




Brain- Computer  Interfacing

he idea of interfacing minds with machines has long captured the human imagination. Recent 

advances in neuroscience and engineering are making this a reality, opening the door to restoring 

and potentially augmenting human physical and mental capabilities. Medical applications such 

as cochlear implants for the deaf and deep brain stimulation for Parkinson’s disease are becom-

ing increasingly commonplace. Brain- computer interfaces (BCIs) (also known as brain- machine 

interfaces or BMIs) are now being explored in applications as diverse as security, lie detection, 

alertness monitoring, telepresence, gaming, education, art, and human augmentation.

his introduction to the ield is designed as a textbook for upper- level undergraduate and irst-

 year graduate courses in neural engineering or brain- computer interfacing for students from a 

wide range of disciplines. It can also be used for self- study and as a reference by neuroscientists, 

computer scientists, engineers, and medical practitioners.

Key features include:

Essential background in neuroscience, brain recording and stimulation technologies, signal • 
processing, and machine learning

Detailed description of the major types of BCIs in animals and humans, including invasive, • 
semi- invasive, noninvasive, stimulating, and bidirectional BCIs

In- depth discussion of BCI applications and BCI ethics• 
Questions and exercises in each chapter• 
Supporting Web site with annotated list of book- related links• 

Rajesh P. N. Rao is an associate professor in the Computer Science and Engineering department 

at the University of Washington, Seattle. He has been awarded an NSF CAREER award, an ONR 

Young Investigator Award, a Sloan Faculty Fellowship, and a David and Lucile Packard Fellowship 

for Science and Engineering. Rao has published more than 150 papers in conferences and lead-

ing scientiic journals, including Science, Nature, and PNAS, and is the co- editor of Probabilistic 

Models of the Brain and Bayesian Brain. His research targets problems at the intersection of compu-

tational neuroscience, artiicial intelligence, and brain- computer interfacing. His not- so- copious 

spare time is devoted to Indian art history and to understanding the ancient undeciphered script 

of the Indus civilization, a topic on which he has given a TED talk.
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“Scientists demo thought- controlled robots” (PC Magazine, July 9, 2012)

“Bionic vision: Amazing new eye chip helps two blind Brits to see again” 
(Mirror, May 3, 2012)

“Paralyzed, moving a robot with their minds” (New York Times, May 16, 
2012)

“Stephen Hawking trials device that reads his mind” (New Scientist, July 
12, 2012)

hese headlines, from just a few weeks of news stories in 2012, illustrate the grow-

ing fascination of the media and the public with the idea of interfacing minds with 

machines. What is not clear amid all this hype is: (a) What exactly can and cannot 

be achieved with current brain- computer interfaces (BCIs) (sometimes also called 

brain- machine interfaces or BMIs)? (b) What techniques and advances in neuro-

science and computing are making these BCIs possible? (c) What are the available 

types of BCIs? and (d) What are their applications and ethical implications? he 

goal of this book is to answer these questions and provide the reader with a working 

knowledge of BCIs and BCI techniques.

Overview of the Book

he book provides an introduction to the ield of brain- computer interfacing (the 

ield also goes by the names of brain- machine interfacing, neural interfacing, neural 

prosthetics, and neural engineering). Several extremely useful edited volumes have 

been published on this topic over the past few years (Dornhege et al., 2007; Tan and 

Nijholt, 2010; Graimann et al., 2011; Wolpaw & Wolpaw, 2012). here has, however, 

been a growing need for an introductory textbook aimed speciically at those who do 

not have an in- depth background in either engineering or neuroscience. his book 

aims to serve this need. It can be used as a textbook in upper- level undergraduate and 

irst- year graduate courses on brain- computer interfacing and neural engineering. It 

can also be used for self- study and as a reference by researchers, practitioners, and 

those interested in joining the ield.
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he book introduces the reader to essential ideas, concepts, and techniques in 

neuroscience, brain recording and stimulation technologies, signal processing, and 

machine learning before proceeding to the major types of BCIs and their applica-

tions. Exercises and questions at the end of each chapter provide readers with the 

opportunity to review their knowledge and test their understanding of the topics 

covered in the chapter. Some exercises (marked by the expedition icon ) allow 

the student to go beyond what is discussed in the textbook by following leads in 

research publications and searching for new information on the Web.

he book is organized as follows: Chapters 1 through 5 of the book provide the 

necessary background in neuroscience and quantitative techniques to understand 

the terminology and methods used in building BCIs. In Chapter 6, we begin our 

journey into the world of BCIs by learning about the basic components that go into 

building a BCI. he next part of the book introduces the reader to the three major 

types of BCIs classiied according to degree of invasiveness. Chapter 7 describes 

invasive BCIs, which utilize devices implanted inside the brain. Chapter 8 describes 

semi- invasive BCIs, which are based on nerve signals or devices implanted on the 

surface of the brain. Chapter 9 covers noninvasive BCIs such as those that record 

electrical signals from the scalp (EEG). Chapter 10 reviews BCIs that stimulate the 

brain in order to, for example, restore lost sensory or motor function. Chapter 11 

introduces the most general type of BCIs, namely, BCIs that both record from and 

stimulate the brain. In each case, examples of classic experiments as well as the state-

 of- the- art technologies (circa 2013) are presented. Chapter 12 reviews some of the 

major applications of BCIs, and Chapter 13 considers the ethical issues pertaining 

to the development and use of BCI technology. We conclude in Chapter 14 with a 

summary of some of the limitations of present- day BCIs and speculate on the future 

of the ield. he book also includes an Appendix that provides basic mathematical 

background in linear algebra and probability theory useful for understanding and 

implementing BCIs.

Web Site

he Web site for the book is bci.cs.washington.edu.

Since BCI is a rapidly growing ield, the Web site will maintain a periodically 

updated list of useful links related to BCI research.

Additionally, given that this book contains upward of 101,000 words, it is very 

likely that errors and typos have crept in unbeknownst to the author. herefore, 

any errors or typos brought to the notice of the author by discerning readers will be 

maintained in an up- to- date errata on the book Web site.

Cover Image

he image on the book’s cover depicts a human brain in action when controlling a cur-

sor with an electrocorticographic BCI (see Section 8.1). he bright red region on the 
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brain indicates increased activity in the hand area of the motor cortex when the subject 

imagined hand movement to move the cursor toward a target on the computer screen. 

he image was generated by Jeremiah Wander, Bioengineering graduate student and 

member of the Grid Lab and Neural Systems Lab at the University of Washington.
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1

Our brains evolved to control a complex biological device: our body. As we are 

inding out today, many millennia of evolutionary tinkering has made the brain a 

surprisingly versatile and adaptive system, to the extent that it can learn to control 

devices that are radically diferent from our body. Brain- computer interfacing, the 

subject of this book, is a new interdisciplinary ield that seeks to explore this idea 

by leveraging recent advances in neuroscience, signal processing, machine learning, 

and information technology.

he idea of brains controlling devices other than biological bodies has long been 

a staple of science- iction novels and Hollywood movies. However, this idea is fast 

becoming a reality: in the past decade, rats have been trained to control the delivery 

of a reward to their mouths, monkeys have moved robotic arms, and humans have 

controlled cursors and robots, all directly through brain activity.

What aspects of neuroscience research have made these advances possible? What 

are the techniques in computing and machine learning that are allowing brains to 

control machines? What is the current state- of- the- art in brain- computer interfaces 

(BCIs)? What limitations still need to be overcome to make BCIs more common-

place and useful for day- to- day use? What are the ethical, moral, and societal impli-

cations of BCIs? hese are some of the questions that this book addresses.

he origins of BCI can be traced to work in the 1960s by Delgado (1969) and 

Fetz (1969). Delgado developed an implantable chip (which he called a “stimo-

ceiver”) that could be used to both stimulate the brain by radio and send electrical 

signals of brain activity by telemetry, allowing the subject to move about freely. In a 

now- famous demonstration, Delgado used the stimoceiver to stop a charging bull 

in its tracks by pressing a remote- control button that delivered electrical stimula-

tion to the caudate nucleus in the basal ganglia region of the bull’s brain. At around 

the same time, Fetz showed that monkeys can control the activity of single brain 

cells to control a meter needle and obtain food rewards (see Section 7.1.1). Slightly 

later, Vidal (1973) explored the use of scalp- recorded brain signals in humans to 

implement a simple noninvasive BCI based on “visually evoked potentials” (Section 
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6.2.4). he more recent surge of interest in BCIs can be attributed to a conluence 

of factors: faster and cheaper computers, advances in our knowledge of how the 

brain processes sensory information and produces motor output, greater availabil-

ity of devices for recording brain signals, and more powerful signal processing and 

machine- learning algorithms.

he primary motivation for building BCIs today is their potential for restoring 

lost sensory and motor function. Examples include sensory prosthetic devices such 

as the cochlear implant for the deaf (Section 10.1.1) and retinal implant for the blind 

(Section 10.1.2). Other implants have been developed for deep brain stimulation 

(DBS) to treat the symptoms of debilitating diseases such as Parkinson’s (Section 

10.2.1). A parallel line of research has explored how signals from the brain could 

be used to control prosthetic devices such as prosthetic arms or legs for amputees 

and patients with spinal- cord injuries (e.g., Section 7.2.1), cursors and word spell-

ers for communication by locked- in patients sufering from diseases such as ALS 

(amyotrophic lateral sclerosis) or stroke (Sections 7.2.3 and 9.1.4), and wheelchairs 

for paralyzed individuals (Section 12.1.6). More recently, researchers have begun 

exploring BCIs for able- bodied individuals for a host of applications (Chapter 12), 

ranging from gaming and entertainment to robotic avatars, biometric identiication, 

and education. Whether BCIs will eventually become as commonplace as current 

human accessories for sensory and motor augmentation, such as cellular phones 

and automobiles, remains to be seen. Besides technological hurdles, there are a 

number of moral and ethical challenges that we as a society will need to address 

(Chapter 13).

he goal of this book is to serve as an introduction to the ield of brain- computer 

interfacing. Figure 1.1 illustrates the components of a generic BCI. he aim is to 

translate brain activity into control commands for devices and/or stimulate the 

brain to provide sensory feedback or restore neurological function. One or more of 

the following processing stages are typically involved:

1. Brain recording: Signals from the brain are recorded using either invasive or 

noninvasive recording techniques.

2. Signal processing: Raw signals are preprocessed ater acquisition (e.g., by 

bandpass iltering) and techniques for artifact reduction and feature extraction 

are used.

3. Pattern recognition and machine learning: his stage generates a control signal 

based on patterns in the input, typically using machine- learning techniques.

4. Sensory feedback: he control signal from the BCI causes a change in the envi-

ronment (e.g., movement of a prosthetic arm or a wheelchair, change in the grip 

of a prosthetic hand). Some of these changes can be seen, heard, or felt by the user 

but in general, one can use sensors in the environment such as tactile sensors, 

force sensors, cameras, and microphones, and use the information from these 

sensors to provide direct feedback to the brain via stimulation.
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5. Signal processing for stimulation: Before stimulating a particular brain region, 

it is important to synthesize an activity pattern for stimulation that mimics the 

type of activity normally seen in the brain region and that will have the desired 

efect. his requires a good understanding of the brain area being stimulated and 

the use of signal processing (and potentially machine learning) to home in on the 

right stimulation patterns.

6. Brain stimulation: he stimulation pattern received from the signal processing 

component (5) is used in conjunction with invasive or noninvasive stimulation 

techniques to stimulate the brain.

It is clear from the stages of processing listed above that to begin building BCIs, 

one must have a background in at least four essential areas: basic neuroscience, brain 

recording and stimulating technologies, elementary signal processing, and basic 

machine- learning techniques. Oten, beginners in BCI come with a background in 

one of these areas but usually not all of them. We therefore begin our journey into 

the world of BCIs with Part I (Background), which introduces the reader to basic 

concepts and methods in these four areas.

Classification
or regression 

Pattern Recognition and Machine Learning

Pre-processing

Signal
acquisition

Feedback
Application

Control signal

Feature
extraction

Feature #1

Feature #1

Feature #2

F
e
a
tu

re
 #

2

Figure 1.1. Basic components of a brain- computer interface (BCI). (Adapted from Rao and 

Scherer, 2010).
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Weighing in at about three pounds, the human brain is a marvel of evolutionary engi-

neering. he brain transforms signals from millions of sensors located all over the body 

into appropriate muscle commands to enact a behavior suitable to the task at hand. his 

closed- loop, real- time control system remains unsurpassed by any artiicially created 

system despite decades of attempts by computer scientists and engineers.

he brain’s unique information processing capabilities arise from its massively 

parallel and distributed way of computing. he workhorse of the brain is a type of 

cell known as a neuron, a complex electrochemical device that receives informa-

tion from hundreds of other neurons, processes this information, and conveys its 

output to hundreds of other neurons. Furthermore, the connections between neu-

rons are plastic, allowing the brain’s networks to adapt to new inputs and changing 

circumstances. his adaptive and distributed mode of computation sets the brain 

apart from traditional computers, which are based on the von Neumann architecture 

with a separate central processing unit, memory units, ixed connections between 

components, and a serial mode of computation.

In this chapter, we provide a primer on neuroscience. Starting from the biophysi-

cal properties of neurons, we explore how neurons communicate with each other, 

how they transmit information to other neurons via junctions called synapses, and 

how synapses are adapted in response to inputs and outputs. We then explore the 

network level architecture and anatomy of the brain, learning how diferent areas of 

the brain are specialized for diferent functions.

2.1 Neurons

A neuron is a type of cell that is generally regarded as the basic computational unit 

of the nervous system. As a crude approximation, the neuron can be regarded as a 

leaky bag of charged liquid. he membrane of a neuron is made up of a lipid bi- layer 

(Figure 2.1) that is impermeable except for openings called ionic channels that selec-

tively allow the passage of particular kinds of ions.

2
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Neurons reside in an aqueous medium with a larger concentration of sodium 

(Na+), chloride (Cl- ), and calcium (Ca2+) on the outside of the cell and a 

greater concentration of potassium (K+) and organic anions (A- ) inside the 

cells (Figure 2.1). As a result of this imbalance, there is a potential diference of 

approximately −65 to −70 mV across the neuron’s membrane when the neuron is 

at rest. here exist active pumps that work to maintain this potential diference by 

expending energy.

2.2 Action Potentials or Spikes

When the neuron receives suiciently strong inputs from other neurons (see 

Section 2.4 below), a cascade of events is triggered: there is a rapid inlux of Na+ 

ions into the cell, causing the membrane potential to rise rapidly, until the opening 

of K+ channels triggers the outlux of K+ ions, causing a drop in the membrane 

potential. his rapid rise and fall of the membrane potential is called an action 

potential or spike (Figure 2.2), and represents the dominant mode of communica-

tion between one neuron and another. he spike is an all- or- one stereotyped event 

with little or no information in the shape of the spike itself – information is thought 

to be conveyed instead by the iring rate (number of spikes per second) and/or the 

timing of spikes. Neurons are therefore oten modeled as emitting a 0 or 1 digi-

tal output. Similarly, in extracellular recordings typically done in awake animals 

(Section 3.1.1), a spike is oten represented as a short vertical bar at the time the 

spike occurred.

 

[Na+], [Cl–], [Ca2+]
[K+], [A–]

[K+], [A–]
[Na+], [Cl–], [Ca2+]

Outside

Inside Lipid bilayer
membrane

0 mV

–70 mV

Figure 2.1. The electrochemical dance of ions in a neuron. The diagram depicts the larger concentra-

tion of sodium, chloride, and calcium ions outside the neuron and the larger concentration 

of potassium ions and anions inside the neuron (maintained by active pumps), resulting in 

a “resting” potential difference of approximately −70mv across the lipid bi- layer membrane. 

Proteins known as ionic channels, which are embedded in the membrane, act as gates regu-

lating the flow of ions into and out of the neuron.
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2.3 Dendrites and Axons

Neurons in diferent regions of the brain have diferent morphological structures, but 

the typical structure includes a cell body (called the soma) connected to a tree- like 

structure with branches called dendrites and a single branch called the axon that ema-

nates from the soma and conveys the output spike to other neurons (see Figure 2.3). 

he spike is typically initiated near the junction of the soma and axon and propagates 

down the length of the axon. Many axons are covered by myelin, a white sheath that 

signiicantly boosts the speed of propagation of the spike over long distances. he 

terms white matter and gray matter correspond respectively to the myelinated axons 

connecting diferent brain regions and the regions containing the cell bodies.

2.4 Synapses

Neurons communicate with each other through connections known as synapses. 

Synapses can be electrical but are more typically chemical. A synapse is essentially a gap 

or clet between the axon of one neuron (called the presynaptic neuron) and a dendrite 

(or soma) of another neuron (called the postsynaptic neuron) (see Figure 2.3). When 

an action potential arrives from a presynaptic neuron, it causes the release of chemicals 

known as neurotransmitters into the synaptic clet. hese chemicals in turn bind to the 

ionic channels (or receptors) on the postsynaptic neuron, causing these channels to 

open, thereby inluencing the local membrane potential of the postsynaptic cell.
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Figure 2.2. Generation of spikes or action potentials. (A) depicts the experimental procedure of 

injecting a current (positive ions) into the cell body of a neuron using a stimulating electrode 

and recording the change in membrane potential of the cell using a recording electrode. 

(B) shows the result of injecting a sufficiently large amount of current, which results in a 

sequence of spikes or action potentials. Each spike has a stereotypical shape that rises rap-

idly above 0 mv and falls again. After each fall, the constant injection of current causes the 

potential to ramp up again until a “threshold” of slightly below −40 mv (for this neuron) is 

reached, which causes the cell to fire again (from Bear et al., 2007).
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Synapses can be excitatory or inhibitory. As the name suggests, excitatory synap-

ses cause a momentary increase in the local membrane potential of the postsynaptic 

cell. his increase is called an excitatory postsynaptic potential (EPSP). EPSPs con-

tribute to a higher probability of iring a spike by the postsynaptic cell. Inhibitory 

synapses do the opposite – they cause inhibitory postsynaptic potentials (IPSPs), 

which temporarily decrease the local membrane potential of the postsynaptic cell. A 

neuron is called excitatory or inhibitory based on the kind of synapse it forms with 

postsynaptic neurons. Each neuron forms only one kind of synapse, and therefore 

if an excitatory neuron is to inhibit a second neuron, it must excite an inhibitory 

“interneuron,” which then inhibits the desired neuron.

2.5 Spike Generation

he generation of a spike by a neuron involves a complex cascade of events involving 

sodium and potassium channels as described above. However, in many cases, this 
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Figure 2.3. Dendrites, soma, axon, and synapse. The figure depicts a connection from one neuron to 

another. The dendrites, cell body (soma), and axon of the first neuron are shown, along with 

the synapse this axon makes on the dendrite of a different neuron. A spike from the first neu-

ron causes the release of neurotransmitters stored in synaptic vesicles in the “presynaptic” 

axon terminal. These neurotransmitters bind with receptors in the “postsynaptic” dendrite, 

causing the ionic channels to open. This results in the influx or outflow of ions, changing the 

local membrane potential of the postsynaptic neuron (adapted from Bear et al., 2007).
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process can be simpliied to a simple threshold model of spike generation. When the 

neuron receives suiciently strong inputs from its synapses for its membrane poten-

tial to cross a neuron- speciic threshold, a spike is emitted (Figure 2.2B). his makes 

the neuron a hybrid analog- digital computing device: digital 0/1 inputs are converted 

to analog changes in the local membrane potential, followed by summation of these 

changes at the soma, and a spike if the summation of changes exceeds threshold. his 

simpliied model of course ignores the complex and potentially important forms of 

signal processing associated with dendrites, but the threshold model of a neuron has 

proven to be a useful abstraction in neural modeling and artiicial neural networks.

2.6 Adapting the Connections: Synaptic Plasticity

A critical component of the brain’s adaptive capabilities is the ability of neurons to 

change the strength of the connections between themselves through synaptic plas-

ticity. Numerous forms of synaptic plasticity have been experimentally observed, the 

most studied being long- term potentiation (LTP) and long- term depression (LTD). 

Both involve changes to a synapse that last for hours or even days. More recently, 

other types of plasticity have been characterized, including spike timing dependent 

plasticity (STDP), where the relative timing of input and output spikes determines 

the polarity of synaptic change, and short- term facilitation/depression, where the 

plasticity is rapid but not long- lasting.

2.6.1 LTP

One of the most important forms of synaptic plasticity is long- term potentiation or 

LTP (Figure 2.4). In its simplest form, LTP involves an increase in the strength of 

a synaptic connection between two neurons caused by correlated iring of the two 

neurons. LTP is regarded as a biological implementation of Donald Hebb’s famous 

postulate (also called Hebbian learning or Hebbian plasticity) that if a neuron A is 

consistently involved in causing another neuron B to ire, then the strength of the 

connection from A to B should be increased. LTP has been found in a number of 

brain areas including the hippocampus and the neocortex.

2.6.2 LTD

Long- term depression or LTD (Figure 2.4) involves a decrease in the strength of 

a synaptic connection caused, for example, by uncorrelated iring between the 

two neurons involved. LTD has been observed most prominently in the cerebel-

lum, although it also coexists with LTP in the hippocampus, neocortex, and other 

brain areas.

2.6.3 STDP

Traditional experimental protocols demonstrating LTP/LTD involved stimulating 

a presynaptic neuron and a postsynaptic neuron simultaneously. hese protocols 
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manipulate the iring rate of pre-  and postsynaptic neurons but not the timing 

between presynaptic and postsynaptic spikes. Recent studies have revealed that the 

precise timing of pre-  and postsynaptic spikes can determine whether the change 

in synaptic strength is positive or negative. his form of synaptic plasticity has been 

termed spike timing dependent plasticity (STDP). In one form of STDP, known as 

Hebbian STDP, if the presynaptic spike occurs slightly before the postsynaptic spike 

(e.g., 1–40 ms before), the synapse is strengthened, whereas if the presynaptic spike 

occurs slightly ater (e.g., 1–40 ms ater), the synaptic strength is decreased. Hebbian 

STDP has been observed in the mammalian cerebral cortex and hippocampus. he 

opposite phenomenon of anti- Hebbian STDP, where the synapse is strengthened for 

presynaptic spike occurring ater postsynaptic spike and vice versa, has also been 
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Figure 2.4. Synaptic plasticity. (Top) Experimental data demonstrating long- term potentiation (LTP) 

and long- term depression (LTD) in the hippocampus. Synaptic strength was defined in terms 

of the slope of the excitatory postsynaptic potential (labeled fEPSP). The left panel demon-

strates LTP, a long- lasting increase in synaptic strength, caused by high- frequency stimulation 

(100 Hz stimulation for 1 s; black arrow). The right panel shows LTD caused by low- frequency 

stimulation (5 Hz stimulation for 3 minutes twice with a 3 min interval; open arrow). Scale 

bar: 0.5 mV; 10 ms. (Bottom) A proposed model of synaptic plasticity. AMPAR and NMDAR 

are two types of ionic channels. During weak stimulation (left panel), Na+ flows through the 

AMPAR channel but not through the NMDAR channel because of the Mg2+ block of this chan-

nel. If the postsynaptic cell is depolarized (right panel), the Mg2+ block of the NMDAR channel 

is removed, allowing both Na+ and Ca2+ to flow inside. This increase in Ca2+ concentration 

is believed to be necessary for synaptic plasticity (adapted from Citri & Malenka, 2008).

 



Basic  Neuroscience13

observed in some structures, particularly in inhibitory synapses such as those in 

cerebellum like structures in weakly electric ish.

2.6.4 Short- Term Facilitation and Depression

he types of synaptic plasticity discussed above are called long- term plasticity 

because the changes they cause can last for hours, days, or even longer periods of 

time. A second form of plasticity with more ephemeral efects has also been discov-

ered. his type of plasticity, known as short- term plasticity, causes the correspond-

ing synapses to act as temporal ilters on input spiking patterns. For example, in 

short- term depression or STD, which has been observed in neocortical synapses, 

the efect of each successive spike in an input spike train (sequence of spikes) is 

diminished compared to the preceding spike. hus, if the neuron receives a burst of 

spikes as input, the irst spike in the burst has the most efect with each successive 

spike causing lesser and lesser changes in the membrane potential until an equilib-

rium point is reached and all subsequent input spikes have the same diminished 

efect on the postsynaptic neuron. Short- term facilitation or STF exhibits the oppo-

site efect, where each successive spike has a larger efect than its predecessor, until 

a saturation point is reached. Both STD and STP play important roles in regulat-

ing the dynamics of cortical networks by gating the efects of input spike trains on 

postsynaptic neurons.

2.7 Brain Organization, Anatomy, and Function

he design of a brain- computer interface typically involves choices regarding which 

brain areas to record from and, in some cases, which brain areas to stimulate. his 

section provides a brief overview of brain organization and anatomy. he reader is 

referred to neuroscience textbooks such as those by Bear et al. (2007) and Kandel 

et al. (2012) for a more in- depth treatment.

he human nervous system can be broadly divided into the central nervous system 

(CNS) and the peripheral nervous system (PNS). he PNS consists of the somatic 

nervous system (neurons connected to skeletal muscles, skin, and sense organs) and 

the autonomic nervous system (neurons that control visceral functions such as the 

pumping of the heart, breathing, etc.).

he CNS consists of the brain and the spinal cord. he spinal cord is the main 

pathway that conveys descending motor- control signals from the brain to muscles 

all over the body and ascending sensory feedback information from the muscles and 

skin back to the brain. Besides conveying information to and from the brain, neu-

rons in the spinal cord are also involved in local feedback loops that control relexes 

such as the rapid withdrawal of your inger when you accidentally touch a hot item.

he brain is composed of many diferent nuclei (clusters of neurons) and regions 

(Figure 2.5). At the base of the brain are the medulla, pons, and the midbrain, which 

together constitute the brain stem. he brain stem conveys all the information 
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from the brain to the rest of the body. he medulla and pons are involved in basic 

 regulatory functions such as breathing, muscle tone, blood pressure, sleep, and 

arousal. A major component of the midbrain is the tectum, which is composed of 

the inferior and superior colliculus, and is involved in the control of eye movements 

and visual and auditory relexes. Also in the midbrain is the tegmentum, composed 

of the reticular formation and other nuclei, which modulates muscle relexes, pain 

perception, and breathing, among other functions.

he cerebellum (“little brain”) is a highly structured network of neurons located 

at the base of the brain (see Figure 2.5) that is responsible for the coordination of 

movements.

Farther up from the base of the brain is the diencephalon, which includes the 

thalamus and the hypothalamus. he thalamus is traditionally regarded as the main 

“relay station” that conveys all the information from the sensory organs to the 
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Figure 2.5. Major brain regions. The diagram depicts some of the major regions of the human brain. 

The medulla, pons, and midbrain together comprise the brain stem and are involved in 

conveying most of the information from the brain to the body. The thalamus and the hypo-

thalamus comprise the diencephalon; the former is involved in relaying sensory information 

to the brain while the latter regulates basic needs. At the base of the brain is the cerebellum, 

which plays an active role in the coordination of movements. At the top is the cerebral cortex, 

which includes the neocortex and the hippocampus, and is involved in a variety of functions 

ranging from perception to cognition (see Figure 2.6) (adapted from Bear et al., 2007).
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neocortex (one exception is the oldest of all senses, olfaction or the sense of smell, 

which bypasses the thalamus and feeds directly into the olfactory cortex). Recent 

research on the thalamus has revealed that it may not merely be a relay station but 

may also be involved in active feedback loops with the neocortex via the many 

 cortico-thalamic feedback connections known to exist between these two regions 

of the brain. he other major part of the diencephalon, the hypothalamus, regulates 

basic needs of the organism such as feeding, ighting, leeing, and mating.

Furthest from the base of the brain are the two cerebral hemispheres, consisting of 

the neocortex, the basal ganglia, the amygdala, and the hippocampus. he basal gan-

glia play an important role in motor control and action selection while the amygdala 

is involved in the regulation of emotion. he hippocampus is known to be critical for 

memory and learning, besides spatial cognition.

he neocortex is the convoluted surface that resides at the top of the brain (see 

Figure 2.5) and is about one- eighth of an inch thick. It consists of about 30 billion 

neurons arranged in six layers, each neuron making about 10,000 synapses with 

other neurons, yielding around 300 trillion connections in total. he most com-

mon type of neuron in the cortex is the pyramidal neuron, populations of which are 

arranged in columns oriented perpendicular to the cortical surface. he surface of 

the cortex is convoluted, with issures known as sulci and ridges known as gyri.

he neocortex exhibits functional specialization (Figure 2.6) – that is, each area 

of the cortex is specialized for a particular function. For example, the occipital areas 

near the back of the head specialize in basic visual processing while the parietal 

areas toward the top of the head specialize in spatial reasoning and motion pro-

cessing. Visual and auditory recognition occurs in the temporal areas (toward the 

sides of the head) while frontal areas are involved in planning and higher cognitive 

functions.

Inputs to a cortical area predominantly come into the middle layers whereas 

the outputs from an area leave from the upper and lower layers. Based on these 

input- output patterns, it is possible to regard the cortex roughly as a hierarchically 

organized network of sensory and motor areas. For example, in the case of visual 

processing, information from the retina reaches the cortex via the visual region of 

the thalamus (the lateral geniculate nucleus or LGN). his information irst reaches 

the middle layers of the primary visual cortex (also called cortical area V1 or area 

17). V1 contains neurons selective for primitive features such as moving bars and 

edges. Further processing involves progressively more complex types of processing, 

involving visual areas V2, V4, and IT (inferotemporal cortex) along one visual path-

way (the “ventral stream”) and areas MT, MST, and parietal cortex along another 

pathway (the “dorsal stream”). he ventral stream is specialized for processing the 

form and color of objects and is involved in object and face recognition. he dorsal 

stream motion and reasoning about spatial relations. Despite these functional dif-

ferences, the diferent areas of the cortex are remarkably similar in their anatomi-

cal organization, leading to the suggestion that the cortex employs a prototypical 
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algorithm for processing information, and specialization occurs through diferences 

in the types of inputs received in each area.

2.8 Summary

his chapter introduced you to the basic computing unit of the brain, the neuron. 

We learned how neurons use electrical and chemical processes to communicate with 

one another, transmitting information “digitally” through spikes or action poten-

tials. We also learned how such communication is mediated by junctions between 

neurons called synapses. Synapses can adapt at diferent time scales in response to 

inputs and outputs. Long- term changes in synaptic strength are thought to be the 

basis of memory and learning in the brain.

As we shall see in subsequent chapters, the fact that information transmission in 

the brain is fundamentally electrical in nature opens the door to building a variety 

of BCIs that can record from and/or stimulate the brain. Additionally, the plasticity 
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Figure 2.6. Major areas and functional specialization of the neocortex. The figure depicts how dif-

ferent areas of the neocortex are specialized for sensory, motor, and higher order function 

(“association”). The major sensory areas are visual, somatosensory, auditory, and gustatory 

cortices. The major motor areas are primary motor, premotor, and supplementary motor cor-

tices. Association areas such as those in inferotemporal and prefrontal cortices are involved in 

cognitive functions such as face recognition, language, and planning. Area numbers in paren-

thesis correspond to a numbering scheme for the cortex proposed by the neuroanatomist 

Korbinian Brodmann in 1909 (from Bear et al., 2007).
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of the brain, as mediated by changes in synaptic strength, plays a crucial role in 

 allowing novice BCI users to learn to modulate their brain activity in order to con-

trol novel devices.

2.9 Questions and Exercises

1. What is a typical resting potential diference across the membrane of a cortical 

neuron? Explain the biochemical mechanisms that allow the neuron to main-

tain this potential diference.

2. Describe the sequence of events that gives rise to an action potential. Start from 

a volley of action potentials arriving along the input axons to the neuron and 

trace the biochemical and electrical consequences leading to an output action 

potential.

3. What are four prominent types of synaptic plasticity observed in the brain? 

Explain how they serve to modify the efect of a presynaptic spike on the 

postsynaptic neuron.

4. What are the major components of the CNS and the PNS?

5. Describe the functions that have been ascribed to the brain stem and the 

cerebellum.

6. What are the major components and functions of the diencephalon?

7. What are some of the functions thought to be carried out by the basal ganglia 

and the hippocampus?

8. Approximately how many cells does the neocortex contain? How many syn-

apses on average does a cortical neuron have with other neurons?

9. What are the major areas of the neocortex and what are some of their 

functions?

10.  (  Expedition) Is the cortex hierarchically organized? Discuss evidence for and 

against this hypothesis. 
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As described in the previous chapter, the brain communicates using spikes, which are 

all- or- none electrical pulses produced when the neuron receives a suicient amount 

of input current from other neurons via synaptic connections. It is therefore not 

surprising that some of the irst technologies for recording brain activity were based 

on detecting changes in electrical potentials in neurons (invasive techniques based 

on electrodes) or large populations of neurons (noninvasive techniques such as elec-

troencephalography or EEG). More recent techniques have been based on detect-

ing neural activity indirectly by measuring changes in blood low that result from 

increased neural activity in a region (fMRI) or by measuring the minute changes in 

the magnetic ield around the skull caused by neural activity (MEG).

In this chapter, we review some of these technologies that serve as sources of input 

signals for BCIs. We also briely describe technologies that can be used to stimulate 

neurons or brain regions, thereby allowing BCIs to potentially provide direct feed-

back to the brain based on interactions with the physical world.

3.1 Recording Signals from the Brain

3.1.1 Invasive Techniques

Techniques that allow recording from individual neurons in the brain are typically 

invasive, that is, they involve some form of surgery, wherein a part of the skull is 

removed, an electrode or implant placed in the brain, and the removed part of 

the skull then replaced. Invasive recordings are typically taken from animals such 

as monkeys and rats. he recording itself is not painful because the brain has no 

internal pain receptors, but the surgery and recovery process can cause pain and 

involves risks such as infection. he recording procedure can be performed on both 

anesthetized as well as awake animals, although in the case of awake recordings, 

the animal is typically restrained to minimize artifacts resulting from large move-

ments. In the case of humans, invasive recordings are taken only in clinical settings 

such as during brain surgery or when patients are being monitored for abnormal 
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brain activity (e.g., seizures) prior to surgery. he time period available for record-

ing may range from weeks and months to years in the case of some animals (e.g., 

monkeys) to a few days or minutes in the case of humans in a clinical setting. A 

major advantage of invasive recordings is that they allow recording of action poten-

tials (the acknowledged output signals of neurons) at the millisecond timescale. 

his contrasts with noninvasive techniques, which measure indirect correlates of 

neural activity, such as blood low, that occur at a coarser timescale (hundreds of 

milliseconds). Invasive recording in both humans and animals is based on the tech-

nology of electrodes.

Microelectrodes

A microelectrode is simply a very ine wire or other electrical conductor used to 

make contact with brain tissue. A typical electrode is made of tungsten or platinum-

 iridium alloy and is insulated except at the tip, which measures around 1μm in 

diameter (recall that a neuron’s cell body diameter is in the range of tens of μm). In 

some cases (especially intracellular recordings – see next section), neuroscientists 

use a glass micropipette electrode illed with a weak electrolyte solution similar in 

composition to intracellular luid.

Intracellular Recording

he most direct way of measuring the activity of a neuron is through intracellular 

recording, which measures the voltage or current across the membrane of the neu-

ron. he most common technique, known as patch clamp recording (Figure 3.1), uses 

a glass micropipette with a tip diameter of 1 μm or smaller that is illed with a weak 

electrolyte solution similar in ionic composition to the intracellular luid found 

inside a cell. A silver wire is inserted into the pipette to connect the electrolyte to the 

ampliier. Voltage is measured with respect to a reference electrode placed in contact 

with the extracellular luid that exists outside the cell. To record from the cell, the 

glass microelectrode is placed next to the cell and, using gentle suction, a piece of the 

cell membrane (a “patch”) is drawn into the electrode tip, forming a high- resistance 

seal with the cell membrane. Given the delicate nature of this procedure, intracel-

lular recordings are typically performed only on slices of brain tissue (“in vitro”) and 

seldom performed on the intact brains of living animals (“in vivo”). his technique 

has therefore not found much applicability in brain- computer interfaces compared 

to extracellular recordings.

Extracellular Recording

One of the most common types of invasive recordings, performed especially in 

the intact brains of animals, is extracellular recording of a single neuron (or sin-

gle “unit”): a tungsten or platinum- iridium microelectrode with a tip size of less 

than 10 microns is inserted into the target brain area. he depth of the microelec-

trode is adjusted until it comes close enough to a cell body to pick up the electrical 
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luctuations caused by action potentials generated by the cell (Figure 3.2). hese 

voltage luctuations are measured with respect to a “ground” or reference wire, oten 

attached to a skull screw. he magnitude of the recorded signal is usually less than 

a millivolt and thus requires the use of ampliiers to detect the signal. he recorded 

signal looks like an action potential even though the electrode does not penetrate 

the cell because the voltage luctuation is directly related to the action potential: 

when an action potential is generated, positively charged sodium ions rush into the 

cell, creating a negative voltage luctuation in the area surrounding the cell relative 

to the reference electrode (see lower oscilloscope display in Figure 3.2). his luctua-

tion is picked up by the recording electrode. he signal from the ampliier is fed to a 

computer, which performs additional processing such as iltering noise and isolating 

the spikes (action potentials).

Tetrodes and Multi- Unit Recording

It is possible to record from multiple neurons simultaneously by using more than 

one electrode. One common coniguration is called a tetrode, where four wires are 

tightly wound together in a bundle. he advantage of the tetrode is that each neuron 

in the neighborhood of the tetrode wires will have a unique signature for the four 

recording sites (determined by the neuron’s distance to a recording site), allowing a 

potentially large number of neurons to be isolated and recorded from. For example, 

it may be possible to record from up to 20 neurons with a single tetrode by identify-

ing the neurons’ signatures.

Multielectrode Arrays

To record from larger numbers of neurons, microelectrodes can be arranged in 

a grid- like structure to form a multielectrode array of m × n electrodes, where 
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Figure 3.1. Intracellular recording using the patch clamp technique. The technique allows measure-

ment of ionic currents in a small patch of a cell membrane or the entire cell (image: T. Knott, 

Creative Commons).
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the values of m and n typically range between 1 and 10 (Figure 3.3). Such arrays 

have been developed for in vitro as well as in vivo recordings. Here we focus on 

implantable arrays for in vivo recordings because these are the most relevant for 

brain- computer interfacing. he most common types of implantable arrays are 

microwire, silicon- based, and lexible microelectrode arrays. Microwire arrays use 

tungsten, platinum alloy, or steel electrodes and are similar to the tetrodes dis-

cussed in the previous section. Silicon- based arrays include the so- called Michigan 

and Utah arrays. he former allows signals to be recorded along the entire length 

of the electrodes, rather than just at the tips. Both of these arrays permit a higher 

density and higher spatial resolution than microwire arrays. Flexible arrays rely 

on polyimide, parylene, or benzocyclobutene rather than silicon for recording, 

thereby providing a better match to the mechanical properties of brain tissue and 

reducing the possibility of shear- induced inlammation that can be caused by 

silicon- based arrays.
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Figure 3.2. Intracellular versus extracellular recording of spikes. The two oscilloscope displays on 

the right compare action potentials (spikes) recorded using intracellular (top) and extracellu-

lar (bottom) recording. Intracellular recording measures the potential difference between the 

inside of the cell (tip of the intracellular electrode) and an external electrode placed in the 

solution bathing the neuron (“ground”). Extracellular recording measures the potential differ-

ence between the tip of the extracellular electrode (placed near but outside a neuron) and a 

ground electrode. When the neuron produces a spike, positive ions flow away from the extra-

cellular electrode into the neuron, causing the initial negative deflection in the display. This is 

followed by a positive deflection as the action potential decreases and positive charges flow 

out of the neuron toward the extracellular electrode. Note the difference in scale between the 

intra-  and extracellular signals. Extracellular spikes are usually represented simply by a short 

vertical hash mark at the time each spike occurs (e.g., Figure 7.5A) (from Bear et al., 2007).
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Multielectrode arrays rely on the same phenomenon as single- electrode record-

ings for detecting action potentials: the rapid inlux of sodium ions into a cell during 

an action potential causes a sharp change in voltage in the extracellular space that 

is detected by nearby electrodes in the array. In many cases, the number of neurons 

that can simultaneously be recorded from is 10 percent to 50 percent less than the 

actual number of electrodes in the array because some electrodes do not provide 

viable signals.

he major advantage of multielectrode arrays over more conventional 

 single- electrode systems is increased spatial resolution; the ability to record simulta-

neously from several dozens of neurons opens the door to extracting complex types 

of information such as position or velocity signals that could be useful for control-

ling prosthetic devices.

Implantable arrays also have their disadvantages, especially if the implanted 

device remains in the brain tissue for a long time (as required for long- term control 

of prosthetics). In particular, non- neuronal cells known as glial cells surround the 

implanted device, leading to the formation of irst scar tissue and then an insulating 

sheath around the array, increasing the impedance of the electrodes. his biologi-

cal response to the implanted device can result in signiicant reduction in recorded 

signal quality over time, decreasing its usefulness in brain- computer interfacing. 

Ongoing research on biocompatibility of implants seeks to address these problems 

by coating the devices with polymers and other substances.

Electrocorticography (ECoG)

Electrocorticography (ECoG) is a technique for recording brain signals that involves 

placing electrodes on the surface of the brain. he procedure requires making a surgi-

cal incision into the skull to implant the electrodes on the brain surface (Figure 3.4). 

ECoG is typically performed only in clinical settings, such as in- hospital monitoring 

of seizure activity in epilepsy patients. Typically, a grid or strip of m × n electrodes is 

implanted, where the values of m and n vary between 1 and 8. ECoG electrodes can 

be tipped with carbon, platinum, or gold alloy, and are typically 2–5 mm in diameter. 

 
1.0 mm

Figure 3.3. Example of a multielectrode array. The image shows a scanning electron micrograph of a 

10 × 10 electrode Utah array (adapted from Hochberg et al., 2006).
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he spacing between grid electrodes is usually 10 mm to 1 cm. he electrodes are 

lexible enough to accommodate normal movements of the brain.

Unlike single- cell electrodes or multielectrode arrays, ECoG electrodes can record 

the electrical luctuations caused by the coherent activity of large populations of 

neurons (several tens of thousands). While ECoG electrodes do not directly mea-

sure spikes, the signal recorded is thought to be directly related to the input currents 

received by the dendrites of cortical neurons, particularly in the upper layers of the 

cerebral cortex.

ECoG has recently received attention from the BCI community as a partially 

invasive compromise between invasive multielectrode arrays and noninvasive EEG 

(see Section 3.1.2). Unlike multielectrode arrays, some forms of ECoG do not pen-

etrate the blood- brain barrier and are therefore safer than arrays implanted inside 

the brain. ECoG electrodes may also be less likely to wear out compared to brain-

 penetrating electrodes which sufer from glial accumulation and scar tissue forma-

tion over time (see Multielectrode Arrays section above). Because it is closer to the 

neural activity, ECoG ofers greater spatial resolution than noninvasive techniques 

 

A B

C D

Figure 3.4. ECoG in a human. (A) and (B) Implantation of an ECoG array. The brain is surgically exposed 

(A), and an electrode array (B) is placed under the dura onto the brain surface. The electrodes 

are 2 mm in diameter and separated from each other by 1 cm. (C) X- ray image of the skull 

showing the location of the electrode array. (D) Electrode positions shown on a standardized 

brain template (from (Miller et al., 2007).
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described in Section 3.1.2 such as EEG (tenths of millimeters versus centimeters), 

broader spectral bandwidth (0–200 Hz versus 0–40 Hz), higher amplitude (50–100 

μV versus tens of μV), and considerably less vulnerability to artifacts such as muscle 

activity and ambient noise.

Limitations of ECoG include: (1) it can currently only be used in surgical settings, 

(2) only surgically relevant portions of the brain can be recorded, and (3) there may 

be interference due to drugs or patient- related conditions such as seizures.

MicroECoG

One disadvantage of ECoG, namely, the relatively large size of ECoG electrodes 

(several mm in diameter) is being addressed by researchers using microECoG elec-

trodes. hese microelectrodes are only a fraction of a millimeter in diameter and 

spaced only 2–3 mm apart in a grid, allowing detection of neural activity at a much 

iner resolution than traditional ECoG. his opens up the possibility of decoding 

ine movements, such as the movements of individual ingers, or even speech, with-

out actually penetrating the brain.

Optical Recording: Voltage- Sensitive Dyes and Two- Photon Calcium Imaging

A range of invasive optical techniques have been investigated over the past two 

decades for imaging neuronal activity in vivo. he most prominent of these are 

imaging techniques based on voltage- sensitive dyes and on two- photon luorescence 

microscopy. hose based on voltage- sensitive dyes operate on the principle that 

once neurons are stained with a voltage- sensitive dye, their electrical activity can be 

imaged because the dye responds to changes in membrane potential by changing its 

absorption and/or luorescence. As an example, styryl or oxonol dyes have been used 

to stain the upper layers of a rat’s sensory cortex and a microscope objective used to 

image a region of the stained cortex using a photodiode array. Each detector in the 

array receives light from many neurons and thus the recorded optical signals corre-

spond to summed responses from several simultaneously active neurons. Using this 

technique, researchers have been able to image populations of neurons in intact rat 

brains responding to visual, olfactory, and somatosensory stimuli (Figure 3.5).

Voltage- sensitive, dye- based optical imaging is particularly useful for imaging 

macroscopic features of the brain (such as feature maps in the cortex), but for more 

targeted imaging of neurons, the technique of two- photon microscopy has garnered 

much attention. A particularly fruitful technique has been two- photon calcium 

imaging (Figure 3.6). he technique is based on the fact that electrical activity in 

neurons is typically associated with changes in calcium concentration: for example, 

depolarization in neurons is accompanied by an inlux of calcium ions due to the 

opening of various voltage- gated calcium channels in the membrane of the neuron. 

Additionally, calcium may also be released from intracellular calcium stores. hus, 

one can get a window into the electrical activity of individual neurons by imag-

ing the calcium activity caused by these electrical changes. he technique of two-
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100 msec

280 µm

10–3

Figure 3.5. Optical imaging of somatosensory cortex of a rat. Optical signals were detected by mea-

suring fluorescence changes in somatosensory cortex of an anesthetized rat stained with a 

styryl dye. Movement of a whisker caused the optical signals seen in the center of the field 

(image: Scholarpedia http://www.scholarpedia.org/article/Voltage- sensitive_dye).
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Figure 3.6. Optical recording using 2- photon microscopy. (A) Illustration of the basic idea behind 

2- photon microscopy showing two photons being absorbed to produce fluorescence. (B) 

Diagram of the experimental setup, showing exposed cortex with sealed glass window and 

microscope objective. The tip of the shaded triangle (drawn across the skull and dura) indi-

cates location of two- photon fluorescence. (C) Two- photon imaging of neuronal and vascular 

signals: (left) neurons stained with Oregon Green BAPTA- 1 AM (OGB- 1 AM) calcium- sensitive 

dye; (right) transgenic mouse neurons expressing green fluorescent protein (GFP) (adapted 

from Kherlopian et al., 2008).
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 photon calcium imaging involves: (1) using pressure ejection to load neurons with 

luorescent calcium- indicator dyes (e.g., OGB- 1 AM) and (2) monitoring changes 

in calcium luorescence during neural activity using two- photon microscopy. Two-

 photon microscopy involves focusing an infrared laser beam through an objective 

lens onto the neural tissue. he infrared laser- scanning system allows the changes in 

calcium luorescence to be detected (see Denk et al., 1990 for details).

3.1.2 Noninvasive  Techniques

Electroencephalography (EEG)

Electroencephalography (EEG) is a popular noninvasive technique for recording sig-

nals from the brain using electrodes placed on the scalp. Recall that the spikes or 

action potentials from neurons cause neurotransmitters to be released at synapses, 

in turn causing postsynaptic potentials within the dendrites of the input- receiving 

neurons (see Chapter 2). EEG signals relect the summation of postsynaptic poten-

tials from many thousands of neurons that are oriented radially to the scalp. Currents 

tangential to the scalp are not detected by EEG. Additionally, currents originating 

deep in the brain are also not detected by EEG because voltage ields fall of with the 

square of the distance from the source. hus, EEG predominantly captures electrical 

activity in the cerebral cortex, whose columnar arrangement of neurons and prox-

imity to the skull favor recording by EEG. he spatial resolution of EEG is typically 

poor (in the square centimeter range) but the temporal resolution is good (in the 

milliseconds range).

he poor spatial resolution of EEG is caused primarily by the diferent layers of 

tissue (meninges, cerebrospinal luid, skull, scalp) interposed between the source of 

the signal (neural activity in the cortex) and the sensor placed on the scalp. hese 

layers act as a volume conductor and low- pass ilter to smear the original signal. he 

measured signals are in the range of a few tens of microvolts, necessitating the use of 

powerful ampliiers and signal processing to amplify the signal and ilter out noise. 

he weak amplitude of the underlying brain signal also means that EEG signals can 

be easily corrupted by muscle activity and contaminated by nearby electrical devices 

(e.g., 60 Hz power- line interference). For example, eye movements, eye blinks, eye-

brow movements, talking, chewing, and head movements can all cause large artifacts 

in the EEG signal. Subjects are therefore typically instructed to avoid all movement, 

and powerful artifact removal algorithms are used to exclude or ilter out portions 

of the EEG signal corrupted by muscle artifacts. Additional noise sources include 

changing electrode impedance and varying psychological states of the user due to 

boredom, distraction, stress, or frustration (e.g., caused by BCI mistranslation).

EEG recording involves the subject wearing a cap or a net into which the record-

ing electrodes are placed (Figure 3.7A). In some cases, scalp locations may be pre-

pared for recording by light abrasion to reduce impedance caused by dead skin cells. 

A conductive gel or paste is injected into the holes of the cap before placing the elec-

trodes. he international 10–20 system is a convention used to specify standardized 
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electrode locations on the scalp (Figure 3.7B). he mastoids reference electrode loca-

tions behind each ear (A1 and A2). Other reference electrode locations are nasion, 

at the top of the nose, level with the eyes; and inion, at the base of the skull on the 

midline at the back of the head. From these points, the skull perimeters are mea-

sured in the transverse and median planes. Electrode locations are determined by 

dividing these perimeters into 10 percent and 20 percent intervals. he international 

10–20 system ensures that the naming of electrodes is consistent across laboratories. 

he number of electrodes actually used in applications can range from a few (for 

targeted BCI applications) to 256 in high- density arrays.

Bipolar or unipolar electrodes can be used for measuring EEG. In the irst 

method, the potential diference between a pair of electrodes is measured. In the lat-

ter method the potential of each electrode is compared either to a neutral electrode 

or to the average of all electrodes (common average referencing or CAR). In a typical 

setup, each EEG electrode is connected to one input of a diferential ampliier, and 

the other input is connected to a reference electrode – for instance, nasion or linked 

mastoids (average of the two mastoids). he ampliication of voltage between the 

active electrode and the reference is typically 1,000–100,000 times. he ampliied 

signal is passed through an anti- aliasing ilter and then digitized via an A/D (analog 

to digital) converter at sampling rates of up to 20 kHz depending on the application 

(typical sampling rates for BCI applications are in the range of 256 Hz–1kHz). Ater 

digitization, the EEG signal may be additionally iltered by a 1–50 Hz bandpass ilter. 

his excludes noise and movement artifacts in the very low and very high frequency 

ranges. An additional notch ilter is typically used to remove “line noise” caused by 

the electrical power supply (60 Hz in the United States).
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Figure 3.7. Electroencephalography (EEG). (A) Subject wearing a 32- electrode EEG cap. (B) International 

10–20 system for standardized EEG electrode locations on the head. C = central, P = parietal, 

T = temporal, F = frontal, Fp = frontal polar, O = occipital, A = mastoids (image A courtesy K. 

Miller; image B from Wikimedia Commons).
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EEG recordings are well- suited to capturing oscillatory brain activity or “brain waves” 

at a variety of frequencies (see Figure 3.8 for some examples). hese waves, arising for 

example from the synchronization of large populations of neurons, have characteristic 

frequency ranges and spatial distributions and are oten correlated with diferent func-

tional states of the brain. Alpha waves (or the alpha rhythm) are electrical luctuations 

in the range 8–13 Hz and can be measured in EEG from the occipital region in awake 

persons when they are relaxed or their eyes are closed. A particular kind of alpha wave 

popular in BCI applications is known as the mu rhythm (8–12 Hz). It is found over 

sensorimotor areas in the absence of movement and is decreased or abolished when the 

subject performs a movement or imagines performing a movement.

Beta waves (13–30 Hz) are detectable over the parietal and frontal lobes in a per-

son who is alert and actively concentrating. Delta waves have the frequency range 

of 0.5–4 Hz and are detectable in babies and during slow wave sleep in adults. heta 

waves, with a frequency range of 4–8 Hz, are associated with drowsiness or “idling” 

in children and adults. Gamma waves, in the frequency range 30–100 Hz or more, 

have been reported in tasks involving short- term memory and multisensory inte-

gration. High gamma activity (70 Hz and above) has also been recently reported for 

motor tasks and used in ECoG BCIs (see Chapter 8).

Magnetoencephalography (MEG)

Magnetoencephalography (MEG) measures the magnetic ields produced by elec-

trical activity in the brain using superconducting quantum interference devices 
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Figure 3.8. Examples of EEG rhythms and their frequency range. (Adapted from http://www.bem.fi/

book/13/13.htm).
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(SQUIDs). Figure 3.9 depicts a typical MEG setup in which a subject sits in a chair 

and responds to stimuli on a screen by pressing buttons on a handheld device.

Both MEG and EEG signals originate from the net efect of ionic currents lowing 

in the dendrites of neurons due to synaptic inputs from other neurons. As shown 

in Figure 3.9A, these currents produce an orthogonally oriented magnetic ield (as 

dictated by Maxwell’s equations). To be detectable by MEG, these current sources 

need to have similar orientation (otherwise they would cancel out) and therefore, 

magnetic activity detected by MEG is believed to be the result of concurrent activity 

of tens of thousands of pyramidal neurons (Section 2.7) in the neocortex oriented 

perpendicular to the cortical surface. Since MEG detects the orthogonally oriented 

magnetic ield, it is sensitive only to currents lowing tangential to the scalp. hus 

it preferentially measures activity from cortical sulci (furrows in the cortical sur-

face) rather than the gyri (ridges in the cortical surface), compared to EEG which is 

sensitive to both.

Like EEG, MEG ofers high temporal resolution because it directly relects neural 

activity, rather than metabolic activity as in the case of techniques such as fMRI, 

fNIR or PET described in the following sections. One advantage of MEG over EEG 

is that the magnetic ields produced by neural activity are not distorted by the inter-

vening organic matter (such as the skull and the scalp), as is the case with electric 

ields measured by EEG. hus, MEG ofers better spatial resolution than EEG and 
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Figure 3.9. Magnetoencephalography (MEG). (A) Schematic diagram illustrating the orthogonal 

magnetic field generated by currents in dendrites of similarly oriented cortical neurons. (B) 

Example MEG system (image A: Wikimedia Commons; image B: http://dateline.ucdavis.edu/

photos_images/dateline_images/040309/DondersMEGOle_W2.jpg).
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independence from the head geometry. On the other hand, MEG systems are con-

siderably more expensive than EEG systems, bulky and not portable, and require a 

magnetically shielded room to prevent interference from external magnetic signals, 

including the earth’s own magnetic ield.

Functional Magnetic Resonance Imaging  (fMRI)

Functional magnetic resonance imaging (fMRI) indirectly measures neural activity in 

the brain by detecting changes in blood low due to increased activation of neurons 

in particular brain areas during speciic tasks.

When neurons become active, they consume more oxygen, which is brought to 

the brain by the blood. Neural activity triggers a dilation of local capillaries, result-

ing in an increased inlow of highly oxygenated blood that replaces oxygen- depleted 

blood. his hemodynamic response is comparatively slow – it appears several hun-

dred milliseconds ater neural activity and peaks at 3–6 seconds, before falling back 

to baseline in another 20 seconds. Oxygen is carried by the hemoglobin molecule in 

the red blood cells. he fact that de- oxygenated hemoglobin is more magnetic than 

oxygenated hemoglobin is exploited in fMRI to generate images of diferent cross 

sections of the brain showing increased activation in speciic areas during a particu-

lar task. Given that it measures oxygenation levels in the blood, the signal recorded 

by fMRI is called the blood oxygenation level dependent (BOLD) response.

In typical experimental settings, subjects are made to lie down and their head is 

positioned inside the fMRI scanner (Figure 3.10A). Subjects may be presented with 

stimuli such as images, sounds or touch, and can execute simple actions such as 

pressing a button or moving a joystick.

A major advantage of fMRI is that its spatial resolution, typically in the 1–3 mm 

range, is much higher than other noninvasive techniques such as EEG and MEG. 

However, its temporal resolution is poor.

Functional Near Infrared (fNIR) Imaging

Functional near infrared (fNIR) imaging (Figure 3.9B) is an optical technique for 

measuring changes in blood oxygenation level caused by increased neural activity in 

the brain. his type of imaging is based on detecting near- infrared light absorbance 

of hemoglobin in the blood with and without oxygen. It thus provides an indirect 

window into ongoing brain activity in a manner similar to fMRI (see previous sec-

tion). It is less cumbersome than fMRI, although it is more prone to noise and ofers 

less spatial resolution.

Functional near infrared imaging relies on the fact that infrared light can pen-

etrate the skull and enter a few centimeters into the cortex. Infrared emitters placed 

on the scalp send infrared light through the skull; this light is partly absorbed and 

partly relected back through the skull, where it is detected by infrared detectors. 

Infrared light is absorbed diferently based on the oxygen content of the blood, pro-

viding a measure of the underlying neural activity. Similar to EEG, using a number 
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of evenly spaced “optodes” (emitters and detectors) across the head allows one to 

construct a two- dimensional map of neural activity across the brain surface.

Functional near infrared imaging, however, is restricted by design to measuring 

neural activity close to the skull, unlike fMRI, which can image deep regions of the 

brain. On the other hand, unlike fMRI, subjects are not restricted in their movement 

as they are not lying down within an MR scanner. Functional near infrared imaging 

is not as susceptible to muscle artifacts (compared to EEG) because it relies on opti-

cal rather than electrical measurements. It is also much less expensive than fMRI 

and like EEG, is portable. 

Positron Emission Tomography (PET)

Positron emission tomography (PET) is an older technique for measuring brain activity 

indirectly by detecting metabolic activity. PET measures emissions from radioactively 

labeled, metabolically active chemicals that have been injected into the bloodstream 

for transportation to the brain. he labeled compound is called a radiotracer. Sensors 

in the PET scanner detect the radioactive compound as they make their way to various 

areas of the brain as a result of metabolic activity caused by brain activity. his infor-

mation is used to generate two-  or three- dimensional images indicating the amount of 

brain activity. he most commonly used radiotracer is a labeled form of glucose.

he spatial resolution of PET can be comparable to fMRI, but the temporal resolu-

tion is typically quite low (on the order of several tens of seconds). Other drawbacks 

 A B 

Emitter

Detector

Figure 3.10. fMRI and fNIR recording of brain activity. (A) fMRI machine with a subject whose brain is 

being scanned while performing an experiment. The subject is holding a button- press device 

for indicating choices or outputs. (B) Top: subject wearing an fNIR cap. Bottom: illustration of 

how an fNIR system uses emitters and detectors for measuring changes in blood oxygenation 

level caused by increased neural activity (image A: Creative Commons; images B: http://

neuropsychology.uni- graz.at/methods_nirs.htm).
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include the need to inject radioactive chemicals into the body and the rapid decay of 

radioactivity, which limits the amount of time available for experiments.

3.2 Stimulating the  Brain

3.2.1 Invasive Techniques

Microelectrodes

he irst experiments on electrical stimulation of the nervous system were per-

formed by Luigi Galvani in the 1780s. In his now- classic experiment, electric current 

delivered to a spinal nerve by a Leyden jar or a rotating static electricity generator 

caused the contraction of the leg muscles of a dissected frog.

he dominant technology for electrical stimulation of neurons today uses the 

same type of electrodes used for recording from neurons. For example, the glass 

microelectrodes used for recording intracellularly from a cell can also be used to 

inject current into the cell to depolarize or hyperpolarize the cell (to increase or 

decrease the probability of spiking).

he platinum- iridium microelectrodes for extracellular recording can also be 

used for stimulation, although extracellular stimulation typically activates a local 

population of neurons near the electrode rather than a single neuron. Such elec-

trodes have been used, for instance, in experiments where a monkey’s decision in a 

decision- making task can be altered by stimulating neurons in a cortical area (Hanks 

et al., 2006). A more prominent example is deep brain stimulation (DBS) in which 

slightly larger electrodes, about a millimeter thick, are surgically implanted into the 

brains of Parkinson’s patients. he electrical pulses, tailored to the patient, are deliv-

ered continuously to relieve symptoms such as tremors and gait problems (DBS will 

be discussed in more detail in Section 10.2.1). Arrays of microelectrodes are also 

used in cochlear implants to stimulate the auditory nerve (see Section 10.1.1 for fur-

ther details). he use of stimulating microelectrodes in BCIs is beginning to grow, 

especially in studies involving monkeys where one set of such electrodes is used for 

recording and another set for stimulation. We will discuss such bidirectional BCIs 

in Chapter 11.

Direct Cortical Electrical Stimulation (DCES)

A semi- invasive method for stimulating neurons in the brain is to use electrodes 

on the surface of the cortex as discussed above for electrocorticography (ECoG). 

Electric current (typically less than 15 mA) is delivered across bipolar electrodes 

on the brain surface, usually in the form of short pulses of alternating polarity. he 

efect is limited to the several thousands of neurons in the local cortical tissue near 

the electrode pair. Stimulation efects are rapid in their onset and ofset, coinciding 

with the duration of stimulation.
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DCES can produce “positive” efects such as generating movements or causing 

particular sensations, or “negative” efects such as the disruption of a movement 

or behavior. DCES is typically used in a clinical setting for mapping the location 

of sensory, motor, memory, and language functions in the brains of neurosurgery 

patients. Its potential for providing direct feedback during brain- computer interfac-

ing remains to be explored.

Optical Stimulation

It has been known since the work of Fork (1971) that laser illumination can produce 

excitation in a neuron. Later work demonstrated that two- photon laser illumination 

can be used to focus the laser light much more precisely than earlier techniques, 

allowing, for example, excitation of single neurons in brain slices from a mouse’s 

visual cortex. Illumination is applied tangentially to the membrane of the cell. he 

excitation occurs at short latency and is modulated by both the intensity and wave-

length of illumination. Although the exact mechanisms are unknown, it has been 

suggested that excitation occurs due to a transient perforation of the cell’s mem-

brane that is quickly re- sealed when illumination is discontinued.

An alternate approach, known as optogenetic stimulation, is to use genetic manip-

ulation to make only certain neurons responsive to illumination. For example, one 

can express genes that code for speciic elements of the invertebrate retina in hip-

pocampal neurons. he retinal elements then produce a light- controlled source of 

excitatory current in the afected neurons, as they would in the retina. When exposed 

to light, the neurons transfected with the retinal elements depolarize and generate 

action potentials at latencies between one and several seconds. Further, increasing 

the light intensity tends to increase the iring rate of the neurons.

In summary, while two- photon laser illumination ofers a method to selectively 

excite single neurons, optogenetic stimulation could provide a means to selectively 

excite only a speciic class or classes of neurons that have been genetically altered 

using cell- speciic methods. Optogenetics is a promising emerging technology but 

has not been explored much in the context of brain- computer interfacing because a 

majority of the studies to date demonstrating the technique have been done on brain 

slices or cultured cells rather than on intact brains of behaving animals. Research by 

Diester, Shenoy, and others (2011) is helping address this limitation.

3.2.2 Noninvasive Techniques

Transcranial Magnetic Stimulation (TMS)

TMS relies on the close relationship between electricity and magnetism and the pro-

cess of electromagnetic induction: when current is passed through a coil of wire, a 

magnetic ield is generated perpendicular to the current low in the coil. If a second 

coil is placed within the magnetic ield, a current is generated in a direction opposite 

the irst low. TMS exploits this phenomenon by placing a plastic- enclosed coil of 
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wire next to the skull to produce a rapidly changing magnetic ield oriented orthog-

onal to the plane of the coil. he magnetic ield passes unimpeded through the skin 

and skull and, by the principle of electromagnetic induction, produces an electric 

current in the brain that activates populations of neurons.

he magnetic ield produced by TMS is believed to penetrate to a maximum 

depth of about 3 to 5 centimeters into the brain, in the area directly adjacent to the 

coil. he technique is therefore suitable only for activating neurons in the superi-

cial layers of the brain. A major advantage of TMS is that it is noninvasive and its 

use is not restricted to patients. Its disadvantages include the relatively high power 

requirements and poor localization of the area of stimulation compared to invasive 

techniques such as microelectrodes and DCES.

Transcranial Ultrasound

A more recent technique for noninvasive stimulation of brain circuits is transcranial 

pulsed ultrasound. Ultrasound is a mechanical pressure wave (sound wave) having 

a frequency above the range of human hearing (>20 kHz). Ultrasound has the favor-

able property that it can be transmitted through solid structures, including bone and 

sot tissues, making it well suited for noninvasive medical applications. It is known 

that high- intensity ultrasound (> 1W/cm2) afects neural activity through thermal 

efects, but such stimulation can cause tissue damage. Fortunately, researchers have 

found that low- intensity (< 500 mW/cm2) pulsed ultrasound can also inluence 

neural activation but without thermal efects or tissue damage. For example, Tufail 

et al. (2010) showed that low- intensity pulsed ultrasound (frequency of 0.35 MHz, 

80 cycles/pulse, with a pulse repetition frequency of 1.5 kHz) stimulation of intact 

motor cortices of mice increased the spiking frequency of motor cortical neurons 

and evoked muscle contraction and movements in 92 percent of the mice tested.

he exact mechanisms underlying the efects of ultrasound on neural activation 

are unknown, but it has been suggested that ultrasound may afect neural ion chan-

nels with mechanically sensitive gating kinetics or produce luid- mechanical efects 

on the cellular environments of neurons, thereby afecting their resting membrane 

potentials. Pulsed ultrasound may ofer an advantage over TMS in terms of spatial 

resolution in that it can stimulate brain regions 1–2 mm in diameter, compared to 

1 cm or greater in the case of TMS. It remains to be seen whether it can be used as 

part of a noninvasive BCI system for delivering targeted feedback to speciic brain 

areas in closed- loop BCI tasks.

3.3 Simultaneous Recording and Stimulation

Although most current BCIs only record ongoing neural activity to control devices 

and provide visual or tactile feedback, some researchers are exploring the possibility 

of simultaneously recording neural signals and providing direct feedback through 

neural stimulation. Two possible approaches being explored include using arrays of 
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microelectrodes and more sophisticated implantable chips, such as the Neurochip, 

that implement signal processing and other algorithms, processing neural activ-

ity and delivering stimulation within the chip itself rather than being tethered to a 

computer.

3.3.1 Multielectrode  Arrays

As described above, microelectrodes used for recording spiking activity can also be 

used to deliver depolarizing or hyperpolarizing current to excite or inhibit neurons. 

hus, in a multielectrode array, some electrodes can be set aside for recording and 

others may be used for stimulation. We will explore such a use of multielectrode 

arrays in Chapter 11.

3.3.2 Neurochip

he Neurochip (Figure 3.12) is an example of an integrated chip that records from 

one or more neurons, performs useful signal processing and other computation 

on- board the chip, and, based on the results of these computations, delivers appro-

priate stimulation to one or more neurons (Mavoori et al., 2005). he chip is thus 

a self- contained unit, allowing the implanted subject to roam freely and engage 

in natural behaviors. he battery- powered chip has an array of twelve moveable 

tungsten microwire electrodes (diameter 50 mm; impedance 0.5 MV; interelec-

trode spacing 500 mm). he chip contains a microprocessor that can perform 

spike sorting (Section 4.1) on signals from one set of electrodes and instruct a 

stimulator circuit to deliver electrical pulses via another set of electrodes. Short 

segments of recorded signals and desired stimulation patterns can be stored to the 

on- chip memory.

he Neurochip has been used in monkeys to demonstrate that consistent activa-

tion of a group of neurons in correlation with the activation of another can cause a 
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Figure 3.11. Transcranial magnetic stimulation (TMS). (A) Schematic illustration of electrical stimula-

tion produced by electromagnetic induction using a “butterfly” coil. (B) TMS of visual cor-

tex of a subject using a butterfly coil (images: Creative Commons, http://www.princeton.

edu/~napl/).
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strengthening of connections between the two groups of neurons. We will examine 

the use of the Neurochip for BCI applications in Chapter 11.

3.4 Summary

his chapter introduced some of the major methods available today to record from 

and stimulate the brain. Invasive methods typically employ one or more microelec-

trodes implanted inside the brain to record electrical activity in the form of spikes. 

Newly developed techniques exploit a combination of genetic manipulation and 

optical imaging to record activities of large populations of neurons.

Semi- invasive techniques such as ECoG record the combined electrical activ-

ity emanating from large populations of neurons from the surface of the brain. 
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Figure 3.12. Neurochip for simultaneous recording and stimulation of neurons. (A) Components of 

the implant containing Neurochip. (B). Architecture of the Neurochip, showing analog and 

digital components, on- chip memory, and IR LED and photodiode for wireless communica-

tion of up to 1 meter (adapted from Mavoori et al., 2005).
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Noninvasive techniques have been developed to record electrical activity from the 

scalp (EEG), magnetic ield luctuations caused by electrical activity in the brain 

(MEG), and changes in blood oxygenation level occurring as a result of neural activ-

ity (fMRI and fNIR). In subsequent chapters, we examine in more detail the ability 

of these techniques to provide useful signals for BCI applications.

3.5 Questions and  Exercises

1. What are the techniques currently available for invasive recording of brain 

signals? Specify for each technique whether they can record spikes from 

individual neurons.

2. Explain the diference between intracellular and extracellular recording. Which 

of these techniques is typically used for recording in awake, behaving animals?

3. State whether the following statements are true or false:

a. Intracellular recording allows the membrane potential of an individual neuron 

to be recorded.

b. he patch clamp technique is an example of an extracellular recording 

technique.

c. he tip of a microelectrode is usually about 10–6 m or less in diameter.

d. A tetrode can be used to record from at most four neurons at the same time.

e. Multielectrode arrays can be used for simultaneously recording the spiking 

activity of dozens of neurons.

f. Electrocorticography (ECoG) involves recording electrical potentials from the 

surface of the brain.

4. Discuss the relationship between the signal recorded by an ECoG electrode and 

the neural activity underneath that electrode.

5. Compare and contrast the strengths and weaknesses of using a multielectrode 

array versus an ECoG array for recording brain activity.

6. What is the approximate voltage range of the neural signal measured using a 

microelectrode versus an ECoG electrode?

7. Explain how voltage- sensitive dyes can be used to image the activities of popu-

lations of neurons.

8. Describe the principle behind two- photon imaging of neural activity based on 

luorescent calcium- indicator dyes.

9. What component of neural activity does EEG measure? What region of the 

brain contributes the most to the EEG signal?

10. What is the 10–20 system used in EEG?

11. Describe the frequency range and brain phenomena associated with the follow-

ing EEG waves:

a. Alpha

b. Beta

c. Gamma
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d. Mu

e. heta

12. Enumerate the strengths and weaknesses of MEG compared to EEG as a nonin-

vasive brain recording technique.

13. Describe the relationship between the signal measured by fMRI and the under-

lying neural activity.

14. What are some of the strengths and weaknesses of fMRI compared to EEG? 

Comment particularly on the spatial and temporal resolution aforded by these 

two methods.

15. Compare and contrast fNIR imaging with fMRI for recording brain activity.

16. Describe two invasive and two noninvasive techniques for stimulating neurons 

in intact brains. Explain the trade- of between speciicity in stimulation versus 

invasiveness.

17. What are the beneits ofered by an implantable chip such as the Neurochip for 

simultaneous recording and stimulation, compared to using a standard array of 

microelectrodes?
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In this chapter, we review the signal- processing methods applied to recorded 

brain signals in BCIs for tasks ranging from extracting spikes from the raw signals 

recorded from invasive electrodes to extracting features for classiication. For many 

of the techniques, we use EEG as the noninvasive recording modality to illustrate the 

concepts involved, although the techniques could be applied to signals from other 

sources as well such as ECoG and MEG.

4.1 Spike  Sorting

Invasive approaches to brain- computer interfacing typically rely on recording spikes 

from an array of microelectrodes. he goal of signal- processing methods for such 

an input signal is to reliably isolate and extract the spikes being emitted by a single 

neuron per recording electrode. his procedure is usually called spike sorting.

he signal recorded by an extracellular electrode implanted in the brain is typi-

cally a mixture of signals from several neighboring neurons, with spikes from closer 

neurons producing larger amplitude delections in the recorded signal. his signal 

is oten referred to as multiunit hash or neural hash (Figure 4.1A). Although hash 

could also potentially be used as input to brain- computer interfaces, the more tradi-

tional form of input is spikes from individual neurons. Spike sorting methods allow 

spikes from a single neuron to be extracted from hash.

he simplest spike sorting method is to classify spikes according to their peak 

amplitude. his works well when the extracellular electrode picks up strong sig-

nals from neurons at slightly diferent distances, resulting in diferent amplitudes. 

However, in many cases, the peak amplitudes may be the same for diferent neurons, 

making the method infeasible. A better approach, used in many commercial sys-

tems, is the window discriminator method in which the experimenter visually exam-

ines the data and places windows on aligned recordings of spikes of the same shape 

(Figure 4.1B). he method then assigns all future spikes crossing one or more of 

these windows to the same neuron. he method sufers from the drawback that the 
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experimenter has to manually label spikes as coming from one neuron or another. 

he recent trend has been toward clustering spikes automatically into groups based 

on shape, where each group corresponds to spikes from one neuron. he shape of a 

spike is characterized by features extracted using wavelets or principal component 

analysis (PCA) (see Sections 4.3 and 4.5).

4.2 Frequency Domain Analysis

Noninvasive approaches such as EEG are based on signals that relect the activity of 

several thousands of neurons (see Chapter 3). he recorded signal thus is able to cap-

ture only the correlated activities of large populations of neurons, such as oscillatory 

activity. For example, overt and imagined movements typically activate  premotor 

and primary sensorimotor areas, resulting in amplitude/power changes in the mu 

(8–12 Hz), beta (13–30 Hz) and gamma (>30 Hz) rhythms in EEG/ECoG. he exis-

tence of such oscillatory activity makes analysis, such as Fourier analysis, of the sig-

nals in the frequency domain particularly useful.

4.2.1 Fourier Analysis

he basic idea behind Fourier analysis is to decompose a signal into a weighted 

sum of sine and cosine waves of diferent frequencies. Consider the example in 

Figure 4.2. Suppose you are given a step function that is a constant positive value 

for some time and then becomes a constant negative value, followed by the original 

positive value again (Figure 4.2A). As shown in Figure 4.2B–F, you can approximate 

the step function by adding sine waves of diferent frequencies, each weighted by a 
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Figure 4.1. Spike sorting. (A) Illustration of how extracellular recording can result in a signal (called 

multiunit hash) containing spikes from multiple neurons. These spikes can exhibit different 

amplitudes and shapes. (B) The commonly used method of window discriminators for spike 

sorting involves the experimenter placing different windows on example spikes to allow the 

computer to separate out the spikes (two in this case) according to the windows traversed 

(adapted from http://www.scholarpedia.org/article/Spike_sorting).
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diferent coeicient (amplitude). he step function can thus be decomposed into a 

set of sine functions (a potentially ininite number of them) of speciic frequencies 

and amplitudes.

Fourier analysis involves decomposing a time- varying signal s(t), deined over an 

interval t = - T/2 to t = T/2, into a weighted sum of sine and cosine waves of diferent 

frequencies:
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where ω is the angular frequency, deined as ω = 2π/T, and f is the ordinary frequency 

(measured in Hertz or cycles per second), deined as f = 1/T. he time interval T can 
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Figure 4.2. Approximating a step function with sine waves. The figure shows how a step function 

can be approximated as a weighted sum of sine functions of different frequencies and ampli-

tudes. (A) Step function that alternates between a constant positive value (+0.8) and a con-

stant negative value (- 0.8). (B) sin(x). (C) sin(x) + (1/3)sin(3x). (D) sin(x) + (1/3)sin(3x) + 

(1/5)sin(5x)+…+(1/11)*sin(11x). (E) sin(x) + (1/3)sin(3x) +…+ (1/51)*sin(51x). (F) sin(x) 

+ (1/3)sin(3x) +…+ (1/151)*sin(151x).
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be viewed as the period of a periodic signal s(t). he above expansion of s(t) into a 

sum of ininite terms is called a Fourier series or Fourier expansion. Although we 

don’t go into details here, it should be noted that the signal s(t) needs to meet certain 

reasonable conditions (such as remaining bounded) for the expansion to exist.

We can regard the cosine and sine waves in Equation 4.1 as “basis functions.” 

hese basis functions can be summed up with diferent weights an and bn to pro-

duce diferent kinds of signals, a process corresponding to “synthesis” of signals. 

Conversely, given an input signal s(t), the weights an and bn (also called coeicients 

or amplitudes) can be calculated from the input signal (see below) – this process can 

be regarded as an “analysis” of a given signal. Such an analysis is useful because the 

calculated amplitudes tell us what the dominant frequency components of the sig-

nal are. he decomposition allows us to perform various types of iltering based on 

frequency. For example, EEG signals are oten corrupted by “line noise” around 60 

Hz (in the United States) due to a 60 Hz AC power supply. his noise can efectively 

be iltered out of the EEG signal using a “notch” ilter, which removes the 60 Hz fre-

quency component of the signal, allowing the signal to be reconstituted or analyzed 

without this noise.

Estimating the coeicients (or Fourier amplitudes) an and bn in Equation 4.1 

involves multiplying the original signal with the corresponding cosine or sine wave 

and summing (or in the continuous case, integrating) over time:
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One can regard these equations as basically performing a cross- correlation between 

the input signal and a cosine or sine wave of a particular frequency, with the strength 

of the correlation (the “similarity”) being captured by the corresponding coeicient 

an or bn.

For n = 0, we have cos( )0 1⋅ =ωt . hus, the irst term a0/2 in the Fourier decom-

position (Equation 4.1) is simply the average of the input signal (the “DC” or zero 

frequency component) over the interval –T/2 to T/2:
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Similarly, the coeicient a1 associated with the term cos( )2π ft  captures the ampli-

tude of the cosine component at frequency f, the coeicient a2 captures the ampli-

tude of the cosine component at frequency 2f, and so on.

he Fourier decomposition of a signal into its frequency amplitudes thus pro-

vides a useful representation of the signal in terms of its frequency content rather 

than time. Figure 4.2 provides several examples of time- varying signals and their 

 

 



Signal  Processing43

Fourier decomposition. Notice how a signal that spans a short temporal extent (e.g., 

“Boxcar” or “Impulse”) occupies a large or ininite extent in the frequency domain.

A simpler form of the Fourier series can be obtained by allowing the Fourier coef-

icients to be complex numbers. Recall that complex numbers are of the form a + jb 

where j = −1. Recall also the identity e jjθ θ θ= +cos sin . We can therefore deine 

a single set of coeicients cn as:
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he Fourier series for a signal s(t) then becomes:
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he transformation to the set of coeicients cn given by Equation 4.6 is also called 

the Fourier transform (FT) of the signal s(t). he transform is reversible: the original 

signal can be recovered given the coeicients cn using Equation 4.5 – this is called 

the inverse Fourier transform (IFT).

4.2.2 Discrete Fourier Transform (DFT)

For BCI applications, the brain signals are typically sampled at discrete time inter-

vals. he Fourier series discussed above can be modiied to apply to a discretely 

sampled signal as well. he discrete Fourier transform (DFT) takes as input a time 

series S(t) sampled at time points t = 0, …, T- 1 and transforms it to the correspond-

ing complex Fourier coeicients:
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where ω = 2π/T as before.

he inverse discrete Fourier transform (IDFT) is similarly deined as:
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As in the previous section, the complex Fourier coeicient C(n) captures both the 

amplitude and phase of the nth sinusoidal component. hese can be recovered using 

the polar form of complex numbers as:

 Amplitude A n C n C n( ) Re( ( )) Im( ( ))= +2 2  (4.9)

 Phase ϕ( ) arctan(Im( ( )),Re( ( )))n C n C n=  (4.10)

 

Time function

Boxcar G(t) =
1, |t| < τ/2

0, |t| > τ/2

1

G(t) =

G(t) = e–½t2

G(t) = δ (t)

δ (t–nτ)

G(t) = cos ω0t

G(t) = comb (t)

–π/ω0 π/ω0

–4π
τ

–2π 0
τ

2π
τ

4π
τ

2π/ω0 3π/ω0

∞

∞
– ∞

Σ

δ (f –n/τ)
∞

–∞
Σ

= 0,

0

0

t ≠ 0

1–|t|/τ,|t| <τ
|t| >τ0,

–1

τ

–τ τ0

–τ τ0

–τ τ 2τ 3τ0

2
–

τ
2

0

Triangle

Gaussian

Impulse

Sinusoid

Comb.

Sinc S(f ) = τ sinc (fτ)

S(f ) = τ sinc2 (f t)

S(f) = τ(2π)½ e–(πfτ)2

S(f ) = 1/2(δ (f+f0) + δ (f–f0))

S(f ) = 

–f0 f00

∞ ∞

S(f ) = 1

1

= (1/πf ) sin (πf t)

= (1/π2f 2τ) sin2 (πf t)τ

r

–1/τ 1/τ 2/τ 3/τ 4/τ0

–1/τ 1/τ0

–1/τ 1/τ 2/τ 3/τ 4/τ0

Sinc2

Gaussian

DC shift

Single freq.

Comb.

Frequency function

{

{

=

Figure 4.3. Examples of time- varying signals and their Fourier transforms. (Image: Creative 

Commons, http://wiki.seg.org/index.php/File:Segf19.jpg).
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where Re(x) and Im(x) denote the real and imaginary parts of x. he amplitude val-

ues A(n) for n = 0,…, T- 1 deine the amplitude spectrum of the signal while the φ (n) 

values deine the phase spectrum. In typical BCI applications, we are interested in the 

magnitude of changes in the diferent frequency components during the course of a 

task. While the amplitude spectrum can be used for this purpose, it is more common 

to square the amplitude values and use the power spectrum of the signal:

 Power P n A n C n C n( ) ( ) Re( ( )) Im( ( ))= = +2 2 2  (4.11)

4.2.3 Fast Fourier Transform (FFT)

One can compute the DFT based on its deinition above, but for a signal with T 

points, this takes approximately T2 arithmetical operations. he running time of the 

algorithm is thus quadratic in signal size T. For very large T (e.g., in the millions), 

this can be quite slow.

he fast Fourier transform (FFT) is a more eicient way of computing the DFT. It 

runs in time approximately T log T, which can result in huge savings in computa-

tion time for large sizes T. he most common FFT algorithm, the Cooley- Tukey 

algorithm, uses a “divide and conquer” strategy and recursively breaks down a DFT 

into many smaller DFTs. Most signal- processing packages come with an FFT imple-

mentation, making the FFT the most commonly used method for transforming a 

time- varying signal to the frequency domain.

4.2.4 Spectral Features

Many BCI systems rely on features extracted from the power spectrum of a brain 

signal such as EEG or ECoG over a time interval. he power spectrum is irst com-

puted using an FFT, and the power in a particular frequency band is used as a spec-

tral feature in further analysis (such as classiication). For example, given that motor 

movement or imagery is known to reduce the power in the mu frequency band 

(8–12 Hz), we could use the power in the mu band as a feature in a BCI to allow a 

subject to move a cursor using motor imagery. Another common approach is to use 

motor screening to ind subject- speciic frequency bands: the subject is asked to per-

form a variety of movements, and the frequency bands that exhibit robust changes 

in power during movement are then utilized in subsequent BCI experiments involv-

ing movement imagery. A more sophisticated approach is to utilize a bank of spec-

tral features and allow a machine learning algorithm to automatically select features 

that enhance classiication accuracy on test data.

4.3 Wavelet Analysis

he Fourier transform represents an original signal with a set of “basis” functions, 

namely, sines and cosines of diferent frequencies. However, because sines and 
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cosines occupy an ininite temporal extent, the Fourier transform does a poor job of 

representing signals that are inite and non- periodic, or have sharp peaks and discon-

tinuities. Furthermore, brain signals such as EEG are typically non- stationary (i.e., 

the statistical properties change over time), breaking the assumption of a stationary 

signal in Fourier analysis. One way of addressing this problem is to perform Fourier 

analysis over short- time windows, a procedure known as the short- time (or short-

 term) Fourier transform (STFT). he STFT however leaves open the question of the 

size of the window, with small windows providing good temporal but poor frequency 

resolution and large windows providing better frequency resolution but poor tem-

poral resolution. his realization led to the development of the wavelet transform, 

which seeks to achieve the best tradeof between temporal and frequency resolution.

Rather than using sines and cosines, the wavelet transform (WT) uses inite basis 

functions called wavelets, which are scaled and translated copies of a single inite-

 length waveform known as the mother wavelet (Figure 4.4). By using basis functions 

at diferent scales, the wavelet transform allows a signal to be analyzed at multiple 

resolutions, with larger scale components revealing coarse features in the input sig-

nal and smaller scale components revealing iner structure. Moreover, their inite 

extent allows wavelets (unlike the sines and cosines used in Fourier analysis) to rep-

resent signals that are non- periodic or have sharp discontinuities.

As in the case of the Fourier transform, the wavelet transform represents the origi-

nal signal as a linear combination of basis functions, in this case, the wavelets (see 

Figure 4.5). Analysis of the signal is performed using the corresponding wavelet coef-

icients. Most current signal- processing packages include the wavelet transform as 

one of the available options and provide a variety of choices for the mother wavelet.

4.4 Time Domain Analysis

4.4.1 Hjorth Parameters

Hjorth parameters, introduced by B. Hjorth in 1970, provide a fast way of computing 

three important characteristics of a time- varying signal, namely, the mean power, 

 A B C 

Figure 4.4. Different types of mother wavelets. (A) Mexican hat. (B) Morlet. (C) Meyer. A linear 

combination of scaled and translated copies of a mother wavelet can be used to represent 

any signal.
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the root-mean-square frequency, and the root-mean-square frequency spread. 

hese parameters are also called “normalized slope descriptors” because they can be 

computed from the irst and second derivatives of the signal.

Mathematically, the three Hjorth parameters, which are termed “activity,” “mobil-

ity,” and “complexity,” are deined as follows:
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where a0 is the variance (or equivalently, the mean power) of the signal in the epoch 

under measurement, a2 is the variance of the irst derivative of the signal, and a4 

 

–5

0

5

–1

0

1
–1

0

1
–1

0

1

a = 8

a = 16

a = 4

a = 2

a = 1

A
m

p
lit

u
d
e
 (

µ
V

)
1 2

Time (s)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

X

3 4

W-Amp.

1 2 3

1 2 3 4

1 2 3 4

EEG (time series)
W

a
ve

le
t co

e
fficie

n
t n

o
.

WT

W
a
ve

le
t 
fu

n
ct

io
n

Figure 4.5. Example of the wavelet transform. The EEG signal at the top is an average over several 

trials. This signal can be decomposed into a weighted linear combination of the wavelets 

shown below (wavelets for a = 1 to 4 are shown; those for 8 to 16 are not shown). Each 

wavelet is a scaled and translated version of a mother wavelet (two translated copies are 

shown at scale a = 1). The scaling factor is decreased by the index a, which is doubled at each 

step up to a = 16. This leads to 2 wavelets at a = 1, 4 at a =2, 8 at a =4, etc. The wavelet coef-

ficients or weights, which represent the wavelet transform for this signal, are shown as bars 

on the right. Note that these coefficients capture various characteristics of the signal, e.g., the 

negative fluctuation between 3s and 4s is an “event related potential” (ERP) and is captured 

by the large coefficients for wavelets 5 and 12 (from Hinterberger et al., 2003).
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the variance of the second derivative of the signal. hese measures can be shown to 

be equivalent to the zeroth- order, second- order and fourth- order moments respec-

tively of the power spectrum of the signal (see Equation 4.11).

Hjorth parameters are popular in EEG analysis because they are based on variance 

and are therefore much faster to compute than other methods. hey are thus useful 

in applications that require fast ongoing characterization of time- varying signals.

4.4.2 Fractal Dimension

Broadly speaking, a signal is said to be a fractal if it exhibits the property of self-

 similarity: parts of the signal tend to resemble the whole, and this similarity repeats 

in a recursive fashion. he fractal dimension is a quantitative measure of this self-

 similarity. Several diferent deinitions of fractal dimension exist but a popular 

measure used for brain signals (especially EEG) is based on a method proposed 

by Higuchi.

he intuition is to get a measure of the self- similarity in an input data sequence 

by considering the sub- sequences of the data. Given a sequence of N discrete sam-

ples X(1), X(2), . . . , X(N) of a time- varying signal, Higuchi’s method constructs 

 sub- sequences by varying the time interval k between data samples:

X X m X m k X m kk

m : ( ), ( ), ( ) ,+ + 2 

for starting time m = 1, …, k.

he goal is to compute the “length” L(k) of the input signal at diferent time inter-

vals k and estimate the fractal dimension D from the relationship:

 L k k D( ) ∝ −
 (4.13)
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where M is the largest integer less than or equal to (N- m)/k. For each interval k, the 

average length L k( )  is calculated and plotted as a function of k on a log- log plot. If 

L k k D( ) ≈ −  for the input data, then the log- log plot should approximate a straight line 

with slope –D. hus, the fractal dimension D can be recovered from the slope of the 

best itting line using a standard least- squares itting procedure. his method yields 

fractal dimensions between 1 and 2, with D ≈ 1 for simple curves (e.g., lat line) and D 

closer to 2 for highly irregular curves that ill the whole two- dimensional plane.

he fractal dimension D for brain signals such as EEG can range between 1.4 

and 1.7, with higher values signifying highly spiky activity such as seizures. In typi-

cal BCI applications, D values are calculated using a sliding window (e.g., 100 ms) 

and used as a local feature for characterizing the “complexity” of the time- varying 

brain signal. 
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4.4.3 Autoregressive (AR) Modeling

Autoregressive (AR) models rely on the fact that natural signals tend to be correlated 

over time (or even other dimensions such as space). hus, it is frequently possible to 

predict the next measurement based on the values of the past few measurements. A 

traditional AR model uses a set of coeicients ai to predict the current signal mea-

surement xt based on past measurements:

 x a xt i

i

p

t i= +
=

−∑
1

ε
 

(4.15)

where ε is assumed to be a zero mean white noise process that accounts for the 

diferences between the signal and its linear weighted sum approximation. he 

parameter p is called the order of the AR model and determines the window of past 

inputs used for predicting the current input. It is either chosen through an optimi-

zation process such as cross validation (Section 5.1.4) or ixed a priori to a small 

arbitrary number.

he traditional AR model assumes the statistical properties of the signal are sta-

tionary so that a single set of coeicients ai can be used. However, brain signals tend 

to be non- stationary, and one consequently requires a time- varying set of coei-

cients ai,t. his leads to an Adaptive Autoregressive (AAR) Model:

 x a xt i t
i

p

t i t= +
=

−∑ ,
1

ε
 

(4.16)

he time- varying coeicients ai,t can be updated on- line using a recursive least-

 squares optimization procedure such as Kalman iltering (see below). he coef-

icients ai,t capture the local statistical structure of the signal as it evolves over 

time and can be used as features in further processing (e.g., classiication)  

in a BCI.

4.4.4 Bayesian  Filtering

he time domain methods discussed above do not explicitly maintain estimates 

of uncertainty of the signal properties being computed over time. Maintaining a 

representation of uncertainty can be important in BCI because potentially disas-

trous actions based on poor estimates can be avoided if the amount of uncertainty 

associated with an estimate is taken into account before committing to a decision. 

Bayesian iltering techniques provide a statistically sound methodology for estimat-

ing signal properties and their uncertainty.

We begin by considering the deinition of conditional probability of a random 

variable x given another random variable y (see Appendix, Equation A.10):

 P x y
P x y

P y
( | )

( , )

( )
=

 
(4.17)
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where P(x,y) is the joint probability of x and y, and P(y) is the probability of y. he 

same deinition gives us:

P y x
P y x

P x

P x y

P x
( | )

( , )

( )

( , )

( )
= =

herefore,

P x y P x y P y P y x P x( , ) ( | ) ( ) ( | ) ( )= =

his simple observation gives rise to one of the most important theorems in prob-

ability and statistics, namely Bayes’ theorem or Bayes’ rule:

 P x y
P y x P x

P y
( )

( | ) ( )

( )
=

 
(4.18)

where P(x|y) is called the posterior probability of x given y, P(y|x) is called the likeli-

hood, and P(x) is the prior probability of x. he probability P(y) can be computed by 

summing over x:

P y P x y P y x P x
x x

( ) ( , ) ( | ) ( )= =∑ ∑

hus, Bayes’ rule can be expressed as:

 P x y
P y x P x

P y x P x
x

( )
( | ) ( )

( | ) ( )
=

∑
 

(4.19)

Bayes’ rule has profound consequences for the statistical estimation of signal proper-

ties because it prescribes how evidence from measurements, represented by P(y|x), 

can be combined with prior knowledge and beliefs, expressed as P(x). For example, 

suppose y represents EEG measurements and x represents a stimulus that caused 

the brain response. For a BCI application, we are interested in inding the cause of 

a measured EEG signal, which corresponds to estimating the posterior probabil-

ity P(stimulus|EEG). his probability is hard to estimate directly but the probability 

P(EEG| stimulus) can be estimated by exposing the subject to stimuli and collecting 

stimulus- response data from a number of trials. he prior probability of the stimu-

lus P(x) could be ixed a priori by the experimenter or can be estimated from data.

Bayes’ rule can be extended to estimate posterior probability from a series of mea-

surements made over time. Suppose we make the measurement yi at time step i. We 

would like to know the posterior probability of the unknown state or event x, given 

all the measurements we have made so far, i.e., P x y yt( | , , )1  . We can again apply 

Bayes’ rule to obtain:

 P x y y
P y x y y P x y y

P y y y
t

t t t

t t

( | , , )
( | , , , ) ( | , , )

( | , ,1
1 1 1 1

1 1


 


= − −

− )
 

(4.20)
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he above equation can be simpliied if one makes the reasonable assumption that 

the measurement yt is conditionally independent of all previous measurements given 

the state x. his leads to the following Bayesian ilter or update rule:

 P x y y P y x P x y yt t t( | , , ) ( | ) ( | , , )1 1 1 = −α
 (4.21)

where α = −1 1 1/ ( | , , )P y y yt t  is the normalization constant. Note that the Bayesian 

ilter equation is recursive: the estimate of the posterior at time t is computed by 

combining the previous estimate at time t- 1 with the likelihood of the current 

measurement yt.

A inal addition to the Bayesian model above is to allow the state x to vary over 

time. his would correspond, for example, to the general case where the stimuli or 

other sources of the brain signal are dynamic. In the simplest and most common 

case, these dynamics are assumed to be Markovian, i.e., the probability of the next 

state depends only on the current state and not on previous states: this probability is 

given by P(xt | xt- 1). To derive the general Bayesian iltering equation for xt, we begin 

by considering Equation 4.21 we encountered above:

P x y y P y x P x y yt t t t t t( | , , ) ( | ) ( | , , )1 1 1 = −α

his equation is simply an application of Bayes’ rule, but it illustrates the “prediction-

 correction” property common to iltering algorithms: a prediction P x y yt t( | , , )1 1 −  

is irst made using past measurements, and this prediction is then corrected using 

the new measurement as given by the likelihood P y xt t( | ). he prediction itself can 

be computed recursively from the ilter estimate at the previous time step:

 
P x y y P y x P x y y

P y x P x x

t t t t t t

t t t t

( | , , ) ( | ) ( | , , )

( | ) ( ,
1 1 1 =

=
−

−

α
α  1 1 1

1

| , , )y yt
xt

 −
−

∑
 

(4.22)

Using the Markov assumption, we obtain the general Bayesian iltering equation:

 P x y y P y x P x x P x y yt t t t t t t t
xt

( | , , ) ( | ) ( | ) ( | , , )1 1 1 1 1

1

 = − − −
−

∑ α
 

(4.23)

his equation prescribes how information from a new measurement yt should be 

combined with the previous posterior P x y yt t( | , , )− −1 1 1  to obtain the new pos-

terior distribution at time t. As we will see, popular statistical iltering techniques 

such as Kalman iltering and particle iltering can be seen as speciic instantiations 

of Equation 4.23.

More generally, Bayesian iltering can be viewed as performing probabilistic infer-

ence in a Dynamic Bayesian Network (DBN), which is a type of graphical model in 

which nodes represent random variables (in our case, states xt and observations yt) and 

arrows from a node to another node represent conditional probabilities (in our case, 

P x xt t( | )−1  and P y xt t( | )). he interested reader is referred to the textbook by Koller 

and Friedman (2009) for further details on Bayesian networks and graphical models.
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4.4.5 Kalman Filtering

he Kalman ilter is perhaps the best known of Bayesian iltering algorithms. he 

ilter is derived by assuming linear Gaussian models for both the dynamics and the 

measurement probabilities:

x Ax nt t t= +−1

 y Bx mt t t= +  (4.24)

where nt and mt are zero- mean Gaussian noise processes with covariance matrices Q 

and R respectively (see Appendix for a review of vectors, matrices, covariance, and 

multivariate Gaussian distribution). hese equations yield:

P x x N Ax Qt t t( | ) ( , )− −=1 1

 P y x N Bx Rt t t( | ) ( , )=  (4.25)

where N denotes the normal (or Gaussian) distribution with mean and covariance 

as speciied within the parenthesis. Suppose we begin with a Gaussian distribution 

P x y yt t( | , , )− −1 1 1 . In the continuous case, the prediction distribution is obtained 

by replacing the sum over xt- 1 with an integral:

  P x y y P x x P x y y dxt t t t t tx t
t

( | , , ) ( | ) ( | , , )1 1 1 1 1 1 1
1

 − − − − −=
−

∫  (4.26)

Since both P x xt t( | )−1  and P x y yt t( | , , )− −1 1 1  are Gaussian, the above  equation  

implies that P x y yt t( | , , )1 1 −  is also Gaussian. he Bayesian iltering equation 

becomes:

 
P x y y P y x P x y y

P y x P x x

t t t t t t

t t t t

( | , , ) ( | ) ( | , , )

( | ) ( |

1 1 1 =

=
−

−

α

α  1 1 1 1 1
1

) ( | , , )P x y y dxt tx t
t

− − −
−

∫   (4.27)

Since P y xt t( | ) is Gaussian (as is P x y yt t( | , , )1 1 − ), it follows that the poste-

rior P x y yt t( | , , )1   is also Gaussian and completely speciied by a mean and a 

covariance:
P x y y N x St t t t( | , , ) ( , ).1  =

he Bayesian ilter in this case, also known as the Kalman ilter, reduces to the fol-

lowing equations for recursively updating the mean x t
  and covariance St at each 

time- step t (see, for example, Bryson & Ho, 1975 for a derivation):

 

x x K y Bx

S B R B M

x Ax

M AS A Q

t t t t t

t

T

t

t t

t t

T





= + −
= +

=
= +

− − −

−

−

( )

( )1 1 1

1

1

 (4.28)

where K S B Rt t

T= −1 is called the Kalman gain.
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Despite their somewhat complex appearance, the Kalman ilter equations (4.28) 

are actually quite easy to understand. Before making the measurement yt, we have a 

prediction x t  of the mean and a prediction Mt of the covariance, computed from the 

Kalman ilter estimates for mean and covariance at time step t- 1. We then compute 

the prediction error ( )y B xt t− . he new estimate x
t
  is then obtained by adding the 

correction term K y Bxt t t( )−  to the predicted mean x t . Figure 4.6 illustrates the 

prediction- correction cycle of the Kalman ilter.

he Kalman gain Kt determines the amount of weight given to the new evidence 

yt and is a function of the noise covariances Q and R for the dynamics and mea-

surement processes. For example, if the measurement noise R is large, Kt becomes 

 

0.14

Previous estimate

New estimate

Correction
New input

yt

Prediction

0.12

0.1

0.08

0.06

0.04

0.02

0
0 10 20 30 40 50 60 70 80 90 100

x 
∧

t–1 x–t

x 
∧

t

0.14

0.12

0.1

0.08

0.06

0.04

0.02

0
0 10 20 30 40 50 60 70 80 90 100

0.14

0.12

0.1

0.08

0.06

0.04

0.02

0
0 10 20 30 40 50 60 70 80 90 100

Figure 4.6. Kalman filtering. The Kalman filter maintains an estimate of the hidden state of the environ-

ment as a Gaussian distribution specified by a mean and (co- )variance. The estimate for the 

previous time- step (with a mean of 30 in the figure) is used to make a prediction for the next 

time- step using the known linear equation for dynamics, resulting in a new Gaussian distribu-

tion (with a mean of 70 in the figure above and a larger variance). The predicted mean and 

variance are corrected using the new input at time t, resulting in a new estimate defined by 

the corrected mean and variance (adapted from Rao, 1999).
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small, giving less weight to the measurement- related term ( )y Bxt t− . For a simple 

example of a Kalman ilter explained in terms of a running average, see (Rao, 1999). 

We will explore applications of Kalman iltering to BCI problems in Chapter 7.

4.4.6 Particle Filtering

Kalman ilters assume that the dynamics and measurement processes are linear and 

Gaussian. his simplifying assumption allows the update equations to be analyti-

cally derived, but the assumption may not hold true in many real- world examples. A 

relatively recent method for estimating a posterior distribution over hidden state for 

non- linear non- Gaussian processes is particle iltering.

Particle iltering is based on the same general Bayesian iltering equation (Equation 

4.27) as used above for the Kalman ilter:

P x y y P y x P x x P x y y dxt t t t t t t txt

( | , , ) ( | ) ( | ) ( | , , )1 1 1 1 1
1

 = − − −
−

∫ α t −1

However, instead of using a linear Gaussian assumption as in the Kalman  ilter 

to obtain exact update equations, a particle ilter approximates the posterior 

P x y yt t( | , , )1   using a population of samples (or “particles”).

Starting with a population of N samples drawn from the prior distribution P(x0), 

the particle ilter repeats the following prediction- resampling steps at each time- step 

t (Figure 4.7):

1. Propagate each current sample xt

i

−1 forward in time by sampling from P x xt t

i( | ) −1 .  

his yields a population of samples x t

i  that approximate the prediction distribu-

tion P x y yt t( | , , )1 1 − .

2. Obtain new measurement yt and weight each sample x t

i  by its likelihood value 

P y xt t

i( | ).

3. Resample the population to generate a new population of N samples xt

i where the 

probability that a sample x t

i  is selected is proportional to its weight. Note that the 

new samples xt

i  are unweighted.

It can be shown that samples computed by the particle ilter algorithm above 

 correctly represent the posterior probability P x y yt t( | , , )1   as the number of 

 samples N tends to ininity. In practice, the number of samples used depends on the 

speciic application and computational power available, with typical numbers in the 

1,000–5,000 range.

4.5 Spatial Filtering

Spatial iltering techniques take as input brain signals recorded from several diferent 

locations (or “channels”) and transform them in one of several ways. Possible goals 

include enhancing local activity, reducing noise that is common across channels, 

decreasing the dimensionality of the data, identifying hidden sources, or inding 
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projections that maximize discrimination between diferent classes. We discuss 

some commonly used spatial iltering methods below.

4.5.1 Bipolar, Laplacian, and Common Average Referencing

For continuous- valued electrical brain signals such as EEG, it is common to use 

a simple form of spatial iltering based on re- referencing the recordings. Let s i  

denote the signal from channel i. One can then extract bipolar signals s s si j i j, = −  to 

highlight the electrical potential diferences between the two electrodes of interest 

(i and j).

A second spatial ilter method, Laplacian iltering, extracts local activity at elec-

trode i by subtracting the average activity present in the four orthogonal nearest-

 neighboring electrodes Θ:

 s s si i
i

i=
1

4
.−

∈
∑

Θ  
(4.29)

 

1)

2)

3)

4)

Figure 4.7. Particle filtering. The steps 1 through 4 illustrate a full iteration of the particle filter from 

one time- step to the next. We start out with a set of particles (10 small circles of equal size 

in step 1) representing samples from the prediction distribution. In step 2, we make a new 

measurement and weight each sample by its likelihood value (different- sized circles in 2); 

the curve above with two peaks is the likelihood density). In step 3, we resample the particles 

with probability proportional to their weights. In step 4, each particle is propagated forward 

in time according to the transition probability distribution (the dynamics). This gives us a new 

set of particles (10 small circles of equal size in step 4) representing the prediction distribu-

tion, and the entire cycle (measurement- weighting- resampling- prediction) is repeated again 

(from Bellavista et al., 2006).
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his causes common activity such as muscle-related activity to be subtracted away 

from the electrode of interest. A closely related type of spatial iltering, common 

average referencing (CAR), enhances the local activity at electrode i by subtracting 

the average over all electrodes:

 s s si i
i

N

i
N

=
1

.
=1

− ∑
 

(4.30)

Figure 4.8 summarizes these three basic spatial iltering techniques.

4.5.2 Principal Component Analysis (PCA)

Suppose we have N data points, where each data point is L- dimensional. For exam-

ple, a data point could be the vector of electrical brain signals (e.g., EEG) from L 

electrodes at a particular time t, and the data set could be N such L- dimensional 

vectors collected during an experimental session. he goal in principal component 

analysis (PCA) (also called the Karhunen- Loève or Hotelling transform) is to discover 

the underlying statistical variability in the data and reduce the data’s dimensionality 

from L to a much smaller number of dimensions M (M << L). PCA achieves this 

goal by inding the directions of maximum variance in the L- dimensional data and 
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Figure 4.8. Basic spatial filtering. Schematic diagram showing three basic spatial filtering techniques. 

Bipolar filtering involves taking the difference between two electrodes. Laplacian filtering 

involves subtracting from each electrode the average of four nearest- neighbor electrodes. 

Common average referencing (CAR; outer circle) involves subtracting the average over all 

electrodes.
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rotating the original coordinate system to align with these directions of maximum 

variance (see Figure 4.9). Coordinates corresponding to low variance directions can 

then be dropped, allowing signiicant reduction in dimensionality if the original 

data was redundant and contained only a few directions of large variance.

Most natural signals, including brain signals recorded from multiple locations, 

tend to be redundant and are therefore amenable to dimensionality reduction. For 

example, in the case of EEG measurements from N electrodes placed on the head, 

measurements from nearby electrodes may be correlated or there may be underlying 

rhythms that appear across multiple electrodes. Such redundancies can be exploited 

by PCA, which attempts to ind the dominant directions of variability in the data. 

Once these dominant directions corresponding to a low- dimensional  “subspace” of 

the original L- dimensional space have been found, new data points can be projected 

along these “principal” directions. Each projection is called a “principal  component,”1 

1 Sometimes incorrectly called “principle component.”
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Figure 4.9. Principal component analysis (PCA). The figure depicts the idea behind PCA, which finds 

the directions of maximum variance in the data. For the two- dimensional data shown (points 

marked x), the direction of maximum variance is along the diagonal vector (long arrow). The 

second directional vector found by PCA is orthogonal to the first and is shown by the short 

arrow. Since most of the variance is along the first vector, one can project all the data points 

onto this vector and represent the data with one- dimensional coordinates (circles) along this 

vector. This achieves a reduction in dimensionality from two dimensions to one (albeit with 

the loss of a small amount of information about the data along the vector given by the short 

arrow). Similar (but much greater) reductions in dimensionality can be achieved for higher-

 dimensional data such as images and multi- channel brain signals.
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and the resulting M- dimensional vector can be used as a feature vector for classiica-

tion or other purposes in BCI applications.

How does one go about inding the low- dimensional subspace corresponding to 

the directions of maximum variance in the data? Let us use the vector xi to denote 

the ith data point and let x  be the mean of the vectors xi. Consider the variance of 

the mean- subtracted data points along the direction given by a unit vector v (see 

Appendix for a review of vectors and other linear algebra concepts):

 var( ) ||( ) ||v x x v= −
=
∑1

1

2

N
i

T

i

N

 
(4.31)

where ||z|| denotes the length (L2 norm) of the vector z.

We would like to ind a vector v1 that maximizes this variance: v v
v

1 = arg max var( ).  

his can be done by some mathematical maneuvering:
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(4.32)

where A is the L x L sample covariance matrix of the input data. We can thus max-

imize var(v) by maximizing vTAv subject to the constraint that v is a unit length 

vector, i.e., vTv = 1. One can use the Lagrange multiplier method to do this: we ind 

the vector v1 that maximizes v v v vT TA − −λ( )1 , where λ is the Lagrange multiplier 

whose value is determined by the optimization process. Setting the derivative of this 

expression with respect to v to 0, we get:

 Av v= λ  (4.33)

which is the classic eigenvector- eigenvalue equation from linear algebra for the 

matrix A (see Appendix for a review of eigenvectors and eigenvalues).

hus, to ind the directions of maximal variance in the data, we need to compute 

the eigenvectors of the data covariance matrix A. he eigenvectors and eigenvalues 

can be obtained by solving Equation 4.33 using standard linear algebra techniques, 

or directly via any of a number of eicient algorithms for eigenvalue decomposition 

of a matrix. he resulting eigenvectors are orthonormal – that is, they are of unit 

length and orthogonal to each other.

An L- dimensional input data set can have up to L distinct eigenvectors. hese 

eigenvectors can be ordered according to their eigenvalues: the eigenvector v1 with 

the largest eigenvalue λ1 captures the most variation in the data whereas the eigen-

vector with the smallest eigenvalue captures the least. For natural datasets, which 
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contain regularities and redundancy, it is common to have a small number of eigen-

values λ1, …, λM that are large, with the rest being close to zero. he corresponding 

eigenvectors v1, …, vM are called principal component vectors and deine a low-

 dimensional subspace of the input space. Given an input x, one can thus perform 

dimensionality reduction by computing an M- dimensional representation of the L- 

dimensional input. his can be done by projecting the input along the M- dominant 

principal component vectors:

 a

x x v

x x v

=
−

−

















( )

( )

T

T

M

1



 

(4.34)

It is interesting to note that this transformation is invertible in the sense that one can 

reconstruct the original input x as a linear combination of the eigenvectors:

  x v=
=
∑ai i
i

M

1  
(4.35)

where ai are the elements of the vector a. he reconstruction is not a perfect copy 

of x unless all L eigenvectors are used, but good reconstructions can be obtained by 

using all eigenvectors associated with large eigenvalues.

In addition to dimensionality reduction, PCA also decorrelates the input: cor-

relations between the components of the vector x are no longer present in the 

transformed vector a. To see this, note that the equation for a can be written in 

matrix- vector form as:

 a x x= −V T ( )  (4.36)

where V is a matrix whose columns are the eigenvectors v1, …, vM. hen, the covari-

ance of a is given by:

C E E V V

V AV

D

T T T

T

= = = − −( )
=
=

cov( ) ( ) ( )( )a aa x x x x

where D is a diagonal matrix (all entries zero except the diagonal) whose diagonal 

entries are the eigenvalues λ1, …, λM. he last equality follows by noting that A i i iv v= λ  

(Equation 4.33) for each vi in V and the eigenvectors vi are all orthonormal to each 

other. hus, since the covariance matrix of a is diagonal, there are no correlations 

between ai and aj for i ≠ j. PCA therefore decorrelates the input signal x.

In summary, PCA produces a vector a that is both low- dimensional and decor-

related. Such a representation can be a useful “feature vector” for classiication and 

other types of analysis in BCI applications. Figure 4.10 illustrates the result of apply-

ing PCA to data collected using EEG.
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4.5.3 Independent Component Analysis (ICA)

PCA inds a matrix V that decorrelates the inputs but the resulting feature vec-

tor a may still retain higher order statistical dependencies (beyond correlation). 

In particular, for any two distinct random variables a1 and a2, PCA ensures that 

their covariance is zero, i.e., E(a1a2) – E(a1)E(a2) = 0, but this does not imply higher 

order independence, i.e., it is possible E(a1
2a2

2) – E(a1
2)E(a2

2) ≠ 0 (see Appendix for 

a review of independence in probability theory).

Why is achieving independence important? In the case of brain signals such as 

EEG, a reasonable starting point is a simple model where the input vectors x mea-

sured over the scalp are the result of linearly mixing a set of statistically independent 

sources inside the brain:

 x y= M  (4.37)

where M is an unknown mixing matrix and y represents the vector of hidden 

independent sources.
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Figure 4.10. PCA applied to EEG data. (See color plates for the same figure in color) (A) Five seconds 

of EEG data recorded from 20 scalp locations labeled according to the 10–20 system (see 

Figure 3.7) and two EOG electrodes for detecting eye movements. Note how the data is 

corrupted by an eye movement artifact between 2 and 4 seconds. (B) Output of PCA when 

applied to the EEG data in (A). The principal component “waveforms” are the components 

a1,…, a22 of the vector a at each time instant, obtained by projecting the input at each time 

instant along the 22 principal component vectors v1,…, v22. Five of the principal component 

vectors (v1, v3, v4, v5, v8) are shown on the right as two- dimensional scalp maps (obtained by 

interpolating across the 22 values in each vi). Red denotes positive values while blue denotes 

negative values. Note how the first three PCA components (channels 1–3) have captured 

the eye movement; this is achieved by the large positive and negative weights for the cor-

responding principal component vectors in the vicinity of the forehead and eyes (see scalp 

map 1 and 3) (adapted from Jung et al., 1998).
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Independent Component Analysis (ICA) attempts to recover the hidden sources by 

inding a matrix W such that:

 a x=W
 (4.38)

and the components of the feature vector a are maximally statistically 

independent, i.e.,

 P P ai
i

M

( ) ( )a ≈
=

∏
1  

(4.39)

he matrix W is sometimes called the unmixing matrix because it attempts to invert 

the mixing of the sources. Indeed, in the case where a and x are of the same size, the 

optimal W = M - 1.

here exist a number of algorithms for computing the matrix W, the most com-

monly used ones being the Bell- Sejnowski “infomax” algorithm (Bell & Sejnowski, 

1995) and FastICA (Hyvärinen, 1999). he Bell- Sejnowski algorithm estimates the 

matrix W by minimizing the mutual information between the ai. Alternately, one 

could exploit the fact that linear mixtures of independent source signals are almost 

always Gaussian (from the Central Limit heorem). his leads to the reasonable 

assumption that the source distributions are non- Gaussian, e.g., highly kurtotic 

distributions that are spiky at zero with large tails. hus, algorithms for ICA have 

been proposed that utilize a suitable non- Gaussian distribution as the desired P(ai) 

and derive an estimation rule for W from the resulting optimization function. he 

reader is referred to Hyvärinen & Oja (2000) for derivations and more details of 

these algorithms.

Note that unlike PCA, where the dimensionality of the vector a is smaller than 

(or at most equal to) the dimensionality of the input x, the feature vector dimension 

in ICA can be lesser than, equal to, or greater than the number of input dimen-

sions. Additionally, the vectors that form the rows of the matrix W are no longer 

constrained to be orthogonal. hus, ICA has proved useful in a variety of settings 

in BCI applications, ranging from the use of the output vector a as a feature vector 

in classiication to isolation of interesting brain rhythms and elimination of muscle 

artifacts in EEG.

Figure 4.11 illustrates the application of ICA to EEG data for isolating electro-

 oculographic (EOG) (eye- related), electromyographic (EMG) (muscle- related) and 

electrocardiographic (ECG) (heart- related) artifacts, and unmixing putative source 

signals in the brain.

4.5.4 Common Spatial Patterns (CSP)

he method of common spatial patterns (CSP) difers from PCA and ICA in that it is 

a supervised technique – that is, the training dataset is labeled; we are given the class 
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to which each data vector belongs. As an example, suppose we have collected brain 

data when the subject is performing two diferent tasks (e.g., hand versus foot motor 

imagery). CSP inds spatial ilters such that the variance of the iltered data from 

one class is maximized while the variance of the iltered data from the other class is 

minimized. he resulting feature vectors thus enhance the discriminability between 

the two classes. CSP has emerged as a popular iltering method for EEG BCIs (see 

Section 9.1) because these BCIs rely on the power in a frequency band for control. 

Since the variance of EEG signals iltered in a given frequency band corresponds to 

the power in this band, CSP essentially maximizes the discriminability of the fea-

tures used in the BCI (Ramoser et al., 2000).

We are given input data Xc

i

i

K{ }
=1

 from trial i for class c∈{ }1,2 . Each Xc

i  is an 

N T×  matrix, where N is the number of channels and T the number of samples in 

time per channel. We assume that the Xc

i  are centered and scaled.

he goal of CSP is to ind M spatial ilters, given by an N M×  matrix W (each col-

umn is a spatial ilter), that linearly transforms the input signals according to:

  x xCSP

Tt t( ) ( )=W  (4.40)

where x(t) is the vector of input signals at time t from all the channels. In order to 

ind the ilters, the two class- conditional covariance matrices are irst estimated as:
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Figure 4.11. ICA applied to EEG data. (See color plates for the same figure in color) The figure shows 

9 different components (ICA outputs) ai obtained by projecting the input EEG data vector 

for each time instant along nine different ICA vectors (rows of the unmixing matrix W). 

These nine ICA vectors are depicted as scalp maps on the left and right side of the plot. 

The scalp maps follow the convention in Figure 4.10. Note how some of the independent 

components are artifacts (e.g., eye movements – EOG) while others appear to be brain 

rhythms, such as α and θ, or event related potentials (ERPs) (adapted from Onton and 

Makeig, 2006).
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  =
1

( )R X Xc c

i

c

i T

iK
∑

 
(4.41)

for c∈{ }1,2 . he CSP technique involves determining a matrix W such that:

W R WT

1 1= Λ

 W R WT

2 2= Λ  (4.42)

where the Λi are diagonal matrices and Λ Λ1 2+ = I , where I is the identity matrix 

(see Appendix for a review of diagonal and identity matrices). his can be done by 

solving a generalized eigenvalue problem given by:

 R R1 2w w= λ  (4.43)

he generalized eigenvectors w = wj that satisfy the above equation form the col-

umns of W and represent the CSP spatial ilters. he generalized eigenvalues 

λ1 1
j

j

T

jR= w w  and λ2 2
j

j

T

jR= w w  form the diagonal elements of Λ1 and Λ2  respec-

tively. Since λ λ1 2 1j j+ = , a high value for λ1
j  means that the ilter output based on 

ilter wj produces a high variance for input signals in class 1 and a low variance for 

signals in class 2 (and vice versa). Figure 4.12 illustrates this property of CSP ilters 

for EEG data. Spatial iltering with such ilters can signiicantly enhance discrimina-

tion ability. Typically, a small number of eigenvectors (e.g., 6) are used as CSP ilters 

in BCI applications. A more detailed overview of the CSP method can be found in 

Blankertz et al. (2008).

4.6 Artifact Reduction Techniques

Artifacts in BCIs are any undesirable signals that originate from outside the brain. 

For example, in EEG BCIs, one oten encounters 50/60Hz power- line noise and arti-

facts caused by muscle or eye movements. Some of these artifacts may be permissible 

or even exploited as control signals for certain applications such as gaming or novel 

modes of human- computer interaction. However, a true brain- computer interface 

should possess the ability to eliminate or reduce such artifacts so that the signals 

being used to control a device originate solely from the brain. Signal- processing 

techniques can be used to achieve this goal.

Artifacts that originate from outside the body such as 50/60Hz power- line noise 

can oten be reduced by using a Faraday cage, a physical enclosure made of conduct-

ing material, to block external electrical interference. When this is not possible, one 

can remove such noise in sotware using iltering techniques as described below.

Artifacts originating from within the subject’s body may include: (1) rhythmic 

artifacts due to respiration and heartbeat (the latter are called electrocardiographic or 

ECG artifacts), (2) signal distortion or attenuation due to skin conductance changes  
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(as a result of sweating, etc.), (3) eye movement and eye blink artifacts (also called 

electro- oculographic or EOG artifacts), which appear as high- amplitude delections 

in brain signals such as EEG with frequencies in the range 3–4Hz, and (4) muscle 

artifacts (electromyographic or EMG artifacts) caused by movements of the head, 

face, jaw, tongue, neck, and other parts of the body; EMG artifacts tend to occur 

maximally in the 30Hz or higher frequency range.

In this section, we review some of the most common methods for handling arti-

facts. For a more detailed discussion, see Fatourechi et al. (2007).

4.6.1 Thresholding

One approach to handling artifacts is to reject any data that is contaminated. he 

simplest method for such automatic artifact rejection is thresholding: if the mag-

nitude or some other characteristic of a recorded EOG or EMG signal exceeds 

a pre- determined threshold, the brain signals recorded during that epoch are 

deemed to be contaminated and rejected. A similar thresholding technique can 

be applied directly to brain signals, provided a suitable threshold has been deter-

mined a priori by, for example, asking the subject to make various kinds of eye or 

body movements to calibrate the threshold. A major drawback of the thresholding 

method is that not all artifact- contaminated data may be rejected by this method, 
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Figure 4.12. CSP applied to EEG data. The scalp maps on the left depict four spatial filters obtained by 

applying CSP to EEG data recorded while the subject performed left-  and right- hand imagery. 

The two CSP filters at the top left (R1, R2) are tuned for right- hand imagery; the bottom left 

filters (L1, L2) are tuned for left- hand imagery. The result of spatial filtering using these filters 

is shown in the panel on the right. Note how the variance of the R1 and R2 channels is low 

for right- hand imagery and high for left- hand imagery (and vice versa for L1 and L2) (from 

Müller et al., 2008).
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given the wide variety of possible artifacts and the nonstationarity of biological 

signals over time.

A complementary approach to handling artifacts is to not throw away all collected 

data when artifacts are detected but to attempt to remove them while retaining use-

ful neural data. he goal of such artifact removal methods is to identify and excise 

artifacts from data while preserving neurological phenomena useful for BCI. Some 

important artifact removal methods are discussed below.

4.6.2 Band- Stop and Notch Filtering

Band- stop iltering is a useful artifact reduction technique that attenuates the com-

ponents of a signal in a speciic frequency band and passes the rest of the components 

of the signal. Band- stop iltering can be performed by irst transforming the signal 

to the frequency domain (e.g., using FFT), iltering out the desired frequency band, 

and using the inverse FFT to transform back to the time domain. A commonly used 

band- stop ilter is a notch ilter set to the 59–61 Hz band (in the United States) for 

iltering out the 60 Hz power- line noise artifact. Another band- stop ilter set to a low 

frequency band (e.g., 1–4 Hz) is sometimes used in EEG recordings to reduce EOG 

artifacts. Low- pass iltering is sometimes used to exclude EMG artifacts. However, 

iltering approaches work only when the brain signal of interest does not fall within 

the frequency range of artifacts. For example, low- pass iltering may remove EMG 

artifacts, but if the BCI utilizes high- frequency components of the brain signal, such 

iltering may eliminate these useful components as well.

4.6.3 Linear Modeling

A simple way of modeling the efect of artifacts on a recorded brain signal is to 

assume that the efect is additive. For example, if EEGi(t) is the EEG signal recorded 

from electrode i at time t, then a model of how the signal has been contaminated 

could be:

 EEG t EEG t K EOG ti i

true( ) ( ) ( )= + ⋅  (4.44)

where EEG ti

true ( )  is the uncontaminated (“true”) EEG signal from electrode i at time t, 

EOG(t) is the recorded EOG signal at time t and K is a constant that can be estimated 

from data using a least- squares approach (see, for example, Crot et al., 2005). Given 

an estimated value for K, one can obtain an estimate of the true EEG signal using:

 EEG t EEG t K EOG ti

true

i( ) ( ) ( )= − ⋅  (4.45)

Figure 4.13 illustrates the use of linear modeling for correcting EEG data corrupted 

by eye movement artifacts.

Applying linear modeling for removing EMG artifacts is more diicult because 

EMG artifacts arise from multiple muscle groups, and an additive model with a 

single EMG(t) signal as for EOG may not be appropriate.

 

 

 

 

 

 



Background66

4.6.4 Principal Component Analysis (PCA)

One can use PCA to ind the directions of maximum variance in the recorded brain 

data (the eigenvectors of the data covariance matrix as discussed in Section 4.5.2). 

By projecting new data onto the eigenvectors, one can ind a set of orthogonal “com-

ponents” of the brain signals recorded from a set of electrodes. PCA has been shown 

to be useful for removing EOG artifacts from EEG signals (Lins et al., 1993) (see also 

Figure 4.10). However, the assumption that artifacts are uncorrelated with the brain 

signal may not be appropriate in certain cases, and PCA may be unable to separate 

these artifacts from the true brain signals.

4.6.5 Independent Component Analysis (ICA)

We already encountered ICA above in our discussion of spatial iltering techniques. 

ICA overcomes some of the shortcomings of PCA by seeking statistical indepen-

dence rather than decorrelation. ICA decomposes brain signals (e.g., EEG) from 

a set of electrodes into a set of “components” that are as statistically independent 

as possible. By visually inspecting the components or automatic detection using a 

learned model for artifacts, one can oten identify components due to EOG, EMG, 

or other artifacts (as in Figure 4.11), and reconstitute the brain signal without these 

components (see, for example, Jung et al., 1998; Makeig et al., 2000).

Figure 4.14 shows an example of how ICA can be used to remove components 

corresponding to artifacts and reconstitute a set of “corrected” EEG signals.
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Figure 4.13. Artifact reduction using linear modeling. The plot shows an averaged raw EEG wave-

form from scalp location Fp1 during a downward eye movement and corrected waveforms 

obtained using four linear modeling methods. These methods differed in how the constant K 

was determined for horizontal/vertical eye movement in the linear modeling equation; (see 

Croft et al., 2005) for details. The raw waveform was halved (“Raw × 0.5”) to allow compar-

ison with the corrected waveforms (from Croft et al., 2005). 
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Figure 4.14. Artifact reduction using ICA. (A) Five seconds of EEG data (same as Figure 4.10A). (B) 

Output of ICA when applied to the data in (A). The time courses of 22 ICA components are 

shown along with five of the ICA “unmixing” vectors rendered as interpolated scalp maps. 

These five components account for horizontal and vertical eye movements (top two) and 

muscle artifacts in the right/left temporal regions (bottom three). (C) Corrected EEG sig-

nals obtained by zeroing out the ICA outputs corresponding to eye movements and muscle 

artifacts (the five components in (B): 1, 4, 12, 15, and 19) and projecting the rest of the 

 components back to the scalp electrode space using the inverse of the ICA unmixing matrix 

(from Jung et al., 1998).
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4.7 Summary

Signals recorded from the brain, either invasively or noninvasively, typically contain 

various types of noise or mixtures of signals from multiple neurons. In this chapter, 

we reviewed techniques that attempt to extract useful signals from raw brain signals. 

Spike sorting isolates spikes originating from an individual neuron from the multi-

neuronal hash typically recorded by extracellular electrodes.

For noninvasive approaches, there exist a wide range of feature extraction tech-

niques based on frequency- domain, time- domain, or wavelet analysis, which can 

be used in conjunction with spatial iltering techniques to reduce dimensionality 

(PCA), separate sources from mixtures (ICA), or enhance discriminability between 

output classes (CSP).

Some of these techniques can also be used to reduce artifacts originating from 

outside the brain (e.g., line noise or muscle artifacts). As we shall see in the follow-

ing chapters, there is no one technique or feature type that emerges as the single 

best choice for all applications – the choice typically depends on the particular BCI 

paradigm and task. In most cases, one must compare performance with a range of 

features and techniques (e.g., using cross validation – see Section 5.1.4) before set-

tling on a choice that yields adequate performance for the given application.

4.8 Questions and Exercises

1. What is spike sorting and why is it necessary? Is it used in intracellular or extra-

cellular recording?

2. Explain the window discriminator method for spike sorting, and contrast it with 

sorting based on peak amplitude.

3. Write down the Fourier equation for expanding a signal s(t) in terms of sine and 

cosine. Now rewrite the expansion using complex coeicients where these coef-

icients are deined by the Fourier transform.

4. Give the non- zero Fourier coeicients for the following signals deined over the 

interval t = - 5 to +5 seconds:

a. 3 20sin( )πt

b. 1 – cos( )2πt

c. cos( ) sin( )4 2 4π πt t+
d. 2 sin( )cos( )5π πt t [Hint: Use the trigonometric identity for expressing 

sin( )cos( )x y  as the sum of two sines]

5. Deine the amplitude, phase, and power spectrum of a time- varying signal sam-

pled at discrete time intervals.

6. Why is the fast Fourier transform (FFT) called “fast?”

7. What is a mother wavelet, and how is it used in the wavelet transform? Explain 

how the wavelet transform difers from the Fourier transform in terms of the 

basis functions they use.
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8. What do the Hjorth parameters measure, and how are they computed?

9. What property of a signal does the fractal dimension measure? Describe how it 

can be empirically estimated.

10. Write the equation for an autoregressive (AR) model of order 3. How can it be 

used for characterizing the statistical properties of a time- varying signal?

11. Derive Bayes’ rule from the deinition of conditional probability.

12. Suppose a BCI user can select one of two commands, A or B. In prior trials, 30% 

of the commands selected by the user were the command A. If the likelihood 

of the current brain signal given command A is 0.6 and given command B is 

0.5, what is the posterior probability that the command is A? Which command 

should the BCI execute and why?

13. Explain how the general Bayesian iltering equation implements a 

 prediction- correction cycle that is recursive in nature.

14. What assumptions does the Kalman ilter make about the dynamics and mea-

surement processes of a signal being estimated? Explain using the equations 

used to describe the dynamics and measurement.

15. Derive the equation for computing the running average from the Kalman ilter 

equations. What assumptions do you have to make about the dynamics and 

measurement processes? (Hint: See Rao (1999) for a derivation.)

16. In what way is a particle ilter more powerful than a Kalman ilter for estimating 

an arbitrary time- varying signal?

17. Explain how the prediction- correction cycle is implemented in a particle ilter, 

and compare it with the way it is implemented in a Kalman ilter.

18. (  Expedition) Read about Bayesian networks and graphical models, and 

draw the graphical model that is assumed by both the Kalman ilter and the 

particle ilter.

19. (  Expedition) Read about Hidden Markov Models (HMMs), a special type 

of Bayesian network model used frequently in speech recognition. Discuss the 

relationship between HMMs and Kalman ilters, especially the assumptions 

made regarding the dynamics and measurement processes, and inference of 

hidden state from input data.

20. (  Expedition) he Kalman ilter and the particle ilter are examples of Bayesian 

inference algorithms. Read about and explain the following more general infer-

ence algorithms:

a. Belief propagation

b. Gibbs sampling

c. Variational inference

21. What is underlying motivation behind using simple spatial iltering techniques 

such as bipolar, Laplacian, and common average referencing?

22. Explain how PCA achieves:

a. Dimensionality reduction

b. Decorrelation
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c. Reconstruction of an input

23. How does ICA difer from PCA in terms of the statistical properties and dimen-

sionality of the output vector?

24. If you are given the choice between using PCA and ICA for analyzing brain data, 

when would you opt for one versus the other? Explain the underlying assump-

tions that motivate your choice.

25. CSP is a supervised learning technique whereas PCA and ICA are unsuper-

vised. Explain what this means and the circumstances under which it would 

make sense to use CSP.

26. How does CSP transform its inputs so as to aid classiication? Why is CSP espe-

cially useful in EEG BCIs where power in a particular frequency band is used as 

a feature?

27. Enumerate some of the most common types of artifacts in EEG BCIs and dis-

cuss which of the following techniques can be useful in reducing each type of 

artifact:

a. Faraday cage

b. hresholding

c. Band- stop and notch iltering

d. Linear modeling

e. Principal component analysis (PCA)

f. Independent component analysis (ICA)
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he ield of machine learning has played an important role in the development of 

brain- computer interfaces by providing techniques that can learn to map neural 

activity to appropriate control commands. Algorithms for machine learning can 

be broadly divided into two classes: supervised learning and unsupervised learning. 

In supervised learning, we are given training data that consists of a set of inputs 

and corresponding outputs. he goal is to learn the underlying function from the 

training data such that new test inputs are mapped to the correct outputs. If the 

outputs are discrete classes, the problem is called classiication. If the outputs are 

continuous, the problem is equivalent to regression. Given the emphasis on discov-

ering an underlying function, supervised learning is sometimes also called function 

approximation. Unsupervised learning, on the other hand, emphasizes discovery of 

hidden statistical structure in unlabeled data: the training data consists of inputs, 

which are typically high- dimensional vectors, and the goal is to learn a statistical 

model that may be compact or useful for subsequent analysis. We have already 

discussed two prominent unsupervised learning techniques (PCA and ICA) in the 

previous chapter.

In this chapter, we focus on the two major types of supervised learning tech-

niques: classiication and regression. Classiication is the problem of assigning one 

of N labels to a new input signal, given labeled training data consisting of known 

inputs and their corresponding output labels. Regression is the problem of mapping 

input signals to a continuous output signal. Many BCIs based on EEG, ECoG, fMRI, 

and fNIR have relied on classiication to generate discrete control outputs (e.g., 

move a cursor up or down by a small amount). BCIs based on neuronal recordings, 

on the other hand, have predominantly utilized regression to generate continuous 

output signals, such as position or velocity signals for a prosthetic device. In general, 

the choice of whether to use classiication or regression when designing a BCI will 

depend on both the type of brain signal being recorded and the type of application 

being controlled.

 5

Machine Learning
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5.1 Classification Techniques

5.1.1 Binary Classification

he task of a classiier is to assign class labels y Y∈  to a p- dimensional feature vector 

x. he most simple case is when Y =[ 1, 1]− + , i.e., discriminating between two clas-

ses (labeled - 1 and +1). his case is known as binary classiication. We focus irst on 

binary classiication methods, before discussing how these methods can be applied 

to multi- class classiication (see Section 5.1.3 below).

he binary classiication problem reduces to inding a boundary between the two 

classes based on the labeled training data – the goal is to ind a boundary such that 

new data can be classiied accurately (Figure 5.1A). he methods difer on how this 

boundary is computed from training data.

Linear Discriminant Analysis (LDA)

Linear discriminant analysis (LDA; sometimes also called Fisher’s linear discrimi-

nant) is a simple and popular classiication technique for classifying BCI data. LDA 

is a linear binary classiier that projects a p- dimensional input vector x onto a hyper-

plane that divides the input space into two halfspaces: each halfspace represents a 

class (+1 or - 1). he decision boundary is given by the hyperplane equation (see 

Appendix, Equation A.8):

 g wT( )x w x= + 0 = 0 (5.1)
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Figure 5.1. Binary classification. (A) The plot illustrates the binary classification problem for a two-

 dimensional dataset. The white circles represent two- dimensional data points (x1, x2) from 

class +1 and the black circles represent data from class −1. The goal is to determine whether 

new data points (represented by the two gray circles) belong to class +1 or −1. (B) Linear 

binary classifiers such as LDA estimate a hyperplane (in the two- dimensional case, a line such 

as the one shown) which separates the training data points into two classes. This separating 

hyperplane is determined by the equation g(x) = 0. Data points are classified according to 

the side of the hyperplane they fall on.
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he boundary between the two classes is thus characterized by the hyperplane’s 

normal vector w and the threshold w0 , which are determined from the labeled 

training data.

Given a new input vector x ∈ X p, classiication is achieved by computing:

 y sign wT= ( )0w x +  (5.2)

which assigns y = 1−  if w xT w+ 0  is negative and y = 1+  if w xT w+ 0  is positive (or 

zero) (see Figure 5.1B). During online BCI experiments, the (signed) distance to the 

hyperplane, given by d wT( ) = 0x w x +  (assuming w =1 ), is sometimes also used to 

provide feedback to the user about how close to the boundary a point is.

To compute w, LDA assumes that the class conditional distributions P(x|c = 1)  

and P(x|c = 2) are normal distributions with mean µµc  and covariance ∑c  for c∈{ }1,2  

(see Appendix for a review of mean, covariance, and multivariate normal (or 

Gaussian) distribution). It can be shown that the optimal classiication strategy is to 

assign inputs to the irst class if the log likelihood ratio log[ ( | ) ( | )]P c P cx x= =1 2  

is above a threshold (and to the second class if below or equal to the threshold). 

Because the two distributions are Gaussian, this reduces to the comparison:

 ( ) ( ) ( ) ( )x x x x− − − − − >− −µ µ µ µ1 1
1

1 2 2
1

2
T T KΣ Σ  (5.3)

where K is the threshold. If we now make the assumption that the class covariances 

are equal, i.e., Σ Σ Σ1 2= =  and have full rank, we obtain the classiication criterion:

 w x wT k> = −−where Σ µ µ1
1 2( )

 
(5.4)

he threshold k is oten deined to be in the middle of the projection of the two class 

means; that is,

 k T= +w ( ) /µ µ1 2 2  (5.5)

It can be shown that the above choice for w deines a decision boundary that maxi-

mizes the distance between the means m1 and m2 of the projected data y T= w x  

from each class while minimizing the within- class variance of the projected data 

(see Figure 5.2). Further details can be found in Duda et al. (2000).

LDA has been a popular classiier in BCI research because it is simple to imple-

ment and can be computed fast enough for online use. In general, LDA has been 

found to produce good results, although due to the strong assumptions made in its 

derivation, factors such as non- Gaussian data distributions, outliers, and noise can 

adversely afect performance (Müller et al., 2003).

Regularized Linear Discriminant Analysis (RDA)

Regularization techniques are typically used to promote generalization and avoid 

overitting, especially when the number of parameters to be estimated is large and 
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the number of available observations small. For example, in the case of LDA, we 

might have insuicient data to accurately estimate the class mean µµc  and class 

covariance Σc . In particular, the Σc  could become singular. Regularized linear dis-

criminant analysis (RDA) (Friedman, 1989) is a simple variant of LDA where the 

common covariance Σ is replaced by its regularized form:

  Σ Σλ λ λ= (1 )− + I  (5.6)

where λ ∈( )0,1  denotes the regularization parameter and I is the identity matrix. By 

adding small constant values to the diagonal elements of Σ, one can ensure nonsin-

gularity and the existence of Σλ
−1 which is needed to compute w as in Equation 5.4. 

he regularization parameter λ can be chosen via model selection techniques (see 

below) to allow better generalization.

RDA has been used in applications such as classifying motor imagery in ECoG BCIs 

(see Section 8.1.2). Comparisons suggest that the classiication results obtained using 

RDA are, in some cases, similar to those achieved using LDA (Vidaurre, 2007).

Quadratic Discriminant Analysis (QDA)

Quadratic discriminant analysis (QDA) begins with the same assumptions as LDA, 

that is, that the class conditional distributions P(x|c=1) and P(x|c=2) are normal with 

 

x2

x1

wTx + w0 = 0
w

m1

m2

Figure 5.2. Linear discriminant analysis (LDA). In LDA, the data points for the two classes are mod-

eled as being generated by two Gaussians, each with its own mean and covariance. The plot 

depicts these two Gaussians as dashed ovals around a set of two- dimensional data points. 

The crosses represent class 1 while the circles represent class 2. The projections of these data 

points onto a vector w are shown as smaller crosses and circles. LDA finds a vector w that 

maximizes the distance between the means m1 and m2 of the projected data while minimiz-

ing the within- class variance. This w is normal to the separating hyperplane (here, the line 

between the dashed ovals) (adapted from Barber, 2012).
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mean µµc  and covariance Σc  for c∈{ }1,2 . It difers from LDA in allowing diferent 

covariance matrices (Σ1 and Σ2) for the two classes. his results in a quadratic deci-

sion boundary based on (the square of) the Mahalanobis distance (see Appendix) 

between the new observation x and the class mean µµc :

  mc c

T

c c( ) = ( ) ( ).1x x x− −−µ µΣ  (5.7)

Classiication is performed as in Equation 5.3 by comparing the diference between 

the two distances with a pre- determined threshold K:

 y sign m m K= ( ( ) ( ) ).1 2x x− −  (5.8)

Neural Networks and Perceptrons

Neural networks (also called artiicial neural networks or ANNs) are inspired by 

their counterparts in biology and seek to reproduce the adaptive capabilities of 

networks in the brain in classifying input data in a robust manner. A prominent 

example is the perceptron and its generalization, the multilayered perceptron. he 

single- layer perceptron computes a hyperplane similar to LDA:

 w xT w+ 0 = 0  (5.9)

where the vector w represents the “synaptic weights” connecting the inputs to the 

neuron and –w0 represents the threshold of iring for the neuron. he output of the 

perceptron is likewise identical to the output of the LDA:

 y sign wT= ( )0w x +  (5.10)

Equation 5.10 has a “neural” interpretation: the output of the neuron is based on 

computing a weighted sum of its inputs ( w xT

i
i

iw x= ∑ ) and comparing this sum 

to a threshold - w0; if the weighted sum is greater than (or equal to) the threshold 

- w0, the neuron’s output is 1 (a “spike”), otherwise the output is 0. Note that this 

can be viewed as a simpliied form of the threshold model for spike generation 

(Section 2.5).

The perceptron differs from the LDA in how the weights and the threshold 

parameter are adapted in response to inputs. Drawing inspiration from biology, 

the perceptron adapts its parameters in an online manner: given an input x and 

a desired output yd, if the output error (y – yd) is positive, the weights for posi-

tive inputs are decreased, the weights for negative inputs are increased, and the 

threshold is increased, all by a small amount. The net effect of this “learning” 

rule is to reduce the output error for similar inputs in the future. If the out-

put error is negative, the weights for positive inputs are increased, the weights 

for negative inputs are decreased, and the threshold is decreased. Although this 

neurally inspired adaptive algorithm is simple and elegant, it is applicable only 

to classification problems where the data are linearly separable.
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Multilayer perceptrons have been proposed as a nonlinear generalization of per-

ceptrons to tackle harder classiication problems. Multilayer perceptrons use a sig-

moid (“sot threshold”) nonlinearity (Section 5.2.2) rather than a hard threshold 

nonlinearity for their neuronal units:

  y sigmoid wT= ( )0w x +  (5.11)

he output of the sigmoid function (see Figure 5.10) is a number between 0 and 1, 

with values close to 0 indicating membership in class 1 and values close to 1 indi-

cating membership in class 2. he reason for using the sigmoid is that it is difer-

entiable, allowing a learning rule known as backpropagation (Section 5.2.2) to be 

derived for propagating the information about output error down from the outer-

most output layer of the network to inner “hidden” layers. Backpropagation- based 

neural networks have proved successful in a range of classiication tasks, including 

classiication of BCI data, and are widely available in sotware packages for classii-

cation. Although powerful, such neural networks oten sufer from the problem of 

overitting to the training data, resulting in poor generalization. As a result, the more 

recent technique of support vector machines (SVMs) are typically favored over neu-

ral networks as the classiication algorithm of choice in many BCIs.

Support Vector Machine (SVM)

LDA and perceptrons select a hyperplane w xT w+ 0 = 0 to separate two classes. 

This hyperplane is only one among a potentially infinite number of hyper-

planes separating the two input classes (Figure 5.3A). It can be shown (Vapnik, 

1995) that among such hyperplanes, the best generalization is achieved by 

 A B

Margin

Support vectors

Figure 5.3. Support vector machine (SVM). (A) The open and filled circles depict data points from two 

different classes. There are an infinite number of lines that can separate this set of data points 

(five possible lines are shown in blue). Which of these is “optimal” in terms of generalizing 

the best to new data? (B) The SVM finds the separating line with the maximum “margin” 

(here, the line at the center of the shaded rectangle); such a line (or hyperplane in higher 

dimensions) can be shown to provide the best generalization performance. The points from 

the training data set that define this maximum margin are called support vectors.
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selecting the hyperplane with the largest separation (“margin”) between the two 

separable classes (Figure 5.3B).

he support vector machine (SVM) is a classiier that inds the separating hyper-

plane for which the margin between the samples of the two classes is maximized. 

Since the width of the margin is inversely proportional to w
2

2
 (Duda et al., 2000),1 

the search for the optimal w can be framed as a quadratic optimization prob-

lem,  subject to the constraints that each training data point is correctly classiied. 

However, due to the nature of EEG and ECoG data, one cannot assume that the 

data will be linearly separable. In this case, one could seek to separate the training 

data with a minimal number of errors. To allow for misclassiications and outliers, 

the sot margin SVM (Cortes and Vapnik, 1995) uses slack variables ξi  to measure 

the degree of misclassiication of an input i (Figure 5.4). he resulting optimization 

problem for the linear sot margin SVM is given by:

 w w, ,  
1

20 2

2

1
ξ ξw

C

K

min

  +





 

(5.12)

subject to:

y wi

T

i i( 10w x + ≥ −) ξ

with ξi i K≥ 0  =1, , .for 

1 We use ⋅
2
 to represent the Euclidean (or L2) norm and ⋅

1
 the L1- norm, e.g.,  w

1
= | |∑i iw .

 

Margin

Outlier

ξi

Figure 5.4. Soft- margin SVM. In many cases, the training data may contain outliers due to noise or may 

simply not be linearly separable. In these cases, a soft margin SVM can be used to find the 

maximum margin separating line (line at the center of the shaded rectangle) that separates 

the training data with a minimal number of misclassifications. The soft- margin SVM uses 

slack variables ξi
 to measure the degree of misclassification in terms of how far a data point 

is from the correct side of the margin for its class.
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Here, x i  denotes input feature vector i, K the number of inputs, and yi ∈ − +{ }1, 1  

the class membership.

Linear SVMs have been successfully applied in a large number of BCI applica-

tions. In cases where linear SVMs are not suicient, it is possible to utilize the kernel 

trick (Boser et al., 1992) to efectively achieve a nonlinear mapping of the data to 

a suiciently high dimensional space where the two classes are linearly separable. 

he most commonly used kernel in BCI applications is the Gaussian or radial basis 

function kernel. Further information regarding nonlinear SVMs can be found in 

Burges (1998).

5.1.2 Ensemble Classification Techniques

Ensemble methods for classiication combine the outputs of several classiiers (that 

disagree with each other on some training inputs) to produce an overall classiier 

with better generalization performance than any of the individual classiiers. he 

most popular ensemble methods, bagging and boosting, work by selecting diferent 

subsets of the training data to generate diferent classiiers and then combining their 

outputs using some form of voting.

Bagging

Bagging is the simplest of the ensemble learning methods. he method can be sum-

marized as follows: (1) generate m new training datasets by sampling with replace-

ment from the given dataset, (2) train m classiiers (e.g., neural networks), one for 

each newly generated dataset, and (3) classify a new input by running it through 

the m classiiers and choosing the class that receives the most “votes” (i.e., the class 

chosen by a majority of the classiiers).

Speciically, given a training dataset D of size N, bagging generates m new train-

ing sets Di by sampling N’ examples from D uniformly and with replacement (where 

N’ ≤ N). Sampling with replacement means that some examples may be repeated 

in each Di. In the typical case where N’ = N, Di can be expected to have about 63% 

unique examples from D, the rest being duplicates (such a sample dataset is known 

as a bootstrap sample). One classiier is trained for each of the m bootstrap sample 

datasets. he outputs of the classiiers are combined by voting to generate the output 

of the ensemble classiier.

Random Forests

Perhaps the most popular bagging technique in use today is the technique known as 

random forests (Breiman, 2001). Random forests derive their name from the fact that 

they are comprised of a collection of decision- tree classiiers. A decision tree (Russell 

and Norvig, 2009) is a simple type of classiier that takes the form of a tree. Each node in 

the tree represents a test of one of the input variables; depending on the outcome of the 

test, we take one of the sub- branches of the tree. In this way, we follow a path all the way 

down to a leaf, which predicts an output class for the tree. In the case of random forests, 

an input vector is irst run through each of the trees in the forest. Each tree predicts an 
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output class, i.e., the tree “votes” for that class. he forest chooses as its output the class 

receiving the most votes from all the trees in the forest.

During training, each tree in the random forest is obtained in the following 

 manner: (1) as in other bagging techniques, a bootstrap sample is obtained by sam-

pling with replacement N times from the original training dataset, N being the size 

of the training dataset; (2) this sample dataset is used to grow a decision tree: start-

ing from the root node and at each subsequent node, a subset of m input variables 

(e.g., features) is selected at random, and a test of these m input variables that best 

splits the sample into two separate classes is used as the test for the node (the value of 

m is kept constant for all trees). Random forests have become popular in recent years 

because they perform well and run eiciently on large datasets with large numbers 

of input variables. heir use in BCIs remains relatively unexplored.

Boosting

Boosting is an ensemble technique that inds a series of classiiers such that input data 

points for which the current set of classiiers predict incorrectly are given more weight 

than points that are correctly predicted. his leads to inding a new classiier that per-

forms better on data points for which the current set of classiiers performs poorly. he 

inal output of the ensemble classiier is based on a weighted sum of the outputs of all 

the classiiers. Boosting difers from bagging in that each new classiier is selected based 

on the performance of previous classiiers, whereas in bagging, the resampling of the 

training set at any given stage does not depend on the performance of earlier classiiers. 

Boosting is especially useful when the classiiers available for a problem are “weak” – 

they perform only slightly better than chance, and the goal is to boost accuracy by build-

ing a “strong” classiier based on the outputs of the weak classiiers.

Perhaps the best known boosting algorithm is AdaBoost (Freund and Schapire, 

1997). AdaBoost creates an ensemble classiier in a series of rounds t = 1, . . . ,T. In 

each round, a set of weights Wt(i) is updated, representing the weight for the ith 

data point in the training set. In each round, the weight of each incorrectly classi-

ied data point is increased while the weight of each correctly classiied data point is 

decreased, thereby ensuring that the classiier selected in the next round does well 

on the incorrectly classiied examples.

he AdaBoost algorithm can be summarized as follows. We are given a training set of 

m data points ( , )x yi i , where xi is the input and yi  is the label of the output class (+1 or - 1).  

he weight for ith data point is initialized as W i
m

1

1
( ) = . In each round t, t = 1, . . . ,T:

1. Find the classiier ft from the given set of weak classiiers that minimizes the total 

classiication error weighted by Wt:

f E E W i f x yt t
f

t t t i i
i

m

t

* arg min ( ) ( )= = ≠[ ]
=
∑where

1

where the expression inside [.] evaluates to 1 if true and 0 otherwise.

2. If Et ≥ 0 5.  then  stop.
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3. Otherwise, choose αt
t

t

E

E
=

−1

2

1
ln .

4. Update the weights for the next round:

W i
W i e

Z
t

t

y f x

t

t i t i

+

−

=1( )
( ) ( )α

where Zt is a normalization factor chosen so that Wt + 1 sums to one.

he inal AdaBoost classiier is given by:

F x f xt t
t

T

( ) ( ( ))=
=
∑sign α

1

where sign(x) = +1 if x ≥ 0 and - 1 if x < 0. he inal output is thus a weighted major-

ity vote of all the individual classiiers.

he key step that makes AdaBoost a powerful ensemble classiier is step 1 where 

the classiier ft is chosen based on the weights Wt: these weights on the errors ensure 

the selection of a classiier that performs better on those examples that a previous 

classiier may have erred on.

5.1.3 Multi- Class Classification

he classiiers discussed thus far were designed for classifying data into one of two 

classes. In BCI applications, the number of desired output signals is frequently 

greater than two, requiring methods for multi- class classiication. here are several 

strategies for applying binary classiiers to the multi- class problem.

Combining Binary Classifiers

One strategy for multi- class classiication is to train several binary classiiers and 

use majority voting. Given NY
 classes, a total of N NY Y( 1) 2− /  binary classiiers are 

trained, one for each binary combination of classes. For classiication, a given input 

is fed to each of these classiiers, and the class with the most votes – the class selected 

by the largest number of classiiers – is selected as the output. A disadvantage of this 

approach is the relatively large number of classiiers that need to be trained and used 

during classiication.

An alternate strategy for multi- class classiication using binary classiiers is the 

one- versus- the- rest approach: for each class, an individual classiier is trained to 

separate the data belonging to this class from the rest of the classes. Classiication is 

achieved by running each of these NY  classiiers on the given input and picking the 

class with the highest output value.

Nearest Neighbor and k- Nearest  Neighbors

Perhaps the simplest multi- class classiication technique is nearest neighbor (NN) 

classiication. As the name implies, an input is simply assigned to the class of its 
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nearest neighbor. he nearest neighbor is determined by a metric such as the 

Euclidean distance between vectors (denoted here by x and y):

 d x y
n

M

n nx,y
=

=1

2∑ −( )
 

(5.13)

Figure 5.5 illustrates how NN classiication works for two- dimensional data points 

from three classes. he technique implicitly deines a decision boundary that is piece-

wise linear, with each segment corresponding to the perpendicular bisector between 

two data points belonging to diferent classes. he input space is thus partitioned 

into diferent regions belonging to diferent classes (colored regions in Figure 5.5). 

Note that the regions can be discontinuous and the boundaries highly nonlinear 

(even if piecewise linear).

One problem with NN classiication is that it can be quite sensitive to noise and 

outliers (see Figure 5.6A). he technique can be generalized to be more robust using k- 

nearest neighbors (k- NN): an input is assigned to the class that is most common among 

its k nearest neighbors, where k is a small positive integer. Figure 5.6B illustrates how 

k- NN can overcome the problem of outliers and make classiication more robust.

One potential problem with the k- NN technique is that it is biased toward 

classes that have the most examples in the training data. A variant of the technique 

addresses this problem by taking into account the distance from the input to each of 

 

Figure 5.5. Nearest- neighbor (NN) classification. (See color plates for the same figure in color) The 

figure illustrates NN classification applied to a training data set containing two- dimensional 

points belonging to three different classes (represented by the open red, green, and blue cir-

cles respectively). The small dots represent new data points that have been classified accord-

ing to the label of their nearest neighbor in the training data set (color of a dot represents the 

class it was assigned to). Note that the boundary between the different classes is not linear 

(compare with Figures 5.1–5.3) but is piecewise linear, and the region for any class can be 

discontinuous (e.g., the “red” and “green” classes) (from Barber, 2012).
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the k- nearest neighbors and using an inverse- distance weighted average of the class 

predicted by the k- nearest neighbors.

Learning Vector Quantization (LVQ) and DSLVQ

In learning vector quantization (LVQ), classiication is based on a small set of 

labeled feature vectors mi i i

N
Y,

=1
{ }  (also known as codebook vectors) with labels 

Y Ni Y∈[1, ] . Classiication of a new sample is achieved by assigning to it the label 
Yk  of its closest codebook vector mk. How close an input sample x is to a codebook 

vector m is determined using, for instance, the Euclidean distance between vectors 

(Equation 5.13).

he codebook (or feature) vectors mi  and their labels are initialized randomly. 

Learning proceeds by changing the codebook vectors according to the training data 

as follows. he closest codebook vector is selected for each training sample. If it cor-

rectly classiies the sample, the vector is changed to be more similar to the sample, 

otherwise it is moved away to make it less similar to the sample.

Note that in LVQ, each codebook or feature vector contributes equally. A more 

common scenario in BCI is the case where we are given a ixed set of features fi 

(e.g., power spectral features) but would like to weight them diferently in terms 

of their discriminative ability. A variant of the LVQ algorithm, called distinction 

sensitive LVQ (DSLVQ), can be used in this case. DSLVQ employs a weighted 

distance function

 

x2 x2

x1 x1

A B

Figure 5.6. k -nearest neighbors( k- NN). (A) Two- dimensional data set showing points belonging to 

two classes (class 1: white points; class 2: black points). The gray point is a new data point 

to be classified. (B) The simple nearest- neighbor technique (k = 1) classifies the gray point 

as class 2 because it is closest to a black point (innermost dashed circle). However, as can be 

seen, this black point is an outlier in the training data set. A 3- NN classifier is able to correctly 

classify the gray point as class 1 because the majority of the nearest neighbors are from class 

1 (for k = 3, 2 white points versus 1 black point).
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 d w x m
n

M

n n nw,x,m
= ( )

=1

2∑ ⋅ −( )
 

(5.14)

to diferentially weight features in classiication. he weights vectors w are adapted 

in a manner similar to how codebook vectors are adapted in LVQ (see Pregenzer 

(1997) for details).

Naïve Bayes Classifier

A naïve Bayes classiier is a probabilistic classiier based on Bayes’ rule with strong 

independence (“naïve”) assumptions (it is sometimes also called the “independent 

feature model”). Suppose the goal is to ind out which class (out of N possible clas-

ses) a speciic input belongs to, based on a large number of features F1, F2, . . . , Fn 

computed from the input. One way of doing this is by picking the class i with the 

maximum posterior probability:

P C i F Fn( | , , )= 1 

Using Bayes’ rule, this probability can be computed as:

P C i F F
P C i P F F C i

P F F
n

n

n

( | , , )
( ) ( , , | )

( , , )
= =

= =
1

1

1






where the two terms in the numerator are the prior probability of class i and 

the joint likelihood of the input features given class i. Without further assump-

tions, it is computationally impractical to estimate and store the joint likelihood 

of every possible combination of features, especially when the number of features 

is large.

he naïve Bayes model makes the assumption that the features are independent 

of each other given the class:

P F F C i P F C i P F C i P F C in n( , , | ) ( | ) ( | ) ( | )1 1 2 = = = = =

In this case, rather than estimating the joint likelihood for every combination of fea-

tures, we need to estimate only the individual likelihood functions for each feature 

and multiply them together, resulting in the following expression for the posterior 

probability:

P C i F F
P C i P F C i P F C i P F C i

P F F
n

n

n

( | , , )
( ) ( | ) ( | ) ( | )

( , ,
= =

= = = =
1

1 2

1




 )

( ) ( | ) ( |                                ∝ = = =P C i P F C i P F C i1 2 ) ( | )P F C in =

Classiication in this simpliied and more tractable model reduces to computing the 

expression on the right- hand side for each class and picking the class with the maxi-

mum value (the maximum a posteriori, or MAP, class). 
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5.1.4 Evaluation of Classification Performance

In BCI applications, as in other applications of classiiers, it is important to evalu-

ate the accuracy and generalization performance of a chosen classiier. We briely 

review some of the major evaluation techniques.

Confusion Matrix and ROC Curve

When evaluating performance, it is useful to compute the N NY Y×  “confusion” 

matrix M, where NY  denotes the number of classes. he rows of M represent the 

true class labels and the columns represent the classiier’s output. he case of binary 

classiication ( NY = 2 ) is shown in Table 5.1. he four entries in the matrix corre-

spond to: the number of true positives (TP) or correct positive classiications, the 

number of false negatives (FN) or missed positive classiications (sometimes called 

Type II errors), the number of false positives (FP) or incorrect positive classiications 

(sometimes called Type I errors), and the number of true negatives (TN) or correct 

rejections. he diagonal elements Mii  of the matrix represent the number of cor-

rectly classiied samples. he of- diagonal elements Mij  show how many samples of 

class i have been misclassiied as class j.

When we vary some parameter of the classiier (e.g., a threshold), we obtain 

diferent numbers of true positives and false positives. A plot of the proportion 

of true positives versus the proportion of false positives, when some parameter 

of the classiier is varied, is known as a ROC curve (“receiver operating character-

istic” curve, a term with origins in signal- detection theory). Figure 5.7 illustrates 

where diferent kinds of classiiers fall in the ROC space, including classiiers that 

perform better than, worse than, or at chance levels (random guessing) as well as 

the seldom attained perfect classiier (see Figure 9.13 for actual ROC curves for a 

noninvasive BCI).

Classification Accuracy

he classiication accuracy ACC is deined as the ratio between correctly classiied 

samples and the total number of samples. It can be derived from the confusion 

matrix M as follows:

 ACC
TP TN

TP FN FP TN
=

+
+ + +  

(5.15)

Table 5.1. Confusion matrix for 2- class  problems.

Classiication

True class Positive Negative

Positive true positives (TP) false negatives (FN)

Negative false positives (FP) true negatives (TN)
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We can then deine the error rate as err ACC=1− . When the number of examples for 

each class is the same, the chance level is ACC NY0 =1/  where NY
 denotes the number 

of classes.

Kappa  Coefficient

Another useful performance measure is the kappa coeicient (Cohen’s κ):

 κ =
1

 0

0

ACC ACC

ACC

−
−  

(5.16)
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Figure 5.7. The ROC space. TPR stands for true positive rate, or the fraction of positives correctly identi-

fied as positives (this is sometimes also called “sensitivity” or “recall rate”). FPR stands for 

false positive rate (which is also equal to one minus “specificity,” which is the fraction of 

negatives correctly classified as negatives). A and C’ are classifiers that perform better than 

chance (random guessing) whereas B performs at chance levels. C performs significantly 

worse than chance. The perfect classifier occupies the top left corner and has a TPR of 1 and 

FPR of 0. Ideally, we would like our classifier to be as close to the top left corner as possible. 

(Image: Adapted from Wikimedia Commons).
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By deinition, the kappa coeicient is independent of the number of samples per 

class and the number of classes. κ = 0  means chance level performance and κ =1 

means perfect classiication. κ < 0 means that classiication performance is worse 

than chance.

Information Transfer Rate (ITR)

To compare the performance of BCIs, it is important to consider both the accuracy 

and speed of a BCI. Since a BCI can be regarded as a communication channel, one 

can use ideas from information theory and quantify a BCI’s performance in terms 

of bit rate or information transfer rate (ITR), which is the amount of information 

communicated by a system per unit time. his measure captures both speed and 

accuracy.

Suppose a BCI ofers N possible selections (or classes) in each trial and each 

class has the same probability of being the one that the user desires. Suppose also 

that the probability P that the desired class will actually be selected is always the 

same (note that P = ACC). Each of the other (i.e., undesired) classes has the same 

probability of being selected (i.e., (1- P)/(N- 1)). hen, using ideas from information 

theory (see Pierce [1980] and Shannon and Weaver [1964]), we can express the 

ITR (or bit rate) as:

 B log N Plog P P log P N= ( ) ( ) (1 ) (1 ) / ( 1)2 2 2+ + − − −  (5.17)

measured in bits/trial (dividing B by the trial duration in minutes gives the rate in 

bits/min) (Wolpaw et al., 2000).

Figure 5.8 plots the ITR as a function of BCI accuracy (i.e., P) for diferent values 

of N. he assumptions made to derive B above may not always be fulilled, but B 

provides a useful upper limit on the performance that can be achieved.

Cross- Validation

A inal but important issue that we briely discuss here is the estimation of the error 

rate err. To get a true estimate of the error rate, classiiers are typically tested on “test 

data” that are diferent from the data used to train the classiier. One approach is to 

simply partition a given input dataset into two subsets, one for training and one for 

testing (the hold out method), but this strategy is sensitive to how the data is split. 

A more sophisticated strategy is K- fold cross- validation: the dataset is split into K 

subsets of approximately equal size, of which K- 1 are used to train the classiier and 

the remaining subset is used for testing. he classiier is trained and tested K times, 

resulting in K diferent error rates errk . he overall error rate is computed by averag-

ing the individual errk :

 err
K

err
k

K

k=
1

.
=1

∑
 

(5.18)
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Diferent variations of the above procedure exist. For example, leave- one- out 

cross- validation is an extreme form of K- fold cross- validation where K is set equal 

to the number of training samples. In another variation that seeks to minimize the 

efects of speciic partitions of the data, K- fold cross- validation is repeated N times, 

yielding N K⋅  individual error rates erri , with the inal error rate being the average 

over these N K⋅  values.

In many applications, it is common to split the training dataset into three subsets: 

a training subset to ind the parameters of the classiier, a validation subset to tune 

these or other parameters of the classiier, and a test subset to report the performance 

of the optimized classiier. Although these procedures are computationally costly, 

they play an important role in improving the generalization ability of the classiier.

5.2 Regression

We saw in Section 5.1 that classiication involves mapping inputs to one of a inite 

number of classes. his can be regarded as a special case of the function approxi-

mation problem where the output is discrete. When the output is continuous, that 

is, a real- valued scalar or vector, the problem is equivalent to regression. As was 

the case with classiication, we are given a training set of N example input- output 

pairs of vectors (um,dm), where m = 1, . . . , N, and we wish to learn a function that 

maps arbitrary input vectors to appropriate outputs. We discuss the simplest form 
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Figure 5.8. Information transfer rate (ITR). ITR is shown in bits/trial and in bits/min (data shown for 

12 trials/min) when the number of possible classes (i.e., N) is 2, 4, 8, 16, or 32 (from Wolpaw 

et al., 2000).
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of regression, linear regression, before proceeding to nonlinear and probabilistic 

regression methods.

5.2.1 Linear Regression

Linear regression assumes that the underlying function generating the data is linear, 

i.e., the output vector is a linear function of the input vector. For the purposes of 

illustration, we consider here the special case where the input u is a K- dimensional 

vector (e.g., iring rates of K neurons) and the output v is a scalar value (e.g., end 

efector position). he output is then given by the linear function:

 v w ui i

T

i

K

= =
=
∑ w u

1  
(5.19)

where w is a “weight” vector or linear ilter which we need to determine from the train-

ing data.2 Linear least squares regression inds the weight vector w that minimizes the 

sum of squared output errors (see Figure 5.9) over all the training examples:

 
E d v
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m m
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( )w

d w

= −( )
= −

∑
2
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(5.20)

2  We can model a constant ofset, i.e., v cT= +w u , using Equation 5.19 by replacing u with 
u

1









  and estimat-

ing c as part of w.
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Figure 5.9. Linear regression. Linear regression finds a linear function of u (a line in this case) that 

minimizes the sum of squared output errors (i.e., vertical distances from the data points to 

the line) (adapted from Barber, 2012).
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where d is the vector of training outputs, U is the input matrix whose rows are the 

input vectors u from the training set, and || || is the square root of the sum of squares 

of each component of a vector. We can minimize the error by taking the derivative 

of E with respect to w and setting the result to zero, obtaining:

 

2 0

1

⋅ − =
=

= ( )−

U U

U U U

U U U

T

T T

T T

( ) ,

,

d w

w d

w d

 i.e.,

 i.e.,

 

(5.21)

he last step assumes (UTU)- 1 exists. he weight vector that minimizes output 

error is thus a function of both the inputs and the desired outputs as speciied by 

the training data. he above method for estimating the weight vector is some-

times called the Moore- Penrose pseudoinverse method (the matrix (UTU)- 1UT is the 

“pseudoinverse”).

Linear regression has proved to be surprisingly efective in many invasive brain-

 computer interfaces as we shall see later in the book. It is also fast and easy to com-

pute. Its main drawback is that it is too simplistic a model for some settings such as 

noninvasive BCIs where the mapping from brain signals to control is typically non-

linear. Additionally, it does not provide any estimates of uncertainty in its output.

5.2.2 Neural Networks and Backpropagation

Neural networks have been popular algorithms for nonlinear function approxima-

tion since the discovery of the backpropagation learning algorithm in the 1980s. In 

this section, we briely review multilayered sigmoid neural networks for nonlinear 

regression and derive the backpropagation algorithm from irst principles.

When discussing classiication techniques (Section 5.1), we encountered the per-

ceptron, a type of neural network where each “neuron” utilizes a threshold output 

function on a weighted sum of its inputs. he threshold function is useful for clas-

siication but for nonlinear regression, a popular choice is the sigmoid (or logistic) 

output function:

 v g T= ( )w u  (5.22)

 where

 g x
e x

( ) =
+ −

1

1 β
 

(5.23)

As shown in Figure 5.10, the sigmoid function can be seen as a smoother ver-

sion of the threshold function: it squashes its inputs to lie between 0 and 1, with 

the parameter β controlling the slope of the function (higher values of β push 

the sigmoid closer to a threshold function). he sigmoid is also easily diferen-

tiable, which will become important when we derive the backpropagation learning 

rule below.
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For nonlinear regression, we are interested in networks containing multiple layers 

of neurons, where the output of one layer is fed as input to the next layer of neurons. 

he most common type of multi- layered network is a three- layer network contain-

ing an input layer, a “hidden” layer, and an output layer. It has been shown that at 

least theoretically, such networks can approximate arbitrary nonlinear functions, 

given enough neurons in the hidden layer. We will focus on such networks (with a 

single hidden layer) below.

Suppose we have a three- layered network of sigmoid neurons (Figure 5.11), with 

matrix V representing the weights from input layer to the hidden layer and the 

matrix W representing the weights from the hidden to the output layer. he output 

of the ith neuron in the output layer can then be described as:

 v g W g V ui ji
j

kj
k

k= ∑ ∑( ( ))
 

(5.24)

As in the case of linear regression above, the goal is once again to minimize the 

error between the desired output vector in the training data and the actual output 

vector produced by the network. For each input in the training data, this error is 

given by:

 E W V d vi
i

i( , ) ( )= −∑1

2
2

 
(5.25)
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Figure 5.10. The sigmoid function. The solid curve is the sigmoid function for β = 1 while the dashed 

curve is the sigmoid for β = 10. As β gets larger, the sigmoid approaches the threshold (or 

step) function with the threshold at 0. For comparison, the cumulative distribution of the 

standard normal distribution is shown as a dotted curve (close to the solid sigmoid) (from 

Barber, 2012).
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Two points should be noted here: (1) due to the presence of the sigmoid nonlin-

earities, we can no longer derive an analytical expression for the weights by setting 

the derivative of E to zero as we did above for linear regression, and (2) we know 

only the error for the output layer (the expression for E above); we therefore need 

to “backpropagate” this error information down to the lower layers of the network 

so that we can correct the weights there in proportion to their contribution to the 

output error (this is sometimes called the “credit assignment” problem). he back-

propagation algorithm was proposed as a solution to these two problems.

he backpropagation algorithm attempts to minimize the output error function 

E(W,V) by performing gradient descent on E with respect to the weights W and V. 

his means updating the weights in proportion to − ∂
∂

E

W
 and − ∂

∂
E

V
 until the changes 

in weights become small, indicating we have reached a local minimum of the error 

function. he expression for updating the outer layer of weights W can be derived 

easily using the chain rule of calculus as follows:

  

W W
dE

dW

dE

dW
d v g W x x

ji ji

ji

ji

i i mi m
m

j

← −

= − − ′ ∑

ε
( ) ( )

 

(5.26)

where ← means the let- hand- side expression is replaced by the one on the right-

 hand side, ε is the “learning rate” (a small positive number between 0 and 1), g’ is the 

derivative of the sigmoid function g, and xj is the output of hidden layer neuron j: 

x g V uj kj
k

k= ∑( ).

 

νi = g (ΣWji xj)

xj = g (ΣVkj uk)
k

j

u

W

V

Output layer

Hidden layer

Input layer

Figure 5.11. Three- layer neural network. Each neuron in the hidden layer takes a weighted sum of its 

inputs and passes this sum through the nonlinearity g to produce an output xj. Output- layer 

neurons take a weighted sum of these xj and pass this sum through g to yield the output of 

the network.

 

 



Background92

he equation for updating the inner layer of weights V can also be obtained by 

applying the chain rule:

 

V V
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dE

dx
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(5.27)

It can be seen that the output errors ( )d vi i−  inluence the update of the inner 

layer of weights and are appropriately modulated by derivatives of the nonlinear 

activation function (the sigmoid) in each layer. he errors are thus “backpropagated” 

down to the lower layer, giving the algorithm its name. his learning procedure can 

be generalized to an arbitrary number of layers, including “deep” networks contain-

ing a large number of hidden layers, although such networks can be prone to overit-

ting the training data, resulting in poor generalization. Most BCI applications tend 

to use three- layer networks such as the one described, with the number of neurons 

in the hidden layer determined using cross- validation (see Section 5.1.4).

5.2.3 Radial Basis Function (RBF) Networks

Consider the linear regression model we have discussed above:

 v T= w u  (5.28)

One way of increasing the power of this linear model is to use a set of M ixed non-

linear basis functions (or “features”) φi deined on the input vector u such that:

 v T= w uϕ( )  (5.29)

where φ(u) is the M- dimensional vector ϕ ϕ1( ) ( )u u M

T
  .

One can then follow the approach we described above for linear regression to esti-

mate the weight vector w for the given set of basis functions. If each basis function φi 

depends only on the radial distance (e.g., Euclidean distance) from a “center” μi such 

that φi(u) = f(||u – μi||), the resulting model is called a radial basis function (RBF) 

network. RBF networks can be regarded as three- layer neural networks where the 

input to hidden layer connections store the means μi, the output of the hidden layer 

neurons is φi(u), and the output of the network v is a linear weighted combination of 

these hidden neuron outputs (see Figure 5.12A):

 v wi i

T

i

M

= =
=
∑ ϕ ( ) ( )u w uϕϕ

1  
(5.30)

A commonly used basis function is the “Gaussian kernel” (Figure 5.12B):

 ϕ σi i( ) exp( / )u u u= − − 2 22
 

(5.31)
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which results in a mixture- of- Gaussians representation for mapping inputs 

to outputs.

5.2.4 Gaussian Processes

One major drawback of the regression methods described above is that they do not 

give us an estimate of the conidence in their prediction of the output. For example, 

one would expect an algorithm to be more certain in regions of input space where 

the training examples are plentiful and less certain in regions where the training 

examples are scant or nonexistent. Gaussian process regression provides such a mea-

sure of uncertainty regarding its outputs. It also has the advantage that it is non-

parametric, that is, the model structure changes with the data to accommodate the 

complexity of the data rather than being ixed a priori.

Suppose we start with the same model as the one used in RBF networks in the 

previous section:

  v T= w uϕϕ( ) (5.32)

However, we now adopt a probabilistic approach by assuming w follows the 

distribution:

 p G I( ) ( | , )w w= 0 σ 2

 (5.33)

where G denotes the multivariate Gaussian (or normal) distribution with mean 

0 and a covariance σ 2I (see Appendix for a review of multivariate Gaussians). In 

Bayesian parlance, the distribution in Equation 5.33 is known as the prior distribu-

tion over w. Note that the probability distribution over w in Equation 5.33 deines a 

probability distribution over functions v(u) via Equation 5.32.
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Figure 5.12. Radial basis function (RBF) networks. (A) Three- layer neural network implementing a 

radial basis function (RBF) network. The hidden layer neurons represent the basis functions 

whereas the output neuron computes a linear weighted sum of the hidden layer outputs. (B) 

(Left) Output of a Gaussian basis function with µ = [0 0.3]T and σ = 0.25. (Right) Combined 

output of 2 Gaussian basis functions with µ1 = [0 0.3]T and µ2 = [0.5−0.5]T. (Part B adapted 

from Barber, 2012).
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Given a set of input points u1, . . . ,uN, what is the joint distribution of the output 

values v(u1), . . . ,v(uN)? Let us use the vector v to denote [v(u1), . . . ,v(uN)]T. We can 

rewrite Equation 5.32 as:

 v w= Φ  (5.34)

where Φ  is a matrix whose elements are Φji i j= ϕ ( )u .

Since v is a linear combination of Gaussian distributed variables (given by the 

elements of w), v is also Gaussian, speciied completely by a mean and covariance 

given by:

 mean( )= ( )= ( )=v w 0E EΦ Φ w  (5.35)

 cov( ) ( ) ( )v vv ww= = = =E E KT T T TΦ Φ ΦΦσ 2

 (5.36)

where K is known as the Gram matrix whose elements are given by:

 K kij i j i

T

j= =( , ) ( ) ( )u u u uσ 2ϕϕ ϕϕ
 

(5.37)

he function k i j( , )u u  is known as the kernel function.

he above model for v is one example of a Gaussian process, which can be deined 

as a probability distribution over functions v(u) such that the joint distribution over 

v(u1), . . . ,v(uN) for arbitrary N is Gaussian.

Without any prior knowledge about the function v(u), the mean is assumed to 

be 0, which implies that the Gaussian process is completely speciied by the covari-

ance function K, or equivalently, the kernel function k i j( , )u u . he kernel function 

in the example above was obtained by assuming basis functions φi deined on an 

input u but a kernel function can also be deined directly. For example, one can use 

a Gaussian kernel function given by:

 k i j i j( , ) exp( / )u u u u= − −
2

22σ
 

(5.38)

he kernel function can be regarded as providing a measure of the similarity between 

two inputs. It afects attributes such as the smoothness of the function. Figures 5.13A 

and 5.13C illustrate sampled functions v(u) for two diferent kernel (or covariance) 

functions.

In general, any function can be used as the kernel function as long as the correspond-

ing matrix K is positive semideinite for any set of inputs. he choice of which kernel to 

use depends on the application, with the Gaussian kernel being a popular choice.

To use a Gaussian process for regression, we need to predict an output vN+1 for a 

new input uN+1, given training data consisting of outputs, denoted by the vector vN = 

[v1. . .vN]T and corresponding inputs u1, . . . ,uN. It can be shown (see Bishop, 2006) that 

the desired posterior distribution p(vN+1| vN, u1, . . . ,uN+1) is again a Gaussian distribu-

tion with mean and variance as follows:

 mean = −k vT

N NC 1

 (5.39)
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  variance = − −c CT

Nk k1

 (5.40)

where k is the vector containing the elements k(ui,uN+1), i = 1, . . . , N, (k essentially 

measures the similarity between each training input and the new input) and CN is 

the covariance matrix whose elements are given by CN(ui,uj) = k(ui,uj) for i ≠ j, and 

k(ui,uj) + λ for i = j, with i, j = 1, . . . ,N (here, λ is a parameter associated with the 

noise on the outputs). he scalar value c is deined as c = k(uN+1,uN+1) + λ.

It can be seen from these equations that the posterior distribution for the output 

vN+1 depends both on the past training inputs and outputs (via CN and vN) as well as 

the new input (via k and c). Note that the method is nonparametric: the terms above 

deining the mean and variance grow as a function of the size N of the training data. 

he model exhibits the favorable property alluded to earlier in this section: in the 

regions where training data is sparse or nonexistent, the output prediction has a 

larger variance, relecting greater uncertainty, compared to regions where the train-

ing data is dense (Figures 5.13B and 5.13D). his is especially useful in BCI applica-

tions where robotic devices such as prosthetics, wheelchairs, or assistive robots are 
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Figure 5.13. Gaussian processes (GPs). (A) shows three sampled functions from a prior probability dis-

tribution over functions based on a Gaussian kernel (or covariance) function (σ2 = 1/2). (B) 

Posterior predicted function based on a set of training points (black dots) and the Gaussian 

covariance function in (A). The dark curve at the center is the mean prediction, and the 

gray curves represent standard error bars on either side. (C) and (D) show samples and the 

posterior prediction respectively when using a Ornstein- Uhlenbeck prior (see Barber, 2012 

for details). The samples and predicted function are not as smooth as in (A) and (B). Note 

that both (B) and (D) exhibit one of the favorable properties of GP regression: the functions 

exhibit greater uncertainty in regions of the input space where there is less training data 

(from Barber, 2012).
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being controlled: if the uncertainty in prediction is high, the BCI can choose not to 

execute the command, preventing a potentially catastrophic accident (see Section 

9.1.8 for an example application). Such an ability is oten missing in BCIs that use 

regression models such as neural networks that do not provide estimates of output 

uncertainty.

5.3 Summary

Building a BCI typically entails mapping brain signals to appropriate control signals. 

his is usually done using either regression techniques, which map neural activity 

to continuous output signals, or classiication techniques, which map brain activity 

to one of a given set of classes. In this chapter, we delved into a number of regres-

sion and classiication techniques. Some of these were based on linearity assump-

tions (LDA, linear regression) while others employed various types of nonlinearities 

for greater modeling power (SVM, neural networks, Gaussian processes). We also 

examined how classiiers can be combined to create more powerful classiiers (bag-

ging, random forests, boosting). We learned about performance metrics such as 

the kappa coeicient and ITR, as well as evaluating generalization ability via cross-

 validation. We will encounter these techniques again in subsequent chapters where 

we will see them applied to speciic BCI tasks.

5.4 Questions and Exercises

1. Describe the goals of classiication and regression, and provide an example of 

how each may be used in a BCI.

2. Write down the equation for the decision boundary in linear binary classiica-

tion and explain how it can be used to classify an input.

3. Explain how the weight vector w and the threshold c in the technique of LDA 

are related to the class conditional normal distributions for the inputs.

4. What are the main diferences between LDA, RDA, and QDA?

5. Describe how the perceptron difers from LDA in the way the weight vector and 

threshold parameters are “learned” from input data.

6. What can multilayer perceptrons do that a single- layer perceptron cannot?

7. SVMs and perceptrons both use linear hyperplanes to separate data into two 

classes. Why then does the SVM typically outperform the perceptron when it 

comes to generalization to new data?

8. Explain the diference between a standard SVM and a sot- margin SVM. Which 

one is potentially more applicable to classiication of brain data and why?

9. (  Expedition) What is the “kernel trick?” Describe how it allows one to use 

SVMs for nonlinear classiication while retaining tractability.

10. Explain the general idea behind the ensemble classiication technique of bag-

ging. How does bagging generate and use bootstrap samples?
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11. (  Expedition) Random forests is an example of a bagging technique based on 

decision trees. Each node in a decision tree performs a test on one or more input 

variables, and the outcome of the test dictates which branch to take. Describe 

how a decision tree can be constructed from a labeled bootstrap sample. In par-

ticular, at each node, given a subset of m randomly selected input variables, how 

do we ind a test of these m input variables that best splits the sample into two 

separate classes?

12. How does the ensemble technique of boosting difer from bagging? Under 

what circumstances is boosting the preferred method of choice compared 

to bagging?

13. Answer the following questions about AdaBoost:

a. How is a classiier chosen in each round?

b. Write the expression for the weight assigned to the chosen classiier.

c. Write the expression for the inal output of the ensemble classiier.

14. Describe the two main methods for combining binary classiiers to achieve 

multi- class classiication.

15. Compare and contrast the k- NN and LVQ methods for multi- class 

classiication.

16. What “naïve” assumption does the naïve Bayes classiier make? What is the 

motivation behind making such an assumption? Discuss potential examples, if 

any, of brain data where the naïve Bayes assumption may fail.

17. Draw the confusion matrix for a 3- class classiier and write down the expression 

for its accuracy in terms of entries of the matrix.

18. Plot the ROC curve and write down the accuracies (ACC) for a classiier that 

exhibits the following performance as you vary one of its parameters. Assume 

that the number of positives in the training data set is 50 and the number of 

negatives 30.

a. 5 false positives, 25 false negatives

b. 10 false positives, 5 false negatives

c. 20 false positives, 0 false negatives

19. Calculate the kappa coeicients for (a), (b), and (c) in Question 18, assuming 

binary classiication.

20. Explain how the information transfer rate (ITR) captures both the speed and 

accuracy of a system such as a BCI by analyzing its deinition (Equation 5.17).

21. Why is cross- validation a useful procedure for evaluating the performance of a 

classiier, compared to just using the error rate on training data?

22. Compare and contrast the following methods for cross- validation:

a. Hold  out method

b. K- fold cross- validation

c. Leave- one- out cross- validation

23. In Section 5.2.1, we derived the Moore- Penrose pseudoinverse method for 

obtaining the weights w for linear regression. Under what condition does this 
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pseudoinverse exist? (Hint: hink about the linear independence of the col-

umns of U). If this condition is not satisied, can you think of a way of ensuring 

an approximate pseudoinverse exists?

24. Consider neural networks whose neurons have linear activation functions, i.e., 

each neuron’s output function is g(x) = bx+c, where x is the weighted sum of 

inputs to the neuron, and b and c are two ixed real numbers.

a. Suppose you have a single neuron with a linear activation function g as above 

with input u0, . . . ,un and weights W0, . . . ,Wn. Write down the squared error 

function in terms of the input and weights if the true output is d.

b. Write down the weight update rule for the neuron based on gradient descent 

on the error function in (a).

c. Now consider a network of linear neurons with one hidden layer of m units, 

n input units, and one output unit. For a given set of weights wkj in the input-

 hidden layer and Wj in the hidden- output layer, write down the equation 

for the output unit as a function of wkj, Wj, and input x. Show that there is 

a single- layer linear network with no hidden units that computes the same 

function.

d. Given your result in (c), what can you conclude about the computational 

power of N- hidden- layer linear networks for N = 1, 2, 3, . . .?

25. What are some of the advantages and disadvantages of using a Gaussian process 

for regression compared to a radial basis function (RBF) network?



Part  II

Putting It All  Together
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he preceding chapters introduced you to the basic concepts in neuroscience, record-

ing and stimulation technologies, signal processing, and machine learning. We are 

now ready to put it all together to consider the process of building an actual BCI.

6.1 Major Types of BCIs

BCIs today can be broadly divided into three major  types:

•  Invasive BCIs: hese involve recording from or stimulating neurons inside 

the brain.

•  Semi- invasive BCIs: hese involve recording from or stimulating the brain sur-

face or nerves.

•  Noninvasive BCIs: hese employ techniques for recording from or stimulating 

the brain without penetrating the skin or skull.

Within each of these types, we can have BCIs that:

Only record from the brain (and translate the neural data into control signals for • 
output devices).

Only stimulate the brain (and cause certain desired patterns of neural activity in • 
the brain).

Both record and stimulate the brain.• 
In the next ive chapters, we will encounter concrete examples of the major types 

of BCIs deined above. Before we proceed to these concrete BCI examples, it is use-

ful to irst discuss some of the major types of brain responses that researchers have 

exploited for building BCIs.

6.2 Brain Responses Useful for Building BCIs

6.2.1 Conditioned Responses

One of the most important properties of neural circuits is their plasticity, allow-

ing responses of neurons to be adapted as a function of inputs. In many cases, this 
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plasticity is modulated by the rewards received by the animal. One well- known 

behavioral example of this plasticity is Pavlovian (or classical) conditioning, irst 

demonstrated by the Russian scientist I. Pavlov: a dog that originally salivates in 

response to food starts salivating in response to a bell ater the bell is consistently 

paired with the food stimulus. In this example, the bell is called the conditioned 

stimulus and the salivation the conditioned response. In contrast, in instrumental 

(or operant) conditioning, the animal receives a reward only upon completion of 

an appropriate action, e.g., pressing a lever. In this case, ater the reward has been 

paired with the action of pressing the lever, the action of pressing the lever becomes 

the conditioned response.

Conditioned responses are also seen in single neurons and networks. In one of the 

earliest demonstrations of brain- computer interfacing (see Section 7.1.1), Eberhard 

Fetz at the University of Washington utilized the idea of conditioning to demon-

strate that the activity of a single neuron in primate motor cortex can be conditioned 

to control the needle of an analog meter. he movement of the needle was directly 

coupled to the iring rate of the neuron; when the needle crossed a threshold, the 

monkey was rewarded. Ater several trials, the monkey learned to consistently move 

the needle past the threshold by increasing the iring rate of the recorded neuron. 

his is an example of operant conditioning where the action (needle movement) 

that produces reward is coupled to increased activity in the recorded neuron (the 

conditioned response).

Conditioned responses can also be obtained in large populations of neurons. For 

example, ater several sessions of training, human subjects can control the power in 

particular frequency bands in EEG signals recorded from the scalp (Section 9.1.1). 

In these experiments, the power is coupled to the movement of a cursor on a com-

puter screen using a ixed mapping function, and the goal is to move the cursor in 

a desired direction to hit a target. he subject gradually learns to control the move-

ment of the cursor by modulating the power in the frequency band(s) used in the 

mapping function. In this case, conditioning occurs at the neural population level, 

and the conditioned response involves the activities of large numbers of neurons 

being modulated in concert to generate the appropriate increase or decrease in 

power in the desired frequency band.

In summary, the responses of both single neurons as well as networks of neurons 

can be modulated as a consequence of coupling neural activity with external actions 

(such as cursor movement) and rewards that are contingent on execution of appro-

priate actions (hitting a target).

6.2.2 Population Activity

Neurons in the primary motor cortex code for various attributes of movement such 

as direction of motion of a limb, velocities, forces, etc. In a seminal series of experi-

ments, Georgopoulos and colleagues showed that movement is represented using a 

population code (Georgopoulos et al., 1988). For example, in the case of movement 
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direction, neurons in the population ire according to how close their preferred 

direction of movement is to the actual direction of movement. he actual direction 

of movement can be predicted, for instance, by a weighted combination of the pre-

ferred directions of the neurons, the weight for each neuron being the neuron’s iring 

rate (see Equation 7.1 and Figure 7.3 for more details). his method of decoding 

movement direction is sometimes called population vector decoding.

he fact that movement- related variables can be extracted from the activities of 

populations of neurons was an important inding for brain- computer interfacing 

because it led to the realization that the same population motor activity could be 

used to control the movement of artiicial limbs and other devices. As we shall dis-

cuss in Chapter 7, some of the most impressive demonstrations of brain- computer 

interfacing in animals have relied on using regression techniques to map population 

motor activity to appropriate control signals for prosthetic devices.

6.2.3 Imagined Motor and Cognitive Activity

A third type of brain response that is widely used for brain- computer interfacing 

in humans is neural activity produced when a subject voluntarily imagines mak-

ing particular movement (this is called motor imagery).  Imagining a movement 

typically produces neural activity that is spatiotemporally similar to the activity 

generated during actual movement, but smaller in magnitude (see, e.g., Miller 

et al., 2010). A variety of machine learning algorithms (typically, classiiers) can be 

applied to discriminate between two or more types of imagined movements, allow-

ing each imagined activity to be mapped to a particular control signal (e.g., moving 

a cursor up). It has been noted that the initially weak response due to imagined 

movement becomes more robust as the subject receives feedback while learning to 

control the cursor. Eventually, in some subjects, the imagined activity during cur-

sor control can even exceed the activity observed during actual movement (Miller 

et al., 2010).

Similar to imagining movements, one can also ask a human subject to perform a 

cognitive task such as mental arithmetic or visualizing a face. If the cognitive tasks 

are suiciently distinct, the brain areas that are activated will also be diferent, and 

the resulting brain activation, measured for example using EEG, can be discrimi-

nated using a classiier trained on an initial data set collected from the subject. Each 

cognitive task is mapped to one control signal (e.g., performing mental arithmetic is 

mapped to moving the cursor up, etc.). he approach thus relies strongly on being 

able to reliably discriminate the activity patterns for diferent cognitive tasks, mak-

ing the choice of the cognitive tasks an important and tricky experimental design 

decision.

6.2.4 Stimulus- Evoked Activity

A inal class of brain signals useful for BCI is based on stereotyped activity gener-

ated by the brain in response to special types of stimuli. One particularly important 
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example is the P300 (or P3) signal observed in EEG recordings, so named because 

it is a positive delection in the EEG signal that occurs approximately 300 millisec-

onds ater a stimulus. he P300 is an example of an “event- related potential” (ERP) 

or “evoked potential” (EP) – it is evoked by the occurrence of a rare or unpredict-

able stimulus such as a lashing bar at a location being attended to by the subject. 

It is generally observed most strongly over the parietal lobe, although some com-

ponents also originate in the temporal and frontal lobes. he exact neural mecha-

nisms responsible for the P300 are as yet unclear: various brain structures such 

as the  parietal cortex, cingulate gyrus, and the temporoparietal cortex as well as 

limbic structures (hippocampus, amygdala) have been implicated as substrates for 

the P300.

Other common types of evoked potentials include the steady state visually evoked 

potential (SSVEP), the N100, and the N400. SSVEP is the response elicited in popu-

lations of neurons in the visual cortex when the subject is ixating on a visual stimu-

lus (e.g., a checkerboard pattern) lickering at a particular frequency (e.g., 15 Hz). 

he associated brain signal, recorded for example using EEG, exhibits peaks in the 

power spectrum at the stimulus frequency and its harmonics. If diferent frequen-

cies are associated with diferent choices, a BCI can decode the subject’s choice by 

detecting where the peaks are.

he N100 (or N1)  is a negative going potential that occurs approximately 100 ms 

ater an unpredictable stimulus and is typically distributed over the frontal and cen-

tral regions of the head. It is usually followed by a positive wave (known as the P200), 

resulting in the “N100- P200 complex.” he N100 occurs for example in response to a 

sudden, loud noise, but not if the sound is created by the subject.

he N400 is another example of a negative delection in potential that peaks about 

400 milliseconds ater particular types of incongruent but potentially meaning-

ful inputs, such as semantically inappropriate words uttered in a sentence during 

speech. It is typically distributed over central and parietal sites on the scalp. he 

N400 is similar to another type of potential called an error potential (ErrP) evoked 

when an error is observed ater performing an action (see Section 9.1.6).

6.3 Summary

Ater having reviewed the basic techniques for brain signal acquisition, signal pro-

cessing, and machine learning in the previous chapters, we began in this chapter 

the journey toward building full- ledged BCI systems. We became familiar with 

the major types of BCIs. We discussed the brain responses that researchers have 

exploited to construct BCIs, ranging from conditioned responses and motor popula-

tion activity to motor or cognitive imagery and stimulus- evoked responses. he irst 

two types tend to be used in invasive BCIs whereas the second two types have been 

used in noninvasive BCIs. We begin our in- depth treatment of BCIs by journeying 

into the world of invasive BCIs in the next chapter. 
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6.4 Questions and Exercises

1. List the three major types of BCIs. Describe how they difer from one another, 

and compare their advantages and disadvantages.

2. Explain the diference between classical conditioning and operant conditioning. 

Which one has been used to construct BCIs and how?

3. Describe the population vector method for decoding motor cortical activity. 

Discuss how it could be used in a BCI for controlling a prosthetic arm.

4. Discuss how imagined motor or cognitive activity could be used in conjunction 

with an appropriate machine- learning technique to control a cursor on a com-

puter screen. Based on your design, comment on whether motor or cognitive 

activity- based control is more natural.

5. Describe the deining characteristics of the following evoked potentials (EPs):

a. P300

b. SSVEP

c. N100

d. N400

6. (  Expedition) Brainstorm about possible ways the EPs in (a) through (d) in 

Question 5 could be used to build a BCI for selecting an item from a menu. 
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Some of the most important developments in brain- computer interfacing have come 

from BCIs based on invasive recordings. As reviewed in Chapter 3, invasive record-

ing techniques allow the activities of single neurons or populations of neurons to 

be recorded. his chapter describes some of the achievements of invasive BCIs in 

animals and humans. 

7.1 Two Major Paradigms in Invasive Brain- Computer  Interfacing

7.1.1 BCIs Based on Operant Conditioning

A number of BCIs in animals have been based on operant conditioning, a phenome-

non discussed in Section 6.2.1. In operant conditioning, an animal receives a reward 

upon selection of an appropriate action, e.g., pressing a lever. Ater repetitive pair-

ing, the animal learns to execute the action in anticipation of the reward. In a BCI 

paradigm, the animal is rewarded if it selectively activates a neuron or population of 

neurons to move a cursor or prosthetic device in an appropriate manner. 

Early BCI Studies

In the late 1960s, in one of the earliest demonstrations of brain- computer interfacing, 

Eberhard Fetz at the University of Washington in Seattle utilized the idea of operant 

conditioning to demonstrate that the activity of a single neuron in a primate’s motor 

cortex can be conditioned to control the needle of an analog meter (Fetz, 1969). he 

movement of the needle was directly coupled to the iring rate of the neuron: when 

the needle crossed a threshold, the monkey was rewarded. Ater several trials, the 

monkey learned to consistently move the needle past the threshold by increasing 

the iring rate of the recorded neuron (Figure 7.1). In this example of operant condi-

tioning, the action (needle movement) that produces reward is coupled to increased 

activity in the recorded neuron (the conditioned response).

Operant conditioning remains an important technique for brain- computer inter-

facing since it does not require complex machine- learning algorithms and relies on 
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the brain’s remarkable ability to adapt to achieve control over devices. A potential 

drawback of relying only on conditioning is that the training time required to achieve 

control over complex devices may be long. his has sparked eforts to develop “coad-

aptive” BCIs in which both the brain and the BCI system adapt to speed up acquisi-

tion of control (see Section 9.1.7).

Recent  Developments

Fetz and colleagues have continued to demonstrate the utility of operant condition-

ing for BCI (Fetz, 2007; Moritz & Fetz, 2011). In one set of experiments, Moritz and 

Fetz explored whether monkeys could control the iring rates of single cortical cells 

by providing visual feedback of neural activity and rewarding changes in iring rates. 

Neurons were recorded from the pre- central (motor) cortex as well as post- central 

(somatosensory) cortex. In BCI mode, the monkeys modulated the activity of each 

of up to 250 diferent neurons to move a cursor along one dimension to targets 

requiring high or low iring rates (Figure 7.2). Speciically, the recorded neuron’s 

inter- spike intervals were averaged over a 0.5 ms sliding window, and this was con-

tinuously mapped to cursor position.

here was more than two- fold improvement in target acquisition rate from the 

beginning of practice to peak performance: ater an average of 24 ± 17 minutes of 
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Figure 7.1. Early BCI study demonstrating control of a meter via motor cortical activity. The plot 

shows the average firing rate of a motor cortical neuron used to control the needle of a meter 

at different times – initially (operant level), noncontingent period (reward of banana- flavored 

pellets uncorrelated with neuron’s firing rate), reinforcement (SD) periods (reward correlated 

with high firing rate and deflection of the meter’s needle past a threshold), and extinction 

(S∆) periods (no reward or visual feedback from the meter). As observed in the plot (SD 

periods), the monkey learned to increase the firing rate of the recorded cortical neuron to 

sufficiently high levels to deflect the needle of the meter past the preset threshold and obtain 

the reward (figure adapted from Fetz, 1969).
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practice with each cell, the monkeys’ performance climbed from 6.4 ± 4.5 targets per 

minute to 13.3 ± 5.6 targets per minute. he monkeys maintained iring rates within 

each target for 1 second, but could maintain rates for up to 3 seconds for some cells. 

Based on these results, Fetz and Moritz suggest that direct conversion of activity 

from single cortical cells to a control signal may be a useful BCI design strategy that 

is complementary to strategies based on population decoding of intended move-

ment direction (see next section).

7.1.2 BCIs Based on Population  Decoding

Operant conditioning relies completely on the user’s ability to robustly and reliably 

modulate brain activity to perform a BCI task. his may however require a consid-

erable amount of practice and may be diicult or impossible to achieve for some 

subjects and some tasks. 

A diferent strategy relies on using mathematical techniques to decode BCI con-

trol signals from neurons activated during movement such as the movement of an 

arm. As discussed in Section 6.2.2, neurons in the primary motor cortex use a popu-

lation code to represent various attributes of movement such as direction of motion 

of a limb, velocities, forces, etc. For example, in the case of movement direction, 

neurons in the population ire according to how close their preferred direction of 

movement is to the actual direction of movement. he actual direction of movement 

d can be predicted to a reasonable degree using a weighted sum of the preferred 

directions pi of the neurons:
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Figure 7.2. BCI control of a cursor via single- cell operant conditioning. The position of the cursor 

(small black square) was plotted based on the firing rate of the cell. Either the high firing rate 

target (dotted rectangle on the left) or the low firing rate target (solid rectangle on the right) 

was shown, and the monkey had to increase or decrease the cell’s firing rate to move to the 

target shown. The middle panel shows the average firing (or discharge) rate (in pulses per 

second, pps) while holding each randomly presented target for 1 second. The histograms on 

the right show average cell activity around acquisition of each target. The shaded region on 

each histogram denotes the target hold period, and the horizontal line denotes the baseline 

firing rate (adapted from Moritz & Fetz, 2011).
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(7.1)

where r is each neuron’s current iring rate, r0 is its baseline iring rate, and rmax is 

its maximum average iring rate. Figure 7.3 shows that the prediction made by this 

population vector method is quite close to the actual direction of movement made 

by the monkey.

he fact that movement- related variables can be extracted from the activities of 

populations of neurons was an important inding for brain- computer interfacing 

because it led to the realization that the same population motor activity could be 

used to control the movement of artiicial limbs and other devices. As discussed 

below, some of the most impressive demonstrations of brain- computer interfacing 

in animals have relied on using regression techniques to map population motor 

activity to appropriate control signals for prosthetic devices.
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Figure 7.3. Comparison of motor cortex population vectors with actual arm movement directions. 

Actual arm movements were along the 8 radially outward directions shown as dashed arrows 

that are multiples of 45 degrees. The 8 groups of lines without arrows represent the preferred 

directions of neurons multiplied by their firing rates. The sum of each group of vectors is indicated 

by a solid arrow. Note that these arrows, representing the population vector, approximately point 

in the direction of actual movement for each of the 8 directions. (From Kandel et al., 1991).
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7.2 Invasive BCIs in Animals

7.2.1 BCIs for Prosthetic Arm and Hand Control

An early example of a population activity- based BCI was demonstrated in the 

 laboratory of Nicolelis in 1999 (Chapin et al., 1999). In this BCI, rats were trained 

to press a spring- loaded lever to proportionally move a robotic arm to a water drop-

per to obtain a reward of water (Figure 7.4). As the rat was performing this action, 

the activities of up to 46 neurons in the rat’s primary motor cortex and ventrolateral 

thalamus (VL) were recorded using a multielectrode array (Section 3.1.1).

Principal component analysis (PCA; see Section 4.5.2) was applied to the (up- to-

 46- dimensional) vectors of iring rates recorded over time across many trials. he 

principal component corresponding to the largest eigenvalue was used as a neural 

population function (NPF) (Figure 7.4I). It was found that simple thresholding of 

this NPF predicted the onset of lever movements with a high degree of accuracy 

(compare Figures 7.5B and 7.5C; T represents the threshold). To predict the full 

trajectory of the lever movements, the NPF and corresponding lever position were 
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Figure 7.4. Invasive BCI in rats. (A) Rats were trained to press a lever (B) to proportionally move a 

robot arm (C) from rest position through a slot in a barrier (D) to a water dropper (E) to 

obtain water. (F) Multielectrode arrays were implanted in the primary motor cortex and VL 

thalamus for recording up to 46 different neurons. (G) Spike waveforms (superimposed) 

of 24 such neurons. (H) Spike trains from 2 neurons over 2 seconds. (I) Neuronal popula-

tion function (NPF) representing the first principal component of a 32- neuron population. 

(J) Switch that determines whether robot arm is controlled by lever movement or the NPF 

(adapted from Chapin et al., 1999).
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fed as input and output respectively to a neural network with recurrent connections, 

and the network was trained using backpropagation (Section 5.2.2). Ater training, 

it was found that the network could accurately predict the lever movements from 

a test dataset (Figure 7.5D). he inal demonstration involved using the NPF to 

directly control the robotic arm: ater a ive- minute session during which the rats 

physically moved the lever to get reward, the control of the robotic arm was sud-

denly switched to NPF control mode. As shown in the example in Figure 7.6, in 8 
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Figure 7.5. Prediction of lever movement from neural activities. (A) Spike trains from three neurons 

with low, middle, and high correlation (R) with lever movement. (B) NPF extracted from 32 

neurons and (C) vertical position of the lever. Note that threshold crossing (at T) of the NPF 

predicts onset of lever movement. (D) Prediction of lever movement timing and magnitude 

using a recurrent neural network (rANN) applied to the NPF in (B). Compare with actual lever 

movement in (C) and note the high correlation value (0.86) with lever position (adapted 

from Chapin et al., 1999).

 

A

B T (NPF)

3×SD

0

0 25

Time (s)

50 75 100

* * * * * * * *F

Figure 7.6. Neural control of a robotic arm by a rat. (A) Spike trains from three neurons over a period 

of 100 seconds after switching to NPF (i.e., neural activity- based) mode of control of a robotic 

arm. (B) NPF for the same period. Asterisks denote pre- movement peaks of the NPF in trials 

in which the robot arm was successfully moved to the water dropper using the NPF signal in 

real time (see text for details) (adapted from Chapin et al., 1999).
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out of 9 cases where the rat moved the lever, the NPF successfully moved the robot 

arm to obtain the water reward. In 15 trials, this particular animal was 100 percent 

successful in using its neural activity to obtain reward, provided appropriately large 

lever movements were made. Interestingly, the researchers found that ater a certain 

number of trials, many of the rats no longer pressed the lever but retrieved reward 

directly using neural activity.

Following their experiments with rats, Nicolelis, Wessberg, and, colleagues dem-

onstrated the control of a robotic arm by two monkeys based on spikes recorded 

simultaneously from three cortical areas in both hemispheres: primary motor cortex, 

dorsal premotor cortex, and posterior parietal cortex (Wessberg et al., 2000). hey 

trained the monkeys to perform two motor tasks, one involving one- dimensional 

hand movements and the other involving three- dimensional hand movements. In 

the irst task, the monkey made one- dimensional hand movements to the let or right 

to move a manipulandum in response to a visual cue (Figure 7.7). he researchers 
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Figure 7.7. Monkey BCI for a one- dimensional control task. (A) Experimental setup for a BCI that 

uses simultaneously recorded cortical neuronal data from a monkey making one- dimensional 

hand movements and uses this data to control local and remote robotic arms. Linear and 

ANN models were used to predict hand position from neural data. (B) and (C) Examples 

of spike trains recorded from two monkeys in 5 and 2 cortical areas respectively during the 

execution of one- dimensional hand movements (hand position data is shown in the trace 

below). PP, posterior parietal cortex; M1, primary motor cortex; PMd, dorsal premotor cortex; 

iM1/PMd, ipsilateral M1 and PMd (adapted from Wessberg et al., 2000).
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used a linear regression algorithm (Section 5.2.1) as well as an artiicial neural net-

work (Section 5.2.2) to learn a mapping between the recorded neural activities u(t) 

and recorded hand position v(t) at time t. he linear regression model (also known 

as the linear ilter or Weiner ilter model) was based on the equation:

 v t i t i cT

i m

n

( ) ( ) ( )= − +
=−
∑ w u

 
(7.2)

where the weight vectors wT(i) and intercept c can be determined from a recorded 

training data set (see Section 5.2.1 for a technique to determine these weights based 

on squared error minimization).

he hand position at time t was thus predicted based on the neural activities at 

time t as well as activities up to n steps before and m steps ater t (in the case of real-

 time prediction, m was set to zero). he artiicial neural network (ANN) method 

had the same inputs as the linear regression model above but instead of using a 

linear weighted sum to predict the output, the neural network used a hidden layer 

with 15–20 sigmoid units (Section 5.2.2) and a linear output unit (or 3 output units 

in the case of three- dimensional prediction).

As shown in the examples in Figure 7.8, both the linear and the ANN meth-

ods were able to predict hand position reasonably well based on neural activities. 

No signiicant diference in accuracy was observed between the two methods. 

he performance of both methods, as captured by the correlation coeicient r 

between predicted and actual hand position, improved within the irst few min-

utes of the experiment and remained stable at average values between 0.6 and 0.7 

throughout the period of the experiment (Figure 7.8C and 7.8D). To guard against 

non- stationarity in the neural activities over time, the models were continuously 

updated throughout the experiment using the most recently recorded 10 minutes 

of data. he predicted hand position signal was in turn used to control a local and 

remote robotic arm to mimic the one- dimensional hand movements of the monkey 

(Figure 7.8E).

In a second task, the monkeys made three- dimensional hand movements to 

reach for pieces of food placed randomly at one of four diferent positions on a 

tray (Figure 7.9C). he sequence of movements made by the monkeys are shown 

in Figures 7.9A and 7.9B. Both the linear and ANN models discussed above per-

formed well in predicting these three- dimensional hand movements. Figures 7.9D 

and 7.9E show examples of the actual and predicted hand trajectories for the two 

monkeys. he predicted trajectories are roughly similar to the actual ones, though 

with some noticeable deviations such as for the endpoints in the panels on the right 

in Figures 7.9D and 7.9E. he correlation coeicients along the X, Y, and Z dimen-

sions are shown in Figures 7.9F and 7.9G. hese relect the improvement in predic-

tion accuracy over time, especially in the early trials, followed by a plateau (or even 

a slight decrease in performance as in the case of monkey 2 for X and Y directions). 
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he researchers further found that model parameters learned from data for one set 

of directions (e.g., targets on the right) could be used to predict hand trajectories in 

another direction (e.g., targets on the let).

Other experiments by Schwartz, Velliste, and colleagues have demonstrated the use 

of cortical signals to control a multi- jointed prosthetic device for direct real- time inter-

action with the physical environment (Velliste et al., 2008). In their experiments, mon-

keys used responses from primary motor cortex neurons to control a prosthetic arm 

and gripper in a continuous self- feeding task (Figure 7.10). he monkey had to move 

the prosthetic arm to arbitrary locations in the three- dimensional workspace in front of 

it where food was presented. he animal then had to close the gripper to grab the piece 

of food, move the arm to its mouth, and open the gripper to retrieve the food.

In this task, in addition to the three dimensions of movement, the BCI also propor-

tionally controlled the distance between the two “ingers” on the gripper to open or 

close it. he algorithm used to control the arm and gripper was the population vector 

method discussed above in Section 7.1.2. he output vector was four- dimensional, 

comprising the velocity of the endpoint of the robotic arm along X, Y, and Z direc-

tions in an extrinsic three- dimensional Cartesian coordinate frame, along with the 

aperture velocity between the gripper ingers (fourth dimension). his output vector 
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Figure 7.8. BCI control of one- dimensional hand movements. (A) and (B) Example of observed 

(line) and real- time predicted one- dimensional hand position using linear (dotted line) and 

ANN (gray dashed line) models in monkey 1 (A) and 2 (B). (C) and (D) Correlation coeffi-

cient r between predicted and actual hand movements, using linear (dotted line) and ANN 
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Comparison of actual movements and movements made by a local (dotted line) and remote 

(gray dashed line) robot arm using neural data from monkey 1 and the linear model (adapted 

from Wessberg et al., 2000).
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was computed as a weighted sum of the four- dimensional preferred directions of 

the neurons (the dimensions being X, Y, Z, and gripper aperture). he weights were 

the instantaneous iring rates of the units, similar to Equation 7.1. he predicted 

 four- dimensional endpoint velocity was integrated to obtain endpoint position, 

which was then converted (via inverse kinematics) to joint- angle commands for 

each of the robot’s four degrees of freedom.

One monkey performed 2 days of this continuous self- feeding task with a com-

bined success rate of 61% using 116 primary motor cortex neurons. For just the 

positioning portion of the task (move arm to feeder position), the success rate was 

98%. Figure 7.11 illustrates the spike trains from the 116 neurons and the resulting 

arm and gripper movement for four successful trials. he four- dimensional pre-

ferred directions of the neurons are depicted in Figure 7.11G and can be seen to 

span the range of X, Y, and Z directions and gripper opening.

One can also use more sophisticated decoding techniques such as Kalman iltering 

(Section 4.4.5) to estimate hand kinematics (position, velocity, acceleration) from 
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Figure 7.9. Prediction of three- dimensional hand movements from neural activity. (A) and (B) 

Three- dimensional hand movement trajectories produced by monkey 1 (A) and 2 (B) dur-

ing an experimental session. (C) Schematic diagram of the four possible target locations 

in the reaching task. (D) and (E) Examples of observed (black) and predicted (gray) three-

 dimensional hand trajectories for monkey 1 (D) and 2 (E). (F) and (G) Correlation coefficient 

for X (line), Y (dashed line), and Z (dotted line) directions between actual and predicted 

three- dimensional hand movements using the linear model (adapted from Wessberg 

et al., 2000).
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the iring rates of motor cortex neurons. he advantage of using a technique such as 

the Kalman ilter is that one can model the measurement and temporal dynamics of 

the signals using a probabilistic model, allowing a principled approach to estimating 

variables such as position and velocity over time. We discuss here the approach of 

Wu, Black, and colleagues (2006), who used a Kalman ilter to estimate the posterior 

probability distribution over hand kinematics given a sequence of observed iring 

rates. he experiments utilized multielectrode neural recordings from the arm area 

of primary motor cortex in two monkeys. Monkeys performed two tasks: a pinball 

task (using a manipulandum on a 30 cm × 30 cm tablet to move the cursor to a target 

placed at random locations on the screen) and a pursuit tracking task (making the 

cursor follow a moving target within a ixed distance range).

he state vector for the Kalman ilter was chosen to be xt = [px, py, vx, vy, ax, ay]T, 

representing hand position, velocity, and acceleration along x, y, and z directions 

respectively. he sampling interval between t and t + 1 was chosen to be 70 ms for 

the pinball task and 50 ms for the pursuit task. he likelihood (or measurement) 

model for the Kalman ilter speciies how the hand kinematics vector xt relates to 

the observed iring rates yt:

 y x mt t tB= +  (7.3)

and the dynamics model speciies how the hand kinematics vector changes 

over time:

 x x nt t tA= +−1  (7.4)

 

z

y

x

Figure 7.10. BCI control of a prosthetic arm and gripper for self- feeding. The monkey’s arms were 

restrained (inserted up to the elbow in horizontal tubes as shown in the image), and a 

prosthetic arm was positioned next to the monkey’s shoulder. Spikes recorded from multi-

electrode arrays implanted in primary motor cortex were processed (boxes at top right) and 

used to control the three- dimensional arm velocity and the gripper aperture velocity in real 

time. Food targets were presented (top left) at arbitrary positions in the three- dimensional 

workspace in front of the animal (adapted from Velliste et al., 2008).
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In these equations, nt and mt are zero- mean Gaussian noise processes with covari-

ance matrices Q and R respectively. A training dataset was collected for the two 

tasks containing both the monkey’s hand position data and the neural data over 

time for several trials. Hand velocity and acceleration for each time point were cal-

culated from the position data by approximating the derivative with the diference 

between consecutive data points divided by the sampling interval. his training 
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Figure 7.11. Neural responses and prosthetic arm/gripper trajectories in the self- feeding task. 

(See color plates for the same figure in color) (A) Spike trains from 116 neurons used for 

controlling the arm and gripper in 4 successful trials. Each row represents spikes from one 

neuron, rows being grouped by major tuning preference (red, X; green, Y; blue, Z; purple, 

gripper; thin bar: negative major tuning; thick bar: positive). (B) through (D) show X, Y, and 

Z components of arm endpoint position (gray regions: inter- trial intervals; arrows: gripper 

closing at target). (E) Gripper aperture (0: closed; 1: open). (F) Arm trajectories for the same 

4 trials, with color indicating gripper aperture (blue: closed; purple: half- closed; red: open). 

(G) Four- dimensional preferred directions of the 116 neurons. Arrow direction represents X, 

Y, Z direction preference, color indicates gripper aperture opening preference (blue, negative 

value; purple, zero; red, positive value) (adapted from Velliste et al., 2008).
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dataset, which contains both xt and yt, can be used to learn the matrices A, B, Q, R 

by, for example, maximizing the joint probability P(x1,…,xT,y1,…,yT) of the training 

data. Since there is a delay between neural activity and the resulting hand motion, 

the researchers also incorporated a time lag in their Kalman ilter likelihood model 

so that x at any time instant is related to iring rates from some time in the past. hey 

found that while a uniform time lag of 140–150 ms for all neurons worked better 

than no lag, the best performance was achieved by choosing diferent lags (between 

0 and 280 ms) for the diferent neurons.

Once the Kalman ilter parameters A, B, Q, and R have been learned from training 

data, the Kalman ilter can be used to compute the Gaussian posterior probability 

of hand kinematics given observed iring rates. As described in Section 4.4.5, this 

involves using the Kalman ilter equations to compute the mean x t  and covariance 

St  of the Gaussian representing the posterior P(xt | y1,…, yt).

As seen in the examples in Figure 7.12 for the pinball task, the estimated hand 

trajectories using the Kalman ilter (given by the mean x t) are close to the actual 

hand trajectories. his is further illustrated by Figure 7.13 which shows the 6 difer-

ent components of the state vector as estimated by the Kalman ilter for a 20- second 

test sequence.

he performance of the Kalman ilter method was measured using two similarity 

metrics: mean squared error (MSE) and correlation coeicient (CC) between pre-

dicted and actual hand positions for x and y coordinates:
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Figure 7.12. Predicting hand trajectories from neural activities using a Kalman filter. The dashed 

line shows the true hand trajectory for the pinball task (see text). The solid line is the Kalman 

filter’s predicted trajectory from neural activity. The trajectories span 50 time- steps (3.5 sec-

onds) (adapted from Wu et al., 2006).
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As shown in Table 7.1, the Kalman ilter method outperformed both the  population 

vector method (Equation 7.1) and the linear- ilter method (Equation 7.2) discussed 

earlier in this chapter.

A diferent approach to using a linear model (as in the Kalman ilter) for decoding 

movements is to use an unknown time- varying hidden state vector xt to mediate the 

mapping from iring rates ft to kinematic outputs yt. his leads to the equations:

 x x f nt t t tA C= + +−1  (7.7)

 y x mt t tB= +  (7.8)

where once again nt and mt are zero- mean Gaussian noise processes. Such an 

approach was explored by Donoghue, Vargas- Irwin, and colleagues (Vargas-

 Irwin et al., 2010) to map neural activity in primary motor cortex of monkeys 

to arm, wrist, and hand postures during a dynamic reaching and grasping task 

(Figure 7.14A). In particular, the linear model was used to predict 25 joint angles 

of a model of the monkey’s arm, wrist, and hand (Figure 7.14B). he training data 

consisted of neural iring rates from 30 to122 neurons (recorded using microelec-

trode arrays implanted in the primary motor cortex upper- limb area) and the 25 

joint angles estimated using a motion- capture system based on relective markers 

placed on the monkey’s body (Figure 7.14A). For each joint angle yt, an unknown 
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three- dimensional state vector xt was assumed, and the corresponding matrices 

A, B, and C were learned from training data by iterating between re- estimating 

the most likely values of the hidden states and minimizing, via gradient descent 

(Section 5.2.2), the output prediction error under these values. In addition to the 

joint angles, linear models for the grip aperture and (x, y, z) position of the arm 

endpoint were also learned in a similar manner. Ater learning, given iring rates 

as input, each kinematic variable yt was predicted by irst predicting the state using 

Table 7.1. Comparison of the Kalman filter- based method with other methods for predicting 

hand position from neural activity in the Pinball and Pursuit tasks. The variable N is the number 

of time steps before the current time step for which the firing rate is used in the linear model (same as 

n in Equation 7.2, with m = 0) (from  Wu et al., 2006).

 CC (x, y) MSE (cm2)

Pinball task

 Method CC (x, y) MSE (cm2)

  Population vector (0.26, 0.21) 75.0

  Linear ilter (N = 14) (0.79, 0.93) 6.48

  Kalman ∆t = 140 ms, nonuniform lag (0.84, 0.93) 4.55

Pursuit Tracking task

 Method

  Population vector (0.57, 0.43) 13.2

  Linear ilter (N = 30) (0.73, 0.67) 4.74

  Kalman ∆t = 300 ms, 150 ms uniform lag (0.81, 0.70) 4.66

 

A B

x

z
Y

Figure 7.14. Monkey BCI for dynamic reaching and grasping. (A) Neural activities are recorded from 

the upper- limb area of the primary motor cortex while the monkey performed a task involv-

ing intercepting and holding objects swinging toward the animal from the end of a string. The 

monkey’s movements were recorded using a motion- capture system based on tracking 29 

reflective markers attached to the monkey’s arm, wrist, and hand. (B) Joint angles for a model 

of the monkey’s hand, wrist, and arm were calculated from the three- dimensional position of 

the markers for each frame (adapted from Vargas- Irwin et al., 2010).

 

 



Major Types of  BCIs124

Equation 7.7 and then predicting the kinematic value using Equation 7.8. Each 

kinematic prediction was based on the iring rates of 30 neurons, selected to opti-

mize accuracy for that parameter.

Figure 7.15A shows examples of actual arm postures (shown in lighter color) from 

a single reach- and- grasp trial and the arm postures predicted from neural activity. 

here appears to be a close correspondence between the two. his is further illus-

trated in the plots in Figure 7.15B showing the actual and predicted grip aperture 

and one of the joint angles (shoulder azimuth). A summary of the performance of 

the method (in terms of correlation coeicient between actual and predicted values) 

for all 25 joint angles as well as grip aperture and arm endpoint position is shown 

Figure 7.15C. he mean correlation coeicient across sessions of all decoded joint 

angles was quite high (0.72 ± 0.094) suggesting that there is enough information 

in populations of several tens of motor cortical neurons to reconstruct naturalistic 

reaching and grasping movements, at least for the task studied.

Estimating Kinetic Parameters from Neural  Activity

he invasive BCIs described above focused on extracting kinematic parameters 

such as position and joint angles from neural activity. If the goal is to control 

robotic prostheses, which have their own physical dynamics, it may be more 

desirable to extract kinetic parameters such as force and joint torque from neural 

activity.

Hatsopoulos, Fagg, and colleagues have shown that it is possible to reconstruct the 

torque trajectories of the shoulder and elbow joints from the activity of neurons in 

the primary motor cortex of monkeys (Fagg et al., 2009). he task involved the mon-

keys making reaching movements in the horizontal plane. he activities of between 

31 and 99 neurons were recorded across diferent sessions using an electrode array 

while kinematic data was recorded using an exoskeletal robotic arm attached to the 

monkey’s upper arm. Using standard physics- based equations of motion for the 

monkey- and- robot- arm system, the recorded kinematic data was used to compute 

net torque applied to the shoulder and elbow in order to account for the observed 

motion. A linear ilter approach (Equation 7.2) was used to predict torque based on 

neural activity up to one second in the past.

he researchers found that torque reconstruction performance was nearly equal 

to that of hand position and velocity. Furthermore, the addition of delayed position 

and velocity feedback to the torque prediction algorithm substantially improved 

torque reconstructions. his suggests that a combination of kinematic and kinetic 

information may prove to be a useful strategy for future BCI applications involving 

control of robotic prosthetics and other physical devices.

Using Local Field Potentials (LFPs) Instead of  Spikes

We have thus far learned about BCIs that rely on spikes from individual neurons 

(isolated using spike- sorting algorithms – see Section 4.1). However, if the goal is to 
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Figure 7.15. Comparison of actual and predicted movements in the dynamic grasping task. (A) 

Examples of actual (lighter color) and predicted (solid) arm postures from a reach- and- grasp 

trial (each of the 25 joint angles were decoded independently based on Equations 7.7 and 

7.8). (B) Comparison of actual (gray) and predicted (black) grip aperture and shoulder azi-

muth values over time. (C) Correlation coefficients between actual and predicted kinematic 

variables. Shaded dots represent the values for each experimental session, and the bars mark 

the mean of all sessions. Black asterisks represent chance levels of performance. MAE, mean 

absolute error; In./Ex. Rot., internal/external rotation; Flex./Ext., flexion/extension; Ul./Rad., 

ulnar/radial deviation; Pron./Sup., pronation/supination; MCP, metacarpophalangeal; Ante./

Retro., anteposition/retroposition; Rad. Ab./Ad., radial abduction/adduction; Palm. Ab./Ad., 

palmar abduction/adduction; PIP, proximal interphalangeal (adapted from Vargas- Irwin 

et al., 2010).
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control a communication or prosthetic device, can one simply use local ield poten-

tials (LFPs) recorded by these electrodes rather than attempt to isolate the spikes? 

LFPs can be obtained by placing electrodes far from any one neuron and low- pass 

iltering the recorded signal to eliminate spikes.

LFPs relect the combined activity of a large number of neurons near the record-

ing electrode. Donoghue, Zhuang, and colleagues explored the use of LFPs for pre-

dicting three- dimensional reach- and- grasp kinematics (Zhuang et al., 2010). LFPs 

were recorded using a 10 × 10 array of microelectrodes implanted in the arm area 

of primary motor cortex of two monkeys. he monkeys performed the dynamic 

reaching- and- grasping task in Figure 7.14. A Kalman ilter model was trained based 

on the recorded LFP and corresponding kinematic data (three- dimensional hand 

position and velocity, along with grasp aperture and aperture velocity). he equa-

tions for the Kalman ilter model are the same as Equations 7.3 and 7.4, except yt 

represents the LFP power in a particular frequency band computed in a time win-

dow immediately preceding the current kinematic state.

he researchers characterized the information content of seven diferent LFP fre-

quency bands in the range of 0.3–400 Hz and found that higher frequency bands 

(e.g., 100–200 Hz and 200–400 Hz) carried the most information about the recorded 

kinematics (similar results have been obtained for human electrocorticography 

[ECoG] – see Section 8.1). Kalman- ilter- based estimation of the kinematic data 

from the LFP data revealed that broad- band high frequency LFPs provided the 

best performance in reconstructing reach kinematics, grasp aperture, and aperture 

velocity.

7.2.2 BCIs for Lower- Limb Control

BCIs for controlling bipedal locomotion could signiicantly improve the quality 

of life of individuals who have lost control of their lower limbs due to spinal cord 

injury, stroke, or neurodegenerative diseases. To date, relatively few BCI studies have 

explored the feasibility of controlling a lower- limb prosthetic device using neural 

activity. A major reason for the dearth of studies in this area is the logistical diiculty 

in recording from the brain while the animal is walking or otherwise moving. An 

exception is the study by Nicolelis, Fitzsimmons, and colleagues (2009) who inves-

tigated whether kinematics of bipedal walking (on a treadmill) can be predicted 

using the ensemble activity of cortical neurons in rhesus monkeys. heir approach 

is based on decoding the major parameters of walking such as step time, step length, 

foot location, and leg orientation, while relying on existing lower- level systems for 

automatic controls such as foot orientation, load placement, balance, and other 

safety concerns. he result is a BCI that follows the general commands of the user 

while enforcing stability and overriding commands likely to result in falls.

Figure 7.16A illustrates the experimental setup used to study whether the 

 kinematic parameters of walking can be predicted from neural activity. Two rhe-

sus monkeys were trained to walk on a treadmill while the activities of about 200 
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neurons in the lower- limb areas of their primary motor and somatosensory cortices 

were recorded. he three- dimensional coordinates of luorescent markers on the 

right hip, knee, and ankle (Figure 7.16A and 7.16B) were tracked using two cameras, 

and this information was used to extract the following additional kinematic param-

eters: hip and knee joint angles, foot contact with the treadmill, walking speed, step 

frequency, and step length. he recorded neural and kinematic data were used to 

learn a linear (Weiner ilter) model (see Equation 7.2) using the Moore- Penrose 

pseudoinverse method (Section 5.2.1) to estimate the weights.

Figure 7.17 demonstrates that the kinematics of walking can be predicted reason-

ably well from the activities of neurons in primary motor and somatosensory corti-

ces. Additionally, the trained model was also able to predict muscle activations during 

walking recorded via EMG (Figure 7.17D) as well as slowly changing  variables such 

as walking speed, step frequency, and step length (Figure 7.17F). he researchers 

found that overall, for the two monkeys studied, the correlation coeicients (CCs; 
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Figure 7.16. Predicting lower- limb kinematics using neural activity. (A) A monkey walked on a 

custom- built hydraulically driven treadmill while neural activity in its primary motor cortex and 

primary somatosensory cortex was recorded. Simultaneously, two wireless cameras tracked 

the position of the monkey’s right leg. (B) Images captured by one of the cameras showing 

the typical bipedal walk cycle of the two monkeys (adapted from Fitzsimmons et al., 2009).

 



Major Types of  BCIs128

Equation 7.6) were in the range 0.2 to 0.9, with the best predictions being the X, Y 

coordinates of the ankle and the knee (CC in the range 0.61–0.86). he hip angle and 

foot contact were predicted with CCs in the range 0.58–0.73 and 0.58–0.61 respec-

tively. Prediction accuracy for the slowly changing variables was generally lower, 

though still potentially useful for prosthetic control, with CCs in the range 0.24–0.42 

for walking speed, 0.48–0.57 for step frequency, and 0.30–0.40 for step length.

While the study suggests that kinematic parameters of walking can be predicted 

from neural activity, there has yet to be a convincing demonstration of closed- loop 

cortical control of walking. An alternate approach to restoring locomotion, for 

example, ater spinal injury, is to rely on neuroplasticity: Courtine, van den Brand, 

and colleagues (2012) have shown that combining electrical stimulation of the spinal 

cord with a chemical injection of monoamine agonists allows rats with paralyzing 
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Figure 7.17. Predicting the kinematics of walking based on neural activity. (See color plates for the 

same figure in color). (A)–(C) Comparison of predicted (red) and actual (blue) kinematic 

variables. (A) shows the three- dimensional position of the ankle, knee, and hip. X- axis is in 

the direction of motion of the treadmill, Y axis is the axis of gravity and Z axis is lateral to 

the surface of the treadmill and orthogonal to the direction of motion. (B) shows hip and 

knee joint angle variables and (C) depicts foot contact (binary variable defining swing versus 

stance phase of walking). (D) Predicted versus actual muscle signals (EMG). (E) Normalized 

firing rates of 220 neurons, sorted by cortical area and by phase within the step cycle. M1: 

primary motor cortex; S1: primary somatosensory cortex. (F) Prediction of slowly changing 

variables (walking speed, step frequency, and step length) over a 50 second time window 

(adapted from Fitzsimmons et al., 2009).
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lesions to regain the capacity for reined locomotion by causing new cortical con-

nections to grow. hese results ofer a promising direction for movement restoration 

in spinal cord injury patients. hese results are however less applicable to lower- limb 

amputees, for whom BCIs that directly control prosthetic legs ofer the most viable 

path toward restoration of movement.

7.2.3 BCIs for Cursor Control

A large group of invasive BCI studies in monkeys have focused on the control of 

computer cursors using motor neuron activity. One reason for the popularity of 

the cursor control paradigm is that it provides a simple framework for studying 

closed- loop visual- feedback- based control of a device (in this case, the cursor). 

Additionally, BCI control of a cursor also has an immediate biomedical applica-

tion in that it would allow locked- in patients to communicate via selection of items 

on a menu.

Cursor Control Using a Linear Model

In one of the irst invasive BCI demonstrations of cursor control, Serruya, Donoghue, 

and colleagues (2002) showed that the activity of 7–30 primary motor cortical neu-

rons can be used by a monkey to move a computer cursor to any new position on a 

computer screen (size 14 degrees × 14 degrees of visual angle). he monkeys in the 

experiment irst used their hand to move a manipulandum that controlled the posi-

tion of a cursor and tracked a continuously moving target that began at an arbitrary 

location and followed a pseudorandom trajectory. he linear ilter method (Equation 

7.2 above) was used to predict cursor position from neural activity recorded over the 

previous one second. he ilter was then used in a closed- loop visual- feedback task 

that required the cursor to be moved to stationary targets of size 0.6 degrees, which 

were displayed one at a time at random locations on the screen. Hand control of 

the cursor position was substituted with neural control. he linear ilter was also 

updated using data from 2 minutes of neural control to relate iring rates to target 

position.

he plots in Figure 7.18A and 7.18B show two examples of cursor trajectory under 

neural control (dark gray). In some cases, the monkey used its hand to move the 

manipulandum (light gray trajectory in Figure 7.18A) at the same time that it was 

using neural control to move the cursor, whereas in other cases, it did not move its 

hand (Figure 7.18B). he researchers found that cursor control was nearly as good as 

hand- based control, with time required to acquire targets using the neural signal not 

statistically diferent from that required for hand motions (Figure 7.18C and 7.18D).

Cursor Control Using a Nonlinear Kalman Filter Model

A diferent approach to controlling cursors using neural activity is to use the Kalman 

ilter (Section 4.4.5). One such approach was investigated by Li, Nicolelis and col-

leagues (2009). Two monkeys were trained to manipulate a handheld joystick to 
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perform two tasks (Figure 7.19): a “center- out” task, where the cursor was to be 

moved from the screen center to targets randomly placed at a ixed distance from 

the center, and a “pursuit” task where the monkeys tracked a continuously moving 

target. he activity of between 94 and 240 neurons were recorded using multielec-

trode arrays implanted in several cortical areas: the primary motor cortex (M1), the 

primary somatosensory cortex (S1), the dorsal premotor cortex (PMd), the poste-

rior parietal cortex (PP), and the supplementary motor area (SMA).

he neural data and the corresponding cursor movement data were used to train a 

nonlinear version of the Kalman ilter known as the unscented Kalman ilter (UKF). 

Figure 7.20 compares the standard Kalman ilter model with the UKF. he UKF 
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Figure 7.18. Cursor control using an invasive BCI. (A) and (B) Examples showing neural control of 

cursor movement (dark gray) toward a target (black). Movement of the hand during neural 

control in these 2 examples is shown in light gray. Each circle represents an estimate of posi-

tion, updated at 50 ms intervals. Axes are in x, y screen coordinates (1,000 units corresponds 

to a visual angle of 3.57). (C) and (D) Time taken to reach the target under hand (C) and 

neural (D) control. Histogram shows the data frequency distribution and spheres represent 

trial times. The summary statistic at the right shows the range of the data (vertical lines), the 

median time taken to reach the target (thick horizontal line within shaded box), and the 25th 

and 75th percentiles (bottom and top of box) (from Serruya et al., 2002)
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allows both the measurement and dynamics models to be nonlinear. In our case, if 

the hidden state vector consists of cursor position and velocity, the UKF allows us to 

use, for example, a potentially more accurate quadratic function to relate cursor posi-

tion and velocity to neuronal iring rates (Figure 7.20D). Additionally, rather than 

using a state vector with just the current position and velocity values (Figure 7.20A 

and 7.20E), the researchers used a state vector consisting of position and velocity 

values from 10 consecutive time steps, resulting in a 10th order autoregressive (AR) 

model for the evolution of state (Figure 7.20B and 7.20E).

Figure 7.21 provides an example of online cursor control using the 10th order UKF 

compared to the standard Kalman ilter and a 10th order Weiner ilter (Equation 

7.2). he dashed curves in the plots represent target positions. Table 7.2 summarizes 

the results. he 10th order UKF outperformed a slew of other methods for online 

cursor control, including a 1st order UKF, the standard Kalman ilter, the 10th order 

Weiner ilter, and the population vector method (Equation 7.1).

Enhancing BCI Control by Combining Proprioceptive and Visual Feedback

he BCIs described above rely only on visual feedback for closed- loop BCI control. 

However, when controlling the body, the brain relies on feedback from additional 

modalities such as kinesthetic (or proprioceptive) feedback from muscles, tendons, 

and joints to guide and correct movement. Suminski, Hatsopoulos, and colleagues 

(2010) have demonstrated that kinesthetic feedback can be used together with vision 
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Figure 7.19. Experimental setup for demonstrating BCI control of a cursor. (A) A cursor and a target 

were projected onto a screen in front of a monkey. The monkey was trained to move the 

cursor using a handheld joystick. The monkey was rewarded with fruit juice when the cur-

sor was placed inside the target. (B) Schematic diagram showing the microelectrode array 

(top) and implanted locations of the arrays in the cortex of two monkeys (bottom two pan-

els). (C) Center- out task. Monkeys moved the cursor from the center to a peripheral target 

at a random angle and fixed radius from the center. (D) Pursuit task. Monkeys moved the 

cursor to track a continuously moving target following a Lissajous curve (adapted from Li 

et al., 2009).
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Table 7.2. Cursor Control Performance. Comparison of the 10th order UKF model, a standard 

Kalman filter (KF), and a 10th order Wiener filter (WF RR). Performance was evaluated in terms of 

two metrics: signal- to- noise- ratio (SNR, in decibels dB) of estimated cursor position (the signal was the 

target position) and correlation coefficient (CC) between BCI- controlled cursor position and target cursor 

position (from Li et al., 2009)

Session Monkey 10th UKF KF WF RR

SNR, dB • CC
17 C 2.70 • 0.69 0.70 • 0.47 NA

18 C 2.73 • 0.72 2.42 • 0.60 –1.13 • 0.54
19 C 2.51 • 0.71 0.80 • 0.53 0.07 • 0.68
20 G –2.12 • 0.10 - 1.49 • 0.15 –3.23 • 0.07
21 G 1.58 • 0.56 1.55 • 0.57 0.77 • 0.58

22 G 3.23 • 0.71 0.39 • 0.48 –0.06 • 0.47
Mean diference from KF 1.04 • 0.12 0.00 • 0.00 –1.45 • 0.00

to signiicantly improve control of a cursor controlled by neural activity of the pri-

mary motor cortex of a monkey. In their experiment, an exoskeletal robot was used 

to make the monkey’s arm passively follow a cortically controlled visual cursor. his 

coupling provided the monkey with kinesthetic information about the motion of 

the cursor in addition to visual information. he researchers found that when visual 

feedback and kinesthetic feedback were congruent, targets were reached faster and 

cursor paths became straighter, compared to incongruent feedback conditions. 

hese early results suggest that future BCIs may beneit from combining proprio-

ceptive and other types of sensory feedback in addition to the more commonly used 

visual feedback for closed- loop  control.

7.2.4 Cognitive BCIs

he BCIs described above were based on decoding continuous movement trajecto-

ries for prosthetic limbs or computer cursors from the activities of neurons in the 

motor cortex. An alternate approach is to directly decode the target of the intended 

movement from brain areas farther upstream from motor cortex and then guide 

the prosthetic device autonomously to the target or place the cursor directly on 

the decoded target. Such BCIs are known as cognitive BCIs because they rely on 

higher- level cognitive signals rather than signals from the primary motor cortex for 

moment- by- moment control.

Cognitive BCI for Reaching Movements

One way of building a cognitive BCI for controlling a prosthetic arm is to use the 

neural activity in the parietal reach region (PRR) of the cerebral cortex to decode 

the target location of an intended reaching movement. Musallam et al. (2004) and 

Andersen et al. (2010) explored this idea in experiments where monkeys were irst 
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Figure 7.20. The standard Kalman filter and the nth order unscented Kalman filter (UKF) for esti-

mating cursor position and velocity from neural activity. (A) In the standard Kalman 

filter model, a linear model relates the current state (here, cursor position and velocity) to 

current neural activity. Additionally, the position and velocity at the next time step is linearly 

related only to the current (and not past) position and velocity. (B) In an nth order UKF, a 

nonlinear model (here, quadratic) relates position and velocity from n consecutive time steps 

to neural activity at a particular time step. The same n position and velocity values are used 

to predict the position and velocity at the next time- step (here, using a linear autoregressive 

(AR) model). (C) Example of a linear measurement model (“linear tuning” model) used in 

a standard Kalman. (D) Example of a nonlinear measurement model (“quadratic tuning” 

model) used in the UKF model. (E) Example of 1st order and nth order AR models for dynam-

ics of position (adapted from Li et al., 2009).

trained to reach to a target lashed at one of a set of ixed locations on a computer 

screen (Figure 7.22A, let panel). he monkeys were trained to reach to the lashed 

location only ater a variable delay period, whose beginning is marked by the ofset 

of the target on the screen. he neural activity during the memory period before 

the reaching movement (Figure 7.22B) and the reach target location were stored for 

training a classiier for decoding target location.

During “brain control” trials (Figure 7.22A, right panel), the target location was 

decoded from 900 ms of neural data during the memory period, starting 200 ms 

ater the beginning of the memory period. Only data during the memory period was 

used for decoding so that the monkeys’ intentions and not signals related to motor 

or visual events were used for decoding.
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A Bayesian method was used for decoding target location. As a preprocess-

ing step, spike trains from the 900 ms memory period were irst projected onto 

a family of wavelets known as Haar wavelets – these are essentially a sequence 

of scaled and shited square- shaped functions. As discussed in Section 4.3, the 

wavelet basis functions allow a signal over an interval to be represented using a 

set of coeicients. For decoding target location, a set of 100 wavelet coeicients 

were used. he choice of Haar wavelets was motivated by the need to capture the 

temporal features of a spike train, rather than simply the spike count or iring rate 

in the memory period.

A probabilistic model P(r|t) can then be learned from the training data, where 

r represents the neural response (in terms of wavelet coeicients) and t represents 

the target location. For example, if there are six possible target locations, one can 

learn a Gaussian model for each target location, where the mean and covariance of 

the Gaussian for a given target location is estimated from the responses observed 

for that target location. Given such a model, one can estimate the posterior proba-

bility of a target location P(t|r) using Bayes’ rule (Section 4.4.4). he decoded target 

 location was taken to be the maximum of all P(t|r). If the correct target location was 

decoded, a cursor was placed at the target location (Figure 7.22A, right panel) and 

the monkey was rewarded.
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Figure 7.21. Example cursor trajectories during closed- loop BCI control. Motion along the Y- coordinate 

is shown for three different estimation methods: a 10th order UKF, a standard KF, and a 10th 

order Weiner filter (WF). The dashed sinusoidal curves denote target position (adapted from 

Li et al., 2009).
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Based on the memory period activity of 8 PRR neurons in a monkey, 4 targets 

could be correctly decoded with 64.4% accuracy (chance level is 25%) in 250 brain 

control trials, and 6 targets with 63.6% accuracy (chance 17%) in 275 brain control 

trials (Figure 7.23A). When the responses of 16 neurons in the dorsal premotor 

cortex (PMd) were used, 8 targets could be decoded with 67.5% accuracy (chance 

12.5%) in 310 trials (Figure 7.23B). he average accuracy across all sessions using 

PRR neurons for 3 monkeys ranged from 34.2% to 45% for the 4- target case and 

25.6% to 37.1% for the 6- target case, while the rates for PMd neurons were sig-

niicantly higher (Figure 7.23C). hese results suggest that PMd might be a suitable 

target for high- performance decoding of target locations (see next section). 

More recent work (Hwang and Andersen, 2010) has established the utility of using 

both spikes as well as local ield potentials (LFPs) from PRR to jointly decode target 

location. he decoding accuracy in one monkey was found to be 86% for 6 target 

locations using spikes and LFPs from 16 electrodes, improving upon the 63.6% rate 

(which was obtained using spikes alone).

Enhancing the Performance of Cognitive  BCIs

In the previous section, we saw how target locations for a reaching movement can 

be predicted from parietal cortex and dorsal premotor (PMd) cortex neurons, but 
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Figure 7.22. Cognitive BCI for a reaching task. (A) Reaching and brain control tasks. The monkey was 

required to fixate on the square spot on the left and touch a central cue to initiate the trail. 

After 500 ms, a peripheral target (here, the triangle on the right) was flashed for 300 ms, 

followed by a 1500 ± 300 ms variable memory period. For reach trials, the monkey was 

rewarded if it reached the target at the end of a memory period. For brain control trials, 900 

ms of data (starting after 200 ms of the memory period) was used to decode the intended 

reach location using a Bayesian algorithm (see text). The monkey was rewarded if the correct 

target location was decoded. (B) Neural activity during reach and brain control trials. (Top 

panel) Each row of spikes is a single trial aligned to the beginning of the memory period. Top 

half of rows correspond to reach trials while bottom half of rows correspond to brain control 

trials. (Bottom panel) Poststimulus- time histogram (PSTH) of spikes. Thickness of PSTH rep-

resents standard error. M: start of memory period; Sp: spikes (from Musallam et al., 2004).
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the same data as a function of the number of neurons used for decoding. (C) Mean percent 
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of the distribution of accuracies). NS: number of sessions; *: recordings from PMd; all other 

recordings from PRR (from Musallam et al., 2004).
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how rapidly can such target locations be decoded? Santhanam, Shenoy, and col-

leagues (2006) addressed this question using a reach task similar to the task in the 

previous section, with 2, 4, 8, or 16 possible target locations (Figure 7.24A). Target 

location was predicted using the responses of 100–200 PMd neurons recorded with 

a 96- electrode array. he prediction was based on the spike counts from these neu-

rons during an integration interval (Tint) within the memory period (this interval 

was ixed at 900 ms in the previous section but was varied here to optimize perfor-

mance). Decoding followed a similar model as the probabilistic model in the pre-

vious section, with the likelihood P(r|t) given by a Gaussian or Poisson model and 

with uniform prior probability P(t) over targets (this non- informative prior reduces 

the Bayesian decoding method to a maximum likelihood [ML] method).

he researchers divided the delay period (between appearance of target and “go” 

cue) into a time interval to skip (Tskip) during which target information was not yet 

reliable and the integration interval (Tint) used to predict the target. Based on data 

from control experiments involving actual reaching (Figure 7.24A), Tskip was ixed 

to be 150 ms. Tint was varied and the accuracy with which the reach target could 

be predicted was determined from data from the control experiments. As shown in 

Figure 7.25A, the accuracy continues to increase as Tint is increased because a longer 

interval can be expected to average out more noise from the neural response. 

More interestingly, overall performance, when quantiied in terms of information 

transfer rate or ITR (see Section 5.1.4) peaked at 7.7 bits per second (bps) for the 

control data for Tint = 70 ms (Figure 7.25A). To measure ITR during actual cursor 

control experiments, a sequence of rapid BCI cursor trials was used. In these trials, a 

circular cursor was rendered on the screen at the target location predicted by neural 

activity; if the prediction was correct, the next target was displayed immediately 

(see Figure 7.24B). Task diiculty, which contributes to ITR, was varied by varying 

the number of possible target locations. he best overall performance of 6.5 bps 

was achieved with the 8- target task (Figure 7.25B). his performance corresponds 

to typing approximately 15 words per minute with a basic alphanumeric keyboard, 

which compares favorably with physical typing speeds of about 20 words per minute 

by novice computer users on a keyboard.

7.3 Invasive BCIs in Humans

Only a few studies have been conducted to date on brain- computer interfacing in 

humans using electrode arrays implanted inside the brain, the exceptions being 

BCIs such as cochlear implants (Section 10.1.1) and deep brain stimulators (Section 

10.2.1) that stimulate (but do not record from) speciic parts of the nervous system. 

Here we focus on experimental studies with tetraplegic humans who have consented 

to have an electrode array implanted in their brain to test BCI strategies for better 

communication and control.
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7.3.1 Cursor and Robotic Control Using a Multielectrode Array Implant

In one of the irst clinical trials aimed at translating BCI results from animals to 

humans, an electrode array called the BrainGate sensor (Figure 7.26A) with 100 sil-

icon microelectrodes (Figure 7.26B) was implanted in the arm area of the primary 

motor cortex of a tetraplegic human (MN) (Figure 7.26C–D) (Hochberg et al., 2006; 

Donoghue et al., 2007). An important question being addressed in this trial was 

whether motor intention could still modulate cortical activity three years ater spinal 

cord injury and in the absence of hand motion. In a irst set of experiments involv-

ing imagining movements on cue, the researchers found that neurons in the pri-

mary motor cortex can be modulated by imagined limb motions: some neurons were 
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Figure 7.24. Cognitive BCI for high- speed cursor control. (A) Delayed reach task with spike trains 

from selected neurons shown below (shaded box). Neurons are ordered by angular tuning 

direction (preferred direction) during the delay period. Ellipse shows the increase in neural 

activity related to the peripheral reach target. Lines labeled H and E show the horizontal and 

vertical coordinates of hand (H) and eye (E) traces respectively. (B) Sequence of 3 rapid BCI 

cursor trials followed by an actual reach trial. Tint, the time interval used for predicting target 

location, is the shaded interval overlayed on the spike trains. After a short processing time, a 

circular cursor (here shown as a dotted circle on the screen) was briefly rendered and a new 

target was displayed (adapted from Santhanam et al., 2006).
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activated by one imagined action, for instance, imagining moving the hands together 

and apart, while others responded to a diferent imagined action, e.g., wrist or elbow 

lexion and extension (Figure 7.27A), or hand opening and closing (Figure 7.27C). 

Some neurons nonselectively responded to all imagined actions (Figure 7.27B).

Given the diversity of neural responses observed for imagined actions, a linear  ilter 

method (Equation 7.2) was used to translate neural activity into two- dimensional 

cursor positions. he subject was asked to imagine tracking a cursor on the screen 

which was controlled by a technician. During this training session, the iring rates of 

 

A

B

100 16

14
12

10
8

6
4
2

50

0

2 targets

100

90

80

70

D
e
co

d
e
 a

cc
u
ra

cy
 (

%
 c

o
rr

e
ct

)

60

50

40

30

200 300
Trial length (ms)

400 500 200 300
Trial length (ms)

400 500 200 300
Trial length (ms)

400 500 200 300
Trial length (ms)

400 500

4 targets 8 targets 16 targets

200 250 300 350 400
Trial length (ms)

D
e

co
d

e
 a

cc
u

ra
cy

(%
 c

o
rr

e
ct

) IT
R

C
 (b

p
s)

7

6

5

4

3

2

1

0

IT
R

C
 (b

p
s)

Figure 7.25. Accuracy and information transfer rate of the cognitive BCI. (A) Accuracy and infor-

mation transfer rate (ITR, here labeled ITRC) as a function of trial length, calculated from a 

control experiment involving the reach task (8- target configuration). Trial length is given by 

Tskip+Tint+Tproc, where Tskip = 150ms and Tproc ~ 40ms. Tint was varied and prediction 

accuracy and ITR were computed for each value of Tint. A peak ITR of 7.7 bps was achieved 

at a trial length of 260 ms, corresponding to Tint = 70 ms. The dotted curve is the theo-

retical maximum ITR, assuming 100% accuracy regardless of Tint. (B) Performance during 

high- speed BCI cursor experiments for each target configuration and across varying total trial 

lengths. Performance was calculated from one experiment with many hundreds of trials. As 

the number of targets increases, prediction accuracy decreases, but ITR increases up to about 

6.5 bps (adapted from Santhanam et al., 2006).
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up to 73 discriminated neurons over the past second (twenty 50- ms bins) were lin-

early mapped onto technician- cursor position using a linear ilter computed via the 

pseudoinverse technique (see Section 5.2.1). In subsequent sessions, the predicted 

cursor position was plotted to provide visual feedback. he ilter continued to be 

updated ater each session.

 

A B

C D

1.0 mm

Figure 7.26. Invasive BCI in a human. (A) The electrode array (BrainGate sensor) shown on a U.S. penny 

with a ribbon cable to a percutaneous pedestal (arrow) that is secured to the skull via sur-

gery. (B) Close- up view of the 10 × 10 electrode array. Electrodes are 1 mm long and spaced 

0.4 mm apart. (C) MRI image of the brain of participant. Arrow shows the approximate loca-

tion of the implant site in the arm/hand area of the primary motor cortex. The box that the 

arrow points to represents a scaled projection of the implanted array (actual size: 4 × 4 mm). 

(D) The subject MN sitting in a wheelchair looking at the computer screen and moving the 

neural cursor toward the shaded square in a 16- target “grid” task. The arrow points to a box 

containing the amplifier and signal processing hardware attached to the percutaneous ped-

estal. The cable from this box conveys the amplified neural responses to computers in the 

room (from Hochberg et al., 2006).
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Figure 7.28A provides an example of neural cursor control while the subject 

attempted to track the technician’s cursor. he subject was able to move the cursor 

in the general direction of the technician’s cursor movement as the cursor changed 

directions, but the tracking is only approximate. his is illustrated in Figure 7.28B, 

which compares the x-  and y-  coordinates of the two cursors. he correlation 

between the neural and technician- controlled cursor positions was found to be 0.56 

± 0.18 (x- coordinate) and 0.45 ± 0.15 (y- coordinate) over 6 sessions, which is com-

parable to the performance of monkey BCIs using linear ilters.
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Figure 7.27. Response of human motor cortical neurons for imagined and actual movements. (A) 

Spikes and integrated firing rates from 2 simultaneously recorded neurons. The subject was 

asked to imagine performing a series of left limb movements (labeled on the x- axis), alter-

nating between the two phases of movement (e.g., open and close) at the times marked by 

the small vertical bars above the x- axis (these times were conveyed to the subject using a 

“go” cue). The neuron at the top increases its firing rate (curved arrow) with the instruction to 

move both hands apart/together, while the neuron at the bottom responds the most to the 

instruction to flex/extend the wrist and to move the shoulder. All movements are imagined 

except for shoulder movement, which the subject was able to perform. (B) 7 spike trains 

from a neuron elicited for 7 different movements, along with histograms showing the total 

number of spikes in each 500- ms bin. The neuron increased its firing rate during imagined 

movements but was not selective for any particular instruction like the neurons in (A). (C) 

Spike trains from 3 neurons in response to a text instruction to open and close a hand. These 

neurons increase their firing rate for the “close hand” instruction, reflecting the paralyzed 

subject’s intention to close the hand (from Hochberg et al., 2006).
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Figure 7.28. Cursor control with a BCI implanted in a human. (A) Trajectories of the technician-

 controlled cursor (gray) and neurally- controlled cursor (black) for a 5- second period in which 

the subject was asked to neurally track the technician’s cursor. (B) Comparison of x-  and 

y- coordinates of technician cursor (gray) and neural cursor (black) for a 1- minute period. (C) 

Four examples of neural cursor control in a target acquisition and obstacle avoidance task (cir-

cles: targets; squares: obstacles; thick line: cursor trajectory) (from Hochberg et al., 2006).
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More interestingly, the subject was able to perform more challenging tasks such 

as moving the cursor neurally to randomly placed targets while avoiding obstacles 

(Figure 7.28C) and using the neural cursor to open simulated e- mail, draw using a 

paint program, adjust volume, channel, and power on a television, and play video 

games such as Pong. he subject was also able to open and close a prosthetic hand 

through neural activity (cf. Figure 7.27C), and control a multi- jointed robotic arm 

to grasp an object and transport it to a diferent location.

In follow- up experiments (Kim et al., 2008), the researchers investigated the role 

of design choices such as the kinematic representation for cursor movement, the 

decoding method used, and the task used during training to optimize decoding 

parameters. hey found that two tetraplegic subjects were able to gain more accurate 

closed- loop control by controlling a cursor’s velocity than by controlling its position 

directly. Additionally, cursor velocity control was achieved more rapidly than posi-

tion control. he researchers also found an improvement in cursor control with a 

Kalman ilter (Section 4.4.5) rather than a linear ilter as in the previous study.

7.3.2 Cognitive BCIs in Humans

he previous section illustrated how neural activity from the human primary motor 

cortex can be used to control the trajectory of a cursor and move simple prosthetic 

devices. It is well known that areas in the frontal cortex beyond primary motor cor-

tex exhibit neural activity related to planning and initiating movement direction, 

remembering movement instructions over delays, or mixtures of these features. We 

saw in Section 7.2.4 how cortical areas such as PMd and the PRR in monkeys can be 

used to build cognitive BCIs that directly predict intended target locations.

Can such BCIs also be designed in humans? Although the question has not yet 

been studied in depth, some early work by Ojakangas, Donoghue, and colleagues 

(2006) suggests an airmative answer to this question. During the process of intra-

operative mapping for deep brain stimulation (Section 10.2.1) in human patients, 

the researchers found that recordings from small groups of human prefrontal/pre-

motor cortex neurons can be used to decode the planned direction of movement. It 

remains to be seen whether these neurons can be harnessed in a closed- loop setting 

to achieve true cognitive brain- computer interfacing.

7.4 Long- Term Use of Invasive BCIs

For invasive BCIs to be practical, they ought to be useful to the subject for long time 

periods ranging from months to years. Two important questions arise when BCIs 

are to be used on a long- term basis: (1) Can a BCI implanted with a ixed set of 

parameters be used over an extended period of time, or do the parameters need to 

be adjusted from day to day?, and (2) Do the electrodes continue to provide  reliable 

recordings of neural activity ater long periods of time, or do they succumb to bio-

logical phenomena (such as gliosis or scar- tissue formation)? 
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7.4.1 Long- Term BCI Use and Formation of a Stable Cortical Representation

he irst question has been addressed in a study involving monkeys perform-

ing a BCI cursor task using the same set of parameters over 19 days (Ganguly 

and Carmena, 2009).  Two monkeys performed a center- out reaching task (see 

Figure 7.19C) using a robotic exoskeleton that limited movements to the horizontal 

plane. A 128- electrode array was used to record the activities of neurons in bilateral 

motor cortex while the monkey was performing this manual control (MC) task. A 

linear ilter method (Equation 7.2, with 10 time lag values for i) was used to create 

a “decoder” for mapping the recorded motor cortex activity to recorded elbow and 

shoulder angular positions.

he linear decoder learned on day 1 was kept ixed and used in “brain con-

trol” (BC) mode to control the cursor directly on all subsequent days.  Fiteen of 

the irst monkey’s neurons were stably recorded from across 19 days and used in 

the ixed linear decoder, and 10 neurons were used from the second monkey. As 

shown in Figure 7.29A, the performance of both monkeys steadily improved over 

the irst 10 days. Starting from day 10, the mean accuracy remained close to 100%, 

and the monkeys performed accurately right from the very beginning of each day 

(Figures 7.29B and 7.29C). With practice, cursor trajectories became more direct 

(Figure 7.29D) and stereotyped, as quantiied by the increasing pairwise correla-

tions between the mean paths for each day (color map in Figure 7.29D). By exam-

ining the directional tuning and other properties of the neurons used in decoding, 

the researchers were able to show that stable task performance was associated with 

the formation of a stable neural representation for BCI control in response to a 

ixed decoder.

A surprising result was that the exact form of the decoder did not matter in the 

long run: when the weights w(i) (see Equation 7.2) were shuled, prediction of 

previously collected shoulder and elbow position data was inaccurate as expected 

(Figure 7.30A), but accurate BCI control was restored ater just a few days of prac-

tice with the new shuled decoder (Figure 7.30B). his result bears testimony to the 

remarkable plasticity of motor cortical neurons in gaining control over an external 

device even when given a randomized mapping, harking back to the early experi-

ments of Fetz showing operant conditioning of single motor cortical neurons to gain 

control of an analog meter (Section 7.1.1).

7.4.2 Long- Term Use of a Human BCI Implant

In humans, important questions pertaining to the feasibility of implants such as 

the BrainGate neural interface system include how long implanted microelectrodes 

can record useful neural signals and how reliably these signals can be acquired and 

decoded on a long- term basis.

Not many studies have been conducted to date to answer these questions, but exper-

iments by Simeral, Hochberg, and colleagues (2011) have produced some encourag-

ing results. hey examined neural point- and- click cursor control on 5 consecutive 
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days for a human with tetraplegia who returned to the laboratory 1,000 days ater 

implantation of an array of 100 microelectrodes in the motor cortex. On each of the 

5 days, a Kalman ilter (Section 4.4.5) based on spikes from a group of neurons was 

used to decode two- dimensional cursor velocity, and a linear discriminant classiier 

(Section 5.1.1) was used to classify the intention to click. Closed- loop point- and- click 

cursor control was tested in two tasks: an eight- target center- out task and a random 

target task adapted from a human- computer interaction standard test used to quan-

tify performance of computer input devices. Successful trials required that the cursor 

be moved to the target and a click executed within an allotted time while the cursor 

hovered over the target. Electrode impedances, neural spike waveforms, and local 

ield potentials were measured daily to quantify any changes in the neural interface.
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Figure 7.29. BCI performance over a period of 19 days. (See color plates for the same figure in color) 

(A) Cursor control performance over consecutive days using a BCI with a fixed linear decoder 

and a fixed set of neurons in two monkeys (red inset boxes are data for the second monkey). 

(Top) Mean accuracy per day. (Bottom) Mean time to reach target. Error bars: ±2 standard 

errors of the mean. (B) Performance trend on specific days for a single monkey, plotted as 

a moving average (% correct trials in a moving window of 20 trials). (C) Performance in the 

first 5 minutes of BCI cursor control in each daily session from day 1 to day 19. Bars denote 

correct (blue) or error (red) trials. (D) Left: Example cursor trajectories during an early stage 

(day 3) and later (day 13), showing that trajectories become more direct and stereotyped 

with daily practice. Right: Color map showing the pairwise correlation between the mean 

paths for each day from the center to a target (R = correlation coefficient) (from Ganguly and 

Carmena, 2009). 
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Across the 5 days, spiking signals were obtained from 41 of the 96 electrodes 

available for neural measurements. hese neural signals were found to be suicient 

to yield an average target- acquisition- and- click rate of 94.9% for the center- out task 

and 91.9% for the random target task. By demonstrating that the electrode array 

maintained accuracy nearly 2.75 years ater implantation, these results help alleviate 

concerns that tissue reaction from penetrating electrodes could diminish BCI per-

formance in the long term. Although encouraging, the results need to be validated 

with a more extensive set of clinical trials with additional subjects.

7.5 Summary

Some of the most impressive achievements in brain- computer interfacing to date 

have come from invasive BCIs in animals and humans, with demonstrations rang-

ing from highly accurate control of two- dimensional cursors to real- time control 

of prosthetic arms and grippers. he two dominant approaches adopted in these 

invasive BCIs have been using operant conditioning, where the BCI relies solely on 

adaptation by neurons to achieve control, and population decoding methods, which 

use statistical techniques to learn a mapping between neural activity and control 

parameters. he most successful decoding methods have been methods based on 

the population vector (Equation 7.1), the linear (Weiner) ilter (Equation 7.2), and 

the Kalman ilter (Section 4.4.5). he question of long- term use of BCIs is also 
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Figure 7.30. BCI performance with a shuffled decoder. (See color plates for the same figure in color) 

(A) Comparison of the ‘‘offline’’ predictive ability of an intact and a shuffled decoder. The 

shuffled decoder performs poorly in offline prediction of recorded data on positions of the 

shoulder (upper trace in each panel) and elbow (lower trace) from neural activity. Black 

traces: actual movements; blue: predictions with each decoder; R: correlation between actual 

and predicted movements. (B) Performance improvement with the shuffled decoder over the 

course of 8 days in terms of % of correct trials. The inset color map shows the pairwise corre-

lation between the tuning properties of neurons for one day and other days up to day 8. The 

plot shows that the tuning properties gradually stabilized over the course of 8 days, resulting 

in a stable “cortical map” for cursor control. Red dots: average correlation in tuning properties 

(mean of each column of color map with exclusion of diagonal entries) (from Ganguly and 

Carmena, 2009). 
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beginning to be addressed, with studies in animals and humans showing that the 

brain can form a stable neural representation with daily BCI use much like other 

forms of motor skill acquisition, and electrodes used for recording neural activity 

can remain viable more than two- and- a- half years ater implantation of the BCI 

inside the brain.

7.6 Questions and Exercises

1. Suppose the goal is to design a BCI for controlling a prosthetic arm that can 

reach diferent locations in three- dimensional space. How would you use oper-

ant conditioning to train a monkey to control the arm?

2. Write down the equation for population vector decoding of movement direc-

tion from cortical activity. Explain how the various quantities used in the equa-

tion can be estimated from experiments.

3. Compare the strengths and weaknesses of operant conditioning versus population 

decoding as a method for building a BCI for cursor and prosthetic control.

4. Describe how the neural population function (NPF) was computed in the 

experiment by Chapin and colleagues for BCI in a rat. How was the NPF used 

to control a robotic arm?

5. Write down the equation for the linear ilter (or Weiner ilter) method for 

decoding a variable (such as hand position) from neural activity (such as the 

iring rates of a population of neurons) over time. How can the ilter weights be 

estimated from recently collected data?

6. Compare the performance of the following decoding methods based on the 

studies described in Section 7.2.1:

a. Linear ilter

b. Artiicial neural network with three layers and sigmoidal units

c. Population vector method

7. What are the advantages of using a Kalman ilter for decoding compared to the 

population- vector or linear ilter methods?

8. In Section 7.2.1, we encountered two diferent ways of formulating the decoding 

problem using the Kalman ilter. In one case, the iring rates recorded from neu-

rons were the observations, whereas in the other the observations were kine-

matic outputs (joint angles). Write down the equations for each and discuss the 

advantages, if any, of one model over the other.

9. Enumerate some of the advantages and disadvantages of using LFPs versus 

spikes for brain- computer interfacing.

10. (  Expedition) he results in Section 7.2.2 showed that lower- limb kinematics 

during walking can be predicted from the activity of neurons in primary motor 

and somatosensory cortices. However, this by itself is insuicient for restor-

ing locomotion in a lower- limb amputee since it does not take into account 

the dynamics of the body and prosthetic. Find out the newest technology in 
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 powered lower- limb prosthetic devices and discuss whether and how the tech-

nique in Section 7.2.2 could potentially be modiied to control a powered pros-

thetic device for walking.

11. What are some of the brain areas (in the monkey) that have been successfully 

used for cursor control, either individually or in conjunction with other areas?

12. Explain the diference between an unscented Kalman ilter (UKF) and a stan-

dard Kalman ilter. What are the potential advantages of using the UKF in BCI 

applications?

13. What are cognitive BCIs and how do they difer from BCIs based on decoding 

movement trajectories from motor cortical activity?

14. (  Expedition) Section 7.2.4 explored two diferent cognitive BCIs. Read the 

papers by Musallam et al. (2004) and Santhanam et al. (2006) that describe these 

BCIs, and provide a detailed description and comparison of the two Bayesian 

decoding methods used by them.

15. Compare the training paradigm and the results obtained using the BrainGate 

sensor in humans to the results obtained using electrode arrays in monkeys. 

Is the human performance on par with monkey performance in cursor and 

prosthetic- control tasks?

16. In Section 7.4.1, we discussed the surprising result that BCI control can be 

achieved even with a randomly shuled decoder. What are the implications of 

this result for the endeavor of designing sophisticated decoders for BCI? Why 

would one need to employ sophisticated machine- learning and statistical algo-

rithms for decoding if a random decoder might do the job?

17. What did the 1,000- days- ater- implantation tests of the BrainGate system reveal 

about the performance of the BCI, and what are the implications for long-

 term use?

18. (  Expedition) A major concern with implantable BCIs is their long- term via-

bility given the likelihood of scar- tissue formation around the electrodes. One 

way to counter this problem is to make the electrodes biocompatible. Write a 

review of the most promising biocompatible electrode technologies that are 

currently being investigated or are available for use in BCIs.
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In the previous chapter, we learned about BCIs that required placing electrodes 

inside the brain. While such an approach provides a high- idelity window into 

the spiking activity of neurons, it also comes with signiicant risks: (1) possible 

infections due to penetration of the blood- brain barrier, (2) encapsulation of 

electrodes by immunologically reactive tissue, which can degrade signal qual-

ity over time, and (3) the potential for damage to intact brain circuits during 

implantation. 

To counter these risks, researchers have investigated the use of BCIs that do 

not penetrate the brain surface. Such BCIs can be regarded as semi- invasive BCIs. 

We will focus on two types of semi- invasive BCIs: electrocorticographic (ECoG) 

BCIs and BCIs based on recording from nerves outside the brain. As discussed in 

Chapter 3, ECoG requires surgical placement of electrodes underneath the skull, 

either under the dura mater (subdural ECoG) or outside the dura mater (epidu-

ral ECoG). he procedure is invasive but less so than the methods of the previous 

chapter. In this chapter, we explore the ability of ECoG BCIs to control cursors and 

prosthetic devices.

Even less invasive than ECoG are methods that tap into intact nerve endings in 

diferent parts of the body. We conclude the chapter with a discussion of such nerve-

 based BCIs.

8.1 Electrocorticographic (ECoG) BCIs 

Much of ECoG BCI research has been conducted on consenting human patients 

who are being monitored in a hospital to locate the source of seizures in the days 

prior to surgery. BCI experiments are conducted in those patients who are willing 

and able.  here has also been some recent work on ECoG in animals with the goal 

of characterizing the spatial and temporal resolution of ECoG signals for BCI. We 

examine these results next, before proceeding to ECoG BCIs in humans.

 8
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8.1.1 ECoG BCIs in Animals

We already know from the work of Fetz and others that monkeys can learn via 

operant conditioning to modulate the responses of neurons in the motor cortex to 

control an external device (Section 7.1.1). Can ECoG signals recorded from the sur-

face of the brain also be modulated in a similar manner? Rouse and Moran (2009) 

explored this question with monkeys using two cursor- control tasks. he irst task 

was the center- out reaching task frequently used in invasive BCIs (see Figure 7.19C 

in previous chapter). he monkeys were required to control the cursor so as to irst 

hit a center target and then move to one of four targets displayed at the periphery. 

he second task was a drawing task that involved controlling the cursor to trace a 

circle in either the clockwise or counter- clockwise direction.

Two electrodes placed 1 cm apart at two arbitrary epidural locations over primary 

motor cortex were used to control the cursor. he signals from these electrodes 

were converted to the frequency domain using the Fourier transform (Section 4.2), 

and the power in the frequency band 65–100 Hz was used for cursor control. One 

electrode was selected to control the cursor’s horizontal velocity where an increase 

in the 65–100 Hz amplitude (compared to the resting state) caused the cursor to 

move to the right while a decrease caused the cursor to move to the let. he other 

electrode was similarly used to control the cursor’s vertical velocity. his mapping 

from neural activity to cursor velocity was kept ixed for a series of daily sessions 

over ive days.

Over the course of one week, the monkeys learned to modulate the ECoG signals 

from the two electrodes to control the cursor in two dimensions to accomplish both 

the tasks. For the center- out task, one monkey was able to successfully perform forty 

movements in about six minutes. In the drawing task, the monkey was able to draw 

thirty circles in approximately seven minutes.

Figure 8.1A shows the average cursor trajectory for counter- clockwise and clock-

wise circles drawn using ECoG activity on the third day of recording. Note that 

rather than resembling a circle, the average trajectory is more of an ellipse along the 

upper- let to lower- right axis. his suggests that the ECoG signals from the two elec-

trodes may have been correlated such that their amplitude in the 65–100 Hz band 

tended to be higher or lower together rather than one being high and low for certain 

parts of the trajectory as required for circular motion. To improve its cursor- control 

ability, the monkey needs to decorrelate the signals from the two electrodes as much 

as possible. Figure 8.1B shows that the monkey was indeed adapting its neural activ-

ity to reduce the correlation between the two electrodes. he plot shows that the 

correlation between the powers at most frequencies decreased over the course of 

the ive days of recording, with the largest decrease in correlation occurring in the 

65–100 Hz frequency band used for controlling the cursor. hese results suggest that 

as in the case of invasive BCIs based on operant conditioning of individual spiking 

neurons, animals can also adapt population- level activity, as measured using ECoG, 

to obtain control over external devices. 
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8.1.2 ECoG BCIs in Humans

ECoG Cursor Control Based on Motor Imagery

As mentioned earlier, ECoG BCI experiments in humans have been conducted in 

patients in whom subdural or epidural electrodes have been implanted for about a 

week in preparation for surgery to remove an epileptic focus. If the patient consents 

to participate in BCI experiments, the BCI protocol typically employed involves ask-

ing the patient to perform various types of movements and motor imagery (e.g., 

hand, tongue, or foot movements). he recorded ECoG data is then screened to 

identify the electrodes and frequency bands that exhibit the highest correlation with 

the executed movements or imagery. hese channels and frequency bands are then 

used for closed- loop BCI tasks such as cursor control. 

One- Dimensional Cursor Control

In an early set of 1D cursor- control experiments by Leuthardt and colleagues (2004), 

ECoG signals were recorded from four patients using 32 subdural electrodes placed 

over the let frontal- parietal- temporal cortex (Figure 8.2A and 8.2B). Patients were 

asked to perform six tasks: three motor actions (opening/closing right or let hand, 

protruding the tongue, and saying the word “move”) and imagining each of these 

actions. For each electrode location, the power spectrum from 0–200 Hz was com-

puted (the researchers used an autoregressive method [Section 4.4.3] instead of a 

Fourier transform for eiciency reasons).

For each patient, one or two electrodes and up to four frequency bands were 

selected based on having the highest correlations with one of the three actions or 

 

A B 
1

Day 1

Day 2
Day 3
Day 4
Day 5

0.5

0
0 65 100

Frequency (Hz)
200

C
o
rr

e
la

tio
n

Figure 8.1. Cursor control using an ECoG BCI in a monkey. (See color plates for the same figure 

in color) (A) Average cursor trajectory for a monkey drawing clockwise (left) and counter-

 clockwise (right) circles using ECoG. The large green circle represents the cursor at the start/

end location for the trial. (B) Correlation between the powers for the two electrodes used 

for horizontal and vertical cursor control at various frequencies across five days of recording 

(power spectrum was computed using 300 ms time bins and 3 Hz frequency bins). Note 

the dramatic decrease in correlation between the two electrodes, especially in the 65–100 

Hz band used for cursor control, over the course of five days (adapted from Rouse and 

Moran, 2009).
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imagery tasks (this was done using r2, the square of the correlation coeicient, some-

times also called the coeicient of determination). Patients then used the amplitude 

of these ECoG “features” to move a cursor up or down, for example, imagining right-

 hand movement to make the cursor move up and resting to move it down. Starting 

from the let edge of the screen, the cursor was traveling to the right at a constant 

velocity, and the task was to delect the cursor up or down to hit a target randomly 

placed in the top or bottom half of the right edge of the screen.

he cursor’s vertical position was updated every 40 ms, controlled by a translation 

algorithm based on a weighted linear summation of the amplitudes of the selected 

frequency bands from the selected electrodes for the previous 280 ms. he weights 

were chosen to move the cursor up with task execution (e.g., imagining hand move-

ment) and down with rest. his relationship was explained to the patient prior to the 

experiments.
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Figure 8.2. ECoG BCI in humans. (A) An 8×8- electrode array placed under the dura of a patient. The elec-

trodes are 2 mm in diameter and separated from each other by 1 cm. Ant: anterior. (B) X- ray 

image of the skull showing the location of the electrode array. (C) Raw ECoG signals from a 

patient for an electrode used for cursor control. Upper trace: ECoG signal when the patient was 

resting, which moves the cursor down. Lower trace: ECoG signals when the patient imagined 

saying the word “move” to make the cursor move up. (D) Amplitude spectra for rest (upper 

curve) and imagery (lower curve) for the experiment in (C) (from Leuthardt et al., 2004).
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Ater training periods lasting between 3–24 minutes, all four patients were 

able to successfully control the cursor, with accuracies ranging from 74% to 100% 

(Figure 8.3).  Figure 8.2C illustrates the raw ECoG signal for one patient from an 

electrode used for cursor control when the patient rested to make the cursor go 

down (upper trace) and when the patient imagined saying the word “move” (lower 

trace) to make the cursor go up. here is a noticeable decrease in low- frequency 

oscillations during imagery – this is quantitatively veriied in the amplitude spectra 

shown in Figure 8.2D. In this case, the cursor was controlled by the patient with an 

accuracy of 97% by changing the amplitude in the 20.5–22.5 Hz frequency band.

hese early ECoG BCI results were later replicated in a set of experiments con-

ducted in Seattle (Leuthardt et al., 2006), where four additional patients attained 

high accuracies in one- dimensional cursor control (73%–100%). More interestingly, 

the researchers observed a variety of changes in the ECoG signal features during 

online BCI control such as a spatial spread of signiicant ECoG features into adjacent 

cortex or the emergence of a markedly diferent set of signiicant features compared 

to the original screening task. In the latter case, switching to the newly signiicant 

ECoG features immediately improved accuracy from 71% to 94%. Additionally, the 
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Figure 8.3. Rapid learning of cursor control using ECoG. The plot shows the improvement in cursor 

control over the course of several minutes of training in four patients. Cursor control was 

measured in terms of accuracy in hitting one of two targets (chance level accuracy is 50%). 

To control the cursor, patient 1 (upper circles) and patient 2 (triangles) imagined saying 

the word ”move,” patient 3 (diamonds) imagined opening and closing the right hand, and 

patient 4 (lower circles) imagined protruding the tongue (from Leuthardt et al., 2004).
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researchers also demonstrated cursor control for one patient based on an epidural 

ECoG electrode (compared to subdural electrodes in other patients).

Two- Dimensional Cursor Control

he one- dimensional cursor control results described above were extended to two 

dimensions by Schalk, Ojemann, and colleagues (2008). Five patients participated 

in a study in which 26–64 subdural electrodes (conigured in grids or strips) were 

placed over the fronto- parietal- temporal region of the cortex, including the senso-

rimotor cortex. he study consisted of three stages: (1) screening using motor tasks 

to identify suitable BCI features, (2) one- dimensional cursor control, and (3) two-

 dimensional cursor control.

In the screening stage, subjects performed motor or motor imagery tasks such 

as opening or closing the hand, protruding the tongue, moving the jaw, saying the 

word “move,” shrugging the shoulders, moving the legs, and moving individual in-

gers. As in the one- dimensional study, the ECoG features (i.e., amplitudes for par-

ticular electrodes and frequencies) with the largest task- related amplitude changes 

were identiied by calculating the coeicient of determination r2 between the two 

distributions of trial- averaged feature values for task and rest, respectively. his met-

ric essentially measures the fraction of the feature variance accounted for by the 

task, relecting how much control the subject has over a particular feature. Pairs of 

tasks independent of each other in spatial and spectral distributions and their most 

salient ECoG features were identiied and assigned to control either horizontal or 

vertical cursor movement.

In the second stage, subjects trained irst on horizontal and then vertical cursor 

control. hey used one or more of the ECoG features identiied above to control 

each dimension of movement. he subject was informed a priori about the type of 

imagery to use for the appropriate cursor movement based on the selected ECoG 

features. In each trial, the subject was presented with one of two targets (on the 

let/right edge or top/bottom edge), with the cursor at the center of the screen. he 

subject’s task was to modulate the selected ECoG features to move the cursor to the 

target. Cursor movement was based on a weighted linear summation of values for 1 

to 4 ECoG features. he weights were chosen manually and were usually either +1 or 

−1 so as to assign increase or decrease of feature change to the desired direction (up 

or down, let or right) of the cursor movement. he features were computed from 

the previous 280 ms (subjects A through D) or 64 ms (subject E). As in the previous 

study, subjects quickly acquired accurate one- dimensional control.

Two- dimensional control was implemented by combining ECoG features that the 

subject had previously learned to control independently in one- dimensional tasks, 

i.e., horizontal and vertical cursor movement was controlled continuously by the 

selected sets of horizontal and vertical ECoG features simultaneously. he subject’s 

task was to move a computer cursor from the center of the screen to a target that 

appeared in one of four locations on the periphery of the screen. If the cursor failed 
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to reach a target within a predeined amount of time, the cursor and target disap-

peared and the trial was registered as a miss.

Figure 8.4A shows the learning curves for the ive subjects demonstrating improved 

performance over a training period of 12–36 minutes. All ive subjects successfully 

learned to control the cursor and guide it to the appropriate target with average 

hit rates in the range 53% –73% (chance target selection rate for this task is 25%). 

Figure 8.4B shows the average cursor trajectories for the ive subjects. Figure 8.4C 

depicts the correlation between cortical activity at various locations on the brain 
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Figure 8.4. Two- dimensional cursor control using ECoG. (See color plates for the same figure in color) 

(A) Improvement in performance for five subjects as a function of training time. (B) Average 

cursor trajectories to the four targets for each subject. (C) Correlation between cortical activity 

and vertical/horizontal cursor movement for subjects D and E. Correlation is depicted as r2 

values indicating the level of task- related control for different cortical areas. Subject D used 

actual tongue and hand movements for vertical and horizontal control respectively. Subject E 

used imagined versions of the same actions. The plots below show these correlation values 

as a function of frequency for the locations used for online cursor control (location indicated 

by a star). The frequency band used for online control is demarcated by two yellow bars 

(adapted from Schalk et al., 2008).
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Figure 8.5. Comparison of ECoG activity during movement and imagery. (See color plates for the 

same figure in color) (A) (Left panel) ECoG power spectrum for hand movement (red) and rest 

(blue). (Right panel) Same plot for hand imagery. The data are from an electrode in primary 

motor cortex (circled in B). Power at low frequencies (“LFB,” 8–32 Hz, green) decreases with 

movement/imagery while power at high frequencies (“HFB,” 76–100 Hz, orange) increases. 

Here, HFB increase with imagery is 32% that of movement (compare orange areas) while 

for the LFB decrease, it is 90% (green areas). (B) Electrodes for which stimulation produced 

movement of the hand (light blue) or tongue (light pink). Hand movement/imagery data 

in (A) is from the circled electrode. (C) (Left panel) Interpolated HFB brain activation maps 

for hand and tongue movement/imagery. Each is scaled to the maximum absolute value of 
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surface and cursor movement for two subjects. he plots below show this correlation 

as a function of frequency for the electrode used for cursor control. As seen in the 

plots, the features most useful for control are amplitudes of “high gamma” frequency 

(> 70 Hz) recorded from electrodes over sensorimotor cortex. he frequency band 

actually used for online control is demarcated by the two yellow bars. It can be seen 

that this location/frequency band, chosen on the basis of early screening, is not nec-

essarily optimal for online cursor control.

Amplification of ECoG Activity through BCI Use

he ECoG studies discussed in the previous two sections relied on either motor 

imagery or actual movements to demonstrate brain- based cursor control. Does 

motor imagery activate similar areas as actual movement? Studies using EEG and 

fMRI have suggested a positive answer. hat the same is true for ECoG was dem-

onstrated by Miller, Rao, and colleagues (2010) in a study involving eight human 

subjects performing overt action and imagery of the same action.

he study focused on ECoG power in a “high frequency” (76–100 Hz) and a “low 

frequency” (8–32 Hz) band (Figure 8.5A). It was found that, as expected, the spatial 

distribution of ECoG activity during motor imagery mimics the spatial distribution 

of activity during actual motor movement (Figure 8.5B–D). However, the magnitude 

of imagery- induced cortical activity was less (approximately 25% of that associated 

with actual movement). More signiicantly, the high- frequency band (HFB) activ-

ity was much more localized compared to the lower- frequency band (LFB) activity 

(compare Figure 8.5C and 8.5D), motivating the use of the HFB in ECoG BCIs to 

exploit their greater spatial separability compared to the LFB.

he researchers then investigated how this imagery- related activity is adapted 

when used in a BCI task that involved controlling a one- dimensional cursor 

(Figure 8.6A).  he task was to move the cursor to a target randomly placed at the 

top or bottom edge of the screen. he cursor’s velocity was determined by the power 

in the HFB (see equation in Figure 8.6A): increases in power above a baseline value 

moved the cursor up, and decreases in power moved the cursor down.

he four subjects who participated in the BCI study rapidly (in 5–7 minutes) 

learned to control the cursor using the power in the pre- selected HFB (Figures 8.6B 

and 8.6C). Subject 1 attained 94% accuracy using imagined word repetition 

activation (indicated by the number above each cortical map). (Right panel) Quantification 

of overlap between hand and tongue movement (yellow), hand movement and imagery 

(light blue), and tongue movement and imagery (light pink). (D) As in C but for the LFB. Note 

the lack of significant overlap (denoted by ∅ in the bar graph) between hand versus tongue 

movement in the HFB case, indicating greater localization compared to the LFB. Also note the 

significant overlap between movement and imagery in all cases (P- value < 10–4) (from Miller 

et al., 2010).

Figure 8.5. (continued)
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Figure 8.6. Amplification of cortical activity during learning of a BCI cursor task. (See color plates 

for the same figure in color) (A) An initial motor- screening task was used to identify an ECoG 

“feature,” i.e., a particular electrode- frequency- band combination (gold- colored electrode in 

the brain image, located in primary tongue cortex (see Figure 8.5B), HFB 79–95 Hz). The 

power P(t) in this feature and the mean power P0 across trials were used to control the veloc-

ity of a one- dimensional cursor using the linear equation shown. The subject was instructed 

to imagine saying the word “move” to move the cursor toward one target (the “active” target) 

and to rest (or “idle”) to move the cursor to the other target (the “passive” target). (B) The rel-

ative power in the chosen ECoG feature is shown during four consecutive runs of the cursor 
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 (imagining saying the word “move”) while the other three subjects achieved 90%, 

85%, 100% accuracies respectively using tongue, shoulder, and tongue imagery.

More interestingly, the spatial distribution of high- frequency ECoG activity 

was quantitatively conserved during learning, but the magnitude of the imagery-

 associated ECoG activity increased signiicantly (Figure 8.6C) – in most cases, this 

new activity even exceeded that observed during actual movement. In other words, 

coupling motor imagery with BCI feedback ampliied imagery- related activity, anal-

ogous to the ampliication of single neuron activity via operant conditioning in the 

experiments of Fetz and colleagues (Section 7.1.1). Furthermore, ater 5–8 minutes 

of training, some subjects reported that motor imagery ceased and was replaced by 

directly thinking about moving the cursor up or down.

Using Classifiers to Decode ECoG Signals

he ECoG BCI studies above relied on manual selection of features (based on a 

screening task) and a direct linear mapping between feature value and cursor veloc-

ity. An alternate approach is to utilize a classiier (Section 5.1) that takes as input a 

large number of features and automatically decides how to weight these features to 

maximize accuracy. Shenoy, Rao, and colleagues (2008) explored this approach in 

eight patients implanted with 64–104 subdural ECoG electrodes. All eight subjects 

performed repetitive hand or tongue movements in response to a visual cue; six 

subjects also performed the corresponding motor imagery tasks.

For all subjects and for all ECoG channels, the same two frequency- band features, 

LFB (11–40 Hz) and HFB (71–100 Hz), were extracted from 1–3 seconds of data during 

task performance. As observed in the previous section, there is a decrease in the LFB 

and an increase in the HFB with movement as shown in Figure 8.7. he set of features 

across all channels was fed as input to four diferent linear binary classiiers (Section 

5.1.1): regularized linear discriminant analysis (RLDA or RDA), support vector machine 

(SVM), and two “sparse” variants of these two methods called the Linear Programming 

Machine (LPM) and the linear sparse Fisher’s discriminant (LSFD) respectively. Recall 

from Section 5.1.1 that a linear binary classiier is based on the equation:

y sign wT= ( )0w x +

task. Red dots: mean power during active target trials. Blue dots: mean power during passive 

target trials (cross: outlier). Green line: mean power P0 across passive/active trials. Black line: 

“discriminative index” (smoothed difference between mean power during previous three 

active target trials and previous three passive target trials). Target accuracies (shown in C) 

were highest when the subject found a middle dynamic range. (C) Spatial distribution of 

HFB and LFB activations, and target hit accuracies during each of the four runs. Number near 

each brain plot: maximum (absolute value) activation. Note that the final activations are most 

prominent at the electrode used for cursor control (from Miller et al., 2010).

Figure 8.6. (continue)
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he components of the weight vector w can thus be used to judge which features in 

x are considered important by the classiier.

In a sparse linear classiier, the goal is to not only minimize classiication error but 

also to obtain a sparse weight vector (i.e., a weight vector with most components at 

zero or close to zero). his is achieved by modifying the cost function being opti-

mized (e.g., replacing the L2 norm on w in Equation 5.12 for the SVM with the L1 

norm) to allow a trade- of between sparseness and training error. By examining the 

non- zero components of the weight vector ater learning, one can automatically dis-

cover and use only the most important features from a large number of potentially 

irrelevant features in the input vector.

Figure 8.8 shows the performance of each classiication method for distinguishing 

between actual tongue and hand movements as well as imagined tongue and hand 

movements. his performance was obtained from ECoG data lasting 1–3 seconds 

in each trial for only 30 trials. As seen in the igure, the best performance across the 

8 subjects was obtained for the LPM classiier (average 6% error). Performance for 

motor imagery was worse (average 23% error for the LPM classiier) but signii-

cantly above chance levels (50%). he fact that such performance was obtained with 

as few as 30 data samples per class is worth noting.

he researchers also examined the weights w learned by the classiiers to see 

which input features (electrode and high or low frequency band combination) were 

deemed to be important by the classiier. Each subject’s classiier weights were nor-

malized to unit length and projected onto a standard brain using electrode posi-

tions estimated from X- rays. Figures 8.8C and 8.8D show the cumulative projection 

of all subjects’ weight vectors onto the standard brain (spherical Gaussian kernels 

at each electrode location were used for interpolation across the brain). he plots 
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Figure 8.7. Comparing ECoG features for two movements. (See color plates for the same figure 

in color) The two plots show average power spectra during tongue-  and hand- movement 

tasks for two electrodes placed over the hand and tongue areas of the cortex. Similar to 

Figure 8.5A, movement causes a decrease in power in the LFB (left shaded region) and an 

increase in power in the HFB (right shaded region): (left plot) hand movement, (right plot) 

tongue movement (from Shenoy et al., 2008).
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show spatial clustering of important features across subjects at task- related soma-

totopic locations. he sparse classiiers select more localized features, especially for 

the motor imagery task. his provides a method for feature selection based on clas-

siier weights: indeed, the researchers were able to show that the number of features 

required for classiication can be reduced to about 20% of the overall set of features 

without signiicantly impacting performance.

ECoG BCI for Arm Movement Control

We saw in Chapter 7 that the spiking activity of neurons in monkey motor cortex can 

be used to control a prosthetic arm by decoding the appropriate kinematic param-

eters such as hand position and velocity. Can such information also be decoded 

from ECoG signals?

In a study by Schalk and colleagues (2007), ive patients implanted with ECoG 

electrodes used a joystick to move a two- dimensional cursor on a computer screen. 

he task was to track a target that was moving counter- clockwise in a circle. ECoG 

was recorded using a 48-  or 64- electrode grid placed over the fronto- parietal-
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Figure 8.8. Classifying ECoG signals for movement and imagery. (See color plates for the same 

figure in color) (A) Hand versus tongue movement classification error for each classifier over 

eight subjects. Classification error was measured based on a cross- validation procedure 

(see Section 5.1.4). (B) Classification error for hand versus tongue motor imagery. (C) & (D) 

Cumulative weight vectors across all subjects for each classifier projected onto a standardized 

brain in separate low- feature and high- feature plots. The weights for movement are shown 

in (C) while those for imagery are shown in (D). Red denotes large positive values while blue 

denotes negative values. Note that the sparse methods (LPM and LSFD) select spatially more 

focused features (adapted from Shenoy et al., 2008).
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 temporal region which included parts of sensorimotor cortex. he signal from each 

electrode was preprocessed using the common average referencing (CAR) method 

(Section 4.5.1).

he researchers found that ECoG voltage level in some channels appeared to 

directly correlate with kinematic parameters, i.e., the ECoG signals were amplitude-

 modulated in the time domain rather than in the frequency domain. he underlying 

neural signal is referred to as a local motor potential (LMP). Examples of LMPs can 

be seen in Figure 8.9A which shows the ECoG signals for a subject and the posi-

tion of the cursor over the course of 60 seconds. he LMPs, relected in the chan-

nels over sensorimotor cortex (Figure 8.9B), show a clear correlation with cursor 

position. his correlation is especially evident in the magniied example shown in 

Figure 8.9C.

To quantify the decoding ability of the ECoG signal, the experimenters con-

verted the ECoG signal for each 333 ms period (overlapping by 166 ms) into the 

frequency domain and calculated spectral amplitudes between 0 and 200 Hz in 

1 Hz bins. hese spectral amplitudes were then averaged in particular frequency 
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Figure 8.9. ECoG activity during a target tracking task. (A) ECoG signals (channels 21–40) and X and 
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of the ECoG electrodes (symbols denote locations showing LMP). (C) Magnification of ECoG 

LMP from channel 35 and the X position of cursor (thick dark curve) and target (thin light 

curve below) (from Schalk et al., 2007).
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ranges (8–12 Hz, 18–24 Hz, 35–42 Hz, 42–70 Hz, 70–100 Hz, 100–140 Hz, 140–

190 Hz) to obtain seven spectral features, to which was added a 333 ms running 

average of the raw unrectiied signal to capture any LMPs. he ECoG features 

were used in four linear models (Section 5.2.1), one each for predicting each of the 

four kinematic parameters: vertical and horizontal cursor positions and vertical 

and horizontal cursor velocities. As illustrated by the examples in Figure 8.10, the 

positions and velocities predicted from ECoG correlate well with the actual cursor 

positions and velocities resulting from the circular hand movements for tracking 

the target. he average correlations over kinematic parameters ranged from 0.35 

to 0.62 across subjects, which is within the range of correlations obtained using 

invasive electrode arrays in monkeys. he researchers also found that like single 

neurons in motor cortex, the LMP ECoG feature also showed cosine directional 

tuning, suggesting a direct link between ECoG LMPs and underlying motor neu-

ronal activity.

he ability of ECoG signals to predict hand movements was further veriied by 

experiments in which subjects used a manipulandum to move a cursor to one of 

nine possible target locations arranged in a 3 × 3 grid (Pistohl et al., 2008). For 

decoding, a Kalman ilter (Section 4.4.5) was used in which the state vector com-

prised of the X-  and Y-  hand positions and velocities. As in the Kalman ilter 
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Figure 8.10. Decoding kinematic parameters using ECoG. (A) through (E) show examples of actual (thin 

traces) and decoded (thick traces) X and Y cursor position for 5 subjects (correlation coef-

ficients r for these examples are shown at the top left corner) (from Schalk et al., 2007).
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models discussed in Section 7.2.1, the state vector at time t was linearly related 

to the observed neural data, which in this case was a low- pass iltered version of 

the ECoG signal from all electrodes at some time t – τ in the past. he researchers 

found that the Kalman ilter approximately tracked the actually performed move-

ments, with correlation coeicients between real and predicted positions in the 

range 0.16 to 0.45 across six subjects. he best correlations were obtained using a 

delay τ of approximately 94 ms.

ECoG BCIs for Prosthetic Hand Control

he experiments above demonstrated the ability to decode hand position and 

velocity from ECoG signals. Can ECoG also be used to decode individual inger 

movements?

To investigate this question, Shenoy, Rao, and colleagues (2007) conducted 

experiments in which six subjects implanted with 64- electrode ECoG grids 

moved the ingers of the hand contralateral to the grid placement, in response 

to visual cues on a computer screen. Subjects performed repeated movements of 

each individual inger for 2- second intervals, interspersed with rest periods. he 

instantaneous positions of the ingers was measured using a 5- sensor dataglove 

and written to disk simultaneously with the recorded ECoG signals. Each sensor 

measured the degree to which a inger was curled, providing a single measurement 

per inger. Figure 8.11 provides examples of inger position measurements during 

an experiment.
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Figure 8.11. Measuring finger movements using a dataglove. (A) Measurements from the five- finger 

movement sensors. The traces from bottom to top correspond to thumb, index, middle, ring, 

and little finger respectively. As seen in the plot, the degree of independent motion varies 

from finger to finger, with the thumb being mostly independent of the other fingers. (B) 

Stimulus period (box- shaped trace starting at 0) instructing the subject to perform a specific 

finger movement, dataglove readings (noisy trace with multiple peaks) for that finger (note 

the delay in reacting to the stimulus), and the inferred window of behavior (second box-

 shaped trace) (from Shenoy et al., 2007).
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he ECoG signal during inger movement was converted into the frequency 

domain and the power in the 11–40Hz, 71–100Hz, 101–150Hz bands were extracted 

for each of the 64 channels, resulting in a 192- dimensional feature vector. his fea-

ture vector was used as input to two classiiers: a support vector machine (SVM) and 

a linear programming machine (LPM) (see earlier section). he goal here is to pre-

dict which inger is moving, a multi- class classiication task (Section 5.1.3). An all-

 pairs approach to multi- class classiication was used: a separate classiier was trained 

for every pair of classes, resulting in a total of 10 classiiers. Ater training, a new 

input is run through each classiier, resulting in one vote for an output inger class, 

and the class with the maximum number of votes is selected as the output (majority 

voting as discussed in Section 5.1.3).

Figure 8.12 shows the 5- class error in classiication of ingers across the six sub-

jects. he error was measured using 5- fold cross- validation (see Section 5.1.4). As 

seen in the igure, the LPM classiier consistently outperformed the SVM classiier. 

he average error across 6 subjects was 23% for the LPM (chance classiication error 

rate is 0.8 or 80%).

More interestingly, the researchers demonstrated that ECoG can be used to con-

tinuously track which inger is being moved. A sigmoid probabilistic output function 

was used for each pair- wise classiier to generate a single vector of class- conditional 

probabilities. he number of output classes was six, with rest periods as an additional 

class. One- second windows of data were used to compute ECoG features every 40 

ms, and these features were classiied using the probabilistic multi- class classiier. 

Figure 8.13 illustrates the output of the classiier over time along with the correct 

labels (i.e., which inger was being moved) as colored line segments at the top. It can 
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Figure 8.12. Classifying finger movements using ECoG. The plot shows the 5- class cross- validation 

error for LPM and SVM classifiers across 6 subjects (chance level error for 5- class classification 

is 0.8, or 80%) (from Shenoy et al., 2007).
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be seen that the classiier accurately identiies movement onset and rest periods and 

outputs high probabilities for the correct inger (and sometimes adjacent ingers 

that may also be simultaneously moving, cf. Figure 8.11A). More recent work by the 

same group has demonstrated that ipsilateral hand movements can be discriminated 

from ECoG signals from a single hemisphere, suggesting the possibility of regaining 

ipsilateral movement control using signals from an intact hemisphere ater damage 

to the other hemisphere (Scherer et al., 2009).

Other experiments have demonstrated that a principal component decomposition 

(see PCA, Section 4.5.2) of the ECoG power spectrum can reveal spatially distinct 

representations of individual ingers (Miller et al., 2009). Ten human subjects were 

asked to perform the inger movement task described above, and the movements 

were recorded using a dataglove (Figure 8.14A). From each ECoG electrode, the 

power spectrum was calculated from 1- second epochs centered at the time of maxi-

mum lexion during each movement. he spectra were normalized by dividing with 

the average at each frequency, and then the log was taken. For PCA, the covariance 
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Figure 8.13. Tracking finger movement using ECoG. (See color plates for the same figure in color) 

(A) Continuous probabilistic output of the 6- class classifier on 1 second windows of ECoG, 

updated every 40 ms. Colored line segments at the top denote the true class labels (which 

finger was actually moved). Probabilities for the “rest” state are not shown. In most cases, the 

classifier correctly identifies the onset and termination of movement as well as which finger 

is being moved (from Shenoy, 2008).
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Figure 8.14. Representation of individual finger movements in ECoG as revealed by PCA. (See 

color plates for the same figure in color). (A) Finger positions measured by a dataglove 

during cued flexion- extension. (B) Cross- correlation between finger movement and sample 

projection weights for first principal spectral component (PSC) shows spatial specificity for 

different finger movements as indicated by the color code (dark blue: thumb, dark green: 

index finger, light blue: little finger). Same color code used in C- K. (C) Left panel: First (pink) 

and second (gold) PSCs for the dark blue electrode in (B). Middle panel: Projection mag-

nitudes for each spectral sample from the first (top) and second (bottom) PSCs, sorted by 

movement type (black: rest periods). Each sample denotes the contribution of the PSC to 

the power spectrum from a 1 second epoch around a single movement. Note that the first 

PSC has a specific increase from rest for thumb movements. Right panel: Bar chart showing 

mean projection magnitudes for each finger- movement type, with mean from rest samples 

subtracted. Upper bars: first PSC, lower: second PSC. (D) and (E) Same as (C) except for the 

dark green and light blue electrodes in (B). (F), (H), and (J) Measured thumb, index, and 

little finger positions for a 40 second period. (G), (I), and (K) Projections to the first PSC for 

each of the three electrodes in (B) for the same 40 seconds as in (F), (H), (J). The plots show 

that each electrode is specifically and strongly correlated with one movement type (from 

Miller et al., 2009).
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matrix between frequencies was calculated, and the eigenvalues and eigenvectors of 

this matrix were computed.

he eigenvectors, known as Principal Spectral Components (PSCs), captured the 

robust common features during movement. Speciically, two major spectral com-

ponents were revealed by this analysis across all subjects (Figure 8.14C–E): the irst 

PSC corresponds to a broad- spectral change at all frequencies between 5 and 200 Hz, 

and a second PSC relecting a low- frequency narrow- band rhythm corresponding 

to the phenomenon of “event- related desynchronization” (ERD) previously reported 

in EEG studies (see Section 9.1.1). he PSC corresponding to broad- spectral change 

exhibited spatially discrete representation for individual ingers (Figure 8.14B) 

and reproduced the temporal movement trajectories of diferent individual ingers 

(Figure 8.14F–K).

Besides the relationship between broad- band spectral change and movements, it 

is also known that the local motor potential (LMP) (see above) is correlated with the 

position of individual ingers during grasping motions. Four subjects implanted with 

ECoG electrodes opened or closed their hand in a slow grasping motion (Acharya 

et al., 2010). his motion was recorded using an 18- sensor wireless CyberGlove 

(Figure 8.15A), and the resulting measurements were transformed using PCA. he 

irst principal component (PC), which accounted for greater than 90% of the vari-

ance, corresponded in all subjects to the slow opening and closing movements of the 

hand. he next ive PCs each corresponded to individual inger position variations.

Next, the ECoG signals were low- pass iltered using a moving average window 2 

seconds long to obtain an estimate of the LMP for each electrode. he linear ilter 

method (Equation 7.2) was used to predict each PC of hand motion from LMPs using 

a separate ilter. he results, illustrated in Figure 8.15B, show that LMPs extracted 

from ECoG signals can be used to decode both opening and closing of the hand 

(irst PC) as well as individual inger positions (other PCs). Additionally, the ilters 

trained on data from any given session were robust in their performance across mul-

tiple sessions and days, and were invariant to changes in wrist angle, elbow lexion, 

and hand placement across these sessions.

Long- Term Stability of ECoG BCIs

One of the potential issues with invasive BCIs is signal degradation over a long 

period of time due to immunoreactive processes; ECoG has therefore been sug-

gested as a better alternative for long- term BCI use. However, there have not been 

many studies investigating how an ECoG BCI performs over an extended period 

of time. Blakely, Ojemann, and colleagues (2009) examined BCI performance over 

multiple days using a ixed set of parameters for the BCI. A subject implanted with 

subdural electrodes used tongue imagery to control a cursor in a 1D BCI task identi-

cal to the one in Figure 8.6. he electrode- frequency band combination for control 

as well as the parameters g and P0 (see Figure 8.6) were selected based on initial 

screening and kept ixed for 5 days. Performance remained robust throughout all 
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days, with accuracies of 20/2 (hits/misses), 19/0, 19/5, 14/4, and 17/2 (chance level 

50%). Figure 8.16 shows the total power for up/down cursor control in each run for 

the inal trial on each day. he power levels remain relatively stable and well sepa-

rated over the ive days, suggesting that the ECoG BCI can be operated using a ixed 

set of parameters without the need for per- session adaptation of parameters as in 

some previous studies.

8.2 BCIs Based on Peripheral Nerve Signals 

Rather than recording from the motor cortex, a less invasive approach to tapping 

motor- control signals from the brain is to record from peripheral nerves. his 
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Figure 8.15. Predicting grasping motions using ECoG. (A) Wireless CyberGlove (Immersion Corp.) for 

tracking finger and wrist motion. The 18 sensors in the CyberGlove track flexions and exten-

sions of finger joints as well as abductions and adductions of the fingers. (B) Comparison of 

actual (darker trace) and predicted (lighter trace) finger motion for two subjects. (Top traces 

for each subject) Linear decoding of the first PC of finger movement. (Other traces) Linear 

decoding of the individual fingers (adapted from Acharya et al., 2010).
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approach is particularly suitable for amputees for controlling a prosthetic arm–

and- hand system. Some motor and sensory nerves degenerate following amputa-

tion but many nerve ibers retain their function. hese nerve ibers can be recorded 

from and/or stimulated using an electrode array similar to the arrays implanted in 

the brain.

8.2.1 Nerve- Based BCIs

In the case of amputees, neural activity can be recorded from motor nerve ibers that 

previously targeted the muscles of the amputated body parts. For example when an 

upper- limb amputee desires to lex the elbow, wrist, or a particular inger, the voli-

tionally evoked neural activity can be recorded from motor nerve ibers. Similarly, 

sensory information from sensors in a prosthetic hand and arm can be fed back to 

the subject by appropriately stimulating the sensory ibers that previously conveyed 

sensory inputs to the brain. Stimulating these ibers would provide feedback to the 

somatosensory parts of the brain about the consequences of the intended move-

ments, thereby enabling natural closed- loop feedback control of prosthetic devices.

Median Nerve- Based BCIs

In one study (Warwick et al., 2003), a healthy human subject had an array of 100 

individual needle electrodes surgically implanted into the median nerve ibers of 

the let arm. he 20 active electrodes in the array recorded the action potentials 

from small subpopulations of axons that surround each electrode. he electrodes 

could also be used to stimulate the axons. In one experiment, the blindfolded sub-

ject received feedback information via stimulation from force and slip sensors on 
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Figure 8.16. Stable BCI control across multiple days using ECoG. (See color plates for the same figure 

in color) Each data point represents total power within the control frequency band during up 

(red) and down (blue) cursor movements for each individual run during the final trial across 
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as squares. For both movement (right panel) and imagery (left panel) tasks, an increase in 

power can be seen for all runs during tongue imagery/movement (red) in comparison to 

runs during rest (blue) (adapted from Blakely et al., 2009).
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a prosthetic hand. he subject was able to use the implanted device to control the 

hand by applying an appropriate force to grip an unseen object.  In another experi-

ment, the subject was able to control an electric wheelchair and select the direction 

of travel by opening and closing his hand. he subject reported no perceivable loss of 

hand sensation or motion control. he implant was extracted ater 96 days because 

of mechanical fatigue of the percutaneous connection. No measurable long- term 

defects were found in the subject.

More extensive experiments by Dhillon and Horch (2005) have aimed to estab-

lish the feasibility of median nerve- based BCIs. Telon- insulated platinum- iridium 

electrodes were implanted within fascicles of severed median nerves in six human 

subjects with upper limb amputations (amputation level at or below elbow). Short 

duration pulses were applied to individual electrodes to identify which electrodes 

could be used to elicit distally referred sensations of touch/pressure or propriocep-

tion. Conversely, motor- control channels were identiied by connecting individual 

electrodes to a loudspeaker and asking the subject to attempt a missing limb move-

ment (e.g., inger lexion) while listening to the nerve activity over the loudspeaker. 

For an electrode from which motor nerve activity could be recorded, the subject was 

asked to control the position of a cursor whose position was linearly related to the 

level of motor activity.

Ater becoming suiciently proicient in the cursor control task, the subject was 

instructed to modulate the motor activity to control an artiicial arm (Figure 8.17A). 

Subjects controlled actuators in the elbow and hand of the artiicial arm using torque 

and force mode, respectively. A threshold level was set for detecting spikes, and each 

spike added a ixed increment to the output control signal, which decayed linearly 

over a selected time period (e.g., 0.5 second).

To test sensory performance, varying levels of indentation or force were applied 

to the strain gauge sensor on the thumb, and the subject was asked to rate them, 

without visual feedback, by using an open numerical scale for indentation or by 

squeezing a pinch- force meter for force. Subjects could quite accurately judge 

changes in indentation or force as seen in Figure 8.17B. For joint position sense, 

the elbow of the artiicial arm was moved to diferent positions, and the subject was 

asked to match the perceived angle of elbow lexion/extension, again without visual 

feedback, through movements of the contralateral, intact arm. Subjects once again 

could consistently judge the static position of the elbow joint in the artiicial arm 

(Figure 8.17B).

Motor control was assessed by asking subjects to control grip force or elbow 

position, without visual feedback. For grip- force control, the subjects were asked 

to match three or ive force levels. In both cases, linear regression with a signiicant 

non- zero slope provided the best it for the correlation between the target and the 

applied force or elbow lexion/extension angles (Figure 8.17C).

Finally, researchers have also explored the use of “cuf” electrodes that wrap around 

a peripheral nerve and record motor signals from the brain (Loeb and Peck, 1996; 
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Figure 8.17. Control and sensing of a robotic arm using nerve signals. (A) Experimental setup showing 

subject with electrodes implanted in the median nerve connected to a differential amplifier 

and artificial arm- and- hand system. (B) Sensory performance. (Above) Sensation magnitude 

reported by subject versus indentation applied to the thumb sensor by the experimenter on 

day 1 (open symbols, dotted line) and day 7 (filled symbols, solid line). (Below) Position of 

the contralateral, intact elbow set by subject versus position of the artificial arm elbow set 

by the experimenter on day 1 (open symbols, dotted line) and day 4 (filled symbols, solid 

line). (C) Motor performance. (Above) Hand force applied by subject versus target force set 

by the experimenter on day 1 (open symbols, dotted line) and day 6 (filled symbols, solid 

line). (Below) Position of the artificial arm elbow set by subject versus target position of the 

contralateral, intact elbow set by the experimenter on day 1 (open symbols, dotted line) and 

day 5 (filled symbols, solid line) (adapted from Dhillon and Horch, 2005).
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Wodlinger and Durand, 2010). Similar to the studies discussed above, they have 

demonstrated the use of such signals for controlling the elbow, wrist, and hand of a 

prosthetic arm as the patient imagines the movement.

8.2.2 Targeted Muscle Reinnervation (TMR)

A traditional method for controlling a prosthetic arm is to use EMG signals gener-

ated by intact muscles (e.g., EMG from biceps and triceps muscles to control a pros-

thetic hand). However, such a technique sufers from a lack of suicient number of 

intact muscles to control both the body and the prosthetic device.

Targeted muscle reinnervation (TMR) is a surgical procedure that reroutes brain 

signals from nerves severed during amputation to intact muscles (Kuiken et al., 

2007). Ater TMR, the intention of the subject evokes EMG signals in the reinner-

vated muscles, which are then ampliied and used to control the actuators in the 

prosthetic arm. Sensory signals from the skin can also be routed to speciic nerves 

for cutaneous sensory feedback, thereby allowing closed- loop feedback control.

As an example, in a subject whose let arm had been amputated, Kuiken and col-

leagues transferred the ulnar, median, musculocutaneous, and distal radial nerves 

to separate segments of the pectoral (chest) and serratus muscles (Figure 8.18, let 

panel). Two sensory nerves were cut, and the distal ends were connected to the ulnar 

and median nerves.

hree months ater the surgery, the patient could feel her chest muscles twitching 

when she tried to close her hand or bend her elbow. Six months ater surgery, EMG 

testing revealed diferential EMG patterns for diferent types of imagined movements 
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Figure 8.18. Targeted muscle and sensory reinnervation. (See color plates for the same figure in color) 

(Left panels) (Top) Depiction of the nerves transferred to the pectoralis muscle. (Bottom) 

Targeted sensory reinnervation. Cutaneous nerves were cut and transferred to the ulnar nerve 

and the median nerve. (Right panels) (A) Placement of EMG electrodes. (B) through (D) EMG 

patterns for elbow flexion, elbow extension, and hand closure respectively (adapted from 

Kuiken et al., 2007).
 

 

 



Major Types of  BCIs174

(Figure 8.18, right panel). Additionally, touching diferent locations on the chest and 

other TMR areas resulted in touch sensation on the missing hand. he subject per-

ceived diferent temperatures, sharpness of objects, vibrations, and  pressures on the 

reinnervated skin as sensations on diferent ingers, the palm, etc.

he patient was it with a new experimental prosthesis consisting of a motorized 

elbow with a computerized arm controller, a motorized wrist rotator, and a motor-

ized hand. he patient trained to use EMG signals from the TMR sites to control the 

motorized hand and elbow. Ater seven weeks of training with the TMR- controlled 

prosthesis, the patient became proicient in the use of the prosthetic and was able to 

operate the hand, wrist, and elbow simultaneously. he patient reported being able 

to operate the hand and elbow very intuitively: thinking of opening the hand, clos-

ing the hand, bending the elbow, or straightening the elbow resulted in the corre-

sponding motion of the prosthesis. Functional assessment tests using standardized 

tasks revealed that with TMR, the patient’s control of prosthetic movements was 

almost four times faster than with a conventional prosthesis. More importantly, the 

patient was able to use her new TMR prosthesis for an average of four to ive hours a 

day, ive to six days per week, for daily living tasks ranging from cooking, putting on 

makeup and carrying things to eating, house cleaning, and doing the laundry. 

8.3 Summary

In this chapter, we familiarized ourselves with semi- invasive BCIs, which avoid some 

of the risks and drawbacks of invasive BCIs (due to penetrating the blood- brain bar-

rier and triggering immunoreactive processes that can reduce the quality of signals 

over time). At the same time, semi- invasive BCIs ofer higher spatial resolution, 

better signal- to- noise ratio, a wider frequency range, and lesser training require-

ments than scalp- recorded EEG BCIs (see Chapter 9). We explored two types of 

 semi- invasive BCIs: BCIs based on ECoG signals and BCIs based on nerve signals. 

ECoG BCIs have been typically demonstrated in epilepsy patients being monitored 

in the days prior to brain surgery. hese BCIs can achieve high accuracies in cur-

sor control tasks with relatively short training times. ECoG BCIs typically rely on 

the subject learning to modulate the spectral power in a high frequency band (e.g., 

70–100Hz). he same spectral feature also allows inger movements to be diferen-

tiated, although precise manipulation and control of a multi- ingered robotic hand 

using ECoG remains to be demonstrated.

Nerve- based BCIs ofer an even lesser invasive approach to BCI and prosthetic 

control. BCIs that tap voluntarily generated motor control signals from the median 

nerve have been used to control prosthetic arm–and- hand systems while sensory 

measurements from sensors on the artiicial system can be conveyed through stim-

ulation of pre- identiied sensory ibers in the nerve. An alternate approach called 

TMR is based on diverting motor signals from nerves to intact muscles such as pec-

toral muscles and using EMG signals from these reinnervated muscles to control a 
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prosthetic arm. TMR has signiicantly improved the quality of life of some ampu-

tees, allowing them to perform a range of daily living tasks not previously achievable 

through conventional prosthetics.

8.4 Questions and Exercises

1. Enumerate some of the advantages of using electrocorticography (ECoG) for 

recording neural activity compared to intracortical electrodes. What are some 

of the drawbacks?

2. In the monkey ECoG BCI discussed in Section 8.1.1, what information was 

extracted from the ECoG signal to allow control of a cursor? What evidence was 

observed that suggested neural plasticity while the monkey gained increasingly 

better control of the cursor?

3. Explain how the coeicient of determination r2 is used in ECoG BCIs to select 

electrodes and frequency bands for control based on motor imagery.

4. In the ECoG BCI for cursor control described in Section 8.1.2, what were some 

of the changes in ECoG signal features observed, and how do these changes 

afect accuracy?

5. Describe the method used for achieving two- dimensional cursor control using 

ECoG as depicted in Figure 8.4. What features were found to be the most useful 

for online cursor control?

6. How does the spatial distribution of ECoG activation during motor imagery 

compare with ECoG activation during actual movement? How does this activa-

tion change ater motor imagery is used for cursor control with feedback?

7. (  Expedition) Describe how the linear programming machine (LPM) used by 

Shenoy and colleagues in Section 8.1.2 difers from a standard SVM. What are 

the advantages of using the LPM compared to the SVM? How can the weights 

of the classiier be used for feature selection?

8. Explain how a classiier can be used for feature selection from a large number of 

features. (Hint: See Figure 8.8)

9. What is the local motor potential (LMP), and how is it related to movement?

10. Describe how the following techniques have been used to predict individual 

inger movements from ECoG:

a. Classiiers such as LPM and SVM

b. PCA applied to the ECoG power spectrum

c. LMPs and PCA of hand motion

11. What is known about the long- term use and stability of ECoG BCIs? Describe 

some of the potential factors that can be expected to impact long- term use of 

ECoG implants.

12. Compare and contrast the potential advantages and disadvantages of using 

nerve recordings for controlling a prosthetic arm versus ECoG or intracortical 

recordings.
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13. What nerve in the arm has been used for both conveying sensations as well as 

recording motor- control signals for a prosthetic arm? Which of the following 

quantities could be measured or controlled using nerves: joint position, grip 

force, indentation, torque?

14. (  Expedition) Find out what the state- of- the- art powered upper- limb pros-

thetic devices are, and discuss whether or how nerve- based BCIs such as those 

described in this chapter could be used to control and receive feedback from 

these devices.

15. (  Expedition) Explain how cuf electrodes work and discuss their strengths 

and weaknesses compared to more conventional electrodes.

16. What is targeted muscle reinnervation (TMR)? Can it be used to perceive sensa-

tions from a missing limb, control a prosthetic arm, or both?

17. What are the advantages and disadvantages of a BCI based on TMR compared 

to other nerve- based BCIs we discussed in the chapter?
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A holy grail of BCI research is to be able to control complex devices using nonin-

vasive recordings of brain signals at high spatial and temporal resolution. Current 

noninvasive recording techniques capture changes in blood low or luctuations in 

electric/magnetic ields caused by the activity of large populations of neurons, but 

we are still far from a recording technique that can capture neural activity at the level 

of spikes noninvasively. In the absence of such a recording technique, researchers 

have focused on noninvasive techniques such as EEG, MEG, fMRI, and fNIR, and 

studied how the large- scale population- level brain signals recorded by these tech-

niques can be used for BCI. 

9.1 Electroencephalographic (EEG) BCIs

he technique of EEG involves recording electrical signals from the scalp (Section 

3.1.2). he idea of using EEG to build a BCI was irst suggested by Vidal (1973), but 

progress was limited until the 1990s when the advent of fast and cheap processors 

sparked a surge of interest in this area, leading to the development of a variety of 

EEG- based BCI techniques.

Since EEG signals relect the combined input to large populations of neurons, 

methods for building BCIs from EEG signals rely on modulating the response of 

large neural populations either through subject training over a period of time or 

through external stimuli that can activate large populations of neurons. BCIs based 

on the former approach are called self- paced (or asynchronous) because the subject 

can voluntarily initiate control at any time without being tied to a stimulus. Self-

 paced BCIs typically utilize some form of imagery (motor or cognitive) that can gen-

erate a robust and reliable EEG response ater a period of training. Stimulus- based 

BCIs (also called synchronous BCIs) rely on detecting a stereotypical brain response 

generated ater the subject is presented with a stimulus (such as a lash) that is linked 

to a BCI command or choice. Control is thus not initiated by the subject but is tied 

to the presentation of stimuli by the BCI. Stimulus- based BCIs however are easier 
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to use because they do not require training on the part of the subject, and relatively 

high accuracies can be obtained for naïve subjects, compared to imagery- based 

BCIs. We will now delve into both of these types of EEG BCIs and examine their 

capabilities in more detail.

9.1.1 Oscillatory Potentials and ERD

A number of successful imagery- based BCIs have relied on the subject learning to 

control speciic brain rhythms, manifested as oscillatory EEG potentials at speciic 

frequencies. It has been known that when a subject performs movement or imag-

ines performing a movement, the power in low frequency bands such as the mu 

(8–12 Hz) or beta band (13–30 Hz) decreases, a phenomenon known as “desynchro-

nization” (sometimes called event- related desynchronization or ERD). In a typical 

experiment, the power in the mu band is coupled to the movement of a cursor on a 

computer screen using a ixed mapping function; the goal is to move the cursor in 

a desired direction to hit a target. he subject starts by imagining a particular type 

of movement (e.g., opening and closing a hand) and over several training sessions, 

learns to control the movement of the cursor by being able to modulate the power in 

the mu band. he underlying physiology involves conditioning at the neural popula-

tion level (see Section 6.2.1), wherein the subject learns to modulate a large number 

of neurons in concert to generate the appropriate change in power. he performance 

of noninvasive EEG BCIs based on ERD has been reported to be 10–29 bits/minute 

at 80–95% accuracy, ater a dozen or so hour- long sessions. Note that these BCIs are 

self- paced.

Wadsworth BCI

One of the irst BCIs based on the control of oscillatory potentials was developed by 

Wolpaw and colleagues (1991) at the Wadsworth Center in Albany, New York. hey 

trained 4 subjects to use the 8–12 Hz mu rhythm in EEG over the central sulcus of 

one hemisphere to move a cursor from the center of a screen to a target located at 

the top or bottom edge (Figure 9.1). EEG was recorded using bipolar spatial iltering 

(Section 4.5.1) based on 2 electrodes placed 3 cm anterior and posterior to location 

C3 in the 10–20 system (Figure 3.7). he amplitude of the mu rhythm (calculated 

as the square root of the power at 9 Hz and measured in volts) was extracted using 

frequency analysis for every 333 ms time segment. he amplitude was compared to 

5 preset amplitude ranges and translated to one of 5 possible cursor movements (see 

Figure 9.2C for an example), such that large mu amplitudes resulted in upward cur-

sor motion and small mu rhythm amplitudes resulted in downward cursor motion.

To allow the subjects to learn to control their mu rhythm amplitude, initial train-

ing consisted of trials where only upward cursor movement was possible: the subject 

had to learn to relax, thereby increasing mu rhythm amplitude to cause the cursor 

to move up. Ater this initial training period, subjects trained on the top versus bot-

tom target task described above. Over a period of several weeks, subjects learned 
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to control their mu rhythm amplitude quite accurately, typically hitting the target 

within 3 seconds. Subjects reported that to move the cursor down, they adopted 

strategies such as imagining doing a certain activity (e.g., liting weights), whereas 

to move the cursor up, they thought about relaxing. As training progressed, several 

reported that such imagery was no longer needed.

Figure 9.2 shows the mu rhythm amplitude distributions for the 4 subjects on 

the final training day when the target was at the top (dashed line) and bottom 

of the screen (solid line). The separation of the two distributions reflects the 

ability of the subjects to control the amplitude of their mu rhythms for upward 

or downward cursor movement. Figure 9.3A illustrates the frequency ampli-

tude spectra for one subject, clearly showing the reduction in amplitude for the 

mu frequency band (8–12 Hz) when the target is at the bottom, compared to 

when the target is at the top. This reduction can also be seen in the sample EEG 

trace shown in Figure 9.3B. Such control of mu amplitude resulted in relatively 

high overall performance for the task (accuracy from 80% to 95%, with hit rates 

between 10 and 29 hits/minute).

 

Target

A B

C D

Cursor

Reward

Figure 9.1. The first Wadsworth EEG BCI for one- dimensional cursor control. The screen shots 

show an example run: (A) the cursor is at the center of the screen with the target at top; (B) 

subject uses mu rhythm amplitude to move the cursor toward the target; (C) cursor hits the 

target which flashes in a checkerboard pattern; (D) cursor reappears in center of screen and a 

new target appears (in case of an error, cursor reappears in the center, and the target remains 

where it was) (from Wolpaw et al., 1991).
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In a follow- up study, Wolpaw and McFarland (1994) showed that subjects can 

control two- dimensional cursor movement using the same approach but with two 

channels of bipolar EEG. he two bipolar channels were recorded from the let and 

right hemispheres at pairs of locations across the central sulcus (i.e., using the FC3/

CP3 pair and the FC4/CP4 pair in the 10–20 system – see Figure 9.4 (Let)). he task 

was to hit an L- shaped target at one of the corners of the screen (Figure 9.4 (Right)). 

he amplitudes for the mu band (5Hz bin centered at 10 Hz) for the let and right 

 hemisphere channels were mapped to up/down and let/right cursor movements. 

he mapping was based on a linear equation where the sum of let and right ampli-

tudes was mapped to vertical cursor movement while their diference (i.e., right 

minus let) was mapped to horizontal cursor movement. he slope and intercept of 

the equation were adjusted over time to optimize the subject’s performance. Over a 

period of 6–8 weeks, 4 of 5 subjects acquired simultaneous control over the sum and 

diference of right and let hemisphere amplitudes, achieving accuracies that were 

2–3 times chance levels (25%).
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Figure 9.2. Distribution of mu rhythm amplitudes for 4 subjects on final training day. The distri-

bution when target was at the bottom is shown as a solid line. The distribution when the 

target was at the top is shown as a dashed line. Inset numbers show performance (accuracy 

= hits/(hits+errors)) and hit rate (hits/min). Vertical lines in (C) show the mapping from mu 

amplitude ranges to cursor movement in steps up (+) or down (- ) for subject C (total number 

of steps from bottom to top was 76) (from Wolpaw et al., 1991).
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Figure 9.3. Control of mu rhythm amplitude in a subject during the cursor task. (A) Frequency 

amplitude spectra for subject A in Figure 9.2 when the target is at the bottom (solid line) and 

at the top (dashed line). (B) Example EEG traces for the same subject for a top and a bottom 

target. Note the presence of the mu rhythm for the top target, which is reduced by the subject 

for the bottom target (from Wolpaw et al., 1991).

 

1 2

3 4

Figure 9.4. Bipolar EEG channels for two- dimensional cursor control. (Left) One bipolar channel 

was recorded from each hemisphere from locations FC3/CP3 and FC4/CP4 across the central 

sulcus. (Right) Example run of two- dimensional cursor task showing cursor moving from the 

center of the screen to a target at the top right corner, followed by a new target at the bottom 

left corner (from Wolpaw and McFarland, 1994).
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Figure 9.5. 2- D Cursor control using mu and beta rhythms. (See color plates for the same figure 

in color) (A) The eight possible target locations (numbers 1–8) and example sequence of 

events in a trial. (B) Properties of EEG signals used by a subject. For this subject, vertical 

movement was controlled by a 24- Hz beta rhythm and horizontal movement by a 12- Hz mu 

rhythm. (Top) Scalp topographies (nose at top, locations C3 and C4 marked by X) of the cor-

relations of the 2 rhythm amplitudes with the vertical and horizontal target coordinates. The 

topographies are for R rather than R2 to show positive and negative correlations. (Middle) 

Amplitude (voltage) spectra (weighted combinations of right- side and left- side spectra) and 

their corresponding R2 spectra. Different voltage spectra (dashed, dotted, etc.) are for the 4 

vertical and 4 horizontal target coordinates. Arrows point to frequency bands used in vertical 
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and horizontal movement variables, respectively. (Bottom) Sample EEG from single trials. 

(Left) Trace from electrode C3 (major contributor to vertical variable) for a target at the top 

(target 1) or target at bottom (target 6). (Right) Traces from electrode C4 (major contribu-

tor to the horizontal variable) for target on the right (target 3) or target on the left (target 

8) (from Wolpaw and McFarland, 2004).

Figure 9.5. (continued)

How does the performance of these mu- rhythm- based EEG BCIs compare with 

invasive BCIs? Using a variation of the two- dimensional cursor task, Wolpaw and 

McFarland (2004) showed that their subjects could achieve a level of performance that 

falls within the range reported for invasive BCIs in monkeys. Subjects were required 

to use EEG signals to move the cursor to hit one of 8 targets placed on a computer 

screen (Figure 9.5A). EEG signals were recorded from 64 electrode locations distrib-

uted over the entire scalp, referenced to the right ear. he signals from locations C4 

on the right and C3 on the let hemisphere were spatially iltered using a Laplacian 

ilter (Section 4.5.1). he last 400 ms of spatially iltered EEG activity were used to 

compute the amplitudes in the mu (8–12 Hz) and beta (in this study, 18–26 Hz) 

frequency bands. Cursor movement was linearly determined using a weighted com-

bination of the two amplitudes from the right side and two from let side. Speciically, 

vertical movement was determined using MV = aV(wRV RV + wLV LV + bV), where RV 

is a right- side amplitude (either mu or beta, depending on the subject) and LV is a 

let- side amplitude. he weights wRV and wLV as well as the parameters aV and bV were 

adapted online to optimize performance. A similar equation with a separate set of 

parameters governed horizontal cursor movement MH. Positive and negative values 

of MV and MH moved the cursor up and down, and right and let, respectively. Ater 

each trial, the weights were adapted using a least mean- square (LMS) algorithm to 

minimize for past trials the diference between the actual target location and the tar-

get location predicted by the linear equations for MV and MH.

Over several weeks of training, subjects were able to gain control over their let/

right mu and beta amplitudes (Figure 9.5B). he LMS algorithm was found to have 

adapted the weights so as to give more weight to those amplitudes that the user was 

best able to control. Ater training, the 4 subjects were able to reach a target within 

the 10- second allotted time in 89%, 70%, 78%, and 92% of the trials, respectively, 

with average movement times 1.9, 3.9, 3.3, and 1.9 seconds, respectively. Figure 9.6 

illustrates the average cursor paths to the targets for each subject. he performance 

of the subjects was compared to the performance reported in the literature for inva-

sive BCIs in nonhuman primates on point- to- point movement tasks. hree mea-

sures were compared: movement time, target size, and hit rate. Movement times and 

hit rates were found to be similar whereas target size was in between those used in 

the invasive studies. he researchers thus concluded that the performance of their 

noninvasive BCI falls within the range reported for invasive BCIs that use electrodes 

implanted in the cortex. 
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Graz BCI

he Graz BCI group, led by Pfurtscheller, has published a number of studies involv-

ing motor imagery- based BCIs. Like the approach of Wolpaw and colleagues at 

Wadsworth, the Graz BCI system relies on low- frequency oscillations in EEG sig-

nals from sensorimotor areas to control cursors and prosthetic devices. A major 

focus is on feature extraction and classiication techniques to optimize subject 

performance.

Early prototypes were based on EEG patterns during willful limb movement, such 

as let hand, right hand or foot movement. Classiication accuracy was optimized by 

adapting input features, such as electrode positions and frequency bands, specii-

cally for each subject. Later work demonstrated that primary sensorimotor areas are 

also activated by movement imagery, with a circumscribed “event- related desyn-

chronization” (ERD) for the contralateral and an “event- related  synchronization” 

(ERS) for the ipsilateral hemisphere (Figure 9.7). his fact is utilized by the Graz BCI 

system using a classiier to exploit the let–right diferences in sensorimotor rhythms 

to classify imagery.

In one study (Pfurtscheller et al., 2000), subjects were provided continuous feed-

back of classiication performance: a horizontal bar moved to the right or let bound-

ary of the screen as the subject imagined moving the right or let hand. hree signal 
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Figure 9.6. Average cursor paths to targets for 4 subjects. Average paths were computed for all tri-

als in which the cursor reached the target within 2 seconds for user A, 5 seconds for user B, 

4 seconds for user C, and 2 seconds for user D. Short lines on paths denote tenths of time. 

Numbers within targets denote average time to target (from Wolpaw and McFarland, 2004).
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processing methods were tested: (1) band power in predeined, subject- speciic 

frequency bands, (2) adaptive autoregressive (AAR) parameters estimated for each 

iteration using the recursive least squares algorithm, (3) common spatial patterns 

(CSP). For the irst two methods, two closely spaced bipolar recordings from the 

let and right sensorimotor cortex were used, while the CSP method was based on 

a dense array of electrodes located over central areas. he resulting feature vectors 

were classiied using linear discriminant analysis or LDA (Section 5.1.1). Ater 6 or 7 

sessions, the lowest errors for three subjects (1.8%, 6.8%, and 12.5%) were obtained 

for the CSP method, with AAR yielding slightly higher rates and band power fea-

tures performing the worst.

he Graz group has reported information transfer rates (ITR; see Section 5.1.4) 

of up to 17 bits/min obtained by real- time classiication of oscillatory activity 

(Pfurtscheller et al., 2003). he group has also investigated the usefulness of ERD as 

a control signal for patients with spinal cord injury. A pilot project was performed in 

a tetraplegic patient with an electric hand orthosis (Pfurtscheller, Guger et al., 2000). 

Ater some months of training, the patient was able to operate the hand orthosis via 

imagery of speciic motor commands (Figure 9.8). 

Berlin BCI

Are months of training a necessity for learning to control an imagery- based EEG 

BCI? he Berlin Brain- Computer Interface (BBCI) project has explored this ques-

tion and demonstrated that advanced feature extraction and machine learning 
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Figure 9.7. Oscillatory EEG activity used in the Graz BCI. (A) Average power in the alpha band (here, 

9–13 Hz; called the mu band over motor areas) during motor imagery based on EEG sig-

nals from the left (C3) and right sensorimotor cortex (C4). Positive and negative deflections, 

with respect to baseline (0.5 to 2.5 seconds), represent a band power increase (ERS) and 

decrease (ERD) respectively. The cue was presented at 3s for 1.25 seconds. (B) Distribution 

of ERD on the cortical surface calculated from a realistic head model, shown 625 ms after 

presentation of the cue (adapted from Pfurtscheller et al., 2000).
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techniques can allow naïve users to gain rapid control of external devices without 

extensive training.

For example, one study by Blankertz, Müller, and colleagues (2008) involved a 

one- dimensional cursor control task with 14 fully naïve subjects utilizing two of 

three kinds of motor imagery: let- hand imagery, right- hand imagery, or foot imag-

ery. he two types of imagery were chosen for each subject in an initial “calibration” 

phase based on how much of the variance of power in a given frequency band could 
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Figure 9.8. EEG- based BCI control of a hand orthosis using motor imagery. (A) Average power in 

the beta frequency band (15–18 Hz, averaged over 80 trials each) for 3 motor imagery ses-

sions (33, 55, 62) during the course of training over 5 months. EEG was recorded from the 

foot area (electrode position Cz), and imagery of foot movement was initiated by a visual cue-

 stimulus. Early sessions showed only small band power increases (due to ERS) whereas later 

sessions (e.g., #62) show larger and earlier increases due to learning. (B) Raw EEG signals 

from two sessions showing earlier onset of beta oscillations in session 62. (C) Classification 

accuracy of motor imagery over a period of 5 months for a tetraplegic patient with no hand 

grasp function. FB denotes feedback. (Adapted from Pfurtscheller, Guger et al., 2000).
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be explained by the imagery class ailiation (this was done using the r2 method – see 

Chapter 8). Figure 9.9 illustrates the properties of the EEG signals for two subjects 

and the speciic frequency bands chosen for these subjects. he chosen frequency 

band signals (from 55 electrodes) were then spatially iltered using ilters learned 

with the common spatial patterns (CSP) method (Section 4.5.4). Between 2 and 6 

CSP ilters were used for each subject, resulting in a two-  to six- dimensional feature 

vector which was input to a linear discriminant analysis (LDA) classiier (Section 

5.1.1). he output of the classiier was used to move the cursor to the let or to the 

right to hit a target placed at the let or right edge of the screen. 

Figure 9.10 summarizes the results: 8 out of the 14 BCI novices achieved > 84% 

accuracy in their irst BCI session, and another 4 subjects performed at > 70%. 

Interestingly, in one of these subjects, the classiier used was actually trained on real 

movements, supporting the close relationship between real and imagined move-

ments (cf. results from ECoG BCIs in Chapter 8). One subject (cn in Figure 9.10) 

performed at chance level (50%); for another, the EEG spectra showed no peaks and 

hence no classes could be distinguished.

hese results are encouraging because they suggest that appropriate use of sig-

nal processing and machine learning techniques could ameliorate the need for long 

periods of training to achieve accurate EEG- based control.

9.1.2 Slow Cortical Potentials

Slow cortical potentials (SCPs) are slow non- movement- related changes in EEG ampli-

tude lasting from 300 ms up to several seconds. hey are thought to relect a mecha-

nism for local mobilization of excitation or inhibition in cortical populations, caused 

by inputs from the thalamus. he fact that humans can learn to voluntarily regulate 

these potentials based on feedback has led Birbaumer and colleagues to propose the 

use of SCPs for designing a BCI, which they call a thought translation device (TTD).

In one of their many studies on the TTD system (Kübler et al., 1999), 13 healthy 

subjects and 3 patients with total motor paralysis (due to amyotrophic lateral sclero-

sis or ALS) trained over several sessions to control their SCPs (in the case of patients, 

the training period lasted several months). EEG was recorded from electrode loca-

tions Cz, C3, and C4 (Figure 3.7), and two channels were extracted: a Cz- linked 

mastoid channel (i.e., 1/2 [(Cz- A1) + (Cz- A2)]) and a bipolar C3 minus C4 channel. 

he training task involved controlling a cursor to hit the top or bottom edge of the 

screen.  he position of the cursor was proportional to the diference between aver-

age baseline EEG amplitude and the average EEG amplitude over the last 500 ms 

from the Cz channel. he baseline amplitude was calculated from an immediately 

preceding baseline period. Some subjects participated in a two- dimensional cursor 

task where the target could also be the let or right edge of the screen. In this case, 

the horizontal position of the cursor was proportional to the diference between 

average baseline EEG amplitude from the (C3−C4) channel and the average EEG 

amplitude from this channel over the last 500 ms.
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Figure 9.9. Modulation of EEG signals by imagery for the Berlin BCI. (See color plates for the same 

figure in color) (1) Average spectra for two subjects for two motor imagery tasks (red: left 

hand, green: right hand; blue: right foot) for the Laplace- filtered CP4 channel (“CP4 lap”) 

during the calibration phase. The r2 values of the difference between imagery conditions 

are color coded; frequency band chosen is shaded gray. (2) Average amplitude envelope of 
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Figure 9.11 shows the average SCP waveforms generated by healthy subjects on 

cue ater training. For both channels, a clear deviation from baseline activity in the 

positive or negative direction can be seen: this diference from baseline was used 

to proportionally move the cursor up/down or let/right. Out of the 13 subjects, 4 

were able to produce signiicant positive- going responses, 3 generated signiicant 

negative- going responses, and 3 were able to generate both.

Figure 9.12 shows a similar result for one of the ALS patients MP. As seen in the 

igure, ater several months of training, the patient was able to generate a negative-

 going SCP at Cz when required to hit the bottom target (delections in vEOG indi-

cate minor vertical eye movements). As the subject learned, there was a gradual 

increase in accuracy, as revealed by an increasing hit rate and decreasing false posi-

tive rate over time (Figure 9.12B). Overall, 2 patients achieved 70–80% accuracy in 

a spelling task, where a binary choice was made successively to select a letter from 

an alphabet. 

9.1.3 Movement- Related Potentials

EEG signals show a small and slow potential drit prior to voluntary movements. 

hese movement- related potentials (MRPs), sometimes also called readiness poten-

tials (RPs) or Bereitschatspotentials (BPs) (Jahanshahi and Hallet, 2002), show vari-

ation in distribution over the scalp with respect to the body part being moved. For 

example, the BP related to movement of let versus right arm shows a strong lateral 

asymmetry. his potentially allows one to not only estimate the intent to move, but 

also distinguish between let and right movement intention. his makes them attrac-

tive targets for BCI applications but since they are typically much smaller than other 

EEG phenomena such as alpha or beta rhythms, their detection is much harder. It 

has been suggested that while ERD may relect changes in the background oscilla-

tory activity in wide cortical sensorimotor areas, MRPs may represent increased, 

task- speciic responses of supplementary and primary motor cortical areas (Babiloni 

et al., 1999).

An early demonstration of the utility of MRPs in BCI can be found in the work 

of Hiraiwa and colleagues (1990). hey used a backpropagation neural network 

(see Section 5.2.2) to classify EEG patterns from 12 channels in 2 tasks: voluntary 

utterances of the syllables “a”, “e”, “i”, “o”, and “u” and moving a joystick in 1 of 4 

directions: forward, back, let, or right. he input to the neural network consisted 

of 2 snapshots of the 12 EEG amplitudes at 0.66 and 0.33 seconds before speech or 

chosen frequency band. Cue was presented at time 0. (3) Scalp maps showing log of power 

within chosen frequency band averaged over the calibration phase. (4) and (5) Log band 

power difference topographies for the imagery tasks (denoted L, R, or F). Global average (in 

3) was subtracted for each. (6) r2 values for the difference between the motor imagery tasks 

(row 4 minus row 5) (adapted from Blankertz et al., 2008).

Figure 9.9. (continued)
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and vertical electro- oculogram (vEOG), averaged during a single training session over 13 

subjects. (Lower 2 panels) SCP difference between the left (C3) and right (C4) motor cortex 

and horizontal EOG (hEOG), averaged across last 3 training sessions for 5 subjects. Thick line 

between 1.5s- 2s: baseline. Note that the y-axis has negative values at the top. (from Kübler 

et al., 1999).
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movement. he researchers found that for the speech task, 16 out of 30 new EEG 

patterns (i.e., 53%) were correctly classiied into one of the 5 classes (chance perfor-

mance: 20%). For the joystick task, 23 out of 24 new patterns (96%) were correctly 

classiied (chance: 25%). hese results are quite remarkable given the early date of 

these experiments.

One interesting application of voluntary MRPs is in the design of an “asynchro-

nous switch” which allows a BCI to detect whenever the user voluntarily wants to 

transition from an idle state to an active control state to start using a BCI. Mason 

and Birch (2000) have proposed what they call a low- frequency asynchronous switch 

design (LF- ASD) for this purpose. hey tested their method with 5 subjects using 

a task where the subject made fast index inger lexion movements to hit a moving 

ball with a second EEG- controlled ball on a computer screen.  he EEG- controlled 

ball moved according to classiication of MRPs extracted from bipolar EEG signals 

iltered in the 1–4 Hz range from electrode pairs over supplementary and primary 

motor areas. Wavelet analysis (Section 4.3) based on a “bi- scale” wavelet was used to 

extract a 6- dimensional feature vector from 6 electrode pairs. he feature vector was 
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Figure 9.12. SCP- based BCI in an ALS patient. (A) SCP and EOG for an ALS patient MP at the beginning 

of training (left) and after training over several months (right). (B) Improvement in perfor-

mance for the same patient over time, as revealed by an increasing percentage of hits (black 
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months (adapted from Kübler et al., 1999).

 



Major Types of  BCIs192

classiied for every sample using a nearest neighbor classiier in conjunction with 

the LVQ method (see Section 5.1.3), and the inal output was taken to be a moving 

average over the last ive samples. Hit rates in the range of 38%–81% were achieved 

with corresponding false positive rates in the range of 0.3%–11.6% (see Figure 9.13 

for the full ROC curve). he LF- ASD method was found to have lower mean error 

rates than methods based on mu band features (Section 9.1.1).

Another example of the use of MRPs is a BCI designed by Shenoy and Rao 

(2005) that uses a dynamic Bayesian network (DBN) (see Section 4.4.4) to infer 

probability distributions over brain-  and body- states during planning and execu-

tion of actions. heir system used both EEG and EMG signals as inputs to the DBN, 

which inferred the probabilities of internal states such as intent to move, prepara-

tory activity, and movement execution. he parameters of the DBN were learned 

directly from observed data. Unlike classiication- based approaches, the advantage 

of using a DBN is that it allows the BCI to continuously track and predict a subject’s 

internal states over time and generate control signals based on an entire probability 

distribution over states rather than binary yes/no decisions as in the case of classi-

iers. his allows the system to, for example, decide whether to commit to a deci-

sion or gather more information to reduce uncertainty. Such an ability to handle 

uncertainty is critical in real- world BCI applications (e.g., control of a wheelchair 

or other robotic device). Shenoy and Rao showed that the DBN can leverage MRPs 

generated before movement execution (Figure 9.14) to provide estimates of the 

current brain-  and body- state during a self- paced let/right- hand movement task 

(Figure 9.15).
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9.1.4 Stimulus-Evoked Potentials

A major class of EEG signals used in noninvasive BCIs are evoked potentials (EPs), 

which are stereotypical EEG responses generated by the brain when the sub-

ject is presented with a particular type of stimulus. For example, when a rare but 

 task- relevant auditory, visual or somatosensory stimulus is interspersed with fre-

quent and routine stimuli, the rare stimulus evokes a potential with a positive peak 

at about 300 ms ater the stimulus is presented. his potential is called the P300 

(or P3) potential (Section 6.2.4). Other types of responses include: visually evoked 

potentials (VEPs) generated by visual stimuli such as lashing lights, steady state 

visually evoked potentials (SSVEP) produced by a visual stimulus repeated at a rate 

greater than 5 Hz, auditory evoked potentials (AEPs) generated by auditory stimuli 

such as clicks and tones, and somatosensory evoked potentials (SSEPs) caused by 

somatosensory stimulation. In this section, we examine how such stimulus evoked 

responses can be used to build BCIs.

The P300 Potential

he P300 (or P3) signal is so named because it is a positive delection in the EEG 

signal that occurs approximately 300 ms ater a stimulus. he stimulus itself must 

be rare and unpredictable but relevant to the subject (e.g., sudden intensiication of 

an attended target). he amplitude of the P300 depends directly on how relevant 

the stimulus is and varies inversely with the probability of the stimulus. he P300 

is generally observed most strongly over the parietal lobe, although some compo-

nents also originate in the temporal and frontal lobes. he exact neural mechanisms 

responsible for the P300 are as yet unclear, but brain structures such as the parietal 

cortex, cingulate gyrus, and the temporoparietal cortex as well as limbic structures 

(hippocampus, amygdala) have been implicated as possible substrates.
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A famous example of an early BCI based on EEG is the P300 BCI proposed by 

Farwell and Donchin (1988). In their now- classic BCI “speller” based on the odd-

ball paradigm, the 26 letters of the English alphabet (and some additional sym-

bols/commands) are displayed in the form of a 6 × 6 matrix on a computer screen 

(Figure 9.16). In order to spell a word (or issue a command), the subject must select 

each letter comprising the word (or the command) by focusing attention on that 

letter (or command) in the matrix. While the subject is focusing on the letter or 

command, the rows and columns of the matrix are repeatedly lashed in random 

order. Each lash (or intensiication) of a row or column lasts 100 ms, and the inter-

val between lashes is ixed at either 500 ms or 125 ms.

Only when the row or column containing a subject’s chosen letter or command 

is lashed is a large P300 generated by the subject’s brain (Figure 9.17). his signal 

can be detected using a classiier such as linear discriminant analysis (LDA). he 

subject’s choice of letter or command can thus be inferred by keeping track of which 

lashed row and column elicited the largest P300s. To help maintain attention, the 

subject is usually asked to count the number of times their choice was lashed. Note 

that the higher the number of lashes, the better the accuracy of detection, but this 
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Figure 9.17. The P300 signal in 4 subjects. Each plot shows the average EEG response for 1 subject for 
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i.e., interval between flashes (from Farwell and Donchin, 1988).

prolongs the spelling process – this is a classic example of the speed- accuracy trade-

 of typically found in detection systems.

In their irst study in 1988, Farwell and Donchin used 4 able-bodied subjects. 

EEG was recorded from location Pz over parietal cortex and referenced to linked 

mastoids (see Section 3.1.2). In the training session, subjects attempted to spell a 
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word that was sent to a voice synthesizer for feedback to the subject. All subjects 

were able to spell the word “brain” using their P300 signal, with occasional wrong 

selections being corrected using the BKSP (backspace) command. In the test ses-

sion, subjects attended to individual letters of test words for a speciic number of 

trials. he resulting data was analyzed oline.

Farwell and Donchin found that their BCI yielded an information transfer rate 

(ITR; see Section 5.1.4) of up to 0.20 bits/second at 95% accuracy, allowing subjects 

to communicate 12.0 bits, or 2.3 characters, per minute. In a more recent study, 

Sellers, Kübler, and Donchin (2006) studied a four- choice system that is easier to use 

for locked- in patients. his system is based on just 4 commands: yes, no, pass, and 

end, with the P300 evoked using an auditory, visual, or concurrent auditory/visual 

oddball task. Two ALS patients achieved average accuracies of 80% and 73% respec-

tively using auditory stimuli while the other patient achieved 63% using concurrent 

auditory/visual stimuli (chance level: 25%).

Steady State Visually Evoked Potential (SSVEP) 

Rather than detecting a transient evoked potential such as the P300, one can also 

design a BCI that detects the steady state evoked potentials caused by a continuously 

luctuating stimuli (with repetition rate > 5 Hz). For example, consider a system 

where the goal is to decode one of two possible choices. One can then represent the 

two choices by visual stimuli (e.g., buttons on a screen or light emitting diodes – 

LEDs), each blinking at a diferent frequency. he subject focuses attention on the 

button corresponding to his or her choice (e.g., by looking at it). his results in an 

EEG signal in the early visual areas of the brain (the occipital region) oscillating at 

the stimulus frequency – this signal is called a steady state visually evoked potential 

(SSVEP) (Section 6.2.4). By performing a frequency decomposition of the EEG stim-

ulus (e.g., using FFT – see Section 4.2), the BCI can detect the frequency of the stim-

ulus the user is paying attention to and therefore, the user’s choice (see Figure 9.18). 

A BCI based on these ideas (using buttons lashing at 17.56 and 23.42 Hz) was irst 

explored by Middendorf and colleagues (Middendorf et al., 2000), building on the 

ideas of Calhoun and McMillan (1996) and Skidmore and Hill (1991).

Some of the highest information transfer rates for EEG BCIs have been obtained 

using SSVEP- based methods. In one study, Cheng, Gao, and colleagues (2002) 

reported results from an SSVEP BCI allowing selection from 13 buttons on a 

computer screen, representing a virtual telephone keypad with the digits 0–9, 

BACKSPACE, ENTER, and an ON/OFF button (Figure 9.19).

Each of the 13 buttons was lashed on and of at a diferent frequency between 6 

Hz and 14 Hz. To reduce false positives due to alpha rhythms, a screening experi-

ment with eyes closed was irst performed, and frequencies with power more than 

twice the mean power between 4 Hz and 35 Hz were excluded from the  stimulation 

frequencies. Additionally, all stimulation frequencies were odd multiples of the 

frequency resolution to prevent one stimulation frequency being twice another 
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Figure 9.18. Example of SSVEP evoked by 7 Hz visual stimulation. The plots show amplitude spectra 

computed using FFT. (A) shows a single trial amplitude spectrum. (B) shows mean ampli-

tude spectrum averaged over 40 trials (vertical lines: standard deviation). Note that there 

are three peaks, one at 7 Hz and one each at the harmonics 14 Hz and 21 Hz (from Cheng 

et al., 2002).
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Major Types of  BCIs198

stimulation frequency. In other experiments, the authors found that the minimum 

diference in lickering frequency (i.e., frequency resolution) between neighboring 

targets that a subject can discriminate is about 0.2 Hz, and the frequency range in 

which the SSVEP can be efectively observed is approximately 6–24 Hz.

EEG signals were recorded from electrode locations O1 and O2 (which lie over 

occipital cortex, i.e., visual areas) according to the 10–20 system (Figure 3.7), with 

let/right mastoids as reference electrodes. A fast Fourier transform (FFT; see Section 

4.2.3) was performed every 0.3s to compute the amplitude spectrum. For each stim-

ulation frequency, the sum of its amplitude and that of its second harmonic was 

used as the feature for classiication. A simple threshold classiier was used, where 

the threshold was chosen to be twice the mean value of the amplitude spectrum 

between 4 Hz and 35 Hz. he output of the classiier (indicating the choice of the 

subject) was the frequency with the largest intensity (provided it is above thresh-

old). Additionally, a selection was made only if the same stimulation frequency was 

detected 4 times consecutively (6 for the ON/OFF button).

he researchers report that 8 of their 13 subjects were able to successfully use the 

SSVEP interface to type and ring a desired mobile phone number. An average ITR 

across all subjects of 27.15 bits/min was achieved, with the top 6 subjects attaining 

ITRs ranging from 40.4 to 55.69 bits/min. A follow- up study by the same researchers 

(Gao et al., 2003) with one subject demonstrated that an SSVEP BCI could distin-

guish at least 48 targets and provide an ITR of up to 68 bits/min (or 1.13 bits/sec). 

his ITR is among the highest reported for noninvasive BCIs, though lower than the 

ITR of 6.5 bits/sec reported by Santhanam and colleagues for their invasive BCI in 

monkeys (see Section 7.2.4).

Auditory Evoked Potentials

Adapting the approach used in P300 BCIs (see above), some researchers have 

explored BCI systems based on applying the oddball paradigm to auditory stim-

uli. We have already encountered the auditory oddball paradigm in the work of 

Donchin and colleagues, who used the P300 in the context of 4 spoken commands 

(yes, no, pass, and end) to obtain average accuracies between 63% and 80% in 3 

ALS patients. In other work, Hill, Birbaumer, Schölkopf, and colleagues (2005) 

used ICA (see Section 4.5.3) with support vector machines (SVMs) (see Section 

5.1.1) to classify the evoked potentials generated in response to auditory stimuli. 

In their case, the auditory stimuli consisted of 50 ms square- wave beeps of difer-

ent frequencies. he beeps were generated on the let or right side of the subject. 

he stream of beeps contained frequent non- target beeps and occasional target 

beeps that were played independently in either ear. he subject’s task was to pay 

attention to (by counting) the target stimuli occurring on either the let side or the 

right side. he BCI thus had to detect which of the targets (let or right) the user 

was attending to. EEG signals from 39 channels were averaged over many trials, 

unmixed using ICA, and classiied using a linear SVM. Error rates in the range 
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5% to 15% were obtained for some subjects, with ITR in the 0.4 to 0.7 bits/trial  

(about 4 to 7 bits/min).

A diferent auditory evoked potential- based BCI was proposed by Furdea, 

Birbaumer, Kübler, and colleagues (2009) for spelling words: letters in a matrix were 

coded with acoustically presented numbers. Nine of the 13 participants presented 

with the auditory spelling system scored above a predeined criterion level control 

for communication. However, the researchers found that, compared to a visual BCI, 

users’ performance was lower. In a subsequent study (Halder et al., 2010) involv-

ing an auditory BCI based on a 3- stimulus paradigm (i.e. 2 target stimuli, 1 fre-

quent stimulus), 20 healthy participants achieved an average information transfer 

rate (ITR) of up to 2.46 bits/min and accuracies of 78.5%. he researchers suggest 

that due to its short latency per selection, the auditory BCI may constitute a reliable 

means of communication for patients who have lost all motor function and have a 

short attention span.

9.1.5 BCIs Based on Cognitive Tasks

Rather than imagining movements or detecting evoked potentials, one can also ask 

a human subject to perform a cognitive task such as mental arithmetic, mentally 

rotating a cube, or visualizing a person’s face. If the cognitive tasks are suiciently 

distinct, the brain areas that are activated will also be diferent, and the resulting 

brain activation can be discriminated using a classiier trained on an initial dataset 

collected from the subject. Each cognitive task can be mapped to one control signal 

(e.g., performing mental arithmetic is mapped to moving the cursor up, etc.). he 

approach thus relies strongly on being able to reliably discriminate the activity pat-

terns for diferent cognitive tasks, making the choice of the cognitive tasks an impor-

tant and tricky experimental design decision.

Early work on investigating the use of mental tasks for BCI was led by Anderson 

at Colorado State. In the approach proposed in (Anderson & Sijercic, 1996), the sub-

ject was asked to engage in one of 5 predetermined mental tasks: (1) a baseline task, 

where the subject was asked to relax, (2) a letter- composition task, where the subject 

was instructed to mentally compose a letter to a friend or relative without vocaliz-

ing, (3) a math task, where the subject had to mentally solve a nontrivial multiplica-

tion problem (e.g., 49 times 78), (4) a visual counting task, where the subject had to 

imagine a blackboard and visualize numbers being written on the board sequentially, 

and (5) a geometric igure rotation, where the subject visualized a particular three-

 dimensional object being rotated about an axis. EEG was recorded for 10 seconds 

from locations C3, C4, P3, P4, O1, and O2, as deined by the 10–20 system, and each 

task was repeated multiple times. Autoregressive (AR) models (Section 4.4.3) were 

used to preprocess the EEG signal. Two and three- layer backpropagation neural net-

works (Section 5.2.2) were trained to classify half- second segments of the 6- channel 

EEG data into 1 of the 5 task classes. 10- fold cross validation (Section 5.1.4) was used 

to prevent overitting. he researchers found that average accuracy ranged from 71% 
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for one subject to 38% for another subject, both higher than chance  performance 

(20%). A later study by the same group (Garrett et al., 2003) compared a linear clas-

siier (linear discriminant analysis or LDA) with two nonlinear classiiers (neural 

networks and support vector machines, see Chapter 5). Nonlinear classiiers pro-

duced only slightly better classiication results than linear classiiers.

Using cognitive tasks for control may not be as natural as, for example, using 

motor imagery to control a cursor or another device, but surprisingly good results 

can be achieved using this approach. For example, Galán, Milán, et al., (2008) used 

3 mental tasks in a BCI for operating a simulated wheelchair from one point to 

another along a pre- speciied path. he mental tasks were: (1) mentally searching for 

words starting with the same letter, (2) relaxing while ixating on the center of the 

screen, and (3) motor imagery of the let hand. Data from a calibration phase was 

used to select a set of subject- speciic features (frequency- and- electrode combina-

tion) based on their performance using the LDA classiier (Section 5.1.1). In the test 

phase, a Gaussian classiier was used to map EEG features to 1 of 3 classes, which 

were in turn mapped to let, right, and forward commands for the wheelchair. Each 

subject participated in 5 experimental sessions, each consisting of 10 trials. In one 

experiment, two subjects were able to reach 100% (subject 1) and 80% (subject 2) of 

the inal goals along the pre- speciied trajectory in their best sessions. In a second 

experiment consisting of 10 trials with 10 diferent paths never tried before, subject 

1 was able to reach the inal goal in 80% of the trials. 

9.1.6 Error Potentials in BCIs

A potentially critical component of a BCI is the ability to detect whether the BCI 

has committed an error (misclassiication of a command that the user has given) 

by directly recognizing the brain’s reaction to the error. his reaction manifests 

itself in EEG signals as a slow cortical potential called an error potential or ErrP 

(Figure 9.20).

ErrPs can be detected in single trials and can potentially be used to improve the 

accuracy of a BCI. In a study by Buttield, Millán, and colleagues (2006), three sub-

jects used a manual interface to move a robot to the let or right side of a room – they 

repeatedly issued commands to the robot by pressing keys. he experimenters con-

igured the system to deliberately make errors 20% of the time to simulate a noisy 

BCI. Since ErrPs are typically manifest in frontocentral regions along the midline, 

EEG signals from locations Cz and Fz (Figure 3.7) were used and iltered using a 1–10 

Hz bandpass ilter. A mixture- of- Gaussians classiier (Section 5.2.3) was trained on 

EEG data from a window 50 to 650 ms ater visual feedback from the user’s action. 

A 10- fold cross validation analysis (Section 5.1.4) was performed on the collected 

data. Across the 3 subjects, the classiier detected the ErrP (i.e., the error trials) with 

an average accuracy of 79.9% and the absence of ErrP (i.e., the correct trials) with an 

average accuracy of 82.4%. hese results are encouraging, but a study that combines 

the detection of ErrPs with a functioning BCI system remains to be conducted. 
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9.1.7 Coadaptive  BCIs

Traditional BCI systems like those discussed in the previous sections collect data 

from a subject and then use this data to train a classiication (or regression) algo-

rithm. he resulting learned function is then kept ixed in subsequent sessions. 

However, brain signals change over time, both between sessions and within a single 

session, due to internal factors (adaptation, change in user strategy, fatigue) as well 

as external factors (e.g., changes in electrode impedance or location due to slippage, 

etc.). his could be problematic because a classiier trained on data from a previous 

session will not be optimal for a new session due to the non- stationarity of the data. 

One solution is to periodically update the classiier oline with newly collected data; 

however, this leaves open the question of how oten the classiier should be updated. 

A more attractive alternative is to let the BCI adapt to a user’s brain signals continu-

ously on an ongoing basis while the brain signals themselves are also adapting to the 

task at hand.

From a machine- learning perspective, the problem can be regarded as a non-

 stationary learning task where the system must continually adapt the function map-

ping inputs (brain signals) to outputs (control signals for devices). Such BCIs are 

called coadaptive BCIs because the BCI and the user adapt simultaneously and coop-

eratively to achieve desired goals. Coadaptive BCIs have been suggested as a solution 

to the BCI illiteracy problem because the burden of learning control does not rest 

entirely with the user – the BCI can assist the user through coadaptation. We briely 
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review three approaches to designing coadaptive BCIs (see also Bryan et al. (2013) 

for a more recent approach).

he Berlin BCI group has focused on eliminating the initial oline calibration 

phase of traditional BCIs (Vidaurre et al., 2011). he researchers propose an adapta-

tion scheme for imagery- based BCIs that transitions from a subject- independent 

classiier operating on simple features to a subject- optimized classiier within one 

session while the user interacts with the system continuously. Supervised learning is 

used initially for coadaptive learning, followed by unsupervised adaptation to track 

the drit of EEG features during the session. he research shows that, ater 3 to 6 

minutes of adaptation, 6 users, including 1 novice, were able to achieve good perfor-

mance, and participants with BCI illiteracy gained signiicant control in less than 60 

minutes. hey also report that in one case, a subject without an initial sensorimotor 

“idle” rhythm (low frequency band peak in the absence of movement) was able to 

develop it during the course of the session and used voluntary modulation of its 

amplitude to control the application.

Buttield, Millán, and colleagues (2006) have also explored the problem of online 

adaptation of classiiers in a BCI. A mixture- of- Gaussians classiier was used to clas-

sify EEG patterns from 3 tasks: imagery of let-  and right- hand movements, and 

mentally searching for words starting with the same letter. he feature vector con-

sisted of the power for the frequencies in the range 8–30 Hz at 2- Hz resolution for 

the 8 centroparietal locations (C3, Cz, C4, CP1, CP2, P3, Pz, and P4 – see Figure 3.7). 

A gradient descent procedure (Section 5.2.2) was used to continuously adapt the 

parameters (mean and covariance) of the mixture- of- Gaussians classiier with indi-

vidual learning rates for the parameters. he researchers found that the classiica-

tion rates using online adaptation were signiicantly better (statistically) than a static 

classiier, with average performance improvements of up to 20.3% for 3 subjects.

A very diferent approach to coadaptive BCIs has been proposed by DiGiovanna, 

Sanchez, Principe, and colleagues (DiGiovanna et al., 2009). heir approach is 

based on the theory of reinforcement learning (RL) where an “agent” learns to map 

inputs to actions based on rewards and interactions with the environment, rather 

than an explicit training signal. In their approach, the brain signals from the user, 

together with the current state of the controlled device, form the input to the RL 

agent. he agent also receives rewards or punishments (positive/negative num-

bers) depending on whether an assigned task was achieved. he RL agent (the BCI) 

learns a “policy” i.e., a mapping from inputs to control outputs, that maximizes the 

expected sum of rewards.

Since the user is also presumably attempting to optimize performance (and hence 

the expected reward), both the BCI and the user are coupled through the reward 

function to cooperatively solve the task while adapting simultaneously and syner-

gistically. he researchers present results from a BCI task involving rats that learn to 

complete a reaching task using a prosthetic arm in a three- dimensional workspace. 

hey report successful closed- loop brain control over 6 to 10 days for 3 rats. All 3 
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rats co- adapted with the BCI to control the prosthetic arm at accuracy levels signif-

icantly above chance. 

9.1.8 Hierarchical BCIs

As we have seen above, noninvasive EEG- based BCIs tend to have a limited band-

width of control due to the lower signal- to- noise ratio of EEG; thus, such BCIs are 

better suited for high- level control of robots or other devices where commands are 

issued every few seconds rather than at the millisecond timescale. Invasive BCIs, on 

the other hand, can allow ine- grained control of devices such as prosthetic limbs, 

where a command is issued every few milliseconds (Section 7.2). However, such 

ine- grained control can leave users exhausted because of the amount of attention 

required in order to exert control on a moment- by- moment basis.

To addresses the trade- of between high-  and low- level control in BCIs, the 

author’s research group introduced the concept of hierarchical BCIs (Chung et al., 

2011; Bryan et al., 2012): a user teaches the BCI system new skills on- the- ly using 

low- level control; these learned skills are later invoked directly as high- level com-

mands, relieving the user of tedious lower- level control. his approach is inspired by 

the multiple levels of motor control in the human nervous systems, where skills that 

require a lot of attention when being learned eventually become automatic.

To illustrate the approach, a hierarchical BCI based on EEG was developed to control 

a humanoid robot (Chung et al., 2011). Four human subjects controlled the robot using 

an SSVEP- based interface in a simulated home environment. Each subject successfully 

used the BCI to teach the robot to navigate to diferent locations in the environment. 

he tasks were learned using RBF networks (Section 5.2.3) and Gaussian process mod-

els (Section 5.2.4). Subjects were later able to execute these tasks by selecting the newly 

learned command from the BCI’s adaptive menu, avoiding the need to control the robot 

using low- level navigation commands.  A comparison of the performance of the system 

under low- level and hierarchical control revealed that hierarchical control is both faster 

and more accurate. Further, the use of a Gaussian process model allowed the BCI to 

pass the control back to the user whenever uncertainty during task execution exceeded 

a particular threshold, thereby preventing potentially catastrophic accidents.

he general idea of hierarchical BCIs is equally applicable to invasive and nonin-

vasive BCIs because it ofers a way to achieve the dual goals of decreasing the cogni-

tive load on the user while maintaining the lexibility to adapt to the user’s needs. 

Such hierarchical approaches to control can be expected to become more prevalent 

as BCIs transition from the controlling cursors and menus to more complex pros-

thetic and robotic devices.

9.2 Other Noninvasive BCIs: fMRI, MEG, and fNIR

BCIs based on EEG remain the most popular class of noninvasive BCIs, but there 

has been growing interest over the last decade in exploring other noninvasive brain-
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 imaging technologies for BCI. In this section, we briely discuss some of these early 

attempts to build BCIs based on fMRI, MEG, and fNIR technologies.

9.2.1 Functional Magnetic Resonance Imaging-Based BCIs

he main question if one would like to use fMRI (Section 3.1.2) for BCI is whether 

a subject can learn to control changes in their blood oxygenation level dependent 

(BOLD) response. Weiskopf, Birbaumer, and colleagues (2003) investigated this 

question using a feedback paradigm. Visual feedback about local BOLD signals was 

continuously provided to the subject in the MRI scanner with a delay of less than 2 

seconds from image acquisition. In particular, the mean signal of a region of interest 

was plotted superimposed on color- coded stripes to indicate to the subject whether 

to increase or decrease their BOLD signal (Figure 9.21).

he researchers report that their single subject was able to increase or decrease 

the local BOLD responses in the rostral–ventral and dorsal part of the anterior cin-

gulate cortex (ACC). Across all sessions, the efect of signal increase was statistically 

highly signiicant for both dorsal ACC and rostral–ventral ACC (Figure 9.22A). he 
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percent change in the BOLD signal increased as a result of feedback, suggesting 

learning over the training sessions (Figure 9.22B). 

An advantage of fMRI over EEG is its spatial resolution and its ability to detect 

changes in neural activity deep in the brain (e.g., neural activity in the basal ganglia, 

cerebellum, and hippocampus). However, the fact that it takes several seconds for 

BOLD signals to develop and be detected implies that fMRI BCIs can only be used 

for high- level, coarse- grained control.

9.2.2 Magnetoencephalography-Based BCIs

MEG signals have been suggested to have higher spatiotemporal resolution than 

EEG – this could potentially translate to better performance in noninvasive BCIs. 

Mellinger, Kübler, Birbaumer, and colleagues (2007) investigated an MEG- based BCI 

based on voluntary amplitude modulation of sensorimotor mu and beta rhythms 

(see Section 3.1.2). To increase the signal- to- noise ratio, the BCI utilized a spatial 
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subject’s brain. Increases were observed in rostral–ventral ACC, the SMA, and basal ganglia 

(from Weiskopf et al., 2003).
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iltering method based on the geometric properties of signal propagation in MEG, 

along with methods for reduction of MEG artifacts.

Using the MEG BCI, 6 subjects learned to communicate binary decisions using 

imagery of limb movements. In particular, subjects were able to gain control of their 

mu rhythm within 32 minutes of feedback training.

9.2.3 Functional Near Infrared and Optical BCIs

Several research groups have begun exploring optical imaging techniques as an 

alternative to EEG. We have already discussed how scalp EEG can be susceptible 

to various artifacts such as the EOG, EMG, and ECG, and can be cumbersome 

to use in practice. MEG and fMRI both require bulky and expensive equipment. 

Functional near infrared spectroscopy or fNIR (see Section 3.1.2), which captures 

hemodynamic response, has been suggested as an alternative to EEG, MEG, and 

fMRI, with the goal of developing a more practical, robust, and user- friendly BCI. 

Coyle and colleagues (2004) have proposed a fNIR BCI that detects character-

istic hemodynamic responses when subjects engage in motor imagery and utilizes 

this response to control an application. he researchers argue that such optical BCIs 

are easier to use than other noninvasive BCIs and require less user training (see 

also Ranganatha et al., 2005). Mappus, Jackson, and colleagues (2009) have dem-

onstrated an fNIR- based BCI for creative- expression applications such as sketch 

drawing. In particular, they have developed a BCI that allows subjects to express 

themselves in an alphabetic letter- drawing task using continuous control of the cur-

sor. Finally, Ayaz and colleagues (2009) evaluated an fNIR BCI using a closed- loop 

bar- size- control task with 5 healthy subjects across 2 days. he researchers reported 

that the average task versus rest period oxygenation changes were signiicantly dif-

ferent from each other, and the average task- completion time (reaching 90% accu-

racy) decreased with practice, with a day 1 mean of 52.3 seconds and a day 2 mean 

of 39.1 seconds. Although these results are promising, it remains to be seen whether 

fNIR BCIs can ultimately match the performance of EEG- based BCIs and emerge as 

a viable class of noninvasive BCIs.

9.3 Summary

In this chapter, we explored a variety of noninvasive BCIs. he dominant paradigm 

utilizes EEG and imagery or evoked potential methods to generate control signals. 

Imagery- based BCIs rely heavily on subjects being able to learn to modulate their 

brain signals in low- frequency bands. his is akin to learning a new motor skill. It 

has been reported that 15%–30% of subjects recruited for BCI studies are unable 

to gain control over the low- frequency band EEG signal despite a large number of 

training sessions. his inability to gain control in a BCI has been called BCI illit-

eracy. Solutions to this problem range from changing the experimental paradigm to 
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non- imagery based modes of control (such as stimulus- based methods) to  designing 

coadaptive BCIs.

BCIs based on evoked potentials remain the most popular alternative to imagery-

 based BCIs. Evoked potentials such as the P300 and SSVEP have been used for a 

variety of applications ranging from high- level robotic control to image processing 

(see Chapter 12). heir popularity stems from the fact that unlike imagery- based 

approaches, evoked potential- based BCIs do not require any extensive training and 

can achieve relatively high accuracies for naïve subjects. On the other hand, the 

subject cannot voluntarily initiate an action and must constantly pay attention to 

the stimulus, which are unnatural signals such as lashes. his puts a high cogni-

tive load on the subject and could eventually lead to fatigue. Additionally, relying 

on responses to external stimuli invariably introduces delays in the BCI system, 

which can be avoided when imagery or other voluntarily generated brain responses 

are used. Hierarchical BCIs have been suggested as a way to optimize the trade- of 

between imagery- based low- level control, which is lexible but incurs high cognitive 

load, and evoked potential- based high- level control.

Among evoked potential- based methods, SSVEP- based approaches typically 

yield higher information rates than P300- based approaches. hey also tend to pro-

duce higher accuracy because steady state frequencies can usually be detected more 

reliably than P300 signals. However, staring at the lashing stimuli in an SSVEP BCI 

can be quite strenuous and exhausting.

he highest information transfer rates (ITRs) among noninvasive BCIs have been 

obtained using SSVEP- based approaches (around 1.13 bits/sec), but these rates are 

still about 6 times lower than the highest ITRs reported using invasive BCIs in mon-

keys. Additionally, SSVEP and related approaches are not especially conducive for 

real- time control tasks such as moving a robotic arm or a wheelchair. Imagery- based 

approaches are more natural, but their ITRs are typically less than half those of 

SSVEP BCIs. hus, many researchers believe that new, higher- resolution noninva-

sive methods for recording brain activity are needed in order to enable noninvasive 

BCIs to reach the level of performance of invasive BCIs.

9.4 Questions and Exercises

1. Explain the diference between asynchronous (or self- paced) and synchronous 

(or stimulus- based) BCIs. Compare the advantages and disadvantages of the two 

approaches.

2. What is ERD and how can it be used in a noninvasive BCI to control a cursor or 

prosthetic device?

3. How was the mu rhythm used to control a one- dimensional cursor in the irst 

Wadsworth BCI? What was the training paradigm used for facilitating the learn-

ing of mu rhythm control by a subject?
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4. Explain the linear method used in the Wadsworth BCI for achieving 

 two- dimensional cursor control based on mu and beta rhythms. How does 

the performance of this BCI compare with invasive BCIs that use electrodes 

implanted in the cortex?

5. What is the diference between ERD and ERS? How are these two phenomena 

used in Graz BCI system? What is the ITR reported for this system?

6. he Berlin BCI group has achieved relatively high accuracies in novice BCI 

users in their very irst session. Describe the approach used by this group and 

explain why such an approach is well- suited to reducing the time needed to 

learn BCI control.

7. What are slow cortical potentials (SCPs), what scalp locations are they typically 

recorded from, and how can they be used in a BCI to control a cursor?

8. What are movement- related potentials (MRPs) and how do they difer from 

oscillatory potentials that are modulated by movement or motor imagery?

9. Describe how MRPs have been used in BCIs in conjunction with:

a. Backpropagation neural networks

b. LVQ- based classiiers

c. Bayesian networks

10. Compare and contrast the following types of evoked potentials (EPs): P300, 

VEP, SSVEP, AEP, and SSEP.

11. What is the oddball paradigm involving the P300, and how can it be used to 

build a speller for locked- in patients to communicate messages? How does the 

speed versus accuracy trade- of manifest itself in this paradigm?

12. Answer the following questions about SSVEP BCIs:

a. What is the minimum diference in lickering frequency between targets that 

a subject can discriminate?

b. What is the frequency range in which the SSVEP can be efectively observed?

c. What electrode locations on the scalp are SSVEPs recorded from?

13. How does the ITR (in bits/sec) obtained using SSVEP BCIs compare with the 

best ITR obtained using an invasive BCI?

14. Give examples of some of the cognitive tasks that have been used for build-

ing EEG BCIs. How do these BCIs compare with motor imagery- based BCIs in 

terms of their accuracy and ease of use?

15. What are ErrPs and how can they potentially be used to make a BCI robust? 

What electrode locations are they typically measured from?

16. What are coadaptive BCIs and how can they help address the BCI 

illiteracy problem?

17. Describe and contrast the two main approaches to coadaptive BCIs discussed in 

this chapter, namely, supervised learning and reinforcement learning.

18. What are hierarchical BCIs? How do they help achieve the dual goals of decreas-

ing the cognitive load on a user while maintaining lexibility to adapt to the 

user’s needs?
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19. Discuss some of the advantages and disadvantages of using fMRI as the source 

signal for a BCI compared to EEG. Consider the dimensions of spatial resolu-

tion, temporal resolution, portability, and cost.

20. (  Expedition) Read the papers cited in Section 9.2.3 as well as more recent 

papers on fNIR BCIs. Write an essay comparing the signal processing and 

machine- learning methods used and the results achieved using these methods. 

Conclude with an assessment of whether fNIR BCIs can be regarded as an alter-

native to EEG BCIs in terms of performance, cost, and portability.
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We have thus far focused on BCIs that record signals from the brain and transform 

those signals to a control signal for an external device. In this chapter, we reverse 

the direction of control and discuss BCIs that can be used to stimulate and control 

speciic brain circuits. Some of these BCIs have made the transition from the lab to 

the clinic and are currently being used by human subjects, such as cochlear implants 

and deep brain stimulators (DBS), while others are still in experimental stages. We 

divide these BCIs broadly into two classes: BCIs for sensory restoration and BCIs for 

motor restoration. We also consider the possibility of sensory augmentation.

10.1 Sensory Restoration

10.1.1 Restoring Hearing: Cochlear Implants

One of the most successful BCI devices to date is the cochlear implant for restor-

ing or enabling hearing in the deaf. he implant is a good example of how one can 

convert knowledge of information processing in a neural system, in this case the 

cochlea, into building a working BCI that can beneit people.

Figure 10.1 illustrates the transformation of sound into neural signals in a func-

tioning human ear. Sound pressure waves hitting the tympanic membrane are con-

verted to mechanical vibrations by a series of bones – malleus, incus, and stapes. 

hese mechanical vibrations are transformed into pressure variations in the luid-

 illed cavity of the cochlea (see Figure 10.1). hese in turn cause displacements of a 

lexible membrane in the cochlea called the basilar membrane. Cells known as hair 

cells are attached to the basilar membrane. Displacements of the basilar membrane 

cause delections in the hair cells, which cause neurons of the cochlear nerve to ire. 

he cochlear nerve in turn conveys the information about the sound to the brain.

An important property of the cochlea is that it decomposes an input sound into its 

component frequencies. his is achieved by the properties of the basilar membrane. 

Diferent frequencies of sound cause maximum vibration at diferent locations along 

the basilar membrane. High- frequency sounds cause vibrations that do not propagate 
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very far along the membrane and cause the maximum displacement at the base of the 

membrane near the stapes (Figure 10.1). Low- frequency sounds on the other hand 

result in maximum displacement at the apex of the basilar membrane. his results in 

a “tonotopic” (or frequency- to- place) mapping of sound along the basilar membrane. 

he tonotopic organization is maintained by the cochlear nerve ibers that convey 

information to the brain, allowing the brain to infer the frequency composition of the 

sound based on which areas of the basilar membrane are resonating.

In a large number of cases, deafness is caused by the loss or absence of hair cells 

due to illnesses (e.g., meningitis), environmental factors, or genetic mutations. 

Cochlear implants provide an alternate pathway to conveying auditory information 

to the brain by stimulating cochlear nerves directly using electrical impulses. he 

implant exploits the tonotopic organization of nerve ibers by stimulating at diferent 

locations along the cochlea according to the frequencies of a sound. he implant thus 

attempts to mimic the function of lost or absent hair cells of the basilar membrane.

he basic components of a cochlear implant (Figure 10.2) include:

A microphone (placed near the ear) that receives sounds from the environment;• 
A signal processor (worn externally behind the ear) that implements a feature • 
extraction or frequency analysis algorithm such as the fast Fourier transform 
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(see Section 4.2) to decompose a sound signal into its frequency components. 

he exact number of frequency components depends on the number of electrodes 

used in the implant and other factors. he output of the signal processor is sent to 

a transmitter via a thin cable;

A transmitter (also worn externally near the ear) transmits power and processed • 
sound signals across the skin to an internal receiver using a “radio frequency” 

(RF) link (this is based on the principle of electromagnetic induction – see 

Section 3.2.2).

A receiver and stimulator embedded behind the ear in the skull which convert • 
the received signals into electric pulses and transmit them to electrodes via an 

internal cable;

An electrode array of up to 22 electrodes wound up and placed along the length of • 
the cochlea (Figure 10.2): these electrodes deliver electrical pulses to nerve ibers 

at diferent locations along the cochlea, thereby conveying processed information 

about the sounds received by the microphone to the brain.

In the cochlear implant, the use of a radio frequency link means that no physical 

connection is needed between the external and internal components – this reduces 

 

Figure 10.2. Schematic diagram of a cochlear implant. The external components consist of a micro-

phone, a sound processor, and a transmitter of power and processed signals. The internal 

components consist of a receiver and stimulator, along with an array of electrodes that can be 

seen wound up within the cochlea in the figure. (Image: Creative Commons).
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the risk of post- surgical infection. he implant is customized for each user by set-

ting the minimum and maximum current outputs for each electrode based on the 

user’s reports of loudness as a function of stimulation. Additional customization 

involves selecting a user- speciic speech- processing strategy and parameters for the 

sound processor. Post- implantation therapy is typically required as the brain adapts 

to hearing the sounds conveyed by the implant. In congenitally deaf children, train-

ing and speech therapy can continue for years. 

Current cochlear implants have only about 22 electrodes compared to the approx-

imately 20,000 hair cells used by a normal cochlea; thus the quality of sound per-

ceived can be quite diferent from natural hearing due to the impoverished nature 

of information being conveyed to the brain. Nonetheless, the sound quality is oten 

good enough that many users can understand speech without lip reading, especially 

in the absence of noise. Additionally, those who were born with normal hearing 

before progressively losing it tend to have better outcomes than those who were 

born deaf. Perception of complex stimuli such as music remains a topic of research.

According to the National Institute on Deafness and Other Communication 

Disorders, more than 200,000 people (as of 2012) have received cochlear implants 

worldwide, including about 42,600 adults and 28,400 children in the United States. 

Among these are post- lingually deaf persons who lost hearing ater learning to speak 

as well as congenitally deaf children. Since being able to hear is critical to learning 

to speak language, having an implant can help a deaf child learn to speak. here are 

studies suggesting that congenitally deaf children who receive cochlear implants early 

(before they are 2 years old) are better able to learn to speak than those who receive 

implants at a later age. his raises the important ethical issue (Chapter 13) of whether 

parents should opt for an implant for their deaf child at an early age when the child 

cannot make that decision. Additionally, since implantation is a surgical procedure, 

the user must weigh a variety of risks such as infection, onset of ringing in the ears 

(tinnitus), vestibular malfunction, damage to facial nerves, and device failure.

Finally, there has been strong objection to cochlear implants from the pre-

 lingually deaf community whose irst language is sign language. Objectors point out 

that the results of the cochlear implant and subsequent therapy are uncertain and 

oten become the focus of the child’s identity, and thus might be less desirable than 

the alternative of a possible future deaf identity and ease of communication in sign 

language. A recent trend in some educational programs has been to adopt a best- of-

 both- worlds approach by integrating cochlear- implant therapy with sign language.

10.1.2 Restoring Sight: Cortical and Retinal Implants

While cochlear implants have successfully made the transition from research to 

clinical application, eforts to build implants for the blind have lagged behind due to 

the complexity of information processing in the retina and the relatively low resolu-

tion of stimulating electrode arrays. he goal of these implants is to restore vision in 

individuals alicted with photoreceptor degenerative diseases; these include retinitis 
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pigmentosa, a major cause of inherited blindness, and age- related macular degenera-

tion, a leading cause of blindness in adults older than 65. When these diseases cause 

the loss of a majority of photoreceptors in the retina, an implant ofers one of the last 

hopes for restoring vision.

Implants for restoring sight transform light into electrical stimulation of  neurons 

or nerve ibers. Several diferent sites for stimulation have been studied, ranging 

from the visual cortex and the optic nerve to the retinal surface itself. Of these 

options, stimulation of the optic nerve is the most diicult due to its dense structure 

and the inability to focally stimulate speciic axons. Visual- prosthesis research has 

thus focused on cortical and retinal implants.

Cortical Implants

he fact that electrical stimulation of the visual cortex can cause “phosphenes” (per-

ception of spots of light) was demonstrated early by Foerster (1929) and has been 

studied more recently by Brindley and Lewin (1968); Dobelle (2000); Javaheri et al. 

(2006), and others with the goal of building a visual prosthesis. For example, Dobelle 

implanted a 64- electrode array on the cortical surface of blind subjects and dem-

onstrated that 6- inch- tall characters recorded by a camera could be recognized at 

a distance of about 5 feet by subjects receiving cortical stimulation (Dobelle, 2000). 

he possibility of using implants inside the visual cortex (rather than the cortical 

surface) are also being investigated by researchers but due to the risks involved, 

these studies are currently being conducted mainly in animal models. Although still 

in an early phase of research, visual cortical stimulation may eventually emerge as 

the most viable method for restoring sight, given its broad applicability.

Retinal Implants

An alternative to stimulating the cortex is to stimulate neurons in the retina, using 

either a subretinal or epiretinal approach. In the subretinal approach, a photodiode 

array is implanted in the retina between the bipolar cell layer and the retinal pigment 

epithelium (Figure 10.3). he motivation here is that such an implant could function 

as a simple solar cell and be powered entirely by light entering the eye, without the 

need for batteries. In the artiicial silicon retina (ASR) proposed by Optobionics, a 

2 mm chip containing 5,000 microelectrode- tipped photodiodes converts light into 

electrical pulses for stimulating retinal neurons. Experiments are underway to test 

this subretinal implant.

In the epiretinal approach (Figure 10.3), an external camera is used to capture and 

digitize images, which are translated to appropriate patterns of electrical stimulation 

delivered to viable retinal neurons. An example of such an approach is the intraocu-

lar retinal prosthesis (IRP) being developed by Humayun and others at the Doheny 

Eye Institute. he IRP consists of a small camera built into a pair of glasses, an exter-

nal battery pack, and a visual- processing unit (Figure 10.3). he camera captures 
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an image, which is processed by the visual- processing unit and transformed into 

appropriate patterns of electrical pulses. hese pulses are transmitted into the eye by 

magnetic coils via electromagnetic induction, similar to the approach taken in the 

cochlear implant. he transmitted pulses are conveyed via a cable to an array of 16 

platinum microelectrodes, which stimulate retinal neurons according to the pattern 

of pulses.

In clinical trials, patients implanted with the 16- electrode IRP reported visual per-

ception of spatially localized phosphenes in response to local stimulation. Brightness 

of their perception could be changed by changing the amount of stimulation. he 

patients were also able to distinguish the direction of motion of objects. In early 

2013, the United States Food and Drug Administration (FDA) approved Argus II, an 

epiretinal implant containing 60 electrodes developed by Humayun and colleagues, 

which has allowed some patients to see color, navigate streets, locate bus stops, and 

enjoy concerts. hese results are encouraging but for more complex visual tasks such 

as recognizing faces or driving, it is believed that a much larger number of stimulat-

ing electrodes (beyond 1,000) may be necessary.
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Figure 10.3. Schematic diagram of a retinal implant. Two types of retinal implants are depicted in the 

same figure. An epiretinal implant uses an external camera to capture images and transmit 

electrical stimulation patterns via telemetry (radio frequency (RF) or laser). The epiretinal 

implant, which is positioned on the surface of the retina, receives this pattern and stimu-

lates retinal neurons. The subretinal implant is positioned below the surface of the retina. It 

uses microelectrode- tipped photodiodes to capture images for stimulation as well as obtain 

power from light (from Weiland et al., 2005).
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10.2 Motor Restoration

10.2.1 Deep Brain Stimulation (DBS)

Besides the cochlear implant, deep brain stimulation (DBS) has emerged as one of 

the major clinical applications of brain- computer interfacing. DBS involves stimulat-

ing speciic parts of the brain using a “brain pacemaker” in order to relieve some of 

the debilitating symptoms of movement and afective disorders such as Parkinson’s 

disease and chronic pain. DBS is also being investigated as a technique for treating 

other conditions such as depression, epilepsy, Tourette’s syndrome, and obsessive 

compulsive disorder (OCD).

A typical DBS system consists of a lead (terminating in stimulating electrodes) that 

is placed inside the brain, a pulse generator, and a connector wire that connects the 

pulse generator to the lead (Figure 10.4). All three components are surgically placed 

inside the body. he battery- powered pulse generator is usually placed under the skin 

below the collar bone. It is connected to the lead by the connector wire that runs under 

the skin from the head down the side of the neck (see Figure 10.4). he lead, which 

is implanted inside the head, is an insulated coiled wire that terminates in platinum 

electrodes (typically, four of them) for stimulating neurons in the implanted region.

he lead is implanted in diferent regions of the brain depending on the con-

dition being treated. For symptoms associated with Parkinson’s disease such as 

tremor, rigidity, bradykinesia (slow movement) and akinesia (inability to initiate 

movement), the lead is usually placed in the subthalamic nucleus or the globus pal-

lidus in the basal ganglia. For chronic pain, the regions that have been targeted for 

stimulation include the hypothalamus and the thalamus.
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Figure 10.4. Deep brain stimulation (DBS). The main components of a DBS system are labeled (see text 

for details) (adapted from Kern and Kumar, 2007).
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he pulse generator produces stimulation pulses at a ixed frequency to reduce 

the symptoms of the neurological condition being treated. his frequency is tailored 

to the patient’s speciic needs. he neurologist or technician adjusts this frequency to 

achieve the best possible suppression of symptoms while at the same time mitigating 

any side efects.

he risks associated with DBS include infection, bleeding, and complications of 

surgery, as well as potential side efects of stimulation such as hallucinations, com-

pulsive behavior, and impairment in cognitive function. Some of these side efects 

are a result of our lack of understanding of how DBS actually works to alter the 

behavior of abnormal neural circuits. As we gain a better understanding of brain 

function at the circuit level, one can expect more sophisticated “closed- loop” stimu-

lation paradigms (rather than stimulation at one frequency) and simultaneous stim-

ulation of multiple brain sites.

10.3 Sensory Augmentation

Given that the brain is plastic, one can imagine a scenario where artiicial sen-

sory signals could be used to stimulate particular sensory areas of the brain. For 

example, infrared or ultrasound signals could be converted to electrical stimulation 

patterns and streamed to cortical areas (visual or auditory). If there is suicient 

statistical structure in the input signals and if the subject is required to solve tasks 

on the basis of these novel input signals, one might expect cortical areas to adapt 

and process these signals in a manner similar to other sensory signals such as visual 

signals from the optic nerve or auditory signals from the auditory nerve. If success-

ful, such an approach would allow the subject’s brain to process a wider range of 

sensory signals than made available through evolution. Is such sensory augmenta-

tion possible?

Experiments conducted in the laboratory of Sur at MIT (von Melchner et al., 2000) 

have shed some light on this question. In these experiments, researchers surgically 

diverted visual inputs from the retina to the auditory input pathway during early 

development in neonatal ferrets, and the normal auditory inputs to this pathway 

were removed (Figure 10.5). In particular, retinal axons were induced to innervate 

the auditory thalamus – speciically, the medial geniculate nucleus (MGN) – which 

provides inputs to the auditory cortex. he researchers found that during the course 

of development, the primary auditory cortex of the rewired ferrets developed many 

of the functional features of visual cortex. For example, neurons in the rewired audi-

tory cortex developed a two- dimensional map of visual space and became selective 

to the orientation of visual stimuli and their direction of motion.

Additionally, the animals could use their rewired auditory cortex to solve visual 

tasks. In one task, four rewired adult ferrets were trained to go to a spout on the let 

for a reward following a sound stimulus and to a spout on the right for a light stim-

ulus. he animals were trained using light only in the visual hemiield processed by  
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the nonrewired visual hemisphere (“Control” in Figure 10.5). Ater training, the ani-

mals were tested using light presented in the other visual hemiield processed by the 

rewired auditory cortex. Inputs to the visual cortex from this hemiield (via LGN/

LP) were removed, so that the animals could rely only on the visual  information in 

the rewired auditory cortex to solve this task. he researchers found that the animals 

were able to respond correctly to the visual stimulus, indicating that they were able 

to perceive the light stimulus using their rewired auditory cortex. Furthermore, abla-

tion of the rewired auditory cortex resulted in a signiicant reduction in responses at 

the visual reward spout, indicating that the animals were no longer able to perceive 

the visual stimulus.

hese results demonstrate that neuronal networks in the neocortex are surpris-

ingly plastic and their properties can be shaped to a considerable extent by their 

inputs even when those inputs are very diferent from those expected during nor-

mal development. his opens up the possibility that the brain’s sensory capacity 

could be augmented by feeding to the neocortex inputs from novel types of sen-

sors (e.g., ultrasonic, infrared, or millimeter- wave sensing devices). An example 

of such augmentation has recently been demonstrated by homson, Carra, and 

Nicolelis (2013).
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Figure 10.5. Rewiring the auditory cortex to process visual information. The diagram illustrates the 

routing of visual information from the two hemifields of the retina. In the experiment, visual 

information from the right visual field was conveyed to the left auditory cortex via the medial 

geniculate nucleus (MGN). Auditory inputs from the inferior colliculus (IC) were removed 

(dotted line from left IC). (SC: superior colliculus; b: brachium) (adapted from von Melchner 

et al., 2000).
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10.4 Summary

he ability to electrically stimulate neurons allows a BCI to inluence the  operation 

of neural circuits and provide direct sensory input to the brain. In this chapter, 

we learned about cochlear implants, which are allowing a growing population of 

deaf individuals to hear sounds and in many cases, understand speech. Research is 

also being conducted on cortical and retinal implants to restore vision in the blind, 

with one retinal implant receiving recent FDA approval, but progress has been slow 

partly because of the complexity of visual processing and partly due to the low 

resolution ofered by current electrode arrays. Implants for deep brain stimulation 

(DBS) are now being used for relieving the symptoms of debilitating diseases such 

as Parkinson’s. hese implants typically deliver high- frequency electrical pulses to 

nuclei deep in the brain, with the frequency customized to help relieve each indi-

vidual patient’s symptoms. More sophisticated paradigms for stimulation of brain 

regions will require a better understanding of each region’s function and how regions 

interact to produce perception and behavior.

10.5 Questions and Exercises

1. Explain the various stages involved in the transformation of sound waves to 

electrical activity in the cochlear nerve. What stages of this transformation does 

the cochlear implant attempt to replace? What stage(s) need to be intact for the 

cochlear implant to function?

2. What is the “tonotopic” organization of sound in the cochlea, and how is it 

exploited by cochlear implants?

3. What are the basic components of a cochlear implant? What aspects of the implant 

are customized for each individual user?

4. Does the performance of the cochlear implant vary between congenitally deaf 

versus postlingually- deaf persons? What is the impact of age of implantation on 

the efectiveness of the implant?

5. (  Expedition) Cortical implants for restoring sight have not yet made the tran-

sition from laboratory to clinical implantation in humans. Write a review of some 

of the progress made using this approach over the past ten years and identify the 

major obstacles, if any, to clinical use and commercialization.

6. What are the two main types of retinal implants? Compare their advantages and 

disadvantages, and identify the major obstacles, if any, to clinical use in humans.

7. Describe the major components used in a DBS system. What are some of the 

motor and afective disorders for which DBS has been used? List some of its risks 

and potential side efects.

8. (  Expedition) Although DBS has been proved to be clinically useful for treating 

the symptoms of diseases such as Parkinson’s, the exact neural mechanisms under-

lying the therapeutic efects of DBS remain unclear. Read recent review papers on 

 

 

 

 



Major Types of  BCIs220

 this topic (e.g., Kringelbach et al., 2007), and describe some of the hypothe-

ses regarding how DBS afects neural circuits in the brain. Based on what you 

learned, suggest potential ways in which DBS could be improved using more 

sophisticated types of stimulation targeting one or more brain regions.

9. Describe the experiments conducted by Sur and colleagues involving the 

rerouting of visual information to auditory cortex in ferrets. What properties 

did auditory cortex neurons exhibit ater rerouting? Describe the behavioral 

task used to verify that the animal could indeed use the rerouted information to 

solve a task.

10. (  Expedition) he experiments by Sur and colleagues were limited to “natural” 

modalities such as vision and audition. Suppose information from an artiicial 

sensing device such as a laser range inder is fed as input to a cortical area instead 

of the area’s natural inputs. What are some of the potential issues one might face 

when interfacing a brain with such an artiicial input stream? How could these 

issues be resolved or alleviated using signal processing and machine- learning 

techniques?
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We have thus far studied BCIs that either record from the brain to control an exter-

nal device (Chapters 7–9) or stimulate the brain to restore sensory or motor function 

(Chapter 10). he most general type of BCI is one that can simultaneously record 

from and stimulate diferent parts of the brain. Such BCIs are called bidirectional (or 

recurrent) BCIs. Bidirectional BCIs can provide direct feedback to the brain by stim-

ulating sensory neurons to convey the consequences of operating a prosthetic device 

using motor signals recorded from the same brain. Furthermore, signals recorded 

from one part of the brain can be used to modulate the neural activity or induce 

plasticity in a diferent part of the brain.

In Chapter 1, we discussed the pioneering work of Delgado (1969) on an implant-

able BCI called the stimoceiver, which can be regarded as the irst example of a 

bidirectional BCI. In this chapter, we briely review a few more recent examples to 

illustrate the possibilities opened up by bidirectional BCIs and conclude by noting 

that the most lexible BCIs of the future will likely be bidirectional, though this lex-

ibility will likely come at the cost and the associated risk of being invasive.

11.1 Cursor Control with Direct Cortical Instruction via Stimulation

One of the irst studies to combine a BCI with cortical stimulation was by O’Doherty, 

Nicolelis, and colleagues (2009) who showed that a direct intracortical input can be 

added to a BCI to instruct a rhesus monkey which of two targets to move a cursor 

to, using either a joystick or direct brain control (Figure 11.1A). he idea here was to 

demonstrate that stimulation of somatosensory cortex could be used in conjunction 

with a BCI to control a cursor. Two electrode arrays (with 32 tungsten electrodes in 

each) were implanted in the primary motor cortex (area M1) and dorsal premotor 

cortex (PMd) to record neural activity, and a third electrode array was implanted in 

the primary somatosensory cortex (S1) for stimulation (Figure 11.1B and C). he 

area chosen for stimulation was in the hand area of S1, with receptive ields for 

stimulating electrode pairs as shown in Figure 11.1D.

 11
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Figure 11.1. Bidirectional BCI in a cursor control task. (A) Experimental setup. The monkey moved the 

cursor to the right or left target either manually using a joystick or using a BCI that decodes 

motor cortical data. The target (left or right) is instructed by joystick vibration or by stimulating 

primary somatosensory cortex (S1). (B) The monkey was implanted with electrode arrays in 

its dorsal premotor (PMd) and primary motor cortex (M1) for recording and in the primary 

somatosensory cortex (S1) for stimulation. (C) Electrode array in S1. The darker shaded cir-

cles indicate electrode pairs used for stimulation. (D) Receptive fields on the monkey’s hand 

for the electrode pairs used for stimulation. (E) Parameters of the stimulation pulse (from 

O’Doherty et al., 2009).
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Figure 11.2. BCI cursor task with stimulation. The screens show the different stages in the cursor task. 

Either joystick vibration or stimulation of S1 served as the cue for the monkey to move the 

cursor (via the BCI) to the target on the right; lack of vibration/stimulation indicated the left 

target (adapted from O’Doherty et al., 2009).

Figure 11.2 illustrates the experimental paradigm. he monkey irst moves the 

cursor (using a joystick or neural control) to the circle in the center of the screen. 

his initiates an “instruction period” of 0.5–2 seconds during which the monkey is 

stimulated using either a vibration in the joystick handle or direct stimulation in S1 

using electrical pulses of the form shown in Figure 11.1E. his is followed by the 

appearance of two targets, one on the let and another on the right (Figure 11.2). In 

any particular trial, if stimulation was delivered, the animal had to move the cursor 

to the target on the right; if no stimulation was delivered, the cursor had to be moved 

to the target on the let (and vice versa for other sessions).

he monkey was irst trained to use a joystick to control the cursor in the standard 

center- out and pursuit tasks (Figure 7.19). his data was used to learn the weights 

for two linear (Weiner) ilters (Equation 7.2), one for predicting the X- coordinate of 

the cursor and the other for the Y- coordinate. hese predictions were made based 

on the iring rates of neurons in M1 and PMd in the past 10 time- steps, each time-

 step corresponding to 100 ms. hese ilters were later used to allow the monkey to 

control the cursor directly using M1 and PMd activity.

Once the monkey had learned to control the cursor using brain activity, it was 

tested in the stimulation task. he monkey was irst trained to use the vibration in 

the joystick to infer which target to move the cursor to. he monkey achieved 90% 

accuracy in this task in 12 sessions. hen, vibration was replaced with direct stimu-

lation of S1. he monkey initially performed at chance levels, but ater about 15 ses-

sions and 2 weeks of training, the monkey rapidly improved performance and again 

achieved 90% accuracy, this time with stimulation alone (Figure 11.3).

hese results suggest that it may be possible to convey information about tac-

tile stimuli directly to somatosensory cortex via intracortical stimulation, and use 

this information within a BCI. However, these experiments used only stimulation 

to instruct a target at the beginning of BCI control and leave open the question 
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of whether recording and stimulation can be done simultaneously in a closed- loop 

manner. his question has been addressed using other paradigms as described in the 

following sections.

11.2 Active Tactile Exploration Using a BCI and Somatosensory Stimulation

he bidirectional BCI discussed in the previous section used only stimulation to 

instruct the monkey which target to move the cursor to. A more realistic scenario 

would involve using tactile information, delivered via stimulation, to actively explore 

objects using a BCI and select a desired target object based only on its tactile proper-

ties as conveyed through stimulation. O’Doherty, Nicolelis, and colleagues (2011) 

explored such a bidirectional BCI using a virtual reality setup.

Monkeys were trained to move a cursor or a virtual image of an arm to explore 

objects on a computer screen (Figure 11.4A).  he task was to use brain control to 

search for the object with particular artiicial tactile properties conveyed via stimula-

tion. Microwire arrays were implanted in the primary motor cortex (M1) for record-

ing and in the primary somatosensory cortex (S1) for stimulation (Figures 11.4B 

and 11.4C). he monkeys explored the virtual objects irst using hand control and 
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Figure 11.3. Performance of a bidirectional BCI. (A) Improvement in accuracy of discriminating 

and hitting the correct target when target information was delivered via stimulation of S1. 

(B) Performance of the monkey as a function of stimulation pulse train amplitude. (C) 

X- coordinate of cursor position under joystick (left) and BCI control (right). Thin rectangles: 

period of target instruction (stimulation or absence of stimulation); thick rectangles: location 

of correct target (adapted from O’Doherty et al., 2009).
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then using brain control based on M1 ensemble activity (Figure 11.4E) and Kalman 

iltering (see Sections 4.4.5 and 7.2.3).

Objects consisted of a central “response” zone and a peripheral feedback zone. 

When the cursor or virtual hand entered the feedback zone, artiicial tactile feedback 

was delivered directly to the brain via stimulation of S1 (Figure 11.4D). Holding the 
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Figure 11.4. Bidirectional BCI for tactile exploration. (A) A cursor or virtual hand is controlled by 

joystick or activity from primary motor cortex (M1) to explore circular objects on a computer 

screen. Artificial tactile feedback about an object is delivered to primary somatosensory cor-

tex (S1) via electrical stimulation. (B) Location of microwire arrays implanted in areas M1 and 

S1. (C) Microwires used for stimulation are shown as shaded circles. (D) Solid line: Example 

of actuator movement in a trial in which the monkey explores an unrewarded object (UAT) 

before moving over and selecting the rewarded target (RAT). Gray bars: stimulation patterns. 

Insets: stimulation frequency. (E) Spiking activity of ensemble of M1 neurons recorded during 

the same trial as (D) (from O’Doherty et al., 2011).

 



Major Types of  BCIs226

cursor (or hand) over the correct object for 0.8–1.3 seconds yielded a reward (juice), 

whereas holding it over an incorrect object cancelled the trial. Because stimulation 

artifacts masked neuronal activity for 5–10 ms ater each pulse (Figures 11.4D and 

11.4E), an interleaved scheme of alternating recording and stimulation subintervals 

(50 ms each) was used.

Each artiicial texture consisted of a high- frequency pulse train presented in 

 packets at a lower frequency. he rewarded artiicial texture (RAT) consisted of 

200- Hz pulse trains delivered in 10- Hz packets whereas the unrewarded artii-

cial texture (UAT) consisted of 400- Hz pulse trains delivered in 5- Hz packets (see 

Figure 11.4D). he absence of stimulation for an object denoted a null artiicial 

texture (NAT).

Both monkeys learned to successfully select the target stimulus in tasks of vary-

ing diiculty (Figure 11.5A) based on stimulation alone. Exploration of targets was 

tested using joystick (hand control or HC), brain control with joystick present but 

disconnected (BCWH), and brain control with no joystick (BCWOH). Figures 11.5B 

and 11.5C show the improvement in performance over multiple sessions for each 

of the ive tasks. Performance also improved during daily experimental sessions 

(Figure 11.5D). he statistics of total time spent over a particular object in a given 

trial (Figure 11.5C) indicated that the monkeys were able to discriminate each type 

of artiicial texture on the timescale of about a second or less which is comparable to 

the discrimination of peripheral tactile stimuli.

11.3 Bidirectional BCI Control of a Mini- Robot

Mussa- Ivaldi and colleagues (2010) have explored the use of a bidirectional BCI 

as a tool for studying the transformation of signals from one region of the brain to 

another. In their experiments, the BCI connects a lamprey’s brain to a small mobile 

robot. he lamprey’s brain is immersed in artiicial cerebro- spinal luid within a 

recording chamber. Signals from optical sensors on the robot are translated to elec-

trical stimuli that are used to stimulate the right and let vestibular neural pathways. 

he frequency of stimulation is linearly proportional to light intensity.

he neural responses to electrically delivered stimuli are recorded from another 

brain region known as the posterior rhombencephalic reticular nuclei (PRRN). 

Recorded signals from right and let PRRNs are decoded by the BCI which gener-

ates the commands to the robot’s wheels. hese commands are set to be proportional 

to the estimated average PRRN iring rate on the corresponding side of the lamprey’s 

brainstem: higher iring rates make the corresponding wheel turn faster and cause 

the robot to turn in the opposite direction. 

he robot was placed in a circular arena with light sources on the periphery 

(Figure 11.6A), and the behavior of the neural- robot system was studied by turn-

ing on each light source. he transformation implemented by the neural system 
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between the stimulation and recording electrodes determined how the robot moved 

in response to a light source (Figure 11.6B). Mussa- Ivaldi and colleagues studied 

this transformation by substituting it with mathematical models such as polynomi-

als of varying degrees and autoregressive models (Section 4.4.3) with inputs. hey 

found that polynomials of degree 3 outperformed linear models (Figure 11.6B) in 
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Figure 11.5. Learning to use a bidirectional BCI. (A) Five tasks of varying difficulty levels. (B) Fraction 

of correctly performed trials for each task as a function of session number. Open circles: 

chance performance. HC: Hand control. BCWH: Brain control with joystick present but discon-
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of objects (RAT, UAT and NAT – see text for details). (D) Improvement in performance within 

daily experimental sessions. BCWOH: Brain control without hand movements (i.e., joystick 

removed) (from (O’Doherty et al., 2011).
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approximating the neural transformation function, but the best performance was 

achieved using a irst- order autoregressive model with inputs.

A question of considerable importance to the future use of bidirectional BCIs let 

open by the study is whether neural plasticity can be harnessed to create a desired 

behavior of an external device such as a robot. In other words, rather than the robot 

acting according to the ixed neural transformation in the lamprey’s brain, can an 

arbitrary behavior be generated using neural plasticity? his question has been 

partly addressed by studies targeting cortical control of muscles and creation of 

 connections between brain areas, discussed in the following two sections.
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Figure 11.6. Bidirectional BCI control of a mobile robot. (A) A lamprey’s brain immersed in artificial 

cerebro- spinal fluid was connected to a small mobile robot. Signals from the optical sensors 

of the robot were translated by the communication interface into electrical stimuli in such 

a way that stimulation frequency varied linearly with light intensity. These electrical stimuli 

were delivered by tungsten microelectrodes to the right and left vestibular pathways (nOMI 

and nOMP: intermediate and posterior octavomotor nuclei). Neural responses from the right 

and left posterior rhombencephalic reticular nuclei (PRRN) in the brainstem were recorded 

using glass microelectrodes and translated into motor commands for the robot’s wheels. 

Commands were set to be proportional to the estimated average firing rate on the corre-

sponding side. (B) Left panel: Trajectories of the robot produced by the lamprey’s brain in 

response to each of the five light sources placed on the circular boundary of the workspace. 

The robot tended to move toward the light. The two panels on the right show the results of 

fitting a linear and third degree polynomial to the neural transformation function controlling 

the robot (adapted from Mussa- Ivaldi et al., 2010).
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11.4 Cortical Control of Muscles via Functional Electrical Stimulation

A diferent type of bidirectional BCI seeks to restore movement in people who are 

paralyzed due to spinal cord injury. he idea, irst explored by Moritz, Perlmutter, 

and Fetz (2008), is to use neural signals from an area of the brain (such as the motor 

cortex) to stimulate the spinal cord or muscles, thereby bypassing the spinal block 

and reanimating the limb. Moritz and colleagues demonstrated this approach in two 

monkeys by translating the activity of single motor cortical neurons into electrical 

stimulation of wrist muscles to move a cursor on a computer screen (Figure 11.7A). 

he monkey was initially trained using operant conditioning (Section 7.1.1 and 
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Figure 11.7. BCI for control of muscles. (A) Activity of cells from motor cortex was converted into elec-

trical stimuli for functional electrical stimulation (FES) of wrist muscles. The resulting wrist 

torque was used to move a cursor (gray square) on a computer screen into a target (black 

square). (B) Examples of the monkey modulating the activity of a cell in its motor cortex to 

acquire targets at five levels of flexion- extension (F–E) torque (indicated by different shades 

of gray). FES was delivered to both flexor and extensor muscles. Flexor FES was proportional 

to the rate above a threshold (0.8 × [firing rate – 24] with a maximum of 10 mA), and exten-

sor FES was proportional to the rate below a second threshold (0.6 × [12 – firing rate] with 

a maximum of 10 mA). (C) Histograms of firing rate used to acquire the five target levels 

(gray shaded boxes at left). Horizontal lines indicate FES thresholds for flexor (dark gray) and 

extensor (light gray) stimulation (adapted from Moritz et al., 2008).
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Figure 7.2) to volitionally control activity of a motor cortical neuron to move a cur-

sor (small red square) into a target (larger black square). he monkey oten moved 

its hand while controlling the cursor with neural activity. Next, the peripheral nerves 

innervating the wrist muscles were blocked using a local anesthetic so that the mon-

key could no longer move its hand. he monkey continued to control cursor move-

ment with neural activity but without wrist movement. 

In the inal phase of the experiment, the cursor was no longer controlled by neu-

ral activity but by a manipulandum that could be moved using wrist movement. he 

activity from a motor cortical neuron was converted into electrical stimuli which 

was delivered to the paralyzed wrist muscles (this type of stimulation is called func-

tional electrical stimulation, or FES). he cursor was then controlled by wrist torque 

generated by brain- controlled FES delivered to both lexor and extensor muscles. 

Flexor FES current was set to be proportional to the rate above a threshold (0.8 × 

[iring rate – 24] with a maximum of 10 mA), and extensor FES was proportional 

to the rate below a second threshold (0.6 × [12 – iring rate] with a maximum of 

10 mA). As shown in Figures 11.7B and 11.7C, the monkey was able to control the 

activity of a neuron to acquire ive diferent targets requiring ive levels of lexion-

 extension (F–E) torque: the monkey was able to both increase the iring rate by an 

appropriate amount above a threshold as well as decrease it below a diferent thresh-

old to acquire the ive targets.

A potential shortcoming of this approach is the well- known fact that continued 

electrical stimulation of muscles beyond a few minutes generally results in muscle 

fatigue, rendering the technique impractical for day- long use. An alternate approach 

that could turn out to be more practical is using brain signals to stimulate neurons 

in the spinal cord. Several research groups, including the group above, are actively 

exploring this alternative, both for arm- hand reanimation as well as for reactivating 

spinal circuits (van den Brand et al., 2012) responsible for gait control in order to 

restore mobility in paralyzed individuals.

11.5 Establishing New Connections between Brain Regions

Bidirectional BCIs can also be used to directly stimulate one brain region using input 

from another. Such an artiicial connection can be useful in cases where the biological 

connection between brain regions has been damaged due to stroke or neurological 

disease. Additionally, establishing an artiicial connection between brain regions can 

also induce neural plasticity and functional reorganization, as shown by Jackson, Fetz, 

and colleagues (2006). he Hebbian principle of plasticity (Section 2.6) states that the 

connections from one group of neurons to another are strengthened if there is a persis-

tent causal relationship between pre-  and postsynaptic activity. Jackson and colleagues 

investigated whether Hebbian plasticity could be induced by creating an artiicial con-

nection between two sites in the motor cortex of freely behaving primates.
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he Neurochip implant (Section 3.3.2) was implanted in the wrist area of the pri-

mary motor cortex (M1) of two monkeys. he chip’s microprocessor detected spikes 

from a recording electrode (labeled Nrec in Figure 11.8A) and instructed a stimula-

tor circuit to deliver, ater a speciic delay, biphasic, constant- current pulses (25–

80μA, 0.2 ms per phase) via a stimulating electrode (Nstim in Figure 11.8A). Once 

the chip was programmed with appropriate recording and stimulation parameters, it 

operated autonomously over the course of one to four days of unrestrained behavior. 

he researchers studied the efects of conditioning caused by artiicial connections 

between 17 diferent pairs of neurons with delays of 0, 1, and 5 ms between spike 

and stimulus. hese efects were studied using daily intracortical microstimulation 

(ICMS) of the various electrodes and measuring the torque produced in the contral-

ateral wrist (Figure 11.8B and 11.8C).

As shown in the example in Figure 11.9, ater two days of continuous oper-

ation, the output generated by stimulating the recording site (Nrec) shited to 

resemble the output torques from the corresponding stimulation site (Nstim) in 

a manner consistent with the potentiation of synaptic connections between the 

artiicially synchronized populations of neurons (in this case, the synaptic con-

nections that may have existed from Nrec to Nstim – see Figure 11.10). his 

change in the functional output of Nrec lasted in some cases for more than one 

week (Figure 11.9E).
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Figure 11.8. Inducing plasticity using a bidirectional BCI. (A) Schematic diagram of the bidirectional 

BCI. Spikes recorded from a recording electrode (Nrec) were converted to electrical stimuli 

which were delivered to the Nstim electrode after a predefined delay. (B) Changes in the prop-

erties of neurons were monitored by delivering intracortical microstimulation (ICMS) to each 

electrode and measuring output effects on the right wrist. (C) Top to bottom: Experimental 

sequence of testing, conditioning using the Neurochip, followed by testing after conditioning 

(from Jackson et al., 2006).
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Figure 11.9. Motor plasticity induced by the bidirectional BCI. (A) Preconditioning average trajecto-

ries of isometric wrist torque (dashed lines) after electrical stimuli (ICMS) were delivered sep-

arately to each of three electrodes: recording (Nrec), stimulation (Nstim), and control (Ctrl) 

electrodes. The mean torque (solid arrows) was toward the flexion direction (Flex.) for Nrec 

and Ctrl, and in the radial- extension direction (Rad.- Ext.) for Nstim. (B) Average rectified elec-

tromyogram (EMG) responses to ICMS in three wrist muscles: extensor carpi radialis (ECR), 

flexor carpi radialis (FCR), and flexor carpi ulnaris (FCU). The black shaded bars below denote 

the ICMS duration. (C) and (D) Data after two days of conditioning with an artificial connec-

tion between Nrec and Nstim mediated by the Neurochip. Arrows indicate change in EMG 

response from Nrec after conditioning. (E) Direction of mean torque response over eighteen 

days, showing persistence of new torque response for Nrec several days after conditioning. 

Shaded region: conditioning period. Error bars: s.e.m. ICMS parameters: 13 pulses at 300 Hz; 

current: 30 mA (Nrec), 40 mA (Nstim), and 50 mA (Ctrl) (from Jackson et al., 2006).
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he changes in the functional output of neurons in the Nrec site suggest that the 

Neurochip was successful in inducing functional reorganization in vivo using phys-

iologically derived stimulus trains. Although not yet demonstrated, such a method 

could be potentially quite useful for neurorehabilitation and restoration of connec-

tions between brain areas ater damage or injury.
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Figure 11.10. Possible mechanism for plastic changes caused by the bidirectional BCI. (Top) 

Before conditioning, ICMS predominantly activates distinct descending projections from elec-

trodes Nrec, Nstim, and Ctrl to their respective wrist muscles. (Middle) Conditioning using 

the Neurochip artificial connection during unrestrained behavior causes a strengthening of 

horizontal connections between Nrec and Nstim. (Bottom) Post-conditioning ICMS of Nrec 

now activates the ECR muscle via the strengthened horizontal connections (from Jackson 

et al., 2006).
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11.6 Summary

In this chapter, we learned how electrical stimulation can be used to provide 

 information to neurons or activate muscles while simultaneously recording from 

and extracting information from other neurons. Such bidirectional BCIs represent 

the most general form of brain- computer interfacing in that the brain is no longer 

dependent on the body for either sensing or actuation.

he examples we covered in the chapter can be regarded as early pilot studies 

where both the type of brain control and the feedback delivered via stimulation were 

relatively simple. he challenge for bidirectional BCIs in the future will involve (1) 

inding ways of delivering a rich variety of information to the brain via stimulation 

while also simultaneously recording from other neurons, (2) maintaining this bidi-

rectional low of information for indeinite periods of time, and (3) acknowledging 

and leveraging the brain’s plasticity to shape this bidirectional low to achieve the 

goals of interfacing. It is possible that in the long run, other means of recording/

stimulation than electrical (e.g., optogenetics – see Chapter 3) may prove more use-

ful in building high- performance bidirectional BCIs.

11.7 Questions and Exercises

1. Bidirectional BCIs both record from and stimulate the brain. For each of the fol-

lowing applications, describe how a bidirectional BCI could be used for control-

ling the application and providing feedback to the user:

a. Prosthetic leg

b. Prosthetic hand

c. Brain- controlled wheelchair

d. Cursor and menu system

2. he BCI described in Section 11.1 used stimulation of cortical area S1 and recording 

of areas M1 and PMd. Was stimulation and recording concurrent in this BCI? Was 

stimulation used to provide feedback about the consequences of brain control?

3. Describe the experimental setup and active exploration task used in Section 11.2 

to demonstrate bidirectional BCIs in monkeys.

4. he BCI in Section 11.2 provided visual feedback to the monkey to allow it to 

guide the cursor to various targets on a screen. How would you modify the BCI 

to replace visual feedback with direct cortical feedback via stimulation?

5. Explain how bidirectional BCIs can serve as a tool for studying the transforma-

tion of signals from one brain region to another, based on the experiments by 

Mussa- Ivaldi and colleagues described in Section 11.3.

6. (  Expedition) he experiment in Section 11.3 was inspired by Braitenberg’s 

 “vehicles” (Braitenberg, 1984), which were originally proposed as simple exam-

ples of intelligent behavior emerging from sensorimotor interaction between an 

“agent” and its environment without any internal memory or representation of 
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 the environment. Describe the diferent types of Braitenberg’s vehicles and 

specify which vehicle the bidirectional BCI in Section 11.3 resembles the most.

7. Describe the approach proposed by Moritz and colleagues for reanimating a 

limb using cortical activity for functional electrical stimulation (FES). What is 

a potential drawback of this method for long- term use, and how can this weak-

ness be addressed?

8. What is Hebbian plasticity, and how can it be exploited for restoring connectiv-

ity between cortical regions using a recurrent BCI?

9. In the experiment performed by Jackson and colleagues (Section 11.5), how was 

the Neurochip used, and for how long? How were the behavioral efects of using 

the chip experimentally ascertained? What conclusions were drawn from the 

results and on what basis?

10. (  Expedition) Brainstorm about other ways in which one could use a recurrent 

BCI for connecting diferent regions of the brain for sensory and motor resto-

ration or augmentation. For example, could a recurrent BCI be used to convey 

auditory information to visual or somatosensory cortex to bypass a malfunc-

tioning auditory cortex? What about connecting an area implicated in mem-

ory such as the hippocampus with sensory areas to treat memory disorders? 

Consider also the implications of allowing on- chip and cloud- based memory 

storage and processing capacity.
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In this chapter, we explore the range of applications for BCI technology. We have 

already touched upon some medical applications such as restoration of lost motor 

and sensory function when we examined invasive and noninvasive BCIs in previous 

chapters. Here we briely review these applications before exploring applications in 

other areas such as entertainment, robotic control, gaming, security, and art. 

12.1 Medical  Applications

he ield of brain- computer interfacing originated with the goal of helping the para-

lyzed and the disabled. It is therefore not surprising that some of the major applica-

tions of BCIs to date have been in medical technology, particularly restoring sensory 

and motor function.

12.1.1 Sensory Restoration

One of the most widely used commercial BCIs is the cochlear implant for the deaf, 

discussed in Section 10.1.1. he cochlear implant is an example of a BCI for sensory 

restoration, as are retinal implants being developed for the blind (Section 10.1.2).

here has not been much research on two other possible types of purely sensory 

BCIs, namely, BCIs for somatosensation and BCIs for olfaction and taste. In the case 

of the former, the need for a BCI is minimized because it is oten possible to restore 

tactile sensation through skin grating. However, as we saw in Chapter 11, there is 

considerable interest in somatosensory stimulation as a component of bidirectional 

BCIs for allowing paralyzed individuals and amputees to, for example, sense objects 

being grasped or touched by prosthetic devices.

In the case of BCIs for olfaction and taste, there have been eforts to build “arti-

icial noses” and chips that can sense various types of odors, but these devices have 

been built more with an eye toward security and robotics applications than BCIs. 

he lack of interest in developing BCIs for olfaction and taste is mostly due to the 

lack of a large population of individuals in need of such BCIs, compared to the pop-

ulation of visually or hearing impaired persons.

12
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12.1.2 Motor Restoration

Another major motivation for BCI research over the last two decades has been 

the goal of developing prosthetic devices for amputees and paralyzed individuals 

that can be controlled using neural signals. Perhaps closest to being commercial-

ized are prosthetic arms that can be controlled by intact nerve signals (Section 

8.2). Further into the future are prosthetic arms and hands that can be controlled 

directly using cortical neurons – the early prototypes for such BCIs are currently 

being tested in monkeys (Section 7.2.1) and humans (Section 7.3.1; see also 

Hochberg et al., 2012 and Collinger et al., 2012 for the state of the art in BCIs for 

prosthetic control).

Perhaps the most challenging to realize are lower- limb prosthetics controlled by 

brain signals. In this case, the BCI/prosthetic system needs to be able to maintain 

stability and allow the user to maintain balance while obeying commands from the 

brain and providing feedback by stimulating somatosensory neurons appropriately. 

We briely reviewed BCI research on lower- limb control in monkeys in Section 

7.2.2. An approach based on hierarchical BCIs (Section 9.1.8) based on a mix of 

autonomy and user control may provide the most lexible way of controlling lower-

 limb prosthetics.

12.1.3 Cognitive Restoration

BCIs could potentially be used to treat a number of cognitive neurological disorders. 

For example, several groups are working on methods to predict seizures or detect 

their onset. If successful, such methods could be incorporated into a BCI that moni-

tors the brain for the onset of a seizure and when the onset of a potential seizure is 

detected, delivers appropriate drugs or stimulates the vagus nerve to stop the seizure 

before it spreads to other parts of the brain.

Similarly, deep brain stimulation (DBS) has been used not only for treating the 

symptoms of Parkinson’s disease (see Section 10.2.1) but also to relieve chronic pain 

and depression. Finally, BCIs that can record memories and stimulate appropriate 

memory centers of the brain could potentially help counter memory impairment 

from diseases such as Alzheimer’s disease, though the development of such BCIs 

will require a much deeper understanding of how memories are created and stored 

in the brain than what we know today.

12.1.4 Rehabilitation

Another potentially signiicant application of BCIs is in rehabilitating patients 

recovering from a stroke, surgery, or other neurological conditions. he BCI would 

be part of a closed- loop feedback system that converts brain signals into a stimulus 

on a computer screen or into movements of a rehabilitative device. Such a neuro-

 feedback system can enable patients to learn to generate the appropriate type of neu-

ral activity for accelerating their rehabilitation. he interested reader is referred to 

(Birbaumer & Cohen, 2007; Dobkin, 2007; and Scherer et al., 2007) for examples.
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12.1.5 Restoring Communication with Menus, Cursors, and Spellers

A major motivation for the development of noninvasive EEG- based BCIs has been 

the restoration of communication for locked- in patients sufering from progres-

sive motor diseases such as amyotrophic lateral sclerosis (ALS, also known as Lou 

Gehrig’s disease). In cases where patients are unable to even blink or suck on a 

straw to indicate a “yes” or “no” answer, a BCI becomes the only possible mode of 

communication.

One approach to restoring communication is to build a BCI to control a cursor 

in a menu system, allowing the patient to select an option from a set of choices. 

A nested menu system allows for the composition of arbitrarily long sentences or 

sequences of commands. he cursor in such a system could be controlled by any of 

the methods for self- paced BCIs described in Chapter 9, for example, via voluntary 

control of oscillatory potentials (Section 9.1.1) or slow cortical potentials (Section 

9.1.2), as well as any of the invasive methods described in Chapter 7.

Alternately, a stimulus- evoked method such as the P300 BCI speller (Section 

9.1.4) can be used to select letters to spell out words. Both the speller and the 

cursor- based approaches can be quite slow and tedious for the patient. A more 

natural BCI for communication would entail tapping into the speech centers of 

the brain. Some early results have been published on decoding phonemes from 

neural activity recorded from the speech region (Broca’s area) of the cerebral cor-

tex (Blakely et al., 2008), but a more in- depth understanding of speech processing 

in the brain is required before a BCI can be developed for translating linguistic 

thoughts.

12.1.6 Brain- Controlled Wheelchairs

Paralyzed patients are sometimes able to control a wheelchair using parts of their 

body still under voluntary control. Others may be able to use speech to issue com-

mands to a semi- autonomous wheelchair. A natural question to ask is whether one 

may ultimately be able to control a wheelchair directly using brain signals. Several 

research groups have developed solutions to this problem using varying degrees of 

robotic autonomy.

he simplest approach is to use a BCI to select high- level commands (e.g., go to 

kitchen, go to bedroom, etc.) and endow the wheelchair with suicient knowledge 

and autonomy to be able to execute these commands in an autonomous fashion. he 

high- level commands can be selected using a synchronous BCI, such as a P300- based 

BCI (Rebsamen et al., 2006; Bell et al., 2008; Iturrate et al., 2009). his approach can 

be made lexible and adaptive to the individual user’s needs using a hierarchical BCI 

(Chung et al., 2011; Bryan et al., 2012) as described in Section 9.1.8.

A diferent approach proposed by Millán and colleagues (Galán et al., 2008; 

Millán et al., 2009) relies on the concept of shared control (see Figure 12.1). In this 

approach, the user continually generates commands for the robot that are then 

probabilistically combined with pre- wired behaviors. he wheelchair is assumed 
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to have sensors such as a laser range scanner. If the goal of the user is to move 

smoothly forward through the environment, information from the wheelchair’s 

sensors can be used to construct a “contextual ilter” in the form of a probability 

distribution PEnv(C) over a set of possible mental steering commands, e.g., C = {let, 

right, forward}. he EEG- based BCI system estimates the probabilities PEEG(C) for 

the diferent mental commands from the user’s brain signals. he wheelchair is 

controlled using a “iltered” estimate of the user’s intent: P(C) = PEEG(C) PEnv(C). 

he command with the highest probability is used to control the wheelchair. he 

BCI is based on three mental tasks: (1) searching for words starting with the same 

letter, (2) relaxing while ixating on the center of the screen, and (3) motor imagery 

of the let hand. A subject- speciic set of features (frequency- and- electrode combi-

nation) is used with a Gaussian classiier to map EEG features to one of the three 

commands. Using such an approach, two subjects achieved between 80%–100% 

accuracy in navigating to pre- speciied goals.

Although these early results are promising, a practical BCI- controlled wheelchair 

for day- to- day use remains hard to achieve due to the lack of a reliable, easy- to-

 use, and portable recording system (EEG or other modality) as well as the lack of 

robust, semi- autonomous robotic wheelchairs that can function safely in human 

environments.

12.2 Nonmedical Applications 

here has been a steady rise in the number of nonmedical applications of BCI tech-

nology. Many of these applications have been driven by commercial factors such 

as the potential for a novel interface for gaming and entertainment. Most of these 

applications are still in their infancy and being investigated in research laboratories, 

though some have been applied to real- world problems such as triaging large quan-

tities of images and lie detection.
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Figure 12.1. BCI control of an intelligent wheelchair. Commands from a self- paced EEG BCI based 

on mental tasks were probabilistically (i.e., multiplicatively) combined with environmental 

constraints to achieve shared control of a wheelchair (from Galán et al., 2008).
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12.2.1 Web Browsing and Navigating Virtual Worlds

We have already discussed in previous chapters a variety of eforts aimed at building 

a BCI for controlling a cursor on a computer screen. A natural extension of such 

eforts is to build BCIs for browsing the Internet and navigating virtual worlds.  

An example of a BCI- controlled Web- browser interface is Nessi (Neural Signal 

Suring Interface; Bensch et al., 2007), which allows a user to select any link on 

a Web page and access Web- based services see (Figure 12.2). Nessi is a platform-

 independent, open- source sotware that can be used with diferent types of BCIs. 

One demonstration (Bensch et al., 2007) used a two- class BCI based on slow cortical 

potentials (SCPs; see Section 9.1.2). Red or green frames were placed around links 

on a Web page: red frames were selected by producing negative SCP shits and green 

frames were selected by positive SCP shits. Feedback was provided in the form of a 

cursor that was moved upward into a red goal or downward into a green goal using 

the SCP- based BCI. he user only had to observe the color of the desired link’s frame 

to know what type of brain response to produce, thereby successively pruning the 

set of selectable items via binary decisions until the desired link was selected.

Another example is an imagery- based BCI developed by the Graz BCI group 

(Scherer et al., 2008) for navigating virtual environments and Google Earth. he 

 

Figure 12.2. The BCI- controlled Web browser Nessi. Links on a Web page are framed by either red or 

green colored boxes (shown here as dark and light gray boxes respectively). The user selects 

a desired link by successively producing brain responses (e.g., slow cortical potentials, SCPs) 

to prune the set of selectable links via binary selection until the desired link is selected. 

During each binary selection, feedback is provided in the form of a cursor (yellow circle, 

shown here as a white circle) that is moved upward into a red goal (dark gray box) or down-

ward into a green goal (light gray box) (from Bensch et al., 2007).
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user generates commands for moving let, right, or forward by imagining let- hand, 

right- hand, and foot (or tongue) movements: as we saw in Section 9.1.1, such motor 

imagery causes a decrease or increase in power in particular frequency bands, which 

can be detected by a classiier. Only three subject- speciic bipolar EEG channels, 

recorded from six electrodes, were used (Figure 12.3A). Features used to quantify 

the EEG activity were computed by bandpass iltering, squaring, and averaging the 

samples collected over the past one second.

To achieve three- class classiication, a scheme based on 3 binary LDA classiiers 

(Section 5.1.1) with majority voting (Section 5.1.3) was used. For self- paced opera-

tion, the BCI needs to detect whether the user wants to use the BCI or not at any 

 

Figure 12.3. Imagery- based BCI for navigating virtual environments and Google Earth. (A) Top: 

Three bipolar channels used in the BCI. Bottom: Classification performance for one subject 

during cue- guided feedback training. (B) Example of navigation by a subject (right panel) 

using the 3- class imagery- based BCI in a virtual environment containing trees and hedges 

(top left panel). The subject successfully picked up coins (bright circles) dispersed in the envi-

ronment (bottom left panel). (C) Example of interaction with Google Earth using the 3- class 

BCI for choosing one of the commands, “scroll,” “select,” and “back.” The panel on the right 

shows the sequence of selections made to choose the map for Austria and zoom in (adapted 

from Scherer and Rao, 2011).
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point in time. For this purpose, an additional LDA classiier was trained to discrimi-

nate between motor imagery (all 3 tasks pooled together) and other brain activity. 

Self- paced operation was achieved by combining the 2 types of classiiers: whenever 

motor imagery activity was detected by the individual LDA, the majority vote of the 

group of 3 classiiers was used as the BCI’s output signal. For three subjects, ater a 

total training time of about 5 hours, the accuracy of the 3- class classiier was higher 

than 80%. Subjects were able to use the BCI to navigate in a virtual world containing 

trees and hedges to ind and pick up scattered coins (see Figure 12.3B).

he Graz BCI system has also been used to interact with the Google Earth virtual 

globe program (Scherer et al., 2007). As shown in Figure 12.3C, the user’s current 

selection is represented by an icon positioned in the middle of the screen, and the 

user can use the 3- class BCI to select the commands “scroll,” “select,” and “back.” By 

browsing through the available menu options (“scroll”), the desired menu entry can 

be selected (“select”). Google Earth’s virtual camera position is then repositioned 

accordingly. Countries of the world were hierarchically grouped by continent and 

continental area to allow fast sequential selection, as shown in Figure 12.3C for 

zooming into Austria. Ater additional training of about 10 hours, one subject from 

the 3- class self- paced experiment successfully operated Google Earth in front of a 

public audience. he average time to select a desired country was about 20 seconds.

Before concluding the section, it is worth mentioning that there have been other 

non- imagery- based approaches to controlling virtual environments using EEG sig-

nals – these have typically relied on evoked potentials such as the P300 (see, for 

example, Bayliss, 2003).

12.2.2 Robotic Avatars

Brain- controlled telepresence, or the idea of controlling a remote robotic avatar 

directly with the human mind, has been the subject of Hollywood movies such 

as Avatar and Surrogates, but advances in robotics and BCI technology are bring-

ing this idea closer to reality. We have already discussed research eforts currently 

underway to build BCIs that can control robotic wheelchairs. A parallel line of 

research has targeted the development of assistive robots and avatars that can 

be remotely controlled via brain signals. Besides telepresence, such robots could 

assist paralyzed and disabled individuals in performing various tasks in day- to- day 

life, such as getting a cup of water from the kitchen or fetching a bottle from the 

medicine cabinet.

One approach to robotic avatars, explored in the author’s laboratory, has focused 

on EEG- based BCI systems for controlling humanoid robots (Bell et al., 2008; 

Chung et al., 2011; Bryan et al., 2012). In one of the irst demonstrations of a brain-

 controlled “avatar” (Bell et al., 2008), a P300- based BCI (Section 9.1.4) was used to 

command a humanoid robot to go to desired locations and fetch desired objects. 

he user had a robot’s eye view of the environment, which provided an immer-

sive experience. he robot had the ability to autonomously move and pick- up/

 

 



Applications and  Ethics246

release objects. he robot also possessed some computer- vision capabilities, such 

as being able to segment objects it saw on a table and use vision to navigate to a 

destination.

EEG signals were used to select the two main types of commands for the robot: 

which object to pick among those in the images transmitted by the robot and which 

location to choose as the destination from among a set of known locations. he 

images of the possible choices (objects or destination locations) were scaled and 

arranged as a grid on the computer screen of the user. Figure 12.4 illustrates the 

case for two objects, one red and one green, and two locations (two blue tables, one 

with a white square in the center). he oddball paradigm (Section 9.1.4) was used 

to evoke the P300 response. he user focused his or her attention on the image of 

choice while the border of a randomly selected image was lashed every 250 ms. 

When the lash occurred on the attended object, a P300 was elicited (Figure 12.5); 

this response was then detected by the BCI and used to infer the user’s choice. In 

order to focus their attention, users were asked to mentally count the number of 

lashes on their image of choice.

 

Robot

BCI user

Live feed

1

2

3

4

5

Figure 12.4. A brain- controlled robotic avatar for remote interaction. (See color plates for the same 

figure in color) The top panel shows images of the humanoid robot in action. The bottom 

row depicts the user’s computer screen. The user receives a live feed from the robot’s cam-

eras, thereby immersing the user in the robot’s environment and allowing the user to select 

actions based on objects seen in the robot’s cameras (screen marked “2”). Objects are found 

using computer vision techniques. The robot transmits the segmented images of the objects 

(in this case, a red and a green object) and queries the user about which one to pick up. The 

selection is made by the user using a P300 BCI. After picking up the object selected by the 

user (image marked “3”), the robot asks the user which location to bring the selected object 

to. Images of the possible locations (blue tables on the left and right sides) from an overhead 

camera are presented to the user (screen marked “4”). Again, the selection of the destination 

is made by the user by means of the P300. Finally, the robot walks to the destination selected 

by the user and places the object on the table at the selected location (image marked “5”) 

(from Rao and Scherer, 2010; based on Bell et al., 2008).
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hirty- two EEG channels were recorded, and a linear sot margin support vector 

machine (SVM) classiier (see Section 5.1.1) was trained to discriminate between the 

P300 response generated by a lash on a desired object and EEG responses due to 

lashes on other objects. he feature vectors used in classiication were based on a set 

of spatial ilters similar to CSP ilters (Section 4.5.4). Like LDA (Section 5.1.1), these 

spatial ilters were chosen to maximize the distance between the means of the iltered 

data from each class while minimizing the within- class variance of the iltered data.

To learn the ilters and train the classiier for a given user, a 10- minute data-

 collection protocol was used prior to operating the BCI. Ater training on the labeled 

data, the BCI was used to infer the user’s choice regarding an object or destination 

location. he choices (objects or locations) were presented in a grid format (e.g., 

2×2 grid for 4 object images), and the borders lashed in random order. EEG data 

for the 500 ms duration ater each image lash was classiied as a P300 response or a 

non- P300 response. he image with the highest number of P300 classiications ater 

all lashes was selected as the user’s choice. he results, based on 9 able- bodied sub-

jects, showed that an accuracy of 95% can be achieved for discriminating between 

4 classes (chance classiication level is 25%). With the implemented rate of 4 lashes 

per second, the selection of 1 out of 4 options takes 5 seconds, yielding a bit rate of 

24 bits/min at 95% accuracy.

 Robot

BCI user
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Spatial filter f

SVM

P300

P300
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0.50 s EEG segment

0.25 0.50 0.75 1.00 1.25 1.50
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Figure 12.5. Using the P300 response to command the robot. (See color plates for the same figure 

in color) (Left panel) When the robot finds objects of interest (in this experiment a red and 

a green cube), segmented images are sent to the user and arranged in a grid format in the 

lower part of the BCI user’s screen. (Right panel) The oddball paradigm is used to evoke the 

P300 response. The colored objects at the top show a random temporal order of flashed 

images. EEG segments of a 0.5- second duration from flash onset were spatially filtered and 

classified by a soft margin SVM into either segments containing a P300 or not containing a 

P300. After a fixed number of flashes, the object associated with the most P300 classifica-

tions was selected as the user’s choice (in this case, the red object) (adapted from Rao and 

Scherer, 2010; based on Bell et al., 2008).
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More recent eforts have focused on making the BCI more adaptive to the user’s 

needs by using hierarchical BCIs (Section 9.1.8) to learn new commands for the 

robot (Chung et al., 2011; Bryan et al., 2012). Future brain- controlled robotic ava-

tars can be expected to allow more ine- grained control, perhaps based on invasive 

recordings, as well as richer feedback from the robot, including auditory and tactile 

feedback and, eventually, direct stimulation of sensory areas of the brain based on 

the robot’s sensor readings.

12.2.3 High Throughput Image Search 

he human brain is extremely adept at visual processing compared to present- day 

computer- vision systems. An interesting application of BCIs is harnessing the brain’s 

image- processing capabilities for rapid visual search of large image datasets. he 

idea, explored by Sajda and colleagues (2010), is to use single- trial analysis to rapidly 

detect neural signatures correlated with visual recognition.

Suppose the goal is to sort images (e.g., satellite images) such that the images 

most likely to contain objects of interest (e.g., tanks) are placed at the beginning of 

the sequence of images for further examination. Sajda and colleagues (Gerson et al., 

2006; Sajda et al., 2010) developed a real- time EEG BCI for triaging such imag-

ery using the paradigm of rapid serial visual presentation (RSVP). heir technique, 

called cortically coupled computer vision (CCCV), is based on the oddball paradigm 

(Section 9.1.4) for eliciting a P300: a target image that occurs in a sequence of non-

 target distractor images will cause a P300 response.

In each trial, the subject was presented with a continuous sequence of 100 images, 

each image lasting 100 ms (Figure 12.6, top panels). he sequence contained 2 tar-

get images with 1 or more people in a natural scene; these were designated as target 

images. he sudden appearance of a target image in the sequence typically elicited 

a P300, which was detected by a classiier. he output of the classiier was used to 

reprioritize the image sequence, placing detected target images at the front of the 

image stack (Figure 12.6, bottom panels).

Linear discriminant analysis (LDA, see Section 5.1.1) was used to recover a spatial 

ilter w whose output emphasized diferences in the EEG signal xt at time t across 59 

electrodes between target and non- target images:

y w xt i it
i

= ∑

Several such spatial ilters were calculated for the diferent 100 ms time windows fol-

lowing an image presentation. Figure 12.7A illustrates the output of these diferent 

spatial ilters in terms of correlation maps over the scalp for each time window.

he output of each ilter was summed over time within each window to get a value 

yk for the kth time window:

y w xk ki it
it

= ∑∑

 

 

 

 



Applications of  BCIs249

Finally, a linear weighted sum of the yk’s for each image was used as the inal “interest 

score” ( yIS) for that image:

 y v yIS k k
k

= ∑

he weights vk were calculated from training data using regression. Figure 12.7B 

illustrates the distribution of these interest scores for a subject: there appears to be 

a good separation between these EEG- based scores for target images versus non-

 targets. Figure 12.7C shows the ROC curve (Section 5.1.4) for the method: the ROC 

curve depicts performance as one varies the threshold used to classify EEG signals 

based on yIS . In their study, Gerson et al. (2006) found that for 5 subjects and a 

sequence of 2,500 images, their method moved 92% of target images from a random 

position to the irst 10% of the sequence.

12.2.4 Lie Detection and Applications in Law

An application of BCIs that has evoked considerable interest (and controversy) in 

the law and criminal- justice communities is lie detection or detection of possession 
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Figure 12.6. Rapid image search and triaging using a P300- based EEG BCI. The panels depict the RSVP 

experimental paradigm. A fixation cross lasting 2 seconds is followed by a sequence of 100 

images containing 2 target images with people occurring at any position within the sequence. 

After the image sequence, the subject sees the same images arranged in a 10×10 grid with the 

target images outlined. After the user presses the space bar, the images are sorted according to 

EEG, with the target images ideally moving to the top. Pressing the space bar again results in a 

summary slide being displayed that shows the position of target images before and after triage. 

The next trial begins when the subject presses the space bar again (from Gerson et al., 2006).
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Figure 12.7. Performance of the EEG- based BCI for image search. (See color plates for the same fig-

ure in color) (A) Scalp maps of normalized correlation between the output of the spatial filter 

for a given time window and the EEG data across all electrodes (red: positive values, blue: 

negative values). The map at 301–400 ms has a spatial distribution which is characteristic of 

a type of P300 known as “P3f,” while the parietal activity at 501–700 ms is consistent with a 

“P3b” potential thought to be indicative of attentional orienting. (B) The distribution of yIS , 

the overall interest score for each image, for target images versus non- targets. There is a clear 

separation between the two distributions. (C) ROC curve obtained by varying the position of 

the classification threshold along the yIS axis (from Sajda et al., 2010).
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of guilty knowledge. he traditional technique is the polygraph, which measures a 

subject’s bodily reactions such as changes in blood pressure, skin conductivity, and 

heart rate while he or she answers a series of questions during an interrogation. 

he premise is that deceptive answers will produce physiological responses diferent 

from those associated with truthful answers. Although polygraphy is used by many 

law- enforcement agencies, it is generally considered to be unreliable by most scien-

tists because it is thought to measure anxiety rather than deception, and its accuracy 

levels are considered to be little better than chance.

To overcome the shortcomings of the polygraph, BCI researchers have explored 

the use of brain responses as a way to detect whether a subject has previously encoun-

tered or possesses knowledge about a speciic person, place, or object. he challenge 

is to design a BCI for memory detection that could be used to directly interrogate the 

brains of suspects and witnesses. he goal is to ind neural evidence, if it exists, of 

recognition of a person, place, or object linked to a crime scene.

An early example of a “lie detector” BCI based on the P300 event- related poten-

tial (ERP, Section 6.2.4) was investigated by Farwell and Donchin (1991) (see also 

Rosenfeld et al., 1988). In this paradigm, the subject is asked to discriminate between 

predesignated targets and irrelevant stimuli. Embedded among the irrelevant stim-

uli are a set of diagnostic items called “probes,” which are indistinguishable from the 

irrelevant items if the subject does not possess guilty knowledge. For subjects who 

do possess guilty knowledge, the probes are perceived diferently from the irrelevant 

items and are likely to elicit a P300, which can be detected by a BCI.

How reliable can such a P300- based lie detection test be? Farwell and Donchin 

tested their idea in two experiments. In the irst, 20 subjects participated in 1 of 2 

mock espionage scenarios. Six critical 2- word phrases associated with a scenario 

were learned by the subject. he subject was then tested for knowledge of both sce-

narios, one that they were familiar with and the other that they were unaware of. he 

stimuli for the P300 experiment consisted of 2- word phrases presented for 300 ms, 

at an interstimulus interval of 1.55 seconds. A set of prespeciied “target” phrases 

appeared 17% of the time, and probes related to the scenarios also appeared 17% of 

the time. he rest of the stimuli were irrelevant phrases. Subjects were instructed to 

press one switch whenever they saw a target and another switch following irrelevant 

items. ERPs were recorded from electrode locations Fz, Cz, and Pz in the 10–20 

system (see Figure 3.7).

As expected, targets elicited large P300s in all subjects (Figure 12.8). More inter-

estingly, probes associated with a given scenario also elicited a P300 in subjects who 

had been exposed to that scenario (Figure 12.8A) whereas subjects not exposed to the 

scenario did not exhibit the P300 response to the probes (Figure 12.8B). To classify 

a subject as “guilty,” “innocent,” or “indeterminate,” it must be determined whether 

the probe response is closer to the target response or the irrelevant response. he 

researchers used a bootstrapping method (see Farwell and Donchin, 1991) to esti-

mate the distribution of two correlations: the correlation between the average probe 
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response and average target response, and the correlation between the average probe 

response and irrelevant response. Two criteria were used for classiication, one to 

declare a subject guilty and another to declare a subject innocent; cases falling in 

between were declared indeterminate. his method classiied 12.5% of the subjects 

as indeterminate. For the rest of the subjects, a decision was made, with no false 

positives and no false negatives.

In a second experiment, the researchers tested their method on 4 subjects who had 

committed minor crimes (e.g., being arrested for underage drinking). he experi-

ment in this case investigated whether a subject generated a P300 response to probe 

stimuli associated with their previously committed crime. Again, in 87.5% of the 

cases, the system correctly classiied guilty subjects as guilty and innocent subjects 

as innocent, the rest being classiied as indeterminate.

he above research has led to commercialization of EEG- based systems for “brain 

ingerprinting” (Farwell, 2012), with proposed applications in detection of a speciic 

crime, terrorist act, or specialized knowledge and training (such as knowledge pos-

sessed by undercover agents, terrorists, or bomb makers). Results from a P300- based 

system for brain ingerprinting were admitted into evidence in a U.S. court case in 

the state of Iowa in 2001 (Harrington v. State, Case No. PCCV 073247). In this case, 
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Figure 12.8. EEG BCI for “guilty knowledge” detection. (A) Data for 4 subjects under the “guilty” con-

dition. Each plot compares the average EEG response from electrode Pz for a target stimu-

lus (solid line), a probe stimulus (dashed), and an irrelevant stimulus (dotted). The probe 

response is closer to the response for target stimuli than irrelevant stimuli, indicating pos-

session of “guilty knowledge” associated with the probe. (B) The plots show the same com-

parison under the “innocent” condition, where the subject was not exposed to the scenario 

associated with the probe stimuli (adapted from Farwell and Donchin, 1991).
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the EEG results were presented as exculpatory evidence for an individual who had 

served 24 years in prison for a murder he said he did not commit. he individual was 

subsequently released on other grounds ater a new trial. In another case, reported 

in Dalbey (1999), the same technique was used to show that an accused had posses-

sion of knowledge of speciic details about a murder, which led to a confession by the 

individual and a guilty plea. In India, results from a diferent EEG technique known 

as brain electrical oscillation signature (BEOS) proiling were admitted as evidence in 

a murder trial to establish that the suspect’s brain contained knowledge that only the 

murderer could possess (Giridharadas, 2008).

EEG- based techniques such as those described above have come under criticism 

because they sufer from a number of weaknesses (Bles and Haynes, 2008), ranging 

from the lack of rigorous demonstrations in the ield to their susceptibility to coun-

termeasures (Rosenfeld et al., 2004), such as deliberately performing covert acts to 

make presumed irrelevant stimuli relevant. To overcome some of these problems, 

researchers are exploring other brain- recording techniques such as fMRI for detec-

tion of concealed information. In particular, the better spatial resolution of fMRI 

(Section 3.1.2) could provide a more precise signature of the spatially distributed 

pattern of brain activity evoked by a stimulus or a cognitive state. Investigations 

of fMRI- based systems for lie detection (and more generally, memory detection) 

are currently underway, with recent results indicating that fMRI may be useful in 

detecting neural correlates of subjective remembering of individual events but is less 

useful in revealing the veridical experiential record (Rissman et al., 2010).

12.2.5 Monitoring Alertness

A potentially important application of BCIs is monitoring the alertness of humans 

during the performance of critical but potentially monotonous tasks such as driv-

ing or surveillance. Many catastrophic accidents are caused each year by drivers 

who are tired, drowsy, or even asleep at the wheel. Such accidents can be prevented 

by monitoring brain signals for any transitions from an alert and awake state to a 

state indicating lack of alertness. While drowsiness or sleep states can be detected by 

monitoring eyelid closure, such detection may occur too late to prevent an accident. 

Brain- based detection of diminished alertness also has applications in education 

and learning (see Section 12.2.7) where such detection could be used to gauge the 

degree to which a student is engaged during a lesson.

Researchers have sought to ind correlates of a decrease in attention and alertness 

in brain signals, especially EEG. It has been known for some time that an increase 

in power in certain frequency bands (such as alpha, 8–13 Hz) in EEG correlates 

with a decrease in concentration, as measured by higher error rates in detection 

tasks. An early study by Jung, Makeig, and colleagues (1997) explored the use of 

EEG for monitoring the alertness of 15 human subjects under laboratory conditions 

during a dual auditory and visual target- detection task. he auditory task involved 

detecting target noise bursts (on average 10 per minute) embedded in a continuous  
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white- noise background. he visual task involved detecting a line of white squares 

embedded in a television- noise (“snow”) background. he mean target rate was 1 

per minute. he visual and auditory stimuli were presented simultaneously (not cor-

related with each other) and the subject had to press a visual or auditory response 

button each time a visual or auditory target was detected. EEG signals were recorded 

from 2 locations: central (Cz) and midway between parietal and occipital (Pz/Oz), 

referenced to the right earlobe. he EEG power spectrum during the task was com-

puted for a moving window with 50% overlap, and a measure of alertness, the “local 

error rate,” was calculated as the percentage of auditory targets (10/min) missed by 

the subject within a moving 33- seconds exponential time window. Error rate was 

based only on auditory targets and not the visual targets (whose purpose was mainly 

to increase the diiculty of the task).

he researchers found a correlation between increased error rate and increased 

EEG log power near 4–6 Hz (theta band) for both electrodes (Figure 12.9A). hey 

also noticed sharp increases in EEG power for electrode Cz near 14 Hz, related to 

the “sleep spindling” frequency, during peak error rate periods.

To ascertain whether alertness could be predicted in real time based on EEG 

from just 2 electrodes, the researchers applied PCA (Section 4.5.2) to the EEG log 

power spectra from each electrode and extracted the irst 4 eigenvectors. Input 

EEG log spectral vectors were projected onto these 4 eigenvectors, and the result-

ing eight- dimensional feature vectors (4 PCA features from each electrode) were 

used as input to a neural network and a linear regression algorithm (Chapter 5). 

hese were trained to map the EEG log power spectrum at any point in time to the 
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Figure 12.9. Predicting alertness from EEG. (A) Plot of EEG log power spectra at location Cz and error 

rate as a function of time during a test session. There is an increase in power, especially 

near 4–6 Hz and 14 Hz, when the subject’s error rate increases, signaling periods of reduced 

alertness. (B) Running estimate of error rate in a test session for the same subject as in (A), 

predicted from PCA- reduced EEG log spectra (see text). The 3- layer neural network provided 

better predictions of error rate compared to linear regression (rms = root mean square error) 

(adapted from Jung et al., 1997).
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corresponding error rate based on training data from one session. he algorithms 

were then tested on data from a diferent session (Figure 12.9B). he researchers 

found that a 3- layer neural network (Section 5.2.2) with 3 hidden units predicted the 

error rate better than linear regression, as measured by the root mean square error 

between predicted and actual error rates in the test session (“rms” in Figure 12.9B). 

In a more recent follow- up study, Liang, Jung, and colleagues (2005) measured the 

level of alertness of drivers in a 45- minute highway- driving task using a virtual-

 reality- based driving simulator. Alertness level was indirectly quantiied as the devi-

ation between the center of the vehicle from the center of the cruising lane: when the 

driver is drowsy (checked from video and self- reports), deviation increased and vice 

versa. he researchers showed that log EEG power, PCA, and linear regression can 

be used to estimate the driver’s alertness level from EEG (Liang et al., 2005).

he Berlin BCI group (Section 9.1.1) has also explored the application of BCI 

technology to monitoring task engagement and alertness (Blankertz et al., 2010). 

heir experiment simulated a security surveillance system that required sustained 

attention in a monotonous task where subjects rated 2,000 simulated X- ray images 

of luggage as either dangerous or harmless by pressing keys with the let or right 

index inger (see Figure 12.10A for example images). here were a lot more “harm-

less” than “dangerous” images (oddball paradigm), and each trial lasted about 0.5 

seconds. he goal was to use EEG to recognize and predict mental states that cor-

relate with a high or a low number of performance errors of the subject. EEG 

was recorded from 128 channels, and a Laplacian spatial ilter (Section 4.5.1) was 

applied to the channels. 8–13 Hz band power values were computed from 2 second 

windows, and these features from all channels were concatenated to get an input 

vector for an LDA classiier (Section 5.1.1). To obtain training data, the num-

ber of errors made by the subject across trials was smoothed over time to obtain 

an “error index” (Figure 12.10B). A high and a low threshold on the error index 

yielded the class labels of “high concentration” versus “low concentration.” he 

output of the classiier was interpreted as a concentration insuiciency index (CII), 

with high values corresponding to more errors and hence lower concentration and 

alertness.

he researchers found that decreased concentration was correlated with an 

increase of power in the 8–13Hz (alpha) band. he CII values output by the classi-

ier based on EEG data correlated well with the subject’s true error index, predicting 

the increase in errors (decreased alertness) over time inside each block of trials and 

predicting more errors for later blocks (Figure 12.10B).

hese results suggest that it may be possible to develop noninvasive BCIs for mon-

itoring alertness by tracking changes in EEG power in particular frequency bands. 

However, most of these studies have been conducted under laboratory conditions. 

It remains to be seen if the ability of these techniques to predict alertness levels can 

be replicated in real- world conditions, such as those experienced by truck drivers or 

security personnel when on duty.
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12.2.6 Estimating Cognitive  Load

When designing devices and systems to be operated by humans, it is important that 

the cognitive load placed on the user be kept to a manageable level and for the sys-

tem to adapt in case the load becomes too high. For example, if a car manufacturer 

intends to redesign the driver’s console or add new features, it is important to know 

whether the new console increases the driver’s cognitive load to the point that it 

hinders driving. Additionally, if the driver’s cognitive load can be estimated in real 

time, it could be used to reduce potential distractions (such as turning of an enter-

tainment system) automatically when the load becomes high (e.g., due to hazardous 

road conditions).

Researchers have explored the use of noninvasive BCIs for monitoring cognitive 

load during the performance of a task under laboratory conditions. Grimes, Tan, 
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Figure 12.10.  Monitoring alertness in a security (surveillance) task using EEG. (A) Subjects were 

asked to indicate whether a (simulated) X- ray image of a suitcase was harmless or danger-

ous (contained a weapon). The upper row shows examples of images that do not contain 

a weapon and the lower row images contain a weapon (machine gun, knife, and axe). (B) 

Left: Plot of the output of the classifier (“concentration insufficiency index” or CII; dotted 

curve) and the error index (solid line) for a subject across blocks of trials. The error index 

(number of errors smoothed over time) indirectly reflects lack of alertness. Right: Correlation 

coefficient between the CII and error index for different time shifts. There appears to be 

increased correlation even before the error appears, suggesting a possible predictive capac-

ity of the classifier (adapted from Blankertz et al., 2010).
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and colleagues (2008) explored using EEG to classify diferent amounts of  cognitive 

(or working memory) load when subjects performed a task known as the n- back 

task. In this task, subjects saw a sequence of stimuli (e.g. letters), one at a time 

(Figure 12.11A) and pressed the let or right arrow key to indicate whether or not 

the stimulus was the same as or diferent from the one that they saw n stimuli ago 

(n = 1, 2, 3, …).

Figure 12.11A shows an example of a 3- back task. Each letter (from a set of 8 

possible letters) was shown for 1 second followed by a blank screen for 3 seconds 

during which the subject made a decision, before the next letter appeared. Note that 

for each trial, the subject needed to remember the last n stimuli, perform a matching 

task, and then update the sequence in memory with the new stimulus. Task diiculty 

could thus be increased by increasing the value of n which requires keeping more 

items in working memory. In addition to letters, experiments were also conducted 

using images and spatial locations as stimuli.
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Figure 12.11.  Measuring cognitive load using EEG. (See color plates for the same figure in color) (A) 

Schematic depiction of a 3- back task. The subject must match the current stimulus with the 

one they saw 3 stimuli ago. Examples of a match and 2 non- matches are shown. A foil is a 

stimulus within the last 2 that matches the current. Subjects saw all 3 cases shown. (B) & 

(C) Power spectra for 2 subjects as a function of increasing working memory load. 3- back 

required storing the last 3 items seen in memory whereas in 0- back, only the very first item 

seen in the series needed to be memorized and compared to the current one. Increasing 

the amount of memory (0- back to 3- back) decreased alpha (8–12 Hz) power in one subject 

(B) while increasing it in the other (C) (along with increasing theta, 4–8 Hz, power). (D) 

Classification of memory load based on EEG. Different curves correspond to discriminating 

between different amounts of load. Increasing the size of the window of EEG data used for 

classification increased accuracy to levels of up to 99% in some cases (adapted from Grimes 

et al., 2008).
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Data was recorded from 32 EEG channels on the scalp arranged according to the 

10–20 system (Figure 3.7). he EEG signal was divided into overlapping windows, 

and the power spectrum was computed for each window. Figures 12.11B and 12.11C 

show the efect of increasing working memory load on the power spectrum of 2 

subjects: 1 subject showed decreased alpha (8–12 Hz) power with increasing load 

(Figure 12.11B) whereas the other showed the opposite (Figure 12.11C). he latter 

also exhibited changes in the theta (4–8 Hz) band; the former did not.

To ascertain whether memory load can be classiied based on EEG, a large number 

of features were generated by summing the power in a range of frequency bands, from 

4–50 Hz in bins of size 1–4 Hz. his large number was reduced to a set of 30 features 

using an “information gain” criterion, and this vector of 30 features was used as input to 

a naïve Bayes classiier (Section 5.1.3). As shown in Figure 12.11D, classiication accu-

racies of up to 99% for 2 memory load levels and up to 88% for 4 levels were achieved.

A diferent study, conducted by the Berlin BCI group, investigated whether 

EEG signals could be used to predict an increase in cognitive load while a subject 

was driving on a public German highway (B10 between Esslingen am Neckar and 

Wendlingen) at a speed of 100 km/hr (Blankertz et al., 2010). A secondary task was 

introduced to mimic interaction with an electronic device: the driver had to press 

1 of 2 buttons mounted on the let and right index ingers in response to a “let” or 

“right” vocal prompt. Finally, in every second block of 2 minutes, an increase in 

cognitive load was introduced by asking the subject to perform 1 of 2 tertiary tasks 

(Figure 12.12A): a mental calculation (successively subtracting a ixed number (the 

number 27) from a random number between 800 and 999) or an auditory compre-

hension task (following the story in an audiobook while ignoring a simultaneous 

news broadcast and then answering a question pertinent to the story).

LDA classiiers based on subject- speciic frequency bands, spatial ilters, and EEG 

channels were used for classifying high versus low cognitive load (extra task versus 

no extra task, respectively) during driving. Ater training, these classiiers were able 

to continuously predict high versus low cognitive load periods (see Figure 12.12B) 

with an average accuracy of around 70% and a best detection result of around 95.6%. 

he output of the classiier was used to implement a “mitigation” strategy: whenever 

the classiier predicted mental workload as being high, the secondary task (“let” vs. 

“right” button press on vocal prompt) was turned of, which resulted in faster reac-

tion times in the tertiary task (Kohlmorgen et al., 2007).

hese results illustrate the possibility of developing a “mental workload- detecting” 

BCI that can intervene whenever the user’s cognitive load becomes high, automati-

cally turning of nonessential options and even potentially taking over some of the 

functions under the user’s control.

12.2.7 Education and Learning

We have already discussed how noninvasive BCI techniques are useful in measuring 

the level of alertness and cognitive load during the performance of a task. Similar 
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Figure 12.12.  Detecting cognitive load during a driving task using EEG. (A) Schematic diagram of the 

experimental paradigm. Besides driving on a highway at 100 km/hr, the subject had to per-

form a secondary task involving a button press. A tertiary task involving an auditory task or 

mental calculation task (AT or MC) was used in blocks of 2 min (high workload condition) 

interleaved with blocks without a tertiary task (low workload condition). (B) The lowest trace 

shows the classifier output for the best performing subject while driving and performing the 

secondary task and the auditory tertiary task (AT). This output was thresholded to yield a con-

tinuous prediction of high or low workload (middle panel). The prediction compares well with 

the true high or low workload labels (upper panel) (adapted from Blankertz et al., 2010).

ideas can be applied to assess the degree of engagement, attention, and cognitive load 

of a student listening to a lecture or completing an assigned exercise. For example, 

the company Neurosky has developed a BCI application that attempts to measure 

the user’s level of attention during a math exercise. he BCI is based on Neurosky’s 

MindWave headset which measures EEG from a frontal dry electrode.
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A recent study by Szair and Mutlu (2012) also used a frontal electrode at location 

Fp1 in the 10–20 system (Figure 3.7) to monitor a student’s attention level while the 

student listened to a Japanese folktale being recited by a humanoid robot. During 

the 10 minutes of robotic storytelling, whenever the system detected (from the EEG 

signal) that the student’s attention level had fallen, the robot raised its voice or exe-

cuted arm movements to regain the student’s attention. he researchers found that 

students who heard the story from a robot whose behavior was contingent on the 

attention- detecting BCI were much better at answering questions about the folktale, 

answering an average of 9 out of 14 questions correctly, compared to students for 

whom the robot did not exhibit attention- contingent behavior.

he early results discussed above, if veriied in subsequent in- depth studies, indi-

cate that BCIs could potentially provide valuable feedback to educators as well as 

students, allowing appropriate steps to be taken to tailor educational strategies, 

interaction paradigms, and lessons according to each student’s current attentional 

state and needs. Being able to detect a student’s engagement or attention level can 

be especially useful for online educational eforts (such as those being pursued by 

Khan Academy, Coursera, EdX, and Udacity) where there is no human teacher to 

gauge a student’s engagement as the student is watching material presented in an 

online video.

Students can additionally use the BCI as an assistive device to improve their con-

centration and performance. he BCI may also be useful in helping students with 

attention- deicit disorders by catching lapses of attention and redirecting focus. 

As advances in neuroscience provide a deeper understanding of the mechanisms 

involved in learning and comprehension, one can expect new BCIs to be developed 

that leverage these advances and accelerate learning by adapting to each student’s 

learning style and pace. Teachers and parents could potentially determine the degree 

to which a student has learned a particular concept directly from changes in brain 

signals, providing an alternative to standardized tests for measuring competency 

and learning.

12.2.8 Security, Identification, and Authentication

BCIs are beginning to be applied to problems in security such as biometric identi-

ication for information retrieval from databases and authentication for access con-

trol (e.g., for airport security, account login, or electronic banking).

As an example, the distinctive alpha rhythm activity from an individual’s EEG 

signal has been proposed as a biometric signature for identiication. In one study 

(Poulos et al., 1999), subjects were asked to relax and close their eyes while EEG was 

recorded from electrodes O2 and Cz in the 10–20 system (see Figure 3.7). he bipo-

lar signal obtained from the diference between O2 and Cz was bandpass iltered in 

the 7.5–12.5 Hz frequency band (alpha band) using FFT and inverse FFT. An AR 

model of order p = 8 (see Section 4.4.3) was constructed for the resulting signal, and 

the AR parameters were used as input to a learning vector quantizer (LVQ) classiier 
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(Section 5.1.3). Classiication accuracies between 72% and 84% were obtained for 

distinguishing each of 4 subjects from a pool of 75 other subjects. he usefulness of 

AR parameters from EEG alpha rhythms was also veriied in (Paranjape et al., 2001) 

where accuracies of up to 85% correct were reported in identifying a subject from a 

pool of 40 subjects.

While identiication involves recognizing one person from a large pool of indi-

viduals, the problem of authentication involves verifying whether the person claim-

ing an identity is indeed that person or an imposter. Researchers are beginning to 

explore the use of EEG- based BCIs for authentication. In a study by Marcel and 

Millán (2007), subjects were asked to perform 1 of 3 mental tasks (imagination of 

let-  or right- hand movements and word generation). he EEG signals were spatially 

iltered using a Laplacian ilter (Section 4.5.1), and power spectral features in the 

8–32 Hz range were extracted using the FFT (Section 4.2.3). hese features were 

used to construct a probabilistic model of the data. Speciically, training data was 

collected to train a mixture- of- Gaussians model for the likelihood P(X|C) that EEG 

feature vector X was generated by a client C and the model P(X|NC) that X could 

have been generated by a generic non- client (imposter). he trained probabilistic 

model was used for authentication as follows: given a claim for client C’s identity and 

a set of EEG features X purporting to support the claim, the system computes the log 

likelihood ratio: L(X) = log P(X|C) – log P(X|NC). he claim is accepted if L(X) ≥ t 

where t is pre- chosen threshold and rejected otherwise.

he authentication method above was evaluated on 9 subjects using the half total 

error rate (HTER), deined as the average of the false positive rate (FPR) and the 

false negative rate (FNR) (see Table 5.1). An average HTER of 6.6% was obtained 

for the imagined let- hand movement task, with higher error rates for the other two 

tasks (Marcel and Millán, 2007). Such an error rate is still too high for a practical 

authentication system, but it is likely that other methods for recording brain signals 

(e.g., invasive or semi- invasive) or the combination of brain signals with other types 

of biometrics (e.g., voice, iris scans, or ingerprints) could yield robust and practical 

authentication systems in the future.

12.2.9 Physical Amplification with Exoskeletons

Many a comic- book villain has relied on amplifying the power of the human body 

to achieve superhuman strength (cf. Dr. Octopus in Spiderman). Powered exoskel-

etons ofer the means to achieve ampliication of the human body beyond what 

evolution has gited us. While researchers have explored control mechanisms 

for exoskeletons based on self- generated motion or muscle signals (EMG), BCI 

researchers have recently begun exploring the use of brain signals to directly con-

trol an exoskeleton.

As an example, the European Mindwalker project seeks to use EEG signals 

recorded from custom- designed dry electrodes and recurrent neural networks to 

control a robotic exoskeleton attached to the subject’s legs. he dual goals of the 
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project are to enable people with spinal cord injuries to achieve mobility and to help 

in the recuperation of astronauts ater a prolonged mission in space. 

A number of companies such as Cyberdyne, Ekso Bionics, and Raytheon have 

developed powered exoskeletons that amplify the strength of users, allowing them 

to lit and carry up to 200 pounds of weight with little or no efort. In the future, 

full- body exoskeletons could potentially be used by rescue workers, irepersons, and 

soldiers to move faster, jump higher, carry heavier loads, and perform other physical 

feats that cannot be performed by a normal human body. hese exoskeletons could 

potentially be controlled by brain signals, and feedback from the exoskeleton could 

be used to directly stimulate appropriate somatosensory centers in the brain to allow 

accurate control, to the extent that the exoskeleton could become incorporated as 

part of the body map in the user’s brain.

12.2.10 Mnemonic and Cognitive Amplification

he storyline of the movie Johnny Mnemonic revolves around the protagonist act-

ing as a courier with secret data implanted in his brain. Other science- iction plots 

have relied on machines that can selectively inject or erase memories. hese abilities 

have yet to be demonstrated in a BCI, but researchers have recently begun exploring 

the possibility of restoring memory and amplifying cognitive functions via neural 

recording and stimulation.

In one such set of experiments, Berger, Deadwyler, and colleagues (2011) demon-

strated a brain implant in rats that can restore lost memory function and strengthen 

recall of new information. he rats were trained to remember which of 2 identical 

levers to press to receive water as reward. In each trial of this delayed- nonmatch- to-

 sample (DNMS) task, 1 of 2 levers appeared irst, and the rats had to memorize this 

fact. Ater a delay of between 1 and 30 seconds, both levers appeared, and the rat 

had to press the lever that was not presented earlier to be rewarded. he researchers 

found that the rats learned this general rule and were able to consistently pick the 

correct lever.

Two electrode arrays (Figure 12.13) were then implanted in both hemispheres of 

each rat to record from neighboring areas, CA1 and CA3 respectively, in the hippo-

campus, a structure long implicated in the formation of new memories. he dynam-

ics underlying spike- train- to- spike- train transformations from CA3 to CA1 as the 

rats solved the task were modeled using a set of nonlinear iltering equations. hese 

equations were used to predict output iring patterns of CA1 from input patterns of 

CA3 neural activity. In a subsequent trial, the researchers used a drug (glutamatergic 

antagonist MK801) to suppress activity in CA3 and CA1 (Figure 12.14A). hough 

the rats still remembered the general rule (push the opposite lever of the one that irst 

appeared), the rats performed poorly because, in the absence of CA3/CA1 activity, 

they presumably could not remember which lever appeared irst.

he researchers then stimulated CA1 with electrical pulse patterns derived from 

the nonlinear iltering model based on previous successful trials. he CA1 stimulation 
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caused the rats’ performance to improve signiicantly, reaching levels close to nor-

mal performance (Figure 12.14A). he implant thus efectively substituted for the 

CA3–CA1 transformation, restoring lost mnemonic function. Additionally, the 

researchers found that even rats that did not receive the activity- suppressing drug 

sometimes performed poorly in trials in which they had to maintain the memory 

of the initial lever for long durations (> 10s). By stimulating CA1 neurons with pat-

terns derived from previous high- performance trials, the researchers were able to 

enhance the rats’ memory and signiicantly improve their performance for these 

longer duration trials (Figure 12.14B).

Although yet to be tested in humans, memory implants such as these ofer a ray 

of hope for those sufering from Alzheimer’s, amnesia, and other devastating mem-

ory disorders. Additionally, the ability to store and amplify certain memories opens 

the door to new forms of memory enhancement and cognitive ampliication for 

able- bodied individuals. For example, memories could be stored oline (e.g., on the 

“cloud”) and retrieved on an as- needed basis through wireless implants. Although 

humans today routinely use the Internet, books, smartphones, computers, and other 

devices as external memory stores, memory implants would make accessing such 

information essentially seamless by enabling storage and retrieval through thought 

alone. he important issues of safety, security, and privacy engendered by such tech-

nology are discussed in the next chapter.

12.2.11 Applications in  Space

Astronauts could beneit from BCIs that augment their physical abilities (Rossini 

et al., 2009). For example, a BCI could help in operating tools or robotic devices 
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the sample lever has to be kept in memory. (B) Top panel: Experimental paradigm for mem-

ory enhancement. In trials in which poor performance was predicted due to a “weak CA1 

SR code,” CA1 was stimulated with electrical pulse patterns derived from previous high-

 performance trials (“CA1 strong SR code”). The bottom panel shows that CA1 stimulation sig-

nificantly increased the performance of the rat compared to the “no stimulation” condition, 

suggesting that the effect of stimulation was to enhance the rat’s ability to store task- relevant 

information in memory for the longer duration trials (adapted from Berger et al., 2011).
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when an astronaut’s hands are otherwise occupied while he or she is performing a 

space walk to repair a space station module. BCIs could also be used by recuperating 

astronauts in conjunction with exoskeletons ater long space missions. Additionally, 

BCI- controlled exoskeletons could be used in space exploration, for example, to 

walk on uneven terrain or counter the efects of gravity.

An important question regarding the potential use of BCIs in space is whether 

zero gravity alters the brain signals of competent BCI users to the point where these 

users can no longer control a device they were previously able to control on earth. 

Millán and colleagues (2009) investigated this question by recording EEG signals in 

2 experienced BCI users during parabolic light on a jet airplane on earth. Subjects 

experienced 5 diferent gravity conditions lasting 20 seconds each during each parab-

ola of the light in the following sequence: normal gravity (1g), hypergravity (1.8g), 

zero gravity (0g), hypergravity (1.8g), and normal gravity (1g). Subjects performed 

2 mental tasks: imagination of let- hand movements and a word- association task 

involving mentally searching for words beginning with a randomly chosen letter. 

he researchers found that the diferent gravity conditions did not alter either the 

frequency bands or the electrode locations that were previously found to be relevant 

to the 2 tasks when performed on the ground (Millán et al., 2009).

hese early results are promising, but it remains to be seen whether online BCI 

control can be achieved in space, especially when the astronaut is simultaneously 

engaged in other activities and movements. Another challenge that will need to 

be addressed is designing BCIs that can adapt to the neural plasticity in the brain 

caused by long- term exposure to zero gravity.

12.2.12 Gaming and Entertainment

Many traditional BCI paradigms (e.g., cursor control) have a game- like lavor. For 

medical applications such as menu selection or rehabilitation based on neurofeed-

back, using a game- like interaction paradigm helps in sustaining the interest of the 

patient. hese applications were not designed with entertainment purposes in mind, 

but gaming for able- bodied individuals is nonetheless one of the most rapidly growing 

nonmedical application areas of BCI. One reason for this growth is the huge market 

that currently exists for video games, dwaring the market for medical applications of 

BCIs. A second reason is that unlike in medical applications such as BCI- controlled 

wheelchairs or prosthetics, faulty performance of a BCI in a game may annoy a user 

but typically does not cause bodily harm or injury to either the user or individuals 

nearby, thereby lessening concerns of liability. Finally, BCIs can be used in gaming as 

an interface that augments other more traditional interfaces such as joysticks, game-

pads, gesture recognition systems, and so forth. hus, unlike medical BCI applica-

tions such as communication systems for locked- in patients, BCIs for gaming may 

actively rely on a mixture of brain signals (e.g., EEG), muscle signals (EMG), and 

hand/body movements to achieve a novel mode of human- computer interaction.

In one of the irst studies exploring this direction, Cheung, Rao, and colleagues 

(2012) demonstrated that subjects could control the two- dimensional motion of a 
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cursor using a joystick simultaneously with hand motor imagery in an EEG BCI. 

Subjects learned to use imagery to control the up- down motion of the cursor and 

simultaneously used the joystick to the control the cursor’s let- right motion. hese 

results suggest that it may be possible to use BCIs to augment normal motor capa-

bilities in able- bodied individuals.

A large number of brain- controlled games have been introduced over the past 

decade or so. Brainball (Hjelm and Browall, 2000) was an early BCI game where 

users learned to control their relaxation level by controlling their alpha rhythm 

(Section 3.1.2). MindGame (Finke et al., 2009) is a more recent game based on the 

P300 (Section 9.1.4) that involves moving a character on a three- dimensional game 

board. Other game applications have relied on SSVEP (Lalor et al., 2005) and motor 

imagery (e.g., BCI- PacMac; see Krepki et al., 2007) as well as EEG-based virtual nav-

igation (Scherer et al., 2008). An interesting demonstration of real- time control of 

a physical gaming device involved a BCI- controlled pinball machine (Tangermann 

et al., 2009) where the paddle was controlled by a 2- class BCI based on imagery 

(e.g., let-  and right- hand motor imagery). he BCI parameters were tuned individ-

ually for each user. he researchers reported that the game was perceived as highly 

immersive and motivating.

here has also been a BCI- controlled version of the popular video game Tetris 

(Blankertz et al., 2010). he EEG- based BCI game relies on a “natural” set of con-

trols: the gamer uses let-  or right- hand motor imagery to move a falling Tetris 

piece to the let or right respectively, mental rotation to rotate the piece clock-

wise, and foot motor imagery to drop the piece (Figure 12.15). A 4- class classiier 

 

Figure 12.15.  EEG BCI for the game of Tetris. Left: User playing the BCI- controlled Tetris game. Left-  or 

right- hand motor imagery is used to move a falling piece to the left or right respectively, 

mental rotation to rotate it clockwise and foot motor imagery to let it drop. Right: Cortical 

activation map when the subject engages in mental rotation to rotate a Tetris piece. The 

activation map shows event- related desynchronization (ERD; see Section 9.1.1) in the beta 

band (here, 18–24 Hz) in the right parietal cortex, which is consistent with previous findings 

from mental rotation tasks (from Blankertz et al., 2010).
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(3 motor imagery commands and mental rotation) was trained in an oline cali-

bration phase and then applied online during the gaming phase to achieve control 

of a falling piece.

Several commercial systems have recently appeared on the market that attempt to 

measure EEG- like signals from the scalp. hese systems typically use a small num-

ber of dry electrodes (in contrast to traditional “wet” EEG electrodes that require gel 

to make contact with the scalp). he measurements made by these dry electrodes 

are used to control objects on a computer screen or real objects such as a foam ball. 

Examples include systems manufactured by Emotiv (EPOC headset) and Neurosky 

(MindWave headset), and toys such as Mindlex by Mattel. hese new systems are 

a lot cheaper than traditional gel- based EEG systems used in research and clini-

cal settings and are easier to wear and operate. However, one problem with these 

new systems is that there is no guarantee that they are capturing true EEG signals. 

In uncontrolled settings, such systems may be capturing a mix of EEG and EMG 

activity caused by facial and neck muscle activation, eye movements, changes in 

skin resistance, or in some cases, even electrical noise. On the other hand, as men-

tioned above, the use of a hybrid EEG/EMG or other type of voluntarily generated 

signal may be ine for gaming applications if it constitutes a novel and potentially 

 entertaining mode of control in a game.

12.2.13 Brain- Controlled Art 

here is a tremendous potential for BCIs to enhance the way humans can enjoy the 

arts. For example, BCIs can be used as a vehicle to create art, as exempliied by the 

fNIR- based sketch drawing program created by Mappus, Jackson, and colleagues 

(2009) discussed in Section 9.2.3.

More interestingly, BCIs can be used to close the loop between an art installation 

and a user’s experience of the same art. In particular, as the user begins experiencing 

the art, his or her brain signals can be used to change appropriate elements of the art 

installation, initiating a novel interaction between the human and the work of art. 

his turns experiencing art on its head by making the work of art dynamic, rather 

than the classic static work of art that hangs on a wall in a museum or art gallery. 

he artist’s job becomes one of anticipating the various ways in which an observer 

might react to the work of art and incorporate the ability for the work of art to adapt 

to the observer’s brain signals on an ongoing basis. One can also imagine the work 

of art responding to brain signals from multiple observers experiencing the artwork 

at the same time.

An early example of brain- controlled art is a participatory theatrical performance 

titled “he Ascent” and created by Yehuda Duenyas. It debuted at the Experimental 

Media and Performing Arts Center at Rensselaer Polytechnic Institute in New 

York on May 12, 2011. he interactive art installation is experienced by a partici-

pant and an audience who watch from an observation deck. he participant wears a 

three- dimensional theatrical lying harness and a dry electrode headset (the EPOC  
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headset manufactured by Emotiv). Signals from the headset are used to control the 

harness, allowing the performer to “ascend” by modulating the recorded signals 

(Figure 12.16). he BCI works by detecting alpha and theta band oscillations in 

EEG (see Section 3.1.2). When a performer closes his or her eyes and relaxes, there 

is typically an increase in alpha band power and a decrease in theta. hese events are 

detected by the BCI and used as a trigger to elevate the performer more than 30 feet 

into the air through dynamically responsive displays of sound and light. he perfor-

mance thus incorporates the paradox that the performer’s calm mental state gener-

ates a spectacle of light and sound. As described on the art installation’s Web site, 

theascent.co, “As an audience watches, the rider’s concentration begins to lit her 

into the air. A storm of stimuli conspires to distract her from reaching her goal: lev-

itating into ‘transcendence’ and ‘winning’ by unleashing a climactic, irework- illed, 

grand- prize explosion, immortalizing the rider in an ephemeral blinding moment 

of super- human glory.”

 

Figure 12.16.  Brain- controlled performance art “The Ascent.” The performer is levitated in the air by a 

harness controlled by brain signals, triggering a dynamically changing display of sound and 

light (image from http://news.rpi.edu/update.do?artcenterkey=2866).

 

http://news.rpi.edu/update.do?artcenterkey=2866
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12.3 Summary

From the diversity of BCI applications we have reviewed in this chapter, it seems 

that we are limited only by our imagination when it comes to developing new ways 

of harnessing the power of BCIs. he ield in many ways owes its genesis to the 

promise ofered by medical applications such as developing implants for the deaf 

(the cochlear implant), neural prosthetics for the paralyzed (such as the BrainGate 

implant discussed in Section 7.3.1), and electrical stimulators for treating the symp-

toms of debilitating motor diseases such as Parkinson’s (deep brain stimulation or 

DBS). Faster computers and cheaper noninvasive recording systems for EEG and 

fNIR have opened the door to an increasing number of nonmedical applications for 

able- bodied individuals, ranging from BCIs for security, education, and gaming to 

robotic avatars, lie detection, and physical, sensory, or cognitive augmentation. he 

proliferation of BCI applications also makes it imperative that we address the many 

ethical and moral issues engendered by these disruptive technologies. We discuss 

some of these issues in the next chapter.

12.4 Questions and Exercises

1. Enumerate four applications of BCI technology to sensory and motor restoration. 

For each, specify whether these applications are clinically available, and if not, 

describe why not.

2. What are some of the possible applications of BCIs for cognitive restoration?

3. (  Expedition) Read some of the references cited in Section 12.1.4. Write a brief 

essay on the various ways in which BCI technology could be used to speed up 

rehabilitation and recovery from stroke or surgery.

4. Compare the advantages and disadvantages of the two main approaches to BCI-

 based communication for locked- in patients: cursor- controlled menu systems 

based on oscillatory potentials versus spellers based on stimulus- evoked poten-

tials such as P300.

5. Compare and contrast the following approaches to brain- controlled wheelchairs: 

hierarchical BCIs versus shared control. What are some of the obstacles to mak-

ing such wheelchairs available for day- to- day use in the real world?

6. he BCI- controlled Web browser Nessi uses binary selection via SCPs to prune 

away links until the user’s desired link is selected. Discuss the strengths and weak-

nesses of this approach to browsing and suggest an alternate scheme based on 

either oscillatory potentials or evoked potentials.

7. he Graz BCI allows self- paced navigation of Google Earth using imagery. 

Describe how the system uses multiple LDA classiiers to achieve this self- paced 

operation.

8. Describe how the sot margin SVM was used in the P300- based robotic avatar 

application described in Section 12.2.2.
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9. What are some of the advantages and drawbacks of using evoked potentials 

such as P300 for controlling a robotic avatar? Describe how some of the draw-

backs could be addressed using oscillatory potentials and/or hierarchical BCIs.

10. What is cortically coupled computer vision (CCCV) and what is its purpose? 

What is the role of the following in CCCV?

a. RSVP

b. P300

c. LDA

11. Describe how evoked potentials can be used for “lie detection” or detection 

of “guilty knowledge.” Compare this approach to the traditional method of 

polygraphy.

12. (  Expedition) Read articles that have been published recently on “brain inger-

printing” and memory detection (see Section 12.2.4). What are some of the aspects 

of the proposed technology that have engendered controversy and why?

13. Describe how changes in EEG power could potentially be used to monitor alert-

ness during driving or surveillance. What are some of the obstacles to practical 

application of the technique to real- world scenarios?

14. What is the n- back task and why is it useful for studying memory load? How 

well can memory load in the n- back task be predicted using EEG? Is there a 

single EEG frequency band whose power varies with memory load, or is the 

phenomenon subject- speciic?

15. Describe the signal processing and machine- learning techniques used by 

the Berlin BCI group to predict cognitive load in their highway- driving task. 

Discuss whether the system that was used is practical enough for commercial 

applications.

16. Discuss the ways in which BCIs could be used in education and learning, focus-

ing on the following aspects:

a. Gauging student engagement and focus

b. Customizing presentation of material

c. Evaluation and testing

17. Explain the diference between the problems of identiication and authentication 

in security. How can BCIs be used for these two problems? Provide details on the 

type of tasks used, and the signal- processing and machine- learning algorithms 

that have been explored. Describe the performance reported for these systems 

and comment on whether they are ready for use in real- world applications.

18. (  Expedition) Read about the current state- of- the- art technology in powered 

exoskeletons (e.g., the systems being developed by Cyberdyne, Ekso Bionics, and 

Raytheon) and write an essay describing their capabilities, mode of  control, and 

feedback (if any) provided to the user. hen discuss whether and how these exoskel-

etons could potentially be controlled using (i) muscle signals (EMG), (ii) noninva-

sively recorded brain signals such as EEG, (iii) nerve signals (e.g., from the limbs), 

and (iv) invasive brain signals (e.g., spiking activity from multielectrode arrays).
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19. Describe the experiment performed by Berger and colleagues to demonstrate 

their implant for restoration and enhancement of memory function (Section 

12.2.10). How was memory storage of task- relevant information prevented 

experimentally, and how was performance restored using the implant? In other 

rats with normally functioning memory circuits, how was memory performance 

enhanced?

20. Discuss three ways in which BCIs could be used by astronauts in space or on 

earth. Is there any evidence for or against the claim that zero gravity can have 

detrimental efects on BCI performance?

21. (  Expedition) Compare and contrast currently available commercial dry elec-

trode systems such as those being manufactured by Emotiv and Neurosky in 

terms of number of electrodes, electrode locations, cost, portability, and infra-

structure provided for sotware development. hen, pick your favorite video 

game and explain how one of the degrees of control in the game could be 

replaced with input from a commercial dry electrode system. Make sure your 

proposed control paradigm takes into account the electrode locations available 

in the device as well as any potential interference due to muscle activation.

22. Section 12.2.13 described “he Ascent,” an example of BCI- controlled perfor-

mance art. Propose BCIs for enhancing the experience of the following forms of 

art for the artist and/or the audience:

a. Painting

b. Music

c. heater

d. Literature
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Among the most important aspects of brain- computer interfacing are ethical issues – 

issues pertaining to the medical use of BCIs, the use of BCIs for human augmenta-

tion and other applications, and the potential for their misuse. Some of these issues 

fall under the rubric of neuroethics, but other issues are speciic to technological 

aspects of BCIs.

BCI conferences and workshops sometimes include sessions on ethics, and there 

have been several articles discussing ethical aspects of BCIs and neural interfaces 

(e.g., Clausen, 2009; Haselager et al., 2009; Tamburrini, 2009; Salvini et al., 2008; 

Warwick, 2003). However, there are currently no oicial regulations or guidelines 

on BCI use, aside from conventional laws regarding medical and legal ethics. As 

with other technologies in the past, one can expect that as BCIs become more 

prevalent in society, laws and ethics pertaining to BCI use will likely be codiied 

by medical and governmental regulatory agencies. In the meantime, this chap-

ter surveys the variety of ethical issues and dilemmas surrounding BCI research 

and BCI use.

13.1 Medical, Health, and Safety Issues

13.1.1 Balancing Risks versus Benefits

Perhaps the most important issue concerning the use of BCIs by any particular user 

is whether the risks associated with the BCI are acceptable compared to the ben-

eits to be gained from its use. his issue becomes especially critical when the BCI 

is invasive, and the risk of damage or infection is non- negligible. For patients who 

are considering a BCI for improving their quality of life, the questions are similar 

to those ones faced by patients deciding on potentially risky surgical interventions 

such as an organ transplant or a heart pacemaker implant. In fact, such a risk- beneit 

analysis is already part of the protocol used in hospitals today to determine whether 

a BCI, such as a cochlear implant or a deep brain stimulator, should be implanted. 

As other types of BCIs are developed and commercialized, the protocols used for 
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cochlear implants and DBS could potentially be modiied to apply to these new 

types of invasive BCIs.

In general, the company designing a BCI and the doctor who will implant it can 

be expected to advise the patient about the risks and beneits associated with the 

device. he decision to opt for the implant would ultimately rest with the patient 

and the family of the patient, as with other medical procedures today. Questions 

to consider include the potential side efects of BCI use, the potential for patient 

 expectations not being met, and the efect of BCI use on family and caregivers.

Another dimension to consider in a risk- beneit analysis is whether a noninvasive 

BCI might be suicient for a particular subject instead of an invasive option so as to 

mitigate the risks. We have seen in previous chapters that noninvasive BCIs may be 

inferior to invasive BCIs in terms of performance and duration. he relevant ques-

tion then would be: does the increase in performance provided by an invasive BCI 

justify, for this particular subject, the increase in risk associated with invasive BCIs? 

he broader guidelines for clinical use of invasive BCIs will ultimately need to be set 

by government regulatory agencies ater a thorough assessment of the eicacy and 

safety of each implantable device.

13.1.2 Informed Consent

An important aspect of the use of BCIs for both medical and nonmedical purposes 

is to ensure that informed consent has been obtained from the subject – that is, the 

subject has been made aware of:

the risks and beneits associated with the BCI technology being suggested versus • 
alternatives,

the information being extracted from the brain, and• 
the consequences of extracting this information: could it lead to embarrassment • 
or, worse, legal consequences such as incrimination?

As with other experiments involving humans, the subject must have the freedom 

to end BCI use at any time. Complications may arise in some cases:

(a) in the case of children, is it suicient to get consent from the parents?

(b) in the case of locked- in patients who are unable to communicate, who should 

give informed consent? (Is informed consent from a caregiver suicient?) and

(c) can consent be obtained from patients sufering from cognitive deicits that pre-

vent them from fully understanding the risks versus beneits?

13.2 Abuse of BCI Technology

Like any new technology, BCIs can and probably will be abused for a variety of 

purposes, ranging from crime, war, and terrorism to subverting the law and 

manipulating brain processes for proit. Physical augmentation (e.g., neurally-

 controlled exoskeletons, vehicles, and weapons) will potentially change the way 

crime or terrorism is committed and wars are fought. Marketing agencies could 
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attempt to manipulate customers through subliminal advertising during BCI use 

(“neuromarketing”). 

Additionally, consider the fact that in the not- too- distant future, one may see the 

commercialization of sophisticated, wireless BCIs that can both record and stimulate 

the brain. he advent of such BCIs will bring with it the potential for some alarming 

scenarios, potentially turning science iction to reality. In particular, wireless com-

munication from or to a brain could be intercepted if encryption is not used or if the 

encryption method used is not suiciently strong. Such interception of brain signals 

could potentially lead to:

•  Mind reading or “brain tapping”: Depending on the type of signals being 

transmitted from the brain, a person’s thoughts, relections, and beliefs could 

be intercepted, recorded, and exploited by criminals, terrorists, commercial 

enterprises, and spy agencies as well as legal, law enforcement, and military 

entities.

•  Coercion or “mind control”: he ability of a BCI to stimulate a user’s brain opens 

up the dangerous possibility that the BCI may be hijacked and used to coerce a 

person to perform objectionable acts (e.g., commit a crime or sign a document 

such as a will).

•  Memory manipulation: A BCI that can stimulate the brain could also potentially 

be hijacked to selectively erase memories or write in false memories, leading to the 

possibility of “brainwashing.”

•  Viruses: Malicious entities could send a “virus” as part of a communication from 

a machine, resulting in cognitive impairment or cognitive manipulation.

hese possibilities place utmost importance on the need for extremely secure chan-

nels for BCI communications as well as security algorithms that can detect a breach 

and take the necessary preventative actions. We delve into the issue of BCI security 

and privacy in more detail in the next section.

BCI technology could also be tampered with to bias an outcome. For example, 

“brain ingerprinting” methods for lie detection could potentially be manipulated to 

align an outcome in favor of or against a defendant. BCIs for human augmentation 

could be tampered with to cause signiicant harm to the user and/or other individu-

als and property. Once again, such scenarios can be minimized if suiciently strong 

security measures are put in place.

13.3 BCI Security and Privacy

Surreptitious mind reading and “brain hacking” have been popular topics in many 

science- iction novels and movies. However, even in present- day BCI research, it is 

important to consider the question of security and privacy: What kind of neural data 

is being recorded in an experiment? Could the data reveal something personal that 

the subject may not want revealed? Will the data be stored and, if so, for how long 

and for what purpose? Will a subject’s data be shared with other researchers? Such 
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questions are typically part of the human subjects review process conducted by the 

Institutional Review Board (IRB) at research institutions. Experiments are approved 

only if they meet national (or international) guidelines for ethical human subjects 

research.

We have already discussed the potential for unprecedented abuse and malicious 

attacks on future wireless BCIs that can record and stimulate a brain in sophisticated 

ways. Before the deployment of such BCIs, it is therefore imperative that strong legal 

and technological safeguards are put in place. Activities that violate BCI security 

and privacy should be made illegal, with stringent punishments for breaking the 

law. Encryption techniques and security methods will need to have much stronger 

guarantees against attacks than current techniques and methods, given that the con-

sequences of a successful attack can be quite devastating to the BCI user. An oppor-

tunity exists for new research into possible hybrid security techniques that rely on 

both neural mechanisms and computer algorithms to safeguard against attacks and 

invasion of privacy during BCI use. Approaches to security (e.g., Gollakota et al., 

2011; Paul et al., 2011) in implantable biomedical devices such as insulin pumps 

and heart pacemakers may also be relevant to BCIs, but their applicability to BCI 

security and “neurosecurity” (Denning et al., 2009) in general has not yet been fully 

explored.

13.4 Legal Issues

A host of new legal issues will need to be tackled as BCI use becomes widespread. 

First, as mentioned, lawmakers will need to pass suiciently nuanced legislation to 

prescribe what type of BCI- related activities are legal and what are not. Courts will 

need to decide who should be responsible for unlawful acts involving a BCI, the 

fundamental question being where does the human end and the machine begin? 

Since BCIs will likely possess a degree of autonomy and the ability to learn, it may 

not be clear if the law was broken due to a voluntary command issued by the BCI 

user or if the BCI autonomously performed the action at a subconscious level for 

the user.

One way to resolve this issue is to place the responsibility entirely on users by 

asking them to sign a waiver before using the BCI, absolving the BCI company from 

liability except for manufacturing defects. his is similar to the situation of a human 

driving a car, where the manufacturer is not held liable for injury caused by a driver 

unless the injury was due to a manufacturing defect in the car. However, things 

may not be as clear cut in the case of BCIs (or adaptive systems in general) because 

it could be argued that the manufacturer should be held liable not only for bugs in 

the sotware, but also for unforeseen consequences resulting from a self- learning 

and adaptive BCI. Clearly, there is a need for discussion, followed by appropriate 

changes to the current set of laws governing liability and insurance to make them 

apply to the case of users operating BCIs. 
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13.5 Moral and Social Justice Issues

Whether or not a BCI should even be used can become a moral dilemma, as seen in 

the case of the cochlear implant. Many in the deaf community have rejected cochlear 

implants because they do not regard deafness as a disability. For them, deafness is 

an integral part of who they are and their culture. he moral question thus becomes 

whether deafness should even be considered a “disease” that requires “treatment.” If 

it is not, then there is no need for parents of a deaf child to obtain a cochlear implant 

for their child. he opposing viewpoint contends that willfully depriving a child of a 

cochlear implant is unethical because this decision deprives the child of the oppor-

tunity to learn to speak, hear, and enjoy aspects of human life such as music.

A number of moral issues arise when BCIs are used for augmenting the physical 

and mental capabilities of able- bodied human beings. First, the integration of a BCI 

into the brain fundamentally redeines what it means to be human. Over the course 

of more than 500 million years, evolution sculpted the brain to control the biological 

body for interaction with the physical environment. BCIs have now opened the door 

for the brain to directly exert control over objects in the environment without using 

the body as an intermediary. How will this escape from the limitations imposed by 

our biological bodies shape human evolution? Cyborgs have been a staple of science 

iction for a long time, but will some humans forego the advantages of augmenting 

their physical and mental capabilities and choose to live a BCI- free existence or 

become “BCI luddites?” 

he fact that BCIs in the future could allow mnemonic, sensory, and physical aug-

mentation leads to the possibility that society may be divided along the lines of a 

new type of “haves” and “have- nots.” For example, the rich might have their children 

implanted at an early age to give them an edge in mental and/or physical capabilities. 

hose who are unable to aford such implants will certainly be let behind with poten-

tially drastic social consequences. his could lead to a much greater divide between 

the rich and the poor. Similarly, nations that can equip their citizens and soldiers with 

BCIs would have a distinct advantage over nations that are unable to do so, poten-

tially leading to a bigger divide between developed and underdeveloped countries. 

hese important social justice issues need to be addressed well before powerful 

augmentative BCIs are developed and go on the market. One potential solution is 

for governments to subsidize certain basic types of BCIs for those who otherwise 

would not be able to aford them – this would be similar to government programs in 

many countries today that provide free public education and healthcare for all citi-

zens. However, there is still the distinct possibility that market forces will put some 

of the higher- end BCIs out of reach of many people.

Another moral dilemma arises from the observation that to be proicient in oper-

ating a sophisticated, general- purpose BCI, a person will need to start at an early 

age, very likely as a child. Parents will thus be faced with the diicult decision of 

whether or not to implant their child with a BCI to augment the child’s future mental 
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and/or physical capabilities. Is it ethical for parents to decide what type of augmen-

tation a child should have? Is it ethical for them to opt out of implanting a BCI in 

their child, potentially leaving the child at a signiicant disadvantage compared to 

implanted children?

Finally, the widespread availability of diferent types of BCIs could stratify soci-

ety into diferent classes of people. We have already mentioned the dilemma of the 

BCI haves and have- nots. Should there be diferent schools for students with and 

without BCI- assisted augmented memory and cognitive enhancement? For  athletes 

who have augmented their physical abilities, should there be special leagues or 

diferently- special Olympics?

hese, and other questions arising from a society of diverse BCI users, challenge 

our current conceptions of what it means to be human and point to the urgent 

need for a comprehensive discussion of the moral and ethical issues surrounding 

BCI development and use. It is thus incumbent on the BCI research community 

to engage with lawmakers, colleagues in the humanities and other disciplines, and 

public stakeholders in such a discussion, and arrive at a consensus on a set of ethical 

guidelines governing BCI use and commercialization.

13.6 Summary

It has been said that any great human advance in technology brings with it great 

moral and ethical responsibility. BCIs are no exception. BCIs have already started 

transforming the lives of people for the better (e.g., DBS for Parkinson’s patients), 

but there is much potential for abuse as BCIs make the transition from the labora-

tory to the real world. Although existing medical practices such as informed consent 

and risks- versus- beneits analysis may guide BCI use in the near term, appropriate 

ethical guidelines and laws are not yet in place to regulate future, more advanced 

types of BCIs that could be used for human augmentation.

he purpose of this chapter was to make the reader aware of the range of ethical 

and moral issues permeating BCI research, ranging from various ways in which BCI 

technology could be abused to the need for BCI security and a discussion of legal 

and social justice issues. We conclude the chapter with the hope that this and other 

discussions on the topic may help in the formulation of an internationally accepted 

code for BCI ethics in the near future.

13.7 Questions and Exercises

1. Perform a risk- beneit analysis for each of the following cases:

a. A person paralyzed from the neck down considering an invasive implant (such 

as BrainGate – see Section 7.3.1) to control a prosthetic arm

b. An amputee with a missing right arm considering a semi- invasive ECoG inter-

face for controlling a robotic hand- arm prosthetic.
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c. An amputee with a missing right arm considering a semi- invasive nerve- based 

BCI (Section 8.2.1) for controlling the same robotic system as in (b)

d. A locked- in patient considering an EEG P300 speller (Section 9.1.4) for 

communication

2. For each of the cases (a) through (d) in Question 1, drat an informed consent 

form for a patient containing the following information: the nature and purpose 

of the BCI, risks and beneits, alternatives (regardless of cost), risks and beneits 

of alternatives, and risks and beneits of not receiving or using the BCI.

3. For each of the following BCI technologies (some currently available and some 

not yet available), identify potential ways in which the technology could be abused 

or subverted:

a. Implant for restoring or enhancing memory storage and retrieval

b. BCIs for physical ampliication

c. Brain- controlled remote robotic avatar

d. Brain ingerprinting and lie detection

e. BCIs for cognitive monitoring (alertness, cognitive load, etc.)

f. Brain- powered computing such as CCCV (Section 12.2.3)

4. (  Expedition) Review some of the current security and encryption techniques 

that have been proposed for wireless communication from personal devices, such 

as wearable health- monitoring sensors or medical devices such as pacemakers, 

implantable cardioverter- deibrillators (ICDs), or insulin pumps. Discuss whether 

these techniques are directly applicable to wireless BCIs and, if not, whether they 

could be modiied to achieve BCI security.

5. (  Expedition) Research what the liability law in your country states about the 

extent to which a car manufacturer is liable for an accident versus the driver of 

the car. Discuss whether such a law could be modiied to account for liability of a 

BCI manufacturer versus the human user of the BCI in the following cases:

a. An implanted BCI for controlling an exoskeleton

b. A hierarchical BCI for controlling a remote robotic avatar

c. A wireless memory implant for amplifying memory storage and retrieval

6. Discuss the moral and social justice issues surrounding the possible future use of 

BCIs for human augmentation, focusing on the dimensions of:

a. Societal stratiication (“cyborgs” versus “BCI luddites,” rich versus poor)

b. Stratiication according to national boundaries and wealth

c. Parental choices regarding BCI implantation in children
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he ield of brain- computer interfacing has witnessed tremendous growth over the 

past decade. Invasive BCIs based on multielectrode arrays have allowed laboratory 

animals to precisely control the movement of robotic arms. Implants and semi-

 invasive BCIs have enabled human subjects to quickly acquire control of computer 

cursors and simple devices. Noninvasive BCIs, particularly those based on EEG, have 

allowed humans to control cursors in multiple dimensions and issue commands to 

semi- autonomous robots. Commercially available BCIs such as cochlear implants 

and deep brain stimulators have helped improve the quality of life of hundreds of 

hearing- impaired individuals and patients sufering from debilitating neurological 

diseases.

he achievements of the ield thus far are impressive, but many obstacles remain. 

As pointed out by Gilja, Shenoy, and colleagues (2011), invasive BCIs have yet to 

achieve the same levels of performance, multidecade robustness, and naturalistic 

proprioception and somatosensation as able- bodied people. Furthermore, invasive 

BCIs remain risky for humans and are used only as a last resort in severely disabled 

patients. he most popular noninvasive BCIs, based on EEG, sufer from a number 

of problems:

Electrode placement is cumbersome and setup time is typically long (up to half an • 
hour depending on the number of electrodes).

Results of training and learning may not be transferable from one day to the next • 
due to shits in electrode locations, noisy contacts with scalp, etc.

Low signal- to- noise ratio and on- line adaptation in subjects necessitate the avail-• 
ability of powerful ampliiers as well as eicient machine- learning and signal pro-

cessing algorithms.

Signal attenuation and summation between the brain and the scalp, together with • 
sparse sampling of activity, limits the range of useful control signals that can be 

extracted.

To minimize risk, one would ideally like to noninvasively record the activities of 

several thousands of neurons with high signal- to- noise ratio. his would require 

 14

Conclusion

 

 

 



Conclusion280

advances in both biophysics and engineering in order to discover better methods 

of brain imaging than EEG and MRI. In the case of invasive BCIs, there is a need 

for biocompatible implantable chips that can remain implanted for years and even 

decades without being rejected while still providing reliable signals from the targeted 

brain areas. Such chips will ideally contain circuitry for ampliication and wireless 

telemetry. On the sotware end, the ield will need to go beyond traditional methods 

such as Fourier analysis, neural networks, and linear regression to more robust and 

co- adaptive algorithms such as those based on probabilistic models for inferring, 

tracking, and predicting brain state.

he ield of brain- computer interfacing ofers unprecedented possibilities for 

transforming how we as a species interact with the physical world and with each 

other. he ield began with the goal of enhancing communication and control for 

paralyzed and disabled individuals. he rapid progress made by the ield has thrown 

open the doors to radically new ways for the brain to exert control on objects other 

than the human body and for objects to provide feedback directly to the brain.

hus, one can envision a not- too- distant future in which it may become routine 

to augment one’s physical and mental capabilities through BCI technology, over-

coming the limitations on physical and mental prowess imposed by evolution and 

one’s own genes. “Telekinesis,” the ability to manipulate and move certain objects by 

thought, and “telepathy,” the ability to communicate with others through thought, 

also become distinct possibilities.

Are we as a species ready to make such a radical jump in our evolution? Are the 

governments and regulatory agencies of the world willing to work together to ensure 

a safe, equitable, and mutually beneicial transition for all to such a future? Humans 

have successfully negotiated and embraced other transformational technologies in 

the past, from stone tools and gunpowder to the steam engine and nuclear ission. 

One can therefore be optimistic that we as a species will successfully incorporate 

BCI technology into our lives in ways that enhance and enrich our experiences as 

human beings. BCIs ofer us the potential to break out of the evolutionary conines 

of our biological bodies and brains. One can thus nurture the hope that BCIs will 

usher a new era of human creativity and achievement, brought about by an intimate 

fusion of brains, machines, and computer technology.
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To understand many of the technical ideas discussed in this book, the reader 

needs to have a working knowledge of some basic mathematical concepts learned 

in the second or third year of college, mainly in linear algebra, probability theory, 

and calculus. For background in calculus, such as the concepts of limits, integra-

tion, and diferentiation, we refer the reader to standard calculus textbooks such 

as (Riddle, 1979). Here, we review some of the mathematical notation and units of 

measurement used in the book as well as fundamental ideas in linear algebra and 

probability theory.

A.1 Basic Mathematical Notation and Units of Measurement

We use s(t) to denote the fact that s is a function of the variable t (e.g., time). If t is 

discrete (e.g., t = 1, 2, 3 …), we sometimes also use subscript notation to represent 

the function, i.e., st for t = 1, 2, 3…

To denote the sum of a sequence of variables, we use the sigma (Σ) notation:

s s s s sN i
i

N

1 2 3
1

+ + + + =
=
∑

We use the notation |x| to denote the absolute value function:

 x
x x

x x
=

≥
− <

if 

 if 
 

0

0
 

(A.1)

he following abbreviations are commonly used to denote various units of 

measurement:
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A.2 Vectors, Matrices, and Linear  Algebra

A.2.1 Vectors

We deine a vector as an ordered sequence of values. For example, a four- dimensional 

vector can be written as:

a

b

c

d

 





















where a, b, c, and d are called elements of the vector. In this book, we will be con-

cerned mostly with vectors whose elements are real numbers (e.g., a = 17.6,  

b = −120.5, c = 150, d = −0.917).

Vectors are useful because you can use them to represent any set of measure-

ments or attributes simultaneously. For example, a, b, c, and d could represent elec-

tric potentials you have measured from four diferent locations on the scalp using 

EEG (see Chapter 3). We will use the four- dimensional vector above as an example 

throughout our discussion below. However, keep in mind that the concepts dis-

cussed apply to vectors of arbitrary dimensionality.

Vector names are usually represented using boldface characters. For example, we 

can use x to represent the four- dimensional vector above:

x =





















a

b

c

d

 

he elements of a vector x are identiied using subscripts, i.e., x a x b1 2= =, ,  etc. A one-

 dimensional vector is just a single value and is called a scalar, e.g., the value a = 17.6.

Unit Quantity being measured Value

mV (millivolts) Voltage or potential diference 10–3 volts

μV (microvolts) Voltage or potential diference 10–6 volts

mW (milliwatts) Power 10–3 watts

ms (millisecond) Time 10–3 seconds

mm (millimeter) Length 10–3 meter

cm (centimeter) Length 10–2 meter

Hz (Hertz) Frequency (number of cycles/second) 1/second

kHz (kilohertz) Frequency (number of cycles/second) 103/second

MHz (Megahertz) Frequency (number of cycles/second) 106/second
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Two vectors of the same size can be added by adding their corresponding elements, 

for instance, given:

 x y=





















=





















x

x

x

x

y

y

y

y

1

2

3

4

1

2

3

4

 and  ,

their sum x + y is given by:

x y+ =

+
+
+
+





















x y

x y

x y

x y

1 1

2 2

3 3

4 4

 

Another simple operation you can apply to vectors is scalar multiplication, i.e., mul-

tiplying a vector by a scalar – this multiplies each element of the vector by the scalar. 

For example, if c is a scalar value and x is the vector above, then

c

cx

cx

cx

cx

x =





















1

2

3

4

 

A useful type of multiplication involving two vectors is the dot product. his involves 

taking two vectors of the same size, such as the vectors x and y above, multiplying 

them elementwise, and adding up the products to get a single scalar value:

x y⋅ = = + + +∑x y x y x y x y x yi i
i

1 1 2 2 3 3 4 4

As a concrete example, if:

 a b=
−





















=

−
−





















3

1

0 5

2

2

4

2

0 5

.

.

 and  ,

their dot product is given by:

a b⋅ = − + − − + + = − + + + =3 2 1 4 0 5 2 2 0 5 6 4 1 1 0( ) ( )( ) ( . ) ( . )

he length (or magnitude) of a vector x, also known as its L2 norm, is represented 

by x  and is deined as the square root of the sum of squares of all its elements. For 

example, for a four- dimensional vector x,

x = + + +x x x x1
2

2
2

3
2

4
2
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Note that the length of a vector is equal to the square root of the dot product of the 

vector with itself: x x x= ⋅ .

Geometrically, it is useful to visualize an n- dimensional vector as an arrow (or 

straight- line segment with a length and a direction) in an n- dimensional “Euclidean” 

space. For example, the vector:

4

3











can be thought of as a line segment that starts at the origin (0,0) in two- dimensional 

space and ends at the coordinates (4,3). Here, (0,0) is called the tail of the vector and 

(4,3) the head of the vector. Note that like all vectors, this vector has both a direction 

and a length, the length being given by 4 3 25 52 2+ = = . Addition of two vectors x 

and y can be visualized as placing the tail of y at the head of x and drawing an arrow 

from the tail of x to the head of y. Furthermore, in such a setting, the dot product 

x y⋅  can be shown (using the law of cosines) to be equal to

 x y x y⋅ =   cosθ  
(A.2)

where θ is the angle between x and y.

Two vectors are said to be orthogonal if they are perpendicular to each other. his 

happens when the angle between them θ is 90°, i.e., when:

 x y x y⋅ = =  cos90 0

 
(A.3)

i.e., when the dot product between the vectors is zero.

A vector x is said to be a normalized (or unit) vector if its length ||x|| = 1. Any  vector 

y can be normalized by dividing the vector by its length, i.e., y

y
  is a normalized 

(or unit) vector.

A set of vectors is said to be  orthonormal if they are all unit vectors and orthogo-

nal to each other, i.e., for any two vectors xi and xj in the set:

 x xi j

i j

i j
⋅ =

≠
=

0

1

  if 

  if 
 

(A.4)

A.2.2 Matrices

he concept of a vector can be generalized to a rectangular array of values called a 

matrix. You can think of a matrix in terms of vectors of the same size stacked next to 

each other column by column, or in terms of rows of values (“row vectors”) arranged 

one below the other. A matrix is usually represented by a capital letter. Consider, for 

example, the matrix:

M

M M M

M M M

M M M

M M M

=





















11 12 13

21 22 23

31 32 33

41 42 43
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he matrix M is of size 4 × 3 because it contains 4 rows and 3 columns. he values 

Mij are the elements of the matrix, where i speciies the row and j the column of the 

element. A matrix is said to be a square matrix if it has the same number of rows and 

columns.

Matrices are useful for the study of BCIs because they arise time and again in 

operations such as iltering (see Chapter 4), classiication (Chapter 5), and probabil-

ity theory (e.g., the multivariate Gaussian distribution – see Section A.3).

Note that a vector is just a special type of matrix where the number of columns is 

1, i.e., a vector is an n × 1 matrix, where n is the number of elements in the vector.

he transpose MT of a matrix M is obtained by taking the rows of the matrix and 

turning them into columns, i.e., M Mij

T

ji= . For example, if A is the matrix:

A
a b c

d e f
=









 , thenits transposeis given by:

A

a d

b e

c f

T =
















Just as we did with vector addition, we can add two matrices of the same size by add-

ing their corresponding elements: ( )A B A Bij ij ij+ = + . For example,

2 5

1 3

4 2

3 5

2 1

1 2

5 0

3 2

5 4

−
−

















+ − −
















= −
















Similarly, scalar multiplication of a matrix A with a scalar c involves multiplying 

each element of the matrix with the scalar: ( )cA cAij ij= .

We can also multiply one matrix with another, an operation known as matrix 

multiplication, provided the irst matrix has the same number of columns as the 

number of rows in the second matrix. Speciically, if A and B are matrices, we can 

multiply them to get a new matrix C = AB only if the size of A is a × b and the size of 

B is b × c. he resulting product matrix C will be of size a × c, and is deined as:

 C AB A Bij ij ik kj
k

b

= =
=

∑( )
1  

(A.5)

In other words, each element of the new matrix C is obtained by taking a row from the 

irst matrix and a column from the second matrix and computing a dot product (this 

also explains why the rows of the irst matrix and the columns of the second must be 

of the same size). To make this more concrete, consider the following example:

A B=
−

−
















=
−
−











2 5

1 3

4 2

3 2 1

5 1 2
and
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A is of size 3 × 2 and B is of size 2 × 3, so they can be multiplied, giving us a 3 × 

3 matrix:

C AB= =
+ − − + − − + −

− + − − +
2 3 5 5 2 2 5 1 2 1 5 2

1 3 3 5 1 2

( ) ( ) ( ) ( )( ) ( ) ( )

( ) ( ) ( )( ) 3 1 1 1 3 2

4 3 2 5 4 2 2 1 4 1 2 2

1

( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

− − +
+ − + − +

















=
− 9 1 8

12 1 5

22 10 8

−
−

−

















Note that unlike multiplication with real numbers, matrix multiplication is not com-

mutative, i.e., even if A and B are square and both AB and BA exist, AB is not gener-

ally equal to BA (check this with some examples yourself!).

Matrix multiplication also allows us to multiply matrices with vectors, which we 

will ind useful in several places in this book, such as in the sections on PCA and 

ICA (Chapter 4) as well as in LDA (Chapter 5). Multiplying a matrix with a vector 

is a special case of matrix multiplication – we just need to make sure the number of 

columns of the matrix is equal to the size of the vector. he result of the multiplica-

tion will be a vector. Speciically, if we multiply an a × b matrix A with a b × 1 vector 

x, we will get an a × 1 vector y, whose elements are the dot products of the rows of 

A with the vector x. As an example, consider the 2 × 3 matrix B above and the fol-

lowing 3 × 1 vector c:

c = −
















3

1

0 5.

We can multiply B and c to get the 2 × 1 vector d:

d c= =
−
−









 −

















=
+ − − +

B
3 2 1

5 1 2

3

1

0 5

3 3 2 1 1 0 5

5
.

( ) ( )( ) ( . )

(3 1 1 2 0 5

11 5

17) ( )( ) ( . )

.

+ − − +








 =











Note that when you multiply a square matrix B (of size b × b) with a vector x (of size 

b × 1), the result is another b × 1 vector y = Bx. hus, the efect of the multiplication 

in this case is to efectively perform a rotation of the original vector x to point in the 

direction y (and possibly change its magnitude also).

An interesting observation is that we can deine the dot product between two 

vectors of the same size in terms of matrix multiplication using the transpose 

operation:

x y x y⋅ = =∑ x yi i
i

T

his form of the dot product is useful in derivations involving multiplication of 

matrices and vectors.
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A square matrix A is said to be symmetric if AT = A. A symmetric n × n matrix A 

is said to be positive deinite if for all nonzero n × 1 vectors x, x xT A > 0. he matrix 

A is positive semideinite if for all n × 1 vectors x, x xT A ≥ 0.

A diagonal matrix D is a matrix whose elements are all zeros except along the 

diagonal, i.e., Dij = 0 for all i ≠ j.

One example of a diagonal matrix is the identity matrix I, which is a square matrix 

such that:

I
i j

ij =
=1

0

  if     

  otherwise

he identity matrix is so called because AI = A for all matrices A of the same 

size as I.

he inverse of a square matrix A is another square matrix A- 1 such that AA- 1 = I. 

Not all square matrices have inverses. In particular, a matrix must be “nonsingular” 

to have an inverse (see Strang [2009] for more details).

A.2.3 Eigenvectors and Eigenvalues

We have already noted above how the efect of multiplying a square matrix with a 

vector is to basically rotate the vector and change its magnitude. here are however 

some “special” nonzero vectors for which the efect of multiplying with the matrix 

is to simply scale the vector (multiply the vector by a scalar). Such vectors are called 

eigenvectors of the matrix, and the scalar values are called eigenvalues. his relation-

ship is captured by the following equation:

 Me e= λ  (A.6)

where e is called an eigenvector of the square matrix M and λ is the correspond-

ing eigenvalue. Equation A.6 is called the eigenvector- eigenvalue equation for the 

matrix M.

he eigenvectors and eigenvalues can be obtained by solving the following poly-

nomial equation (also called the characteristic equation) for λ:

 det( )M I− =λ 0 (A.7)

where det(A) is the determinant of the matrix A (see Strang [2009] for further details). 

If M is an n × n matrix, there can be up to n distinct eigenvalues and eigenvectors. he 

eigenvalues can be real or complex depending on the characteristic equation, as can the 

eigenvectors. If M is symmetric (e.g., a covariance matrix – see Section A.3), the eigen-

values are guaranteed to be real, and the eigenvectors are real and orthogonal to each 

other. If the eigenvectors are further normalized to be of length 1, they form an ortho-

normal set of vectors, which is useful in applications such as PCA (see Chapter 4). 
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A.2.4 Lines, Planes, and Hyperplanes

We conclude our linear algebra review by highlighting the connection between vec-

tors and equations for lines, planes, and hyperplanes – this turns out to be essen-

tial for understanding binary classiication methods such as perceptrons, LDA, and 

SVMs (Chapter 5) where we are trying to ind a line, plane, or hyperplane that can 

separate points belonging to one class from points belonging to another.

Consider a point P0 on a p- dimensional hyperplane and let x0 be the vector from 

the origin to that point. Let w be a vector that is perpendicular to the hyperplane, 

i.e., the “normal vector” to the hyperplane. Let x be the vector from the origin to 

any point ( )x x p1 , ,  on the hyperplane. hen, as discussed above, the dot prod-

uct between normal vector w and the vector (x- x0) (which lies on the hyperplane) 

should be zero because they are orthogonal:

w x x w x x⋅ − = −( ) ( )0 0 = 0T

his can be simpliied to get the general equation for a hyperplane:

 w xT w+ 0 = 0  (A.8)

where w0 is a constant scalar value ( = −w xT

0). It is instructive to examine what 

Equation A.8 reduces to in the two- dimensional case, where the vector x is deter-

mined by the coordinates (x, y):

w xT w w w
x

y
w w x w y w+ =  









 + + + =0 1 2 0 1 2 0= 0

his equation can be rearranged to get a familiar form:

 y mx b m
w

w
b

w

w
= + = − = −    where  and 1

2

0

2  
(A.9)

his is the classic slope- intercept equation for a straight line in two- dimensional 

space, where m is the slope and b the y- intercept of the line.

A.3 Probability Theory

he notion of probability is at the heart of machine learning, artiicial intelligence, and 

much of information processing in today’s data- rich world. Any system that interacts 

with the real world with humans as partners requires methods for quantifying uncer-

tainty and reasoning using probabilities. It is therefore not surprising that probability 

theory is playing an increasingly important role in brain- computer interfacing.

A.3.1 Random Variables and Axioms of Probability

Probability theory relies on two concepts: a sample space S of mutually exclusive 

possible events and a “measure” deined over these events. We consider irst a inite 
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sample space S. his can be, for example, events associated with lipping a coin. 

here are two possible events: heads (h) or tails (t). As another example, consider 

the weather tomorrow – the possible outcomes could be sunny, rainy, or cloudy, and 

every subset of these outcomes could be an event (e.g., rainy and cloudy).

We use a random variable to represent an event. For example, we can use the ran-

dom variable X to represent the outcome of lipping a coin. here are two possible 

values for X: X = h or X = t. As a convention, uppercase letters such as X and Y are 

used to represent random variables, and lowercase letters such as h and t are used to 

represent their values.

A probability can be formally deined as a measure (a number) assigned to each 

event in the sample space S that satisies the following 3 axioms (“the axioms of 

probability”):

1. he measure is between 0 and 1, i.e., 0 1≤ = ≤P X x( )  for all events x. For instance, 

in the example of lipping a coin, we may have P X h( ) .= = 0 5 and P X t( ) .= = 0 5, 

both of which are between 0 and 1.

2. he measure of all of the events is 1, i.e., P X x
x

( )= =∑ 1. In our example above of 

 lipping a coin, we have P X h P X t( ) ( ) . .= + = = + =0 5 0 5 1.

3. he probability of a union of mutually exclusive events is the sum of the  probabilities 

 of the individual events, i.e., P X x X x X x P X xn i
i

n

( ) ( )= ∪ = ∪ = = =
=
∑1 2

1

  where 

 the xi are mutually exclusive events. In our coin- lipping example, the probabil-

ity for getting heads or tails is 1 (those are the only two possible events), i.e., 

P X h X t( )= ∪ = = 1, which is equal to P X h P X t( ) ( )= + = .

To simplify notation, it is common to use P(x) as a shorthand for P(X = x).

A.3.2 Joint and Conditional Probability

he joint probability of two events x and y is written as P(x, y) and is the probability 

that x and y both occur. For example, if we use X to represent the weather on one day 

and Y to represent the weather the previous day, P(X = rainy, Y = cloudy) is the joint 

probability that it will rain on one day and is cloudy the previous day.

Suppose we want to calculate the probability that it will rain given that it was cloudy 

the previous day. To answer such questions, we need the notion of conditional prob-

ability. he conditional probability P(x | y) (“probability of x given y”) is the prob-

ability that an event x occurs (“it will rain”) given that another event y has already 

occurred (“cloudy the previous day”). his conditional probability is deined as:

 P x y P x y P y( | ) ( , ) / ( )=  (A.10)

Two or more random variables are independent if their joint probability is equal to the 

product of their individual probabilities. For example, X and Y are independent if:

 P X x Y y P X x P Y y( , ) ( ) ( )= = = = =  (A.11)

for all x and y.
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Or equivalently, X and Y are independent if:

 P X Y P X Y P Y P X P Y P Y P X( | ) ( , ) / ( ) ( ) ( ) / ( ) ( )= = =  (A.12)

for all values of X and Y.

A.3.3 Mean, Variance, and Covariance

In many cases, we use a random variable such as X to represent numbers, e.g, the 

number of heads obtained when you lip a coin 5 times (in this case, X can take on 

the values 0, 1, 2, 3, 4, 5). In such cases, we may be interested in calculating the mean 

(or average value) of the random variable and its variance.

he mean (or expectation) of a discrete random variable X is deined as:

  E X P X x x
x

( ) = =∑ ( )
 

(A.13)

We sometimes use µx  to represent the mean E X( ).
he variance of X is deined as:

 var ( ) ( ) ( )X E X E X P X x xx x
x

x( ) = −( ) = − = = −∑µ µ µ2 2 2 2 2

 
(A.14)

he standard deviation of X is deined as:

 σ x X= ( )var
 

(A.15)

Given this relationship, it is common to use σ x

2  to represent the variance.

he above deinitions of mean and variance can also be applied to random vari-

ables that are vectors. Suppose we have an n- dimensional random variable:

x =





















x

x

xn

1

2



he mean vector for x is the vector:

 µx x= =





















=

















E

E x

E x

E xn n

( )

( )

( )

( )

1

2

1

2

 

µ
µ

µ 
  

(A.16)
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he analog of variance for vector random variables is the covariance matrix:

 

cov( ) (( )( ) )

(( )( )) ((

x x xx x= − −

=

− − −
E

E x x E x

Tµ µ

           

1 1 1 1 1µ µ µ µ µ µ
µ µ µ

1 2 2 1 1

2 2 1 1 2 2

)( )) (( )( ))

(( )( )) (( )(

x E x x

E x x E x x

n n− − −
− − −



2 2 2 2

1 1 2

− − −

− − −

µ µ µ

µ µ µ

)) (( )( ))

(( )( )) (( )(


   

E x x

E x x E x x

n n

n n n n − − −



















µ µ µ2)) (( )( )) E x xn n n n  (A.17)

Note that the diagonal of the covariance matrix contains the variances of the ele-

ments of the vector x: var ( )x E xi i i( ) = −( )µ 2 .

A.3.4 Probability Density Function

We have thus far been discussing random variables that are discrete, i.e., they can 

take on one of a inite number of values. Under suitable conditions, a random vari-

able X can also take on continuous values such as real numbers. In this case, we can 

deine a probability density function as follows:

P X x
P x X x x

xx
( ) lim

( )= = ≤ ≤ +
→∆

∆
∆0

We can then deine the mean, variance, and covariance using the same deinitions as 

above, except that we replace the sums over probabilities with integrals over prob-

ability densities.

We conclude our review of probability theory by going over some commonly 

used probability distributions. We irst consider discrete distributions, followed by 

continuous ones.

A.3.5 Uniform Distribution

he simplest discrete distribution is the uniform distribution, which assumes that all 

events are equally likely. hus, if there are N possible events, the uniform distribu-

tion assigns to each event x the probability:

 P X x
N

( )= = 1

 
(A.18)

In the coin- lipping example, a uniform distribution would assign the probabili-

ties P(X = h) = 1/2 and P(X = t) = 1/2 for the two possible outcomes. For roll-

ing a six- sided die, the probability of each outcome under the uniform distribution 

would be 1/6.

A.3.6 Bernoulli Distribution

he Bernoulli distribution is used to model situations involving binary random vari-

ables, i.e., when there are only two possible outcomes: X = 0 or X = 1. We could, for 

example, use 1 to represent heads and 0 to represent tails in a coin- lipping experi-
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ment where the two outcomes are not necessarily equally likely (perhaps the coin is 

damaged). We can use a parameter µ to denote the probability of X = 1:

P X( | )= =1 µ µ

where 0 1≤ ≤µ . hen, P X( | )= = −0 1µ µ . We can therefore write the probability 

distribution over the binary random variable X as:

 P X X X X( | ) ( | ) ( )µ µ µ µ= = − −Bern 1 1

 (A.19)

his distribution is known as the Bernoulli distribution. he reader can verify that 

this distribution is normalized (sums to 1). Using the deinitions of mean and var-

iance shown in Equations A.13 and A.14, we obtain the following results for the 

mean and variance of a Bernoulli distribution:

E X P X P X( ) ( | ) ( | )= = ⋅ + = ⋅
=

1 1 0 0µ µ
µ        

var( ) ( | ) ( ) ( | ) ( ) ( ) ( )X P X P X= = ⋅ − + = ⋅ − = − + −1 1 0 0 1 12 2 2 2µ µ µ µ µ µ µ µ
            

            

= − − +
= −

µ µ µ µ
µ µ

( )(( ) )

( )

1 1

1

A.3.7 Binomial Distribution

A closely related distribution is the binomial distribution, which characterizes the 

probability of observing the event X = 1 m times out of a total of N observations 

(e.g., N coin lips) where m = 0, 1, 2, …, N:

 P m N m N
N

m
m N m( | , ) ( | , ) ( )µ µ µ µ= =







− −Binom 1
 

(A.20)

where 
N

m







 is the number of possible ways of choosing m items out of N identical 

items.

A.3.8 Poisson Distribution

he Poisson distribution is a special case of the binomial distribution where the 

number of observations or trials N is not given and neither is µ, the probability of 

“success” (i.e., observing the event X = 1). Instead, we are given the expected number 

of successes, which is:

 λ µ= N  (A.21)

he above equation comes from the fact that if we run N trials and the success prob-

ability in each trial is µ, then we will observe Nµ successes on average.
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Rewriting Equation A.21 as µ λ=
N

, substituting this value for µ in Equation A.20 

for the binomial distribution above, and taking the limit as N becomes large and 

approaches ininity, we get:

 lim ( | , ) lim
N N

m N m

m N
N

m N N→∞ →∞

−

=












−





Binom µ λ λ
1

Ater some mathematical simpliication, we obtain the following expression for the 

Poisson distribution:

 P m m
m

m

( | ) ( | )
!

expλ λ λ λ= = −( )Poisson
 

(A.22)

where m = 0, 1, 2, … It can be shown that the mean and variance of the Poisson 

distribution are both equal to λ.

he Poisson distribution is useful because it can be used in BCIs (and neurosci-

ence in general) to model the spiking activity of a neuron: if we know the neuron’s 

average iring rate r, then the expected number of spikes (“successes”) in a time 

period T is λ = rT . It has been found that for many biological neurons, the Poisson 

distribution provides a good approximation to the probability of observing m spikes 

in the time interval T.

A.3.9 Gaussian Distribution

he distributions we have discussed thus far pertain to discrete random variables. 

Perhaps the most important distribution associated with continuous random vari-

ables is the Gaussian distribution (also called the normal distribution).

Consider irst the case of a scalar random variable X that can take on arbitrary real 

number values. he Gaussian distribution in this case is determined by two param-

eters, a mean µ and a variance σ 2, and takes the form:

 P X x
x

( | , ) exp= = − −













µ σ

πσ
µ

σ
2

2
1

2

1

2
 

(A.23)

Note that the Gaussian assumes its highest value at the mean µ, and the standard 

deviation σ determines the spread around the mean (a larger value results in a 

larger spread).

A.3.10 Multivariate Gaussian Distribution

The Gaussian distribution can also be defined for continuous vector random 

variables. Consider an n- dimensional vector random variable X that can take on 

real- valued vectors x as values. We can define a multivariate Gaussian distribu-

tion for X that is determined by two parameters: an n- dimensional mean vector 

µ and an n × n covariance matrix Σ (see Equations A.16 and A.17 for definitions 
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of the mean vector and covariance matrix). The multivariate Gaussian distribu-

tion for X is defined as:

 P
n

T( | , )

det

exp ( ) ( )X x x x= =
( ) ( )

− − −





−µµ µµ µµΣ
Σ

Σ1

2

1

2
2

1

π
 (A.24)

where det(Σ) denotes the determinant of the covariance matrix Σ. Note that 

Equation A.23 for the Gaussian distribution for a scalar variable is a special case 

of the multivariate Gaussian equation above for n = 1. Note also that the exponent 

( ) ( )x x− −−µµ µµT Σ 1  is a measure of the square of the distance between the input vec-

tor x and the mean vector µ. his distance is called the Mahalanobis distance (see 

Chapter 5 for an example of its use).
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10–20 system, 26, 178, 180, 198, 199, 251, 258, 260

AAR model. See adaptive autoregressive (AAR) model
abduction, 125, 169
absolute value function, 281
abuse of BCIs, 273
accuracy (of a classiier), 84, 137
action potential. See spike
activity (Hjorth parameter), 47
AdaBoost, 79
adaptation, 201
adaptive autoregressive (AAR) model, 49,  185
adaptive menu in a BCI, 203
adduction, 125, 169
akinesia, 216
alertness monitoring, 253
alpha frequency band, 185, 253, 255, 258, 260, 268
alpha rhythm, 28, 266

as a biometric signature, 260
comparison with MRPs, 189

Alzheimer’s disease, 240, 263
amnesia, 263
AMPAR, 12
ampliier, 20
amplitude spectrum, 45, 152, 179, 197
amputees, 170
amygdala, 15, 193
amyotrophic lateral sclerosis (ALS), 187, 196, 241
Andersen, Richard, 132
Anderson, Charles, 199
angular frequency, 41
ANNs. See artiicial neural networks (ANNs)
anterior cingulate cortex (ACC), 204
anti- Hebbian STDP, 12
aperture velocity, 126
Appendix, 281
applications in law, 249
applications of BCI, 239
AR model. See autoregressive (AR) model
area 17 (Brodmann system). See primary visual 

cortex (V1)

art, 267
controlled by a BCI, 267
created by a BCI, 206

artifact reduction techniques, 63
band- stop iltering, 65
ICA, 66
linear modeling, 65
notch ilter, 65
PCA, 66
thresholding, 64

artifacts, 18, 24, 26, 31, 61, 63
artiicial cerebrospinal luid,  226

artiicial neural networks (ANNs). 

See neural networks

artiicial nose, 239

Artiicial Silicon Retina (ASR), 214

artiicial texture, 226

assistive robots, 245

association areas of the cortex, 16

astronauts, 262, 263

asynchronous BCIs, 177

asynchronous switch, 191

attention monitoring, 260

attention deicit disorder, 260

auditory BCI, 198

auditory comprehension task, 258

auditory cortex, 217

auditory evoked potential (AEP), 193

auditory thalamus, 217

authentication using BCIs, 260

autonomic nervous system, 13

autoregressive (AR) model, 49, 131, 

199, 227, 260

Avatar (movie), 245

avatar (robotic), 245

axioms of probability, 289

axon, 9

Ayaz, Hasan, 206

backpropagation, 76, 114, 189, 199

algorithm, 91
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bagging, 78
comparison with boosting, 79

balance, 126
bandpass iltering, 27, 200, 244, 260

band- stop iltering, 65

basal ganglia, 15, 205, 216

basilar membrane, 210

basis functions, 42, 46, 92

Bayes’ theorem (or Bayes’ rule), 50, 83, 134

Bayesian decoding, 119, 122, 129, 134

Bayesian iltering, 49

equation for static state, 51

equation for time- varying state, 51

prediction- correction cycle, 51

Bayesian network, 51

BCI. See brain- computer interface (BCI)

BCI applications, 239

BCI illiteracy, 201, 206

BCI luddite, 276

BCI security, 274

BCI speller, 194

BCI viruses, 274

BCI- PacMac, 266

BCIs 

abuse of technology, 273

applications in space, 263

ethics, 272

for cognitive restoration, 240

for controlling a robotic avatar, 245

for controlling exoskeletons, 261

for controlling wheelchairs,  241

for education and learning, 258

for entertainment, 265

for estimating cognitive load, 256

for image search, 248

for lie detection, 249

for memory detection, 249

for mnemonic and cognitive ampliication, 262

for monitoring alertness, 253

for monitoring attention levels, 260

for motor restoration, 240

for physical ampliication, 261

for rehabilitation, 240

for restoring communication, 241

for security, 260

for sensory restoration, 239

for walking, 126

for web browsing, 243

in art, 267

legal issues, 275

liability, 275

moral and social  justice issues, 276

parental responsibility, 277

risks versus beneits, 272

security and privacy, 274

use in a U.S. court case, 252

BCIs that stimulate, 210

cochlear implant, 210

DBS, 216

sensory augmentation, 217

visual prostheses, 213

Bereitschatspotential (BP), 189

Berger, heodore, 262

Berlin BCI, 202

Bernoulli distribution 

deinition, 291

beta frequency band, 28, 178, 182, 183, 186, 266

beta rhythm, 205

comparison with MRPs, 189

bidirectional BCIs, 221

stimoceiver, 1

binary classiication, 72

binary classiiers in multi- class classiication, 80

binary selection, 243

binomial distribution 

deinition, 292

biocompatibility, 22, 280

biometric identiication, 260

bipedal locomotion, 126

bipedal walk cycle, 127

biphasic pulse, 231

bipolar cells, 214

bipolar electrodes, 27, 32, 55, 180, 185, 244, 260

Birbaumer, Niels, 187, 198, 199, 204, 205

Birch, Gary, 191

bit rate, 86

Black, Michael, 119

Blakely, Timothy, 168

Blankertz, Benjamin,  186

blood- low changes (in fMRI), 30

blood oxygenation level dependent (BOLD) 

response, 30, 204

blood pressure, 251

BOLD. See blood oxygenation level dependent 

(BOLD) response

boosting, 79

bootstrap sample, 78

bootstrapping, 251

boxcar signal, 43

bradykinesia, 216

brain 

introduction to, 7

major regions, 14

organization and anatomy, 13

Brain Electrical Oscillation Signature (BEOS) 

Proiling, 253

brain ingerprinting, 252, 274

brain pacemaker, 216

brain stem, 13

brain tapping, 274

brain waves, 28

Brainball, 266

brain- computer interface (BCI) 

applications. See BCIs

basic components of, 2

early studies, 109

major types, 101, 109, 149, 177, 210, 221

motivation for building, 2
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origins of, 1
brain- controlled art, 267
brain- controlled games, 266
brain- controlled telepresence, 245
brain- controlled theatrical performance, 267
BrainGate, 138
brainwashing, 274
Braitenberg, Valentino, 234
Brindley, G. S., 214
Broca’s area, 241
Brodmann areas, 16
Brodmann, Korbinian, 16
bull BCI, 1
butterly coil (for TMS), 35

Buttield, Anna, 200, 202

C3 electrode, 178, 183, 187, 193, 199

C4 electrode, 183, 187, 193, 199

CA1 (hippocampal area), 262

CA3 (hippocampal area), 262

calcium, 8

calcium lourescence, 26

calculus, 281

Calhoun, Gloria, 196

CAR. See common average referencing (CAR)

Carmena, Jose, 144, 145, 146

CC. See correlation coeicient

cell body, 9, 19

center- out task, 144, 145, 150

central nervous system, 13

cerebellum, 11, 14, 205

cerebral cortex, 12, 15,  29

contribution to EEG, 26

functional specialization of, 15, 16

hierarchical organization of, 15

sensory cortex in a rat, 24

somatosensory, 25

stained, 24

cerebral hemisphere, 15

cerebrospinal luid, 26

chain rule, 91

chance level (of classiication), 85

Chapin, John, 113

characteristic equation, 287

Cheng, Ming, 196

chloride ions, 8

chronic pain, 216

cingulate gyrus, 193

class conditional distribution, 73

classical conditioning, 102

classiication, 71

in ECoG BCIs, 159

in invasive BCIs, 133

classiication accuracy, 84

click, 145

clinical trials, 138

closed- loop BCI 

applications, 239

bidirectional, 223, 224, 226, 230

ECoG- based (human), 153, 155, 157

ECoG- based (monkey), 150

EEG- based, 178, 180, 183, 185, 187, 

191, 200, 203

fMRI- based, 205

fNIR- based, 206

invasive (human), 141

invasive (monkey), 117, 129, 131, 135, 137, 144

invasive (rat), 113

MEG- based, 206

nerve- based, 171

TMR- based, 174

CNS. See central nervous system

coadaptive BCIs, 110, 201, 280

coarse- grained control, 205

cochlear nerve, 210

cochlea, 210

cochlear implant, 32, 210, 239, 272, 279

components of, 211

controversy in the deaf community, 213

ethical issues, 213

for congenitally deaf children, 213

moral issues, 276

codebook vector, 82

coeicient of determination, 152, 154

coercion, 274

cognitive ampliication, 262

cognitive BCI, 132

cognitive BCIs 

in humans, 143

cognitive load 

estimation,  256

reduction using hierarchical BCIs, 203

cognitive tasks, 103, 242, 261, 265

Cohen’s kappa, 85

common average referencing (CAR), 27, 56, 162

common spatial patterns (CSP), 61, 185, 187, 247

example application to EEG data, 64

commutativity, 286

competency measurement (in education), 260

complex Fourier coeicient, 43

complex numbers, 43

complexity (Hjorth parameter), 47

concentration in learning, 260

concentration insuiciency index (CII), 255

conditional probability, 49

deinition, 289

conditioned response, 102, 109

conditioning, 178

conidence, 93

confusion matrix, 84

congenitally deaf children, 213

contextual ilter, 242

Cooley- Tukey algorithm, 45

correlation coeicient, 114, 116, 118, 121, 124, 127, 

132, 145, 150, 152, 251, 256

cortically coupled computer vision (CCCV), 248

Coursera, 260

Courtine, Grégoire, 128
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covariance matrix, 58, 73, 94, 120, 121, 134, 
168, 202, 294

deinition, 291

Coyle, Shirley, 206

CP3 electrode, 180

CP4 electrode, 180

credit assignment problem, 91

crime, 273

crime scene, 251

criminal justice, 249

cross- validation, 92, 161, 199, 200

K- fold, 86

leave- one- out, 87

CSP. See common spatial patterns (CSP)

cuf electrodes, 171

cursor control 

using invasive BCIs, 110, 129, 131, 135, 

137, 141, 145

using noninvasive BCIs, 178, 180, 186, 187, 243

using semi- invasive BCIs, 150, 151, 154, 157

cursor velocity, 145

cutaneous nerve, 173

CyberGlove, 168

cyborg, 276

Cz electrode, 186, 187, 200, 251, 254, 260

dataglove, 164

DBS. See deep brain stimulation (DBS)

DC component, 42

Deadwyler, Sam, 262

deafness 

cause of, 211

decision boundary, 73, 75, 81

decision tree,  78

decoding phonemes, 241

decorrelation, 59

deep brain stimulation (DBS), 32, 216, 240, 272, 279

delayed- nonmatch- to- sample (DNMS) task, 262

Delgado, José, 1

delta waves (or rhythm), 28

dendrites, 9

depression, 216

desynchronization, 178

determinant of a matrix, 287

developed versus under- developed countries, 276

DFT. See discrete Fourier transform (DFT)

Dhillon, Gurpreet Singh, 171

diagonal matrix, 287

diencephalon, 14

Diester, Ilka, 33

DiGiovanna, Jack, 202

dimensionality reduction, 59

Direct Cortical Electrical Stimulation (DCES), 32

direction selectivity, 217

directional tuning, 144, 163

discrete Fourier transform (DFT), 43

distinction sensitive LVQ (DSLVQ), 82

Dobelle, William, 214

Doheny Eye Institute, 214

Donchin, Emanuel, 194, 251

Donoghue, John, 122, 126, 129, 138, 143

dorsal premotor cortex (PMd), 115, 130, 

135, 137, 221

dorsal stream, 15

dot product 

deinition, 283

drawing task, 150

drawing using a BCI, 206

drowsiness, 253

dry electrode, 259, 261, 267

deinition, 267

Duenyas, Yehuda, 267

Dynamic Bayesian Network (DBN), 51, 192

ear, 210

ECG. See electrocardiography (ECG)

ECoG. See electrocorticography (ECoG)

ECoG BCIs, 149

ampliication of activity, 159

for arm- movement control, 161

for cursor control. See cursor control using semi-

 invasive BCIs

in humans, 151

in monkeys, 150

long- term use, 168

ECoG power, 158, 166

education and learning, 258

EdX, 260

EEG. See electroencephalography

EEG BCIs, 177

based on cognitive tasks, 199

based on evoked potentials (EPs), 193

based on movement- related potentials 

(MRPs), 189

based on oscillatory potentials,  178

based on slow cortical potentials (SCPs), 187

detecting error potentials, 200

for cursor control. See cursor control using non-

 invasive BCIs

eigenvalue, 58, 113, 168

deinition, 287

eigenvector, 58, 168, 254

deinition, 287

generalized, 63

electrocardiographic (ECG) artifacts, 63

electrocardiography (ECG), 61

electrocorticography (ECoG), 22

advantages for BCI, 23

limitations of, 24

electroencephalography (EEG), 26

comparison with ECoG, 24

comparison with fMRI, 30

comparison with fNIR, 31

comparison with MEG, 29

electromagnetic induction, 212, 215

electromyographic (EMG) artifacts, 64

electromyography (EMG), 61, 128, 173, 

192, 232, 261
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electro- oculographic (EOG) artifacts, 64
electro- oculography (EOG), 61, 190
e- mail, 143
EMG. See electromyography (EMG)
Emotiv, 267
encryption, 274
engagement during learning, 259
ensemble classiication methods, 78

bagging, 78

boosting, 79

random forest, 78

entertainment, 265

EOG. See electro- oculography (EOG)

EP. See evoked potential (EP)

epidural ECoG, 149, 154

epilepsy, 216

epilepsy patients, 22

epiretinal implant, 214

epithelium (retinal), 214

EPOC headset, 267, 268

EPSP. See excitatory postsynaptic potential

ERP. See event- related potential (ERP)

error index, 255

error potential (ErrP), 104, 200

error rate (of a classiier), 85, 86

ErrP. See error potential (ErrP)

ethics of BCIs, 272

ethics of cochlear implants, 213

Euclidean distance, 81, 82

event- related desynchronization (ERD), 168, 

178, 184, 266

event- related potential (ERP), 104

evoked potential (EP), 104, 193

ErrP, 104

N100, 104

N400, 104

P300, 104

SSVEP,  104

evolution, 276

excitatory postsynaptic potential (EPSP), 10, 12

excitatory synapse, 10

exoskeleton, 124, 132, 144, 261, 265, 273

extension, 125, 169

extensor carpi radialis (ECR), 232

extensor muscles, 230

extracellular recording, 19

extracellular stimulation, 32

Fagg, Andrew, 124

false negatives, 84, 261

false positives, 84, 261

Faraday cage, 63

Farwell, Lawrence, 194, 251

fast Fourier transform (FFT), 45, 197, 211, 260, 261

FastICA, 61

FC3 electrode, 180

FC4 electrode, 180

feature selection, 161

ferrets, 217

Fetz, Eberhard, 1, 102, 109, 144, 150, 159, 229, 230

FFT. See fast Fourier transform (FFT)

ine- grained versus coarse- grained control, 203

inger movement, 166

inger movement classiication, 165

iring rate, 8, 118, 134, 141, 223, 226

Fisher’s linear discriminant. See linear discriminant 

analysis (LDA)

Fitzsimmons, Nathan, 126

lexible recording array, 21

lexion, 125, 169, 191

lexor carpi radialis (FCR), 232

lexor carpi ulnaris (FCU), 232

lexor muscles, 230

luorescent calcium indicator dye, 26

fMRI. See functional magnetic resonance 

imaging (fMRI)

fMRI BCIs, 204

fNIR. See functional near- infrared (fNIR) imaging

fNIR BCIs, 206

Foerster, Otfrid, 214

foil stimulus, 257

foot orientation, 126

force estimation, 124

force perception, 171

forest (of decision trees), 79

Fourier amplitude, 42

Fourier analysis, 40, 280

Fourier coeicient, 42

Fourier series, 42

Fourier transform (FT), 43, 150

comparison with wavelet transform, 46

examples, 44

weaknesses, 46

Fp1 electrode, 260

fractal dimension, 48

fractal signal, 48

freely behaving primates, 230

frequency,  41

frequency band 

as a feature in BCIs, 45, 102

as a feature in ECoG BCIs, 150, 151, 157

as a feature in EEG BCIs, 179, 187, 206, 260

as a feature in invasive BCIs, 126

frontal cortex, 15

frontal lobe, 193

frontocentral cortex, 200

fronto- parietal- temporal cortex, 154, 162

full- body exoskeletons, 262

function approximation, 71

functional electrical stimulation (FES), 230

functional magnetic resonance imaging (fMRI), 30

comparison with fNIR, 30, 31

comparison with PET, 32

functional near- infrared (fNIR) imaging, 30, 31

comparison with EEG, 31

comparison with fMRI, 30, 31

functional reorganization 

caused by a recurrent BCI, 230
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Furdea, Adrian, 199
Fz electrode, 200, 251

Galán, Ferran, 241
Galvani, Luigi, 32
gaming, 265
gamma waves (or rhythm), 28
Ganguly, Karunesh, 144
Gao, Shangkai, 196
Gaussian classiier, 242

Gaussian distribution, 73, 94, 121, 137

deinition, 293

Gaussian kernel, 78, 92, 94

Gaussian noise, 52, 120

Gaussian process, 93

used in a BCI, 203

generalization, 76, 84

generalized eigenvalues, 63

generalized eigenvectors, 63

Georgopoulos, Apostolos, 102

Gilja, Vikash, 279

glass micropipette electrode, 19

glial accumulation, 23

globus pallidus, 216

glucose, 31

glutamatergic antagonist, 262

Google Earth, 245

government- subsidized BCIs, 276

gradient descent, 91, 123, 202

Gram matrix, 94

graphical model, 51

grasp aperture, 126

grasping, 122, 126

gravity 

efect on BCI performance, 265

gray matter, 9

Graz BCI, 184, 243

green luorescent protein  (GFP), 25

Grimes, David, 256

grip force control, 171

gripper, 117

ground electrode, 21

guilty knowledge, 251

gyri (cortical), 15, 29

Haar wavelets, 134

Half Total Error Rate (HTER), 261

hallucination, 217

hand acceleration, 119

hand area of S1, 221

hand kinematics, 119

hand movement, 155

hand orthosis, 185

hand position, 116, 119, 124, 126

hand trajectories, 118

hand velocity, 119, 124, 126

hash, 39

Hatsopoulos, Nicholas, 124, 131

haves and have- nots, 276

hearing 

mechanisms of, 210

restoration of, 211

heart rate, 251

Hebb, Donald, 11

Hebbian plasticity, 11, 230

Hebbian STDP, 12

hemodynamic response, 30, 206

hemoglobin, 30

hidden layer, 90, 116

hidden state, 122

hierarchical BCI, 203, 241, 248

high gamma activity, 28

high gamma frequency band, 157

high- frequency band (HFB). See high gamma 

frequency band

high- level control, 203, 205, 241

highway driving task, 255

Higuchi’s method for estimating fractal 

dimension, 48

Hill, Herman, 196

Hill, Jeremy, 198

hippocampus, 11, 12, 15, 193, 262

optogenetic stimulation of, 33

Hiraiwa, Alkira, 189

Hjorth parameters, 46

Hochberg, Leigh, 138, 144

hold out method, 86

Horch, Kenneth, 171

Hotelling transform. See principal component 

analysis (PCA)

human evolution and BCIs, 276

human prefrontal cortex, 143

human premotor cortex, 143

humanoid robot, 245, 260

Humayun, Mark, 214

hybrid EEG/EMG system, 267

hypergravity, 265

hyperplane, 72, 77

hyperplane equation,  288

hypothalamus, 14, 216

ICA. See Independent Component Analysis (ICA)

ICMS. See intracortical microstimulation (ICMS)

identiication of a person using BCIs, 260

identity matrix, 287

IDFT. See inverse discrete Fourier transform (IDFT)

image search, 248

imagery- based BCIs 

comparison with evoked potential- based 

BCIs, 207

imagined limb motions, 138

imagined movement, 103, 141, 151

in nerve- based BCIs, 173

imagined speech, 153

immunoreactive processes, 168

implantable arrays, 21

imposter (in authentication), 261

impulse signal, 43
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in vitro recording, 19
in vivo recording, 19, 21
incrimination, 273
incus, 210
independence (in probability theory), 289
Independent Component Analysis (ICA), 

61, 66, 198
comparison to PCA, 60, 61
example application to EEG, 62
use in artifact reduction, 67

independent feature model (in classiication), 83

inferior colliculus, 14

inferotemporal cortex, 15, 16

inlammation, 21

infomax algorithm for ICA, 61

information gain, 258

information theory, 86

information transfer rate (ITR), 86

in a P300 speller, 196

in an auditory BCI, 199

in an invasive cognitive BCI, 137

in an oscillatory potential- based BCI, 185

in an SSVEP BCI, 198

in noninvasive BCIs, 207

informed consent, 273

infrared, 217

infrared light, 30

inhibitory postsynaptic potential (IPSP), 10

inhibitory synapse, 10

inion, 27

Institutional Review Board (IRB), 275

instrumental conditioning, 102

insurance for BCI use, 275

interactive BCI art, 267

intermediate octavomotor nuclei (nOMI), 228

interneuron, 10

interrogation, 251

intracellular recording, 19

intracortical microstimulation (ICMS), 231

intraocular retinal prosthesis (IRP), 214

invasive BCIs,  101

based on operant conditioning, 109

in humans, 137

in monkeys, 109, 115

long- term use, 143

inverse discrete Fourier transform (IDFT), 43

inverse FFT, 65, 260

Inverse Fourier Transform (IFT), 43

inverse kinematics, 118

inverse of a matrix, 287

ionic channels, 7

ions, 7

IPSP. See inhibitory postsynaptic potential

IT. See inferotemporal cortex

ITR. See information transfer rate (ITR)

Jackson, Andrew, 230

Jackson, Melody, 206, 267

Johnny Mnemonic (movie), 262

joint angle, 122

joint angle perception, 171

joint probability 

deinition, 289

joint torque, 124

joystick, 222

Kalman ilter equations, 52

Kalman iltering, 52, 119, 122, 126, 130, 143, 

145, 163, 225

comparison with unscented Kalman ilter 

(UKF), 133

Kalman gain, 53

kappa coeicient, 85

Karhunen- Loève transform. See principal 

component analysis (PCA)

kernel (in SVMs), 78

kernel function, 94

kernel trick, 78

K- fold cross- validation, 86

Khan Academy, 260

kinematics, 118

of walking, 127, 128

kinesthetic feedback, 131

kinetics, 124

k- nearest neighbors (k- NN), 81

k- NN. See k- nearest neighbors (k- NN)

Kübler, Andrea, 199, 205

Kuiken, Todd, 173

kurtotic distribution, 61

L1 norm, 160

L2 norm, 160

Lagrange multiplier method, 58

lamprey brain, 226

Laplacian iltering, 55, 183, 255, 261

laser illumination, 33

laser range scanner, 242

lateral geniculate nucleus, 15

law and BCIs, 275

law enforcement, 251

LDA. See linear discriminant analysis (LDA)

learning vector quantization (LVQ), 82, 192,  260

least mean- square (LMS), 183

least squares regression, 88

leave- one- out cross- validation, 87

legislation for BCIs, 275

length of a vector, 283

letter drawing task, 206

Leuthardt, Eric, 151

lever, 113

Lewin, W. S., 214

LGN. See lateral geniculate nucleus

Li, Zheng, 129

liability, 265

liability and BCI use, 275

lie detection, 249, 274

likelihood, 50, 83, 121, 137, 261

line noise, 42, 63
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linear discriminant analysis (LDA), 72, 145, 159, 
185, 187, 200, 244, 247, 248, 288

comparison with Perceptron, 75
comparison with QDA, 75
comparison with RDA, 74

linear ilter, 88, 116, 122, 124, 127, 129, 131, 139, 

143, 144, 168, 223

linear modeling for artifact reduction, 65

example application to EEG data, 66

Linear Programming Machine (LPM), 159, 165

comparison with SVM, 165

linear regression, 88, 116, 254, 280

linear separability, 75

linear sparse Fisher’s discriminant (LSFD), 159

linked mastoids, 195

lipid bi- layer, 7

Lissajous curve, 131

LMP. See local motor potential (LMP)

local ield potential (LFP), 126

local motor potential (LMP), 162, 168

log likelihood ratio, 73, 261

logistic function, 89

long- term depression, 11, 12

long- term potentiation, 11, 12

long- term use of BCIs, 143

Lou Gehrig’s disease, 241

lower limb control, 126

lower limb prosthetics, 240

low- frequency asynchronous switch design (LF- 

ASD), 191

low- frequency band (LFB), 157

low- level control, 203

low- pass iltering, 65

LTD. See long- term depression

LTP. See long- term potentiation

luddite, 276

LVQ. See learning vector quantization (LVQ)

M1. See primary motor cortex (M1)

macular degeneration, 214

magnetoencephalography (MEG), 28

comparison with EEG, 29

comparison with fMRI,  30

magnitude of a vector, 283

Mahalanobis distance, 75

deinition, 294

majority voting, 78, 80, 165, 244

malleus, 210

manipulandum, 119, 129, 230

Mappus, Rudolph, 206, 267

Marcel, Sébastien, 261

margin, 77

marketing, 273

Markov assumption, 51

Mason, Steven, 191

mastoid, 27, 187, 193, 198

mathematical background, 281

matrix 

addition, 285

deinition, 284

diagonal, 287

identity, 287

inverse, 287

multiplication, 285

positive deinite, 287

positive semideinite, 287

scalar multiplication, 285

square, 285

symmetric, 287

maximum a posteriori (MAP) classiication, 83

maximum likelihood (ML), 137

maximum margin classiier, 76

Maxwell’s equations, 29

McFarland, Dennis, 180

McMillan, Grant, 196

mean, 73, 94, 121, 134, 202

deinition, 290

mean squared error (MSE), 121

measure (in probability theory), 289

medial geniculate nucleus (MGN), 217

median nerve, 170, 171, 173

medical applications of BCI, 239

medulla, 13

MEG. See magnetoencephalography (MEG)

MEG BCIs, 205

Mellinger, Jürgen, 205

membrane of a neuron, 7, 19

membrane potential, 8, 10

memory detection, 251

memory enhancement, 262

memory load, 258

memory manipulation, 274

meninges, 26

meningitis, 211

mental arithmetic, 199

mental calculation task, 258

mental rotation, 199, 266

mental workload- detecting BCI, 258

Mexican Hat wavelet, 46

Meyer wavelet, 46

Michigan array,  21

microECoG, 24

microelectrode, 19

for stimulation, 32

microelectrode array, 122, 126, 215, 221, 262

microphone, 212

microwire array, 21

midbrain, 13

Middendorf, Matthew, 196

Millán, José del, 200, 202, 261, 265

Miller, Kai, 157

mind control 

Delgado’s bull experiment, 1

in BCI ethics, 274

mind reading, 274

Mindlex, 267

MindGame, 266

Mindwalker project, 261
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MindWave headset, 259, 267
mitigating risks, 273
mixing matrix, 60
mixture- of- Gaussians, 93, 261
mixture- of- Gaussians classiier, 200

MK801 glutamatergic antagonist, 262

mobile robot, 203, 226, 241, 245

mobility (Hjorth parameter), 47

monkey BCI, 115, 117, 119, 126, 129, 133, 144, 145, 

146, 150, 229

monoamine agonist, 128

Moore- Penrose pseudoinverse, 89, 127

moral issues, 276

Moran, Daniel, 150

Moritz, Chet, 110, 229

Morlet wavelet, 46

mother wavelet, 46

motion capture, 122

motor cortex, 102

primary. See primary motor cortex (M1)

motor imagery, 103, 151, 184, 186, 206, 242, 

244, 261, 266

comparison with actual movement, 157

motor nerve ibers, 170

motor plasticity, 109, 110, 144

induced by a recurrent BCI, 232

movement artifacts in EEG, 26

movement preparation, 192

movement- related potential (MRP), 189

MRP 

see movement- related potential (MRP)

MST, 15

MT, 15

mu frequency band, 28, 40, 45, 178, 180, 

182, 183, 185

comparison with LF- ASD, 192

mu rhythm, 205

Müller, Klaus- Robert, 186

multi- class classiication, 80, 165

multielectrode array, 20, 119, 124, 212, 279

for simultaneous recording and stimulation, 35

in humans, 140

multi- layer perceptron, 76

multi- layered neural network, 90

multivariate Gaussian  distribution 

deinition, 293

Musallam, Sam, 132, 148

muscle artifacts in EEG, 26

muscle fatigue, 230

muscle stimulation, 229

Mussa- Ivaldi, Sandro, 226

Mutlu, Bilge, 260

myelin, 9

N1. See N100 potential

N100 potential, 104

N400 potential, 104

naïve Bayes classiier, 83, 258

nasion, 27

National Institute on Deafness and Other 

Communication Disorders, 213

navigating virtual worlds, 243

n- back task, 257

nearest neighbor (NN) classiication, 80

comparison with k- NN, 82

nearest neighbor classiier, 192

neocortex. See cerebral cortex

nerve- based BCI, 170

Nessi, 243

nested menu system, 241

neural networks, 75, 89, 116, 189, 199, 254, 280

recurrent, 114, 261

neural plasticity 

induced by a recurrent BCI, 230

neural population function (NPF), 113, 114

Neurochip, 35, 231

components and architecture, 36

neuroethics, 272

neuromarketing, 274

neuron, 7

neurorehabilitation, 233

neuroscience 

introduction to, 7

neurosecurity, 275

Neurosky, 259, 267

neurotransmitter, 9

Nicolelis, Miguel, 113, 115, 126, 129, 221, 224

NMDAR, 12

NN. See nearest neighbor (NN) classiication

noise in EEG, 26

noninvasive BCIs, 101

based on EEG, 177

based on fMRI, 204

based on fNIR, 206

based on MEG, 205

non medical applications of BCIs, 242

nonparametric regression, 95

nonstationary learning, 201

normal distribution 

deinition, 293

normal vector, 73

normalized slope descriptors, 47

normalized vector, 284

notation,  281

notch ilter, 65

O1 electrode, 198, 199

O2 electrode, 198, 199, 260

obsessive compulsive disorder (OCD), 216

occipital cortex, 15, 198

oddball paradigm, 194, 248, 255

based on auditory stimuli, 198

O’Doherty, Joseph, 221, 224

Ojakangas, Catherine, 143

Ojemann, Jefrey, 154, 168

olfaction, 239

online education, 260

operant conditioning, 102, 109, 229
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optic nerve, 214
optical BCIs, 206
optical recording, 24
optical stimulation, 33
Optobionics, 214
optode, 31
optogenetic stimulation, 33
order of an autoregressive model, 49
orientation selectivity, 217
orthogonality, 284
orthonormality, 58, 284
outliers, 77, 81
overitting, 76

oxonol dye, 24

Oz electrode, 254

P3. See P300 potential

P3 electrode, 199

P300 potential, 104, 193, 241, 245, 248, 251

P4 electrode, 199

paint program, 143

parabolic light, 265

paralyzed subject, 2, 141, 229, 239, 241

parental responsibility, 277

parietal cortex, 15, 266

parietal lobe, 193

parietal reach region (PRR), 132

Parkinson’s disease, 32, 216, 240

particle iltering, 54

comparison to Kalman iltering, 54

patch clamp recording, 19

Pavlovian conditioning, 102

PCA. See principal component 

analysis (PCA)

pectoral muscles, 173

perceptron, 288

perceptron, 75

peripheral nerve block, 230

peripheral nerves, 169

peripheral nervous system, 13

Perlmutter, Steve, 229

PET. See positron emission tomography (PET)

Pfurtscheller, Gert, 184

phase spectrum, 45

phosphenes, 214,  215

photodiode array, 24, 214

photoreceptor degenerative diseases, 213

pinball, 266

pinball task, 119

platinum- iridium microelectrode, 19, 32, 171

PMd. See dorsal premotor cortex (PMd)

PNS. See peripheral nervous system

point- and- click cursor control, 145

Poisson distribution 

deinition, 292

Poisson model, 137

policy (in reinforcement learning), 202

polygraph, 251

Pong game, 143

pons, 13

population vector decoding, 103, 111, 117

comparison with operant conditioning, 111

population vectors, 112

positive deinite matrix, 287

positive semideinite matrix, 287

positron emission tomography (PET), 31

posterior distribution, 95

posterior octavomotor nuclei (nOMP), 228

posterior parietal cortex (PP), 115, 130

posterior probability, 50, 83, 119

posterior rhombencephalic reticular nuclei 

(PRRN), 226

post- lingually deaf, 213

poststimulus- time histogram (PSTH), 135

postsynaptic neuron, 9

postsynaptic potential, 26

potassium ions, 8

power spectrum, 45, 166, 254, 257

ECoG, 151, 156, 160

powered exoskeletons, 262

PP. See posterior parietal cortex (PP)

prefrontal cortex, 16, 143

premotor cortex, 143

presynaptic neuron, 9

primary auditory cortex, 217

primary motor cortex (M1), 102, 113, 115, 117, 119, 

122, 124, 127, 128, 129, 130, 132, 150, 189, 

221, 224, 231

in humans, 138

primary somatosensory cortex (S1), 128, 

130, 221, 224

primary visual cortex (V1), 15

principal component analysis (PCA), 56, 66, 113, 

166, 254, 287

decorrelation, 59

dimensionality reduction, 59

example application to EEG data, 60

reconstruction of input, 59

Principal Spectral Component (PSC), 168

Principe, Jose, 202

prior distribution, 93

prior probability, 50

probabilistic inference, 51

probability density function, 291

probability theory, 288

probe stimulus, 251

projection, 73

pronation,  125

proprioception, 171

proprioceptive feedback, 131

prosthetic arm, 117, 174, 240

prosthetic device, 112

prosthetic hand, 143, 171

PRR. See parietal reach region (PRR)

pseudoinverse, 89, 140

pulse generator (for DBS), 216

pulse train, 226

pursuit tracking task, 119, 130
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pyramidal neuron, 15, 29
Pz electrode, 195, 251, 254

QDA. See quadratic discriminant analysis (QDA)
quadratic discriminant analysis (QDA), 74
quality- of- life issues, 272

radial basis function (RBF) network, 92
relationship to Gaussian processes, 93
used in a BCI, 203

radial basis functions, 92
radio frequency (RF) link, 212, 215
radiotracer, 31
random forests, 78
random variable 

deinition, 288

Rao, Rajesh, 157, 159, 164, 192, 203, 245

rapid serial visual presentation (RSVP), 248

rat BCI, 113

RBF. See radial basis function (RBF) network

RDA. See regularized linear discriminant 

analysis (RDA)

reach kinematics, 126

reaching task, 122, 124, 126, 133, 137, 144, 150

readiness potential (RP), 189

receiver operating characteristic (ROC) curve, 

84, 192, 249

receptive ield, 222

recording techniques 

extracellular, 19

intracellular, 19

invasive, 18

optical, 24

patch clamp, 19

recurrent BCIs, 221

red blood cells, 30

reference electrode, 27

relex, 13

regression, 71, 87, 116

regularization, 73

regularized linear discriminant analysis 

(RDA), 74, 159

reinforcement, 110

reinforcement learning (RL), 202

reinnervated skin, 174

remote interaction, 246

restoring hearing, 210

restoring sight, 213

reticular formation, 14

retina, 15, 217

retinal implant, 214,  239

retinitis pigmentosa, 214

reward, 109, 202, 217, 225

rewiring of cortex, 217

rhesus monkey, 126, 221

rich- versus- poor divide, 276

rigidity, 216

risks- versus- beneits analysis, 272

robot navigation, 203

robotic arm, 113, 115, 116, 124, 143, 279

robotic avatar, 245

robotic story- telling, 260

ROC curve. See receiver operating characteristic 

(ROC) curve

rotation by matrix multiplication, 286

Rouse, Adam, 150

S1. See primary somatosensory cortex (S1)

Sajda, Paul, 248

sample space, 288

Sanchez, Justin, 202

Santhanam, Gopal, 137

satellite image, 248

scalar 

deinition, 282

scalp maps, 60, 62, 64, 250

scalp recording. See electroencephalography (EEG)

scar tissue, 22, 23

Schalk, Gerwin, 154, 161

Schölkopf, Bernhard, 198

Schwartz, Andrew, 117

SCP. See slow cortical potential (SCP)

security applications of BCIs, 260

security surveillance task, 255

seizure prediction and detection, 240

self- paced BCIs, 177, 178, 242, 244

self- similarity, 48

semi- invasive BCIs, 101

based on ECoG, 149

based on nerve signals, 169

comparison to invasive BCIs, 149

sensorimotor cortex, 154, 185

sensorimotor idle rhythm, 202

sensory augmentation, 217

sensory restoration, 210

serratus muscles, 173

Serruya, Mijail, 129

shared control, 241

Shenoy, Krishna, 33, 137, 279

Shenoy, Pradeep, 159, 164, 192

short- term depression, 13

short- term facilitation, 13

short- term Fourier transform (STFT), 46

short- term plasticity, 11, 13

short- time Fourier transform (STFT), 46

shuled decoder, 144, 146

side efects of BCI use, 273

sigmoid function, 76, 89, 116, 165

sign function, 73, 75

sign language,  213

Simeral, John, 144

single cell operant conditioning, 111

Skidmore, Trent, 196

skin conductivity, 251

skin grating, 239

slack variable, 77

sleep spindling, 254

slope- intercept equation for a line, 288
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slow cortical potential (SCP), 187, 243
SMA. See supplementary motor area (SMA)
social justice and BCIs, 276
sodium ions, 8, 20, 22
sot- margin SVM, 77, 247

sot- threshold nonlinearity, 76

solar- powered implant, 214

soma. See cell body

somatic nervous system, 13

somatosensation, 239

somatosensory cortex, 25, 127, 221

somatosensory evoked potential (SSEP), 193

somatosensory stimulation, 239

sound- pressure waves, 210

sound processor, 211

space applications, 262, 263

sparse classiiers, 160

spatial iltering techniques, 54

spectral feature, 45, 163

speech decoding, 241

speed- accuracy tradeof, 195

speller, 189, 194, 241

spike, 8, 9, 10, 11, 12, 13, 20

spike sorting 

clustering based on shape, 40

peak amplitude method, 39

window discriminator method, 39

spike train, 13, 113, 114, 120, 141, 225

spike- timing dependent plasticity, 11

spinal cord, 13

spinal cord injury, 126, 129, 185, 262

spinal cord stimulation, 229

square matrix, 285

SSVEP BCI, 196

comparison with P300 BCI, 207

stable neural representation, 144

standard deviation 

deinition, 290

stapes, 210

state (in the Kalman ilter), 119, 131

STD. See short- term depression

STDP. See spike- timing dependent plasticity

steady state visually evoked potential (SSVEP), 193, 

196, 203, 266

step frequency, 127

step length, 127

STF. See short- term facilitation

STFT. See short- time Fourier transform (STFT)

stimoceiver, 1, 221

stimulating BCIs, 210

stimulation of cortical area S1, 223,  224

stimulus evoked potential, 193

stimulus- based BCIs, 177

stroke, 126, 230

styryl dye, 24

subdural ECoG, 149, 151, 159, 168

subretinal implant, 214

subthalamic nucleus, 216

sulci (cortical), 15, 29

Suminski, Aaron, 131

superconducting quantum interference device 

(SQUID), 29

superior colliculus, 14

supervised learning, 71, 202

supination, 125

supplementary motor area (SMA), 130, 189, 205

support vector machine (SVM), 77, 159, 165, 

198, 200, 288

support vectors, 76

Sur, Mriganka, 217

Surrogates (movie), 245

surveillance task, 255

SVM. See support vector machine (SVM)

symmetric matrix, 287

synapse, 9

synaptic clet, 9

synaptic plasticity, 11

model of, 12

synaptic strength, 11, 12

synaptic weights, 75

synchronization of neurons, 28

synchronous BCIs, 177

Szair, Dan, 260

tactile exploration, 224

tactile feedback, 225

tactile stimulation, 223

tampering BCIs, 274

Tan, Desney, 256

target detection task, 253

Targeted Muscle Reinnervation (TMR), 173

taste, 239

tectum, 14

tegmentum, 14

telekinesis, 280

telepathy, 280

telephone 

operated by BCI, 196

temporal cortex, 15

temporal lobe, 193

temporoparietal cortex, 193

terrorism, 273

test data, 86, 87

tetraplegic subject, 145, 185

Tetris, 266

tetrode, 20

thalamus, 14, 15, 216

he Ascent (performance art), 267

theta frequency band, 254, 258, 268

theta waves (or rhythm), 28

thought translation device (TTD),  187

three- layer neural network, 90

threshold, 75, 84, 89

threshold model of spike generation, 11, 75

thresholding method for artifact rejection, 64

tinnitus, 213

TMR. See Targeted Muscle Reinnervation (TMR)

TMS. See Transcranial Magnetic Stimulation (TMS)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Index319

tongue movement, 155
tonotopic organization (in the cochlea), 211
torque, 124, 231
torque control, 230
torque estimation, 124
touch sensation 

in bidirectional BCIs, 223, 226
in nerve- based BCIs, 171, 174

Tourette’s syndrome, 216
training data, 87
Transcranial Magnetic Stimulation (TMS), 33
transcranial ultrasound stimulation, 34

comparison with TMS, 34
transpose, 285
treadmill walking, 126
tremor, 216
triaging, 248
true negatives, 84
true positives, 84
tungsten microelectrode, 19, 228
two- photon calcium imaging, 24
two- photon luorescence microscopy, 24

two- photon laser illumination, 33

tympanic membrane, 210

Type I errors, 84

Type II errors, 84

Udacity, 260

ulnar nerve, 173

ultrasound, 34, 217

uncertainty, 96, 192

uniform distribution 

deinition, 291

uniform prior, 137

unipolar electrodes, 27

unit vector, 284

units of measurement, 281

unmixing matrix, 61

unscented Kalman ilter (UKF), 130

unsupervised learning, 71, 202

upper- limb amputation, 171

Utah array, 21

V1 cortical area. See primary visual cortex (V1)

V2 cortical area, 15

V4 cortical area, 15

vagus nerve, 240

validation dataset, 87

van den Brand, Rubia, 128

Vargas- Irwin, Carlos, 122

variance,  73

deinition, 290

vector 

addition, 283

deinition, 282

geometric interpretation, 284

scalar multiplication, 283

Velliste, Meel, 117

velocity control, 117, 143

ventral stream, 15

ventrolateral thalamus (VL), 113

vestibular stimulation, 226

Vidal, Jacques, 1, 177

video games, 265

virtual environment, 244

virtual navigation, 266

virtual reality driving simulator, 255

viruses, 274

visual cortex, 15, 217

visual cortical implants, 214

visual cortical stimulation, 214

visual hemiield, 217

visual prosthesis, 213

visual recognition, 248

visualization, 199

visually evoked potential (VEP), 1, 193

voltage- sensitive dye, 24

volume conductor model of EEG, 26

von Neumann architecture, 7

voxel, 205

Wadsworth BCI, 178

walking, 126

war, 273

Warwick, Kevin, 170

wavelet analysis, 191

wavelet transform (WT), 46

example, 47

wavelets, 46, 134

mother wavelet, 46

weak classiier, 79

weak electrolyte, 19

weakly electric ish, 13

Web browsing, 243

Weiner ilter, 116, 131

Weiskopf, Nikolaus, 204

Wessberg, Johan, 115

wheelchair control, 171, 200, 241

white matter, 9

window discriminator method for spike sorting, 39

wireless BCIs 

abuse of, 274

wireless telemetry, 280

Wolpaw, Jonathan, 178, 180

working memory, 257

wrist muscles, 229

Wu, Wei, 119

X- ray image, 152, 160,  255

zero gravity, 265

Zhuang, Jun, 126
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Figure 4.10. PCA applied to EEG data. (A) Five seconds of EEG data recorded from 20 scalp locations 
labeled according to the 10–20 system (see Figure 3.7) and two EOG electrodes for detect-
ing eye movements. Note how the data is corrupted by an eye movement artifact between 
2 and 4 seconds. (B) Output of PCA when applied to the EEG data in (A). The principal 
component “waveforms” are the components a

1
,…, a

22
 of the vector a at each time instant, 

obtained by projecting the input at each time instant along the 22 principal component vec-
tors v

1
,…, v

22
. Five of the principal component vectors (v

1
, v

3
, v

4
, v

5
, v

8
) are shown on the 

right as two-dimensional scalp maps (obtained by interpolating across the 22 values in each 
v

i
). Red denotes positive values while blue denotes negative values. Note how the first three 

PCA components (channels 1–3) have captured the eye movement; this is achieved by the 
large positive and negative weights for the corresponding principal component vectors in the 
vicinity of the forehead and eyes (see scalp map 1 and 3) (adapted from Jung et al., 1998).
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Figure 4.11. ICA applied to EEG data. The figure shows 9 different components (ICA outputs) a
i
 obtained 

by projecting the input EEG data vector for each time instant along nine different ICA vectors 
(rows of the unmixing matrix W). These nine ICA vectors are depicted as scalp maps on the 
left and right side of the plot. The scalp maps follow the convention in Figure 4.10. Note how 
some of the independent components are artifacts (e.g., eye movements – EOG) while oth-
ers appear to be brain rhythms, such as α and θ, or event related potentials (ERPs) (adapted 
from Onton and Makeig, 2006).

 

 



 

Figure 5.5. Nearest-neighbor (NN) classification. The figure illustrates NN classification applied to 
a training data set containing two-dimensional points belonging to three different classes 
(represented by the open red, green, and blue circles respectively). The small dots represent 
new data points that have been classified according to the label of their nearest neighbor 
in the training data set (color of a dot represents the class it was assigned to). Note that the 
boundary between the different classes is not linear (compare with Figures 5.1–5.3) but 
is piecewise linear, and the region for any class can be discontinuous (e.g., the “red” and 
“green” classes) (from Barber, 2012).
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Figure 7.11. Neural responses and prosthetic arm/gripper trajectories in the self-feeding task. 
(A) Spike trains from 116 neurons used for controlling the arm and gripper in 4 success-
ful trials. Each row represents spikes from one neuron, rows being grouped by major tun-
ing preference (red, X; green, Y; blue, Z; purple, gripper; thin bar: negative major tuning; 
thick bar: positive). (B) through (D) show X, Y, and Z components of arm endpoint position 
(gray regions: inter-trial intervals; arrows: gripper closing at target). (E) Gripper aperture (0: 
closed; 1: open). (F) Arm trajectories for the same 4 trials, with color indicating gripper aper-
ture (blue: closed; purple: half-closed; red: open). (G) Four-dimensional preferred directions 
of the 116 neurons. Arrow direction represents X, Y, Z direction preference, color indicates 
gripper aperture opening preference (blue, negative value; purple, zero; red, positive value) 
(adapted from Velliste et al., 2008).
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Figure 7.17. Predicting the kinematics of walking based on neural activity. (A)–(C) Comparison of 
predicted (red) and actual (blue) kinematic variables. (A) shows the three-dimensional posi-
tion of the ankle, knee, and hip. X-axis is in the direction of motion of the treadmill, Y axis is 
the axis of gravity, and Z axis is lateral to the surface of the treadmill and orthogonal to the 
direction of motion. (B) shows hip and knee joint angle variables and (C) depicts foot contact 
(binary variable defining swing versus stance phase of walking). (D) Predicted versus actual 
muscle signals (EMG). (E) Normalized firing rates of 220 neurons, sorted by cortical area and 
by phase within the step cycle. M1: primary motor cortex; S1: primary somatosensory cortex. 
(F) Prediction of slowly changing variables (walking speed, step frequency, and step length) 
over a 50 second time window (adapted from Fitzsimmons et al., 2009).
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Figure 7.29. BCI performance over a period of 19 days. (A) Cursor control performance over consecu-
tive days using a BCI with a fixed linear decoder and a fixed set of neurons in two monkeys 
(red inset boxes are data for the second monkey). (Top) Mean accuracy per day. (Bottom) 
Mean time to reach target. Error bars: ±2 standard errors of the mean. (B) Performance trend 
on specific days for a single monkey, plotted as a moving average (% correct trials in a mov-
ing window of 20 trials). (C) Performance in the first 5 minutes of BCI cursor control in each 
daily session from day 1 to day 19. Bars denote correct (blue) or error (red) trials. (D) Left: 
Example cursor trajectories during an early stage (day 3) and later (day 13), showing that tra-
jectories become more direct and stereotyped with daily practice. Right: Color map showing 
the pairwise correlation between the mean paths for each day from the center to a target (R 
= correlation coefficient) (from Ganguly and Carmena, 2009). 
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Figure 7.30. BCI performance with a shuffled decoder. (A) Comparison of the ‘‘offline’’ predictive abil-
ity of an intact and a shuffled decoder. The shuffled decoder performs poorly in offline pre-
diction of recorded data on positions of the shoulder (upper trace in each panel) and elbow 
(lower trace) from neural activity. Black traces: actual movements; blue: predictions with 
each decoder; R: correlation between actual and predicted movements. (B) Performance 
improvement with the shuffled decoder over the course of 8 days in terms of % of correct 
trials. The inset color map shows the pairwise correlation between the tuning properties of 
neurons for one day and other days up to day 8. The plot shows that the tuning properties 
gradually stabilized over the course of 8 days, resulting in a stable “cortical map” for cursor 
control. Red dots: average correlation in tuning properties (mean of each column of color 
map with exclusion of diagonal entries) (from Ganguly and Carmena, 2009). 
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Figure 8.1. Cursor control using an ECoG BCI in a monkey. (A) Average cursor trajectory for a monkey 
drawing clockwise (left) and counter-clockwise (right) circles using ECoG. The large green 
circle represents the cursor at the start/end location for the trial. (B) Correlation between 
the powers for the two electrodes used for horizontal and vertical cursor control at various 
frequencies across five days of recording (power spectrum was computed using 300 ms time 
bins and 3 Hz frequency bins). Note the dramatic decrease in correlation between the two 
electrodes, especially in the 65–100 Hz band used for cursor control, over the course of five 
days (adapted from Rouse and Moran, 2009).
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Figure 8.4. Two-dimensional cursor control using ECoG. (A) Improvement in performance for five 
subjects as a function of training time. (B) Average cursor trajectories to the four targets for 
each subject. (C) Correlation between cortical activity and vertical/horizontal cursor move-
ment for subjects D and E. Correlation is depicted as r2 values indicating the level of task-
related control for different cortical areas. Subject D used actual tongue and hand movements 
for vertical and horizontal control respectively. Subject E used imagined versions of the same 
actions. The plots below show these correlation values as a function of frequency for the loca-
tions used for online cursor control (location indicated by a star). The frequency band used 
for online control is demarcated by two yellow bars (adapted from Schalk et al., 2008).
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Figure 8.5. Comparison of ECoG activity during movement and imagery. (A) (Left panel) ECoG 
power spectrum for hand movement (red) and rest (blue). (Right panel) Same plot for hand 
imagery. The data are from an electrode in primary motor cortex (circled in B). Power at 
low frequencies (“LFB,” 8–32 Hz, green) decreases with movement/imagery while power at 
high frequencies (“HFB,” 76–100 Hz, orange) increases. Here, HFB increase with imagery is 
32% that of movement (compare orange areas) while for the LFB decrease, it is 90% (green 
areas). (B) Electrodes for which stimulation produced movement of the hand (light blue) or 
tongue (light pink). Hand movement/imagery data in (A) is from the circled electrode. (C) 
(Left panel) Interpolated HFB brain activation maps for hand and tongue movement/imag-
ery. Each is scaled to the maximum absolute value of activation (indicated by the number 
above each cortical map). (Right panel) Quantification of overlap between hand and tongue 
movement (yellow), hand movement and imagery (light blue), and tongue movement and 
imagery (light pink). (D) As in C but for the LFB. Note the lack of significant overlap (denoted 
by ∅ in the bar graph) between hand versus tongue movement in the HFB case, indicating 
greater localization compared to the LFB. Also note the significant overlap between move-
ment and imagery in all cases (P-value < 10–4) (from Miller et al., 2010).
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Figure 8.6. Amplification of cortical activity during learning of a BCI cursor task. (A) An initial 
motor-screening task was used to identify an ECoG “feature,” i.e., a particular electrode-
frequency-band combination (gold-colored electrode in the brain image, located in primary 
tongue cortex (see Figure 8.5B), HFB 79–95 Hz). The power P(t) in this feature and the mean 
power P

0
 across trials were used to control the velocity of a one-dimensional cursor using 

the linear equation shown. The subject was instructed to imagine saying the word “move” 
to move the cursor toward one target (the “active” target) and to rest (or “idle”) to move the 
cursor to the other target (the “passive” target). (B) The relative power in the chosen ECoG 
feature is shown during four consecutive runs of the cursor task. Red dots: mean power 
during active target trials. Blue dots: mean power during passive target trials (cross: out-
lier). Green line: mean power P

0
 across passive/active trials. Black line: “discriminative index” 

(smoothed difference between mean power during previous three active target trials and 
previous three passive target trials). Target accuracies (shown in C) were highest when the 
subject found a middle dynamic range. (C) Spatial distribution of HFB and LFB activations, 
and target hit accuracies during each of the four runs. Number near each brain plot: maxi-
mum (absolute value) activation. Note that the final activations are most prominent at the 
electrode used for cursor control (from Miller et al., 2010).
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Figure 8.7. Comparing ECoG features for two movements. The two plots show average power spec-
tra during tongue- and hand-movement tasks for two electrodes placed over the hand and 
tongue areas of the cortex. Similar to Figure 8.5A, movement causes a decrease in power in 
the LFB (left shaded region) and an increase in power in the HFB (right shaded region): (left 
plot) hand movement, (right plot) tongue movement (from Shenoy et al., 2008).
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Figure 8.8. Classifying ECoG signals for movement and imagery. (A) Hand versus tongue movement 
classification error for each classifier over eight subjects. Classification error was measured 
based on a cross-validation procedure (see Section 5.1.4). (B) Classification error for hand 
versus tongue motor imagery. (C) & (D) Cumulative weight vectors across all subjects for 
each classifier projected onto a standardized brain in separate low-feature and high-feature 
plots. The weights for movement are shown in (C) while those for imagery are shown in (D). 
Red denotes large positive values while blue denotes negative values. Note that the sparse 
methods (LPM and LSFD) select spatially more focused features (adapted from Shenoy et al., 
2008).
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Figure 8.13. Tracking finger movement using ECoG. (A) Continuous probabilistic output of the 6-class 
classifier on 1 second windows of ECoG, updated every 40 ms. Colored line segments at the 
top denote the true class labels (which finger was actually moved). Probabilities for the “rest” 
state are not shown. In most cases, the classifier correctly identifies the onset and termination 
of movement as well as which finger is being moved (from Shenoy, 2008).
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Figure 8.14. Representation of individual finger movements in ECoG as revealed by PCA. (A) Finger 
positions measured by a dataglove during cued flexion-extension. (B) Cross-correlation 
between finger movement and sample projection weights for first principal spectral compo-
nent (PSC) shows spatial specificity for different finger movements as indicated by the color 
code (dark blue: thumb, green: index finger, light blue: little finger). Same color code used 
in C-K. (C) Left panel: First (pink) and second (gold) PSCs for the dark blue electrode in (B). 
Middle panel: Projection magnitudes for each spectral sample from the first (top) and sec-
ond (bottom) PSCs, sorted by movement type (black: rest periods). Each sample denotes 
the contribution of the PSC to the power spectrum from a 1 second epoch around a single 
movement. Note that the first PSC has a specific increase from rest for thumb movements. 
Right panel: Bar chart showing mean projection magnitudes for each finger-movement type, 
with mean from rest samples subtracted. Upper bars: first PSC, lower: second PSC. (D) and 
(E) Same as (C) except for the dark green and light blue electrodes in (B). (F), (H), and (J) 
Measured thumb, index, and little finger positions for a 40 second period. (G), (I), and (K) 
Projections to the first PSC for each of the three electrodes in (B) for the same 40 seconds as 
in (F), (H), (J). The plots show that each electrode is specifically and strongly correlated with 
one movement type (from Miller et al., 2009).
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Figure 8.16. Stable BCI control across multiple days using ECoG. Each data point represents total 
power within the control frequency band during up (red) and down (blue) cursor move-
ments for each individual run during the final trial across 5 days (vertical bars demarcate 
separate days; horizontal bars represent geometric mean for all runs each day). Failed runs 
(in which target was not reached by the cursor) are shown as squares. For both movement 
(right panel) and imagery (left panel) tasks, an increase in power can be seen for all runs 
during tongue imagery/movement (red) in comparison to runs during rest (blue) (adapted 
from Blakely et al., 2009).
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Figure 8.18. Targeted muscle and sensory reinnervation. (Left panels) (Top) Depiction of the nerves 
transferred to the pectoralis muscle. (Bottom) Targeted sensory reinnervation. Cutaneous 
nerves were cut and transferred to the ulnar nerve and the median nerve. (Right panels) (A) 
Placement of EMG electrodes. (B) through (D) EMG patterns for elbow flexion, elbow exten-
sion, and hand closure respectively (adapted from Kuiken et al., 2007).
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Figure 9.5. 2-D Cursor control using mu and beta rhythms. (A) The eight possible target locations 
(numbers 1–8) and example sequence of events in a trial. (B) Properties of EEG signals used 
by a subject. For this subject, vertical movement was controlled by a 24-Hz beta rhythm and 
horizontal movement by a 12-Hz mu rhythm. (Top) Scalp topographies (nose at top, loca-
tions C3 and C4 marked by X) of the correlations of the 2 rhythm amplitudes with the vertical 
and horizontal target coordinates. The topographies are for R rather than R2 to show positive 
and negative correlations. (Middle) Amplitude (voltage) spectra (weighted combinations of 
right-side and left-side spectra) and their corresponding R2 spectra. Different voltage spec-
tra (dashed, dotted, etc.) are for the 4 vertical and 4 horizontal target coordinates. Arrows 
point to frequency bands used in vertical and horizontal movement variables, respectively. 
(Bottom) Sample EEG from single trials. (Left) Trace from electrode C3 (major contributor to 
vertical variable) for a target at the top (target 1) or target at bottom (target 6). (Right) Traces 
from electrode C4 (major contributor to the horizontal variable) for target on the right (target 
3) or target on the left (target 8) (from Wolpaw and McFarland, 2004).
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Figure 9.9. Modulation of EEG signals by imagery for the Berlin BCI. (1) Average spectra for two 
subjects for two motor imagery tasks (red: left hand, green: right hand; blue: right foot) for 
the Laplace-filtered CP4 channel (“CP4 lap”) during the calibration phase. The r2 values of the 
difference between imagery conditions are color coded; frequency band chosen is shaded 
gray. (2) Average amplitude envelope of chosen frequency band. Cue was presented at time 
0. (3) Scalp maps showing log of power within chosen frequency band averaged over the 
calibration phase. (4) and (5) Log band power difference topographies for the imagery tasks 
(denoted L, R, or F). Global average (in 3) was subtracted for each. (6) r2 values for the differ-
ence between the motor imagery tasks (row 4 minus row 5) (adapted from Blankertz et al., 
2008).

 



 

A
t-value

t-value

12

10

8

6

4

2

0

6

5

4

0

1

2

3

B

x = –3 y = 26L

x = –3 y = 26L

Figure 9.22. Changes in BOLD signals in the fMRI BCI. (A) Signal increases during activation blocks, 
superimposed over individual three-dimensional MRI images and thresholded at significance 
level P < 0.05 and minimum spatial extent of 10 voxels. Signal increases were observed in 
rostral–ventral and dorsal ACC, besides activations in other areas such as supplementary 
motor area (SMA) and cerebellum. (B) Increase in signal change over the course of several 
feedback sessions, likely due to learning in the subject’s brain. Increases were observed in 
rostral–ventral ACC, the SMA, and basal ganglia (from Weiskopf et al., 2003).
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Figure 12.4. A brain-controlled robotic avatar for remote interaction. The top panel shows images 
of the humanoid robot in action. The bottom row depicts the user’s computer screen. The 
user receives a live feed from the robot’s cameras, thereby immersing the user in the robot’s 
environment and allowing the user to select actions based on objects seen in the robot’s 
cameras (screen marked “2”). Objects are found using computer vision techniques. The robot 
transmits the segmented images of the objects (in this case, a red and a green object) and 
queries the user about which one to pick up. The selection is made by the user using a P300 
BCI. After picking up the object selected by the user (image marked “3”), the robot asks the 
user which location to bring the selected object to. Images of the possible locations (blue 
tables on the left and right sides) from an overhead camera are presented to the user (screen 
marked “4”). Again, the selection of the destination is made by the user by means of the 
P300. Finally, the robot walks to the destination selected by the user and places the object 
on the table at the selected location (image marked “5”) (from Rao and Scherer, 2010; based 
on Bell et al., 2008).
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Figure 12.5. Using the P300 response to command the robot. (Left panel) When the robot finds 
objects of interest (in this experiment a red and a green cube), segmented images are sent 
to the user and arranged in a grid format in the lower part of the BCI user’s screen. (Right 
panel) The oddball paradigm is used to evoke the P300 response. The colored objects at the 
top show a random temporal order of flashed images. EEG segments of a 0.5-second dura-
tion from flash onset were spatially filtered and classified by a soft margin SVM into either 
segments containing a P300 or not containing a P300. After a fixed number of flashes, the 
object associated with the most P300 classifications was selected as the user’s choice (in this 
case, the red object) (adapted from Rao and Scherer, 2010; based on Bell et al., 2008).
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Figure 12.7. Performance of the EEG-based BCI for image search. (A) Scalp maps of normalized cor-
relation between the output of the spatial filter for a given time window and the EEG data 
across all electrodes (red: positive values, blue: negative values). The map at 301–400 ms 
has a spatial distribution which is characteristic of a type of P300 known as “P3f,” while the 
parietal activity at 501–700 ms is consistent with a “P3b” potential thought to be indicative of 
attentional orienting. (B) The distribution of y
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, the overall interest score for each image, for 

target images versus non-targets. There is a clear separation between the two distributions. 
(C) ROC curve obtained by varying the position of the classification threshold along the y
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axis (from Sajda et al., 2010).
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Figure 12.11.  Measuring cognitive load using EEG. (A) Schematic depiction of a 3-back task. The sub-
ject must match the current stimulus with the one they saw 3 stimuli ago. Examples of a 
match and 2 non-matches are shown. A foil is a stimulus within the last 2 that matches 
the current. Subjects saw all 3 cases shown. (B) & (C) Power spectra for 2 subjects as a 
function of increasing working memory load. 3-back required storing the last 3 items seen 
in memory whereas in 0-back, only the very first item seen in the series needed to be 
memorized and compared to the current one. Increasing the amount of memory (0-back to 
3-back) decreased alpha (8–12 Hz) power in one subject (B) while increasing it in the other 
(C) (along with increasing theta, 4–8 Hz, power). (D) Classification of memory load based 
on EEG. Different curves correspond to discriminating between different amounts of load. 
Increasing the size of the window of EEG data used for classification increased accuracy to 
levels of up to 99% in some cases (adapted from Grimes et al., 2008).
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