r = 0), depending

on whether st preceded a time bin containing a spike or not (i.e., rt = 0 or 1; Figure

8.6). The feature, f, is computed from the means, m1 and m0, of these conditional

distributions P(s|r = 1) and P(s|r = 0): f = m1−m0. For E-units, the typical feature

is a strong upstroke in stimulus amplitude preceded by a small downstroke (Figure

8.6 bottom), for I-units it is a strong downstroke preceded by a small upstroke (Figure

8.7a) [40, 86]. It is important to note, however, that the exact shape of the classifier

depends not only on the individual cell studied but also on the bandwidth of the

stimulus [86]. Typically, only the time bins between 0 ms (spike occurrence) and

−300 ms show significant deviations from an amplitude of 0 mV suggesting that

pyramidal cells do not integrate over longer time spans of sensory input.

To assess the separation between the two ensembles of stimulus segments, each

segment is projected onto the feature vector, f, and compared to a threshold value,

q : hf,q (s) = 〈f;s〉−q , where 〈;〉 denotes the scalar product. The projection, hf,q (s),
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Figure 8.6

Computation of the Euclidian pattern classifier. For each time bin of a given spike

train the stimulus vector preceding this bin is assigned to one of two ensembles

(P(s|r = 0) and P(s|r = 1)) depending on whether the time bin contains a spike

or not. The Euclidian classifier is defined as the mean stimulus preceding spikes

(m1, right) minus the mean stimulus preceding time bins without a spike (m0, left):

f = m1 −m0. For this E-unit, the feature is a strong upstroke in amplitude, peaks at

around −25 ms, and then returns to 0 mV. Bandwidth of the stimulus: 0 to 44 Hz.

Adapted from [86].

can be conceived of as a measure of similarity between a stimulus segment and the

feature vector.

The performance of this Euclidian classifier in predicting the occurrence of spikes

is quantified using a Receiver Operating Characteristic (ROC) analysis [38, 40, 44,

86]. First, the conditional probability distributions of the projections,

P(hf,q (s)|r = 1)

and

P(hf,q (s)|r = 0),

are plotted and compared to threshold, q (Figure 8.7b). A spike is detected if

hf,q (s) > 0, that is if 〈f;s〉 is larger than the threshold (to the right of the dashed

vertical line in Figure 8.7b). Integrating the tail of the distribution P(hf,q (s)|r = 1)
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to the right of the threshold, q , yields the probability of correct detection, PD. The

right tail of the distribution P(hf,q (s)|r = 0) corresponds to the probability of false

alarms, PFA. By varying the threshold value, q , PD can be determined as a func-

tion of PFA. The resulting curves are called ROC curves (Figure 8.7c). The larger

the area under a given curve the better is the detection performance. However, false

alarms are not the only kind of error that can occur. The second type of error happens

when a spike is missed because the corresponding projection value is below thresh-

old (P(hf,q (s)|r = 1) to the left of q ). Therefore, a measure of the misclassification

error has to incorporate both, the probability of false alarms and the probability of

missed events: PE = 0.5[PFA +(1−PD)]. The best classification performance of an

ideal observer corresponds to the minimum of the plot of PE versus PFA (Figure 8.7d).

As is evident from Figure 8.7b, the probability distribution of stimulus projections

for burst spikes is more clearly separated from the distribution of stimuli preceding a

spikeless bin than is the one for isolated or all spikes. Consequently, the ROC curve

for burst spikes rises more steeply than the one for isolated spikes and all spikes

(Figure 8.7c) yielding the lowest misclassification errors (Figure 8.7d). The superior

feature extraction performance of burst spikes was typical for all cells studied so far

in the CMS and LS of the weakly electric fish, Eigenmannia (overall 133 pyramidal

cells [40, 68, 69, 86]).

When the same analysis was applied to spike trains of primary afferents, they con-

sistently performed worse than pyramidal cells (Figure 8.7e) [86] suggesting that

information is filtered in different ways at the first two stages of electrosensory pro-

cessing. Feature extraction analysis also revealed differences in performance be-

tween cells recorded in different maps of the ELL. Cells from the CMS displayed

lower misclassification errors than cells from the LS (Figure 8.7f) [86]. This find-

ing correlates well with the different behavioral significance attributed to the two

maps. The CMS has been shown by lesion experiments [85] to be necessary and

sufficient for JAR behavior, which is known to involve the correlation of up- and

downstrokes in stimulus amplitude with advances or delays in EOD phase [52]. The

LS, on the other hand, was shown to be necessary and sufficient for the processing

of electrocommunicatory signals [85], which may involve a more complex analysis

of the electrosensory input.

Recently, the analysis of electrosensory information transmission was extended

to simultaneously recorded spike trains of pairs of pyramidal cells with overlapping

receptive fields [68]. Cross-correlation analysis showed that correlations in spike

timing between cells of the same type (two E-units or two I-units) were broad (tens

of milliseconds) and were not caused by shared synaptic input, but were induced by

the independent coupling of both cells to the stimulus. Feature extraction analysis

demonstrated that spikes of two nearby cells occurring within a coincidence time

window of 5 to 10 ms significantly improved the reliability of feature extraction

compared to burst spikes of the individual neurons (Figure 8.8b,c). Interestingly,

a large fraction of the coincident spikes occurred in bursts (for a coincidence time

window of 5 ms, 63±15%, mean± standard deviation; see Figure 8.8a). This finding

supports the thesis that coincident bursts of spikes may constitute the most reliable

neural code [76]. The similar time scales of the typical intraburst interspike interval
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Figure 8.7

ROC analysis of feature extraction performance. a) A representative optimal stimu-

lus feature of an I-unit. Bandwidth of the stimulus: 0-12 Hz. b) Probability density

distributions of the projections of stimulus segments preceding time bins contain-

ing a spike and of stimulus segments preceding time bins without a spike (black

curve). Spikes were assigned to two classes, isolated spikes (blue) and burst spikes

(red), based on the ISI histogram (Figure 8.2). The probabilities of correct detection

and of false alarms are computed by integrating the tails of the probability distribu-

tions to the right of threshold, q (dashed vertical line): PD = P(〈f;st〉 > q |rt = 1),
PFA = P(〈f;st 〉> q |rt = 0). c) ROC curves obtained by varying the threshold q along

the abscissa in b. The dashed line indicates chance performance. d) Probability of

misclassification, PE , versus probability of false alarm. The best performance of the

Euclidian classifier can be read from the minimum of this plot. e) Comparison of

feature extraction performance by P-receptor afferents (white bars) and pyramidal

cells (black bars). The arrows indicate the respective median values of the two distri-

butions. f) Distributions of the misclassification errors for pyramidal cells from the

CMS (black bars) and LS (white bars). (a)-(d) adapted from [39]. (e) and (f) adapted

from [86].
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(10-15 ms) and of the best coincidence time window (5-10 ms) suggest that, from

the viewpoint of the postsynaptic target, coincident spikes may be considered as

distributed bursts (see also [128]).

ROC analysis has been applied before to compare signal detection performance

by burst and tonic response modes of relay cells in the lateral geniculate nucleus

of anesthetized cats [46]. Cells were found to indicate visual stimuli more reliably

when firing in burst mode than when in tonic mode. While the role of burst firing in

the thalamus remains debated [108, 115], evidence is mounting that bursts in thala-

mic relay cells do occur in the awake animal and that they convey stimulus-related

information (reviewed in [107], see also [120, 121, 131]). It seems, however, that

bursts are much less prevalent in thalamic relay cells of awake mammals than they

are in pyramidal cells of awake weakly electric fish. Thalamic bursts often appear to

be transient responses to the beginning of sensory events, which are then followed

by tonic encoding of stimulus details [47, 106, 107]. In contrast, bursts in electric

fish pyramidal cell do not abate over the course of a long stimulus but seem to be

the major signaling mode employed by those cells. The feature extraction analysis

developed by Gabbiani et al. [40] moves beyond the method employed by Guido et

al. [46] by yielding information on the optimal feature driving a given cell and on

how reliably the occurrence of this feature is indicated by different subsets of spikes

in a spike train.

In conclusion, it appears that, at least for global modulations of stimulus ampli-

tude as used in the studies of weakly electric fish described above, electrosensory

information transmission undergoes a dramatic transformation at the earliest stages

of processing. The primary afferents reliably encode the stimulus time course by

their instantaneous firing rate. At the first central nervous stage of electrosensory

processing pyramidal cells extract behaviorally relevant features from the persistent

stream of afferent input and indicate their times of occurrence to higher-order nuclei

by firing short bursts of spikes and by stimulus-induced coincident activity of groups

of cells.

8.4 Factors shaping burst firing in vivo

As described for other systems [24, 26, 80, 83], the propensity of ELL pyrami-

dal cells to burst is related to their morphology and seems to be under descending

control from higher centers of sensory processing. Bastian and coworkers studied

spontaneous burst firing by pyramidal cells of the CLS and LS in Apteronotus lep-

torhynchus [12, 13]. Spontaneous firing rate of these neurons is negatively correlated

with the size of their apical dendrite, whereas the probability to generate sponta-

neous spike bursts increases with the length of the dendritic arbor. The largest apical

dendrites reach high up into the molecular layer of the ELL (Figure 8.2a) [12, 13].

There, the apical dendrites are contacted by parallel fibers originating from the pos-

© 2004 by Chapman & Hall/CRC



Figure 8.8

Feature extraction by distributed bursts. a) Fraction of coincident spikes of two si-

multaneously recorded I-units from CMS with overlapping receptive fields. Black

bars: proportion of spikes of neuron A (left) and B (right) coinciding with spikes

on the respective other neuron within the time window displayed on the abscissa.

White bars: proportion of coincident spikes that occurred in bursts. Grey bars: over-

all percentage of spikes that occurred in bursts. b) Left: Minimum probability of

misclassification by coincident spikes of neurons A and B as a function of the size

of the coincidence time window. Spikes coinciding within a time window of 5-10

ms performed significantly better at feature extraction than did isolated or even burst

spikes of the individual neurons (right). c) Summary diagram of feature extraction

performance by coincident spikes of pairs of pyramidal cells of the same type (E-E

pairs and I-I pairs pooled; n=16), by burst spikes of individual cells, and by isolated

spikes of single cells (n=58). Adapted from [68].
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terior eminentia granularis of the cerebellum [9, 16]. These parallel fibers control

the spontaneous firing rate of pyramidal neurons as well as their probability to pro-

duce spontaneous bursts [13]. They are part of an indirect electrosensory feedback

pathway, which is thought to be involved in gain control [16]. Therefore, it is con-

ceivable that this indirect feedback could switch pyramidal cell responses between a

bursting and a tonic mode. Firing in burst mode would improve feature extraction

performance, whereas in tonic mode pyramidal cells might function as encoders of

stimulus time course [13]. Switching between tonic and burst mode, however, has

so far not been demonstrated for stimulus-driven pyramidal cell responses. Recent

evidence suggests that not only indirect feedback to the dorsal molecular layer but

also direct inhibitory feedback to the proximal apical dendrites of pyramidal cells

affects their firing patterns [31]. This inhibitory direct feedback pathway supports an

oscillatory component of burst responses. It is spatially diffuse and is strongest when

amplitude modulations occur over large areas of the body surface as they do when

fish engage in electrocommunication. For localized, prey-like stimuli, however, the

inhibition is only weak and does not support oscillatory burst responses.

8.5 Conditional action potential backpropagation
controls burst firing in vitro

Slice preparations of the ELL of Apteronotus leptorhynchus have proven enormously

fruitful in elucidating cellular and network mechanisms of electrosensory process-

ing (reviewed in [16, 123]). The laminar organization of the ELL allows for accu-

rate placement of recording and stimulating electrodes in various layers along the

pyramidal cell axis (see Figure 8.4a). Deprived of the natural barrage of primary

sensory and feedback inputs, and only stimulated by intracellular constant current

injection, pyramidal cells in vitro display rhythmic oscillations of the membrane po-

tential, which periodically trigger series of high-frequency spike bursts (30 to over

300 Hz) [123]. The frequency characteristics of this oscillatory burst discharge (burst

frequency and intra-burst spike frequency) vary across the three topographic maps of

the ELL roughly correlating with pyramidal cell tuning properties observed in vivo

[109, 124, 126].

8.5.1 Experimental evidence for conditional backpropagation

It was shown early on [125] that active backpropagation of Na+ spikes into the api-

cal dendrite is an integral part of high-frequency burst generation by pyramidal cells,

similar to what has been described for several other systems [50]. Spikes are initi-

ated at the soma or axon hillock and travel back into the apical dendrite up to the

first major branch points (∼200 mm). Membrane depolarization and repolarization

in the dendrite are slower than in the soma and therefore dendritic spikes are longer
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in duration than somatic ones. A fast afterhyperpolarization (AHP) of the somatic

membrane increases the potential difference between the soma and the still depolar-

ized dendrite and leads to a sizable amount of current being sourced back into the

soma where it supports a depolarizing afterpotential (DAP; Figure 8.9). In the course

of a burst, somatic DAP amplitude is potentiated because of frequency-dependent

broadening of dendritic spikes. Consecutive DAPs sum up and cause the frequency

of somatic spike generation to increase. Eventually, the DAP itself will reach thresh-

old for spike initiation and a high-frequency somatic spike doublet will be generated

(ISI typically < 6 ms). Since the refractory period of the apical dendrite is longer

(∼4.5 ms) than that of the soma (∼ 2 ms), the dendrite does not support active back-

propagation of the second spike of the doublet, and the corresponding DAP at the

soma fails allowing the AHP to terminate the burst (Figure 8.9b). This mechanism

of burst generation and termination has been termed conditional backpropagation

[75], because backpropagation is essential for burst production, and it is conditional

on sufficiently low spike frequencies. When spike frequency exceeds the dendritic

refractory period, backpropagation fails and the burst is terminated.

A number of cellular components of the burst mechanism have been identified.

Na+ channels are distributed in a punctate manner along the proximal 200 mm of

the apical dendrite consistent with the finding that active backpropagation of TTX-

sensitive spikes terminates at about this distance from the soma [125]. A candidate

mechanism for the broadening of dendritic spikes is cumulative inactivation of a

dendritic K+-conductance [75]. The inactivation would slow the repolarization of

the dendritic membrane potential in a spike-frequency-dependent manner, thus in-

creasing the amplitude of the somatic DAP. A likely candidate for this current is the

Apteronotid homologue of the mammalian Kv3.3 K+-channel (AptKv3.3), which

is extensively distributed along the entire axis of pyramidal cells [96, 97]. Local

blockade of dendritic AptKv3.3 led to slowing of spike repolarization and increase

in somatic DAP with a time-course similar to that of a regular burst. This manipu-

lation also lowered the threshold for burst discharge evoked by current injection into

the soma [97]. Therefore, it seems likely that this high-voltage-activated K+ channel

is either directly involved in the mechanism of burst discharge or at the very least

can modulate the threshold for burst generation [93]. Another contribution to the po-

tentiation of the somatic DAP in the course of a burst comes from a persistent Na+

current which is activated by the increasing dendritic spike duration [34]. In contrast

to other systems (for review see [56]), Ca2+ currents or Ca2+-dependent K+ currents

do not appear to be necessary for burst generation [34, 75, 93].

The detailed knowledge of pyramidal cell morphology, the organization of pri-

mary sensory and feedback input, and of the conductances shaping burst firing in

vitro, makes pyramidal cells ideally suited for detailed modeling of the mechanism

underlying burst firing. This mechanism differs in interesting ways from burst gener-

ation as described in several other systems. One obvious peculiarity of ELL pyrami-

dal cell bursts is that ISI duration decreases in the course of a burst (Figure 8.9b), a

phenomenon that has not been described in any other system so far. In vivo, however,

this ISI pattern can be observed only rarely (Krahe, unpublished observations). With

natural synaptic input, other factors like inhibition and the interplay between affer-
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ent and feedback input may also shape the bursts and contribute to their termination.

Furthermore, the basilar dendrites of E-units warrant closer investigation since they

have been shown to be equipped with Na+ channels as well as AptKv3.3 K+ chan-

nels, and might thus also support backpropagation and bursting in a way similar to

the apical dendrite [96, 97, 125] (see also [100] for similar conclusions in neocortical

pyramidal neurons).

8.5.2 Multicompartmental model of pyramidal cell bursts

Based on the detailed spatial reconstruction of a dye-filled E-type pyramidal cell

[17], Doiron et al. [33, 34] developed a multicompartmental model that successfully

reproduces burst firing as it is observed in vitro (Figure 8.9). The main goal of these

studies was to identify the components of the burst mechanism that underlie dendritic

spike broadening and somatic DAP potentiation since those are responsible for the

progressive decrease in ISI duration and eventual burst termination. A key feature of

the model was the presence of fast Na+ and K+ currents in both somatic and dendritic

compartments, to account for Na+ action potential generation and backpropagation

(Figure 8.10a). In order to achieve the narrow somatic and broader dendritic spike

shapes (see 5.5.1), the time constants of the active conductances in the dendrite had

to be increased relative to the soma. This also yielded a relatively longer refractory

period for the dendritic spike compared to the somatic one.

While the core model outlined above reproduced key features of the somatic and

dendritic response, it failed to generate spike bursts. Doiron et al. [33] were able to

exclude a number of potential burst mechanisms described for other systems: Ca2+-

or voltage-dependent slowly activating K+ channels, slow inactivation of the den-

dritic Na+ channel, and slow activation of the persistent Na+ current. Finally, modi-

fication of the dendritic delayed rectifier channel yielded burst properties correspond-

ing to the in vitro findings: A low-threshold slow inactivation of the K+ conductance

led to dendritic spike broadening in the course of a burst and to a corresponding

increase in the DAP amplitude, which eventually triggered a doublet, leading to den-

dritic spike failure and burst termination due to the AHP. Whereas slow activation of

the persistent Na+ current proved insufficient to elicit proper bursting, it was recently

shown to be an important component of the DAP potentiation [34]. It is activated by

the broadening of dendritic spikes and boosts the sub-threshold depolarization of the

somatic membrane. Thereby it largely determines the time it takes to reach threshold

for doublet firing. Since the doublet terminates the burst, the persistent Na+ current

thus controls burst duration. With the interburst period being largely fixed by the

duration of the AHP, the persistent Na+ current also determines burst oscillation pe-

riod [34]. Since it can be activated by descending feedback to the apical dendrites

[15, 17], this provides a potential mechanism for controlling burst firing depending

on behavioral context.

To summarize, the key features of the pyramidal cell burst mechanism are i) a

dendritic Na+ conductance that supports active backpropagation of spikes into the

dendrite and that feeds the somatic DAP, ii) a slow cumulative inactivation of a de-

layed rectifier current which leads to dendritic spike broadening in the course of a
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Figure 8.9

Summary of the mechanism underlying high-frequency burst generation in pyrami-

dal cells in vitro. a) Schematic diagram of a pyramidal cell with a narrow spike

recorded in the soma (1). The somatic spike is actively propagated back into the

apical dendrite where a much broader version of the same spike can be recorded

(2). Current sourcing from the dendrite back into the soma causes a DAP (3). b)

Top: Oscillatory burst discharge recorded in the soma of a pyramidal cell with 0.74

nA depolarizing current injection. Middle and bottom: Somatic and dendritic spike

burst recorded separately in two different cells. The time scales are adjusted to allow

alignment of spikes. Somatic spikes are truncated. As evident from the dendritic

recording, spike repolarization slows down in the course of a burst allowing the DAP

at the soma to potentiate. Eventually, the DAP reaches threshold and causes a high-

frequency spike doublet. Since the dendritic refractory period is longer than the

somatic one, the dendrite cannot support active propagation of the second spike of

the doublet. The DAP fails and allows the afterhyperpolarization (AHP) to terminate

the spike burst. (a) adapted from [75], (b) adapted from [34].
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burst, thus potentiating the somatic DAP, iii) a shorter refractory period for somatic

spikes compared to dendritic ones renders backpropagation conditional on the instan-

taneous firing rate, iv) the rate of the DAP potentiation, which is part of a positive

feedback loop in which dendritic spike broadening activates a persistent Na+ cur-

rent, which further boosts depolarization. The slow dynamics of the persistent Na+

current largely control burst duration and burst frequency.

8.5.3 Reduced models of burst firing

Detailed biophysical models are powerful tools for probing the understanding of

cellular mechanisms at a microscopic scale. However, they are computationally too

complex for modeling of large networks or for analyzing the behavior of single cells

from a dynamical systems perspective. Having understood the key mechanisms, it is

often possible to reduce a detailed biophysical model to its essential components and

then apply dynamical systems analysis to the lower-dimensional model [101]. The

multi-compartmental model described above has undergone two such reductions,

first to a two-compartment model, termed a ghostburster for reasons explained in

more detail below [32], and then to an even simpler two-variable delay-differential-

equation model [71].

To model the generation of the somatic DAP, only a somatic and one dendritic

compartment representing the entire apical dendritic tree are needed (Figure 8.11a)

[32]. Soma and dendrite were equipped with fast Na+ channels, delayed rectifier K+

currents, and passive leak current. Current flow between the compartments followed

simple electrotonic gradients determined by the coupling coefficient between the two

compartments, scaled by the ratio of somatic to total model surface (see also [64,

80, 129]). Thus, the entire system was described by only six nonlinear differential

equations using modified Hodgkin/Huxley kinetics [54]. To achieve the relatively

longer refractory period of the dendrite [75], the time constant of dendritic Na+

inactivation was chosen to be longer than somatic Na+ inactivation and somatic K+

activation. The key element for the burst mechanism was the introduction of a slow

inactivation variable for the dendritic delayed rectifier current, whose time constant

was set to about 5 times slower than the mechanisms of spike generation. In this

configuration, the two-compartment model reliably reproduced the potentiation of

the somatic DAP, which eventually triggers the firing of a spike doublet, the burst

termination due to failure of backpropagation, and the rapid onset of the AHP [32]

(see Figure 8.9b).

To study the burst dynamics, the ghostburster model was treated as a fast-slow

burster [57, 101], separating it into a fast subsystem representing all variables related

to spike generation, and a slow subsystem representing the dendritic K+ inactivation

variable, pd . The fast subsystem could then be investigated using the slow variable as

a bifurcation parameter. The dashed lines in Figure 8.11b show the quasi-static bifur-

cation diagram with maximum dendritic membrane voltage as a representative state

variable of the fast subsystem, and pd as the slow subsystem. For constant values of

pd > pd1, there exists a stable period-one solution. At pd = pd1 the fast subsystem

transitions to a period-two limit cycle. This corresponds to intermittent doublet firing
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Figure 8.10

Multi-compartmental model of burst generation. a) The model was based on the

detailed reconstruction of a dye-filled E-type pyramidal cell [17]. The distribution

of ionic channels along the neuron’s axis is indicated in the insets. The detailed

placement of Na+ and K+ channels in separate compartments of the proximal den-

drite is shown on the left. b) The model reproduces the increasing firing frequency

in the course of a burst with a doublet at the end and a burst AHP (top). The den-

dritic delayed-rectifier conductance, gDr,d , shows cumulative inactivation as the burst

evolves (middle). The dendritic voltage-gated Na+ conductance, gNa,d , fails when

the somatic ISI is within its refractory period (bottom). c) Summary graph showing

the decrease in peak conductance of gDr,d and gNa,d as a function of spike number

for the burst shown in b. Whereas gDr,d inactivates in a cumulative way, gNa,d de-

cays much more gradually but is completely shut off by the high-frequency doublet.

Adapted from [33].
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Figure 8.11

Two-compartment model of burst generation. a) Sketch of the somatic and dendritic

compartments linked by an axial resistance. b) The dashed lines show the quasi-

static bifurcation diagram with a representative of the fast subsystem, the maximum

dendritic membrane voltage, as a function of the slow subsystem, the dendritic K+

inactivation variable, pd . Overlaid is a single burst trajectory (solid line; burst begins

with the upwards pointing arrow on the right). Adapted from [32].

with dendritic spike failure, since for pd < pd1 dendritic repolarization is sufficiently

slow to cause very strong somatic DAPs capable of eliciting a second somatic spike

after a small time interval (∼3 ms). The overlaid burst trajectory (solid line) shows

the beginning of the burst on the right side (upwards arrow). The maximum of the

dendritic membrane voltage decreases for the second spike of the doublet (compare

Figure 8.9b), which occurs at pd < pd1. The short doublet ISI is followed by the long

interburst ISI, the slow variable recovers until the next burst begins. Because pd is

reinjected near an infinite-period bifurcation (saddle-node bifurcation of fixed points

responsible for spike excitability), Doiron et al. [32] termed this burst mechanism

ghostbursting (sensing the ghost of an infinite-period bifurcation [118]). Thus, the

two-compartment model nicely explains the dynamics of pyramidal cell bursting ob-

served in vitro by the interplay between fast spike-generating mechanisms and slow

dendritic K+-channel inactivation.

In a further reduction of the model, Laing and Longtin [71] replaced the six ordi-

nary differential equation model by an integrate-and-fire model consisting of a set of

two discontinuous delay-differential equations. An interesting aspect of this model

is that it uses a discrete delay to mimic the ping-pong effect between soma and den-
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drite. When a spike occurs, the somatic membrane potential is boosted by a variable

amount but only if the preceding ISI was longer than the dendritic refractory period

and only after a certain delay. The amount of somatic boosting depends on the firing

history of the neuron. For long ISIs, it decays towards zero, for short ISIs it builds

up.

Bifurcation analysis of both the ghostburster and the delay model revealed prop-

erties that contrast with other models of burst generation. When increasing amounts

of current are injected into the soma, both reduced models move from quiescence for

subthreshold current through a range of tonic periodic firing into irregular bursting

(Figure 8.12) [32, 71]. The transition from quiescence to tonic firing is through a

saddle-node bifurcation of fixed points after which the systems follow a stable limit

cycle. The periodic attractor increases monotonically in frequency as current is in-

creased. The fact that the models pass from quiescence to repetitive firing through

a saddle-node bifurcation is characteristic of class I excitability [57, 101]. Accord-

ingly, the neurons are able to fire at arbitrarily low rates close to the bifurcation,

which is also observed when injecting small amounts of current into pyramidal cells

in the slice preparation [75]. At higher current the models move through a saddle-

node bifurcation of limit cycles after which they follow a chaotic attractor corre-

sponding to burst firing. For very large input currents, the cells periodically discharge

spike doublets (right of the dotted line in Figure 8.12 a, b). This progression from

quiescence through periodic firing and bursting to periodic doublet discharge closely

reproduces the behavior of pyramidal cells in the slice preparation [75]. Similar to

the ghostburster model, the delay integrate-and-fire model also allows the generation

of a wide gallery of bursts of different shapes indicating that pyramidal cells may be

able to adjust burst duration and frequency depending on context.

The simplicity of the delay model also allowed examination of the effects of peri-

odic forcing corresponding to injection of sinusoidal current at the soma. Depending

on the frequency of sinusoidal forcing, the threshold for burst firing could be in-

creased or decreased relative to the threshold in the unforced system. This finding

suggests that depending on the frequency of amplitude modulations of the electric

field, the threshold for burst firing of pyramidal cells might shift.

The most appealing aspect of the delay model is its simplicity and computational

efficiency. Since the model captures the basic properties of burst firing described by

the more elaborate ionic models [32, 33], it may be suitable for use in larger-scale

models of electrosensory processing.

8.6 Comparison with other bursting neurons

Bursting neurons have been described in a variety of systems including the crus-

tacean stomatogastric ganglion [5], the lamprey spinal cord [45], dorsal root ganglion

cells [1], thalamic reticular and relay cells [107, 116], and pyramidal neurons in sev-
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Figure 8.12

Instantaneous firing frequency versus amount of injected current for a) ghostburster

model, and b) two-variable delay-differential-equation model. Both models show

an absolute threshold for firing, above which they discharge periodically. At some

intermediate current (I ∼ 8.5 for the ghostburster model and I ∼ 1.22 for the delay

model), the models transition through a saddle-node bifurcation of limit cycles into

irregular bursting. At very high input currents they begin to fire doublets (right of

the dotted line in a and b). Doublet firing involves two distinct ISI values, the long

inter-doublet ISI (upper line) and the short doublet ISI (lower line). (a) adapted from

[32], (b) adapted from [71].

eral cortical areas and layers [26, 43, 83]. Naturally, the depth of understanding of

the underlying ionic mechanisms is not the same for every system. However, mod-

eling approaches based on experimental findings have been helpful in elucidating

cellular and dynamical aspects of burst firing in a number of different preparations.

In the following, we discuss three aspects of burst firing to which the electric fish

preparation has brought new perspectives: 1) burst firing can be caused by a ping-

pong interplay between soma and dendrite; 2) ghostbursting offers novel dynamics

for oscillatory bursting; 3) the underlying ionic mechanisms shape the ISI sequence

within the burst.

8.6.1 Ping-pong between soma and dendrite

The term ping-pong [129] refers to the interplay between soma and dendrite that

has been shown to be an essential part of the burst mechanism in a number of cell

types. The idea that soma-dendritic interactions shape neuronal response properties

became prominent when intracellular labeling and electrophysiology were combined

(e.g., [72, 83]). Based on reconstructions of various neocortical cell types, Mainen

and Sejnowski [80] showed that neurons sharing the same ionic channel distributions

but differing in dendritic morphology displayed a wide range of response properties

from regular firing to rhythmically bursting. Dendritic Na+ channels proved to be

necessary for bursting since they support backpropagation of spikes into the dendrite

and the subsequent current flow back into the soma. The somatic DAP can then
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feed further spikes, similar to the mechanism described above for ELL pyramidal

cells [33, 75]. Two basic mechanisms for boosting the DAP seem to be realized in

bursting neurons. First, voltage-activated dendritic Ca2+ channels have been found to

increase the somatic DAP in pyramidal cells in layer 5 of neocortex [104, 132], in the

subiculum [61] and at least in a fraction of CA1 pyramidal cells of the hippocampus

[42, 79]. Second, the somatic DAP can be enhanced by persistent Na+ currents as

observed in cortical chattering cells [19], in layer 3 sensorimotor cortical neurons

[92], some hippocampal CA1 neurons [3, 119], and in ELL pyramidal cells [34]. In

these latter cases, Ca2+ has been shown not to be a necessary component for bursting.

Wang [129] suggested that spike-triggered Ca2+ influx might be too slow to support

bursting at high ĝ -frequencies (20-70 Hz) observed in chattering cells [19, 43, 117].

The same reasoning could apply to bursting of ELL pyramidal cells in vitro, which

shows oscillations in the ĝ-range [125, 126], and which is Ca2+-independent [75].

These systems all share a somatic DAP induced by current flow from the dendrite.

They differ, however, in several other aspects such as, for example, mechanisms of

burst termination. In layer 3 cells of sensorimotor cortex, Ca2+-activated K+ chan-

nels repolarize the dendrite and stop the current flow towards the soma [92]. This

mechanism had been predicted by a multi-compartmental modeling study of layer 5

intrinsically bursting pyramidal cells [100]. Based on a two-compartment model of

neocortical chattering cells, Wang [129] suggested that bursts are terminated when

a dendritic voltage-dependent K+ channel is sufficiently activated to repolarize the

dendritic membrane. Hence, the above described burst termination by failure of

backpropagation due to the relatively long dendritic refractory period constitutes a

hitherto unknown mechanism [75].

For thalamic relay cells it was long believed that dendrites did not play a major role

in burst generation since bursting persists in acutely isolated cells devoid of dendrites

[56]. In a recent combined in vitro and modeling study, however, Destexhe and

coworkers showed that the low-threshold Ca2+ channels underlying burst generation

had to have a roughly 5 times higher density in the dendrite than in the soma to

yield Ca2+ spikes comparable to those seen in intact relay cells [30]. The actual

burst consists of fast Na+ and K+ activity riding the crest of the Ca2+ spike. At

depolarized membrane potentials, the underlying IT channel is inactivated and the

cells respond in tonic mode [107]. Deinactivation requires hyperpolarization for at

least 50-100 ms. Therefore, thalamic bursting is characterized by very long ISIs

preceding the actual burst.

It should be mentioned that soma-dendritic interactions are not the only route to

bursting. Some cell types, such as cerebellar granule cells, seem to be electrotoni-

cally too compact to support a ping-pong mechanism [27, 80]. Instead, a persistent

Na+ current in conjunction with a slow Ca2+-independent K+ current can cause os-

cillations, with fast Na+ spikes riding on top of the oscillations [27].

8.6.2 Dynamical properties of burst oscillations

On a more macroscopic scale, bursting in ELL pyramidal cells seems unique in two

respects. First, ISI duration decreases within bursts, which is atypical. Second, the
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changes in firing properties with increasing input current exhibit an unusual bifurca-

tion structure. As shown in the slice preparation [75] and in both the reduced models

[32, 71], the firing properties pass from quiescence for subthreshold input current

through tonic firing for intermediate current levels to bursting. Other systems, in

contrast, have been shown to pass from quiescence through bursting to tonic firing

(e.g. [27, 36, 43, 100, 104, 112, 116, 129]). Accordingly, for a given input cur-

rent, bursting systems are usually described as switching between quiescence (fixed

point) and spiking (limit cycle) [57]. As shown by the reduced ELL pyramidal cell

models, however, the fast subsystem can always follow a limit cycle [32, 71]. Since

the slow subsystem is itself oscillating, it modulates the period of the fast subsystem

and forces it to pass near the ghost of an infinite-period bifurcation, which yields the

long interburst intervals, as opposed to bifurcating to a fixed point solution.

8.6.3 Intra-burst ISI sequences

Within a burst fired by an ELL pyramidal cell, instantaneous firing rate increases un-

til a spike doublet eventually terminates the burst. Due to its long refractory period,

the dendrite fails to actively backpropagate the action potential allowing the AHP

to set in and repolarize the soma (Figure 8.9b). From a dynamical systems point

of view, the burst termination can be understood as a bifurcation from a period-one

to a period-two limit cycle of the fast, spike-generating, system (Figure 8.11b). In

all other models of bursting neurons, bursts end with a transition form a period-one

limit cycle to a fixed point (quiescence; [57]). This corresponds to the observation

that, in most systems, bursts begin with a very high instantaneous firing rate and

then slow down. One reason for the slow-down can be the gradual activation of

a dendritic K+ channel which reduces current flow to the soma and increases the

time to reach threshold for action potential firing [92, 100, 129]. Alternatively, spike

backpropagation, and with it the somatic DAP, can fail when dendritic Na+ chan-

nels cumulatively inactivate [25, 61, 114] or when synaptic inhibition sufficiently

hyperpolarizes the dendritic membrane [20, 77, 122].

8.7 Conclusions

Two main lines of evidence indicate that bursts can play an important role in neuronal

information transmission. First, bursts have been shown to surpass single spikes

in their information carrying performance [35, 40, 46, 86, 99]. Besides acting as

unitary events, burst duration, that is the number of spikes, may also be a mode of

information transmission [28, 65]. Second, high-frequency burst firing increases the

reliability of synaptic transmission at unreliable synapses [76, 113, 120, 128, 129,

132]. The development of the technique of feature extraction analysis has given us

a powerful tool to quantify how reliably neurons indicate the occurrence of certain
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stimulus features without prior knowledge of what these features look like [39, 40,

86]. Its application to neuronal responses in various behavioral contexts may teach us

how the possible contribution of burst firing (or other firing patterns) to information

transmission changes with changing behavioral context.

Compartmental modelling based on detailed reconstructions of neuronal morphol-

ogy has demonstrated that dendritic structure is a major determinant of a neuron’s

firing properties [26, 50, 80, 83, 105]. From a mechanistic point of view, reduced

models, such as two-compartment models and point neurons, have been effective

at revealing the underlying dynamics of burst generation. As illustrated here, de-

tailed multi-compartmental modeling can aid in understanding the ionic and struc-

tural mechanisms underlying particular neuronal firing patterns [33, 34] and, when

that is achieved, simplified models can help in elucidating the dynamic properties of

these mechanisms [32, 71]. The ghostburster model and the delay model reproduce

burst discharge as it is observed in vitro in spite of their simplicity, suggesting that

the essential components of the intrinsic burst mechanism are understood.

For pyramidal cells in the ELL of weakly electric fish, there are first indications

that the probability of burst generation is under descending control and depends on

the spatial geometry of the stimulus [13, 31, 75, 97]. Similar observations have been

made for thalamic neurons (e.g., [29, 37, 107]) and nerve cells in the subthalamic

nucleus [127]. Modeling studies will be key in the exploration of how descending

control shapes burst firing. Interestingly, ELL pyramidal cells possess a number

of spatially distinct input areas that could be controlled separately depending on

behavioral context [9, 16].

One of the most urgent questions to be addressed is whether or not the mecha-

nisms that shape bursting under in vitro conditions are also the key determinants of

burst firing in the intact animal. Of course, the ionic channels responsible for con-

ditional backpropagation will be at work in vivo, too. Nevertheless, most pyramidal

cells when recorded in vivo do not show shortening of ISIs in the course of a burst, at

least under the stimulus conditions studied so far [13, 40, 86]. The models described

above therefore need to be refined. They need to address the effects of naturalistic

synaptic input from the sensory afferents, including the effects of indirect inhibitory

input via local interneurons, and the possible contributions of descending control.

Descending control could act directly via synaptic excitation and inhibition, but also

indirectly by modulations of synaptic transmission [9] or by inducing phosphoryla-

tion of the AptKv3.3 K+ channel [97]. The development of the reduced models may

also make it possible to construct larger network models that could still incorporate

naturalistic spike train statistics. Two construction blocks for such a network model

could be the delay-differential equation model of an ELL pyramidal cell [71] and a

recently developed simple model of P-receptor afferents that captures much of the

experimentally observed firing dynamics [18].
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9.1 Introduction

Computational neuroscience uses mathematical models to study how neural systems

represent and transmit information. Although modeling in computational neuro-

science spans a range of mathematical approaches, the discipline may be divided

approximately into two schools. The first school uses detailed biophysical (Hodgkin

and Huxley and their variants) models of individual neurons, networks of neurons

or artificial neural network models to study emergent behaviors of neural systems.
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The second school, and the one we discuss here, develops signal processing algo-

rithms and statistical methods to analyze the ever-growing volumes of data collected

in neuroscience experiments. The growing complexity of neuroscience experiments

makes use of appropriate data analysis methods crucial for establishing how reliably

specific system properties can be identified from experimental measurements. In par-

ticular, careful data analysis is an essential complement to neural network modeling;

it allows validation of neural network model predictions in addition to feeding back

biologically relevant constraints and parameter values for further analytic and sim-

ulation studies. Neuroscience experiments and neural spike train data have special

features that present new, exciting challenges for statistical research.

Neuroscience data analyses as well as research on new data analysis methods

should exploit established statistical paradigms wherever possible. Several standard

statistical procedures, widely used in other fields of science have been slow to find

their way into mainstream application in neuroscience data analysis. One such set of

procedures are those based on the likelihood principle [9, 31]. The likelihood func-

tion is a central tool in statistical theory and modeling, typically based on a paramet-

ric model of an experimental data set. The likelihood is formulated by deriving the

joint distribution of the data, and then viewing this joint distribution as a function of

the model parameters with the data fixed. This function serves as a criterion function

for estimating the model parameters, assessing goodness-of-fit, constructing confi-

dence statements, and eventually, for making inferences about the particular problem

under study. The several optimality properties of the likelihood approach is one of

the main reasons this paradigm is central to statistical theory and data analysis. Neu-

ral spike trains are point process measurements. Therefore, to help better acquaint

neuroscientists with likelihood-based methods, we review the likelihood paradigm

for point process observations.

The remainder of this chapter is organized as follows. In Section 9.2, we show how

any point process model may be characterized in terms of its conditional intensity

function. The conditional intensity function is a history-dependent generalization

of the rate function for a Poisson process. It provides a canonical representation of

the stochastic properties of a neural spike train. We use the conditional intensity

function to derive the joint probability density of the neural spike train and hence, its

likelihood function. We next review briefly the optimality properties of the likelihood

approach and we show how the conditional intensity function may be used to derive

goodness-of-fit tests based on the time-rescaling theorem. In Section 9.3 we apply

our likelihood methods in three actual data analyses. In the first example we compare

the fits of exponential, gamma and inverse Gaussian interspike interval distribution

models to a spike train time-series from a retinal ganglion neuron. In the second

example, we use likelihood and non-likelihood based methods to analyze the spatial

receptive fields of a hippocampal neuron recorded while a rat executes a behavioral

task on a linear track. In the third example, we show how the likelihood function

may be used to construct a criterion function for adaptive estimation that makes it

possible to track plasticity in a neural receptive field on a millisecond time-scale. We

illustrate the method by performing a dynamic analysis of the spatial receptive field

of a hippocampal neuron from the same linear track experiment studied in the second
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example. Section 9.4 presents a set of conclusions.

9.2 Theory

9.2.1 The conditional intensity function and interspike interval proba-

bility density

As mentioned in Section 9.1, the key to deriving the likelihood function for a para-

metric model of a neural spike train is defining the joint probability density. The

joint probability density of a neural spike train can be characterized in terms of the

conditional intensity function. Therefore, we first derive the conditional intensity

function for a point process and review some of its properties.

Let (0,T ] denote the observation interval and let 0 < u1 < u2 < · · · < uJ−1 < uJ ≤
T be a set of J spike time measurements. For t ∈ (0,T ] let N0:t be the sample path of

the point process over (0,t]. It is defined as the event N0:t = {0 < u1 < u2 · · · < u j ≤
t ∩N(t) = j}, where N(t) is the number of spikes in (0,t] and j ≤ J. The sample

path is a right continuous function that jumps 1 at the spike times and is constant

otherwise [11, 33]. The function N0:t tracks the location and number of spikes in

(0,t] and hence, contains all the information in the sequence of spike times (Figure

9.1A).

We define the conditional intensity function for t ∈ (0,T ] as

l (t|Ht) = lim
△→0

Pr(N(t +△)−N(t) = 1|Ht)

△
(9.1)

where Ht is the history of the sample path and of any covariates up to time t. In

general l (t|Ht) depends on the history of the spike train and therefore, it is also

termed the stochastic intensity [11]. In survival analysis, the conditional intensity

function is called the hazard function [20]. This is because the hazard function can

be used to define the probability of an event in the interval [t,t +△) given that there

has not been an event up to t. It follows that l (t|Ht) can be defined in terms of the

inter-event or spike time probability density at time t, p(t|Ht), as

l (t|Ht) =
p(t|Ht)

1−

∫ t

0
p(u|Hu)du

(9.2)

We gain insight into the definition of the conditional intensity function in Equstion

(9.1) by considering the following heuristic derivation of Equation (9.2) based on the

definition of the hazard function. We compute explicitly the probability of the event,

© 2004 by Chapman & Hall/CRC



u1 u2 u3 u4

1

2

3

4

N0:t

N(t) = 4

tu1 u2 u3 u4

0 1 1 0 1 0 1 00

∆tk-1 tk

t0

0

tk-2

A

B

Figure 9.1

A. The construction of the sample path N0:t from the spike times u1, · · · ,u4. At

time t, N0:t = {u1,u2,u3,u4 ∩ N(t) = 4} B. The discretization of the time axis to

evaluate to evaluate the probability of each spike occurrence or non-occurrence as a

local Bernoulli process. By Equation (9.10) the probability of the event u2, i.e., a 1

between tk−1 and tk, is l (tk|Hk)△ whereas the probability of the event immediately

prior to u2, i.e., a 0 between tk−2 and tk−1, is 1−l (tk−1|Hk−1)△. In this plot we have

taken △k = △ for all k = 1, · · · ,K.
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a spike in [t,t +△) given Ht and that there has been no spike in (0, t). That is,

Pr(u ∈ [t,t +△)|u > t,Ht) =
Pr(u ∈ [t,t +△)∩u > t|Ht)

Pr(u > t|Ht)

=
Pr(u ∈ [t,t +△)|Ht)

Pr(u > t|Ht)

=

∫ t+△

t
p(u|Hu)du

1−
∫ t

0
p(u|Hu)du

=
p(t|Ht)△

1−
∫ t

0
p(u|Hu)du

+ o(△)

= l (t|Ht)△+ o(△)

(9.3)

where o(△) refers to all events of order smaller than △, such as two or more events

(spikes) occurring in an arbitrarily small interval. This establishes Equation (9.2).

The power of the conditional intensity function is that if it can be defined as Equation

(9.3) suggests then, it completely characterizes the stochastic structure of the spike

train. In any time interval [t, t +△),l (t|Ht)△ defines the probability of a spike given

the history up to time t. If the spike train is an inhomogeneous Poisson process then,

l (t|Ht) = l (t) becomes the Poisson rate function. Thus, the conditional intensity

function (Equation (9.1)) is a history-dependent rate function that generalizes the

definition of the Poisson rate. Similarly, Equation (9.1) is also a generalization of the

hazard function for renewal processes [15, 20].

We can write

l (t|Ht) = −

d

[

log[1−

∫ t

0
p(u|Hu)du]

]

dt
(9.4)

or on integrating we have

−

∫ t

0
l (u|Hu)du = log

[

1−

∫ t

0
p(u|Hu)du

]

. (9.5)

Finally, exponentiating yields

exp

{

−

∫ t

0
l (u|Hu)du

}

= 1−

∫ t

0
p(u|Hu)du. (9.6)

Therefore, by Equations. (9.2) and (9.6) we have

p(t|Ht) = l (t|Ht)exp

{

−
∫ t

0
l (u|Hu)du

}

. (9.7)

Together Equations (9.2) and (9.7) show that given the conditional intensity func-

tion the interspike interval probability density is specified and vice versa. Hence,
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defining one completely defines the other. This relation between the conditional in-

tensity or hazard function and the inter-event time probability density is well known

in survival analysis and renewal theory [15, 20]. Equations (9.2) and (9.7) show

that it holds for a general point process model. This relation is exploited in the data

analysis examples we discuss.

9.2.2 The likelihood function of a point process model

The likelihood of a neural spike train, like that of any statistical model, is defined

by finding the joint probability density of the data. We show in the next proposition

that the joint probability of any point process is easy to derive from the conditional

intensity function.

Proposition 1. Given 0 < u1 < u2 < · · · < uJ < T , a set of neural spike train mea-

surements, the sample path probability density of this neural spike train, i.e. the

probability density of exactly these J events in (0,T ], is

p(N0:T ) =
J

’
j=1

l (u j|Hu j
)exp

{

−
∫ T

0
l (u|Hu)du

}

= exp

{

∫ T

0
log l (u|Hu)dN(u)−

∫ T

0
l (u|Hu)du

}

.

(9.8)

Proof. Let {tk}K
k=1 be a partition of the observation interval (0,T ]. Take △k =

tk − tk−1, where t0 = 0. Assume that the partition is sufficiently fine so that there is

at most one spike in any (tk−1,tk]. For a neural spike train choosing △k ≤ 1 msec

would suffice. We define dN(k) = 1 if there is a spike in (tk−1,tk] and 0 otherwise,

and the events

Ak = {spike in (tk−1,tk]|Hk}

Ek = {Ak}
dN(k){Ac

k}
1−dN(k)

Hk =
{

∩k−1
j=1E j

}

(9.9)

for k = 1, · · · ,K. In any interval (tk−1,tk] we have (Figure 9.1B)

Pr(Ek) = l (tk|Hk)△k + o(△k)
Pr(Ec

k ) = 1−l (tk|Hk)△k + o(△k).
(9.10)

By construction of the partition we must have u j ∈ (tk j−1, tk j
], j = 1, · · · ,J for a subset

of the intervals satisfying k1 < k2 · · · < kJ . The remaining K − J intervals have no

spikes. The spike events form a sequence of correlated Bernoulli trials. It follows

from Equation (9.10) and the Lemma in the Appendix, that given the partition, the
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probability of exactly J events in (0,T ] may be computed as

p(N0:T )
J

’
j=1

△k j
= p(u j ∈ (tk j−1,tk j

], j = 1, · · · ,J ∩N(T ) = J)
J

’
j=1

△k j

= Pr(∩K
k=1Ek)

=
K

’
k=2

Pr(Ek| ∩
k−1
j=1 E j)Pr(E1)

=
K

’
k=1

[l (tk|Hk)△k]
dN(tk)[1−l (tk|Hk)△k]

1−dN(tk) + o(△∗)

=
J

’
j=1

[l (tk j
|Hk j

)△k j
]
dN(tk j

)
’
l �=k j

[1−l (tl|Hl)△l]
1−dN(tl) + o(△∗)

=
J

’
j=1

[l (tk j
|Hk j

)△k j
]
dN(tk j

)
’
l �=k j

exp{−l (tl|Hl)△l}+ o(△∗)

= exp

{

J

Â
j=1

log l (tk j
|Hk j

)dN(tk j
)− Â

l �=k j

l (tl|Hl)△l

}

·exp

{

J

Â
j=1

log△k j

}

+ o(△∗)

(9.11)

where, because the △k are small, we have used the approximation [1− l (k)△k] ≈
exp{−l (k)△k} and △∗ = maxk △k. It follows that the probability density of exactly

these J spikes in (0,T ] is

p(N0:T ) = lim
△∗→0

⎡

⎢

⎢

⎢

⎢

⎢

⎣

exp

{

J

Â
j=1

log l (tk j
|Hk j

)dN(tk j
)− Â

l �=k j

l (tl|Hl)△l

}

J

’
j=1

△ j

· exp

{

J

Â
j=1

log△k j

}

+
o(△∗)

J

’
j=1

△ j

⎤

⎥

⎥

⎥

⎥

⎦

= exp

{

∫ T

0
log l (u|Hu)dN(u)−

∫ T

0
l (u|Hu)du

}

. Q.E.D.

(9.12)

Proposition 1 shows that the joint probability density of a spike train process can

be written in a canonical form in terms of the conditional intensity function [3, 8,

11]. That is, when formulated in terms of the conditional intensity function, all

point process likelihoods have the form given in Equation (9.8). The approximate

probability density expressed in terms of the conditional intensity function (Equation

(9.11d)) was given in [5]. The proof of Proposition 1 follows the derivation in [1].

The insight provided by this proof is that correct discretization for computing the
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local probability of a spike event is given by the conditional intensity function. An

alternative derivation of Equation (9.8) can be obtained directly using Equation (9.7)

[3].

If the probability density in Equation (9.8) depends on an unknown q-dimensional

parameter q to be estimated then, Equation (9.8) viewed as a function of q given

N0:T is the likelihood function defined as

L(q |N0:T ) = p(N0:T |q )

= exp

{

∫ T

0
log l (u)|Hu,q )dN(u)−

∫ T

0
l (u|Hu)du

}

.
(9.13)

The logarithm of Equation 9.13 is the log likelihood function defined as

logL(q |N0:T ) =

∫ T

0
lu(q )du (9.14)

where lt(q ) is the integrand in Equation (9.14) or the instantaneous log likelihood

defined as

lt(q ) = log[l (t|Ht ,q )]
dN(t)

dt
−l (t|Ht,q ). (9.15)

Given a model for the spike train, defined either in terms of the conditional intensity

function or the interspike interval probability density, the likelihood is an objective

quantity that offers a measure of rational belief [9, 31]. Specifically, the likelihood

function measures the relative preference for the values of the parameter given the

observed data N0:T . Similarly, the instantaneous log likelihood in Equation (9.15)

may be viewed as measuring the instantaneous accrual of information from the spike

train about the parameter q . We will illustrate in the applications in Section 9.3 how

methods to analyze neural spike train data may be developed using the likelihood

function. In particular, we will use the instantaneous log likelihood as the criterion

function in the point process adaptive filter algorithm presented in Section 9.3.3.

9.2.3 Summarizing the likelihood function: maximum likelihood esti-

mation and Fisher information

If the likelihood is a one or two-dimensional function it can be plotted and com-

pletely analyzed for its information content about the model parameter q . When

the dimension of q is greater than 2, a complete analysis of the likelihood func-

tion by graphical methods is not possible. Therefore, it is necessary to summarize

this function. The most common way to summarize the likelihood is to compute

the maximum likelihood estimate of the parameter q . That is, we find the value of

this parameter that is most likely given the data. This corresponds to the value of q
that makes Equation (9.13) or equivalently, Equation (9.14) as large as possible. We

define the maximum likelihood estimate q̂ as

q̂ = argmaxq L(q |N0:T ) = argmaxq logL(q |N0:T ). (9.16)

With the exception of certain elementary models the value of q that maximizes Equa-

tion (9.16) has to be computed numerically. In most multidimensional problems it is
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difficult to insure that the numerical analysis will yield a global maximum. Most of-

ten a local rather than a global estimate is obtained. Several different starting values

of parameters should be used in the numerical optimization procedure to increase the

probability of obtaining a global maximum of the likelihood.

A second standard statistic computed to summarize the likelihood is the Fisher

Information. The Fisher Information is defined as

I(q ) = −E[—2 logL(q |N0:T )], (9.17)

where —2 is the Hessian of the log likelihood with respect to q and E denotes the

expectation taken with respect to p(N0:T |q ). The Fisher Information matrix can be

used to measure the uncertainty in the maximum likelihood estimate. This is because

under not too stringent regularity conditions, the asymptotic (large sample) distribu-

tion of the maximum likelihood estimate q̂ is the Gaussian distribution whose mean

is the true value of the parameter q , and whose covariance matrix is I(q )−1 [9, 31].

Because q is unknown we evaluate I(q ) as I(q̂ ) or I(q̂ )N0:T
= −—2 logL(q̂ |N0:T )

where the latter is termed the observed Fisher information. Under the Gaussian ap-

proximation to the asymptotic distribution of the maximum likelihood estimate, the

Fisher information may be used to compute confidence intervals for the components

of the true parameter vector given by

q̂i ± z1−a/2[I(q̂i)]
−1/2, (9.18)

where q̂i is the ith component of q̂ for i = 1, · · · ,q and z1−a/2 is the 1−a/2 quantile

of the standard Gaussian distribution.

Another way of viewing the maximum likelihood estimate along with the Fisher

information is as a means of constructing a Gaussian approximation to the likeli-

hood function. By expanding logL(q |N0:T ) in a Taylor series about q̂ we obtain the

following Gaussian approximation to L(q |N0:T ) namely,

L(q |N0:T ) ∼ [(2p)q|I(q̂ )|]−1/2 exp

{

−
(q − q̂)T I(q̂ )−1(q − q̂)

2

}

. (9.19)

While Equation (9.19) is functionally equivalent to the statement that the maximum

likelihood estimate has an approximate Gaussian probability density, this equation

has a Bayesian interpretation. This is because in the classical or frequentist statement

that the asymptotic distribution of the maximum likelihood estimate is Gaussian, q̂
is a random variable and q , the true parameter value is a fixed quantity. In Equation

(9.19) q̂ and I(q̂ ) are fixed quantities and q is a random variable [31, 35].

9.2.4 Properties of maximum likelihood estimates

One of the most compelling reasons to use maximum likelihood estimation in neural

spike train data analyses is that for a broad range of models, these estimates have

other important optimality properties in addition to being asymptotically Gaussian.
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First, there is consistency which states that the sequence of maximum likelihood es-

timates converges in probability (or more strongly almost surely) to the true value as

the sample size increases. Second, the convergence in probability of the estimates

means that they are asymptotically unbiased. That is, the expected value of the es-

timate q̂ is q as the sample size increases. For some models and some parameters,

unbiasedness is a finite sample property. The third property is invariance. That is,

if q̂ is the maximum likelihood estimate of q , then t(q̂ ) is the maximum likelihood

estimate of t(q ). Finally, the maximum likelihood estimates are asymptotically ef-

ficient in that as the sample size increases, the variance of the maximum likelihood

estimate achieves the Cramer-Rao lower bound. This lower bound defines the small-

est variance that an unbiased or asymptotically unbiased estimate can achieve. Like

unbiasedness, efficiency for some models and some parameters is achieved in a finite

sample. Detailed discussions of these properties are given in [9, 31].

9.2.5 Model selection and model goodness-of-fit

In many data analyses it is necessary to compare a set of models for a given neural

spike train. For models fit by maximum likelihood, a well-known approach to model

selection is the Akaike’s Information Criterion (AIC) [31]. The criterion is defined

as

AIC = −2logL(q̂ |N0:T )+ 2q, (9.20)

where q is the dimension of the parameter vector q . The AIC measures the trade-off

between how well a given model fits the data and the number of model parameters

needed to achieve this fit. The fit of the model is measured by the value of −2x the

maximized likelihood and the cost of the number of fitted parameters is measured

by 2q. Under this formulation, i.e. considering the negative of the maximized like-

lihood, the model that describes the data best in terms of this trade-off will have the

smallest AIC.

Evaluating model goodness-of-fit, i.e., measuring quantitatively the agreement be-

tween a proposed model and a spike train data series, is a more challenging problem

than for models of continuous-valued processes. Standard distance discrepancy mea-

sures applied in continuous data analyses, such as the average sum of squared devi-

ations between recorded data values and estimated values from the model, cannot

be directly computed for point process data. Berman [4] and Ogata [28] developed

transformations that, under a given model, convert point processes like spike trains

into continuous measures in order to assess model goodness-of-fit. One of the trans-

formations is based on the time-rescaling theorem.

A form of the time-rescaling theorem is well known in elementary probability

theory. It states that any inhomogeneous Poisson process may be rescaled or trans-

formed into a homogeneous Poisson process with a unit rate [36]. The inverse trans-

formation is a standard method for simulating an inhomogeneous Poisson process

from a constant rate (homogeneous) Poisson process. Meyer [26] and Papangelou

[30] established the general time-rescaling theorem, which states that any point pro-

cess with an integrable rate function may be rescaled into a Poisson process with a
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unit rate. Berman and Ogata derived their transformations by applying the general

form of the theorem. An elementary proof of the time-rescaling theorem is given in

[8].

We use the time-rescaling theorem to construct goodness-of-fit tests for a neural

spike data model. Once a model has been fit to a spike train data series we can

compute from its estimated conditional intensity the rescaled times

t j =

∫ u j

u j−1

l (u|Hu)du, (9.21)

for j = 1, · · · ,J. If the model is correct then, according to the theorem, the t js

are independent exponential random variables with mean 1. If we make the further

transformation

z j = 1− exp(−t j), (9.22)

then z js are independent uniform random variables on the interval [0,1). Because

the transformations in Eqs. (9.21) and (9.22) are both one-to-one, any statistical

assessment that measures agreement between the z js and a uniform distribution di-

rectly evaluates how well the original model agrees with the spike train data. We use

Kolmogorov-Smirnov tests to make this evaluation [8].

To construct the Kolmogorov-Smirnov test we order the z js from smallest to

largest, denoting the ordered values as z js and then plot the values of the cumu-

lative distribution function of the uniform density defined as b j = ( j − 1/2)/J for

j = 1, · · · ,J against the z js. If the model is correct, then the points should lie on a

45o line. Confidence bounds for the degree of agreement between the models and the

data may be constructed using the distribution of the Kolmogorov-Smirnov statistic

[19]. For moderate to large sample sizes the 95% confidence bounds are well ap-

proximated as b j ±1.36/J1/2 [19]. We term these plots Kolmogorov-Smirnov (KS)

plots.

9.3 Applications

9.3.1 An analysis of the spiking activity of a retinal neuron

In this first example we study a spike train data series from a goldfish retinal ganglion

cell neuron recorded in vitro (Figure 9.2). The data are 975 spikes recorded over 30

seconds from neuron 78 in [18]. They were provided by Dr. Satish Iyengar from

experiments originally conducted by Dr. Michael Levine at the University of Illinois

[22, 23]. The retinae were removed from the goldfish and maintained in a flow of

moist oxygen. Recordings of retina ganglion cells were made with an extracellular

microelectrode under constant illumination.

The plot of the spikes from this neuron (Figure 9.2) reveals a collection of short

and long interspike intervals (ISI). To analyze these data we consider three ISI prob-

ability models: the gamma, exponential and inverse Gaussian probability densities.
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The gamma probability density is a probability model frequently used to describe

renewal processes. It is the ISI probability model obtained from a simple stochas-

tic integrate-and-fire model in which the inputs to the neuron are Poisson with a

constant rate [37]. It has the exponential probability density, the interspike interval

model associated with a simple Poisson process, as a special case. The inverse Gaus-

sian probability density is another renewal process model that can be derived from

a stochastic integrate-and-fire model in which the membrane voltage is represented

as a random walk with drift [37]. This model was first suggested by Schroedinger

[32] and was first applied in spike train data analyses by Gerstein and Mandelbrot

[14]. Because the gamma and inverse Gaussian ISI probability densities can be de-

rived from elementary stochastic integrate-and-fire models, these probability densi-

ties suggest more plausible points of departure for constructing statistical models of

neural spike trains than the Poisson process.

The gamma and inverse Gaussian probability densities are, respectively,

p1(w j|q ) =
l a

G(a)
wa−1

j exp
{

−l w j

}

, (9.23)

where q = (a ,l ),a > 0,l > 0,

p2(w j|q ) =

(

l

2pw3
j

)1/2

exp

{

−1

2

l (w j − m)2

m 2w j

}

, (9.24)

where q = (m ,l ), m > 0,l > 0 and w j = u j −u j−1 for j = 1, · · · ,J. For the gamma

(inverse Gaussian) model a(m) is the location parameter and l (l ) is the scale pa-

rameter. If a = 1 then the gamma model is the exponential probability density. The

mean and variance of the gamma model are respectively a l−1 and a l−2 whereas

the mean and variance of the inverse Gaussian model are respectively m and m 3l −1.

Fitting these models to the spike train data requires construction of the likelihoods

and estimation of q for the three models. By our results in Section 9.2, the log

likelihood can be represented either in terms of the conditional intensity or the ISI

probability model. Here we use the latter. Given the set of ISIs, w = (w1, · · · ,wJ),
then, under the assumption that the ISIs are independent, the likelihood functions for

the two models are respectively

L1(q |w) =
J

’
j=1

p1(w|q ) =

[

l a

G(a)

]J J

’
j=1

wa−1
j exp

{

−l w j

}

(9.25)

L2(q |w) =
J

’
j=1

p2(w|q ) =
J

’
j=1

(

l

2pw3
j

)1/2

exp

{

−1

2

l (w j − m)2

m 2w j

}

. (9.26)

The maximum likelihood estimate of q for the gamma model cannot be computed in
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Figure 9.2

A. Thirty seconds of spike times from a retinal ganglion neuron recorded in vitro

under constant illumination. There is an obvious mixture of short and long interspike

intervals. B. Interspike interval histogram for the neural spike train in A. While most

of the spikes occur between 3 to 40 msec, there are many intervals longer than 70

msec.

© 2004 by Chapman & Hall/CRC



closed form, but rather numerically as the solution to the equations

l̂ =
â

w̄
(9.27)

J log G(â) = Ja log

(

â

w̄

)

+(â −1)
J

Â
j=1

logw j (9.28)

where w̄ = J−1 ÂJ
j=1 w j and the ·̂ denotes the estimate. Equations (9.27) and (9.28)

are obtained by differentiating Equation (9.25) with respect to a and l and setting the

derivatives equal to zero. It follows from Equation (9.17) that the Fisher Information

matrix is

I(q ) = J

⎡

⎢

⎣

G(a)G′′(a)−G′(a)G′(a)

G2(a)
− 1

l

− 1

l

a

l 2

⎤

⎥

⎦
. (9.29)

Similarly, differentiating Equation (9.26) with respect to m and l and setting the

derivatives equal to zero yields as the maximum likelihood estimate of the inverse

Gaussian model parameters

m̂ = J−1
J

Â
j=1

w j (9.30)

l̂ −1 = J−1
J

Â
j=1

(w−1
j − m̂−1). (9.31)

On evaluating Equation (9.17) for this model we find that the Fisher Information

matrix is

I(q ) = J

[

l m−3 0

0 (2l 2)−1

]

. (9.32)

We compare the fits to the spike train of the exponential, gamma and inverse Gaus-

sian models by comparing the model probability density estimate for each to the

normalized histogram of the ISIs (Figure 9.3). The exponential model underpredicts

the number of short ISIs (< 10 msec), overpredicts the number of intermediate ISIs

(10 to 50 msec) (Figure 9.3B), and underpredicts the number of long ISIs (> 120

msec), (Figure 9.3C). While the gamma model underpredicts the number of short

ISIs, (< 10 msec) more than the exponential model, it predicts well the number of

intermediate ISIs (10 to 50 msec) (Figure 9.3B), and also underpredicts the number

of long ISIs (> 120 msec), (Figure 9.3C). Because the gamma model estimate of

a is â = 0.81 (Table 1), the mode of this probability density lies at zero where the

probability density is infinite. Zero lies outside the domain of the probability density

as it is defined only for ISIs that are strictly positive. This explains the monoton-

ically decreasing shape of this probability density seen in the plot. Although not

completely accurate, the inverse Gaussian model gives the best fit to the short ISIs

(Figure 9.3B). The inverse Gaussian model also describes well the intermediate ISIs
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Figure 9.3

A. Maximum likelihood fits of the exponential (dotted line), gamma (solid line), in-

verse Gaussian (solid bold line) models to the retinal neuron spike trains in Figure

9.2A displayed superimposed on a normalized version of the interspike interval his-

togram in Figure 9.2B. B. Enlargement from (A) of the interspike interval histogram

from 0 to 50 msec to display better the data, and the three model fits over this range.

C. Enlargement from (A) of the interspike interval histogram from 120 to 200 msec

and the three model fits.
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from 25 to 50 msec (Figure 9.3B) and of the three models, underpredicts the long

ISIs the least (Figure 9.3C).

Because of Equation (9.2), specifying the spike time probability density is equiv-

alent to specifying the conditional intensity function. From Equation (9.2) and the

invariance of the maximum likelihood estimate discussed in Section 9.2.5, it follows

that if q̂ denotes the maximum likelihood estimate of q then the maximum likeli-

hood estimate of the conditional intensity function for each model can be computed

from Equation (9.2) as

l (t|Ht , q̂ ) =
p(t|uN(t), q̂ )

1−
∫ t

uN(t)

p(u|uN(t), q̂ )du

, (9.33)

for t > uN(t) where uN(t) is the time of the last spike prior to t. The estimated condi-

tional intensity from each model may be used in the time-rescaling theorem to assess

model goodness-of-fit as described in Section 9.2.5.

An important advantage of the KS plot is that it allows us to visualize the goodness-

of-fit of the three models without having to discretize the data into a histogram

(Figure 9.4). While the KS plot for neither of the three models lies entirely within

the 95% confidence bounds, the inverse Gaussian model is closer to the confidence

bounds over the entire range of the data. These plots also show that the gamma model

gives a better fit to the data than the exponential model.

The AIC and KS distance are consistent with the KS plots (Table 1). The inverse

Gaussian model has the smallest AIC and KS distance, followed by the gamma and

exponential models in that order for both. The approximate 95% confidence interval

for each model parameter was computed from maximum likelihood estimates of the

parameters (Equations (9.27), (9.28), (9.30), (9.31)) and the estimated Fisher infor-

mation matrices (Equations (9.29), (9.32)) using Equation (9.18). Because none of

the 95% confidence intervals includes zero, all parameter estimates for all three mod-

els are significantly different from zero. While all three models estimate the mean

ISI as 30.73 msec, the standard deviation estimate from the inverse Gaussian model

of 49.0 msec is more realistic given the large number of long ISIs (Figure 9.2B).

In summary, the inverse Gaussian model gives the best overall fit to the retinal

ganglion spike train series. This finding is consistent with the results of [18] who

showed that the generalized inverse Gaussian model describes the data better than

a lognormal model. Our inverse Gaussian model is the special case of their gener-

alized inverse Gaussian model in which the index parameter of the Bessel function

in their normalizing constant equals −0.5. In their analyses Iyengar and Liao es-

timated the index parameter for this neuron to be −0.76. The KS plots suggests

that the model fits can be further improved. The plot of the spike train data series

(Figure 9.2) suggests that the fit may be improved by considering an ISI model that

would specifically represent the obvious propensity of this neuron to burst as well

as produce long ISIs in a history-dependent manner. Such a model could be derived

as the mixture model that Iyengar and Liao [18] suggest as a way of improve their

generalized inverse Gaussian fits.
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Figure 9.4

Kolmogorov-Smirnov plots for the fits of the exponential (dotted line), gamma (solid

line), and inverse Gaussian (solid bold line) models to the neural spike train in Figure

9.2. The parallel diagonal lines are the 95% confidence bounds for the degree of

agreement between the models and the spike train data. By this criterion, statistically

acceptable agreement between a model and the data would be seen if the KS plot for

that model fell entirely within the confidence bounds.

Exponential Gamma Inverse Gaussian

l̂ â l̂ m̂ l̂
q̂ 0.0325 0.805 0.262 30.76 12.1
CI [0.0283 0.0367] [0.678 0.931] [0.208 0.316] [24.46 37.06] [9.9 14.3]
ISI 30.77±30.77 30.73± 34.74 30.76± 49.0

AIC 8598 8567 8174
KS 0.233 0.2171 0.1063

Table 1: The row is the maximum likelihood estimate q̂ . CI (95% confidence inter-

val for the parameter); ISI (interspike interval mean and SD); AIC (Akaike’s Infor-

mation Criterion); KS (Kolmogorov-Smirnov statistic).
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9.3.2 An analysis of hippocampal place-specific firing activity

As a second example of applying likelihood methods, we analyze the spiking activity

of a pyramidal cell in the CA1 region of the rat hippocampus recorded from an

animal running back and forth on a linear track. Hippocampal pyramidal neurons

have place-specific firing [29]. That is, a given neuron fires only when the animal is

in a certain sub-region of the environment termed the neuron’s place field. Because of

this property these neurons are often called place cells. The neuron’s spiking activity

correlates most closely with the animal’s position on the track ([38]). On a linear

track these fields approximately resemble one-dimensional Gaussian functions. The

data series we analyze consists of 4,265 spikes from a place cell in the CA1 region

of the hippocampus recorded from a rat running back and forth for 1200 seconds

on a 300-cm U-shaped track. In Figure 9.5, we show the linearized track plotted in

time so that the spiking activity during the first 400 seconds can be visualized on a

pass-by-pass basis [12]. We compare two approaches to estimating the place-specific

firing maps of a hippocampal neuron. In the first, we use maximum likelihood to fit

a specific parametric model of the spike times to the place cell data as in [3, 6, 8].

In the second approach we compute a histogram-based estimate of the conditional

intensity function by using spatial smoothing of the spike train [12, 27]. The analysis

presented here parallels the analysis performed in [8].

We let x(t) denote the animal’s position at time t, we define the spatial function

for the one-dimensional place field model as the Gaussian function

s(t) = exp

{

a − (x(t)− m)2

2s 2

}

, (9.34)

where m is the center of the place field, s 2 is a scale factor, and exp(a) is the max-

imum height of the place field at its center. We define the spike time probability

density of the neuron as either the inhomogeneous gamma (IG) model

p(u j|u j−1,q ) =
ys(u j)

G(y)

[

∫ u j

u j−1

ys(u)du

]y−1

exp

{

−
∫ u j

u j−1

ys(u)du

}

, (9.35)

or as the inhomogeneous inverse Gaussian (IIG) model

p(u j|u j−1,q ) =
s(u j)

[

2p

[

∫ u j

u j−1

s(u)du

]3
]1/2

exp

⎧

⎪

⎨

⎪

⎩

−1

2

(

∫ u j
u j−1

s(u)du−y
)2

y 2
∫ u j

u j−1
s(u)du

⎫

⎪

⎬

⎪

⎭

(9.36)

for j = 1, · · · ,J, where y > 0 is a location parameter for both models and q =
(m ,a ,s 2,y) is the set of model parameters to be estimated from the spike train.

If we set y = 1 in Equation (9.35) we obtain the inhomogeneous Poisson (IP) model

as a special case of the IG model. The models in Equations (9.35) and (9.36) are

Markov because the current value of either the spike time probability density or the

conditional intensity (rate) function (see Equation (9.3)) depends only on the time
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Figure 9.5

Place-specific spiking activity of a hippocampal pyramidal neuron recorded from a

rat running back and forth for 400 sec of a 1200 sec experiment on a 300 cm U-

shaped track (outset on the right). The track has been linearized and plotted in time

so that the spiking activity on each pass can be visualized. The black dots show

the spatial locations at which the neuron discharged a spike. The place field of this

neuron extends from approximately 50 to 150 cms. In addition to having place-

specific firing, this neuron is directional in that it spikes only as the animal moves

from bottom to top (from left to right in the outset) between 50 to 150 cms.
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of the previous spike. The IP, IG and IIG models are inhomogeneous analogs of

the simple Poisson (exponential), gamma and inverse Gaussian models discussed in

Section 9.3.1. These inhomogeneous models allow the spiking activity to depend on

a temporal covariate, which, in this case, is the position of the animal as a function

of time.

The parameters for all three models, the IP, IG and the IIG can be estimated from

the spike train data by maximum likelihood [3, 8]. The log likelihoods for these two

models have the form

logL(q |N0:T ) =
J

Â
j=1

log p(u j|u j−1,q ) (9.37)

To compute the spatial smoothing estimate of the conditional intensity function, we

proceed as in [8]. We divide the 300 cm track into 4.2 cm bins, count the number of

spikes per bin, and divide the count by the amount of time the animal spends in the

bin. We smooth the binned firing rate with a six-point Gaussian window with a stan-

dard deviation of one bin to reduce the effect of running velocity [12]. The smoothed

spatial rate function is the spatial conditional intensity estimate. The spatial smooth-

ing procedure yields a histogram-based estimate of l (t) for a Poisson process be-

cause the estimated spatial function makes no history dependence assumption about

the spike train. The IP, IG and IIG models were fit to the spike train data by maxi-

mum likelihood whereas the spatial rate model was computed as just described. As

in Section 9.3.1 we use the KS plots to compare directly goodness-of-fit of the four

models of this hippocampal place cell spike train.

The smoothed estimate of the spatial rate function and the spatial components

of the rate functions for the IP, IG and IIG models are shown in Figure 9.6. The

smoothed spatial rate function most closely resembles the spatial pattern of spiking

seen in the raw data (Figure 9.5). While the spiking activity of the neuron is confined

between approximately 50 and 150 cms, there is, on nearly each upward pass along

the track, spiking activity between approximately 50 to 100 cms, a window of no

spiking between 100 to 110 or 125 cms and then, a second set of more intense spiking

activity between 125 to 150 cms. These data features are manifested as a bimodal

structure in the smoothed estimate of the spatial rate function. The first mode is

10 spikes/sec and occurs at 70 cms, whereas the second mode is approximately 27

spikes/sec and occurs at approximately 120 cms. The spatial components of the IP

and IG models were identical. Because of Equation (9.34), this estimate is unimodal

and suggests a range of non-zero spiking activity which is slightly to the right of that

estimated by the smoothed spatial rate function. The mode of the IP/IG model fits is

20.5 spikes/sec and occurs at approximately 110 cms. The IIG spatial component is

also unimodal by virtue of Equation (9.34). It has its mode of 20.5 at 114 cms. This

model significantly overestimates the width of the place field as it extends from 0 to

200 cm. The scale parameter, s , is 23 cm for the IG model and 43 cm for the IIG

model.

For only the IP and the smoothed spatial rate models do the curves in Figure 9.6

represent a spatial rate function. For the IG and IIG models the rate function, or
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Figure 9.6

The place field estimates derived from the spatial smoothing model (dotted line),

and the maximum likelihood fits of the inhomogeneous Poisson (IP) (thin solid line),

inhomogeneous gamma (IG) (thin solid line), and inhomogeneous inverse Gaussian

(IIG) models (thick solid line). The units of spikes/sec only apply to the spatial and

IP model fits. For the IG and the IIG models the graphs show the spatial components

of the rate models. The conditional intensity (rate) function for these two models is

obtained from Equation (9.2) in the way Equation (9.33) was used to compute this

quantity in Section 9.3.1.
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Figure 9.7

Kolmogorov-Smirnov plots of the spatial smoothing model (dotted line), and the

maximum likelihood fits of the inhomogeneous Poisson (IP) (dashed line), inhomo-

geneous gamma (IG) (thin solid line), and inhomogeneous inverse Gaussian (IIG)

(thick solid) models. As in Figure 9.4, the parallel diagonal lines are the 95% con-

fidence bounds for the degree of agreement between the models and the spike train

data.

conditional intensity function, is computed from Equation (9.2) using the maximum

likelihood estimate of q . For both of these models this equation defines a spatio-

temporal rate function whose spatial component is defined by Equation (9.34). This

is why the spatial components of these models are not the spatial rate function. For

the IP model Equation (9.2) simplifies to Equation (9.34). The smoothed spatial rate

model makes no assumption about temporal dependence, and therefore, it implicitly

states that its estimated rate function is the rate function of a Poisson process.

The KS plot goodness-of-fit comparisons are shown in Figure 9.7. The IG model

overestimates at lower quantiles, underestimates at intermediate quantiles, and lies

within the 95% confidence bounds at the upper quantiles (Figure 9.7). The IP model

underestimates the lower and intermediate quantiles, and like the IG model, lies

within the 95% confidence bounds in the upper quantiles. The KS plot of the spatial

rate model is similar to that of the IP model, yet closer to the confidence bounds.

This analysis suggests that the IG, IP and spatial rate models are most likely over-

smoothing this spike train because underestimating the lower quantiles corresponds

to underestimating the occurrence of short ISIs [3]. The fact that the IP and IG mod-
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els estimate a different temporal structure for this spike train data series is evidenced

by the fact that while they both have the same spatial model components (Figure

9.6), Their KS plots differ significantly (Figure 9.7). This difference is due entirely

to the fact that ŷ = 0.61 for the IG model whereas for the IP model y = 1 by as-

sumption. The IP, the IG, and the smoothed spatial rate function have the greatest

lack of fit in that order. Of the 4 models, the IIG is the one that is closest to the

confidence bounds. Except for an interval around the 0.30 quantile where this model

underestimates these quantiles, and a second interval around the 0.80 quantile where

it overestimates these quantiles, the KS plot of the IIG model lies within the 95%

confidence bounds.

The findings from the analysis of the spatial model fits (Figure 9.6) appear to

contradict the findings of the overall goodness-of-fit analysis (Figure 9.7). The IIG

gives the poorest description of the spatial structure in the data yet, the best overall

description in terms of the KS plot. The smoothed spatial rate function model seems

to give the best description of the data’s spatial structure however, its overall fit is one

of the poorest. To reconcile the findings, we first note that the better overall fit of the

smoothed spatial rate function relative to the IP (Figure 9.7) is to be expected because

the IP estimates the spatial component of a Poisson model with a three parameter

model that must have a Gaussian shape. The smoothed spatial rate function model,

on the other hand, uses a smoothed histogram that has many more parameters to

estimate the spatial component of the same Poisson model. The greater flexibility

of the smoothed spatial rate function allows it to estimate a bimodal structure in

the rate function. Both the IP and smoothed spatial rate models use an elementary

temporal model in that both assume that the temporal structure in the data is Poisson.

For an inhomogeneous Poisson model the counts in non-overlapping intervals are

independent whereas the interspike interval probability density is Markov (Equation

(9.35)). The importance of correctly estimating the temporal structure is also seen

in comparing the IP and IG model fits. These two models have identical spatial

components yet, different KS plots because ŷ = 0.61 for the IG and y = 1 for the

IP model by assumption. The KS plots suggest that while the IIG model does not

describe the spatial component of the data well, its better overall fit comes because

it does a better job at describing the temporal structure in the spike train. In contrast,

the smoothed spatial rate function fits exclusively the spatial structure in the data to

the exclusion of the temporal structure.

In summary, developing an accurate model of the place-specific firing activity of

this hippocampal neuron requires specifying correctly both its spatial and temporal

components. Our results suggest that combining a flexible spatial model, such as in

the smoothed spatial rate function model with non-Poisson temporal structure as in

the IG and IIG models, should be a way of developing a more accurate description.

Another important consideration for hippocampal pyramidal neurons is that place-

specific firing does not remain static. The current models would not capture this

dynamic behavior in the data. In the next example we analyze a place cell from

this same experiment using a point process adaptive filter algorithm to estimate the

dynamics of the place cell spatial receptive fields using a model with flexible spatial

and temporal structures.
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9.3.3 An analysis of the spatial receptive field dynamics of a hippocam-

pal neuron

The receptive fields of neurons are dynamic in that their responses to relevant stimuli

change with experience. This plasticity, or experience-dependent change, has been

established in a number of brain regions. In the rat hippocampus the spatial receptive

fields of the CA1 pyramidal neurons evolve through time in a reliable manner as an

animal executes a behavioral task. When, as in the previous example, the experi-

mental environment is a linear track, these spatial receptive fields tend to migrate

and skew in the direction opposite the cell’s preferred direction of firing relative to

the animal’s movement, and increase in both maximum firing rate and scale [24, 25].

This evolution occurs even when the animal is familiar with the environment. As we

suggested in Section 9.3.2, this dynamic behavior may contribute to the failure of the

models considered there to describe the spike train data completely.

We have shown how the plasticity in neural receptive fields can be tracked on a

millisecond time-scale using point process adaptive filter algorithms [7, 13]. Central

to the derivation of those algorithms were the conditional intensity function (Equa-

tion (9.1)) and hte instantaneous log likelihood function (Equation (9.15)). We re-

view briefly the derivation of the point process adaptive filter and illustrate its ap-

plication by analyzing the spatial receptive field dynamics of a second pyramidal

neuron from the linear track experiment discussed in Section 9.3.2.

To derive our adaptive point process filter algorithm we assume that the q-dimen-

sional parameter q in the instantaneous log likelihood (Equation (9.15)) is time vary-

ing. We choose K large, and divide (0,T ] into K intervals of equal width △ = T/K,

so that there is at most one spike per interval. The adaptive parameter estimates will

be updated at k△. A standard prescription for constructing an adaptive filter algo-

rithm to estimate a time-varying parameter is instantaneous steepest descent [17, 34]

. Such an algorithm has the form

q̂k = q̂k−1 − e
∂Jk(q )

∂q
|q =q̂k−1

(9.38)

where q̂k is the estimate at time k△, Jk(q ) is the criterion function at k△, and e
is a positive learning rate parameter. If for continuous-valued observations Jk(q ) is

chosen to be a quadratic function of q then, it may be viewed as the instantaneous

log likelihood of a Gaussian process. By analogy, the instantaneous steepest descent

algorithm for adaptively estimating a time-varying parameter from point process ob-

servations can be constructed by substituting the instantaneous log likelihood from

Equation (9.15) for Jk(q ) in Equation (9.38). This gives

q̂k = q̂k−1 − e
∂ lk(q )

∂q
|q =q̂k−1

(9.39)

which, on rearranging terms, gives the instantaneous steepest descent adaptive filter

algorithm for point process measurements

q̂k = q̂k−1 − e
∂ log l (k△|Hk, q̂k−1)

∂q

[

dN(k△)−l (k△|Hk, q̂k−1)△
]

. (9.40)
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Equation (9.40) shows that the conditional intensity function completely defines the

instantaneous log likelihood and therefore, a point process adaptive filtering algo-

rithm using instantaneous steepest descent. The parameter update q̂k at k△ is the

previous parameter estimate q̂k−1 plus a dynamic gain coefficient,

−
e∂ log l (k△|Hk, q̂k−1)

∂q
,

multiplied by an innovation or error signal [dN(k△)−l (k△|Hk, q̂k−1)△]. The error

signal provides the new information coming from the spike train and it is defined by

comparing the predicted probability of a spike, l (k△|q̂k−1)△, at k△ with dN(k△),
which is 1 if a spike is observed in ((k−1)△,k△] and 0 otherwise. How much the

new information is weighted depends on the magnitude of the dynamic gain coeffi-

cient. The parallel between the error signal in Equation (9.40) and that in standard

recursive estimation algorithms suggests that the instantaneous log likelihood is a

reasonable criterion function for adaptive estimation with point process observations.

Other properties of this algorithm are discussed in [7].

Our objective is to identify plasticity related to both the spatial and temporal prop-

erties of the place receptive fields. Therefore, because given the learning rate, defin-

ing the conditional intensity function is sufficient to define the adaptive algorithm,

we set

l (k△|Hk,qk) = l S(k△|x(k△),qk)l T (k△− zk|qk), (9.41)

where l S(k△|x(k△),qk) is a function of the rat’s position x(k△) at time k△, l T (k△−
zk|qk) is a function of the time since the last spike, zk is the time of the last spike

prior to k△ and qk is a set of time-dependent parameters. These two functions

l S(k△|x(k△),qk) and l T (k△− zk|qk) are respectively the spatial and temporal

components of the conditional intensity function. To allow us to capture accurately

the complex shape of place fields and the ISI structure of CA1 spike trains, we de-

fine l S(k△|x(k△),qk) and l T (k△− zk|qk) as separate cardinal spline functions. A

spline is a function constructed of piecewise continuously differentiable polynomi-

als that interpolate between a small number of given coordinates, known as control

point. The parameter vector qk contains the heights of the spline control points at

time k△. These heights are updated as the spikes are observed. As in [13] the spatial

control points were spaced 1 every 10 cm plus one at each end for 32 total. The tem-

poral control points were spaced 1 every 4 msec from 0 to 25 msec, and then every

25 msec from 25 to 1000 msec for 50 in total. Hence, the dimension of q is q = 82

in this analysis.

In Figure 9.8, we show the first 400 sec of spike train data from that experiment

displayed with the track linearized and plotted in time as in Figure 9.5. The spik-

ing activity of the neuron during the full 1200 sec of this experiment is used in the

analysis. There were 1,573 spikes in all. The place-specific firing of the neuron is

readily visible as the spiking activity occurs almost exclusively between 10 and 50

cms. As in the previous example, the spiking activity of the neuron is entirely unidi-

rectional; the cell discharges only as the animal runs up and not down the track. The
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intensity of spiking activity (number of spikes per pass) increases from the start of

the experiment to the end.

We used the spline model of the conditional intensity function (Equation (9.41))

in the adaptive filter algorithm (Equation (9.40)) to estimate the dynamics of the

receptive field of the neuron whose spiking activity is shown in Figure 9.8. The pa-

rameter updates were computed every 2 msec and the learning rate parameters were

chosen based on the sensitivity analysis described in [13]. Examples of the spatial

and temporal components of the conditional intensity function are shown in Figure

9.9. The migration of the spatial component during the course of the experiment is

evidenced by the difference between these functions on the first pass compared with

the last pass (Figure 9.9A). On the first pass the spatial function has a height of 12,

is centered at approximately 40 cm and extends from 15 to 55 cms. By the last pass,

the center of the spatial function has migrated to 52 cm, its height has increased to

almost 20 and the range of the field extends from 15 to 70 cms. The migration of

this spatial function is an exception. Typically, the direction of field migration is in

the direction opposite the one in which the cell fires relative to the animal’s motion

[24, 25]. This place field migrates in the direction that the neuron fires relative to the

animal’s motion.

The temporal component of the intensity function characterizes history depen-

dence as a function of the amount of time that has elapsed since the last spike. The

temporal function shows increased values between 2 to 10 msec and around 100

msec. The former corresponds to the bursting activity of the neuron whereas the

latter is the modulation of the place specific firing of the neuron by the theta rhythm

[13]. For this neuron the modulation of the spiking activity due to the bursting ac-

tivity is stronger than the modulation due to the approximately 6 to 14 Hz theta

rhythm. Between the first and last pass the temporal component of the conditional

intensity function increases slightly in the burst range and decreases slightly in the

theta rhythm range. By definition, the rate function, i.e., the conditional intensity

function based on the model in Equation (9.41) is the product of the spatial and tem-

poral components at a given time. This is the reason why the units on the spatial and

temporal components (Figure 9.9) are not spikes/sec. However, the product of the

spatial and temporal components at a given time gives the rate function with units of

spikes/sec. A similar issue arose in the interpretation of the spatial components of

the conditional intensity functions for the IG and IIG models in Section 9.3.2 (Figure

9.6).

As in the previous two examples we used the KS plots based on the time-rescaling

theorem to assess the goodness-of-fit of the adaptive point process filter estimate of

the conditional intensity function (Figure 9.10). We compared the estimate of the

conditional intensity function with and without the temporal component. The model

without the temporal component is an implicit inhomogeneous Poisson process. The

impact of including the temporal component is clear from the KS plots. For the

model without the temporal component the KS plot does not lie within the 95%

confidence bounds, whereas with the temporal component the plot is completely

within the bounds. The improvement of the model fit with the temporal component

is not surprising given that this component is capturing the effect of theta rhythm and

© 2004 by Chapman & Hall/CRC



0 100 200 300 400
0

150

300

0

150

300

Time (sec)

D
is

ta
n

c
e
 (

c
m

)

Figure 9.8

As in Figure 9.5, place-specific spiking activity of a second hippocampal pyramidal

neuron recorded from a rat running back and forth for 400 sec of a 1200 sec ex-

periment on a 300 cm U-shaped track (outset on the right). As in Figure 9.5, the

track has been linearized and plotted in time so that the spiking activity on each pass

can be visualized. The black dots show the spatial locations at which the neuron

discharged a spike. The place field of this neuron extends from approximately 10

to 50 cms. Along with place-specific firing, this neuron is also directional in that it

spikes only as the animal moves from bottom to top (from left to right in the outset)

between 10 to 50 cms. The intensity of spiking increases from the start to the end

of the experiment. In the data analyses we use the spiking activity during the entire

1200 sec.
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Figure 9.9

A. Point process adaptive filter estimates of the spatial component of the conditional

intensity (rate) function on the first (solid black line) and last pass (solid gray line). B.

Point process adaptive filter of the temporal component of the conditional intensity

(rate) function on the first (solid black line) and last pass (solid gray line).
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Figure 9.10

Kolmogorov-Smirnov (KS)plots for point process adaptive filter estimates of the

conditional intensity (rate) function A. Without the temporal component of the model

and B. With the temporal component of the model. The parallel dashed diagonal lines

are the 95% confidence bounds for the degree of agreement between the models and

the spike train data. The solid 45◦ line represents exact agreement between the model

and the data. The adaptive filter estimate of the conditional intensity function with

the temporal component gives a complete statistical description of this neural spike

train based on the KS plot.
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the bursting activity of this neuron (Figure 9.9B).

In summary, using the adaptive filter algorithm with the spline model to character-

ize the conditional intensity function we computed a dynamic estimate of the place

receptive field. The updating was carried out on a 2 msec time-scale. We have found

that the dynamics of these fields are best analyzed using videos. Videos of these

types of analyses can be found on the websites cited in [7, 13]. These analyses show

that use of a flexible model can lead to an accurate characterization of the spatial

and temporal features of the hippocampal neuron’s place receptive field. The results

in this example illustrate an important improvement over the model fits in Section

9.3.2. These improvements can be measured through our KS plot goodness-of-fit

tests. We believe these dynamic estimation algorithms may be used to characterize

receptive field plasticity in other neural systems as well.

9.4 Conclusion

Neural spike trains are point processes and the conditional intensity function pro-

vides a canonical characterization of a point process. Therefore, we used the con-

ditional intensity function to review several concepts and methods from likelihood

theory for point process models that are useful for the analysis neural spike trains. By

using the conditional intensity it was easy to show that the likelihood function of any

point process model of a neural spike train has a canonical form given by Equation

(9.8). The link between the conditional intensity function and the spike time prob-

ability model (Equation (9.2)) shows that defining one explicitly defines the other.

This relation provided important modeling flexibility that we exploited in the anal-

yses of three actual neural spike train data examples. In the first example, we used

simple (renewal process) ISI models. In the second example, we applied spike time

probability models that were modulated by a time-dependent covariate whereas in

the third example, we formulated the spike train model directly in terms of the con-

ditional intensity function. This allowed us to model explicitly history dependence

and analyze the dynamic properties of the neurons receptive field. The conditional

intensity function was also fundamental for constructing our goodness-of-fit tests

based on the time-rescaling theorem.

The likelihood framework is an efficient way to extract information from a neural

spike train typically by using parametric statistical models. We showed in the third

example that it may also be used to develop dynamic estimation algorithms using

a semiparametric model. Likelihood methods are some of the most widely used

paradigms in statistical modeling due the extensive theoretical framework and the

extensive applied experience that now lies behind these techniques.

Our analyses showed a range of ways of constructing and fitting non-Poisson mod-

els of neural spike train activity using the likelihood framework. While the different

examples illustrated different features of the likelihood principles, we included in
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each a goodness-of-fit analysis. We believe the goodness-of-fit assessment is a cru-

cial, yet often overlooked, step in neuroscience data analyses. This assessment is

essential for establishing what data features a model does and does not describe.

Perhaps, most importantly, the goodness-of-fit analysis helps us understand at what

point we may use the model to make an inference about the neural system being stud-

ied and how reliable that inference may be. We believe that greater use of the like-

lihood based approaches and goodness-of-fit measures can help improve the quality

of neuroscience data analysis. Although we have focused here on analyses of single

neural spike train time-series, the methods can be extended to analyses of multiple

simultaneously recorded neural spike trains. These latter methods are immediately

relevant as simultaneously recording multiple neural spike trains is now a common

practice in many neurophysiological experiments.

9.5 Appendix

Lemma 1. Given n events E1,E2, · · · ,En in a probability space, then

Pr (∩n
i=1Ei) =

n

’
i=2

Pr
(

Ei| ∩
i−1
j=1 E j

)

Pr(E1). (9.42)

Proof: By the definition of conditional probability for n = 2, Pr(E1 ∩E2) =
Pr(E2|E1)Pr(E1). By induction

Pr
(

∩n−1
i=1 Ei

)

=
n−1

’
i=2

Pr

(

Ei| ∩
i−1
j=1 E j

)

Pr(E1). (9.43)

Then

Pr (∩n
i=1Ei) = Pr
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)
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)
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’
i=1

Pr
(

Ei| ∩
i−1
j=1 E j

)

Pr(E1)

=
n

’
i=1

Pr
(

Ei| ∩
i−1
j=1 E j

)

Pr(E1). Q.E.D.

(9.44)
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10.1 Introduction

The appropriate level of detail for a computational neuroscience model is determined

by the nature of the system or phenomenon under investigation, by the amount of

experimental data available and by the aims of the investigator. For example, models

of certain network phenomena, e.g., synchronization, do not require details of cell

morphology, and perhaps not even ionic currents – integrate and fire neurons will

suffice. On the other hand, studying dendritic processing in active dendrites requires

details of dendritic morphology and of the active channels in the dendrites. However,

although a detailed model may be desirable, such a model must be well constrained
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by experimental data or else be over-parameterised and suffer from lack of predictive

or explanatory power. The final factor affecting the level of detail is the purpose of

the model: to provide support for a specific hypothesis about the function of a neural

system – such models tend to be more abstract with less detail – or to be guided by

experimental data to discover unknown properties of a system – such models tend to

be more detailed, aiming at as realistic a model as possible.

The advantages of simplified, “abstract” models (the simplifications might include

all-to-all connectivity, integrate-and-fire neurons or non-spiking, rate models) are

that they (i) may be amenable to mathematical analysis, allowing conclusions to be

generalized; (ii) are simpler to understand and analyze; (iii) have fewer unknown

parameters, potentially allowing the model to be better constrained by the available

data, and so making the hypothesis driving the model more easily falsifiable; and (iv)

require little computing power, so that the model behaviour can be more thoroughly

investigated. Disadvantages of such models are that (i) simplifications may conflict

with experimental data; (ii) the model may be over-simplified such that it does not

represent the real system; (iii) they are usually difficult to relate to experimental data,

so may be less constrained by data, and less able to generate experimentally-testable

predictions.

The advantages of detailed, “realistic” models are that they (i) can be related di-

rectly to experimental data; (ii) constitute “a compact and self-correcting database

of neurobiological facts and functional relationships.” [29]; (iii) do not pre-judge

the properties and functioning of the system (are guided by the data), and so may

enable discovery of unknown properties of the system; and (iv) are more able to

make experimentally testable predictions. The disadvantages are that they (i) may

not be hypothesis-driven; (ii) are always incomplete – an omitted element may be

crucial in the functioning of the system; (iii) may be almost as complex as the sys-

tem being modelled, and so just as hard to analyze; (iv) usually require many un-

known or estimated parameters – several different parameter sets may produce the

same behaviour; (v) require considerable computing power; (vi) are not amenable to

mathematical analysis.

Given the notable advantages and disadvantages of both classes of model, it would

appear desirable, in the model-based investigation of a neural system, to develop a

hierarchy of models with different levels of complexity. Thus, although a simplified,

abstract model which can be easily simulated and analyzed may be difficult to relate

to/constrain by experimental data, it may be related directly to a more detailed, real-

istic model with which it is consistent, and the detailed model may be related directly

to/constrained directly by the data.

“Realistic” models, with detailed ion channel kinetics and cell morphologies,

based on experimental data, have mainly been used in studying single cells, because

it is for single cells that most of the experimental data is available and because of

limited computer power. Increasingly, however, experimentalists have begun to ob-

tain data suitable for realistic modelling of networks, and the relentless increase in

the ratio of computer power to cost has made modelling of medium-sized networks

(of a few hundred to tens of thousands of neurons) with detailed, realistic neurons

and synapses feasible.
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In this chapter I will discuss the requirements for biologically-detailed, realistic

network modelling. The requirements are divided into those for the neuron models,

the synaptic models, the pattern of connections between cells, the network inputs. I

will then discuss implementation of the model – choice of simulation environment

and numerical issues. Finally I will discuss putting-it-all-together – validation of the

network model as a whole. To illustrate these requirements I will use a model of the

granule cell layer in the cerebellum by Maex and De Schutter [23] and a model of

olfactory bulb developed by the author and collaborators [7, 8].

10.2 Cells

Most if not all biologically-realistic single neuron models are based on Hodgkin-

Huxley-like ion channel models [18] and the compartmental/cable modelling of

dendrites introduced by Rall [30]. Examples include models of cerebellar Purkinje

cells by De Schutter and Bower [11, 12], of olfactory bulb mitral cells by Bhalla and

Bower [3] and CA3 hippocampal pyramidal cells by Traub et al. [39]. For further

examples see the Senselab ModelDB website (http://senselab.med.yale.edu/SenseLab

/ModelDB).

These models are in general very complex and their simulation requires solution

of thousands of differential equations. The Bhalla and Bower mitral cell model, for

example, has almost 300 compartments with up to six ion channel types in each. The

De Schutter and Bower Purkinje cell model has 1600 compartments and nine ion

channels. Simulation of such models requires large amounts of computer power and

they are therefore in practice unsuitable for use in network models where hundreds

or thousands of cells must be simulated.

For network modelling we therefore require neuron models with a lower level

of complexity that nevertheless retain as much fidelity to the biology as possible.

A number of strategies have been used to construct such intermediate-complexity

single cell models. All take as their starting point a detailed compartmental neuron

model and attempt to simplify it while retaining the electrotonic properties and/or

input-output behaviour of the detailed model. One strategy is to concentrate on the

electrotonic properties and reduce the number of compartments in the cell while

conserving the membrane time constants and the cell input resistance [6, 37]. A

more drastic strategy is to attempt to abstract the key features of the cell into as

few compartments and channel types as possible, and constrain the simplified model

to have the same input-output properties as the detailed model, in terms of firing

rate response to synaptic or electrical stimulation [27]. Both strategies give shorter

simulation times than the fully-detailed models.
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10.2.1 Modelling olfactory bulb neurons

In developing our model of the mammalian olfactory bulb we used the second strat-

egy to construct simplified models of mitral and granule cells [9] based on the de-

tailed models of Bhalla and Bower [3]. The method relies on there being regions

of the dendritic tree within which ion channel densities are uniform. For example,

in the Bhalla-Bower mitral cell model the primary dendrite shaft has 6 compart-

ments, but the peak conductances for the different ion channels are the same in all

those compartments. The primary dendrite apical tuft has 94 compartments, and the

peak conductances of the different ion channels are the same in all those compart-

ments, although different to the values in the dendrite shaft. Therefore, we reduced

the primary dendrite shaft to a single, iso-potential compartment with the same peak

conductance densities as in the original model, and carried out a similar reduction for

the primary dendrite tuft, for the secondary dendrites and for the soma/axon region.

These four iso-potential compartments were linked by purely resistive elements. The

relative surface areas of the four compartments, and the values of the three linking

resistances, were varied in order to obtain the best fit between the reduced model and

the original model.

For the purposes of our network model, the details of signal transmission within

the dendritic tree of an individual neuron are not of interest. What is important is the

input-output relationship, i.e., we treat the neuron as a black box. It is important for

the reduced model to mimic the original model over as wide a range of input con-

ditions as possible. Therefore, we compared the models with inputs at two different

sites, the soma and the primary dendrite apical tuft, and with different input ampli-

tudes, such that the weakest input gave an output firing rate of about 10 Hz and the

strongest input gave an output firing rate of almost 100 Hz. We added an extra free

parameter, scaling the amplitude of the input to the reduced model relative to that to

the original model, to take account of differences in input resistance of the models.

With an error function based on the relative timing of the first four action potentials

in response to current injection, we used the Simplex optimization method to find the

values of the free parameters that gave the best agreement between the reduced and

original models. Part of the results are shown in Figure 10.1. The four-compartment

mitral cell model gave a good qualitative and quantitative fit to the fully-detailed

model, and ran 75 times faster than the full model, making its use in a large network

model practical.

10.2.2 Modelling cerebellum neurons

For the model granule cell, Maex and De Schutter reduced a 13 compartment model

of an in vitro turtle granule cell [16] to a single, isopotential, spherical compart-

ment in order to reduce the computational requirements for the network model. This

reduction was justified by the electric compactness of rat granule cells. The rate con-

stants describing the voltage-gated channels were increased to give in vivo, rather

than room temperature, kinetics. To compensate for the resultant reduced charge

transfer the channel peak conductances were also increased. A number of changes
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Figure 10.1

Comparison of the firing rate and first-spike latency of the reduced mitral cell models

with the original Bhalla-Bower model. (A) Firing frequency. (B) Time from current

onset to first action potential. From [10] with permission.

were made to convert the model from turtle to rat (see [23]). The model granule cell

responses agreed qualitatively with experimental recordings. The model Golgi cell

was developed just for the network model. In this case, a single-compartment model

was dictated by the lack of morphological reconstructions. Because of insufficient

voltage clamp data the Golgi cell model used the same ion channels as the granule

cell. Ion channel peak conductances were then tuned to give qualitative agreement

with current clamp recordings.

10.3 Synapses

A complete model of synaptic transmission would incorporate calcium release fol-

lowing action potential invasion of the pre-synaptic terminal, vesicle transport dock-

ing, release and recycling, neurotransmitter diffusion and removal from the synaptic

cleft, binding of neurotransmitter, conformational changes of ion channel proteins,

and entry of ions through open channels. A minimal model of synaptic transmis-

sion would consist of a pre-synaptic impulse triggering a step change in membrane

potential in the post-synaptic compartment. An appropriate level of description for

network models is likely to lie between these two extremes. Two common simplifi-

cations of the pre-synaptic mechanism are (i) an AP triggers, after a certain delay, a

square pulse of neurotransmitter at the post-synaptic mechanism; the post-synaptic

current is then affected by the pulse amplitude and duration; (ii) more drastically, a

presynaptic AP triggers a stereotyped post-synaptic response and details of neuro-

transmitter release/diffusion are ignored completely. An excellent discussion of the
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simplification of synaptic models is given by Destexhe et al. (1998) [10]. They also

present optimized algorithms for calculating synaptic currents in a network model

with high computational efficiency.

Values for peak synaptic conductances and synaptic time constants can be obtained

from voltage-clamp recordings.

10.4 Connections

The pattern of connections within a neural system can strongly influence its function.

This presents a major challenge to modelling, since many connectivity parameters

are not known and may change with the size of the network that is modelled.

Important factors include the size (both number of cells and spatial extent) and

shape of the network, the number of synapses per cell, and the frequency of synapses

as a function of distance and direction from the cell soma. These determine the

degree of interaction between any two cells, i.e., how many synapses there are in the

shortest path between two cells, or, more comprehensively, the distribution of path

lengths between any two cells.

10.4.1 Network topology

For most brain areas the topology is well characterised. Cortical regions are char-

acterised by a laminar structure, often with a columnar organization in the direction

perpendicular to the laminae. The olfactory bulb has a well defined laminar structure

with each cell type restricted to a single layer. It is therefore natural to describe it

by a two-dimensional network. To represent the actual shape of the olfactory bulb

the network topology should be defined by the surface of some ellipsoid. A planar

network, however, makes calculation of location and distance much easier. For the

granular layer of the cerebellum, Maex and De Schutter found that a one-dimensional

network displayed the same dynamics as a two-dimensional one. Reducing the di-

mensionality of the network has the advantage that the spatial extent of the remaining

dimension(s) can be made larger.

Edge effects are a particular problem. Where two regions of cortex with different

functions abut one another there are presumably connections across the ‘boundary’.

How should these be incorporated in the model? In modelling it is common practice

to wrap-round the array of cells (whether one- or two-dimensional) so that cells at

one edge of the array are adjacent to cells at the opposite edge. This avoids the system

having different properties in the centre from those at the edge, but it should be

remembered that real systems do not wrap around in this way. We used this technique

in our olfactory bulb model, giving a toroidal topology, which is not too dissimilar

to the incomplete-ellipsoidal topology of the real bulb. Maex and De Schutter did

not use wrap-around, instead increasing the size of the network sufficiently to give a
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central region with no edge effects.

10.4.2 Number of connections

There are two principal problems regarding the number of connections in a detailed

network model. The first is finding experimental data on the statistics of connections

between the different cell types in a model. There is a paucity of such data for

many brain regions. The second is that almost all models must have fewer cells and

connections than the biological system because of insufficient computer resources.

10.4.2.1 Estimation of number of connections

The number of synapses per olfactory bulb mitral cell, nsyn, has not been experimen-

tally determined. However, it can be estimated from other measurements. The num-

ber of synapses in the EPL of adult mice has been estimated by electron microscopy

as (1.1±0.3)×109 [28]. It is unclear whether this estimate is of reciprocal synapses

or of individual synapses (a reciprocal synapse consists of an excitatory-inhibitory

pair). In the latter case, the number of reciprocal synapses will be half the above

estimate. An indirect estimate gives a very similar result: the number of spines on

the peripheral dendrites of a single granule cell has been measured as 144–297 in

mice [42] and 158–420 in rabbits [25]. Assuming 200 spines per cell and one

reciprocal synapse per spine, taking the number of mitral cells per mouse OB as

38400 [32] and the ratio of granule:mitral cells as 150 [36], then the number of

synapses in the mouse EPL = 200×38400×150 = 1.15×109. The number will be

slightly higher for rabbit, as there are about 60000 mitral cells [32].

Assuming a constant density of synapses on mitral/tufted cell dendrites, it would

be expected that mitral cells, which are larger, would have more synapses than tufted

cells. The total secondary dendrite lengths for rabbit mitral and middle tufted cells

have been measured as 15016 mm and 4050 mm respectively [25]. Therefore, taking

the ratio of tufted:mitral cells as 2.5 [36],

Synaptic density =
1.1×109

38400(15016 + 2.5×4050)
≃ 1.14 mm−1 (10.1)

so the number of synapses per mitral cell is approximately 1.14× 15016 = 17000

and the number per tufted cell is 4600.

These calculations assume that all synapses involve a mitral/tufted cell, and so they

ignore centrifugal inputs onto interneurons in the EPL. Therefore these are probably

slight overestimates.

In practice, it was not possible to simulate a network with several thousand synapses

per mitral cell, and a value of 500 synapses per cell was used. The reduced number

of synapses was compensated for by a granule cell model that was more excitable

than found experimentally.

In the cerebellar granule cell layer model of Maex and De Schutter there were

an average number of 602 synapses from granule cells onto each Golgi cell, corre-
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sponding to a connection probability of 0.2. It is not stated, however, how this latter

figure was determined.

10.4.2.2 Reducing the network size

Simulating large, highly connected networks in which the individual elements are

themselves complex is extremely computationally intensive. Therefore it is desirable

to simulate smaller networks and to infer the behaviour of the full-scale network from

the behaviour of the smaller simulations.

In principle there are two ways to shrink a network: it can be made smaller in

extent or be made more sparse. A smaller network, which may represent a sub-

region of the neural structure, has the same connectivity within the sub-region, but

ignores any connections from outside. Such connections may be very significant, but

experimental conditions can be simulated that minimize the degree of activation of

external connections, for example focal stimulation.

A sparser network does not suffer from such effects of missing external connec-

tions, but will have different connectivity to the full-scale network: either the number

of connections per cell will be reduced or the probability of connecting to a neigh-

bouring cell will be increased.

In our model of the olfactory bulb we used both methods of reducing the network

size. In one version of the model, a single glomerulus was stimulated, thus reducing

the number of cells that needed to be simulated by about 1000-2000 (the number

of glomeruli in a single bulb) so that a realistic number of mitral and granule cells

could be used. In another version, with 25-100 glomeruli, the network was shrunk

less drastically in extent, but was made sparser, with only a single mitral cell per

glomerulus. The number of synaptic connections per cell was maintained the same;

therefore the connectivity between cells (e.g., the probability of two given mitral

cells contacting the same granule cell) was increased.

As mentioned previously, the Maex and De Schutter cerebellum model is of a one-

dimensional array of cells, a ‘beam’ of the granule cell layer. This greatly reduces the

number of cells without, for the phenomena considered in their model, affecting the

network dynamics. The ratio of granule:Golgi cells is estimated as 1000:1 [23], but a

reduced ratio of about 150:1 was used in the model. The number of connections was

reduced accordingly, but the peak synaptic conductance was normalized according to

the number of connections in order to maintain a fixed level of synaptic input. This

method preserves the connectivity but increases the influence that a single connection

has on the target cell response.

10.4.3 Distribution of connections

Without knowing the exact biochemical signals that regulate dendritic growth and

synapse formation, the most realistic method of specifying the connections between

cells in a model would be to generate a realistic dendritic morphology for all neu-

rons, form a synapse wherever two dendrites come sufficiently close together, and

use activity-dependent pruning to eliminate some synapses and strengthen others.
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Ascoli (2000) [1] reviews two approaches to generating realistic dendritic morpholo-

gies. The L-Neuron program [2] is one example of a system for generating virtual

neurons whose morphological parameters (e.g. length of branches) have the same

statistical distribution as real neurons, based on a few so-called ‘fundamental param-

eters’ measured from an experimental data set. An alternative is to generate an entire

population of neurons at once, using a growth algorithm that distributes dendrites

among neurons in a manner that reflects competition for metabolic resources [35].

A simpler alternative is to use a probabilistic method, with the probability of two

neurons being connected based on the distance and possibly on the direction between

the neurons. To specify the reciprocal, dendrodendritic synapses between mitral and

granule cells in the olfactory bulb we supposed that each mitral cell has a probability

density field p(r,f) (polar coordinates in the plane of the secondary dendrites), such

that the probability of forming a synaptic connection within a region of size rd rd f
at point (r,f) is

P(r,f) = p(r,f)rd rd f (10.2)

The identity of the granule cell to which the connection is made could also be deter-

mined by such a probabilistic method. However, since the radius of the granule cell

dendritic field is much smaller than that of the mitral cell, it is simplest to make the

connection to the granule cell whose soma is nearest to the point (r,f). We made

the simplifying assumption that the probability of a mitral cell forming a synapse at

a point depends only on the radial distance of the point from the soma, and not on

the direction, i.e.,

p(r,f) = p(r) (10.3)

This is an approximation, since of course synapses must occur on dendrites, and these

project in definite directions from the cell. However, the dendrites branch copiously,

so the approximation appears reasonable.

What is p(r)? First, we assumed that synapses are approximately evenly spaced

along the dendrites. If the dendrites have no branches, then p(r) µ 1/r (i.e., the av-

erage number of synapses at any given radial distance is constant, so the density of

synapses declines with distance). If the dendrites branch copiously such that den-

dritic density is constant within the arbour, then p(r) = constant. In practice, p(r)
is likely to lie somewhere within these limits. For any single cell, p(r) will have a

discontinuity at each branch point, but these can be smoothed out by taking an en-

semble average from many cells. For simplicity we used p(r) µ 1/r but it would

be of interest in future to examine the effect of the p(r) distribution on the network

behaviour.

In summary, the connections are specified as follows: The number of synapses

per mitral cell is fixed. For each synapse, a direction f and radius r are chosen at

random from uniform distributions, and a connection made to the granule cell whose

soma is located closest to the point (r,f ). Therefore the number of synapses per

granule cell is not constant, but follows some distribution. An example of the pattern

of connections between a mitral cell and the granule cell population is shown in

Figure 10.2.
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Mitral cell array

Granule cell array

Figure 10.2

The mitral–granule cell network. Mitral cells are shown as large dots. Each mitral

cell makes nsyn connections to granule cells selected randomly from all the cells

within its ‘arbor’ (shown as a circle). nsyn = 200 in this figure. The granule cells

connected to the central mitral cell are shown as intermediate-size dots. There are

fewer connected cells than connections, since some granule cells have more than one

connection to the mitral cell. The remaining granule cells are shown as the smallest

dots. From [8] with permission.
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A probabilistic method was also used in Maex and De Schutter’s model of the

cerebellar granule cell layer to determine granule–Golgi cell connections. Since the

network in this case was one-dimensional, only r had to be considered and not f . The

probability of a connection was constant within a fixed range, so p(r) = constant.

10.5 Inputs

It is pointless to go to great lengths to accurately model a neural system if similar

care is not taken in modelling its inputs (‘rubbish in, rubbish out’). However, it is

often the inputs to a system about which least is known. In modelling the inputs one

must consider two main issues, first, the spatial and temporal pattern of inputs across

the network as a whole, and second, the nature of the inputs to individual cells.

10.5.1 Spatiotemporal pattern of inputs

Are the network inputs organised spatially, or are they uniform across the network?

The spatial organisation may depend on the regime being simulated, e.g., natural vs

artificial stimulation. Are the inputs stationary in time, or do we wish to simulate

a transient response? Again, depending on the regime we wish to investigate, the

same network may receive either type of temporal input. From the point-of-view of

inputs, it is easier to model sensory systems, since the inputs are in general better

understood, and are easier to control experimentally.

10.5.1.1 Spatial pattern of OB inputs

The olfactory bulb receives inputs from the olfactory nerve (sensory inputs from ol-

factory receptor neurons (ORNs) or electrical stimulation of the nerve) and centrifu-

gal inputs from various brain regions. Little is known about the centrifugal inputs

although they are thought to be mainly modulatory in nature. When considering ex-

periments performed in bulb slices centrifugal inputs can be ignored entirely since

the connections are not preserved in this preparation. For these reasons we did not

include centrifugal inputs in our model.

In one sense, modelling the spatial distribution of inputs is easy: each ORN-type

projects to one or a pair of glomeruli and each glomerulus receives input from only

one ORN-type [5, 24, 40]. However, any given receptor responds to a broad range

of odorants, and any given odorant activates receptors of more than one type. There

is as yet no satisfactory model for this, although features of the odour molecule such

as shape and chemical identity appear to be important [22, 26]. There is some evi-

dence that receptors which respond to chemically-similar odorants project to nearby

glomeruli [15, 19] but it is not established that this arrangement has a functional

purpose [21].

We chose to model 10 odour ‘features’ and 36 receptor types/glomeruli (in a 6×6
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array). Let ai j be the degree of activation of each receptor type j by each odour

feature (OF) i (0 ≤ ai j ≤ 1). All the ai j’s form a 10×36 matrix, A. An odour is then

represented by a 10 element vector�x. Applying odour�x to the bulb model produces

a receptor-activation vector�y:

�y = A�x (10.4)

This assumes no interaction between odour features at the receptor level and so is

a simplification of the real situation [20]. The current applied to the glomerular

compartment of mitral cell j is then proportional to the element y j of the receptor

activation vector. The proportionality includes a scaling for odour intensity. There

are no good statistical data available which would allow determination of the matrix

A. In developing a procedure to specify A, we adopted the criterion that a large mi-

nority of the elements should be zero (no response), and that a small minority should

have strong responses. This criterion is based on imaging studies of glomerular acti-

vation (e.g., [14, 15, 33]). Full details of how A was generated are given in Davison

(2001) [7].

10.5.1.2 Spatial pattern of inputs to cerebellar granule cell layer

The input to the granular layer of the cerebellum comes from the mossy fibres, form-

ing synapses onto Golgi cells and granule cells. In the model the input distribution

was spatially homogeneous, although with random variability in the set of innervat-

ing mossy fibres for each granule cell, and random variability in synaptic weights.

10.5.1.3 Temporal pattern of OB inputs

The temporal variation of olfactory stimuli is slow compared to auditory or visual

stimuli. A typical experimental stimulus is exposure to a single odour for an ex-

tended period. We replicated this by stimulating the network with a low intensity

‘background’ odour for 1000 ms then applied a fixed odour at a fixed intensity for

the remainder of the simulation (steady-state conditions). We also used a sinusoidally

varying stimulus since the experimental odour intensity may vary periodically due to

sniffing or breathing.

10.5.1.4 Temporal pattern of inputs to cerebellar granule cell layer

Steady-state conditions were also used by Maex and De Schutter for the mossy fibre

inputs. The mossy fibre inputs were modelled as pulses representing the arrival of

a spike. Due to the lack of experimental information about the fine structure of the

spike trains in mossy fibres the simplest model was used, that the probability of firing

of a mossy fibre was independent of its firing history (this corresponds to a Poisson

distribution of the instantaneous firing rate).

10.5.2 Inputs to individual cells

The possibilities for inputs to individual cells are (i) continuous current injection, (ii)

synaptic inputs and (iii) current pulses.
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10.5.2.1 Continuous current injection

Each cell has one or more current sources at approximately the same location as the

synapses in the real cell. The amplitude of the current injection may vary from cell to

cell. The spatial pattern of the inputs consists of specifying the current amplitude at

each input node in the network. The temporal pattern is generally simple – constant

or periodically varying – possibly overlaid with a random element. It has been shown

for the Hodgkin-Huxley model that under a wide range of conditions a random con-

tinuous current, based on the diffusion process, is equivalent to discrete pulses from

a Poisson process [13]. This method has the advantage of simplicity. It is prefer-

able to use this method if little is known about the details of the input synapses or of

the temporal structure of the inputs, since few assumptions must be made. In gen-

eral this method is the least computationally expensive, which may be an important

factor. The exception to this is if there is a random element, in which case fixed time-

step integration methods must be used, which may be slower than variable time-step

methods. With pulsed inputs a random element may be introduced in the pattern of

input triggers, and variable time-step methods may still be used. This method was

used in our olfactory bulb model.

10.5.2.2 Synaptic inputs

If there is sufficient experimental data about the input synapses and sufficient com-

puter power then this method is preferable. It has the obvious advantage that it

matches the biological system most closely and therefore one can have greater confi-

dence in the results of the model. The input is a sequence of input spikes. The spikes

may have a constant interval, the interval may follow some functional form, or may

be drawn from a specified random distribution. A commonly used input distribu-

tion is the Poisson. The global pattern is then the spatial distribution of the mean

interval and of the synaptic amplitude. This method is in general the most compu-

tationally expensive as calculations are required for each synapse, particularly so if

there is more than one input synapse per cell. It does, however, allow the combina-

tion of variable time step methods and noisy inputs. This method was used in the

cerebellum model of Maex and De Schutter (1998).

10.5.2.3 Current pulses

Modelling the inputs as current pulses combines some of the advantages of the previ-

ous two methods. A current pulse requires less computation than a synaptic conduc-

tance, and less knowledge about the details of the synapse. In contrast to continuous

current injection, more of the fine temporal structure of the inputs is retained, for

networks in which spike timing is important, and variable time step methods may be

used with random input.
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10.6 Implementation

While it is possible to implement complex, realistic neuronal models in a general

purpose programming language such as C++ (a class library, “CONICAL” for com-

partmental neuron models is available from http://www.strout.net/conical/ [38]),

there are several software packages specifically for simulating such models. Neuron

(www.neuron.yale.edu) [17], GENESIS (www.genesis-sim.org) [4, 41] and Surf-

Hippo (www.cnrs-gif.fr/iaf/iaf9/surf-hippo.html). These programs are suitable for

modelling at every level from sub-cellular to systems, although they are most com-

monly used for single neuron and small-network models. There are several advan-

tages to using these programs:

• Avoids reinventing the wheel. The built-in algorithms for solving the systems

of differential equations have been optimized and thoroughly tested.

• Better conceptual control and faster development. Models can be written in

high level languages in which neuronal elements such as synapses or sections

of cell membrane are fundamental objects. This makes the structure of the

model easier to understand from reading the source code. The programs also

have graphical user interfaces which facilitate model development, simulation

and display of results.

• Code portability. GENESIS and Surf-Hippo run on several variants of Unix.

Neuron runs on Unix, Microsoft Windows and Apple Macintosh operating sys-

tems. In each case, model code written for one platform will run unmodified

on any another platform for which the simulator is available, e.g., a GENESIS

model developed under Solaris can be easily transferred to Linux, or a Neu-

ron model developed under MacOS transferred to Windows, with no need for

compiling.

10.7 Validation

Almost by definition a model implies simplification, approximation, reduction in

scale. In developing a detailed model of a neuronal circuit approximations and in-

formed guesses are required in every part of the model, due either to gaps in exper-

imental knowledge (this is an important outcome of detailed quantitative modelling

– gaps in our knowledge are starkly exposed) or to limitations of computer power.

It is therefore especially important to demonstrate that these lacks do not invalidate

the model, i.e., that the behaviour of the model is consistent with the majority of

experimental knowledge about the system being modelled.
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The first necessary step is to test that the model can reproduce the experimental

results that were used in developing the model, the ‘built-in’ properties. This test

is important first to check for mistakes in the implementation of the model (such as

‘bugs’ in the code) but can also expose inconsistencies between different sources of

experimental data. This alone is not sufficient, however. It is essential to attempt to

reproduce experimental results that were not used in developing the model. If the

‘emergent’ properties of the model match experimental findings, this validates the

model. (For more discussion on built-in vs emergent properties of computational

models, see Protopapas et al. (1998) [29]).

As an example, one way in which we tested our olfactory bulb model was by

attempting to reproduce published data on dendrodendritic synaptic currents [34].

Many of the model parameters were derived from this same publication, but the am-

plitude and time constant of the mitral cell IPSC were not incorporated directly in the

model: they are emergent properties. The simulated IPSC matched the experimental

one closely, although with a number of discrepancies. Because of these discrepan-

cies we would regard the model as only partially validated by these results. The

resolution of these discrepancies suggests further lines of enquiry.

10.8 Conclusions

What is the future of biologically-detailed network modelling? As computers be-

come more powerful, more detail can be incorporated into models, but with this

comes the need for more detailed, carefully-designed biological experiments to con-

strain and test the models. As the complexity of models approaches that of real

systems, more sophisticated analysis tools will be required. As discussed in the In-

troduction, it will in most cases be desirable to develop a hierarchy of models to

link abstract, conceptual models, via models of intermediate complexity, to detailed

models and thence to biological data.
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11.1 Hebbian models of plasticity

When an axon of cell A is near enough to excite cell B and repeatedly
or persistently takes part in firing it, some growth process or metabolic
change takes place on one or both cells so that A’s efficiecncy as one of



the cells firing B is increased. — Donald Hebb, 1949

In his famous book published a little more than half a century ago,The Organi-
zation of Behavior, Hebb proposed a hypothetical mechanism by which ‘cell assem-
blies’, which are a group of cells that could act like a form of ‘short term memory’
and support self-sustaining reveberatory activity outlasting the input, could be con-
structed [37]. These suggestions were later extended into other areas and now serve
as the basis for a large body of thinking concerning activity-dependent processes
in development, learning, and memory [7, 13, 28, 35, 52, 74, 100]. What Hebb
proposed was an elegant way for correlated, i.e., interesting, features of an input
stimulus to become permanently imprinted in the architecture of neural circuits to
alter subsequent behavior, which is the hallmark of learning. It is similar in form to
classical conditioning in the psychology literature. Many models have subsequently
been constructed based on extensions of this simple rule, now commonly called the
Hebbian rule. These models have given reasonable accounts of many aspects of
development and learning [44, 48, 58, 59, 62, 70, 73, 75, 77, 90, 95, 97]. In this
chapter, we will not attempt to review the literature on Hebbian learning exhaus-
tively. Instead, we will try to review some relevant facts from the Hebbian learning
literature and discuss their connections to spike-timing-dependent plasticity (STDP),
which are based on recent experimental data. To discuss Hebbian learning and STDP
in a coherent mathematical framework, we need to introduce some formalism. Let us
consider one neuron receiving many inputs labelled 1 to N and denote the instanta-
neous rate for theith input asr in

i and the output as (rout). The integration performed
by the neuron could be written as

τm
drout(t)

dt
= G∑

i
wir

in
i (t), (11.1)

whererout(t) is the instantaneous firing rate of the output neuron at time t,G is a
constant gain factor for the neuron,wi is the synaptic strength of theith input, and
r in
i (t) is the instantaneous firing rate of theith input at timet. Solving the differential

equation, we have

rout(t) = G
∫ ∞

0
dt′K(t ′)∑

i
wir

in
i (t − t ′)−θ, (11.2)

with

K(t) =
1
τm

e−t/τm. (11.3)

K(t) is a kernel function used to simulate the membrane integration performed by
the neuron andθ is the threshold. Therefore, the rate of a given neuron is linearly
dependent on the total amount of input into the neuron over the recent past, with
exponentially more emphasis on the most recent inputs. For the sake of simplicity,
we do not include the rectifying nonlinearity introduced by the threshold and only
consider the regime above threshold. If we assume that plasticity is on a slower time



scale than changes in firing rates and only depend on the average firing rates, we can
further simplify Equation (11.2) to

rout(t) = G∑
i

wir
in
i (t)−θ. (11.4)

This simplification is however not appropriate when we consider plasticity rules that
depend on spike time later in this chapter. Computationally, the simplest rule that
follows from Hebb’s idea is probably

τw
dwi(t)

dt
= rout(t)r in

i (t). (11.5)

We will drop the ‘(t)’ term in subsequent equations and the reader should note that
all these entities represent functions in time. After plugging in Equation (11.4), we
have

τw
dwi

dt
= G∑

j
w j r

in
j r in

i , (11.6)

If we average over a long time, we can write the rule as

τw
dwi

dt
= G∑

j
w jQi j , (11.7)

whereQi j (t) =< r in
j (t)r in

i (t) > represents the average correlation between the inputs
over the training sets. If this rule is applied for a long enough time, the weight vectors
would pick out the principal eigenvector of the correlation matrix of the inputs the
neuron experienced [62].

11.2 Spike-timing dependent plasticity
More recently, many studies have focused on spike-timing dependent plasticity rules
(STDP). These rules are inspired by recent studies that have tested the role of tim-
ing in synaptic plasticity by directly controling the timing of pre- and postsynaptic
spikes. Markram et al. [51], using dual intracellular recordings, found that if neuron
A repeatedly fired 10ms before neuron B, the connection from neuron A to neuron
B was strengthened. However, if neuron A consistently fired 10 ms after neuron B,
the connection was weakened. Time separations of 100ms between pre- and post-
synaptic spikes were ineffective in inducing synaptic plasticity. Similar results have
been found in hippocampal slice [21, 49], hippocampal culture [21], somatosensory
cortical slice [26], and visual cortical slice [78]. Zhang et. al. [101], working with
an in vivo preparation of the optic tectum of frogs, have documented the relation-
ship between changes in synaptic strength and relative timing in great detail. Earlier
studies done with field recordings suggest essentially the same rule [36, 46]. An



inverse form of STDP was found for inhibitory synapses in the cerebellum of the
electrical fish [5]. Eggeret al. [23] found a symmetric form of STDP for spiny
stellate neurons in visual cortical slices. The mainly temporally asymmetric form of
the spike-timing dependent plasticity (STDP) rule found in these experimental stud-
ies has great attractions. The inclusion of both potentiation and depression in one
rule addresses the problem of coordinating LTP and LTD at one synapse by stressing
causality as a condition for strengthening. Chance coincidences occur with roughly
equal positive and negative time delays and only truly causal inputs have a consistent
timing relationship to the postsynaptic spike. Only the causal inputs will be strength-
ened under STDP. Furthermore, the dependence on time also makes this rule useful
for learning tasks involving temporal patterns. Recently, Yao and Dan [98] used
pairs of gratings at slightly different orientations presented in rapid succession to in-
duce bi-directional changes in orientation selectivity that depended on the timing of
the two gratings. The time scale of stimulus separation for effective orientation plas-
ticity is similar to the time scale of STDP. They went on to characterize this effect
physiologically [30]. Schuettet al. [71] paired a brief visual stimulus with electrical
stimulation in the visual cortex and found alteration in the cortical orientation maps
using optical imaging. These studies furnish an important link between STDP on the
cellular level and plasticity on the physiological and perceptual levels, and directly
relate to theoretical work reviewed in this chapter. In the framework of rates outlined
in the previous section, we can represent STDP as:

dwi

dt
=

∫ ∞

−∞
dt′P(t ′)rout(t)r in

i (t + t ′). (11.8)

When compared with Equation (11.5), the explicit dependency on the the temporal
relationship of presynaptic and postsynaptic rates is apparent. Theτw term is absent
because a factor of similar nature is present inP(t ′) for the amount of change per
pair of spikes. In this review, we consider STDP rules of the temporally asymmetric
kind and write

P(∆t) =

{

A+
τ+

e(∆t/τ+) if ∆t < 0
−A−
τ− e(−∆t/τ−) if ∆t ≥ 0,

(11.9)

whereP(∆t) indicates the amount of of change in synaptic strength for a pair of pre-
and postsynaptic spikes seperated by time∆t(tpre− tpost = ∆t). we impose a lower
bound of zero and a upper bound ofgmax on the synapses, andP(∆t) is expressed as
a fraction of the maximal synaptic strengthgmax. We decided to use an exponential
function based on curve fits to experimental data, especially that contained in Zhang
et al. [101]. The constantsτ+ andτ− determine the time scale of spike pair sepa-
ration over which STDP is operating. Bi and Poo [7] gives an excellent review of
this issue. They have noted that the time scale over which the synaptic strengthening
portion of STDP operates (τ+) is mostly around 20-30 ms, while the synaptic weak-
ening portion (τ−) has a more variable time course. Most of the studies cited in this
chapter are preformed with aτ− of around 20 ms, while we have also studied effects
of STDP withτ− = 100ms.A+ andA− determine the maximum amounts of synap-
tic modification for each spike pair. The studies cited in this chapter have assumed



that the modification of each spike pair sum linearly. Some recent experiments have
demonstrated nonlinear summations [29, 78], which needs to be addressed in fu-
ture investigations (see [43]) for some attempts). The STDP functions with bothτ−
values are plotted in Figure 11.1.
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Figure 11.1

The STDP modification function. The change of the peak conductance at a synapse due to a
single pre- and postsynaptic action potential pair isF(∆t) times the maximum valuegmax. ∆t
is the time of the presynaptic spike minus the time of the postsynaptic spike. In this figure,
P is expressed as a percentage. Solid line represents the form of STDP withτ− = 20msand
dotted line hasτ− = 100ms. Adapted with permission from [79].

11.3 Role of constraints in Hebbian learning
The simple Hebbian rule outlined in Section 11.1 is in general unstable. The total
synaptic strengths will continue to grow over time. The connection strength from
correlated inputs would continually increase and eventually drive the postsynaptic
cell to fire at catastrophic rates. An upper bound imposed on synaptic strengths
alone cannot ameliorate this situation as all connection strengths would eventually
reach the upper bound, thus rendering the postsynaptic neuron equally responsive to
all inputs. Furthermore, the simple Hebbian rule lacks competition among inputs,
strengthening of one set of inputs does not automatically lead to decreased synaptic
strengths for other inputs. Several modifications to the basic Hebbian rule have been



suggested to address these issues.

11.3.1 Covariance rule

Because neuronal firing rates are always positive, there is no synaptic weakening
under the simple Hebbian rule. As a first step, let us consider rules where the synapse
is strengthened when the presynaptic rate or the postsynaptic rate is above average.
Otherwise, the synapse is weakened. Mathematically,

τw
dwi

dt
= (r in

i − r in
i )(rout− rout), (11.10)

where the overlined quantities represent the average rates [75, 20]. Plugging in Equa-
tion (11.4), this leads to

τw
dwi

dt
= G∑

j
w jCi j , (11.11)

whereCi j =< (r in
j − r in

j )(r in
i − r in

i ) > represents the average covariance between the
inputs over the training sets and the rule is called the covariance rule. Notice that
Qi j = Ci j + r in

i r in
j , so the original simple Hebbian rule can be written as

τw
dwi

dt
= G∑

j
w j(Ci j + r in

i r in
j ). (11.12)

The mean rate is subtracted out under the covariance rule compared to the simple
Hebbian rule. In all subsequent sections, we will express the rule in terms of the
covariance C rather than the correlation Q. The covariance rule, unfortunately, is still
not stable by itself. Although the mean activity alone does not make the synapses
grow, correlated activity among inputs will continue to drive all the synapses towards
the upper bound.

11.3.2 Constraints based on postsynaptic rate

In order to have a stable learning rule and introduce competition among inputs, most
of the studies applying the Hebbian rule rely on some additional mechanism to ensure
competition among different inputs. The are two main ways to achieve it, either by
constraining the postsynaptic activity or by constraining the total synaptic weights.
In this section, we will introduce rules which constrain the synapses based on post-
synaptic rates. Later on, we will also see that STDP can also constrain the synapses
to keep the postsynatic rate constant. In the next section, we will introduce rules that
constrain the total synaptic weights. It should be noted that if the presynaptic rate
is fixed, constraining the total synaptic strengths will also constrain the postsynaptic
rate and vice versa. One example of constraints based on the postsynaptic rate is the
BCM model. In the BCM model, correlated pre- and postsynaptic activity induces
LTP when the postsynaptic firing rate is above a threshold and induces LTD when it



is below the threshold. Mathematically,

τw
d
dt

wi = ηΦ(rout, rθ)r in
i , (11.13)

where η is a constant,Φ is a nonlinear function andrθ is the threshold. Φ is
zero whenrout is smaller than a certain valuer0. It is negative whenrout is be-
tweenr0 andrθ . It is positive whenrout is larger thanrθ . An often used choice is
Φ = rout(rout − rθ). Sliding the threshold based on the average postsynaptic firing
rate confers stability [8]. This introduces competition as inputs strive to raise the
postsynaptic firing rate above the threshold which is determined by the average rate
given by the mean activity of all inputs. Another example is synaptic scaling based
on postsynaptic rates [22, 47, 86, 87, 88, 89, 92]. Mathematically,

τw
dwi
dt = r in

i rout−βwi(aout−aout
goal)

= ∑ j Qi j w j −βwi(aout−aout
goal)

= ∑ j Ci j w j +∑ j r
in
i r in

j )w j −βwi(aout−aout
goal)

= ∑ j Ci j w j + r in
i rout−βwi(aout−aout

goal),

(11.14)

whereaout is an averaged version ofrout andaout
goal is a constant goal value foraout.

The synaptic weights stop changing when the right side is equal to zero. The final
rout will depend on the correlation and value ofaout

goal , but it is constrained and would
not grow without bound.

11.3.3 Constraints on total synaptic weights

Another way to achieve stability is to constrain the total synaptic weights to be con-
stant. Miller classified these types of constraints into two classes: multiplicative and
subtractive constraints [61]. These rules also enforce competition because increased
strength in one set of synapses will lead to decrease in synaptic strengths in other
inputs as the total synaptic weight is kept constant. In multiplicative constraints, the
underlying mechanism effectively multiplies the strength of each synapse by a fac-
tor after each application of the Hebbian rule, so the total synaptic strength is kept
constant. Mathematically,

τw
dwi
dt = ∑ j Qi j w j −γ(−→w)wi

= ∑ j Ci j w j +∑ j r
in
i r in

j w j −γ(−→w)wi

= ∑ j Ci j w j + r in
i rout−γ(−→w)wi ,

(11.15)

whereγ(−→w) is a function of all the synaptic weights. For an explanation of how
the subtractive factor in the equation above is the same as multiplyingwi by a factor
after each time step, please see [61]. Under multiplicative constraints, the princi-
pal eigenvalue is amplified and the final weight eventually approaches the principal
eigenvalue. A famous example of multiplicative constraint is the Oja rule, where

γ(−→w) = α 2(rout)2, (11.16)



andα is a constant that determines the total synaptic weight [62]. In subtractive
constraints, a factor independent of current strength is subtracted from the strength
of each synapse after each application of the Hebbian rule. Mathematically,

τw
dwi
dt = ∑ j Qi j w j −e(−→w)

= ∑ j Ci j w j +∑ j r
in
i r in

j w j −e(−→w)

= ∑ j Ci j w j + r in
i rout−e(−→w),

(11.17)

wheree(−→w) is a function of all the synaptic weights. Under subtractive constraints,
if the principal eigenvalue is zero-summed, then the principal eigenvalue is amplified
and leads to saturation. Otherwise, a zero sum vector that grows to complete satu-
ration imposed on the constraint background is the final result [61]. As an example,
let us consider a neuron receiving 1000 inputs. The correlation between inputsi and
j is given by

< r i(t)r j(t
′) >= r2 + r2

in(σ2δi j +(1−δi j )cic j)e
−|t−t ′|/τcorr (11.18)

with r in = 10Hz, σ = 0.5, τcorr = 20ms, andci , which we call the correlation pa-
rameter, varied from zero to 0.2 uniformly across the 1000 excitatory synapses (ci =
0.2(i −1)/(N−1)). This graded variation inci values produces a gradation of cor-
relation across the population of synapses. Pairs of synapses with largec values are
more highly correlated than synapses with smallerc values. This is achieved in the
simulations by changing the presynaptic rates after each interval of time chosen from
an exponential distribution with mean intervalτcorr. For every interval, we generate
N+1 random numbers, y andxi for i = 1,2, . . . ,N from Gaussian distributions with

zero mean and standard deviation one andσi respectively, whereσi =
√

σ2−c2
i . At

the start of each interval, the firing rate for synapsei is set tor i = r in(1+xi +ciy), and
it is held at this value until the start of the next interval (see [79] for details). The
final synaptic strengths under multiplicative constraints is plotted inFigure 11.2A
and reproduces a scaled version of the principal eigenvector of the correlation ma-
trix quite faithfully. Synapses show a graded transition from weak to strong as the
correlation strength grows. The final synaptic strengths under subtractive constraints
is plotted in Figure 11.2B and the situation is quite different. Synapses with corre-
lation strength above a threshold all had maximal synaptic strengths while synapses
with correlation strength below the threshold had synaptic strengths of zero. we have
also plotted the final synaptic strengths under the BCM rule introduced in the previ-
ous section in Figure 11.2C. STDP gives a gradient of synapse strength, and will be
discussed in detail in Section 11.4.5.3 (Figure 11.2D).

Another example is the formation of ocular dominant cells. In this scenario, the
postsynaptic cell receives inputs from two eyes. Inputs from the same eye are cor-
related while inputs from different eyes are either anti-correlated or uncorrelated.
Under subtractive constraints, inputs from different eyes need only to be uncorre-
lated for the postsynaptic cell to finally receive inputs exclusively from one eye while
anti-correlation is needed in the case of multiplicative constraints [61].
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Final synaptic strengths for different learning rules for inputs with gradient of cor-
relations. (A) Rate-based Hebbian rule and multiplicative constraint; (B) rate-based
Hebbian rule and subtractive constraint; (C) BCM rule; (D) STDP. (D) Adapted with
permission from [79].

11.4 Competitive Hebbian learning through STDP
11.4.1 STDP is stable and competitive by itself

A perhaps surprising result is that STDP by itself is stable and competitive [79].
How are synapses constrained and how is competition achieved in this case? Intu-
itively, changes in the strength of one synapse would shift postsynaptic spike timing
and affect the synaptic strengths of other synapses. All the inputs therefore compete
for control of the postsynaptic spike timing. In response to Poisson inputs, individual
synapses tend to the bounds imposed on the synapse. However, the overall distribu-
tion of synaptic strengths is stable and bimodal (Figure 11.3A) [79] (However, see
[43, 68, 89] for conditions where this might not hold). Furthermore, the postsynaptic
rate is kept constant if we vary the average input rates (Figure 11.3C).The coefficient
of variation (CV) is also kept at a constant high value near 1.0 indicating an irregu-
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Figure 11.3

STDP results in stable distribution of synaptic strength and constrains postsynaptic
firing rate. (A) Histogram of synaptic strength for input rate of 10Hz. (B) Histogram
of synaptic strength for input rate of 20Hz. (C) Postsynaptic firing rate and coeffi-
cient of variation (CV) stay constant for different input firing rates. (D) Postsynaptic
firing rate is affected byA−/A+. Adapted from [79].

lar spike train. This is achieved by shifting the proportion of synapses near the two
bounds (compare Figure 11.3B and A). The postsynaptic rate is however affected by
the ratioA−/A+ in the STDP function P [79] (Figure 11.3D).

11.4.2 Temporal correlation between inputs and output neuron

To understand how this is achieved in detail, let us see what insights the rate frame-
work can provide us. In order to calculate the distribution of synaptic strengths under
STDP, we first need to know the correlation between the presynaptic and postsynap-



tic spike trains. We can write it as

< rout(t ′)r in
i (t ′ + t) >t ′

= G <
∫ ∞

0 dt′′K(t ′′)∑ j w j r in
j (t ′− t ′′)r in

i (t ′ + t) >t ′ −θ < r in
i >

= G
∫ ∞

0 dt′′K(t ′′)∑ j w j < r in
i (t ′ + t)r in

j (t ′− t ′′) >′
t ′ −θ < r in

i > .
(11.19)

If we define< r in
i (t ′− t)r in

j (t ′− t ′′) >t ′ to beQi j (t − t ′′), then

< rout(t ′)r in
i (t ′ + t) >t ′= G

∫ ∞

0
dt′′K(t ′′)∑

j
w jQi j (−t − t ′′)−θ < r in

i > . (11.20)

Let us assume that all the inputs have the same mean firing raterin and the correlation
between any two inputsi and j is

Qi j (t) = r in
2(Ci j e

−|t|/τc +1)+δ(t)r inδi j . (11.21)

Therefore the correlation between the presynaptic and postsynaptic spike trains is

< rout(t ′)r in
i (t ′ + t) >t ′

= G
∫ ∞

0 dt′′ 1
τm

e−t ′′/τm ∑ j w j r in
2(Ci j e−|t+t ′′|/τc +1)+δ(t)r inδi j −θrthin

= −θr in

+G











∫ −t
0 dt′′ 1

τm
e−t ′′/τm et−t ′′)/τc ∑ j w j r in

2Ci j +
wi r in
τm

et/τm

+
∫ ∞
−t dt′′ 1

τm
e−t ′′/τmet ′′−t/τc ∑ j w j r in

2Ci j +∑ j w j r in
2 if t < 0

∫ ∞
0 dt′′ 1

τm
e−t ′′/τmet−t ′′/τc ∑ j w jCi j r in

2 +∑ j w j r in
2 if t ≥ 0

= −θr in

+G











∑ j w jCi j r in
2[ τc

τc−τm
(et/τc −et/τm)

+ τc
τc+τm

et/τm]+∑ j w j r in
2 + wi r in

τm
et/τm if t < 0

∑ j w jCi j r in
2 τc

τc+τm
et/τm +∑ j w j r in

2 if t ≥ 0

(11.22)

11.4.3 Mean rate of change in synaptic strength

We can now calculated the mean rate of change in synaptic strength induced by
STDP.

dwi(t)
dt

=
∫ ∞

−∞
dt′P(t ′)rout(t)r in

i (t + t ′), (11.23)

whereP(t) is the STDP plasticity function andr in
i (t) androut(t) are the firing rates

for the ith input and the output respectively. From Section 11.2,

P(t) =

{

A+
τ+

et/τ+ if t < 0

−A−
τ− e−t/τ− if t ≥ 0

(11.24)

From Section 11.1,

rout(t) = G
∫ ∞

0
dt′K(t ′)∑

i
wir

in
i (t − t ′)−θ. (11.25)



Therefore,

dwi(t)
dt

= G
∫ ∞

0 dt′
∫ ∞
−∞ dt′′K(t ′)P(t ′′)∑ j w j r in

j (t − t ′)r in
i (t + t ′′)−θr in(A+ −A−).

(11.26)

For simplicity, let us assume that the scale of STDP is slow compared to the spiking
rate of the neurons, we can therefore replacer in

j (t − t ′)r in
i (t + t ′′) with its average

< r in
j (t−t ′)r in

i (t +t ′′) >t , orQi j (−t ′−t ′′). We assume thatQi j (−t ′−t ′′) is stationary
for all subsequent calculations. We can now calculate the rate of change in synaptic
strengths for correlated inputs. From Section 11.1,

Qi j (t) = Ci j r in
2e−|t|/τc + r in

2 +δ(t)r inδi j , (11.27)

and

K(t) =
1
τm

e−t/τm. (11.28)

Upon collecting terms,

dwi
dt = G(Hr in

2∑ j Ci j w j − (A−−A+)r in
2∑ j w j + r inwiA+

τ++τm
τ+τm

)′′)

−θr in(A+ −A−),
(11.29)

where

H =
∫ ∞

0
dt′

1
τm

e−t ′/τm{
A+

τ+
[
∫ 0

−t ′
dt′′et ′′/τ+e−(t ′+t ′′)/τc

+
∫ −t ′

−∞
dt′′et ′′/τ+et ′′+t ′)/τc]−

A−

τ−

∫ ∞

0
dt′′e−t ′′/τ−e−(t ′+t ′′)/τc}

=
A+τ 2

c

(τc− τ+)(τc + τm)
−

A+τcτ+

(τc− τ+)(τ+ + τm)
+

A+τcτ+

(τc + τ+)(τ+ + τm)

− A−τ 2
c

(τc+τ−)(τc+τm)

=
τ 3

c

(τc + τm)(τc + τ+)(τc + τ−)
[A+ −A− +A+(

τ−
τc

)−A−(
τ+

τc
)

+
2A+τmτ+(τc + τ−)

τ 2
c (τ+ + τm)

].

. (11.30)

The first term in the brackets in Equation (11.29) corresponds to the effect of corre-
lations in the inputs, the second term corresponds to the effect of the average input,
and the last term takes into account the correlation introduced by spiking. It is inter-
esting that STDP can switch from a Hebbian to an anti-Hebbian rule depending on
the time scale of the input correlation. In order for the rule to be Hebbian,H has to
be greater than zero. Otherwise, it is anti-Hebbian. SolvingH > 0 for τc yields

τc <
x−

√

x2−4(A−−A+)y
2(A−−A+)

, (11.31)

where

x = A+τ−−A−τ+ +2
A+τmτ+

τ+ + τm
, (11.32)



and

y =
2A+τmτ+τ−

τ+ + τm
. (11.33)

Forτm = 6ms,τ+ = τ− = 20ms, andA−/A+ = 1.05,τc needs to be less than approx-
imately 250 ms for the rule to be Hebbian. As discussed before, Miller and MacKay
[61] noted that normalization of the postsynaptic weights is essential for Hebbian
learning to function properly and suggested two general ways that normalization
could be achieved, multiplicative and subtractive normalizations. They defined sub-
tractive normalization to be

dwi

dt
= ∑

j
Ci j w j −e(−→w). (11.34)

Therefore, STDP could be viewed as a form of subtractive constraint if we define
e(−→w) = (A−−A+)

GH ∑ j w j and drop the last two terms, which does not depend on input
correlations. If all the inputs do not have the same average rate, the normalization
is not exact and STDP seems to act to keep the postsynaptic neuron at a constant
firing rate (See also [42]). However, there is an important difference between STDP
and rate based Hebbian rule with subtractive constraint. As shown in the previous
section, under subtractive constraint, if a group of synapses have correlations above
a threshold, they tend to go to maximal synaptic strengths and synapses with corre-
lations below threshold tend to have zero strength. Individual synapses under STDP
still tend to adopt maximal or zero strength. However, as a small group, the average
synaptic strengths can show gradation as the correlation is varied as demonstrated in
Figure 11.2D.

11.4.4 Equilibrium synaptic strengths

To analytically calculate the resulting synaptic weight distribution from the STDP
rule and the neuron model, several authors have taken a Fokker-Planck approach
[16, 68, 89]. Here we adapted their results to fit the present formalism. Any single
synapse continuously undergoes weight changes according to the plasticity rule and
the timing relationships between the presynaptic and postsynaptic neurons. It is
therefore most appropriate to write down a probabilistic equation for its strength.
We denote its distribution withP(w, t), wheret denotes the time and w denotes its
weight. If we assume the changes in synaptic weights is small during each time
step, the weight of the synapse can be described as a biased random walk. We can
write the following partial differential equation in the synaptic weight distribution
P(w, t),which basically counts the influx and outflux of weights for a given bin in the
histogram of synaptic strengths:

∂P(w, t)
∂ t

= −
∂

∂w
[A(w)P(w, t)]+

∂ 2

∂w2 [D(w)P(w, t)]. (11.35)

The drift term A(w) indicates the net weight ‘force field’ experienced by an individ-
ual synapse, which is calculated in the previous section asdw/dt (Equation 11.29).



Whether a synapse increases or decreases in strength depends on the sign ofA(w) for
that particular weight value. The diffusion term of the random walk can be calculated
as

D(w) =
∫ ∞

−∞
dt′P(t ′)2rout(t)r in

i (t + t ′). (11.36)

A full derivation of A(w) and D(w) for the spiking model can be found in [16].
Because we have imposed both a lower bound of zero and upper bound ofgmax on
the synaptic strengths, this equation has the following boundary conditions.

J(0, t) = J(gmax, t) = 0, (11.37)

whereJ(w, t) is the probability current defined by

J(w, t) = A(w)P(w, t)−
1
2

∂
∂w

(D(w)P(w, t)). (11.38)

According to Fokker-Planck theory, the equilibrium densityP(w) can be described
as a Gibbs distribution with a plasticity potentialU(w), where in the limit of small
step size

U(w) ≈−2
∫ w

0
dw′A(w′)/D(w′). (11.39)

So,P(w) will be concentrated near the global minima ofU(w) and have a spread that
is proportional the drift term and thus the step size. The minimum can be located at
an interior point where the drift term vanishes or at the boundaries. In the situations
described in this chapter, the equilibrium is typically located at the boundaries( [68]).
If A−/A+ is set to be slightly larger than 1, the weak negative bias in the plasticity
function can balance the positive correlations. Under these conditions, the diffusion
constantD is approximately constant and given by

D ≈ (Gr in
2 ∑

j �=i

w j −θr in)((A
2
−/τ− +A2

+/τ−)/2. (11.40)

The potential is given by

U(wi) ≈ 2(−G(Hr in
2Cii − (A−−A+)r in

2 + r inA+
τ++τm
τ+τm

)w2
i

−2(GHr in
2∑ j �=i Ci j w j −G(A−−A+)r in

2∑ j �=i w j +θr in(A−−A+)wi)
/(Gr in

2∑ j �=i w j −θr in)((A2
−/τ− +A2

+/τ−)).

(11.41)

P(wi) is given byP(wi) = Ne−U(wi), where N is a normalization factor. The expected
value ofwi is then

Ei =
∫ gmax

0
dw′w′P(w′), (11.42)

Since the distribution of synaptic strength for each synapse depends on the strength
of other synapses(interpreted as the expected value), these equations need to be
solved for self-consistency.



Before we dive into detailed solutions of those quite complex equations, let us try
to gain some intuitive understanding of these equations. Let us writeA(w) asaw+b,
wherea= G(Hr in

2Cii −(A−−A+)r in
2+r inA+

τ++τm
τ+τm

) ,andb= (GHr in
2∑ j �=i Ci j w j −

G(A−−A+)r in
2∑ j �=i w j +θr in(A−−A+). In Figure 11.4A,we have plottedA(w) for

different values of a and b. In this figure,w is expressed as a fraction ofgmax. Under
the conditions considered in this chapter, a is always positive, the fix point where
the line crosses the x axis is thus unstable and the only stable fix points are located
at the boundaries. ForD = 0.05, the correspondingU(w) and P(w) are given in
Figure 11.4Band C.U(w) has local minima at both boundaries andP(w) shows
corresponding concentration of synaptic weights in the histogram. Under the con-
ditions considered in this chapter, solutions ofP(w) are unsaturated andP(w) has
significant weights at both boundaries. ThereforeU(0) ≈ U(gmax), which means
gmax(2b+agmax)/D ≈ 0. The total weight∑ j w j will be adjusted until this condition
is approximately satisfied. A slight deviation of this quantity from 0 will shift the
relative proportion of weights near lower and upper bounds.a determines the width
of two lobes of the distribution near lower and upper bound. We plot the expected
synaptic strength versus this quantity inFigure 11.4Dto demonstrate how changing
this quantity will shift the relative proportion of weights in the two lobes and deter-
mine the mean synaptic strength. The curve is fairly steep, therefore a slight change
in the term involvingCi j will have big effects on the mean synaptic strength. Notice
that the central portion of the curve is almost linear. Therefore we could write, for
2b/D+agmax/D ≈ 0,

E(P(wi)) = Sgmax(2b+agmax)/D+0.5gmax

= 2Sgmax(−G(Hr in
2Cii − (A−−A+)r in

2 + r inA+
τ++τm
τ+τm

)w2
i

−2(GHr in
2∑ j �=i Ci j w j −G(A−−A+)r in

2∑ j �=i w j +θr in(A−−A+)wi)
/(Gr in

2∑ j �=i w j −θr in)(A2
−/τ− +A2

+/τ−)+0.5gmax,

(11.43)

where S is a scaling factor around 0.25.

11.4.5 Three common scenarios and comparison to simulations

To make the mathematical expressions derived in the previous sections more intu-
itively apparent, we will consider three common scenarios and compare the results
derived from the analytical calculations to those from simulations performed with an
integrate and fire neuron receiving 1000 Poisson inputs [79].

11.4.5.1 Constant Poisson inputs

The first situation we will consider is that of Poisson inputs with the same mean rates
and no correlations between them. From Section 11.1,

Qi j (t) = r in
2 +δ(t)r inδi j , (11.44)

and

K(t) =
1
τm

e−t/τm. (11.45)
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Upon collecting terms,

dwi

dt
= Gr inwiA+

τ+ + τm

τ+τm
−G(A−−A+)r in

2∑
j

w j +θr in(A−−A+), (11.46)

or,

dwi

dt
= r in(GwiA+

τ+ + τm

τ+τm
− (A−−A+)rout). (11.47)



and
U(w) ≈−G(−(A−−A+)r in

2 + r inA+
τ++τm
τ+τm

)w2
i /D

−2(−G(A−−A+)r in
2∑ j �=i w j +θr in(A−−A+))wi/D.

(11.48)

As we noted in the previous section,U(0) ≈U(gmax), so

gmaxr inA+
τ+ + τm

τ+τm
≈ 2(A−−A+)(r in

2∑
j

w j −θr in), (11.49)

or

gmaxGA+
τ+ + τm

τ+τm
≈ 2(A−−A+)rout, (11.50)

In the steady state situation, the left-hand term is not affected by the postsynaptic
rate, so the output rate is effectively kept constant. This effect was noted in Song
and Abbott [79] and demonstrated inFigure 11.3. An intuitive explanation was
given in Song et al. based on balances of excitation and inhibition. Neuron can
operate in two different modes with distinct spike-train statistics and input-output
correlations [1, 14, 85]. If the total amount of excitation overwhelms the amount of
inhibition, the mean input to the neuron would bring it well above threshold if action
potentials were blocked (Figure 11.5A).In this situation, the neuron operates in an
input-averaging or regular-firing mode. The postsynaptic spike sequences produced
in this mode are quite regular (Figure 11.5C)because the timing of the postsynaptic
spikes is not sensitive to presynaptic spike times. There are roughly equal numbers of
presynaptic action potentials before and after each postsynaptic spike [1, 14] (Figure
11.6A).Because the area under the STDP curve is slightly negative (A−−A+ > 0),
for a flat correlation curve,

dwi(t)
dt

=
∫ ∞

−∞
dt′P(t ′)rout(t)r in

i (t + t ′) = K
∫ ∞

−∞
dt′P(t ′), (11.51)

where K is a constant, is still negative. Thus the synapses are weakened.
As the excitatory synapses are weakened by STDP, the postsynaptic neuron en-

ters a balanced mode of operation in which it generates a more irregular sequence
of action potentials, and the timing of the postsynaptic spikes becomes more tightly
correlated with the timing of the presynaptic spikes. The total synaptic input in the
balanced mode is, on average, slightly below threshold (Figure 11.5B),so the post-
synaptic neuron fires irregularly, primarily in response to statistical fluctuations in
the total input (Figure 11.5D).Because action potentials occur preferentially after a
random positive fluctuation, there tend to be more excitatory presynaptic spikes be-
fore than after a postsynaptic response [1, 14, 85] (Figure 11.6B).The small excess
of presynaptic spikes just before a postsynaptic spike is described in the rate model

as
wi rin
τm

et/τm

∑ j w j r in
2 if t < 0 It can be gathered inFigure 11.6that the excess calculated from

simulations is indeed well approximated by an exponential function. The STDP rule
achieves a steady-state distribution of peak synaptic conductances when the excess of
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Regular and irregular firing modes of a model integrate-and-fire neuron. Upper pan-
els show the model with action potentials deactivated, and the dashed lines show the
action potential threshold. The lower figures show the model with action potentials
activated. (A) In the regular firing mode, the average membrane potential without
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potential without spikes is below threshold. (C) In the regular firing mode, the firing
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permission from [1].

presynaptic action potentials prior to postsynaptic firing compensates for the asym-
metry in the areas under the positive and negative portions of the STDP modification
curve [1, 79] (Figure 11.6B).This condition is mathematically described in Equation
11.50.
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Correlation between pre- and postsynaptic action potentials before and after STDP.
The solid curves indicate the relative probability of a presynaptic spike occurring at
time tpre when a postsynaptic spike occurs at timetpost. A correlation of one is the
value due solely to chance occurrences of such pairs. The dashed curves show the
STDP modification function from Figure 11.1. (A) Before STDP, the neuron is in
the unbalanced mode with large excess excitatory drive. There is only a small excess
of presynaptic spikes prior to a postsynaptic action potential. (B) After STDP, the
neuron is in the balanced mode. Thereis a larger excess of presynaptic spikes prior
to a postsynaptic action potential. Adapted with permission from [79].

11.4.5.2 Correlations with different time constants

We performed a simulation where 500 of the 1000 inputs were Poisson trains with a
fixed rate and the other 500 inputs were correlated with each other with the correla-
tion function

Qi j (t) = Ci j r in
2e−|t|/τc + r in

2 +δ(t)r inδi j , (11.52)

and

Ci j =

{

C2 if 0 < i < 500,0 < j < 500
0 otherwise.

(11.53)

Therefore,

< rout(t ′)r in
i (t ′ + t) >t ′

= −θr in +G











∑ j w jCi j r in
2[ τc

τc−τm
(et/τc −et/τm)+ τc

τc+τm
et/τm]

+∑ j w j r in
2 + wi r in

τm
et/τm if t < 0

∑ j w jCi j r in
2 τc

τc+τm
et/τm +∑ j w j r in

2 if t ≥ 0
(11.54)

we plotted the average correlogram between the spike trains of the inputs and the
postsynaptic neuron from the simulations forτc = 20ms in Figure 11.7A. We have
also plotted in thin dotted line the mirror image of the portionof the correlation
curve fortpre− tpost > 0 for visual guidance. The correlograms display a ‘spike’ of



excess presynaptic action potentials just before a postsynaptic spike, which reflects
the excess of spikes needed to push the postsynaptic neuron above threshold and
is represented by the wi

∑ j w j r inτm
et/τm(for t¡0) term in the rate model and is discussed

in the previous section. We have also plotted inFigure 11.7Bthe correlogram af-
ter removing the wi

∑ j w j r inτm
et/τm(for t¡0) term in solid lines along with the predicted

values from the rate model after appropriate normalization in dotted lines. The re-
maining excess represents excess of presynaptic spikes before a postsynaptic spike
contributed by correlations in the inputs. Ifτ+ = τ−, the symmetric portion of the
correlation leads to weakening if the total area under the STDP curve is negative as
assumed in this chapter. The asymmetric portion shown as the difference between
the solid line and the thin dotted line contributes to strengthening of synapses and
has to cancel out the weakening resulting from the symmetric portion. Ifτ− > τ+,
the symmetric portion can also result in synaptic strengthening. To calculate the final
synaptic strengths, we could use approximation in Equation (11.43), and write

wcorr = 2Sgmax(−G(Hr in
2C2− (A−−A+)r in

2 + r inA+
τ++τm
τ+τm

)w2
i )

−2(G499Hr in
2C2wcorr −G(A−−A+)r in

2(499wcorr +500wuncorr)
−θ(A−−A+)r in))
/((Gr in

2(499wcorr +500wuncorr)−θr in)(A2
−/τ− +A2

+/τ−))+0.5gmax,

(11.55)

and

wuncorr = 2Sgmax(−G(−(A−−A+)r in
2 + r inA+

τ++τm
τ+τm

)w2
i )

−2(−G(A−−A+)r in
2(499wuncorr+500wcorr)−θ(A−−A+)r in))

/((Gr in
2(499wuncorr+500wcorr)−θr in)(A2

−/τ− +A2
+/τ−))+0.5gmax,

(11.56)

wherewcorr is the average synaptic strength from the correlated cluster,wuncorr is
the synaptic strength from the uncorrelated cluster, andw is the synaptic weight the
synapses are held at. Therefore, we can define R, where

R=
(wcorr −wuncorr)rout

−wcorr
= 499HSGC2r in/(A2

−/τ− +A2
+/τ−). (11.57)

The quantity R is proportional to H, we therefore computed the ratio R for data
obtained from the simulations for a range ofτc and compared it with the prediction of
H from the rate model. We useC= 0.3 in the simulations (see [79]), andA+ = 0.005,
A− = 1.05∗0.005, τ+ = τ− = 20ms. In Figure 11.7 C,we plot R calculated from
data collected from the simulations in solid line, and H in dotted line after scaling
according to the value atτc = 10ms.

11.4.5.3 Gradient of correlations

Finally, let us reconsider the case briefly discussed in Section 11.3.3 where a neu-
ron received inputs with a gradient correlations. The correlation between inputsi
and j is given by< r i(t)r j(t ′) >= r2

in + r2
in(σ2δi j + (1− δi j )cic j)e−|t−t ′|/τcorr , with

r in = 10Hz, σ = 0.5, τcorr = 20ms, andci = a(i−499.5)/999+b. We can solve the
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Correlations between input and output and final synaptic strengths are well predicted
by the rate model. (A) Correlation between input and output forτc = 20ms. Thin dot-
ted line is the mirror image of the portion of the correlation curve fortpre− tpost > 0.
If τ+ = τ−, the symmetric portion of the correlation leads to weakening while the
asymmetric portion contributes to strengthening of synapses. (B) Solid line same
as A with correlation caused by spiking removed in solid line alone with prediction
from rate model in dotted line. (C) Normalized difference in average equilibrium
synaptic strength between correlated and uncorrelated groups (R) for different input
correlation length. (D) Equilibrium synaptic strength for different input correlation
parameters from simulation (E) Equilibrium synaptic strength for different input cor-
relation gradients from rate model. a is 0.1 for all curves. Solid line b=0.1. Dotted
line b=0.1. Dashed line b=0.2. (F) Same as E except for different a. b=0.1 for all
curves. Solid line a=0.1. Dotted line a=0.75. Dashed line a=0.5.

set of equations for the expected values ofw from the Fokker-Planck formulation



numerically for self-consistency and the results are plotted inFigure 11.7Efor dif-
ferent values of b andFigure 11.7Ffor different values of a. Notice that increasing a
which is the slope of the gradient of correlations result in increased slope of the final
synapse values with some saturation. While increasing the mean correlation of the all
the inputs shift the curves to the left resulting in higher mean synaptic strengths. This
shift might not be a desirable feature and can be removed by introducing a variable
A− to make STDP insensitive to mean correlation but rather the difference in corre-
lations, as discussed in [43]. InFigure 11.7D,we have binned the resulting synaptic
weights from simulations for inputs with graded correlations into 20 bins and plotted
the mean synaptic weight for each bin. These values thus reflect the mean expected
value of synaptic strength for synapses in that bin. It is very similar to the solid curve
in Figure 11.7Eand F which correspond to the same parameters. Although STDP
is similar to subtractive normalization with a rate-based Hebbian rule, it produces a
graded mean expected value of synaptic strengths rather than a bimodal one. This is
because although each synapse still tends to the boundaries, the stochasticity allows
the expected value for each synapse to be graded. So for synapses with similar driv-
ing force, some will be at the lower boundary and some will be at the upper boundary
and the average of them will be close to the expected value of the probability distri-
butionP(w). Therefore STDP combines the desired features of competitiveness of
subtractive normalization with sensitivity to correlation magnitude of multiplicative
normalization in one rule.

11.5 Temporal aspects of STDP

Since STDP incorporated timing into the plasticity rule itself, it is natural to inves-
tigate its utility in learning temporal patterns. It has been suggested as a form of
temporal difference learning to learn predictive coding by Rao and colleagues [67].
They have also used it to explain directional sensitivity in cortical cells. Similar
ideas were used earlier by Abbott and colleagues as a basis for a model of place
cells and spatial navigation in rats [11]. STDP reduces latency in the inputs. If a
cell receiving inputs with different latencies, the inputs with shorter latency will tend
to precede postsynaptic firing while the inputs with longer latency will tend to lag
behind. STDP will lead to strengthening of the synapses of the inputs with shorter
latency and weakening of the synapses of the inputs with longer latency. The final
effect of this is a reduction in the response latency of the postsynaptic cell [79]. This
was used as an explanation for the asymmetry expansion in place fields during train-
ing [54, 55]. Since STDP is very sensitive to synchrony in the inputs, when coupled
with delay lines, it can be used to learn arbitrary temporal patterns by strengthening
the appropriate delay lines so all the inputs arrive at the postsynaptic cell at the same
time. This forms the basis of a model of tuning of delay lines in the barn owl auditory
system [32]. It has also been used for sequence learning by other authors. [69]



11.6 STDP in a network
In this section, we will consider several network models using STDP. However, be-
fore we dive into the models, let us consider some general characteristics of STDP in
the network setting. We have already noted in the previous section that STDP prefers
inputs with shorter latencies, so if there are multiple pathways conveying similar in-
formation feeding into oa cell in the network, the pathway with the shortest latency
will eventually dominate. Secondly, temporally asymmetric STDP discourages the
formation of mutually excitatory loops. If neuron A is predictive of the firing of neu-
ron B, neuron B cannot be predictive of the firing of neuron A and must lag behind.
Therefore, if the synapses from neuron A to neuron B are strengthened, the synapses
from neuron B and neuron A will be weakened, making a mutually excitatory con-
figuration unstable. However, under some circumstances, a temporally asymmetric
STDP could switch to a temporally symmetric STDP if the firing rates are suffi-
ciently high, which could explain why many mutually excitatory loops nonetheless
exist where temporally asymmetric STDP has been observed [78]. Experimental
studies of STDP in a network have been carried out by Bi and Poo [7], highlighting
the sensitive of patterns of firing in networks to the specific timing of the inputs.
However, also apparent from these studies, studies of STDP in a network will es-
pecially difficult because of the intricate interplay of dynamics of network activity
and the sensitivity to timing of STDP itself. The computational meaning of the net-
work activities also needs to be investigated. It seems that a coherent computational
framework is especially lacking here and will be a fruitful area of investigation.

11.6.1 Hebbian models of map development and plasticity

Since Hubel and Wiesel’s pioneering studies of monocular deprivation [39], forma-
tion and alteration of columns and maps have been one of the favorite models for the
study of activity-dependent changes in cortical circuits. It is widely recognized that
activity is critical for refining synaptic connections to give adult patterns of connec-
tivity and function (for reviews, see [17, 41, 100]). In development, spontaneous
correlated activity is present from an early stage. Examples include waves of activity
that propagate in the retina and LGN [27, 31, 56, 63, 65, 96, 99]. Later on, sen-
sory inputs further refine the synaptic connections for cortical circuits [41, 81, 100].
Alterations of spontaneous and sensory induced activity can change both the degree
of formation and the specific shape of cortical maps [39, 76, 94]. Mechanisms of
synaptic modification include both changes in synaptic strengths and sprouting of
new synapses. Changes in synaptic strengths have been linked to activity through
mechanisms like LTP and LTD [2, 3, 9, 10, 50]. More recently, studies of spike-
timing dependent plasticity have provided a more direct link between activity and
modification of synaptic strength [5, 21, 23, 26, 36, 46, 49, 51, 78, 101]. On the
other hand, the local release of neurotrophins and other molecules has been pro-
posed to translate patterns of activity into patterns of synaptogenesis and neuronal



survival and growth (reviewed in [12, 53, 72, 66, 83]). It is not clear at this stage
whether activity is required for the initial development of cortical maps. Some stud-
ies suggest that the maps might be genetic and do not require either visual experience
or even the retina [18, 19, 38]. However, endogenous correlated firing from other
sources has not been systematically ruled out [99].
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Figure 11.8

Formation of columns and maps under STDP. A) Network Diagram. B) First stage of
column formation. Seed placed in the feedforward connections creates a correlated
group of network neurons. C) Second stage of column formation. Correlated group
of network neurons send out connections to other neurons in the network. D) Third
stage of column formation. Transfer of information from recurrent layer to feedfor-
ward layer. E) Last stage of column formation. Recurrent connections go away as
feedforward connections become well formed. F) Receptive fields of two network
neurons. G) Feedforward synaptic strengths define a column. The shade of each dot
represents the strength of one synapse. The horizontal stripe indicates group of net-
work neurons having similar input connections. H) Feedforward synaptic strengths
define a map. This is formed when short range excitatory and global inhibitory re-
current connections are introduced in the network layer. The diagonal bar reflects
the progression of receptive field centers as we move across the the sheet of network
neurons. Adapted from [43, 80].

In the remainder of the section, we will describe a recent model of column and map
formation and plasticity using STDP and compare it to earlier models of column and
map formation using Hebbian rule based on rates [80]. In this model, an input and a
network layer of neurons are simulated (Figure 11.8A).The inputs neurons generate
Poisson spike trains in response to inputs presented. The network layer contained
integrate-and-fire neurons. Every neuron in the input layer is randomly connected
to one fifth of the neurons in the network layer and all the neurons in the network
layer are recurrently connected. All of the synaptic connections were governed by
STDP. Neurons in the input layer have a Gaussian receptive field so it will respond to
inputs presented at a particular location best and respond less vigorously if the input
is presented slightly away from the center of the receptive field and not respond at
all far away from the receptive field center. Let us also label the inputs according to
the receptive field center to simplify the discussion. We present stimulus at random
locations for a period of time drawn from an exponential distribution with a mean on
the order of the STDP time window and switch to another random location at the end
of the period. This results in a moving Gaussian hill of activity on the input layer
and introduces temporal correlations among the inputs that effectively drives STDP.

As mentioned previously, ocularly dominant cells can develop with a rate-based
Hebbian rule if a global constraint is used [60, 61]. Under multiplicative constraints,
there needs to be anti-correlation between inputs from different eyes, while lack of
correlation will be sufficient under subtractive constraints [61]. Under STDP, the
situation is similar to a rate-based Hebbian rule under subtractive constraints. If
there are multiply sources of similar correlation among inputs from the same source
but no correlation among inputs from different sources, under STDP, eventually only
one source will drive the cell as STDP is a very competitive Hebbian rule. This
competition will however take a much longer time than competition among sources
with different strengths of correlations. In the context of this model, it allows neurons
in the network layer to acquire receptive fields centered around only one location.



After STDP, those neurons are connected to only inputs from a small neighborhood
in the input space. An example of such a receptive field is plotted inFigure 11.8F.

Without the recurrent connections, we would expect each neuron in the network
layer to develop a receptive field but at a random location. When the recurrent con-
nections are present, a single column of neurons all tuned to the same location is
formed (Figure 11.8G).The sequence of events that leads to the formation of the
column depends on the timing sensitive property of STDP. Let us examine it more
closely. We have plotted the sequence of events leading to the formation of such a
column in a diagram form inFigure 11.8B-E.Each circle in the graph represents a
group of neurons and will be labelled from left to right 1 to 5 respectively.

For the ease of visualization, a seed has been added to the original network consist-
ing of increased strengths for neurons from input group 3 to network group 3 (Figure
11.8B). This makes group 3 of network neurons become correlated with each other.
This seed is not needed for the development of a single column. Without the seed,
a group of correlated neurons in the network layer will automatically form and drive
the remainder of the process. However, the neurons need not to be neighboring ones,
which complicates the visualization. The process of symmetry breaking can also be
quite time consuming. Once a correlated group is established, such a group of cor-
related network neurons will send out connections to other neurons in the network.
This is perhaps easier to understand if we look at it from the perspective of a network
neuron that is not part of the correlated group (Figure 11.8C).From that perspective,
it is just the strengthening of the synapses corresponding to the most correlated in-
puts. This process differs from models based on rate-based Hebbian rules. In such
models, connections between neurons that have high firing rates are strengthened re-
sulting in reciprocal connectivity. But under asymmetric STDP, as discussed before,
such reciprocal loops are discouraged and a layered structure is favored. At this stage
of the development of a column, activity originates in the input layer, passes unto the
correlated group of neurons, and then unto other neurons in the network layer. How-
ever, the firing of the input layer precedes that of the other neurons in the network
layer. Therefore, the connections from the input layer unto the other neurons in the
network layer would be strengthened (Figure 11.8D).This starts a process of transfer
of information contained in the connectivity of the recurrent layer to the feedforward
connections. Once the feedforward pathway reaches sufficient strength, the recurrent
connections will weaken because the feedforward pathway has a shorter latency and
therefore is the preferred pathway. Eventually, a column defined wholly by the feed-
forward connections will result (Figure 11.8E),completing the process of transfer.
This can be viewed as a form of self-supervised learning enabled by the temporal
asymmetry and predictive coding properties of STDP.

Next we would like to consider the formation of maps. Many models based on a
rate-based Hebbian rule have been proposed to account for various aspects of map
formation [44, 48, 77, 73, 75, 90, 95, 97]. In particular, we would like to con-
sider a series of models by Miller and colleagues which are the most biologically
sophisticated [57, 58, 59]. In these models, they were able to get formation of oc-
ular dominance stripes by using an arbor function [60, 61]. Orientation selective
columns can also develop and can be matched to the ocular dominance column map



[24, 25]. What seems important is excitatory connections to neighboring neurons and
inhibitory connections to neurons that are further away. However, they always had
fixed recurrent connections. Instead, all connections will be allowed to be plasticity
at all time in the model with STDP. A map consisting of a collection of columns in
orderly progression of receptive field center can be formed if the excitatory recurrent
connections are restricted to a neighborhood and a global all to all inhibition is im-
posed on the network layer (Figure 11.8H).The columns have a tendency to spread
to nearby neurons but the inhibitory connections force different neurons to fire at dif-
ferent times and adopt different receptive fields. These two tendencies balance each
other, leading to an orderly map with nearby neurons having similar receptive fields
while ones further away have different receptive fields.

Similar mechanisms can also explain adult plasticity in maps following lesions.
Cortical circuits remain malleable in adulthood and can be altered by either depri-
vation of inputs or repeated presentation of specific stimulus schedules [15, 33, 40,
64, 91, 93]. For example, cutting a nerve innervating one finger will result in loss of
activity in the part of cortex representing this finger initially. However, neurons hav-
ing receptive fields in lesioned areas will over time adopt receptive field structures of
neighboring neurons [15]. This transfer first happens on the recurrent neurons and
the information eventually gets encoded in the feedforward connections.

Some of the predictions made by this model are in accord with recent experimen-
tal data. This model predicts that the development and plasticity of column and map
structure on the network layer would precede the development and plasticity of such
structures in the feedforward inputs. Some recent experimental evidence showed
that receptive field structures appear in layer 2/3 first before they appear in layer
5 [84]. In adult plasticity experiments, cells first acquire new receptive fields with
longer latency presumably going through the recurrent connections. The latency later
drops, presumably reflecting the transfer to the feedforward connections [6, 34, 82].
More recently, experiments have been performed that indicate possible involvement
of STDP in adult plasticity [71, 98]. Taken together, these make the general ideas
outlined in this model a viable theory of activity dependent column and map forma-
tion. Other processes like axon and dendrite growth are undoubtedly also involved
and the specific involvement of different processes will need to be investigated in
future studies.

11.6.2 Distributed synchrony in a recurrent network

It has been noted before in the chapter that symmetric connections are not favored
under STDP. Therefore, network models that assume symmetric synaptic connec-
tions like the Hopfield network are not favored under STDP. Instead, synfire chains
seem to develop in recurrently connected networks with STDP.

Horn and colleagues provide an analysis of such a network [45]. They have noted
that under some parameter regimes, the network operates in a distributed synchrony
mode. The assembly of cells spontaneously breaks up into groups that fire syn-
chronously. Then those groups take turns in firing in a cyclic manner. They specu-
lated that such mechanisms might allow the learning of synfire chains.



11.7 Conclusion
Spike-timing-dependent plasticity (STDP) is a plasticity rule based on the timing of
pre- and postsynaptic spikes. Recent experiments provide ample biological support
for this plasticity rule. STDP gives detailed predictions for naturalistic inputs and
makes it feasible for the first time to directly compare plasticity rules for naturalistic
inputs with experimental data [29]. Therefore it is important to develop a theory to
establish the fundamental properties of this plasticity rule, and the favorable inter-
play between theory and experiments will likely make STDP an important area of
study. This chapter seeks to summarize recent results in these directions and place
them in a coherent framework in comparison to Hebbian rules based on rates. STDP
is a stable and competitive Hebbian rule by itself, with competition for the control
of postsynaptic spike timing providing competition among inputs. STDP favors in-
puts with correlations among them as under the Hebbian rule. STDP can be viewed
as striving to keep the postsynaptic firing rate roughly constant and achieves it by
subtracting a factor from all synaptic weights. A Fokker-Planck formulation is in-
troduced to predict the distribution of synaptic weights under STDP. STDP also has
properties that make it attractive in learning temporal patterns. It favors synchronous
inputs and this has been used in a model of the barn owl auditory system to tune de-
lay lines [32]. In a network setting, STDP favors pathways with the shortest latency.
The temporally asymmetric STDP disfavors reciprocal loops. Instead, it seems to be
able to support the formation of synfire chains [45]. It has also been used in a recent
model of column and map formation which makes use of the timing sensitivity of
STDP to enable transfer of connectivity information from the recurrent connections
to the feedforward connections. It is also unique in that very few additional con-
ditions need to be imposed besides the plasticity rule itself. It is my suspicion that
investigation of STDP in a network setting with naturalistic input spike trains will be
a fertile ground of modelling for years to come.

However, there are still several issues that need to be addressed in future studies.
First of all, synapses under STDP is bimodal in that synaptic strengths of individual
synapses are saturated at the bounds. Some attempts to add a homeostatic rule to the
synaptic strength apparently destroys the properties of competition and output rate
normalization of STDP [43, 68, 89]. Experiments are needed to establish the dis-
tribution of synaptic strengthsin vivo and potential mechanisms that keep synapses
from saturating need to be discovered. Secondly, STDP in this chapter is modelled
as if all spike pairs are independent and their effects on synaptic strengths are addi-
tive. Recent experiments have shown that this assumption to be incorrect [29, 78].
In particular, at low rates, spike pairs seem to sum sublinearly and at high rates po-
tentiation is favored over depression. Consequences of those nonlinear summation
effects need to be studied in future theoretical studies.
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12.1 Introduction: the timing game

Correlated firing is a common expression used in Neuroscience. It refers to two or

more neurons that tend to be activated at the same time. It is used so frequently in part

because there are so many timescales at which one may analyze neural activity. In a
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sense, correlation might appear as a trivial phenomenon. For instance, if one looks at

day-long activity, practically the whole cerebral cortex fires in a correlated manner,

because of the sleep-wake cycle. Similarly, whenever an object appears within the

visual field, many neurons in visual cortex are expected to respond throughout the

same time interval. Clearly, such correlations are to be expected. However, as the

observation time window becomes smaller, explaining the presence of correlations

becomes more difficult and, at the same time, potentially much more useful. Sup-

pose the activity of two visual neurons is monitored during presentation of a visual

stimulus, after its onset. Suppose also that within a short time window of, say, a

few hundred milliseconds, spikes from the two neurons tend to appear at the same

time. Why is this? Neither the sensory information nor the state of the subject are

changing in an appreciable way, so the correlation must reflect something about the

internal dynamics of the local circuitry or its connectivity. This is where correlations

become interesting.

Thus, correlations at relatively short timescales become useful probes for under-

standing what neural circuits do, and how they do it. This is what this chapter is

about. This analysis goes down to the one millisecond limit (or even further), where

correlation changes name and becomes synchrony. Even at this point, the signifi-

cance of correlated activity cannot be taken for granted. Some amount of synchrony

is practically always to be expected simply because cortical neurons are highly inter-

connected [14, 91]. The question is not just whether there is any correlated activity

at all, but whether timing is an issue and correlations make any difference. In other

words, given the function of a particular microcircuit or cortical area, if the system

were able to control the level and timescale of correlated activity, what would the

optimal values be? For example, in a primary sensory area, stimulus representation

is of paramount importance, so maybe measuring an excess of coincident spikes in

this case is not an accident, but a consequence of the algorithm that local circuits use

to encode stimulus features. This is just an example; the broader question is whether

neurons exploit the precise coincidence of spikes for specific functions. There are

several theoretical proposals that revolve around this concept; we discuss some of

them below.

Asking about the functional implications of correlated activity is one way to at-

tack the problem; this is a top-down approach. Another alternative is to take a

bottom-up view and investigate the biophysical processes related to correlated fir-

ing. These come in two flavors, mechanisms by which correlations are generated,

and mechanisms by which a postsynaptic neuron is sensitive to correlated input. In

this case valuable information can be obtained about possible correlation patterns

and timescales, and in general about the dynamics of correlated activity.

This approach is also important because it sheds some light on a fundamental

question: how does a single cortical neuron respond under realistic stimulation con-

ditions? The reason this is a problem is the interaction between spike-generating

mechanisms, which are inherently nonlinear, and the input that drives the neuron,

which typically has a complicated temporal structure. The major obstacle is not the

accuracy of the single-neuron description; in fact, classic conductance-based models

[24] like the Hodgkin-Huxley model [48] are, if anything, too detailed. The larger
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problem is the complexity of the total driving input, which is mediated by thousands

of synaptic contacts [14, 91]. What attributes of this input will the postsynaptic re-

sponse be most sensitive to? Correlations between synaptic inputs are crucial here

because they shape the total input and hence the postsynaptic response. Determining

what exactly is their role is a key requisite for understanding how neurons interact

dynamically and how the timing of their responses could be used for computational

purposes.

This chapter reviews work related to both perspectives on correlated activity: the

high-level approach at which function serves to guide the analysis, and the low-level

approach that is bound to the biophysics of single neurons. Eventually (and ideally),

the two should merge, but currently the gap between them is large. Nevertheless,

comparing results side by side provides an interesting panorama that may suggest

further clues as to how neurons and neural circuits perform their functions.

12.2 Functional roles for spike timing

There is little doubt that the correct timing of action potentials is critical for many

functions in the central nervous system. The detection of inter-aural time differences

in owls and the electrosensory capabilities of electric fish are two well-known exam-

ples [21]. In these cases it is not surprising that timing is important; it is ingrained

in the nature of the sensory signals being detected. The issue of timing also arises

naturally in the rodent somatosensory system [7]. To explore their surroundings, rats

move their whiskers periodically. To locate an object, whisker deflections need to be

interpreted relative to whisker position, which can be determined from the phase of

the motor signal. Thus, the latencies of stimulus-evoked responses relative to such

internal signal can be used to encode spatial information. This mechanism by which

sensory-triggered activity is interpreted relative to an internal, reference signal may

be applicable to other circuits and in a more general way [6, 57].

12.2.1 Stimulus representation

Spike timing, however, has been discussed in an even wider sense than implied by the

above examples. No doubt, this is partly because oscillations at various frequencies

and synchronous activity are so widespread [8–86]. One proposal that has received

considerable attention is that the coordinated timing of action potentials may be ex-

ploited for stimulus representation [71–44]. Specifically, neurons that have different

selectivities but fire synchronously may refer to the same object or concept, binding

its features. The following experiment [51] illustrates this point. The receptive fields

of two visual neurons were stimulated in two ways, by presenting a single object, and

by presenting two objects. Care was taken so that in the two conditions practically

the same firing rates were evoked. The synchrony between pairs of neurons varied
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across conditions, even when the firing rates did not. Thus, correlations seemed to

code whether one or two stimuli were shown [51].

In general, changes in firing rate pose a problem when interpreting variations in

synchrony or correlations, first, because the latter can be caused by the former, and

second, because the impact of a change in correlation upon downstream neurons

becomes uncertain given a simultaneous change in firing rate. When neural activity

is compared in two conditions involving different stimuli, it is likely that the evoked

firing rates from the recorded neurons will change; even the populations that respond

within a given area may be different. This is one of the main factors that muddles

the interpretation of experiments in which correlations have been measured [72].

The most solid paradigms for investigating correlated activity are those in which

variations in correlation are observed without variations in stimulation and without

parallel changes in firing rate, but fulfilling all of these conditions requires clever

experimental design and analysis.

There are many other studies in which correlations have been interpreted as ad-

ditional coding dimensions for building internal representations. The following are

cases in which the confounding factors just mentioned were minimized. Consider

two neurons with overlapping receptive fields, and hence a considerable degree of

synchrony. Analysis of the activity of such visual neurons in the lateral genicu-

late nucleus has shown [23] that significantly more information about the stimulus

(around 20% more) can be extracted from their spike trains if the synchronous spikes

are analyzed separately from the nonsynchronous ones. In a similar vein, recordings

from primary auditory cortex indicate that, when a stimulus is turned on, neurons

respond by changing their firing rates and their correlations [26]. In many cases the

firing rate modulations are transient, so they may disappear if the sound is sustained.

However, the evoked changes in correlation may persist [26]. Thus, the correlation

structure can signal the presence of a stimulus in the absence of changes in firing

rate.

Finally, the antennal lobe of insects is an interesting preparation in which this

problem can be investigated. Spikes in this structure are typically synchronized by

20 Hz oscillations [90]. When these neurons are artificially desynchronized [55], the

specificity of downstream responses is strongly degraded, selectivity for different

odors decreases, and responses to new odors arise, even though this loss of informa-

tion does not occur upstream. Apparently, what happens is that the downstream cells

— Kenyon cells in the mushroom bodies — act as coincidence detectors that detect

synchronized spikes from projection neurons in the antennal lobe. Kenyon cells have

very low firing rates and are highly selective for odors, so in effect they sparsify the

output of the antennal lobe [62]. In addition, disrupting synchrony in this system has

a real impact on behavior: it impairs odor discrimination [79]. This preparation is

also convenient for studying the biophysical mechanisms underlying such oscillatory

processes [9, 10].

These examples show that the neural codes used to represent the physical world

can be made more efficient by taking into account the pairwise interactions between

neural responses. The degree to which this is actually a general strategy used by neu-

rons is uncertain; the key observation is that, under this point of view, correlations
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are stimulus-dependent, just like sensory-evoked firing rates. The studies discussed

below suggest a different alternative in which correlations change rapidly as func-

tions of internal events and may regulate the flow of neural information, rather than

its meaning [68].

12.2.2 Information flow

The regulation of information flow is illustrated by the following result [70]. When

intracortical microstimulation is applied during performance of a visiual-motion dis-

crimination task, the subject’s response is artificially biased, but the bias depends

strongly on the time at which the microinjected current is delivered relative to stim-

ulus onset. Microstimulation has a robust effect if applied during presentation of the

visual stimulus, but it has no effect if applied slightly earlier or slightly later than

the natural stimulus [70]. This suggests that even a simple task is executed accord-

ing to an internal schedule, such that the information provided by sensory neurons

is effectively transmitted only during a certain time window. How does this inter-

nal schedule work? One possibility is that changes in correlations are involved [68].

This is suggested by a number of recent experiments in which correlations were seen

to vary independently of stimulation conditions. To work around the usual prob-

lems with stimulus-linked correlations, investigators have studied correlated activity

in paradigms where, across trials, stimulation conditions remain essentially constant

and the most significant changes occur in the internal state of a subject.

Riehle and colleagues trained monkeys to perform a simple delayed-response task

where two cues were presented sequentially [66]. The first cue indicated a target

position and instructed the animal to get ready, while the second cue gave the go

signal for the requested hand movement. Crucially, the go signal could appear 600,

900, 1200 or 1500 ms after the first cue, and this varied randomly from trial to

trial. Neurons recorded in primary motor cortex increased their synchrony around

the time of the actual sensory stimulus or around the time when the animal expected

the go signal but it did not appear [66]. The latter case is the most striking, because

there the firing rates did not change and neither did the stimulus; the synchronization

depended exclusively on the internal state of the monkey.

Fries and colleagues [35] used attention rather than expectation to investigate the

synchrony of visual neurons in area V4. They used conditions under which firing

rates varied minimally, taking advantage of the finding that, although attention may

have a strong effect on the firing rates evoked by visual stimuli, this modulation

is minimized at high contrast [65]. Monkeys were trained to fixate on a central

spot and to attend to either of two stimuli presented simultaneously and at the same

eccentricity. One of the stimuli fell inside the receptive field of a neuron whose

activity was recorded. Thus the responses to the same stimulus could be compared

in two conditions, with attention inside or outside the neuron’s receptive field. At the

same time, the local field potential (LFP) was recorded from a nearby electrode. The

LFP measures the electric field caused by transmembrane currents flowing near the

electrode, so it gives an indication of local average activity [38]. The correlation that

was studied in these experiments [35] was that between the LFP and the recorded
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neuron’s spikes. The key quantity here is the spike-triggered average of the LFP, or

STA. The STA is obtained by adding, for each spike recorded, a segment of the LFP

centered on the time of the spike; the final sum is then divided by the total number

of spikes. The result is the average LFP waveform that is observed around the time

of a spike. STAs were computed for attention outside and inside the receptive field.

They were similar, but not identical: rapid fluctuations were more pronounced when

attention was directed inside the receptive field; in the Fourier decomposition, power

in the low frequency band (0–17 Hz) decreased while power in the high frequency

band (30–70 Hz) increased. Because the STA reflects the correlation between one

neuron and the neighboring population, the interpretation is that, as attention shifts

to the receptive fields of a cluster of neurons, these become more synchronized at

high frequencies and less so at low frequencies. Although the changes in synchrony

were modest — on average, low-frequency synchronization decreased by 23% and

high-frequency synchronization increased by 19% — changes in firing rate were also

small; these were enhanced by a median of 16% with attention inside the receptive

field. Under these conditions the changes in synchrony could be significant in terms

of their impact on the responses of downstream neurons.

The study just discussed [35] suggests that synchrony specifically in the gamma

band (roughly 30–80 Hz) may enhance the processing of information in some way.

But what exactly is the impact of such synchronization? Another recent study [34]

suggests at least one measurable consequence: the latencies of synchronized neu-

rons responding to a stimulus may shift in unison. In this case the paradigm was

very simple: oriented bars of light were flashed and the responses of two or more

neurons in primary visual cortex (V1) were recorded, along with LFPs. Neurons

were activated by the stimuli, and the key quantity examined was the time that it

took the neurons to respond — the latency — which was calculated on each trial.

Latencies covaried fairly strongly from trial to trial (mean correlation coefficient of

0.34, with a range from 0.18 to 0.55), so pairs of neurons tended to fire early or late

together. This tendency depended on the amount of gamma power in the LFPs right

before the stimulus. When the LFPs from two electrodes both had a strong gamma

component, the latency covariation between the two recorded neurons from the same

pair of electrodes was high. Note that the spectral composition of the LFPs was only

weakly related to changes in firing rate, so short latencies were probably not due

to changes in excitability. This means that, if neurons get synchronized around 40

Hz right before a stimulus is presented, they will respond at about the same time

[34]. In other words, while the mean firing rates are mostly insensitive to shifts in

oscillation frequencies, the time spread in the evoked spikes from multiple neurons is

much smaller when the gamma oscillations are enhanced. This could certainly have

an impact on a downstream population driven by these neurons [18–67]. Thus, the

modulation of latency covariations [34] is a concrete example of how the synchrony

of a local circuit may be used to control the strength of a neural signal.

Finally, we want to mention two other studies [36, 37] that also investigated the

synchronization of V1 neurons, this time using an interocular rivalry paradigm. In

rivalry experiments, different images are shown to the two eyes but only one im-

age is perceived at any given moment [52]. The perception flips from one image
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to the other randomly, with a characteristic timescale that depends on the experi-

mental setup. The studies in question [36, 37] were done in awake strabismic cats,

a preparation with two advantages: V1 neurons are dominated by a single eye, so

their firing rates essentially depend on what their dominant eye sees regardless of

the other one, and it is relatively easy to know which of the two images is perceived

(at equal contrasts for the two images, one eye always suppresses the other, and

this can be measured by tracking the cat’s eye movements in response to conflicting

moving stimuli). The two conditions compared were: a single image presented to

the eye driving the recorded neurons, or the same stimulus shown to the driving eye

plus a conflicting image presented to the other eye. The firing rates in these two

conditions should be the same, because strabismus makes most neurons monocular;

indeed, the rates did not change very much across conditions and did not depend on

which image was perceived. However, synchrony within the 40 Hz band did change

across conditions [36, 37]. When neurons were driven by the eye providing the per-

cept, synchrony was much stronger in the rivalrous condition than in the monocular

one. In contrast, when neurons were driven by the eye whose image became sup-

pressed, synchrony was much lower in the rivalrous condition than in the monocular

one. In other words, when conflicting images were presented, neurons responding

to the image being perceived were always more synchronized. In this case, stronger

synchronization in the high frequency band (30–70 Hz) is suggested to be a neural

correlate of stimulus selection [36, 37].

In summary, it is possible that correlations between neurons can be controlled

independently of firing rate. Two ideas that have been put forth are: that this may

serve to generate more efficient neural codes [71, 44], which follows from theoretical

arguments and experiments in which correlations vary in a stimulus-dependent way,

or to regulate the flow of information [68], which follows from experiments in which

correlations have been linked to expectation, attention, sensory latencies and rivalry

— all processes that regulate the strength but not the content of sensory-derived

neural signals. Other alternatives may become apparent in the future.

Next we discuss some common types of correlated activity patterns. In part, the

goal is to describe them mathematically, at least to a first-order approximation.

12.3 Correlations arising from common input

As mentioned above, oscillations and synchronous responses are commonly ob-

served throughout the nervous system [8–86]. This is not particularly surprising;

in fact, correlations are to be expected simply because neurons in the brain are ex-

tensively interconnected [14, 91]. Now we will discuss two major mechanisms that

give rise to correlated activity, common input and recurent connectivity. The dis-

tinction between them is somewhat artificial, but it is useful in portraying the range

of correlation patterns that may arise. Although they will not be included, it should
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be kept in mind that intrinsic oscillatory properties of neurons are also important in

determining global rhythmic activity [53–54].

An important analytical tool used to study the joint activity of neurons is the cross-

correlation histogram or cross-correlogram [63–15], which is constructed from pairs

of spike trains. This function shows the probability (or some quantity proportional

to it) that neuron B fires a spike t milliseconds before or after a spike from neuron

A, where t is called the time shift or time lag. When the two spike trains are inde-

pendent, the cross-correlogram is flat; when they covary in some way, one or more

peaks appear [15]. A peak at zero time shift means that the two neurons tend to

fire at the same time more often than expected just by chance. Interpreting a cross-

correlogram constructed from experimental data can be quite difficult because any

covariation during data collection will show up as a peak [15]. Two neurons, for

example, may respond at the same time to changes in stimulation conditions even if

they are independent; this will produce a peak that has nothing to do with the func-

tional connectivity of the circuit, which is what one is usually interested in. Another

problem with this technique is that it requires large amounts of data. These disad-

vantages, however, have much lesser importance with simulated spike trains because

they can be very long and their statistics can be constant.

Figure 12.1 shows synthetic, computer-generated spike trains from neurons that

share some of their driving inputs but are otherwise disconnected. Responses from

20 neurons are displayed in each panel. Continuous traces superimposed on the

spike rasters show the mean spike density or instantaneous firing rate, averaged over

all neurons; this quantity is proportional to the probability of observing a spike from

any of the neurons at any given time. Cross-correlograms are shown below. As

mentioned above, the y-axis indicates the probability of observing a pair of spikes

separated in time by the amount on the x-axis. The normalization is such that the

probability expected by chance is equal to 1. The spikes shown were produced by

integrate-and-fire model neurons [24, 67, 82], each driven by two time-varying sig-

nals, gE(t) and gI(t), representing the total excitatory and inhibitory conductances

generated by large numbers of synaptic inputs. Details of the model are given in the

Appendix. To generate synchronous activity between postsynaptic responses, the

conductances gE(t) and gI(t) were correlated across neurons. This is exactly what

would happen if pairs of postsynaptic neurons shared some fraction of all presynap-

tic spike trains driving them. In Figure 12.1a the mean correlation between conduc-

tances was 0.2. This means that, for any pair of neurons i and k, the correlation

coefficient between excitatory conductances,
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, (12.1)

was approximately 0.2. In this expression the angle brackets <> indicate an aver-

age over time, and neurons are indexed by a superscript. Inhibitory conductances

also had a correlation of 0.2 across neurons, but all excitatory and inhibitory conduc-

tances were independent of each other. The nonzero correlation between conduc-
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Figure 12.1

Spike trains correlated by common input. Each panel includes 20 computer-

generated spike trains. Each row represents one neuron and each small, vertical

line one spike. Neurons were modeled as leaky integrate-and-fire units disconnected

from each other but driven by synaptic conductances that co-fluctuated across neu-

rons. Continuous traces superimposed on the rasters are firing rates, averaged over all

neurons, obtained by smoothing the spike trains with a Gaussian function with s =10

ms. Plots below the rasters are cross-correlation histograms averaged over multiple

distinct pairs of units. These were based on longer spike trains that included the

segments shown.

tances gives rise to the sharp peak in the histogram of Figure 12.1a.

Figure 12.1b was generated using the same correlation values, but the excitatory

signals gE(t) varied more slowly (in addition, their magnitude was adjusted so that

similar output rates were produced). The characteristic time at which gE(t) varies is

its correlation time. Below we describe this quantity more accurately; for the mo-

ment the crucial point is that in Figure 12.1 the correlation time of gE(t) corresponds

to the time constant of excitatory synapses, tE . This is essentially the duration of

a unitary synaptic event. In Figure 12.1a the synaptic time constants for excitation

and inhibition were both equal to 2 ms. In Figure 12.1b tI stayed the same but tE

was increased to 20 ms. As can be seen in the raster, this changed the postsynaptic
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responses: the spike trains are more irregular; the spikes of a single neuron tend to

appear in clusters. The two timescales show up in the cross-correlogram as a sharp

peak superimposed on a wider one. Figure 12.1c shows what happens when both

synaptic time constants are set to 20 ms. Now the clustering of spikes in individual

spike trains is even more apparent and the cross-correlogram shows a single, wide

peak.

The correlations between conductances parameterize the degree of synchrony a-

mong output responses. When the correlations are 0 the responses are independent

and the cross-correlogram is flat; when the correlations are equal to 1 all neurons

are driven by the exact same signals and thus produce the same spike train — this

is perfect synchrony. Figures 12.1a–12.1c were generated with correlations of 0.2,

whereas Figures 12.1d–12.1f were generated with correlations of 0.5. Notice that

the shapes of the histograms in the top and bottom rows are the same, but the y-

axis scales in the latter are much larger. Larger correlations always produce more

synchrony and larger fluctuations in instantaneous firing rates (continuous traces).

In addition, they may also alter the postsynaptic firing rates, but this effect was in-

tentionally eliminated in Figure 12.1 so that different synchrony patterns could be

compared at approximately equal firing rates.

These examples show that there are at least two important factors determining

the synchronous responses caused by common input: the amount of common input,

which corresponds to the magnitudes of the correlations between conductances, and

the timescales of the input signals, which in this case are determined by synaptic

parameters. Analogously, there are two aspects of the cross-correlation function that

are important, the height of the peak and its width.

12.4 Correlations arising from local network
interactions

Networks of recurrently interconnected neurons may naturally give rise to oscillatory

and synchronous activity at various frequencies; this is a well documented finding

[94–17]. The type of activity generated depends on the network’s architecture, on

its inputs, and on single-cell parameters. Here we illustrate this phenomenon with a

highly simplified network with the following properties. (1) Model neurons, excita-

tory and inhibitory, are of the integrate-and-fire type, without any intrinsic oscillatory

mechanisms. (2) Synaptic connections between them are all-to-all and random, with

strengths drawn from a uniform distribution between 0 and a maximum value gmax;

this is both for excitatory and inhibitory contacts. (3) All neurons receive an external

input drive implemented through fluctuating conductances gE(t) and gI(t), which are

uncorrelated across neurons.

Figure 12.2 illustrates some of the firing patterns produced by such a network.

For Figure 12.2a the recurrent connections were weak, i.e., gmax was small. The
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peak in the cross-correlogram is also small, indicating that the neurons fired nearly

independently. The peak is narrow because all synaptic time constants were set to
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Figure 12.2

Spike trains correlated by local network interactions. Same format as in Figure 12.1.

Neurons were modeled as integrate-and-fire units receiving two types of inputs: a

background synaptic drive that was independent across neurons, and recurrent synap-

tic input from other units in the network. The full network consisted of 100 excitatory

and 25 inhibitory model neurons. Synaptic connections were all-to-all, with conduc-

tances chosen randomly (uniformly) between 0 and a maximum value gmax. Note the

different y-axes for cross-correlation histograms.

3 ms. Figures 12.2b and 12.2c show what happens when the connections are made

progressivly stronger. The central peak becomes much taller (notice the different

y-axes), and secondary peaks, indicating oscillatory activity, become apparent. In

contrast to the rest of the cross-correlograms, the one in Figure 12.2c was generated

from a short segment of data. This enhanced the secondary peaks, which practically

disappeared when longer stretches of data were used (not shown). This is because

the frequency of the oscillatory activity is not constant so, over a long time, many
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phases are averaged out, making the correlation flat everywhere except in the central

region. As in Figure 12.1, compensatory adjustments were made so that average

firing rates remained approximately the same; in this case the external excitatory

drive was slightly decreased as the connection strengths increased.

Figures 12.2d and 12.2e show that even such a simplified network may have quite

complex dynamics. Parameters in Figure 12.2d were identical to those of Figure

12.2b, except for two manipulations. First, for recurrent excitatory synapses only,

the synaptic time constant was increased from 3 to 10 ms; and second, to compen-

sate for this, the synaptic conductances were multiplied by 3/10. This generated

approximately the same firing rates and also preserved the average recurrent conduc-

tance level. However, as a consequence of these changes the correlations between

postsynaptic spikes almost disappeared. Thus, the tendency to fire in phase is much

larger when the characteristic timescales for excitatory and inhibitory synaptic events

are the same. This is reminiscent of resonance.

Figure 12.2e illustrates another interesting phenomenon. In this case the timescales

of both excitatory and inhibitory recurrent synapses were set to 10 ms, while the char-

acteristic time of all external input signals stayed at 3 ms. The mean conductance

levels, averaged over time, were the same as in Figure 12.2c, so the connections were

relatively strong. Now the peak in the cross-correlation histogram (Figure 12.2e) is

much wider than expected, with a timescale on the order of hundreds of milliseconds.

Such long-term variations are also apparent in the spike raster and in the firing rate

trace. This is quite surprising: firing fluctuations in this network occur with a char-

acteristic time that is at least an order of magnitude longer than any intrinsic cellular

or synaptic timescale. Discussion of the underlying mechanism is beyond the scope

of this chapter, but in essence it appears that the network makes transitions between

two pseudo steady-state firing levels, and that the times between transitions depend

not only on cellular parameters but also on how separated the two firing levels are.

In any case, a key point to highlight is that, in all examples we have presented, the

cross-correlation histograms show a common feature: a central peak with a shape

that resembles a double-exponential. That is, the correlation function can be de-

scribed as

C(t) = Cmax exp

(

−
|t|

tcorr

)

, (12.2)

where t is the time lag and tcorr, which determines its width, is the correlation time.

This function is related to many types of random processes [87, 42]. Indeed, below

we will use it to characterize the total input that drives a typical cortical neuron.

So far, we have looked at a variety of correlation patterns that a network may

display. Next, we take the point of view of a single downstream neuron that is driven

by this network. From this perspective we return to an important question posed

in the introduction: how does the response of a postsynaptic neuron depend on the

full set of correlated spike trains that typically impinge on it? Equation 12.2 will be

used as a rough characterization of those correlations. The answer will be presented

in two parts. First we will discuss some of the main factors determining whether

input correlations have an impact on the postsynaptic response, and roughly to what
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degree. Then we will present a mathematical model that is somewhat abstract but

that can be solved analytically and can provide some quantitative insight into the

problem.

12.5 When are neurons sensitive to correlated
input?

The goal of this section is to identify some of the main factors that determine the

sensitivity of a postsynaptic cortical neuron to the presence of correlations in its

inputs.

Synapses generate discrete events that are localized in time. Hence the basic in-

tuition suggesting that timing is important: if action potentials from two excitatory

neurons arrive simultaneously or within a short time window of each other to the

same postsynaptic neuron, the two synaptic events may add up, producing a larger

conductance change. Roughly, depending on the time interval between their arrivals,

two presynaptic action potentials may act as two separate events of unit amplitude

and duration, as one event of unit amplitude but lasting twice as long, or as one event

of double amplitude and unit duration. If excitatory spikes have a tendency to arrive

simultaneously more often than expected by chance, the target neuron might respond

more vigorously.

This idea has been confirmed through simulation studies [13, 60]. Compared to

independent spike trains, synchronous spikes may evoke stronger responses, but only

up to a point, after which further synchronization actually decreases the response [13,

60]. This decrease occurs for two reasons. First, only a certain number of simultane-

ous excitatory synaptic events are required to trigger an action potential, so, once this

number is reached, other simultaneous spikes cannot enhance the response. Second,

excitatory spikes that arrive while the postsynaptic cell is in its refractory period are

wasted. Thus, there is a tradeoff between two effects: on one hand, grouping excita-

tory spikes in time so that synaptic events summate; on the other, spreading them so

that refractory effects are avoided.

This line of argument, however, has serious limitations. Refractory effects be-

come important only when the output neuron is firing near its maximum rate, which

is rarely the case. And more importantly, inhibition is not considered. Inhbition al-

ters the scenario in three ways. (1) It may affect the sensitivity of the postsynaptic

neuron to synchronous excitatory spikes. (2) Synchrony affects not only the average

response of the cell but also the variability of the output spike train, and this too may

depend on the level of inhibition. (3) Additional questions arise about the effects of

synchrony between pairs of inhibitory input spikes and between excitatory-inhibitory

pairs as well. In short, the situation gets considerably more complicated. The spec-

trum of possible firing modes of a neuron is often split between two extreme cases,

integration and coincidence detection.
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12.5.1 Coincidence detection

The classic mechanism underlying a neuron’s sensitivity to temporal patterns is co-

incidence detection [2–50]. Neurons can certainly be sensitive to the arrival of spikes

from two or more inputs within a short time window; the most notable examples are

from the auditory system [5, 21]. The question is, however, whether this mechanism

is commonly used throughout the cortex.

In the traditional view, coincidence detection is based on a very short membrane

time constant [2–50]. However, it may be greatly enhanced by the spatial arrange-

ment of synapses and by nonlinear processes. For instance, nearby synapses may

interact strongly, forming clusters in which synaptic responses to simultaneous acti-

vation are much stronger than the sum of individual, asynchronous responses [58].

A neuron could operate with many such clusters which, if located on electrotonically

distant parts of the dendritic tree, could act independently of each other. Voltage-

dependent channels in the dendrites may mediate or boost such nonlinear interac-

tions between synapses [58–64]. These nonlinearities could in principle increase

the capacity for coincidence detection to the point of making the neuron selective for

specific temporal sequences of input spikes, and the very idea of characterizing those

inputs statistically would be questionable. However, the degree to which the cortex

exploits such nonlinearities is uncertain.

The coincidence detection problem can also be posed in terms of the capacity of

a network to preserve the identity of a volley of spikes fired by multiple neurons

within a short time window [18, 31]. Suppose a neuron receives a volley of input

spikes; what is the likelihood of evoking a response (reliability), and what will its

timing be relative to the center of mass of the input volley (precision)? Theoretical

studies suggest that the temporal precision of the response spikes is not limited by

the membrane time constant, but rather by the up-slope of excitatory synaptic events.

Thus, under the right conditions a volley of synchronized action potentials may prop-

agate in a stable way through many layers [31]. Whether areas of the cortex actually

exchange information in this way is still unclear, and other modes of information

transmission are possible [88].

12.5.2 Fluctuations and integrator models

The flip side of coincidence detection is integration. Neurons may also sum or av-

erage many inputs to generate an action potential [2, 50, 73]. Earlier theoretical

arguments suggested that neurons acting as integrators would not be sensitive to

temporal correlations [74], or that these would only matter at high firing rates, where

refractory effects become important [13, 60]. However, later results [67, 69] show

that neurons may still be highly sensitive to weak correlations in their inputs even if

there is no spatial segregation along the dendritic tree and no synaptic interactions

beyond the expected temporal summation of postsynaptic currents.

A key quantity in this case is the balance of the neuron, which refers to the relative

strength between inhibitory and excitatory inputs [67, 82, 73]. When the neuron

is not balanced, excitation is on average stronger than inhibition, such that the net
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synaptic current is depolarizing and the mean steady-state voltage is near or above

threshold. In this case the main driving force is the drift toward steady state, and input

fluctuations have a small effect on the rate of output spikes [67, 33]. On the other

hand, when the neuron is balanced, both excitation and inhibition are strong, the

mean input current is zero or very small, and the mean steady-state voltage remains

below threshold. However, the neuron may still fire because there are large voltage

fluctuations that lead to random threshold crossings. In this mode, any factor that

enhances the fluctuations will produce more intense firing [67, 32].

There is a subtle but important distinction between mechanisms that may alter in-

put fluctuations. Higher rates should be seen in a balanced neuron if fluctuations

increase without affecting the mean synaptic conductances, as when only the corre-

lations change [67]. But if stronger fluctuations are accompanied by increases in

total conductance, as when both excitatory and inhibitory inputs fire more intensely,

the firing rate may actually decrease [32–22]. In a complex network these effects

may be hard to disentangle.

Figure 12.3 compares the responses of balanced (upper traces) and unbalanced

(lower traces) model neurons [67]. These were driven by excitatory and inhibitory

input spike trains similar to those illustrated in Figure 12.1. For the balanced neuron

both excitatory and inhibitory synaptic conductances were strong, and the combined

current they generated near threshold was zero. In contrast, for the unbalanced unit

both conductances were weak, but their combined current near threshold was ex-

citatory. The four panels correspond to different correlation patterns in the inputs.

In Figure 12.3a all inputs are independent, so all cross-correlograms are flat. The

voltage traces reveal a typical difference between balanced and unbalanced modes:

although the output rate is approximately the same, the subthreshold voltage of the

balanced neuron is noisier and its interspike intervals are more variable [67, 82].

Figure 12.3b shows what happens when the excitatory inputs fire somewhat syn-

chronously due to common input. The firing rate of the balanced neuron always

increases relative to the response to independent inputs, whereas the rate of the un-

balanced neuron may show either a smaller (although still substantial) increase or a

decrease [13, 60]. Another effect of synchrony is to increase the variability of the

output spike trains, both for balanced and unbalanced configurations [67, 69, 78, 80];

this can be seen by comparing Figures 12.3b and 3d with Figure 12.3a. Correlations

between inhibitory inputs can also produce stronger responses. When the inhibitory

drive oscillates sinusoidally, as in Figure 12.3c, the balanced neuron practically dou-

bles its firing rate compared to no oscillations; in contrast, the unbalanced does not

change.

The balance of a neuron is important in determining its sensitivity to correlations,

but there is another key factor [67]. There are three correlation terms: correlations

between pairs of excitatory neurons, between pairs of inhibitory neurons, and be-

tween excitatory-inhibitory pairs. The first two terms increase the voltage fluctua-

tions but the last one acts in the opposite direction, decreasing them. The total effect

on the postsynaptic neuron is a function of the three terms. In Figure 12.3 d, all

inputs to the model neurons are equally correlated, but the balanced model shows

no change in firing rate. Thus, it is possible to have strong correlations between all
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Figure 12.3

Responses of two model neurons to four input correlation patterns. Histograms on

the left show average cross-correlations between pairs of excitatory input spike trains

(EE), between inhibitory pairs (II), and between excitatory-inhibitory pairs (EI). Y-

axes in the correlograms go from 0.7 to 1.4. Upper and lower traces in each panel

show the responses of balanced and unbalanced neurons, respectively. The rate of

inhibitory inputs was always equal to 1.7 times the excitatory rate. For all middle

traces the excitatory input rate was 42 spikes/s. The plots on the right show the

firing rates of the two (postsynaptic) model neurons versus the mean firing rate of

the (presynaptic) excitatory inputs. Thin black lines are the curves obtained with

independent inputs (top panel). The two output neurons were leaky integrate-and-

fire units with identical parameters; they differed in the relative strength of their

excitatory and inhibitory inputs. (Adapted from [67] and [68].)

inputs but still not see a change in the firing rate of the postsynaptic neuron relative

to the case of independent inputs.

In summary, a balanced neuron is much more sensitive to input correlations than

an unbalanced one because correlations affect the fluctuations in synaptic drive,

which cause the balanced neuron to fire. However, the postsynaptic response de-

pends on the relative values of the three correlation terms, which may cancel out.

The key point here is that even when neurons act as integrators they can, in a statis-

tical sense, be highly sensitive to the temporal patterns of their input spikes.

Interestingly, at least in some pyramidal neurons, distal dendrites seem to act much

more like coincidence detectors than proximal dendrites [93], so real neurons may,
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Parameterization of a continuous conductance trace. The top graph represents the to-

tal synaptic conductance generated by excitatory spikes driving a postsynaptic neu-

ron. This conductance can be characterized statistically by its mean m , standard

deviation s , and correlation time tcorr. The left histogram is the distribution of con-

ductance values of the top trace. The histogram on the right is its autocorrelation

function. The width of the peak is parameterized by tcorr . The bottom graph shows a

binary variable that approximates the continuous trace. The binary function has the

same mean, standard deviation and correlation time as the original function [69].

to some extent, combine both types of firing modes.

12.6 A simple, quantitative model

Now we discuss a simple model for which the responses to correlated input can be

calculated analytically [69]. The first step is to describe its input.

12.6.1 Parameterizing the input

The input to a neuron consists of two sets of spike trains, ones that are excitatory

and others that are inhibitory. What are the total synaptic conductances generated

by these spikes? How can they be characterized? An example generated through

a computer simulation is shown in Figure 12.4. The top trace represents the total

excitatory conductance gE(t) produced by the constant bombardment of excitatory
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synapses onto a model neuron. When plotted versus time, the time course looks

noisy, random. Because gE(t) is the result of thousands of individual synaptic events,

the distribution of conductance values should be approximately Gaussian, with mean

and standard deviation

m = 〈gE〉

s =

√

〈

(gE − m)2
〉

, (12.3)

where the angle brackets <> indicate an average over time. The histogram on the

left in Figure 12.4 shows the distribution of gE values for the top trace. Indeed, it is

close to a Gaussian, even though the trace is relatively short (1 s long sampled at 1

ms intervals). The mean and standard deviation, however, are not enough to charac-

terize the conductance trace because it fluctuates with a typical timescale that has to

be determined independently. The histogram on the right shows the autocorrelation

function of the trace. This is akin to the cross-correlation functions discussed earlier,

except that the correlation is between a continuous function and itself. Now a peak

centered at zero time lag indicates that gE(t) and gE(t + Dt) tend to be similar to

each other, and the width of the peak tells how fast this tendency decreases. A flat

autocorrelation means that all values of gE were drawn randomly and independently

of each other. Thus, an autocorrelation function that is everywhere flat except for a

peak centered at zero is the signature of a stochastic function that varies relatively

smoothly over short timescales but whose values appear entirely independent when

sampled using longer intervals. The autocorrelation function can be computed an-

alytically for a variety of noise models, and it is typically a double exponential, as

in Equation 12.2, with Cmax = s 2. Identical considerations apply to the conductance

generated by inhibitory synapses.

From Figures 12.1 and 12.2 and from these observations, it appears that a rea-

sonable framework to describe the total excitatory and inhibitory conductances that

drive a cortical neuron is to model them using two random signals with given means,

standard deviations and correlation times. Indeed, this approach has been tested ex-

perimentally, with highly positive results [29, 30]. This is also what was done to

generate the spikes in Figure 12.1 (see Appendix). As explained below, this approx-

imation is very good; for the leaky integrate-and-fire model the responses obtained

using this method versus actual spike trains are virtually identical within a large pa-

rameter range (not shown).

In general, calculating the three parameters for gE(t) or gI(t) from the quantities

that parameterize the corresponding input spike trains is difficult. However, this

can be done under the following simplifying assumptions. Suppose there are NE

excitatory spike trains that are independent, each with Poisson statistics and a mean

rate rE . Also suppose that the synapses operate like this: whenever an input spike

arrives, gE(t) increases instantaneously by an amount GE ; otherwise, gE(t) decreases

exponentially toward zero with a time constant tE (see ref. [24]). For this simple
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scheme it can be shown [81] that

m = GENErE tE

s 2 =
G2

ENErE tE

2
tcorr = tE , (12.4)

with the correlation function having a double-exponential shape. Thus, for this sit-

uation, a model neuron in a simulation can be driven by two methods. First, by

generating independent Poisson spikes and increasing the conductance every time

one such spike arrives, exactly as described above. In this case parameters GE , rE ,

NE , tE , and the corresponding quantities for inhibitory inputs need to be specified.

The second method is to generate the fluctuating signals gE(t) and gI(t) directly by

combining random numbers, in which case only the respective m , s and tcorr are

strictly required. Neuronal responses evoked using this type of model can match

experimental data quite well [29, 30].

When the assumptions of the case just discussed are violated, for instance, when

the spikes driving a neuron are not independent, determining m , s and tcorr analyti-

cally becomes much more difficult. However, in general one should expect correla-

tions to increase s , and the correlation time should be equal to the synaptic time con-

stant, although it may increase further if the input spikes are correlated over longer

timescales.

Next, we ask how each of the three key parameters, m , s and tcorr, affects the

response of a postsynaptic neuron.

12.6.2 A random walk in voltage

The model neuron we consider is the non-leaky, integrate-and-fire neuron [67, 69,

40], whose dynamics resemble those of random walk models used to study diffusion

in physical systems [87, 42, 41, 12]. The voltage V of this unit changes according to

the input I(t) that impinges on it, such that

t
dV

dt
= I(t) , (12.5)

where t is its integration time constant. In this model an action potential is produced

when V exceeds a threshold Vq . After this, V is reset to an initial value Vreset and the

integration process continues evolving according to the equation above. This model

is related to the leaky integrate-and-fire model [24, 67, 82] but it lacks the term

proportional to −V in the right-hand side of the differential equation. An additional

and crucial constraint is that V cannot fall below a preset value, which acts as a

barrier. For convenience the barrier is set at V =0, so only positive values of V are

allowed. This choice, however, makes no difference in the model’s dynamics. Except

for the barrier and the spike-generating mechanism, this model neuron acts as an

ideal integrator, with an integration time constant t .
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Here the input I(t) is the total current, including excitatory and inhibitory compo-

nents. To simplify things even further, we will consider I(t) to be a noisy function

with mean m , standard deviation s , and correlation time tcorr. Note, however, that

these quantities now refer to the total current, not to the conductances, as before;

this is just to simplify the notation. In this scheme it is not clear how exactly I(t) is

related to gE(t) and gI(t), which in principle are the measurable parameters of real

neurons. However, evidently m should depend on the means of the conductances,

s should depend on their standard deviations, and tcorr should depend on their cor-

relation times. This qualitative relationship is good enough to proceed because the

model is somewhat abstract anyway.

The quantity that we are interested in is T , the time that it takes for V to go from

reset to threshold. T is known as the first passage time or the interspike interval;

what we want to know are its statistics. The key for this [69] is to rewrite Equation

12.5 as follows

t
dV

dt
= m + s Z(t) , (12.6)

where Z(t) is a binary variable that can only be either +1 or −1 and whose correla-

tion function is a double exponential with correlation time tcorr . Thus I(t) has been

replaced by a stochastic binary function that indicates whether I(t) is above or be-

low its average. This approximation is illustrated in Figure 12.4 (bottom trace). The

binary function has the same mean, standard deviation and correlation time as I(t).
This substitution allows us to solve Equation 12.6 analytically [69]. Notice also that

the neuron’s time constant t simply acts as a scale factor on the input. Hereafter it

will be considered equal to 1.

Figure 12.5 shows examples of spike trains produced by the model when driven by

the binary, temporally correlated input. In this figure m was negative, so on average

the voltage tended to drift away from threshold, toward the barrier. In this case

the spikes are triggered exclusively by the random fluctuations, as measured by

s ; without them the neuron would never reach threshold. In Figures 12.5a–12.5c

the correlation time is tcorr=1 ms. For a binary variable like Z, which switches

between +1 and −1, the correlation time corresponds to the average time one needs

to wait to observe a change in sign. In other words, the correlation time is equal to

half the average time between sign changes. Thus, the input in Figure 12.5a (lower

trace) flips state approximately every 2 ms. Figure 12.5c shows that, under these

conditions, the neuron fires at a relatively low rate and irregularly; the times between

spikes or interspike intervals are quite variable, which can also be seen from the

interspike-interval distribution in Figure 12.5b.

When tcorr is increased to 5 ms, as in Figures 12.5d–12.5f, the changes in input

state occur approximately every 10 ms (Figure 12.5d, lower trace). This produces

a large increase in mean firing rate and, to a lesser extent, an increase in variability.

This can be seen by comparing the spike trains from Figures12.5c and 12.5f. The

respective mean rates are 10 and 37 spikes/s. Notice that there is a short time interval

that appears very frequently. The short interval results when the input stays positive

for a relatively long time, as is the case with the pair of spikes in Figure 12.5d. This

interval is equal to (Vq −Vreset)/(m +s), which is the minimum separation between
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Figure 12.5

Responses of the nonleaky integrate-and-fire model driven by correlated, binary

noise. The input switches states randomly, but on average the same state is main-

tained for 2tcorr ms. Sample voltage and input time courses are 50 ms long. Raster

plots show 6 seconds of continuous simulation time. For the three top panels the

correlation time tcorr was 1 ms; for the lower panels it was 5 ms. (Adapted from

[69].)

spikes in the model given m and s . The number of spikes separated by this interval

grows as the correlation time increases. At the same time, however, longer correla-

tion times also give rise to long interspike intervals, which occur because the input

can stay in the low state for longer stretches of time. This is why correlation time in-

creases variability: it produces both short and long interspike intervals. The quantity

that is most often used to measure the regularity of a spike train is the coefficient of

variation, or CVISI , which is equal to the standard deviation of the interspike inter-

vals divided by their mean. The CVISI in Figures 12.5c is equal to 1, as for a Poisson

process; in Figure 12.5f it is equal to 1.18, which reflects the higher variability. Note

that m and s are the same for all panels. This demonstrates that the input correlation
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time may have a very strong impact on the response of a postsynaptic neuron [69].

This is an interesting observation because little is known about the dynamic role of

this parameter.

12.6.3 Quantitative relationships between input and output

The solution to the non-leaky model of Equation 12.6 consists in the moments of T ,

〈T 〉,
〈

T 2
〉

and so forth. For each of these moments there are three sets of analytic

expressions, because details of the solutions depend on the relative values of m and

s . Here we only discuss the expressions for the average interspike interval 〈T 〉,
which is the inverse of the mean firing rate, but

〈

T 2
〉

and therefore the CVISI can also

be obtained in closed form [69].

When m >s ,

〈T 〉 =
Vq −Vreset

m
. (12.7)

In this case there is a strong positive drift toward threshold. Even when Z is equal

to −1 the total input is positive; in other words, the voltage gets closer to threshold

in every time step, whether the fluctuating component is positive or negative. The

mean firing rate behaves as if the input were constant and there were no fluctuations.

This can be seen in Figure 12.6, which plots the mean firing rate and the CVISI of

the model neuron as a function of s for various combinations of the other two input

parameters. The values of m are indicated in each column, and the three curves

in each plot correspond to tcorr equal to 1, 3 and 10 ms, with higher correlation

values always producing stronger responses and higher variability. Continuous lines

and dots correspond to analytic solutions and simulation results, respectively. Notice

how, when m=0.02, the firing rate stays constant for s below 0.02, although the

variability increases most sharply precisely within this range.

When m=0,

〈T 〉 =
2(Vq −Vreset)

s
+

V 2
q −V 2

reset

2tcorrs 2
. (12.8)

Clearly, the average interspike interval decreases with both tcorr and s . In this

case there is no drift, no net displacement; the voltage advances toward thresh-

old when Z=+1 and retreats toward the barrier when Z = −1. Under these condi-

tions the neuron is driven exclusively by fluctuations. The middle column of Figure

12.6corresponds to this regime. As can be seen, the variability of the neuron also

increases monotonically with s and tcorr.

Finally, when m ≤s ,

〈T 〉 =
Vq −Vreset

m
+ tcorr(c−1)2 (exp(−aVq )− exp(−aVreset)) , (12.9)

where we have defined

c ≡
s

m

a ≡
1

m tcorr(c2 −1)
. (12.10)
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Mean firing rate and coefficient of variation for the nonleaky integrate-and-fire neu-

ron driven by correlated binary noise. Continuous lines are analytic expressions and

dots are results from computer simulations. Each simulation data point was based on

spike trains containing 2000 spikes. The three curves in each graph are for different

values of tcorr: 1 ms (lower curves), 3 ms (middle curves), and 10 ms (upper curves).

(Adapted from [69].)

As with the above equations, Figure 12.6 reveals the excellent agreement between

this expression and computer simulations. An interesting special case is obtained

when s =m , or c=1. Then the total input is zero every time that Z equals -1, so

half the time V does not change and half the time V increases by 2m in each time

step. Therefore, the average time to threshold should be equal to (Vq −Vreset)/m ,

which is precisely the result from Equation 12.9. This quantity does not depend on

the correlation time, but the CVISI does. The analytic expression for the CVISI is

particularly simple in this case:

√

2 m tcorr

Vq −Vreset

. (12.11)

Thus, the variability of the output spike train diverges as tcorr increases, but the mean

rate does not.

This last observation is valid in a more general sense, and is an important result

regarding the effects of correlations. In most cases, the limit behaviors of the firing

rate and the CVISI as the correlation time increases are quite different: the rate tends

to saturate, whereas the variability typically diverges. This is illustrated in Figure

12.7. The one condition in which the variability saturates as the correlation time

tends to infinity is when m is larger than s (thickest line on right column). The

asymptotic value of the CVISI in this case is c/
√

1− c2. In this parameter regime the

drift is strong, so it usually produces high firing rates as well.
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Responses of the nonleaky integrate-and-fire neuron as functions of input correlation

time tcorr. Only analytic results are shown. As the correlation time increases, the

firing rate always tends to an asymptotic value. In contrast, the CVISI diverges always,

except when m >s ; this case corresponds to the thickest line in the plots on the right.

(Adapted from [69].)

The key to obtain all the analytic expressions was the use of a binary input. One

may wonder, however, whether the results are valid with a more realistic input sig-

nal. It turns out that, for this model, the mean firing rate and the CVISI obtained using

correlated Gaussian noise are very similar to those obtained with binary noise. This

is not entirely unexpected, first, because the neuron essentially adds its inputs, and

second, because Gaussian noise can be properly approximated as the sum of mul-

tiple binary random samples, as a consequence of the central limit theorem. This

is strictly true when all binary and Gaussian samples are independent, that is, when

the autocorrelation functions are everywhere flat, but the approximation works quite

well even when there is a correlation time. For example, the rate and the CVISI still

increase as functions of correlation time, and the same asymptotic behaviors are seen

[69].

12.7 Correlations and neuronal variability

The spike trains of neurons recorded in awake animals are highly variable [25, 75–

78]. However, spike generation mechanisms themselves seem to be highly reliable

[20, 49, 56]. The contrast between these two observations stirred a fair amount of
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discussion, especially after the work of Softky and Koch [76], who pointed out that

although the CVISI of typical cortical neurons is close to 1, this number should be

much lower for an integrator that adds up many small contributions in order to fire,

especially at high output rates. However, their arguments applied in the absence of

inhibition, and later work [82, 73] showed that including incoming inhibitory spikes

produces higher CVISI values even in integrator models without any built-in coinci-

dence detection mechanisms [2–50] or similar nonlinearities [58–64], a result that

is consistent with early stochastic models [41, 84]. So-called ‘balanced’ models,

in which inhibition is relatively strong, typically bring the CVISI to the range be-

tween 0.5 and 1 [73, 82], which is still lower than reported from recorded data [25,

75–78]. Other intrinsic factors have also been identified as important in determin-

ing spike train variability; for instance, combining the proper types of conductances

[11], tuning the cellular parameters determining membrane excitability [47, 82], and

bistability [92].

However, several lines of evidence point to correlations in the conductances (or

currents) that drive a neuron as a primary source of variability. First, correlated fir-

ing is ubiquitous. This has been verified through a variety of techniques, including

in vivo experiments in which pairs of neurons are recorded simultaneously. The

widths of the corresponding cross-correlograms may go from a few to several hun-

dred milliseconds [43–77], so they may be much longer than the timescales of com-

mon AMPA and GABA-A synapses [27]. Second, in vitro experiments in which

neurons are driven by injected electrical current suggest that input correlations are

necessary to reproduce the firing statistics observed in vivo [28, 29, 30, 78]. This

is in line with the suggestion that fluctuations in eye position are responsible for a

large fraction of the variability observed in primary visual neurons, because they

provide a common, correlating signal [46]. Third, this also agrees with theoretical

studies [33, 67]; in particular with results for the non-leaky integrate-and fire model

showing that the CVISI depends strongly on the correlation time of the input [69].

In addition, similar analyses applied to the traditional leaky integrate-and-fire model

reveal the same qualitative dependencies [69]. This, in fact, can be seen in Figure

12.1, where the model with leak was used: increases in the synaptic time constants

give rise to longer correlation times and to higher CVISI values (compare Figures

12.1a and 12.1c), an effect that has nothing to do with the synchronization between

output spike trains. Finally, high variability is also observed in simulation studies

in which network interactions produce synchronized recurrent input [85–89], as in

Figure 12.2.

12.8 Conclusion

The activity of a local cortical microcircuit can be analyzed in terms of at least two

dimensions, its intensity, which is typically measured by the mean firing rates of
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the neurons, and its coherence across neurons, which is often described in terms

of synchrony or cross-correlations between pairs of units. These correlations serve

as probes for the organization and dynamics of neural networks. There is strong

evidence, both theoretical and experimental, indicating that correlations may be im-

portant dynamic components of cortical microcircuits. Here we have discussed two

general hypotheses, the encoding of stimulus features and the gating of informa-

tion from one structure to another. Although quite different, both are based on the

premise that correlations have a specific functional role. Interestingly, there is an

interpretation that is entirely opposite to the sensory-coding hypothesis, which sug-

gests that correlations between cortical neurons limit the accuracy with which neural

populations may encode stimulus features [95] (see also [1]). These top-down ideas

have generated considerable debate, but the crucial question remains unresolved as

to whether correlations have a specific, separate functional role, or whether they sim-

ply participate in all functions, just as firing rates do. It is also conceivable that there

is no generic strategy, and that the meaning and impact of correlations vary from one

local microcircuit to another.

A second, critical question is whether correlations can be controlled independently

of firing rates. That is, a group of neurons M may affect another group A in two, not

necessarily exclusive, ways: by changing the firing rates of A or the correlations be-

tween local neurons in A. There are two knobs that can be turned, and the question

is whether these can be turned independently of each other. Here we reviewed some

studies that begin to address this issue by taking the point of view of a single neu-

ron: what intrinsic properties make it sensitive to correlations? How do correlations

affect its response? Can changes in input correlations and input firing rates be distin-

guished? The hope is that this bottom-up perspective will eventually help clarify the

top-down ideas by identifying and constraining the role of correlations in local cir-

cuit dynamics. A good example of this is the above section on neuronal variability.

The highly variable discharge of cortical neurons is observed and characterized in

recordings from awake, behaving preparations; and experiments in vitro, as well as

computational and theoretical studies, identify a variety of biophysical mechanisms

responsible for the observation. In this particular case, input correlations seem to

play a major role because they can generate highly variable output spike trains in the

absence of any additional intrinsic mechanisms [28, 46, 69, 78].

In conclusion, the two questions just pondered may represent high- and low-level

interpretations of the same phenomenon, but a conceptual framework providing a

unified view of this problem is still lacking. Establishing such framework, however,

may serve as a guidelight for future investigations.
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12.9 Appendix

Here we describe the leaky integrate-and-fire model [24, 67, 82, 84] driven by con-

ductance changes that was used to generate Figure 12.1. In this model, the membrane

potential V evolves according to

tm

dV

dt
= −V −gE(t)(V −VE)−gI(t)(V −VI) , (12.12)

where the resting potential has been set to 0 mV. The spike-generating currents are

substituted by a simple rule: whenever V exceeds a threshold (20 mV), a spike is

emitted and V is clamped to a reset value (10 mV) for a refractory period (1.8 ms).

After that, V continues evolving according to the above equation. The excitatory

and inhibitory conductances, gE(t) and gI(t), were generated by combining Gaus-

sian random numbers [69], so that the resulting traces would have the desired mean,

standard deviation and correlation time. These parameters were related to input rates

and model synaptic conductances through Equations 12.4. For Figures 12.1a and

1d, NErE =27.5 spikes/ms, GE=0.02, tE =2 ms, NIrI=12.15 spikes/ms, GI=0.06, and

tI=2 ms, with GE and GI in units of the leak conductance (i.e., where the leak con-

ductance equals 1). For Figures 12.1b and 12.1e, tE =20 ms. For Figures 12.1c and

12.1f, tI=tE=20 ms. Correlations between the conductances of different neurons

were generated by drawing correlated Gaussian samples during generation of the

gE(t) and gI(t) traces for different neurons. The correlation coefficient for a pair

of conductances, Equation 12.1, is equal to the correlation coefficient between the

corresponding Gaussian samples. Other parameters were: tm=20 ms, VE=74 mV,

VI=−10 mV, Dt=0.1 ms.
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13.1 Introduction

Animals are under strong selective pressure to react as quickly as possible to relevant

stimuli. For example, flies can change their flight trajectory with a reaction time of
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about 30 ms. Similarly, primate pattern recognition can be so rapid (∼200ms) that

the processing at each of the many stages that intervene between photoreceptors and

motor neurons can take probably only ∼ 10 ms, before the results must be passed

on to the next stage [37]. Since neurons rarely fire more than a single spike in such

short periods of time, it seems that neuronal computation is capable of operating on

the basis of very small numbers of action potentials.

In these situations, each stimulus must be encoded by few spikes per neuron. This

observation is important because it strongly limits the complexity of the neuronal

response and encourages us that it might be possible to get a thorough understanding

of the neural code.

Cracking the neural code for a given stimulus set means understanding the manner

in which the space of spike trains is divided into clusters representing the different

stimuli. We would like to answer two basic questions: (1) Does this clustering de-

pend on the precise timing of spikes, or only on the number of spikes that each

neuron emits? (2) Does the clustering depend on correlations across multiple spikes,

or only on individual spikes? To address these questions, it is necessary to quantify

and compare the stimulus discriminability that the different candidate codes afford –

the natural framework for which is Shannon’s information theory.

Recently, the series expansion method of estimating mutual information has been

developed, which is specifically tailored to the case of sparsely responding neurons

[21, 22]. We have applied it to a popular model system – the somatosensory cortex

of the rat – where the number of evoked spikes per stimulus is also small, and have

thereby been able to study issues of spike timing and population coding in a rigorous

manner [18, 25, 26]. These developments are reviewed in the following sections.

13.2 Series expansion method

13.2.1 Quantifying neuronal responses and stimuli

To measure the stimulus discriminability of a given neural code, the first step is to

categorise the neuronal response in a manner that reflects the code. We consider

spike times in the interval [0,T ] ms relative to the onset of the stimulus. For a spike

count code, the response of a neuron on a given trial is simply the number of spikes

emitted in the interval. To evaluate spike timing, the interval is subdivided into a

sequence of L bins of width dt ms (dt = T/L). If each bin contains at most 1 spike,

then the response on a given trial is the one of the 2L possible sequences that occurs.

It is not, however, necessary for the analyses described below that the sequence to

be binary [28]. If a population of C neurons is being considered, the response on a

given trial is the set of C simultaneously recorded spike counts or spike sequences.

Having quantified the response, we can ask how well it discriminates between the

different stimuli.
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13.2.2 Mutual information and sampling bias

The mutual information quantifies how well an ideal observer of neuronal responses

can, on average, discriminate which stimulus occurred based on a response observed

on a single trial (Shannon, 1948):

I(S,R) =
〈

Â
n

P(n|s) log2

P(n|s)

P(n)

〉

s
(13.1)

Here S = {s} is the set of stimuli, R = {n} is the set of responses; n can be a sin-

gle cell response, or a population response and either a spike count or a spike se-

quence. P(n|s) is the posterior probability of a response n given stimulus s; P(n) is

the stimulus-average response probability and P(s) is the prior stimulus probability.

Mutual information quantifies diversity in the set of probabilities P(n|s). If these

probabilities are all equal, for a given response n, and hence equal to P(n), the ar-

gument of the logarithm is one and the response n contributes nothing to I(S,R).
Conversely, the more that the P(n|s) differ, the greater the contribution of response n

to the information.

In principle, to obtain an estimate of mutual information, we simply measure these

probabilities from recorded data and substitute them into Equation (13.1). The prob-

lem is that it is difficult to estimate the conditional probabilities accurately, given the

number of stimulus repetitions presented in a typical physiological experiment. The

consequent fluctuations in the estimated conditional probabilities lead to spurious

diversity that mimics the effect of genuine stimulus-coding responses. Hence, the

effect of limited sampling is an upward bias in the estimate of the mutual informa-

tion [38]. Since this sampling problem worsens as the number of response categories

increases, the bias is intrinsically greater for timing codes compared to count codes.

Hence it is important to exercise considerable care when assessing the information

content of complex codes (many response categories) compared to simple ones (few

response categories).

One way to approach this issue is to use bias correction procedures [14, 38]. The

basis for these methods is the fact that, provided the number of trials is not too small,

the information bias depends on the data in a surprisingly simple way. Essentially,

the bias is proportional to the number of response categories divided by the number

of trials. More precisely [23],

Bias = −
1

2N ln2
(R−1−Â

s

(Rs −1)) (13.2)

This expression depends only on the total number of trials N and on the number of

relevant response categories (R,Rs). A given stimulus will evoke different responses

with different probabilities: some will have high probability, some low probability,

and others will have zero probability. A response is relevant if its probability, condi-

tional to the stimulus, is non-zero. Rs is the number of responses that are relevant to

stimulus s; R is the number of responses that are relevant considering all the stimuli

together. In the simplest case, R is simply the total number of response categories
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(e.g., 2L for a single neuron with L binary time bins). For a review of bias correction,

including more sophisticated methods, see [29].

In principle, the expected bias of Equation (13.2) can be subtracted from the naive

information estimate of Equation (13.1) to yield a bias-free estimate. In practice, of

course, we need to know how many trials is not too small. Extensive experiments

with simulated data indicate that the number of trials should be at least a factor of

two times greater than the number of response categories [23, 30]. With 50 trials, for

example, codes with up to about 25 response categories can typically be accurately

evaluated. For a single neuron, this implies at most 4 time bins (each containing 0 or

1 spikes); for a pair of neurons, at most 2 time bins each.

Hence, even with bias correction, it is difficult to evaluate spike timing codes,

and extremely difficult to evaluate spike timing population codes, using so-called

brute force application of Equation (13.1). As a consequence, it is usually difficult to

study neural coding in a truly systematic way. However, progress has recently been

made in the important special case of neurons that fire small numbers of spikes; the

theoretical foundation for which is described next.

13.2.3 Series expansion approach to information estimation

The variety of possible spike sequences, and hence the potential complexity of the

neural code, increases rapidly with the number of spikes emitted per trial; conversely,

low firing rates limit the complexity. Since typical firing rates in the barrel cor-

tex are just 0–3 spikes per whisker deflection, the mutual information can be well-

approximated by a second order power series expansion in the time window T, that

depends only on PSTHs and pair-wise correlations between spikes at different times

[18, 21, 33]. These quantities are far easier to estimate from limited experimental

data than are the full conditional probabilities required by the direct method. Pro-

vided that (i) the number of spikes in the response window is < 1 (averaged over

stimuli) and (ii) spikes are not locked to one another with infinite time precision, the

mutual information can be approximated by a Taylor series expansion in the duration

of the response window T [21, 22]. To second order:

I(S,R) = It + Itta + Ittb + Ittc + O(T 3) (13.3)

Here It is first order in T and Itta, Ittb and Ittc are second order. The first order term

depends only on the PSTH of each neuron; the second order term depend also on

pairwise correlations. Provided that the approximation is accurate, mutual informa-

tion can thus be estimated from knowledge of only first and second order statistics - it

is not necessary to measure the full conditional probabilities demanded by Equation

(13.1). This property makes the series expansion approach much less prone to sam-

pling bias than the brute force approach. In practice, this means that coding can be

studied to significantly better temporal precision than would otherwise be possible.

An important feature of the method is that the contribution of individual spikes

(It and Itta) is evaluated separately from that of correlated spike patterns (Ittb and

Ittc). The amount of information that a neuronal population conveys by the timing
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of individual spikes is the sum of an independent spike timing term (It) and a PSTH

similarity term (Itta). The former term expresses the information that would be con-

veyed were the spikes to carry independent information; the latter term corrects this

for any redundancy arising from similarity of PSTHs across stimuli. The remaining

two terms (Ittb and Ittc) express any further effect that correlated spike patterns might

have beyond that of individual spikes. By evaluating these terms separately, the se-

ries expansion yields direct insight into a question of great current interest in neural

coding – the role of individual spikes compared to correlated spike patterns.

13.2.3.1 Independent spike timing

If within-trial spike patterns do not convey information, then all information must

be in the timing of individual spikes. Under these circumstances, the time-varying

firing rate (PSTH) is a complete description of the neuronal response, and is the only

statistic required in order to estimate the information. The greater the diversity in

PSTH structure across stimuli, the greater is the information. If each spike provides

independent information about the stimulus set, Equation (13.4) (the independent

spike timing term) gives the total information available in the response [4, 7, 21].

It = Â
a,i

〈

¯nais log2

n̄ais

〈n̄ais′〉s′

〉

s
(13.4)

nais is the number of spikes in time bin i of cell a elicited by stimulus s on a particular

trial. The bar ·̄ means an average over trials, thus ¯nais is simply the corresponding

PSTH. The angle brackets 〈· · · 〉s denote an average over stimuli, weighted by the

stimulus probabilities P(s).

13.2.3.2 PSTH Similarity

If there is any redundancy between spikes, Equation (13.4) can overestimate the

information. Redundancy is present if the PSTH value at a given time bin correlates

across the stimulus set with the PSTH value at a different time bin for the same cell,

or correlates with the PSTH value at any time bin for a different cell. This type

of correlation has been termed signal correlation and Equation (13.5) quantifies the

amount of redundancy that it introduces. The PSTH similarity term is:

Itta =
1

2loge 2
Â

a,b,i, j

[

CSaib j

(

1− loge

CSaib j

MSaiMSb j

)

−ECSaib j

]

(13.5)

Here MSai = 〈n̄ais〉s is the average of the PSTH over stimuli for time bin i of cell

a; CSaib j = 〈n̄aisn̄b js〉s is the signal correlation between time bin i of cell a and bin

j of cell b; ECSaib j = MSaiMSb j is the expected value of CSaib j for PSTHs that are

uncorrelated across stimuli. Itta is always negative or zero. Itta and It together express

any information that the population conveys purely by the timing of individual spikes

(time-varying firing rate).
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13.2.3.3 Stimulus-dependent spike patterns

A neuronal population can carry information by emitting patterns of spikes that tag

each stimulus, without the differences in the patterns being expressed in the PSTHs

[6, 11, 32, 39, 41]. When the assumptions of the series expansion are satisfied, the

only types of spike pattern it is necessary to consider are spike pairs – higher order

interactions can be neglected. Patterns involving pairs of spikes are quantified, for

each stimulus, as the correlation between the number of spikes occurring in each of

two time bins. For within-cell patterns, the bins come from the same cell; for cross-

cell patterns, they come from different cells. This quantity is sometimes known as

the noise correlation. In the case of cross-cell synchrony, for example, the noise

correlation will be greater than expected from the PSTHs. In the case of within-cell

refractoriness, where the presence of a spike in one bin predicts the absence of a

spike in the next bin, the noise correlation will be less than that expected from the

PSTH.

The amount of information conveyed by stimulus-dependent spike patterns de-

pends, analogously to the PSTH information, on how much the noise correlations

(normalised by firing rate) vary across the stimulus set: the greater the diversity, the

greater the information available. This effect is quantified by Equation (13.6):

Ittc =
1

2
Â

a,b,i, j

〈

CNaib js log2

[

CNaib js

ECNaib js

÷
〈CNaib js′

〉

s′

〈ECNaib js′〉s′

]

〉s (13.6)

CNaib js (noise correlation) is the joint PSTH of bin i of cell a and bin j of cell b

given stimulus s. It is equal to naisnb js, unless a = b and i = j. In the latter case,

CNaib js is equal to zero if each bin contains at most one spike, or equal to n2
ais −nais

otherwise [28]. ECNaib js = n̄aisn̄b js is the expected value of CNaib js for statistically

independent spikes. Ittc is positive or zero.

13.2.3.4 Stimulus-independent spike patterns

Even if not stimulus-dependent, spike patterns can exert an effect on the neuronal

code through a subtle interaction between signal correlation and noise correlation.

In contrast to stimulus-dependent patterns, this less intuitive coding mechanism has

received little attention in experimental work – it has been noted in theoretical pa-

pers by [1, 17, 22, 36]. As shown schematically in Figure 13.1, correlated noise

can serve to sharpen the distinction in responses to different stimuli under certain

circumstances, and to blur those distinctions under other circumstances. In general,

this term – Equation (13.7) – is positive if signal correlations and noise correlations

have different signs, negative if they have the same signs. If signals are uncorrelated,

the term is zero.

Ittb = −
1

2ln2
Â

a,b,i, j

〈CNaib js −ECNaib js〉s ln
CSaib j

ECSaib j

(13.7)
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Figure 13.1

Effect of stimulus-independent patterns on neural coding. Each panel sketches hypo-

thetical distributions of responses to three different stimuli. The response variables

can be considered either to be different bins within the same cell or bins across

different cells. Each ellipse indicates the set of responses elicited by a given stimu-

lus. In each of these examples, signal correlations are positive whereas the sign of

noise correlation differs. In the middle panel, noise correlation is zero, and stimulus-

independent patterns exert no effect on the total information. When noise corre-

lation is positive (left panel), responses to the stimuli are less discriminable and

stimulus-independent spike patterns cause a redundant effect. When noise correla-

tion is negative (right panel), responses are more discriminable and the contribution

of stimulus-independent spike patterns is thus synergistic. In general, if signal and

noise correlations have the same sign, the effect of stimulus-independent patterns is

redundant, if they have opposite signs, it is synergistic. Reproduced with permission

from [25].

13.2.4 Generalised series expansion

Is the breakdown of mutual information into individual spike terms and correlation-

dependent terms a general property of neural encoders or a peculiarity of systems

firing few spikes? Pola et al. [30] have recently investigated this issue, and have

proved that the decomposition is completely general. The break-down of mutual in-

formation into It , Itta, Ittb and Ittc terms generalises in a natural way to the exact case

of Equation (13.1) Moreover, each of the terms in the exact breakdown has a very

similar mathematical expression to their analogues in the second order series expan-

sion. The main difference is that the exact components are expressed in terms of an

interaction coefficient that takes all moments of the spiking response into account,

not just pairwise correlations. Of course, the exact decomposition has the same sam-

pling characteristics as Equation (13.1), so the second order series expansion is often

more convenient to use in practice.
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13.2.5 Sampling bias of the series expansion

In general, if C neurons are considered, each with L time bins, the total number of

response categories is 2CL. For example, with two cells and four (binary) time bins,

there are 256 response categories, and, using bias correction, one would typically

require at least 500 trials per stimulus with the brute force method in order to obtain

meaningful information estimates. The reason for the improved sampling properties

of the series expansion is that the number of free parameters is much less – it is the

sum of the number of PSTH bins and the number of correlation bins. Instead of

being exponential in C and L like the brute force method, it is only quadratic.

The bias of the series expansion has been investigated separately for the different

terms It , Itta, Ittb and Ittc [21]. Mathematical analysis revealed that the bias is of or-

der T 2 for It and Ittc but of order T 3 for Itta and Ittb. Therefore, essentially all the

bias comes from the independent spike term and from the stimulus-dependent spike

pattern term, and it is only these terms that need bias correction. It depends only on

the PSTHs, which have CL parameters. Ittc depends also on auto-correlations and

cross-correlations. Cross-correlations have L2C(C − 1)/2 parameters. For binary

bins, auto-correlations have CL(L− 1)/2 parameters. For the multiple-spikes-per-

bin case, auto-correlations have CL(L + 1)/2 parameters. Hence it is Ittc that con-

tributes most to the bias – particularly its cross-correlational part. For a cell pair Ittc
has a total of 2L2 −L parameters in the binary bin case, so that L = 4 can safely be

analysed with 50 trials – a factor of 10 less than the brute force method.

We have applied the series expansion method extensively to the study of cortical

coding in the whisker modality of the rat. The following section briefly introduces

some essential background concerning this widely studied sensory system.

13.3 The whisker system

13.3.1 Whisking behaviour

The natural environment of the rat consists of dark, confined spaces where vision is

of little use. Apart from smell and taste, the major sensory system of the rat is touch

– particularly the whiskers. Each of these specialised hairs operates somewhat like

the pick-up of a record player, converting object surface characteristics into mechan-

ical vibrations that are then transduced by mechanoreceptors located in the whisker

follicle. It is a sensitive system, endowing the rat with tactile acuity comparable to

that of human fingertips [5]. The rat has about 30 large whiskers (macrovibrissae) on

each side of the snout in addition to hundreds of smaller ones arranged arround and

inside the mouth (microvibrissae). The macrovibrissae, which are about 10-40 mm

long, are under active, muscular control. Rats typically explore objects of interest

by sweeping their whiskers backwards and forwards across the object at 4-10Hz, a

movement known as whisking.
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Figure 13.2

Arrangement of whiskers on the rat’s snout. Rows, labelled by letters A-E and arcs,

labelled by numbers 1-5 are indicated. The four most posterior whiskers that lie

between the rows are labelled with the Greek letters: from top to bottom, a ,b ,g ,

and d .

The macrovibrissae are arranged in a highly consistent, grid-like pattern. Their

locations are conventionally specified by row and arc coordinates. Rows are conven-

tionally labelled by the letters A-E and arcs by numbers 1-5 (Figure 13.2).

13.3.2 Anatomy of the whisker system

Each macrovibrissa is innervated by about 250 mechanoreceptors, located on the

base of the whisker follicle, inside the skin [42]. These respond to the mechanical

deformation of a whisker, caused by contact with an external object. The cell bodies

are located in the trigeminal ganglion, which lies at the base of the skull. The major

projection of these cells is to the principal trigeminal nucleus, located in the brain-

stem, which projects in turn to the ventral posterior nucleus (VPM) of the thalamus.

Both these structures are believed to contain on the order of a few hundred neurons

per whisker. The main output of the VPM is to layer 4 of the primary somatosensory

cortex (S1). The part of S1 that specifically represents the whiskers is known as the

posterior medial barrel subfield (PMBSF). Like the primate visual system, there is a

massive expansion in cell numbers at the level of the barrel cortex. Each whisker has

a corresponding barrel-column of 300-400 micron diameter, containing about 10000

neurons. The number of cells per whisker is thus about 100 times greater than at

subcortical levels, and may reflect a radical change in coding strategy.

Since barrels can be visualised histologically [44], it is possible to relate circuitry

to sensory structure in a precise, quantitative manner; reviewed by Miller et al. [15].
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This makes the whisker system a popular preparation for studying the operation of

cortical columns.

13.3.3 Whisker physiology

Most neurons in the whisker system can be easily activated by delivering a rapid tap

to the whiskers – but this response is largely invariant to the steady-state position

of the whiskers. The standard experimental protocol for studying the system is to

deliver low frequency step-like deflections to each individual whisker, often using

a piezoelectric wafer. Such studies revealed that the anatomical mapping between

whiskers and cortical barrel-columns has a simple physiological counterpart [35, 43].

Deflection of the whisker anatomically associated with a given barrel-column – the

principal whisker (PW) – typically elicits a robust response. Deflection of the sur-

rounding whiskers (SW) can often also evoke a response. Although individual neu-

rons in a given barrel-column might respond well to particular SWs, different neu-

rons prefer different SWs so that the average SW response is considerably weaker

than the PW response. With standard, extracellular recording, the average response

elicited by deflecting a neuron’s PW is about 1 spike per trial – that for immedi-

ately neighbouring SWs about 0.5 spikes per trial, that for distant SWs even less [3].

Responses in barrel cortex are therefore low enough for the series expansion to be

applicable.

In fact, these data probably reflect a subpopulation of particularly active cortical

neurons. Recent studies using the whole cell patch method (where activity is not

used as a criterion for selecting cells) have reported substantial numbers of neurons

firing at rates 0.1 spikes per deflection or less under standard in vivo conditions (M.

Brecht, personal communication).

13.4 Coding in the whisker system

13.4.1 Introduction

Classical whisker physiological has shown that the primary somatosensory cortex

contains a topographic map for the location of a whisker on the rat’s snout. Since de-

flection of a whisker evokes responses for neurons both in the topographically match-

ing barrel-column as well as in surrounding barrel-columns [3, 24], whisker location

seems to be a population code. Due to the relatively sparse nature of the neuronal

response and to the modular organisation of the whisker system, this seemed to us a

good opportunity for getting thorough insight into the nature of a cortical population

code.

We asked two basic questions. (1) The role of spike timing: is whisker location

coded simply by the number of spikes that occur over 100s of milliseconds (spike

count coding), or, is the millisecond-precision spike timing crucial (spike time cod-
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ing)? (2) The role of spike patterns: is the basic unit of whisker location coding the

individual spike, or (synergistic) spike patterns?

13.4.2 Role of spike timing

We measured the neuronal response and its information content in terms of both

spike count and spike timing, as described above. Vibrissae C1, C2, C3, D1, D2,

D3, E1, E2 and E3 were stimulated one at a time in order to study how populations

of cortical neurons encode stimulus location. The stimulus was an up-down step

function of 80 cm amplitude and 100 ms duration, delivered once per second, 50

times for each vibrissa. Stimulus onset was defined as time = 0 ms. For single

neurons, we discretised the response in the post-stimulus interval 0-40 ms into 5 ms

bins; for neuron pairs, 10 ms bins.

Having defined the spike count response and the spike timing response, we com-

pared the amount of mutual information that each of them conveys about whisker

location, using the series expansion method described above.

Results averaged over 106 single units located in barrel-column D2 are shown in

Figure 13.3 [18]. Early in the response (0-10 ms), the spike count provided almost as

much information (90% on average) as spike timing. Later, however, there was a sig-

nificant advantage for the timing code. Whereas spike timing information continued

to increase gradually, spike count information saturated. Indeed, at longer time win-

dows (data not shown), spike count information actually decreased. This occurred

for two reasons. First, for some cells, the essential temporal structure of the PSTH

could not be reduced simply to counting spikes. Second, since the evoked response

was transient (< 50 ms), in long time windows, the spike count signal was degraded

by spontaneous firing. At 40 ms, spike timing provided 44% more information than

did total spike count.

What degree of precision underlies the spike timing code? To answer this question,

we varied the resolution at which spike times were binned and computed the average

information across stimuli as a function of bin size. If information increases as bin

size is decreased, timing must be precise on the scale of the smaller bin size. Using a

single, 20 ms bin, the average information across all 106 sampled neurons was 0.10

± 0.006 bits (mean± SEM). Reducing bin size to 10 ms, the information present in

the 0-20 ms interval increased to 0.14 ± 0.008 bits. Further reductions of bin size

to 5 ms and finally to 2.5 ms, yielded additional increases in information to 0.146 ±
0.008 and 0.154 ± 0.008 bits respectively. Hence, the precision of the code was at

least 5 ms.

Subsequently [25], we investigated whether these results generalise to the case of

pairs of neurons, recorded either within the same barrel-column (D2-D2, 52 pairs) or

from different barrel-columns (D1-D2, 80 pairs; D1-D3, 39 pairs; D2-D3, 93 pairs).

For cell pairs in barrel-column D2, the average information in spike timing and spike

count at 20 ms post-stimulus was similar, 0.27±0.09 bits and 0.25±0.08 bits, re-

spectively. However, by 40 ms post-stimulus, D2 cell pairs conveyed 0.31±0.10 bits

by spike timing – 25% more than by spike count. The advantage of spike timing

compared to spike count for cell pairs located in different barrel-columns tended to
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Figure 13.3

Coding by spike count vs. coding by spike timing. Mutual information plotted as a

cumulative function of time, averaged over single neurons located in barrel-column

D2. The bars denote SEM. Reproduced with permission from [18].

be greater: for D1-D2 pairs, the advantage was 29%; for D2-D3 pairs, 33%. For

D1-D3 pairs, the advantage was 52%.

These results show that spike timing is important for the population coding of

stimulus location. Spike timing is particularly informative for populations that en-

compass separate barrel-columns.

13.4.2.1 Coding of specific stimuli

The preceding section refers to information averaged over all nine stimulus sites.

Another issue of interest concerns how well each particular whisker is represented

in the spikes of a given barrel-column. To answer this question, we estimated the

information that neurons convey about whether the stimulus site was, for example,

D2 or not-D2 [18, 19]. For this analysis, all 8 non-D2 whiskers were considered to be

in the same category. By computing this quantity selecting one whisker at a time, we

obtained a whisker-specific information function. For neuron pairs located in barrel-

column D2, the most reliably encoded whisker was the principal one, D2. At 40

ms, D2-specific information accounted for, on average, 65% of the total information

about all 9 whiskers. Information specific to any given surround whisker was at least

6 times smaller than that to the principal one, on average.

13.4.2.2 Role of spike patterns

The information in spike timing could be generated in two ways. The simplest is if

all the information were coded by stimulus-dependent differences in the timing of

individual spikes; within-trial correlations between spike times not being informa-
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Figure 13.4

Role of spike patterns in population coding. Labels above the graphs refer to neu-

ronal locations. Total information in spike timing (solid line) is compared to the

contribution of each component in the series expansion, averaged over cell pairs.

Bars denote SEM. Reproduced with permission from [25].

tive. In this case, information can only be coded by variations in the PSTH structure

across stimuli. The second way is if particular spike patterns were to occur within the

same trial, which could code information even in the absence of stimulus-dependent

PSTH structure. As discussed above, these contributions are quantified separately by

the series expansion, permitting us to compare their importance for cortical stimulus

location coding.

Figure 13.4 shows how these different, timing-dependent components contributed

to the coding of stimulus location. The left panel shows results averaged over all

pairs of neurons located in barrel-column D2. At 40 ms post-stimulus, the timing

of individual spikes (dashed line) accounted for 83± 14% of the total information

in spike timing (solid line). Stimulus-dependent spike patterns (dash-dotted line) ac-

counted for 5±7%, stimulus-independent patterns (dotted line) for 12±14%. Similar

results were obtained for pairs of neurons located in different barrel-columns: D1-

D2 pairs (middle panel) conveyed 17±6% by spike patterns (stimulus-dependent and

stimulus-independent patterns considered together), D2-D3 pairs (not shown) con-

veyed 15±7%, D1-D3 pairs (right panel) conveyed 18±6%. Thus spike patterns

conveyed about 15-18% of the total information in the population spike train.

To probe the nature of the spike pattern contribution further, we split the informa-

tion components into separate within-cell and cross-cell parts. The major finding was

that within-cell spike patterns gave a significant positive contribution to the informa-

tion in the population code (0.07±0.04 bits at 40 ms post-stimulus), and this contri-

bution was a stimulus-independent one (Ittb). In addition, there was a very small, pos-

itive contribution from stimulus-dependent patterns across cells (0.007±0.02 bits)

and a small negative effect of stimulus-independent patterns across cells (−0.02

±0.02 bits). These results were robust to changes in both the time window and

the bin size [27]. Similar results were also obtained for neurons located in different

barrel-columns.
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Overall, neither within nor across barrel-columns, did cross-cell spike patterns

seem to code information about stimulus location: the net contribution of spike pat-

terns to the population code was almost entirely attributable to within-cell patterns.

What is the nature of these informative, within-cell patterns? We found that the

PSTHs of neurons in the same barrel-column tend to be similar across different stim-

uli (positive signal correlation) and that the trial-by-trial variability is negative (neg-

ative noise correlation). Hence, as discussed in more detail in [25], there was a

positive contribution to the information from the stimulus-independent term Ittb.

13.4.2.3 Role of the first spike

The previous sections showed that the coding of stimulus location is achieved mainly

by the timing of individual spikes. We asked whether it is possible to further specify

the nature of the code: is a similar quantity of information transmitted by any single

spike or, alternatively, is a particular subset of individual spikes crucial? We repeated

the above analyses considering only the first, second, or third spikes per cell recorded

on each stimulus trial. The information conveyed by the individual spike terms of

the series expansion – Equations (13.4) and (13.5) – was compared to the corre-

sponding data for the whole spike train [18, 25]. For both single neurons and neuron

pairs in barrel-column D2, the first spikes conveyed almost as much information as

the entire spike train. For cell pairs, the mean first spike information was 91±7%

of that in the entire 40 ms spike trains. For neurons in different barrel-columns,

the corresponding values were 87±7% (D1-D2 pairs), 91±9% (D2-D3 pairs) and

89±9% (D1-D3 pairs). The mean information conveyed by D2-D2 pairs in the sec-

ond and third spikes was 43±18% and 18±14%, respectively, of that present in the

individual spikes of the whole spike train. Similar results for second and third spikes

were obtained for cell pairs distributed across different barrel-columns. Since nearly

all the information in the entire spike train was already present in the first post-

stimulus spike, the later spikes were almost completely redundant, both for neuron

pairs within and across barrel-columns.

All the observations reviewed above point toward the conclusion that, to a large

extent, the barrel cortex population code for stimulus location consists of the time of

individual cells’ first spike after whisker deflection. We characterise this as a simple,

spike-time population code. Under our experimental conditions, the basic functional

unit of barrel cortex for stimulus localisation seems to be the single neuron rather

than the neuronal ensemble.

13.4.2.4 Pooling

Given that barrel cortex employs population coding of stimulus location, any brain

area that wants to make use of its output is faced with a significant decoding problem.

Consider a downstream target neuron receiving afferent inputs from a set of neurons

with widely differing tuning properties. In order to make sense of this stream of

signals, the target neuron faces the daunting task of keeping track of which neuron

caused each distinct post-synaptic potential. We term this most general situation

labelled line decoding.
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A simple, alternative decoding strategy has been proposed. The idea of pooling is

that the target neuron simply sums up all afferent inputs, regardless of their origin.

The pooling hypothesis can be tested by quantifying the amount of information that

is lost in a pooled representation, compared to that available in the full (labelled line)

population response.

We used the generalised, multiple-spikes series expansion [28] to quantify the mu-

tual information between the responses of cell pairs and whisker stimulus location

[19]. For this analysis, we considered the time window 0-40 ms post-stimulus, di-

vided into 10 ms bins. Neurons were located either within the same barrel-column

(e.g., D2-D2) or across two different ones (e.g., D1-D2). For D2-D2 pairs, pooling

caused an average information loss of 5%, depending on the precise time window. In

contrast, for cross-columnar pairs, the information loss was 25–39%. Thus pooling

causes markedly less information within a column compared to across columns.

Is the pooling information loss attributable to particular elements of the stimulus

set, or due to an overall degradation? We addressed this by estimating the informa-

tion specific to each of the 9 whiskers. The result was clear. For cell pairs located in

D2 barrel-column, pooling did not cause any loss of information about whether or not

the principal whisker was stimulated (1%, not significant). The loss was much higher

for surround whiskers (up to 32%). In contrast, for D1-D2 pairs, pooling caused 42%

loss specific to whisker D1 and 31% loss specific to whisker D2. For D1-D3 pairs,

there was 54% loss specific to D3. Thus, information about the principal whisker

was fully preserved only by within–column pooling, not by cross–columnar pooling.

These results suggest that, despite the enormous potential complexity of the corti-

cal code, the information carried about the location of a stimulated whisker may be

read–off in a highly efficient manner by a simple mechanism – pooling the afferent

activity of neurons with similar sensory tuning. We speculate that the anatomical

substrate supporting this decoding is the cortical column.

13.5 Discussion

We briefly discuss two issues arising from these results: (1) whether such a first spike

time code can be utilised by the rest of the brain and (2) the relation to other work on

the role of correlations in population coding.

13.5.1 Decoding first spike times

First spike time also has an important role in other sensory systems. The first spike

time of cortical responses encodes visual contrast [10, 31] and sound source location

[9]. Although information is thus available in first spike times, it is not always safe

to assume that such information can be used by the rest of the animal’s brain. Unlike

the experimenter, an animal likely does not have independent knowledge of stimu-
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lus time. There are two potential solutions to this problem. (1) Since the collection

of vibrissal sensory data under natural conditions is an active process initiated by

a motor command, the sensory system could use the output from the motor system

as an estimate of stimulus time. However, this motor efference signal acting alone

would probably not possess sufficient temporal precision to permit the representation

of information by first spike times. (2) The sensory system could use the relative

timing between spikes in the neuronal population [12, 40]. When whisker D2 is de-

flected, many neurons within its barrel-column fire spikes within a few milliseconds

of each other. Thus a simple way that the rat might decode the deflection of this

whisker would be to detect the occurrence of large-scale simultaneous firing within

the barrel-column. We showed that this barrel activation algorithm can lead to very

good discrimination of whether or not a given whisker was deflected, based purely

on the relative spike times of neurons within the column (Panzeri, Petroni, Diamond

& Petersen, in preparation). The critical feature of the decoding algorithm is that

the simultaneous activity characteristic of whisker deflection can only be detected if

spike times are registered to high temporal precision. Thus, in order to decode the

stimulus in the absence of information about when the stimulus occurred, precise

spike timing is a crucial aspect of the neural code. Spike count codes do not permit

simultaneous firing events to be accurately identified and hence are extremely unin-

formative. The advantage for spike timing codes over spike count codes is even more

marked than in the previous analyses that assumed knowledge of stimulus onset.

13.5.2 Role of cross-correlations in population codes

There have been a number of previous reports that correlated spike patterns across

different neurons play an important part in neural population coding [2, 6, 11, 32,

39, 41]. The strategy in all these studies was to demonstrate the existence of some

stimulus-linked cross-correlation structure that could not be accounted for by the

null hypothesis of independent firing. In the simplest case, the cross-correlogram

was shown to differ significantly from its shift predictor [11]. In other cases, more

sophisticated statistics were deemed necessary (e.g., [13]), but the logic was similar.

The importance of these studies is that they showed that cross-correlated spike

patterns might play a role in neural coding. However, they did not quantify the infor-

mation in spike patterns and compare it to that available in individual spikes. This is

important, since comparison of cross-correlogram to its shift predictor shows neither

how much the cross-correlations contribute to coding, nor whether any contribution

is additive or redundant with the individual spike contribution. The simplest way

that one might seek to quantify the role of spike patterns is to estimate the infor-

mation conveyed by a given neuronal population and to repeat the calculation with

trial-shuffled responses. If shuffling significantly reduces the information, cross-

correlated spike patterns play an important part in the population code. The problem

with this method is that the converse result, where shuffling has no effect, is ambigu-

ous.

The series expansion framework is helpful for clarifying the ambiguity. The effect

of shuffling is to set all correlations equal to the values expected from statistical
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independence (apart from fluctuations due to finite sampling). Since the two spike-

pattern terms Ittb and Ittc essentially quantify how far the correlations are from being

independent, shuffling will make them close to zero (after bias correction). However,

since Ittb can be positive (synergistic) or negative (redundant), the lack of any effect

of shuffling could be due to a negative Ittb contribution cancelling out a positive Ittc
contribution.

The series expansion addresses the problem of shuffling ambiguity by quantifying

stimulus-dependent and stimulus-independent correlation contributions separately.

Recently another approach has been proposed by Nirenberg, Latham and their col-

leagues [16] which casts spike train analysis in a decoding framework. Comparison

of this approach with the series expansion substantially clarifies the physical signifi-

cance of Ittb and Ittc. The task of decoding is, given the neural activity n evoked on a

particular trial, to guess which stimulus caused it. In the maximum likelihood frame-

work, you choose the most likely stimulus – that is, the s that maximises P(s|n). By

Bayes rule,

P(s|n) =
P(n|s)P(s)

P(n)
(13.8)

The heart of the decoder is thus an internal model of what responses are caused by

each of the possible stimuli P(n|s). In general, such a model should take into account

all possible statistical dependencies between the spike trains of different neurons, and

will be extremely complex. Indeed, since the brain is faced with a similar sampling

problem during learning to the one the experimenter faces when analysing physio-

logical data, it may be that the ability of neural systems to use general P(n|s) models

is rather limited.

Nirenberg et al. [16] asked how accurately stimuli can be decoded by a model that

ignores correlations; that is:

P(n|s) = ’
c

P(nc|s) (13.9)

where nc is the response of cell c. They showed that the information loss, compared

to the most general, correlation-dependent decoder, can be expressed by a term that

they call DI. This information theoretic term measures the average increase in the

length of the binary digit code needed to characterize the stimulus given the response

when Equation (13.9) is used to approximate the true P(n|s). It quantifies the infor-

mation cost of neglecting correlated activity in decoding. The authors applied this

method to the responses of pairs of retinal ganglion cells recorded from the isolated

mouse retina during presentation of movies of natural scenes. The result was that DI

is typically only 2–3% of the total information in the neuronal responses.

The result shows that the population activity can be decoded very accurately even

by a relatively simple model that has no knowledge of the cross-correlated activity

that different stimuli might evoke. Note, however, that although the model ignores

correlations, the spike trains that the neuronal population is producing may still ex-

hibit correlations. Although the decoder can do nothing to change these correlations

(on-line trial-shuffling would be necessary), they might still have a significant influ-
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ence on the neural code. This is the essential difference between the series expan-

sion method and the DI method. In fact, we can characterise correlations as being

decoder-sensitive and decoder-insensitive. DI focuses on the decoder-sensitive type,

the series expansion considers both.

How do decoder-sensitive and -insensitive correlations relate to the spike pattern

components Ittb and Ittc of the series expansion? The answer is remarkably simple. It

turns out that DI, the decoder-sensitive contribution of cross-correlations to the pop-

ulation code, is precisely equal to the (cross-correlational) stimulus-dependent term

of the series expansion Ittc [20, 30]. This is true also of the general, exact decom-

position. In other words, one can think of the stimulus-dependent spike pattern term

as expressing a decodable spike pattern effect. In contrast, the stimulus-independent

term of the series expansion Ittb quantifies the effect of the intrinsic correlations in

the spike train, which cannot affect the performance of the decoder.

Finally, we note a second difference between DI and the series expansion; namely

that, as defined in [16], DI considers only correlations between different neurons,

whereas the series expansion assesses also the role of spike correlations within neu-

rons. However, the difference is minor, since the DI formalism could easily be ex-

tended to the case of either within-cell correlations alone, or within-cell and cross-

cell correlations together.

13.6 Conclusions

Although single trial discriminability (mutual information) is widely agreed to be the

right framework for addressing neural coding, information theory has been applied

mainly to single neuron coding, and little to the more general case of population cod-

ing. This is due to the problem of limited sampling. In this chapter, we have argued

that, for the class of sparsely responding neuronal ensembles, the series expansion

approach to information estimation allows population coding to be studied in a rigor-

ous, comprehensive manner. For rat barrel cortex, this method has revealed that there

is a temporal code of a simple kind: about 85% of the total information available in

the spike trains of neuron pairs concerning whisker location can be attributed to the

timing of individual spikes. Moreover, about 90% of this information is captured by

the first post-stimulus spike fired by each neuron.
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14.1 The fly motion vision system: an overview

Whenever an animal is moving in its environment, moves its eyes or an object moves

in front of its eyes, the visual system is confronted with motion. However, this

motion information is not explicitly represented in the two-dimensional brightness

pattern of the retinal image. Instead, motion has to be computed from the tempo-

ral brightness changes in the retinal image. This is one of the first and most basic

processing steps performed by the visual system. This primary process of motion de-

tection has become a key issue in computational neuroscience, because it represents

a neural computation well described at the algorithmic level that has not been under-

stood at the cellular level in any species so far, yet simple enough to be optimistic in

this respect for the future. The development of models of motion detection has been

experimentally driven in particular by investigations on two systems, the rabbit retina

[1] and the insect visual system [49]. Vice versa, there is probably no other field in

system neuroscience where experiments were more influenced by theory than in the
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study of motion vision. Motion vision has thus become a classical problem in com-

putational neuroscience, which many laboratories around the world have embarked

on. In the following I will give an overview of what is known about the computations

underlying motion vision in the fly, where a lot of experimental results are available

(for review see: [13, 36]) and where modelling efforts have reached a rather detailed

biophysical level at many processing steps.

This chapter summarizes our current understanding of fly motion vision with an

emphasis on modelling rather than on the large set of available experimental data.

After giving an overview of the fly motion vision system, the next part of the chapter

introduces the correlation-type of motion detector, a model for local motion detection

that has been successfully applied to explain many features of motion vision, not only

in flies but also in higher vertebrates including man. This is followed by an outline

of how local motion signals become spatially processed by large-field neurons of

the lobula plate in order to extract meaningful signals for visual course control. In

a final section, the article will discuss in what directions current research efforts are

pointing to fill in the missing pieces.

The processing of visual motion starts in the eye. In flies, like in most inverte-

brates, this structure is built from many single elements called facets or ommatidia.

Each ommatidium possesses its own little lens and its own set of photoreceptors. The

latter send their axons into a part of the brain exclusively devoted to image process-

ing called the visual ganglia. Within these ganglia, images become processed by an

array of local motion detectors (Figure 14.1, top). Such motion detectors are thought

to exist for horizontal as well as for vertical image motion and to cover the whole

visual field of the animal.

In the next processing step the output of such local motion detectors become spa-

tially integrated by various large field elements. Anatomically, this happens on the

dendrites of tangential cells located in the posterior part of the third visual ganglion,

called the lobula plate. There exists a limited set of such tangential cells that can

be grouped according to their preferred direction of image motion (Figure 14.1, bot-

tom): some of the cells respond preferentially to horizontal image motion from front

to back (e.g., the three HS-cells, i.e., HSN, HSE and HSS, both CH-cells, i.e., dCH

and vCH), others to horizontal image motion in the opposite direction (H1 and H2),

others respond selectively to vertical image motion from top to bottom (the VS-cells

VS1, VS2, VS3 ) etc. All in all, there are only about 60 such neurons per hemisphere

in the blowfly Calliphora that collectively cover the whole visual field of the animal.

However, these neurons do not integrate the output signals of local motion de-

tectors independently but interact with each other. Specific connections have been

determined between tangential neurons of the left and the right lobula plate as well as

between neurons within one lobula plate (Figure 14.1, colored lines). These connec-

tions tune many tangential cells responsive to specific motion signals in front of both

eyes, and others that are selectively responsive to motion of small moving objects

or relative motion. Tangential cells have been shown to synapse onto descending

neurons (e.g., [86]) which connect either to the flight motor in the thoracic ganglion

of the animals controlling the various flight maneuvers, or to specific neck muscles

controlling head movements (not shown).
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Figure 14.1

Processing of visual motion information in the fly visual system. As a first step,

visual motion information is processed by a retinotopic array of local motion detec-

tors. Their output signals are spatially integrated in parallel by tangential cells of the

lobula plate. The central circuit diagram shows the connectivity between several tan-

gential cells sensitive to horizontal image motion of the lobula plates on both sides

of the brain. Excitatory and inhibitory connections are displayed as triangles and

circles, respectively. White arrows indicate preferred directions of each cell group

for visual motion on its ipsilateral side. Graded potential neurons making ipsilateral

connections only (HS, CH) are shown in bright colors. Spiking neurons connecting

to the contralateral lobula plate (H1, H2, Hu) are shown in dark colors. (See color

insert.)
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Figure 14.2

Minimal circuit diagram of a correlation detector. It consists of two subunits. In each

subunit, the retinal signals from two neighboring locations are multiplied with each

other (M), after one or both of them have been fed through a temporal filter with a

time constant τ . This operation is done twice in a mirror-symmetrical way in both

subunits. The output signals of both subunits are finally subtracted.

14.2 Mechanisms of local motion detection: the
correlation detector

The process of local motion detection has been successfully described by the so-

called correlation-type of motion detector or, in brief, correlation detector. This

model has been first proposed on the basis of experimental studies on optomotor

behavior of insects [49, 72, 73, 74, 75]. In subsequent studies, the correlation detec-

tor has also been applied to explain motion detection in different vertebrate species

including man (e.g., [34, 35, 87, 88, 89, 90, 96], for review, see [6, 8]).

In its most parsimonious form, such a correlation detector consists of two mirror-

symmetrical subunits (Figure 14.2, left). In each subunit, the signals derived from

two neighboring inputs are multiplied with each other after one of them has been

shifted in time with respect to the other by a delay line or a temporal low-pass filter.

The final detector response is given by the difference of the output signals of both

subunits. The combination of a temporal delay and a multiplication is the reason why

this type of detector measures the degree of coincidence of the signals in its input

channels or, in other words, performs on average a spatio-temporal cross-correlation.

The basic operations of the correlation detector are summarized on the right side of

Figure 14.2. Here it is assumed, for simplicity, that the brightness distribution of the

retinal image is not filtered spatially or temporally but directly feeds the movement
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detector. If an object passes the detector from left to right, the left input channel

(1) is activated first, and then some time later the right input channel is activated

(2). This time interval depends on the velocity of the object and the spatial distance

between both input channels, i.e., the sampling base of the detector. By delaying

the left input signal (1′), the time-shift between the two input signals is reduced, and

ideally accurately compensated for. Then, both signals arrive simultaneously at the

multiplication stage of the left subunit resulting in a large response (1′2). For the right

subunit, the temporal filter increases the time-shift between the input signals. This

leads to a comparatively small detector response (2′1). After subtracting the output

signals of both subunits, the final output response (R) is obtained. In the example

shown here, the object motion from left to right is called the preferred direction of the

motion detector. Motion in the opposite direction will result in a sign-inverted, i.e.,

negative response. This is called the anti-preferred or null direction of the detector.

14.2.1 Steady-state response properties

In the study of biological motion vision, periodic stimuli have played a dominant

role. Therefore, the response of a correlation detector shall now be calculated for

periodic sine gratings moving at a constant velocity. We consider a sine-wave of

wavelength λ and contrast ∆I travelling at a velocity v[o/s]. The inputs are spaced

by ∆φ , the temporal filter has an amplitude and phase response denoted A and Φ,

respectively. Thus, the signals entering the detector at the left and right input are

both sinusoids with a DC value corresponding to the mean luminance, an amplitude

∆I and a temporal frequency ω = 2πv/λ that are phase shifted by ∆φ/λ with respect

to each other. At the output of the low-pass filters, these sinusoids, once in steady

state, simply have an additional amplitude factor A(ω) and an additional phase shift

Φ(ω). Multiplication of the respective signals and subtracting the result of the left

and right multiplier leads to the following expression of the time-averaged detector

response [4, 19]:

R = ∆I2A(2πv/λ )sin(−Φ(2πv/λ ))sin(2π∆φ/λ ) (14.1)

If we assume the temporal filter to be a low-pass of 1st order, we obtain:

R = ∆I2 τ2πv/λ

1+ τ2(2πv/λ )2
· sin(2π∆φ/λ ) (14.2)

The steady-state response of a motion detector can thus be seen to depend on many

internal and stimulus parameters in a non-trivial way. These dependencies will now

be discussed in detail.

14.2.1.1 Velocity tuning

The dependence of the detector response on the velocity of the moving grating is

shown in Figure 14.3 for three different time-constants. First of all, we note that the

detector response, unlike a speedometer, does not increase linearly with increasing

pattern velocity. Rather, it exhibits an optimum at a certain velocity. For velocities
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Figure 14.3

Steady-state responses of the minimal correlation model shown in Figure 14.2 as a

function of pattern velocity for three different low-pass time-constants.

beyond that optimal velocity the response falls off gradually towards zero. Further-

more, the shape of the response curve depends on the time-constant of the detector

low-pass filter: the larger the time-constant, the smaller the velocity at which the

response is maximum.

The time-constant of the detector filter thus becomes a decisive model parameter

that sets the operating range of the motion detection system in the velocity domain.

In particular, it determines the slope of the detector response around velocity zero

and, thus, the gain of the sensor.

14.2.1.2 Pattern dependence

Another peculiar response characteristic of the correlation detector is its dependence

on pattern properties such as its contrast and spatial wavelength. As can be seen

in Equations (14.1) and (14.2), the response depends on the square of the pattern

contrast. This has indeed been experimentally confirmed using low stimulus con-

trasts [57]. For higher contrasts, the experimental data fail to follow a quadratic

contrast dependence. Rather, the response of fly motion sensitive neurons as well as

the strength of the optomotor following behavior saturates for contrasts higher than

about 50% [27]. This might be explained by adaptive changes of internal gain factors

in the detection system [14, 15, 31, 51, 67].

Another feature of correlation detectors, which is obvious in the above formulas,

is that the steady-state response is proportional to the sine of the ratio of the sampling

base and the pattern wavelength. The sampling base of the motion detector, i.e., the

spatial separation of its input lines, limits the spatial resolution of the system. As is

the case for any discrete sampling system, wavelengths can only be resolved up to

a certain limit. The smallest wavelength that can be resolved is given by twice the
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Figure 14.4

Steady-state responses of the minimal correlation model shown in Figure 14.2 as a

function of pattern wavelength assuming a sampling base of 2 deg.

sampling interval (the nymquist limit). For a sampling base of 2 deg. of visual angle,

this dependence on the pattern wavelength is illustrated in Figure 14.4.

As can be derived from Equations (14.1) and (14.2), the response is maximum if

the ratio of sampling base and pattern wavelength equals 1/4, in our example at a

wavelength of λ = 8 deg. For larger wavelengths, the response gradually declines to-

wards zero. For smaller wavelengths, the response starts oscillating between positive

and negative values: it is zero for λ = 4 deg and negative between λ = 4 and λ = 2

deg. Here, the correlation detector signals negative values for pattern motion along

its preferred direction. This behavior is due to the sampling theorem (see above) and

called spatial aliasing. It can indeed be experimentally observed in the laboratory,

but usually does not affect the system performance since higher spatial frequencies

are much reduced by the optics at the front end of the detector [39, 40, 41, 57].

The spatial pattern wavelength not only influences the overall amplitude of the

response, it also affects its velocity tuning in an intricate way. This is shown in

Figure 14.5 for 3 different pattern wavelengths, again assuming a sampling base of 2

deg. The larger the wavelength, the higher the pattern velocity at which the response

becomes optimum. More precisely, the response optimum is directly proportional to

the pattern wavelength; doubling the wavelength leads to a doubling of the optimum

velocity. If we introduce the temporal frequency of the stimulus as being the ratio of

the velocity and the pattern wavelength, the response curves for all different pattern

velocities can be seen to coincide at one frequency (Figure 14.6).

Formally, this can be deduced from the above formulas by replacing v/λ with ft ,

the temporal frequency of the motion stimulus. This frequency can be understood as

the number of pattern cycles passing by one point in space per second. Introduction

of the circular frequency ω = 2π ft and rewriting Equation (14.2) accordingly results
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Figure 14.5

Steady-state responses of the minimal correlation model shown in Figure 14.2 as a

function of pattern velocity for three different pattern wavelengths.
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Figure 14.6

Steady-state responses of the minimal correlation model shown in Figure 14.2 as a

function of temporal frequency for three different pattern wavelengths.

in:

R = ∆I2 τω

1+(τω)2
· sin(2π∆φ/λ ) (14.3)

Setting δR/δω = 0, the response can be calculated to be optimum at the following

frequency ω:

ω =
1

τ
(14.4)
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All the various properties of the correlation detector summarized above have been

investigated in fly motion vision using either behavioral or electrical responses of

motion-sensitive neurons [19, 22, 23, 27, 41, 53, 56], for review, see [30]. As pre-

dicted by the model, responses have been found to be maximum at a given stimulus

velocity which depended on the spatial wavelength. The temporal frequency op-

timum was determined to be between 2-5 Hz, indicating a time-constant of about

20-100 msec, depending on the specific kind of low-pass filter assumed in the model

calculations. Also, spatial aliasing did occur exactly between once and twice the

interommatidial angle (the angle between the optical axes of two neighboring facets

called ommatidia) indicating a nearest neighborhood interaction as the predominant

input to the system. However, under low light levels, larger sampling bases have

been also seen to contribute [19, 80].

Besides moving sine gratings, the correlation detector response to patterns with

an arbitrary spatial luminance distribution F(x) translating at a time varying velocity

function v(t) can be approximated. In this so-called continuous approach, the sam-

pling base is assumed to be sufficiently small so that the signal in the right input line

(F(x1)) of the detector (see Figure 14.2) relates to the one in the left input (F(x2)) by

adding the first term of a Taylor series around x1: F(x2) ∼ F(x1)+ (dF/dx)x=x1
dx.

If the temporal low-pass filter is replaced by a sufficiently small time delay ε , the

output of the filter F(t − ε) can be approximated again by a Taylor expansion. This

leads to the following expression of the detector response at place x and time t [74]:

R(x, t) = v(t)ε(F ·Fxx − (Fx)
2) (14.5)

Here, the dependence of the detector response on the local intensity F(x) and its

first (Fx) and second (Fxx) spatial derivative can be directly seen and calculated for

any kind of spatial intensity profile. When applied to the examples considered above,

i.e., moving sine gratings, the approximation reflects the central part of the velocity

response curve around zero only (Figure 14.3) where the response is a quasi linear

function of pattern velocity, but not the decline for higher velocities.

14.2.1.3 Orientation tuning

Another interesting feature of the correlation detector pertains to its orientation tun-

ing. Intuitively, one might expect a regular cosine dependence of the detector to vari-

ation of the orientation of the moving pattern. This indeed is a good approximation

for large pattern wavelengths (large with respect to the sampling base). However, in

detail, the response as a function of the orientation is given by the following equation

[97]:

R = ∆I2 τω

1+(τω)2
· sin(cosΘ ·2π∆φ/λ ) (14.6)

Equation (14.6) can be intuitively understood as the response being proportional

to the sine of the phase difference between the two detector input lines. This phase

difference is given as the ratio of the sampling base and the pattern wavelength as

long as the pattern moves orthogonal to the grating (Θ = 0). Rotation of the pattern
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Figure 14.7

Steady-state responses of the minimal correlation model shown in Figure 14.2 as

a function of pattern orientation for four different pattern wavelengths assuming a

detector sampling base of 2 deg.

away from this orientation leads to a reduced phase difference but leaves the temporal

modulation frequency of each input line unaffected. For pattern motion parallel to

the grating, i.e., rotated by 90 deg, both input lines become activated in synchrony.

The differences between a regular cosine tuning curve and the actual behavior of a

correlation detector become obvious when the pattern wavelength is getting close to

twice the sampling base (near the resolution limit), i.e., at wavelengths of 8 and 6

degrees assuming a sampling base of 2 deg (Figure 14.7). At λ = 8 deg, the tuning

curve seems much more saturated than a simple cosine, and at λ = 6 deg, the tuning

curves reveal dips where otherwise their maxima are located.

14.2.2 Dynamic response properties

In all the characteristics of the correlation detector discussed so far the response has

always been considered as an average over time, i.e., during steady-state. However,

in any living organism the velocity stimulus is changing as a function of time as it is

moving, and responses occur as a function of time again. Often, responses have to

occur in as short a time as possible to ensure the survival of the observer. Therefore,

beside the steady-state properties, the dynamics of the local motion detector response

are of great interest, too.

Figure 14.8 shows the time course of the detector response to a moving sine grating

the velocity of which was stepped from zero to a constant value (corresponding to a

temporal frequency of 2 Hz) at t = 1 sec and back to zero at t = 4 sec. Shown is the

spatially summated output of all 8 motion detectors used in this simulation together

with the individual output signals of the first 3 motion detectors. There are several
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Figure 14.8

Dynamic response profile of the minimal correlation model shown in Figure 14.2 in

response to the on- (at time = 1 sec) and off-set (at time = 4sec) of constant pattern

motion. Shown are the summated output signals (in black) of an array of 8 such

motion detectors (sampling base = 2 deg) together covering one spatial wavelength

( λ = 16 deg) of the pattern, together with the output signals of three neighboring

individual detector signals (in red, green and blue, respectively). The pattern was

moving at 32 deg/sec resulting in a temporal frequency of 2 Hz.

notable things here.

First of all, the spatially summated response changes over time in the initial pe-

riod of the stimulation. Before assuming its steady-state response given by Equation

(14.2), the response is transiently ringing at the temporal frequency of the stimulus.

The ringing is damped and settles over time to the steady-state value. Indeed, after

being postulated based on modelling [4], such ringing behavior has been observed

experimentally in fly motion sensitive neurons [27, 66]. Beside the velocity step,

sinusoidal velocity modulation represents another example case where the dynamic

responses of correlation detectors have been investigated [26]. Again, the spatially

integrated response was found to deviate from being proportional to the velocity sig-

nal when either the amplitude or the frequency of the velocity modulation exceeded

certain values. In summary, thus, the spatially integrated motion detector output fol-

lows the dynamics of the velocity input within certain limits; beyond that, significant

distortions may occur. Those limits are in general determined by the time-course of

the intrinsic filters of the motion detection system.

Another feature that can be seen in Figure 14.8 pertains to the individual detector

signals. In contrast to the overall response that exhibits a ringing only initially, the

individual detector output signals continue to oscillate at the temporal frequency of
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the pattern as long as the pattern is moving. The modulations of these signals are

phase shifted due to the fact that they receive input from different spatial parts of the

pattern. Only after spatially integrating the signals over different spatial phases, these

oscillations become cancelled resulting in a smooth, constant steady-state response.

Again this prediction has been experimentally verified using different techniques.

In one set of experiments, presenting the pattern to the fly through a narrow slit re-

stricted spatial integration. Recording from a lobula plate tangential cell revealed

ongoing temporal oscillations at the temporal frequency of the stimulus [28]. Using

a different approach to record local signals in an integrating neuron, Single and Borst

filled one of the tangential cells with a calcium-sensitive dye and optically recorded

the neural calcium responses in a spatially resolved way. Presenting a full-field spa-

tial grating resulted in local calcium oscillations in the dendrite of the integrating

neuron which had all the postulated properties [84]. For the further processing of lo-

cal motion detector signals, it is important to note that meaningful information about

the velocity cannot be deduced from the local detector output signals. Their signals

as a function of time are only partially determined by the stimulus velocity, but addi-

tionally superimposed by signals reflecting local pattern properties. Therefore, some

sort of postprocessing like spatial integration has to take place before such signals

can be used for visual course control.

14.2.3 Additional filters and adaptive properties

As we have seen above, many properties of fly motion vision can be successfully

captured by the correlation detector in its simplest form (Figure 14.2). Using Oc-

cam’s razor, this model consists of only one temporal filter and one multiplier per

subunit. This, however, is not the original form the model took when first proposed

[73]. As we will see in the following, besides front-end spatial filters accounting

for the optics, at least one more temporal filter with an adaptive time-constant needs

to be postulated in order to account for a series of observations using the impulse

response of the system as an indicator.

Fly neurons respond to an instantaneous displacement of the visual pattern with a

sudden rise in activity followed by an exponential decay. In the language of system

theory, such a stimulus represents a velocity pulse, and the response to that has been

named the impulse response, accordingly. Such a behavior is correctly predicted by

the minimal model [79]:

〈

R〉φ = ∆I2 · exp(−t/τl) · sin(∆φ)sin(ψ) (14.7)

Here, 〈R〉φ denotes the spatial average over the responses of an array of motion

detectors to a pattern that has been shifted by a visual angle ψ . Interestingly, the time

constant of this decay has been shown to shorten when tested after presentation of

an adapting motion stimulus [5, 79]. In terms of the minimal detector model this in-

evitably implies that the time constant of the low-pass filter has changed. Given that,

one would expect a concomitant shift of the steady-state response towards higher

velocities (see Equation (14.4)). This, however, could not be verified experimentally
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[50]. Hence, the minimal model has to be extended by at least one more temporal

filter in order to account for these experimental observations. Inserting an additional

first-order high-pass filter with time-constant τh in the cross-arms of the detector (see

Figure 14.9a) results in the following steady-state response [27]:

R = ∆I2 sin(2π∆φ/λ ) ·
τhω · (1+ τlτhω2)

(1+ τ2
l ω2) · (1+ τ2

h ω2)
(14.8)

If the time-constants of both the high- and the low-pass filter are equal, the steady-

state response becomes identical to the one of the minimal model (compare with

Equation (14.3)). Interestingly, in such a detector model, only the high-pass filter

determines the time course of the impulse response [12]:

〈

R〉φ = ∆I2 exp(−t/τh)sin(∆φ)sin(ψ) (14.9)

Consequently assuming that the time constant of the high-pass filter is the locus

of adaptation led to the formulation of a detector model with an adaptive high-pass

time-constant. To describe the time-constant of the high-pass filter as adaptive within

a range of maxτh and minτh, the following differential equation was used:

dτh/dt = −(τh −minτh)S +(maxτh − τh)K (14.10)

Here, the time-constant decreases faster the further away it is from the minimum

value it can assume, and this decrease is proportional to a signal S that we will define

later. The time-constant increases faster the further it is away from its maximum

value and this relaxation is also proportional to a constant factor K. Both S and K

incorporate the time-constants for the adaptation and relaxation, respectively. This

results in the following steady state value of τh(dτh/dt = 0):

τh = (maxτh ·K +minτh ·S)/(K +S) (14.11)

From Equation (14.11), one can see that for S = 0,τh = maxτh, while for S >> K,

τh = minτh. The final step in the formulation of an adaptive detector model is to

define the signal driving adaptation of the time-constant. The shortening of the time-

constant has been found to exhibit a peaked velocity dependence and to be the more

pronounced the higher the stimulus contrast [78]. One way to obtain such a signal is

from the rate of change of the low-pass output. This signal is larger the higher the

contrast, and, up to a given temporal frequency, the higher the velocity of the moving

grating. The high-frequency cut-off will be set by the low-pass time-constant. In the

simulation shown in Figure 14.9, the output of the low-pass was smoothed by a 1st

order filter with a 30 msec time-constant prior to differentiation. The resulting signal

was then smoothed again by a 1st order filter with a 300 msec time-constant and

finally squared.

The minimal model elaborated in this way (Figure 14.9a) can resolve the conflicts

mentioned above. The detector displays an adaptive impulse response (Figure 14.9c)

without altering the detector’s temporal frequency tuning at different stimulus con-

trasts (Figure 14.9b). Besides revealing an adaptive impulse response, the elaborated

© 2004 by Chapman & Hall/CRC



ed

b

a

0.1 1 10

0.0

0.2

0.4

st
ea

dy
-s

ta
te

 r
es

po
ns

e 

 temporal frequency [Hz]

 10%  contrast
 100% contrast

-0.2 0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4 c

 im
pu

ls
e 

re
sp

on
se

 time [sec]

0 1 2 3 4 5

-0.2

0.0

0.2

0.4

0.6

0.8

pre
post

100% contrast10% contrast

st
ep

 r
es

po
ns

e

 time [sec]

0 1 2 3 4 5

-20

0

20

40

60

80

 s
te

p 
re

sp
on

se

 time [sec]

Figure 14.9

Basic properties of an adaptive high-pass detector. (a) Circuit diagram of the detector

model. The structure is identical to the detector shown in Figure 14.2 except for the

additional high-pass filter and the adaptor which shortens the high-pass filter time-

constant. For the simulations, the high-pass filter had an adaptable time-constant

between 50 ( τmin, fully adapted) and 500 (τmax, undadapted) msec, the low-pass fil-

ter time-constant was fixed at 50 msec. (b) Steady-state responses of the adaptive

detector to constantly drifting gratings of low (i.e., 10%) and high (i.e., 100%) con-

trasts. (c) Impulse responses of the adaptive detector before (red) and after (black)

exposure to an adaptive stimulus. (d,e) Step response of the adaptive detector at low

(d) and high (e) pattern contrast.

model with an adaptive high-pass time-constant also faithfully mimics a particular

contrast-dependency of transient response oscillations observed in fly motion sensi-

tive neurons. The experimental observations demonstrate that the transient ringing

is most pronounced at the onset of stimulus motion at low pattern low-contrasts,

whereas it significantly shortens with higher pattern contrasts [78]. In terms of
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the model presented above, this implies a shortening of the high-pass time-constant

during the first stimulus period since the high-pass time-constant predominates the

length of the ringing period. Indeed, the elaborated model as shown in Figure 14.9a

displays this particular response feature of fly visual interneurons as well (Figures

14.9d,e). As an alternative, the high-pass filter was also proposed at the front-end of

the detector instead of the cross arms [52]. This elaboration has the appeal to mimic

the adaptive response features of fly motion-sensitive neurons without any further

additions to the detector, but fails to show an impulse response [12]. In summary, as

is shown above, only few elaborations of the minimal correlation detector are needed

to account for many response peculiarities of fly motion vision in astonishing detail

[12].

14.3 Spatial processing of local motion signals by
Lobula plate tangential cells

Following the structure of the fly visual ganglia, the columnar organization reflecting

the pixelation of the image by the facet eye is given up at the level of the third visual

ganglion, the so-called lobula complex. In its posterior part, called the lobula plate,

the tangential cells extend their large dendrites, integrating across many hundreds to

thousands of columnar elements. Due to the large diameter of their processes, these

cells have been studied intracellularly by electrophysiological recordings in great de-

tail [22, 53, 54, 55, 56, 59, 60]. These integrating neurons can today be described and

modeled at a quite detailed biophysical level based on direct recordings of their mem-

brane properties and synaptic connectivity [10, 43, 45]. Modeling these lobula plate

tangential cells not only helped to understand the details underlying their electrical

signals but also turned out to be indispensable for the analysis of the local motion

detection mechanisms reviewed above, because it allowed, through combined exper-

imental/modelling studies, to dissect out the input signals in an indirect way and to

assess the potential contribution of network interactions to various phenomena such

as gain control (see below).

14.3.1 Compartmental models of tangential cells

A compartmental model describes the spatio-temporal potential distribution within

single neurons based on the exact anatomy of the cell and all ionic currents flowing

across its membrane. Once these data are known, the neuron is turned into an electri-

cal equivalent circuit which can be represented as a set of coupled differential equa-

tions which in turn can be solved numerically by standard software packages [81]. As

a first step a digital base of various tangential cells was built by 3D-reconstructing

individual neurons from cobalt-stained material [10]. This database includes both

CH-cells (vCH- and dCH-cell), all three HS-cells (HSN-, HSE- and HSS-cell) and
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Figure 14.10

Compartmental model of a VS1-cell. The inset shows a simplified version of an

electrical equivalent circuit representing each compartment in the simulation. The

cell is not shown plane-parallel, but rotated by 20-30◦ around the dorso-ventral axis

with the dendrites towards the viewer (Modified from [10]).

most members of the VS-cell family from the blowfly lobula plate. In contrast to the

spiking neurons H1, H2 and Hu, the above neurons do not produce full-blown action

potentials but respond to visual motion mainly by a graded shift of their membrane

potential. In HS- and VS-cells, but not CH-cells, small amplitude action potentials

can be superimposed on the graded response [58, 44]. Once the anatomical data

were collected, the specific membrane properties had to be determined from current-

and voltage-clamp experiments. In a first series of experiments, hyperpolarizing and

depolarizing currents were injected to determine steady-state I-V curves. It appeared

that at potentials more negative than resting, a linear relationship holds, whereas at

potentials more positive than resting, an outward rectification was observed. There-

fore, in all subsequent experiments, when a sinusoidal current of variable frequency

was injected, a negative DC current was superimposed to keep the neurons in a hy-

perpolarized state. The resulting amplitude and phase spectra revealed an average

steady-state input resistance of 4-5 MΩ and a cut-off frequency between 40 and 80

Hz. To determine the passive membrane parameters Rm (specific membrane resis-

tance), Ri (specific internal resistivity) and Cm (specific membrane capacitance), the

experiments were repeated in computer simulations on compartmental models of

the cells. Assuming a spatially homogeneous distribution of these parameters, the

3-dimensional parameter space was screened through. In comparing the model re-

sponse with the experimental dataset a single optima for each neuron was found (see

table 14.3.1). No characteristic differences between different members of the same

cell class were detectable. We also applied an error analysis of the fitting procedure

to see how much the different membrane parameters could be varied away from the

point of best fit and still lead to acceptable behavior of the model as compared to the
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CH-cells HS-cells VS-cells

Rm 2.5kΩcm2 2.0kΩcm2 2.0kΩcm2

Ri 60 Ωcm 40 Ωcm 40 Ωcm ‘

Cm 1.5µF/cm2 0.9µF/cm2 0.8µF/cm2

Delayed rectifying K-current + + +
Fast Na-dependent K-current - + +

Fast Na-current - + +
Non-inactivating LVA Ca-current Fast Slow Slow

Table 1: Summary of passive membrane parameters and voltage-activated ionic cur-

rents in lobula plate tangential cells. Data from Borst and Haag, 1996, and Haag et

al., 1997.

experimental data set given the statistical fluctuations inherent in the experiments.

In the next step, voltage-activated membrane currents were studied using the switch-

ed electrode voltage clamp technique [43]. In CH-cells, two currents were identified:

a slow calcium inward current, and a delayed rectifying, non-inactivating potassium

outward current. HS- and VS-cells appeared to possess similar currents as did CH-

cells but, in addition, exhibited a fast activating sodium inward current and a sodium-

activated potassium outward current. While the delayed rectifying potassium cur-

rent in all three cell classes was responsible for the observed outward rectification,

the sodium inward current produced the fast and irregular spike-like depolarizations

found in HS- and VS-cells but not in CH-cells [58, 44]. When blocking the sodium

current by either TTX or intracellular QX314, action potentials could no longer be

elicited in HS-cells under current-clamp conditions. Again, as in the analysis of

passive membrane properties, voltage-activated currents were incorporated with the

appropriate characteristics into the compartmental models of the cells.

Calcium currents were further analyzed combining the switched-electrode volt-

age clamp technique with optical recording using calcium sensitive dyes [46]. This

allowed the study of Calcium currents, which were too small to be detectable in

voltage-clamp experiments and, in addition revealed, their spatial distribution. For

all three cell types considered, CH-, HS- and VS-cells, the activation curve turned out

to be rather flat covering a voltage range from −60 to −20 mV in dendritic as well

as presynaptic areas of the cells. The calcium increase was fastest for CH-cells with

a time constant of about 70 ms. In HS- and VS-cells the time constant amounted

to 400 – 700 ms. The calcium dynamics as determined in different regions of the

cells were similar, except for a small segment between the axon and the dendrite in

HS- and VS-cells, where the calcium increase was significantly faster. In summary,

these results show the existence of a low-voltage-activated (LVA) calcium current in

dendritic as well as presynaptic regions of fly LPTCs with little or no inactivation.

Beside ionic currents another crucial property of neurons is the repertoire of trans-

mitter receptors on their dendrites. Transmitter-gated currents were studied in HS-

and VS-cells using an in vitro preparation of the fly brain. Pharmacological and im-
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Figure 14.11

Steady-state voltage distribution in compartmental models of fly LPTCs after simu-

lated current injection into the axon. False-color code represents the local voltage in

percent of voltage at injection site (From [43]). (See color insert.)

munohistochemical revealed that HS- and VS-cells receive their excitatory input via

nicotinic acetylcholine receptors and become inhibited via GABA receptors [16, 17].

Using all the information summarized above and incorporating them into compart-

mental models allowed, amongst other things, to visualize the steady-state potential

distribution following injection of de- or hyperpolarizing currents into the axon of the

neuron (Figure 14.11). In addition, knowing the precise kinetics of voltage-activated

currents led the models reproduce many of the experimentally observed dynamic re-

sponse properties like e.g., frequency-dependent amplification of synaptic input in

HS-cells [44, 45].

14.3.2 Dendritic integration and gain control

One response feature of LPTCs studied intensively in the past concerns their spatial

integration characteristics: when enlarging the area in which the motion stimulus is

displayed the response saturates significantly [9, 42, 55, 83]. The interesting fact is

the observation that such a saturation occurs not only for motion along the preferred,

but also along the null direction of the cell. Furthermore, for patterns moving at
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different velocities, different saturation plateaus are found. This latter phenomenon

has also been called gain control and was observed at the behavioral level in flies,

too [76]. In general, modelling studies along with measurements of motion induced

changes of input conductances revealed that the circuit model of a single tangential

cell and its presynaptic array of motion detectors is fully sufficient to produce the

observed saturation of membrane response.

For understanding the phenomenon of gain control, one needs to realize that a) the

tangential cells receive excitatory and inhibitory synaptic input from elements equiv-

alent to the subunits of the correlation detector, and b) these presynaptic elements

have only a weak direction selectivity: they not only respond to motion along their

preferred direction but also, to a lesser extent, to motion along the opposite direction

(see panel 2′1 in Figure 14.6). These conclusions are based on various electrophysio-

logical, calcium-imaging and pharmacological experiments [7, 9, 11, 70, 71, 83, 85].

Given that, motion along one direction leads to a joint, though differently weighed

activation of excitatory and inhibitory input, resulting in a mixed reversal potential

at which the postsynaptic response settles for large field stimuli. This can be seen

by the following calculation where the membrane potential (V ) of a tangential cell

is approximated as an isopotential compartment (Ee,ge denoting excitatory reversal

potential and conductance, respectively, subscript i for inhibitory, Eleak = 0):

V = (Eege +Eigi)/(ge +gi +gleak) (14.12)

Assuming Ee = −Ei and introducing c = gi/ge to denote the ratio of inhibitory

and excitatory conductances being co-activated during preferred direction motion,

one obtains:

V = Eege(1− c)/(ge + cge +gleak) (14.13)

With increasing pattern size, ge become large compared to gleak: The membrane

potential tends towards a saturation level. This level can be expressed as:

lim
ge→∞

(V ) = Ee(1− c)/(1+ c) (14.14)

As can be calculated from such correlation-type input elements, the activation

ratio of these opponent inputs is a function of pattern velocity:

c ∼= cos(R−Φ(ω))/cos(R+Φ(ω)) (14.15)

with R denoting 2π times the ratio of the EMD’s sampling base and the spatial

pattern wavelength λ ,Φ denoting the phase response of the EMD’s temporal filter

and ω = 2πv/λ . Consequently, motion in one direction jointly activates excitatory

and inhibitory inputs with a ratio that depends on velocity. This explains how the

postsynaptic membrane potential saturates with increasing pattern size at different

levels for different pattern velocities.

Taking into account the membrane properties of real tangential cells (Figure 14.12a),

simulations of detailed compartmental models indeed revealed the phenomenon of

gain control. Stimulating the neuron by pattern motion of increasing size lead to a

© 2004 by Chapman & Hall/CRC



Figure 14.12

Spatial integration properties of compartmental models of LPTCs. (a) Simulation

of a LPTC receiving input from two arrays of elementary motion detectors (EMD)

tuned to opposite directions of motion and forming excitatory (+) and inhibitory (-)

inputs onto the dendrite of the cell, respectively. A VS-cell was 3D-reconstructed

from cobalt-stained material and was simulated as having only passive membrane

properties. (b,c) Gain control in the model cell before and after blockade of inhibi-

tion. When stimulated by patterns of increasing size at two different velocities, the

axonal membrane potential saturates at different levels (gain control). After blocking

the inhibitory inputs, both velocities yield similar responses (Modified from [83]).

spatial saturation of the resulting membrane potential in the axon. If the velocity of

pattern motion is changed, a different saturation level is assumed (Figure 14.12b).

Blocking the inhibitory input still resulted in a spatial saturation but abolished the

phenomenon of gain control (Figure 14.12c): now, the same level was approximated

for increasing pattern size independent of the pattern velocity [83].

In summary, thus, gain control is produced without the need of any further net-

work interactions. These assumptions were experimentally verified by blocking the

inhibitory input with picrotoxinin [83] resulting in three observations: a) the pre-

ferred direction response grew larger and the null direction response changed its

sign from a hyper- to a depolarization, b) the change of input resistance induced by

preferred direction motion decreased showing that, before, inhibitory currents were

activated as well and c) as a final proof of the above explanation, gain control was

abolished.
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Models of HS- and VS-cells produced a spatial saturation curve indistinguish-

able from their natural counter parts. Real CH-cells, however, saturated much more

strongly leading to a discrepancy between experimental and model data. Originally,

this finding led to the assumption that CH-cells might have spatially inhomogeneous

membrane parameters with very high values of membrane resistance in their den-

drite [45]. A detailed modelling study following up on this revealed, however, that

even when allowing for such complex model no satisfying fit between all available

data sets and the respective model behavior can be achieved [20]. A possible expla-

nation might come from the observation that in contrast to the model outline, real

CH-cells do not seem to receive direct input from retinotopically arranged arrays of

motion-sensitive elements but rather are connected indirectly to the visual surround

via HS-cells [48]. Whether this finding can resolve all existing discrepancies is cur-

rently being investigated.

14.3.3 Binocular interactions

Many of the LPTCs have been found to be sensitive to image motion in front of the

contralateral eye, in addition to motion in front of their ipsilateral eye. In the case of

LPTCs of the graded or mixed response type, i.e., HS and CH-cells, this was found

to be true for HSN, HSE, dCH and vCH, but not for HSS-cells. All these cells are

excited on their ipsilateral side by motion from the front to the back and receive

additional excitatory input by contralateral back-to-front motion [24, 45, 47, 53, 56,

61]. Hence, they are tuned to rotational flow-fields.

Using dual recording techniques, one extracellular recording from the spiking neu-

ron and one intracellular recording from the CH-cell, two heterolateral neurons were

identified as providing the excitatory input to HS- as well as CH-cells: the H1- and

the H2-cell. As is indicated in Figure 14.1, these cells have the appropriate preferred

direction to tune the CH-cells to rotatory motion. In addition, an hitherto unidenti-

fied neuron (Hu) with an opposite preferred direction is inhibiting the contralateral

CH-cells. While these findings provide a sufficient explanation for the selectivity of

CH-cells for rotational cues, additional connections between LPTCs within one lob-

ula plate were recently discovered [47]. Again using dual recording techniques, CH-

and HS-cells were found to excite those cells that have identical preferred directions

like Hu, and CH-cell were found to inhibit those neurons with opposite preferred

direction, like H1 and H2 (see Figure 14.1). Through this kind of ipsilateral connec-

tions onto heterolateral neurons, HS- and CH-cells could be demonstrated to inhibit

their contralateral counterparts; excitation e.g., in the left dCH-cell should inhibit the

right dCH-cell, and vice versa, while inhibition in the left CH-cell should facilitate

excitation in the right one.

Moreover, close inspection of the circuit diagram reveals the existence of feedback

loops bringing back the signals onto the cell where they started from. Several of these

predictions could indeed be experimentally verified [47]. The conclusion from these

experiments is that the intrinsic connectivity between the different tangential cells

within one lobula plate and between the lobula plates in both hemispheres favors an

asymmetrical distribution of excitation. Such an asymmetry will be imposed on the
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network from the sensory input when rotational flow-fields stimulate the eyes, but

not when translational stimuli occur. The flow-field selectivity of LPTCs therefore

seems not only determined by their feed-forward connectivity, but also by the intrin-

sic wiring within the network formed by LPTCs in both hemispheres. Of course,

the circuit diagram presented in Figure 14.1 only contains a small number of the

existing lobula plate neurons (5 out 60 on each side!) where such connections have

been studied in detail to date. In particular, no neurons sensitive to vertical image

motion are included there. More investigations concerning the connectivity amongst

such VS-cells and between the horizontal and vertical cells are presently under way

(Haag and Borst, in preparation) possibly providing an explanation for the complex

flow-fields measured in many neurons of the lobula plate [63, 64].

To gain a further understanding in the functional consequences of such network

interactions, modelling work was started. As a first step, a network model of the lob-

ula plate was built using single-compartment models of each cell in the circuit. After

adjusting the connectivities to the experimental data, the individual circuit elements

revealed similar responses to binocular motion stimuli as their natural counterparts

(Figures 14.13 and 14.14). First of all, in response to rotational motion stimuli, all

neurons modulate their response strongly when the stimulus is switched from clock-

wise to counter clockwise rotation (Figure 14.13). In this case, the internal connec-

tions of the circuit amplify the excitation levels imposed onto the neurons by the

local motion detectors, i.e., when a neuron on one side is excited, its counterpart on

the other side becomes inhibited. The situation changes when instead of rotational

motion translational stimuli are presented (Figure 14.14): now, the modulation is

weaker in HS-cells and CH-cells when the stimulus switches from contraction to ex-

pansion. In particular in CH-cells, the membrane potential departs only little from

resting during stimulation either way. In this case, the internal connections work

against the feed forward signals coming from the local motion detectors and, thus,

reduce the responses substantially. While these simulations represent only a starting

point, future studies will investigate how these internal connectivities affect the re-

sponse behavior of the circuit elements once more critical stimuli are presented e.g.,

low light levels or low contrast patterns where noise becomes an issue.

14.3.4 Dendro-dendritic interactions

In contrast to the lobula plate neurons covered so far which all respond strongest

to large-field motion, another group of tangential cells has been described which

respond best to small moving objects or relative motion (called FD- or CI-neurons;

[25, 38]. These cells receive inhibitory input when contralateral back-to-front motion

is additionally displayed to an excitatory ipsilateral front-to-back stimulus. There is

evidence that the vCH-cell is responsible for conveying this type of inhibitory input

since the FD1-cell was shown to loose its inhibitory input after photo-inactivation

of the vCH-cell [95]. To what extend the CI-cells are also inhibited by the vCH-

cell and whether the inhibition of the FD1- and/or CI-neurons by the vCH-cell is

also responsible for their ipsilateral small-field tuning, i.e., their preference for small

objects moving, and thus represent the ‘pool cell’ postulated in the original models
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Figure 14.13

Simulation of the network of tangential cells with each neuron modeled as a single

compartment. The circuit, without the input from local motion detectors, is shown in

the center. To the left and to the right, the signals of 5 different tangential cells sen-

sitive to horizontal image motion are displayed as a function of time. The stimulus

consists of a binocular image rotation, first clockwise (CW) for 1 sec, then counter-

clockwise (CCW) for 1 sec.

of figure-ground discrimination [76, 77], is not clear at the moment.

However, the following facts lead to some interesting speculations of how the CH-

cell might be responsible for the small-field tuning in FD- and CI-neurons. First of

all, the CH-cell is known to be GABAergic with chemical output synapses within its

dendrite in the lobula plate [68, 37]. Since there are no chemical output synapses

found within the protocerebral ramifications of CH-cells [37], it seems reasonably

justified to assume that the CH-cell inhibits other lobula plate tangential cells within
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Figure 14.14

Same as Figure 14.13 except that here the stimulus consists of a binocular image

translation, first contraction (Cntr) for 1 sec, then expansion (Exp) for 1 sec.

their dendrites, where they also receive the retinotopic input from local motion detec-

tors. If CH-cells received the same type of retinotopic input like all other tangential

cells, this might lead to a complete cancellation of any type of excitation within the

dendrite of the postsynaptic partner cells. This, however, turned out not to be true.

Recent findings suggest that the CH-cells receive their motion input only indirectly

through dendro-dendritic electrical synapses from HS-cells [48] leading to a spatially

blurred motion image on their dendrite [21]. As is shown in Figure 14.15 and Figure

14.16, inhibition of FD-cells by such a blurred activity pattern from CH-cell den-

drites indeed enhances motion edges as exist during movement of small objects in

front of a stable background (Figure 14.15), but cancel the signals almost completely
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Figure 14.15

Possible mechanism underlying the selectivity of FD-cells for relative motion in the

fly visual system. A The stimulus consists of a 2D random dot pattern covering both

a bar and a background (top center). The bar is moving in front of the background

to the right, stops, and to the left again. Motion is shown as an x-t plot for a center

cross section through the stimulus pattern (top right). This stimulus is processed by a

2D array of motion detectors which then feed onto the dendrites of HS-cells (bottom

left) and FD-cells (bottom right). HS-cell dendrites contact the dendrites of CH-cells

(bottom center) which in turn inhibit FD-cells in a dendro-dendritic manner. The

excitation level of the dendrite of all three tangential cells is shown as a false-color

image (scale bar bottom left) (See color insert.).

when large-field background motion is presented (Figure 14.16). However, before

any selective responses of FD-cells to small-field motion can be obtained from such

dendritic activity patterns, additional nonlinear operations have to be postulated like

e.g., rectification of dendritic signals and/or local spike generation [76, 77]. Never-

theless, the present experimental findings support such a biophysical mechanism to

underlie the particular response properties of FD- and CI-cells, representing a rather

unique example of how image processing is done within the dendrites of individual

neurons (Cuntz et al., in preparation).

14.4 Conclusions

Fly motion vision represents one of the best studied biological systems where the

modelling efforts summarized above went hand in hand with the experimental in-

vestigations. However, as the reader might have noticed, the models of local motion
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Figure 14.16

The same as Figure 14.15, except for the fact that this time there is only large-field

motion of the background (see xt-plot in top row). Under these circumstances, inhibi-

tion of the motion signals by the CH-cell dendrite leads to an annulment of excitation

on the FD-cell dendrite (See color insert.).

detection are settled at a different level than those of the spatially integrating stages,

i.e., the tangential cells of the lobula plate. While the properties of local motion de-

tectors have been inferred from a black box analyses using visual motion stimuli as

input and, in most cases, their spatially and/or temporally integrated signals as out-

put, as manifested either in the tangential cells or in optomotor response behavior,

spatial processing of local motion information was studied directly by electrophys-

iological recordings of the neural elements. This has to do with the trivial fact that

the columnar elements in the medulla where local motion detection is likely to take

place [2, 3, 18, 33] are much smaller than the large tangential cells of the lobula plate

and, thus, are much harder to record from intracellularly. As a consequence, the

motion detection system as simulated today represents a hybrid model with purely

algorithmic processing stages at the level of local motion detection (low-pass filter-

ing, multiplication) and biophysically realistic compartmental models of the neurons

thereafter.

Thus, a major thrust of present research efforts is to uncover the cellular identities

of the neurons constituting the local motion detector and, hopefully, the biophysi-

cal processes underlying their elementary operations using e.g., genetically encoded

indicators of neural activity [69]. However, independent of that, our understanding

of the functional properties of fly motion vision will be tremendously improved by

considering the fact that the circuits which usually are tested in the laboratory under

open-loop conditions, operate naturally under closed-loop conditions [94]. Further-

more, the characteristics of the fly’s flight maneuvers [91, 92, 93] together with the

spatial frequency content in natural scenes [32] is likely to shape the input to the
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fly’s motion detection system in a specific way which in turn will have led to spe-

cific adaptations of the system analyzing it. Since present technology does not yet

allow to record from single neurons while the fly is free to fly around, present efforts

aim at recording the visual flow the fly is experiencing during free flight [82] which

can be later used as a stimulus presented to the tethered fly for electrophysiological

recording [62]. Along these lines, future modelling efforts that make use of neuro-

morphic chips implementing the fly motion detection circuits offer the advantage to

be testable in closed-loop situations in real time (e.g., [65]).
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15.1 Introduction

In cortical neural circuits, the biophysics of neurons and synapses and the collective

network dynamics produce spatiotemporal spike patterns that presumably are opti-

mized for the functional specialization of the system, be it sensory, motor or memory.

Therefore, different systems might use different codes. For example, the ‘spike tim-

ing code’ or ‘correlation code’ that relies on precise spike timing is critical for the

computation of coincidence detection in the brainstem auditory pathways, and may

also contribute to information processing in other neural systems. A ‘burst code’ is

prevalent in central pattern generators of the motor systems, where rhythmicity is

produced by oscillatory repetition of brief clusters of spikes (bursts). Neurons can

also signal information using a ‘rate code’, by virtue of the frequency at which the

spikes are discharged. The idea of rate coding originated from the work of [3], who

discovered that a stimulus feature (such as intensity) could be accurately read out

from the firing rate of a sensory neuron. Since then, many studies have shown that

firing rates convey a large amount of stimulus-related information in neurons.

In a small neural network, such as the visual system of flies or the electrosensory

system of electric fish, there are a few synaptic connections per cell and each spike

has a large impact on the post-synaptic cell. Hence spike timing is expected to be im-

portant. Moreover, a reliable estimate of the firing rate of one or a few pre-synaptic

inputs requires a long-time average of spike counts and is, hence, not adequate to

subserve fast perceptual or motor behaviors in these systems at fast time scales (∼
100 milliseconds). The situation, however, is drastically different in a cortical cir-

cuit, where a huge number of neurons are available and organized into columns of

functionally similar neurons [84]. A typical cortical neuron receives thousands of

synapses, most of them from neighboring neurons [4, 76]; the impact of a single pre-

synaptic spike onto a post-synaptic cell is relatively small. Moreover, spike trains of

cortical neurons are highly stochastic and irregular (see e.g., [30, 108, 110], but see

[59]), hence there is a lot of noise in spike timing. This fact raised the question of

whether the observed spike train irregularity conveyed information or was rather a

reflection of the various sources of noise present at the cellular and network levels

[105]. Even if the spike times from single cells are noisy, information can still be

conveyed in the average activity of pools of weakly correlated neurons. Suppose

that a neuron receives connections from Ccell other neurons in a column. Being from

the same column, the average activity of these inputs is similar, but since their spike

trains are irregular the number Ni(Dt) of spikes emitted by each cell i in the time

interval [t,t + Dt] is random. The total input to the post-synaptic neuron

f (t) ∼
Ccell

Â
i

Ni(Dt)

provides an estimate of the average activity across the population. Since Ccell is large

(100-1000) [17], and neurons are only weakly correlated [14, 31, 74, 130], noise can
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be largely (though not completely) averaged out [105, 106], and the estimate of the

average activity of the pre-synaptic pool can be quite accurate even with a small Dt.

In other words, the population firing rate can be defined (almost) instantaneously

in real time. Moreover, such a rate code can be readily decoded by a post-synaptic

cell: the summation of thousands of synaptic inputs provides a means to readout the

population firing rate at any time.

Population firing rate models were introduced in the early 1970s and have since

become widely popular in theoretical neuroscience. These models are described as

non-linear differential equations, to which tools of mathematical analysis are appli-

cable. Thus, concepts like attractor dynamics, pattern formation, synchronous net-

work oscillations, etc, have been introduced in the field of neurobiology (See [37]

for a review and references). Early models, such as associative memory models,

were formulated in terms of firing-rates [27, 64]. Broadly speaking, two different

approaches can be used to construct a firing-rate model. A rate model can be built

heuristically: for example, a unit is assumed to have a threshold-linear or sigmoid

input-output relation [5, 125, 126]. This class of rate models is valuable for its sim-

plicity; important insights can be gained by detailed analysis of such models. The

drawback is that these models tend to be not detailed enough to be directly related to

electrophysiology. For example, the baseline and range of firing rates are arbitrarily

defined so they cannot be compared with those of real neurons. It is therefore dif-

ficult to use the available data to constrain the form of such models. On the other

hand, a firing-rate model can also be derived, either rigorously or approximately,

from a spiking neuron model. To do that, the dynamics of spiking neurons must

be well understood. The analytical study of the dynamics of spiking neuron mod-

els was pioneered by [68], and has witnessed an exponential growth in recent years.

Up to date, most of the work was done with the leaky-integrate-and-fire (LIF) neu-

ron model [1, 8, 11, 18, 19, 21, 24, 51, 68, 77, 88, 114, 120]. The LIF model is

a simple spiking model that incorporates basic electrophysiological properties of a

neuron: a stable resting potential, sub-threshold integration, and spikes. A network

model can be constructed with LIF neurons coupled by realistic synaptic interac-

tions. Such models have been developed and studied for many problems, such as

synchronization dynamics, sensory information processing, or working memory. In

some instances, firing-rate dynamics can be derived from the underlying spiking

neuron models [26, 36, 40, 109]. These firing rate models provide a more compact

description that can be studied in a systematical way.

Analytical studies of networks of neurons are usually performed in the context of

‘mean-field’ theories. In such theories, the synaptic input of a neuron in the network

is traditionally only described by its average: the ‘mean-field’. This first class of

models is applicable to networks in which neurons are weakly coupled and fire in a

regular fashion. More recently, mean-field theories have been introduced in which

the synaptic inputs are described not only by their mean, but also by the fluctuations

of their synaptic inputs, which come potentially both from outside the network, and

from the recurrent inputs. This second class of models is applicable to strongly

coupled networks in which neurons fire irregularly [11, 118, 119].

The objective of this chapter is to provide a pedagogical summary of this latter
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type of mean-field theory in its current state. We will introduce the theory in several

steps, from single neurons, to self-consistent theory of a recurrent network with sim-

ple synapses, to realistic synaptic models. The chapter is organized into two parts,

which address the two general ingredients of a mean-field theory for network mod-

els based on biophysics. First, a method is needed for the analytical description of

a neuron’s output in response to a large number of highly noisy pre-synaptic inputs,

including realistic synaptic interactions (time course, voltage dependence) which are

critical in determining the network behavior. This will be described in Section 15.2.

Second, in a recurrent circuit, any neuron both receives inputs from, and sends output

to, other neurons in the same network. Therefore, the pre-synaptic and post-synaptic

firing rates are related to each other. The mean-field theory provides a procedure

to calculate the neural firing rate in a self-consistent manner, in the steady-state. It

also can also be extended to a description of the temporal dynamics of the neural

firing rate. This will be discussed in Section 15.3. The self-consistent theory is then

applied to a strongly recurrent network model of working memory which displays

multi-stability between a resting state and memory-related persistent activity states.

15.2 Firing-rate and variability of a spiking neuron
with noisy input

The first part of the present paper is devoted to the firing properties of a leaky

integrate-and-fire (LIF) neuron in response to stochastic synaptic inputs. After the

introduction of the LIF neuron, we proceed as follows: First, the statistical properties

of the input current will be described, given certain assumptions about the stochastic

activity of the pre-synaptic inputs to the neuron. Second, we will discuss the con-

ditions under which the dynamics of the depolarization can be approximated by a

diffusion equation. Third, we will show how to calculate the output mean firing rate

and coefficient of variation (CV) of the cell given our assumptions. Next the effect of

finite synaptic time constants will be explained. Finally, we provide a discussion on

how realistic synaptic transmission, including voltage-dependent conductances and

non-linear summation of inputs, can be incorporated into this framework.

15.2.1 The leaky integrate-and-fire neuron

In the LIF model, the voltage difference V (t) across the membrane changes in re-

sponse to an injected current I(t) according to

Cm
dV (t)

dt
= −gL(V (t)−VL)+ I(t), (15.1)

where Cm = 0.2 nF is the total membrane capacitance, gL = 20 nS is the leak conduc-

tance and VL = −70 mV is the leak, or resting potential of the cell in the absence of
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input (see e.g., [69]). According to this equation, the membrane is seen as a simple

RC circuit, with a time constant tm given by

tm =
Cm

gL

= 10 ms. (15.2)

Spiking is implemented in the model by defining a threshold voltage Vth such that

the neuron is said to emit a spike at time tspk whenever V (t = tspk) = Vth = −50

mV. Refractoriness is taken into account by clamping the voltage to a reset value

Vr = −60 mV for a time tre f = 2 ms after each spike, i.e., if V (t = tspk) = Vth, then

V (t ′) = Vr for t ′ ∈ (t+spk, tspk + tre f ). When the neuron is inserted in a network, I(t)
represents the total synaptic current, which is assumed to be a linear sum of the

contributions from each individual pre-synaptic cell.

15.2.2 Temporal structure of the afferent synaptic current

We will start with the simplest description of the interaction between the pre- and

post-synaptic neurons. It amounts to assuming that each pre-synaptic spike causes

an instantaneous change in post-synaptic voltage which is independent of the current

value of this voltage, and depends only on a parameter J measuring the strength of the

synapse (more precisely, J is the amount of positive charge entering the membrane

due to the spike). If C neurons synapse onto this cell, each with an efficacy Ji (i =
1, . . . ,C), then the current into the cell can be represented as

I(t) =
C

Â
i=1

Ji Â
j

d (t − t i
j), (15.3)

where t i
j is the time of the jth spike from the ith pre-synaptic neuron. If the neuron

is initially at rest, and a pre-synaptic cell fires a single spike at time t = 0, then by

integrating Equation (15.1) one obtains

V (t) = VL +
Ji

Cm
exp

(

− t

tm

)

Q(t), (15.4)

where Q(t) is the Heaviside function, Q(t) = 0 if t < 0 and 1 if t > 0. Thus, the

post-synaptic potential (PSP) produced by each pre-synaptic spike consists of an

instantaneous “kick” of size J̄i = Ji/Cm followed by an exponential decay with time

constant tm. For example, if the unitary charge is Ji = 0.04 pC, and Cm = 0.2 nF,

then the kick size is J̄i = 0.04/0.2 = 0.2 mV.

We consider a neuron receiving synaptic input from a large pool of CE excitatory

and CI inhibitory cells. We make two important assumptions regarding the activity

of these inputs: first, that each of them fires spikes according to a stationary Poisson

process, i.e., with a constant probability of emitting a spike per unit time. Second,

that these Poisson processes are independent from cell to cell, i.e., the occurrence of

a spike from any given cell does not give any information about the firing probability

of any other neuron. These assumptions will need to be verified at the network level

for the theory to be self-consistent (see Section 15.3).
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We denote the average firing rate of each excitatory (inhibitory) input j = 1,
. . . , CE,I , as nE j

(nI j
), and the efficacy of the corresponding excitatory (inhibitory)

synapse as JE j
(JI j

). For simplicity, we first assume that all the rates and synapse

from each pre-synaptic population are identical, i.e., nE j
= nE and JE j

= JE for all j,

and similarly for the inhibitory population.

In this simple situation, the temporal average of the total current is constant in

time and given by

< I(t) > ≡ mC =
CE

Â
j=1

JE j
nE j

−
CI

Â
i=1

JIi nIi = CEJE nE −CIJI nI . (15.5)

For a Poisson process s(t) of rate n , < (s(t)−n)(s(t ′)−n) >= n d (t − t ′). Thus,

using the fact that the inputs are Poisson and independent, the connected two point

correlation function of the total current is given by

< (I(t)− < I >)(I(t ′)− < I >) > =

[

CE

Â
j

J2
E j

nE j
+

CI

Â
i

J2
Ii

nIi

]

d (t − t ′)

= (CE J2
E nE +CIJ

2
I nI)d (t − t ′)

≡ s 2
Cd (t − t ′). (15.6)

15.2.3 The diffusion approximation

In principle, the next step would be to solve the dynamics of the depolarization as

described in Equation (15.1) in the presence of the stochastic current I(t). As it is,

this task is still too difficult, so we will make one further approximation, namely to

replace the point process I(t), by a process Ī(t) with the same mean and two-point

correlation function as I(t), such that the voltage response V (t) to Ī(t) becomes con-

tinuous (instead of discrete as a result of the synaptic kicks) in time. The idea is

to make the size of the voltage kicks J̄E,I ≡ JE,I/Cm small, while at the same time

increasing their overall frequency by increasing CE,I (notice that since the sum of

two Poisson processes is another Poisson process, I(t) can be considered the differ-

ence of two Poisson processes of rates CE nE and CI nI respectively). For a cortical

neuron, since it receives a large number of pre-synaptic contacts, each of which con-

tributes only to a small fraction of the voltage distance between rest and threshold,

one expects this approximation to be plausible and give accurate results.

Since the inputs to our cell are assumed to be stochastic, the temporal evolution of

V (t) is probabilistic. The fundamental object for the description of the dynamics of

the membrane potential is the probability density r(V,t|V0,t0) for V (t) ∈ [V,V +dV ]
given that V (t0) = V0. If we consider our averages to be carried out over an en-

semble of identical neurons, each with a different realization of the stochasticity,

r(V,t|V0, t0) can be considered a “population” density, so that r(V, t|V0,t0)dV is the

fraction of neurons among the ensemble with membrane potentials in [V,V + dV ]
given that all neurons were at V0 at t = t0. In the Appendix, we present an intu-

itive derivation of a differential equation which governs the temporal evolution of
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r(V,t|V0, t0) in the presence of the stochastic input I(t) (see e.g., [49, 54, 97, 99] for

more details). Such equation reads

∂
∂ t

r(V,t|V0,t0) =
•

Â
n=1

(−1)n

n!

∂ n

∂V n
[An r(V,t|V0,t0)], (15.7)

where

A1(V ) = − (V −VL)

tm

+(J̄ECE nE − J̄ICI nI) =

= − (V −VL)

tm

+
mC

Cm

≡− (V −Vss)

tm

A2 = (J̄E
2
CE nE + J̄I

2
CI nI) = (

sC

Cm

)2 ≡ s 2
V

tm

An = (J̄E
n
CE nE +(−1)nJ̄I

n
CI nI) n = 3,4, . . . (15.8)

where An are the infinitesimal moments of the stochastic process. The infinitesi-

mal moments completely specify the dynamics of r(V,t|V0,t0). The drift coeffi-

cient A1 captures the deterministic component of the temporal evolution of V (t);
Vss = VL + mC/gL is the steady-state voltage in the absence of stochasticity. The dif-

fusion coefficient A2 measures the fluctuations of V (t). In the absence of threshold,

the variance of the depolarization is s 2
V /2 = s 2

Ctm/(2C2
m).

In what is referred to as the diffusion approximation, An for n > 2 are assumed

to be negligible and set to zero [97, 117]. Looking at Equations (15.8), one can see

under which conditions this will be a valid approximation. Since the infinitesimal

moments depend on powers of the kick size times their overall rate, one expects the

approximation to be appropriate if the kick size is very small but the overall rate is

very large, in such a way that the size of all moments of order higher than two be-

come negligible in comparison with the drift and diffusion coefficients. In particular,

in the next sections we show how, in the limit of infinitely large networks, if the

synaptic efficacies are scaled appropriately with the network size, the approximation

can become exact.

We will for now take it for granted, and focus on the properties of Equation (15.7)

when only the first two infinitesimal moments are non-zero. The resulting equation

is called the Fokker-Planck equation for r(V,t|V0,t0), and reads

∂
∂ t

r(V,t|V0, t0) =
∂
∂V

[
(V −Vss)

tm

r(V, t|V0,t0)]+
s 2

V

2tm

∂ 2

∂V 2
[r(V,t|V0, t0)]. (15.9)

The process described by this equation, characterized by a constant diffusion co-

efficient D = s 2
V /(2tm) and a linear drift, is called the Ornstein-Uhlenbeck (O-U)

process (see e.g., [123]). It describes the temporal evolution of V (t) when the input

to the neuron is no longer I(t), but

Ī(t) ≡ mC + sCh(t), (15.10)
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where h(t) is called a white noise process. It can be defined heuristically as a random

variable taking values

h(t) = lim
dt→0

N(0,
1√
dt

) (15.11)

for all t independently, where we have defined N(a ,b ) is a Gaussian random vari-

able of mean a and variance b 2. The mean and two-point correlation function of

the white noise process are therefore, < h(t) >= 0 and < h(t)h(t ′) >= d (t − t ′)
respectively. In effect, we are now replacing Equation (15.1) by

Cm

dV (t)

dt
= −gL(V (t)−VL)+ mC + sCh(t), (15.12)

or

tm
dV (t)

dt
= −(V (t)−Vss)+ sV

√
tmh(t). (15.13)

This is called the white-noise form of the Langevin equation of the process V (t).
It has the appeal that it is written as a conventional differential equation so that the

dynamics of V (t) is described in terms of its sample paths, rather than in terms of the

temporal evolution of its probability distribution, as in the Fokker-Planck Equation

(15.9). In general, the practical use of the Langevin equation is that it provides a

recipe for the numerical simulation of the sample paths of the associated process.

Developing Equation (15.13) to first order one obtains

V (t + dt) = (1− dt

tm

)V (t)+Vss

dt

tm

+ sV

√

dt

tm

N(0,1). (15.14)

Assuming that dt/tm is small but finite, Equation (15.14) provides an iterative pro-

cedure which gives an approximate description of the temporal evolution of V (t).
This scheme is general and can be used for any diffusion process. For the O-U pro-

cess in particular, in the absence of threshold Equation (15.9) can be solved exactly.

The population density of this process is a Gaussian random variable with a time-

dependent mean and variance [97, 123], so that

r(V,t|V0,t0) = N
(

Vss +(V0 −Vss)exp(− t−t0
tm

), sV√
2

[

1− exp(− 2(t−t0)
tm

)
]1/2

)

.
(15.15)

Using this result one can find an exact iterative procedure for the numerical simula-

tion of the process. Assuming V0 is the value of the depolarization in the sample path

at time t, e.g., V0 = V (t), the depolarization at a latter time t + Dt will be

V (t + Dt) = Vss +(V(t)−Vss)exp(− Dt
tm

)

+ sV√
2

[

1− exp(− 2Dt
tm

)
]1/2

N(0,1).
(15.16)

This update rule is exact for all Dt [54].
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In Figure 15.1, sample paths of V (t ) in the presence of the original input current

I (t ) obtained by numerical integration of Equation (15.1) are compared with sample

paths in the presence of the effective input Ī (t ), obtained using Equation (15.16). As

illustrated in Figure 15.1, tre f = 2 ms after emitting a spike, V (t) begins to integrate

its inputs again starting from Vr until it reaches Vth. The first time V (t) reaches

Vth is called the ‘first-passage time’ (denoted by Tf p). Taking the refractory period

into account, the whole interval between consecutive spikes is called the inter-spike

interval (ISI). Therefore, the statistics of ISIs can be analyzed using the theory of

first-passage times of the Ornstein-Uhlenbeck process [97, 117].

15.2.4 Computation of the mean firing rate and CV

The Fokker-Planck Equation (15.9) can be rewritten as a continuity equation by

defining

S(V,t|V0,t0) ≡− (V −Vss)

tm

r(V,t|V0,t0)−
s 2

V

2tm

∂
∂V

r(V, t|V0,t0)], (15.17)

so that Equation (15.9) becomes

∂
∂ t

r(V,t|V0,t0) = − ∂
∂V

S(V,t|V0,t0). (15.18)

Thus, S(V,t|V0,t0) is the flux of probability (or probability current) crossing V at

time t. To proceed, a set of boundary conditions on t and V has to be specified for

r(V,t|V0, t0). First one notices that, if a threshold exists, then the voltage can only

be below threshold and can only cross it from below (the threshold is said to be

an absorbing barrier). The probability current at threshold gives, by definition, the

average firing rate of the cell. Since r(V > Vth,t|V0,t0) = 0, the probability density

must be zero at V = Vth, otherwise the derivative would be infinite at V = Vth and

so would be the firing rate according to Equation (15.17). Therefore, we have the

following boundary conditions

r(Vth,t|V0,t0) = 0 and
∂
∂V

r(Vth,t|V0,t0) = −2n(t)tm

s 2
V

, (15.19)

for all t. The conditions at V = −• ensure that the probability density vanishes fast

enough to be integrable, i.e.,

lim
V→−•

r(V,t|V0,t0) = 0 and lim
V→−•

V r(V, t|V0,t0) = 0. (15.20)

Since the threshold is an absorbing boundary, a finite probability mass is con-

stantly leaving the interval (−•,Vth). Under this condition, there is no stationary

distribution for the voltage, i.e., r(V,t|V0,t0) → 0 as t → •. In order to study the

steady-state of the process, one can keep track of the probability mass leaving the

integration interval at t, and re-inject it at the reset potential at t + tre f . This injection
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Figure 15.1

Leaky integrate-and-fire neuron model in response to stochastic inputs. (A). Sample

paths of the membrane potential V (t) in response to a stochastic current I(t) obeying

Equation (15.3) with Poisson spike trains, with J̄E = J̄I = 0.2 mV, CE = CI = 1000,

nE = 9 Hz, nI = 0.5 Hz. The resulting steady-state voltage is Vss = −53 mV (thin

solid line) with a standard deviation of s 2
V /2 = 1.38 mV (thin dotted line). Three

sample paths (different colors) are shown from the moment when the neuron starts to

integrate its inputs (tre f = 2 ms after the previous spike) until V (t) reaches threshold

for the first time. The time it takes for this to happen is called the first passage time

and the total time in between two consecutive spikes is the inter-spike interval (ISI).

Threshold (Vth = −50 mV) is shown as a thick dashed line (Continued).
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Figure 15.1

Inset: Snapshot of the blue sample path from 323 to 326 ms shows the 0.2 mV

discontinuities in V (t) due to the synaptic inputs. (B) Current in top panel averaged

over 1 ms time bins. Each point represents the average current into the neuron in the

previous millisecond. For clarity of presentation, consecutive points are joined by

lines. Right. Histogram of currents from left panel. The smooth blue line represents

the distribution of (1/Dt)
∫ t+Dt

t Ī(t ′)dt ′, where Ī(t) is the current into the cell in the

diffusion approximation, Equation (15.10), and Dt = 1 ms. (C) Same as A, but with

inputs now described by the diffusion approximation. The macroscopic structure of

the sample paths is very similar. The differences between the Poisson input and the

diffusion approximation can only be appreciated by looking at the inset.

of probability represents an extra probability current Sreset(V,t), that adds to the cur-

rent S(V,t|V0,t0) associated to the sub-threshold dynamics of V (t). Taking this into

account, one can rewrite the Fokker-Planck equation like

∂
∂ t

r(V,t|V0,t0) = − ∂
∂V

[S(V,t|V0,t0)+ Sreset(V,t)]. (15.21)

Since this injection only results in a change of probability mass in V = Vreset , the new

current is given by

Sreset(V,t) = n(t − tre f )Q(V −Vreset). (15.22)

To find the solution for the steady-state distribution rss(V ), we insert expression

(15.22) into the Fokker-Planck equation (15.21), and look for time independent so-

lutions by setting the left hand side of this equation to zero,

∂
∂V

[
(V −Vss)

tm
rss(V )]+

s 2
V

2tm

∂ 2

∂V 2
rss(V ) = −n d (V −Vreset). (15.23)

Solving this equation with the boundary conditions (15.19-15.20), one obtains the

following expression for the steady-state distribution [24]

rss(V ) =
2n tm

sV

exp

(

− (V −Vss)
2

s 2
V

)

∫

Vth−Vss
sV

V−Vss
sV

Q(x− Vr −Vss

sV

)ex2

dx. (15.24)

The function rss(V ) gives the fraction of cells in a non-refractory state with depo-

larizations in (V,V + dV ) in the steady state. Taking into account also the fraction

n tre f of neurons in a refractory state, the steady state firing rate n can be found by

the normalization condition
∫ Vth

−•
rss(V )dV + n tre f = 1. (15.25)

Plugging expression (15.24) into this equation and solving for n one gets

1

n
= tre f + tm

√
p

∫

Vth−Vss
sV

Vr−Vss
sV

ex2

(1 + erf(x))dx, (15.26)
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Figure 15.2

Firing rate (A) and CV (B) of the LIF neuron as a function of the mean current mC for

three values of the effective standard deviation in the voltage sV = 0 .1 mV (solid),

1 mV (dashed) and 4 mV (dot-dashed). (C) CV as a function of the mean firing

rate when mC is varied as in the three curves in A-B. The parameters of the cell are

Cm = 0 .2 nF, gL = 20 nS (tm = 10 ms), tre f = 2 ms, VL = −70 mV, Vth = −50 mV

and Vr = −60 mV.

where erf(x ) = 2 / 
√

p
∫ x

0 e
u2 

du.

Once the firing rate is known, the following recursive relationship between the

moments of the first-passage time distribution of the Ornstein-Uhlenbeck process

(see e.g., [117]) can be used to find < T 2
f p  >

s 2
V

2

d2 < T k
p f  >

dx2
+(Vss − x )

d < T k
f p  >

dx
= −k < T k −1

f p >, (15.27)

where x = Vr. Given that < Tf p  > = 1 /n in Equation (15.26), the CV of the ISI is

given by [19]

CV 2 ≡
< T 2

f p  > − < Tf p  >
2

< Tf p  >2 
= 2p n 2

∫ Vth−Vss
sV

Vr −Vss
sV

dxex2
∫ x

−•
dyey2 

(1 + erf(y )). (15.28)

In Figures 15.2A-B we plot the mean firing rate and CV of the LIF neuron as given

by Equations (15.26,15.28), as a function of the mean current mC for various values

of the effective standard deviation in the voltage sV . The firing rate (Figure 15.2A)

is a monotonic increasing function of the average current. Qualitatively, it starts

to rise when the average current comes within a standard deviation of the current

threshold, defined as Ith ≡ gL(Vth−VL), and shown as a vertical dashed line in Figure

15.2A. It increases supra-linearly with mC for sub-threshold mean currents, and sub-

linearly when the mean current is above threshold, eventually saturating at 1/tre f .

Therefore, for a wide range of values of sV , mC ∼ Ith is close to the point where the

curvature of n(mC) changes sign. The deterministic current threshold Ith also marks
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the transition between two different behaviors of the CV (Figure 15.2B). When the

mean input is sub-threshold (mC < Ith), spike discharge is triggered by fluctuations in

the current, and spike trains are irregular. Therefore, in this regime, the CV is high,

close to one. For supra-threshold mean current (mC > Ith), the CV decays to zero

and spiking becomes regular. The sharpness of this transition depends on sV . When

the fluctuations are small, the transition is very sharp, so as soon as the neuron starts

firing, it does so in a regular fashion. For large values of sV the transition is smooth

(and if sV is large enough the CV can first increase noticeably from one for mC < Ith,

not shown), so the neuron fires initially irregularly and becomes progressively more

regular as mC becomes much larger than Ith. In Figure 15.2C, the CV is plotted as

a function of the firing rate for three values of sV as mC is increased gradually. In

general, when the firing rate increases as a result of an increase in the mean current,

the CV decreases. This decrease is faster with smaller fluctuations.

15.2.5 Effect of synaptic time constants

So far, we have assumed that the post-synaptic currents (PSPCs) are delta-functions,

without any duration or temporal kinetics. In reality, synaptic currents rise and decay

with time constants that range from 1 ms to several hundred ms. To incorporate a fi-

nite time constant of post-synaptic currents into the theoretical framework described

in the previous section, we consider a variable I(t) which, upon arrival of a spike at

tspk, evolves according to

tsyn
dI(t)

dt
= −I(t)+ Jd (t− tspk). (15.29)

For non-zero tsyn, it is now I(t) that has a discontinuous jump of size J/tsyn when a

pre-synaptic spike arrives. For t > tspk, I(t) decays exponentially back to zero with

a time constant tsyn. Importantly, the total area under this PSC is J independently

of the value of tsyn. The previous scheme can therefore be recovered continuously

by letting tsyn → 0. Now, instead of injecting an instantaneous charge J for every

spike, we spread this same amount of charge over a time tsyn. The effect of this on

the voltage is to smoothen the rise of the PSP. Now the PSP is continuous and given

by

V (t) = VL +

(

J

Cm

)

tm

tm − tsyn

[

exp(− t

tm

)− exp(− t

tsyn

)

]

Q(t − tspk), (15.30)

with a rise time tsyn and a decay time tm. If the membrane and the synaptic time

constants are equal, the PSP has the shape of an a-function

V (t) = VL +

(

J

Cm

)

t

tm

exp(− t

tm

)Q(t − tspk). (15.31)

The most important effect of a non-zero synaptic constant on the Fokker-Planck

scheme presented above is the appearance of temporal correlations in the afferent

current. The total synaptic input becomes a process with mean < I >= mC, and an
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exponential two-point correlation function CC(t,t ′) ≡< (I(t)− < I >)(I(t ′)−
< I >) > given by

CC(t,t ′) = (s 2
C/2tsyn)exp(−|t − t ′|/tsyn). (15.32)

Using once again the diffusion approximation to replace the input to I(t) by a Gaus-

sian process with the same mean and correlation function, and defining d I(t) =
I(t)− mC, the Langevin equations of the process now read

tm
dV (t)

dt
= −(V(t)−Vss)+

d I(t)

gL

(15.33)

tsyn
d

dt
d I(t) = −d I(t)+ sCh(t). (15.34)

Although V (t) is not Markovian anymore (knowledge of I(t), in addition to V (t),
is needed to determineV (t +dt) probabilistically),V (t) and I(t) together constitute a

bi-variate Markov process [54, 99]. From Equations (15.33, 15.34) one can therefore

derive a Fokker-Planck equation characterizing the evolution in time of the joint

probability of V and I. However, the presence of temporal correlations in I(t) makes

the calculation of the firing rate much more involved than for the simple Ornstein-

Uhlenbeck case and, indeed, the mean first-passage time can only be obtained in the

case where tsyn ≪ tm, using perturbation theory on the parameter k ≡
√

tsyn/tm ≪ 1

[23, 34, 40, 61, 67]. We present here only the final result: the firing rate is given by

nsyn(k) = n + ka sV

(

∂n

∂Vth

+
∂n

∂Vr

)

+ O(k2), (15.35)

where n is the firing rate of the white noise case, Equation (15.26),

a = −z (1/2)/
√

2 ∼ 1.03

and z is the Riemann zeta function [2]. Note that the firing rate calculated in [23]

does not include the term proportional to ∂n/∂Vr, because of the approximation

made in that paper, namely the neuron was assumed to be in the sub-threshold

regime, in which the dependency of the mean firing rate on the reset potential is

very weak.

Another way to write Equation (15.35) is to replace the threshold Vth and Vr in the

expression for the mean first-passage time obtained for a white noise current (15.26),

by the following effective k-dependent expressions

V
e f f

th = Vth + sV ak (15.36)

V e f f
r = Vr + sV ak. (15.37)

This first order correction is in good agreement with the results from numerical

simulations for tsyn < 0.1 tm. To extend the validity of the result to larger values

of tsyn, a second order correction can be added to the effective threshold, with co-

efficients determined by a fit to numerical simulations with values of tsyn up to tm
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[23]. A finite synaptic time constant leads to synaptic filtering of the pre-synaptic

inputs which, in general, leads to a reduction in post-synaptic firing rates [23]. This

effect is more pronounced for sub-threshold mean currents, since in this regime the

neuronal firing results from the fluctuations in the current which can be filtered out

by the synapse. Note that the effect of increasing tsyn is to spread out in time the

same amount of charge influx into the cell. Since charge is constantly leaking out

of the cell membrane, the longer tsyn, the lower the overall magnitude of the voltage

fluctuations.

Finally, one can also compute perturbatively the firing rate in the large synaptic

time constant limit [83]. An interpolation between the two limits gives rather accu-

rate results in the whole range of all synaptic time constants. A similar approach has

been used to compute the firing rate of another simple spiking neuron, the quadratic

neuron [22].

15.2.6 Approximate treatment of realistic synaptic dynamics

Real synaptic currents can depart in at least three ways from the currents consid-

ered until now: (i) individual post-synaptic currents can in some circumstances sum

non-linearly, due to receptor saturation; (ii) post-synaptic currents are voltage depen-

dent, because synaptic activation occurs as conductance change rather than current

increase, and because the maximal conductance can itself be voltage-dependent; (iii)

multiple synaptic time scales are present, due to the different kinetics of the AMPA,

GABAA, and NMDA receptors. We first describe the standard biophysical model for

describing post-synaptic currents (see also e.g., [33, 120]), and then discuss sepa-

rately how the three issues can be dealt with using approximate treatments.

15.2.6.1 Biophysical models of post-synaptic currents

Synaptic activation opens ion channels in the post-synaptic cell. The amount of

current flowing through these channels is proportional to the product of the number

of open channels times the driving force of the synaptic current:

Isyn(t) = gsyn(V ) s(t)(V (t)−Vsyn), (15.38)

where gsyn(V ) is the (possibly voltage-dependent) maximal conductance, s(t) is a

gating variable measuring the fraction of open channels at the synapse and Vsyn is the

synaptic reversal potential. The term V −Vsyn is the driving force of the synapse, and

it determines its polarity, i.e., whether a synaptic current is depolarizing (V −Vsyn <
0) or hyper-polarizing (V −Vsyn > 0). In the presence of a driving force term, all

synaptic inputs are voltage-dependent.

We consider two types of kinetic schemes for the gating variable s(t). If the un-

derlying dynamics of the synaptic channels is fast compared with the typical firing

rates of the spike trains at the synapse, the synapse is usually far from saturation and

a linear kinetic scheme is appropriate. Additionally, in this situation the rise time of

the post-synaptic currents (PSCs) is so fast that it can be considered instantaneous,
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so that the kinetics can also be approximated by a first order system, i.e.,

ds(t)

dt
= − s(t)

ts

+ Â
k

d (t − tk), (15.39)

where Âk d (t − tk) represents the pre-synaptic spike train arriving at the synapse.

The average fraction of open channels is linear in the firing rate n across the synapse

s̄ = tsn . Since s(t) is a fraction, i.e., necessarily less than one, this description is

appropriate as long as n ≪ 1/ts. We will use it for the description of GABAAR- and

AMPAR-mediated transmission, which have synaptic time constants of tGABAA
= 10

ms, and tAMPA = 2 ms [13, 15, 58, 72, 127, 129]. This approximation is reasonable if

n < 1/tGABAA
= 100 Hz.

If the underlying channel dynamics is of the order of, or slower, than the typical

inter-spike intervals of the spike trains crossing the synapse (which is the case for

the NMDAR-mediated PSPcs, with a time constant of 50− 100 ms), the channels

decay slowly in between spikes, and a few spikes in a train at hight frequencies can

recruit a fraction of open channels close to unity. In this case, the effect of subsequent

spikes is bounded by the saturation of all post-synaptic receptors, hence spikes sum

non-linearly. Also, for slow channel dynamics, the PSC rise times are on the order

of the fastest time-scales of the system (a few milliseconds), and can no longer be

neglected. A non-linear, second order scheme, provides an accurate description of

the kinetics of the gating variable s(t) in these conditions:

ds(t)

dt
= − s(t)

t decay
+ ax(t)(1− s(t)) (15.40)

dx(t)

dt
= − x(t)

t rise
+ Â

k

d (t − tk). (15.41)

For slow synaptic dynamics, the average gating variable is no longer a linear function

of the pre-synaptic rate unless the firing rate is only a few Hz.

15.2.6.2 Average gating variable vs. rate in the non-linear model

An immediate consequence of this non-linear summation is that the average value

of the gating variable becomes a non-linear function of the average firing rate of the

spike train through the synapse. This function depends on the statistics of the spike

train. If the spike train is regular, an approximation can be obtained by replacing

Âk d (t − tk) by the mean firing rate n of the spike train in Equation (15.41). In this

case the average of the gating variable becomes

s̄ =
t n

1 + t n
, (15.42)

where the effective time constant is equal to t = triset decaya .
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Figure 15.3

Average fraction of open NMDA channels as a function of the pre-synaptic firing

rate. The solid (dashed) line, calculated with Equation (15.43) (Equation (15.42)),

corresponds to the case when the spike train at the synapse is Poisson (periodic).

If the spike train is Poisson, the expression for s̄ is [25]

s̄ =
n t

1 + n t

(

1 +
1

1 + n

•

Â
n =1

(−a trise )nTn

(n + 1 )!

)

≡ y (n )

Tn =
n

Â
k =0

(−1 )k

(

n

k

)

t rise (1 + n t)

t rise (1 + n t)+ ktdecay 
. (15.43)

We will use this description for NMDAR-mediated transmission, with parameters

t decay
NMDA = 100 ms, t rise

NMDA = 2 ms, and a = 0.5 KHz. The effective NMDA time

constant is thus tNMDA = 100 ms. In Figure 15.3, the average gating variable of an

NMDA synapse is plotted as a function of the average pre-synaptic firing rate n , for

the case of a regular and a Poisson input spike train. Note that, due to the saturation

term on the right of Equation (15.40), the gating variable starts to saturate when the

pre-synaptic rate becomes larger than ∼ 1/tNMDA ∼ 10 Hz.

15.2.6.3 Voltage-dependence of the post-synaptic currents

A post-synaptic current is voltage-dependent because of its driving force; in addition

the maximal conductance can also be voltage-dependent, as in the case of the NMDA

channels [87].

In general, even if the maximal conductance does not depend on the voltage, the

voltage dependence induced by the driving force term in the unitary synaptic current

(15.38) modifies the previous framework for calculating the output firing rate of the

cell in several ways.

Let us separate the time course of the gating variable into a deterministic compo-

nent, associated to its temporal average (we assume stationary inputs, in which case
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the average of the gating variable is constant), and a fluctuating component due to

the stochastic nature of the spike trains in our model, i.e., ssyn(t) = s̄syn + d ssyn(t).
The unitary synaptic current, Equation (15.38), now becomes

Isyn(t) = gsyns̄syn(V (t)−Vsyn)+ gsynd ssyn(t)(V (t)−Vsyn). (15.44)

The main complication due to the driving force is that now the fluctuating compo-

nent of the synaptic current (second term in the right-hand side of Equation (15.44))

becomes voltage dependent. This multiplicative dependence of the fluctuations on

the membrane potential renders a rigorous treatment of the fluctuations in the current

difficult. To avoid this complication, we replace the voltage by its average V̄ in the

driving force for the fluctuating component of the synaptic current, so that

Isyn(t) ∼ gsyns̄syn(V (t)−Vsyn)+ gsynd ssyn(t)(V̄ −Vsyn). (15.45)

The deterministic part of the current gsyns̄syn(V (t)−Vsyn) can be dealt with easily

by noting that gsyns̄syn can be absorbed in the leak conductance, and gsyns̄synVsyn can

be absorbed in the resting membrane potential VL.

The resulting effect on neuronal properties is an increase in the total effective leak

conductance of the cell

gL → gL + gsyns̄syn, (15.46)

which is equivalent to a decrease of the membrane time constant from tm = Cm/gL,

to t e f f
m = Cm/(gL + gsyns̄syn) = tm/atm . Thus, the synaptic input makes the neuron

leakier by a factor equal to the relative increase in conductance due to synaptic input

(atm = 1 + s̄syngsyn/gL). The resting (or steady-state) membrane potential is also

re-normalized

VL → gLVL + gsyns̄synVsyn

gL + gsyns̄syn

, (15.47)

and becomes a weighted average of the different reversal potentials of the vari-

ous synaptic currents, where each current contributes proportionally to the relative

amount of conductance it carries.

Voltage-dependence of NMDA channels. For NMDA channels to open, bind-

ing of neurotransmitter released by the pre-synaptic spike is not enough. The post-

synaptic cell must also be sufficiently depolarized to remove their blockade by mag-

nesium. It is conventional to model this using a voltage-dependent maximal conduc-

tance [66]:

gNMDA(V ) =
gNMDA

(1 +([Mg2+]/g)exp(−bV (t))
≡ gNMDA

1

J(V (t))
, (15.48)

with [Mg2+] = 1 mM, g = 3.57 and b = 0.062. To be able to incorporate this ef-

fect into the framework described in the previous sections, we linearize the voltage

dependence of the NMDA current around the average voltage V̄ , obtaining

V (t)−VE

J(V (t))
∼ V (t)−VE

J(V̄ )
+ (V (t)− V̄)

J(V̄ )−b (V̄ −VE)(1− J(V̄))

J2(V̄ )

+ O((V (t)− V̄)2)+ . . . (15.49)
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This linear approximation is very accurate for the range of values of V (t ) between

reset and threshold [25]. Using it, the non-linear voltage-dependent NMDA current

can be emulated by a linear current with a renormalized maximal conductance and

reversal potential. Defining

INMDA (t ) ≡ ge f f
NMDA

sNMDA (V (t ) −V
e f f
E ), (15.50)

the renormalized parameters read

ge f f
NMDA

= gNMDA

J ( V̄ ) − b ( V̄ −VE )(1 − J ( V̄ ))

J2 ( V̄ )

V
e f f
E = V̄ − 

gNMDA

g
e f f
NMDA

(

V̄ −VE

J ( V̄ )

)

. (15.51)

To give a qualitative idea of the properties of the linearized NMDA current, using

VE = 0 mV and  ̄V = −55 mV, one obtains g
e f f
NMDA ∼ −0 .22gNMDA and V

e f f
E ∼ −81.8

mV. Since the slope of the I −V plot for the original current is negative at voltages

near the average depolarization of the neuron, the effective NMDA conductance is

negative. However, since the effective reversal potential is lower than the cell’s typi-

cal depolarization, the total effect of the effective NMDA current is depolarizing, as

it should.

Calculation of the average voltage V̄ . To complete our discussion of the voltage-

dependence, we need to compute the average voltage V̄ , that enters in Equation (15.45)

and Equations (15.51). This can easily be done using Equation (15.24). The result is

V̄ =
∫ Vth

−•
V [rss (V )+ n tre f d (V −Vr )]dV =

= Vss − (Vth −Vr )n te f f
m − (Vss −Vr )n tre f . (15.52)

15.2.6.4 Fluctuations in the synaptic current in the case of multiple synaptic

time scales

The results of Section 15.2.5 can be applied when a single time scale is present in

synaptic currents. This is obviously not the case when fluctuations are due to AMPA,

GABAA and NMDA currents. In the absence of rigorous results for fluctuations with

multiple time scales, one has to resort to an approximation. The approximation is

based on the fact that the longer the synaptic time constant, the more the fluctuations

of the gating variable will be filtered out (see Section 15.2.5). Therefore, we ex-

pect the fluctuations in the GABAA and NMDA currents to be smaller in magnitude

than those associated to the AMPA currents. We thus neglect their contribution and

assume that d sNMDA(t) = d sGABA(t) ∼ 0.

15.2.6.5 Summary: firing statistics of a neuron with realistic AMPA, GABAA

and NMDA synaptic inputs

Here, we summarize the description of a LIF neuron that receives CE excitatory

synaptic inputs and CI inhibitory synaptic inputs (Figure 15.1), with synapses de-
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scribed by individual conductances g jAMPA
and g jNMDA

, j = 1,2, ...,CE ; g jGABA
, j =

1,2, ...CI). In the presence of these inputs, Equation (15.1) now reads

Cm
dV (t)

dt
= − gL(V (t)−VL)−

−
[

CE

Â
j=1

g jAMPA
s jAMPA

(t)+
g jNMDA

s jNMDA
(t)

J(V (t))

]

(V (t)−VE)−

−
[

CI

Â
j=1

g jGABA
s jGABA

(t)

]

(V (t)−VI). (15.53)

For simplicity, we again assume that the synaptic conductances and the firing rates

of all pre-synaptic inputs from the same sub-population are identical. Using the

approximations described in the previous sections, this equation becomes

Cm
dV (t)

dt
= − gL(V (t)−VL)−

− CE [gAMPAs̄AMPA] (V (t)−VE)−
− CE

[

ge f f
NMDA

s̄NMDA

]

(V (t)−V
e f f
E )−

− CI [gGABAs̄GABA] (V (t)−VI)+ d I(t), (15.54)

where s̄AMPA = nE tAMPA, s̄GABAA
= nI tGABA and s̄NMDA = y(nE) where the function y is

defined in Equation (15.43), and the fluctuations are described by

tAMPA

d

dt
d I(t) = −d I(t)+ se f f h(t) (15.55)

s 2
e f f = g2

AMPA
(V̄ −VE)2CE s̄AMPAtAMPA. (15.56)

Since all the deterministic components of the current are now linear in the voltage,

the equations describing the membrane potential dynamics can be expressed as

t e f f
m

dV (t)

dt
= −(V (t)−Vss)+

d I(t)

g
e f f
L

(15.57)

tAMPA

d

dt
d I(t) = −d I(t)+ se f f h(t). (15.58)

The effective membrane time constant is

t e f f
m =

Cm

g
e f f
L

= tm

gL

g
e f f
L

, (15.59)

and the effective leak conductance of the cell is the sum of the passive leak conduc-

tance plus the increase in the conductances associated to all the synaptic inputs to

the cell

g
e f f
L = gL + gAMPACE s̄AMPA + ge f f

NMDA
CE s̄NMDA + gGABACI s̄GABA. (15.60)
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In in vivo experiments, it was estimated that, even when neurons fire at low rates

(a few hertz), g
e f f
L is at least 3-5 times larger than gL [32], therefore t e f f

m is 3− 5

shorter than tm. For example, if tm = 10 ms, then t
e f f
m ≃ 2− 3 ms. When neurons

fire at higher rates (leading to larger synaptic conductances), the value of g
e f f
L would

be significantly larger and t e f f
m would be even smaller.

The steady-state voltage Vss now becomes

Vss = [ gLVL + (CEgAMPAs̄AMPA)VE +(CEge f f
NMDA

s̄NMDA)V
e f f
E

+ (CIgGABAs̄GABA)VI ]/g
e f f
L . (15.61)

Note that the steady state potential Vss is bounded between the highest and the low-

est reversal potentials of the four currents to the neuron. In particular, it can never

become lower than VI . Thus, no matter how strong inhibition is, in this model the

average membrane potential will fluctuate around a value not lower than the reversal

potential of the inhibitory synaptic current, e.g., at approximately −70 mV.

Since Equations (15.57) and (15.58) can be mapped identically to Equations (15.33)

and (15.34), one can now use equation (15.26) to compute the firing rate of a neuron,

npost =

⎡

⎣tre f + t e f f
m

√
p

∫

V
e f f
th

−Vss

se f f

V
e f f
r −Vss

se f f

ex2
(1 + erf(x))

⎤

⎦

−1

. (15.62)

where t e f f
m and Vss are given by Equations (15.59-15.61); V

e f f
th and V

e f f
r are given

by Equations (15.36-15.37). Note that now, the average voltage in the steady state

V̄ plays a role in determining the firing rate, through both Vss and se f f . Since V̄ is

related linearly to the firing rate (Equation (15.52)), the firing rate is not an explicit

function of the synaptic input. Even if the inputs are entirely external (feedforward),

and all the synaptic conductances are fixed, V̄ still depends on the post-synaptic firing

rate n itself. Therefore, n must be determined self-consistently.

Equation (15.62) constitutes a non-linear input-output relationship between the

firing rate of our post-synaptic neuron and the average firing rates nE and nI of the

pre-synaptic excitatory and inhibitory neural populations. This input-output func-

tion is conceptually equivalent to the simple threshold-linear or sigmoid input-output

functions routinely used in firing-rate models. What we have gained from all these

efforts is a firing-rate model that captures many of the underlying biophysics of the

real spiking neurons. This makes it possible to quantitatively compare the derived

firing-rate model with detailed numerical simulations of the irregularly firing spiking

neurons, an important step to relate the theory with neurophysiological data.
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15.3 Self-consistent theory of recurrent cortical
circuits

A cortical microcircuit receives afferent inputs and sends efferent outputs down-

stream, thereby information processing is carried out in a ‘feedforward’ fashion.

At the same time, interesting computations may be accomplished by horizontal or

recurrent synaptic connections within the local network. The relative importance

of feedforward versus recurrent processing is likely to be different for each specific

task, and vary from one cortical area to another. In the primary visual cortex (V1),

recurrent synaptic connections are quite abundant [76]; their functional importance

(such as to the generation of orientation selectivity) has been the subject of intense

debate [39, 111]. Recently, there is growing interest in the recurrent networks of

association cortical areas, such as the parietal cortex or prefrontal cortex. This in-

terest was primarily motivated by the observation of ‘working memory neurons’ in

these cortices. In experiments when an animal is required to remember a transient

stimulus cue across a delay period of a few seconds, between the cue presentation

and behavioral response, neurons in association areas display stimulus-selective, el-

evated persistent activity across the delay period [44, 55]. Since the elevated neural

activity can be triggered by a brief input but outlast it for many seconds, persistent

activity cannot be explained by a feedforward mechanism. It has been hypothesized

that persistent activity can be self-sustained by synaptic ‘reverberations’ within a

strongly recurrent local network (see for a review [6, 121]).

We will now discuss how a recurrent network of neurons can be described by

mean-field theory. We will first consider how stationary states of such networks can

be obtained in a self-consistent way. Next we discuss dynamical approaches which

allow an assessment of the stability of the stationary states. Then, an example from

an one-population network of excitatory cells is analyzed in detail, introducing the

concept of bistability by means of a graphical analysis, and relating it to the phe-

nomenon of persistent neural activity in working memory. A more detailed model of

a network for object working memory is then described. Finally, we discuss the pos-

sibility of multi-stability in cortical networks in which both excitation and inhibition

are strong, but roughly cancel each other out.

15.3.1 Self-consistent steady-state solutions in large unstructured net-

works

In a recurrent network, the post-synaptic neuron and its pre-synaptic inputs are part

of the same network, and hence, if the activity in the network is not changing, their

firing activity must, in a statistical sense, be the same. If, as we discussed in Section

15.2, the output firing rate only depends on the average rate of the inputs, then equal-

izing pre- and post-synaptic activity will yield an equation that determines the firing

rates in the possible stationary states of the network. This is a very general necessary

condition that has to be met in any steady-state solution of the network dynamics.
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However, in order for us to be able use the input-output relationship found in

Section 15.2, the dynamics of the network should be such that the network properties

in this stationary states are consistent with the assumptions we made in Section 15.2.

Thus, these assumptions impose several additional conditions that the steady-states

should obey to be truly self-consistent:

• The fluctuations in the inputs must be approximately independent from neuron

to neuron. This condition will be trivially satisfied when the major part of

the noise comes from external independent sources. It will also be satisfied

when the network is sparsely connected, i.e., when the connection probability

between any pair of neurons is weak. In this case, the ‘noise’ term coming

from the recurrent network itself becomes uncorrelated from neuron to neuron

[19, 24, 118, 119].

• The probability of a spike being emitted in the network at any moment must

be constant in time. Thus, the steady state must be stable with respect to

any instability that leads to non-stationary global network activity, such as

synchronized oscillations.

• The neurons must emit approximately as Poisson processes for the input-

output relationship to be valid. This is in general expected to be true when

the average total input to the neurons is sub-threshold, which will be the situ-

ation of interest in our discussion.

Several types of local network connectivity and synaptic structure are conceivable.

They differ mainly in the source of the fluctuations in the synaptic current to the

neurons. One approach is to investigate the behavior of the network as a function of

its size N and of the number of connections per cell C. The strategy is to scale the PSP

size J̄ ≡ J/Cm (a measure of the synaptic strength) with C, and study the behavior of

the network as C → •. An advantage of this procedure is that a) the behavior of the

network is much simpler and easier to analyze in the C = • limit, and b) network

behaviors which are only quantitatively different for finite C, become qualitatively

different as C becomes infinite. Additionally several of the technical assumptions we

had to make in Section 15.2 become exact in this limit.

Alternatively, one can assume that N and C are large but finite. In this case one

does not assume any specific scaling of the PSP size with C, but rather uses the for-

mulas for arbitrary values of these parameters (as in the previous sections) and stud-

ies the behavior of the resulting equations when they take realistic values informed

by the available experimental data. Some of the hypothesis made in the calculations

will only be verified approximately, but the theory will be more directly comparable

to experiments, where C and J/Cm are finite.

In the following subsections we describe the self-consistency equations obtained

in each of these scenarios. For ease of exposition, our discussion will be carried out

in the simplest case of neurons connected through instantaneous synapses, unless

specified otherwise.
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15.3.1.1 Fully connected networks; External noise

In a fully connected network C = N. In such a network, all neurons see essentially

the same recurrent input. In order to obtain a finite mean synaptic input (the ‘mean-

field’) the PSPs are usually assumed to scale as 1/N. In this case, the total synaptic

input has a mean of order 1, and noise of order 1/
√

N. This is apparent in the equa-

tions for the moments of the diffusion process (15.8), where it is clear that in this case

only the first moment remains non-zero as N → •. Thus, the recurrent component of

the synaptic current becomes deterministic. In this framework, noise is assumed to

come from unspecified external sources, and is assumed to be independent for each

neuron.

Let us consider the simple case of a single neural population. We express the input-

output relationship of the cell, Equation (15.62), as npost = f(m(npre),s), making

explicit the dependency of the rate of the post-synaptic cell on the rate of its pre-

synaptic inputs through the mean m and standard deviation s of the fluctuations in

the total afferent current. In the steady-state npost = npre ≡ n , so the self-consistent

relationship can be written as

n = f(m(n),s), (15.63)

where the mean input current m(n) = mext + mrec is the sum of an external tonic cur-

rent mext and of a mean recurrent synaptic current mrec(n). The noise component of

the current comes exclusively from outside the network, i.e., s = sext . The solution

of Equation (15.63) can be obtained graphically by plotting f(m(n),s) vs. n and by

looking at its intersections with the diagonal line [8, 11, 120]. Alternatively, one can

plot the f-I curve n = f(m ,s) vs. m and look at its intersections with n = m−1(m)
vs. m [20]. An example of this kind of analysis is given below. When several popula-

tions are present, the framework is extended by adding one self-consistency equation

per population (again see specific example below).

A general feature of an all-to-all network is that the level of noise is independent

of the activity in the recurrent network. Thus the activity of the neurons is modu-

lated by changes in the mean current they receive. As we shall see below, this has

consequences on the statistics of their spike trains, a consequence that can be tested

experimentally.

15.3.1.2 The balanced state

The all-to-all network architecture with 1/N couplings, though simple, is not very

realistic. In the cortex, synaptic couplings are much stronger than 1/N and neurons

are not fully connected. This motivates the study of networks which are sparsely con-

nected, and with stronger coupling. Let us consider a network in which each neuron

receives C random connections from a total of N neurons. If the network is very

sparse, i.e., if N ≫C, the probability that two neurons receive a substantial fraction

of common inputs becomes very small, so the recurrent inputs in this network will

be effectively uncorrelated between any pair of post-synaptic cells. Since the second

infinitesimal moment of the diffusion process, which measures the fluctuations in the
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synaptic current, scales as CJ̄2 (see Equation (15.8)), to keep the fluctuations finite as

C → •, one should scale the synaptic couplings as J̄ ∼ 1/
√

C. On the other hand, the

mean synaptic input scales as J̄C ∼
√

C and diverges to plus or minus infinity (if the

coupling is excitatory or inhibitory, respectively). Thus, one immediately sees that if

the network is composed of a single excitatory population, the neuron will either be

at saturation or totally silent for large C. To obtain plausible levels of activity in this

framework, one needs, therefore, to introduce an inhibitory population.

Let us write CE = cEC, CI = cIC, where cE and cI are finite. As already antici-

pated, in order to keep the diffusion coefficient A2 finite, the scaling J̄E,I = jE,I/
√

C

must be used. The infinitesimal moments of the stochastic process become

A1(V ) = − (V −Vss)

tm

+
√

C [ jE cE nE − jIcI nI ]

A2 = j2
E cE nE + j2

I cI nI

An = C1− n
2 [ jn

EcE nE +(−1)n jn
I cI nI ] n = 3, . . . (15.64)

In this case, as C → •, all terms of order n > 2 vanish, and Equation (15.7) becomes

identical to the Fokker-Planck Equation (15.9). Therefore, in this case the diffusion

approximation becomes exact. The second term in the drift coefficient A1, which

gives the mean current into the cell, diverges as
√

C. Thus, unless the excitatory

and the inhibitory drives into the cell balance each other to within 1/
√

C, the result-

ing massive excitatory or inhibitory drive will drive the neuron towards saturation,

or total silence. [118] showed, in a recurrent network of binary neurons, that this

balanced state can arise as a dynamically stable state in a very robust way. Using

that neuronal model, a complete description of the temporal fluctuations of activity,

beyond the Poisson assumption that we have been using, can be performed. As we

shall now see, the equations which determine the average firing rate of the excitatory

and inhibitory populations in the balanced state are very general, and applicable to

any single neuron model that assumes that the different synaptic inputs to the cell are

summed linearly.

Let us consider the two population network in which each population receives

Cext
E,I = cext

E,IC excitatory Poisson inputs of rate n ext through synapses of strength J̄ext
E,I =

jext
E,I/

√
C from outside the network. We know that the fluctuating component of the

current will be of order one and the mean inputs will be

mE

Cm

=
√

C [ jEE cEE nE − jEIcEI nI + jext
E cext

E n ext ]

mI

Cm

=
√

C [ jIE cIE nE − jIIcII nI + jext
I cext

I n ext ]. (15.65)

Following the arguments presented in the previous sections, one can now impose that

mE,I be order one, and see whether there is a stable self-consistent solution arising

from this constraint. The simplest case is when C = •, which one expects to be also

qualitatively correct for large but finite networks. In this case, a finite mean current

can only be obtained if the balance is perfect, i.e., if the total excitation and inhibition
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cancel each other precisely. This means that the terms in square brackets in Equation

(15.65) have to vanish identically, leading to a set of two coupled linear equations

[118]

jEE cEE nE − jEIcEI nI + jext
E cext

E n ext = 0

jIE cIE nE − jIIcII nI + jext
I cext

I n ext = 0, (15.66)

which implies that the self-consistent rates of the two populations become a linear

function of the external input

nE = kE n ext + O

(

1√
C

)

; nI = kI n ext + O

(

1√
C

)

. (15.67)

In contrast to a fully connected network, a balanced network dynamics is an intrin-

sic source of noise. In fact, even if the network is purely deterministic (with constant

inputs instead of stochastic Poisson trains), and the external afferents are assumed

to be regular, the balanced network can give rise to chaotic network dynamics and

highly irregular neural activities [118, 119]. The firing rates in this network can,

therefore, be determined self-consistently without making any assumptions about

the specific single neuron model as long as the synaptic currents from different in-

puts are summed linearly. Although this is a quite remarkable result, the linearity of

the self-consistent rates on the external input raises a fundamental problem from a

computational perspective: does this mean that a balanced network cannot subserve

non-linear behaviors such as bistability? Put it differently, can a network be both

bistable and generate its own noise? We will come back to this issue below.

The arguments presented above are valid for synapses modeled as voltage-indepen-

dent synaptic currents. With conductance-based synaptic currents, the situation is

quite different, since in the large C limit, the total synaptic conductance diverges to

infinity, hence effective neuronal time constant tends to zero. In this limit, the mem-

brane potential is slaved to an effective ‘steady-state’ potential that stays finite in that

limit [107]. Thus, there is no more ‘balance’ condition to be fulfilled in this situa-

tion, unless additional hypothesis are used. In any case, the simple balanced network

picture is useful as a metaphor for networks with strong coupling and highly irregu-

lar firing of its constituent neurons. We will use the term ‘balanced network’ in this

loose sense in the following.

15.3.1.3 Large but finite sparse networks

We again assume a large sparse network (N ≫ C) so that the recurrent inputs to

different neurons can still be assumed independent, but we now assume that the

number of connections per neuron C is large (C ≫ 1) but finite, and the coupling

strength to be small (the unitary PSP size J/Cm ≪ (Vth −VL)) but finite [11]. For

example, N ∼ 10,000 and C ∼ 1,000; J/Cm ∼ 0.1− 0.3 mV whereas (Vth −VL) ∼
10− 15 mV. Thus, in this case, both the mean synaptic input and the fluctuations

around it depend on the firing rate of the pre-synaptic neurons. For the case of a

single population the self-consistent equation becomes

n = f(m(n),s(n)) (15.68)
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where the mean and variance of the current are given respectively by

m(n) = mext +CJn (15.69)

s 2(n) = s 2
ext +CJ2n . (15.70)

In this ‘extended’ mean-field theory, not only the mean inputs are included in the

description, but also the fluctuations around the ‘mean-field’ are relevant. As em-

phasized above, this approach is only applicable to network states in which neurons

fire in an approximately Poissonian way, and when the low connection probability

makes the emission processes of neurons essentially uncorrelated. Moreover, since

J and C are finite, this approach is only approximate. However, simulations show it

gives very accurate results when Cn tm is large (several hundreds) and J/(CmVth) is

small (less than several percent), as seem to be the case in cortex [10, 24, 19]. Equa-

tion (15.68) can again be solved graphically to obtain the self-consistent, steady-state

firing rates in the network (see below).

It is straightforward to extend this description to a two population network of

excitatory and inhibitory neurons. The equations are, for finite CE , CI , (E-to-E) JEE ,

(I-to-E) JEI , (E-to-I) JIE , and (I-to-I) JII :

nE = f(mE ,sE) (15.71)

nI = f(mI ,sI) (15.72)

mE = mextE +[CEJEE nE −CIJEI nI ]

mI = mextI +[CE JIE nE −CIJII nI ]

s 2
E = s 2

extE +
[

CEJ2
EE nE +CIJ

2
EI nI

]

s 2
I = s 2

extI +
[

CE J2
IE nE +CIJ

2
II nI

]

. (15.73)

The stationary states of these two population networks and their stability properties

have been studied extensively [11, 19]. Since the number of connections per neu-

ron in these networks is large, they behave qualitatively like the balanced networks

discussed in the previous section.

15.3.1.4 Spatial distribution of activity in finite heterogeneous networks

Mean-field equations have been derived for heterogeneous networks of binary neu-

rons [119] and for heterogeneous networks of noisy LIF neurons [10]. Consider a

network of N neurons in which the probability that two neurons are connected is

C/N ≪ 1. Each neuron will receive C connections on average, and the cell-to-cell

fluctuations in the number of afferents will be order
√

C. In principle, when C is

large, the fluctuations in the number of connections are small compared to the mean.

However, since networks of excitatory and inhibitory cells settle down in a balanced

state in which excitation and inhibition cancel each other out to within 1/
√

C (see

above), the effective average input to the neurons becomes of the same order as its

fluctuations, and this is reflected in wide distributions of firing rates in the steady

states. To calculate this distributions self-consistently one proceeds as follows: The
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temporal average currents can be written as

mE = JEE

NE

Â
j=1

c jn E
j − JEI

NI

Â
j=1

c jn I
j

mI = JIE

NE

Â
j=1

c jn E
j − JII

NI

Â
j=1

c jn I
j , (15.74)

where c j is a binary random variable such that Prob(c j = 1) = CE,I/NE,I ≡ e , and

where we have assumed for simplicity that the excitatory (inhibitory) synaptic effi-

cacies are uniform for each type of connections (JEE , JEI , JIE , JII). The temporal

averages of the current mE,I are now random variables due to the randomness in the

connectivity. Their spatial averages are equal to

m̄E = e [JEENE n̄E − JEINI n̄I ]

m̄I = e [JIE NE n̄E − JIINI n̄I ], (15.75)

where n̄E,I are the average excitatory and inhibitory rates across the population. The

variance of mE,I across the population is

s 2
mE

= e
[

(1− e)
(

J2
EENE n̄ 2

E + J2
EINI n̄ 2

I

)

+ J2
EENE s 2

nE
+ J2

EINI s 2
nI

]

s 2
mI

= e
[

(1− e)
(

J2
IE NE n̄ 2

E + J2
IINI n̄ 2

I

)

+ J2
IENE s 2

nE
+ J2

IINI s 2
nI

]

, (15.76)

with s 2
nE,I

equal to the variance of the spatial distribution of rates across the network.

Since mE,I are the sum of many independent contributions, their distribution will be

approximately Gaussian, so we can write

mE,I(z) = m̄E,I + smE,I z, (15.77)

where z = N(0,1). Rigorously speaking, the randomness in the connectivity will

also induce cell-to-cell variability in the temporal fluctuations in the synaptic current.

However, this effect is weak compared to the effect on the mean, so one can neglect

it and still get very accurate results [10]. We will therefore assume that they are

constant across the population, and close the self-consistency loop by writing the

rates as a function of the mean and variance of the synaptic current

nE,I(z) = f(mE,I(z),sE,I). (15.78)

To estimate the spatial distribution of rates across the network rE,I(n), we thus write

rE,I(n) =

∫

r(z)rE,I(n |z)dz =

∫

r(z)d (n −f(mE,I(z),sE,I))dz. (15.79)

The firing rate distributions obtained in this way agree very well with the results from

numerical simulations [10] and are also qualitatively similar to the wide distributions

of firing rates seen in cortex [70].

© 2004 by Chapman & Hall/CRC



15.3.2 Stability and dynamics

Are the states in which rates are solutions of equations (15.63), (15.68) or (15.71)

and (15.72) stable? In order to answer rigorously this question, one must come back

to the Fokker-Planck approach of Section 15.2.3, and write down the correspond-

ing equation for the distribution of membrane potentials of neurons in the network,

r(V,t|V0, t0), coupled to the average firing rate n(t) through the boundary conditions

[1, 24]. A brief sketch of this approach is provided in the Appendix. Although this is

the rigorous way to assess the stability of the steady-state solutions within the strong

noise framework, analytical investigations of the Fokker-Planck equations are rather

involved, and their numerical resolutions are also complicated [88]. Furthermore,

their generalization to noisy situations with realistic synaptic dynamics is even more

involved [21, 40]. Thus, it is of interest to investigate the possibility of approximat-

ing the dynamics by simpler dynamical equations, such as the Wilson-Cowan-type

equations [126]. It is important to emphasize, however, that each dynamical descrip-

tion is suitable only for certain types of instabilities. For instance, an approximate

dynamics in terms of firing rates cannot predict the instabilities of the network to a

state where neurons are synchronized ‘spike-to-spike’. Once a particular dynamical

description is selected, the stability of the steady states against perturbations which

comply with the assumptions of the chosen dynamical picture can be assessed.

Approximate firing rate dynamics have been found in some situations. For exam-

ple, in weakly coupled networks with long synaptic time constants, one can derive an

equation for the synaptic gating variable s(t) [36, 37]. Let us write Equation (15.62)

as n = f(mV ,sV ), where mV = Vss−VL = m ext
V +CJ̄s(t). We consider a single popu-

lation, fully connected network, with sV = s ext
C

√
tm/Cm = 5 mV. The dynamics for

s(t) reads

ds(t)

dt
= − s(t)

tsyn

+ n(t)

n(t) = f(m ext
V +CJ̄s(t),sV ), (15.80)

where m ext
V = J̄extCextsext is the contribution of the external input to the steady state

voltage. According to this scheme, the firing rate is always at its steady state value

given the input, whereas the synaptic gating variable only follows the rate with its

characteristic time constant tsyn. This approximation is justified for the LIF model,

since it has been shown that the population firing rate follows the synaptic input

instantaneously [21, 40], provided that there is sufficient input noise, and that the

synaptic time constant is comparable to, or longer than, the effective membrane

time constant t e f f
m . To what extent this approximation holds true for the Hodgkin-

Huxley neuron model, or for real neurons, remains to be established. Qualitatively,

the reason is that when there is enough input noise, there is always a significant

fraction of the neurons across the population close enough to threshold and ‘ready’

to respond immediately to a change in current. Thus, it is appropriate to use the

steady-state relationship n = f(mV ,sV ) even if the inputs are not stationary, e.g.,

n(t) = f(mV (t),sV ) = f(m ext
V +CJ̄s(t),sV ), as in Equation (15.80).
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The fixed point of this system is

sss = tsynf (m ext
V +C J̄sss , sV ). (15.81)

To check the stability of the fixed points of this network, the standard procedure is to

consider a small perturbation of a steady state

s = sss + d sexp(l t ), (15.82)

where d s is a small perturbation that grows at a rate l . Stability of the steady state

implies Re(l ) < 0 for all possible perturbations. Inserting Equation (15.82) in Equa-

tion (15.80), we get

l = − 1

tsyn 

+ 
df (mV (s),sV )

ds

∣

∣

∣

∣

s =sss 

. (15.83)

Thus, the stability condition l < 0 is

df(mV (s),sV )

ds

∣

∣

∣

∣

s =sss

<
1

tsyn 

. (15.84)

Equation (15.84) is a condition on the slope of the input-output function f at the

value of the input current given by sss. Since it is more intuitive to work with firing

rates, we can express it as a condition on the slope of f as a funcion of n if we note

that we only need the value of this slope at the steady state. In general

df

dn
=

(

df

ds

)(

ds

dn

)

. (15.85)

Since the output rate is an instantaneous function of s, we can calculate the first term

on the right hand side for all s(t ). The second term we do not know in principle, but

on the steady state sss = tsynnss. Thus

df

ds

∣

∣

∣

∣

s =sss

=
1

tsyn 

df

dn

∣

∣

∣

∣

n =nss 

, (15.86)

so that the stability condition becomes

df (mV (n),sV )

dn

∣

∣

∣

∣

n =nss 

< 1 . (15.87)

Thus, for a fixed point to be stable, the slope of the output rate as a function of the

input rate, should be less than one at the fixed point. This is shown graphically in

Figure 15.4, where f (mV (n ), sV ) is plotted as a function of n , both for an excitatory

network ( J̄ = 0 .5 mV) and an inhibitory network ( J̄ = −0 .5 mV). The external inputs

are adjusted so that there is an intersection with the diagonal at 1 Hz in both cases.

When the network is excitatory (Figure 15.4A; in this case we use m ext
V = 0 mV), the

function f(mV (n),sV ) raises very fast from zero rates to saturation. Thus, the slope
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Figure 15.4

Self-consistent solution of Equation (15.80) and its stability properties. The output

firing rate f(mV (n),sV ) is plotted versus n in two situations. (A) Excitatory network

with m ext
V = 0 mV, J̄ = 0.5 mV. (B) Inhibitory network with m ext

V = 20.4 mV, J̄ =−0.5
mV. Other parameters are: C = 1000, tm = tsyn = 20 ms (Cm = 0.5 nF, gL = 25 nS),

tre f = 2 ms, Vth = −50 mV, Vr = −60 mV, sV = 5 mV. For both types of networks,

there is a self-consistent solution around 1Hz. In the excitatory network, this self-

consistent solution is highly unstable, because the slope of f(mV (n),sV ) vs. n is

much larger than one; in the inhibitory network, the self-consistent solution is highly

stable because of the large negative slope. In a balanced network where inhibition

strongly dominates the recurrent circuit, the slope becomes infinite negative. Note

that in the excitatory network, there are two other solutions: one at zero rate, and one

close to saturation rates (about 500 Hz).
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of f (mV (n ), sV ) is much larger than one at the self-consistent rate nss and this steady

state is, thus, unstable. The conclusion here is that low firing rates are expected to be

hard to achieve in purely excitatory networks unless they are weakly coupled.

On the other hand, when the network is inhibitory (Figure 15.4B; m ext
V = 20.4 mV),

a supra-threshold external input is required to obtain an active network. The function

f now decreases as a function of n (due to the fact that the mean decreases with

n). Equation (15.87) is now trivially satisfied when the coupling is predominantly

inhibitory, J̄ < 0. Hence, a network state at this rate is stable. In the balanced

network of Section 15.3.1.2, inhibition strongly dominates recurrence because it has

to compensate for the external inputs. In this limit, the slope becomes infinitely

negative. Note, however, that this strong stability of the purely inhibitory network is

peculiar to synaptic couplings without latency. In presence of a latency, oscillatory

instabilities appear even in strongly noisy networks [19, 24, 26].

Another simplified rate dynamics which has been frequently used is

t
dn(t)

dt
= −n(t)+ f(m ext

V +CJ̄s(t),sV )

s(t) = tsynn(t), (15.88)

where t remains unspecified. Although the fixed points of the systems described

by Equations (15.80) and (15.88) are the same, this latter scheme neglects the dy-

namics for the synaptic variable, and instead uses an arbitrary time constant for the

process by which the firing rate attains its steady state value. In conditions of high

noise, Equations (15.80) seem, therefore, better suited to describe the time course of

network activity than Equations (15.88).

We can extend Equations (15.80) to allow the description of a network with two

(excitatory and inhibitory) neural populations, with firing rates nE and nI , and with

synaptic latencies. If synaptic activation has a latency of tlE for excitation and tlI for

inhibition, then we have

dsE(t)

dt
= −sE(t)/tsyn,E + nE(t − tlE)

nE(t) = fE(m extE
V +CE J̄EEsE(t)− J̄EICIsI(t),s E

V )

dsI(t)

dt
= −sI(t)/tsyn,I + nI(t − tlI)

nI(t) = fI(m extI
V +CE J̄IE sE(t)− J̄IICIsI(t),s I

V ). (15.89)

Equations (15.89) are Wilson-Cowan type dynamical mean-field equations which

are ‘derived’ from an underlying biophysical description of neurons and synapses.

In principle, the behavior of this model can be compared quantitatively (albeit ap-

proximately) with that of the original large-scale network of irregularly spiking LIF

neurons. One should bear in mind, however, that when time delays are included, the

dynamics become significantly richer, and the analysis more complicated. In fact,

rigurously speaking, in the presence of temporal delays the system becomes infinite-

dimensional, even if one deals with a single population (a function evaluated at t +t ,

© 2004 by Chapman & Hall/CRC



i.e., displaced in time, can be expressed as an infinite series of the time-derivatives of

the function evaluated at t). Still, simplified descriptions of this complicated dynam-

ical system can be used which produce results in good agreement with those from

simulations [21, 26, 40]. In general, the Wilson-Cowan type equations do a good job

of predicting the mean rate instabilities. They predict oscillatory instabilities only

in the above mentioned conditions (large amplitude noise filtered by synapses with

time constants comparable to membrane time constants, see [21, 26, 40]). For small

noise, instabilities not predicted by the rate equations occur, in which neurons are

synchronized ‘spike-to-spike’ (see e.g., [1, 62, 122] and refs therein). For other dis-

cussions about reductions to firing rate equations, see [7, 52, 109]. In a network in

which a significant part of the fluctuations is generated by the network itself, Equa-

tions (15.80-15.88) can also be generalized to include the variance as a dynamical

variable [11]. This approach gives rather accurately the mean rate instabilities in

such networks, but not the oscillatory instabilities induced by the interplay between

the dynamics of the variance and the mean, where the full Fokker-Planck approach

must be used [19].

15.3.3 Bistability in a single population network

We now come back to the fully connected network of NE excitatory cells. As we

have seen in Section 15.3.2 (Figure 15.4), such networks can have more than one

steady-state for the firing rates, provided the excitatory coupling is strong enough.

Thus, an excitatory network can be bistable. In absence of external inputs, and with

linear synapses, bistability typically occurs between one steady state at zero rate and

another one at rates close to saturation. How is this picture affected by realistic

synaptic dynamics? A situation of interest is when synaptic currents are mediated

by saturating NMDA receptors [120]. By the arguments presented above, the fluctu-

ations in these currents are negligible, because of the long decay time constant. In

addition to NE recurrent contacts, each neuron also receives Cext AMPAR-mediated

excitatory synaptic inputs from outside the network. Each of these external inputs

provides spikes according to an independent Poisson process, and the firing rate of

each input is random from a distribution with mean next . Thus, in this particular ex-

ample, all the noise is generated outside the network, and is independent from cell to

cell by construction.

We consider a slightly different dynamical picture from the one introduced in the

previous section in Equation (15.80). The main difference is that, since we want to

include the realistic synaptic dynamics, Equation (15.40), appropriate for the slow

NMDA channel dynamics, the synaptic currents depend now non-linearly on the

firing rates. Following the arguments presented in Section 15.3.2, we use the mean

level of synaptic activity at the recurrent synapses s̄NMDA as the dynamical variable,

since the time constant of the NMDA-mediated currents is the slower time scale of

the system. However, the synaptic activity depends now in a non-linear way on the

input rate. Equations (15.40) and (15.80) suggest seeking a dynamical equation for
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the variable s of the form

ds̄NMDA

dt
= − s̄NMDA

tNMDA

+(1− s̄NMDA)F(n), (15.90)

where the function F(n) is determined in a self-consistent way by the steady state

dependency of s̄NMDA on n (note that we are going directly from the firing rate n to the

s̄NMDA variable. Thus we are neglecting the dynamics associated to the variable x(t)
in Equation (15.41)).

Imposing ds̄NMDA/dt = 0 we obtain

s̄ss
NMDA

=
F(n)

1
tNMDA

+ F(n)
≡ y(n), so that F(n) =

y(n)

tNMDA(1−y(n))
. (15.91)

Inserting this expression back into Equation (15.90), we obtain

ds̄NMDA

dt
= − 1

t e f f
NMDA

[s̄NMDA −y(n)] , (15.92)

where t
e f f
NMDA = tNMDA(1−y(n)), and where n is given by

n =

[

tre f + t e f f
m

√
p

∫

Vth−Vss
sV

Vr−Vss
sV

ex2

(1 + erf(x))dx

]−1

, (15.93)

which depends on s̄NMDA through t
e f f
m and Vss (see Equations (15.61) and (15.59)).

Thus, due to the saturation implicit in Equation (15.90), the effective time constant

of this dynamics depends on the firing rate, and becomes faster at higher pre-synaptic

activity. When the firing rates change slowly enough, this dynamics produces quan-

titative agreement with the results from simulations of the full spiking network [95].

Looking at these expressions, one notices that the dependence of the firing rate on

the mean recurrent synaptic activity is always through the product NE ḡNMDAs̄NMDA ≡
gtots̄NMDA ≡ s̃. The steady states of our dynamics are thus given by the solutions of the

following equation
s̃

gtot
= y(n(s̃)), (15.94)

which correspond to the intersections of the curves given by each side of this equa-

tion plotted as a function of s̃. This equation generalizes Equation (15.63) to the

situation of non-linear synapses. Qualitatively, these intersections correspond to the

points in which the activity at the synapse (the right-hand side of Equation (15.94))

is equal to the feedback provided by the network (the left-hand side of the same

equation), which is a necessary condition for the network to be at a steady state.

The advantage of using s̃ as our variable, is that now the right-hand side of the self-

consistency equation is no longer dependent on the total synaptic conductance gtot,

which measures the gain, or amplification, of the mean activity at a single synapse

by the network. Thus, as gtot is varied, the self-consistent solutions of the dynam-

ics move like the intersections of the two curves in Equation (15.94) as the slope of
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the straight line measuring the network feedback is changed. In Figure 15.5A, the

function y (n (s̃ )) and the line s̃/gtot have been plotted for three values of gtot. This

figure shows that, depending on the value of the gain, the two curves can intersect

either once or three times, allowing for the possibility of several coexisting steady

state solutions.

The next step is to look at the stability of these solutions. It can be done along the

lines of Section 15.3.2. Let us, for brevity use s̄ ≡ s̄NMDA. We rewrite the dynamical

equation as
ds̃

dt
=

1

t
e f f
NMDA 

(gtoty (n (s̃ )) − s̃) ≡ G(s̃), (15.95)

The stability of a steady-state s̃ss is given by the slope of G(s̃) evaluated at s̃ss. If

dG(s̃)

d ̃s

∣

∣

∣

∣

s̃=s̃ss 

< 0 or  
dy (n(s̃))

d ̃s

∣

∣

∣

∣

s̃ =s̃ss

<
1

gtot
(15.96)

then s̃ss is stable. Recall that G( ˜sss ) = 0. If G(s̃) has a negative slope at s̃ss, then it

is positive for s̃ slightly less than s̃ss, therefore s̃ will increase in time according to

Equation (15.95), converging towards s̃ss. Similarly, G(s̃) is negative for s̃ slightly

larger than s̃ss, again s̃ will converge back to s̃ss. Therefore, s̃ss is stable. Conversely,

if the derivative of G(s̃ ) is positive at a steady state, the latter is unstable.

Equation (15.96) implies that to assess the stability of a steady state solution

graphically by looking at the intersections of the two functions in Equation (15.94),

the stable fixed points will be those in which the sigmoid function has a lower slope

than the straight line at the intersection.

Figure 15.5A shows that if the recurrent gain gtot is lower than the dashed line

marked by gLow
tot , the slope 1/gtot is too high and there is only one fixed point with

low, but non-zero activity, which is always stable. On the other hand, when the

recurrent gain is higher than the dashed line marked by g
High
tot , the only fixed point,

which is also always stable, corresponds to a state of high activity. In between, there

is a range of values of gtot in which three fixed points coexist. The ones with higher

and lower activity are stable (marked with a filled circle), and the intermediate one

(open circle) is unstable. When gtot lies within this range, the network is said to be

bistable. The intermediate unstable point corresponds to the steady-state which we

showed in Figure 15.4 with excitatory connections.

As shown in Figure 15.5C, when the network is bistable, transient inputs can

switch the state of the network between its two stable states. The network can, in

this sense, be used as a working memory device (see next section), as the presence or

absence of an input to the network can be read out from its activity after the stimulus

is no longer physically present. One atractive feature of this encoding scheme is its

robustness. Indeed, the activity state of the network does not reflect the occurrence

of a single stimulus, but rather of a class of stimuli. In our example, quite a different

range of amplitudes of the applied current will lead to the same steady-state. The

network is said to use ‘attractor dynamics’, since each fixed point attracts the state of

the network from a wide range of initial conditions. This concept can be understood

by imagining that the state of the network, in our example the gating variable s̄, slides
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Figure 15.5

Bistability in a simple, one-population recurrent network. (A). Mean synaptic ac-

tivity as a function of the total recurrent synaptic input s̃ = gtot s̄NMDA (sigmoid; thick

solid line) and same quantity when s̃ is interpreted as the total recurrent network

feedback (thin dashed lines). g
High
tot = 50 nS and gLow

tot = 34 nS correspond to the

highest and lowest values of the network gain in which the network is bistable for

this network parameters. The crossings of a straight line corresponding to an in-

termediate value of gtot = 40 nS with the sigmoid, correspond to the 3 steady state

solutions in the bistable regime. Stable (unstable) solutions are marked with a filled

(open) circle. (B). Mean firing rate of the neurons as a function of the total recur-

rent synaptic input. The fixed point solutions in A are shown. Note the low rate

( ∼ 40 Hz) of the stable high activity state, and the non-zero rate (∼ 1 Hz) of the

stable low activity state. Network parameters are: Cext next = 0.7 KHz, gext
AMPA

= 3.1
nS. Parameters for the single cells are like in Figure 15.1. Synaptic parameters are

given in Section 15.2.6.2. (C). Time course of activity (top) in the network when

gtot = 40 nS. Brief current pulses (bottom) switch the network between its two stable

states. (D). Potential function associated to the dynamics of Equation (15.92) for

three different values of gtot, corresponding to the situations where there is only one

low activity steady-state (upper curve), one high activity steady-state (lower curve)

and for a bistable network (middle curve). The values of sNMDA at the steady states

are given by the minima of the potential function. Inset: blown-up version of the

low activity region of U shows the disappearance of the low activity minimum of the

potential as gtot increases.
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down a hilly landscape. The valleys (or minima) correspond to the steady-states, and

the class of stimuli which are attracted to each steady-state (called its basin of attrac-

tion) are the set of all locations in the landscape which roll down to the same minima.

Indeed, the dynamics (15.92) can be re-written as

d ̄s

dt
= −dU (s̄)

d ̄s
. (15.97)

This dynamics describes the movement of a point particle at location s̄ sliding down

the landscape defined by the function U (s̄) in the presence of high friction. U (s̄) is
also called the potential of the dynamics, and it is such that the speed of the particle at

location s̄ is equal to minus the slope of U at that location. In Figure 15.5D we show

three examples of the U (s̄) for values of the gain at the recurrent connections gtot such

that the network has either a single high (gtot > gHigh
tot ) or low (gtot < gLow

tot ) activity

steady-state, and for an intermediate value of gtot, where the network is bistable. For

low enough gain, U (s̄) has a single minimum, and as the gain increases, a second

minimum at a higher value of s̄ appears. These two minima coexist for a range of

values of the gain, but if the gain is high enough, the low activity minimum disap-

pears (see inset in Figure 15.5D).

Several features deserve comments: First, in contrast to the network of linear

synapses of Section 15.3.2, the firing rate in the high activity fixed point is about 40

Hz (Figure 15.5B), much less than saturation rates, even in the absence of inhibi-

tion. This rate is in the upper range of the available physiological data for persistent

activity(20-50 Hz). This relatively low rate is due to the saturation properties of the

NMDA receptor. Second, the low activity state has a low firing rate of about 1Hz.

This is due to the presence of noise in the system. In the absence of noise, i.e.,

when the synaptic current is constant in time, the input-output function of the neuron

becomes a sigmoid with a ‘hard’ threshold. For currents below this threshold the

output rate is identically zero (see trend for decreasing noise levels in Figure 15.2)

and in the supra-threshold regime it increases as a sub-linear function of the input

current until saturation at 1 /tre f is reached. In these conditions, when the network

is bistable, the low activity state is necessarily zero. When noise is included in the

description, the firing rate can be non-zero even in the sub-threshold regime: the

membrane potential, which hovers around its steady state below threshold, crosses

this threshold once in a while as a result of the random fluctuations in the input cur-

rent [8, 118]. Such a state of low, fluctuation-driven activity has been suggested to

correspond to the background or spontaneous activity state found in the cortex [11].

The fact that the low activity state is stable in Figure 15.5 is due to the fact that

the excitatory feedback is unrealistically weak (see caption of Figure 15.5). When

excitatory feedback is stronger, the non-zero low rate state becomes unstable, and

inhibition becomes necessary to achieve stability at low rates [11]. Hence, a more

detailed model is required.

© 2004 by Chapman & Hall/CRC



15.3.4 Persistent neural activity in an object working memory model

As we have just demonstrated, the self-consistency equations whose solutions pro-

vide the firing rates of the different neural populations in the steady-states of the

recurrent network can, in some cases, have multiple solutions for the same set of

parameters and external inputs to the network. When this is the case, transient exter-

nal inputs can switch the state of the network among its possible stationary solutions.

Conceptually, the network can now function as a short-term or working memory sys-

tem, as its state of activity is no longer uniquely specified by the ‘static’ variables of

the system (cellular or network parameters, unspecific external inputs, etc) but also

carries information about the recent history of transient inputs to the network. More

generally, a recurrent network can display multi-stability, whereby a resting state of

spontaneous activity coexists with multiple attractor states (stable neural firing pat-

terns), each of which encodes a different sensory stimulus. Therefore, the identity

of a transient input is encoded and stored in the level of spiking activity of a distinct

neural assembly in the recurrent circuit. Such stimulus-selective persistent activity

has been documented during electrophysiological experiments on behaving monkeys

during working memory tasks [35, 41, 42, 43, 44, 45, 46, 47, 48, 55, 56, 73, 79, 81,

85, 86, 89, 100, 124].

We now describe in some detail an object working memory model that has been

analyzed both at the mean-field level and with numerical simulations. For the model

to comply with the basic phenomenology of the data from object working memory

experiments, the simple bistable network presented in the previous section has to be

considerably enlarged. First, local networks in association cortices are likely to be

endowed with much more than two attractors. The experiments in the temporal lobe

with a large number of stimuli (up to 100) [81, 85, 86, 100] suggest the following

picture:

• In the absence of external stimulation, networks in the temporal lobe are in a

spontaneous activity state, in which all neurons fire at low levels of several Hz;

• Upon presentation of a particular familiar stimulus, a small sub-population of

neurons in localized areas of the temporal lobe exhibit persistent activity; this

fraction of neurons can be estimated to be around 1% or a few % [81]. Thus,

the representation of familiar stimuli in these areas is sparse;

• Representations of different stimuli have very small overlaps, since neurons

typically respond to only one or a few images in the set of shown images [81].

A model for object working memory based on these observations has been built in

several stages [9, 11, 12, 21]. The model of [11] is a network of randomly connected

excitatory and inhibitory neurons much as the one discussed in Section 15.3.1.3.

In addition, the excitatory population is divided in sub-populations, where a given

sub-population is assumed to have a strong visual response to a particular stimulus.

A schematic representation of the architecture of the model is shown in Fig-

ure 15.6A. The network consists of two large pools of interacting pyramidal cells

and interneurons. Both populations are fully connected with themselves and with
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each other. The pyramidal cell population is itself divided in several sub-populations.

Since the experiments show that single cells only respond to a very small fraction of

the stimulus set (approximately 1%), the model assumes that each sub-population

shows selective responses to a single stimulus, and that the different sub-populations

are non-overlapping. In addition to this set of ‘selective’ sub-populations, there is

a sub-population of neurons which are not selective to any particular object. All

neurons also receive unspecific excitation from outside the network. In the model

of [11], synaptic transmission was assumed to be instantaneous. [25] proposed a

model with more biologically plausible synapses (a full description of the spiking

neuron model, as well as the complete set of mean-field equations, can be found in

that paper). In the model, excitatory transmission is both AMPAR- and NMDAR-

mediated, though with a dominant contribution of the NMDA component at the re-

current synapses and a dominant AMPA component on the external inputs, while

inhibitory transmission is mediated by GABAA receptors. Neurons belonging to

the same selective sub-population are assumed to be frequently co-activated by the

visual input which drives them effectively, and, therefore, the excitatory synapses

connecting them are assumed to have undergone Hebbian synaptic potentiation, so

that the synaptic strength at these recurrent connections is supposed to be larger than

average.

As shown in Figure 15.6B, when the strength of these synapses is increased to be

approximately twice the average (baseline) excitatory coupling strength, there is a

sudden ‘bifurcation’ at which bistability emerges in each selective sub-population.

Therefore, a graded difference in the coupling strength could lead to qualitatively

different network behaviors (e.g., with or without persistent activity). Again the

firing rate in the elevated persistent activity state is fairly low, in agreement with the

data. Also, although the firing rates predicted by the mean-field model (solid curve)

slightly overestimate the results from the direct simulations of the original spiking

neural network (filled dots), the agreement between the two is reasonably good.

An example of the behavior of the network when the sub-populations are bistable

is shown in Figure 15.6C. The upper part of the figure shows rastergrams from se-

lected neurons from each of the sub-populations, and the lower part shows the popu-

lation firing rate for each of the sub-populations. During the time interval marked as

sample, the firing rate of the external inputs to the sub-population marked as num-

ber 1 is transiently elevated. The resulting increase in activity in this sub-population

persists during a delay of several seconds, self-sustained by recurrent synaptic re-

verberations. At the end of the delay, an excitatory input to the whole network, sig-

naling the behavioral response [29], switches the network back to the resting state.

The persistent delay activity slightly increases the excitatory drive to the interneuron

population, which also increases its activity. As a result, other sub-populations not

selected by the transient input are more strongly inhibited during the delay.

15.3.5 Stability of the persistent activity state

The stability of the persistent state in a single population network is easily read out

from a graph such as the one of Figure 15.5. In networks with several populations,
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Figure 15.6

Behavior of an object working memory network. (A). Schematic representation of

the network. Circles represent the different sub-populations. Labels on the arrows

indicate the type of synaptic connection between them. The width of the arrows

qualitatively represents the strength of the corresponding synaptic connections. (B).

Bifurcation diagram showing the onset of bistability as a function of the strength

of the connections within a selective sub-population relative to a baseline. Lines

are the prediction from the mean-field version of the model, with solid (dashed)

lines representing stable (unstable) steady states. Squares (spontaneous activity) and

circles (elevated persistent activity state) are results from simulations of the spiking

network (continued).
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Figure 15.6

(C). Time course of the activity of the different sub-populations of the network in

a delayed match-to-sample protocol. The network is initially in a resting state with

low and uniform spontaneous firing activity. A brief stimulus to one of the neural

sub-populations (indicated in red) triggers persistent activity that is self-sustained

by recurrent reverberations and that is confined to that neural sub-population. This

memory is erased, and the network is turned off, by another transient input during

the match+response time epoch. Top: rastergrams. Bottom: firing rate histogram

across the corresponding sub-populations. Red: selective sub-population receiving

a transient external excitation during the sample period. Green, yellow, blue and

brown: sub-populations selective to other stimuli. Cyan: sub-population of non-

selective excitatory cells. Black: inhibitory interneurons. (See color insert.)

such as the excitatory-inhibitory networks, the analysis becomes more complicated,

and the stationary state with the highest firing rate can destabilize through an oscilla-

tory instability. Oscillatory synchrony can then disrupt bistability, or multi-stability.

Conditions for stability of a persistent activity state in presence of synchrony can

be understood from the simple following intuitive argument. Consider a network of

neurons which, upon the arrival of a transient excitatory input, switch their activity

from a few Hz in spontaneous activity to an elevated activity state of 20-40 Hz. Let

us consider a single neuron firing at 25 Hz in this persistent activity state. This neu-

ron fires, on average, every 40 ms. Since the tonic external input has not changed, in

order for the neuron to maintain this firing rate, the recurrent network must provide

enough current during the next few tens of milliseconds after each spike so that the

cell will spike again. How can this be achieved? A possibility is that the network

operates in an asynchronous state, where the assumed statistical independence of the

firing times in different neurons is satisfied. In such a state, the fraction of neurons

firing a spike across the network is, on average, constant. This property implies that,

if the number of cells is large enough, the network will generate a tonic input, con-

stant in time on average, which can sustain the firing of the single cells in a stable

manner.

On the other hand, when there is some degree of synchrony, the fraction of cells

firing at any given time starts to fluctuate on average, even for a very large network

size. Consider the extreme case in which, at some instant of time, the whole network

is perfectly synchronized, i.e., all neurons fire at the same time. Unless some mecha-

nism exists which can keep a memory of this burst of activity and somehow delay it,

turning it into an input to the cells at a later time, the activity of the network would

decay to the resting spontaneous state [60]. A mechanism working in that direc-

tion could be implemented by the long time constant of NMDAR-mediated synaptic

transmission [120]. Intuitively, according to Equation (15.29), if a synapse has time

constant tsyn the current into the cell resulting from a single spike at tspk is still 37%

of its maximum at tspk + tsyn. This delay between the occurrence of an excitatory

event, and its effect on the post-synaptic cell could, therefore, be beneficial for the

stability of persistent activity in the presence of synchrony.
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In addition, a long synaptic time constant for excitation might help to stabilize

the asynchronous state itself. Oscillations easily occur in networks of interacting

excitatory and inhibitory neurons, if the time constant of inhibition is longer than

that of excitation (see e.g., [26, 120]). The intuitive reason is that, if such a network

is perturbed from its steady state, the excitation will build up before the inhibition

has time to suppress it. This excess of excitation will result in an increased inhibition

which eventually overcomes the excitation, resulting in an overall suppresion of the

excitation in the network. A decreased drive to the inhibitory cells leads to a decay of

their activity, releasing the excitatory population and the rhythmic cycle starts again.

When the excitation is slower, this type of oscillatory instability is prevented, as any

excitatory perturbation results in an increased inhibition before the excitation has

time to build up.

An example of the effect of changing the effective time constant of excitation

on the stability of persistent activity is shown in Figure 15.7, for the object-working

memory network described above. Remember that in this network, GABAAR- medi-

ated inhibition has a time constant of 10 ms, and AMPAR- and NMDAR-mediated

excitation have time constants of 2 ms and 100 ms respectively. In the Figure, the

temporal course of the average activity of a sub-population of selective cells after

the application of a transient excitatory input is shown, as the relative contributions

of AMPA and NMDA receptors at each excitatory synapse is varied systematically,

thus taking the network from a scenario in which excitation is slower than inhibition

to one in which it is faster. When the AMPA:NMDA ratio of the charge entry per

unitary EPSC is 0.1 (measured at V = −55 mV, near threshold), the average activity

is fairly constant in time and shows only small amplitude fluctuations which do not

destabilize the persistent state. As the ratio is progressively increased, excitation

becomes faster, and the amplitude of the fluctuations grows. However, due to the

delay effect mentioned above, the state of persistent elevated activity is still stable for

fairly large amplitude fluctuations in the average activity (see Figure 15.7c). Indeed,

in these conditions, the power spectrum of the average activity shows a clear peak

near 40 Hz (see inset in Figure 15.7e). Although the issue of whether the persistent

activity observed in the cortex is indeed oscillatory is controversial, a similar spectral

structure has been recorded in local field potentials of area LIP [90] (but see [30]).

As expected, when excitation becomes too fast, the amplitude of the oscillations

becomes too large, and NMDAR-mediated excitation is unable to bridge the gap

between activity bursts, with the resulting destabilization of the persistent activity

state, and the network’s working memory behavior is lost (Figure 15.7D).

These arguments raise the possibility that NMDAR-mediated excitation, or more

generally, slow synaptic or cellular recurrent excitation could help to prevent os-

cillatory instability resulting from the excitation-inhibition loop, thereby contribut-

ing to the stability of persistent activity generated in recurrent cortical networks.

Other factors can of course affect this stability. For instance, mutual inhibition be-

tween interneurons can in some conditions reduce the propensity of instability in

an excitation-inhibition loop [62, 116]. This effect can be understood using a two-

population rate model like Equations (15.89). When there is no synaptic latency, it

can be shown by the linear stability analysis of a steady state that the I-to-I coupling

© 2004 by Chapman & Hall/CRC



0

50

100

F
ir
in

g
 r

a
te

 (
H

z
)

AMPA:NMDA=0.10

0

50

100

F
ir
in

g
 r

a
te

 (
H

z
)

AMPA:NMDA=0.20

0

50

100

F
ir
in

g
 r

a
te

 (
H

z
)

AMPA:NMDA=0.31

0 7000
0

50

100

F
ir
in

g
 r

a
te

 (
H

z
)

AMPA:NMDA=0.44

Sample Match+RSample Match+RSample Match+RSample Match+RSample Match+RSample Match+RSample Match+RSample Match+RSample Match+RSample Match+RSample Match+RSample Match+RSample Match+RSample Match+RSample Match+RSample Match+RSample Match+RSample Match+RSample Match+RSample Match+RSample Match+R

0

50

100

150

200

F
ir
in

g
 r

a
te

 (
H

z
)

3000 3500
−60

−50

−40

−30

−20

−10

0

V
m
(m

V
)

0 50 100
Frequency (Hz)

P
o

w
e

r

�

�

�

�

�

Figure 15.7

Stability of pesistent activity as a function of the AMPA:NMDA ratio. (A-D). Tem-

poral course of the average firing rate across a sub-population of selective cells in

the network of Figure 15.6 after transient excitatory input, for different levels of the

AMPA:NMDA ratio. This ratio is defined as that of charge entry through a unitary

post-synaptic current at V = −55 mV (near threshold). As the ratio is increased,

oscillations of a progressively larger amplitude develop, which eventually destabi-

lize the persistent activity state. (E). Snapshot of the activity of the network in C

between 3 and 3.5 seconds. Top: Average network activity. Bottom: Intracellular

voltage trace of a single neuron. Inset. Power spectrum of the average activity of

the network, showing a peak in the gamma (∼ 40 Hz) frequency range. Persistent

activity is stable even in the presence of synchronous oscillations.
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effectively reduces the time constant of the inhibitory population dynamics; faster in-

hibition thus reduces the likelihood for this type of oscillatory instability [112, 116].

However, it is important to emphasize that the oscillatory instability with reduced

NMDA:AMPA ratio in our working memory models (Figure 6 and Figure 6 in [29])

was observed in the presence of strong I-to-I synaptic connections. The same result

was also obtained with a spatial working memory model of Hogkin-Huxley-type

conductance-based neurons [112]. Note that the models of [116] and [62] did not

include synaptic latency, which has been shown to favor fast synchronous oscilla-

tions in a purely inhibitory network [21, 19, 26]. In general, stronger NMDA:AMPA

ratio promotes asynchrony. Stronger I-to-I coupling without latency contributes to

network asynchrony, but with synaptic/cellular latency could lead to oscillatory in-

stability.

Other factors which might also contribute to the stability of persistent activity

states include intrinsic ionic currents with long time constants [112], or bistability at

the single cell level [28, 75]. Finally, heterogeneities, both in cellular and in connec-

tivity properties, and noise, tend to desynchronize the network.

15.3.6 Multistability in balanced networks

Can bistability, or multi-stability, occur in a balanced network? Furthermore, can

multistability occur between several states in which all neurons fire in a Poissonian

fashion? These questions are interesting from a theoretical point of view, but are also

raised directly by available data suggesting that the irregularity in the output spiking

activity of cortical neurons is as high in high-rate persistent activity states as in the

low-rate spontaneous activity state [30].

The balanced model of Section 15.3.1.2 seems incompatible with multistability,

since the rates depend linearly on the external inputs through Equation (15.66). In-

deed, unless the matrix of gain coefficients in equations (15.66) is singular (which

requires a biologically unrealistic fine-tuning of parameters) these equations have a

single solution for a fixed external input and are, consequently, incompatible with

bistability. This is the manifestation of a general problem: any non-linear behavior

in balanced networks requires a significant amount of fine-tuning in network param-

eters.

Several partial solutions to this problem can be suggested. First, in networks with

finite connectivity such as the one of Section 15.3.4, multistability can be found even

though the background state of the network is qualitatively a ‘balanced state’ (strong

coupling, irregularly firing neurons). In fact, the multistability properties of such

networks can be understood in the limit C → •, J ∼ 1/
√

C, if the relative size f

of the selective sub-populations are taken to be small compared to the rest of the

network, f ∼ 1/
√

C: in this case, the leading order to the mean input in both cue and

non-cue populations vanishes due to the ‘balance’ condition, but the corrections to

the leading order are finite and different between the cue and non-cue populations,

leading to a non-linear equation for the rates in the cue population (see [20] for a

discussion of the sparse coding limit f → 0). Thus, multistability is relatively easily

achieved. The intuitive picture is that, while the global activity of the network is set
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by the ‘balance’ condition set by the strong global inhibition, the activity in the small

selective excitatory sub-population becomes essentially uncoupled from the rest of

the network. Consequently, this sub-population behaves essentially as the weakly

coupled excitatory network of Section 15.3.3. However, a direct consequence of

this scenario is that the CV in persistent activity must be lower than in spontaneous

activity, because the mean inputs are larger in the cue population, while the variance

remains unchanged (see Figure 2). Thus, there is no multistability between several

‘balanced states’.

It is therefore possible for small sub-populations within a larger balanced network

to be bistable in a robust way, but at the price that the small sub-populations them-

selves do not remain balanced in both steady-states. Is there an alternative? The idea

would be to find a scenario in which the variance in the cue population also increases

in a significant way from spontaneous to persistent activity, so that the increase in

CV induced by the increase in variance counterbalances the decrease induced by the

increase in the mean. One can even imagine a scenario in which the mean does not

change, but the variance does. Such a scenario was introduced in [93, 94] for a net-

work with finite connectivity C. It is a generalization of the model of [11] (see Figure

15.6A) in which the interneurons are also subdivided in selective sub-populations.

Such a network is divided functionally in ‘columns’ or ‘micro-columns’ composed

both of excitatory and inhibitory populations. Both populations are activated in a

selective way when their preferred stimulus is shown. Consequently, in a persistent

state, both excitatory and inhibitory populations raise their firing rates. A similar

phenomenon was observed in experiments monitoring the activity of neurons in the

prefrontal cortex of primates during working memory tasks. Recordings of nearby

putative pyramidal cells and interneurons showed that the two sub-populations in-

crease their firing rate during the delay period [92]. This has lead to the postulate of

a micro-columnar organization of the pre-frontal cortex [92].

The ‘micro-columnar’ network has been studied at the mean-field level [93, 94].

In order to do a systematic investigation of the spiking variability resulting from dif-

ferent types of network organizations, the mean-field theory has been extended to be

self-consistent both at the level of rates and CVs. In the previously discussed models,

Poisson spiking statistics was an assumption, so the irregularity in the spiking activ-

ity in the pre-synaptic spike trains was ‘fixed’. In [93] this assumption was relaxed

by assuming that the neuronal spike trains can be described as renewal processes

characterized by their mean rate and CV (a renewal point process is characterized

by independent ISI intervals from an arbitrary distribution). When the statistics of

the renewal spike trains are close to the Poisson case, the output rate and CV of the

post-synaptic neuron can be calculated as a function of the rate and CV of its inputs,

leading to steady state solutions in which both the rate and the CV are calculated

self-consistently. Using this framework, multistability in the micro-columnar net-

work described above has been studied using simple heuristic firing rate dynamics

similar to Equation (15.88). The synaptic interactions between neurons depend on

whether they belong to the same or to different micro-columns, and again, selec-

tive micro-columns are characterized by stronger excitatory recurrent interactions.

In Figure 15.8, we show the time course of activity of a bistable micro-column in
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Bistability in a balanced multi-columnar cortical circuit. (A). Temporal evolution of

the firing rate from the excitatory and inhibitory sub-populations of a column. At

t = 500 ms, a transient excitatory input was applied to both sub-populations. The

elevated activity state in response to this input outlasts the stimulus offset. Note

the elevated firing rate of the inhibitory sub-population also. (B). Same as above

for the CV of the two sub-populations. The CV increases with the firing rate. (C).

The figure shows the quantities mV = mC/gL and sV =
√

tm sC /Cm of the neurons in

the excitatory sub-population. They correspond to the mean and standard deviation

of the current, but are expressed in mV to facilitate comparison with the distance

between Vth and VL, equal to 20 mV (dashed line). The mean input current remains

essentially the same for both the resting state and persistent state, regardless of their

very different firing rates. The increase in firing rate in response to the stimulus is due

to an increase in the amplitude of the fluctuating component of the current, hence the

increase in CV above. In this network, both stable states are in the balanced regime.
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response to a transient input. Panels A and B show the average rate and CV of

the excitatory and inhibitory sub-populations in the micro-column. In this network,

since the micro-column remains balanced in the elevated rate state, the CV of both

sub-populations remains close to one in the delay period. Both the similar courses

of activity of the excitatory and inhibitory populations, and the high CV during el-

evated persistent activity are consistent with measurements from prefrontal neurons

in working memory tasks [30, 92]. The reason for this behavior is that the mean

current to both sub-populations (see the lower panel for the case of the excitatory

sub-population) remains approximately constant as the network switches between

its two stable states. The increase in firing rate is due to an increase in the fluctu-

ations in the current. Indeed, as a result of this, the CV actually increases in the

elevated firing rate state.

This increase in CV is in contrast to the decrease in CV in models in which the

network is not balanced in the elevated activity state, like the networks described

in the previous two sections. This qualitative difference between relative change in

spiking variability in these scenarios should, in principle, be experimentally testable,

although the small difference in CV observed in Figure 15.8 would be hard to detect

in experimentally recorded spike trains, due to limited sampling problems. Further

experimental data are needed to resolve this issue.

As suggested at the beginning of this section, this scenario still suffers from a fine

tuning problem. The range of multistability in the network with balanced persistent

state is extremely small for realistic numbers of inputs per cell [93]. In fact, such

multistability vanishes in the large C limit, even if the sub-populations are taken

to scale as 1/
√

C, because in that limit the difference in the fluctuations between

spontaneous and persistent activity vanishes.

The fundamental problem which precludes robust bistability in balanced networks

is the different scaling of the first two moments of the input current with the number

of inputs and with the connection strength. While the mean scales as JC, the variance

scales as J2C. It is thus impossible to find a scaling relationship between J and C

that keeps both moments finite when C → •.

It is possible that cross-correlations in the activity of different neurons might pro-

vide a solution to the ‘linearity’ problem of balanced networks. The different scaling

of the mean and the variance is a direct consequence of the fact that we have as-

sumed the different inputs to the cell to be independent, so that the variance of their

linear sum is the sum of their variances. If the inputs to the cell showed signifi-

cant correlations, the variance would now scale as (JC)2, in which case any scaling

relationship between J and C would have the same effect on the mean and on the

variance. It would therefore be of great interest to incorporate cross-correlations in a

self-consistent manner into the picture we have been describing in this chapter.
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15.4 Summary and future directions

In this chapter, we have presented analytical mean-field techniques that can be used

to study the collective properties of large networks of spiking neurons. In analyz-

ing the self-consistent steady-states of these networks, we observed that the self-

consistency equations have sometimes multiple stable states. This leads quite natu-

rally to the the interpretation of these networks as models of working memory sys-

tems. The methods discussed here help to understand in detail in which conditions

multistability can be achieved in large networks of spiking neurons. The results that

have been discussed are of course only the current status of a rapidly growing field.

Extensions of both the mean-field techniques and of network architectures for work-

ing memory are either already done, under way, or should be done in the near future.

We discuss here several of these possible extensions.

• More realistic single neuron models. The LIF lacks several features of real

neurons. First, it lacks any sub-threshold resonance phenomena [65]. General-

izations of LIFs with several variables have been introduced that possess such

sub-threshold resonance properties and can be studied analytically in stochas-

tic contexts along the lines of Section 15.2.3 [98]. Second, it lacks an intrinsic

spiking mechanism. The firing rate of neurons with intrinsic spike genera-

tion mechanism can be studied in the context of the ‘quadratic integrate-and-

fire’ neuron [22], and even more realistic neurons can be studied analytically

(Fourcaud et al. SFN 2002 abstract). Furthermore, mean-field theory can be

extended to a recurrent network of Hodgkin-Huxley-type conductance-based

single neurons [109]. This generalization may be important, e.g., the network

stability may be different depending on whether single neurons are described

by Hogkin-Huxley-type models or leaky integrate-and-fire models [26, 50].

• More realistic synaptic dynamics. The mean-field description of realistic

synaptic interactions can be improved in at least two ways. First, synaptic

fluctuations act through conductance changes, which are multiplied with the

driving force (V −Esyn ) to yield synaptic current. Therefore the noise is mul-

tiplicative. We have sidepassed this difficulty by replacing V with its average,

so that the noise term becomes additive to the voltage equation. It would be

desirable to be able to deal analytically with multiplicative noise. Second,

synapses display short-term depression and facilitation [113, 131]. Mean-field

models that incorporate synaptic depression have been investigated [115, 120],

but the implications of short-term plasticity to recurrent networks, especially

to working memory models, still await to be fully explored.

• Extension to correlations between neurons. In this chapter we have al-

ways assumed that the spiking activity of different cells was independent.

Although the experimentally observed cross-correlations are relatively weak

[14, 31, 74, 130], they might have a large impact on the input-output relation-
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ship of a neuron, since when the correlation coefficient of the inputs to a cell

is not zero, the fluctuations in its total afferent synaptic are proportional to the

number of inputs to the neuron, instead of to its square root, as in the mod-

els we have described. Although the analytic treatment of cross-correlations

is technically complicated, a systematic characterization of their effect on the

rate and variability of simple spiking neuron models is becoming available

[38, 82, 101, 102]. The real challenge is to extend the framework here pre-

sented in such a way to include cross-correlations in a self-consistent way.

A first step in this direction has been taken by [78], where cross-correlation

functions in a recurrent fully connected recurrent network of spike response

neurons [53] have been calculated.

Finally, let us end with a note on recurrent networks that display a continuum of

stable neural firing patterns. Some working memory systems are believed to encode

features of sensory stimuli that are analog quantities (such as spatial location, di-

rection, eye position, frequency, etc). Such systems have been hypothesized to be

implemented in the brain by recurrent neural networks endowed with a continuous

family of attractor states. Heuristic firing-rate models of this kind have been widely

investigated [5, 16, 28, 63, 91, 103, 125, 128]. More recently, more biophysical con-

tinuous attractor models of spiking neurons have been developed for spatial working

memory [29], parametric working memory [80] and short-term memory in the ocu-

lomotor system [104]. Theoreticians have also begun to analyze mean-field models

that are derived from these spiking neural network models [80, 104, 109]. Further

progress in this direction will considerably advance our theoretical understanding of

recurrent cortical networks, and shed insights into the cellular and network mecha-

nisms of working memory.
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Appendix 1: The diffusion approximation

We will follow the exposition by [97]. We consider the case of a single post-synaptic

neuron which receives CE excitatory and CI inhibitory independent Poisson inputs

of rates nE and nI respectively, each delivering a charge JE and JI per spike though

an “instantaneous” synaptic current (see above). For this discussion, we measure

voltages with respect to VL, i.e., VL = 0. We will also measure the effect of each

pre-synaptic spike by the size of the resulting instantaneous jump in the membrane

potential J̄E,I = JE,I/Cm. Since the process is Markov, it satisfies

r(V,t + Dt|V0,t0) =

∫ •

−•
dV ′r(V, t + Dt|V ′,t)r(V ′,t|V0, t0). (15.98)
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If Dt is sufficiently small, so that Dt ≪ tm, and so that the probability of receiving

more than one spike in Dt is negligible, and since the pre-synaptic spikes produce

discrete jumps, if follows that

r(V, t + Dt|V ′,t) = [1− (CE nE +CI nI)Dt]d (V ′
0 −V)+

+ CE nE Dtd (V ′
1 −V)+CI nI Dtd (V ′

2 −V), (15.99)

where the first, second and third terms correspond to the probabilities of receiving no

spikes, an excitatory spike or an inhibitory spike in Dt respectively, and V ′
0,1,2 are the

values of the depolarization at t +Dt in these three cases, given that the depolarization

was V ′ at t. In order to calculate V ′
0,1,2, we use the fact that, since Dt is small enough,

the exponential time course of V in between spikes can be approximated by a linear

decay. Thus

V ′
0 = V ′(1− Dt

tm

)

V ′
1 = V ′(1− Dt1

tm

)+ J̄E +[V ′(1− Dt1

tm

)+ J̄E ]
Dt2

tm

V ′
2 = V ′(1− Dt1

tm

)− J̄I +[V ′(1− Dt1

tm

)− J̄I]
Dt2

tm

, (15.100)

where Dt1 + Dt2 = Dt. Using the property d ( f (x)) = d (x − x′)/|∂x f (x′)| with x′

such that f (x′) = 0, and expanding to first order in Dt/tm, equation (15.98) can be

expressed as

r(V,t + Dt|V0, t0) = (1 +
Dt

tm

)

[

(1− (CE nE +CI nI)Dt) r(V (1 +
Dt

tm

),t|V0, t0)+

+ CE nE Dt r([V − J̄E ](1 +
Dt

tm

),t|V0,t0)+

+ CI nI Dt r([V + J̄I](1 +
Dt

tm

),t|V0, t0)

]

, (15.101)

which, upon taking the limit Dt → 0 becomes

∂
∂ t

r(V,t|V0, t0) =
∂
∂V

[(
V

tm

)r(V,t|V0,t0)]+CE nE [r(V − J̄E , t|V0,t0) (15.102)

− r(V, t|V0, t0)]++CInI [r(V + J̄I,t|V0,t0)−r(V,t|V0, t0)].

Finally, expressing the terms in square brackets as a Taylor series expansion around

V , one obtains

∂
∂ t

r(V, t|V0,t0) =
•

Â
n=1

(−1)n

n!

∂ n

∂V n
[An r(V, t|V0,t0)]. (15.103)

where

A1(V ) = − V

tm

+ J̄ECE nE − J̄ICI nI (15.104)

An = J̄n
ECE nE +(−1)nJ̄n

I CI nI n = 2,3, . . . (15.105)
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are called the infinitesimal moments of the process. The intuitive nature of the diffu-

sion approximation becomes now clear: the smaller J̄E,I , the fewer the terms needed

to express r(V ∓ J̄E,I,t|V0, t0) as a Taylor series expansion arround V , and the fewer

the terms one has to maintain in the infinite-order Equation (15.103) to give an accu-

rate description of the process.

Appendix 2: Stability of the steady-state solutions
for rss(V )

The function rss(V ) is the solution of the stationary Fokker-Planck Equation (15.23)

with the appropriate boundary conditions. To assess the dynamical stability of this

solution, one has to use the general Fokker-Planck Equation (15.9) to test the effect

of small perturbations on the steady-state distribution. We briefly mention the logic

of this procedure.

For the sake of simplicity, we only discuss here a simple situation in which synapses

are instantaneous, with a latency tl ms after the pre-synaptic spike time. In this case,

the dynamical counterparts to Equations (15.63, 15.68) are

tm
∂r

∂ t
=

s 2
ext

2

∂ 2r

∂V 2
− ∂

∂V
[(V − mext − J̄tmn(t − tl))r ] , (15.106)

in the weakly coupled, fully connected case (no noise in recurrent inputs), and

tm
∂r

∂ t
=

(

s 2
ext +CJ̄2tmn(t − d )

)

2

∂ 2r

∂V 2

− ∂
∂V

[(V − mext −CJ̄tmn(t − tl)) r ] , (15.107)

in the strongly coupled, sparsely connected case (noise in recurrent inputs). In both

cases the boundary conditions are given by Equations (15.19,15.20).

The stationary solution to Equation (15.106) (resp. 15.107) is Equation (15.63)

(resp. 15.68). To study their stability, a linear stability analysis must be performed.

It consists in looking for solutions to Equations (15.106, 15.107) of the form

r(V,t|V0, t0) = rss(V )+ d r(V,l )exp(l t) (15.108)

n(t) = nss + d n(l )exp(l t), (15.109)

where rss, nss correspond to the stationary solution, d r and d n are small deviations

around the stationary solution that evolves in time with the (complex) growth rate

l . Upon inserting Equation (15.109) in Equations (15.106) or (15.107), and keeping

the term first order in d r and d n , an equation results for the possible growth rates l .

Solutions with Re(l ) > 0 indicate that the stationary state is unstable. Instabilities
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might come about with a positive real eigenvalue: this is a mean rate instability,

which typically occur in a network with strong recurrent excitation. Alternatively, an

instability associated with a positive real part of a complex eigenvalue signals a Hopf

bifurcation. If the bifurcation is supercritical, the network exhibits a synchronized

oscillation with a frequency close to Im(l ). For more details on this approach, see

[1] for the scenario with a simplified model with purely external noise, and [24] for

a model with recurrent noise.
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16.1 Introduction
This chapter describes memory systems in the brain based on closely linked neuro-
biological and computational approaches. The neurobiological approaches include
evidence from brain lesions which show the type of memory for which each of the
brain systems considered is necessary; and analysis of neuronal activity in each of
these systems to show what information is represented in them, and the changes that
take place during learning. Much of the neurobiology considered is from non-human
primates as well as humans, because the operation of some of the brain systems
involved in memory and connected to them have undergone great development in
primates. Some such brain systems include those in the temporal lobe, which devel-
ops massively in primates for vision, and which sends inputs to the hippocampus via
highly developed parahippocampal regions; and the prefrontal cortex. Many memory
systems in primates receive outputs from the primate inferior temporal visual cortex,
and understanding the perceptual representations in this of objects, and how they are
appropriate as inputs to different memory systems, helps to provide a coherent way
to understand the different memory systems in the brain (see [82], which provides a
more extensive treatment of the brain architectures used for perception and memory).
The computational approaches are essential in order to understand how the circuitry
could retrieve as well as store memories, the capacity of each memory system in the
brain, the interactions between memory and perceptual systems, and the speed of
operation of the memory systems in the brain.

The architecture, principles of operation, and properties of the main types of net-
work referred to here, autoassociation or attractor networks, pattern association net-
works, and competitive networks, are described by [82] and [92].

16.2 Functions of the hippocampus in long-term
memory

The inferior temporal visual cortex projects via the perirhinal cortex and entorhi-
nal cortex to the hippocampus (see Figure 16.1), which is implicated in long-term
memory, of, for example, where objects are located in spatial scenes, which can be
thought of as an example of episodic memory. The architecture shown in Figure
16.1 indicates that the hippocampus provides a region where visual outputs from the
inferior temporal visual cortex can, via the perirhinal cortex and entorhinal cortex,
be brought together with outputs from the ends of other cortical processing streams.
In this section, we consider how the visual input about objects is in the correct form
for the types of memory implemented by the perirhinal and hippocampal systems,
how the hippocampus of primates contains a representation of the visual space being
viewed, how this may be similar computationally to the apparently very different
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representation of places that is present in the rat hippocampus, how these spatial rep-
resentations are in a form that could be implemented by a continuous attractor which
could be updated in the dark by idiothetic inputs, and how a unified attractor theory
of hippocampal function can be formulated using the concept of mixed attractors.
The visual output from the inferior temporal visual cortex may be used to provide
the perirhinal and hippocampal systems with information about objects that is useful
in visual recognition memory, in episodic memory of where objects are seen, and for
building spatial representations of visual scenes. Before summarizing the computa-
tional approaches to these issues, we first summarize some of the empirical evidence
that needs to be accounted for in computational models.

16.2.1 Effects of damage to the hippocampus and connected struc-
tures on object-place and episodic memory

Partly because of the evidence that in humans with bilateral damage to the hippocam-
pus and nearby parts of the temporal lobe, anterograde amnesia is produced [100],
there is continuing great interest in how the hippocampus and connected structures
operate in memory. The effects of damage to the hippocampus indicate that the very
long-term storage of at least some types of information is not in the hippocampus,
at least in humans. On the other hand, the hippocampus does appear to be necessary
to learn certain types of information, that have been characterized as declarative, or
knowing that, as contrasted with procedural, or knowing how, which is spared in
amnesia. Declarative memory includes what can be declared or brought to mind as
a proposition or an image. Declarative memory includes episodic memory (memory
for particular episodes), and semantic memory (memory for facts) [100].

In monkeys, damage to the hippocampus or to some of its connections such as
the fornix produces deficits in learning about where objects are and where responses
must be made (see [12]) and [76]. For example, macaques and humans with damage
to the hippocampus or fornix are impaired in object-place memory tasks in which not
only the objects seen, but where they were seen, must be remembered [28, 60, 99].
Such object-place tasks require a whole-scene or snapshot-like memory [25]. Also,
fornix lesions impair conditional left-right discrimination learning, in which the vi-
sual appearance of an object specifies whether a response is to be made to the left or
the right [94]. A comparable deficit is found in humans [61]. Fornix sectioned mon-
keys are also impaired in learning on the basis of a spatial cue which object to choose
(e.g., if two objects are on the left, choose object A, but if the two objects are on the
right, choose object B) [26]. Further, monkeys with fornix damage are also impaired
in using information about their place in an environment. For example, [27] found
learning impairments when the position of the monkey in the room determined which
of two or more objects the monkey had to choose. Rats with hippocampal lesions are
impaired in using environmental spatial cues to remember particular places [35, 45],
and it has been argued that the necessity to utilize allocentric spatial cues [14], to
utilize spatial cues or bridge delays [34, 37], or to perform relational operations on
remembered material [19], may be characteristic of the deficits.

One way of relating the impairment of spatial processing to other aspects of hip-
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Forward connections (solid lines) from areas of cerebral association neocortex via
the parahippocampal gyrus and perirhinal cortex, and entorhinal cortex, to the hip-
pocampus; and backprojections (dashed lines) via the hippocampal CA1 pyramidal
cells, subiculum, and parahippocampal gyrus to the neocortex. There is great con-
vergence in the forward connections down to the single network implemented in the
CA3 pyramidal cells; and great divergence again in the backprojections. Left: block
diagram. Right: more detailed representation of some of the principal excitatory neu-
rons in the pathways. Abbreviations: D, Deep pyramidal cells; DG, dentate granule
cells; F, forward inputs to areas of the association cortex from preceding cortical ar-
eas in the hierarchy. mf: mossy fibres; PHG, parahippocampal gyrus and perirhinal
cortex; pp, perforant path; rc, recurrent collaterals of the CA3 hippocampal pyrami-
dal cells; S, superficial pyramidal cells; 2, pyramidal cells in layer 2 of the entorhinal
cortex; 3, pyramidal cells in layer 3 of the entorhinal cortex; 5, 6, pyramidal cells
in the deep layers of the entorhinal cortex. The thick lines above the cell bodies
represent the dendrites.
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pocampal function (including the memory of recent events or episodes in humans)
is to note that this spatial processing involves a snapshot type of memory, in which
one whole scene with its often unique set of parts or elements must be remembered.
This memory may then be a special case of episodic memory, which involves an
arbitrary association of a set of spatial and/or non-spatial events that describe a past
episode. For example, the deficit in paired associate learning in humans (see [100])
may be especially evident when this involves arbitrary associations between words,
for example, window — lake.

It appears that the deficits in ‘recognition’ memory (tested for example for visual
stimuli seen recently in a delayed match to sample task) produced by damage to
this brain region are related to damage to the perirhinal cortex [121, 122], which
receives from high order association cortex and has connections to the hippocampus
(see Figure 16.1) [106, 107]. The functions of the perirhinal cortex in memory are
discussed by [82].

16.2.2 Neurophysiology of the hippocampus and connected areas

In the rat, many hippocampal pyramidal cells fire when the rat is in a particular place,
as defined for example by the visual spatial cues in an environment such as a room
[39, 53, 54]. There is information from the responses of many such cells about the
place where the rat is in the environment. When a rat enters a new environment B
connected to a known environment A, there is a period in the order of 10 minutes in
which as the new environment is learned, some of the cells that formerly had place
fields in A develop instead place fields in B. It is as if the hippocampus sets up a
new spatial representation which can map both A and B, keeping the proportion of
cells active at any one time approximately constant [117]. Some rat hippocampal
neurons are found to be more task-related, responding for example to olfactory stim-
uli to which particular behavioural responses must be made [19], and some of these
neurons may in different experiments show place-related responses.

It was recently discovered that in the primate hippocampus, many spatial cells
have responses not related to the place where the monkey is, but instead related to
the place where the monkey is looking [78, 79, 85]. These are called ‘spatial view
cells’, an example of which is shown in Figure 16.2. These cells encode information
in allocentric (world-based, as contrasted with egocentric, body-related) coordinates
[29, 93]. They can in some cases respond to remembered spatial views in that they
respond when the view details are obscured, and use idiothetic (self-motion) cues
including eye position and head direction to trigger this memory recall operation
[71]. Another idiothetic input that drives some primate hippocampal neurons is linear
and axial whole body motion [58], and in addition, the primate presubiculum has
been shown to contain head direction cells [72].

Part of the interest of spatial view cells is that they could provide the spatial repre-
sentation required to enable primates to perform object-place memory, for example
remembering where they saw a person or object, which is an example of an episodic
memory, and indeed similar neurons in the hippocampus respond in object-place
memory tasks [84]. Associating together such a spatial representation with a repre-
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Examples of the firing of a hippocampal spatial view cell when the monkey was
walking around the laboratory. a. The firing of the cell is indicated by the spots in
the outer set of 4 rectangles, each of which represents one of the walls of the room.
There is one spot on the outer rectangle for each action potential. The base of the
wall is towards the centre of each rectangle. The positions on the walls fixated during
the recording sessions are indicated by points in the inner set of 4 rectangles, each
of which also represents a wall of the room. The central square is a plan view of the
room, with a triangle printed every 250 ms to indicate the position of the monkey,
thus showing that many different places were visited during the recording sessions.
b. A similar representation of the same 3 recording sessions as in (a), but modified to
indicate some of the range of monkey positions and horizontal gaze directions when
the cell fired at more than 12 spikes/s. c. A similar representation of the same 3
recording sessions as in (b), but modified to indicate more fully the range of places
when the cell fired. The triangle indicates the current position of the monkey, and the
line projected from it shows which part of the wall is being viewed at any one time
while the monkey is walking. One spot is shown for each action potential. (After
Georges-François, Rolls and Robertson, 1999)

sentation of a person or object could be implemented by an autoassociation network
implemented by the recurrent collateral connections of the CA3 hippocampal pyra-
midal cells [75, 76, 92]. Some other primate hippocampal neurons respond in the
object-place memory task to a combination of spatial information and information
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about the object seen [84]. Further evidence for this convergence of spatial and object
information in the hippocampus is that in another memory task for which the hip-
pocampus is needed, learning where to make spatial responses conditional on which
picture is shown, some primate hippocampal neurons respond to a combination of
which picture is shown, and where the response must be made [13, 48].

These primate spatial view cells are thus unlike place cells found in the rat [39, 51,
53, 54, 117]. Primates, with their highly developed visual and eye movement control
systems, can explore and remember information about what is present at places in
the environment without having to visit those places. Such spatial view cells in pri-
mates would thus be useful as part of a memory system, in that they would provide a
representation of a part of space that would not depend on exactly where the monkey
or human was, and that could be associated with items that might be present in those
spatial locations. An example of the utility of such a representation in humans would
be remembering where a particular person had been seen. The primate spatial repre-
sentations would also be useful in remembering trajectories through environments,
of use for example in short-range spatial navigation [58, 79].

The representation of space in the rat hippocampus, which is of the place where
the rat is, may be related to the fact that with a much less developed visual system
than the primate, the rat’s representation of space may be defined more by the olfac-
tory and tactile as well as distant visual cues present, and may thus tend to reflect the
place where the rat is. An interesting hypothesis on how this difference could arise
from essentially the same computational process in rats and monkeys is as follows
[17, 79]. The starting assumption is that in both the rat and the primate, the dentate
granule cells and the CA3 and CA1 pyramidal cells respond to combinations of the
inputs received. In the case of the primate, a combination of visual features in the
environment will over a typical viewing angle of perhaps 10–20 degrees result in the
formation of a spatial view cell, the effective trigger for which will thus be a com-
bination of visual features within a relatively small part of space. In contrast, in the
rat, given the very extensive visual field which may extend over 180–270 degrees,
a combination of visual features formed over such a wide visual angle would effec-
tively define a position in space, that is a place. The actual processes by which the
hippocampal formation cells would come to respond to feature combinations could
be similar in rats and monkeys, involving for example competitive learning in the
dentate granule cells, autoassociation learning in CA3 pyramidal cells, and compet-
itive learning in CA1 pyramidal cells [75, 76, 92, 115]. Thus spatial view cells in
primates and place cells in rats might arise by the same computational process but
be different by virtue of the fact that primates are foveate and view a small part of
the visual field at any one time, whereas the rat has a very wide visual field. Al-
though the representation of space in rats therefore may be in some ways analogous
to the representation of space in the primate hippocampus, the difference does have
implications for theories, and modelling, of hippocampal function.

In rats, the presence of place cells has led to theories that the rat hippocampus is
a spatial cognitive map, and can perform spatial computations to implement naviga-
tion through spatial environments [10, 11, 54, 57]. The details of such navigational
theories could not apply in any direct way to what is found in the primate hippocam-
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pus. Instead, what is applicable to both the primate and rat hippocampal recordings
is that hippocampal neurons contain a representation of space (for the rat, primar-
ily where the rat is, and for the primate primarily of positions ‘out there’ in space)
which is a suitable representation for an episodic memory system. In primates, this
would enable one to remember, for example, where an object was seen. In rats, it
might enable memories to be formed of where particular objects (for example those
defined by olfactory, tactile, and taste inputs) were found. Thus at least in primates,
and possibly also in rats, the neuronal representation of space in the hippocampus
may be appropriate for forming memories of events (which usually in these animals
have a spatial component). Such memories would be useful for spatial navigation,
for which according to the present hypothesis the hippocampus would implement
the memory component but not the spatial computation component. Evidence that
what neuronal recordings have shown is represented in the non-human primate hip-
pocampal system may also be present in humans is that regions of the hippocampal
formation can be activated when humans look at spatial views [21, 55].

16.2.3 Hippocampal models

These neuropsychological and neurophysiological analyses are complemented by
neuronal network models of how the hippocampus could operate to store and re-
trieve large numbers of memories [73, 75, 76, 92, 114, 115]). One key hypothesis
(adopted also by [46]) is that the hippocampal CA3 recurrent collateral connections
which spread throughout the CA3 region provide asingle autoassociation network
that enables the firing ofanyset of CA3 neurons representing one part of a memory
to be associated together with the firing of any other set of CA3 neurons representing
another part of the same memory (cf. [44]). The generic architecture of an attractor
network is shown in Figure 16.5. Associatively modifiable synapses in the recurrent
collateral synapses allow memories to be stored, and then later retrieved from only a
part, as described by [4, 32, 33, 82, 92]. The number of patternsp each representing
a different memory that could be stored in the CA3 system operating as an autoas-
sociation network would be as shown in equation 16.1 (see [82, 92], which describe
extensions to the analysis developed by [33]).

p≈
CRC

aln(1
a)

k (16.1)

whereCRC is the number of synapses on the dendrites of each neuron devoted to the
recurrent collaterals from other CA3 neurons in the network,a is the sparseness of
the representation, andk is a factor that depends weakly on the detailed structure
of the rate distribution, on the connectivity pattern, etc., but is roughly in the order
of 0.2–0.3. Given thatCRC is approximately 12,000 in the rat, the resulting storage
capacity would be greater than 12,000 memories, and perhaps up to 36,000 memories
if the sparsenessa of the representation was as low as 0.02 [114, 115].

Another part of the hypothesis is that the very sparse (see Figure 16.3) but power-
ful connectivity of the mossy fibre inputs to the CA3 cells from the dentate granule
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Figure 16.3

The numbers of connections from three different sources onto each CA3 cell from
three different sources in the rat. (After Treves and Rolls 1992, and Rolls and Treves
1998.)

cells is important during learning (but not recall) to force a new, arbitrary, set of
firing onto the CA3 cells which dominates the activity of the recurrent collaterals,
so enabling a new memory represented by the firing of the CA3 cells to be stored
[73, 75, 114].

The perforant path input to the CA3 cells, which is numerically much larger but at
the apical end of the dendrites, would be used to initiate recall from an incomplete
pattern [92, 114]. The prediction of the theory about the necessity of the mossy fibre
inputs to the CA3 cells during learning but not recall has now been confirmed [42].
A way to enhance the efficacy of the mossy fibre system relative to the CA3 recurrent
collateral connections during learning may be to increase the level of acetyl choline
by increasing the firing of the septal cholinergic cells [31].

Another key part of the quantitative theory is that not only can retrieval of a mem-
ory by an incomplete cue be performed by the operation of the associatively modi-
fied CA3 recurrent collateral connections, but also that recall of that information to
the neocortex can be performed via CA1 and the hippocampo-cortical and cortico-
cortical backprojections [76, 81, 92, 115] shown in Figure 16.1. In this case, the
number of memory patternspBP that can be retrieved by the backprojection system
is

pBP ≈
CBP

aBP ln( 1
aBP)

kBP (16.2)

whereCBP is the number of synapses on the dendrites of each neuron devoted to
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backprojections from the preceding stage (dashed lines in Figure 16.1),aBP is the
sparseness of the representation in the backprojection pathways, andkBP is a factor
that depends weakly on the detailed structure of the rate distribution, on the con-
nectivity pattern, etc., but is roughly in the order of 0.2–0.3. The insight into this
quantitative analysis came from treating each layer of the backprojection hierarchy
as being quantitatively equivalent to another iteration in a single recurrent attractor
network [113, 115]. The need for this number of connections to implement recall,
and more generally constraint satisfaction in connected networks (see [82]), provides
a fundamental and quantitative reason for why there are approximately as many back-
projections as forward connections between the adjacent connected cortical areas in
a cortical hierarchy. This, and other computational approaches to hippocampal func-
tion, are included in a special issue of the journalHippocampus(1996), 6(6).

Another aspect of the theory is that the operation of the CA3 system to implement
recall, and of the backprojections to retrieve the information, would be sufficiently
fast, given the fast recall in associative networks built of neurons with continuous
dynamics (see [82]).

16.2.4 Continuous spatial representations, path integration, and the
use of idiothetic inputs

The fact that spatial patterns, which imply continuous representations of space, are
represented in the hippocampus has led to the application of continuous attractor
models to help understand hippocampal function. Such models have been developed
by [8, 95, 101, 102, 104, 105], (see [82]). Indeed, we have shown how a continuous
attractor network could enable the head direction cell firing of presubicular cells to
be maintained in the dark, and updated by idiothetic (self-motion) head rotation cell
inputs [72, 101]. The continuous attractor model has been developed to understand
how place cell firing in rats can be maintained and updated by idiothetic inputs in the
dark [104]. The continuous attractor model has also been developed to understand
how spatial view cell firing in primates can be maintained and updated by idiothetic
eye movement and head direction inputs in the dark [71, 105].

The way in which path integration could be implemented in the hippocampus
or related systems is described next. Single-cell recording studies have shown that
some neurons represent the current position along a continuous physical dimension
or space even when no inputs are available, for example in darkness. Examples in-
clude neurons that represent the positions of the eyes (i.e., eye direction with respect
to the head), the place where the animal is looking in space, head direction, and the
place where the animal is located. In particular, examples of such classes of cells in-
clude head direction cells in rats [50, 62, 109, 110] and primates [72], which respond
maximally when the animal’s head is facing in a particular preferred direction; place
cells in rats [43, 47, 49, 52, 56] that fire maximally when the animal is in a particular
location; and spatial view cells in primates that respond when the monkey is look-
ing towards a particular location in space [29, 71, 85]. In the parietal cortex there
are many spatial representations, in several different coordinate frames (see [6] and
[82]), and they have some capability to remain active during memory periods when
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the stimulus is no longer present. Even more than this, the dorsolateral prefrontal
cortex networks to which the parietal networks project have the capability to main-
tain spatial representations active for many seconds or minutes during short-term
memory tasks, when the stimulus is no longer present (see below).

A class of network that can maintain the firing of its neurons to represent any loca-
tion along a continuous physical dimension such as spatial position, head direction,
etc is a ‘Continuous Attractor’ neural network (CANN). It uses excitatory recurrent
collateral connections between the neurons to reflect the distance between the neu-
rons in the state space of the animal (e.g., head direction space). These networks can
maintain the bubble of neural activity constant for long periods wherever it is started
to represent the current state (head direction, position, etc) of the animal, and are
likely to be involved in many aspects of spatial processing and memory, including
spatial vision. Global inhibition is used to keep the number of neurons in a bubble or
packet of actively firing neurons relatively constant, and to help to ensure that there
is only one activity packet. Continuous attractor networks can be thought of as very
similar to autoassociation or discrete attractor networks (see [82]), and have the same
architecture, as illustrated in Figure 16.5. The main difference is that the patterns
stored in a CANN are continuous patterns, with each neuron having broadly tuned
firing which decreases with for example a Gaussian function as the distance from
the optimal firing location of the cell is varied, and with different neurons having
tuning that overlaps throughout the space. Such tuning is illustrated in Figure 16.4.
For comparison, autoassociation networks normally have discrete (separate) patterns
(each pattern implemented by the firing of a particular subset of the neurons), with
no continuous distribution of the patterns throughout the space (see Figure 16.4).
A consequent difference is that the CANN can maintain its firing at any location in
the trained continuous space, whereas a discrete attractor or autoassociation network
moves its population of active neurons towards one of the previously learned attrac-
tor states, and thus implements the recall of a particular previously learned pattern
from an incomplete or noisy (distorted) version of one of the previously learned pat-
terns. The energy landscape of a discrete attractor network (see [82]) has separate
energy minima, each one of which corresponds to a learned pattern, whereas the en-
ergy landscape of a continuous attractor network is flat, so that the activity packet
remains stable with continuous firing wherever it is started in the state space. (The
state space refers to set of possible spatial states of the animal in its environment,
e.g., the set of possible head directions.) I next describe the operation and properties
of continuous attractor networks, which have been studied by for example [3], [111],
and [119], and then, following [101], address four key issues about the biological
application of continuous attractor network models.

One key issue in such continuous attractor neural networks is how the synaptic
strengths between the neurons in the continuous attractor network could be learned
in biological systems (Section 16.2.4.2).

A second key issue in such Continuous Attractor neural networks is how the bub-
ble of neuronal firing representing one location in the continuous state space should
be updated based on non-visual cues to represent a new location in state space. This
is essentially the problem of path integration: how a system that represents a mem-
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The types of firing patterns stored in continuous attractor networks are illustrated for the pat-
terns present on neurons 1–1000 for Memory 1 (when the firing is that produced when the
spatial state represented is that for location 300), and for Memory 2 (when the firing is that
produced when the spatial state represented is that for location 500). The continuous nature
of the spatial representation results from the fact that each neuron has a Gaussian firing rate
that peaks at its optimal location. This particular mixed network also contains discrete rep-
resentations that consist of discrete subsets of active binary firing rate neurons in the range
1001–1500. The firing of these latter neurons can be thought of as representing the discrete
events that occur at the location. Continuous attractor networks by definition contain only con-
tinuous representations, but this particular network can store mixed continuous and discrete
representations, and is illustrated to show the difference of the firing patterns normally stored
in separate continuous attractor and discrete attractor networks. For this particular mixed net-
work, during learning, Memory 1 is stored in the synaptic weights, then Memory 2, etc., and
each memory contains part that is continuously distributed to represent physical space, and
part that represents a discrete event or object.

ory of where the agent is in physical space could be updated based on idiothetic
(self-motion) cues such as vestibular cues (which might represent a head velocity
signal), or proprioceptive cues (which might update a representation of place based
on movements being made in the space, during for example walking in the dark).

A third key issue is how stability in the bubble of activity representing the current
location can be maintained without much drift in darkness, when it is operating as a
memory system (see [82] and [101]).

A fourth key issue is considered below in which I describe networks that store
both continuous patterns and discrete patterns (see Figure 16.4), which can be used
to store for example the location in (continuous, physical) space where an object (a
discrete item) is present.
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16.2.4.1 The generic model of a continuous attractor network

The generic model of a continuous attractor is as follows. (The model is described
in the context of head direction cells, which represent the head direction of rats [50,
109] and macaques [72], and can be reset by visual inputs after gradual drift in
darkness.) The model is a recurrent attractor network with global inhibition. It is
different from a Hopfield attractor network [33] primarily in that there are no discrete
attractors formed by associative learning of discrete patterns. Instead there is a set
of neurons that are connected to each other by synaptic weightswi j that are a simple
function, for example Gaussian, of the distance between the states of the agent in
the physical world (e.g., head directions) represented by the neurons. Neurons that
represent similar states (locations in the state space) of the agent in the physical world
have strong synaptic connections, which can be set up by an associative learning rule,
as described in Section 16.2.4.2. The network updates its firing rates by the following
‘leaky-integrator’ dynamical equations. The continuously changing activationhHD

i
of each head direction celli is governed by the Equation

dhHD
i (t)
dt

= −hHD
i (t)+

φ0

CHD ∑
j
(wi j −winh)rHD

j (t)+ IV
i , (16.3)

whererHD
j is the firing rate of head direction cellj, wi j is the excitatory (positive)

synaptic weight from head direction cellj to cell i, winh is a global constant describ-
ing the effect of inhibitory interneurons, andτ is the time constant of the system∗.
The term−hHD

i (t) indicates the amount by which the activation decays (in the leaky
integrator neuron) at timet. (The network is updated in a typical simulation at much
smaller timesteps than the time constant of the system,τ .) The next term in Equation
(16.3) is the input from other neurons in the networkrHD

j weighted by the recurrent
collateral synaptic connectionswi j (scaled by a constantφ0 andCHD which is the
number of synaptic connections received by each head direction cell from other head
direction cells in the continuous attractor). The termIV

i represents a visual input to
head direction celli. Each termIV

i is set to have a Gaussian response profile in most
continuous attractor networks, and this sets the firing of the cells in the continuous
attractor to have Gaussian response profiles as a function of where the agent is lo-
cated in the state space (see e.g., Figure 16.4), but the Gaussian assumption is not
crucial. (It is known that the firing rates of head direction cells in both rats [50, 109]
and macaques [72] is approximately Gaussian.) When the agent is operating without
visual input, in memory mode, then the termIV

i is set to zero. The firing raterHD
i of

cell i is determined from the activationhHD
i and the sigmoid function

rHD
i (t) =

1

1+e−2β(hHD
i (t)−α )

, (16.4)

whereα andβ are the sigmoid threshold and slope, respectively.

∗Note that here I user rather thany to refer to the firing rates of the neurons in the network, remembering
that, because this is a recurrently connected network (see Figure 16.5), the output from a neuronyi might
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Figure 16.5

The architecture of an attractor neural network.

16.2.4.2 Learning the synaptic strengths between the neurons that implement
a continuous attractor network

So far we have said that the neurons in the continuous attractor network are con-
nected to each other by synaptic weightswi j that are a simple function, for example
Gaussian, of the distance between the states of the agent in the physical world (e.g.,
head directions, spatial views etc.) represented by the neurons. In many simulations,
the weights are set by formula to have weights with these appropriate Gaussian val-
ues. However, [101] showed how the appropriate weights could be set up by learning.
They started with the fact that since the neurons have broad tuning that may be Gaus-
sian in shape, nearby neurons in the state space will have overlapping spatial fields,
and will thus be co-active to a degree that depends on the distance between them.
They postulated that therefore the synaptic weights could be set up by associative
learning based on the co-activity of the neurons produced by external stimuli as the
animal moved in the state space. For example, head direction cells are forced to fire
during learning by visual cues in the environment that produce Gaussian firing as a
function of head direction from an optimal head direction for each cell. The learning
rule is simply that the weightswi j from head direction cellj with firing rate rHD

j

to head direction celli with firing raterHD
i are updated according to an associative

be the inputx j to another neuron.
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Figure 16.6

Training the weights in a continuous attractor network with an associative rule (equation
16.5). Left: The trained recurrent synaptic weights from head direction cell 50 to the other
head direction cells in the network arranged in head direction space (solid curve). The dashed
line shows a Gaussian curve fitted to the weights shown in the solid curve. The dash-dot curve
shows the recurrent synaptic weights trained with rule equation (16.5), but with a non-linearity
introduced that mimics the properties of NMDA receptors by allowing the synapses to modify
only after strong postsynaptic firing is present. Right: The stable firing rate profiles forming an
activity packet in the continuous attractor network during the testing phase when the training
(visual) inputs are no longer present. The firing rates are shown after the network has been
initially stimulated by visual input to initialize an activity packet, and then allowed to settle to
a stable activity profile without visual input. The three graphs show the firing rates for low,
intermediate and high values of the lateral inhibition parameterwinh. For both left and right
plots, the 100 head direction cells are arranged according to where they fire maximally in the
head direction space of the agent when visual cues are available. After Stringer, Trappenberg,
Rolls and de Araujo (2002).

(Hebb) rule
δwi j = krHD

i rHD
j (16.5)

whereδwi j is the change of synaptic weight andk is the learning rate constant.
During the learning phase, the firing raterHD

i of each head direction celli might be
the following Gaussian function of the displacement of the head from the optimal
firing direction of the cell

rHD
i = e−s2

HD/2σ2
HD , (16.6)

wheresHD is the difference between the actual head directionx (in degrees) of the
agent and the optimal head directionxi for head direction celli, and σHD is the
standard deviation.

[101] showed that after training at all head directions, the synaptic connections
develop strengths that are an almost Gaussian function of the distance between the
cells in head direction space, as shown in Figure 16.6 (left). Interestingly if a non-
linearity is introduced into the learning rule that mimics the properties of NMDA
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receptors by allowing the synapses to modify only after strong postsynaptic firing
is present, then the synaptic strengths are still close to a Gaussian function of the
distance between the connected cells in head direction space (see Figure 16.6, left).
They showed that after training, the continuous attractor network can support stable
activity packets in the absence of visual inputs (see Figure 16.6, right) provided
that global inhibition is used to prevent all the neurons becoming activated. (The
exact stability conditions for such networks have been analyzed by [3]). Thus [101]
demonstrated biologically plausible mechanisms for training the synaptic weights in
a continuous attractor using a biologically plausible local learning rule.

So far, we have considered how spatial representations could be stored in contin-
uous attractor networks, and how the activity can be maintained at any location in
the state space in a form of short-term memory when the external (e.g., visual) input
is removed. However, many networks with spatial representations in the brain can
be updated by internal, self-motion (i.e., idiothetic), cues even when there is no ex-
ternal (e.g., visual) input. Examples are head direction cells in the presubiculum of
rats and macaques, place cells in the rat hippocampus, and spatial view cells in the
primate hippocampus (see Section 16.2). The major question arises about how such
idiothetic inputs could drive the activity packet in a continuous attractor network,
and in particular, how such a system could be set up biologically by self-organizing
learning.

One approach to simulating the movement of an activity packet produced by id-
iothetic cues (which is a form of path integration whereby the current location is
calculated from recent movements) is to employ a look-up table that stores (taking
head direction cells as an example), for every possible head direction and head rota-
tional velocity input generated by the vestibular system, the corresponding new head
direction [95]. Another approach involves modulating the strengths of the recurrent
synaptic weights in the continuous attractor on one but not the other side of a cur-
rently represented position, so that the stable position of the packet of activity, which
requires symmetric connections in different directions from each node, is lost, and
the packet moves in the direction of the temporarily increased weights, although no
possible biological implementation was proposed of how the appropriate dynamic
synaptic weight changes might be achieved [119]. Another mechanism (for head
direction cells) [97] relies on a set of cells, termed (head) rotation cells, which are
co-activated by head direction cells and vestibular cells and drive the activity of the
attractor network by anatomically distinct connections for clockwise and counter-
clockwise rotation cells, in what is effectively a look-up table. However, no proposal
was made about how this could be achieved by a biologically plausible learning pro-
cess, and this has been the case until recently for most approaches to path integration
in continuous attractor networks, which rely heavily on rather artificial pre-set synap-
tic connectivities.

[101] introduced a proposal with more biological plausibility about how the synap-
tic connections from idiothetic inputs to a continuous attractor network can be learned
by a self-organizing learning process. The essence of the hypothesis is described
with Figure 16.7. The continuous attractor synaptic weightswRC are set up under
the influence of the external visual inputsIV as described in Section 16.2.4.2. At
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Figure 16.7

General network architecture for a one-dimensional continuous attractor model of
head direction cells which can be updated by idiothetic inputs produced by head
rotation cell firingr ID . The head direction cell firing isrHD, the continuous attractor
synaptic weights arewRC, the idiothetic synaptic weights arewID , and the external
visual input isIV .

the same time, the idiothetic synaptic weightswID (in which the ID refers to the fact
that they are in this case produced by idiothetic inputs, produced by cells that fire to
represent the velocity of clockwise and anticlockwise head rotation), are set up by
associating the change of head direction cell firing that has just occurred (detected
by a trace memory mechanism described below) with the current firing of the head
rotation cellsr ID . For example, when the trace memory mechanism incorporated
into the idiothetic synapseswID detects that the head direction cell firing is at a given
location (indicated by the firingrHD) and is moving clockwise (produced by the al-
tering visual inputsIV), and there is simultaneous clockwise head rotation cell firing,
the synapseswID learn the association, so that when that rotation cell firing occurs
later without visual input, it takes the current head direction firing in the continuous
attractor into account, and moves the location of the head direction attractor in the
appropriate direction.

For the learning to operate, the idiothetic synapses onto head direction celli with
firing rHD

i need two inputs: the memory traced term from other head direction cells
rHD

j (given by

rHD(t +δt) = (1−η )rHD(t +δt)+η rHD(t) (16.7)
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whereη is a parameter set in the interval [0,1] which determines the contribution of
the current firing and the previous trace), and the head rotation cell input with firing
r ID
k ; and the learning rule can be written

δwID
i jk = k̃ rHD

i rHD
j r ID

k , (16.8)

wherek̃ is the learning rate associated with this type of synaptic connection. The
head rotation cell firing (r ID

k ) could be as simple as one set of cells that fire for
clockwise head rotation (for whichk might be 1), and a second set of cells that fire
for anticlockwise head rotation (for whichk might be 2).

After learning, the firing of the head direction cells would be updated in the dark
(whenIV

i = 0) by idiothetic head rotation cell firingr ID
k as follows

τ
dhHD

i (t)
dt

= −hHD
i (t)+

φ0

CHD ∑
j
(wi j −winh)rHD

j (t)+ IV
i

+ φ1(
1

CHD×ID ∑
j,k

wID
i jk rHD

j r ID
k ). (16.9)

Equation 16.9 is similar to equation 16.3, except for the last term, which introduces
the effects of the idiothetic synaptic weightswID

i jk , which effectively specify that the

current firing of head direction celli, rHD
i , must be updated by the previously learned

combination of the particular head rotation now occurring indicated byr ID
k , and the

current head direction indicated by the firings of the other head direction cellsrHD
j

indexed throughj.† This makes it clear that the idiothetic synapses operate using
combinations of inputs, in this case of two inputs. Neurons that sum the effects
of such local products are termed Sigma-Pi neurons. Although such synapses are
more complicated than the two-term synapses used throughout the rest of this book,
such three-term synapses appear to be useful to solve the computational problem of
updating representations based on idiothetic inputs in the way described. Synapses
that operate according to Sigma-Pi rules might be implemented in the brain by a
number of mechanisms described by [38] (Section 21.1.1), [36], and [101], including
having two inputs close together on a thin dendrite, so that local synaptic interactions
would be emphasized.

Simulations demonstrating the operation of this self-organizing learning to pro-
duce movement of the location being represented in a continuous attractor network
were described by [101], and one example of the operation is shown in Figure 16.8.
They also showed that, after training with just one value of the head rotation cell
firing, the network showed the desirable property of moving the head direction be-
ing represented in the continuous attractor by an amount that was proportional to the
value of the head rotation cell firing. [101] also describe a related model of the idio-
thetic cell update of the location represented in a continuous attractor, in which the

†The termφ1/CHD×ID is a scaling factor that reflects the numberCHD×ID of inputs to these synapses, and
enables the overall magnitude of the idiothetic input to each head direction cell to remain approximately
the same as the number of idiothetic connections received by each head direction cell is varied.
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Figure 16.8

Idiothetic update of the location represented in a continuous attractor network. The
firing rate of the cells with optima at different head directions (organized according
to head direction on the ordinate) is shown by the blackness of the plot, as a function
of time. The activity packet was initialized to a head direction of 75 degrees, and the
packet was allowed to settle without visual input. Fort = 0 to t = 100 there was no
rotation cell input, and the activity packet in the continuous attractor remained stable
at 75 degrees. Fort = 100 tot = 300 the clockwise rotation cells were active with
a firing rate of 0.15 to represent a moderate angular velocity, and the activity packet
moved clockwise. Fort = 300 tot = 400 there was no rotation cell firing, and the
activity packet immediately stopped, and remained still. Fort = 400 tot = 500 the
anti-clockwise rotation cells had a high firing rate of 0.3 to represent a high velocity,
and the activity packet moved anti-clockwise with a greater velocity. Fort = 500 to
t = 600 there was no rotation cell firing, and the activity packet immediately stopped.

rotation cell firing directly modulates in a multiplicative way the strength of the re-
current connections in the continuous attractor in such a way that clockwise rotation
cells modulate the strength of the synaptic connections in the clockwise direction in
the continuous attractor, and vice versa. It should be emphasized that although the
cells are organized in Figure 16.8 according to the spatial position being represented,
there is no need for cells in continuous attractors that represent nearby locations in
the state space to be close together, as the distance in the state space between any two
neurons is represented by the strength of the connection between them, not by where
the neurons are physically located. This enables continuous attractor networks to
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represent spaces with arbitrary topologies, as the topology is represented in the con-
nection strengths [101, 102, 104, 105]. Indeed, it is this that enables many different
charts each with its own topology to be represented in a single continuous attractor
network [8].

16.2.4.3 Continuous attractor networks in two or more dimensions

Some types of spatial representation used by the brain are of spaces that exist in two
or more dimensions. Examples are the two- (or three-) dimensional space represent-
ing where one is looking at in a spatial scene. Another is the two- (or three-) dimen-
sional space representing where one is located. It is possible to extend continuous
attractor networks to operate in higher dimensional spaces than the one-dimensional
spaces considered so far [111, 104]. Indeed, it is also possible to extend the analyses
of how idiothetic inputs could be used to update two-dimensional state spaces, such
as the locations represented by place cells in rats [104] and the location at which
one is looking represented by primate spatial view cells [102, 105]. Interestingly,
the number of terms in the synapses implementing idiothetic update do not need to
increase beyond three (as in Sigma-Pi synapses) even when higher dimensional state
spaces are being considered [104]. Also interestingly, a continuous attractor net-
work can in fact represent the properties of very high dimensional spaces, because
the properties of the spaces are captured by the connections between the neurons
of the continuous attractor, and these connections are of course, as in the world of
discrete attractor networks, capable of representing high dimensional spaces [104].
With these approaches, continuous attractor networks have been developed of the
two-dimensional representation of rat hippocampal place cells with idiothetic update
by movements in the environment [104], and of primate hippocampal spatial view
cells with idiothetic update by eye and head movements [102, 105].

16.2.5 A unified theory of hippocampal memory: mixed continuous
and discrete attractor networks

If the hippocampus is to store and retrieve episodic memories, it may need to asso-
ciate together patterns which have continuous spatial attributes, and other patterns
which represent objects, which are discrete. To address this issue, we have now
shown that attractor networks can store both continuous patterns and discrete pat-
terns, and can thus be used to store for example the location in (continuous, physi-
cal) space where an object (a discrete item) is present (see Figure 16.4 and [88]). In
this network, when events are stored that have both discrete (object) and continuous
(spatial) aspects, then the whole place can be retrieved later by the object, and the
object can be retrieved by using the place as a retrieval cue. Such networks are likely
to be present in parts of the brain that receive and combine inputs both from systems
that contain representations of continuous (physical) space, and from brain systems
that contain representations of discrete objects, such as the inferior temporal visual
cortex. One such brain system is the hippocampus, which appears to combine and
store such representations in a mixed attractor network in the CA3 region, which thus
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is able to implement episodic memories which typically have a spatial component,
for example where an item such as a key is located.

This network thus shows that in brain regions where the spatial and object pro-
cessing streams are brought together, then a single network can represent and learn
associations between both types of input. Indeed, in brain regions such as the hip-
pocampal system, it is essential that the spatial and object processing streams are
brought together in a single network, for it is only when both types of information
are in the same network that spatial information can be retrieved from object infor-
mation, and vice versa, which is a fundamental property of episodic memory. It may
also be the case that in the prefrontal cortex, attractor networks can store both spa-
tial and discrete (e.g., object-based) types of information in short-term memory (see
below).

16.2.6 The speed of operation of memory networks: the integrate-and-
fire approach

Consider for example a real network whose operation has been described by an au-
toassociative formal model that acquires, with learning, a given attractor structure.
How does the state of the network approach, in real time during a retrieval operation,
one of those attractors? How long does it take? How does the amount of informa-
tion that can be read off the network’s activity evolve with time? Also, which of the
potential steady states is indeed a stable state that can be reached asymptotically by
the net? How is the stability of different states modulated by external agents? These
are examples of dynamical properties, which to be studied require the use of models
endowed with some dynamics. An appropriate such model is one which incorporates
integrate-and-fire neurons.

The concept that attractor (autoassociation) networks can operate very rapidly if
implemented with neurons that operate dynamically in continuous time is described
by [82] and [92]. The result described was that the principal factor affecting the
speed of retrieval is the time constant of the synapses between the neurons that form
the attractor ([7, 59, 92, 112]). This was shown analytically by [112], and described
by [92] Appendix 5. If the (inactivation) time constant of AMPA synapses is taken
as 10 ms, then the settling time for a single attractor network is approximately 15–17
ms [7, 59, 92]. A connected series of four such networks (representing for example
four connected cortical areas) each involving recurrent (feedback) processing imple-
mented by the recurrent collateral synaptic connections, takes approximately 4 x 17
ms to propagate from start to finish, retrieving information from each layer as the
propagation proceeds [59, 82]. This speed of operation is sufficiently rapid that such
attractor networks are biologically plausible [82, 92].

The way in which networks with continuous dynamics (such as networks made
of real neurons in the brain, and networks modelled with integrate-and-fire neurons)
can be conceptualized as settling so fast into their attractor states is that spontaneous
activity in the network ensures that some neurons are close to their firing threshold
when the retrieval cue is presented, so that the firing of these neurons is influenced
within 1–2 ms by the retrieval cue. These neurons then influence other neurons
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within milliseconds (given the point that some other neurons will be close to thresh-
old) through the modified recurrent collateral synapses that store the information.
In this way, the neurons in networks with continuous dynamics can influence each
other within a fraction of the synaptic time constant, and retrieval can be very rapid
[82, 92].

16.3 Short-term memory systems
16.3.1 Prefrontal cortex short-term memory networks, and their rela-

tion to temporal and parietal perceptual networks

A common way that the brain uses to implement a short-term memory is to maintain
the firing of neurons during a short memory period after the end of a stimulus (see
[24] and [92]). In the inferior temporal cortex this firing may be maintained for a few
hundred ms even when the monkey is not performing a memory task [18, 89, 90, 91].
In more ventral temporal cortical areas such as the entorhinal cortex the firing may
be maintained for longer periods in delayed match to sample tasks [108], and in the
prefrontal cortex for even tens of seconds [23, 24]. In the dorsolateral and inferior
convexity prefrontal cortex the firing of the neurons may be related to the memory
of spatial responses or objects [30, 118] or both [63], and in the principal sulcus /
arcuate sulcus region to the memory of places for eye movements [22] (see [82]).
The firing may be maintained by the operation of associatively modified recurrent
collateral connections between nearby pyramidal cells producing attractor states in
autoassociative networks (see [82]).

For the short-term memory to be maintained during periods in which new stimuli
are to be perceived, there must be separate networks for the perceptual and short-
term memory functions, and indeed two coupled networks, one in the inferior tem-
poral visual cortex for perceptual functions, and another in the prefrontal cortex for
maintaining the short-term memory during intervening stimuli, provide a precise
model of the interaction of perceptual and short-term memory systems [67, 70] (see
Figure 16.9). In particular, this model shows how a prefrontal cortex attractor (au-
toassociation) network could be triggered by a sample visual stimulus represented
in the inferior temporal visual cortex in a delayed match to sample task, and could
keep this attractor active during a memory interval in which intervening stimuli are
shown. Then when the sample stimulus reappears in the task as a match stimulus,
the inferior temporal cortex module showed a large response to the match stimu-
lus, because it is activated both by the visual incoming match stimulus, and by the
consistent backprojected memory of the sample stimulus still being represented in
the prefrontal cortex memory module (see Figure 16.9). This computational model
makes it clear that in order for ongoing perception to occur unhindered implemented
by posterior cortex (parietal and temporal lobe) networks, there must be a separate
set of modules that is capable of maintaining a representation over intervening stim-
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Figure 16.9

A short-term memory autoassociation network in the prefrontal cortex could hold ac-
tive a working memory representation by maintaining its firing in an attractor state.
The prefrontal module would be loaded with the to-be-remembered stimulus by the
posterior module (in the temporal or parietal cortex) in which the incoming stimuli
are represented. Backprojections from the prefrontal short-term memory module to
the posterior module would enable the working memory to be unloaded, to for exam-
ple influence on-going perception (see text). RC - recurrent collateral connections.

uli. This is the fundamental understanding offered for the evolution and functions of
the dorsolateral prefrontal cortex, and it is this ability to provide multiple separate
short-term attractor memories that provides we suggest the basis for its functions in
planning. [67] and [70] performed analyses and simulations which showed that for
working memory to be implemented in this way, the connections between the percep-
tual and the short-term memory modules (see Figure 16.9) must be relatively weak.
As a starting point, they used the neurophysiological data showing that in delayed
match to sample tasks with intervening stimuli, the neuronal activity in the inferior
temporal visual cortex (IT) is driven by each new incoming visual stimulus [64, 66],
whereas in the prefrontal cortex, neurons start to fire when the sample stimulus is
shown, and continue the firing that represents the sample stimulus even when the
potential match stimuli are being shown [65]. The architecture studied by [70] was
as shown in Figure 16.9, with both the intramodular (recurrent collateral) and the
intermodular (forward IT to PF, and backward PF to IT) connections trained on the
set of patterns with an associative synaptic modification rule. A crucial parameter is
the strength of the intermodular connections,g, which indicates the relative strength
of the intermodular to the intramodular connections. This parameter measures ef-
fectively the relative strengths of the currents injected into the neurons by the inter-
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modular relative to the intra-modular connections, and the importance of setting this
parameter to relatively weak values for useful interactions between coupled attractor
networks was highlighted by [68] and [69] (see [82]). The patterns themselves were
sets of random numbers, and the simulation utilized a dynamical approach with neu-
rons with continuous (hyperbolic tangent) activation functions (see Section 16.3.2
and [5, 40, 41, 96]). The external current injected into IT by the incoming visual
stimuli was sufficiently strong to trigger the IT module into a state representing the
incoming stimulus. When the sample was shown, the initially silent PF module was
triggered into activity by the weak (g > 0.002) intermodular connections. The PF
module remained firing to the sample stimulus even when IT was responding to po-
tential match stimuli later in the trial, provided thatg was less than 0.024, because
then the intramodular recurrent connections could dominate the firing (see Figure
16.10). If g was higher than this, then the PF module was pushed out of the at-
tractor state produced by the sample stimulus. The IT module responded to each
incoming potentially matching stimulus provided thatg was not greater than approx-
imately 0.024. Moreover, this value ofg was sufficiently large that a larger response
of the IT module was found when the stimulus matched the sample stimulus (the
match enhancement effect found neurophysiologically, and a mechanism by which
the matching stimulus can be identified). This simple model thus shows that the op-
eration of the prefrontal cortex in short-term memory tasks such as delayed match
to sample with intervening stimuli, and its relation to posterior perceptual networks,
can be understood by the interaction of two weakly coupled attractor networks, as
shown in Figures 16.9 and 16.10.

The same network can also be used to illustrate the interaction between the pre-
frontal cortex short-term memory system and the posterior (IT or PP) perceptual
regions in visual search tasks, as illustrated in Figure 16.11.

16.3.2 Computational details of the model of short-term memory

The model network of [67] and [70] consists of a large number of (excitatory) neu-
rons arranged in two modules with the architecture shown in Figure 16.9. Following
[5, 40], each neuron is assumed to be a dynamical element which transforms an
incoming afferent current into an output spike rate according to a given transduc-
tion function. A given afferent currentIai to neuroni (i = 1, . . . ,N) in modulea
(a = IT ,PF) decays with a characteristic time constantτ but increases proportion-
ally to the spike rates of the rest of the neurons in the network (both from inside and
outside its module) connected to it, the contribution of each presynaptic neuron, e.g.,
neuron j from moduleb, and in proportion to the synaptic efficacyJab

i j between the

two.‡ This can be expressed through the following equation

dIai(t)
dt

= − Iai(t)
τ

+∑
b, j

J(a,b)
i j νb j +h(ext)

ai . (16.10)

‡On this occasion we revert to the theoretical physicists’ usual notation for synaptic weights or couplings,
Ji j , from wi j .
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Figure 16.10

Interaction between the prefrontal cortex (PF) and the inferior temporal cortex (IT) in a de-
layed match to sample task with intervening stimuli with the architecture illustrated in Figure
16.9. Above: activity in the IT attractor module. Below: activity in the PF attractor module.
The thick lines show the firing rates of the set of neurons with activity selective for the Sample
stimulus (which is also shown as the Match stimulus, and is labelledA), and the thin lines the
activity of the neurons with activity selective for the Non-Match stimulus, which is shown as
an intervening stimulus between the Sample and Match stimulus and is labelledB. A trial is
illustrated in whichA is the Sample (and Match) stimulus. The prefrontal cortex module is
pushed into an attractor state for the sample stimulus by the IT activity induced by the sample
stimulus. Because of the weak coupling to the PF module from the IT module, the PF mod-
ule remains in this Sample-related attractor state during the delay periods, and even while the
IT module is responding to the non-match stimulus. The PF module remains in its Sample-
related state even during the Non-Match stimulus because once a module is in an attractor
state, it is relatively stable. When the Sample stimulus reappears as the Match stimulus, the
PF module shows higher Sample stimulus-related firing, because the incoming input from IT
is now adding to the activity in the PF attractor network. This in turn also produces a match
enhancement effect in the IT neurons with Sample stimulus-related selectivity, because the
backprojected activity from the PF module matches the incoming activity to the IT module.
After Renart, Parga and Rolls, 2000 and Renart, Moreno, de la Rocha, Parga and Rolls, 2001.

An external currenth(ext)
ai from outside the network, representing the stimuli, can

also be imposed on every neuron. Selective stimuli are modelled as proportional
to the stored patterns, i.e.,h

µ(ext)
ai = haη µ

ai, whereha is the intensity of the external
current to modulea.
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Figure 16.11

Interaction between the prefrontal cortex (PF) and the inferior temporal cortex (IT) in
a visual search task with the architecture illustrated in Figure 16.9. Above: activity
in the IT attractor module. Below: activity in the PF attractor module. The thick
lines show the firing rates of the set of neurons with activity selective for search
stimulusA, and the thin lines the activity of the neurons with activity selective for
stimulusB. During the cue period eitherA or B is shown, to indicate to the monkey
which stimulus to select when an array containing bothA andB is shown after a
delay period. The trial shown is for the case whenA is the cue stimulus. When
stimulusA is shown as a cue, then via the IT module, the PF module is pushed into
an attractor stateA, and the PF module remembers this state during the delay period.
When the arrayA + B is shown later, there is more activity in the PF module for the
neurons selective forA, because they have inputs both from the continuing attractor
state held in the PF module and from the forward activity from the IT module which
now contains bothA andB. This PF firing toA in turn also produces greater firing
of the population of IT neurons selective forA than in the IT neurons selective for
B, because the IT neurons selective forA are receiving bothA–related visual inputs,
andA–related backprojected inputs from the PF module. After Renart, Parga and
Rolls, 2000 and Renart, Moreno, de la Rocha, Parga and Rolls, 2001.

The transduction function of the neurons transforming currents into rates was cho-
sen as a threshold hyperbolic tangent of gainG and thresholdθ. Thus, when the
current is very large the firing rates saturate to an arbitrary value of 1.

The synaptic efficacies between the neurons of each module and between the neu-
rons in different modules are respectively
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J(a,a)
i j =

J0

f (1− f )Nt

P

∑
µ=1

(η µ
ai − f ) (η µ

a j − f ) i �= j ; a = IT ,PF (16.11)

J(a,b)
i j =

g
f (1− f )Nt

P

∑
µ=1

(η µ
ai − f ) (η µ

b j − f ) ∀ i, j ; a �= b . (16.12)

The intra-modular connections are such that a numberP of sparse independent
configurations of neural activity are dynamically stable, constituting the possible
sustained activity states in each module. This is expressed by saying that each mod-
ule has learnedP binary patterns{η µ

ai = 0,1, µ = 1, . . . ,P}, each of them signalling
which neurons are active in each of the sustained activity configurations. Each vari-
ableη µ

ai is allowed to take the values 1 and 0 with probabilitiesf and(1− f ) respec-
tively, independently across neurons and across patterns. The inter-modular connec-
tions reflect the temporal associations between the sustained activity states of each
module. In this way, every stored patternµ in the IT module has an associated pattern
in the PF module which is labelled by the same index. The normalization constant
Nt = N(J0 + g) was chosen so that the sum of the magnitudes of the inter- and the
intra-modular connections remains constant and equal to 1 while their relative values
are varied. When this constraint is imposed the strength of the connections can be ex-
pressed in terms of a single independent parameterg measuring the relative intensity
of the inter- vs. the intra-modular connections (J0 can be set equal to 1 everywhere).

Both modules implicitly include an inhibitory population of neurons receiving and
sending signals to the excitatory neurons through uniform synapses. In this case the
inhibitory population can be treated as a single inhibitory neuron with an activity
dependent only on the mean activity of the excitatory population. We chose the
transduction function of the inhibitory neuron to be linear with slopeγ.

Since the number of neurons in a typical network one may be interested in is very
large, e.g.,∼ 105 − 106, the analytical treatment of the set of coupled differential
equations (16.10) becomes untractable. On the other hand, when the number of neu-
rons is large, a reliable description of the asymptotic solutions of these equations
can be found using the techniques of statistical mechanics [40]. In this framework,
instead of characterizing the states of the system by the state of every neuron, this
characterization is performed in terms ofmacroscopicquantities calledorder pa-
rameterswhich measure and quantify some global properties of the network as a
whole. The relevant order parameters appearing in the description of the system are
the overlap of the state of each module with each of the stored patternsmµ

a and the
average activity of each modulexa, defined respectively as:

mµ
a =

1
χN

≪∑
i
(η µ

ai − f )νai ≫η ; xa =
1
N

≪∑
i

νai ≫η , (16.13)

where the symbol≪ . . . ≫η stands for an average over the stored patterns.
Using the free energy per neuron of the system at zero temperatureF (which

is not written explicitly to reduce the technicalities to a minimum), [70] and [67]
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modelled the experiments by giving the order parameters the following dynamics:

τ
∂mµ

a

∂ t
= − ∂F

∂mµ
a

; τ
∂xa

∂ t
= −∂F

∂xa
. (16.14)

These dynamics ensure that the stationary solutions, corresponding to the values
of the order parameters at the attractors, correspond also to minima of the free en-
ergy, and that, as the system evolves, the free energy is always minimized through its
gradient. The time constant of the macroscopical dynamics was chosen to be equal
to the time constant of the individual neurons, which reflects the assumption that
neurons operate in parallel. Equations (16.14) were solved by a simple discretizing
procedure (first order Runge-Kutta method). An appropriate value for the time in-
terval corresponding to one computer iteration was found to beτ/10 and the time
constant has been given the valueτ = 10ms.

Since not all neurons in the network receive the same inputs, not all of them be-
have in the same way, i.e., have the same firing rates. In fact, the neurons in each
of the modules can be split into different sub-populations according to their state of
activity in each of the stored patterns. The mean firing rate of the neurons in each
sub-population depends on the particular state realized by the network (characterized
by the values of the order parameters). Associated with each pattern there are two
large sub-populations denoted as foreground (all active neurons) and background (all
inactive neurons) for that pattern. The overlap with a given pattern can be expressed
as the difference between the mean firing rate of the neurons in its foreground and
its background. The average was calculated over all other sub-populations to which
each neuron in the foreground (background) belonged to, where the probability of a
given sub-population is equal to the fraction of neurons in the module belonging to
it (determined by the probability distribution of the stored patterns as given above).
This partition of the neurons into sub-populations is appealing since, in neurophysi-
ological experiments, cells are usually classified in terms of their response properties
to a set of fixed stimuli, i.e., whether each stimulus is effective or ineffective in driv-
ing their response.

The modelling of the different experiments proceeded according to the macro-
scopic dynamics (16.14), where each stimulus was implemented as an extra current
into free energy for a desired period of time.

Using this model, results of the type described in Section 16.3.1 were found [67,
70]. The paper by [67] extended the earlier findings of [70] to integrate-and-fire
neurons, and it is results from the integrate-and-fire simulations that are shown in
Figures 16.10 and 16.11.

16.3.3 Computational necessity for a separate, prefrontal cortex, short-
term memory system

This approach emphasizes that in order to provide a good brain lesion test of pre-
frontal cortex short-term memory functions, the task set should require a short-term
memory for stimuli over an interval in which other stimuli are being processed, be-
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cause otherwise the posterior cortex perceptual modules could implement the short-
term memory function by their own recurrent collateral connections. This approach
also emphasizes that there are many at least partially independent modules for short-
term memory functions in the prefrontal cortex (e.g., several modules for delayed
saccades; one or more for delayed spatial (body) responses in the dorsolateral pre-
frontal cortex; one or more for remembering visual stimuli in the more ventral pre-
frontal cortex; and at least one in the left prefrontal cortex used for remembering the
words produced in a verbal fluency task – see Section 10.3 of [92]).

This computational approach thus provides a clear understanding of why a sepa-
rate (prefrontal) mechanism is needed for working memory functions, as elaborated
in Section 16.3.1. It may also be commented that if a prefrontal cortex module is
to control behaviour in a working memory task, then it must be capable of assum-
ing some type of executive control. There may be no need to have a single central
executive additional to the control that must be capable of being exerted by every
short-term memory module. This is in contrast to what has traditionally been as-
sumed for the prefrontal cortex [98].

16.3.4 Role of prefrontal cortex short-term memory systems in visual
search and attention

The same model shown in Figure 16.9 can also be used to help understand the im-
plementation of visual searchtasks in the brain [70]. In such a visual search task,
the target stimulus is made known beforehand, and inferior temporal cortex neurons
then respond more when the search target (as compared to a different stimulus) ap-
pears in the receptive field of the IT neuron [15, 16]. The model shows that this
could be implemented by the same system of weakly coupled attractor networks in
PF and IT shown in Figure 16.9 as follows. When the target stimulus is shown, it
is loaded into the PF module from the IT module as described for the delayed match
to sample task. Later, when the display appears with two or more stimuli present,
there is an enhanced response to the target stimulus in the receptive field, because
of the backprojected activity from PF to IT which adds to the firing being produced
by the target stimulus itself [67, 70] (see Figure 16.11). The interacting spatial and
object networks described by [82]) in Chapters 9–11, take this analysis one stage
further, and show that once the PF–IT interaction has set up a greater response to the
search target in IT, this enhanced response can in turn by backprojections to topo-
logically mapped earlier cortical visual areas move the “attentional spotlight” to the
place where the search target is located.

16.3.5 Synaptic modification is needed to set up but not to reuse short-
term memory systems

To set up a new short-term memory attractor, synaptic modification is needed to
form the new stable attractor. Once the attractor is set up, it may be used repeatedly
when triggered by an appropriate cue to hold the short-term memory state active by
continued neuronal firing even without any further synaptic modification (see [37]
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and [82]). Thus manipulations that impair the long-term potentiation of synapses
(LTP)air the formation of new short-term memory states, but not the use of previ-
ously learned short-term memory states. [37] analyzed many studies of the effects
of blockade of LTP in the hippocampus on spatial working memory tasks, and found
evidence consistent with this prediction. Interestingly, it was found that if there was
a large change in the delay interval over which the spatial information had to be re-
membered, then the task became susceptible, during the transition to the new delay
interval, to the effects of blockade of LTP. The implication is that some new learning
is required when the rat must learn the strategy of retaining information for longer
periods when the retention interval is changed.

16.4 Invariant visual object recognition
[74] proposed a feature hierarchical model of ventral stream visual objecting from
the primary visual cortex (V1), via V2 and V4 to the inferior temporal visual cortex
which could learn to represent objects invariantly with respect to position on the
retina, scale, rotation and view. The theory uses a short-term (‘trace’) memory term
in an associative learning rule to help capture the fact that the natural statistics of the
visual world reflect the fact that the same object is likely to be present over short-
time periods, for example over 1 or 2 seconds during which an object is seen from
different views. A model of the operation of the system has been implemented in a
four-layer network, corresponding to brain areas V1, V2, V4 and inferior temporal
visual cortex (IT), with convergence to each part of a layer from a small region of
the preceding layer, and with local competition between the neurons within a layer
implemented by local lateral inhibition [20, 82, 83, 116] (see Figure 16.12). During
a learning phase each object is learned. This is done by training the connections
between modules using a trace learning rule with the general form

δwi j = αyi
τ xτ

j (16.15)

wherexτ
j is the jth input to the neuron at time stepτ , yi is the output of theith

neuron, andwi j is the jth weight on theith neuron.

The traceyi
τ is updated according to

yi
τ = (1−η )yi

τ +ηyi
τ−1. (16.16)

The parameterη ∈ [0,1] controls the relative contributions to the traceyi
τ from

the instantaneous firing rateyi
τ at time stepτ and the trace at the previous time step

yi
τ−1.
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Convergence in the visual system. Right – as it occurs in the brain. V1: visual cortex
area V1; TEO: posterior inferior temporal cortex; TE: inferior temporal cortex (IT).
Left – as implemented in VisNet. Convergence through the network is designed to
provide fourth layer neurons with information from across the entire input retina.

16.5 Visual stimulus–reward association, emotion,
and motivation

Learning about which visual and other stimuli in the environment are rewarding pun-
ishing, or neutral is crucial for survival. For example, it takes just one trial to learn
if a seen object is hot when we touch it, and associating that visual stimulus with the
pain may help us to avoid serious injury in the future. Similarly, if we are given a
new food which has an excellent taste, we can learn in one trial to associate the sight
of it with its taste, so that we can select it in future. In these examples, the previously
neutral visual stimuli become conditioned reinforcers by their association with a pri-
mary (unlearned) reinforcer such as taste or pain. Our examples show that learning
about which stimuli are rewards and punishments is very important in the control
of motivational behaviour such as feeding and drinking, and in emotional such as
fear and pleasure. The type of learning involved is pattern association, between the
conditioned and the unconditioned stimulus. This type of learning provides a major
example of how the visual representations provided by the inferior temporal visual
cortex are used by the other parts of the brain [77, 80, 82]. In this section we con-
sider where in sensory processing this stimulus-reinforcement association learning
occurs, which brain structures are involved in this type of learning, how the neuronal
networks for pattern association learning may actually be implemented in these re-
gions, and how the distributed representation about objects provided by the inferior
temporal cortex output is suitable for this pattern association learning.

The crux of the answer to the last question is that the inferior temporal cortex
representation is ideal for this pattern association learning because it is a transform-
invariant representation of objects, and because the code can be read by a neuronal
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system which performs dot products using neuronal ensembles as inputs, which is
precisely what pattern associators in the brain need, because they are implemented
by neurons which perform as their generic computation a dot product of their inputs
with their synaptic weight vectors (see [82] and [92]).

A schematic diagram summarizing some of the conclusions reached [77, 82, 92] is
shown in Figure 16.13. The pathways are shown with more detail in Figure 16.14.
The primate inferior temporal visual cortex provides a representation that is indepen-
dent of reward or punishment, and is about objects. The utility of this is that the out-
put of the inferior temporal visual cortex can be used for many memory and related
functions (including episodic memory, short-term memory, and reward/punishment
memory) independently of whether the visual stimulus is currently rewarding or not.
Thus we can learn about objects, and place them in short-term memory, indepen-
dently of whether they are currently wanted or not. This is a key feature of brain
design. The inferior temporal cortex then projects into two structures, the amyg-
dala and orbitofrontal cortex, that contain representations of primary (unlearned)
reinforcers such as taste and pain. These two brain regions then learn associations
between visual and other previously neutral stimuli, and primary reinforcers [77], us-
ing what is highly likely to be a pattern association network, as illustrated in Figure
16.13. A difference between the primate amygdala and orbitofrontal cortex may be
that the orbitofrontal cortex is set up to perform reversal of these associations very
rapidly, in as little as one trial. Because the amygdala and orbitofrontal cortex rep-
resent primary reinforcers, and learn associations between these and neutral stimuli,
they are key brain regions in emotions which can be understood as states elicited by
reinforcers, that is rewards and punishers), and in motivational states such as feeding
and drinking [77].

16.6 Effects of mood on memory and visual pro-
cessing

The current mood state can affect the cognitive evaluation of events or memories (see
[9], [87]). An example is that when they are in a depressed mood, people tend to re-
call memories that were stored when they were depressed. The recall of depressing
memories when depressed can have the effect of perpetuating the depression, and
this may be a factor with relevance to the etiology and treatment of depression. A
normal function of the effects of mood state on memory recall might be to facilitate
continuity in the interpretation of the reinforcing value of events in the environment,
or in the interpretation of an individual’s behaviour by others, or simply to keep be-
haviour motivated to a particular goal. Another possibility is that the effects of mood
on memory do not have adaptive value, but are a consequence of having a general
cortical architecture with backprojections. According to the latter hypothesis, the se-
lection pressure is great for leaving the general architecture operational, rather than
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Figure 16.13

Schematic diagram showing the organization of brain networks involved in learning
reinforcement associations of visual and auditory stimuli. The learning is imple-
mented by pattern association networks in the amygdala and orbitofrontal cortex.
The visual representation provided by the inferior temporal cortex is in an appropri-
ate form for this pattern association learning, in that information about objects can
be read from a population of IT neurons by dot-product neuronal operations.

trying to find a genetic way to switch off backprojections just for the projections of
mood systems back to perceptual systems (cf. [86]).

[87] (see also [75] and [77]) have developed a theory of how the effects of mood
on memory and perception could be implemented in the brain. The architecture,
shown in Figure 16.15, uses the massive backprojections from parts of the brain
where mood is represented, such as the orbitofrontal cortex and amygdala to the
cortical areas such as the inferior temporal visual cortex and hippocampus-related
areas (labelled IT in Figure 16.15) that project into these mood-representing areas
[2, 1]. The model uses an attractor in the mood module (labelled amygdala in Figure
16.15), which helps the mood to be an enduring state, and also an attractor in IT. The
system is treated as a system of coupled attractors (see [82]), but with an odd twist:
many different perceptual states are associated with any one mood state. Overall,
there is a large number of perceptual / memory states, and only a few mood states,
so that there is a many-to-one relation between perceptual / memory states and the
associated mood states. The network displays the properties that one would expect
(provided that the coupling parametersg between the attractors are weak). These
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Diagrammatic representation of some of the connections described in this chapter.
V1, striate visual cortex. V2 and V4, cortical visual areas. In primates, sensory
analysis proceeds in the visual system as far as the inferior temporal cortex and the
primary gustatory cortex; beyond these areas, in for example the amygdala and or-
bitofrontal cortex, the hedonic value of the stimuli, and whether they are reinforcing
or are associated with reinforcement, is represented (see text).

include the ability of a perceptual input to trigger a mood state in the ‘amygdala’
module if there is not an existing mood, but greater difficulty to induce a new mood
if there is already a strong mood attractor present; and the ability of the mood to
affect via the backprojections which memories are triggered.

An interesting property which was revealed by the model is that because of the
many-to-few mapping of perceptual to mood states, an effect of a mood was that
it tended to make all the perceptual or memory states associated with a particular
mood more similar then they would otherwise have been. The implication is that
the coupling parameterg for the backprojections must be quite weak, as otherwise
interference increases in the perceptual / memory module (IT in Figure 16.15).

Acknowledgments: This research was supported by Medical Research Council Pro-
gramme Grant PG9826105, by the MRC Interdisciplinary Research Centre for Cog-
nitive Neuroscience, and by the Human Frontier Science Program.

© 2004 by Chapman & Hall/CRC



Figure 16.15

Architecture used to investigate how mood can affect perception and memory. The
IT module represents brain areas such as the inferior temporal cortex involved in
perception and hippocampus-related cortical areas that have forward connections to
regions such as the amygdala and orbitofrontal cortex involved in mood. (After Rolls
and Stringer (2001)).
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17.1 Introduction: the ecological nature of motor
control

Modelling the way in which humans learn to coordinate their movements in daily

life or in more demanding activities is an important scientific topic from many points

of view, such as medical, psychological, kinesiological, cybernetic. This chapter

analyses the complexity of this problem and reviews the variety of experimental and

theoretical techniques that have been developed for this purpose.

With the advent of technical means for capturing motion sequences and the pi-

oneering work of Marey [41] and Muybridge [53] in this area, the attempt of de-

scribing, modelling and understanding the organisation of movement has become a

scientific topic. The fact that human movements are part of everyday life paradoxi-

cally hides their intrinsic complexity and justifies initial expectations that complete

knowledge could be achieved simply by improving the measurement techniques and

carrying out a few carefully designed experiments. Unfortunately, this is not the case.

Each experiment is frequently the source of more questions than answers and thus

the attempt to capture the complexity of purposive action and adaptive behaviour,

after over a century of extensive multidisciplinary research, is far from over.

The conventional view is based on a separation of perception, movement and cog-

nition and the segregation of perceptual, motor and cognitive processes in different

parts of the brain, according to some kind of hierarchical organisation. This view

is rooted in the empirical findings of neurologists of the 19th century, such as J.

Hughlings Jackson, and has a surprising degree of analogy with the basic structure

of a modern PC that typically consists of input and output peripherals connected to

a central processor. Perhaps the analogy with modern technology justifies why this

old-fashioned attitude still has its supporters, in spite of the massive empirical and

conceptual challenge to this view and its inability to explain the range of skills and

adaptive behaviours that characterize biological organisms.

Let us consider perception, which is the process whereby sensory stimulation is

translated into organised experience. That experience, or percept, is the joint product

of the stimulation and of the process itself, particularly in the perception and repre-

sentation of space. An early theory of space perception put forth by the Anglican

bishop G. Berkeley at the beginning of the 18th century was that the third dimen-

sion (depth) cannot be directly perceived in a visual way since the retinal image of

any object is two-dimensional, as in a painting. He held that the ability to have vi-

sual experiences of depth is not inborn but can only result from logical deduction

based on empirical learning through the use of other senses. The first part of the

reasoning (the need of a symbolic deductive system for compensating the fallacy of

the senses) is clearly wrong and the roots of such misconception can be traced back

to the neoplatonic ideas of the Italian Renaissance, in general, and to the Alberti’s

window metaphor, in particular. Also the Cartesian dualism between body and mind

is just another face of the same attitude and such Descartes’ error, to quote A.R.

Damasio [15], is on a par with the Berkeley’s error above and is at the basis of the
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intellectualistic effort to explain the computational complexity of perception which

characterizes a great part of the classic artificial intelligence approach. However, the

latter part of Berkeley’s conjecture (the emphasis on learning and intersensory inte-

gration) is surprisingly modern and agrees, on one hand, with the modern approach

to neuropsychological development pioneered by J. Piaget [55] and, on another, with

the so called connectionist point of view, originated in the 1980s as a computational

alternative to classic artificial intelligence.

An emergent idea is also the motor theory of perception, well illustrated by A.

Berthoz [8], i.e., the concept that perception is not a passive mechanism for receiv-

ing and interpreting sensory data but is the active process of anticipating the sensory

consequences of an action and thereby binding the sensory and motor patterns in a

coherent framework. In computational terms, this implies the existence in the brain

of some kind of internal model, as a bridge between action and perception. As a

matter of fact, the idea that the instructions generated by the brain for controlling a

movement are utilized by the brain for interpreting the sensory consequences of the

movement is already present in the pioneering work of Helmholtz and von Uexküll

and its influence has resurfaced in the context of recent control models based on

learning (e.g., [71]). The generally used term is corollary discharge [29] and im-

plies an internal comparison between an out-going signal (the efferent copy) and the

corresponding sensory re-afference: the coherence of the two representations is the

basis for the stability of our sensorimotor world. This kind of circularity and com-

plementarity between sensory and motor patterns is obviously incompatible with the

conventional reasoning based on hierarchical structures. A similar kind of circu-

larity is also implicit in Piaget’s concept of circular reaction, which is assumed to

characterize the process of sensorimotor learning, i.e., the construction of the inter-

nal maps between perceptually identified targets and the corresponding sequence of

motor commands.

An additional type of circularity in the organism/environment interaction can be

identified at the mechanical interface between the body and the outside world, where

the mechanical properties of muscles interact with the physics of inanimate objects.

This topic area has evolved from the Russian school, with the early work on the

nature of reflexes by I.P. Pavlov and the subsequent critical re-examination by P.K.

Anhokin and N. Bernstein [1, 7]. In particular, we owe to Bernstein the seminal

observation (the comparator model) that motor commands alone are insufficient to

determine movement but only identify some factors in a complex equation where

the world dynamics has a major influence. This lead, among other things, to the

identification of muscle stiffness as a relevant motor parameter and the formulation

of the theory of equilibrium-point control [10, 17].

In general we may say that, in different ways, Helmholtz’s corollary discharge, Pi-

aget’s circular reaction, and Bernstein’s comparator model are different ways to ex-

press the ecological nature of motor control, i.e., the partnership between brain pro-

cesses (including muscles) and world dynamics. This concept is graphically sketched

in Figure 17.1. On the other hand, these general ideas on motor control could not

provide, immediately, mathematical tools of analysis from which to build models

and perform simulations. The art and science of building motor control models is
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Figure 17.1

Ecological nature of the sensorimotor control system.

a later development and has been influenced by the methods designed by engineers

in the field of automatic control and computer science. Most of the techniques are

based on linear approximations and explicit schematisations of the phenomena. In

particular, two main concepts can be singled out for their influence on the study of

motor control: the concept of feedback and the concept of motor program. Their

level of influence in brain theory is certainly determined by the tremendous success

of these techniques in the modern technological world. However their applicability

to what we may call the biological hardware is questionable for two main reasons:

(i) Feedback control can only be effective and stable if the feedback delays are negli-

gible, but this is not the case of biological feedback signals, where transduction and

transmission delays add up to tens of milliseconds; (ii) The concept of motor pro-

gram implies a sequential organisation, which only can be effective if the individual

steps in the sequence are sufficiently fast, and this is in contrast with the parallel, dis-

tributed processing of the brain made necessary by the relative slowness of synaptic

processing. In fact, the recognition of the limits of the analytic-symbolic approach

has motivated, since the late 1980s, a re-evaluation of earlier approaches under the

new light of connectionist thinking.
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17.2 The robotic perspective

17.2.1 Logical decomposition of motor control into cascaded compu-

tational processes

The computational process that is necessary for realising a planned motor task has

been the subject of a great deal of research in robotics. As sketched in Figure 17.2,

five main blocks can be identified which, in the robotic approach, correspond to

different procedures that, at least in principle, should be programmed independently

and executed in a sequence:

1. Planning: this implies a detailed characterization of an intended movement by

selecting the initial point, the target point, the position of obstacles, the size

and orientation of the gesture, the time base, etc., independently of the specific

end-effector,

Plan:{ Collection of critical points in space and time }

2. Trajectory formation, which breaks down the planned trajectory into a se-

quence of elementary movements or strokes, identified by suitable via-points

and smoothly joined together in a quasi-continuous curve

x(t) =Â
i

strokei(t − ti)

For general movements in space x(t) is a 6-dimensional vector, independent

of the specific end-effector.

3. Inverse kinematics: at this stage there must be the selection of the end-effector,

with the corresponding kinematic chain, and the transformation of the time

vector x(t) into a vector of joint rotations q(t). Geometrically this corresponds

to a coordinate transformation from space coordinates (task space) to joint

coordinates (joint space). If the dimensionality of the q-vector is n = 6, then

the kinematic chain is redundant and the kinematic inversion in general admits

an infinite number of solutions, described by the so-called null space of the

kinematic transformation, within the workspace defined by the geometry of

the arm and the joint limits. In particular, if J(q) is the Jacobian matrix of the

x → q transformation, then the following relation holds, also known as direct

kinematic equation:

ẋ = J(q)q̇ (17.1)

In the case of redundancy the null space is described by the following relation

0 = J(q)q̇ and its dimensionality is n-6. The solution of the inverse kinematic

equations can be carried out instantaneously by using the pseudo-inverse or

Moore-Penrose matrix:

q̇ = [J(q)T J(q)]−1J(q)T ẋ (17.2)
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However this solution is not numerically robust, close to the singularities of

the kinematic transformation, and is non-integrable in the sense that, if we

command a robot by means of this algorithm in relation with a desired closed

trajectory in task space repeated several times (as in crank turning), we get a

trajectory in joint space which is not closed and tends to drift towards the joint

limits of the kinematic chain.

4. Inverse dynamics and interaction forces: computing inverse dynamics corre-

sponds to the solution of the following equation

tactuator(t) = I(q)q̈+C(q, q̇)q̇ + G(q)+ JT(q)Fext (17.3)

where q(t) is the planned/desired trajectory in the joint space, I(q)q̈ identifies

the inertial forces proportional to the acceleration, C(q, q̇)q̇ the Coriolis forces

quadratically dependent upon speed, G(q) the gravitational forces indepen-

dent of time, and Fext the external disturbance/load applied to the end-effector

(Figure 17.3). This equation is highly nonlinear and acts as a sort of internal

disturbance which tends to induce deformations of the planned trajectories.

In particular, the inertial terms is predominant during the initiation and ter-

mination of the movements whereas the Coriolis terms is more important in

the intermediate, high-speed parts of the movements. Figure 17.4 shows a

simulation involving a planar arm with two degrees of freedom. A set of 8

different trajectories were generated starting from the same initial point. For

each of them Equation 17.1 was applied and the computed torque vectors were

re-mapped as end-effector force vectors in the following way:

tactuator(t) = JT (q)Fend-effector
⇒ Fend-effector = (JT (q))−1tactuator(t)

(17.4)

The figure shows that the patterns of end-effector forces are quite variable in

relation with the movement direction. In particular, each force vector can be

decomposed into a longitudinal component (oriented as the intended move-

ment direction) and a transversal component. While the longitudinal compo-

nent corresponds to the usual inertial resistance that would be present even

if the degrees of freedom were controlled separately, one after the other, the

transversal component is related to the non-linear dynamics determined by

the interaction among degrees of freedom and, if unaccounted for, will tend

to deviate laterally the planned trajectory. As can be seen from the figure,

the order of magnitude of such lateral disturbances or interaction forces is the

same as the main inertial components. Moreover it can be seen that the initial

and final parts of the movements (characterized by low velocity but high ac-

celeration) tend to be more affected than the intermediate high-velocity part.

Obviously interaction torques only occur in multi-joint movements: if move-

ments are broken down as sequences of single-joint rotations, then interaction

forces disappear and this might explain why in several neuromotor pathologies

movement segmentation is a typical adaptation to the impairment.
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Figure 17.2

Logical decomposition of motor control into cascaded computational processes.

Figure 17.3

Internal and external forces in a kinematic chain. In the usual control paradigm Fext

is related to the load and ti’s are the controlled actuator forces. In the passive motion

paradigm Fext is related to the planned trajectory and ti’s correspond to the passive

compliance of the joints to the planned pull.

5. Actuator control: the typical robotic actuators are force-controlled and thus the

output of the inverse dynamics calculations can be directly fed to the control

variables of the actuators.

17.2.2 The Achilles’ heel of feedback control

In practice, the scheme of Figure 17.2 cannot be applied directly because the dy-

namical model is uncertain and partially unknown. Thus, on top of a computational

process structured as an approximation of Figure 17.2 usually there is a layer of feed-

back control which can use positional and/or force feedback (Figure 17.5). The main

problem of feedback control, particularly from the perspective of using it as a possi-

ble paradigm for modelling biological motor control, is that it is critically dependent
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Figure 17.4

Interaction forces in reaching movements. Starting from the resting position de-

picted in the left panel (50 cm from the shoulder, with the elbow 90◦ flexed) 8 differ-

ent reaching movements are considered in equally spaced directions. The nominal

trajectories are generated according to the minimum-jerk criterion (duration: 0.7 s;

amplitude: 20 cm). The right panel shows, for each of them, the pattern of actuator

forces, mapped onto the end-effector. Parameters of the simulation: arm (mass: 2

Kg; length: 30 cm); forearm (mass: 2 Kg; length: 40 cm).

upon the delays in the control loop.

Let us consider a very simple example: a second-order load (such as a spring-

mass-dashpot system), with a natural frequency of 1 Hz and a damping factor of

0.5, under the action of a standard PD (proportional + derivative) controller. If we

suppose that the ratio between the proportional and derivative gains is 10:1 and com-

pute the overall gain in such a way that the asymptotical precision of the closed-loop

control in the step-response is 90%, we get the Bode diagram of Figure 17.6. In par-

ticular, the diagram shows that the phase-margin f of the closed-loop control is 84o

at a frequency w of 36 rad/s. If we now suppose that there is a delay in the feedback

loop of T s and we consider that this delay introduces a frequency-dependent phase-

shift equal to Df = wT , we can compute the limit value of the delay beyond which

the control becomes unstable. In the example it turns out that it is 40 ms or even less

if the ratio above is less than 10:1. In robotic applications it is not difficult to limit

the delays to values which are 1 or 2 order of magnitudes smaller than limit value

above. This is not the case, unfortunately, of the biological motor control and for

this reason a great part of the motor control mechanisms are implemented in terms

of feedforward paradigms, based on suitable internal models, or on non-reflexive

feedback paradigms in which internal models are used for compensating delays by

means of prediction.
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Typical block diagram of feedback control. Sensory feedback has a direct control

action.

Figure 17.6

Bode diagram of a feedback controlled spring-mass model. The phase margin is

computed by considering the frequency at which the log-magnitude plot intersects

the 0 dB line and measuring the difference between the critical phase value (180◦)

and the actual phase, derived from the phase plot. Stability requires a positive phase

margin and a value greater that 45◦ is required for suitable damping.
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17.3 The biological perspective

17.3.1 Motor equivalence and spatio-temporal invariances

The experimental study of movements in humans and other mammals has shown that

voluntary movements obey two important psychophysical principles, from the point

of view of trajectory formation, in addition to the logarithmic dependence of choice

reaction time upon the number of choices (a.k.a. Hick-Hyman law: [31]) and of

movement time upon relative accuracy (a.k.a. Fitts law: [18]):

1. The principle of motor equivalence [7, 26]: spatio-temporal features of a

planned movement are independent of the selected end-effector and thus of

the specific muscles involved;

2. The principle of kinematic invariance in the task space (Figure 17.6): hand

movements to a target are approximately straight with bell-shaped speed pro-

files [45], independently of the movement direction and amplitude. Applied

to more complex trajectories, as in handwriting, the same principle predicts a

correlation between speed and curvature [37, 46] which is consistent with the

overlapped composition of subsequent primitive motor patterns similar to the

reaching movements. Such invariant spatio-temporal features of normal move-

ments can be explained by a variety of criteria of maximum smoothness, such

as the minimum jerk criterion (the jerk-index is computed as the logarithm

of the normalised time integral of the squared norm of the third time deriva-

tive of the hand trajectory: [20]) or the minimum torque-change criterion [68].

Kinematic invariance and smoothness are already present in the cortical pat-

terns that precede movements [22] and thus are not a mere consequence of the

filtering action of the peripheral motor apparatus.

As regards inverse kinematics, particularly in the case of redundant kinematic

chains, a computational model was proposed by Mussa-Ivaldi et al. [52] which is

based on the Passive Motion Paradigm. It consists of the relaxation of (an internal

model of) the overall kinematic chain to the virtual pull of a force applied to the

end-effector, in the direction of the intended movement. In a sense, it is the neuro-

motor analog of the mechanism of coordinating the motion of a wooden marionette

with jointed limbs by means of attached strings. The computational merit of the

model is its robustness because it achieves kinematic inversion without an explicit

ill-posed inversion process, but operates with the aid of a well-posed direct compu-

tation: the passive relaxation to the virtual pull. This method does not suffer the

problem of non-integrability of the Moore-Penrose method because it is passive. In

order to make clear the meaning of passive relaxation, let us reconsider Figure 17.3,

which was intended to sketch a real arm driven by a set of joint actuators capable to

compensate the internal load of the Lagrangian dynamics and the external load rep-

resented by the force Fext : in the Passive Motion Paradigm Fext is not a real force but

a virtual force vector which is generated by a motor planning process and specifies
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Figure 17.7

Planar reaching movements. Left panel: schematic experimental setup. Central

panel: hand trajectories (top) and speed profile (bottom) in a typical control subject.

Right panel: hand trajectories (top) and speed profile (bottom) in a typical cerebellar

patient
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Model of muscle control based on the l -model. l is the threshold of the monosy-

naptic stretch reflex as well as the rest-length of the muscle (i.e., the value of muscle

length at which muscle force vanishes). Recruitment is consistent with the size-

principle and justifies the exponential shape of the length-tension curves. Tetanic fu-

sion, which refers to the relatively slow force build-up for sudden changes of motor

commands, is implemented as a low-pass filter. Hill’s law is the non-linear depen-

dence of muscle’s force on the muscle’s speed of contraction. Stiffness is the slope

of the length-tension curve and provides an instantaneous length-feedback, which is

added to the velocity-feedback related to the Hill’s law. Spinal feedback (through

muscle spindles) is not instantaneous and has a significant delay.
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Conceptual scheme for the measurement of the hand mechanical impedance. As

shown in the left panel, a grasped handle transmits to the hand small and quick dis-

turbance vectors dX by means of a computer controlled robotic arm, starting from

a given resting position. The restoring force vectors dF are measured and the re-

sponse patterns, for many directions of dX , are fitted by a spring-mass-damper sys-

tem, yielding a set of polar plots. In particular, the polar plot of the elastic coefficient

(i.e., the stiffness) is shown in the right panel, for different positions of the hand in

the workspace.
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the intended direction and speed of the end-effector. Relaxation is a direct, not an

inverse computational process and it can be implemented in a very natural way in

terms of neural networks by means of interactive self-organised cortical maps [47].

17.3.2 The viscous-elastic properties of the human muscles

Perhaps the most marked difference between the robotic and the biological perspec-

tive in the field of motor control is that in contrast with the typical robotic actuators

(torque motors), which are force-controlled and uni-directional (in torque motors the

output torque only depends on the applied current, independent of the load reaction),

the biological actuators (striated muscles) are position-controlled and bi-directional:

the actual force delivered by the muscle to the load is a function of the descending

motor command and of the reaction of the load. This bi-directional relationship is

characterised by two main components:

• A length-dependent component, which is equivalent to an energy-storage elas-

tic characteristic of the muscle [17, 56];

• A velocity-dependent Hill-type component, which captures the dissipative,

viscous characteristic of the muscle [70].

What is important, from the motor control point of view, is that the length-tension

curves of the muscles cannot be approximated in a linear way but have a charac-

teristic exponential course, related to the progressive recruitment of motor units).

This means that muscle stiffness is not constant but is a function of the particular

equilibrium point. In fact, the descending motor commands determine the point of

intersection l of the exponential curves with the horizontal line: see Figure 17.8.

In this model l is the controllable parameter, or l -command, that sets the activa-

tion threshold of the monosynaptic stretch reflex and thus determines the rest-length

of the muscle-spring. In this sense muscles are position controlled and by exploit-

ing the fact that each joint is activated by antagonistic groups of muscles the brain

can determine independently the overall equilibrium point (via a pattern of recipro-

cal l -commands to antagonistic muscles) and the overall stiffness (via a pattern of

coactivation l -commands to synergistic muscles).

Such bi-directional characteristics of the muscles in a kinematic chain, such as

the arm, are combined together determining an elastic interaction between the end-

effector and the load which has markedly anisotropic features (see the stiffness el-

lipses of Figure 17.9). This ellipse can be computed experimentally by generating

small disturbances in different directions and measuring the restoring force vector.

As seen in the figure, the orientation of the stiffness ellipses appear to be charac-

terised by a polar pattern, with the long axis (where the hand appears to be stiffer)

aligned along the shoulder-hand direction. The size of such ellipses is easily un-

der voluntary control by modulation of the overall coactivation of arm muscles. On

the contrary, the orientation of the ellipses does not appear to be under immediate

voluntary control, with the exception of highly learned movements [14].
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The bi-directional characteristics of the human muscles make them much more

flexible than typical robotic actuators and the implications for the theory of motor

control, only acknowledged in the late seventies, are still somehow controversial.

There is no doubt that muscle stiffness can be seen as a kind of implicit (and thus

instantaneous) feedback mechanism that tends to overcome the action of external

and internal disturbances and loads, such as the action of gravity and the intrinsic

dynamics of the body masses. The big question is concerned with the quantitative

and functional relevance of this effect. For some researchers muscle stiffness is all

that is needed, without any kind of internal dynamic models to compensate for in-

ternal and external disturbances. In this view, the brain is only supposed to generate

smooth equilibrium-point trajectories (the reciprocal commands) and to set-up an

appropriate level of coactivation. A very important feature of this model is that it

assigns a computational role to the muscles, in addition to its obvious executive ac-

tion. In spite of its elegance and appealing ecological nature, this extreme form of

equilibrium-point control model would only be plausible if the empirical values of

muscle stiffness, at equilibrium as well as during movement, were strong enough in

relation with the usual dynamics of body motion. The problem is that this is a diffi-

cult type of measurement and the available experimental data in dynamic conditions

are quite limited [23]. Yet there is a growing consensus that, although stiffness is

certainly relevant as a co-factor in load-compensation, it is not sufficient by alone

particularly in more demanding dynamic tasks. For example, its relative importance

is likely to be much greater in miniature movements, as in the case of handwriting,

which involve relatively small masses, than in the case of large sport gestures which

may involve large masses, high speed and a high level of required accuracy.

17.3.3 Dynamic compensation: anticipatory feedforward and feedback
control

The alternative solution to a pure stiffness compensation of internal and external

disturbances is some combination of anticipatory feedforward & feedback control,

in addition to the implicit feedback provided by muscle stiffness and the reflexive

feedback provided by segmental mechanisms (Figure 17.10).

In general, a feedforward control model is based on the pre-programmed (and thus

anticipatory) computation of the disturbances that will be encountered by a system

when it attempts to carry out a desired plan of motion and thus it is, in a very general

sense, an inverse model of the controlled plant. This computation is complex and

requires learning; a good example is given the feedback error learning model [33]

where the feedforward controller is trained according to the residual errors of an

underlying feedback controller (Figure 17.11): in particular, the feedback error (the

discrepancy between the desired and real trajectories) is used as the learning signal

of the trainable feedforward model, which gradually takes over the responsibility of

counterbalancing the dynamic disturbances, thus acquiring an internal inverse model

of body dynamics. On the other hand, such learning/control scheme does not work

with unstable plants/loads, like in the stabilisation of the standing posture, because

cannot provide a point-attractor to a system which does not have it in the first place.
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Anticipatory feedback control is responsible for the correction of the outgoing

motor commands on the basis of sensory (typically visual and proprioceptive) infor-

mation; in contrast with feedforward control, it requires an internal forward model

of the body dynamics which combines a copy of the efferent command patterns with

the delayed reafferent signals and thus can reconstruct, in a similar way to a Kalman

filter, the actual state of the plant [16]. Also this internal model requires a process of

learning but it is conceptually simpler and computationally less critical than learning

the internal inverse model.

Indeed, the two control modalities seem to coexist in the motor system [59]. Ex-

perimental evidence suggests that both components may use some form of internal

model of body dynamics [9, 25]. The view of the cerebellum as a computing ma-

chinery that has competence as regards the physics of the body [12, 32, 33, 34, 42]

suggests that the cerebellar circuitry is likely to play an important role in carrying

out these tasks and hints at cerebellar syndromes as crucial pathological conditions

for understanding the role of the cerebellum in motor coordination.

17.4 The role of cerebellum in the coordination of
multiple joints

Cerebellar syndromes, also known as ataxias, form a useful case study to improve

our understanding of the mechanisms underlying sensorimotor coordination. Ataxia

is the main sign of cerebellar dysfunction. According to the classic description by

Holmes [27, 28], the term indicates multiple problems in the planning and execu-

tion of movements, including: (1) delay in movement initiation, (2) inaccuracy in

achieving a target (dysmetria), (3) inability to perform movements of constant force

and rhythm (dysdiadochokinesia), and (4) difficulty to coordinate multi-joint move-

ments. Additional cerebellar symptoms are diminished resistance to passive limb

displacement (hypotonia) and kinetic tremor (a pattern which appears at movement

onset and increases in amplitude while approaching the target).

Quantitative methods for movement analysis have a long history. (In fact, the clas-

sic Holmesian description of ataxia is based on an ingenious technique for recording

hand trajectories.) Methods based on kinematic and/or kinetic analysis of move-

ments may potentially allow one to identify more subtle aspects of movement disor-

ders as well as small changes in the degree of the involved impairments over time.

For example, kinematic measurements of single-joint arm movements in patients

with cerebellar ataxia [13] have provided a precise description of the alteration of

the temporal structure of these movements. While patients preserved the linear rela-

tionship between peak velocity and movement amplitude which is typical of normal

subjects, the speed profiles were asymmetric, with a longer deceleration phase. The

asymmetry of the speed profiles was also observed in multi-joint arm movements

[5, 60]: see Figure 17.7, which compares the typical patterns of normal subjects (left
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Figure 17.10

Scheme of action of anticipatory feedforward and feedback control. The feedforward

controller implements an approximate inverse model of the load/plant. The model

can be learned by comparing a copy of the efferent signals and the concurrent reaffer-

ent signals. The feedback controller implements an approximate direct model of the

load/plant in order to recover the intrinsic delays of the afferent signals. Therefore

both controllers must be trained and operate in an anticipatory manner. The feedfor-

ward controller is typically used in the compensation of self-generated disturbances,

as in arm-trajectory formation, but is ineffective if the load/plant is unstable. In

that case an anticipatory feedback controller is more appropriate, implemented as a

sampled-data control system. Modulation of joint mechanical impedance is a syner-

gistic process, with a typical relaxation of the level of stiffness as the trained internal

model become more and more precise.
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Feedback error learning. The purpose of the controller is to generate a control vari-

able that allows the controlled variable q(t) to faithfully reproduce its reference tra-

jectory. The trainable feedforward control model operates in parallel with a standard

feedback controller. At the beginning of learning the feedback controller has full re-

sponsibility for driving the system, at least in an approximate way. Its output signal

is an indirect measurement of error and thus can be used as a learning error signal for

the feedforward model, in association with a copy of the reference /desired signal. As

learning proceeds, the error between the controlled variable and its reference value

becomes less and less and thus the feedback controller diminishes its contribution to

the generation of the control commands which, ultimately, will be fully generated in

an anticipatory manner by the feedforward controller.
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panel) and ataxic patients (right panel).

In general, multi-joint movements tend to enhance pathological features of the

movements such as the un-coordination of shoulder and elbow joints, the curvature

of hand paths, and dysmetria [4, 24, 35]. These authors found evidence that speed

asymmetry is mainly due to an abnormal timing between the different joint rotations,

because the individual joints exhibit almost normal angular speed profiles.

There is also growing evidence about the importance of interaction torques, which

are associated with the multi-link structure of the human arm and consist of a com-

bination of centripetal, Coriolis and inertial components (see Equation 17.3). These

torque components need to be explicitly accounted for by the controller, otherwise

the resulting trajectories tend to be significantly distorted, as explained in the pre-

vious sections. A related observation is that in healthy subjects the total muscle

torque in each joint is highly correlated with the interaction torques whereas in cere-

bellar patients this correlation is absent. This finding can be interpreted as a result

of a defective compensation of interaction torques, which only occur in multi-joint

movements. Another consequence of the same mechanism is the decomposition of

movements into separated segments [4, 65, 66], because by moving one joint at a

time the interaction torques can be eliminated. In fact, interaction torques express

the dynamical coupling among the joints due to the biomechanics of the arm, and un-

coupling the joint motions by whatever mechanism may contribute to reduce the ef-

fects of these interaction torques. On the other hand, neutralizing interaction torques

by means of movement decomposition has the obvious drawback of worsening the

overall smoothness of the movement patterns. Also the recent finding by Boose

[11], that in cerebellar patients there is a deficient level of phasic muscle forces, can

be attributed to a defective compensation of interaction torques, particularly in the

higher speed part of the movements. Moreover, it has been found [19, 43, 60] that

movement inaccuracies which can be attributed to partially unaccounted interaction

torques are also present in healthy subjects performing sufficiently fast movements,

even though its extent is much smaller than in the ataxic patients.

17.4.1 Abnormal feedforward control in ataxic patients

In a clinical study aimed at the quantitative assessment of the movements of patients

with cerebellar ataxia, Sanguineti et al. [60] recorded aiming trajectories of cere-

bellar patients and compared them with normal subjects, as sketched in Figure 17.7.

The statistical analysis of the data shows what is already apparent in qualitative in-

spection: the movements of the patients are less straight, smooth and symmetric than

the controls. However their performance is consistent and in order to have some un-

derstanding of the specific missing element due to the cerebellar impairment, further

analysis was focused on the initial and the final part of the movement. The former

analysis is based on the assumption that the early phase of a movement is exclu-

sively under feedforward control. In particular we considered the initial aiming er-

ror, defined as the angle between the target and the initial movement direction. If we

consider the pattern of lateral disturbances depicted in Figure 17.4 we might expect

significant aiming errors if the intrinsic dynamics is not compensated for by appro-
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priate feedforward control. In the initial part of the movement, in which acceleration

is high but velocity is low, the first inertial element of Equation 17.1 dominates the

dynamical behavior: tactuator(t) ≈ I(q)q̈+ JT (q)Fext . Therefore, the apparent iner-

tia applied by the arm to an external load is given by the following relationships, in

the case of non-redundant arms:

JT (q)Fload ≈ I(q)(q̈) ⇒ Fload ≈ [JT (q))−1I(q)(J(q))−1]ẍ = I(x)(ẍ)

where x is the vector which identifies the position/orientation of the end-effector.

The end-effector inertia, represented by the matrix I(x), is not isotropic, as shown by

the inertia ellipse of Figure 17.12 (top). It is worth noting that the principal axis is

approximately aligned with the forearm: only in this direction (and the correspond-

ing orthogonal direction) the force and acceleration vectors are collinear. This means

that, if a force vector is generated in a given direction, the corresponding accelera-

tion vector has a sideway component which tends to deviate the movement from its

intended path, with the exception of the principal directions. Figure 17.12 (bottom)

displays, for each experimental subject, the relationship between the aiming error

and the movement direction relative to the principal direction of the inertia ellipse:

we can see that the error tends to vanish in the principal direction and is charac-

terized by sideways deviations in the other directions which are consistent with the

directional characteristics of the inertia. Therefore we may conclude that the pattern

of aiming errors can be attributed to a defective cerebellar feedforward controller.

Such biomechanical explanation in terms of unaccounted interaction forces is also

consistent with the fact that both patients and controls exhibit a similar pattern of

aiming errors: the difference is that the feedforward compensation in the controls is

more effective than in the cerebellar patients, although it is not perfect.

In cerebellar patients, the analysis of smoothness has shown that the final part of

the movements, which is typically sensitive to feedback corrections, is not specifi-

cally affected and this suggest that the cerebellar impairment is primarily related to

feedforward rather than feedback control. It is also worth mentioning that in another

pathological syndrome with a relevant impairment of motor coordination (Hunting-

ton’s chorea), the observed brief, small amplitude, and involuntary dancelike move-

ments cannot be interpreted as a disruption of feedforward control but rather as a

selective impairment of the feedback mechanisms, active in the terminal part of the

movement [62]. Since the Huntington’s chorea, a genetic disease, is known to be

associated with a malfunction of the caudate nuclei which are part of the basal gan-

glia, one might conclude that internal models for anticipatory feedforward control

are likely to be localized in the cerebellum whereas internal models for anticipatory

feedback control are likely to involve the basal ganglia and the cortico-thalamic loop.
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Figure 17.12

Top panel: orientation of the inertia ellipse. Bottom panel: Dependence of the aiming

error on the direction of the movement with respect to the principal axis of the inertia

ellipse, which is aligned along the forearm. Left graph: controls. Right graph:

cerebellar patients.
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17.5 Controlling unstable plants

There has been interest in recent years in the motor control of unstable tasks, partic-

ularly in two specific paradigms:

• Stabilisation of the human inverted pendulum in quiet standing [3, 38, 39, 48,

49, 69];

• Arm trajectory formation in an artificial, unstable force field [14].

In both cases the instability is associated with a potential field which has a maximum

value around the reference state and feeds a diverging force field, thus having an

antagonistic action with respect to the converging force field associated with mus-

cle stiffness. In general, there are three possible mechanisms of stabilisation of an

unstable load:

1. Reflex Mechanism, determined by a number of different sensory feedbacks;

it is unfeasible in this context because it tends to worsen the instability as a

consequence of the substantial delays in the control loop.

2. Stiffness Mechanism, related to the mechanical properties of muscles: it op-

erates without delay, and can be modulated by means of coactivation, which

is applied uniformly to all the muscles of a functional group, or by a more

subtle re-distribution of activities in order to match the peculiar features of the

task/load.

3. Anticipatory feedforward/feedback mechanism, which has an integrative cen-

tral nature: it is based on two types of internal models: a) a model for multi-

sensory fusion, thus compensating by means of prediction the transducton and

propagation delays of sensory information, and b) a model for the generation

of motor commands that anticipate the destabilising consequences of the load.

In any case, the divergent force field can be viewed as a negative spring and the

rate of growth of the field, away from the equilibrium point, sets a critical level of

stiffness. Above this level stiffness alone can stabilise the plant; below this level the

effect of stiffness must be complemented by anticipatory control mechanisms.

17.5.1 Stabilisation of the standing posture: evidence of anticipatory
compensation

In spite of its apparent simplicity, the nature of the control mechanisms that allow

humans to stand up is still an object of controversy. Visual, vestibular, propriocep-

tive, tactile, and muscular factors clearly play a role in the stabilisation process and

different authors have stressed one or the other. In particular, a model has been pro-

posed by Winter et al. [69] that attributes to muscle stiffness alone the capability
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to solve the problem. According to this theory, the intervention of the CNS is lim-

ited to the selection of an appropriate tonus for the muscles of the ankle joint, in

order to establish an ankle stiffness that stabilises an otherwise unstable mechani-

cal system. Thus, in this view the stabilisation of quiet standing is a fundamentally

passive process without any significant active or reactive component, except for the

background setting of the stiffness parameters. The system equation of the human

inverted pendulum (see Figure 17.13, left) is as follows:

Ipq̈ = mghsin(q )+ tankle (17.5)

where q is the sway angle, m and Ip are the mass and moment of inertia of the body,

h is the distance of the COM (Center of Mass) from the ankle, g is the acceleration of

gravity, and tankle is the total ankle-torque. Under the assumption that the stabilising

ankle torque is only determined by the ankle stiffness Kankle and that sway angles are

small, then from Equation 17.5 we can derive a critical value of the stiffness:

Kcritical = mgh (17.6)

In quiet standing the sway angle (and the horizontal shift of the COM y =≈ hq )

oscillates with a frequency bandwidth below 1 Hz and such oscillations are asso-

ciated with shifts (u) of the center of pressure (COP) on the support surface that

have slightly bigger amplitude and substantially larger frequency band (Figure 17.13,

right; [3]). It is easy to demonstrate [48] that u is proportional to the ankle torque

and that u and y are linked by the following equation:

ÿ =
g

he

(y−u) (17.7)

where he is an effective distance which is quite close to the ankle-COM distance and

takes into account the distribution of masses along the body axis. In this equation,

which only expresses biomechanical relations and is independent of modalities of

control, y is the controlled variable and u the control variable. It can also be de-

scribed by saying that the COM-COP difference is proportional to the acceleration

of the COM. Figure 17.13 (right) shows the relationship between the two curves.

The COP, which mirrors the time-course of the ankle torque, has a higher frequency

band but with good approximation the two curves are in phase (the peak of the cross-

correlation occurs at a null delay). Moreover, it has been shown [21] that the emg

activity of the ankle muscles anticipates the COM-COP pattern and thus it cannot be

determined by segmental reflexes.

A simulation of the human inverted pendulum [50], activated by realistic muscle

models compatible with experimentally measured muscle properties [30] has shown

that the system is unstable. Moreover, direct estimates of the ankle stiffness have

been carried out [40, 51] with different experimental methods. Both agree that the an-

kle stiffness during standing consistently is below the critical level mentioned above

and thus is unable to stabilise the body by alone. Figure 17.14 illustrates the latter

approach, based on a motorized platform mounted on top of a force platform. The

motor generates small and rapid angular perturbations (1o in less than 150 ms): the

related COP shifts (see Figure 17.11, right) are proportional to the ankle stiffness.
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Figure 17.13

Left panel: scheme of the standing posture (COM: center of mass; COP: center of

pressure); Right panel: COM and COP oscillations in the sagittal plane.

Figure 17.14

Left panel: motorized rotating platform mounted on top of a force platform. Right

panel: ankle rotation q (t) and COP displacement y(t). During the quick rotation of

the platform (△q = 1o, △T = 150ms ) the COM is virtually fixed and the shift of

the COP ( △y) can be totally attributed to the ankle stiffness. Ankle stiffness can be

estimated by means of the following equation: mg△y = K△q .
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17.5.2 Arm trajectory in a divergent force field: evidence of stiffness

modulation

In the manipulation of objects or tools people must control forces arising from inter-

action with the physical environment. Recent studies indicate that this compensation

is achieved by learning internal models of the dynamics, that is, a neural represen-

tation of the relation between motor command and movement [34, 36, 44, 64, 71].

In these studies interactions with the physical environment are stable and a learning

paradigm such as feedback error learning is capable to acquire a working internal

model of inverse dynamics to be used in feedforward compensation. However, in

many common tasks of everyday life (e.g., keeping a screwdriver in the slot of a

screw) the interaction forces are divergent from the working point and thus represent

an unstable load. In most situations, as in the case of the standing posture, we can

rule out a reflexive feedback mechanism of stabilisation. Therefore the stabilisation

can only be obtained by any or either of two mechanisms: 1) skillful modulation

of the mechanical impedance of the arm, 2) anticipatory control based on internal

models.

That the former mechanism can solve the stabilisation problem was demonstrated

in a recent study [14] in which the human arm of the subject was immersed in an

unstable force field generated by a robotic manipulator. The subjects performed

forward/backward movements on the horizontal plane between two targets. The in-

stability was the result of an artificial, divergent force field, perpendicular to the line

of action of the nominal trajectory and proportional to the lateral displacement of

the trajectory. In this way the robotic manipulator simulated a sort of inverted pen-

dulum. The subjects were able to learn the task after a sufficiently long set of trials

and the solution was achieved by a modulation and rotation of the stiffness ellipses

in such a way to neutralize the divergent field. This is a more complicated strategy

than the simple co-contraction of all the muscles that would increase the size of the

ellipses without altering their orientation. Re-orienting the ellipses requires a subtle

re-organisation of the pattern of muscle activation within a group of synergistic mus-

cles and requires extensive training. The motivation for adopting this strategy is to

optimise the mechanical impedance while keeping the metabolic cost at a minimum

value.

However, it remains to be seen whether the stabilisation of unstable dynamics by

means of optimal impedance matching is a general problem solving approach or is a

rather special purpose paradigm limited to over-trained control patterns. The prob-

lem was addressed in a pilot study [51] in which a physical inverted pendulum could

be grasped by the subjects at different heights (Figure 17.15) and the oscillations of

the pendulum were measured by a pair of potentiometers, linked to the tip of the

pendulum by means of a suitable articulation. The task of the subject was simply

to keep the pendulum standing and the oscillations of the pendulum were recorded

together with the EMG activity of two muscles of the arm: biceps and triceps (Fig-

ure 17.16). In this experimental setup it easy to demonstrate that the critical value

of hand stiffness for the stabilisation of the unstable plant depends upon the point of
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Figure 17.15

Manual stabilisation of an inverted pendulum; mass = 10 Kg; h = 1.8 m; d was varied

between 0.3 and 0.8 m. In the equilibrium position the shoulder is abducted 90◦ and

the elbow flexed 45◦.

grasp (distance d) according to the following relationship:

Kcritical >
mgh

d2
(17.8)

Therefore, it is important to compare the control patterns for values of d in which the

critical hand stiffness is greater than physiological levels [67] and other values for

which it is smaller. In the former, more demanding case the control system has no

other choice than anticipatory control; in the latter case, on the other hand, the control

system might use one solution or the other, at least in theory. In both cases, however,

the results provide no evidence of stiffness modulation by means of coactivation; on

the contrary, in all the cases there is a correlation between the muscle activity and

the pendulum oscillation with a null delay and this is consistent with an anticipatory

stabilisation mechanism.

17.5.3 Choosing between stiffness modulation and anticipatory com-

pensation

The experimental evidence presented in the two previous sections is somehow con-

tradictory. In one case, upright standing, physiological levels of muscle stiffness are
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Figure 17.16

Oscillation of the pendulum in the direction perpendicular to the forearm (in the ref-

erence position the the elbow was 90◦ flexed): YR. TRIC and BIC show the rectified

and integrated electromyographic activities of the biceps and the triceps muscles,

respectively.
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insufficient to stabilise the unstable plant and thus the only feasible solution is an-

ticipatory control. In other cases, involving the upper extremity and with required

levels of muscle stiffness which fall inside the physiological range of values, the so-

lution adopted by the brain appears to depend upon the task: a) stiffness modulation

in the case of the arm movements in a divergent force field, b) anticipatory compen-

sation in the case of the manual stabilisation of an inverted pendulum. Which kind

of circumstances might explain such difference of implementation?

Let us first consider, in general, the dynamics of fall which underlies all these

paradigms. Equation 17.7 was derived in the specific case of the standing posture

but, with a suitable abstraction, it is applicable to all the unstable loads characterized

by an equilibrium state and a divergent force field: ẍ =ax−u, wherea is a (positive)

parameter depending on the structure of the unstable plant and u is the compensatory

control variable. If we consider the transfer function corresponding to the equation

above, we realise that the system has two real poles: p = ±√
a . The positive pole

is the source of instability and, in absence of an appropriate corrective action, de-

termines the exponential fall from the equilibrium state (x = 0) with the following

time constant: T = 1/
√
a . In the case of the standing posture a = g/he and if we

assume that he = 1 m we get T = 320 ms; in the case of the manually controlled

inverted pendulum of Figure 17.15 a = g/h, h = 1.8 m and thus T = 430 ms; in

the case of the reaching movements in the divergent force field [14] a = K f ield/M,

where K f ield is the elastic constant of the field (about 200 N/m) and M is the apparent

mass of the hand in the direction collinear with the field (about 1 Kg), thus giving

T ≈ 70 ms. Therefore we can say that in the two cases in which there is evidence of

anticipatory compensation the characteristic time constant of the fall is much longer

than in the case in which stiffness modulation is the adopted strategy. This result

might be explained by considering that anticipatory compensation must have enough

time to recover the intrinsic delays of the reafferent pathways (which come close to

100 ms) in order to generate functionally useful anticipatory commands. Therefore,

anticipatory compensation in unstable tasks is only feasible if the critical time hori-

zon before a catastrophic fall is significantly longer than 100 ms. As a matter of

fact, if we consider a variety of stabilisation tasks such as standing on stilts, rope-

walking, balancing a stick etc., it is easy to recognize the fact that the purpose of

common tricks, like spreading out the arms or holding a long balancing rod is just to

increase the natural falling time, thus giving time to the internal model to generate

an appropriate stabilisation action.

17.5.4 Implementing anticipatory compensation

In the case of the upright posture, the underlying control process sketched in the

previous section can be made evident by a particular type of analysis of the posturo-

graphic data (the time course of the COP coordinates provided by a force platform)

which is based on sway density plots (SDP, [3]). A SDP is simply constructed by

counting the number of consecutive samples of the COP trajectory that, for each time

instant, fall inside a circle of given radius (typically 2.5 mm). It is worth noting that

if such trajectories were generated by a random-walk process the sway density curve
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should be flat, but this is not the case, as shown in Figure 17.17; on the contrary, the

SDP is characterized by a regular alternation of peaks and valleys: the peaks corre-

spond to time intervals in which the ankle torque and the associated motor commands

are relatively stable; the valleys correspond to time instants in which the ankle torque

rapidly shifts from one stable value to another. Moreover, since the COM & COP

oscillations are globally in phase, it follows that the sequence of peaks of the SDP

must be phase-locked with the COM oscillation.

The statistical analysis of SDP data in normal subjects and in some pathological

conditions [3] has shown that the peak-to-peak time interval is very stable (Tp =
595±37 ms) and is independent of the pathological condition. On the contrary, the

amplitude of the peaks (which is equivalent to the duration of stationary motor com-

mands) and the amplitude of the COP-shifts from one peak to the next one (which

correspond to the amplitude of the anticipatory motor commands) are dependent

upon the task (e.g., open eyes vs. closed eyes) and the nature of the pathological

condition. To some extent, this type of organisation of the posturographic control

action is functionally equivalent to the saccadic oculomotor system, alternating be-

tween two functional states:

1. acquisition and fixation of a posturographic target;

2. quick saccadic jump to the next target.

In the oculomotor system the target is typically visual, whereas in the postural sta-

bilisation system the target must be placed on an invisible point, a little bit beyond

the expected position of the COM. This requires a rather complex sensory process-

ing task, certainly more complex that in the oculomotor case: its basic elements are a

pair of internal models: (i) a multisensory data fusion process for estimating the posi-

tion of the COM and the direction of incipient fall and (ii) a prediction capability for

compensating the intrinsic sensory delays and producing an appropriate anticipatory

postural saccade. Since the falling time constant is a biomechanical parameter and

the motor controller must be time-locked with the partial falls in order to stop them,

it is obvious that the Tp parameter must be stable if the subjects, even if affected by

significant motor impairment as in the Parkinson’s disease, are indeed able to stand

without support.

On the contrary, pathological conditions are quite likely to affect the precision

of the posturographic saccades due to a partial disruption of the internal feedfor-

ward/feedback models and thus the resulting sway will be larger and more irregular,

as actually occurs.

In a similar experimental situation, Loram and Lakie [39] used an artificial task

in which the subjects were required to activated their ankle musculature in order to

balance a large inverted pendulum: they could easily learn such unstable task and

quasi-regular sway was observed like that in quiet standing. It was observed that

any resting equilibrium position of the pendulum is unstable and can be hold only

temporarily; movements from a resting equilibrium position to another one could

only be accomplished by a ballistic-like throw and catch pattern of torque which

could be used for controlling both position and sway size.
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Figure 17.17

Sway density plot of a segment of postural sway (duration 12 s). The x-y compo-

nents of the COP were sampled at 50 Hz. Sway density is defined as the number of

consecutive samples that, for each time instant, fall inside a circle of 2.5 mm. There-

fore a SWD value of 20 is equivalent to a time duration of 20/50=0.4 s. The plotted

curve has been low-pass filtered at 12 Hz.

In our view, the ballistic, saccadic-like nature of postural stabilisation, which sup-

plements the insufficient but synergistic action of ankle stiffness, is based on two

essential elements: 1) an anticipatory (internal) forward model of the unstable plant

which is functionally in the feedback loop and has the purpose of reconstructing the

actual state and extrapolating it to the near future; 2) a sampled-data controller that

fires ballistic commands capable to counteract the incipient falls. The main advan-

tage of using such a sampled-data controller instead of a continuous one, as in the

control of saccadic eye movements, is that it is less prone to instability and allows

the generation of fast, stable patterns. The disadvantage is that it cannot guarantee

asymptotical stability, in the Liapunov sense, with its characteristic point attractors:

it can only assure a weaker condition of stability, with a persistent sway, charac-

terised by a sort of chaotic attractor.
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17.6 Motor learning paradigms

17.6.1 Learning paradigms in neural networks

At the core of the theories of neural network models is the attempt to capture gen-

eral approaches for learning from experience procedures that are too complex to be

expressed by means of explicit or symbolic models [2]. The mechanism of learning

and memory has been an intriguing question after the establishment of the neuron

theory at the turn of the 19th century [57] and the ensuing conjectures that memo-

ries are encoded at synaptic sites [26] as a consequence of a process of learning. In

accordance with this prediction, synaptic plasticity was first discovered in the hip-

pocampus and nowadays it is generally thought that LPT (long term potentiation) is

the basis of cognitive learning and memory, although the specific mechanisms are

still a matter of investigation.

Three main paradigms for training the parameters or synaptic weights of neural

network models have been identified:

1. Supervised learning, in which a teacher or supervisor provides a detailed de-

scription of the desired response for any given stimulus and exploits the mis-

match between the computed and the desired response or error signal for mod-

ifying the synaptic weights according to an iterative procedure. The math-

ematical technique typically used in this type of learning is known as back

propagation and is based on a gradient-descent mechanism that attempts to

minimize the average output error;

2. Reinforcement learning, which also assumes the presence of a supervisor or

teacher but its intervention is only supposed to reward (or punish) the degree

of success of a given control pattern, without any detailed input-output instruc-

tion. The underlying mathematical formulation is aimed at the maximization

of the accumulated reward during the learning period;

3. Unsupervised learning, in which there is no teacher or explicit instruction and

the network is only supposed to capture the statistical structure of the input

stimuli in order to build a consistent but concise internal representation of the

input. The typical learning strategy is called Hebbian, in recognition of the pi-

oneering work of D.O. Hebb, and is based on a competitive or self-organising

mechanism that uses the local correlation in the activity of adjacent neurons

and aims at the maximization of the mutual information between stimuli and

internal patterns.

17.6.2 Adaptive behaviour and motor learning

The neural machinery for learning and producing adaptive behaviours in vertebrates

is sketched in Figure 17.18, which emphasizes the recurrent, non-hierarchical flow
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of information between the cerebral cortex, the basal ganglia/thalamus, and the cere-

bellum. A growing body of evidence has been accumulated in recent years that

challenges the conventional view of segregated processing of perceptual, motor and

cognitive information [61]. For example, it was usually considered that basal gan-

glia and cerebellum were specialized for motor control and different cortical areas

were devoted to specific functionalities, with a clear separation of sensory, motor

and cognitive areas. This is not anymore the conventional wisdom and the emerg-

ing picture is that the three main computational sites for adaptive behaviour are all

concerned with processing sensorimotor patterns in a cognitive-sensitive way but are

specialized as regards the learning paradigms and the types of representation:

1. The cerebral cortex appears to be characterized by a process of unsupervised

learning that affects its basic computational modules (the micro-columns that

are known to have massive recurrent connections). The function of these com-

putations might be the representation of non-linear manifolds, such as a body

schema in the posterior parietal cortex [47]. This view seems to be contra-

dicted by the fractured shape of cortical maps [58], but the apparent contra-

diction may only be a side effect of the basic paradox faced by the cortical

areas: how to fit higher dimensional manifolds (such as a proprioceptive body

schema) onto a physically flat surface;

2. The Cerebellum is plausibly specialized in the kind of supervised learning

exemplified by the feedback error learning model. Moreover, the cerebellar

hardware (characterised by a large number of micro-zones, comprising mossy-

fiber input, bundles of parallel fibers, output Purkinje cells, with teaching sig-

nals via climbing fibers) is well designed for the representation of time series,

according to a sequence-in sequence-out type of operation [12];

3. The Basal ganglia are known to be involved in events of reinforcement learn-

ing that are required for the representation of goal-directed sequential be-

haviour [63].

17.6.3 A distributed computational architecture

Figure 17.19 summarizes some of the points outlined in the previous subsection. It

must be emphasized that in spite of its apparent simplicity the underlying model

is extremely complex from many points of view: (i) it is non-linear; (ii) it involves

high-dimensional variables; (iii) it has a coupled dynamics, with internal and external

processes; (iv) it is adaptive, with concurrent learning processes of different types.

No simulation model of this complexity has been constructed so far, also because the

mathematical tools for dominating its design are only partially available. However,

there is a need for improving our current level of understanding in this direction be-

cause this is the only sensible way for interpreting the exponentially growing mass

of data coming from new measurement techniques, such as advanced brain imag-

ing. As a matter of fact, since the time of Marey better measurement techniques of

movement analysis require better and better models of motor control, and vice versa.
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In the scheme there are many interacting processes, such as trajectory formation

and feedback error learning. The latter, in particular, is obviously characterized by

a supervised learning paradigm and thus we may think that its main element (the

trainable feedforward model) is implemented in the cerebellar circuitry. The learn-

ing signal, in this case, is the discrepancy between the desired trajectory (the motor

intention) and the actual trajectory, determined by the combined body-environment

dynamics and measured by different proprioceptive channels. In a sense, the brain

acts as its own supervisor, setting its detailed goal and measuring the corresponding

performance: for this reason it is possible to speak of a self-supervised paradigm.

The underlying behavioural strategy is an active exploration of the space of move-

ments also known as babbling, in which the brain attempts to carry out randomly

selected movements that become the teachers of themselves.

On the other hand, the trajectory formation model cannot be analysed in the same

manner. It requires different maps for representing task-relevant variables, such as

the position of the objects/obstacles in the environment, the position of the body

with respect to the environment, and the relative position of the body parts. Most

of these variables are not directly detectable by means of specific sensory channels

but require a complex process of sensory fusion and dimensionality reduction. This

kind of processing is characteristic of associative cortical areas, such as the posterior

parietal cortex which is supposed to hold maps of the body schema and the external

world [54] as a result of the converging information from different sensory chan-

nels. The process of cortical map formation can be modelled by competitive Heb-

bian learning applied both to the thalamo-cortical and cortico-cortical connections:

The former connections determine the receptive fields of the cortical units whereas

the latter support the formation a kind of high-dimensional grid that matches the

dimensionality of the represented sensorimotor manifold. In a cortical map model

sensorimotor variables are represented by means of population codes which change

over time as a result of the map dynamics. For example, a trajectory formation pro-

cess can be implemented by means of a cortical map representation of the external

space that can generate a time varying population code corresponding to the desired

hand trajectory. Another map can transform the desired hand trajectory into the

corresponding desired joint trajectory, thus implementing a transformation of coor-

dinates from the hand space to the joint space. This kind of distributed architecture

is necessary for integrating multisensory redundant information into a task-relevant,

lower-dimensional representation of sensorimotor spaces. On top of this compu-

tational layer, that operates in a continuous way, there is a layer of reinforcement

learning that operates mostly by trial and error through two main operating mod-

ules: an actor that selects a sequence of actions and a critic that evaluates the reward

and influences the action selection of the next trial. The global coherence of such

multiple internal processes of adaptation, learning and control is guaranteed by an

effective mechanical interface with the environment which allows a bi-directional

flow of energy and information.

© 2004 by Chapman & Hall/CRC



Cerebral

Cerebellum

Brain stem

Thalamus

Basal

ganglla

Cortex

Figure 17.18

A schematic plot of the neural machinery for learning and producing adaptive be-

haviours in vertebrates.
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Figure 17.19

A distributed computational architecture (see Section 17.6.3 for details).
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18.1 Introduction

A key challenge for neural modeling is to explain how a continuous stream of multi-

modal input from a rapidly changing environment can be processed by neural micro-

circuits (columns, minicolumns, etc.) in the cerebral cortex whose anatomical and

physiological structure is quite similar in many brain areas and species. However, a

model that could explain the potentially universal computational capabilities of such

microcircuits has been missing. We propose a computational model that does not

require a task-dependent construction of neural circuits. Instead it is based on prin-

ciples of high dimensional dynamical systems in combination with statistical learn-

ing theory, and can be implemented on generic evolved or found recurrent circuitry.
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This new approach towards understanding neural computation on the micro-level

also suggests new ways of modeling cognitive processing in larger neural systems.

In particular it questions traditional ways of thinking about neural coding.

Common models for the organization of computations, such as for example Turing

machines or attractor neural networks, are less suitable for modeling computations

in cortical microcircuits, since these microcircuits carry out computations on contin-

uous streams of inputs. Often there is no time to wait until a computation has con-

verged, the results are needed instantly (anytime computing) or within a short time

window (real-time computing). Furthermore biological data suggest that cortical mi-

crocircuits can support several real-time computational tasks in parallel, a hypothesis

that is inconsistent with most modeling approaches. In addition the components of

biological neural microcircuits, neurons and synapses, are highly diverse [5] and ex-

hibit complex dynamical responses on several temporal scales. This makes them

completely unsuitable as building blocks of computational models that require sim-

ple uniform components, such as virtually all models inspired by computer science,

statistical physics, or artificial neural nets. Furthermore, neurons are connected by

highly recurrent circuitry (loops within loops), which makes it particularly difficult to

use such circuits for robust implementations of specific computational tasks. Finally,

computations in most computational models are partitioned into discrete steps, each

of which requires convergence to some stable internal state, whereas the dynamics

of cortical microcircuits appears to be continuously changing. Hence, one needs a

model for using continuous perturbations in inhomogeneous dynamical systems in

order to carry out real-time computations on continuous input streams.

In this chapter we present a conceptual framework for the organization of compu-

tations in cortical microcircuits that is not only compatible with all these constraints,

but actually requires these biologically realistic features of neural computation. Fur-

thermore, like Turing machines, this conceptual approach is supported by theoretical

results that prove the universality of the computational model, but for the biologically

more relevant case of real-time computing on continuous input streams.

18.2 A conceptual framework for real-time neural
computation

A computation is a process that assigns to inputs from some domain D certain out-

puts from some range R, thereby computing a function from D into R. Obviously

any systematic discussion of computations requires a mathematical or conceptual

framework, i.e., a computational model [24]. Perhaps the most well-known compu-

tational model is the Turing machine. In this case the domain D and range R are sets

of finite character strings. This computational model is universal (for deterministic

offline digital computation) in the sense that every deterministic digital function that

is computable at all (according to a well-established mathematical definition, see
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[20]) can be computed by some Turing machine. Before a Turing machine gives its

output, it goes through a series of internal computation steps, the number of which

depends on the specific input and the difficulty of the computational task (therefore

it is called an offline computation). This may not be inadequate for modeling human

reasoning about chess end games, but most cognitive tasks are closer related to real-

time computations on continuous input streams, where online responses are needed

within specific (typically very short) time windows, regardless of the complexity of

the input. In this case the domain D and range R consist of time-varying functions

u(·), y(·) (with analog inputs and outputs), rather than of static character strings. We

propose here an alternative computational model that is more adequate for analyzing

parallel real-time computations on analog input streams, such as those occurring in

generic cognitive information processing tasks. Furthermore, we present a theoreti-

cal result which implies that within this framework the computational units of a pow-

erful computational system can be quite arbitrary, provided that sufficiently diverse

units are available (see the separation property and approximation property discussed

in Section 18.4). It also is not necessary to construct circuits to achieve substantial

computational power. Instead sufficiently large and complex found circuits tend to

have already large computational power for real-time computing, provided that the

reservoir from which their units are chosen is sufficiently diverse.

Our approach is based on the following observations. If one excites a sufficiently

complex recurrent circuit (or other medium) with a continuous input stream u(s),
and looks at a later time t > s at the current internal state x(t) of the circuit, then x(t)
is likely to hold a substantial amount of information about recent inputs u(s) (for the

case of neural circuit models this was first demonstrated by [4]). We as human ob-

servers may not be able to understand the code by which this information about u(s)
is encoded in the current circuit state x(t), but that is obviously not essential. Essen-

tial is whether a readout neuron that has to extract such information at time t for a

specific task can accomplish this. But this amounts to a classical pattern recognition

problem, since the temporal dynamics of the input stream u(s) has been transformed

by the recurrent circuit into a high dimensional spatial pattern x(t). This pattern clas-

sification problem tends to be relatively easy to learn, even by a memoryless readout,

provided the desired information is present in the circuit state x(t). Furthermore, if

the recurrent neural circuit is sufficiently large, it may support this learning task by

acting like a kernel for support vector machines (see [25]), which presents a large

number of nonlinear combinations of components of the preceding input stream to

the readout. Such nonlinear projection of the original input stream u(·) into a high

dimensional space tends to facilitate the extraction of information about this input

stream at later times t, since it boosts the power of linear readouts for classification

and regression tasks. Linear readouts are not only better models for the readout ca-

pabilities of a biological neuron than for example multi-layer-perceptrons, but their

training is much easier and robust because it cannot get stuck in local minima of

the error function (see [25] and [7]). These considerations suggest new hypotheses

regarding the computational function of generic recurrent neural circuits: to serve as

general-purpose temporal integrators, and simultaneously as kernels (i.e., nonlinear

projections into a higher dimensional space) to facilitate subsequent linear readout of
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Figure 18.1

a) Structure of a Liquid State Machine (LSM). b) Separation property of a generic

neural microcircuit. Plotted on the y-axis is the average value of ‖xM
u (t)− xM

v (t)‖,

where ‖ · ‖ denotes the Euclidean norm, and xM
u (t), xM

v (t) denote the liquid states

at time t for Poisson spike trains u and v as inputs. d(u,v) is defined as distance

(L2-norm) between low-pass filtered versions of u and v, see Section 18.4 for details.

information whenever it is needed. Note that in all experiments described in this arti-

cle only the readouts were trained for specific tasks, whereas always a fixed recurrent

circuit can be used for generating x(t).

In order to analyze the potential capabilities of this approach, we introduce the

abstract model of a Liquid State Machine (LSM), see Figure 18.1a. As the name

indicates, this model has some weak resemblance to a finite state machine. But

whereas the finite state set and the transition function of a finite state machine have

to be custom designed for each particular computational task (since they contain its

program), a liquid state machine might be viewed as a universal finite state machine

whose liquid high dimensional analog state x(t) changes continuously over time.

Furthermore if this analog state x(t) is sufficiently high dimensional and its dynamics

is sufficiently complex, then the states and transition functions of many concrete

finite state machines F are virtually contained in it. But fortunately it is in general not

necessary to reconstruct F from the dynamics of an LSM, since the readout can be

trained to recover from x(t) directly the information contained in the corresponding

state of a finite state machine F , even if the liquid state x(t) is corrupted by some –

not too large – amount of noise.

Formally, an LSM M consists of a filter LM (i.e., a function that maps input streams

u(·) onto streams x(·), where x(t) may depend not just on u(t), but in a quite arbitrary

nonlinear fashion also on previous inputs u(s); formally: x(t) = (LMu)(t)), and a

memoryless readout function f M that maps at any time t the filter output x(t) (i.e.,

the liquid state) into some target output y(t) (only these readout functions are trained

for specific tasks in the following). Altogether an LSM computes a filter that maps
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u(·) onto y(·).∗
A recurrently connected microcircuit could be viewed in a first approximation as

an implementation of such general purpose filter LM (for example some unbiased

analog memory), from which different readout neurons extract and recombine di-

verse components of the information which was contained in the preceding input

u(·). If a target output y(t) assumes analog values, one can use instead of a single

readout neuron a pool of readout neurons whose firing activity at time t represents the

value y(t) in space-rate-coding. In reality these readout neurons are not memoryless,

but their membrane time constant is substantially shorter than the time range over

which integration of information is required for most cognitive tasks. An example

where the circuit input u(·) consists of 4 spike trains is indicated in Figure 18.2. The

generic microcircuit model consisting of 270 neurons was drawn from the distribu-

tion discussed in Section 18.3. In this case 7 different linear readout neurons were

trained to extract completely different types of information from the input stream

u(·), which require different integration times stretching from 30 to 150 ms. The

computations shown are for a novel input that did not occur during training, showing

that each readout module has learned to execute its task for quite general circuit in-

puts. Since the readouts were modeled by linear neurons with a biologically realistic

short time constant of just 30 ms for the integration of spikes, additional temporally

integrated information had to be contained at any instance t in the current firing state

x(t) of the recurrent circuit (its liquid state), see Section 18.3 for details. Whereas

the information extracted by some of the readouts can be described in terms of com-

monly discussed schemes for neural codes, it appears to be hopeless to capture the

dynamics or the information content of the primary engine of the neural computa-

tion, the circuit state x(t), in terms of such coding schemes. This view suggests that

salient information may be encoded in the very high dimensional transient states of

neural circuits in a fashion that looks like noise to the untrained observer, and that

traditionally discussed neural codes might capture only specific aspects of the ac-

tually encoded information. Furthermore, the concept of neural coding suggests an

agreement between encoder (the neural circuit) and decoder (a neural readout) which

is not really needed, as long as the information is encoded in a way so that a generic

neural readout can be trained to recover it.

∗A closely related computational model was studied in [12].
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Figure 18.2

Multi-tasking in real-time. Input spike trains were randomly generated in such a way that at

any time t the input contained no information about preceding input more than 30 ms ago.

Firing rates r(t) were randomly drawn from the uniform distribution over [0 Hz, 80 Hz] every

30 ms, and input spike trains 1 and 2 were generated for the present 30 ms time segment as

independent Poisson spike trains with this firing rate r(t). This process was repeated (with

independent drawings of r(t) and Poisson spike trains) for each 30 ms time segment. Spike

trains 3 and 4 were generated in the same way, but with independent drawings of another

firing rate r̃(t) every 30 ms. The results shown in this figure are for test data, that were never

before shown to the circuit. Below the 4 input spike trains the target (dashed curves) and

actual outputs (solid curves) of 7 linear readout neurons are shown in real-time (on the same

time axis). Targets were to output every 30 ms the actual firing rate (rates are normalized to

a maximum rate of 80 Hz) of spike trains 1 and 2 during the preceding 30 ms ( f1), the firing

rate of spike trains 3 and 4 ( f2), the sum of f1 and f2 in an earlier time interval [t-60 ms,t-

30 ms] ( f3) and during the interval [t-150 ms, t] ( f4), spike coincidences between inputs 1 and

3 ( f5(t) is defined as the number of spikes which are accompanied by a spike in the other spike

train within 5 ms during the interval [t-20 ms, t]), a simple nonlinear combinations f6 and a

randomly chosen complex nonlinear combination f7 of earlier described values. Since that all

readouts were linear units, these nonlinear combinations are computed implicitly within the

generic microcircuit model. Average correlation coefficients between targets and outputs for

200 test inputs of length 1s for f1 to f7 were 0.91,0.92,0.79,0.75,0.68,0.87, and 0.65.
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a b c

Figure 18.3

Construction of a generic neural microcircuit model, as used for all computer simulations

discussed in this chapter (only the number of neurons varied). a) A given number of neurons

is arranged on the nodes of a 3D grid. 20% of the neurons, marked in black, are randomly

selected to be inhibitory. b) Randomly chosen postsynaptic targets are shown for two of the

neurons. The underlying distribution favors local connections (see footnote on this page for

details). c) Connectivity graph of a generic neural microcircuit model (for l = 2, see footnote

below).

Parameters of neurons and synapses were chosen to fit data from microcircuits in

rat somatosensory cortex (based on [5], [15] and unpublished data from the Markram

Lab). †

†Neuron parameters: membrane time constant 30 ms, absolute refractory period 3 ms (excitatory neu-

rons), 2 ms (inhibitory neurons), threshold 15 mV (for a resting membrane potential assumed to be 0),

reset voltage 13.5 mV, constant nonspecific background current Ib = 13.5 nA, input resistance 1 MW. Con-

nectivity structure: The probability of a synaptic connection from neuron a to neuron b (as well as that

of a synaptic connection from neuron b to neuron a) was defined as C · exp(−D2(a,b)/l 2), where l is

a parameter which controls both the average number of connections and the average distance between

neurons that are synaptically connected (we set l = 2, see [16] for details). We assumed that the neurons

were located on the integer points of a 3 dimensional grid in space, where D(a,b) is the Euclidean dis-

tance between neurons a and b. Depending on whether a and b were excitatory (E) or inhibitory (I), the

value of C was 0.3 (EE), 0.2 (EI), 0.4 (IE), 0.1 (II). In the case of a synaptic connection from a to b we

modeled the synaptic dynamics according to the model proposed in [15], with the synaptic parameters U

(use), D (time constant for depression), F (time constant for facilitation) randomly chosen from Gaussian

distributions that were based on empirically found data for such connections. Depending on whether a

and b were excitatory (E) or inhibitory (I), the mean values of these three parameters (with D,F expressed

in seconds, s) were chosen to be .5, 1.1, .05 (EE), .05, .125, 1.2 (EI), .25, .7, .02 (IE), .32, .144, .06 (II).

The SD of each parameter was chosen to be 50% of its mean. The mean of the scaling parameter A (in
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18.3 The generic neural microcircuit model

We used a randomly connected circuit consisting of leaky integrate-and-fire (I&F)

neurons, 20% of which were randomly chosen to be inhibitory, as generic neural mi-

crocircuit model. Best performance was achieved if the connection probability was

higher for neurons with a shorter distance between their somata (see Figure 18.3).

Random circuits were constructed with sparse, primarily local connectivity (see Fig-

ure 18.3), both to fit anatomical data and to avoid chaotic effects.

The liquid state x(t) of the recurrent circuit consisting of n neurons was modeled

by an n-dimensional vector consisting of the current firing activity of these n neurons.

To reflect the membrane time constant of the readout neurons a low pass filter with a

time constant of 30 ms was applied to the spike trains generated by the neurons in the

recurrent microcircuit. The output of this low pass filter applied separately to each

of the n neurons, defines the liquid state x(t). Such low pass filtering of the n spike

trains is necessary for the relatively small circuits that we simulate, since at many

time points t no or just very few neurons in the circuit fire (see top of Figure 18.5).

As readout units we used simply linear neurons, trained by linear regression (unless

stated otherwise).

18.4 Towards a non-Turing theory for real-time neu-
ral computation

Whereas the famous results of Turing have shown that one can construct Turing ma-

chines that are universal for digital sequential offline computing, we propose here

an alternative computational theory that is more adequate for parallel real-time com-

puting on analog input streams. Furthermore we present a theoretical result which

implies that within this framework the computational units of a powerful compu-

tational system can be quite arbitrary, provided that sufficiently diverse units are

available (see the separation property and approximation property discussed below).

It also is not necessary to construct circuits to achieve substantial computational

power. Instead sufficiently large and complex found circuits (such as the generic

nA) was chosen to be 30 (EE), 60 (EI), -19 (IE), -19 (II). In the case of input synapses the parameter A had

a value of 18 nA if projecting onto a excitatory neuron and 9 nA if projecting onto an inhibitory neuron.

The SD of the A parameter was chosen to be 100% of its mean and was drawn from a gamma distribution.

The postsynaptic current was modeled as an exponential decay exp(−t/ts) with ts = 3 ms (ts = 6 ms) for

excitatory (inhibitory) synapses. The transmission delays between liquid neurons were chosen uniformly

to be 1.5 ms (EE), and 0.8 ms for the other connections. We have shown in [16] that without synaptic dy-

namics the computational power of these microcircuit models decays significantly. For each simulation,

the initial conditions of each I&F neuron, i.e., the membrane voltage at time t = 0, were drawn randomly

(uniform distribution) from the interval [13.5 mV, 15.0 mV].
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circuit used as the main building block for Figure 18.2) tend to have already large

computational power, provided that the reservoir from which their units are chosen

is sufficiently diverse.

Consider a class B of basis filters B (that may for example consist of the compo-

nents that are available for building filters LM of LSMs). We say that this class B

has the point-wise separation property if for any two input functions u(·),v(·) with

u(s) �= v(s) for some s ≤ t there exists some B ∈ B with (Bu)(t) �= (Bv)(t).‡ There

exist completely different classes B of filters that satisfy this point-wise separation

property: B = {all delay lines}, B = {all linear filters}, and perhaps biologically

more relevant B = {models for dynamic synapses} (see [17]).

The complementary requirement that is demanded from the class F of functions

from which the readout maps f M are to be picked is the well-known universal ap-

proximation property: for any continuous function h and any closed and bounded

domain one can approximate h on this domain with any desired degree of precision

by some f ∈ F . Examples for such classes are F = {feedforward sigmoidal neural

nets}, and according to [3] also F = {pools of spiking neurons with analog output

in space rate coding}.

A rigorous mathematical theorem [16], states that for any class B of filters that

satisfies the point-wise separation property and for any class F of functions that sat-

isfies the universal approximation property one can approximate any given real-time

computation on time-varying inputs with fading memory (and hence any biologi-

cally relevant real-time computation) by an LSM M whose filter LM is composed of

finitely many filters in B, and whose readout map f M is chosen from the class F .

This theoretical result supports the following pragmatic procedure: In order to im-

plement a given real-time computation with fading memory it suffices to take a filter

L whose dynamics is sufficiently complex, and train a sufficiently flexible readout to

transform at any time t the current state x(t) = (Lu)(t) into the target output y(t). In

principle a memoryless readout can do this, without knowledge of the current time

t, provided that states x(t) and x(t ′) that require different outputs y(t) and y(t ′) are

sufficiently distinct. We refer to [16] for details.

For physical implementations of LSMs it makes more sense to analyze instead of

the theoretically relevant point-wise separation property the following quantitative

separation property as a test for the computational capability of a filter L: How dif-

ferent are the liquid states xu(t) = (Lu)(t) and xv(t) = (Lv)(t) for two different input

histories u(·),v(·)? This is evaluated in Figure 18.1b for the case where u(·),v(·) are

Poisson spike trains and L is a generic neural microcircuit model. It turns out that

the difference between the liquid states scales roughly proportionally to the differ-

ence between the two input histories (thereby showing that the circuit dynamic is

not chaotic). This appears to be desirable from the practical point of view since it

implies that saliently different input histories can be distinguished more easily and

in a more noise robust fashion by the readout. We propose to use such evaluation

‡Note that it is not required that there exists a single B ∈ B which achieves this separation for any two

different input histories u(·), v(·).
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of the separation capability of neural microcircuits as a new standard test for their

computational capabilities.

18.5 A generic neural microcircuit on the compu-
tational test stand

The theoretical results sketched in the preceding section implies that there are no

strong a priori limitations for the power of neural microcircuits for real-time com-

puting with fading memory, provided they are sufficiently large and their components

are sufficiently heterogeneous. In order to evaluate this somewhat surprising theo-

retical prediction, we tested it on several benchmark tasks.

18.5.1 Speech recognition

One well-studied computational benchmark task for which data had been made pub-

licly available [8] is the speech recognition task considered in [9] and [10]. The

dataset consists of 500 input files: the words zero, one, ..., nine are spoken by 5

different (female) speakers, 10 times by each speaker. The task was to construct a

network of I&F neurons that could recognize each of the 10 spoken words w. Each

of the 500 input files had been encoded in the form of 40 spike trains, with at most

one spike per spike train§ signaling onset, peak, or offset of activity in a particu-

lar frequency band (see top of Figure 18.4). A network was presented in [10] that

could solve this task with an error¶ of 0.15 for recognizing the pattern one. No better

result had been achieved by any competing networks constructed during a widely

publicized internet competition [9]. ‖ A particular achievement of this network

(resulting from the smoothly and linearly decaying firing activity of the 800 pools

of neurons) is that it is robust with regard to linear time-warping of the input spike

pattern.

We tested our generic neural microcircuit model on the same task (in fact on ex-

actly the same 500 input files). A randomly chosen subset of 300 input files was used

§The network constructed in [10] required that each spike train contained at most one spike.
¶The error (or recognition score) S for a particular word w was defined in [10] by S =

N f p

Ncp
+

N f n

Ncn
, where

N f p (Ncp) is the number of false (correct) positives and N f n and Ncn are the numbers of false and correct

negatives. We use the same definition of error to facilitate comparison of results. The recognition scores

of the network constructed in [10] and of competing networks of other researchers can be found at [8].

For the competition the networks were allowed to be constructed especially for their task, but only one

single pattern for each word could be used for setting the synaptic weights.
‖The network constructed in [10] transformed the 40 input spike trains into linearly decaying input cur-

rents from 800 pools, each consisting of a large set of closely similar unsynchronized neurons [10]. Each

of the 800 currents was delivered to a separate pair of neurons consisting of an excitatory a-neuron and

an inhibitory b -neuron. To accomplish the particular recognition task some of the synapses between

a-neurons (b -neurons) are set to have equal weights, the others are set to zero.
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Figure 18.4

Application of our generic neural microcircuit model to the speech recognition from [10]. Top

row: input spike patterns. Second row: spiking response of the 135 I&F neurons in the neural

microcircuit model. Third row: output of an I&F neuron that was trained to fire as soon as

possible when the word one was spoken, and as little as possible else. Although the liquid

state presented to this readout neuron changes continuously, the readout neuron has learnt to

view most of them as equivalent if they arise while the word one is spoken (see [16] for more

material on such equivalence classes defined by readout neurons).

for training, the other 200 for testing. The generic neural microcircuit model was

drawn from the distribution described in Section 18.3, hence from the same distribu-

tion as the circuit drawn for the completely different tasks discussed in Figure 18.2,

with randomly connected I&F neurons located on the integer points of a 15×3×3

column. The synaptic weights of 10 readout neurons fw which received inputs from

the 135 I&F neurons in the circuit were optimized (like for SVMs with linear ker-

nels) to fire whenever the input encoded the spoken word w. Hence the whole circuit

consisted of 145 I&F neurons, less than 1/30th of the size of the network constructed

in [10] for the same task.∗∗ Nevertheless the average error achieved after training

by these randomly generated generic microcircuit models was 0.14 (measured in the

same way, for the same word one), hence slightly better than that of the 30 times

larger network custom designed for this task. The score given is the average for

50 randomly drawn generic microcircuit models. It is about the same as the error

∗∗If one assumes that each of the 800 large pools of neurons in that network would consist of just 5

neurons, it contains together with the a and b -neurons 5600 neurons.
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achieved by any of the networks constructed in [10] and the associated international

competition.

The comparison of the two different approaches also provides a nice illustration

of the difference between offline computing and real-time computing. Whereas the

network of [10] implements an algorithm that needs a few hundred ms of processing

time between the end of the input pattern and the answer to the classification task

(450 ms in the example of Figure 2 in [10]), the readout neurons from the generic

neural microcircuit were trained to provide their answer (through firing or non-firing)

immediately when the input pattern ended.

We also compared the noise robustness of the generic neural microcircuit models

with that of [10], which had been constructed to facilitate robustness with regard

to linear time warping of the input pattern. Since no benchmark input date were

available to calculate this noise robustness we constructed such data by creating as

templates 10 patterns consisting each of 40 randomly drawn Poisson spike trains at

4 Hz over 0.5 s. Noisy variations of these templates were created by first multiplying

their time scale with a randomly drawn factor from [1/3,3]) (thereby allowing for

a 9 fold time warp), and subsequently dislocating each spike by an amount drawn

independently from a Gaussian distribution with mean 0 and SD 32 ms. These spike

patterns were given as inputs to the same generic neural microcircuit models consist-

ing of 135 I&F neurons as discussed before. Ten readout neurons were trained (with

1000 randomly drawn training examples) to recognize which of the 10 templates

had been used to generate a particular input (analogously as for the word recognition

task). On 500 novel test examples (drawn from same distributions) they achieved

an error of 0.09 (average performance of 30 randomly generated microcircuit mod-

els). The best one of 30 randomly generated circuits achieved an error of just 0.005.

Furthermore it turned out that the generic microcircuit can just as well be trained

to be robust with regard to nonlinear time warp of a spatio-temporal pattern (it is

not known whether this could also be achieved by a constructed circuit). For the

case of nonlinear (sinusoidal) time warp†† an average (50 microcircuits) error of 0.2

is achieved (error of the best circuit: 0.02). This demonstrates that it is not really

necessary to build noise robustness explicitly into the circuit. A randomly generated

microcircuit model can easily be trained to have at least the same noise robustness

as a circuit especially constructed to achieve that. In fact, it can also be trained to

be robust with regard to types of noise that are very hard to handle with constructed

circuits.

This test had implicitly demonstrated another point. Whereas the network of [10]

was only able to classify spike patterns consisting of at most one spike per spike

train, a generic neural microcircuit model can classify spike patterns without that

restriction. It can for example also classify the original version of the speech data

encoded into onsets, peaks, and offsets in various frequency bands, before all except

††A spike at time t was transformed into a spike at time t ′ = g(t) := B+K · (t +1/(2p f ) · sin(2p f t +j))
with f = 2 Hz, K randomly drawn from [0.5,2], j randomly drawn from [0,2p] and B chosen such that

g(0) = 0.
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the first events of each kind were artificially removed to fit the requirements of the

network from [10].

We have also tested the generic neural microcircuit model on a much harder speech

recognition task: to recognize the spoken word not only in real-time right after the

word has been spoken, but even earlier when the word is still spoken.‡‡ More

precisely, each of the 10 readout neurons is trained to recognize the spoken word

at any multiple of 20 ms during the 500 ms interval while the word is still spoken

(anytime speech recognition). Obviously the network from [10] is not capable to

do this. But also the trivial generic microcircuit model where the input spike trains

are injected directly into the readout neurons perform poorly on this anytime speech

classification task: it has an error score of 3.4 (computed as described in footnote

5, but every 20 ms). In contrast a generic neural microcircuit model consisting of

135 neurons it achieves a score of 1.4 for this anytime speech classification task (see

Figure 18.4 for a sample result).

One is easily led to believe that readout neurons from a neural microcircuit can

give a stable output only if the firing activity (or more abstractly: the state of the dy-

namical system defined by this microcircuit) has reached an attractor. But this line of

reasoning underestimates the capabilities of a neural readout from high dimensional

dynamical systems: even if the neural readout is just modeled by a perceptron, it can

easily be trained to recognize completely different states of the dynamical system as

being equivalent, and to give the same response. Indeed, Figure 18.4 showed already

that the firing activity of readout neuron can become quite independent from the

dynamics of the microcircuit, even though the microcircuit neurons are their only

source of input. To examine the underlying mechanism for the possibility of rela-

tively independent readout response, we re-examined the readout from Figure 18.4.

Whereas the firing activity within the circuit was highly dynamic, the firing activity

of the readout neurons was quite stable after training. The stability of the readout

response does not simply come about because the spiking activity in the circuit be-

comes rather stable, thereby causing quite similar liquid states (see Figure 18.5). It

also does not come about because the readout only samples a few unusual liquid neu-

rons as shown by the distribution of synaptic weights onto a sample readout neuron

(bottom of Figure 18.5). Since the synaptic weights do not change after learning, this

indicates that the readout neurons have learned to define a notion of equivalence for

dynamic states of the microcircuit. Indeed, equivalence classes are an inevitable con-

sequence of collapsing the high dimensional space of microcircuit states into a single

dimension, but what is surprising is that the equivalence classes are meaningful in

terms of the task, allowing invariant and appropriately scaled readout responses and

therefore real-time computation on novel inputs. Furthermore, while the input may

contain salient information that is constant for a particular readout element, it may

‡‡It turns out that the speech classification task from [10] is in a sense too easy for a generic neural

microcircuit. If one injects the input spike trains that encode the spoken word directly into the 10 readout

neurons (each of which is trained to recognize one of the 10 spoken words) one also gets a classification

score that is almost as good as that of the network from [10]. Therefore we consider in the following the

much harder task of anytime speech recognition.
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Readout defined equivalence classes of liquid states. a) The firing activity of the

microcircuit for the speech recognition task from Figure 18.4 is reexamined. b) The

liquid state x(t) is plotted for 10 randomly chosen time points t (see arrowheads in

panel a). The target output of the readout neuron is 1 for the first 5 liquid states,

and 0 for the other 5 liquid states. Nevertheless the 5 liquid states in each of the 2

equivalence classes are highly diverse. But by multiplying these liquid state vectors

with the weight vector of the linear readout (see panel c), the weighted sums yields

the values shown above the liquid state vectors, which are separated by the threshold

0 of the readout (and by the firing threshold of the corresponding leaky integrate-and-

fire neuron whose output spike trains are shown in panel a). c) The weight vector of

the linear readout.
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not be for another (see for example Figure 18.2), indicating that equivalence classes

and dynamic stability exist purely from the perspective of the readout elements.

18.5.2 Predicting movements and solving the aperture problem

This section reports results of joint work with Robert Legenstein [13], [18]. The

general setup of this simulated vision task is illustrated in Figure 18.6. Moving

objects, a ball or a bar, are presented to an 8 x 8 array of sensors (panel a). The

time course of activations of 8 randomly selected sensors, resulting from a typical

movement of the ball, is shown in panel b. Corresponding functions of time, but

for all 64 sensors, are projected as 64 dimensional input by a topographic map into

a generic recurrent circuit of spiking neurons. This circuit with randomly chosen

sparse connections had been chosen in the same way as the circuits for the preceding

tasks, except that it was somewhat larger (768 neurons) to accommodate the 64 input

channels. A 16 x 16 x 3 neuronal sheet was divided into 64 2 x 2 x 3 input regions.

Each sensor injected input into 60 % randomly chosen neurons in the associated

input region. Together they formed a topographic map for the 8 x 8 array of sensors.

The resulting firing activity of all 768 integrate-and-fire neurons in the recurrent

circuit is shown in panel c. Panel d of Figure 18.6 shows the target output for 8 of

the 102 readout pools. These 8 readout pools have the task to predict the output that

the 8 sensors shown in panel b will produce 50 ms later. Hence their target output

(dashed line) is formally the same function as shown in panel b, but shifted by 50

ms to the left. The solid lines in panel d show the actual output of the corresponding

readout pools after unsupervised learning. Thus in each row of panel d the difference

between the dashed and predicted line is the prediction error of the corresponding

readout pool.

The diversity of object movements that are presented to the 64 sensors is indicated

in Figure 18.7. Any straight line that crosses the marked horizontal or vertical line

segments of length 4 in the middle of the 8 x 8 field may occur as trajectory for the

center of an object. Training and test examples are drawn randomly from this – in

principle infinite – set of trajectories, each with a movement speed that was drawn

independently from a uniform distribution over the interval from 30 to 50 units per

second (unit = side length of a unit square). Shown in Figure 18.7 are 20 trajectories

that were randomly drawn from this distribution. Any such movement is carried out

by an independently drawn object type (ball or bar), where bars were assumed to be

oriented vertically to their direction of movement. Besides movements on straight

lines one could train the same circuit just as well for predicting nonlinear movements,

since nothing in the circuit was specialized for predicting linear movements.

Thirty-six readout pools were trained to predict for any such object movement

the sensor activations of the 6 x 6 sensors in the interior of the 8 x 8 array 25 ms

into the future. Further 36 readout pools were independently trained to predict their

activation 50 ms into the future, showing that the prediction span can basically be

chosen arbitrarily. At any time t (sampled every 25 ms from 0 to 400 ms) one uses for

each of the 72 readout pools that predict sensory input DT into the future the actual

activation of the corresponding sensor at time t +DT as target value (correction) for
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The prediction task. a) Typical movements of objects over a 8 x 8 sensor field. b) Time course

of activation of 8 randomly selected sensors caused by the movement of the ball indicated on

the l.h.s. of panel a. c) Resulting firing times of 768 integrate-and-fire neurons in the recurrent

circuit of integrate-and-fire neurons (firing of inhibitory neurons marked by +). The neurons

in the 16 x 16 x 3 array were numbered layer by layer. Hence the 3 clusters in the spike raster

result from concurrent activity in the 3 layers of the circuit. d) Prediction targets (dashed lines)

and actual predictions (solid lines) for the 8 sensors from panel b. (Predictions were sampled

every 25 ms, solid curves result from linear interpolation.)

the learning rule. The 72 readout pools for short-term movement prediction were

trained by 1500 randomly drawn examples of object movements. More precisely,
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Figure 18.7

20 typical trajectories of movements of the center of an object (ball or bar).

they were trained to predict future sensor activation at any time (sampled every 25

ms) during the 400 ms time interval while the object (ball or bar) moved over the

sensory field, each with another trajectory and speed.

Among the predictions of the 72 different readout pools on 300 novel test inputs

there were for the 25 ms prediction 8.5% false alarms (sensory activity erroneously

predicted) and 4.8% missed predictions of subsequent sensor activity. For those cases

where a readout pool correctly predicted that a sensor will become active, the mean

of the time period of its activation was predicted with an average error of 10.1 ms.

For the 50 ms prediction there were for 300 novel test inputs 16.5% false alarms,

4.6% missed predictions of sensory activations, and an average 14.5 ms error in the

prediction of the mean of the time interval of sensory activity.

One should keep in mind that movement prediction is actually a computationally

quite difficult task, especially for a moving ball, since it requires context-dependent

integration of information from past inputs over time and space. This computational

problem is often referred to as the aperture problem: from the perspective of a single

sensor that is currently partially activated because the moving ball is covering part of

its associated unit square (i.e., its receptive field) it is impossible to predict whether

this sensor will become more or less activated at the next movement (see [19]). In

order to decide that question, one has to know whether the center of the ball is mov-

ing towards its receptive field, or is just passing it tangentially. To predict whether

a sensor that is currently not activated will be activated 25 or 50 ms later, poses an

even more difficult problem that requires not only information about the direction of

the moving object, but also about its speed and shape. Since there exists in this ex-
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periment no preprocessor that extracts these features, which are vital for a successful

prediction, each readout pool that carries out prediction for a particular sensor has to

extract on its own these relevant pieces of information from the raw and unfiltered

information about the recent history of sensor activities, which are still reverberating

in the recurrent circuit.

Twenty-eight further readout pools were trained in a similar unsupervised manner

(with 1000 training examples) to predict where the moving object is going to leave

the sensor field. More precisely, they predict which of the 28 sensors on the perime-

ter are going to be activated by more than 50% when the moving object leaves the 8

x 8 sensor field. This requires a prediction for a context-dependent time span into the

future that varies by 66% between instances of the task, due to the varying speeds

of moving objects. We arranged that this prediction had to be made while the object

crossed the central region of the 8 x 8 field, hence at a time when the current position

of the moving object provided hardly any information about the location where it

will leave the field, since all movements go through the mid area of the field. There-

fore the tasks of these 28 readout neurons require the computation of the direction

of movement of the object, and hence a computationally difficult disambiguation of

the current sensory input. We refer to the discussion of the disambiguation problem

of sequence prediction in [1] and [14]. The former article discusses difficulties of

disambiguation of movement prediction that arise already if one has just pointwise

objects moving at a fixed speed, and just 2 of their possible trajectories cross. Ob-

viously the disambiguation problem is substantially more severe in our case, since

a virtually unlimited number of trajectories (see Figure 18.7) of different extended

objects, moving at different speeds, crosses in the mid area of the sensor field. The

disambiguation is provided in our case simply through the context established inside

the recurrent circuit through the traces (or reverberations ) left by preceding sensor

activations. Figure 18.6 shows in panel a a typical current position of the moving

ball, as well as the sensors on the perimeter that are going to be active by ≥ 50%

when the object will finally leave the sensory field. In panel b the predictions of the

corresponding 28 readout neurons (at the time when the object crosses the mid-area

of the sensory field) is also indicated (striped squares). The prediction performance

of these 28 readout neurons was evaluated as follows. We considered for each move-

ment the line from that point on the opposite part of the perimeter, where the center

of the ball had entered the sensory field, to the midpoint of the group of those sen-

sors on the perimeter that were activated when the ball left the sensory field (dashed

line). We compared this line with the line that started at the same point, but went

to the midpoint of those sensor positions which were predicted by the 28 readout

neurons to be activated when the ball left the sensory field (solid line). The angle

between these two lines had an average value of 4.9 degrees for 100 randomly drawn

novel test movements of the ball (each with an independently drawn trajectory and

speed). Another readout pool was independently trained in a supervised manner

to classify the moving object (ball or bar). It had an error of 0% on 300 test ex-

amples of moving objects. The other readout pool that was trained in a supervised

manner to estimate the speed of the moving bars and balls, which ranged from 30

to 50 units per second, made an average error of 1.48 units per second on 300 test
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Computation of movement direction. Dashed line is the trajectory of a moving ball. Sensors

on the perimeter that will be activated by ≥ 50% when the moving ball leaves the sensor field

are marked in panel a. Sensors marked by stripes in panel b indicate a typical prediction of

sensors on the perimeter that are going to be activated by ≥ 50%, when the ball will leave

the sensor field (time span into the future varies for this prediction between 100 and 150 ms,

depending on the speed and angle of the object movement). Solid line in panel b represents the

estimated direction of ball movement resulting from this prediction (its right end point is the

average of sensors positions on the perimeter that are predicted to become ≥ 50% activated).

The angle between the dashed and solid line (average value 4.9 for test movements) is the

error of this particular computation of movement direction by the simulated neural circuit.
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examples. This shows that the same recurrent circuit that provides the input for the

movement prediction can be used simultaneously by a basically unlimited number

of other readouts, that are trained to extract completely different information about

the visual input. We refer to [13] and [18] for details. Currently similar methods are

applied to real-time processing of input from infra-red sensors of a mobile robot.

18.6 Temporal integration and kernel function of
neural microcircuit models

In Section 18.2 we have proposed that the computational role of generic cortical

microcircuits can be understood in terms of two complementary computational per-

spectives:

1. temporal integration of continuously entering information (analog fading mem-

ory)

2. creation of diverse nonlinear combinations of components of such information

to enhance the capabilities of linear readouts to extract nonlinear combinations

of pieces of information for diverse tasks (kernel function).

The results reported in the preceding section have demonstrated implicitly that

both of these computational functions are supported by generic cortical microcircuit

models, since all of the benchmark problems that we discussed require temporal in-

tegration of information. Furthermore, for all of these computational tasks it sufficed

to train linear readouts to transform liquid states into target outputs (although the

target function to be computed was highly nonlinear in the inputs). In this section

we provide a more quantitative analysis of these two complementary computational

functions.

18.6.1 Temporal integration in neural microcircuit models

In order to evaluate the temporal integration capability we considered two input dis-

tributions. These input distributions were chosen so that the mutual information (and

hence also the correlation) between different segments of the input stream have value

0. Hence all temporal integration of information from earlier input segments has to

be carried out by the microcircuit circuit model, since the input itself does not pro-

vide any clues about its past. We first consider a distribution of input spike trains

where every 30 ms a new firing rate r(t) is chosen from the uniform distribution over

the interval from 0 to 80 Hz (first row in Figure 18.9). Then the spikes in each of the

concurrent input spike trains are generated during each 30 ms segment by a Poisson

distribution with this current rate r(t) (second row in Figure 18.9). Due to random

fluctuation the actual sum of firing rates rmeasured(t) (plotted as dashed line in the
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first row) represented by these 4 input spike trains varies around the intended fir-

ing rate r(t). rmeasured(t) is calculated as the average firing frequency in the interval

[t − 30ms,t]. Third row of Figure 18.9 shows that the autocorrelation of both r(t)
and rmeasured(t) vanishes after 30 ms.

Various readout neurons, that all received the same input from the microcircuit

model, had been trained by linear regression to output at various times t (more

precisely: at all multiples of 30 ms) the value of rmeasured(t), rmeasured(t − 30ms),
rmeasured(t − 60ms), rmeasured(t − 90ms), etc. Figure 18.10a shows (on test data not

used for training) the correlation coefficients achieved between the target value and

actual output value for 8 such readouts, for the case of two generic microcircuit

models consisting of 135 and 900 neurons (both with the same distance-dependent

connection probability with l = 2 discussed in Section 18.3). Figure 18.10b shows

that dynamic synapses are essential for this analog memory capability of the circuit,

since the memory curve drops significantly faster if one uses instead static (linear)

synapses for connections within the microcircuit model. Figure 18.10c shows that

the intermediate hidden neurons in the microcircuit model are also essential for this

task, since without them the memory performance also drops significantly.

It should be noted that these memory curves not only depend on the microcircuit

model, but also on the diversity of input spike patterns that may have occurred in

the input before, at, and after that time segment in the past from which one recalls

information. Hence the recall of firing rates is particularly difficult, since there exists

a huge number of diverse spike patterns that all represent the same firing rate. If one

restricts the diversity of input patterns that may occur, substantially longer memory

recall becomes possible, even with a fairly small circuit. In order to demonstrate

this point 8 randomly generated Poisson spike trains over 250 ms, or equivalently

2 Poisson spike trains over 1000 ms partitioned into 4 segments each (see top of

Figure 18.11), were chosen as template patterns. Then spike trains over 1000 ms

were generated by choosing for each 250 ms segment one of the two templates for

this segment, and by jittering each spike in the templates (more precisely: each spike

was moved by an amount drawn from a Gaussian distribution with mean 0 and a

SD that we refer to as jitter, see bottom of Figure 18.11). A typical spike train

generated in this way is shown in the middle of Figure 18.11. Because of the noisy

dislocation of spikes it was impossible to recognize a specific template from a single

interspike interval (and there were no spatial cues contained in this single channel

input). Instead, a pattern formed by several interspike intervals had to be recognized

and classified retrospectively. The performance of 4 readout neurons trained by

linear regression to recall the number of the template from which the corresponding

input segment had been generated is plotted in Figure 18.12 (thin line).

For comparison the memory curve for the recall of firing rates for the same tempo-

ral segments (i.e., for inputs generated as for Figure 18.10, but with each randomly

chosen target firing rate r(t) held constant for 250 instead of 30 ms) is plotted as

thin line in Figure 18.12, both for the same generic microcircuit model consisting of

135 neurons. Figure 18.12 shows that information about spike patterns of past inputs

decays in a generic neural microcircuit model slower than information about firing

rates of past inputs, even if just two possible firing rates may occur. One possible ex-
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Figure 18.9

Input distribution used to determine the memory curves for firing rates. Input spike trains

(second row) are generated as Poisson spike trains with a randomly drawn rate r(t). The rate

r(t) is chosen every 30 ms from the uniform distribution over the interval from 0 to 80 Hz (first

row, sold line). Due to random fluctuation the actual sum of firing rates rmeasured(t) (first row,

dashed line) represented by these 4 input spike trains varies around the intended firing rate

r(t). rmeasured(t) is calculated as the average firing frequency in the interval [t −30ms,t]. The

third row shows that the autocorrelation of both r(t) and rmeasured(t) vanishes after 30 ms.
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Figure 18.10

Memory curves for firing rates in a generic neural microcircuit model. a) Performance im-

proves with circuit size. b) Dynamic synapses are essential for longer recall. c) Hidden

neurons in a recurrent circuit improve recall performance (in the control case l = 0 the read-

out receives synaptic input only from those neurons in the circuit into which one of the input

spike trains is injected, hence no hidden neurons are involved). d) All curves from panels a

to c in one diagram for better comparison. In each panel the bold solid line is for a generic

neural microcircuit model (discussed in Section 18.3) consisting of 135 neurons with sparse

local connectivity (l = 2) employing dynamic synapses. All readouts were linear, trained by

linear regression with 500 combinations of input spike trains (1000 in the case of the liquid

with 900 neurons) of length 2 s to produce every 30 ms the desired output.
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Figure 18.11

Evaluating the fading memory of a generic neural microcircuit for spike patterns. In this

classification task all spike trains are of length 1000 ms and consist of 4 segments of length

250 ms each. For each segment 2 templates were generated randomly (Poisson spike train

with a frequency of 20 Hz); see upper traces. The actual input spike trains of length 1000 ms

used for training and testing were generated by choosing for each segment one of the two

associated templates, and then generating a noisy version by moving each spike by an amount

drawn from a Gaussian distribution with mean 0 and a SD that we refer to as jitter (see lower

trace for a visualization of the jitter with an SD of 4 ms). The task is to output with 4 different

readouts at time t = 1000 ms for each of the preceding 4 input segments the number of the

template from which the corresponding segment of the input was generated.
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Memory curves for spike patterns and firing rates. Dashed line: correlation of trained linear

readouts with the number of the templates used for generating the last input segment, and

the segments that had ended 250 ms, 500 ms, and 750 ms ago (for the inputs discussed in

Figure 18.11). Solid lines: correlation of trained linear readouts with the firing rates for the

same time segments of length 250 ms that were used for the spike pattern classification task.

Thick solid line is for the case where the ideal input firing rates can assume just 2 values (30

or 60 Hz), whereas the thin solid line is for the case where arbitrary firing rates between 0

and 80 Hz are randomly chosen. In either case the actual average input rates for the 4 time

segments, which had to be recalled by the readouts, assumed of course a wider range.

planation is that the ensemble of liquid states reflecting preceding input spike trains

that all represented the same firing rate forms a much more complicated equivalence

class than liquid states resulting from jittered versions of a single spike pattern. This

problem is amplified by the fact that information about earlier firing rates is over-

written with a much more diverse set of input patterns in subsequent input segments

in the case of arbitrary Poisson inputs with randomly chosen rates. (The number of

concurrent input spike trains that represent a given firing rate is less relevant for these

memory curves; not shown.)

A theoretical analysis of memory retention in somewhat similar recurrent net-

works of sigmoidal neurons has been given in [11].

18.6.2 Kernel function of neural microcircuit models

It is well-known (see [22, 23, 25]) that the power of linear readouts can be boosted

by two types of preprocessing:

- computation of a large number of nonlinear combinations of input components
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and features

- projection of the input into a very high dimensional space

In machine learning both preprocessing steps are carried out simultaneously by

a so-called kernel, that uses a mathematical trick to avoid explicit computations in

high-dimensional spaces. In contrast, in our model for computation in neural mi-

crocircuits both operations of a kernel are physically implemented (by the microcir-

cuit). The high-dimensional space into which the input is projected is the state space

of the neural microcircuit (a typical column consists of roughly 100 000 neurons).

This implementation makes use of the fact that the precise mathematical formulas

by which these nonlinear combinations and high-dimensional projections are com-

puted are less relevant. Hence these operations can be carried out by found neural

circuits that have not been constructed for a particular task. The fact that the generic

neural microcircuit models in our simulations automatically compute an abundance

of nonlinear combinations of input fragments can be seen from the fact that the target

output values for the tasks considered in Figures 18.2, 18.4, 18.6, 18.8 are nonlinear

in the input, but are nevertheless approximated quite well by linear readouts from

the current state of the neural microcircuit.

The capability of neural microcircuits to boost the power of linear readouts by

projecting the input into higher dimensional spaces is further underlined by joint

work with Stefan Häusler [6]. There the task to recover the number of the template

spike pattern used to generate the second-to-last segment of the input spike train*

was carried out by generic neural microcircuit models of different sizes, ranging from

12 to 784 neurons.In each case a perceptron was trained by the D-rule to classify

at time 0 the template that had been used to generate the input in the time segment

[-500, -250 ms]. The results of the computer simulations reported in Figure 18.13

show that the performance of such (thresholded) linear readout improves drastically

with the size of the microcircuit into which the spike train is injected, and therefore

with the dimension of the liquid state that is presented to the readout.

18.7 Software for evaluating the computational
capabilities of neural microcircuit models

New software for the creation, fast simulation and computational evaluation of neural

microcircuit models has recently been written by Thomas Natschläger (with contri-

butions by Christian Naeger), see [21]. This software, which has been made avail-

able for free use on WWW.LSM.TUGRAZ.AT, uses an efficient C++ kernel for the

*This is exactly the task of the second readout in the spike pattern classification task discussed in Fig-

ures 18.11 and 18.12.
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The performance of a trained readout (perceptron trained by the D-rule) for microcircuit mod-

els of different sizes, but each time for the same input injected into the microcircuit and the

same classification task for the readout. The error decreases with growing circuit size, both

on the training data (dashed line) and on new test data (solid line) generated by the same

distribution.

simulation of neural microcircuits.* But the construction and evaluation of these

microcircuit models can be carried out conveniently in MATLAB. In particular the

website contains MATLAB scripts that can be used for validating the results reported

in this chapter. The object oriented style of the software makes it easy to change the

microcircuit model or the computational tasks used for these tests.

18.8 Discussion

We have presented a conceptual framework for analyzing computations in generic

neural microcircuit models that satisfies the biological constraints listed in Section

18.1. Thus one can now take computer models of neural microcircuits, that can

be as realistic as one wants to, and use them not just for demonstrating dynamic

effects such as synchronization or oscillations, but to really carry out demanding

computations with these models. The somewhat surprising result is that the inherent

dynamics of cortical microcircuit models, which appears to be virtually impossible

*For example a neural microcircuit model consisting of a few hundred leaky integrate-and-fire neurons

with up to 1000 dynamic synapses can be simulated in real-time on a current generation PC.
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to understand in detail for a human observer, nevertheless presents information about

the recent past of its input stream in such a way that a single perceptron (or linear

readout in the case where an analog output is needed) can immediately extract from

it the right answer. Traditional approaches towards producing the outputs of such

complex computations in a computer usually rely on a sequential algorithm con-

sisting of a sequence of computation steps involving elementary operations such as

feature extraction, addition and multiplication of numbers, and binding of related

pieces of information. The simulation results discussed in this chapter demonstrate

that a completely different organization of such computations is possible, which does

not require to implement these seemingly unavoidable elementary operations. Fur-

thermore, this alternative computation style is supported by theoretical results (see

Section 18.4), which suggest that it is in principle as powerful as von Neumann style

computational models such as Turing machines, but more adequate for the type of

real-time computing on analog input streams that is carried out by the nervous sys-

tem.

Obviously this alternative conceptual framework relativizes some basic concepts

of computational neuroscience such as receptive fields, neural coding and binding,

or rather places them into a new context of computational organization. Furthermore

it suggests new experimental paradigms for investigating the computational role of

cortical microcircuits. Instead of experiments on highly trained animals that aim at

isolating neural correlates of conjectured elementary computational operations, the

approach discussed in this chapter suggests experiments on naturally behaving ani-

mals that focus on the role of cortical microcircuits as general purpose temporal in-

tegrators (analog fading memory) and simultaneously as high dimensional nonlinear

kernels to facilitate linear readout. The underlying computational theory (and re-

lated experiments in machine learning) support the intuitively rather surprising find-

ing that the precise details how these two tasks are carried out (e.g., how memories

from different time windows are superimposed, or which nonlinear combinations

are produced in the kernel) are less relevant for the performance of the computa-

tional model, since a linear readout from a high dimensional dynamical system can

in general be trained to adjust to any particular way in which these two tasks are ex-

ecuted. Some evidence for temporal integration in cortical microcircuits has already

been provided through experiments that demonstrate the dependence of the current

dynamics of cortical areas on their initial state at the beginning of a trial, see e.g.,

[2]. Apparently this initial state contains information about preceding input to that

cortical area. Our theoretical approach suggests further experiments that quantify the

information about earlier inputs in the current state of neural microcircuits in vivo.

It also suggests to explore in detail which of this information is read out by diverse

readouts and projected to other brain areas.

The computational theory outlined in this chapter differs also in another aspect

from previous theoretical work in computational neuroscience: instead of construct-

ing hypothetical neural circuits for specific (typically simplified) computational tasks,

this theory proposes to take the existing cortical circuitry off the shelf and examine

which adaptive principles may enable them to carry out those diverse and demand-

ing real-time computations on continuous input streams that are characteristic for the
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astounding computational capabilities of the cortex.

The generic microcircuit models discussed in this chapter were relatively simple

insofar as they did not yet take into account more specific anatomical and neuro-

physiological data regarding the distribution of specific types of neurons in specific

cortical layers, and known details regarding their specific connection patterns and

regularization mechanisms to improve their performance (work in progress). But

obviously these more detailed models can be analyzed in the same way, and it will

be quite interesting to compare their computational power with that of the simpler

models discussed in this chapter.
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[21] T. Natschläger, H. Markram, and W. Maass (2003), Computer models and

analysis tools for neural microcircuits, in Neuroscience Databases. A Prac-

tical Guide, R. Kötter (ed.), Kluwer Academic Publishers (Boston), Chapter

9, 123–138. Online available as #144 from http: //www.igi.tugraz.at /maass

/publications.html.

[22] J. F. Rosenblatt (1962), Principles of Neurodynamics, Spartan Books (New

York).

[23] B. Schölkopf, and A. J. Smola (2002), Learning with Kernels, MIT Press,

Cambridge.

[24] J. E. Savage (1998), Models of Computation: Exploring the Power of Comput-

ing, Addison-Wesley, Reading, MA, USA.

[25] V. N. Vapnik (1998), Statistical Learning Theory, John Wiley, New York.

© 2004 by Chapman & Hall/CRC

www.igi.tugraz.at 


Chapter 19

Modelling Primate Visual
Attention

Laurent Itti
University of Southern California, Hedco Neuroscience Building HNB-30A, Los
Angeles, CA 90089-2520, U.S.

CONTENTS

19.1 Introduction 
19.2  Brain areas
19.3  Bottom-up control

19.3.1 Visual search and pop-out 
19.3.2  Computational models and the saliency map

19.4 Top-down modulation of early vision
19.4.1  Are we blind outside of the focus of attention?
19.4.2 Attentional modulation of early vision

19.5  Top-down deployment of attention
19.5.1 Attentional facilitation and cuing
19.5.2  Influence of task

19.6 Attention and scene understanding
19.6.1 Is scene understanding purely attentional?
19.6.2 Cooperation between where and what 
19.6.3 Attention as a component of vision

19.7  Discussion
References

19.1 Introduction

Selective visual attention is the mechanism by which we can rapidly direct our gaze

towards objects of interest in our visual environment [2, 4, 5, 18, 26, 35, 52, 53].

From an evolutionary viewpoint, this rapid orienting capability is critical in allowing

living systems to quickly become aware of possible prey, mates or predators in their

cluttered visual world. It has become clear that attention guides where to look next

based on both bottom-up (image-based) and top-down (task-dependent) cues [26].

As such, attention implements an information processing bottleneck, only allowing
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a small part of the incoming sensory information to reach short-term memory and

visual awareness [9, 15]. That is, instead of attempting to fully process the massive

sensory input in parallel, nature has devised a serial strategy to achieve near real-

time performance despite limited computational capacity: Attention allows us to

break down the problem of scene understanding into rapid series of computationally

less demanding, localized visual analysis problems.

These orienting and scene analysis functions of attention are complemented by a

feedback modulation of neural activity at the location and for the visual attributes of

the desired or selected targets. This feedback is believed to be essential for binding

the different visual attributes of an object, such as color and form, into a unitary

percept [22, 42, 52]. That is, attention not only serves to select a location of interest,

but also enhances the cortical representation at that location. As such, focal visual

attention is often compared to a rapidly shiftable spotlight [11, 58], which scans our

visual environment both overtly (with accompanying eye movements) or covertly

(with the eyes fixed).

Finally, attention is involved in triggering behavior, and consequently is intimately

related to recognition, planning and motor control [32]. Of course, not all of vision

is attentional, as we can derive coarse understanding from presentations of visual

scenes that are too brief for attention to explore the scene. Vision thus relies on so-

phisticated interactions between coarse, massively parallel, full-field pre-attentive

analysis systems and the more detailed, circumscribed and sequential attentional

analysis system.

In what follows, we focus on several critical aspects of selective visual attention:

First, the brain area involved in its control and deployment; second, the mecha-

nisms by which attention is attracted in a bottom-up or image-based manner towards

conspicuous or salient locations in our visual environment; third, the mechanisms

by which attention modulates the early sensory representation of attended stimuli;

fourth, the mechanisms for top-down or voluntary deployment of attention; and fifth,

the interaction between attention, object recognition and scene understanding.

19.2 Brain areas

The control of focal visual attention involves an intricate network of brain areas,

spanning from primary visual cortex to prefrontal cortex. In a first approximation,

selecting where to attend next is carried out, to a large extent, by distinct brain struc-

tures from recognizing what is being attended to. This suggests that a cooperation be-

tween “two visual systems” is used by normal vision [16]: Selecting where to attend

next is primarily controlled by the dorsal visual processing stream (or “where/how”

stream) which comprises cortical areas in posterior parietal cortex, whereas the ven-

tral visual processing stream (or “what” stream), comprising cortical areas in infer-

otemporal cortex, is primarily concerned with localized object recognition [57]. It is
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Figure 19.1

Major brain areas involved in the deployment of selective visual attention. Although

single-ended arrows are shown to suggest global information flow (from the eyes to

prefrontal cortex), anatomical studies suggest reciprocal connections, with the num-

ber of feedback fibers often exceeding that of feedforward fibers (except between

retina and LGN). Cortical areas may be grouped into two main visual pathways: the

dorsal “where/how” pathway (from V1 to DLPFC via PPC) is mostly concerned with

spatial deployment of attention and localization of attended stimuli, while the ventral

“what” pathway (from V1 to VLPFC via IT) is mostly concerned with pattern recog-

nition and identification of the attended stimuli. In addition to these cortical areas,

several subcortical areas including LGN and Pul play important roles in controlling

where attention is to be deployed. Key to abbreviations: LGN: lateral geniculate

nucleus; Pul: Pulvinar nucleus; V1, V2, V4: early cortical visual areas; MT: Medial

temporal area; PPC: posterior parietal cortex; DLPFC: dorsolateral prefrontal cortex;

IT: inferotemporal cortex; VLPFC: ventrolateral prefrontal cortex.

important to note, however, that object recognition in the ventral stream can bias the

next attentional shift, for example via top-down control when an object is recognized

that suggests where the next interesting object may be located. Similarly, we will see

how attention strongly modulates activity in the object recognition system.

Among the brain regions participating to the deployment of visual attention in-

clude most of the early visual processing areas and the dorsal processing stream (Fig-

ure 19.1). These include the lateral geniculate nucleus of the thalamus (LGN) and

cortical areas V1 (primary visual cortex) through the parietal cortex along the dorsal

stream [51]. In addition, overt and covert attention have been shown to be closely re-
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lated, as revealed by psychophysical [19, 28, 47, 48], physiological [1, 6, 29, 45], and

imaging [7, 37] studies. Directing covert attention thus involves a number of sub-

cortical structures that are also instrumental in producing directed eye movements.

These include the deeper parts of the superior colliculus; parts of the pulvinar; the

frontal eye fields in the macaque and its homologue in humans; the precentral gyrus;

and areas in the intraparietal sulcus in the macaque and around the intraparietal and

postcentral sulci and adjacent gyri in humans.

19.3 Bottom-up control

One important mode of operation of attention is largely unconscious and driven by

the specific attributes of the stimuli present in our visual environment. This so-called

bottom-up control of visual attention can easily be studied using simple visual search

tasks as described below. Based on these experimental results, several computational

theories and models have been developed for how attention may be attracted towards

a particular object in the scene rather than another.

19.3.1 Visual search and pop-out

One of the most effective demonstrations of bottom-up attentional guidance uses

simple visual search experiments, in which an odd target stimulus to be located by

the observer is embedded within an array of distracting visual stimuli [52]. Origi-

nally, these experiments suggested a dichotomy between situations where the target

stimulus would visually pop-out from the array and be found immediately, and situ-

ations where extensive scanning and inspection of the various stimuli in the display

was necessary before the target stimulus could be located (Figure 19.2). The pop-out

cases suggest that the target can be effortlessly located by relying on preattentive vi-

sual processing over the entire visual scene. In contrast, the conjunctive search cases

suggest that attending to the target is a necessary precondition to being able to iden-

tify it as being the unique target, thus requiring that the search array be extensively

scanned until the target becomes the object of attentional selection.

Further experimentation has revealed that the original dichotomy between the fast,

parallel search observed with pop-out displays and slower, serial search observed

with conjunctive displays represent the two extremes of a continuum of search diffi-

culty [60]. Nevertheless, these experiments clearly demonstrate that if a target differs

significantly from its surround (in ways which can be characterized in terms of visual

attributes of the target and distractors), it will immediately draw attention towards it-

self. Thus, these experiments evidence how the composition of the visual scene alone

is a potentially very strong component of attentional control, guiding attention from

the bottom of the visual processing hierarchy up.
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Figure 19.2

Search array experiments of the type pioneered by Treisman and colleagues. The

top two panels are examples of pop-out cases where search time (here shown as the

number of locations fixated before the target if found) is small and independent of

the number of elements in the display. The bottom panel demonstrates a conjunctive

search (the target is the only element that is dark and oriented like the brighter ele-

ments); in this case, a serial search is initiated, which will require more time as the

number of elements in the display is increased.

19.3.2 Computational models and the saliency map

The feature integration theory of Treisman and colleagues [52] that was derived from

visual search experiments has served as a basis for many computational models of
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bottom-up attentional deployment. This theory proposed that only fairly simple vi-

sual features are computed in a massively parallel manner over the entire incoming

visual scene, in early visual processing areas including primary visual cortex. Atten-

tion is then necessary to bind those early features into a more sophisticated object

representation, and the selected bound representation is (to a first approximation)

the only part of the visual world which passes though the attentional bottleneck for

further processing.

The first explicit neurally-plausible computational architecture of a system for the

bottom-up guidance of attention was proposed by Koch and Ullman [27], and is

closely related to the feature integration theory. Their model is centered around a

saliency map, that is, an explicit two-dimensional topographic map that encodes for

stimulus conspicuity, or salience, at every location in the visual scene. The saliency

map receives inputs from early visual processing, and provides an efficient control

strategy by which the focus of attention simply scans the saliency map in order of

decreasing saliency.

This general architecture has been further developed and implemented, yielding

the computational model depicted in Figure 19.3 [23]. In this model, the early stages

of visual processing decompose the incoming visual input through an ensemble of

feature-selective filtering processes endowed with contextual modulatory effects. In

order to control a single attentional focus based on this multiplicity in the representa-

tion of the incoming sensory signals, it is assumed that all feature maps provide input

to the saliency map, which topographically represents visual salience, irrespectively

of the feature dimension by which a given location was salient. Biasing attention to

focus onto the most salient location is then reduced to drawing attention towards the

locus of highest activity in the saliency map. This is achieved using a winner-take-

all neural network, which implements a neurally distributed maximum detector. In

order to prevent attention from permanently focusing onto the most active (winner)

location in the saliency map, the currently attended location is transiently inhibited in

the saliency map by an inhibition-of-return mechanism. After the most salient loca-

tion is thus suppressed, the winner-take-all network naturally converges towards the

next most salient location, and repeating this process generates attentional scanpaths

[23, 27].

Many successful models for the bottom-up control of attention are architectured

around a saliency map. What differentiates the models, then, is the strategy em-

ployed to prune the incoming sensory input and extract salience. In an influential

model mostly aimed at explaining visual search experiments, Wolfe [59] hypoth-

esized that the selection of relevant features for a given search task could be per-

formed top-down, through spatially-defined and feature-dependent weighting of the

various feature maps. Although limited to cases where attributes of the target are

known in advance, this view has recently received experimental support from studies

of top-down attentional modulation (see below).

Tsotsos and colleagues [56] implemented attentional selection using a combina-

tion of a feedforward bottom-up feature extraction hierarchy and a feedback selective

tuning of these feature extraction mechanisms. In this model, the target of attention

is selected at the top level of the processing hierarchy (the equivalent of a saliency
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Figure 19.3

Typical architecture for a model of bottom-up visual attention based on a saliency

map. The input image is analyzed by a number of early visual filters, sensitive to

stimulus properties such as color, intensity and orientation, at several spatial scales.

After spatial competition for salience within each of the resulting feature maps, input

is provided to a single saliency map from all of the feature maps. The aximum

activity in the saliency map is the next attended location. Transient inhibition of this

location in the saliency map allows the system to shift towards the next most salient

location.

map), based on feedforward activation and on possible additional top-down biasing

for certain locations or features. That location is then propagated back through the

feature extraction hierarchy, through the activation of a cascade of winner-take-all

networks embedded within the bottom-up processing pyramid. Spatial competition

for salience is thus refined at each level of processing, as the feedforward paths not

contributing to the winning location are pruned (resulting in the feedback propaga-

tion of an “inhibitory beam” around the selected target).
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Itti et al. [23, 24, 25] recently proposed a purely bottom-up model, in which spatial

competition for salience is directly modelled after non-classical surround modulation

effects. The model employs an iterative scheme with early termination. At each

iteration, a feature map receives additional inputs from the convolution of itself by

a large difference-of-Gaussians filter. The result is half-wave rectified, with a net

effect similar to a winner-take-all with limited inhibitory spread, which allows only

a sparse population of locations to remain active. After competition, all feature maps

are simply summed to yield the scalar saliency map. Because it includes a complete

biological front-end, this model has been widely applied to the analysis of natural

color scenes [25]. The non-linear interactions implemented in this model strongly

illustrate how, perceptually, whether a given stimulus is salient or not cannot be

decided without knowledge of the context within which the stimulus is presented.

Many other models have been proposed, which typically share some of the com-

ponents of the three models just described. In view of the affluence of models based

on a saliency map, it is important to note that postulating centralized control based

on such map is not the only computational alternative for the bottom-up guidance

of attention. In particular, Desimone and Duncan [15] argued that salience is not

explicitly represented by specific neurons, but instead is implicitly coded in a dis-

tributed modulatory manner across the various feature maps. Attentional selection is

then performed based on top-down weighting of the bottom-up feature maps that are

relevant to a target of interest. This top-down biasing (also used in Wolfe’s Guided

Search model [59]) requires that a specific search task be performed for the model to

yield useful predictions.

19.4 Top-down modulation of early vision

The general architecture for the bottom-up control of attention presented above opens

two important questions on the nature of the attentional bottleneck. First, is it the

only means through which incoming visual information may reach higher levels of

processing? Second, does it only involve one-way processing of information from

the bottom-up, or is attention a two-way process, also feeding back from higher

centers to early processing stages?

19.4.1 Are we blind outside of the focus of attention?

Recent experiments have shown how fairly dramatic changes applied to a visual

scene being inspected may go unnoticed by human observers, unless those changes

occur at the location currently being attended to. These change blindness experi-

ments [39, 41] can take several forms, yielding essentially the same conclusions.

One implementation consists of alternatively flashing two versions of a same scene

separated by a blank screen, with the two versions differing very obviously at one
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location (for example, a scene in which a jet airplane is present and one of its reac-

tors has been erased from one of the two photographs to be compared). Although the

alteration is obvious when one directly attends to it, it takes naive observers several

tens of seconds to locate it. Not unexpectedly, instances of this experiment which are

the most difficult for observers involve a change at a location that is of little interest

in terms of understanding and interpreting the scene (for example, the aforemen-

tioned scene with an airplane also contains many people, who tend to be inspected

in priority).

These experiments demonstrate the crucial role of attention in conscious vision:

unless we attend to an object, we are unlikely to consciously perceive it in any detail

and detect when it is altered. However, as we will see below, this does not necessarily

mean that there is no vision other than through the attention bottleneck.

19.4.2 Attentional modulation of early vision

A number of psychophysical end electrophysiological studies indicate that we are

not entirely blind outside the focus of attention. At the early stages of processing,

responses are still observed even if the animal is attending away from the receptive

field at the site of recording [54], or is anesthetized [21]. Behaviorally, we can also

perform fairly specific spatial judgments on objects not being attended to [4, 14],

though those judgments are less accurate than in the presence of attention [31, 61].

This is in particular demonstrated by dual-task psychophysical experiments in which

observers are able to simultaneously discriminate two visual stimuli presented at two

distant locations in the visual field [31].

While attention thus appears not to be mandatory for early vision, it has recently

become clear that it can vigorously modulate, top-down, early visual processing,

both in a spatially-defined and in a non-spatial but feature-specific manner [10, 34,

55]. This modulatory effect of attention has been described as enhanced gain [54],

biased [33, 36] or intensified [31] competition, enhanced spatial resolution [61], or

as modulated background activity [12], effective stimulus strength [43] or noise [17].

Of particular interest in a computational perspective, a recent study by Lee et

al. [31] measured psychophysical thresholds for five simple pattern discrimination

tasks (contrast, orientation and spatial frequency discriminations, and two spatial

masking tasks; 32 thresholds in total). They employed a dual-task paradigm to mea-

sure thresholds either when attention was fully available to the task of interest, or

when it was poorly available because engaged elsewhere by a concurrent attention-

demanding task. The mixed pattern of attentional modulation observed in the thresh-

olds (up to 3-fold improvement in orientation discrimination with attention, but only

20% improvement in contrast discrimination) was quantitatively accounted for by a

computational model. It predicted that attention strengthens a winner-take-all com-

petition among neurons tuned to different orientations and spatial frequencies within

one cortical hypercolumn [31], a proposition which has recently received additional

experimental support.

These results indicate that attention does not implement a feed-forward, bottom-

up information processing bottleneck. Rather, attention also enhances, through feed-
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back, early visual processing for both the location and visual features being attended

to.

19.5 Top-down deployment of attention

The precise mechanisms by which voluntary shifts of attention are elicited remain

elusive, although several studies have narrowed down the brain areas primarily in-

volved [8, 20, 23]. Here we focus on two types of experiments that clearly demon-

strate how, first, attention may be deployed on a purely voluntary basis onto one of

several identical stimuli (so that none of the stimuli is more salient than the others),

and, second, how eye movements recorded from observers inspecting a visual scene

with the goal of answering a question about that scene are dramatically influenced

by the question being answered.

19.5.1 Attentional facilitation and cuing

Introspection easily reveals that we are able to voluntarily shift attention towards

any location in our visual field, no matter how inconspicuous that location may be.

More formally, psychophysical experiments may be used to demonstrate top-down

shifts of attention. A typical experiment involves cueing an observer towards one of

several possible identical stimuli presented on a computer screen. The cue indicates

to the observer where to focus on, but only at a high cognitive level (e.g., verbal cue),

so that nothing in the display would directly attract attention bottom-up towards the

desired stimulus. Detection or discrimination of the stimulus at the attended location

are significantly better (e.g., lower reaction time or lower psychophysical thresholds)

than at uncued locations. These experiments hence suggest that voluntarily shifting

attention towards a stimulus improves the perception of that stimulus.

Similarly, experiments involving decision uncertainty demonstrate that if a stimu-

lus is to be discriminated by a specific attribute that is known in advance (e.g., dis-

criminate the spatial frequency of a grating), performance is significantly improved

compared to situations where one randomly chosen of several possible stimulus at-

tributes are to be discriminated (e.g., discriminate the spatial frequency, contrast or

orientation of a grating). Thus, we appear to also be able to voluntarily select not

only where to attend to, but also the specific features of a stimulus to be attended.

These results are closely related to and consistent with the spatial and featural nature

of attentional modulation mentioned in the previous section.

19.5.2 Influence of task

Recording eye movements from human observers while they inspect a visual scene

has revealed a profound influence of task demands on the pattern of eye movements
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generated by the observers [62]. In a typical experiment, different observers exam-

ine a same photograph while their eye movements are being tracked, but are asked

to answer different questions about the scene (for example, estimate the age of the

people in the scene, or determine the country in which the photograph was taken).

Although all observers are presented with an identical visual stimulus, the patterns

of eye movements recorded differ dramatically depending on the question being ad-

dressed by each observer. These experiments clearly demonstrate that task demands

play a critical role in determining where attention is to be focused next.

Building in part on eye tracking experiments, Stark and colleagues [38] have pro-

posed the scanpath theory of attention, according to which eye movements are gen-

erated almost exclusively under top-down control. The theory proposes that what

we see is only remotely related to the patterns of activation of our retinas; rather, a

cognitive model of what we expect to see is at the basis of our percept. The sequence

of eye movements which we make to analyze a scene, then, is mostly controlled top-

down by our cognitive model and serves the goal of obtaining specific details about

the particular scene instance being observed, to embellish the more generic internal

model. This theory has had a number of successful applications to robotics control,

in which an internal model of a robot’s working environment was used to restrict the

analysis of incoming video sequences to a small number of circumscribed regions

important for a given task.

19.6 Attention and scene understanding

We have seen how attention is deployed onto our visual environment through a co-

operation between bottom-up and top-down driving influences. One difficulty which

then arises is the generation of proper top-down biasing signals when exploring a

novel scene; indeed, if the scene has not been analyzed and understood yet using

thorough attentional scanning, how can it be used to direct attention top-down? Be-

low we explore two dimensions of this problem: First, we show how already from

a very brief presentation of a scene we are able to extract its gist, basic layout, and

a number of other characteristics. This suggests that another part of our visual sys-

tem, which operates much faster than attention, might be responsible for this coarse

analysis; the results of this analysis may then be used to guide attention top-down.

Second, we explore how several computer vision models have used a collaboration

between the where and what subsystems to yield sophisticated scene recognition al-

gorithms. Finally, we cast these results into a more global view of our visual system

and the function of attention in vision.
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19.6.1 Is scene understanding purely attentional?

Psychophysical experiments pioneered by Biederman and colleagues [3] have demon-

strated how we can derive coarse understanding of a visual scene from a single pre-

sentation that is so brief (80 ms or less) that it precludes any attentional scanning or

eye movement. A particularly striking example of such experiments consists of pre-

senting to an observer a rapid succession of unrelated photographs of natural scenes

at a high frame rate (over 10 scenes/s). After presentation of the stimuli for sev-

eral tens of seconds, observers are asked whether a particular scene, for example an

outdoors market scene, was present among the several hundred photographs shown.

Although the observers are not made aware in advance of the question, they are able

to provide a correct answer with an overall performance well over chance (Bieder-

man, personal communication). Furthermore, observers are able to recall a number

of coarse details about the scene of interest, such as whether it contained humans, or

whether it was highly colorful or rather dull.

These and many related experiments clearly demonstrate that scene understanding

does not exclusively rely on attentional analysis. Rather, a very fast visual subsystem

which operates in parallel with attention allows us to rapidly derive the gist and

coarse layout of a novel visual scene. This rapid subsystem certainly is one of the

key components by which attention may be guided top-down towards specific visual

locations.

19.6.2 Cooperation between where and what

Several computer vision models have been proposed for extended object and scene

analysis that rely on a cooperation between an attentional (where) and localized

recognition (what) subsystems.

A very interesting instance was recently provided by Schill et al. [46]. Their

model aims at performing scene (or object) recognition, using attention (or eye

movements) to focus on those parts of the scene being analyzed which are most

informative in disambiguating its identity. To this end, a hierarchical knowledge tree

is trained into the model, in which leaves represent identified objects, intermediary

nodes represent more general object classes, and links between nodes contain senso-

rimotor information used for discrimination between possible objects (i.e., bottom-

up feature responses to be expected for particular points in the object, and eye move-

ment vectors targeted at those points). During the iterative recognition of an object,

the system programs its next fixation towards the location which will maximally in-

crease information gain about the object being recognized, and thus will best allow

the model to discriminate between the various candidate object classes.

Several related models have been proposed [13, 23, 44, 49, 50], in which scan-

paths (containing motor control directives stored in a “where” memory and locally

expected bottom-up features stored in a “what” memory) are learned for each scene

or object to be recognized. The difference between the various models comes from

the algorithm used to match the sequences of where/what information to the visual

scene. These include using a deterministic matching algorithm (i.e., focus next onto

© 2004 by Chapman & Hall/CRC



the next location stored in the sequence being tested against the new scene), hidden

Markov models (where sequences are stored as transition probabilities between lo-

cations augmented by the visual features expected at those locations), or evidential

reasoning (similar to the model of Schill and colleagues). These models typically

demonstrate strong ability to recognize complex grayscale scenes and faces, in a

translation, rotation and scale independent manner, but cannot account for non-linear

image transformations (e.g., three-dimensional viewpoint change).

While these models provide very interesting examples of cooperation between a

fast attentional cueing system and a slower localized feature analysis system, their

relationship to biology has not been emphasized beyond the general architectural

level. Teasing apart the brain mechanisms by which attention, localized recognition,

and rapid computation of scene gist and layout collaborate in normal vision remains

one of the most exciting challenges for modern visual neuroscience [40].

19.6.3 Attention as a component of vision

In this section, we have seen how vision relies not only on the attentional subsystem,

but more broadly on a cooperation between crude preattentive subsystems for the

computation of gist, layout and for bottom-up attentional control, and the attentive

subsystem coupled with the localized object recognition subsystem to obtain fine

details at various locations in the scene (Figure 19.4).

This view on the visual system raises a number of questions which remain fairly

controversial. These are issues of the internal representation of scenes and objects

(e.g., view-based versus three-dimensional models, or a cooperation between both),

and of the level of detail with which scenes are stored in memory for later recall and

comparison to new scenes (e.g., snapshots versus crude structural models). Many

of these issues extend well beyond the scope of the present discussion of selective

visual attention. Nevertheless, it is important to think of attention within the broader

framework of vision and scene understanding, as this allows us to delegate some of

the visual functions to non-attentional subsystems.

19.7 Discussion

We have reviewed some of the key aspects of selective visual attention, and how

these contribute more broadly to our visual experience and unique ability to rapidly

comprehend complex visual scenes.

Looking at the evidence accumulated so far on the brain areas involved with the

control of attention has revealed a complex interconnected network, which spans

from the earliest stages of visual processing up to prefrontal cortical areas. To a large

extent, this network serves not only the function of guiding attention, but is shared

with other subsystems, including the guidance of eye movements, the computation
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Figure 19.4

Simplified architecture for the understanding of visual scenes, extended from

Rensink’s (2000) triadic model. The incoming visual scene is analyzed by low-

level visual processes (top) in a massively-parallel, full-field and pre-attentive man-

ner up to a fairly simple “proto-object” representation. Building on this representa-

tion, gist and layout of the scene are computed in a fast, probably feedforward and

non-iterative manner (left). Also building on this representation, the saliency map

describes potentially interesting locations in the scene (right). Guided by saliency,

gist, layout, and behavioral goal specifications, focal attention selects a region of the

scene to be analyzed in further details. The result of this localized object recogni-

tion is used to incrementally refine the cognitive understanding of the contents of the

scene. This understanding as well as the goal specification bias the low-level vision

through feedback pathways.
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of early visual features, the recognition of objects and the planning of actions.

Attention is guided towards particular locations in our visual world under a com-

bination of competing constraints, which include bottom-up signals derived from the

visual input, and top-down contraints derived from task priority and scene under-

standing. The bottom-up control of attention is clearly evidenced by simple visual

search experiments, in which our attention is automatically drawn towards targets

that pop-out from surrounding distractors. This bottom-up guidance is certainly the

best understood component of attention, and many computational models have been

proposed which replicate some of the human performance at exploring visual search

stimuli. Most models have embraced the idea that a single topographic saliency map

may be an efficient centralized representation for guiding attention. Several of these

models have been applied to photographs of natural scenes, yielding remarkably

plausible results. One of the important theoretical results derived from bottom-up

modelling is the critical role of cortical interactions in pruning the massive sensory

input such as to extract only those elements of the scene that are conspicuous.

In part guided by bottom-up cues, attention thus implements an information pro-

cessing bottleneck, which allows only select elements in the scene to reach higher

levels of processing. But not all vision is attentional, and even though we may easily

appear blind to image details outside the focus of attention, there is still substantial

residual vision of unattended objects. That is, the attentional bottleneck is not strict,

and some elements in the visual scene may reach our conscious perception if they are

sufficiently salient, even though attention might be engaged elsewhere in the visual

environment.

In addition, attentional selection appears to be a two-way process, in which not

only selected scene elements are propagated up the visual hierarchy, but the represen-

tation of these elements is also enhanced down to the earliest levels of the hierarchy

through feedback signals. Thus attention not only serves the function of selecting

a subset of the current scene, but also profoundly alters the cortical representation

of this subset. Computationally, one mechanism for this enhancement which enjoys

broad validity across a variety of visual discrimination tasks is that attention may

activate a winner-take-all competition among visual neurons representing different

aspects of a same visual location, thus making more explicit what the dominant char-

acteristic of that location is. Top-down attentional modulation can be triggered not

only on the basis of location, but also towards specific visual features.

Introspection easily makes evident that attention is not exclusively controlled bottom-

up. Indeed, we can with little effort focus attention onto any region of our visual

field, no matter how inconspicuous. Volitional shifts of attention are further evi-

denced by psychophysical experiments in which improved performance is observed

when subjects know in advance where or what to look for, and hence presumably

use a volitional shift of attention (across space or feature dimensions) in preparation

for performing a visual judgement. The exact mechanisms by which volitional atten-

tion shifts are elicited remain rather elusive, but it has been widely demonstrated that

high-level task specifications, such as a question asked about a visual scene, have

dramatic effects on the deployment of attention and eye movements onto the scene.

Finally, it is important to consider attention not as a visual subsystem of its own
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that would have little interaction with other aspects of vision. Indeed, we have seen

that it is highly unlikely, or impossible under conditions of very brief presentation,

that we analyze and understand complex scenes only through attentional scanning.

Rather, attention, object recognition, and rapid mechanisms for the extraction of

scene gist and layout cooperate in a remarkable multi-threaded analysis which ex-

ploits different time scales and levels of details within interacting processing streams.

Although tremendous progress has been made over the past century of the scientific

study of attention, starting with William James, many of the key components of this

complex interacting system remain poorly understood and elusive, thus posing ever

renewed challenges for future neuroscience research.
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