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Preface

This book is the result of years of collaboration among different teams in-
teracting in the framework of a European Research and Training Network
on “Modeling, Mathematical Methods and Computer Simulation of Tumour
Growth and Therapy.” Throughout this network, the collaboration of groups
has brought new insight and motivated research leading to mechanical, math-
ematical, physical, and biological approaches all related to the simulation of
the behavior of cells and, in particular, of tumor cells.

While looking at the phenomena from different points of view, it soon be-
came clear that multiscale problems are ubiquitous and fundamental in cell
mechanics as illustrated in Figure P.1. For instance, such problems naturally
emerge from the description of situations involving cell adhesion, migration,
invasion, intravasation and extravasation, mitosis, cell–cell interactions, etc.
Modeling the role of mechano-transduction in the behavior of the cell, its fate
(duplication, survival, or death) or even its differentiation, or how the internal
dynamics of actin and microtubules determine the migratory characteristics
of the cells leads also to a combination of intrinsically coupled scales. These
aspects are, of course, not only of major interest to describe the growth of
tumors, but also in embryogenesis, in the description of physiological and
pathological states of all tissues, and nowadays in tissue engineering, tissue
remediation, and regeneration. It is our motivation here to present non-
exhaustive tools that will help graduate students, researchers, and professors
in their research and teaching activities.

The book is a multidisciplinary effort that contains reviews or articles of
interest to students and researchers from different disciplines, such as the ones
cited above. Some of the collected works were presented in a European Work-
shop on “Multiscale Approaches in Cell Mechanics” (January 7–10, 2008),
which took place in Autrans (France) and was organized by Arnaud Chauvière
(then at the Technische Universität, Dresden, Germany) and Claude Verdier
(CNRS, Grenoble, France). Several other works from experts in the field are
also included in order to provide a more general overview of the subject. At
the moment, it appears that solving such multiscale problems is still a difficult
task to achieve.

Throughout this textbook, various approaches and methods are presented in
order to highlight how phenomena happening at various scales can be modeled
and coupled to account for multiscale aspects. It is also our purpose here to
show the existing tools available, and by default to bring the need to carry on

ix
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FIGURE P.1 Multiscale view of cell mechanics. A biological tissue consists
of several components including cells and the extracellular matrix. A zoom
allows one to identify a single cell embedded in the extracellular matrix and
surrounded by neighboring cells. Details illustrate the configuration at the
cellular scale. At the microscopic scale, various elements interact to create cell
motion (actin filaments, adhesion molecules within focal adhesions, etc.). At
the nanoscale, cell sub-elements combine to create actin filaments generating
forces through the acto-myosin complex.

new approaches. In the spirit of the workshop mentioned above, efforts have
been made to propose, in some chapters, both experimental and theoretical
aspects of the same topic. In other chapters, experiments and theories are
discussed separately in order to provide a deeper insight into biological aspects
in the first case, or complex modeling in the second case.

The book is divided into four parts. In Part I, some subcellular and cellular
aspects and their links are presented. Microrheology (Chapter 1) is shown to
be a powerful tool for the investigation of cell mechanical properties. Links
between length scales are properly identified in a unified concept. Chapter 2
presents multiphysics and multiscale approaches to investigate intracellular
mechanisms involved in cell motility. Minimal principles are used to explain
how actin polymerization can take place and trigger forces to generate motion.
This approach is very promising for further investigations and understanding
of cell motion. Chapter 3 discusses how subcellular effects involving certain
genes can play a role in inducing cell motility in the context of cancer. The
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multiscale approach is explained within the concept of sophisticated experi-
ments.

Part II considers cell migration. The basic principles proposed earlier1

are revisited through three different models, respectively, based on physi-
cal (Chapter 4), mathematical (Chapter 5), and computational (Chapter 6)
approaches. All of them introduce and develop tools to account for the de-
scription of the complex interplay of cell adhesion molecules and the dynamic
evolution of the cell cytoskeleton. They underline the ubiquity of multiscale as-
pects when one aims to understand the complex interaction among molecules
at the nanometer scale, and their combination to create motion at the cellular
scale (i.e., micron scale).

Part III is devoted to the study of cell interactions with the environment,
in particular the role of external mechanical forces and their effects on cell
behavior. Chapter 7 considers a model approach to see how a flow field (in-
volving shear stresses) can affect the dynamic behavior of a cell (a bead here)
in close contact with a wall. Such movement is very important when consid-
ering the rolling motion of leukocytes on the vessel wall, but may also be
relevant when cancer cells interact with the endothelium of blood vessels to
intravasate or extravasate. Chapters 8 and 9 consider the role of a substrate
on the adhesion of a cell and the exerted traction forces. In particular, the
role of substrate rigidity is very important and affects mechano-transduction
(Chapter 8) as well as the development of stable or unstable focal adhesions.
Another related aspect concerns the corresponding forces exerted by cells on
a rigid substrate (Chapter 9), which depend on its rigidity. Such features
are important when considering many cells in their natural environment—for
example, when in contact with a soft tissue. Mechano-transduction is also re-
ported in Chapter 10 in an attempt to see how external mechanical forces can
lead to calcium fluxes and then to biochemical responses at the cell level.

Part IV presents models of multicellular systems. A substantial review of
innovative models developed in the context of cancer has been presented ear-
lier2 but some recent developments are now available and can be considered
complementary. This is the aim of Part IV: to propose such new approaches.
Chapter 11 investigates the collective amoeboid motion of cells within the
extracellular matrix (i.e., collagen in real tissue). This problem is particularly
important when looking at cancer cell migration.3 The next three chapters
present applications of population models to developmental biology and cancer
(Chapter 12), embryogenesis (Chapter 13), and cancer invasion (Chapter 14).

1D.A. Lauffenburger and A.F. Horwitz (1996). Cell migration: a physically integrated molecular
process. Cell 84:359–369.
2Cancer Modelling and Simulation, Chapman & Hall/CRC Mathematical and Medicine Series,
Ed. Luigi Preziosi, 2003.
3P. Friedl and K. Wolf (2003). Tumour-cell invasion and migration: diversity and escape mecha-
nisms. Nature 3:362–374.
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Finally, Chapter 15 presents a new approach based on Delaunay object dy-
namics to study the behavior of highly motile cells involved in certain tissues.

Of course, there is still a large gap between the acceptance of multiscale
models and their effectiveness in predicting accurate pathologies, and their
import toward real medical applications. Nevertheless, we have tried here to
collect new methods to apply to cells and tissues through a multiscale concept.

The editors wish to thank all the authors who contributed to this book.
Special thanks are also given to all participants of the Marie Curie RTN
Network (2004–2008) for bringing into play such challenging scientific efforts.
We are also indebted to Sunil Nair at Taylor & Francis for his helpful advice.

Arnaud Chauvière

Luigi Preziosi

Claude Verdier
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Rémy Pedeux

Institut Albert Bonniot
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Henri Mondor
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From Subcellular to

Cellular Properties



2 Cell Mechanics

Chapter 1. Microrheology of Living Cells at Different Time

and Length Scales

Microrheology is a powerful tool to investigate the mechanical properties of
living cells, which are essential to many biological functions such as cellular
adhesion, migration, and division. After a synthetic presentation of rheology
basics for complex systems, we describe the optical tweezers and the uniaxial
stretching techniques, which allow us to probe the microrheology of individual
cells at different length scales and over a wide time range. The creep function
J (t) and viscoelastic modulus Ge(�) are retrieved from both experiments and
always exhibit weak power law behaviors as functions of time and frequency,
respectively. The exponent � ≈ 0.2 of this power law appears very robust and
shows almost no dependence on the cell type, nor on the typical length scale of
the experiment. On the contrary, the typical rigidity of the cells, characterized
for instance by the viscoelastic modulus G0 at 1 Hz, varies over almost two or-
ders of magnitude from one cell type to another. We propose an interpretation
of the observed power law rheology, based on a semi-phenomenological model
involving a scale-free structure of the cellular network and a broad and dense
distribution of relaxation times in the system. This model leads to power law
mechanical responses and accurately predicts the normal distribution of the
exponent � and the log-normal distribution of G0, as experimentally observed.

Chapter 2. Actin-Based Propulsion: Intriguing Interplay

between Material Properties and Growth Processes

Eukaryotic cells and intracellular pathogens such as bacteria or viruses utilize
the actin polymerization machinery to propel themselves forward. Thereby,
the onset of motion and choice of direction may be the result of a spontaneous
symmetry breaking or might be triggered by external signals and preexisting
asymmetries, for example, through a previous septation in bacteria. Although
very complex, a key feature of cellular motility is the ability of actin to form
dense polymeric networks, whose microstructures are tightly regulated by the
cell. These polar actin networks produce the forces necessary for propulsion
but may also be at the origin of a spontaneous symmetry breaking. Under-
standing the exact role of actin dynamics in cell motility requires multiscale
approaches that capture at the same time the polymer network structure and
dynamics on the scale of a few nanometers and the macroscopic distribution of
elastic stresses on the scale of the whole cell. In this chapter we review a selec-
tion of theories on how mechanical material properties and growth processes
interact to induce the onset of actin-based motion.
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Chapter 3. Cancer: Cell Motility and Tumor

Suppressor Genes

Cell migration plays a critical role in cancer pathologies because metastasis
is the ultimate stage of the disease that leads to the death of the individual.
During tumorigenesis and especially the metastasis process, transformed cells
need to gain functions to migrate and invade new tissues. Recently, it has
been shown that a new family of tumor suppressor genes, the ING genes,
may be involved in cell migration and motility. This chapter describes the
importance of cell motility and invasion in the tumor process and highlights
the role that tumor suppressor genes may play, especially the ING genes. Some
of the methodologies used to investigate these processes are also described.





Chapter 1

Microrheology of Living Cells at

Different Time and Length Scales

Atef Asnacios, Sylvie Hénon, Julien Browaeys, and François Gallet
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1.1 Introduction

To perform their functions, living cells must adapt to external stresses and to
varying mechanical properties of their environment. Thus, rheological proper-
ties (i.e., stress–strain relationships) are key features of living cells. Actually,
mechanics play a major role in many biological processes such as cell crawl-
ing, wound healing, protein regulation, and even apoptosis [19]. Conversely,
several pathologies, like metastasis, asthma, and sickle cell anemia, involve al-
teration of the mechanical properties of a given cell type. All these processes
are mainly controlled by the structure and mechanical properties of the cy-
toskeletal network. This network is a dynamical assembly of macromolecules,
principally made of actin filaments, intermediate filaments, and microtubules,

5



6 Cell Mechanics

and interacting with a variety of associated proteins, crosslinkers, and molec-
ular motors.

The mechanical properties of the cytoskeletal network are therefore the sub-
ject of many experimental studies, made possible by the development of nu-
merous quantitative micromanipulation techniques, such as micropipettes [37],
cell poking [32], shear flow cytometry [4,12], atomic force microscopy (AFM)
[1,35,36], microplates [9,11,39], optical tweezers [3,24,47], optical stretchers
[16,45], magnetic tweezers [5,44], magnetic twisters [13,24], and particle track-
ing [23,42,46]. These techniques are complementary in the sense that they
probe the behavior of the intracellular medium at different length scales and
time scales, and that they implement stresses and strains in different geome-
tries and with different orders of magnitude.

Most recent results in microrheology of the intracellular medium have
demonstrated that it is a complex viscoelastic medium that cannot be simply
modeled by associating a finite, small number of elastic and viscous elements.
Indeed, the viscoelastic complex modulus of the cell medium exhibits a weak
power law behavior over a wide frequency range [3,14]. Similarly the creep
function behaves as a power law of elapsed time [11,26]. This clearly indicates
that there is a broad and dense distribution of dissipation times in the cell,
and that the mechanisms responsible for the storage of elastic energy and its
dissipation are strongly correlated. Such behavior, characteristic of structural
damping, is found in other complex viscoelastic systems, like colloids, gels,
pastes, and more generally the class of so-called “soft glassy materials” [6,43].

Beyond the formal analogy that can be made between the behaviors of the
intracellular medium and of such soft glassy materials a detailed interpre-
tation of structural damping in terms of elementary elastic and dissipative
mechanisms was still to be built. This is one of the objectives of this chapter,
in which we propose a global description of the mechanics of the cytoskele-
tal network, consistent with the data gathered from numerous experiments
and based on the existence of a quasi self-similar structure in the cytoskeletal
network. This description allows the comparison of the results obtained with
different microrheological techniques and/or under various experimental con-
ditions, and offers a unifying frame to interpret the experiments performed at
the nano- and microscale levels and at the scale of the whole cell.

1.2 Elements of Rheology

The purpose of rheology is to derive the relationships between the mechani-
cal stress � applied to a viscoelastic material and the induced strain A. This
response can be expressed either as a function of time elapsed after the appli-
cation of a step stress (creep function J (t)) or as a function of angular velocity
� for an oscillating stress (viscoelastic modulus G(�)). The two descriptions
are equivalent, and we recall here the translation rules from one to the other.
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We restrict ourselves to the linear response regime, corresponding to the
conditions of the experiments performed on living cells, and described in the
next section. Then the linear response theory indicates that the strain A(t)

generated by a time-dependent stress �(t) initiated at t = � is given by:

A(t) = J (t)�(t = 0) +

∫ t

0

J (t − t ′)�̇(t ′) dt ′ (1.1)

This defines the creep function J (t) of the material. Indeed the strain gener-
ated by a step stress �0 applied at t = 0 is proportional to the creep function,
according to A(t) = �0 J (t).

Taking the Laplace transform of the above equation leads to:

Ã(s) = s J̃ (s)�̃(s) (1.2)

where the Laplace transform of a function f is defined as: LT [ f (t)] = f̃ (s) =
∫ +∞

0 e−st f (t)dt . Notice that the usual definition of the compliance J ∗ is related

to the creep function J (t) through J ∗(s) = s J̃ (s).
On the other hand, for an oscillating stress �(t) = �(�) exp( j�t), the in-

duced strain will be A(t) = A(�) exp( j�t), where the phase shift between the
�(t) and A(t) is the argument of the complex number A(�).

The viscoelastic complex modulus is defined as G(�) = �(�)

A(�)
. Its real com-

ponent G ′(�) (storage modulus) represents the elastic part of the response,
and its imaginary component G ′′(�) (loss modulus) the dissipative one. G(�)

generalizes at a non-zero frequency the usual definition of the elastic constants
for a solid material because of the limit that � → 0, G(�) reduces either to
the Young modulus E or to the shear modulus � of the material, according to
the stress geometry. In the following, we refer to the modulus Ge(�) associated
with E .

To relate Ge(�) to J̃ (s), we recall that the Fourier transform FT [ f (t)] =

f̂ (�) =
∫ +∞

−∞
e− j�t f (t)dt and the Laplace transform f̃ (s) are linked

through: f̂ (�) = f̃ (s = j�). Then one can rewrite Equation (1.2) as

Â(�) = j� Ĵ (�)�̂(�), and consequently:

Ge(�) =
1

j� J̃ ( j�)
=

1

j� Ĵ (�)
(1.3)

This equation establishes the correspondence between Ge(�) and J (t) in the
most general case.

In Section 1.3, we will show that the creep function of the intracellular
medium behaves as a power law of time: J (t) = A0(

t
t0
)�. Here, t0 is an ar-

bitrary reference time, which will be chosen for convenience equal to 1 s.
The exponent � may take any value between 0 (elastic solid) and 1 (viscous
Newtonian fluid). Thus, � is representative of the balance between the elastic
and dissipative character of the considered viscoelastic medium.

In this particular case, the Laplace transform of J (t) is equal to:

J̃ (s) =
A0Ŵ(1 + �)

s(st0)�
(1.4)
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where Ŵ(1 + �) =
∫ +∞

0 e−x x� dx is the gamma Euler function.
Following Equation (1.3) the corresponding viscoelastic complex modulus

then takes the form:

Ge(�) = |Ge|e
j� =

( j�t0)
�

A0Ŵ(1 + �)
(1.5)

The amplitude of Ge is worth:

|Ge| =
��t�

0

A0Ŵ(1 + �)
(1.6)

and the phase shift

� =
��

2
(1.7)

is independent of the angular velocity �.
Hence, the amplitude of the viscoelastic modulus behaves as a power law

of frequency |Ge|( f ) = G0(
f

f0
)�, with:

G0 =
(2�t0 f0)

�

A0Ŵ(1 + �)
(1.8)

where f0 is an arbitrary reference frequency, which will be chosen for con-
venience equal to 1 Hz. In the following we use Equations (1.4) to (1.8) to
compare the data J (t) and Ge(�) respectively obtained from creep experi-
ments and oscillating stress experiments.

1.3 Experimental Set-Ups and Protocols

1.3.1 Optical Tweezers Experiments

The set-up used for optical tweezers experiments has been described else-
where in detail [2,3,18] and is schematically represented in Figure 1.1. Briefly,
the experimental chamber is mounted on a piezoelectric stage, fixed on the
stage of an inverted microscope, enclosed in a 37◦C thermalization box. Op-
tical tweezers are created by focusing an infrared laser beam (Nd:YAG laser,
600 mW maximum power) through the oil immersion objective of the mi-
croscope (×100, 1.25 numerical aperture). Silica microbeads, about 3.5 �m in
diameter, are used as handles to apply forces to cells with optical tweezers. For
a specific binding to integrins, the beads are coated with a polypeptide con-
taining the arginine–glycine–aspartic (RGD) sequence (PepTite-2000, Telios
Pharmaceuticals, San Diego, California). The applied force F is approximately
proportional to the laser power and to the bead trap distance. It is indepen-
dently pre-calibrated [3,25], and its maximal value is about 200 pN with the
set-up described here. The cellular deformation is related to the displacement
x of the bead with respect to the cell.
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Piezoelectric
displacement

Optical trap
(fixed position)

FIGURE 1.1 Principle of the microrheological measurements using the
optical tweezers set-up. A silica microbead, specifically bound to given mem-
brane receptors, is trapped in the focused laser beam, and is used as a handle
to apply a force to the cytoskeleton. The experimental chamber is actuated
by a piezoelectric stage, while the optical trap is kept at a fixed position.

Two types of experiments are performed with optical tweezers. In the first
one, performed to measure the viscoelastic modulus of a cell as a function of
frequency [3], the optical trap is kept at a fixed position, while a Labview pro-
gram generates a sequence of successive sinusoidal signals at given frequencies
(from 0.05 to 50 Hz) that control the piezoelectric stage motion. The Labview
program triggers image acquisition, performed with a fast CCD camera. The
bead position is measured on the images, from which one derives the force
applied to the bead and the cell deformation.

In the second type of experiments, performed to measure the creep function
of a cell [18], the optical trap is switched at initial time (t = 0) from the center
of the bead to a position that is kept constant, while a Labview program
controls the piezoelectric stage motion to keep the bead at a fixed position
(measured on a quadrant photodiode), ensuring that the force exerted by the
trap on the bead is constant. The cell deformation is inferred from the piezo
stage displacement.

The assessment of the creep function or viscoelastic modulus from the F–x

measurements takes into account the actual immersion of the bead into the
cell [24].

1.3.2 Uniaxial Stretcher Experiments

The uniaxial stretching rheometer (USR, [10,11]) can essentially perform the
same oscillatory and creep experiments as described above for optical tweez-
ers, but strain is here applied to the whole cell. In this set-up, a single cell
can be stretched or compressed uniaxially between two parallel microplates:
one rigid, the other flexible. The flexible microplate is used as a nano-Newton
force sensor of calibrated stiffness, the force being simply proportional to the
plate deflection. An original design of the microplates allows us to achieve an
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L0
L(t)

Flexible microplate
“spring” of stiffness k

Rigid microplate

Deflection

F = kδ 

δ

FIGURE 1.2 Diagram of the uniaxial stretching rheometer. A single cell is
attached by specific or nonspecific binding to a rigid glass microplate (bottom)
and a flexible microplate (top). The stiffness of the flexible plate is calibrated
so that one simultaneously measures the force applied to the cell and its
deformation.

efficient feedback control of either strain or stress applied to the cell. Control-
ling the flexible plate deflection with a typical precision of less than 200 nm, we
are able to apply stresses ranging from a few Pascals to thousands of Pascals
with a precision better than 2%.

The rheometer is composed of two arms fixed symmetrically on each side of
the optical axis of a Leica DMIRB inverted microscope (Leica Microsystems,
France) (Figure 1.2). Each arm bears a stainless steel (rod-like) microplate
holder mounted on an M-UTR46A precision manual rotation stage (Micro-
Controle, France). The latter is fixed by a pivot pin on a piezoelectric stage
100×100×100 �m travel NanoCube XYZ (Polytech-PI, France). The rheome-
ter is enclosed in a Plexiglas box and maintained at 37 ± 0.2◦C by an Air-
Therm heater controller (World Precision Instruments, United Kingdom). To
ensure efficient vibration isolation, the whole set-up lies on a TS-150 ac-
tive antivibration table (HWL Scientific Instruments Gmbh, Germany), itself
supported by a stiff optical table (Newport, France).

The microplates with a cell stretched between them are visualized un-
der bright light illumination with a Plan Fluotar L 63×/0.70 objective and
a Micromax digital CCD camera (Princeton Instruments, Roper Scientific,
France). The control of the flexible plate deflection is achieved by direct imag-
ing of the plate tip on a photosensitive detector mounted on the second pho-
totube of the microscope.

In creep experiments, the flexible plate deflection is kept constant (constant
applied stress) through a PID correction applied to the rigid plate. Thus, the
rigid plate displacement (correction command) is a direct measurement of the
cell strain, and consequently, of the creep function.

In oscillatory experiments, the flexible plate basis is displaced sinusoidally
( f ranging from 0.02 to 10 Hz) and the plate tip position is recorded. The
ratio of plate tip to basis displacements and their phase shift allow one to
determine the storage (G ′( f )) and the loss (G ′′( f )) dynamic moduli.
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1.4 Results and Discussion

Typical recordings of the creep function J (t) are shown in Figure 1.3, as
obtained for two single cells from the C2 myogenic line, either with op-
tical tweezers or with the stretching rheometer. Over three time decades
(0.1 < t < 100 s), J (t) is remarkably well fitted by a power law: J (t) = A0(

t
t0
)�.

For these two particular cells: � and A0 are equal to 0.25 and 0.017 Pa−1

(stretching rheometer) and to 0.18 and 0.0058 Pa−1 (optical tweezers). As
already emphasized in [11], any attempt to adjust J (t) by the sum of a few
exponential functions in the full time range leads to much poorer agreement.

There is an exact equivalence between a power law behavior of J (t) as
a function of time t and a power law behavior of the complex viscoelastic
modulus Ge(�) as a function of the frequency f = �/(2�) (see Section 1.2).
Using Equation (1.8) we derive values of G0 (value of |Ge| at 1 Hz) from the
measured values of A0 and �: for the two cells of Figure 1.3, G0 = 103 Pa
(stretching rheometer) and 260 Pa (optical tweezers).

Similarly, Figure 1.4 shows the values of the modulus |Ge| and of the phase �

of the viscoelastic modulus Ge, as a function of the frequency f , measured for

10–1

0.25

0.18

10–2

10–3

10–1 100 101 102

t (s)

J(
t)

 (
P

a−
1
)

FIGURE 1.3 Plot of the creep function J (t), measured for two single C2
myoblast cells, one using the stretching rheometer (�), the other using the
optical tweezers (©). Over three decades in time, J (t) is very well fitted by a
power law: J (t) = A0(t/t0)

�.
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FIGURE 1.4 Plots of the modulus |Ge| and the phase � of the complex
viscoelastic coefficient Ge(�), measured for two single C2 myoblast cells, one
using the stretching rheometer (�), the other using the optical tweezers (©).
|Ge| behaves as a power law of the frequency f over three frequency decades.
The phase shift � remains roughly constant in the studied frequency range.

two single C2 cells, either with optical tweezers or with the uniaxial stretcher.
|Ge| behaves as a power law of f over three frequency decades. For these
two particular cells, the exponent � and the modulus G0 of |Ge| at 1 Hz are
found equal to 0.30 and 155 Pa (optical tweezers) and 0.28 and 979 Pa (uni-
axial stretcher), respectively. Moreover, the measured phase shift � remains
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constant within a good approximation. Its average value is equal to 0.45 rad
(resp. 0.40), very close to the theoretically expected value ��/2 = 0.47 (resp.
0.44) (see Equation (1.7)).

A remarkable feature is that all the tested cells belonging to the same C2
population exhibit a similar power law rheology behavior, but with different
values of � and G0. Figures 1.5(a) and 1.5(b) show the statistical distributions
and cumulative distributions of � in linear scale and G0 in log scale, as mea-
sured on a set of 43 different C2 cells with the uniaxial stretcher (creep exper-
iments, glutaraldehyde coating). Both cumulative distributions are well fitted
by an error function, which is the cumulative function of a Gaussian [2,11].
This means that the values of � are normally distributed while the values of
G0 are log-normally distributed. From the fits, the best estimates for the mean
value 〈�〉 and the median value G M

0 are 〈�〉 = 0.24±0.01 and G M
0 = 640+80

−70 Pa.
For a whole set of cells tested either with optical tweezers or with the uniaxial
stretcher, measuring either the creep function or the viscoelastic modulus, the
� distribution always follows a normal law, while the distribution of G0 always
appears log-normal.

It is remarkable that the four types of experiments lead to the same power
law behavior, with approximately the same exponent 〈�〉 ≈ 0.24 (within ex-
perimental error).

As reported in Table 1.1, we have performed microrheological experiments
on several other cell types, using either uniaxial stretching or optical tweezers,
and in various coating conditions. The individual cell behavior appears strik-
ingly independent of the cell type and of the experimental conditions. When
performing a creep experiment, J (t) is accurately adjusted by a power law
function of time t . Similarly, in oscillating force experiments, the viscoelastic
modulus Ge(�) behaves as a power law of the excitation frequency. As seen
in Table 1.1, the average exponent 〈�〉 of the power law always remains in
the range 0.15 to 0.30, whatever the cell type and function: this holds for
premuscular cells (C2 myoblasts), epithelial cells (alveolar A549 and MDCK),
fibroblasts (primary and L929), and macrophages (primary). Although the
number of cells tested may not always be high enough to yield an accurate
statistic, the prefactor G0 of the complex modulus at 1 Hz seems to follow
a log-normal distribution. Contrary to what is observed for the exponent �,
the median value G M

0 of G0 appears to depend on the cell type and on the
experimental conditions.

These results are confirmed by numerous experimental results performed
on other cell types with different techniques. For instance, magnetic twisting
cytometry (MTC) was used to probe human airway smooth muscle (HASM)
cells [13,26], mouse embryonic carcinoma cells (F9), human bronchial epithe-
lial cells, mouse macrophages (J744.A) [14], monkey kidney epithelial cells
(TC7), and 3T3 fibroblasts [17,29]. Similarly, the same epithelial alveolar cells
(A549) as studied above were mechanically probed by atomic force microscopy
(AFM) [1] and by MTC [40]. Optical tweezers were also used to apply forces
on endogenous granules in human neutrophils [47], while chains of magnetic
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FIGURE 1.5 Histograms of the distributions of the exponents � and of
the prefactor G0, measured with the stretching rheometer on a set of 43 cells
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endosomes embedded in the cytoplasm of HeLa cells were submitted to an
oscillating magnetic field [44].

The most prominent feature emerging from the experiments is the robust-
ness of the power law behavior, independent of cell types and experimental
conditions. The average values 〈�〉 of the exponent remain very close to 0.2
when probing the cytoskeleton in the cortical region, and take slightly higher
values (between 0.3 and 0.4) in the deep intracellular medium [17]. This indi-
cates that the mechanical structure of the network is closer to an elastic solid
in the vicinity of the cell membrane. In the same time, the mean prefactor
G0 may vary by nearly two orders of magnitude (roughly between 102 Pa
and 104 Pa) from one cell type to the other, or according to the experimental
conditions. An extensive discussion of the possible origins of such variations
is beyond the scope of this chapter and can be found for instance in [2]. Of
course, the cell type and the cell function are most likely to determine the
structure and the density of the cytoskeletal network, but these are not the
only parameters that may influence the rigidity measurements. Indeed, the
measured stiffness is not homogeneous within a single cell and depends on
the cell activity [20,28,44,47]. Also, the nature, structure and maturity of the
contact through which the stress is applied are known to significantly affect
the local stiffness measurements [8,18,34].

1.5 Statistical Self-Similar Model for Cell Rheology

Complex viscoelastic systems showing a power law rheological behavior are
well documented in the literature. Colloidal systems close to the sol/gel tran-
sition [33], or “soft glassy materials” (foams, pastes, emulsions, and slur-
ries [6,43]), exhibit such a behavior. Due to their structural complexity, the
dynamics of those systems cannot be described by a small, finite number of re-
laxation times. The mechanical dissipation must take into account multiscale
dynamical processes, meaning that their response to an external mechanical
stress involves a broad and dense distribution of relaxation times.

A framework of the mechanics of soft glassy materials has been devel-
oped recently [7,38]. Structural disorder, metastability, and rearrangements
are taken into account in order to describe generic out-of-equilibrium and dis-
ordered systems. This model might appear as a good candidate to describe
the cell medium. However, at the present stage, the analogy between the gen-
eral description of soft glassy materials and the cytoskeleton network dynam-
ics remains quite formal because the elementary biophysical and biochemical
mechanisms that govern the cytoskeleton rearrangements are not precisely
described.

Other authors have developed a more phenomenological approach, where
the cytoskeletal network is seen as a polarized liquid crystal, and its dynamics
are coupled to the activity of molecular motors [21]. Quantitative predictions
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about the microrheological behavior of the cellular medium have yet to be
obtained from this model.

We propose another description, intermediate between a formal approach
and a phenomenological structural model. It stems from the observation that
a power law creep function (or viscoelastic modulus, see Section 1.2) translates
into a continuous population of relaxation times that also follows a power law.

1.5.1 Power Law Distribution of Relaxation Times

If a viscoelastic material has a single relaxation time, its creep function J (t)

is proportional to 1 − e−t/	. We choose to consider the time derivative of the
creep function J̇ (t) in order to avoid mathematical convergence problems. This
last quantity is therefore proportional to e−t/	. Considering a distribution of
relaxation times P(	), one has:

J̇ (t) =

∫

P(	) exp(−
t

	
) d	 (1.9)

Let P(	) = Bt�−2 represent the density of relaxation times assumed to
follow a power law. Substituting this expression in Equation (1.9), one gets:

J̇ (t) = B Ŵ(� − 1) t�−1 (1.10)

which yields upon integration:

J (t) =
B Ŵ(� − 1)

�
t� = A0

(

t

t0

)�

(1.11)

where Ŵ is the Euler function.

1.5.2 Self-Similar Time and Length Scales

The structure of the cytoskeleton may explain why P(	) follows a power law.
It is made of many interconnected units of different length scales, from actin
individual filaments to actin bundles and stress fibers. Their size continuously
spreads from the nanometer scale to the scale of the whole cell. We describe the
mechanical response of each unit, labeled by the index i , by a response time 	i .
Given the cytoskeleton structure, it is reasonable to assume that the charac-
teristic response times 	i are widely and densely distributed. The elementary
creep function ji (t) associated with each unit i is such that d j i

dt
= exp(− t

	i
).

The description in terms of passive units may appear oversimplified be-
cause it does not seem to take into account the active molecular mechanisms
related to the molecular motor activity or to the filaments remodeling. How-
ever, a precise description of the elastic and dissipation processes (such as
fiber tension, cytoskeleton remodeling, molecular motors activity, and passive
viscosity) at the molecular level may not be necessary to derive macroscopic
mechanical behaviors.

The choice of a model where the units are associated in series (Figure 1.6a)
is based on convenience. The choice of the dual representation in which ele-
ments are placed in parallel would have yielded the same results. Those two
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FIGURE 1.6 The cytoskeleton network is modeled as an infinite assembly
of elementary units labeled by the index i, each of them showing a relaxation
time 	i (a). In the ideal case, the relaxation times 	i are assumed to be exactly
distributed according to a power law. This distribution P0 is represented in
(b). To take into account natural dispersion, some units are randomly removed
from the ideal distribution. An example of the resulting distribution Pk is
represented in (c).

representations are equivalent because any given model can be reduced to an
equivalent series or parallel model [41]. Besides, it should be clear that it is not
because we consider viscoelastic elements in series that the complex filament
network of the cytoplasm is organized in such a way.

To explain why the distribution P(	i ) of relaxation times 	i is a power law,
we assume that the cytoskeletal structure in the cell is close to a self-similar
one. This assumption is especially supported by fluorescent images of the actin
cytoskeleton, showing similarities between the large stress fibers structures at
the scale of the cell and the structures of individual filaments at the nanometer
scale. The number of units having a given size l is taken proportional to l−
,
where 
 > 0 represents the fractal dimension of the network. Concerning the
dependence of the response time 	i with the size li of elementary units, it is
reasonable to assume that it is depicted by a simple scaling: 	i ∝ li

�. As a con-
sequence the distribution of times 	i in the cell will itself be a power law of 	i :

P(	i ) ∝ 	�−2
i (1.12)

with � = 1− 
/�. Actually, such a power law distribution is a commonly used
assumption in several models of complex viscoelastic solids [31]. This multi-
scale coupling between elasticity and dissipation processes is a main charac-
teristic of structural damping.

In our model, the exponent � of the power law is related to the fractal di-
mension 
 of the network and to the exponent � characterizing the dependence
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of the response time 	 on the scale l. Lacking more information about 
 and
�, it is not possible at this stage to make a quantitative prediction for �.

1.5.3 Discretization

The discretization of the population of relaxation times has no fundamental
effect on the resulting creep function. Indeed we show that the resulting creep
function J0(t) = � ji (	) is still a power law of time, provided the number of
units is high enough.

Let us assume that the relaxation times 	i of elementary units are exactly
distributed along the time axis according to 	i = 	m i (−1/(1−�)), with 0 < � < 1.
The label i varies from 1 to ∞, so that 	m represents the largest relaxation
time in the system. Figure 1.6b shows a schematic drawing of this distribution
P0. This form reduces in the continuum limit to a power law distribution
P(	) = di

d	
∝ 	�−2. In this limit, one recovers an exact power law for the

corresponding creep function J0(t) as obtained by integrating:

J̇0(t) =
∑

i

d j i

dt
∼=

∫ ∞

1

exp

(

−
t

	i

)

di

=

∫ 	m

0

exp

(

−
t

	

)

(1 − �)

(

	

	m

)�−2
d	

	m

= B0 t�−1

(1.13)

To evaluate the influence of the discrete character of the 	i distribution, we
have performed numerical simulations in which we calculated the value of J̇0(�)

as a function of the reduced time � = t/	m . The resulting function, shown in
Figure 1.7 (upper curve) for a typical value � = 0.20 of the exponent, was ob-
tained by summing 105 elementary units (i = 1 to 105). This covers six orders
of magnitude for the reduced response times 	i/	m . As expected, J̇0(�) is per-
fectly adjusted by a power law of exponent � − 1 = −0.8, in the range 10−6 <

� < 1. An increased number of elementary units would only extend the range
of validity of the power law at the smallest times: it is therefore unnecessary.

1.5.4 Randomization

To build a more realistic picture of the cytoskeleton dynamics, we assume
now that only a proportion p of the elementary units are actually present in a
given cell. Indeed, the response times 	i are very unlikely to follow the smooth
distribution P0 in a real cell. One has to take into account the dispersion of
results actually observed from one cell to the other. A given cell should then
be represented by its actual distribution Pk of time constants, constructed by
selecting, with a given probability p, a random set of relaxation times 	i from
the distribution P0.

An example of Pk distribution is schematically represented in Figure 1.6c.
Under these assumptions, the creep function Jk(t) of the k cell will be calcu-
lated from J̇k(t) =

∑

i pi
d j i

dt
, where pi is a Bernoulli random variable equal to

1 with a probability p and equal to 0 with a probability 1− p. The underlying
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FIGURE 1.7 Plot of the time derivative of the creep function d J/d�, nu-
merically calculated for the ideal power-law distribution P0 (top curve), and
for 20 more realistic distributions Pk (bottom curves) randomly extracted from
P0 as explained in the text. The time scale is normalized by the largest relax-
ation time in the cell 	m . The simulations involve 105 elementary units, and
the reference exponent in the distribution P0 is equal to 0.20. As expected, the
response function d J/d� corresponding to the distribution P0 exactly merges
into a power law (dashed curve) of exponent � − 1 = −0.8, in the range
10−6 < � < 1. For the distributions Pk , the response functions d J/d� are well
adjusted by power laws in the range 10−6 < � < 10−2, with a distribution
of exponents �k close to �. Adapted from M. Ballard, N. Desprat, D. Icard,
S. Fereol, A. Asnacios, J. Browaeys, S. Henon, and F. Gallet (2006). Power
laws in microrheology experiments on living cells: comparative analysis and
modeling. Phys. Rev. E 74:021911.

response times 	i remain distributed according to 	i = 	m i (−1/(1−�)). For each
distribution Pk , we then compute the new creep function Jk(t) and analyze
the distribution of Jk(t) over different Pk .

A set of numerical calculations of d J/d� versus the reduced time � = t/	m

are shown in Figure 1.7 (lower curves) for twenty different realizations of Pk

distributions (k = 1 to 20), with the same probability p = 0.1. These curves
show that, at least in the range 10−6 < � < 10−2, all the J̇k(�) functions behave
roughly as power laws of � and exhibit approximately the same exponent
� − 1 ≃ −0.8 as J̇0(�).
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1.5.5 Analysis of Results

Each curve J̇k(�) is fitted in the same range by a power law J̇k(�) = bk��k−1,
leading to an exponent �k and a prefactor bk for each realization k. For 500
realizations of Pk , the histograms of �k and bk are presented in Figures 1.8a
and 1.8b. The distribution of �k is a Gaussian centered on the value � = 0.20,
and the distribution of bk is log-normal.

The parameter �k corresponds to the scaling exponent � of the creep func-
tion for a unique realization of the simulation. Using the relation Jk(�) = bk

�k
��k

together with Equation (1.8), we can calculate the prefactor G0k correspond-
ing to the viscoelastic modulus at �/(2�) = 1 Hz of a unique simulated
cell (k):

G0k =
�k	�k−1

m (2�)�k

Ŵ(1 + �k)

1

bk

(1.14)

As long as the exponents �k remain close to the averaged value �, a log-
normal distribution for bk corresponds to a log-normal distribution for G0k ∝

1/bk . So far the model predictions are consistent with experimental data, in
which � and G0, experimentally measured on a given set of cells, respectively
follow a normal and log-normal distribution (Figure 1.5).

Actually, one parameter has been adjusted. The width of the distributions
calculated in the simulations depends on the drawing probability p. The par-
ticular value p = 0.1 has been chosen to match the standard deviations of
experimental data.

Another important feature emerging from these simulations is that the ex-
ponent �k and prefactor bk of the power law J̇k(�) are not independent pa-
rameters. The quantities ln(bk) and �k appear strongly correlated through
a linear relationship [2]. Numerically, the slope s = d(ln(bk ))

d�k
is found equal

to 9.8 for the choice of drawing probability p = 0.1. Numerical tests in-
dicate that s ≈ 10 ± 0.5 is almost independent of the choice of p in a
wide range: 0.01 < p < 0.8. It is noteworthy that the linear relationship
between ln(bk) and �k translates into an (approximate) linear relationship
between ln(G0k) and �k , such as:

d(ln(G0k))

d�k

∣

∣

∣

∣

�k=〈�〉

= −
d(ln(bk))

d�k

∣

∣

∣

∣

�k=〈�〉

+ ln(2�	m) +
1

〈�〉
− �(〈�〉 + 1),

(1.15)

where �(�) = d(ln(Ŵ(�))

d�
is the digamma function [15].

To step further into the comparison between the model and the data, one
may focus on the correlations between exponents �k and prefactors G0k . Fig-
ure 1.9 gathers the experimental data of ln(G0) versus � for all the C2 cells, as
determined either in optical tweezers or uniaxial stretching experiments. De-
spite a noticeable dispersion of the results, ln(G0) appears to be an increasing
function of the exponent �. This is consistent with the model, which predicts
a correlation between ln(G0k) and �k .
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FIGURE 1.8 Histograms of the distributions of the exponents �k and of
the logarithm of the prefactor ln(bk). These quantities are measured from
the numerically calculated curves d J/d� for 500 different realizations of Pk

distributions. The cumulated distributions and their best fits by erf functions
are also represented. They show that, according to this model, �k and bk are,
respectively, normally and log-normally distributed. Adapted from M. Ballard,
N. Desprat, D. Icard, S. Fereol, A. Asnacios, J. Browaeys, S. Henon, and
F. Gallet (2006). Power laws in microrheology experiments on living cells:
comparative analysis and modeling. Phys. Rev. E 74:021911.

Fitting a linear relationship between the experimental measurements of
ln(G0) and � in Figure 1.9, we obtain a slope d(ln(G0k ))

d�k
= 5.2. It is possible to

make this value consistent with the predicted value s = 10 by adjusting the
only unknown parameter in our model, 	m , which represents the longest relax-
ation time in the cell. This adjustment leads to 	m ≈ 3200 s for the C2 cell type.
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FIGURE 1.9 Plot of the experimental values of the prefactors ln(G0) ver-
sus exponents �, measured for C2 myoblasts. The data from optical tweez-
ers experiments (•) and stretching rheometer experiments (�) are plotted
together. Despite the dispersion of the results, ln(G0) appears to be an in-
creasing function of the exponent �. This is consistent with the prediction
of the model. Adapted from M. Ballard, N. Desprat, D. Icard, S. Fereol,
A. Asnacios, J. Browaeys, S. Henon, and F. Gallet (2006). Power laws in mi-
crorheology experiments on living cells: comparative analysis and modeling.
Phys. Rev. E 74:021911.

Since � = t/	m , the reduced time range 10−6 < � < 10−2 then corresponds to
a real-time range of 0.003 < t < 30 s, which exactly matches the experimental
range of our measurements. This reinforces the validity of our approach.

From the same analysis performed on our data on alveolar epithelial cells
A549 we infer that the highest response time is 	m ≈ 300 s for this type of
cell. Other experiments [14] yield a typical time 	m ≈ 3200 s. It is remarkable
that these estimates of the longest time responses in different cell types, de-
rived from different experiments, are roughly consistent with each other and
lie in the range of 5 min to 1 hr. Moreover, we emphasize that their common
order of magnitude is quite reasonable, as far as it effectively corresponds to a
typical relaxation time at the scale of the whole cell. Indeed, an independent
rough evaluation of 	m may be obtained by dividing a typical value of the
cytoplasm viscosity at long time scale (∼10 kPa.s) [32,39] by a typical Young
modulus (∼102 Pa) measured at the cell scale in quasi-static experiments. Be-
yond this time range, some macroscopic remodeling processes (treadmilling,
signalization cascades) are known to take place and to interfere with the cell
mechanical properties.
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1.6 Summary and Conclusions

This study makes a parallel analysis of the results obtained by two different
microrheological experiments on single living cells. It allows us to bring out
some striking common features in the mechanical properties of the cytoskele-
ton network.

First, as demonstrated by the data shown here and by numerous works
in the literature, the mechanical response function presents a quasi-universal
power law behavior, whatever the experimental technique and the cellular
type: the viscoelastic complex modulus of the cell is a weak power law function
of the exciting mechanical frequency f . Correlatively, the creep function of the
intracellular medium is a power law of elapsed time, with the same exponent
� ≈ 0.15–0.35. This demonstrates that there is no characteristic dissipation
time in the cellular response, or more precisely that these relaxation times are
broadly distributed over a wide time interval, extending at least from 0.01 to
100 s. This is a characteristic of structural damping, where the mechanisms
responsible for the storage of elastic energy and its dissipation are strongly
correlated.

Moreover, the prefactor of the response function, which represents the value
of the elastic modulus at a given reference frequency, varies by almost two
orders of magnitude, in the range 100 to 105 Pa, according to the cellular
type and to the experimental conditions. Interestingly, for a set of cells of
a given type, probed in the same experiment, the prefactor distribution is
found log-normal. A full discussion about the possible influence of several
physical or biological parameters, such as temperature, probe size, nature of
the mechanical receptor, and cell inhomogeneities, on the average value of this
prefactor can be found elsewhere [2].

The semiphenomenological model presented here is able to accurately pre-
dict the mechanical response of a living cell submitted to a controlled stress,
over a wide range of time scales. The mechanical behavior of the cell is mod-
eled by the association of a large number of elementary units, which account
for the different scales in the cytoskeletal network. Assuming that the struc-
ture of the network is self-similar, and that the dissipative time constants of
the units are distributed according to a power law, one recovers all the features
of the macroscopic behavior observed for different cell types. This approach
quantitatively accounts for the power law responses measured in different
rheological experiments, and also for the normal and log-normal distributions
retrieved for the exponents and prefactors. The largest relaxation time in the
cell, which is the only adjustable parameter of the model, is consistent with
other independent estimates. A further step will consist of interpreting the
dissipative elements in terms of elementary biological mechanisms, such as
molecular motor activity and crosslinker dynamics, which play a crucial role
in cytoskeleton remodeling.
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2.1 Introduction

Most living cells are able to perform a directed motion, either by swimming in
a liquid environment, by crawling on a solid support or by squeezing through
a three-dimensional matrix of fibers.

The speed of swimming bacteria can reach up to 100 �m s−1, whereas eu-
karyotic cell crawling can be as fast as 1 �m s−1 (Ref. [17] and references
therein). Given their size and speed, the motion of single cells is governed by
viscous forces, not inertia; that is, the Reynolds number Re ≪ 1.

Unicellular organisms move in search of a food or light source. Intracellular
pathogens like bacteria or viruses spread by exiting their host cell and entering
a neighboring cell. Other simple organisms like the slime mold Dictyostelium

discoideum migrate under unfavorable conditions (e.g., starvation) toward an
aggregation center to form a multicellular organism.

Typically in a multicellular organism, not all cells are motile all the time
but they can be mobilized by the appropriate stimuli. For example, the ability
to move plays a crucial role during embryonic development, in wound healing,
and in the immune response. Additionally, cellular motility is a prerequisite
for metastasis formation during cancer development.

The biological realizations to produce a propulsive force are diverse. Most
swimming cells (e.g., sperm cells or the bacterium Escherichia coli) use one
or multiple beating flagella,1 respectively. In contrast, crawling cells and some
intracellular pathogens advance by actin polymerization.

In this chapter we present recent experiments and concepts to understand
the latter mechanism, the production of forces in the advancing edges of crawl-
ing cells or for the propulsion of intracellular organelles, which is also of fun-
damental interest for the medical and engineering sciences.

The foundation of the research of cell motility as a distinct discipline was
laid in the 1970s by the group around Michael Abercrombie [1]. He was the
first to divide the motion of fibroblasts2 into three phases: extension, adhesion,
and contraction, which form the dogma of cellular motion as it is recognized
today. In this mechanism, a slow movement (∼1 �m min−1) is generated by
the extension of flat membrane sheets, lamellipodia, in the direction of move-
ment. The advancement of the membrane is accompanied by the formation
of focal adhesions, contacts among the substratum, the cell membrane, and
actin stress fibers. Finally the cell rear retracts, accompanied by a de-adhesion
of the membrane from the substratum.

However, there exist variations of this dogma. Fish keratocytes3 perform a
rapid continuous motion (∼10 �m min−1) with a constant shape. They almost
seem to glide over the surface and form only transient focal contacts with the

1Long cellular extensions.
2Most common cells of connective tissue in animals.
3Fish scale cells.
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substratum with a much shorter lifetime than the focal adhesions formed in
fibroblasts [3].

Another variant is the rapid motion (∼10 �m min−1) of the slime mold Dic-

tyostelium discoideum, which moves in amoeboid fashion. During this amoe-
boid motion, only non-specific contacts with the substratum are formed and
actin stress fibers are absent [18].

Despite the various mechanisms, cell motion requires first the self-
organization of the cell into an advancing and receding edge. This manifests
itself by different molecular concentrations or activation levels of enzymes at
the two poles. The polarization can be guided by external signals (e.g., chemi-
cal gradients or a variation in the mechanical properties of the support), but it
might also arise in a homogeneous environment, after a transient mechanical
perturbation of a stationary symmetric cell [60].

The three processes—extension, adhesion, and contraction—are coupled by
sophisticated and complex mechanisms. However, it seems as if the process of
front extension relies on a completely different machinery than the mechanics
of adhesion and contraction and can be studied separately.

It had been known for a long time that on a cellular level, forces can be
generated on the basis of muscle-like proteins (i.e., actin and myosin), which
are indeed responsible for the contraction of the cell rear [27]. However, more
recently it was discovered that the protrusions at the leading edges as well as
the motions of intracellular organelles [29] or pathogens, like the bacterium
Listeria monocytogenes [53] or the Vaccinia virus [13], can be associated with
the so-called actin polymerization machinery [52] as shown schematically in
Figure 2.1. The molecular basis and minimal ingredients of the actin poly-
merization machinery are now very well understood based on biomimetic ex-
periments by the group of Marie-France Carlier [33]. However, a theoretical

Eukaryotic cell

Bacterium/virus

FIGURE 2.1 Actin polymerizes into an elastic filament network (shaded
in dark gray) at the leading edges of motile eukaryotic cells or at the outer sur-
faces of pathogens and organelles, and induces cellular motion. The direction
of motion is indicated by the black arrows.
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understanding of the physical mechanisms of the polymerization process is
still a matter of debate and is the main topic of this review.

In Section 2.2 we outline the biochemical basis of actin polymerization
and present a selection of experimentally observed phenomena. We present
the processes taking place at the leading edges of locomoting cells and then
mainly rely on biomimetic experiments. In Section 2.3 we present some theo-
retical concepts to interpret and explain the existing experiments. The list of
presented models is by no means complete but rather represents a selection
of the leading ideas. We focus on the class of Brownian ratchet models and
macroscopic models of symmetry breaking.

2.2 Experimental Observations

2.2.1 Biochemistry of Actin Polymerization and Organization

of Leading Edges of Advancing Cells

Actin is a small globular protein of 42 kDa present in all eukaryotic cells [51].
Under physiological conditions, actin monomers (G-actin) polymerize into
long helical filaments (F-actin). In a living organism these polymerization
or depolymerization processes are tightly regulated. The literature on the
dynamics of actin and the proteins that interact with actin is vast. As an
introduction we refer the reader to the comprehensive biochemical reviews
by Pollard et al. [46,47] and Rafelski et al. [49] and the books by Bray [7]
and Howard [26]. Due to the limited scope of this chapter, we only present
the basic phenomena and common terminology associated with the actin poly-
merization machinery, which will allow the reader to understand the pertinent
questions and concepts.

2.2.1.1 Actin Polymerization in vitro

Under physiological conditions, that is, at an ionic strength of approximately
100 mM, monomeric actin polymerizes spontaneously into filaments. The fil-
ament growth typically starts with a nucleation process, since actin dimers
and trimers are unstable. Shortening or elongation of existing filaments occurs
predominantly via subunit addition or subtraction at the filament ends and
not via filament breaking or annealing processes. Actin monomers at a con-
centration c may bind to a filament end with a rate ∼ k+c and dissociate with
a rate ∼k−. In a stationary situation (i.e., zero net growth of the filament),
one can write:

0 = k+c − k− (2.1)

The concentration cc = k−/k+ associated with this equilibrium is called the
critical concentration.
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ADP

ATP

Actin

Barbed end Pointed end

FIGURE 2.2 Actin subunits treadmill through a filament. ATP-actin poly-
merizes at the barbed end, ATP hydrolyzes, and ADP-actin depolymerizes at
the pointed end. In the solution, ATP is exchanged for ADP at the monomers.

G-actin has a structural polarity [25]. The same polarity is also found in
actin filaments and can be visualized as an arrowhead pattern by decoration
of filaments with myosin.4 From this arrowhead pattern the two filament ends
are referred to as pointed and barbed, respectively, as shown in Figure 2.2.

In the presence of Mg-ATP the structural difference translates into a dif-
ference of the critical concentrations and rate constants between the barbed
and pointed ends and causes a treadmilling of subunits through the filament.

Briefly, this phenomenon can be explained as follows (for details see Ref.
[46]). Most actin monomers are bound to ATP (typically Mg-ATP). The crit-
ical concentration for this ATP-bound species is about six times lower for the
barbed end than for the pointed end. For ADP-actin, the critical concentra-
tions are about the same for both ends but about ten times higher than for
ATP-actin at the barbed end. Therefore, in the steady state the ATP-actin
concentration is above the critical concentration of the barbed end and be-
low the critical concentration of the pointed end. Polymerized actin subunits
are still bound to ATP but in the course of time ATP hydrolyzes irreversibly
into ADP+Pi and, later on, the inorganic phosphate Pi dissociates from the
filament with a half-life of several minutes. Consequently, ATP-actin polymer-
izes at the barbed end, travels along the filament whereby ATP is hydrolyzed
and finally ADP-actin depolymerizes at the pointed end. Figure 2.2 shows
schematically the key processes of the treadmilling cycle.

The process of irreversible ATP hydrolysis and Pi release (and subsequently
the exchange ADP → ATP at the actin monomer in solution) keeps the system
out of equilibrium and allows for a constant flux of monomers through the
filament at constant filament length, which forms the basis of cellular motility.

4Myosin molecules bind to each actin subunit in the filament in an oriented fashion, leading
to a typical pattern along the filament, which looks like a series of arrowheads in an electron
micrograph. For details see Ref. [7].
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2.2.1.2 Proteins that Regulate Actin Polymerization in vivo

In the living cell the actin polymerization machinery is tightly regulated by
signaling processes. Many different factors interact with actin or participate in
the regulation of this polymerization machinery. In the following paragraphs
we only discuss the relevant factors that determine the actin architecture of
the leading edges of advancing cells or the actin comets formed by intracellular
pathogens and seem crucial to generate motion.

First of all, most actin monomers are bound to so-called monomer binding
proteins, for example, thymosin-�4 and profilin, and are thus not able to
nucleate new filaments. But profilin-ATP-actin complexes elongate existing
filaments at the barbed end nearly as efficiently as ATP-actin.

Electron micrographs of the leading edge show a dense network of actin fila-
ments linked to each other by Y junctions, where a new filament grows from an
existing filament at a 70◦ angle. The distance between two crosslinks is of the
order ∼20 to 30 nm (in comparison, the persistence length of actin filaments is
15 �m [42]). This Y junction is initiated by the interaction of the Wasp/Scar
protein and the Arp2/3 complex, whereby Wasp/Scar is a membrane-bound
protein that incites the binding of the Arp2/3 complex to an existing filament,
which in turn then serves as a nucleation point for a new filament.

Free barbed filament ends are quickly covered by so-called capping proteins,
thus limiting filament elongation to a zone near the plasma membrane. At
the pointed filament end, depolymerization takes place. This process can be
accelerated by a protein complex called ADF/cofilin, which is able to sever old
filaments containing ADP-actin subunits. These filament fragments are then
depolymerizing rapidly. Besides Arp2/3 there exist other types of filament
nucleators, called formins. In the presence of profilin and ADF/cofilin, they
seem to favor the growth and bundling of several actin filaments into cables
[38], present in spike-like membrane extensions called filopodia. In this chapter
we limit discussion to actin networks produced by the Arp2/3 complex.

The above outlined process of polymerization at the membrane/actin net-
work interface and depolymerization far away from the membrane provides the
mechanism for pushing the membrane in the direction of movement. However,
little is known about the mechanical properties of such filament networks, and
recent experiments indicate that the loading history determines the growth
velocity of the network [43].

Certain bacteria invade other living cells and hijack the actin polymeriza-
tion machinery of their host cells to propel themselves forward. They carry a
protein on their outer surface (e.g., ActA for Listeria monocytogenes), which
adopts the same function as the Wasp/Scar protein in the membranes of eu-
karyotes: It triggers the polymerization of an Arp2/3 crosslinked network at
the outer bacterial surface. This actin network typically develops asymmet-
rically only at one side of the bacterium, thus pushing the bacterium in the
other direction.

A similar mechanism might also be responsible for the motion of endocytic
vesicles in living cells (see [29] and references therein).
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To summarize the growth processes and the resulting architecture of the
actin system at the leading edge: near the cell membrane containing an acti-
vating enzyme (e.g., Wasp or ActA), actin polymerizes into a dense crosslinked
filament network, which extends several micrometers into the cell and where
fast polymerizing barbed ends are oriented toward the membrane. Polymer-
ization is restricted to a narrow zone near the membrane because free barbed
ends are rapidly blocked by capping proteins. Free pointed ends that are
far away from the membrane are depolymerizing. These, out of equilibrium
growth processes driven by the irreversible hydrolysis of ATP, lead to the
extension of membrane protrusions or propel bacteria forward.

2.2.2 Biomimetic Experiments

2.2.2.1 General Observations

The minimal set of biochemical ingredients to induce actin-driven motion
were identified about 10 years ago [33]. At the same time actin-driven mo-
tion has been successfully reconstituted in vitro by replacing the bacterium
with mimetic objects: for example, beads [11,41,62], vesicles [23,35,56], or
droplets [6].

In these experiments, objects (hard, soft, fluid) coated with either ActA or
Wasp/Scar proteins are added to a solution containing ATP, actin, the Arp2/3
complex and a few well-defined regulatory proteins. With this design, actin
polymerizes predominantly at the surface of the object, that is, the internal
interface, and depolymerizes at the interface between the network and the
solution, that is, the external interface.

After an initial phase (i), where polymerization occurs symmetrically
around the object, the symmetry is broken and the actin cloud starts to
grow asymmetrically (ii). In later stages an actin comet develops (iii), and the
object starts to move with velocities up to 0.1 �m s−1. A schematic represen-
tation of the three phases of the actin cloud evolution is shown in Figure 2.3.

(i) (ii) (iii)

FIGURE 2.3 Schematic view of the evolution of an actin gel (external
shades) around a bead (gray) as described in the text with (i) symmetric
growth, (ii) symmetry breaking, and finally, (iii) comet formation.
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Interestingly the mode of movement depends on the surface parameters of
the object. Depending on the conditions, one can observe a continuous mo-
tion or a saltatory motion, where the object undergoes stop-and-go cycles
[5,14,31,55], which is also reflected by variations in the actin density in the
comet.

The network grown around these biomimetic objects has elastic properties
with a Young’s modulus of 103 to 104 Pa [20,36] and is often referred to as an
actin gel.

The actin filaments interact, at least transiently, with the activating enzyme
bound to or adsorbed on the object’s surface: for example, the stress to detach
an actin comet from a bead has been estimated to be about 100 pN �m−2 [36],
whereby the adsorbed activating enzyme stays on the bead. Interestingly, in
the same experimental set-up, actin comets under compression appeared to
be hollow.

In the regime of continuous motion the bead velocity is not affected by
the viscosity of the medium (over five orders of magnitude). This raises the
question of the dissipative force, which is obviously not the Stokes force on
the object (about 1 fN for a bead of 1 �m radius moving with a velocity of
1 �m min−1 in a standard motility assay. In contrast, the stalling force for the
growing actin tail is a few nN [nanonewton] [36,48]). Several studies indicate
that friction between the actin gel and the propelled object is the major source
of dissipation [19,61]. This would support the hypothesis that the saltatory
bead or vesicle motion is the result of a stick–slip motion, where a certain
critical force must be overcome to rupture bead–gel bonds and to displace the
object with respect to the gel [4,19].

2.2.2.2 Symmetry Breaking

Biomimetic experiments are not only effective tools to study the genera-
tion of motion by polymerization but they have also revealed a spontaneous
symmetry-breaking instability in the growing actin network (transition from
(i) to (ii) in Figure 2.3), whose consequences in vivo are not clear and whose
nature is still a subject of debate in the literature.

Even though, as often argued by biologists, symmetry breaking does not
play a role in bacterial systems, because the ActA proteins are distributed
asymmetrically around the bacterium due to a previous cell division, the in-
stability is a powerful tool to study the coupling mechanisms between actin
polymerization and mechanical stresses.

So far there seems to be a consensus in the literature that mechanical
stresses build up in the actin network due to growth, because new monomers
are inserted at the internal curved interface and push older network layers
away from the object. In a symmetric situation one expects therefore high
tangential stresses at the external actin/solution interface and high normal
stresses at the internal object/actin interface. Then the symmetry breaking is
driven by a release of elastic stresses in the actin gel, either by an asymmetric
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polymerization/depolymerization or by a fracture at the external gel interface,
whereby the two mechanisms are difficult to distinguish.

There seem to exist subtle differences in the nature of the symmetry break-
ing for hard [11,41,62] and soft objects [23,35,56], as demonstrated in a more
recent study [14]. In fluorescence labeling experiments it was shown that for
soft objects (vesicles) the symmetry is broken at the internal gel interface,
that is, polymerization is considerably slowed down on one side of the vesicle,
such that an actin tail develops at the opposite side. In contrast, for hard
beads the symmetry is broken at the external (depolymerizing) gel interface,
whereby some authors suggest that the filament network is ruptured due to
an accumulation of tangential stresses [58]; whereas theoretical models in-
dicate that a local stress-dependent depolymerization is sufficient to induce
symmetry breaking [28,50]. Note however that actin-driven motion alone does
not require the polymerization at curved surfaces, as has been demonstrated
theoretically [12].

Furthermore, the mechanical properties of the biomimetic object have an
effect on the mode selection of the instability. Whereas for soft objects only
instabilities, which produce one single actin tail, have been reported, there
are observations of higher-order instabilities for hard spheres, depending on
the experimental conditions [14]. Therefore, the boundary conditions at the
internal gel interface seem crucial for the mode selection.

2.3 Theoretical Approaches

Two types of theoretical concepts to explain how polymerization processes
transform biochemical into mechanical energy have been developing in parallel
over the past 15 years.

The first concept, called “Brownian ratchet models,” was introduced by Pe-
skin et al. [44]. Its major postulate is that polymerization processes (e.g., actin
polymerization) are able to rectify the Brownian motion and can thus induce
motion. Brownian ratchet models describe microscopically the polymerization
of actin filaments in the presence of an obstacle. Although very consuming of
computational efforts, Brownian ratchet models allow for the incorporation
of a very detailed description of the kinetics of the polymerization machinery.
They provide ingenious tools to study the complex phenomena that have been
observed in biomimetic experiments.

The second type we refer to as the macroscopic concept does not focus so
much on the dynamics of the single filament, but rather considers the actin
filament network as a continuous elastic body under growth, where the growth
dynamics is driven by a thermodynamic force, the chemical potential. These
coarse-grained models emphasize the global stress distribution in the filament
network and the nonlocal aspect of elasticity, while neglecting the details of the
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polymerization process. Nevertheless, they are more suitable to describe the
symmetry breaking in actin gels around spherical objects in terms of simple
physical ingredients.

The ideal multiscale model would combine both concepts and use the global
stress distribution as an input for the complex polymerization kinetics at the
free interfaces.

In the following subsections we briefly review the two concepts. In the first
subsection on Brownian ratchets we mainly discuss Refs. [16,21] as they pro-
vide, from our point of view, the most advanced description for the polymer-
ization dynamics close to the obstacle. In the second subsection on macro-
scopic models we briefly outline and discuss the major drawbacks of Refs. [50]
and [28] and then give a perspective on how these problems can be solved
using homogenization techniques.

2.3.1 Brownian Ratchet Models

2.3.1.1 General Concept

As mentioned above, the idea of a Brownian ratchet model for polymerization
forces in biological systems was introduced by Peskin and co-workers [44].
This work explored the rectification of Brownian motion of a particle by the
intercalation of new monomers at the interspace between a filament tip and
the particle, which gives an ideal ratchet velocity v of

v =
2D

�
(2.2)

where D denotes the diffusion coefficient of the particle and � the size of a
monomer. However, later on it was shown that the actin-driven motion was
relatively independent of the particle size [24] and independent of the viscos-
ity of the medium over several orders of magnitude [61], that is, independent
of D. Therefore, the concept of Brownian ratchets was generalized to “elastic
Brownian ratchets,” where the tips of polymerizing filaments undergo fluctua-
tions, which induce a propulsive force on the obstacle [39,59] and to “tethered
ratchets” [40], which involves also the transient attachment of fluctuating fil-
ament tips to the obstacle. Typically in this description the polymerization
rate constant kp is weighted by the load f using Kramers theory

kp = kmax
p e− f �/kB T (2.3)

where kmax
p is the rate constant at zero load, � represents the gap size to

intercalate a monomer, and kB and T denote the Boltzmann constant and the
absolute temperature, respectively.

The general framework has been used to quantitatively model the steady
motion of flat objects [12], lamellipodia, and bacterial motion [39,40]. However,
stochastic effects in the number of polarizing filaments were necessary to break
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the symmetry in a spherical gel around a bead homogeneously covered by
ActA or Wasp, whereas the global elastic stress distribution due to filament
crosslinking was neglected [40,59].

Other attempts to model biomimetic motility quantitatively by explicitly
modeling the filament dynamics in the actin tail succeeded in obtaining the
crossover from a continuous to a hopping motion [2,8]. However, the veloc-
ity oscillations were on a time scale of milliseconds with step sizes of a few
nanometers, as opposed to the experimental oscillations on the scale of several
minutes with step sizes on the micrometer scale [5,14,31,55].

More recently, the tethered ratchet model of Mogilner et al. [40] was submit-
ted to more rigorous treatment concerning the polymer physics of the filament
brush close to the obstacle [16,21]. Further away from the obstacle the cross-
linked gel is advancing with a so-called grafting speed (force-dependent and
coupled to the brush length). In the following we highlight the basic features
of this model because it quantitatively reproduced velocity oscillations.

2.3.1.2 Quantitative Model for Velocity Oscillations in Actin-Based

Motility

As mentioned previously, the motion of a mutant form of the bacterium Liste-

ria (with a mutation in the ActA protein) is oscillatory and shows remarkable
temporal patterns [19,31]. The bacteria move very slowly for 30 to 100 s, jump
forward during a few seconds, and then slow down again abruptly. Such pe-
riodic behavior, consisting of long intervals of a slowly changing dynamics
that alternate with short periods of very fast transitions is found in several
chemical and biological systems and is known as relaxation oscillation [30].

Gholami et al. [21] and Enculescu et al. [16] have developed a microscopic
model based on the concept of tethered elastic ratchets for actin-based motil-
ity. Their model consists of a brush of growing actin filaments close to an ob-
ject (the bacterium) and describes the generation of forces and consequently
the propulsion of the object (Figure 2.4).

Briefly, the model considers the case of fluctuating filaments close to an
obstacle. Filaments may attach to the obstacle with a rate constant ka and
detach from the obstacle with a force-dependent rate constant kd , resulting in
two distributions of populations of filaments, that is, of attached and detached
filaments na and nd , respectively. Opposite the obstacle, the filament ends are
anchored in a crosslinked network, the actin gel. Detached filaments poly-
merize with a load-dependent velocity vp. The distance between the grafting
point (i.e., the interface between the network and the polymer brush) and the
obstacle is denoted by �. The filaments are characterized by their free contour
lengths l. One of the crucial ingredients of the model is that the grafting point
is advancing in the direction of the obstacle with a so-called grafting velocity
vg, which depends on the free contour lengths of the polymers by

vg(l) = vmax
g tanh (l /̄l) (2.4)
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FIGURE 2.4 Schematic representation of the elastic ratchet model as ex-
plained in the text. Filaments are anchored with one end into a crosslinked
network forming an actin gel and oriented with the other end against an
obstacle. Adapted from M. Enculescu, A. Gholami, and M. Falcke (2008).
Dynamic regimes and bifurcations in a model of actin-based motility. Phys.

Rev. E 78:031915, and A. Gholami, M. Falcke, and E. Frey (2008). Velocity
oscillations in actin-based motility. New J. Phys. 10:033022.

where l̄ denotes a characteristic width of the interface between the crosslinked
network and the filament brush.

Attached and detached filaments exert entropic forces [22] on the obstacle,
Fa(l, �) and Fd(l, �), respectively, which lead to the propulsion of the object
with an effective friction coefficient �.

The load dependence of the kinetic rate constants is again included using a
Kramers-type expression [see Equation (2.3)]: that is,

kd(Fa) = k0
d exp(−� Fa/kB T ) (2.5)

for the detachment and

vp(l) = vmax
p exp(−�Fd/kB T ) (2.6)

for the polymerization speed.
The full evolution of the length distributions of the two filament populations

na(l, t) and nd(l, t) is described by advection reaction equations. However, it
is shown that the two distributions contract rapidly on the scale of 10−2 s
into monodisperse distributions Na = na(t)�(l − la(t)) and Nd = nd(t)�(l −
ld(t)) localized at la and ld for attached and detached filaments, respectively.
Therefore, the dynamics of the system can be simplified to four ordinary
differential equations for the evolution of the free contour lengths la(t) and
ld(t), respectively; the number of attached filaments na(t) (the total number
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of filaments N is constant and therefore nd(t) = N − na(t)); and the distance
�(t) between the obstacle and the grafting point.

The solution behavior of this system of equations has been analyzed numer-
ically depending on the maximal grafting speed vmax

g and the rate constant for
the attachment of filaments ka . Fortunately, most other model parameters are
known experimentally. The model displays two different dynamical regimes:
steady and oscillatory motion, whereby the oscillatory regime is robust against
changes in the parameters. The oscillations occur on the time scale of minutes
and produce jumps of the obstacle displacement in the micrometer range and
very much resemble relaxation oscillations.

A deeper analysis of the solutions suggests that the oscillations arise from
a so-called push–pull mechanism, that is, a competition between pulling and
pushing forces acting on the obstacle. In this mechanism, a long pull phase,
where most of the filaments are attached to the obstacle and polymerization
stalls, alternates with a short push phase, where most filaments are detached
and polymerize rapidly. In the pull phase the grafting velocity vg is higher
than the polymerization speed vp, and the magnitude of the forces on the
obstacle increases due to their dependence on �, la , and ld . At a certain point
in the pushing phase, the pushing forces outweigh the pulling forces and cause
an avalanche-like detachment of filaments and the obstacle “hops” forward,
lowering the load on the detached filaments, which start to polymerize rapidly
and thus vg < vp. Meanwhile free filaments start to attach to the obstacle and
increase the pulling force, that is, the obstacle slows down. Free filaments start
to buckle, the polymerization stalls, and the cycle reenters the pulling phase.

Obviously this complex cycle arises from the subtle interplay between push-
ing and pulling forces on the one hand, and the grafting and polymerization
velocities on the other hand. It would be an interesting task to explore the
parameter space further and identify the absolutely necessary ingredients to
find oscillations in the push–pull mechanism.

Besides steady and oscillatory motion, the model also yields bistable and
excitable behavior, which might lead to the reinterpretation of previous ex-
periments and is reminiscent of the behavior caused by nonlinear friction in
a variety of systems with complex surface chemistry [57]. Another aspect for
future work is to couple the microscopic dynamics of the filament brush to
the bulk mechanics of the crosslinked gel.

2.3.2 Macroscopic Models

While microscopic models give a detailed description of the polymerization
and crosslinking dynamics, macroscopic models are more concerned about
the global stress distribution in the gel, but adopt a more general formu-
lation for the interface dynamics. In the following we briefly introduce and
discuss the essence of three simple models—by Lee et al. [32], Sekimoto
et al. [50], and John et al. [28]—describing the symmetry breaking in an actin
gel around a solid bead. We conclude this section with the discussion of a
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more advanced mechanical model using homogenization techniques proposed
by Caillerie et al. [10].

2.3.2.1 Phenomenological Model of Symmetry Breaking

As an introduction we present the problem of symmetry breaking from a
purely phenomenological point of view as proposed by Lee et al. [32]. If a bead
moves, it is natural to assume that a force is applied on the bead, probably
due to deformed filaments that release stress on the bead. Let g(r, t) denote
the force per unit area in the normal direction that is exerted on the bead,
which could be, for example, a function of the local actin concentration. The
total force on the bead is given by F =

∫

g(r, t)nd A, with n being the unit
normal vector on the bead. The velocity of the bead is related to the total
force via a linear relation

v = �F = �

∫

g(r, t)nd A (2.7)

where � is a dissipative coefficient, taken to be scalar for simplicity (it is
necessarily so for a sphere in a Newtonian fluid).

It is then assumed that the rate of change of g(r, t) is a local function of
the bead velocity v, and that there is a feedback of the motion on the force
g: faster motion is associated with a decrease in polymerization in the front
and an increase of polymerization at the rear, and hence has an impact on g.
Under the assumption of analyticity, the evolution of g can be written as

∂t g = −g − g2 − cg3 + av · n + bgv · n (2.8)

with c > 0 in order to ensure stability of the homogeneous stationary state
g = 0. The signs of a and b are left arbitrary for the moment. Equations
(2.8) and (2.7) constitute a complete set that can be solved numerically or
analytically using a perturbation ansatz as outlined in the following.

It is a simple matter to see that the set [Equations (2.8) and (2.7)] admits
the fixed point g = v = 0. By superposing small perturbations on this so-
lution, reporting into the above set, and expanding up to linear order in the
perturbations, one finds that the fixed point is unstable for a > 3/� ≡ ac and
stable otherwise. If motion takes place then this means that a symmetry break-
ing has occurred, and thus the local force g has lost the spherical symmetry.
More precisely, by expanding g in spherical harmonics, g =

∑

ℓm gℓmYℓm(�, �),
and reporting into Equation (2.8) by assuming a direction of motion, say along
oz, one finds to leading order

∂t gℓm =

[

1 −
a

ac

�ℓ1

]

gℓm + · · · (2.9)

whereby the “· · · ” refers to nonlinear terms. Integration of harmonics other
than the mode ℓ = 1 in (2.7) vanishes exactly due to symmetry. Beyond the
symmetry breaking bifurcation for a > 3/� the perturbations grow exponen-
tially in time, and nonlinear terms are needed. Because only the mode ℓ = 1
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FIGURE 2.5 Phase diagram arising from the analysis of Equation (2.10).
The transition between the stationary (white region) and moving (light shaded
region) state occurs at a = ac. For bc1 < b < bc2 the bifurcation is super-
critical. In the dark shaded region there coexist two solutions v = 0 and
v = const �= 0 that are linearly stable. Adapted from A. Lee, H.Y. Lee, and
M. Kardar (2005). Symmetry breaking motility. Phys. Rev. Lett. 95:138101.

is excited, the other modes are treated as adiabatically enslaved to it (at least
in the vicinity of the threshold). The following analysis consists of expand-
ing the solution for higher-order terms and expressing the amplitudes of the
higher harmonics in terms of the amplitude of the first-order mode. Once g

has been replaced by v from Equation (2.7) and inserted into Equation (2.8),
a closed equation for v (which is simpler to assess experimentally than g) is
obtained [32]:

∂tv = Av +
27

5�2

[(

�b

3
− 1

)

+

(

�b

3
− 2

)

− c

]

v3 + uv5 (2.10)

A ≡ (1 − a/ac) is a small parameter (expressing the fact that we focus on
the instability threshold), and we have used the convention v3 = v2v, and
so on. The expression of u in terms of the coefficients a, b, c, and � is not
shown here. However, it is reported in [32] that u is negative in the considered
parameter space. The amplitude equation (Equation (2.10)) serves to discuss
the phenomenology of the motion, which we briefly summarize here and which
is shown schematically for the b − a − parameter plane in Figure 2.5.

If the coefficient of the cubic term is negative, then a continuous transition
from the symmetric (motionless) to the asymmetric (moving) state occurs
at A = 0, that is, the bifurcation is supercritical (an analog of a second-
order transition). This happens for a certain range of the product �b and
by fixing c to unity for definiteness. For a certain range of the product �b,
the cubic coefficient changes sign, a signature of a subcritical bifurcation (an
analog of a first-order transition). This is known to lead to multistability:
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in a certain parameter range for A < 0 there coexist two solutions: v = 0
and v = const, both solutions being locally stable (i.e., stable with respect to
small perturbations). One might think that the system may switch back and
forth between the two solutions.

Several remarks are in order:

1. The above discussion is fully phenomenological, and actually Equation
(2.10) could have been written directly. However, the derivation given
in [32] has certain merit with regard to the description of the general
laws behind the motion, and the feedback mechanism.

2. The coefficients are certainly complicated functions of experimental pa-
rameters, and a microscopic model is needed to relate phenomenological
and experimental parameters.

3. The origin of the forces acting on the bead and the subsequent genera-
tion of motion in this model is not clear. We return to this vital question
in the final conclusions.

2.3.2.2 Role of Tensile Stress during Symmetry Breaking

in Actin Gels

A first physical macroscopic model including elasticity was put forward by
Sekimoto et al. [50] to explain the birth of symmetry breaking of an initially
symmetric gel layer growing on a spherical or cylindrical object. The crux of
their analysis is that the gel that has been formed is continuously pushed out-
ward due to the arrival of new monomers at the bead. This is supposed to lead
to large lateral stresses on the outer gel interface. A schematic representation
of the model is shown in Figure 2.6. In the following we outline the model in

(a) (b)

r0 r0

θ0 θ0

σrr

σττ
σθθ

h0
h(θ)

θ(θ0)

FIGURE 2.6 Schematic view of a bead surrounded by an elastic gel, show-
ing several definitions as explained in the text. Shown is a symmetric gel (a)
and an asymmetric gel (b). In the latter case the tensile stress is rather gen-
erally denoted by 	

 with 
 designating the tangent direction.
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a cylindrical geometry. If 	�� designates the tangential stress, and if the gel
layer is axisymmetric, it is postulated that

	�� = E
r − r0

r0
(2.11)

where E is Young’s modulus and r denotes the distance to the center of the
cylinder. At r = r0 (the cylinder radius) the tensile stress vanishes, expressing
the assumption that the gel layers are added unstretched at the bead surface.
If h denotes the total gel thickness, one can write for the tensile stress at
the external gel surface 	��|r=r0+h = E h

r0
. The external surface of the gel is

not subject to a force, so that both the tangential and normal forces must
vanish; that is, 	r�|r=r0+h = 	rr |r=r0+h = 0. The tangential force is also zero
at the cylinder surface, 	r�|r=r0

. For a symmetric gel the shear stress vanishes
everywhere in the gel. If a non-zero tensile stress exists (Equation (2.11)), the
mechanical equilibrium in the bulk, that is,

div(	) = 0 (2.12)

provides the following relation between the tensile and radial stress distribu-
tion, 	�� and 	rr ,

	rr =
E

2r0r

[

(r − r0)
2 − h2

]

(2.13)

The gel may grow because of a gain in polymerization energy at the cylinder
surface. This growth takes place at a certain price: the higher the thickness of
the gel, the larger the stored elastic energy. Therefore, one expects the growth
to stop at a certain equilibrium thickness h0. The following growth kinetic
relation has been suggested [50]:

∂t h = kpecp	rr |r=r0 − kdecd 	��|r=r0+h (2.14)

where kp, kd , cp, cd are positive constants. The first term, which is positive,
accounts for the polymerization at the cylinder, while the second one, which is
negative, refers to depolymerization at the external surface. Note that on the
one hand 	rr |r=r0

= −Eh2/(2r2
0 ) < 0, and thus stress penalizes polymerization

and acts against gain in chemical bonds at the cylinder. On the other hand
	��|r=r0+h > 0 and this causes the depolymerization to increase with the gel
thickness because 	��|r=r0+h increases with h. Setting ∂t h = 0 provides us with
the steady-state thickness h0 as a function of other parameters. One finds that:

cp

cd

(

h0

r0

)2

+
h0

r0
−

2

cd E
ln

(

kp

kd

)

= 0 (2.15)

A steady solution exists as long as kp/kd > 1. It can easily be checked that the
steady solution h0 is stable with respect to a homogeneous (i.e., axisymmetric)
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increase or decrease in h0. One further sees that h0 is a linear function of r0

because only the ratio h0/r0 enters into Equation (2.15). This seems to be in
good agreement with experimental observations [41].

Let us now discuss the linear stability analysis of the steady solution with
respect to perturbations that break the circular symmetry. In a cylindrical
geometry the eigenmodes are ∼ eim�0 (or cos(m�0) in real variables), where
�0 is the angular variable shown in Figure 2.6 and m is an integer. Because
the equations are autonomous with respect to time, all the eigenmodes can
be written as ∼ e�t , where � is the amplification or attenuation rate of the
perturbation that must be determined from the model equations. We set the
perturbed thickness as

h(�0) = h0[1 + Am(t) cos(m�0)] (2.16)

Am is a small, time-dependent quantity that justifies the linear stability anal-
ysis. The stress field inside the gel will thus be parametrized by the function
h(�0). The linear analysis now consists of (1) solving the stress field in the gel
with the appropriate boundary conditions, and (2) using the kinetic relation
(Equation (2.14)) to obtain the dispersion relation � = f (m, p), where p is an
abbreviation for all the physical and geometrical parameters that enter into
the equation.

To solve for the elastic field, one needs to specify a constitutive law. Unlike in
the two models [10,28] we discuss in the following sections, where a constitutive
law is used by evoking basic continuum mechanics concepts, the Sekimoto
et al. model [50] is based on an extension of the postulate represented by
Equation (2.11) to a modulated thickness h(�0). The basic ingredient of their
analysis is to introduce an unknown function �(�0) such that a material point
of the gel that is originally located at �0 in an undeformed reference state is
moved to a new position �(�0) upon deformation. Then the elongation ratio
(r − r0)/r0 is replaced by (r d�(�0)− r0 d�0)/(r0 d�0) so that the tensile stress
takes the form

	�� = E

[

r

r0

d�(�0)

d�0
− 1

]

(2.17)

Using the equilibrium balance condition of Equation (2.12) and neglecting the
shear stress (for a discussion of this assumption see Ref. [50]) one can again
find a relation between 	rr and 	��. By defining

T ≡

∫ r0+h

r0

	��dr (2.18)

one deduces that

	rr |r=r0
= −

T

r0
(2.19)

because only this quantity enters the kinetic relation (Equation (2.14)) that
is needed for the derivation of the dispersion relation. Recall also that
	rr |r=r0+h = 0 to linear order in the perturbation Am . Upon using Equation
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(2.17) the integral of Equation (2.18) leads to

T = E

[(

h(�0) +
h(�0)

2

2r0

)

d�(�0)

d�0
− h(�0)

]

(2.20)

Additionally, Equation (2.12) yields, under the assumption of zero shear stress,
∂�T = 0; that is, T is independent of �. This condition provides a relation
between �(�0) and h(�0). Upon using

∫ 2�

0
d�(�0)

d�0
d�0 = 2�, one can express T

as a function of an integral
∫ 2�

0 F(h(�0))d�0 where only h(�0) enters (F is
given by Equation (D5) in Ref. [50]). Plugging this relation into Equation
(2.20) provides a relation between d�/d�0 and h(�0), and substituting h by
Equation (2.16), 	��|r=r0+h and 	rr |r=r0

can be deduced to first order in Am .
After some algebraic manipulations the dispersion relation is obtained:

� =
�mkd

r0
(2.21)

where

�m = cd Eecd Eh̄0
h̄0

h̄0 + 2
(2.22)

and where we have set h0/r0 ≡ h̄0. � is positive, meaning that the perturba-
tion grows exponentially with time: the symmetric gel layer is thus unstable.
Surprisingly, the dispersion relation does not depend on the wave number m

(because �m does not). Consequently, all wave numbers have the same growth
rate. Thus, the linear stability analysis does not select a typical mode m (like
the fastest growing mode) for the instability.

2.3.2.3 Nonlinear Study on Symmetry Breaking in Actin Gels

Unlike the previous model where a tensile stress distribution is a priori pos-
tulated, the idea of the model proposed by John et al. [28] is to treat the
actin gel as an elastic continuum in the framework of a linear theory, and
to formulate a simple kinetic relation expressing growth (or polymerization),
different from Equation (2.14).

The model considers a bead (radius r0) surrounded by a growing elastic
actin gel (radius r0 + h) as shown in Figure 2.7. The gel is stressed by a
small molecular displacement L in normal direction at the bead/gel interface;
that is,

ur |r=r0
= L (2.23)

where ur denotes the radial component of the displacement. This choice is
motivated by the microscopic picture, that for the addition of monomers,
enzymes facilitate a molecular displacement L at the bead/gel interface. This
displacement is the source of stress. The bead/gel interface as well as the
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FIGURE 2.7 Schematic view of a bead surrounded by an elastic gel, show-
ing also several definitions of Ref. [28] as explained in the text. From K. John,
P. Peyla, K. Kassner, J. Prost, and C. Misbah (2008). A nonlinear study of
symmetry breaking in actin gels—Implications for cellular motility. Phys. Rev.

Lett. 100:068101. (With permission).

external gel surface is shear free and the normal stress at the external surface
is set to zero.5 No condition is imposed on the normal stress component at
the bead because there a displacement is imposed instead. The boundary
conditions on the stress are thus

	n
 ≡ ni 	i j 
 j |r=r0,r=r0+h = 0, 	nn ≡ ni 	i j n j |r=r0+h = 0 (2.24)

where ni and 
i are the ith component of the unit normal and tangent vector
of the surface under consideration (bead or external gel surface).

The stress distribution in the gel is obtained then by solving the Lamé
equation for the displacement field

∇2u +
1

1 − 2s
∇(∇ · u) = 0 (2.25)

where s is the Poisson ratio. The stress is related to the displacement u by
Hooke’s law

	i j = 2�Ai j + Akk�i j (2.26)

where Ai j = (∂i u j + ∂ j ui )/2 is the strain tensor, and  and � are the Lamé
coefficients which are related to Young’s modulus E and s (for an isotropic
material there are only two independent elastic parameters).

Equations (2.23) through (2.25) represent a complete set that allows us
to determine the stress and displacement fields in the gel. Note that despite
the fact that the bulk equations are linear, the problem acquires a nonlinear
character via the geometry of the external gel boundary. Indeed, if we fix

5Actually it can be set to −p, where p denotes the liquid pressure, but this contribution is quite
small.
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a certain arbitrary geometry h(�), then the stress and displacement will be
a nonlinear function of h. The calculation can be handled analytically for a
symmetric gel as well as in the linear stability analysis [28]. Beyond a linear
analysis, a numerical study has been performed and is briefly discussed below.

Once the mechanical problem is solved, one needs to compute the cost in
elastic energy per unit mass for inserting a monomer on the bead/gel interface,
that is, the chemical potential difference. For the sake of simplicity we focus
on the case of an inert external gel surface; that is, neither polymerization
nor depolymerization takes place at the external interface. We assume that
insertion of a monomer at the bead results in a displacement of the exter-
nal gel surface in the radial direction proportional to the chemical potential
change at the bead. We critically assess this assumption in the next section
on homogenization models.

One can then write a kinetic relation of the shape evolution of the gel
envelope

∂t h = −M�� (2.27)

where M denotes a mobility and �� the difference in the chemical potential
between a volume element in the gel and in solution at the internal inter-
face. Here we assume that the mobility is associated with the polymeriza-
tion/depolymerization kinetics, which constitutes the prevailing dissipation
mechanism. The chemical potential is composed of a contribution due to the
gain in polymerization (denoted as ��p < 0) and an elastic part [28]:

�� = ��p + �ui j ui j +


2
u2

kk − 	nn(1 + ukk) (2.28)

Note that Equation (2.27) differs from Equation (2.14) not only by the pres-
ence of the exponential function (which can be linearized because the stress
energy is always small in comparison to the thermal excitation energy; hidden
in the constant cp), but most importantly by the stress combination. Equa-
tion (2.14) contains only a linear form and no quadratic forms as in Equation
(2.28). Here, the quadratic form is essential for the mode selection leading to
a comet formation, as is described below.

The stress problem in Equations (2.23) through (2.25) can easily be solved
analytically for a spherical geometry (axisymmetric growth). Upon setting
∂t h = 0 in Equation (2.27) one finds a steady solution with a gel thickness h0

obeying [28]

h0 =

[

(

2
E� − (1 − 2s)��p

2E� + (1 + s)��p

)1/3

− 1

]

r0 (2.29)

where � = L/r0. This solution exists for 2E�/(1 + s) ≥ −��p: elasticity acts
against monomer addition, so that the gel stops growing at that thickness.
In the opposite limit, growth continues without bound. Both situations have
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FIGURE 2.8 The dispersion relation as a function of the mode ℓ obtained
from the linear stability analysis of the John et al. (2008) model. The fastest
growing mode corresponds to ℓ = 1. From K. John, P. Peyla, K. Kassner,
J. Prost, and C. Misbah (2008). A nonlinear study of symmetry breaking
in actin gels—Implications for cellular motility. Phys. Rev. Lett. 100:068101.
(With permission).

been observed experimentally [45]; however in the latter case, growth stopped
due to monomer depletion at the bead/gel interface.

The linear stability analysis of the symmetric case can be performed analyt-
ically (by decomposing the stress and the shape evolution into spherical har-
monics Yℓm). The dispersion relation �(ℓ) is presented in Figure 2.8. The basic
result is that a symmetric shape is unstable against symmetry-breaking [28].
Interestingly the mode that corresponds to a translation of the external sur-
face with respect to the bead is the most unstable.6 This translation motion
is similar to that shown in Figure 2.9b. For this instability, the quadratic
terms in Equation (2.28) play a crucial role because considering only the lin-
ear terms leads to a stable symmetric solution, with a zero growth rate for
the translational mode.

To ascertain the subsequent evolution of the external boundary (i.e., in the
fully nonlinear regime), a full numerical analysis has been performed [28]. The
set of mechanical equations (Equations (2.23)–(2.25)) and the growth kinetics
(Equation (2.27)) have been cast into a phase-field approach, which has now
become a frequent method to treat free moving boundary problems. For the
details of the phase-field formulation and their numerical implementation we
refer the reader to the original paper [28]. Here we only report the basic results.

6We should not confuse the mode ℓ = 1 with the usual global translation, which is a neutral
mode. Here, only the external gel surface moves while the bead is fixed, so that the mode ℓ = 1
is a physical one.
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a b c

FIGURE 2.9 Symmetry breaking of a circular gel. Shown is the evolution of
the gel thickness, starting from a homogeneous thin gel (a) with random small
amplitude perturbations. (b) shows the initial symmetry breaking, while (c)
shows the subsequent evolution of the shape into a comet in the far nonlinear
regime. From K. John, P. Peyla, K. Kassner, J. Prost, and C. Misbah (2008). A
nonlinear study of symmetry breaking in actin gels—Implications for cellular
motility. Phys. Rev. Lett. 100:068101. From K. John, P. Peyla, K. Kassner,
J. Prost, and C. Misbah (2008). A nonlinear study of symmetry breaking
in actin gels—Implications for cellular motility. Phys. Rev. Lett. 100:068101.
(With permission).

The numerical study in two dimensions with plane strain (using the fi-
nite element code Freefem++) shows that for axisymmetric initial condi-
tions with small amplitude perturbations, the symmetry is broken for the
mode m = 1 (identical to the mode ℓ = 1 in three dimensions), which
corresponds to a translation of the gel layer with respect to the bead. Where
this symmetry breaking occurs depends only on the initial conditions. The
instability then evolves further into an actin comet, reminiscent of the comet
developed by Listeria monocytogenes. Figure 2.9 shows a typical result of a nu-
merical simulation. The comet formation seems here to be the generic growth
mode. This finding points to the fact that the comet formation is probably a
quite robust feature; it results from simple physical prototypes.

The physical picture of the symmetry breaking may be understood as fol-
lows. Let us start with a symmetric layer as in Figure 2.9a. Suppose that due to
some natural (inevitable) fluctuation, the gel layer becomes asymmetric, as in
Figure 2.9b. The stress is due to addition of new monomers at the bead/gel in-
terface. On the side where the gel thickness is small, the stress field is stronger
than on the other side because the gel feels more the “outward pushing” of
new monomers inserted at the bead. Because of the increase in the stress (and
strain) in the thinner layer, polymerization becomes unfavorable there. New
monomers will preferentially be inserted on the side where the thickness is
larger. The appearance of modes larger than ℓ = 1 would create several thin
and thick regions, which are likely unfavorable. It seems thus that the mode
ℓ = 1 is optimal for the insertion of monomers at the bead/gel interface.

By considering also the stress-dependent depolymerization at the external
gel interface, one finds another instability, whereby the location of the most
unstable mode is determined by surface tension. This result is in agreement
with the occasional experimental observation of higher-order modes [14], and
is discussed next within a more elaborate homogenization model.
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2.3.2.4 Homogenization Models

So far, continuous models have been suffering from the inadequate or in-
sufficient description of the mechanical aspect of the actin gel. The greatest
difficulty in the description of the mechanical equilibrium of the growing actin
network arises from the fact that the growth history determines the network
structure and therefore also the stress distribution. Consequently, a realistic
model would have to include information on how the network evolved.

A second problem, which is most prominent in the description of the sym-
metry breaking around solid objects, is the coupling of the growth process
between the internal and the external interfaces. As an example, consider
the problem of actin growth around a bead functionalized with ActA or
Wasp/Scar. Typically growth takes place at the barbed ends of the actin fila-
ments, which point toward the bead/gel interface. This growth process pushes
older gel layers further away from that interface. Experimentally, the growth
process is observed by an increase in the gel thickness. However, it is not clear
how the insertion of mass at a (fixed) solid/gel interface translates into the
displacement of the (free) gel/liquid interface. A realistic elastic theory would
have to account for this coupling problem in a rigorous way.

One observation that might help solve the above-mentioned problems, at
least partly, is that the actin network forms more or less regular structures,
which are not perfectly periodic but could be considered in a first approxima-
tion as “almost periodic.” The actin gel can then be regarded abstractly as
a network of elastic filaments connected by nodes with a certain periodicity.
This network is completely defined by the positions of the nodes and their
connectivities. In the network structure, the size of each elementary cell (e.g.,
the distance between two Arp2/3 crosslinks (several tens of nanometers)), is
small compared to the total size of the structure (∼1 �m), which introduces
a small parameter � into the problem, which is the ratio of the length of the
unit cell and the total network size. In the following we briefly outline the
basic idea of an actin homogenization model in two dimensions [10].

We consider a planar network of stiff elastic bars around a solid cylinder
(radius r0) with the topology shown in Figure 2.10. The bars are connected
to each other via nodes. The actin filaments are assumed to be linked to the
cylinder at Nt sites evenly located on its surface at a distance p = �r0 between
two close sites, that is, at an angular distance � = 2�

Nt
. The actin gel is made

of Nn layers of bars in the radial direction. As the growth of the gel is due
to the polymerization of actin monomers at the surface of the cylinder, each
layer is assumed to consist of the same number of nodes. So the nodes of the
gel can be numbered by two integers (�1, �2) with �1 numbering the radial
layers and �2 the position of the node in each layer, respectively.

It is assumed that the discrete net is made up of a large number of bars,
meaning that Nt and Nn are very large and of the same order. To be more
precise, the parameter � is assumed to be very small and the number Nn of
layers is given by Nn = �

�
with � being of order 1 with respect to �. Using
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(0, 0)

(0, 1)

(0, 2) (4, –1)

(4, 0)

(4, 1)

(4, 2)

FIGURE 2.10 (See color insert following Page 398.) Sketch of a small part
of the filament network with some examples for the node numbering (�1,�2).
The “curves” along which �1 = const. and �2 = const. are shown in blue and
red, respectively, in the color figure.

this notation, a node of the gel can be labeled by (�1�, �2�) with �i� = ��i .
The coordinates (�1�, �2�) take values in � =]0, �[×]0, 2�[ and are meant
to become the set of Lagrangian curvilinear coordinates of the equivalent
continuous medium.

The upscaling of the net to a continuous medium consists of determining
the equivalent stresses from the bar tensions, the equations of equilibrium
(or motion) satisfied by these stresses and an equivalent constitutive equation
ensuing from the properties of the bars. This can be carried out using an
asymptotic expansion (for an introduction see [9,34,54]). Here, as the network
structure is simple, a more heuristic presentation can be used. The basic idea of
the homogenization process is that, for most of the motions of the network, the
positions of its nodes (�1, �2) can be approximated by a continuous function

�(�1, �2) where �i� = ��i . The purpose then is to determine the equations
governing this deformation function. The equivalent Cauchy stress tensor is
given by the classical relation due to Cauchy [9,34]

	 =
1

g

3
∑

b=1

N b
e b ⊗ 
Bb (2.30)


Bb is the “bar vector” linking the two extremities of the bar b (b = 1, 2, 3) of
the elementary cell (�1, �2) of the network (shown in Figure 2.11) in a deformed

state, 
e b =

Bb

|| 
Bb||
is the corresponding unit vector, N b the tension in the bar

and g = ‖
B1 ∧ 
B3‖ is the surface of the elementary cell. The constitutive
equation of the equivalent continuous medium follows from the constitutive
equations of the bars, which, for the sake of simplicity, are assumed to be

N b = kb lb − lb
m

lb
m

(2.31)
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B2

B1

B3

(ν1–1, ν2+1)
(ν1,ν2)

(ν1,ν2+1)
(ν1+1, ν2)

FIGURE 2.11 (See color insert following Page 398.) Sketch of an elemen-
tary cell, showing the node numbering (�1, �2) and the elementary bar vectors

Bb (solid arrows). All other bars are shown as dashed lines. The “curves” along
which �1 = const. and �2 = const. are shown in blue and red, respectively, in
the color figure.

with lb = ‖
Bb‖. lb
m is the length of the bar b at rest and serves as a parameter

in the constitutive equation.
For a symmetrical equilibrium configuration of the gel to be possible, the

constitutive equations of the bars 1 and 3 should be identical, that is, k1 = k3

and l1m = l3m .
Following the homogenization assumption stating that the position of the

node (�1, �2) is 
�(�1, �2) with �i� = ��i , a simple Taylor expansion yields:


B1 = �∂
�
1 
�, 
B2 = �∂

�
2 
� and 
B3 = �

(

−∂
�
1 
� + ∂

�
2 
�

)

(2.32)

where ∂
�
i = ∂

∂�i
. Because they are associated with a quite simple numbering

system for the nodes, the variables �1 and �2 arise naturally as Lagrangian
variables of the equivalent continuous medium through the homogenization
process. However, they are not the most convenient variables to study symmet-
rical equilibrium configurations. Therefore we have introduced the variables
1 and 2 defined by

1 = �1 and 2 =
�1

2
+ �2 (2.33)
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Setting


�
(

1, 2
)

= 
�

(

1, −
1

2
+ 2

)

(2.34)

one finds


B1 = �

(


g1 +
1

2

g2

)

, 
B2 = �
g2 and 
B3 = �

(

−
g1 +
1

2

g2

)

(2.35)

with 
g1 = ∂

1 
� and 
g2 = ∂


2 
�.

Carrying these relations into Equation (2.30) yields

	 =
1

‖
g1 ∧ 
g2‖

3
∑

i=1


Si ⊗ 
gi (2.36)

with 
S1 = �(N 1
e 1 − N 2
e 2) and 
S2 = �( 1
2

N 1
e 1 + N 2
e 2 + 1
2

N 3
e 3).
As the only forces acting on the gel are applied on its boundaries, the

equilibrium of the continuous medium reads classically

div 	 = 0 (2.37)

Using the virtual power formulation of that equation and the change of
variables

(1, 2) ↔ 
x = 
�(1, 2)

it can be proven that the equilibrium equation reads

2
∑

i=1

∂

i

Si = 0 (2.38)

2.3.2.4.1 Coupling between growth and mechanics To study the
growth of such an homogenized network, one can stay within the picture of
a mechanical equilibrium of the actin gel on the time scale of the growth
process. From the homogenized elastic equations one can derive the elastic
contribution ��e to the chemical potential �� for the addition or subtrac-
tion of nodes at the gel interfaces starting from the free elastic energy Fe in
the network; that is,

Fe =
1

�2

∫

�

d1d2
∑

b=1,2,3

f b (2.39)

where f b is the elastic energy associated with the extension or contraction of
each of the filaments. The elastic chemical potential is then given by the vari-
ation of the elastic energy with respect to the size and shape of the network
��e = �Fe/�� by respecting the boundary conditions.
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We assume now that the chemical potential contains also a contribution
from the chemical process of polymerization ��c, where ��c < 0 at the
internal interface and ��c > 0 at the external interface. This assumption
accounts for the polar treadmilling behavior of the actin polymerization; that
is, polymerization occurs at the internal interface and depolymerization at
the external interface. Furthermore, the chemical potential contains a contri-
bution from interfacial energy: that is, ��s = −��, with � being the surface
tension coefficient and � being the curvature of the interface. This leads to
the following expression for the normal velocities of the two free interfaces in
the Lagrangian coordinates (1, 2)

vi
n = −�M i

(

��i
e + ��i

c + ��i
s

)

= −�M i��i (2.40)

with i = 0 for the internal and i = 1 for the external interface.

2.3.2.4.2 Homogeneous gel growth and linear stability analysis

First one can consider the symmetric problem, that is, the growth of a gel
with homogeneous thickness � = �Nn, which has an axisymmetric solution

� = �r (1)
er (2). The equilibrium equation in this case then reduces to

0 = 2∂

1

(

Ñ 1
∂


1�r

)

−

(

1

2
Ñ 1 + Ñ 2

)

�r (2.41)

where we have introduced

Ñ b = �
N b

lb
(2.42)

In this situation the filaments with b = 2 are oriented in a tangential direction.
Equation (2.41) can be solved numerically using continuation methods [15].

Figure 2.12 shows a solution of Equation (2.41) for a given network thickness
�. Naturally, l2 is extending as one moves away from the bead, whereas l1

is first shortening and then extending to reach its equilibrium length at the
outer gel surface. Consequently, the gel is under radial compression and under
tangential extension far away from the bead surface. However, for regions close
to the bead surface, the gel is under tangential compression.

Figure 2.13 shows the dependence of the chemical potential on the number
of radial filament layers �. Assuming that new filaments are inserted in the
same stressed state as the already-present material at the two interfaces, the
elastic chemical potential is identical at the two interfaces for a homogeneous
gel (��0

e = ��1
e = ��e > 0). With increasing network size (i.e., increasing �),

��e increases in a strongly nonlinear fashion. Note that for higher values of
�, the homogenization approach breaks down and the gel is starting to “fold
back.” Beyond this point, at � ≈ 1.25 in Figure 2.13, no physical meaningful
solutions exist.

We consider now a filament network that is allowed to grow symmetrically
with identical mobilities (M0 = M1 = M) at the two interfaces following the
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FIGURE 2.12 Filament lengths (top), radial and tangential tensions (bot-
tom) depending on the positions in the network in mechanical equilibrium.
Parameters are k2/k1 = 1 and l1m = l2m = p.

two dynamic equations:

∂t �
0 = �M

(

��0
c + ��e

)

= −vp + ve (2.43)

∂t �
1 = −�M

(

��1
c + ��e

)

= −vd − ve (2.44)

whereby the positions of the internal and external interface are denoted by
�0 and �1, and where we have introduced the polymerization speed vp =

1.20.90.6
α

0.30
0

0.05

0.1

Δ
μ

e/
(p

k
1
)

0.15

0.2

FIGURE 2.13 Dependence of the elastic part of the chemical potential
��e on the number of radial filament layers �. Remaining parameters are
l1m = l2m = p and k2/k1 = 1.
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FIGURE 2.14 Dispersion relation with Dirichlet boundary conditions at
the internal interface. Shown is only the larger of two eigenvalues �1 (the
second one is always negative) depending on the wave number m for various
values of the surface tension as indicated in the legend. Parameters are � = 1,
k2/k1 = 1, l1m = l2m = p. The time scale is 
 = r0/(Mk1 p2).

−�M��0
c > 0, the depolymerization speed vd = �M��1

c > 0, and an “elastic
speed” ve = �M��e. The steady state for the gel thickness is given by ∂t � =
∂t �

1 − ∂t �
0 = 0. Defining now a mean velocity v̄ = (vp + vd)/2 and a velocity

difference �v = (vp − vd)/2, one obtains that in the steady state, �v = ve

and ∂t �
0 = ∂t �

1 = −v̄. This means that although the gel thickness does not
change, both interfaces are moving with the same velocity −v̄ and therefore
v̄ has the physical meaning of the treadmilling speed.

If we now transform the dynamical equations into the comoving frame mov-
ing with velocity −v̄ in the direction of 1 we can study the linear stability of
the network thickness � with respect to perturbations of the type cos (m2)

at the internal and external interface, A
0
(2) and A

1
(2), respectively,

Figure 2.14 shows the dispersion relation for the largest growth rate depend-
ing on the wave number m. One of two eigenvalues is always negative (i.e.,
stable), whereas the other one can be positive (unstable), depending on sur-
face tension. We did not find a threshold value for the filament layer number
beyond which the gel becomes stable toward small perturbations independent
of the surface tension. However, a higher surface tension can suppress insta-
bilities for thin gels. Recent experiments have shown the occurrence of higher
modes than one, that is, the formation of up to three actin comets around
one bead [14], depending on the experimental conditions. The actual value
for the surface tension of an actin network against water should be rather
small because actin is a soluble protein. Furthermore, typically small beads
with higher curvature break the symmetry faster than larger beads [58], which
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is in agreement with our model, where the time scale of symmetry breaking
increases linearly with the radius of the bead r0. Note also that assuming a
constant polymerization potential but changing the radius r0 by keeping all
other parameters constant leads to a linear relation between the gel thickness
(i.e., �r (�) − �r (0)) and r0 in steady state. These two results have also been
obtained in simpler models based on scaling arguments [41,48,58] and hold for
the case that monomer diffusion is fast enough to avoid depletion of monomers
due to polymerization at the internal bead gel interface. Another interesting
point is the type of instability one might observe, that is, an undulating ver-
sus peristaltic instability. For small modes m ≤ 4 one finds an undulating
instability; that is, the perturbations at the external and internal interface
are in phase, whereas for higher-order modes one should observe a peristaltic
instability where the two perturbations have the opposite phase (data not
shown).

2.4 Conclusions and Perspectives

In this chapter we have tried to summarize the complex properties and out-
of-equilibrium phenomena of actin gels linked by the Arp2/3 complex, which
are at the origin of the motility of animal cells, intracellular organelles, and
pathogens. Primarily we have focused on two subjects: the complex actin
polymerization dynamics under load at the polymer brush, and the symme-
try breaking of actin gels grown from the surfaces of small objects. While we
have treated both subjects separately, it is obvious that a full understand-
ing of the system will have to include both approaches: the macroscopic stress
distribution in the actin gel couples to the polymerization kinetics in the poly-
mer brush, which in turn changes the deformation state of the gel and the
macroscopic stress distribution. We have shown in the previous paragraphs
that homogenization models are at the moment the most appropriate models
to capture the complex microscopic structures of biological materials on the
one hand and take advantage of a continuous framework on the other hand.
We believe that the future in the modeling of growing actin gels in complex
geometries (e.g., the advancing cell edge) lies in the coupling of these homog-
enization models to complex dynamics in the polymer brush, as proposed, for
example, in Refs. [16,21].

An important question that remains to be elucidated concerns how motion
can be generated once the gel layer has become asymmetric. So far we have
either limited our considerations to the case of a symmetry breaking around
objects, and neglected the generation of motion, or, as in most microscopic
models, we have only considered a stationary actin comet, which pushes an
obstacle by polymerization. Both concepts are circumventing, by more or less
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hand waving arguments, one critical question. What is the origin of motion in
the absence of external forces, provided that the actin comet and the object
are only surrounded by a Newtonian viscous fluid (recall that we are in a
regime with Re ≪ 1) and not attached to some support? Recently, Prost et
al. [48] have put forward a simple argument based on largely disparate friction
coefficients for the obstacle and the actin tail and the property of treadmilling.
In the following we outline this argument.

Suppose that an obstacle and its associated actin comet move with velocities
vo and vc, respectively, in the laboratory frame. In the viscous regime the force
balance reads then

0 = �ovo + �cvc (2.45)

where �o and �c denote the friction coefficients of the object and the comet
with the surrounding fluid, respectively. The difference in the two velocities
vt = vo −vc is the treadmilling speed. Substituting vc in Equation (2.45) and
after some rearrangement, one finds for the object velocity

vo = vt

�c

�o + �c

(2.46)

This means that although the dissipation due to fluid friction is very small,
it plays nevertheless a decisive role because the ratio of friction coefficients
determines the object velocity. In the limit of �c ≫ �o this velocity approaches
the treadmilling speed. Given the fact that the actin comet is much larger
than the object (e.g., bead, droplet, or vesicle), which causes a much larger
friction, the experimentally observed obstacle velocities are indeed close to
the treadmilling speed.

Another biological aspect that might be of importance when considering
more complex cellular systems is the fact that the actin polymerization system
is not constitutively active as in in vitro assays but is regulated by signaling
cascades, which constitute a nonlinear dynamical system. Typically these sig-
naling cascades are modeled by reaction–diffusion systems that lead to pattern
formation [37]; for example, polarization of the cell into leading and advancing
edge. It remains to be shown how these two important mechanisms, elastic
instabilities and instabilities due to reaction–diffusion processes, integrate to
produce cellular motion.
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3.1 Cancer: A Disease of the Genome

Cancers are caused by abnormalities of the genome [18]. These abnormali-
ties can be due to the effects of carcinogens such as chemical and viruses
(environment), inherited traits, and randomly acquired errors during DNA
replication and/or repair. Thus, cancer cells are characterized by genomic
rearrangements, activation or repression of oncogenes and tumor suppres-
sor genes, karyotypic and phenotypic instability, uncontrolled growth, and
metastatic ability with the acquisition of new phenotypes (loss of adhesion,
gain of new resistances). Several types of genes may be affected in cancer [17].
The oncogenes are genes that when mutated or expressed at high levels help
turn a normal cell into a cancer cell by allowing the gain of new properties
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FIGURE 3.1 Genes involved in the tumorigenesis process. Each step of
the process is characterized by the involvement of a set of genes: genes of the
metabolism in response to carcinogen insults oncogenes and tumor suppressor
genes in cell transformation, and metastatic genes in dissemination.

resulting in hyperactive growth and division, resistance to apoptosis, and by-
pass of senescence. These genes were originally identified because they have a
high homology with sequences from RNA virus that can induce cell transfor-
mation (e.g., v-myc). The tumor suppressor genes are encoding proteins that
negatively regulate cell proliferation and prevent the occurrence of tumors.
Two types of tumor suppressor genes have been defined:

1. The “caretakers” of the genome (or type 1), which protect the genome
from mutations; they usually are DNA repair genes such as Xeroderma
pigmentosum genes (XP).

2. The “gatekeepers” of the genome (or type 2), which protect the genome
by controlling cell growth, apoptosis, and senescence. p53, a type 2 tu-
mor suppressor gene, is the most frequently inactivated gene in tumors.

Finally, genes encoding for proteins that metabolize carcinogens (e.g., P450)
and genes encoding for proteins involved in the metastatic process are also
critical in the cellular transformation process (Figure 3.1).

3.2 Tumorigenesis: A Multistep Process

Transformation of a normal cell into a tumor cell results from events (Fig-
ure 3.2) that will affect the genomes of cells (1). Cancer cells bear numerous
chromosomal abnormalities such as mutations, translocations, deletions, du-
plications, and/or amplifications. The main characteristic of a tumor cell is
proliferation without constraint from the homeostasis that controls cell pro-
liferation in organs (2). Thus, a malignant cell is characterized by its ability
to invade the neighbor tissues, migrate, and form metastases at a distant site
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(3). Development of metastatic foci reflects tumor progression, indicating a
change in the biology of tumor cells forming these foci (4). The expression
of several adhesion molecules is modified. These cells synthesize enzymes re-
sponsible for the digestion of the intercellular space and the basal membranes
surrounding the tissues. They can invade neighboring tissues and migrate
along the lymphatic vessels or natural cavities. Tumor cells, and especially
metastatic cells, have receptors called integrins that allow them to adhere to
endothelial cells and extracellular matrix. Adhesion of these cells on a new
substrate triggers signals through the cellular membrane that enhance or in-
hibit cell proliferation. Cells seeded in other organs are metastatic only when
they proliferate. They can then give rise to a tumor mass and produce sec-
ondary metastasis. The metastatic process consists of a succession of events in
which tumor cells develop characteristics of resistance to the immune system,
toxic and mechanical insults, and express various receptors for growth factors
or substrates. Such characteristics result from altered gene expression [3].

3.3 Molecular Mechanisms Involved in Cell Migration

and Invasion

For many years, it has been established that the invasive process depends on
adherence, motility, and migration of cells in the body. The loss of cell adhesion
and the increased motility of tumor cells have been studied both in experi-
mental models in vitro and in vivo. The cell motility induced by cytokines
and growth factors is physiologically controlled during various events such as
development or tissue repair, and it can be activated inappropriately during
tumor progression. Here we emphasize the different proteins that are impor-
tant for the control of cell migration and invasion, such as adhesion proteins
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expressed at the cell surface, cytoskeletal proteins, and molecules implicated
in intracellular signaling cascades.

Cell adhesion is a fundamental process for cell recognition and the formation
of tissues. Cell adhesion can take place at different levels, such as specific in-
tercellular adherence between adjacent cells or with the extracellular matrix.
Both types of interactions often coexist in the same tissue. The molecular
interactions among cells, or between cells and the extracellular matrix, are
highly regulated during development and cellular differentiation, and are al-
tered in several pathologies including cancer progression. These interactions
are mainly provided by adhesion molecules belonging to four main families:

1. Members of the immunoglobulin superfamily

2. The selectins, proteins involved in the interactions of leukocytes with
endothelial cells in blood vessels

3. The cadherins, mainly implicated in cell–cell junctions

4. The integrins, which are strongly involved in cell adhesion and migration
by interacting with proteins of the extracellular matrix such as collagen,
fibronectin, etc.

3.3.1 Adhesion Proteins

In solid tumors, especially in carcinomas, the expression of cadherins and in-
tegrins by tumor cells has been shown to play an important role during tumor
progression [11]. The attachment of cells to the extracellular matrix (ECM)
is mediated by integrins, which are cell surface receptors for many proteins of
this ECM, such as collagen, fibronectin, vitronectin, etc. In addition, integrins
interact intracellularly with signaling proteins and components of the cell cy-
toskeleton, and these interactions can either modify their adhesive properties
or participate in signal transmission. These properties are modified in tumoral
cells [14].

Cadherins are adhesion proteins involved in cell–cell adhesion. E-cadherin
is the prototypic type I cadherin expressed by epithelial cells involved in in-
tercellular adhesion. These interactions, important for the cohesion of the
epithelial layer, become deficient when epithelial cells acquire a migratory phe-
notype, after transformation. The first stages of this phenomenon are called
epithelial–mesenchymal transition [14] (EMT), and the loss of E-cadherin has
been associated with EMT. E-cadherin mediates homophilic interaction, and
its extracellular domain of bladder tumor cells associates with other cad-
herins expressed by neighboring cells. Inside the cells, the cytoplasmic domain
links this protein to the cell cytoskeleton and signaling cascades. This link is
performed by intermediary proteins, such as beta-catenin and plakoglobin.
E-cadherin functions and its association with intracellular proteins are modi-
fied in many epithelial carcinomas, and it has been shown that restoration of
plakoglobin can suppress cell migration of bladder tumor cells [25].
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3.3.2 Cytoskeleton

To adopt various forms, to apply forces on their substrate, and to make coordi-
nated movements, eukaryotic cells use a complex network of protein filaments
that extend throughout the cytoplasm. This network is called the cytoskele-
ton and is a very dynamic structure that reorganizes continuously when cells
change shape, divide, or respond to the environment. These long filaments are
all formed through polymerization of monomeric subunits. Three main types
of protein filaments form the cytoskeleton:

1. Actin filaments: 5 to 9 nm in diameter, they are made from actin
monomers and are essential for movement, through their interactions
with the motor protein myosin. They associate through protein linkers
with the cytoplasmic domains of integrins and cadherins.

2. Intermediate filaments with a diameter of 10 nm. They are made from
monomers of lamin, vimentin, or keratin (in epithelial cells). They are
responsible for the cell mechanical strength.

3. Microtubules: 25 nm in diameter, they are made from tubulin monomers.
They are important for the transport of vesicles and the segregation of
chromosomes during mitosis. They are also essential for the maintenance
of the cell structure in general.

Actin is the most abundant protein in many cells (on average it accounts
for 5% of total protein). The actin filament is polarized, with one end capable
of rapid growth (+ or pointed end), while the other end tends to lose sub-
units if not stabilized (− end or barbed end). The monomeric actin molecules
related to ATP are added to the + end with a protein complex ARP2/ARP3
(actin-related protein). The activity of these complexes is directed by the
N-WASP (Wiskott-Aldrich syndrome protein). During the polymerization
reaction, ATP is hydrolyzed, leaving ADP trapped in the polymer. Actin
molecules linked to the ADP are removed at the − end. This process is cat-
alyzed by cofilin, which binds to the actin-ADP and induces its detachment
from the filament. Actin monomers must be reloaded with ATP before joining
the + end of the filament. Profilin accelerates the exchange of ADP to ATP.
In a resting state, the actin molecules are continually added to the + end and
are continually lost at the − end, resulting in the movement of treadmilling.
In a state of growth of the filament, the actin molecules are added faster than
they are lost, either by inhibition of cofilin or by activating Arp2/3 [21].

With regard to its cytoskeleton, a migrating epithelial cell is characterized
by a loss of stress fibers, an increase in the cortical actin network, and a
diminution in the number and size of focal adhesion sites. Actin rearrangement
is controlled by the action of small GTPases of the Rho family. Three roles
have been identified for the three members of the Rho family [34]:

1. Cdc42 is responsible for the nucleation of actin filaments and the forma-
tion of filopodia. The sequence of events is as follows: Cdc42 activates
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N-WASP, which in turn activates the Arp2/3 complex, causing an in-
crease in the nucleation of actin filaments.

2. RAC1 is responsible for the formation of the actin network, leading to
the extension of the lamellipodium.

3. RhoA is responsible for the formation of focal contacts followed by the
formation of contractile bundles or stress fibers. The active form of RhoA
(GTP-RhoA) induces the activation of the Rho kinase, which in turn
phosphorylates and inactivates myosin phosphatase. It results in an in-
crease in phosphorylation and activation of myosin II, which interacts
with actin and forms stress fibers.

The general idea is that factors that induce migration have a positive ef-
fect on the activators Cdc42 and RAC and an inhibitory effect on RhoA,
eliminating the stress fibers and promoting the formation of filopodia and
lamellipodia.

3.4 In vitro Methods for Cell Migration Studies

Cell migration is essential both in physiological conditions, such as embryonic
development, wound healing, and inflammation, and in pathological situa-
tions, including chronic inflammatory diseases, tumor cell dissemination, and
metastasis. All living cells are motile, but only a few are able to migrate inside
the organism. Examples of these specialized cells are fibroblasts, stem cells,
leukocytes, and tumor cells. Leukocytes are highly motile cells, as they have
to react promptly to pathogenic invaders, and can migrate with a speed of
15 �m × min−1 [37], while fibroblasts, whose migration is necessary during
tissue repair, are much slower (∼0.2 to 1 �m × min−1).

Many in vitro assays have been developed to study cell migration and to
obtain quantitative data. In the majority of tissues, cell migration occurs
inside a complex, three-dimensional extracellular matrix. Nevertheless, a ma-
jority of assays allow the study of cell migration in two dimensions, on planar
substrates.

3.4.1 2-D Migration Assays

These methods are easy to perform and can provide a good indication of
the migratory capacity of cells, in response to modifications of expressions
of molecules putatively involved in the migratory process (adhesive proteins,
components of intracellular signaling cascades, and of course components of
the extracellular matrix). For these assays, cells are cultured on the surface
of culture plates, coated either with a matrix (such as collagen, fibronectin),
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FIGURE 3.3 (See color insert following Page 398.) Visualization of cell
tracking.

or left untreated. Then, cell migration is followed for 2 to 3 hours by taking
pictures every 10 to 15 min.

3.4.1.1 Single Cell Tracking

Single cell tracking consists of culturing cells at low density and following
their displacement by recording sequences of frames on automated video mi-
croscopes equipped to maintain the cells at a constant temperature (usually
37◦C) in a humidified atmosphere. The location of each cell can be tracked
over the entire sequence as a function of time to visualize the cell trajectory.

An example of such a treatment is given in Figure 3.3 for cells plated on
a low concentration of fibronectin (1 �g × ml−1) on the right, or high con-
centration of fibronectin (50 �g × ml−1) on the left. Determination of the
different trajectories of the cells is visualized by the lines. Several migration
parameters are obtained from this method: first the velocity of each cell, from
which can be deduced the mean velocity of the observed population, and also
the cell direction and the persistence duration. In Figure 3.3, it is apparent
that cells are faster on the right, on the order of 30 �m × hr−1 than on the
left (8 �m × hr−1). The tracking of the cells can be automated by special-
ized software. One advantage of this method is that cell migration is easily
distinguishable from cell proliferation.

3.4.1.2 Wound Healing Model

Wound healing assays are commonly used to assess the capacity of cell mono-
layers to migrate. Typically, a wound is made in a cell monolayer using a
pipette tip, and the re-colonization of the lesion by the cells is monitored by
time-lapse microscopy, over a time course of 24 to 48 hr. This technique has
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0 h 24 h 48 h 

FIGURE 3.4 Wound healing assay. A scratch on the monolayer of RKO
cells was performed (0 hr) and closure of the gap by cell migration was moni-
tored by a phase contrast microscope coupled with a CCD camera. Still images
were taken at 0, 24, and 48 hr.

been used for studying the involvement of many molecular processes in cell
migration, such as the role of the Rho family GTPases [7] or the involvement
of p53 [27]. The cell migration is measured as the rate of advance of the wound
edge, or by quantification of the area re-colonized by the cells. An example
is given in Figure 3.4. In fact, this assay is not a pure migration assay, as it
analyzes the colonization ability of a cell monolayer in culture, a process in-
volving both migration and proliferation [38]. Another putative problem with
this assay comes from the fact that scratching a cell monolayer can induce
cell reactions that are not related to migration.

3.4.1.3 Ring Assays

This assay is very similar to the wound healing assay, except that there is no
scratching of the cell monolayer. Cells are first cultured inside a glass ring,
which is removed after cells reach confluency, and cells are allowed to migrate
from this circular zone for 24 to 48 hr. Cell migration is measured by the
increase of the area covered by the cells. This area increase also derives from
cell proliferation in addition to cell migration, but, contrary to the wound
assay, there is no injury to the cell monolayer.

3.4.2 3-D Migration Assays

3.4.2.1 Filter Assays

These assays are carried out in modified Boyden chambers or Transwell cell
culture chambers, where cells are allowed to migrate through filter membranes
with pores of size 3 to 8 �m in diameter, as illustrated in Figure 3.5.

Cells are added to the upper compartment, and migrated cells are quan-
tified in the lower chamber. This assay has been modified for the study of
chemotaxis, with a chemoattractant placed in the lower compartment, or for
the study of invasion, where the filter is coated with a layer of ECM proteins.
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FIGURE 3.5 Migration assay with a modified Boyden chamber.

In this case invading cells must migrate through the matrix before reaching
the filter. To mimic the passage of circulating cells such as leukocytes or tumor
cells through the vessel wall (inflammation and metastasis), endothelial cells
can be cultured on the surface of the filter to evaluate the ability of immune or
cancer cells to cross the endothelial monolayer, a process called extravasation
[1,26]. The quantification of cells in the lower chamber at the end of the assay
is usually done by numbering the cells or by fluorescence techniques.

3.4.2.2 3-D Cell Tracking Methods

A putative problem with the filter assays is that the number of migrating cells
is obtained at the end of the experiment, and the observation of the migration
process itself is not possible. To overcome this limitation, migrating cells can
be observed by time-lapse video microscopy, inside a 3-D matrix. Fluorescent
cells can be observed for several hours, and automatic 3-D tracking software
has been developed. Confocal laser-scanning microscopy is used for the obser-
vation of migrating cells inside 3-D gels. The advantage of this technique is
the high resolution that can be obtained, along with the possibility of making
3-D reconstructions of entire cells inside the matrix [8].

3.5 New Family of Tumor Suppressor Genes

One of the most intriguing observations has shown that proteins involved in
the migration process may be tumor suppressor proteins. Below we describe
the identification of a new family of tumor suppressor proteins and the char-
acterization of the role of one of its member, ING4, in the migration process.

The founding member of the ING family, ING1, was discovered during
a screen designed to identify genes that promote neoplastic transformation
when repressed: tumor suppressor genes (TSG). To perform this screen, the
authors used subtractive hybridization of cDNAs from a nontransformed hu-
man mammary epithelial cell line and several human breast cancer cell lines.
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The cDNAs specifically expressed only in normal cells were cloned in antisense
and expressed in preneoplastic cell lines in order to repress the corresponding
gene. The resulting cells were injected into nude mice. The emerging tumors
were collected and the sequence of the expressed cDNA responsible for the
transformation of the preneoplastic cells was determined. The cDNA sequence
allowed the identification of the repressed gene: ING1 [9]. Four additional
members of the family (ING2–5) were then identified by sequence homology
search [23,24,31,32]. Phylogenetic analyses revealed that ING genes are well
conserved along evolution (from yeast to human), suggesting their importance
in cellular processes [13].

All the members of the human ING genes family were mapped on indepen-
dent chromosomes. Since their identification, all ING genes but ING5 were
shown to encode several variants, as a result of the usage of different promot-
ers, exons, and splices (Figure 3.6).

ING genes code for proteins that share a strong homology in their
C-terminal region. This C-terminal region contains a nuclear localization se-
quence (NLS) (responsible for their nuclear targeting) and a plant home-
odomain (PHD) finger. Such domains are commonly found in proteins involved
in chromatin remodeling. The N-terminal part of ING proteins is unique
(Figure 3.7) and thus may be responsible for their specific functions. ING
protein sequence analysis shows that ING1 and ING2 on one hand, and ING4
and ING5 on the other hand, share high homology. Therefore, they may have
closely related or redundant functions.

Initially, when the ING1 gene was discovered, the authors identified the
p33ING1b isoform [9] originally described to interact physically with p53 and
to enhance its transcriptional activity [10]. Thus, p33ING1b is necessary for
p53 to repress cell proliferation. Subsequently, in agreement with their TSG
status, all the ING proteins have been involved in p53 pathways such as cell
cycle arrest, apoptosis, and senescence. However, the results observed in cel-
lular models must be taken carefully because studies on ING1 knockout mice
revealed that under physiological conditions, ING1 functions appear mostly
independent of p53 signaling pathways [4,15]. In addition to their involve-
ment in p53 tumor suppressor pathways, ING proteins have been implicated
in chromatin remodeling. Indeed, ING proteins are components of histone
acetyltransferase (HAT) and histone deacetylase (HDAC) complex. HAT and
HDAC are responsible for the level of chromatin compaction. The degree of
chromatin compaction regulates its accessibility by transcription factor and
thus regulates gene expression. In this regard, a recent study reported that
the PHD of ING2 binds with high affinity to the histone 3 trimethylated on
lysine 4. This interaction allows the recruitment of Sin3a/HDAC complex to
the promoter of genes (coding for proteins involved in cell proliferation), and
thus repressed them [30]. Furthermore, ING1 and ING2 proteins have been
involved in DNA repair [2,36].

Since ING1 has been identified as a TSG and since ING proteins have
been involved in several tumor suppressive pathways, many studies have been
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FIGURE 3.6 Genomic organization of the ING genes and their transcripts.
ING genes are represented with their different exons (E) and transcript vari-
ants are below. Coding and non-coding regions are in gray and white squares,
respectively. The names of ING genes and their corresponding variants are
written on the left of the figure.
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FIGURE 3.7 ING protein structures. Their names and corresponding vari-
ants appear on the right. The characteristic domains of the ING protein family
are indicated. PIP, PCNA interacting-protein motif; PBD, partial bromo do-
main; NCR, novel conserved region; NLS, nuclear localization signal; PHD,
plant homeodomain; PBR, poly basic region; LZL, leucine zipper-like re-
gion; LBR, Liprin �1 binding region. The nonfunctional NLS of ING4v3 and
ING4v4 are represented by a gray box.

conducted to investigate ING protein status in tumors [39]. Consistent with
its tumor suppressor function, the ING1 knockout mouse model developed
B-cell lymphoma with earlier and higher incidence as compared to normal
mice. In humans, ING protein inactivation has been reported in many cancer
types: brain, breast, stomach, skin (melanoma), blood (lymphoma), etc. [39].
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Mutational analysis conducted on ING genes in cancer revealed that muta-
tions are rare events. However, when ING mutations were identified, they
were found in the critical domains for their tumor suppressor functions: NLS
or PHD [6]. A few studies have also reported that ING protein inactivation
could occur by their exclusion from the nucleus [20,35]. However, the large ma-
jority of studies reveal that ING proteins are inactivated by the loss of their
mRNA expression or stability [39]. Few studies have identified the mechanisms
responsible for ING gene repression. For example, in human head and neck
cancer, ING1 downregulation is due to the deletion of the gene [12]. In ovarian
cancer, ING1 has been reported to be downregulated by hypermethylation of
the gene [28]. In most studies, the mechanism(s) responsible for ING loss of
expression remain unknown.

3.6 ING Gene Involvement in Cell Migration

As described above, mounting evidence reveals the involvement of the ING
gene family in tumor suppressor pathways such as inhibition of cell growth,
apoptosis, and senescence. These processes mostly implicate ING protein nu-
clear functions and their ability to regulate gene expression. Recently, one
member of the ING family, ING4, has been shown to have a cytoplasmic
function for regulating cell spreading and migration [29]. ING4 was shown
to interact and co-localize with liprin �1 in the cytoplasm at the forefront
of the leading edges of the protruding membranes. Liprin �1 was previously
described as playing a major role in neuron axon guidance and dendrite ex-
tension [28]. Such a process allows the extension and migration of the ex-
tremities of axons and dendrites to their target and thus shares a common
mechanism with those involved in cell migration. Using a cell spreading as-
say with cells overexpressing ING4, ING4 was reported to significantly delay
the ability of cells to spread. Moreover, cells exhibited fewer filopodia and
lamellipodia.

Overexpression of liprin �1 alone increased the number of filopodia and
lamellipodia per cell, but overexpression of ING4 with liprin �1 abrogated
this effect. On the contrary, ING4 knockdown (KD) increased cell spreading,
filopodia and lamellipodia formation whereas liprin �1 KD had the opposite
effect. Taken together, these results indicated that liprin �1 and ING4 coop-
erate to regulate cell spreading. Using a Boyden chamber and wound healing
assay, ING4 was also shown to inhibit cell migration in a liprin-�1-dependent
way. Overall, this study showed that ING4 and liprin �1 cooperate to regulate
cell adhesion and migration. Subsequently, three new variants for ING4 have
been reported (ING4v2–4) [33].

These variants result from alternative splice donor or acceptor sites between
exons 4 and 5. It was shown that the ING4v4 variant exerts a dominant neg-
ative effect on ING4v1 cell cycle inhibitor function and also on its ability to
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suppress cell spreading and migration. Interestingly, a previous study had
identified ING4 as a suppressor of contact inhibition loss elicited by MYCN
[16]. Loss of contact inhibition is a characteristic of transformed cells. ING4
was identified after a screen in which cells that lost contact inhibition by
MYCN overexpression were transfected with a cDNA library. When cells
reached confluence, the cells were dividing, except those that expressed a
cDNA that codes for a protein that restores contact inhibition. The use of
AZT/5-FU allows killing of dividing cells. Thus, only cells that stop divid-
ing at confluence remained alive. Sequencing of the expressed cDNA allows
identifying which protein is able to inhibit the loss of contact inhibition.

The fact that ING4 was identified in that screen suggests that ING4 is a
tumor suppressor gene. To further test this hypothesis, ING4 status in sev-
eral cancer cell lines was tested. In seven of the nine cell lines tested, ING4
was harboring a deletion of four amino acids. At this time it has been inter-
preted as a mutation hotspot. However, this deletion was reinterpreted as the
ING4v4 variant recently described [33]. Taken together, these results indicate
that ING4 functions, especially the ability to suppress cell spreading and mi-
gration, may be regulated by the balance of expression of its different variants.
These functional studies involving ING4 in cell spreading and migration con-
formed to the implication of ING4 in cell migration and invasion in melanoma.
A reduced ING4 expression in more than half of the tumor samples and a cor-
relation between ING4 downregulation and the development of metastasis was
observed [19]. ING4 was shown to downregulate the metalloproteinases MMP-
2 and MMP-9 that degrade components of the extracellular matrix and thus
are strongly involved in the invasion and metastasis of malignant tumors.

At the present time, functional studies have only involved ING4 among the
ING genes in metastatic processes such as cell spreading, invasion and migra-
tion. However, ING1 loss of expression has been reported in breast cancer,
and this loss correlates with the metastatic status of these tumors. Further
investigations are needed to establish a direct link between ING1 and the
ability of tumors to develop metastasis.

References

[1] L. Celli et al. (2006). Evidence of a functional role for interaction be-
tween ICAM-1 and nonmuscle (alpha)-actinins in leukocyte diapedesis.
J. Immunol. 177(6):4113–4121.

[2] K.J. Cheung Jr. et al. (2001). The tumor suppressor candidate
p33(ING1) mediates repair of UV-damaged DNA. Cancer Res.
61(13):4974–4977.

[3] A.C. Chiang and J. Massague (2008). Molecular basis of metastasis. New

Engl. J. Med. 359(26):2814–2823.



Cancer: Cell Motility and Tumor Suppressor Genes 81

[4] A.H. Coles et al. (2007). Deletion of p37Ing1 in mice reveals a p53-
independent role for ING1 in the suppression of cell proliferation, apop-
tosis, and tumorigenesis. Cancer Res. 67(5):2054–2061.

[5] A.W. Dunah et al. (2005). LAR receptor protein tyrosine phosphatases
in the development and maintenance of excitatory synapses. Nat. Neu-

rosci. 8(4):458–467.

[6] X. Feng, Y. Hara, and K. Riabowol (2002). Different HATS of the ING1
gene family. Trends Cell Biol. 12(11):532–538.

[7] G. Fenteany, P.A. Janmey, and T.P. Stossel (2000). Signaling pathways
and cell mechanics involved in wound closure by epithelial cell sheets.
Curr. Biol. 10(14):831–838.

[8] P. Friedl and E.B. Brocker (2000). The biology of cell locomotion within
three-dimensional extracellular matrix. Cell Mol. Life Sci. 57(1):41–64.

[9] I. Garkavtsev et al. (1996). Suppression of the novel growth inhibitor
p33ING1 promotes neoplastic transformation. Nat. Genet. 14(4):415–
420.

[10] I. Garkavtsev et al. (1998). The candidate tumour suppressor p33ING1
cooperates with p53 in cell growth control. Nature 391(6664):
295–298.

[11] M.H. Ginsberg and J.E. Schwarzbauer (2008). Cell-to-cell contact and
extracellular matrix. Curr. Opin. Cell Biol. 20(5):492–494.

[12] M. Gunduz et al. (2000). Genomic structure of the human ING1 gene
and tumor-specific mutations detected in head and neck squamous cell
carcinomas. Cancer Res. 60(12):3143–3146.

[13] G.H. He et al. (2005). Phylogenetic analysis of the ING family of PHD
finger proteins. Mol. Biol. Evol. 22(1):104–116.

[14] J.D. Hood and D.A. Cheresh (2002). Role of integrins in cell invasion
and migration. Nat. Rev. Cancer 2(2):91–100.

[15] J.V. Kichina et al. (2006). Targeted disruption of the mouse ING1 locus
results in reduced body size, hypersensitivity to radiation and elevated
incidence of lymphomas. Oncogene 25(6):857–866.

[16] S. Kim et al. (2004). A screen for genes that suppress loss of contact
inhibition: identification of ING4 as a candidate tumor suppressor gene
in human cancer. Proc. Natl. Acad. Sci. USA 101(46):16251–16256.

[17] K.W. Kinzler and B. Vogelstein (1998). Landscaping the cancer terrain.
Science 280(5366):1036–1037.

[18] C. Lengauer, K.W. Kinzler, and B. Vogelstein (1998). Genetic instabil-
ities in human cancers. Nature 396(6712):643–649.



82 Cell Mechanics

[19] J. Li, M. Martinka, and G. Li (2008). Role of ING4 in human melanoma
cell migration, invasion and patient survival. Carcinogenesis 29(7):1373–
1379.

[20] F. Lu et al. (2006). Nuclear ING2 expression is reduced in human cuta-
neous melanomas. Br. J. Cancer 95(1):80–86.

[21] L.M. Machesky (2008). Lamellipodia and filopodia in metastasis and
invasion. FEBS Lett. 582(14):2102–2111.

[22] C.D. Mathers and D. Loncar (2006). Projections of global mortality and
burden of disease from 2002 to 2030. PLoS Med. 3(11):e442.

[23] M. Nagashima et al. (2001). DNA damage-inducible gene p33ING2 neg-
atively regulates cell proliferation through acetylation of p53. Proc. Natl

Acad. Sci. USA 98(17):9671–9676.

[24] M. Nagashima et al. (2003). A novel PHD-finger motif protein, p47ING3,
modulates p53-mediated transcription, cell cycle control, and apoptosis.
Oncogene 22(3):343–350.

[25] K.M. Rieger-Christ et al. (2005). Restoration of plakoglobin expression
in bladder carcinoma cell lines suppresses cell migration and tumorigenic
potential. Br. J. Cancer 92(12):2153–2159.

[26] Y. Roche et al. (2003). Fibrinogen mediates bladder cancer cell migra-
tion in an ICAM-1-dependent pathway. Thromb. Haemost. 89(6):1089–
1097.

[27] A.A. Sablina, P.M. Chumakov, and B.P. Kopnin (2003). Tumor sup-
pressor p53 and its homologue p73 alpha affect cell migration. J. Biol.

Chem. 278(30):27362–27371.

[28] D.H. Shen et al. (2005). Epigenetic and genetic alterations of p33ING1b
in ovarian cancer. Carcinogenesis 26(4):855–863.

[29] J.C. Shen et al. (2007). Inhibitor of growth 4 suppresses cell spreading
and cell migration by interacting with a novel binding partner, liprin
alpha 1. Cancer Res. 67(6):2552–2558.

[30] X. Shi et al. (2006). ING2 PHD domain links histone H3 lysine 4 methy-
lation to active gene repression. Nature 442(7098):96–99.

[31] Y. Shimada et al. (1998). Cloning of a novel gene (ING1L) homologous
to ING1, a candidate tumor suppressor. Cytogenet. Cell Genet. 83(3-
4):232–235.

[32] M. Shiseki et al. (2003). p29ING4 and p28ING5 bind to p53 and p300,
and enhance p53 activity. Cancer Res. 63(10):2373–2378.

[33] M. Unoki et al. (2006). Novel splice variants of ING4 and their possi-
ble roles in the regulation of cell growth and motility. J. Biol. Chem.
281(45):34677–34686.



Cancer: Cell Motility and Tumor Suppressor Genes 83

[34] F.M. Vega and A.J. Ridley (2008). Rho GTPases in cancer cell biology.
FEBS Lett. 582(14):2093–2101.

[35] D. Vieyra et al. (2003). Altered subcellular localization and low fre-
quency of mutations of ING1 in human brain tumors. Clin. Cancer Res.
9(16):5952–5961.

[36] J. Wang, M.Y. Chin, and G. Li (2006). The novel tumor suppressor
p33ING2 enhances nucleotide excision repair via inducement of histone
H4 acetylation and chromatin relaxation. Cancer Res. 66(4):1906–1911.

[37] J. Werr et al. (1998). Beta 1 integrins are critically involved in neutrophil
locomotion in extravascular tissue in vivo. J. Exp. Med. 187(12):2091–
2096.

[38] J.C. Yarrow et al. (2004). A high-throughput cell migration assay using
scratch wound healing, a comparison of image-based readout methods.
BMC Biotechnol. 4:21.

[39] D. Ythier et al. (2008). The new tumor suppressor genes ING: genomic
structure and status in cancer. Int. J. Cancer 123(7):1483–1490.





Part II

Single Cell Migration

Modeling



86 Cell Mechanics

Chapter 4. Coupling of Cytoplasm and Adhesion Dynamics

Determines Cell Polarization and Locomotion

Observation of epidermal cells or cell fragments on flat adhesive substrates
has revealed two distinct morphological and functional states: a nonmigrating
symmetric “unpolarized state” and a migrating asymmetric “polarized state.”
They are characterized by different spatial distributions and dynamics of im-
portant molecular components as F-actin and myosin-II within the cytoplasm,
and integrin receptors at the plasma membrane contacting the substratum,
thereby inducing so-called focal adhesion complexes. So far, mathematical
models have reduced this phenomenon to gradients in regulatory control and
signaling molecules or to different mechanics of the polymerizing and con-
tracting actin filament system in different regions of the cell edge.

Here we offer an alternative self-organizational model to reproduce and ex-
plain the emergence of both functional states for a certain range of dynamical
and kinetic model parameters. We apply an extended version of a two-phase,
highly viscous cytoplasmic flow model with variable force balance equations
at the moving edge, coupled to a four-state reaction–diffusion–transport sys-
tem for the bound and unbound integrin receptors beneath the spreading cell
or cell fragment. In particular, we use simulations of a simplified 1-D model
for a cell fragment of fixed extension to demonstrate characteristic changes
in the concentration profiles for actin, myosin, and doubly bound integrin,
as they occur during transition from the symmetric stationary state to the
polarized migrating state. In the latter case the substratum experiences a low
magnitude “pulling force” within the larger front region, and an opposing
high-magnitude “disruptive force” at the shorter rear region. Moreover, simu-
lations of the corresponding 2-D model with free boundary show characteristic
undulating protrusions and retractions of the cell (fragment) edge, with local
accumulation of doubly bound adhesion receptors behind it, combined with a
modulated retrograde F-actin flow. Finally, for a stationary model cell (frag-
ment) of symmetric round shape, larger fluctuations in the circumferential
protrusion activity and adhesion kinetics can break the radial symmetry and
induce a gradual polarization of shape and concentration profiles, leading to
continuous migration in the direction of the leading front.

The aim of the chapter is to show how relatively simple laws for the small-
scale mechanics and kinetics of participating molecules, responsible for the
energy-consuming steps such as filament polymerization, pushing and sliding,
binding and pulling on adhesion sites, can be combined into a nonlinearly
coupled system of hyperbolic, parabolic, and elliptic differential equations
that reproduce the emergent behavior of polarization and migration on the
large-scale cell level.
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Chapter 5. How Do Cells Move? Mathematical Modeling of

Cytoskeleton Dynamics and Cell Migration

We present a novel approach to the modeling of the lamellipodial actin cy-
toskeleton meshwork. The model is derived from the microscopic description
of mechanical properties of filaments and crosslinks and also of the life cy-
cle of crosslinker molecules. The result is a multiphase evolution model for
lamellipodia with arbitrary shape that allows us to relate computationally
the structure and dynamics of the actin network to the traction forces and
shape changes that constitute the amoeboid movement of cells.

Chapter 6. Computational Framework Integrating

Cytoskeletal and Adhesion Dynamics for Modeling

Cell Motility

Cell migration is a highly integrated process where actin turnover, actomyosin
contractility, and adhesion dynamics are all closely interlinked. The compu-
tational framework presented here aims to investigate the coupling among
these fundamental processes. Two different applications of the model are con-
sidered: first its relevance to describe cell migration and second its ability
to predict the cell morphologies as observed on patterned substrata. In the
model the cell membrane oscillations originating from the interaction between
passive hydrostatic pressure and contractility are sufficient to lead to the for-
mation of adhesion spots. Cell contractility then leads to the maturation of
these adhesion spots into focal adhesions through integrin recruitment, which
reciprocally stimulates reinforcement of the stress fibers. Due to active actin
polymerization, which enhances protrusion at the leading edge, the traction
force required for cell translocation can be generated. However, if the force is
not strong enough, the maturation of the stress fibers allows for redistribution
of the forces throughout the cytoskeleton, and the cell can thus recover a new
stable shape.

Numerical simulations first performed in the context of unstimulated cell
migration (i.e., for a homogeneous and isotropic substratum) show that the
model hypotheses are satisfactory to reproduce the main features of fibroblast
cell migration as well as the well-known biphasic evolution of the cell migra-
tion speed as a function of the adhesion strength. In the context of patterned
substrata, the numerical simulations allow us to explain how the forces gen-
erated by the stress fibers of the virtual cells are regulated at the adhesion
site through feedback mechanisms and how the competing stress fibers can
generate an equilibrium state corresponding to a stable cell shape.
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4.1 Biology of Cell Polarization and Migration

Cell polarization and migration play a central role in the development and
maintenance of tissues in multicellular organisms. During ontogenesis, new
tissues are formed by the coordinated division and locomotion of single cells.
The polarization of a cell not only defines the direction of migration [30], but
also the cell division axis [61] and thus the 3-D structures of tissues, organs,
and finally the whole organism.

4.1.1 Asymmetry of Actin Polymerization and Substrate

Adhesion

The coordinated development and release of focal adhesions (FAs) is a basic
requirement for directed cell migration. Migrating cells feature pronounced
adhesion dynamics and a structural polarity with a clearly distinguishable
frontal and rear area. Actin polymerization predominates at the cell front, re-
sulting in a protruding lamella in the direction of migration. New focal adhe-
sions composed of clustered protein complexes develop at the lower membrane
of the lamella near the leading edge and couple the F-actin network mechani-
cally to extracellular matrix proteins. Simultaneously, the mature FAs residing
at the opposed trailing edge are dissolved while myosin-driven contraction of
F-actin moves the cell body forward [10,36].

Arising from the process described above, the polarity of the cell can be re-
ferred to two structural asymmetries, which are key requirements for effective
cell migration: asymmetry of actin polymerization and asymmetry of adhesion
strength. The growth of actin filaments has to predominate at the cell front
for pushing the leading edge in the direction of migration [58,63]. To move the
cell body forward, it must be released from the substrate during contraction
by dissolving the FAs at the back (rear release) while the FAs at the cell front
must remain stable to provide a mechanical attachment for the contractile
machinery pulling the cell body. In the absence of rear release, traction forces
could be dominated by adhesion forces and the cell would get stuck [54]. In
this regard, the spatial distribution of adhesion strength and actin polymer-
ization defines the direction of migration and could be specifically regulated
due to directed cell movement.

4.1.2 Flow of Actin Filaments and Myosin Gradient

The mechanisms underlying the structural polarity of migrating cells are still
under discussion, particularly those concerning an intrinsic directionality of
the cytoplasm. For example, the finding that asymmetric adhesive structures
define polarization of a touching cell [30] suggests that directional flow of the
actin cytoskeleton is involved in the process of cell polarization. Moreover,
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FIGURE 4.1 Cell fragment experiments in which mechanical stress induces
a transition from a circular nonmigrating state (a) to a polarized migrating
state (b) and (c). The cell fragment was labeled with fluorescent myosin II.
Time scale is min:sec and length scale of bar is 2 �m (from [63]).

recent studies on fish keratocytes have revealed that polarization occurs spon-
taneously and is accompanied by a reorganization of the actin cytoskeleton,
which finally leads to cell locomotion [64]. In these experiments, unpolarized
solitary cells feature a circular shape with a radially symmetric actin distri-
bution. Although the cells do not move, transient protrusions and retractions
appear at the cell edge, and actin flows centripetally with a decreasing flow
gradient from the cell edge to the center. In this apparently unstable state,
spontaneous symmetry breaking results in a faster inward flow and in an in-
creased concentration of actin at the rear region of the cell. On the opposed
front edge, the reduced inward actin flow causes protrusion and the develop-
ment of a lamellipodium. In this polarized state, the cell starts to migrate
while attaining a more or less constant shape.

A similar behavior was observed with cell fragments extracted from the
lamellae of fish keratocytes [63]; see Figure 4.1. Because these fragments were
lacking most cell organelles and the microtubule system, they were limited
mainly to the actin–myosin machinery. They appeared either in an unpolar-
ized, nonmigrating state with homogeneous actin–myosin distribution or a
polarized, migrating state with a rising myosin concentration from front to
rear. Interestingly, polarization of fragments could be induced by mechanical
stimulation, for example, by shear flow or stress release, leading to a transition
from the stationary to the migrating state.

Cell polarization is thought to result from the local activation of GTPases
of the Rho family [43,54,62]. These proteins are known to regulate actin poly-
merization, myosin activity, and FA assembly, whereas it remains unclear
how the distribution of the GTPases is controlled. Recent experiments have
revealed that by inhibition of myosin activating signaling pathways, the cell’s
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ability to polarize is reduced [64]. However, the observations that cells or cell
fragments polarize either spontaneously or due to mechanical perturbations
raise doubts that biochemical signaling is the primary reason for inducing
and maintaining polarity. Experiments focusing on cell mechanics show that
direction and strength of locomotion forces are inherently connected with the
retrograde F-actin flow [22,53]. This suggests that the mechanical action of
myosin—namely to induce cytoplasmic contraction, flow and force transduc-
tion at adhesive sites—plays a key role in explaining the ubiquitously observed
phenomena of cell polarization and locomotion.

4.2 Previous Models of Cytoplasm and Adhesion

Dynamics

The first detailed mathematical model coupling cytoskeleton and adhesion dy-
namics was developed by Lauffenburger and co-workers almost two decades
ago [17]. Here, the contractile actin–myosin network and its interaction with
bound adhesion sites is represented as a mechanical system of connected vis-
coelastic units of generalized Kelvin-Voigt type, which constitute the (three)
inner segments as well as a front segment (lamellipod) and a tail segment
(uropod) for a rectangular model cell of fixed width and length. A coupled
system of reaction–diffusion equations for free and substrate-bound integrins
or adhesion receptors on the dorsal (lower) and ventral (upper) part of the
model cell is solved under pseudo-steady-state assumptions. This dynamically
provides the number of adhesion bonds in both end segments, lamellipod and
uropod, whereby their rupture (dissociation) kinetics exponentially increase
with force load onto a bound adhesion site. The resulting nonlinear dynamics
for the local (forward or backward) displacement of each viscoelastic unit pro-
duces a persistent forward translocation of the whole model cell. However, this
is achieved only if a front-tail asymmetry is presupposed, either by exposing
more free adhesion receptors or by assuming higher adhesion bond affinity at
the front compared to the tail. The authors present a series of results on how
the simulated cell migration speed depends on various model parameters as,
for example, cytoskeletal contractility or adhesion strength. A later variant of
this model presents a more explicit study of adhesion bond disruption kinetics
at the rear of the cell and already uses a four-state model for integrin binding
to the cytoskeleton and to the substratum [51].

In recent years a series of more elaborate models has been developed, ac-
counting for details of the meanwhile discovered molecular regulation mech-
anisms for the chemical and mechanical processes, particularly at the free
boundary of a moving cell. One model type is based on spatially discrete
algorithms (cellular Potts model) using the definition of local energies to de-
termine the protrusion and retraction of boundary elements via the stochastic
metropolis rule (e.g., [39,46,47]).
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Another class of mechanical cell models takes into account the branching
and anisotropy of cytoskeletal actin filaments at various times and in various
regions of the cell (see, e.g., [23,28,65]). Besides explicit constructions of an
elastically crosslinked network in the leading edge [32,48], biophysical models
have been developed to capture different dynamics of Arp2/3-induced branch-
ing and myosin-induced contraction of F-actin networks by Mogilner and co-
workers [25,33,44]. The last article is devoted to explaining the mentioned
polarization experiments with cell fragments (see Figure 4.1) by assuming a
different actin–myosin network organization at the rear in comparison to the
front region (see Chapter 5).

Based on the “reactive flow” model by Dembo and co-workers [3,12,13],
the most elaborate model extension has been presented by Oliver et al. [49];
they use full 3-D, two-phase flow equations with free ventral boundary and
with two additional rapidly diffusing messenger concentrations that regulate
actin network contractility and (de-)polymerization. Moreover, cell adhesion
is modeled by a Navier-slip boundary condition at the substratum, in which
only constant adhesive properties are taken into account. The analysis of
this complex model, performed in the thin-film limit, is restricted to linear-
stability arguments for ruffle generation and to local expansion analyses at
the moving tip; there, phenomenological equations for boundary mass fluxes
are considered without specifying the types of molecular mechanisms for tip
protrusion. Finally, quantitative estimations for the pseudopod protrusion and
cell translocation speed under various sublimit assumptions are given, which
turn out to be consistent with observed values, particularly for osteoblasts,
although no numerical simulations are given that would reinforce the ana-
lytic results. A similar thin-film approximation of the 2-D equations under
incompressibility assumptions for a “viscous polar gel” was used in [34] to
derive explicit expressions for the advancing speed of a cell lamella, again by
predefining its polarity.

Except for the last one, the mentioned models do not explicitly quantify
the varying force field, which is applied by the cytoskeleton onto the substrate
covered by a migrating cell and which has been approximately reconstructed
by different inverse methods from experimental assays of cells, for example,
moving on flexible substrata [6,15,38,40,56]. A first model implementing force
transduction to the substrate was proposed by Gracheva and Othmer [24]
by specifying a spatially 1-D system of viscoelastic equations for cytoskele-
ton dynamics, whose polymerization, contractility, and adhesive binding are
regulated by signaling molecules. However, they make a pseudo-steady-state
assumption for the binding kinetics of myosin polymers to actin filaments,
and of transmembrane integrin proteins to the substratum. Moreover, they
impose artificially defined gradients from tail to front of certain regulatory
proteins in order to stimulate polarized cell translocation.

Recently, adhesion kinetics have also been implemented into an extended
cytoplasm flow model [4,5] describing the F-actin dynamics in an annular
domain and its coupling to lamellipodial protrusions and retractions [59].
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Force-dependent maturation of FA complexes and active polymerization of
F-actin enable the simulation model to reproduce characteristics of fibroblast
shape deformation and translocation (see Chapter 6).

In an earlier publication we have presented another extension of the basic
two-phase flow model for the 2-D viscous cytoplasm dynamics [2] by coupling
the constitutive hyperbolic–elliptic equations to a system of four reaction–
diffusion–transport equations for the integrins beneath the cell or cell frag-
ment [35]. Here we propose a generalized continuum model in which we couple
cytoplasm and adhesion dynamics with mechanical tension and transport of
the plasma membrane to reproduce spontaneous and induced cell polariza-
tion leading to migration, with assembly of adhesion sites at the cell front,
and adhesion release at the cell’s rear end. Moreover, the model exhibits typ-
ical features of migrating cells as protrusion–retraction cycles, rearward actin
flow, pulling forces at the front, and a concentration of disruptive forces at the
rear. In the model, the cytoplasm is described as a viscous and contractile fluid
of polymers representing the actin cytoskeleton interpenetrated by an aqueous
phase. This actin filament network is preferentially assembled at the cell edge,
and can be contracted by crosslinking with diffusing myosin oligomers. The
moving actin filaments then couple to transmembrane adhesion proteins that
are freely diffusing in the membrane or bound to the substrate on the extracel-
lular domain. Thus, the cytoskeleton mechanically connects to the substrate
through dynamic binding processes and results in force transduction and fi-
nally cell locomotion.

Throughout our model presentation we rely on continuum descriptions in
which macroscopic mass and momentum laws are combined with mesoscopic
submodels for fast molecular kinetics due to adequate pseudo-steady-state
assumptions.

4.3 Two-Phase Flow Model for Cytoplasm Coupled to

Reaction, Diffusion, and Transport for Myosin-II

and Integrin Proteins

For simplicity, we restrict our model derivation and analysis to a flat 2-D
geometry, so that cells or cell fragments are assumed to be homogeneously
spread on the substrate without considerable change in cell height. Thereby,
3-D effects around the cell nucleus (e.g., due to cell rolling) or along the
ventral (upper) plasma membrane are neglected. To reproduce the main bio-
physical mechanisms and biochemical processes that enable a cell to polarize
and translocate on an adhesive substratum, we nevertheless distinguish be-
tween the cytoplasm and the exterior plasma membrane. On the one hand,
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FIGURE 4.2 Schematic longitudinal section through a cell fragment (or a
cell lamella) of constant height with involved proteins. For further explanation
and model derivation see the following sections.

F-actin assembly, myosin kinetics, and viscous network flow take place within
the cytoplasmic interior of the cell. On the other hand, integrin binding to
substrate or cytoskeleton and its transport or diffusion are confined to the
dorsal (lower) plasma membrane, where forces are transduced to or generated
at the cell periphery, leading to tip protrusion or retraction. Thus, the moving
cell (fragment) is simply represented by a time-dependent connected domain
�(t) ⊂ R

2, over which the cytoplasmic volume extends with fixed constant
height, and any ruffles or blebs on top of the cell are neglected. Rather, we as-
sume that the cell dynamics are completely determined by a flat cytoskeleton
sheet of F-actin network; see Figure 4.2. This crosslinked filament phase with
volume fraction �(t,x),x ∈ �(t) is of constant thickness and connected to the
upper and lower plasma membrane in such a way that the cytosol, i.e., the
solvent phase with volume fraction (1 − �(t,x)), is also confined to the same
volume space.

By suitable model simplifications, we aim to capture the self-organizational
power of the cytoplasm as a two-phase fluid coupled with the reaction, trans-
port, and diffusion of a series of chemical ingredients. We explicitly model
the kinetics and dynamics of only those F-actin associated proteins that
induce the main biomechanical processes of force generation and transduc-
tion to the substratum, namely myosin oligomers and transmembrane in-
tegrin proteins. All other regulatory proteins, such as RAC, Rho, or the
branching protein Arp2/3 or smaller substrate molecules (e.g., monomeric
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G-actin) are assumed to rapidly diffuse within the cytosol under fast regener-
ation so that they attain constant reservoir concentrations serving as param-
eters in the model.

4.3.1 Mass Balance and Flow Equations

In the chosen 2-D continuum description, cell deformation and translocation
with respect to the fixed substratum is represented by movement of the cell
edge Ŵ(t) = ∂�(t), which, however, is induced by three distinguished mass
flows with potentially different transport velocity fields on �, namely the mean
velocities v of the F-actin cytoskeleton (�) and w of the aqueous cytosol (1−�)
plus the transport velocity u of the lower dorsal plasma membrane. Thereby
both v and w are averaged over the constant cell height. For the membrane
area flux u we make the simplifying assumption that the lipid bilayer be-
tween the flat substratum and an adhering cell is always stretched out to its
maximal extension with constant area concentration of the lipid-protein mix-
ture, thus constituting an incompressible 2-D Newtonian fluid. Then, freely
diffusing transmembrane integrin proteins are additionally transported by the
membrane velocity u, myosin oligomers by the cytosol velocity w, and F-actin
bound myosin-II motor molecules by the cytoskeleton velocity v. The detailed
mass balance equations are discussed in the following paragraphs.

4.3.1.1 Mass Conservation for Cytoskeleton and Cytosol Phases

Cytoskeleton and cytosol in the flat 2-D geometry can experience counter-
acting flows due to local contraction, assembly, or relaxation of the F-actin
network, while the bulk cytoplasmic fluid with constant volume fraction 1 can
be assumed to be incompressible, at least in the range of occurring pressure
differences � kPa. Compare the analogous situation of a water-filled sponge
that is internally condensing without changing its shape. Then, because of
the fixed height assumption, the total 2-D volume flux W = �v + (1 − �)w is
divergence-free at any time t , yielding the first local mass conservation law

∇ · (�v + (1 − �)w) = 0 (4.1)

Therefore, the total cell volume (i.e., the 2-D cell area) is also conserved over
time, so that the “bulk” fluid moves together with the free boundary Ŵ(t),
meaning that the total volume flux W has to fulfill the natural free boundary
condition

�Ŵ · W = Ŵ̇ (4.2)

with �Ŵ denoting the exterior normal of Ŵ and Ŵ̇ quantifying the normal speed
of the cell edge.

In addition to possible convection, the F-actin network can locally be assem-
bled by filament polymerization from the pool of monomeric G-actin within
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the cytosol, and it can be disassembled by the reverse process of severing or
depolymerization. This mass exchange between the two phases is given by
a second conservation law, which for the filament volume fraction � can be
written as

∂t � + ∇ · (�v) = R(�) (4.3)

with a net assembly rate R(�) to be modeled. According to our simplifying
assumption, the dependence on G-actin, Arp2/3, and possible regulatory pro-
teins enters only via constant parameters:

R(�) = (konag − koff )B(�) − r� (4.4)

with concentration of globular actin ag, polymerization rate kon , and depoly-
merization rate koff at the filaments’ plus (barbed) ends, as well as another
lumped disassembly rate r (see, e.g., [42]). Due to relatively fast nucleation and
capping of actin filaments, the relative number B of barbed ends is assumed to
stay in pseudo-equilibrium with the local F-actin concentration a = � · amax,
where we suppose a maximal condensation of actin filaments in the order of
amax = 800 �M. Following [42] we write

B(�) =
1

�

(
ε + �0

�

Ka/amax + �

)
(4.5)

with capping rate �, a basic nucleation rate ε, and an induced branching
rate �0 = �aArp0, proportional to the concentration Arp0 [�M] of activated
Arp2/3, together with a half-saturation concentration Ka for its primary actin
binding site.

4.3.1.2 Reaction–Transport–Diffusion Equations

for Myosin Oligomers

Myosin-II oligomers are the most important actin binding proteins that are
responsible for the generation of contractile forces within crosslinked F-actin
networks. Thus, their spatial distribution within a polarizing or moving cell
plays a key role in the cytoplasm dynamics. In a most simple way we only
distinguish between freely diffusing myosin oligomers (m f ) and those that are
bound to cytoskeletal actin filaments (mb) and, therefore, are convected with
velocity v. Because free myosin tetramers first have to attach to the actin
network at one binding site, we consider this bimolecular reaction (m f with
a) as the rate-limiting step. Correspondingly we assume that the relatively
faster processes of double binding (mb with a) and power stroke formation
are in a pseudo-steady state. Thereby the contractile stress � = �0mb� with
� = a/amax in the network is determined; see Equation (4.25) in the fol-
lowing section. Finally, we suppose a constant diffusivity Dm for free myosin
oligomers, embedded into the cytosol flow w. Under these assumptions the
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local mass balance equations for the corresponding myosin concentrations are:

∂t m f = ∇ · (Dm∇m f − m f w) − �m · a · m f + �m(a) · mb (4.6)

∂t mb = −∇ · (mbv) + �m · a · m f − �m(a) · mb (4.7)

For the association rate �m we assume a constant parameter, whereas the
dissociation rate is supposed to increase quadratically with increasing network
concentration a because of steric inhibition or competition for binding sites:

�m(a) = �0
m

(
1 +

a2

a2
opt

)
= �0

m

(
1 +

�2

�2
opt

)
(4.8)

with an optimal actin network concentration aopt = amax�opt . Moreover, in the
case of fast diffusion and no transport, the constant equilibrium concentrations
m∗

f and m∗
b satisfy the equality

m∗
b =

�ma

�m(a)
m∗

f (4.9)

so that the resulting contractile stress �(�) becomes optimal for � = �opt .

4.3.1.3 Mass Conserving Flow of Dorsal Plasma Membrane

As mentioned before, we will assume that the dorsal plasma membrane be-
neath an adhering cell (fragment) is stretched and that small fluctuations can
be neglected. On the contrary top side, the ventral plasma membrane usually
shows extensive wrinkles or folds, which most probably are induced by the
contractile action of the cytoskeleton itself, indicating that the plasma mem-
brane tip at the cell edge stays under a positive tension 	Ŵ. Before discussing
the corresponding dynamics of the dorsal membrane, we state the two extreme
possibilities, namely, whether or not the membrane moves together with the
cell:

1. Membrane sticking to substrate: During cell translocation over the sub-
stratum, the whole dorsal membrane stays fixed and no slip can occur
due to relatively strong interaction forces with the substratum, for ex-
ample, via the glycocalyx, so that u ≡ 0.

2. Membrane sticking to cell edges: The dorsal membrane is pulled along
the substratum due to cytoplasm protrusions at the leading front, but
with no slip around the lamellar tips due to strong membrane curva-
ture. In this way the membrane area flux satisfies the mass conservation
law together with a boundary condition analogous to Equation (4.2),
namely,

∇ · u = 0 on �(t) �Ŵ · u = Ŵ̇ on Ŵ(t) (4.10)

In the latter case, the membrane can slip over the substratum, thereby expe-
riencing a finite frictional drag force, see Equation (4.40) below, whereas in
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the first case this force is infinitely large to suppress slipping—but then the
membrane has to slip around the tips at moving cell edges. Clearly, a certain
mixture of both possibilities is physically realizable but not considered here.

Moreover, frictional drag onto the dorsal membrane can also occur at its
cytoplasmic side. Whereas the relative flow of cytosol will have negligible
effects, the horizontal F-actin flow develops a vertical flow profile. This profile
depends on the amount of “Navier slip” in a cortical layer on top of the dorsal
membrane and emerges due to frictional forces between actin filaments and
membrane proteins. In analogy with the more explicit thin-film approximation
[49] we only consider the averaged profile velocity v. In this way we can
introduce a simplifying cortical slip parameter, 0 < 
 < 1, so that the effective
relative velocity between cytoskeleton and dorsal membrane is reduced to

(v − u). Thus, the resulting effective velocity of cortical F-actin in a thin
layer above the dorsal membrane and substratum is given by

vc = 
v + (1 − 
)u (4.11)

Here the factor 
, which clearly depends on the viscous shear properties of the
cytoskeleton, should be larger than 0.5 to reflect observations of a generally
slippy behavior (see, e.g., [22,29]). Moreover, we suppose that the vertical
profile, thus vc, is not changed if some of the cortical actin filaments are
(transiently) bound to integrins in the dorsal membrane (see Figure 4.3 and
the following paragraph): either those bound integrins or integrin complexes
are passively pulled through the lipid–protein bilayer with relative velocity
vc −u or, in case of substrate-fixed adhesion bonds, with relative velocity −u.
The whole F-actin network above such a bond is slowed down by a certain
local frictional force per adhesion site

Fc = �0�vc (4.12)

entering into the corresponding force balance law; see Equation (4.23). In any
case, the frictional drag onto the dorsal membrane, induced by the relative
motion of singular integrin complexes, will be neglected in our model.

4.3.1.4 Reaction–Transport–Diffusion Equations for Membrane

Integrins

The mechanical connection between the actin cytoskeleton and extracellular
matrix proteins is provided by transmembrane integrins appearing in four
different states [35,51]; see Figure 4.3.

In the freely diffusing state f , integrins are neither coupled to the sub-
strate nor to the actin cytoskeleton and move according to a simple diffusion-
transport law within the dorsal membrane. These integrins can change their
state by binding to the actin cytoskeleton (a) or to the substrate (s). In state
a, the integrins move with the cortical F-actin velocity vc, whereas integrins
in state s remain stationary with respect to the substrate. Actin- or substrate-
bound integrins can switch back into the freely diffusing state f by unbinding,
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FIGURE 4.3 Scheme of four states of the transmembrane adhesion protein
integrin. ( f ): unbound and freely diffusing within the dorsal membrane; (s):
bound to the substrate; (a): bound to the actin network and thus moving with
the actin flow; (sa): bound to actin and substrate (force-transducing state).
Integrins can switch between these states due to reversible binding kinetics
with binding/unbinding rates �, �, �, and �.

or into the state sa by coupling to the cytoskeleton and the extracellular ma-
trix. Cell adhesion occurs only in this double bound state s representing a
focal adhesion (FA), where the frictional force Fc (Equation (4.12)) of the
moving actin network is transduced to the substrate.

The concentration of integrins c# in the different states is described by
the following coupled system of differential equations consisting of terms for
spatial movement and binding kinetics.

∂t c f = ∇ · (D f ∇c f − c f u) + �−cs + �−ca −
(
�+

0 a + �+
)
c f (4.13)

∂t ca = −∇ · (cavc) + �+
0 ac f − (�− + �+)ca + �−

0 exp(�|Fc|)csa (4.14)

∂t cs = �+c f −
(
�− + �+

0 a
)
cs + �−

0 exp(�|Fc|)csa (4.15)

∂t csa = �+ca + �+
0 acs −

(
�−

0 exp(�|Fc|) + �−
0 exp(�|Fc|)

)
csa (4.16)

The bonds of the force-transducing integrins (csa) can break when they ex-
perience a mechanical stress by the cytoskeleton, in our model given by the
modulus of the force vector Fc defined in Equation (4.12). Then, according to
the theory of Bell [7,57], the dissociation rates �− and �− depend exponentially
on the mechanical load |Fc|; see Equations (4.14–4.16) above, with �−

0 and
�−

0 describing the basic dissociation rates without load and the exponential
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coefficients # = �#/kB T measuring potentially different rupture rates from
the substrate or cytoskeleton binding site, respectively.

4.3.1.5 Mass Flux Conditions at Free Boundary

In addition to the already-mentioned bulk flux conditions of Equations (4.2)
and (4.11) related to the normal speed of the cell edge Ŵ(t), we have to impose
compatible boundary conditions onto the concentrations of those molecular
species that are not fixed to the substratum. For the two parabolic diffusion
equations (Equations (4.6) and (4.13)) we impose, respectively, natural zero-
flux boundary conditions onto freely diffusing myosin (m f ) and fixed Dirichlet
conditions (c f = c0

f ) onto freely diffusing integrin. Thereby we suppose a
constant reservoir of fresh adhesion receptors expressed in the upper ventral
membrane and diffusing (or eventually being transported) from there around
the lamellar tip into the lower dorsal part of the membrane.

The F-actin flux �v cannot leave the cell, meaning that on the free bound-
ary Ŵ the relative inward normal F-actin velocity always has to satisfy the
inequality:

V = Ŵ̇ − �Ŵ · v ≥ 0 (4.17)

If the strong inequality V > 0 holds at a certain boundary point, then two
different modeling situations may arise for the cell edge:

1. No-stick condition at the lamellar tip: Local disruption of the actin net-
work from the edge is allowed (e.g., under suitable load conditions [35])
so there is no new F-actin production directly at the plasma membrane
edge. Therefore we have to impose zero Dirichlet condition for the F-
actin concentration:

� = 0 if V > 0 holds at a non-sticky point x ∈ Ŵ (4.18)

2. Network sticking to the lamellar tip: As indicated in Figure 4.4, active
polymerization of actin filaments directly at the plasma membrane is
allowed either at fluctuating free filament ends touching the tip mem-
brane [43] or at filaments that are bound to clamp-motor proteins an-
chored in the tip membrane [16]. Both cases could occur simultaneously
in a local region, but whether active polymerization with inward mass
flux �V > 0 can take place depends on local force balance conditions;
see Section 4.3.2 and Equation (4.36).

Finally, also the two hyperbolic Equations (4.7) and (4.14) require zero
influx conditions, so that for the transported concentrations mb and ca we
have to impose zero Dirichlet conditions only in cases of V > 0 and Vc > 0,
respectively. In the latter case the inward normal velocity of vc is defined in
analogy with Equation (4.17), noting that under the modeling hypothesis of
Equation (4.10) we have Vc = 
V .
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FIGURE 4.4 Schematic top view onto the lamellar tip of a cell (fragment)
showing three possibilities for actin filament ends to interact with the free
plasma membrane: anchoring at a membrane protein, as integrin; freely fluc-
tuating with polymerization by a “Brownian ratchet” mechanism; binding to
a “clamp-motor” protein, like the WASP-complex, with induced polymeriza-
tion. The resulting local pseudo-equilibrium F-actin concentrations are ab, a f ,
and ac respectively. See Equations (4.31) and (4.33) for a quantitative model.

4.3.2 Force Balance Equations

4.3.2.1 Two-Phase Flow Equations for Cytoskeleton and Cytosol

Because cell movement usually occurs on a time scale of minutes and cell sizes
usually are on the order of tens of microns, already the cytosol, with its con-
sistency similar to an aqueous viscous fluid, has a low Reynolds number. This
is also true for the cytoskeleton with consistency similar to a dense viscoelas-
tic gel. The viscoelastic properties of the cytoplasm have been experimentally
studied [18,19] and also mathematically modeled [11,49], whereby the simple
model of a Maxwell fluid seems to serve as a good description. This means
that elastic properties are mainly effective on a shorter time scale of seconds
and dominated by viscous effects on a medium scale of minutes. Moreover, in
contrast to a passive elastic material, the cytoplasm primarily stays under ac-
tive contractile stress as exerted by myosin-II oligomers (on the order of kPa),
which is able to break weaker crosslinks of the F-actin network, for example,
by �-actinin or filamin, so that the contraction forces are equilibrated only by
viscous and frictional forces.

Under these assumptions, the highly viscous two-phase creeping flow model

for cytoplasm, originally proposed 25 years ago by Dembo et al. [14] and



Coupling of Cytoplasm and Adhesion Dynamics 103

extensively applied (see, e.g., [1,26]) can be condensed into a pseudo-stationary
linear elliptic system for the mean F-actin velocity v and the effective hydro-

static pressure p on �(t):

∇ · ��∇̃v + ∇(S(�, mb) − p) = �(�, csa)vc (4.19)

∇ p = ��(v − w) (4.20)

Here the generalized (elliptic) Stokes equation (4.19) involves the effective
stress S(�, mb) as defined in Equation (4.24) and the symmetrized displace-

ment rate ∇̃v (see, e.g., [35]). Moreover, vc is defined in Equation (4.11), and
� and � denote the coefficients of bulk viscosity and substratum friction;
see Equation (4.23). Because of negligible cytosol viscosity, the simple Darcy
law, Equation (4.20), suffices as a model description, where the coefficient
� measures the internal two-phase flow friction. From the last equation one
explicitly solves for the cytosol velocity w = v − (1/��)∇ p, so that the total
volume flux is

W = v + (1 − �)(w − v) = v −
1 − �

��
∇ p (4.21)

Insertion into the mass-balance Equation (4.1) then yields the generalized
(elliptic) Laplace equation:

∇ ·
1 − �

��
∇ p = ∇ · v (4.22)

Notice that here the ellipticity degenerates for marginal volume fractions 0 <

� < 1, which can be relevant in cases where � → 0 at boundary points of
cytoskeleton disruption; see Equation (4.18).

We remark that together with the hyperbolic mass balance Equation (4.3),
the linear elliptic system (Equations (4.19) and (4.22)) constitutes general-
ized pseudo-stationary Navier-Stokes equations for the F-actin network as
a compressible, highly viscous, and reactive fluid. It is mutually coupled to
the mass concentrations in Equations (4.7) and (4.16) via a myosin-mediated
contractile stress term appearing in S(�, mb) (see Equation (4.24)) and an
adhesion-mediated friction coefficient

�(�, csa) = �0csa� (4.23)

In this way the right-hand side of Equation (4.19) reads Fv = �vc = csaFc,
with the frictional force Fc per doubly bound integrin defined in Equation
(4.12).

Tracing these model equations back to their derivation [2,12,35] provides us
not only with precise biophysical conditions on v and p at the moving bound-
ary Ŵ (see next paragraph), but also with genuine nonlinear parameter func-
tions based on thermodynamical reasoning at the molecular scale: The func-
tion S in Equation (4.19) represents the effective stress in the network phase,
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which is induced by molecular interactions between the F-actin filaments and
by thermic interactions with solvent molecules in the cytosol. S is generally
expressed as the weighted negative sum S = −�Pa −(1−�)Ps of corresponding
pressures Pa and Ps that are applied to any network volume element and any
cytosol element, respectively. Passive elastic stresses can be neglected because
these are already relaxed on the creeping flow time scale. When finding a free
binding site on filaments, previously single bound myosin-II tetramers exert
power stroke motor forces with their free myosin heads (cf. Figures 4.2 and
4.4). Thus, an attractive stress −Pa = �0mb is applied, where the simple co-
efficient �0 comprises binding affinity, power stroke probability, and the mean
applied force per stroke. On the other hand, standard Gibbs free energy argu-
ments suggest a molecular solvent pressure Ps = −�0 ln(1− �)/(1− �); see [2].
Then we arrive at expressions for the

Effective stress: S = S(�, mb) = �(�, mb) − �(�) (4.24)

Contractile stress: �(�, mb) = �0�mb (4.25)

Swelling pressure: �(�) = �0| ln(1 − �)| (4.26)

See Figure 4.5 for corresponding plots with mb = m∗
b in Equation (4.9). We

emphasize that the effective stress function in Equation (4.24) sums up the
contributions from the cytoskeleton and the cytosol, so that both phases are
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FIGURE 4.5 Plots of F-actin model functions. Dashed curves: net assem-
bly rate R(�), Equation (4.4) and effective stress S(�) = �(�)−�(�), Equation
(4.24). Continuous curves: contractile stress � defined in Equation (4.41) and
swelling pressure �, Equation (4.26).
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not separated anymore. However, when deriving the corresponding natural
boundary conditions for the elliptic problem, the two phases must be consid-
ered separately again.

4.3.2.2 Stress and Pressure Balance Conditions at Free Boundary

Recall that according to Equation (4.2) the cell edge Ŵ(t) always moves to-
gether with the normal component of the total cytoplasmic flux W as quanti-
fied in Equation (4.21). Then, from Equation (4.17) the relative inward normal
F-actin flux also is determined as proportional to the inward normal pressure
gradient on Ŵ(t)

�V = �(Ŵ̇ − �Ŵ · v) = −
1 − �

�
�Ŵ · ∇ p (4.27)

This explicit linear relation of free boundary speed, normal F-actin velocity,
and pressure gradient serves as an extra free boundary condition in addition
to the set of boundary conditions that are necessary for uniquely solving the
linear elliptic system (Equations (4.19) and (4.22)) on the given domain �(t).
These depend not only on the particular model choice of boundary pressure
functions at the cell edge membrane, but also on the outcome of the F-actin
flow requirement V ≥ 0 in Equation (4.17).

Using the general derivations in [2], Equations (58) through (62), one ob-
tains separate pressure balance conditions for each of the two phases at all
free boundary points of Ŵ(t) satisfying V > 0:

Cytoskeleton: −�Ŵ · Ta · �Ŵ + �p = �PŴ
a (4.28)

Cytosol : (1 − �)p + �(�) = (1 − �)PŴ
s (4.29)

with the intrinsic stress tensor Ta = ��∇̃v+�(�, mb)I. These equations mean
that at those parts of the tip plasma membrane that are exposed to the cy-
toskeleton network (�) or to the cytosol (1−�), respectively, the sum of internal
pressures is in balance with a certain boundary cytoskeleton pressure PŴ

a or
boundary cytosol pressure PŴ

s at each volume element. Modeling expressions
for these pressures are given in the following paragraph.

Summing up both pressure balance Equations (4.28) and (4.29) yields the
general Neumann-type condition for v on Ŵ(t)

�Ŵ · Ta · �Ŵ − (�(�) + p) + �PŴ
a + (1 − �)PŴ

s = 0 (4.30)

which is now valid without restriction, see [2] Equation (58); that is, also
at boundary points where the condition V = 0 holds. However, then the
Dirichlet-type boundary condition, Equation (4.29), for p must be replaced by
a corresponding inequality, and insertion of V = 0 into Equation (4.27) pro-
vides a Neumann condition for p instead. In particular, we have �Ŵ · ∇ p = 0,
which also holds in case of disruption with V > 0 and � = 0.
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Thus, in any constellation of the mentioned conditions on Ŵ(t), for fixed
time t and given profiles of all protein concentrations, we obtain a well-posed
elliptic boundary value problem for v and p to be solved on �(t) (eventually
by numeric iteration and/or conjugate gradient method; cf. [35]). Finally, the
normal speed Ŵ̇ of the free boundary can be calculated using Equation (4.27).
This is also possible in the case of network disruption at some boundary
point x0 ∈ Ŵ(t) with �(t,x0) = 0, since then V (t,x0) > 0 is obtained as the
L’Hospital-limit of − 1−�(t,x)

�(t,x)
�Ŵ · ∇ p(t,x) as x → x0 from the interior.

4.3.2.3 Boundary Pressure Functions at Cell Edge

We consider creeping cell migration only in a medium that is not under ex-
ternal pressure or stress. Therefore, in a purely physical model, the boundary
pressures PŴ

a and PŴ
s along the cell edge Ŵ(t) should be set to zero. How-

ever, the edge is physically defined as the lamellar tip, where the ventral and
dorsal parts of the surrounding plasma membrane meet. Thus, if 	Ŵ denotes
the scalar tension value of the dorsal plasma membrane at the cell edge (see
the following paragraph), then this tension appears as a boundary tip pres-

sure acting on both phases: the cytoskeleton and the cytosol. Moreover, in
addition to the counteracting cytoskeleton and cytosol pressure on the left-
hand sides of Equations (4.28) and (4.29), there could be extra pressures due
to active polymerization forces, which usually are generated at barbed actin
filament ends that can become exposed to the tip membrane in two variants;
see Figure 4.4.

� Brownian ratchet model: Assume that at a point of the lamellar tip
Ŵ(t), a fraction aB of filaments is bound to membrane proteins in a
fast pseudo-steady-state equilibrium with the actual F-actin concentra-
tion a = �amax. Then from the remaining network with concentration
aF (a) = a − aB(a), Arp2/3-induced branching can occur. The barbed
filament ends are more or less normally exposed to the tip membrane

with concentration a f = a f (a) = �
f
0 ·Arp0· aF (a)

Ka+aF (a)
with suitably chosen

coefficients; see also Equation (4.5). Then, due to insertion of G-actin in
between fluctuating filament and membrane, there appears a free poly-

merization pressure:

p f = �
f
0 · a f (a) (4.31)

with a ratchet coefficient �
f
0 > 0 depending on the free energy of one

monomer addition; see relevant force estimations, for example, in [41].
� Clamp motor model: Alternatively or additionally, a certain fraction of

tip bound actin filaments with concentration ac = ac(a) < aB(a) can
be bound to WASP-like membrane proteins, which serve as filament
end-tracking motors. By means of an energy-consuming polymer elon-
gation process at the clamped end of the filament, these proteins push
the bound filament outward, thus leading to a clamp polymerization
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pressure:

pc = �c
0 · ac(a) (4.32)

Here again, the clamp motor coefficient �c
0 > 0 depends on the energy

of one monomer translocation; see [16].

The sum of these active polymerization pressures would induce an averaged
relative normal inward mass flux �V ≥ 0 of the whole cytoskeleton, based on
the particular inflows of a f - and ac-filaments satisfying �V = a f V f = acVc.
However, this flow experiences a viscous resistance from the remaining fixed
filaments (concentration aB − ac), with a viscosity coefficient that could in-
crease in the presence of bound myosin molecules. Thus we get the total tip

polymerization pressure:

Ppoly = p f + pc − �Ŵ(mb)(a
B − ac)amaxV (4.33)

Clearly, here the relative inward velocity V is the one defined by the normal
component of v in relation to Ŵ̇; see Equation (4.17). For a similar resistance
model based on elastic crosslinking see [23].

Finally, because this intrinsic boundary pressure Ppoly acts on the cytoskele-
ton volume fraction, while simultaneously inducing a corresponding counter-
pressure on the cytosol volume fraction, we can state the following distribution
for the boundary pressures generated at the membrane:

�PŴ
a = �(1 − 
Ŵ)	Ŵ + Ppoly (4.34)

(1 − �)PŴ
s = (1 − � + �
Ŵ)	Ŵ − Ppoly (4.35)

where we introduce a weight factor, 0 ≤ 
Ŵ < 1, measuring the relative effect
of membrane tension 	Ŵ on the cytosol phase and possibly depending on the
not explicitly modeled tip geometry. Then, by substituting p from Equation
(4.29) into Equation (4.30) we obtain the generalized Neumann-type boundary

condition for v in all points of Ŵ(t) where the network is attached, aB > 0,
and where V > 0 holds:

�Ŵ · Ta · �Ŵ − �(�) −
amax

1 − �
�Ŵ(mb)(a

B − ac)V

+
1

1 − �

(
�(�) + p f + pc − �
Ŵ	Ŵ

)
= 0 (4.36)

This means that the mean inward F-actin polymerization speed V ≥ 0 on the
moving cell edge Ŵ(t) is implicitly determined by solving the linear elliptic
system Equations (4.19) and (4.22) for v and p and satisfying all boundary
conditions. Thereby the Neumann condition above contains all membrane-
protruding pressure terms in series, namely the swelling pressure �, the poly-
merization pressures p f and pc induced by a Brownian ratchet or a clamp
motor mechanism, as well as a counteracting stress due to dorsal membrane
tension 	Ŵ.
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4.3.2.4 Global Force Balance at Adhesive Substratum

There are two kinds of forces exerted by the migrating cell (fragment) onto
the fixed flat substratum: the integrin adhesion-mediated active frictional force
represented by the vector field Fv on the right-hand side of Stokes Equation
(4.19), and an analogous passive frictional force Fu due to motion of the dorsal
plasma membrane along the substratum:

Fv = csaFc = �(�, csa) (4.37)

Fu = �uu (4.38)

with � as in Equation (4.23) and an assumed friction constant �u ≥ 0. Sup-
posing that on the substratum no other forces are applied than these, then
their integral sum has to vanish so that the zero force balance holds:

0 =

∫

�(t)

(Fv + Fu) (4.39)

Furthermore, if we assume that the dorsal membrane, viewed as a 2-D in-
compressible fluid satisfying the zero divergence condition in Equation (4.10),
has relatively low viscosity, then the membrane tension 	u induced by the
frictional flow can be defined according to Darcy’s law

∇	u = �uu (4.40)

and thus determined as the solution of the Laplace equation �	u = 0 with
Neumann boundary condition �Ŵ ·∇	u = 0; see Equation (4.10). Then the zero
force balance of Equation (4.39), together with Equation (4.19), implies that
the boundary tension values 	Ŵ = 	u |Ŵ(t), which are uniquely determined up to

a constant, necessarily fulfill the integrability condition
∫

Ŵ(t)
(��∇̃v+S(�, �b)−

p + 	Ŵ)�Ŵ = 0, which by insertion of the Neumann boundary condition in
Equation (4.30) and using the symmetry of ∇̃v reduces to the equivalent
necessary condition

∫
Ŵ(t)

(�PŴ
a + (1 − �)PŴ

s − 	Ŵ)�Ŵ = 0. Indeed, this condition
is fulfilled for the boundary pressure model functions that were chosen in
the preceding paragraph, Equations (4.34) and (4.35), because then even the
integrand in the previous condition vanishes.

4.4 Results of Model Simulations

4.4.1 Spontaneous Cell Polarization in 2-D Model

We have simulated the adhesive motion of a flat cell or cell fragment rep-
resented by a 2-D domain, �(t), with moving cell edge or lamellar tip,
Ŵ(t) = ∂�(t), under certain simplifying assumptions:
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1. The lower dorsal membrane sticks to the substratum (u = 0) and there
exists a small membrane tension 	Ŵ > 0, constant over the whole cell
edge.

2. There occurs no active polymerization pressure at the cell edge (p f =
pc = 0); only the similar swelling pressure �(�) and the hydrostatic
pressure p can push the boundary.

3. Disruption of the F-actin network from the lamellar tip Ŵ(t) can locally
occur if the network tension exceeds a certain threshold that might
depend on the fraction of membrane-bound actin filaments aB = A a

K B+a
.

4. The free myosin-II concentration is at a fixed constant level m0
f > 0 and

the amount of F-actin bound myosin-II oligomer is in a pseudo-steady
equilibrium m∗

b(a) according to Equation (4.9), so that the contractile
stress is only a function of � = a/amax:

�(�) = �0�m∗
b =

�0�mm0
f

amax�0
m

�2

1 + �2/�2
opt

(4.41)

More details and a list of chosen parameters can be found in [35], Section
1 and Table 2.1. Because unpolarized cells and cell fragments, as observed
under various conditions [63,64], attain a regular circular shape, we chose as
an initial condition a circle �(0) of radius 6 �m. Moreover, to mimic the radial
spreading of cells after exposure onto a flat substratum, we start with constant
integrin densities and radially symmetric initial configuration for the volume
fraction �, with slightly larger values closer to the center. Due to this initial
perturbation, the F-actin concentration rapidly condenses into a central region
of high �, surrounded by a lamella-type region of low �; see Figures 4.6(a)
and (b). Later, also the actin and surface-bound integrin adhesion proteins
csa concentrate around this center; see Figure 4.6(e). Both phenomena are
supported by a strong retrograde F-actin flow, which collects actin filaments
and actin-bound integrins ca in radial direction from almost everywhere in
the periphery. Moreover, the hydrodynamic pressure has its maximum within
the center region (data not shown), so that its negative outward gradient
represents the squeezed flow of cytosol from the contracting F-actin network.

At the free cell edge with relatively low F-actin concentration, there oc-
curs a metastable equilibration between a positive swelling pressure pushing
the lamellar tip outward and a resisting viscous network tension pulling the
tip inward. See Figure 4.6(b). After 5 min, local regions of protrusion or re-
traction can be observed, which point in varying directions along the cell
periphery. Notice that these spatio-temporal fluctuations are not due to the
tiny stochastic perturbations imposed on the F-actin polymerization rate, but
represent the emergent chaotic dynamics of the cytoplasm as a reactive and
contractile two-phase fluid [3,11]. Furthermore, behind a cyclically protruding
and retracting free edge we can observe a layer with slightly increased con-
centration of substrate and actin-bound integrin csa ; see Figure 4.6(e). This
is the onset of polarization: fresh free integrin proteins are appearing at the
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FIGURE 4.6 2-D simulation of a spontaneously polarizing cell (fragment)
starting with radially symmetric initial conditions: Spatial distributions shown
as pseudocolor plots of F-actin volume fraction � in (a) through (c) and con-
centration of actin and surface-bound integrin proteins csa in (d) through (f)
at three different time instants: (a) and (d) 1 min, (b) and (e) 5 min, and (c)
and (f) 10 min after initialization. The width of the shown region is 22 �m.

protruding part of the edge from the upper membrane, thus also increasing
csa in this region. As a consequence, a larger frictional force of the retrograde
F-actin is generated in that direction, inducing a bias in the force vector field
transduced to the substratum. Thus, the whole cell fragment starts to move
in this direction, which later becomes the leading edge of the migrating cell
fragment; see Figures 4.6(c) and (f). The emerging polarization of the cell
is most clearly expressed in the csa distribution of Figure 4.6(f), where an
increasingly dense band is formed behind the leading edge, and the central
region of focal adhesions is slowly shifted rearward with increasing migration
speed, while becoming deformed in shape similar to the whole cell fragment.

This simulation is an example for the autonomous formation of a metastable
unpolarized, almost circular state and its spontaneous transition into a polar-
ized, migrating state of a flat cell fragment. By changing some of the model
parameters we can influence the degree of this symmetry breaking instability,
but so far we are not able to reproduce the observed longer-time stability
of circular cell fragments; see again [63]. One reason for this failure seems
to be that in our model simplifications, we assumed a constant distribution
of freely diffusing myosin-II oligomers, contradicting experimental results on
clearly expressed gradients of myosin-II concentration decaying toward the cell
edge; see, for example, [60]. Therefore we have started to investigate the full
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coupled model system by including active tip polymerization and the kinet-
ics for myosin-II diffusion, binding, and transport, in addition to the already
implemented analogous kinetics and dynamics of integrin adhesion molecules.
The next section presents the achieved results in a simple but nevertheless
instructive 1-D situation.

4.4.2 Induced Onset of Cell Polarization and Migration in

1-D Model

We have simulated adhesion, polarization, and migration of an ideal-
ized flat cell fragment having a fixed extension and only one degree
of freedom to move, as can be observed experimentally, for example in
Figure 4.1(c). Thus, in a 1-D cross-section along its moving direction,
the fragment is represented by an interval �(t) = [xb(t), xb(t) + L]
of fixed length L, moving with body speed vb(t) = ẋb(t), so that all kinetics
and dynamics within the cytoplasm and dorsal membrane can be described
by the corresponding 1-D equations and conditions as in Section 4.3.2, but
now written in cell-centric coordinates; for example, �̃(t, y) = �(t, xb(t) + y)

or ṽ(t, y) = v(t, xb(t) + y) − vb(t). Then, assuming the following particular
restrictions, we have solved a simplified system of boundary value problems:

1. The actin network is always sticky at the lamellar tips (no disruption),
so that �̃ > 0 on the whole closed interval [0, L].

2. We assume active tip polymerization with a simultaneous parallel ef-
fect of the Brownian ratchet (�

f
0 = 5 Pa · �M−1) and the clamp mo-

tor mechanism (�c
0 = 5 Pa · �M−1). Moreover, we suppose that the

membrane-bound cortex shear viscosity strongly increases if myosin-
II oligomers are bound: �Ŵ(mb) = 0.1(1 + 45mb) Pa · min · �m−1. For
the actin-binding membrane proteins at the tip with maximal con-
centration A = 50 �M and self-enhanced binding with dissociation
constant K = 158.1 �M, we use the pseudo-equilibrium 2aB(a) =
A + K 2/a + a −

√
(A − a)2 + 2(A + a)K 2/a + (K 2/a)2 and ac = 0.1 aB .

3. The dorsal membrane moves together with the cell (no slip at the tips),
so that ũ ≡ 0 and vc = v = ṽ+vb. The tip membrane tension difference
is [	Ŵ]L

0 = �u Lvb with the minimum always equal to a fixed positive
constant 	0 = 25 Pa. Finally, the substrate force balance in Equation
(4.39) reads

�u Lvb =

∫ L

0

�0c̃sa �̃(ṽ + vb) (4.42)

This is an implicit equation to be solved for the migration speed vb, be-
cause the Neumann boundary conditions and the right-hand side of the
elliptic Equation (4.19) for ṽ (after eliminating the pressure p̃) contain
expressions that depend (linearly) on vb.
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FIGURE 4.7 Symmetric unpolarized state of a model cell (fragment) with
length 10 �m showing the concentration profiles of (a) F-actin a, free and
bound myosin-II m f and mb, the force F onto the substrate and the effective
cortical F-actin velocity vc; (b) of integrin proteins in the four different states,
namely substrate- and actin-bound csa , substrate-bound cs , freely diffusing c f ,
and actin-bound ca .

Starting with the same unpolarized initial condition as in the previous Section
4.4.1, we obtain a similar 1-D symmetric configuration with no cell transloca-
tion and a central F-actin plateau, a central maximum of FA (focal adhesion)
sites (i.e., csa-integrins), as well as a centripetal F-actin flow; see Figure 4.7.
In addition, also the concentration of total myosin-II is enriched in the central
region, with actin-bound myosin forming a central plateau, consistent with flu-
orescence pictures of unpolarized keratinocyte fragments; see [63]. Moreover,
the F-actin flow is highest at the boundary (with values V ∼ 0.5 �m · min−1)
due to the assumed active tip polymerization.

In contrast to the previous 2-D model simulations, here we find robust pa-
rameter constellations yielding stability of this symmetric unpolarized state:
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even quite strong but still subthreshold perturbations of the F-actin concentra-
tion at one side induce only transient locomotion together with shifts in most
concentration profiles. After some delayed overshooting, the cell fragment re-
turns to its nonmoving nonpolarized stable state in Figure 4.7. However, if
F-actin polymerization is continuously stimulated at one side (mimicking the
effect of a chemo- or haptotactic gradient) then, not surprisingly, the cell frag-
ment slowly polarizes and starts to persistently translocate in this direction
(data not shown).

Similarly, to mimic the mechanical stimulation experiments with ker-
atinocyte fragments as performed in [63], we locally increase the activation
(and F-actin-binding) of myosin-II at the left-hand side for a certain time (up
to 30 s), which is thought to be analogous to the experimental push by a mi-
cropipette flow pulse, since by local compression of the cytoskeleton, filament
alignment and thus myosin action will be enhanced. If time span or ampli-
tude of this myosin pulse stays subthreshold, the model cell responds only
by a transient migration as described above and asymptotically returns to its
stable resting state; see the speed curve in Figure 4.8(a). However, if the pulse
strength exceeds a certain threshold, myosin-II and F-actin are condensed at
the rear, whence active tip polymerization (V ) is drastically reduced at this
side, so that the cell rapidly starts to migrate in the other direction; see Fig-
ure 4.8(b). After cessation of the pulse, the migration speed is reduced but
the cell maintains its polarized locomotion state. This induced polarization,
as a nonlinear threshold behavior, is supported by a further positive feedback
mechanism: due to cell translocation, the focal adhesion sites (csa) are suc-
cessively shifted rearward relative to the cell, which stabilizes the asymmetric
polarization and later increases the locomotion speed to a constant asymptotic
value (vb ∼ 0.12 �m · min−1).

In this migration state the cell (fragment) attains characteristic concen-
tration profiles; see Figure 4.9. In addition to the already mentioned polar
gradients of F-actin and myosin-II, the most impressive distribution is that of
the FA sites: the csa profile shows a characteristic broad peak behind the lead-
ing edge (as in the 2-D case above), followed by a slight decrease and a second
plateau of even more condensed adhesion sites in the back part of the cell
(fragment) that, however, rapidly decays at the very rear; see Figure 4.9(b).
This last phenomenon is the theoretically expected and experimentally ob-
served rear release of adhesion sites or integrins, not induced by any directed
regulatory protein, but only by the fact that the rear part experiences a steep
increase in the force F transduced to the substratum; see the plot in Figure
4.9(a). By Equation (4.37) this is proportional to the F-actin mass flow �vc

with respect to the substratum: while in the major front part of the migrat-
ing cell (fragment) the F-actin flow is retrograde and the centripetally pulling
negative force is modest in amplitude, near the trailing edge the direction of
flow reverses and the positive force becomes very strong, now centripetally
pulling off the focal adhesion sites. Thus, the reason for cell translocation is
not “more adhesion” or “stronger force” at the front compared to the rear, as
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FIGURE 4.8 Plots of cell migration velocity vb over time after a pertur-
bation of the unpolarized state in Figure 4.7 by imposing an additional acti-
vation rate �+

m for actin-bound myosin-II oligomers over an induction period
of 0.5 min locally at the left cell side: (a) with rate �+

m = 20 min−1, showing a
stable convergence of vb toward the unpolarized speed zero, and (b) with rate
�+

m = 50 min−1, showing the convergence toward a positive polarized speed
∼ 0.12 �m · min−1.

is asserted in some models, cf. [17]. Indeed, for vanishing passive friction �u

due to Equation (4.42), the total force integral even vanishes. The true physi-
cal reason for cell migration is the aforementioned asymmetry in the polarized
cell state, expressed by a wide front region with modest rearward force and
short rear region with strong forward force.

We finally investigate the dependence of migration speed on two cell phys-
iologically important parameters, namely the adhesiveness of the substra-

tum quantified by the relative number of available adhesion sites Adh0, and
the responsiveness of the F-actin network measured, for instance, by the
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FIGURE 4.9 Migrating polarized state showing stable concentration pro-
files of (a) F-actin, a, free and bound myosin-II, m f and mb, the transduced
locomotion force F, and the effective cortical F-actin velocity vc; (b) integrin-
concentrations as in Figure 4.7. Only FA integrins in the sa state are able
to transduce force from the contractile actin network to the substrate. The
migration speed is vb = 0.125 �m · min−1.

concentration Arp0 of activated Arp2/3 proteins. These are mainly responsi-
ble for controlling F-actin polymerization by available free filament ends as
they appear in the net assembly rate of Equation (4.4) and the ratchet poly-
merization pressure of Equation (4.31). The results depicted in Figure 4.10
reveal the existence of optimal ranges for both parameters, consistent with
earlier modeling results (see [17,24]) and with experimental observations (see,
for example, [27,52]).

In particular, the migration response curve of Figure 4.10(a) has been per-
formed for fixed parameter Arp0 = 10 �M and for adhesion values 0 ≤ Adh0 ≤

20, where according to Table 4.2 the adhesiveness proportionally influences
not only the two adhesion rates �+ = �+ = Adh0 · �, but also the passive
membrane friction coefficient �u = Adh0 · 6 Pa · min · �m−2. This is based on
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FIGURE 4.10 Migration speed vb of a model cell in its stable polarized
state, plotted over varied parameters of (a) adhesiveness Adh0, relative num-
ber of adhesion binding sites on the substratum (e.g., fibronectin coating); (b)
F-actin responsiveness expressed by Arp0 [�M], the cytoplasmic concentra-
tion of activated Arp2/3 complexes.

the idealizing assumption that there are no other relevant exterior forces that
would resist locomotion relative to the substratum than those due to friction
of the dorsal membrane with respect to an adhesive coating of, for example,
fibronectin or collagen.

Under these hypotheses and parameter choices, our model simulations pre-
dict a minimal migration speed of vb ∼ 0.035 �m · min−1 for Adh0 ∼ 1,
which increases toward the doubled speed when lowering the adhesiveness to
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TABLE 4.1 Model Variables and Functions

Symbol Meaning Unit

�(t,x) Volume fraction of F-actin Dimensionless
a(t,x) Concentration of F-actin �M
m f (t,x) Concentration of free myosin-II �M
mb(t,x) Concentration of F-actin bound myosin-II �M
c f (t,x) Concentration of free integrin �m−2

cs(t,x) Concentration of substrate bound integrin �m−2

ca(t,x) Concentration of actin bound integrin �m−2

csa(t,x) Concentration of substrate-and-actin �m−2

bound integrin
R(�) F-actin net polymerization rate min−1

�(�, mb) Contractile stress Pa
�(�) Swelling pressure Pa
S(�, mb) Effective cytoplasmic stress Pa
p(t,x) Effective two-phase flow pressure Pa
	u(t,x) Dorsal membrane tension Pa
v(t,x) Mean F-actin velocity �m · min−1

vc(t,x) Cortical F-actin velocity �m · min−1

u(t,x) Dorsal membrane velocity �m/min−1

vb(t) Migration velocity of cell (fragment) body (1-D) �m · min−1

�(�, csa) Adhesional friction Pa · min · �m2

Fv Active frictional force Pa · �m
Fc Local frictional force per adhesion site Pa · �m
Fu Passive frictional force at dorsal membrane Pa · �m
Ŵ̇ Normal speed of free boundary Ŵ(t) �m · min−1

V Relative inward F-actin velocity at boundary �m · min−1

PŴ
a Boundary cytoskeleton pressure Pa

PŴ
s Boundary cytosol pressure Pa

	Ŵ Membrane tension at boundary (lamellar tips) Pa
aB(a) Concentration of tip-bound F-actin �M
ac(a) Concentration of F-actin bound to clamp �M

motor proteins
a f (a) Concentration of free filaments exposed to tip �M
�Ŵ(mb) F-actin shear viscosity relative to aB filaments Pa · min · �m−1

p f Free polymerization pressure at tip membrane Pa
pc Clamp motor polymerization pressure Pa

almost zero. This surprising phenomenon is consistent with our experimental
measurements of human keratinocyte polarization and migration [37] reveal-
ing slightly increased motility of polarized cells on glass compared to those
on a low-density fibronectin coat. The reason for this can be seen from the
corresponding profiles of FA concentration (csa) and substrate force distribu-
tion (F) for the two adhesiveness values Adh0 = 0.01, 0.2; see Figures 4.11(a)
and (b). Due to ongoing retrograde flow of F-actin, working against internal
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TABLE 4.2 Parameters for 1-D Simulations

Symbol Meaning Value Unit

ag Concentration of G-actin 30 �M
amax Maximal concentration of F-actin 800 �M
kon F-actin polymerization rate at plus

ends
696 (min · �M)−1

kof f F-actin depolymerization rate at
plus ends

258 min−1

� F-actin capping rate 1250 min−1

r F-actin disassembly rate 0.2 min−1

ε Basal F-actin nucleation rate 0.75 min−1

Arp0 Concentration of activated Arp2/3
complexes

10 �M

�a Arp2/3-induced nucleation rate 60 (min · �M)−1

Ka Half-saturation concentration for
nucleation

3 �M

m0
f Equilibrium reservoir concentration

of free myosin-II
10 �M

Dm Diffusion coefficient for free myosin-II 0.5 �m2 · min−1

�m F-actin binding rate of myosin-II 0.5 (min · �M)−1

�0
m Dissociation rate of bound myosin-II 3 min−1

aopt Optimal F-actin concentration for
myosin-II binding

40 �M

c0
f Reservoir concentration of free

integrin at lamellar tips
50 �m−2

D f Diffusion coefficient for free integrin 0.5 �m2 · min−1

Adh0 Number of available substrate sites
per integrin

3 Dimensionless

Talin F-actin association factor 0.0125 Dimensionless
Fifactor Focal complex factor (intracellular) 50 Dimensionless
Fefactor Focal adhesion factor (extracellular) 50 Dimensionless
�− Dissociation rate for

substrate-bound integrin
� = 5 min−1

�+ Free integrin binding rate to sub-
strate

Adh0 · � min−1

�+
0 F-actin binding rate for

substrate-bound integrin
� · Talin (min · �M)−1

�−
0 FA dissociation of the F-actin link �/Fifactor min−1

�+
0 Free integrin binding rate to F-actin � · Talin (min · �M)−1

�− Dissociation rate for F-actin-bound
integrin

� min−1

�+ Substrate binding rate for
F-actin-bound integrin

Adh0 · � min−1

�−
0 FA dissociation rate of substrate link �/Fefactor min−1
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TABLE 4.2 Parameters for 1-D Simulations (Continued)

Symbol Meaning Value Unit

� Exponential FA-rupture coefficient for
F-actin link

11.7 (Pa · �m)−1

� Exponential FA-rupture coefficient for
substrate link

11.7 (Pa · �m)−1

A Total free F-actin binding sites on
boundary Ŵ(t)

50 �M

�
f
0 Ratchet polymerization pressure

coefficient
0.0125 Pa · �M−1

�c
0 Clamp motor polymerization pressure

coefficient
0.0125 Pa · �M−1


Ŵ Tip curvature weight factor for
membrane tension

0.5 Dimensionless

�
f
0 Relative amount of exposed barbed

ends per Arp2/3
2 Dimensionless

�0 Contractile stress per bound myosin-II 0.0163 Pa · �M−1

�̃0 Strength of contractile stress
(simplified model)

0.625 Pa

�0 Strength of swelling pressure 0.125 Pa
� Viscosity of F-actin network phase 0.625 Pa · min

 Cortical slip parameter for F-actin

flow
0.5 Dimensionless

� Drag coefficient between network and
solvent

2 Pa · min · �m−2

�0 Friction per actin substrate-bound
integrin

0.02 Pa · min

�u Additional friction associated to cell
body

Adh0 · 6 Pa · min · �m−2

L Length of the cell (fragment) 10 �m

viscosity and drag, the polarized cell (fragment) gathers the few FA sites on
the back side in a way that the local FA and force distributions are almost
symmetric (for almost vanishing adhesiveness Adh0 = 0.01) but still with
an additional negative (pulling) force plateau on the front side (though of
tiny absolute value |F| ∼ 0.05 Pa). For increased but still small adhesiveness
(Adh0 = 0.2), the much more frequent FA sites start to accumulate at the
rear, thus the asymmetry of forces is enhanced and the increased friction
reduces the migration speed.

On the other hand, for further increasing adhesiveness, Adh0 > 1, the
front plateau of pulling forces at the enriched FA “carpet” is proportion-
ally increased; see Figure 4.11(c) and (d). However, the dominant reason for
the nonlinear speeding-up response is the prominent increase in disruptive
forces |Fc(rear)| up to values of Adh0 ∼ 2, leading to a drastic reduction in
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FIGURE 4.11 Substrate force distribution F and integrin concentrations
in the four different states, plotted for varying adhesiveness parameter Adh0
with corresponding migration speed vb as in Figure 4.10(a): (a) 0.01, speed
0.06 �m ·min−1; (b) 0.2, speed 0.04 �m ·min−1; (c) 3.0, speed 0.125 �m ·min−1;
and (d) 20.0, speed 0.138 �m · min−1.
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resistive FA sites at the very rear; see the corresponding indicator curves in
Figure 4.12(a). For very large adhesiveness, Adh0 ∼ 20, the FA sites again
start to accumulate at the very rear despite a strong disruptive force there,
as can be seen in Figure 4.11(d), causing a slight decrease in migration speed.
Thus, while an adhesiveness between 5 and 12 leads to a saturated optimality
in migration speed, within the range 1 < Adh0 < 4 the cell (fragment) has a
high sensitivity for responding to an increase in adhesiveness with an up to
four-fold increase in speed. Carried over to the mean forward speed of com-
peting leading lamellae in a whole cell model (as for the 2-D simulations in
Figure 4.6), this could be used to explain polarization and haptotaxis of cells
in spatial adhesion gradients; cf. [20].

To understand the analogous optimal migration performance for respon-
siveness parameters in the range between 4 �M and 10 �M of Arp2/3 con-
centration Arp0, see Figure 4.10(b), we plot the same indicator curves for
FA concentrations and substrate forces in Figure 4.12(b). Again, with in-
creasing Arp2/3-induced actin polymerization there is an almost linear in-
crease in pulling force at the tip (due to increased polymerization velocity
V there) while the concave migration speed curve directly corresponds to
the proportional curve for the disruptive forces at the rear and the resulting
convex curve for the accumulated FA sites there. For larger Arp0 values, the
growing accumulation of FA sites again leads to a slight speed reduction. Fi-
nally, the about 50% gain in speed for increasing responsiveness in the range
1 �M < Arp0 < 4 �M could again be carried over to a competing lamel-
lar protrusion response in spatial chemotactic gradients, which are known to
stimulate F-actin polymerization at the leading front.

4.4.3 Migration Speed in Simplified 1-D Model

To explore which properties of our coupled cytoplasm adhesion model are es-
sential for obtaining the 1-D simulation results in the previous section, we sim-
plified the model by freezing the following variables and parameters; cf. [45]:

1. Assuming fast diffusion and F-actin binding of free myosin-II oligomers,
we take the pseudo-steady-state condition of Equation (4.9) for
bound myosin-II, but with the equivalent dissociation rate �m(a) =

�0
m exp(−2a/aopt ) instead of Equation (4.8), and obtain as contractility

�(�) = �̃0 · �2 exp(−2�/�opt ) with a coefficient �̃0 analogous to Equation
(4.41).

2. Except for the FA friction function � we set all other friction coefficients
(�,�u) to zero. Thus, the cell migration speed is determined by the zero
integral in Equation (4.42).

3. All “exterior” pressures or tensions at the free membrane tip (�
f
0 ,�c

0,	Ŵ)
are assumed to vanish; in particular, there occurs no active polymeriza-
tion (V ≡ 0).
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FIGURE 4.12 Variation of migration speed vb and certain indicator func-
tions at the cell edge as a function of (a) adhesiveness Adh0 and (b) F-actin
responsiveness Arp0 [�M]; plotted are the load |Fc| per FA site at the cell
rear (bold) and tip (light), and the FA concentration csa at the rear (bold,
dashed) and tip (light, dashed). Ripples in the force curves reflect the slight
stochastic noise that was added in the force Equation (4.19).
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FIGURE 4.13 Migration speed vb for a simplified model cell in its stable
polarized state as a function of (a) adhesiveness and (b) F-actin responsiveness
as described in Figure 4.10.

Starting with uniform FA concentration and a minor asymmetry in the dis-
tribution of actin, the system reaches a polarized and migrating state and the
distributions of the various concentrations exhibit the same characteristics
as in the full model (see Figure 4.9). We again analyze the effect of sub-
stratum adhesiveness and F-actin responsiveness on the migration speed; see
Figure 4.13. In contrast to the observations for the full model (Figure 4.10),
a saturation behavior of the migration velocity emerges with increasing ad-
hesiveness instead of an optimal range. However, the responsiveness of the
F-actin-network has an optimal value as in the full model.
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Further simulations after successive variation of the frozen parameters (see
above) reveal that an optimal range of adhesiveness could be gained only
if a passive frictional load �u > 0 was chosen to increase monotonically with
adhesion strength Adh0, as it was assumed in the full model; see Table 4.2
and Figure 4.10(a). Although such a friction appears to be physically realistic,
the question remains whether such an optimal velocity response is of general
biological relevance. It could be that the response of living systems is typically
guided by adaptation: migrating cells show the capability to dissolve their
focal adhesions by proteolytic cleavage of integrins [55], which could be an
adaptive strategy to optimize cellular adhesiveness on various substrates. On
the other hand, the adhesiveness could be raised by active segregation of
extracellular matrix proteins.

Nevertheless, the universal optimality curve as a function of F-actin re-
sponsiveness, seen in both Figures 4.10(b) and 4.13(b), seems to hold for
any mechanical model that implements a saturating F-actin polymerization
by association of regulating proteins as Arp2/3. This indicates that an opti-
mal control of migration velocity by tuning certain chemical processes such
as F-actin polymerization is more easily realized than tuning adhesion, and
thus may have evolved as a generally effective strategy to regulate mechanical
processes such as cell adhesion and locomotion.

4.5 Discussion and Outlook

Based on a larger set of interwoven mass and force balance equations for
mechano-chemical processes within the cytoplasm and the surrounding plasma
membrane, the presented continuum model is a simplified although already
sufficiently complex version of a more comprehensive 3-D whole-cell model.
From the 1-D and 2-D simulation results we conclude that even without
organizing centers (as the cell nucleus or microtubuli; cf. [31]) or regulat-
ing systems (as the Rho/RAC control cascades; cf. [54]), the F-actin cy-
toskeleton and its associated proteins having mechanical functions (myosin
and integrin) constitute a self-organizing biophysical system with the abil-
ity of autonomous polarization and locomotion. The transition from a sym-
metric, unpolarized stationary state to a polarized migrating state can be
mechanically induced or spontaneous due to stochastic or chaotic fluctu-
ations, depending on the (meta-)stability of the stationary state. Clearly,
for reproducing the mentioned experimental data, the 2-D system offers a
wider spectrum of possibilities, one of which has been elaborated by Kozlov
and Mogilner [33]. They prove a defined bi-stability between the radially
symmetric cell shape and a polarized, circularly indented shape by allow-
ing for different anisotropic organization of the actin–myosin cytoskeleton.
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In comparison to this, further numerical “experiments” using our cou-
pled viscous flow transport–diffusion–reaction system with free boundary
should be performed to explore the capability of isotropic continuum mod-
els. Although local orientation or alignment of actin filaments will have an
enforcing effect on the dynamics, interactions, and feedback among F-actin,
crosslinkers, motor proteins, and adhesion complexes (for a 1-D model, see
[21]), already the presented simulation results show that internal concentra-
tion gradients and directional flow, leading to persistent polarization, can
emerge from local fluctuations. Thereby super-threshold pattern formation
arises, not as in common excitable media by a purely reaction–diffusion
feedback, but rather by a spatially distributed coupling between chemi-
cally induced force generation/relaxation and mechanically induced bond
formation/dissociation.

More than a decade ago, Bereiter-Hahn and Lüers [8] claimed that, based
on their experiments and measurements with migrating keratocytes, polariza-
tion and directionality of cells are determined by local variations in actin net-
work stiffness and hydrostatic pressure. Together with the more recent high-
resolution measurements of dynamic vector field (as F-actin velocity, forces
onto pliable substrates, or directionality of FA shape deformations), it may
soon be possible to probe and evaluate the various assumptions and hypothe-
ses on mass and force balance conditions, which we postulate in Sections 4.3.1
and 4.3.2. For example, the biphasic correlations between retrograde actin flow
speed and traction stress detected by Gardel et al. [22] could well be resolved
by the measured and simulated FA gradient away from an advancing lamellar
tip, and by our central modeling assumption that the local traction force Fv

is proportional to the product csa ·vc of FA concentration and cortical F-actin
velocity.

Moreover, the distribution of flow and force, extensively discussed for the
1-D case (in Section 4.4.2), has to be quantitatively characterized for the 2-
D free boundary situation (Section 4.4.1), where the overall picture is the
same. Wider distribution of traction forces occurs in the leading front region
(with maximum flow speed at the tip, depending on the active polymerization
pressure) and strong disruptive counter-forces in a confined region of “rear re-
lease”. The actin flow patterns of our 2-D simulations show, in principle, the
same characteristics as experimental data by Yam et al. [64] for fish kerato-
cytes. During the process of polarization, the simulated cell loses its radial
symmetry of a uniform inward flow pattern, leading to a stronger inward flow
in the rear region, whereby the most pronounced forces come from the two
sides relative to the establishing locomotion direction; see Figure 4.6(c). In-
deed, traction force experiments on polarized fish keratocytes have revealed
the same pattern, with major traction forces from the two flanks at the rear
and weaker retrograde forces at the front [50].

Further evaluation of the presented model should compare the simulated
integrin concentration profiles with more precise quantitative data on the
temporal turnover and spatial distribution of FAs in migrating cells, as already
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mentioned above. For this reason, the model must be extended to include
stochastic clustering dynamics of integrins, which probably is an essential
feature of FAs determining the detailed patterns of F-actin flow and traction
forces. We emphasize that our model results do not depend on the specific
mechanisms of myosin-II contraction. Essential for the emergence of coupled
flow and mass gradients is the bimodal (cubic-like) stress function S = S(�)

in Figure 4.5, which similarly appears in a modified mechanical situation as,
for example, the nematode sperm motility system; see [9].

The experimental response curves for the migration speed of polarized cells
depending on adhesiveness [52] show a broad optimum range with a logarith-
mic slow decay for larger Adh0 values and a steep decay for lower values,
similar to the curves found in our 1-D model (Figure 4.10) and in earlier anal-
ogous simulation results using alternative visco-elastic mechanics [17, 24]. The
deviating behavior for very low adhesiveness values remains to be investigated
with a more precise quantification of other (weaker) substrate-mediated forces
that may come into account.

An optimum curve for the protrusion speed as a function of the barbed end
density B, thus also of the concentration Arp0, has been obtained by Mogilner
and Edelstein-Keshet [42] with the aid of 1-D diffusion-reaction-transport sys-
tems, including membrane resistance and the Brownian ratchet mechanism.
However, they do not model retrograde actin flow or force transduction to the
substratum, so that the shape of their curve ([42], Figure 6) essentially differs
from our results in Figures 4.10(b) and 4.12(b).

Finally, in generalization of the model simulations by Stéphanou et al. [59]
and in comparison with other modeling approaches, our full 2-D model should
be used for reproducing the experimentally observed translocation paths and
deformation structures of single blood or tissue cells in culture, which show
well-expressed phases of persistent polarization and locomotion, interrupted
by events of speed reduction, contractile rounding, successive re-polarization,
and migration. Statistical analysis, in the same spirit as having been per-
formed for the original annular lamella model [4], could help in revealing the
microscopic mechanisms that are responsible for cell motility behavior at the
macroscopic level.
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[8] J. Bereiter-Hahn and H. Lüers (1998). Subcellular tension fields and
mechanical resistance of the lamella front related to the direction of
locomotion. Cell Biochem. Biophys. 29:243–262.

[9] D. Bottino, A. Mogilner, T. Roberts, M. Stewart, and G. Oster (2002).
How nematode sperm crawl. J. Cell. Sci. 115:367–384.

[10] K. Burridge, M. Chrzanowska-Wodnicka, and C. Zhong (1997). Focal
adhesion assembly. Trends Cell Biol. 7:342–347.

[11] M. Dembo (1986). The mechanics of motility in dissociated cytoplasm.
Biophys. J. 50:1165–1183.

[12] M. Dembo (1989). Field theories of the cytoplasm. Comments Theor.

Biol. 1:159–177.

[13] M. Dembo and F.W. Harlow (1986). Cell motion, contractile networks,
and the physics of penetrating reactive flow. Biophys. J. 50:109–121.

[14] M. Dembo, F.W. Harlow, and W. Alt (1984). The biophysics of cell
surface mobility. In Cell Surface Dynamics, Concepts and Methods, Eds.
A.D. Perelson, Ch. DeLisi, and F.W. Wiegel, New York, Marcel Dekker,
pp. 495–542.



128 Cell Mechanics

[15] M. Dembo and Y.L. Wang (1999). Stresses at the cell-to-substrate in-
terface during locomotion of fibroblasts. Biophys. J. 76:2307–2316.

[16] R.B. Dickinson (2009). Models for actin polymerization motors. J. Math.

Biol. 58:81–103.

[17] P.A. DiMilla, K. Barbee, and D.A. Lauffenburger (1991). Mathematical
model for the effects of adhesion and mechanics on cell migration speed.
Biophys. J. 60:15–37.

[18] E. Evans and A. Yeung (1989). Apparent viscosity and cortical tension
of blood granulocytes determined by micropipet aspiration. Biophys. J.

56:151–160.

[19] W. Feneberg, M. Westphal, and E. Sackmann (2001). Dictyostelium
cells’ cytoplasm as an active viscoplastic body. Eur. Biophys. J. 30:284–
294.

[20] D.E. Frank and W.G. Carter (2004). Laminin 5 deposition regulates ker-
atinocyte polarization and persistent migration. J. Cell. Sci. 117:1351–
1363.

[21] J. Fuhrmann, J. Käs and A. Stevens (2007). Initiation of cytoskeletal
asymmetry for cell polarization and movement. J. Theor. Biol. 249:278–
288.

[22] M.L. Gardel, B. Sabass, L. Ji, G. Danuser, U.S. Schwarz, and C.M. Wa-
terman (2008). Traction stress in focal adhesions correlates biphasically
with actin retrograde flow speed. J. Cell Biol. 183:999–1005.

[23] A. Gholami, M. Falcke, and E. Frey (2008). Velocity oscillations in actin-
based motility. New J. Phys. 10:033022.

[24] M.E. Gracheva and H.G. Othmer (2004). A continuum model of motility
in amoeboid cells. Bull. Math. Biol. 66:167–193.

[25] H.P. Grimm, A.B. Verkhovsky, A. Mogilner, and J.-J. Meister (2003).
Analysis of actin dynamics at the leading edge of crawling cells: im-
plications for the shape of keratocyte lamellipodia. Eur. Biophys. J.

32:563–577.

[26] M. Herant, W.A. Marganski, and M. Dembo (2003). The mechanics
of neutrophils: synthetic modeling of three experiments. Biophys. J.

84:3389–3413.

[27] B. Hinz, W. Alt, C. Johnen, V. Herzog, and H.W. Kaiser (1999). Quan-
tifying lamella dynamics of cultured cells by SACED, a new computer-
assisted motion analysis. Exp. Cell Res. 251:234–243.

[28] F. Huber, J. Käs, and B. Stuhrmann (2008). Growing actin networks
form lamellipodium and lamellum by self-assembly. Biophys. J. 95:5508–
5523.



Coupling of Cytoplasm and Adhesion Dynamics 129

[29] G. Jiang, G. Giannone, D.R. Critchley, E. Fukumoto, and M.P. Sheetz
(2003). Two-piconewton slip bond between fibronectin and the cy-
toskeleton depends on talin. Nature 424:334–337.

[30] X. Jiang, D.A. Bruzewicz, A.P. Wong, M. Piel, and G.M. Whitesides
(2005) Directing cell migration with asymmetric micropatterns. Proc.

Natl. Acad. Sci. USA 102:975–978.

[31] I. Kaverina, O. Krylyshkina, and J.V. Small (2002). Regulation of
substrate adhesion dynamics during cell motility. Int. J. Biochem. Cell

Biol. 34:746–761.

[32] S.A. Koestler, S. Auinger, M. Vinzenz, K. Rottner, and J.V. Small
(2008). Differentially oriented populations of actin filaments generated
in lamellipodia collaborate in pushing and pausing at the cell front.
Nat. Cell Biol. 10:306–313.

[33] M.M. Kozlov and A. Mogilner (2007). Model of polarization and
bistability of cell fragments. Biophys. J. 93:3811–3819.
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5.1 Introduction

The description of cell migration by the action of a lamellipodium given in [15]
is reproduced here for completeness. Cells migrate by protruding at the front
and retracting at the rear. Protrusion occurs in thin membrane-bound cyto-
plasmic sheets, 0.2 to 0.3 �m thick and several microns long, termed lamellipo-
dia [22]. The major structural components of lamellipodia are actin filaments,
which are organized in a more or less 2-D diagonal array with the fast-growing
plus ends of the actin filaments directed forward, abutting the membrane [21].
Protrusion is effected by actin polymerization, whereby actin monomers are
inserted at the plus ends of the filaments at the membrane interface and re-
moved at the minus ends, throughout and at the base of the lamellipodium,
in a treadmilling regime [16]. Stabilization of the actin meshwork is achieved
by the crosslinking of the filaments by actin-associated proteins, such as fil-
amin [12], as well as protein complexes such as the Arp2/3 [18], although
the density and location of such crosslinks remain to be established. Because
actin polymerization is involved in diverse motile processes aside from cell
motility, including endocytosis and the propulsion of pathogens that invade
cytoplasm [2], the question of how actin filaments are able to push against a
membrane has spawned the development of various models [9].
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Modeling efforts go back to 1996 and fall into two groups. The first group
includes continuum models for the mechanical behavior of cytoplasm: a
two-phase formulation for cytosol and the actin network [1], a 1-D viscoelas-
tic model [4], a 1-D model for the actin distribution [10]; and a 2-D elastic
continuum model [19]. The second group makes presumptions about the mi-
croscopic organization of the actin network. The Brownian ratchet model for
the polymerization process introduced by Mogilner and Oster [11] considers
actin crosslinking proteins as stabilizers of the lamellipodium meshwork, al-
lowing enough flexibility for actin filaments to bend away from the membrane
to accept actin monomers. Other models are based on the current idea [18]
that the actin filaments in lamellipodia form a branched network with the
Arp2/3 complex at the branch points [6,7,20]. A related model considers the
lamellipodia as constructed from short filaments that take one of six orienta-
tions [8].

Recent studies have indicated that filaments in lamellipodia are not or-
ganized in branched arrays [5]. Rather, the pseudo-2-D actin network con-
tains unbranched filaments whereby the filament density decreases from the
front to the rear of the lamellipodium, indicative of a graded distribution
of filament lengths. According to this structural information, we present a
quasi-stationary modeling approach for the simulation of the turnover of the
lamellipodium surrounding a cell on a flat substrate. This corresponds to in

vitro situations such as cytoplasmic fragments of keratocytes [23]. Our ap-
proach differs from previous ones in that we describe the lamellipodium in
terms of a continuous distribution of filaments of graded length and their
linkages.

In this work the models from [15] and [13] are generalized from rotation-
ally symmetric to arbitrary geometries. Otherwise, the assumptions on the
mechanics of the network are the same: there is an elastic resistance against
bending of actin filaments, against stretching and twisting of crosslinks be-
tween the filaments, against polymerization of the barbed ends by the mem-
brane, and against the stretching of trans-membrane linkages (called adhe-
sions) between filaments and the substrate. Our model of the cell–substrate
interaction assumes a homogeneous isotropic substrate. However, inclusion of
substrate inhomogeneity and anisotropy (cf. [3]) does not represent a principal
obstacle.

Section 5.3 derives the basic model with a detailed probabilistic account of
the life cycles of crosslinks and adhesions. The model is simplified by carrying
out the limit of instantaneous crosslink and adhesion turnover. A picture
from a time-dependent simulation is reproduced from [14], where numerical
methods for simulations with the limiting model are presented. Finally, the
connection to the results from [15] and [13] is established in Section 5.4 by
showing that the general model possesses rotationally symmetric solutions. An
analysis of the stability of a trivial steady state illustrates simulation results
presented in [15].
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5.2 Modeling

A central feature of the model is an age-structured production/decay of
crosslinks and adhesions, consistent with dynamic association/dissociation of
linkage molecules with the actin network. To obtain a feasible mathematical
description we adopt a homogenization limit, based on the assumption that
the density of filaments within the lamellipodium is very high. We let the
number of filaments tend to infinity to obtain a model based on continuous
quantities instead of discrete ones.

The assumptions made are as follows:

A1: The lamellipodium is 2-D and has the topology of a ring; that
is, it lies between two closed curves.

A2: All actin filaments belong to one of two families, called clock-
wise and counterclockwise. Filaments of the same family do not cross
each other. Crossings of clockwise with counterclockwise filaments are
transversal. All barbed ends touch the leading edge of the lamel-
lipodium, that is, the outer curve of the previous assumption. Filaments
are inextensible.

A3: Filaments polymerize at the barbed ends with given polymeriza-
tion speed. Depolymerization at the pointed ends is a stochastic process
with prescribed distribution.

As a consequence of A1 and A2, the lamellipodium has the organization
depicted in Figure 5.1.

There are two families of locally parallel filaments. Looking from the center
of the lamellipodium ring, the filaments in the first group bear to the right and
the second group to the left (relative to each other); referred to as clockwise
and counterclockwise filaments, respectively.

We assume the presence of n+ clockwise filament with indices i =
0, . . . , n+−1 and n− counterclockwise filament with indices j = 0, . . . , n−−1.
An arc length parametrization of the clockwise filaments at time t is given
by {F+

i (t, s) : −L+
i (t) ≤ s ≤ 0} ⊂ R

2, where s = −L+
i (t) corresponds to the

pointed end and s = 0 to the barbed end. In a similar manner we represent
the counterclockwise filaments at time t by {F−

j (t, s) : −L−
j (t) ≤ s ≤ 0} ⊂ R

2

such that |∂s F+
i | ≡ |∂s F−

j | ≡ 1.

The lengths L+
i (t) and L−

j (t) of the filaments are random variables whose
distributions are considered as given by

P(−L+
i (t) ≤ s) = �+

i (t, s) , P(−L−
j (t) ≤ s) = �−

j (t, s) (5.1)
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FIGURE 5.1 Constituent elements of model.

The arc length s is a geometric parameter. Because of the polymerization at
the barbed ends, polymerized actin molecules travel along the filament toward
the pointed ends with the polymerization speed denoted by v+

i (t) and v−
j (t),

respectively. Because of this and because of the inextensibility assumption in
A2, Lagrange variables along the filaments are given by �+

i = s +
∫ t

0 v+
i (̃t)dt̃

and �−
j = s +

∫ t

0 v−
j (̃t)dt̃ . In other words, the path of the actin molecule with

label �+
i on the clockwise filament F+

i is given by F+
i (t, �+

i −
∫ t

0 v+
i (̃t)dt̃). The

fact that only depolymerization happens at the pointed ends is reflected by
the assumption that

−L+
i (t) +

∫ t

0

v+
i (̃t)dt̃ and − L−

j (t) +

∫ t

0

v−
j (̃t)dt̃ (5.2)

are increasing functions of time. As a consequence, the distribution functions
�+

i and �−
j are decreasing with respect to time when written in terms of

the Lagrangian variables. In other words, ∂t �
+
i − v+

i ∂s�+
i ≤ 0 and ∂t �

−
j −

v−
j ∂s�−

j ≤ 0.
The next step is to describe the kinematics of crosslinks, and we start with

the modeling assumptions:
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A4: A crosslink is a connection between a material point on a clockwise
and a material point on a counterclockwise filament. Crosslinks can be
created spontaneously at the crossing between two filaments and they
can also break. Creation and breaking are stochastic processes. There
exists at most one crosslink for any pair of filaments at any time.

For the creation of crosslinks, we need the information about filament cross-
ings. We assume that each clockwise filament crosses each counterclockwise
filament at most once. At time t , the crossings are described by a set of index
pairs:

C(t) :=
{

(i, j) : ∃ s+
i, j (t), s−

i, j (t) such that F+
i (t, s+

i, j (t)) = F−
j (t, s−

i, j (t))
}

(5.3)

If a crosslink between the filaments with indices i and j is created at time t∗,
then this happens at the crossing point. Once established, however, the two
binding sites will travel with the material along the two filaments. Thus, at a
later time t = t∗ + a, the binding sites will be located at

F+
i (t, s+

a,i, j (t)) , s+
a,i, j (t) := s+

i, j (t − a) −

∫ t

t−a

v+(̃t)dt̃ (5.4)

F−
j (t, s−

a,i, j (t)) , s−
a,i, j (t) := s−

i, j (t − a) −

∫ t

t−a

v−(̃t)dt̃ (5.5)

until the crosslink eventually breaks. We call a the age of the crosslink. Below
we assume a resistance of crosslinks against stretching and twisting. This
means there are elastic forces related to the stretching

Si, j (t, a) := F+
i (t, s+

a,i, j (t)) − F−
j (t, s−

a,i, j (t)) (5.6)

and to the twisting

Ti, j (t, a) := �i, j (t, a) − �0 (5.7)

where

�i, j (t, a) := arccos[∂s F+
i (t, s+

a,i, j (t)) · ∂s F−
j (t, s−

a,i, j (t))] (5.8)

is the angle between the directions of the filaments at the binding sites, and
�0 is an equilibrium angle determined by the properties of the crosslinking
molecule. We allow also obtuse angles 0 ≤ �, �0 ≤ � allowing for crosslinkers
sensitive to the orientation of actin filaments.

The probability distribution for the existence of a crosslink with respect to
age will be denoted by ri, j (t, a), where

∫ ∞

0

ri, j (t, a) da ≤ 1 (5.9)
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is the probability that a crosslink between the ith clockwise filament and the
jth counterclockwise filament exists at time t . We postulate the following
model for the evolution of the distribution:

⎧

⎪

⎨

⎪

⎩

∂tri, j + ∂ari, j = −�(Si, j , Ti, j )ri, j ,

ri, j (t, 0) = �(Ti, j (t, 0))

(

1 −

∫ ∞

0

ri, j (t, a) da

) (5.10)

This model has the standard form of age-structured population models (see,
for example, [17]). The differential equation describes aging and breaking of
crosslinks, the boundary condition at a = 0 describes their creation. The
dependence of the breaking rate on stretching and twisting reflects that a
crosslink might be broken by being loaded too much. The twisting depen-
dence of the creation rate � could eliminate the possibility for a crosslink to
be established, if the angle between the filaments is too far from the equilib-
rium angle. Integration of the differential equation with respect to a shows
that the second factor in the creation rate guarantees Equation (5.9), that
is, the fact that there is at most one crosslink. Just as for the pointed-end
(de)polymerization process, all we need to know about the processes of cre-
ation and breaking of crosslinks is the distribution ri, j .

The domain of the differential equation in model (5.10) is determined by the
requirement that both binding sites (on the ith clockwise filament and on the
jth counterclockwise filament) have not been depolymerized yet: s+

a,i, j (t) >

−L+
i (t), s−

a,i, j (t) > −L−
j (t).

The next modeling step is the passage to a continuum description by letting
the total numbers of filaments n+ and n− tend to infinity. In the limit, the
discrete indices 	+

i = �(2i/n+ − 1), i = 0, . . . , n+ − 1 and 	−
j = �(2 j/n− −

1), j = 0, . . . , n− − 1 are replaced by a continuous parameter 	 ∈ [−�, �).
Then we interpret the discrete filament positions F+

i (t, s) and F−
j (t, s) as

approximations for the values F+(t, 	i , s) and, respectively, F−(t, 	 j , s) of
continuous functions

F± : [0, ∞) × B → R
2, with B := [−�, �) × [−L , 0] (5.11)

where L is a maximal length of filaments. Note that we assume periodicity of
B in the sense that all functions of 	 are 2�-periodic. The fact that filaments
of the same family do not cross implies that F±(t, ·) has to be one-to-one.
The shape of the lamellipodium at time t is given by �(t) = F+(t, B) ∪

F−(t, B). According to assumption A1, its boundary consists of an inner and
an outer curve: ∂�(t) = ∂�in(t) ∪ ∂�out (t). The fact that, by assumption
A2, all barbed ends touch the leading edge, takes the mathematical form
∂�out (t) = {F±(t, 	, 0) : −� ≤ 	 < �}.

Continuous versions of the length distributions �+
i and �−

j are given by

�± : [0, ∞) × B → [0, 1] (5.12)
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FIGURE 5.2 Functional framework of model.

now getting the deterministic interpretation as the expected fraction of fila-
ments in each index element d	, whose length at time t is bigger than −s.
They are nondecreasing functions of s satisfying �±(t, 	, 0) = 1.

Crossings of filaments can only occur in �c(t) = F+(t, B)∩F−(t, B) ⊂ �(t).
Similar to C(t), we construct a set of index pairs by

C(t) =
{

(	+, 	−) ∈ [−�, �)2 : ∃ s±(t, 	+, 	−) such that

F+(t, 	+, s+(t, 	+, 	−)) = F−(t, 	−, s−(t, 	+, 	−))
}

(5.13)

which corresponds to the discrete set C(t) in the sense that (	i , 	 j ) ∈ C(t) if
(i, j) ∈ C(t). Consistent with the assumption that two given filaments cross
at most once, we assume that for each pair (	+, 	−) ∈ C(t) there is only one
s±(t, 	+, 	−). Defining

B±(t) :=
{

(	±, s±(t, 	+, 	−)) : (	+, 	−) ∈ C(t)
}

⊂ B (5.14)

the maps (	+, 	−) �→ (	±, s±(t, 	+, 	−)) from C(t) to B±(t) are invertible.
Combining one of them with the other’s inverse gives an invertible map
(	+, s+) �→ (	−(t, 	+, s+), s−(t, 	+, s+)) from B+(t) to B−(t). We complete
the description of the geometry of crossings by defining the angle between
crossing filaments:

�(t, 	+, 	−) = arccos[∂s F+(t, 	+, s+(t, 	+, 	−)) · ∂s F−(t, 	−, s−(t, 	+, 	−))]

(5.15)

We introduce the polymerization rates v±(t, 	) such that v+
i approximates

v+(t, 	i ) and v−
j approximates v−(t, 	 j ) and abbreviate the s-values at time t
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of crosslinks with age a by

s+
a (t, 	+, 	−) := s+(t − a, 	+, 	−) −

∫ t

t−a

v+(̃t, 	+)dt̃ (5.16)

s−
a (t, 	+, 	−) := s−(t − a, 	+, 	−) −

∫ t

t−a

v−(̃t, 	−)dt̃ (5.17)

The age-dependent probability distribution of crosslinks can be understood
as an expected crosslink density 
(t, 	+, 	−, a) with (	+, 	−) ∈ C(t − a). This
condition means that for a crosslink of age a connecting the filaments with
labels 	+ and 	− to exist at time t , the filaments must have crossed at time
t − a. From Equation (5.10) the transport equation for the crosslink density
becomes

∂t 
 + ∂a
 = −�(S, T )
 (5.18)

Boundary conditions are required at a = 0, describing the creation of new
crosslinks, and for (	+, 	−) ∈ ∂C(t − a)+, with ∂C(t − a)+ denoting the part
of the boundary of C(t − a), where the filaments with labels 	+ and 	− start
to have a crossing. In other words, the time direction points into the domain
of 
 at these points. The boundary data there have to be zero because there
are no preexisting crosslinks. So the boundary conditions are


(a = 0) = �(T0)

(

1 −

∫ ∞

0


 da

)

, 
(t, 	+, 	−, a) = 0

for (	+, 	−) ∈ ∂C(t − a)+

(5.19)

with T0 = T (a = 0). Note that the upper bound in the integration should
actually be t − t0(	

+, 	−) with (	+, 	−) ∈ ∂C(t0)+, but for simplicity we con-
sider the definition of 
 as continued by zero to arbitrary values of a > 0. The
stretching and twisting terms are now given by

S(t, 	+, 	−, a) = F+(t, 	+, s+
a (t, 	+, 	−)) − F−(t, 	−, s−

a (t, 	+, 	−)) (5.20)

T (t, 	+, 	−, a) = �a(t, 	+, 	−, a) − �0 (5.21)

with

�a(t, 	+, 	−) = arccos
[

∂s F+(t, 	+, s+
a (t, 	+, 	−)) · ∂s F−(t, 	−, s−

a (t, 	+, 	−))
]

(5.22)

The boundedness property (Inequality (5.9)) of the microscopic crosslink den-
sity determined by Equation (5.10) carries over to the modified model (Equa-
tions (5.18) and (5.19)). The accumulated distribution


̄(t, 	+, 	−) =

∫ ∞

0


(t, 	+, 	−, a) da (5.23)
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satisfies the equation

∂t 
̄ = −

∫ ∞

0

�
 da + �(1 − 
̄) (5.24)

preserving the property 0 ≤ 
̄(t, 	+, 	−) ≤ 1.
Taking into account the length distribution of the filaments, we arrive at

the effective crosslink density


e f f (t, 	+, 	−, a) = 
(t, 	+, 	−, a)�+(t, 	+, s+
a (t, 	+, 	−))

× �−(t, 	−, s−
a (t, 	+, 	−))

(5.25)

where each of the two filaments involved in a crosslink contributes a factor
�±. Note that 
e f f satisfies

∂t 
e f f + ∂a
e f f = −
e f f

(

�(S, T ) −
∂t �

+ − v+∂s�+

�+
−

∂t �
− − v−∂s�−

�−

)

(5.26)

hence the same type of transport equation as 
 but with a modified decay rate,
which takes into account the loss of crosslinks due to depolymerization of the
pointed ends. Note that just as in the microscopic model, the fact that only
depolymerization happens at the pointed ends is described by the inequality
∂t �

± − v±∂s�± ≤ 0.
Now we turn to the dynamics of adhesion molecules:

A5: An adhesion is a connection between a material point on a filament
and a point on the substrate via a transmembrane linkage. Adhesions
can be created spontaneously and they can also break. Creation and
breaking are stochastic processes. The number of adhesions per filament
length is restricted.

The densities 
±
adh(t, 	, s, a) of adhesions on clockwise and counterclockwise

filaments, respectively, satisfy the differential equations

∂t 

±
adh + ∂a
±

adh − v±
∂s
±

adh = −�adh
(

S±
adh

)


±
adh (5.27)

with the boundary conditions


±
adh(a = 0) = �adh

(


̄adh
max −

∫ ∞

0


±
adh da

)

, 
±
adh(s = 0) = 0 (5.28)

where 
̄adh
max is the maximal density of crosslinks along the filament and the

breaking rate �adh depends on the stretching of the adhesions:

S±
adh(t, 	, s, a) = F±(t, 	, s) − F±

(

t − a, 	, s +

∫ t

t−a

v±(̃t, 	)dt̃

)

(5.29)

As for the crosslink density, the second boundary condition means that there
are no pre-existing adhesions on newly polymerized parts of the filaments.
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FIGURE 5.3 Crosslinks: microscopic description and possible transforma-
tions.

It remains to formulate assumptions determining the position of the fila-
ments:

A6: The position of the filaments is determined by a quasi-stationary
balance of elastic forces resulting from bending the filaments, stretching
and twisting the crosslinks, stretching the adhesions, and stretching the
cell membrane around the leading edge.

The quasi-stationarity assumption means that elastic oscillations are ne-
glected because the filament network is damped by viscous forces in the cy-
tosol. Thus, the dynamics of the network result only from (de)polymerization
and from the creation and breaking of crosslinks and adhesions.

Mathematically, the assumption A6 will be formulated by assuming that
the filament positions minimize a potential energy functional containing con-
tributions from the above-mentioned elastic effects. We require the functions
F+(t, ·, ·) and F−(t, ·, ·) to minimize the functional

U (t)[G+, G−] :=U+
bending(t)[G

+] + U−
bending(t)[G

−] + Uscl+tcl (t)[G
+, G−]

+ Umembrane[G
±] + U+

adh(t)[G
+] + U−

adh(t)[G
−] (5.30)



How Do Cells Move? 143

The energy contribution from bending the filaments is the Kirchhoff bending
energy from standard linearized beam theory:

U±
bending(t)[G

±] :=
�B

2

∫

B

∣

∣∂
2
s G±

∣

∣

2
�± d(	, s) (5.31)

where �B is the bending stiffness of one filament and the notation
∫

B
· · · d(	, s)

denotes the double integral with respect to 	 and s.
The stretching and twisting energy of the crosslinks is modeled by

Uscl+tcl (t)[G
+, G−] :=

∫ ∞

0

∫

C(t−a)

(

�S

2
|S|2 +

�T

2
T 2

)


e f f d(	+, 	−) da (5.32)

with the quantities S and T from Equations (5.20) and (5.21) applied to G+

and G−, respectively. The constants �S and �T are Hooke constants describing
the stretching and, respectively, torsional stiffnesses of the crosslink molecules.
Here, too, the notation

∫

c(t − a) · · · d(	+, 	−) denotes the double integral
with respect to 	+ and 	−.

Furthermore the energies associated with the stretching of integrins on
clockwise and counterclockwise filaments, respectively, read

U±
adh(t)[G

±] :=
�F

2

∫

B

∫ ∞

0

∣

∣

∣

∣

G± − F±

(

t − a, 	±, s +

∫ t

t−a

v±(̃t, 	) dt̃

)∣

∣

∣

∣

2

×
±
adh�± da d(	, s)

(5.33)

Note that the evaluation of the adhesion energy and of the crosslink stretch-
ing and twisting energy at time t requires information on previous filament
positions. Because of the treadmilling of filaments, the lifetime of monomers
in a filament and, thus, of binding sites of crosslinks and adhesion molecules is
finite. The densities 
e f f and 
±

adh have compact supports in the age direction
and the above integrals with respect to a can be restricted to these supports.
It is obvious that past filament positions enter into the computation of the
adhesion energy. However, this is also the case for the energy in crosslinks,
where past filament positions enter into the computation of s±

a .
It remains to model the action of the cell membrane on the leading edge of

the network:

A7: The cell membrane simulates a rubber band stretched around the
barbed ends of the filaments.

This leads to a model of the form

Umembrane[G
±] := �M

(

C+[G+] + C−[G−]

2
− C0

)2

+

(5.34)
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with the circumference of the lamellipodium C+[G+] = C−[G−], given by
either one of the two equivalent formulations

C±[G±] :=

∫ �

−�

|∂	G±(t, 	, 0)| d	 (5.35)

The arithmetic mean is used in the energy for symmetry reasons. This mod-
els resistance against stretching the membrane as soon as its circumference
exceeds the equilibrium value C0.

The positions of the filaments at time t is now determined by minimizing
the energy:

U (t)[F+(t, ·, ·), F−(t, ·, ·)] = min U (t)[G+, G−] (5.36)

under the constraint of inextensibility

|∂s G+| = |∂s G−| = 1 (5.37)

and under the constraint that all barbed ends touch the leading edge:

{G+(t, 	, 0) : −� ≤ 	 < �} = {G−(t, 	, 0) : −� ≤ 	 < �} (5.38)

The formulation of a well-posed problem still requires a start-up procedure. It
first involves a decision about the maximal age A of all crosslinks and adhe-
sions that are present at time t = 0. In other words, initial data 
(0, 	+, 	−, a)

and 
±
adh(0, 	, s, a) have to be prescribed, which vanish for a > A. To be able

to compute the binding sites of all the initial crosslinks and adhesions, the
positions F±(t, 	, s) of the filaments and the polymerization rates v±(t, 	) for
−A ≤ t ≤ 0 have to be given.

5.3 Limit of Instantaneous Crosslink and Adhesion

Turnover

For two reasons, numerical simulations with the model presented in the pre-
vious section are very costly. On the one hand, the densities of crosslinks and
adhesions are functions of three variables ((	+, 	−, a) and (	, s, a), respec-
tively). On the other hand, the problem for the deformation of the filaments
is a delay problem, such that the history of the filament dynamics must be
stored up to the maximal age of crosslinks and adhesions.

Therefore a simplification will be carried out below that can also be mo-
tivated by the fact that in the model, macroscopic and microscopic scales
are still mixed. The typical length and bending radius of a filament will in
general be large compared to the size of a crosslinking or adhesion molecule,
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even when the latter is stretched, as assumed in our model. This also makes
it plausible that the lifetime of such a connection is short compared to the
typical time scale for the dynamics of the network. We make this assumption
although it is not true for all applications. It means, for example, that we
exclude the build-up of large adhesion complexes from our considerations.

Asymptotic methods will be used to derive an approximative problem,
where the crosslink and adhesion densities can be computed explicitly. Also
the delays disappear, and the problem becomes local in time at the expense
of time derivatives appearing in the equations for the filament displacements.
A physical interpretation of the approximation is that the rapid turnover of
crosslinks and adhesions can be described as effective friction.

A nondimensionalization is carried out, where the typical filament length L

is used as reference length for scaling s, F±, S±, Sadh , and C0. With v0 being
the reference speed for the polimerization speed v±, the reference time L/v0

for scaling t is the typical time an actin molecule spends in a filament between
polymerization at the barbed end and depolymerization at the pointed end.
The birth and death rates of crosslinks and adhesions �, �, �adh , and �adh

will be assumed to be of the same order of magnitude with a typical value
1/ā used for nondimensionalization, where ā can be interpreted as typical
lifetime of crosslinks and adhesions. Our main scaling assumption is that the
dimensionless parameter

ε :=
āv0

L
(5.39)

is small. The reference values for the densities of cross-links and of adhesions
are 1/(āL) and, respectively, 
̄adh

max/ā. Finally, energy (U and all its contribu-
tions) is scaled with the reference value �B L, and the reference values for �S,
�T , �A, and �M , are �B/(εL), �B L, �B/(ε
̄adh

maxL), and �B/L, respectively.
For notational simplicity, the same symbols will be used for the dimension-

less quantities as for their dimensional counterparts. The filament displace-
ment F±(t, ·, ·) is determined as a minimizer (with the side conditions (5.37)
and (5.38)) of the sum of the scaled energy contributions

Umembrane[G
±] = �M

(

C+[G+] + C−[G−]

2
− C0

)2

+

U±
bending(t)[G

±] =
1

2

∫

B

∣

∣∂
2
s G±

∣

∣

2
�± d(	, s)

Uscl (t)[G
+, G−] =

�S

2ε

∫ ∞

0

∫

C(t−εa)

|S|2
e f f d(	+, 	−) da

Utcl (t)[G
+, G−] =

�T

2

∫ ∞

0

∫

C(t−εa)

T 2
e f f d(	+, 	−) da

U±
adh(t)[G

±] =
�F

2ε

∫ ∞

0

∫

B

|G± − F±∗|2
±
adh�± d(	, s) da

(5.40)
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with

S = G+(t, 	+, s+
εa(t, 	+, 	−)) − G−(t, 	−, s−

εa(t, 	+, 	−))

T = �εa(t, 	+, 	−) − �0 ,
(5.41)

and

F±∗ := F±

(

t − εa, 	±, s +

∫ t

t−εa

v±(̃t, 	) dt̃

)

(5.42)

The problems for the crosslink density and for the adhesion density become
⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

ε∂t 
 + ∂a
 = −�(S, T )



(a = 0) = �(T0)

(

1 −

∫ ∞

0


 da

)


(t, 	+, 	−, a) = 0 for (	+, 	−) ∈ ∂C(t − εa)+


(t = 0) = 
I

(5.43)

with T0 = arccos[∂s F+(t, 	+, s+) · ∂s F−(t, 	−, s−)] − �0 and, respectively,
⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

εD±
t 
±

adh + ∂a
±
adh = −�adh

(

S±
adh

)


±
adh


±
adh(a = 0) = �adh

(

1 −

∫ ∞

0


±
adh da

)


±
adh(s = 0) = 0


±
adh(t = 0) = 
±

adh,I

(5.44)

with S±
adh(t, 	±, s, a) = F±(t, 	±, s) − F±(t − εa, 	±, s + ε

∫ t

t−a
v±(̃t) dt̃). The

initial data 
I = 
I (	
+, 	−, a) and 
±

adh,I = 
±
adh,I (s, a) have to be prescribed

according to the discussion on Page 144. For notational convenience, the ma-
terial derivative

D±
t := ∂t − v±

∂s (5.45)

is used here and in the following.
The reason for the scaling assumption that the stiffnesses of the adhesions

and of the crosslinks against stretching are O(ε−1) relative to the other stiff-
nesses is a priori not obvious. Actually, when replacing G±(	±, s) by the
minimizer F±(t, 	±, s), the energies Uscl (t)[F

+, F−] and Uadh(t)[F±] are for-
mally O(ε). It will be shown below that in the limit ε → 0 they still contribute
to the minimization conditions.

The above-mentioned approximation is derived by passing to the limit
ε → 0. We start with Problem (5.44). The formal limiting equations

∂a
±
adh = −�adh(0)
±

adh , 
±
adh(a = 0) = �adh

(

1 −

∫ ∞

0


±
adh da

)

(5.46)
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have the solution


±
adh(t, 	±, s, a) =

�adh�adh(0)

�adh + �adh(0)
e−�adh(0)a (5.47)

This is a singular limit because the small parameter ε multiplies the material
derivative. As a consequence, the conditions at s = 0 and at t = 0 cannot
be satisfied by the limiting (outer, in the language of singular perturbation
theory) solution. We ignore eventual boundary and initial layers (i.e., thin
regions close s = 0 and t = 0 with strong variation of the solution). In a similar
manner, we deal with Problem (5.43). The main difference is that the limiting
equations

∂a
 = −�(0, T0)
 , 
(a = 0) = �(T0)

(

1 −

∫ ∞

0


 da

)

(5.48)

and therefore also the limiting solution


 =
�(T0)�(0, T0)

�(T0) + �(0, T0)
e−�(0,T0)a (5.49)

depend on the displacement of the filaments via T0. As announced above, the
dependence is local in time.

If the limit ε → 0 is carried out formally in Expressions (5.40), the con-
tributions from the adhesions and from stretching the crosslinks disappear.
To reveal their influence, the solution of the variational problem needs to be
discussed.

The displacement F±(t, ·, ·) at time t has to satisfy the variational equation

�U [F+, F−](�F+, �F−) = 0 (5.50)

for all admissible variations (�F+, �F−), where �U is the variation of the
total energy, that is, the sum of all terms in (5.40). Admissibility condi-
tions for the variations are a consequence of the constraints |∂s F±| ≡ 1 and
{F+(t, 	, 0) : −� ≤ 	 < �} = {F−(t, 	, 0) : −� ≤ 	 < �}. The deriva-
tion of a strong formulation of the variational equations will be facilitated
by a Lagrange multiplier approach, where we employ the Lagrange functions
± = ±(	, s), edge = edge(	

±) and the additional functionals

U±
ext [G

±] =
1

2

∫

B

±(	, s)
(

|∂s G±(	, s
)

|2 − 1)�± d(	, s) (5.51)

describing extension of filaments, and

Uedge[G
+, G−] =

∫ �

−�

edge(	
+)(G+(t, 	+, 0) − G−(t, 	̂(t, 	+), 0)) · �(t, 	+)d	+

(5.52)
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describing the deviation between the outer edges of both filament families.
Here 	̂(t, 	+) is chosen such that G+(t, 	+, 0) − G−(t, 	̂(t, 	+), 0) is parallel
to �(t, 	+), the outward unit normal vector along the barbed ends of the
clockwise filaments, which can be computed from ∂	G+(t, 	+, 0).

In the following the variations of the energy contributions and their limits
as ε → 0 are computed individually.

1. The variation of the stretching energy of the membrane reads

�Umembrane[F
±]�F± = �M

(

C± − C0

)

+

×

∫ �

−�

∂	 F±(s = 0)

|∂	 F±(s = 0)|
· ∂	�F±(s = 0) d	 (5.53)

with the same expression in the limit ε → 0.

2. For the variation of the bending energy of the filaments we obtain

�U±
bending[F

±]�F± =

∫

B

∂
2
s F± · ∂

2
s �F± �± d(	, s) (5.54)

again with the same expression for ε → 0.

3. The variation of the energy contribution by stretching the cross links
can now be written as

�Uscl (t)[F
+, F−]�F± = ±

�S

ε

∫ ∞

0

∫

C(t−εa)

S�F±(t, 	±, s±
εa)

× 
e f f d(	+, 	−) da (5.55)

We can write Expressions (5.41) as

S = F+(t, 	+, s+
εa) − F+(t − εa, 	+, s+(t − εa, 	+, 	−))

−
(

F−(t, 	−, s−
εa) − F−(t − εa, 	+, s−(t − εa, 	+, 	−))

)

(5.56)

This implies S = εa(Dt F+ − Dt F−) + O(ε2), and therefore passing to
the limit ε → 0 gives

�Uscl (t)[F
+, F−]�F± = ±

∫

C(t)

�S(T0)(Dt F+ − Dt F−)�F±

�+�− d(	+, 	−) (5.57)

with

�S(T0) = �S

∫ ∞

0

a
 da =
�S�(T0)

�(0, T0)(�(T0) + �(0, T0))
(5.58)

4. Before we compute the variation of the twisting energy, we observe that
our formula for the angle between filaments is only valid if the con-
straint |∂s F±| = 1 holds. Because in the Lagrange multiplier approach,
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variations also are allowed that violate this condition, we reformulate
the definition of the angle as

cos �εa =
∂s F+

|∂s F+|
(s = s+

εa) ·
∂s F−

|∂s F−|
(s = s−

εa) (5.59)

With T = �εa − �0 and (� x
|x |

)|x |=1 = (x⊥ · �x)x⊥, (here and from now on

we write orthogonal vectors as (x1, x2)
⊥ = (−x2, x1)), we obtain

�T [F+, F−]�F± = −
(∂s F±⊥ · ∂s F∓)(∂s F±⊥ · ∂s�F±)

sin �εa

= ∓∂s F±⊥ · ∂s�F±

(5.60)

where ∂s F± and ∂s�F± are evalutated at (t, 	±, s±
εa). The sign in the last

term is due to the fact that the superscript + indicates the family of
clockwise filaments. It then holds that

�Utcl (t)[F
+, F−]�F± = ∓�T

∫ ∞

0

∫

C(t−εa)

T (∂s F±⊥ · ∂s�F±)


e f f d(	+, 	−) da (5.61)

and therefore, as ε → 0, we conclude

�Utcl (t)[F
+, F−]�F± = ∓

∫

C(t)

�T (T0)T0(∂s F±⊥ · ∂s�F±)�+�− d(	+, 	−)

(5.62)

where now ∂s F± and ∂s�F± are evalutated at (t, 	±, s±(t, 	+, 	−)) and

�T (T0) = �T

∫ ∞

0


 da =
�T �(T0)

�(T0) + �(0, T0)
(5.63)

5. The variation of the stretching energy of the adhesions is straightforward
and reads

�U±
adh [F

±]�F± =
�A

ε

∫ ∞

0

∫

B

(F± − F±∗) · �F± 
±
adh�± d(	, s) da (5.64)

In the limit ε → 0, a material derivative occurs similarly to the stretch-
ing of the crosslinks:

�U±
adh [F

±]�F± = �A

∫

B

D±
t F± · �F± �± d(	, s) (5.65)

with

�A = �A

∫ ∞

0

a
adh da =
�A�adh

�adh(0)(�adh + �adh(0))
(5.66)
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6. In the two Lagrangian terms, we do not include the contributions from
the variation of the Lagrange multipliers. For the inextensibility term
we obtain

�U±
ext [F

±]�F± =

∫

B

±
∂s F± · ∂s�F± �± d(	, s) (5.67)

7. The term that guarantees that all pointed ends touch the leading edge
gives

�Uedge[F
+, F−]�F± = ±

∫ �

−�

±
edge� · �F±(s = 0) d	 (5.68)

where +
edge = edge(	) and −

edge = edge(	
+(t, 	, 0)).

Collecting the terms computed under (1) through (7) leads to the variational
equation

∫ �

−�

[

�M
(

C± − C0

)

+

∂	 F±

|∂	 F±|
· ∂	�F± ± ±

edge� · �F±

]

s=0

d	

±

∫

C(t)

(

�S(T0)(Dt F+ − Dt F−)�F± − �T (T0)T0∂s F±⊥ · ∂s�F±
)

�+�− d(	+, 	−)

+

∫

B

(

∂
2
s F± · ∂

2
s �F± + �A D±

t F± · �F± + ±
∂s F± · ∂s�F±

)

�± d(	, s) = 0

(5.69)

where now there is no restriction on the variations �F+ and �F−. The first in-
tegral corresponds to the leading edge and will contribute boundary conditions
to a strong formulation of the problem. From the second and third integrals,
the Euler-Lagrange equations will be derived. For that purpose the integration
domains have to be mapped to each other. Noting that in the second inte-
gral F± and �F± and their derivatives are evaluated at (t, 	±, s±), we employ
the transformations (	+, 	−) �→ (	, s) = (	±, s±(t, 	+, 	−)). We incorporate
the corresponding Jacobians and the fact that these terms only contribute in
B±(t) into the macroscopic stiffness parameters for the crosslinks:

�S
± =

⎧

⎪

⎨

⎪

⎩

�S

∣

∣

∣

∣

∂	∓

∂s±

∣

∣

∣

∣

in B±(t),

0 in B \ B±(t) ,

�T
± =

⎧

⎪

⎨

⎪

⎩

�T

∣

∣

∣

∣

∂	∓

∂s±

∣

∣

∣

∣

in B±(t)

0 in B \ B±(t)

(5.70)
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where the interpretation of the additional factor is the number of crossings
per unit length. The Euler-Lagrange equations are given by

∂
2
s

(

�±
∂

2
s F±

)

− ∂s

(

�±±
∂s F±

)

+ �± �A D±
t F±

± ∂s

(

�+�− (� − �0) �T
±(� − �0) ∂s F±⊥

)

± �+�−�S
±(� − �0)

(

D+
t F+ − D−

t F−
)

= 0 (5.71)

The terms in the first row correspond to standard linear models for the de-
formation of beams. The first term corresponds to bending, the second to
stretching (just the right amount such that |∂s F±| = 1 holds), and the third
to friction caused by adhesion to the substrate. All these terms are evaluated
at (t, 	, s), and obviously none of them generates any coupling in 	, that is,
between different filaments. The terms in the second and third lines describe
the effects of crosslinking. Note that in the equation for F+, the derivatives
of F− have to be evaluated at (t, 	−(t, 	, s), s−(t, 	, s)) and vice versa, em-
ploying the mapping between B+(t) and B−(t). The last term shows that the
macroscopic effect of the resistance against stretching of crosslinks is friction
caused by the relative motion of the two filament families.

The solutions of the Euler-Lagrange Equations (5.71) have to satisfy the
boundary conditions
⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

−∂s

(

�±∂
2
s F±

)

+ �±±∂s F± ∓ �+�−�T
±(� − �0)∂s F±⊥ = 0 , for s = −L

∂s

(

�±
∂

2
s F±

)

− ±
∂s F± ± �T

±(� − �0)∂s F±⊥

= ±±
edge� − �M

(

C± − C0

)

+
∂	

(

∂	 F±

|∂	 F±|

)

, for s = 0

�±∂
2
s F± = 0 , for s = −L , 0

(5.72)

The Lagrange parameters ± and ±
edge have to be determined such that the

constraints are satisfied:

|∂s F+| = |∂s F−| = 1

{F+(t, 	, 0) : −� ≤ 	 < �} = {F−(t, 	, 0) : −� ≤ 	 < �} (5.73)

The problem in (5.71)–(5.73) is the formal limit as ε → 0 of Equations
(5.40)–(5.44). Figure 5.4 shows one frame of a time-dependent simulation
based on this model carried out in [14]. It describes a situation where an
originally circular cell is pushed from the left side and returns to its circular
shape after the pushing force has been turned off. The pushing forces induce
deformation and a steady movement to the right. We remark that the observed
deformation is not of elastic nature, although the shape becomes round again
after the applied force ceases to be active. The stability of the round shape
seems to be the result of the dissipative nature of the model.
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FIGURE 5.4 Pushed lamellipodium. Simulation result at time t = 1.4.

5.4 Rotationally Symmetric Solutions

In [15] a model has been derived where in addition to the assumptions of
Section 5.2, the lamellipodium was assumed to be rotationally symmetric, that
is, to have the shape of a circular ring. The limit of instantaneous crosslink
and adhesion turnover in this symmetric model has been carried out in [13].
In this section we demonstrate that the model of [13] can be recovered as a
special case of Equations (5.71) through (5.73).

A symmetric solution is only possible with symmetric data. This means
that the prescribed polymerization speeds and the length distributions must
be the same all around the lamellipodium:

v±(t, 	) = v(t), �±(t, 	, s) = �(t, s) (5.74)

The first equation gives Dt := D+
t = D−

t = ∂t − v∂s . We search for solu-
tions where all filament positions can be computed from the positions of one
reference filament, such that all clockwise filaments are constructed by rota-
tion of the reference filament, whereas a reflection followed by rotations is
used for the counterclockwise filaments. Using the matrices of rotation and
reflection/rotation

R(	) :=

(

cos 	 − sin 	

sin 	 cos 	

)

, D(	) := R(	)

(

1 0

0 −1

)

(5.75)

we make the ansatz

F+(t, 	+, s) = R(	+)z(t, s) , F−(t, 	−, s) = D(−	−)z(t, s) (5.76)
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where z(t, s), −L ≤ s ≤ 0, denotes the arc-length parametrization of the refer-
ence filament, in the following sometimes written in terms of polar coordinates:
z = |z|(cos �, sin �), −� < � ≤ �.

A straightforward computation shows that at crossings of filaments, that
is, F+(t, 	+, s) = F−(t, 	−, s),

	+ + 	− = −2� (5.77)

holds. With Dt z = zDt |z|/|z| + z⊥ Dt �, this implies

D+
t F+ − D−

t F− = (R(	+) − D(−	−))Dt z = R(	+)(I − D(−	+ − 	−))Dt z

= R(	+)(I − D(2�))z⊥ Dt � = 2R(	+)z⊥ Dt arg z (5.78)

where the symbol I denotes the identity matrix, and

cos � = ∂s F+ · ∂s F− = ∂s z · D(2�)∂s z = (∂s |z|)
2 − (|z|∂s�)2

= 2(∂s |z|)
2 − 1 (5.79)

where the last equality is due to |∂s z|2 = (∂s |z|)
2 + (|z|∂s�)2 = 1. Because

∂s	± = −2∂s�, the symmetry also gives

�S
+ = �S

− = �S2|∂s�| , �T
+ = �T

− = �T 2|∂s�| (5.80)

With these preparations, the Euler-Lagrange equation for F+ can be written
as (after multiplication with R(−	+)):

∂
2
s

(

�∂
2
s z

)

− ∂s(�∂s z) + ��A Dt z + ∂s

(

�2�T (� − �0)∂s z⊥
)

+ 4�2�S|∂s�|z⊥ Dt � = 0 (5.81)

with � = arccos(2(∂s |z|)
2 −1). In the same way, the equation for F− also turns

out to be equivalent to Equation (5.81), using (D(	)z)⊥ = −D(	)z⊥.
The boundary conditions now take the form

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

−∂s

(

�∂
2
s z

)

+ �∂s z − �2�T (� − �0)∂s z⊥ = 0 , for s = −L

∂s

(

�∂
2
s z

)

− ∂s z + �T (� − �0)∂s z⊥ = �M (C − C0)+
z

|z|
, for s = 0

�∂
2
s z = 0 , for s = −L , 0

(5.82)

The Lagrange multiplier  must be determined such that the constraint
|∂s z| = 1 is satisfied. The other constraint is now satisfied automatically, and
edge is not needed anymore. Thus the model in Equations (5.81) and (5.82)
represents the rotationally symmetric version of Equations (5.71) through
(5.73).
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Finally, we are looking for a stationary situation where the geometry of the
lamellopodium does not change. This requires the assumption on the data
that the polymerization speed and the length distribution are independent of
time, that is, v = const and � = �(s). We then expect a time dependence of
the reference filament of the form

z(t, s) = R(−�t)y(s) , y = |y|(cos �, sin �) (5.83)

so, |z|(t, s) = |y|(s) and �(t, s) = �(s) − �t . This means that the reference
filament does not change its shape but rotates with constant angular velocity
�. This corresponds to lateral flow of barbed ends along the leading edge, as
observed in experiments.

The ansatz implies Dt � = ∂t � − v∂s� = −� − v∂s� and Dt z =
−�R(−�t)y⊥ − vR(−�t)∂s y, and we obtain

∂
2
s

(

�∂
2
s y

)

− ∂s(�∂s y) − � �A v∂s y + ∂s

(

�2�T (� − �0)∂s y⊥
)

− 4�2�S|∂s�|y⊥v∂s� = �
(

��A + 4�2�S|∂s�|
)

y⊥ (5.84)

where we have multiplied by R(�t) already. The boundary conditions for y

are the same as for z, that is, Equation (5.82).
In numerical experiments in [15], stable steady states have been observed.

However, it seems that the resistance against twisting the crosslinks is nec-
essary. With �T = 0, the network typically degenerated in one of two ways.
Either the filaments became more and more radial, or more and more aligned
to the leading edge. We try to understand the former situation by setting
�T = 0 and observing that in this case there is a stationary solution of Equa-
tions (5.81), (5.82) of the form

z0(s) = (r + s)

(

1

0

)

(5.85)

where the equilibrium radius r and the Lagrange multiplier 0(s) are given by

�M(2�r − C0) = �Av

∫ 0

−L

�(s)ds , �(s)0(s) = −�Av

∫ s

−L

�(ŝ)dŝ (5.86)

We try to analyze the stability of this state, where all filaments are in the
radial direction, by linearization. In the ansatz

z(t, s) = z0(s) + e�t z(s), (t, s) = 0(s) + e�t ̄(s) (5.87)

the perturbation of the filament position has to be of the form z(s) = (b, a(s)),
to satisfy the linearized constraint ∂s z0 · ∂s z = 0. The components of the lin-
earization of Equations (5.81), (5.82) give two decoupled eigenvalue problems.
The second component leads to

−∂s(�̄) + ��A�b = 0 , �(−L)̄(−L) = 0 , ̄(0) = −�M2�b (5.88)
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An easy computation produces the only eigenvalue

� = −2��M

(

�A

∫ 0

−L

�(s)ds

)−1

(5.89)

So the steady state is stable under perturbations in the radial direction. The
other eigenvalue problem can be written as

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

∂
2
s

(

�∂
2
s a

)

− ∂s(�0∂sa) + ��A�a − ��Av∂sa = 0

−∂s

(

�∂
2
s a

)

+ �0∂sa = 0 , for s = −L

∂s

(

�∂
2
s a

)

− 0∂sa = �Av
a

r

∫ 0

−L

�(s)ds , for s = 0

�∂
2
s a = 0 , for s = −L , 0

(5.90)

No explicit solution is available here. Some information can be drawn from
multiplication of the differential equation by the complex conjugate of a and
subsequent integration, using integrations by parts and the boundary condi-
tions:

�

v

∫ 0

−L

�|a|2ds = −
1

�Av

∫ 0

−L

�|∂2
s a|2ds +

∫ 0

−L

(
∫ s

−L

�(ŝ)dŝ

)

|∂sa|2ds

−
1

2

∫ 0

−L

∂s�|a|2ds −
|a(0)|2

r

∫ 0

−L

� ds −
1

2
�(−L)|a(−L)|2 +

1

2
|a(0)|2

(5.91)

The first term on the right-hand side has the highest differential order. The
fact that it is negative reflects the well-posedness of the problem. Among
the remaining terms, the second term dominates the terms in the second
row for high-frequency perturbations. This indicates that instability of the
steady state is likely for large values of the product �Av, that is, for strong
adhesion and/or fast polymerization at the leading edge. These observations
are compatible with the simulation results in [15].
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6.1 Introduction

Motility is a biological term that refers to a cell’s ability to move. This abil-
ity is crucial because it determines the good or bad functioning of the cell.
Physiologically, cell migration is paramount in embryogenesis or wound heal-
ing. Pathologically, inflammation and cancer cell invasion are examples of cell
misbehavior related to the impairment of its normal motile properties.

The cell is a very complex object but its structure can be greatly simpli-
fied when dealing with motility events. These events are essentially due to
the actin cytoskeleton, where actin turnover influences, in several ways, the
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protrusion and retraction forces acting on the membrane. Polymerizing actin
filaments can push on the membrane [24]. Reciprocally, actin fibers pull back
the membrane on which they are tethered, through contractility mechanisms
involving myosin [8]. Consequently, the description of cell motility essentially
consists of describing the interactions between the cytoskeleton and the cell
membrane and the regulation processes involved, in connection with the con-
straints imposed by the extracellular environment.

Interaction with the extracellular environment, that is, the extracellular
matrix (ECM), occurs through the formation of adhesions. The cell trans-
membrane proteins, the integrins, interact with the matrix proteins, such as
the fibronectin, to link the cytoskeleton to the cell environment. The cytoskele-
ton dynamic is thus directly influenced by the mechanical properties of the
matrix. The rigidity and topography are known to play a major role in the
motile behavior of the cell [27].

From these brief biological considerations, it is clear that modeling cell
motility implies the integration of elements of cytoskeletal and adhesion dy-
namics as well as information regarding the cell environment. Although the
key elements are identified, the description of the processes involved remains
complicated because they occur at many different time and space scales. From
fast microsecond molecular interactions at the nanometer scale (adhesion clus-
tering or actin filament polymerization) up to slow cell movements and mi-
gration at the minute and micrometer scales. Events occurring at each scale
are very complex on their own. That is why they are often considered inde-
pendently from the events occurring at other levels. Several models have been
proposed over the past ten years, associated with a diversity of hypotheses and
consequently theoretical approaches—either discrete [6,7] and often related to
events occurring at smaller scales—or continuous (coupled partial differential
equations) for higher scales where densities rather than entities matter [9,11].
The many different models are therefore often very specific and support one
major hypothesis at a time [13]. Up to now, there have been very few at-
tempts at unification of the various existing models, which simply represent
many different facets of the same problem.

A significant challenge in modern computational cell biology is therefore
to merge existing and successfull subcellular models. This requires the con-
struction of some frameworks that allow us to integrate the different types of
algorithms in order to handle the complexity emerging from the interactions
among numerous processes of varying nature (biochemical, biomechanical,
etc.), that is, to generate higher-order models. The use of a modular frame-
work allows us, for example, to isolate the various and key processes. These can
be considered either in isolation or synergistically. Such modular frameworks
allow some flexibility because each module can be developed independently,
with varying levels of refinement from one module to another. Some modules
can also be considered black boxes until some new knowledge from experi-
ments can be used to test and validate various hypotheses, thus illuminating
the box.
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This chapter aims to present such a framework and its potential to inves-
tigate various aspects of cell motility. Two applications are considered: first
the relevance of the computational framework to describe spontaneous cell
migration and second its ability to describe cell morphologies as observed on
patterned substrates.

6.2 Computational Framework

Cell motility is a complex process in which cytoskeletal assembly, contractility,
and adhesion dynamics are tightly interdependent and regulated by the prop-
erties of the extracellular environment (Figure 6.1). These properties include
the proteic nature of the matrix and its topography or rigidity, to name but
a few [5,27]. We therefore propose to construct a modeling framework that
integrates these three major components: the cytoskeleton, adhesion, and ex-
tracellular environment [20].

6.2.1 Cell Motility

Cell membrane deformations basically result from the competition of pro-
trusion (outward forces, Fout) and retraction (inward forces, Fin). Whereas
retraction is clearly known to result from the pulling of the actin filaments
anchored to the membrane, through the actomyosin contractility, protrusion
has not yet been fully elucidated. Two mechanisms for protrusions have been
identified, but it remains unclear how they are interrelated. In the first mech-
anism, pressure forces from the cytoplasm, or the cytoplasmic flows expelled
via the cell contractions, are pushing the membrane outward in a blebbing
form [1,17,18]. In the second mechanism, the polymerizing actin cytoskeleton
is directly pushing on the membrane [4,24]. In that case a Brownian ratchet
hypothesis has been proposed to explain how actin monomers could intercalate

Cytoskeleton
(stress fibers)

Adhesion

Motility

Extracellular
environment

FIGURE 6.1 Three interacting components, adhesion, cytoskeleton, and
extracellular environment, are required to describe cell motility.
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among the growing tips of the filaments and the cell membrane [14]. Evidence
tends to show that these two mechanisms coexist in the cell; however, one
dominates the other, depending on the dynamical state of the cell: resting
fluctuating state or actively migrating state. Actively migrating involves in-
duced migration by external factors (chemical or haptotactic gradient), as
opposed to noninduced random migration. In that latter case, the two protru-
sive mechanisms tend to be more entangled while the cell alternates between
fast and oriented migrating phases with slow and erratic displacements.

The nonelicited (spontaneous) migration of the cell has been studied using
a computational model based on the description of the intracellular actin dy-
namics coupled with the movement of the cell membrane [21,22]. In this model,
actin polymerization and depolymerization dynamics around an equilibrium
density for F-actin is considered; the contractile properties of the actomyosin
network and the viscoelastic properties of the cell cortex of actin are also
considered. The cell deformations, that is, the movements of the membrane,
result from the nonequilibrium state between the competing outward and in-
ward forces on the membrane; then intracellular space variations influence the
turnover for actin, which in turn modifies the pushing and pulling forces.

The model considers the 2-D annular domain bounded by the cell body
and the cortex–membrane complex at the lamellar tip. Specifically, the cell
body is represented by a fixed circular shape to withstand the pressure in
the annular cytoplasm ring, whereas the cortex–membrane complex at the
lamellar tip defines a free radially moving boundary. We denote by L(�, t) the
width of the annular domain along any radial direction located by the angle �

(0 ≤ � ≤ 2�) (Figure 6.2), a(�, t) represents the F-actin concentration and is
assumed to be radially constant, and v(�, t) stands for the F-actin tangential
velocity. The normalized system of equations is given by:

∂

∂t
(La) = −

∂

∂�
(Lav) + L(1 − a) (6.1)

av =
∂

∂�

[

�a
∂v

∂�
+ �(a) − �n

]

(6.2)

�(a)
∂L

∂t
= Fout + Fin + � (6.3)

where the first two equations describe the actin turnover and displace-
ment in the visco-contractile cortex, respectively, with � the viscous coef-
ficient and �(a) the contractility of the actomyosin network, which locally
depends on the actin density. The movements of the cell membrane are
given by Equation (6.3) describing the force equilibrium on the membrane,
where �(a), Fout , Fin, and � represents the adhesive condition, the protru-
sion force, the retraction force and the tension induced by the membrane
curvature, respectively. �n in Equation (6.2) is a curvature-induced stress.
A fully detailed description of the model can be found in Stéphanou et al.
(2008) [22].
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L(θ)

R0

FIGURE 6.2 Visualization of actin fibers in a fibroblast cell (top). Actin
is labeled with the GFP protein. The representation of the cell, as used in
the theoretical model, is superimposed to the cell picture (top). The cell body
is enclosed in a circular area with radius R0. The membrane extension L(�)

is measured from the surface of the cell body for each angular direction �.
The bottom drawing shows how the different types of adhesion points and
the related network of actin fibers are represented in the model simulations.
Dark gray points represent the strongest adhesions; light gray points and
small points represent adhesion types with decreasing resistance to traction
and shorter lifetimes.

6.2.2 Adhesion

Adhesions connect the cell to the environment. The cell behavior therefore
strongly depends on its ability to make and develop adhesions. Several types
of adhesions can be identified. They vary in size and molecular composition.
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Integrin

α

Talin

F-actin α-actinin

(A) (FX) (FA)

Substrate (ECM)

Vinculin

β

FIGURE 6.3 Three different types of adhesion that depend on the level of
maturation of the adhesion can be identified. The first type is the adhesion
point (A). Clustering of integrins then leads to a focal complex (F X) with
the recruitment of talin, which contributes in connecting the adhesion to the
cell cytoskeleton. �-Actinin and vinculin, among other proteins, are further
recruited to produce a focal adhesion (F A).

These two characteristics influence the lifetime and adhesion strength. The
adhesion progressively evolves from one type to another, in a hierarchical way,
by the recruitment of new proteins that strengthen and stabilize its structure
[28]. This maturation process of the adhesion is known to strongly depend
upon mechanical stimulations from the actin fibers of the cytoskeleton [2,15].
Reciprocally, the growth of the adhesion site promotes the fibers’ association
into bundles able to sustain the cell translocation and the resulting migration.

Three types of adhesions can be identified (Figure 6.3). The most primitive
type is the adhesion point (A), which simply results from the contacts among
transmembrane proteins (integrins) and matrix proteins (such as fibronectin).
Thermal fluctuations can account for the energy required for protein binding,
of the �v	3-integrin. Once such adhesion is formed, integrins rapidly gather
to form a cluster, called a focal complex (F X). This is concomitant with the
recruitment at the growing adhesion sites of other proteins such as talin, which
permits connection of the integrins to the actin filaments. The contractility of
the actin fibers creates a stress upon the adhesion, which further induces the
recruitment of �-actinin, vinculin, FAK, VASP, and Arp2/3. This ultimately
leads to the focal adhesion (F A), which is the most stable type [12].

6.2.3 Cytoskeleton

The actin cytoskeleton is a very dynamic structure. The fibers polymerize
and depolymerize, associate with the myosin to generate the cell contraction,
and aggregate to form bundles [10] able to generate a bigger stress on the
adhesions.

The process of maturation of the adhesions strongly depends on mechanical
solicitation from the actin fibers. To decide whether an adhesion should grow
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or not, we define a force-related criterion by calculating the resulting force
RF (�i , t) existing at time t for each adhesion i . If this resulting force is above
a given threshold, then the adhesion is allowed to mature to the next level. If
this condition is not fulfilled during the lifetime 
X of the type X–adhesion,
then the adhesion breaks.

Reciprocally, the maturation process of the adhesion with the recruitement
of proteins such as zyxin and tensin allows for increasing the bundling of the
filaments and consequently the magnitude of the force that can be developed.
In the model it is thus assumed that stress fibers connect the cell body to
F A; hence, only this adhesion type is considered able to transmit and sustain
adequate traction force for effective cell translocation.

6.2.4 Extracellular Environment

Integration of the maturation process of the adhesions into the model of cell
deformations allows us to investigate a range of scenarios for cell motility.
Two applications have been considered, which depend on the extracellular
environment.

In the first application, the computational framework has been used to
investigate the basic principles that allow us to describe unstimulated cell
migration. In that case, a homogeneous substrate has been considered, where
adhesion can occur anywhere. The model has been validated with a range
of well-known experimental results and gave us confidence to further investi-
gate the effects of the temporal parameters ruling the adhesion lifetimes and
recycling time on the motility process.

In the second application, the framework was further developed and ad-
justed to study the motility of the cell on a network of adhesive patches. The
aim of this adhesively patterned substrate was to assess the effects of the dis-
cretization and localization of the adhesion sites on the cell morphodynamics.

This framework thus helps us better understand how the cytoskeletal and
adhesion dynamics are influenced by the extracellular adhesive constraint.

6.3 Application of Computational Framework

6.3.1 Cell Migration on Homogeneous Substrate

Cell migration is a multistep process. The number of steps often varies, de-
pending on the level of details given for the description of the processes in-
volved. We describe it using three steps, which are membrane protrusion, ad-
hesion to the substrate, and translocation of the cell via application of traction
forces from the cytoskeleton. The computational framework addresses the co-
ordination of these three steps to allow the cell to migrate and explore its
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environment, which we assume is homogeneous in this case. This implies that
the substrate properties do not need to be described explicitly.

In the context of random cell migration on a homogeneous substrate, the
model for cell membrane deformations is based on the following assumptions:

� The formation of an adhesion is materialized by an increased friction
between the cell membrane and the substrate; that is, �(a) = a + ��adh ,
with � the friction coefficient.

� The protrusion of the membrane is primarily due to the cell hydrostatic
pressure 	 reinforced by a polymerization-induced protrusion due to the
increase of actin at the focal adhesion site. The resulting protrusive term
is given by Fout = 	 + 	(a)�F A.

� The retraction is due to the actin network–membrane attachment, the
intensity of which linearly depends on the actin density; that is, Fin =
−�La, with � the elasticity coefficient for the actin network,

� The membrane curvature modulates the cell surface tension and is given

by �m = �m
∂

∂�

(

a ∂L
∂�

)

, where �m characterizes the membrane stiffness.

With �adh = �A + �F X + �F A and �X = 1 or 0, whether there is an adhesion
of type X or not, the movements of the cell membrane are then ruled by the
following equation:

(a + ��adh)
∂L

∂t
= 	 + 	(a)�F A − �La + �m

∂

∂�

(

a
∂L

∂�

)

(6.4)

It is assumed that the probability to form an adhesion is higher in a protru-
sive zone (such as a lamellipod) because the cell surface in contact with the
substrate is bigger. In the computational model, this means that the mem-
brane extension is maximum (Lmax), and this maximum should also corre-
spond to a sufficient density of actin (athr ) as detailed in the protrusion box
of the flowchart (Figure 6.4).

Each adhesion type corresponds to a particular level of maturation charac-
terized by its lifetime 
 and resistance to traction. If the resulting tension force
(RF ) exerted between the adhesion site and the cell body is positive (i.e., a
traction force), then A matures into F X . If this condition is not fulfilled dur-
ing the lifetime 
A of A, then the adhesion breaks (Figure 6.4). Similarly, the
maturation of F X into F A occurs if RF applied on the adhesion reaches a
threshold tension (Rthr ) during the lifetime 
F X of F X . Once F A is formed,
recruitment of actin occurs at the adhesion site to promote the formation of
stress fibers. The fibers contract and contribute in pulling the cell body for-
ward. Translocation is assumed to occur when a threshold traction magnitude
Tthr is reached. During the translocation event, all the adhesions are assumed
to break. Before a new cycle can start, the adhesion proteins need to be re-
cycled. During this time, the cell is considered unable to form new adhesions.
This “refractory period” is noted 
R in the flowchart (Figure 6.4).
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FIGURE 6.4 Flowchart describing the formation and maturation process
of an adhesion i , up to the cell translocation, that is, effective migration. In a
first step, the cell membrane deformations lead to a protrusion (lamellipod)
and then to an adhesion that needs to mature (step 2) to be able to sustain
the cell translocation (step 3).

To decide whether or not an adhesion should grow, a force-related criterion
is defined by calculating the resulting force RF (�i , t) existing at time t for each
adhesion i . This resulting force corresponds to the sum of the contributions
of all the individual forces F(� j , t) balancing the movements of the cortex–
membrane complex for each direction � j . These forces are then projected on
the �i -direction supporting the adhesion i (�i = 2�i/m with m the number of
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points defining the membrane boundary); namely,

RF (�i , t) =

m∑

j=0

F(� j , t) cos(� j − �i ) (6.5)

with F(� j , t) such that a
∂L

∂t
+ F(� j , t) = 0 (6.6)

F(� j , t) is derived from Equation (6.3), neglecting the curvature-related
term since its contribution is small. It thus comprises: (1) the adhesion-related
term responsible for an increased tension between the cell body and the ad-
hesion site, if an adhesion has formed; (2) the passive tension from the actin
filaments existing everywhere in the cell and modulated by the local mem-
brane extension and local density of actin; and (3) the pressure term, which
tends to repel the cell body from the adhesion site. F(� j , t) for site j at time
t is given by:

F(� j , t) = �adh(� j , t) �2[L(� j , t + �t) − L(� j , t)]
︸ ︷︷ ︸

adhesion-related tension

+ �L(� j , t)a(� j , t)
︸ ︷︷ ︸

filaments passive tension

− [	 + 	(a)�F A(� j , t)]
︸ ︷︷ ︸

pressure force

(6.7)

with �2 = �/�t , and �t being the time step of the numerical scheme. Note
that F(� j , t) strongly depends on the nature of the site, j . For example, if j

is not an adhesion site, then only the passive contributions remain, that is,
F(� j , t) = �L(� j , t)a(� j , t) − 	.

The model assumes at this stage that stress fibers radially connect the F A

to the cell body. The cell translocation (i.e., displacement of the cell centroid)
and direction of migration �M (Figure 6.5) thus result from the competition
among the traction forces exerted in each stress fiber supported by an F A.

r

θ = 0

θM

FIGURE 6.5 The cell centroid is pulled in the �M -direction corresponding
to the greatest traction force from the filaments anchored to the F A (bigger
spots). The vector r represents the cell centroid displacement from its initial
position (dark gray) to its new position after translocation (light gray).
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The resulting traction force TF existing in each stress fiber i is calculated as:

TF (�i , t) =

m∑

j=0

⎧

⎨

⎩
�2[L(� j , t + �t) − L(� j , t)]
︸ ︷︷ ︸

adhesion-related

+ �L(� j , t)a(� j , t)
︸ ︷︷ ︸

filament-related

⎫

⎬

⎭
�F A(� j , t) cos(� j − �i ) (6.8)

The displacement of the cell centroid r is simply given by r = TF (�M , t)/k.
This corresponds to an “elastic release,” with the elastic coefficient k, whereby
the stress fibers suddenly break once the threshold force Tthr for translocat-
ing the cell is reached (parameters Tthr and k are given in Table 6.2 in the
Appendix to this chapter; (Section 6.5).

6.3.1.1 Simulation Results

Simulations are performed using periodic boundary conditions for the vari-
able �. A small pertubation ε of the homogeneous steady state, given by
(L0, a0, v0) = (1, 1 ± ε, 0), is taken as the initial condition. The round shape
and homogeneous actin density biologically characterize the cell state right af-
ter mitosis. The dimensionless parameters used for the simulations are given
in Table 6.1 in the Appendix to this chapter (Section 6.5). Details on the
choice of parameters are given in [22].

Integration of the model hypotheses described above, into the computa-
tional framework, allows us to reproduce some important experimental fea-
tures of the random migration of fibroblast cells (those are detailed in [22])
and concern:

� Typical features of the cell migratory tracks
� Relationship between cell surface and speed
� Relationship between cell speed and adhesion strength

Figure 6.6 shows three simulated cell trajectories, recorded over 6 hours
(biological cell time). The three different migratory tracks are obtained by
changing the seed of the random generator in our computer program. They
exhibit alternating phases where the cell can either explore a short perimeter
(slow migrating phase), move bi-directionally, or transiently assume a per-
sistent directional migration (fast migrating phase). This migrating behavior
is representative of fibroblast cells and is mainly ruled by adhesion kinetics,
which include adhesion lifetimes, maturation, and recycling time as shown
in [22]. This latter parameter has been shown to strongly influence the direc-
tional persistence of the migratory tracks.

The principle of fibroblast cell migration is to develop sufficiently strong
adhesions with the substrate to be able to translocate. One means to achieve
this goal is to maximize its spreading surface. However, when the spreading
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Cell 1

Cell 3

Cell 2
10 μm

FIGURE 6.6 Three cell trajectories recorded over 6 hours (cell time) and
reunited at the same ending point. The trajectories exhibit the same charac-
teristics of alternating slow and erratic migrating phases with fast and more
persistent ones. The average velocity of migration is 0.50 �m/min.

surface is too big, the cell can find itself strongly anchored to the substrate
and breaking the adhesion becomes a longer process. Experimentally, this
phenomenon is observed by a sudden decrease in the migrating speed down
to zero, while the cell surface area is peaking to a maximum. The simulations
performed are true to this observation, as shown in Figure 6.7, where the cell
speed and area corresponding to cell 1 are plotted on a single graph.

Along the same line, Palecek et al. [16] have shown, in a famous experiment,
that increasing the fibronectin density of the substrate led to an increased
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FIGURE 6.7 Cell speed (black curve) and corresponding cell spreading
area (gray curve). The arrows indicate the correlation between slow speeds
and big spreading areas.
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FIGURE 6.8 Biphasic evolution of cell speed as a function of cell adhesion
strength controlled by parameter �2 in computational model.

cell speed up to a saturation point above which the cell speed decreased. Fi-
bronectin allows for control of the attachment of the cell to its substrate. Con-
sequently, increasing its density increases the attachment strength of the cell.
Initially the cell can migrate more rapidly because the translocation threshold
becomes easy to reach, until the attachment becomes too strong and prevents
migration. In the model, the attachment strength of the cell to the substrate
is controlled by the friction coefficient �2. Simulations show that increasing
this parameter reveals this important feature of cell migration as shown in
Figure 6.8.

6.3.2 Cell Motility on Network of Adhesive Patches

In this new context, we aim to set the basis to understand how the maturation
of cell adhesions depends on the maturation of stress fibers. For that we con-
sider a patterned substrate of adhesive patches, regularly arranged, in order to
control the positioning and size of the adhesion zones of the cell. The model-
ing framework that allows the isolation of the model components, such as the
maturation process of the adhesion and the protrusive and translocation con-
ditions, can be easily adapted to integrate and test the hypotheses associated
with the new experimental context. The new conditions are the following:

� The cell can only adhere on adhesive patches. This means that the for-
mation of an adhesion is prohibited over the nonadhesive area.

� The formation of an adhesion point is modeled by the additional friction
term �(a) = a +��A. However, if the adhesion matures into a focal com-
plex (F X) or focal adhesion (F A), then the movements of the membrane
are prevented. This signifies that ∂L/∂t = 0.
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� The protrusion is only due to the internal hydrostatic pressure, Fpush =
	.

� The retraction is unchanged, Fpull = �La.
� An additional tension force F f iber is considered and concerns the tension

exerted by the actin fibers tethered to the adhesive site. (Details of this
tension force are given below.)

The movements of the cell membrane are then given by the following equa-
tion:

(a + ��A)
∂L

∂t
= 	 − �La + �F X,F A F f iber (6.9)

with �F X,F A = �F X + �F A.
On the adhesive pattern, the cell does not need to protrude to be able

to form an adhesion. This is assumed to occur spontaneously when the cell
membrane is in contact with an adhesive patch. The protrusion box is there-
fore replaced by a box that rules the direct interaction of the cell with the
extracellular matrix (Figure 6.9). The maturation process of the adhesions is
improved to correspond more closely to reality. The primary adhesion A cre-
ates an increased friction between the membrane and the matrix. The mem-
brane displacement d(i) for the adhesion i is locally slower and leads to the
recruitment of adhesion proteins and integrin clustering, which transform the
primary adhesion into a focal complex F X . This is assumed to occur as long
as the membrane displacement is smaller than a maximum admissible dis-
placement dmax. The adhesion i grows until a critical size Scri t is reached; that
is, S(i) > Scri t . The focal complex thus becomes a focal adhesion F A. Each
type X adhesion has a limited lifetime 
X that increases with the maturation
level of the adhesion.

The cytoskeleton is added as a new component of the framework (Figure
6.9). More specifically, this component rules the formation of the transverse
actin bundles and stress fibers. At this stage, those are assumed to form spon-
taneously between two adhesion sites that reach the F X maturation level (Fig-
ure 6.2). The actin fibers are assumed to possess elastic properties modeled
as spring forces Fi→ j on the considered adhesion site i that are proportional
to the distance li j between the adhesion sites i and j supporting the fiber i−j.
The radial contributions of all fibers i−j are considered and expressed by:

F f iber (�i , t) =

n∑

j=1

Fi→ j cos �i j with Fi→ j = −k[li j − l0] (6.10)

where n represents the number of fibers i−j, �i j is the angle between the fibers
i−j and the radial direction connecting the adhesion site i to the cell body. l0
is the length of the unstrained filaments, evaluated for a circular cell shape
that corresponds to the steady state.

The translocation rule for cell migration remains unchanged.
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FIGURE 6.9 Flowchart describing the formation and maturation of the
adhesion i involving four main steps. In a first step the cell membrane deforms
and leads to a protrusion (lamellipod; step 2) and then to an adhesion that
needs to mature (step 3) to be able to sustain the cell translocation (step 4).

6.3.2.1 Simulation Results

Simulations are performed on hexagonal patterns of adhesive patches with a
constant 4-�m wide square shape, but with varying pitch lengths. The pitch
of the pattern is the addition of the patch size and of the distance between
two consecutive patches. Initial and boundary conditions are unchanged.
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Δx = 12 μm Δx = 16 μm Δx = 20 μm Δx = 24 μm

FIGURE 6.10 Visualization of the cell shapes, adhesions, and actin fibers
for increasing pitch lengths �x . The cell nucleus is not represented to increase
readability.

At this stage the aim of the simulations performed is to validate, on a quali-
tative basis, the integration of the new components’ extracellular environment
and cytoskeleton into the computational framework. These simulations thus
allow us to monitor and visualize simultaneously the adhesion dynamics of
the cell, the formation and maturation of the actin network, and the result-
ing cell morphologies for a given extracellular context of adhesiveness. Figure
6.10 presents representative snapshots of the cell state simulated for adhesive
patterns with four different pitch lengths ranging from 12 to 24 �m.

Two observations can be made. First, the number of F As tends to increase
with pitch length (Figure 6.10). The adhesions form clusters that concentrate
the actin fibers. The tension forces generated locally thus increase and favor
the maturation of new adhesions into stable F As. This reinforcement process
leads to more stable cell shapes. Second, the displacement of the cell centroid
is very small compared to the homogeneous substrate case, with bigger am-
plitudes for higher pitch lengths (Figures 6.10 and 6.11). Figure 6.11 presents
the trajectories recorded over 2 hours for the different pitches. The diameter
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3.1
3.3

4.2

R (μm)

FIGURE 6.11 Displacements of the cell centroid for adhesive patterns with
pitches of 12, 16, 20, and 24 �m (as indicated next to each corresponding
trajectory) over a period of 2 hours. The vertical axis represents the diameters
of the circles in which each trajectory is contained.
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of the circular domain in which each trajectory is contained tends to increase
with the pitch length.

On a qualitative basis, the increased displacements of the cell centroid with
pitch length indicate that the forces generated in the cell are bigger because
the amplitude of the displacements is proportional to the traction force re-
sponsible for the cell translocation.

6.4 Conclusion

A computational framework constructed from an existing mathematical model
describing fibroblast cell deformations [21] has been presented. The initial con-
tinuous model of partial differential equation, coupling the movements of the
cell membrane to the actin turnover, has been integrated into the framework
as a main module interacting with three new components: the adhesion, cy-
toskeleton, and extracellular components.

Integration of the adhesion component was first considered to deal with
spontaneous, that is, unstimulated, cell migration. Adhesions occur at a
smaller scale compared to the scale used to describe the movements of the
cell membrane. Moreover, adhesions are discrete entities that evolve individ-
ually from one another and depend on the local context of constraints. Con-
sequently, a continous description is not adapted; however, the formation and
maturation events can be easily transposed into a cellular automaton. The
coupling of the automaton with the continuous cell model was then realized
through the addition of a new constraint into the model equations.

Simulations of unstimulated cell migration, for a homogeneous and isotropic
substrate, could be performed in a realistic way. A range of well-known cell
migrating features could indeed be reproduced—more specifically, the rela-
tionships existing between the cell speed and the cell surface on the one hand
and the cell speed and adhesion strength on the other hand.

Further refinements of the model have been proposed with the integration
of the extracellular and cytoskeletal components. The recent literature has
demonstrated the importance of adhesively patterned substrates as a tool to
control the extracellular environment and investigate cell responses in terms
of mitosis [25], morphology [3,26], and migration [27]. Different models have
been proposed to explain the cell morphologies imposed by the extracellular
adhesive constraint [19]; however, up to now, none is able to describe the
evolution of the cell morphologies in a dynamical way because the models
essentially describe static equilibrium states for the cell without any explicit
description for the coupling of actin turnover, cytoskeletal remodeling, and
adhesion dynamics.

In the improved computational framework, these couplings are considered
and numerical simulations allow us to explain how the forces generated by
the stress fibers of the virtual cells are regulated at the adhesion site through



176 Cell Mechanics

feedback mechanisms and how the competing stress fibers can generate tran-
sient equilibrium states corresponding to stabilized cell shapes.

A major limitation of the model at this stage is the crude hypothesis used
to describe the contribution of the stress fibers. For example, the formation
of the fibers is not explicitly described. Instead we assumed that the fibers
formed spontaneously among mature adhesion sites. Another limitation is the
use of constant parameters to describe the mechanical properties of the fiber
without differentiation of filaments, fibers, and bundles. Improvements in the
framework components will soon be considered. Indeed, one major advantage
of such modular computational framework is the possibility of individually de-
veloping its components. New knowledge can be integrated or new hypotheses
can be tested while keeping the other components unchanged.

Efforts toward the integration and interactions of existing models into new
computational frameworks could well be one key for a better understanding
of the cell complexity.
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6.5 Appendix: Simulation Parameters

The parameters used in the simulations are given in Tables 6.1, 6.2, and 6.3.
Table 6.1 presents the parameters used to describe the spontaneous membrane
deformations observed on fibroblast cells [23].

Table 6.2 gathers the force-related parameters and Table 6.3 the time-
related parameters that rule the spontaneous (random) migration of the fi-
broblast cells. More specific details on the choice of parameters can be found
in [22].

TABLE 6.1 Dimensionless Parameters Defining
Cell Mechanical and Chemical Properties

Parameter Notation Value

Protrusive hydrostatic pressure 	 0.5
Actin network elasticity � 0.5
Cytoplasm viscosity � 2.0
Membrane elasticity �m 1.5

Source: From A. Stephanou, E. Mylona, M. Chaplain, and P. Tracqui
(2008). A computational model of cell migration coupling the growth
of focal adhesions with oscillatory cell protrusions. J. Theor. Biol.

253:701–716. (With permission).
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TABLE 6.2 Simulation Parameters Defining
Conditions for Formation and Maturation of Cell
Adhesions and Translocation

Parameter Notation Value

Membrane extension threshold L thr 1.0
Actin density threshold athr 1.1
Tension threshold Rthr 1.0
Friction coefficient for adhesion �2 5.0
Translocation threshold Tthr 2.3
Stress fiber elasticity k 14

TABLE 6.3 Temporal Simulation Parameters Governing Adhesion
Protein Recycling Time and Lifetimes of Different Adhesion Types

Parameter Notation Iterations Time (s)

Adhesion protein recycling time 
R 400 58
Adhesion point lifetime 
A 100 14
Focal complex lifetime 
F X 500 72
Focal adhesion lifetime 
F A 500 72
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[23] A. Stéphanou and P. Tracqui (2002). Cytomechanics of cell deformations
and migration: form models to experiments. C.R. Biologies 325:295–308.

[24] J. Theriot and T. Mitchison (1991). Actin microfilaments dynamics in
locomoting cells. Nature 352:126–131.
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Chapter 7. History Dependence of Microbead Adhesion under

Varying Shear Rate

As a simple theoretical model of a cell adhering to a biological interface, we
consider a rigid sphere moving in a viscous shear flow near a wall. Adhesion
forces arise through intermolecular bonds between receptors on the cell and
their ligands on the wall, which form flexible tethers that can stretch and tilt
as the base of the cell moves past the wall; binding kinetics is assumed to follow
a standard model for slip bonds. Typically, under physiological conditions, the
time scale for the advection of bonds from the front to the back of a rolling
sphere (as viewed in the frame of reference of the sphere) is comparable to
the bonds’ characteristic lifetime. This advection mechanism may lead to an
accumulation of consummated bonds at the trailing edge of the sphere.

Microscale calculations detailing bond formation, advection, and breakage
explain the nonlinear relation of the motion of the cell and the net force and
torque resulting from adhesion. Three distinct types of macroscale cell motion
are then predicted: either bonds accumulate at the back of the cell and the
latter is nearly arrested; or bonds adhere strongly but are short-lived and
the cell rolls over the wall without slipping; or the cell moves near its free-
stream speed with bonds providing only weak frictional resistance to sliding.
The model predicts bistability between these states, implying that at critical
shear rates the system can switch abruptly among firm arrest, no-slip rolling,
and free sliding, and also suggesting that sliding friction arising through bond
tilting may play a significant dynamical role in some cell adhesion applications.

Chapter 8. Understanding Adhesion Sites

as Mechano-Sensitive Cellular Elements

Cell sensitivity to substrate stiffness is fundamental in the control of many
biological functions and pathological processes. Although adhesion sites are
recognized to play a key role in the control of cell functions, their specific
contribution in terms of cell sensitivity to substrate stiffness is not fully un-
derstood. We present a simplified theoretical approach to explain how dynamic
adhesion sites behave as cell-sensitive elements while stationary adhesion sites
do not. The biomechanical factors governing cell sensitivity can also be de-
duced and discussed from this theory. Main theoretical concepts are then
illustrated by various experimental results issued from various cellular models
(tissue cells, inflammatory cells) able to express either stationary or dynamic
adhesion sites, depending on intracellular and extracellular conditions.

Chapter 9. Cancer Cell Migration on 2-D Deformable

Substrates

Tumor cell migration is a very important phenomenon occurring during
the formation of metastases, and requires a correlation between adhesion
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anchoring and cytoskeleton reorganization, as the cell moves forward. To un-
derstand such processes, different methods have been used to measure the
displacement of fluorescent beads embedded within a gel, as a way to deter-
mine indirectly the traction stresses exerted by the cells. Here, a method for
obtaining this traction is based on a minimization algorithm under force pe-
nalization. The method is applied to the case of migrating T24 cancer cells
on polyacrylamide substrates. Results obtained on substrates with different
rigidities are discussed. It is found that such cancer cells exert less traction
than other cell types.

Chapter 10. Single-Cell Imaging of Calcium in Response

to Mechanical Stimulation

How the mechanical stimuli or physical forces can be perceived by cells and
transduced into biochemical responses (i.e., mechano-transduction) has been
extensively investigated at single-cell levels. Along with the introduction of
a wide variety of technologies to provide mechanical stimulation, the de-
velopment of genetically encoded and fluorescence resonance energy trans-
fer (FRET)-based biosensors for single-cell imaging has allowed the mon-
itoring and quantification of the signaling cascades in live cells with high
spatiotemporal resolution. Calcium ion (Ca2+) is one of the most universal
and important elements for many biological processes. It serves as a second
messenger not only in signaling transduction in response to chemical stimuli,
but also in mechano-transduction. This chapter provides the design strategies
for approaching the single-cell imaging of calcium in response to mechanical
stimulation. The focus is on the integration of genetically encoded calcium
FRET biosensors, an engineered extracellular environment with controllable
substrate rigidity, and optical laser tweezers. The dynamic and subcellular vi-
sualization of calcium in live cells upon mechanical stimulation can shed new
light on the molecular mechanism by which cells perceive external mechanical
cues and coordinate signaling pathways to regulate physiological functions.
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7.1 Introduction

The recruitment of blood-borne leukocytes to the vascular endothelium is
a crucial step in the immune response. It is mediated by specific receptor–
ligand interactions [2,32] that allow circulating leukocytes to form bonds with
the endothelium under flow conditions. This results in the so-called adhesive
rolling of leukocytes along the blood vessel walls prior to targeting sites of
inflammation [20,29,31,34].

Similar adhesion mechanisms are found also in cancer cell metastasis [19],
bacterial colonization under flow [16], and targeted drug delivery by function-
alized particles [21,26]. This wide range of applications has made cell adhe-
sion an active field of research, resulting in the identification of key adhesion
molecules (e.g., E-, L- and P-selectin and their ligands) and the biomechanical
characterization of the resulting intermolecular bonds.

However, the connections between physiological observations (e.g., the min-
imum shear threshold for leukocyte rolling [1,9]) and mechanochemical effects
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operating within individual intermolecular bonds [13] are yet to be fully un-
derstood. Much of the complexity arises from the multiscale nature of the non-
linear interactions of hydrodynamics, adhesion forces, and cell deformation.
This has motivated the development of theoretical models of cell adhesion and
cell rolling that have now reached considerable levels of sophistication [5,17].

Existing models of cell adhesion fall essentially into two classes, depending
on whether bonds are represented within a continuum [6,7,15] or discrete
framework [14]. In the first case, the bonds are generally modeled as vertical
springs that resist sideways displacement, preventing a cell membrane that
is bound to a wall from sliding along it. This ensures that an adherent cell
in a shear flow exhibits genuine tank-treading motion, with a peeling process
taking place at the trailing edge of the contact region. In the second case,
binding and unbinding occur stochastically between individual points on the
cell and substrate. The bonds are allowed to tilt freely (they have no preferred
spatial orientation), enabling (in principle) some degree of sliding of the cell
over the substrate.

In [24] we proposed a continuum deterministic model for binding kinetics in
which bonds are allowed to tilt. To pass smoothly from the vertical-bond limit
to the case in which bonds can tilt freely, we assumed that the bonds resist
tilting via a biomechanical hinge of prescribed stiffness, while being subject to
rotational diffusion. A microscale calculation (for two parallel sliding plates)
revealed a nonlinear force–speed relation arising from bond formation, tilting,
and breakage.

This nonlinear sliding friction law was used in a multiscale model describing
the 2-D motion of a cylinder coated with receptors moving over a rigid flat wall
in a shear flow [24]. Two distinct types of macroscale cell motion are predicted:
either bonds adhere strongly and the cell rolls (or tank-treads) over the wall
without slipping, or the cell moves near its free-stream speed with bonds
providing weak frictional resistance to sliding. The model predicts bistability
between these two states, implying that at critical shear rates the system can
switch abruptly between no-slip rolling and free sliding, and suggesting that
sliding friction arising through bond tilting may play a significant dynamical
role in some cell-adhesion applications.

To our knowledge, bond resistance to tilting has yet to be characterized
experimentally in the context of cell adhesion, although it is relevant in other
biomimetic adhesives involving fields of oriented deformable binders [33] and
has motivated prior modeling of the adhesive properties of rotatable elastic
nanofibers [8] or micropillars [27].

We extend here the results obtained in [24] to the 3-D motion of a sphere.
In addition we incorporate the effects of nonequilibrium binding kinetics (al-
though we consider a steady problem in the reference frame of the center of
the sphere). For the sake of simplicity we assume that the sphere is rigid. In
the context of cell rolling adhesion, this assumption is commonly made on the
grounds that many (but not all) features of leukocyte rolling have been demon-
strated in flow-chamber experiments using ligand-coated microbeads [12].
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Net vertical adhesion forces (as formulated by Dembo et al. [6]) tend to
bring a sphere in direct contact with the wall. In practice, however, vertical
adhesion forces will always be opposed by other forces like electrostatic or
steric repulsion or, depending on the system studied, volume exclusion effects
caused by local microstructure (e.g., glycocalyx). Also, bonds with a high
resistance to tilting can resist compression by exerting a vertical force that
diverges as the distance between the particle and the wall tends to zero [24].
To keep the model general and the analysis tractable, we choose to neglect
the vertical force balance on the sphere and assume that the separation dis-
tance �∗ between the sphere and the wall is a fixed parameter (we assume that
�∗ is comparable to the average unstressed length of the bonds �∗, namely
�∗/�∗ ≡ d = O(1)). To apply lubrication theory in the interstitial region, we
assume that the radius R∗ of the sphere is large compared to �∗. The frame
of reference used is the sphere’s center, with (O, ex , ey, ez) directed such that
ex is the streamwise direction, ey is the transverse direction, and ez is vertical
(Figure 7.1). The flow has a uniform shear rate G∗ at infinity and is assumed
to be purely viscous.

This chapter is organized as follows. In Section 7.2 we recall some known
results about the hydrodynamics of a rigid sphere in a shear flow near a wall
in the absence of adhesion, or with ad hoc friction forces that prevent sliding

G*z*

h*

Y*
y0*

x0*

ey ez

ex

X*

FIGURE 7.1 Binding between a sphere and a plane in a shear flow.
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entirely. In Section 7.3 we derive in some detail a model for binding kinetics in
3-D that accounts for bond tilting and nonequilibrium effects. The model relies
on assumptions similar to the 2-D model presented in [24], albeit with some
qualitative differences that are outlined below. Numerical results are given in
Section 7.4 for both (1) the force-velocity relations and (2) the steady motion
of the sphere resulting from a balance of adhesive and hydrodynamic forces
and torques. The implications of these results are discussed in Section 7.5.

7.2 Hydrodynamics of Sphere near Wall

To understand the effects of adhesive forces on the motion of a cell, we first
solve the force and torque balance on a sphere near a wall (1) when it is
subject only to hydrodynamic forces (free transport, Section 7.2.1) and (2)
when the motion is constrained by strong adhesive friction forces (no-slip
rolling, Section 7.2.2). Later we investigate the intermediate case in which the
friction forces are coupled (nonlinearly) with the motion of the sphere.

Let A = �∗/R∗ be the ratio of bond length to sphere radius (so that �∗/R∗ =
dA). Typically, we expect A ≪ 1. For a sphere translating parallel to a wall or
rotating with its axis of rotation parallel to the wall, the drag from the fluid
is singular as A goes to zero, diverging as log A [11]. We therefore expect the
velocities to scale as R∗G∗/| log A|. In comparison, for a cylinder in a shear
flow, the velocities scale as A

1/2
R∗G∗.

7.2.1 Lack of Adhesion

Let us consider a sphere moving near a wall, at a fixed distance �∗, with
horizontal velocity V ∗

h ex relative to the wall and rotational velocity �∗
hey in a

Newtonian fluid of dynamic viscosity �∗. Following [11], the horizontal force
and torque balance (in dimensional form) are, respectively,

6��∗ R∗ (

R∗G∗Fs + V ∗
h | ln dA|Ft + R∗�∗

h | ln dA|Fr

)

= 0 (7.1a)

−4��∗ R∗2
(

R∗G∗Ts + 2V ∗
h | ln dA|Tt + 2R∗�∗

h | ln dA|Tr

)

= 0 (7.1b)

where the dimensionless coefficients can be approximated in the small-A limit
[11] by

Fs ≈ 1.7005 + O(A), Ts ≈ 0.9440 + O(A) (7.2a)

Fr ≈
2

15
−

0.2526

| ln dA|
+ O

(

A

| ln A|

)

, Tr ≈ −
2

5
−

0.3817

| ln dA|
+ O

(

A

| ln A|

)

(7.2b)

Ft ≈ −
8

15
−

0.9588

| ln dA|
+ O

(

A

| ln A|

)

, Tt ≈
1

10
−

0.1895

| ln dA|
+ O

(

A

| ln A|

)

(7.2c)
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The subscripts s, r , and t denote coefficients related to the effects of the
shear flow, the rotational motion, and the translational motion of the sphere,
respectively.

Introducing the dimensionless parameters Vh and �h defined by V ∗
h =

Vh R∗G∗ and �∗
h = �hG∗, Equation (7.1) becomes

Fs + Vh | ln dA|Ft + �h | ln dA|Fr = 0 and Ts + 2Vh | ln dA|Tt + 2�h | ln dA|Tr = 0

which yields the following expressions for the horizontal and rotational veloc-
ities:

Vh =
1
2
Ts Fr − Fs Tr

(Ft Tr − Fr Tt )| ln dA|
=

[

3.716

| ln dA|
−

9.197

| ln dA|2
+

23.41

| ln dA|3
+ · · ·

]

+ O(A)

(7.4a)

�h =
− 1

2
Ts Ft + Fs Tt

(Ft Tr − Fr Tt )| ln dA|
=

[

2.109

| ln dA|
−

6.072

| ln dA|2
+

16.00

| ln dA|3
+ · · ·

]

+ O(A)

(7.4b)

Uh =
[

1.607

| ln dA|
−

3.124

| ln dA|2
+

7.406

| ln dA|3
+ · · ·

]

+ O(A) (7.4c)

where Uh ≡ Vh − �h is the sliding speed (scaled on R∗G∗) of the base of the
sphere relative to the wall.

7.2.2 Rolling without Sliding

We now consider a sphere moving near a wall, equipped with a device imposing
a no-slip condition between the sphere and the wall (e.g., one can imagine
“ideal” adhesion molecules that provide infinite resistance against any slippage
between the base of the sphere and the wall, as in Dembo et al.’s model [6]). As
a result, the sphere is forced to roll without sliding and we have V ∗

ns −�∗
ns R∗ =

0, where V ∗
ns and �∗

ns denote the sphere’s horizontal and rotational velocities
respectively. Let F∗

ns denote the horizontal friction force exerted on the sphere.
The force balance Equation (7.1) is modified as follows:

6��∗ R∗(R∗G∗Fs + V ∗
ns | ln dA|Ft − R∗�∗

ns | ln dA|Fr ) + F∗
ns = 0 (7.5a)

−4��∗ R∗2(R∗G∗Ts + 2V ∗
ns | ln dA|Tt − 2R∗�∗

ns | ln dA|Tr ) + R∗F∗
ns = 0 (7.5b)

Writing Equation (7.5) in terms of dimensionless (unstarred) variables, defined
by F∗

ns = Fns�∗ R∗2G∗, V ∗
ns = Vns R∗G∗, and �∗

ns = �ns G∗, gives

6�Fs + Vns6�| ln dA|Ft − �ns6�| ln dA|Fr + Fns = 0 (7.6a)

4�Ts + Vns8�| ln dA|Tt − �ns8�| ln dA|Tr − Fns = 0 (7.6b)
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with the constraint Vns − �ns = 0. This yields

Vns = −
1

| ln dA|
2Ts + 3Fs

3(Ft + Fr ) + 4(Tr + Tt )
=

[

2.912

| ln dA|
−

7.182

| ln dA|2
+ · · ·

]

+ O(A)

(7.7a)

�ns = Vns, (7.7b)

Fns =
12�Ts(Ft + Fr ) − 24�Fs(Tr + Tt )

3(Ft + Fr ) + 4(Tr + Tt )
=

[

−10.10 +
12.35

| ln dA|
+ · · ·

]

+ O(A)

(7.7c)

We can now quantify the effects of these adhesion forces on the motion
of the sphere by comparing the velocities obtained in Equation (7.7a,b) with
those for a sphere moving at its free hydrodynamic velocity Equation (7.4a,b):

Vns

Vh

= 0.784 +
0.0069

| ln dA|
+ · · · and

�ns

�h

= 1.381 +
0.510

| ln dA|
+ · · · (7.8)

Equation (7.8) shows that horizontal adhesion forces tend to make the sphere
translate slower and rotate faster. In both cases, the change is on the order of
20 to 40%.

In the next section, we include nonequilibrium binding kinetics effects that
allow for the build-up of an additional torque on the sphere. Under certain
conditions, this torque can dominate the hydrodynamic drag and slow the
sphere, reducing the translation speed and rotation rate by several orders of
magnitude, much more dramatically than in Equation (7.8). Combined with
the nonlinear relationship between adhesion forces and the sphere’s motion, it
also leads to interesting hysteretic behavior under slowly varying shear rates.

7.3 Adhesive Sphere in Shear Flow

We now focus on the steady motion of a sphere in a shear flow when the sphere
and the wall are coated with adhesion molecules that can interact with each
other to form bonds (i.e., mechano-resistant complexes). We write a model for
the nonlinear forces exerted by adhesion molecules on the sphere and investi-
gate, from force and torque balances, the different scalings of the translation
and rotation speed of the sphere in different regions of parameter space. The
steady states, defined by the translation and rotation speeds of the sphere,
result from a balance of forces between the shear flow, the hydrodynamic drag
and adhesion forces. The latter originate from the formation of bonds between
the sphere and the wall, which itself depends on the velocity of the sphere.
With some assumptions regarding receptor and ligand spatial distributions
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(such that the bonds can be considered a continuum with homogeneous phys-
ical properties), and assuming deterministic binding kinetics (as described by,
for example, Dembo et al.’s model [6], see below), the net force and torque
exerted collectively by all the bonds on the sphere do not depend on time.
Within this framework, the sphere moves steadily even though its motion oc-
curs through the continuous formation and breakage of adhesive bonds, which
are naturally time-dependent processes.

Some care is needed in defining an evolution equation for the consummated
bond density, determining the resulting adhesive force on the sphere and cou-
pling this with the hydrodynamic forces to find the motion of the sphere as a
function of imposed shear rate. We derive the model in detail below. The full
model is stated in dimensionless variables in Section 7.3.4.

7.3.1 Geometry and Kinematics

Because we aim to stress the effects of nonequilibrium binding kinetics on
the steady motion of the sphere, we make use of two frames of reference, one
translating relative to the other. We first describe the dynamical formation
and breakage of adhesive bonds with a time-dependent evolution equation in a
frame of reference attached to the receptors (anchored to the wall). Translating
to a frame of reference attached to the center of the sphere, we then derive the
adhesive force densities exerted on the sphere as steady quantities that depend
on spatial variables only. The relationship between the reference frame of the
receptors on the wall and that of the center of the sphere is determined by
the translational motion of the sphere. We therefore expect a strong coupling
of the motion of the sphere and the adhesive forces that it is subject to.

Rs denotes the frame of reference of the center of the sphere. It is associated
with a system of coordinates (x∗

s , y∗
s , z∗) with origin Os on the horizontal wall

vertically beneath the base of the sphere (see Figure 7.2).
Rw denotes the frame of reference of the wall. It is associated with a system

of coordinates (x∗, y∗, z∗) and an origin Ow chosen, with no loss of generality,
so that it coincides with Os at time t∗ = 0. Assuming that the motion of the
sphere is steady and directed along ex , we then have Os = (V ∗t∗, 0, 0) in Rw

(see Figure 7.2).
Let h∗

w(x∗, y∗, t∗) be the vertical distance, at a given time t∗, between the
point (x∗, y∗, 0) on the wall (in Rw) and the lower surface of the sphere:

h∗
w(x∗, y∗, t∗) = �∗ + R∗ −

√

R∗2 − y∗2 − (x∗ − V ∗t∗)2 (7.9)

Similarly, h∗
s (x∗

s , y∗
s ) denotes the vertical distance between the point (x∗

s , y∗
s , 0)

on the wall (in Rs) and the lower surface of the sphere:

h∗
s (x∗

s , y∗
s ) = �∗ + R∗ −

√

R∗2 − y∗2
s − x∗2

s (7.10)

We drop the subscripts to eliminate confusion. Note that h∗
s does not depend

on time.
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FIGURE 7.2 Schematic description of notation. The frame of reference Rw

is attached to the wall; Rs moves with the center of the sphere. Both origins
Ow and Os are on the wall. A given receptor on the wall can be identified by
its coordinates (x∗, y∗, 0) in Rw or (x∗

s , y∗
s , 0) in Rs . A receptor–ligand bond

can be characterized by Cartesian or spherical coordinates (X∗, Y ∗, H∗) and
(L∗, �, �), respectively, measured with respect to (x∗, y∗, 0) in Rw.

We assume that stretching of an individual bond occurs over length scales
comparable to the unstretched bond length �∗. The adhesion region, where
we expect most of the adhesive phenomena to take place, is then defined as
the area of the wall beneath the sphere where the separation distance is of
the same order of magnitude as the characteristic bond length �∗. Because
�∗ = O(�∗), this corresponds to a circular area of diameter O(

√
�∗ R∗) (or

equivalently, O(
√

�∗ R∗)) beneath the sphere.
In the adhesion region, bonds form between two surfaces that, to leading

order, are locally flat and parallel with error O(A
1/2

). In what follows we retain
the terms of O(A

1/2
) but neglect higher-order corrections. In general, a sphere

that moves near a wall will slide relative to it with a horizontal velocity U ∗ex

at its base. Let us consider a point attached to the wall (e.g., a receptor)
within the adhesion region and let (x∗

s , y∗
s , 0) be its coordinates in Rs . Then

the horizontal velocity of the sphere relative to that point is given by V ∗−�∗ R∗

to leading order in A (since x∗
s /R∗ = O(A

1/2
) within the adhesion region). The

sliding velocity between the sphere and the wall can therefore be assumed
uniform and equal to U ∗ = V ∗ − �∗ R∗ within the adhesion region, to leading
order in A.

7.3.2 Model of Binding Kinetics between Moving Surfaces

The binding between receptor-coated and ligand-coated surfaces, with surface
densities mr and ml , respectively, is commonly referred to as 2-D binding, in
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contrast to 3-D binding where the molecules are in solution. The apparent
rate of binding K ∗

on,eq between one receptor and the ligand-coated surface (in

s−1) is generally defined from the intrinsic binding rate K ∗
on,int [m2s−1] between

one receptor and one ligand as K ∗
on,eq = ml K

∗
on,int . The binding affinity Keq

is then the dimensionless ratio of the apparent binding rate and the off-rate
K ∗

of f,eq [s−1] of a formed bond. These reaction rates are defined when no load is
exerted on the bonds (e.g., for bonds that form vertically between two plates
separated by a distance �∗) and their dependence on force has to be modeled.

Following Dembo et al. [6], the forward and reverse reaction rates for
receptor–ligand binding are written as Boltzmann distributions, allowing
highly stretched “slip” bonds (for example) to be readily broken by ther-
mal energy fluctuations. However, unlike Dembo et al. [6], we assume that the
bonds are allowed to subtend an angle � with the vertical direction as well as
an angle � with the streamwise direction (Figure 7.2).

A given bond between a receptor at (x∗, y∗, 0) on the wall in Rw and the
sphere can be characterized in spherical coordinates (with origin at (x∗, y∗, 0))
by the two angles, � and �, and its length L∗. Equivalently, a bond is charac-
terized by the two components (X∗, Y ∗) of its projection onto the horizontal
plane, and the vertical component H ∗ (see Figure 7.2). The relationship be-
tween the two systems of coordinates is:

L∗ =
√

H∗2 + X∗2 + Y ∗2, � = arctan

(√
X∗2 + Y ∗2

H∗

)

, � = arctan
Y ∗

X∗

(7.11)

At a given time t∗, the vertical component H∗ of a given bond can be written
in terms of the height function h∗

w as:

H∗ = h∗
w(x∗ + X∗, y∗ + Y ∗, t∗) (7.12)

To account for the extra degrees of freedom from Dembo’s model (where all
bonds are vertical), the forward rate is expressed as the probability density
that a bond may form for a given value of (L∗, �, �) times the probability
density that this geometrical configuration is realized in the unbound state.
The probability densities of forming or breaking bonds between the wall at
(x∗, y∗, 0) and the sphere take the form

K ∗
of f,sph(L∗, �, �) = K ∗

of f,eq exp

[

(�∗ − �∗
ts)

(L∗ − �∗)2

2k∗
BT

∗

]

(7.13a)

K ∗
on,sph(L∗, �, �) = K ∗

on,eq exp

[

−�∗
ts

(L∗ − �∗)2

2k∗
BT

∗

]

P∗
sph(L∗, �, �) (7.13b)

respectively. Here k∗
B is Boltzmann’s constant, T ∗ is the absolute temperature,

�∗ [Nm−1] is the spring constant of one molecular bond, and �∗
ts [Nm−1] is
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the spring constant of the transition state (see [6]) used to distinguish catch
(�∗ < �∗

ts) from slip (�∗ > �∗
ts) bonds.

P∗
sph(L∗, �, �) is defined as the probability density that a free bond (i.e.,

one anchored to the wall only) lies within the region defined by the point
(x∗, y∗, 0) (on the wall) and the two angles � and �. Note that K ∗

on,sph has

dimension [s−1].
We assume that the energy associated with tilting a bond from its vertical

position is independent of � and of the form 1
2
�∗

��2 for some �∗
� ≥ 0 (with �

and � defined in Equation (7.11)). Hence we assume a Boltzmann distribution
for Psph of the form

Psph(L∗, �, �) =
exp [ − ���2]

N
, �� ≡

�∗
�

2k∗
BT

∗ (7.14)

with the normalization factor

N =
�∫

−�

�/2∫

0

exp
[

−��	2
]
d	d
 = �3/2�−1/2

� erf
(

��1/2
� /2

)

(7.15)

In Equation (7.14), �∗
� [N · m] is the torsional spring constant, that is, the

moment that has to be exerted about the bond’s anchorage point on the wall
in order to tilt the bond from the vertical by one radian. Its dimensionless
counterpart �� compares �∗

� with thermal fluctuation energy. The limit �� → 0
therefore represents the limit in which the bonds are allowed to explore freely
all possible angles under thermal fluctuations. For �� → ∞, all the bonds are
restricted to the vertical, Psph(L∗, �, �) → �Dirac(�), and no sliding can occur
between the bound cylinder and the wall, as was assumed in the models of [6]
and others. To our knowledge, no experimental data are presently available
to determine the actual value of �� for the bonds that mediate cell adhesion.
However, some adhesion molecules (e.g., P-selectins) have been reported to
have a persistence length of 0.35 nm [10], that is, an order of magnitude less
than their length. This suggests that �� ≪ 1, at least during the initial stage of
cell rolling, which is principally mediated by P-selectin/PSGL-1 interactions.

For the sake of generality, however, we make no assumption on the magni-
tude of �� in the derivation of the present model. This is motivated by various
applications in which tiltable microstructures may represent a resistive force
to a sliding motion: for example, cell adhesion on synthetic substrates made
of micropillars of well-characterized bending stiffnesses (see, for example, [27])
or the mechanical effects of microvilli in neutrophil rolling [4].

To make the forthcoming analysis easier, we define binding rates K ∗
of f,cart

[s−1] and K ∗
on,cart [m−2s−1] for a given bond (L∗, �, �) at (x∗, y∗, 0) in terms

of the bond’s Cartesian coordinates (X∗, Y ∗, H∗) (Figure 7.2). Equating the
binding rates within the same infinitesimal volume (see Figure 7.3) in both
sets of coordinates yields:

K ∗
on,cart (X∗, Y ∗, H∗)dX∗dY ∗ = K ∗

on,sph(L∗, �, �)d�d� (7.16)
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FIGURE 7.3 Rate of binding between a receptor and an infinitesimal
surface on the sphere.

with the relationship between (L∗, �, �) and (X∗, Y ∗, H∗) given by Equa-
tion (7.11). Because the dissociation rate is defined on a per-bond basis, we
have K ∗

of f,cart (X∗, Y ∗, H∗) = K ∗
of f,sph(L∗, �, �). Substituting in Equation (7.13),

K ∗
of f,cart (H∗, X∗, Y ∗) = K ∗

of f,eq exp

[

(�∗ − �∗
ts)

(L∗ − �∗)2

2k∗
BT

∗

]

(7.17a)

K ∗
on,cart (H∗, X∗, Y ∗) = K ∗

on,eq exp

[

−�∗
ts

(L∗ − �∗)2

2k∗
BT

∗

]

P∗
cart (X∗, Y ∗, H∗)

(7.17b)

where P∗
cart [m−2] is defined such that, for any cone � (with vertex (x∗, y∗, 0)),
∫∫

�

P∗
cart (X∗, Y ∗, H∗)dX∗dY ∗ =

∫∫

�

Psph(L∗, �, �)d�d� (7.18)

A change of variables on the RHS of Equation (7.18) leads from Equation
(7.14) to

P∗
cart (X∗, Y ∗, H∗) =

exp [ − ���2]

N

H ∗
√

X∗2 + Y ∗2L∗2
(7.19)

where the second term on the RHS is the determinant of the Jacobian matrix
of the transformation from (L∗, �, �) to (H ∗, X∗, Y ∗). In what follows we use
Cartesian coordinates.

We now evaluate the consummated bond density in Rw. For a given point
(x∗, y∗, 0) on the wall (in Rw), let A∗

tot g∗
w(x∗, y∗, X∗, Y ∗, t∗) �x∗�y∗�X∗�Y ∗ be
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FIGURE 7.4 The bond density g∗
w(x∗, y∗, X∗, Y ∗, t∗) is defined as the den-

sity of bonds in the grayed volume at some time t∗.

the number of bonds that are attached between the infinitesimal patch of area
�x∗�y∗ at (x∗, y∗, 0) on the wall and the infinitesimal patch of area1

�X∗�Y ∗
√

1 +
(

∂h∗
w

∂x∗

)2
at (x∗ + X∗, y∗ + Y ∗, h∗

w(x∗ + X∗, y∗ + Y ∗, t∗))

on the sphere at time t∗ (see Figure 7.4).
The evolution equation for the bond density g∗

w between the fixed wall and
the moving sphere is obtained (in Rw) by equating the rate of change in
g∗

w with spontaneous bond formation, spontaneous bond breakage, and bond
advection by horizontal sliding:

∂g∗
w

∂t∗ +
∂

∂X∗ [U ∗g∗
w] =

K ∗
on(h

∗
w(x∗ + X∗, y∗ + Y ∗, t∗), X∗, Y ∗)√

1 +
(

∂h∗
w

∂x∗

)2

−
K ∗

of f

(

h∗
w(x∗ + X∗, y∗ + Y ∗, t∗), X∗, Y ∗)g∗

w
√

1 +
(

∂h∗
w

∂x∗

)2
(7.20)

with g∗
w → 0, as X∗ → −∞ (for U ∗ > 0) or |Y ∗| → ∞.

The effects of the translational motion of the sphere are embedded in the
dependence on time of the reaction rates. As defined in Equation (7.17), these

1The denominator comes from the projection of the rectangle of area �X∗�Y ∗ on the wall onto
the sphere. It is approximately equal to one near the base of the sphere and will not contribute
to the leading order solution.
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depend on the vertical distance h∗
w(x∗ + X∗, y∗ + Y ∗, t∗) between the ligands

on the sphere and the wall and changes of h∗
w with time as the sphere moves

past (see Equation (7.9)).
We now express Equation (7.20) in the reference frame of the center

of the sphere, Rs . For a given point (x∗
s , y∗

s , 0) on the wall (in Rs), let
A∗

tot g∗
s (x∗

s , y∗
s , X∗, Y ∗) �x∗

s �y∗
s �X∗�Y ∗ be the number of bonds that are at-

tached between the infinitesimal patch of area �x∗
s �y∗

s at (x∗
s , y∗

s , 0) on the
wall and the infinitesimal patch of area

�X∗�Y ∗
√

1 +
(

∂h∗
w

∂x∗

)2
at (x∗

s + X∗, y∗
s + Y ∗, h∗

s (x∗
s + X∗, y∗

s + Y ∗))

on the sphere. In Rs , the center of the sphere is fixed, the sphere rotates
about ey , and the wall slides underneath the sphere. At each point on the
(xs, ys)-plane, the height between the wall and the sphere does not vary with
time. We assume that the sphere has reached a steady state and that there
are uniform and continuous distributions of adhesion molecules both on the
sphere and the wall. Hence we expect the bond distribution g∗

s at each point
on the (xs, ys)-plane to remain constant.

The evolution equation for g∗
s is obtained from a change of frame of reference

from Rw to Rs in Equation (7.20). The coordinates in Rs of a point attached
to the wall (e.g., a receptor) and the height between this point and the sphere
vary in time according to the parametrization

y∗
s = y∗, x∗

s (t∗) = x∗ − V ∗t∗ and h∗
s (x∗

s (t∗), y∗
s ) = h∗

w(x∗, y∗, t∗) (7.21)

Similarly, the bond densities in each frame of reference satisfy

g∗
w(x∗, y∗, X∗, Y ∗, t∗) = g∗

s (x∗
s (t∗), y∗

s , X∗, Y ∗) (7.22)

The time derivative in Equation (7.20), which describes nonequilibrium effects
in the binding kinetics, concerns g∗

w, defined in Rw where the height between
the wall and the sphere (on which the reaction rates depend) varies. Changing
to Rs , where this height is fixed, transforms the time-dependent problem to a
purely spatial one. Applying the chain rule to Equation (7.22) with Equation
(7.21b) yields:

∂g∗
w

∂t∗ =
∂x∗

s

∂t∗ (t∗)
∂g∗

s

∂x∗
s

= −V ∗ ∂g∗
s

∂x∗
s

(7.23)

In Rs , nonequilibrium effects in the formation of bonds appear through the
translation speed V ∗ of the sphere and the streamwise inhomogeneities of the
bond distribution ∂g∗

s /∂x∗
s .
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In Rs , using Equations (7.22) and (7.23), Equation (7.20) therefore becomes

−V ∗ ∂g∗
s

∂x∗
s

+
∂

∂X∗ [U ∗g∗
s ] =

K ∗
on(h

∗
s (x∗

s + X∗, y∗
s + Y ∗), X∗, Y ∗)√

1 +
(

∂h∗
w

∂x∗

)2

−
K ∗

of f (h
∗
s (x∗

s + X∗, y∗
s + Y ∗), X∗, Y ∗)g∗

s√

1 +
(

∂h∗
w

∂x∗

)2
(7.24)

with g∗
s → 0, as X∗ → −∞ (for U ∗ > 0) or |Y ∗| → ∞ where h∗

s has been
defined in Equation (7.10). Note that Y ∗ and y∗

s play the roles of parameters.
This is a consequence of our assumption that the sphere rotates about an axis
that is always perpendicular to the streamwise direction. In what follows we
consider bond densities defined in Rs , and therefore drop the subscript s.

7.3.3 Forces and Torques

Each bond locally exerts a force on the sphere that can be broken into (1)
the extensional force, which is related to the bond stretch by Hooke’s law (we
assume, however, that bonds do not resist compression), and (2) the torsional
force, which is proportional to the angle � formed by the bond with the vertical
(see Figure 7.5). These forces are defined, respectively, by

f∗E = �∗ max(L∗ − �∗, 0)er and f∗T = �∗
� L∗−1� er (7.25)

The number of bonds in the O(�∗ R∗) adhesion area is expected to scale
like A∗

tot Keq�∗ R∗. The net adhesive force F∗
adh exerted on the sphere is the

H

fT

eθ
er

fE

L

α

X

FIGURE 7.5 Schematic view of the forces exerted by an individual bond.
Note that er = − X

L
ex − Y

L
ey − H

L
ez, e� = − H X

DL
ex − HY

DL
ey + D

L
ez .
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sum of forces due to bond stretching F∗
E and bond tilting F∗

T , which are thus
expected to scale like A∗

tot Keq�∗�∗2 R∗ and A∗
tot Keq�∗

� R∗, respectively:

F∗
adh =

∫∫

R2

f∗adhdx∗
s dy∗

s , with f∗adh =
∫∫

R2

g∗(f∗E + f∗T
)

dX∗dY ∗ (7.26)

being the force density exerted on the sphere per surface area on the wall.
Similarly, the adhesive torque T∗

adh about the center of the sphere can be
separated into the contributions from bond stretching T∗

E and bond tilting
T∗

T . Furthermore, distinguishing vertical and horizontal adhesion forces, we
have

T∗
adh · ey =

∫∫

R2

∫∫

R2

g∗((x∗
s + X∗)ex − (R∗ + �∗ − h∗

s )ez)

× (f∗E + f∗T )dX∗dY ∗dx∗
s dy∗

s · ey (7.27a)

=
∫∫

R2

∫∫

R2

g∗(R∗ + �∗ − h∗
s )(f

∗
E + f∗T ) · exdX∗dY ∗dx∗

s dy∗
s

+
∫∫

R2

∫∫

R2

g∗(x∗
s + X∗)(f∗E + f∗T ) · ezdX∗dY ∗dx∗

s dy∗
s (7.27b)

The first term on the RHS of Equation (7.27b) is the torque created by hori-
zontal friction forces on the base of the sphere. It scales like A∗

tot Keq�∗(�∗ R∗)2

or A∗
tot Keq�∗

� R∗2, depending on whether the forces arise primarily through
bond stretching or bond tilting, respectively. The second term in Equation
(7.27) is the torque created by the asymmetry of vertical adhesive forces be-
tween the front and the back of the sphere. Although from straightforward
scaling arguments it appears to be O(

√
�∗/R∗) smaller than the first term,

there are cases, as explained below, where it becomes dominant. This can arise
as a consequence of the nontrivial dependence between the adhesive forces and
the unknown variables U ∗ and V ∗.

As in Equations (7.5a,b), the horizontal force and torque balance about the
center of mass of an adhesive sphere moving near a wall in a shear flow, at
steady state, are, respectively

6��∗ R∗(R∗G∗Fs + V ∗| ln A|(Ft + Fr ) − U ∗| ln A|Fr ) + (F∗
E + F∗

T ) · ex = 0

(7.28a)

−4��∗ R∗2(R∗G∗Ts + 2V ∗| ln A|(Tt + Tr ) − 2U ∗| ln A|Tr ) + (T∗
E + T∗

T ) · ey = 0

(7.28b)

where the coefficients with subscripts s, r , and t are the O(1) functions of A

introduced in Equation (7.2). The main difference from (7.5a,b) is that there
is now no explicit relationship between V ∗ and �∗. The adhesive forces and
torque are also no longer treated as unknowns, but rather as (nonlinear) func-
tions of V ∗ and U ∗, so that Equation (7.28) is a closed system of two equations
for two unknowns. For different parameter values, it models both regimes of
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no adhesion (as in Section 7.2.1) and ideal adhesion (as in Section 7.2.2), as
well as the transition between the two.

7.3.4 Nondimensionalization

From Equation (7.28), we have, for the horizontal force balance and torque
balances

(

G∗

K ∗
of f,eq

Fs +
V ∗| log A|
R∗K ∗

of f,eq

(Ft + Fr ) −
U ∗| log A|
R∗K ∗

of f,eq

Fr

)

+
A∗

tot K ∗
eq

(

�∗�∗2FE + �∗
�FT

)

6��∗ R∗K ∗
of f,eq

· ex = 0 (7.29a)

(

G∗

K ∗
of f,eq

Ts + 2
V ∗| log A|
R∗K ∗

of f,eq

(Tt + Tr ) − 2
U ∗| log A|
R∗K ∗

of f,eq

Tr

)

−
A∗

tot K ∗
eq

(

�∗�∗2TE + �∗
�TT

)

4��∗ R∗K ∗
of f,eq

· ey = 0 (7.29b)

respectively. We then introduce the following dimensionless variables and pa-
rameters

h∗
s = �∗ H, L∗ = �∗L , V ∗ = V

√

AR∗K ∗
of f,eq , U ∗ = UAR∗K ∗

of f,eq

(7.30a)

G∗ = G K ∗
of f,eq , K ∗

of f = eof f K ∗
of f,eq , K ∗

on = eon

K ∗
on,eq

�∗ , g∗ = g
Keq

�∗2

(7.30b)

� =
�∗

ts

�∗ ,  =
�∗�∗2

k∗
BT

∗ , C =
A∗

tot Keq�∗�∗2

�∗ R∗K ∗
of f,eq

, and k =
�∗

�

2�∗�∗2
(7.30c)

where  and k compare the stretching and torsion energy to thermal fluc-
tuations, respectively, and � models the response of the bonds to extensional
strain (with � < 1 for slip bonds and � > 1 for catch bonds, [6]). k therefore
compares the magnitude of adhesion forces arising from bond tilting to those
due to bond stretching. C is the visco-adhesive parameter, relating exten-
sional bond forces to hydrodynamic forces. Typical values of the parameters
are shown in Table 7.1.

Bonds are elongated horizontally by the sliding motion of the sphere with
a time scale �∗/U ∗ (see Figure 7.6(a)) and stretched vertically as the sphere
rolls past the site where the bond is anchored to the wall with a time scale
(�∗ R∗)1/2/V ∗ (see Figure 7.6(b)). The dimensionless ratios U ∗/K ∗

of f,eq�∗ R∗
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TABLE 7.1 Typical Parameter Values for Neutrophil and
Microbead Rolling

Symbol Definition Neutrophils Microbeads Ref.

R∗ Cell radius 4�m 2–20 �m [28]
�∗ Bond length 10–300 nm 70 nm [30,31]
G∗ Shear rate 40–2000 s−1 2–2000 s−1

A∗
tot Receptor den-

sity
10–102 �m−2 0–800 �m−2 [18]

K ∗
of f,eq Reverse rate 1–10 s−1 1–10 s−1 [3,25]

K ∗
on,eq Forward rate 1–100 s−1 1–10 s−1 [18,25]

�∗ Spring constant 0.01–5 dyn cm−1 5 dyn cm−1 [10,30]
�∗

�/2k∗
BT

∗ Resistance to
bending

0–103 ≈ 0

G Dimensionless
shear rate

1–104 1–104

C Visco-adhesive
parameter

1–104 1–106

and V ∗/K ∗
of f,eq(�

∗ R∗)1/2 therefore compare bonds’ characteristic lifetimes with
advection mechanisms occurring at the microscopic level of the bonds.

The full dimensionless problem becomes, from Equations (7.29) and (7.30),

G6�Fs +
√

AV | log A|6�(Ft + Fr ) − AU | log A|6�Fr + C(FE + kFT ) · ex = 0

(7.31a)

G4�Ts +
√

AV | log A|8�(Tt + Tr ) − AU | log A|8�Tr − C(TE + kTT ) · ey = 0

(7.31b)

Here, FE , FT , TE , and TT are functions of U and V , derived from (Equations
(7.26) and (7.27)) in terms of force densities as

FE =
∫∫

R2

F̂E (xs, ys)dxsdys, FT =
∫∫

R2

F̂T (xs, ys)dxsdys (7.32a)

T · ey =
∫∫

R2

F̂x (xs, ys)dxsdys +
√

A

∫∫

R2

F̂z(xs, ys)xsdxsdys + O(A)

(7.32b)

where

F̂x (xs, ys) = (F̂E (xs, ys) + F̂T (xs, ys)) · ex (7.33a)

F̂z(xs, ys) = (F̂E (xs, ys) + F̂T (xs, ys)) · ez (7.33b)
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FIGURE 7.6 Schematic view of the advection time scales of consummated
bonds. (a) Advection of a tiltable bond by sliding; (b) advection of a bond
beneath a sphere (as viewed in Rs).

Using Equation (7.25) and Figure 7.5, the adhesive force densities are ex-
pressed in terms of g as

F̂E (xs, ys) =
∫∫

R2

−g(xs, ys, X, Y ) max(L − 1, 0)

[

X

L
ex +

H

L
ez

]

dXdY

(7.34a)

F̂T (xs, ys) =
∫∫

R2

g(xs, ys, X, Y )

[

−
H X

DL2 arctan
D

H
ex +

D

L2
arctan

D

H
ez

]

dXdY

(7.34b)
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where H , L, and D are functions of xs , ys , X , and Y , derived from Equations
(7.10) through (7.12).

H(xs, ys, X, Y ) = d + 1
2
(xs + ys +

√

A(X + Y ))2 (7.35a)

L(xs, ys, X, Y ) =
√

H(xs, ys, X, Y )2 + X2 + Y 2 (7.35b)

D(X, Y ) =
√

X2 + Y 2 (7.35c)

Following Equations (7.24) and (7.17), the bond density g(xs, ys, X, Y ) sat-
isfies the PDE

−V
∂g

∂xs

+ U
∂g

∂X
= eon(H(xs, ys, X, Y ), X, Y ) − eof f (H(xs, ys, X, Y ), X, Y )g

(7.36a)

with errors of O(A). The reaction rates are given by

eof f (H(xs, ys, X, Y ), X, Y ) = exp
[

(1 − �)


2
(L − 1)2

]

(7.37a)

eon(H(xs, ys, X, Y ), X, Y ) = exp

[

−

(

�

2
(L − 1)2 + k arctan2

(

D

H

))]

H

N L3

(7.37b)

where the normalization factor N is defined in Equation (7.15). Note from
Equation (7.36) that g depends on ys and Y only parametrically.

We seek U and V as solutions of Equations (7.31) through (7.37) and pa-
rameterized by G, C, A, d, k, �, and . The solution strategy is as follows.
Using Equations (7.32) through (7.37) we first determine numerically the ad-
hesive forces and torques FE , FT , TE , and TT as functions of U and V for a
sample of parameter values. The system in Equation (7.31) then becomes an
algebraic system of two equations for the two unknowns U and V , which we
solve numerically. We expect that this nonlinear system has multiple solutions
in some regions of parameter space. The numerical integration is undertaken,
for each point on a fine grid in (U, V ) space, using the subroutine d03pcf

in the NAG library to solve the PDE (Equation (7.36)) and the subroutines
e01baf (spline interpolation) and e02bdf (spline integration) for the integrals
in Equations (7.34) and (7.32). The resulting data set is then fitted by 2-D
spline interpolants, allowing us to implement FE , FT , TE , and TT as smooth
functions of U and V (and parameterized by A, d, k, �, and ).
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7.4 Numerical Results

7.4.1 Nonlinear Force-Velocity and Torque-Velocity

Relations

We first compute each component of the adhesion forces and torque for a
large range of values of U and V (by solving the differential Equation (7.36)
numerically, substituting in Equation (7.34), and integrating over the whole
sphere using Equation (7.32)). We do so for fixed values of the parameters
that describe the bonds’ properties �, , k, for a fixed height d separating the
sphere from the wall and a fixed value of A.

Figure 7.7 shows a brief summary of how friction force densities between two
adhesive surfaces depend on their relative sliding speed. Here the two surfaces
are flat and parallel, and are separated by a constant height H0 (so that
the dependence in xs is lost in Equation (7.36), which effectively becomes an
ODE). The nonlinearity in the force–velocity relationship has been described
in [24] for the 2-D case of a rigid cylinder and remains qualitatively the same
for the 3-D case. When there is no sliding, the bond distribution g is symmetric
and there is no net lateral force on the upper plate. At low speeds, bonds
are tilted sideways, providing a frictional force opposing the motion. At high
speeds, the rapid motion of the plate causes bond breakage (leading to a
reduction in the magnitude of g) and a drop in the frictional force.

Figure 7.8 shows the torque exerted by the bonds about the center of the
sphere, plotted as a function of V for the special case U = 0. Panels (a)
through (c) explain qualitatively how advective effects in the bonds’ formation
can lead to a nonlinearity between the torque and the translation speed. When
the sphere is static, the total bond density is symmetric. As the sphere rolls
slowly over the wall, nonequilibrium effects delay bond formation at the front
of the adhesive region, where the surfaces approach vertically, and delay bond
breakage at the rear of the adhesive region, where surfaces are separating. The
asymmetry in bond density creates a net torque that opposes rolling motion.
At high speeds, bonds form less easily and break more readily, leading to a
reduction in the adhesive torque.

Figure 7.9 summarizes these results, and shows how the friction force and
the torque exerted on a sphere depend nonlinearly on both U and V . The data
are computed only for

√

AU < V , which corresponds, physically, to U ∗ < V ∗

(i.e., �∗ > 0). The remainder of the domain is not relevant for a sphere in
a shear flow. The horizontal adhesive force is always negative (acting against
the sliding motion, with U > 0) and has a minimum that scales approximately
like O(min(−1,−k)). The torque exerted about the center of the sphere can
change sign: it is negative when it comes predominantly from friction forces
(and its minimum is then O(min(−1,−k))) and it is positive when it comes
predominantly from the nonlinear advective effect described in Figure 7.8 (its
maximum is then O(1)). The asymptotic behaviors of the different components
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FIGURE 7.7 Schematic of the consummated bond density between two
sliding surfaces. (a, b, c) Bond density between two plates for (a) U = 0;
(b) U = O(1); (c) U ≫ 1. (d) Corresponding horizontal friction force density
exerted on the upper plate. Values of the parameters: V = 0, H0 = 1, k = 0,
� = 0.9, and  = 1.
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FIGURE 7.8 Schematic of the consummated bond density between a wall
and a sphere rolling without sliding (U = 0). (a, b, c) Bond density between
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of FE , FT , TE , and TT for U ≪ 1, U ≫ 1, V ≪ 1, or V ≫ 1 are addressed
elsewhere [23].

7.4.2 Steady-State Motion of Sphere in Shear Flow

Eliminating the parameter G from the force balance in Equation (7.31) yields
one equation for the two unknowns U and V , which we can solve numerically
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using the interpolated values of the adhesion forces and torque functions. To
each point on this solution curve in the (U, V ) space there corresponds a
unique value of G that is easily determined by substituting U and V into
Equation (7.31a). We therefore obtain a curve in the 3-D space (G, U, V ) that
describes the steady states of the sphere and we plot the projections of this
curve onto the (G, U ) and (G, V ) planes. Results for different values of k, A,
and C are compared.

Figure 7.10 shows U and V at steady state as the shear rate G varies. The
results are shown for four different values of C, all other parameters being
fixed (A = 10−4).
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FIGURE 7.10 (a) Sliding speed U and (b) translation speed V of the
sphere, solutions of Equation (7.31), versus the shear rate G for different val-
ues of the visco-adhesive parameter C. Dashed curves represent (presumably)
unstable states. The dot-dashed lines show the solutions derived in Equation
(7.4) for a sphere moving at its free hydrodynamic velocity (Vh) and in Equa-
tion (7.7) for a sphere rolling without sliding (Vns). The three different types
of motion for an adhesive sphere are identified for the case C = 104. Here
k = 10, d = 1, A = 10−4, � = 0.9, and  = 1.
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For C = 10−2 (relatively weak adhesion forces), when G � 0.05, both the
sliding speed and the translation speed are approximately equal to the hydro-
dynamic velocities Uh and Vh (see Equation (7.4)), respectively: the sphere
behaves as it would in the absence of bonds and we call this state “free flow-
ing.” However, for small values of G, the sliding speed is nearly two orders
of magnitude smaller than Uh and V ≈ Vns (see Equation (7.7)); the motion
is thus similar to a tank-treading sphere (i.e., one that rolls without sliding).
The transition between these two states is smooth and occurs for G between
0.01 and 0.05.

For C = 1, the behavior of the sphere is similar and the same two qual-
itatively distinct steady states are observed. The sliding speed of the tank-
treading sphere is reduced from the case C = 10−2 by an additional two orders
of magnitude, whereas the translation speed remains V ≈ Vns . However, in
this case, the transition between tank-treading and free motion is abrupt and
there exists a region of bistability (between G ≈ 0.25 and G ≈ 0.4) similar
to that described in [24] for 2-D adhesive rolling of a cylinder. Increasing or
decreasing the shear rate above and below the critical values makes the sphere
describe a hysteresis loop between tank-treading and free flowing.

For C = 100, the effects of adhesive forces are no longer limited to reducing
the sliding speed but they also affect the translation speed. For G � 0.8, the
latter is one order of magnitude smaller than Vns , the translation speed of a
tank-treading sphere. Because the sphere moves very slowly (in the frame of
reference of the wall), we call this state “firm arrest.” For 0.8 � G � 8, the
translation speed is close to Vns , and U is much smaller than Uh . Perhaps
surprisingly, the sliding speed here increases approximately as the cube of
the shear rate (with slope 3 in Figure 7.10a). This contrasts with the tank-
treading case discussed above (where the shear–velocity relation was linear)
and indicates that different physical mechanisms might be involved (by means
of asymptotic analysis, we show in [23] how this behavior emerges from Equa-
tions (7.31) through (7.37)). We call this the “intermediate state”. The tran-
sition between firm arrest and intermediate state is smooth, for G ≈ 0.8.
For 3.2 � G � 5.4, there is bistability between intermediate state and free
flowing.

For C = 104, the same three distinct behaviors are observed. In addition,
the transition between firm arrest and the intermediate state exhibits, in this
case, a region of bistability between the two states (with critical shear rates
G ≈ 8.7 and G ≈ 22). The bistability between the intermediate state and free
flowing occurs for 38 � G � 65.

Figure 7.11 shows U and V computed for A = 10−2 instead of 10−4 (all
other parameters remaining unchanged). The behavior is qualitatively the
same, except that the transition between the tank-treading (or intermediate)
states and the free-flowing state is always smooth (regardless of the value
of C). The tank-treading behavior observed for small values of C and G is
less significant than for A = 10−4 (in the sense that the relative change of U

compared to Uh is smaller). For C = 104, the region of bistability between



History Dependence of Microbead Adhesion under Varying Shear Rate 211

10–2 100 102
10−6

10−4

10−2

100

102

104

106

G

U

Firm arrest

Free
flowing

Intermediate
state

(a)

Uh

 C = 10−2

C = 104

 C = 102

 C = 1

10–3 10–2 10–1 100 101 102 103
10−3

10−2

10−1

100

101

102

104

103

G

V

Firm arrest

Intermediate
state

Free
flowing

(b)

Vh

Vns

 C = 10−2

C = 104

 C = 102

 C = 1

FIGURE 7.11 (a) Sliding speed U and (b) translation speed V of the
sphere, solutions of Equation (7.31), versus the shear rate G for different val-
ues of the visco-adhesive parameter C. Dashed curves represent (presumably)
unstable states. The dot-dashed lines show the solutions derived in Equation
(7.4) for a sphere moving at its free hydrodynamic velocity (Vh) and in Equa-
tion (7.7) for a sphere rolling without sliding (Vns). The three different types
of motion for an adhesive sphere are identified for the case C = 104. Here
k = 10, d = 1, A = 10−2, � = 0.9 and  = 1.
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firm arrest and the intermediate state is found for 68 � G � 221. The critical
shear rates are approximately ten times larger than those found for A = 10−4.

The effect of varying k, the parameter that compares adhesive forces due to
bond tilting to that due to bond stretching, is shown in Figure 7.12, where U

and V are computed for k = 0 (“floppy bonds”) and k = 100 (“stiff bonds”).
For comparison, the other parameters are the same as in Figure 7.10, which
was obtained for k = 10. In all cases, the three different states are observed
and so are the different regions of bistability. Qualitatively, bonds’ resistance
to tilting does not seem to affect the sphere’s behavior. Quantitatively, we
find that the sliding speed scales as 1/k for k ≫ 1 in the tank-treading and
firm arrest regimes. The translational speed V scarcely changes as k varies.

In summary, three different regimes can be identified: (1) the sphere ad-
heres to the wall (the bonds preventing both sliding motion and translational
motion); (2) the sphere tank-treads on the wall (the bonds preventing sliding
motion); or (3) the sphere is free from adhesive forces (with most of the bonds
broken). These three regimes may overlap for some values of the parameters,
giving rise to regions of bistability. They are shown in Figure 7.13, where the
state diagram of the sphere is reported in (G, C)-parameter space.

7.5 Discussion

In a previous theoretical study, we described the effects of sliding friction on
the motion of a cylinder in a shear flow [24]; we emphasized the nonlinear
relationship between sliding speed and adhesion forces. Our model has here
been extended to the 3-D case of an adhesive sphere near a wall. Conceptually,
the binding between the wall and a moving object occurs in a similar way in
2-D or in 3-D, but qualitative differences in the hydrodynamics induce more
dramatic changes. For instance, the horizontal velocity of a cylinder scales
as A

1/2
G∗ R∗, whereas a sphere moves faster, as G∗ R∗/| log A|. These velocities

determine the time scale for bonds to be advected from the leading edge to
the trailing edge of the rolling cell. Comparing this to the time scale for bond
breakage gives a critical shear rate beyond which binding kinetics cannot be
assumed to be at equilibrium (as in the so-called rapid kinetics assumption).

This shear rate is G∗
neq ∼ K ∗

of f,eq in 2-D and G∗
neq ∼ A

1/2| log A|K ∗
of f,eq in 3-D.

For physiological parameter values (see Table 7.1) and in the limit A ≪ 1,
it makes little sense, in 3-D, to assume rapid kinetics (although it can be
formally justified in 2-D). For this reason, we incorporated nonequilibrium
binding kinetics effects in the present 3-D adhesion model.

In addition to the nonlinearity between adhesive friction and sliding speed
(see Figure 7.7), nonequilibrium binding introduces another nonlinear relation,
between the torque exerted on the sphere by adhesion molecules and the
translation speed (Figure 7.8). The advection of bonds from the front to the
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FIGURE 7.12 (a) Sliding speed U and (b) translation speed V of the
sphere, solutions of Equation (7.31), versus the shear rate G for different val-
ues of the visco-adhesive parameter C. Dashed curves represent (presumably)
unstable states. The dot-dashed lines show the solutions derived in Equation
(7.4) for a sphere moving at its free hydrodynamic velocity (Vh) and in Equa-
tion (7.7) for a sphere rolling without sliding (Vns). The three different types
of motion for an adhesive sphere are identified for the case C = 104. Here
k = 0 for (a) and (b) and k = 100 for (c) and (d), d = 1, A = 10−4, � = 0.9,
and  = 1.
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FIGURE 7.13 State diagram of the sphere. (a) A = 10−2; (b) A = 10−4. The
wedges are the critical shear rates that bound the different bistable regions.
Dotted lines: k = 0; solid lines: k = 10; dashed lines: k = 100. Values of the
other parameters: d = 1, � = 0.9, and  = 1.

back of the rolling sphere, when it occurs on a time scale comparable to
(or shorter than) bonds’ characteristic lifetime, causes an accumulation of
consummated bonds near the back of the sphere. This asymmetry generates a
torque about the center of the sphere that tends to impede the rolling motion.

As the shear rate varies, the sphere’s motion at steady state exhibits a vari-
ety of possible features, characterized by the sphere’s translation and sliding
velocities (V and U , respectively). The behavior depends on the visco-adhesive
parameter C that compares adhesion forces to viscous forces exerted on the
sphere. Results also vary with the separation distance �∗ between the sphere
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and the wall. Physically, this distance is determined by a vertical balance
of forces on the sphere. However, the net vertical force depends strongly on
the nature of nonspecific interactions between the sphere and the wall, and is
therefore inherently very system dependent. For the sake of simplicity, �∗ was
chosen as a fixed parameter in our model and assumed to be comparable to
the bonds’ unstretched length �∗ (results are given for �∗ = �∗, principally).

Typically, as the shear rate increases, we observe a transition from a regime
where adhesion is important (the sphere is in the tank-treading state) to a
regime where the sphere is transported freely by the flow (the free-flowing
state). The transition is abrupt and there exists a bistable region where both
regimes are stable (Figures 7.10 through 7.13). Depending on the bonds’ phys-
ical properties and the aspect ratio �∗/R∗ between bonds’ unstressed length
and the radius of the sphere, the tank-treading regime can be subdivided into
two qualitatively distinct regimes: (1) the intermediate state where the sphere
rolls almost without sliding and at a velocity smaller than, but comparable to,
the velocity it would have without adhesive binding (and in this case the trans-
lation speed does not depend on the strength of the bonds); (2) the firm arrest
state where the sphere sticks to the wall and rolls much more slowly, at a veloc-
ity that scales like the inverse of (some measure of) the strength of the bonds.

To our knowledge, no experiments have been conducted that explicitly
demonstrate the bistability of adhering cells in a shear flow. However, some
published results suggest signs of shear-induced hysteresis. For instance, in a
flow-chamber experiment, leukocytes entering an adhesive region are observed
to adhere in large numbers when the shear rate is approximately 100 s−1 and
in very small numbers for higher shear rates (≈250 s−1) [22]. However, track-
ing already adherent cells reveals that they remain bound for shear rates up
to approximately 400 to 1000 s−1, thus indicating a range of shear rates where
both unbound and bound states are (to some extent) stable. Recently it has
been argued that this hysteresis is a consequence of the catch-bond behavior
of the L-selectin–PSGL-1 pair, namely that the bonds’ rate of dissociation is
lowered by an increase in the exerted traction [5]. The authors also propose
a shear-controlled on rate as a possible explanation. Our analysis proposes
an alternative explanation because a similar macroscopic behavior can be ob-
served when using Dembo et al.’s model [6] with slip bonds, accounting also
for the effects of bond tilting. Also, in our model, neither the rate of forma-
tion nor the rate of dissociation of individual bonds is directly modified by
the sliding motion of the sphere.

Accounting for cell deformability is expected to lead to significant differ-
ences in the scalings of adhesion forces. The adhesion area at the base of
the sphere would increase with the deformability, enhancing adhesive effects
dramatically. Concurrently, asymmetries in cell deformation may break the
reversibility of the Stokes equation and generate a net viscous lift force that
tends to detach the cell from the wall. Further investigation is therefore re-
quired to elucidate how the state diagram in Figure 7.13 is modified by mem-
brane deformation.
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8.1 State-of-the-Art on Cell Mechanosensitivity

It is now well recognized that tissue cells have the ability to sense their extra-
cellular environment and respond by adapting their structure, internal tension,
and mechanical properties [22], modulating their function without being sub-
jected to external forces [13,48]. From soft to stiff substrates, it has been shown
that: (1) cell spreading is increased and stress fibers are reinforced in epithelial
cells, fibroblasts, and smooth muscle cells but not always in neutrophils [26];
and (2) cell migration is facilitated due to larger intracellular traction forces
and cell spreading area is increased [34]. Moreover, the function of certain
cells has been found optimal in an intermediate range of environmental stiff-
ness. This is the case with skeletal muscle cells, which optimally differentiate
when they grow on substrates with stiffness close to muscle tissue stiffness
[15]. It should be emphasized that tissues have very different stiffness levels;
a normal tissue might have very different elastic properties. With a Young’s
modulus on the order of 0.5 kPa, brain appears the softest tissue. Muscles
have a Young’s modulus of 10 kPa. The Young’s modulus of skin is approxi-
mately 102 kPa while that of bones reaches up to 106kPa. Most importantly,
pathophysiological phenomena develop in the context of altered extracellular
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mechanical properties. The role of these properties on the disease processes is
not fully understood. This is the case for tumor progression, which is modu-
lated by substrate and extracellular matrix (ECM) mechanical properties [49].
The definition of new therapeutic processes such as nerve tissue engineering,
encapsulated cell therapies and self-renewal and differentiation of stem cells
also requires considering biophysical cues in addition to biochemical cues. It
has been shown that the rate of neurite extension and branching critically
depends on substrate rigidity [32]. Moreover, the mechanical properties of the
stem cell’s microenvironment regulate its behavior [41].

Although it has been recognized for a long time that cell shape, structure,
and function are controlled by external forces [6,7], the recognition that pas-
sive mechanical properties of the extracellular environment control cell shape,
structure, and function raises new fundamental questions [14,34,38,50]. Sev-
eral reviews have summarized how externally applied forces may trigger a
cellular response [16,30,42]. The question we address in this chapter is differ-
ent and can be summarized as follows: by which physicochemical mechanism
do cells sense and adapt to the mechanical properties of the extracellular en-
vironment? To answer this question, a fundamental assumption to consider is
that adhesion site maturation—namely, adhesion sites in their dynamic phase
(i.e., not the quasi-stationary adhesion site sketched in Figure 8.1)—plays a
key role [4].

Such an assumption is based on the consideration that a physicochemi-
cal coupling occurs between transmembrane proteins and actomyosin tensed
cytoskeletal filaments (see Figure 8.2).

Note that adhesion site dynamics are not the only pertinent parameter for
cell sensitivity. Here we explain why, in addition to adhesion site dynamics,
cellular prestress must also be considered, showing that cell sensitivity to
substrate stiffness results from a cellular–molecular coupling at the adhesion
site level (see below and Féréol et al. [20]).

FIGURE 8.1 The stationary adhesion site model. The stationary adhesion
site works in static equilibrium between intracellular traction forces gener-
ated by actomyosin coupling and the integrated reaction force raised by the
assumed constant viscoelastic properties of the underlying substrate. (Modi-
fied from [3, 39].)
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FIGURE 8.2 The dynamic adhesion site model (extracellular environment
+ adhesion site + actin bundle filament). The dynamic adhesion site takes
into account the nanoscale motion �(t) = Z(t) − X (t) of the adhesion site
relative to the actin bundle on which a constant traction force T is exerted.
Z(t) is the coordinate of the displacement of the actin bundle and X(t) is
the coordinate of the adhesion site. The link force between adhesion site and
actin bundle derives from a two-state (or multistate) potential energy U. F
may be much smaller than T at the onset of adhesion site maturation. In
response to the binding force, a reaction force Fex increases proportionally with
time. This reaction force depends on the spring constant k of the extracellular
environment and on VR (the speed of actin retrograde motion in response
to intracellular tension). The other important mechanical parameters are the
friction coefficient between the actin bundle and cytoplasm �R , and the friction
coefficient within the extracellular environment, which is supposed to behave
as a simple Voigt solid model. (Modified from [20].)

It has been clearly established that adhesion sites are clusters of membrane-
associated proteins constituting a discrete physicochemical link between the
cytoskeleton (CSK) and the extracellular environment [45]. The physical link
between extracellular matrix, transmembrane receptor, CSK, and nucleus con-
stitutes the mechanotransduction pathways [29,35,37,45]. These specific path-
ways transmit to the nucleus the force signal initiated extracellularly or intra-
cellularly secondary to actomyosin motor protein located along the F-actin fil-
aments, allowing the cell to continuously adapt to its extracellular matrix [25].
Most simple models of the cell–substrate interaction—typically, the model de-
picted in Figure 8.1—are based on the static mechanical equilibrium between
contractile forces and substrate reaction forces [8,26]. More sophisticated mod-
els are based on the complex interplay of physical and biochemical signals in
the feedback of matrix stiffness on contractility and cell signaling [13,40]. More
precisely, while sensitivity to external forces involves outside-in signaling path-
ways [39], triggering passive mechanical properties of the extracellular matrix
supposes a bi-directional transmission of the mechanical information through
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inside-out and outside-in signaling pathways [13,40]. However, these models
fail to provide a clear view of the mechanisms implicated in cell sensitivity.

The alternative approach we propose to delineate cell sensitivity considers
that adhesion sites pass through different stages of development (e.g., initial
adhesion (IA) [27], focal complex (FC) [24], focal adhesion (FA) [51]) charac-
terized by the recruitment of an increasing number of constituent components
resulting in molecular reinforcement of the links between CSK and extra-
cellular environments. Then, as adhesion sites gain in molecular complexity
and strength (without necessarily increasing their area), they lose their dy-
namic character and become more stationary, providing an evolutionary cell
signaling that contributes to cell adaptation. Indeed, it can be shown that
Newton’s action–reaction principle governing the static force equilibrium at a
given adhesion site does not leave room for fully mature adhesion sites (FAs)
to exhibit such a substrate stiffness sensitivity [20]. Dynamic adhesion sites
behave in a way such that mechanical relaxation of the extracellular environ-
ment tends to slow down drastically the “instantaneous” biochemical process
of receptor–ligand binding and thereby provides an adhesion site force regu-
lation that depends on the mechanical properties of the substrate. The same
theory shows that intracellular tension would also be able to slow down the
biochemical process of adhesion receptor binding. Classical experiments by
Choquet et al. using optical tweezers as a calibrated spring have shown that
nascent or dynamic adhesion sites match the force they exert to the stiffness
of the substrate [9,38]. Thus, different cells would produce different responses
that adapt to the wide variety of extracellular mechanical environments. We
presently use two models (i.e., alveolar epithelial cells (AECs) and alveolar
macrophages (AMs)), exhibiting, respectively, stationary and dynamic adhe-
sion sites, and compare their sensitivity to substrate stiffness with theoretical
predictions.

8.2 Rationale for Cell Mechanosensitivity

8.2.1 Force Regulation of Surface Adhesion Molecules

The effect of mechanical stress on molecular adhesion binding motivates an
entire research field on the dynamic response of single molecular interactions
(i.e., protein mechanics). A striking application is the understanding of adhe-
sive interactions of leukocytes and blood vessel walls, which involves a com-
petition between bond formation and breakage [36]. It is now known that
specific interactions of P-selectin, expressed by endothelial cells or platelets
with PSGL-1 (P-selectin glycoprotein ligand-1), enable leukocytes to roll on
vascular surfaces during inflammatory response by transient interruption of
cell transport (through a tethering process) in blood flow under sustained
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wall shear stress [44]. The applied force (i.e., the mechanical work) lowers
the free-energy barrier to bond rupture and thus shortens bond lifetimes [2].
However, based on theoretical considerations, it has been hypothesized that
force could also prolong bond lifetimes by deforming the adhesion complexes
into an alternative locked or bound state [12]. These two distinct dynamic
responses to external forces are referred to as slip and catch bonds [12]. Using
experimental devices (e.g., atomic force microscopy and flow chamber ex-
periments), it has been recently shown that increasing forces first prolonged
(catch bond) and, beyond a critical force, shortened (slip bond) the lifetime
of P-selectin complexes with P-selectin glycoprotein ligand-1 [36]. Note that
the force-dependent reinforcement of catch bonds is susceptible to explain
the paradox of leukocyte rolling whose “stability” was found to increase as
hydrodynamic forces increase [23]. This well-known phenomenon illustrates
the counterintuitive behavior of the mechanical resistance of receptor-ligand
binding.

From a theoretical point of view, the model proposed by Bell for surface ad-
hesion molecules is based on the knowledge of binding properties of solutions
formed by the same molecules [2]. In the initial approach of Bell, the receptor–
ligand complex randomly oscillates due to Brownian thermal excitation, pro-
viding some probability of bond rupture P described by the Boltzmann factor
P = exp[(−�E)/kB T ], where kB is the Boltzmann constant, T is the absolute
temperature, and �E is the activation energy required for bond dissociation.
Note that kB T , the thermal energy, is close to 4 pN·�m at biological tem-
peratures (∼300K). If a force F is applied to the adhesion bond, the energy
required to break the bond will decrease because the force brings to the bond
a mechanical energy F·d*, where d* is a length scale (in the nanometer range)
characterizing the molecular displacement associated with the deformation of
the adhesion complex. The effect of the force on the dissociation rate kof f

is classically given by kof f = k0 exp(F · d∗/kB T ), known as Bell’s law in the
biological field. On the other hand, because thermodynamic principles imply
a decrease in receptor–ligand affinity (ka) when a dissociation force is applied
[12], kof f (= ka/kon) does not necessarily increase but could decrease, such as
in the case of catch bonds.

The limit of these early approaches comes from the complexity of molecu-
lar interactions considering that there are not only two states such as slip
and catch bonds, but an infinity of states related to a continuum in the
mechanochemical energy landscape that governs physical strength and ki-
netics of molecular bonds under stress. Under external forces, barriers in the
energy landscape are lowered and bond lifetime shortens because the chemi-
cal energy barrier at distance x decreases by F · x brought by the mechanical
work. When isolated bonds are ruptured under steady ramps of force, barri-
ers diminish in time and thus the rupture force depends on the loading rate
(= force/time). This has been demonstrated by experiments in which weak
bonds were probed with ramps of forces over an enormous range of loading
rate (10 to 105 pN·s−1) [17]. The most frequent forces for failure plotted versus
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FIGURE 8.3 The potential energy function characterizing the link between
dynamic adhesion site and actin bundle is plotted versus the relative distance
�. A simple typical shape (dotted line) is chosen for U (�, S). S is the state
variable of the adhesion site (see Figure 8.4). ��U is the activation energy
to “escape out from the well” for S = 1. The effective potential energy Ue f f =
U (�, S) + 0.5k(� − VR t)2 is plotted versus � (continuous line). Ue f f , which
includes the substrate elastic energy, behaves as a double-well potential energy
with two characteristic values of � that correspond to the minima of Ue f f (�
Ue f f /�� = 0) obtained for (1) �1 ≈ 0, which corresponds to adhesion site
binding; and (2) �2 ≈ VRt, which corresponds to adhesion site dissociation.

a logarithmic scale of the loading rate establish a dynamic spectrum of bond
strength that images the prominent energy barriers that characterize each spe-
cific molecular interaction. One of the simplest forms of the energy–distance
curves is shown by the dotted line in Figure 8.3. This means that bond rup-
ture supposes to cross over a succession of barriers (actually only one in the
simplified form is shown in Figure 8.3).

The Bell model consists of estimating the rupture frequency of the molecular
link as the product of a “frequency to escape out from the well” times “the
probability to have the available activation energy �E .” For instance, in the
PSGL-1/L-selectin model [18], energy barriers were found 0.06 nm and 0.4 nm
from equilibrium position while forces above 75 pN created bond dissociation
in less than 10 ms.

8.2.2 Force Regulation of Adhesion Sites

8.2.2.1 Stationary Adhesion Sites

It is assumed that the adhesion site is in static equilibrium between the trac-
tion force (T) transmitted to the adhesion site via a bundle of actin filaments
and an opposed reaction force generated within the viscoelastic substrate in
response to the traction force (see Figure 8.1). The traction force is generated
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FIGURE 8.4 The mechanochemical response of the adhesion site is charac-
terized by a state variable S given by 〈S〉F = tanh 1

kB T
(−�G + F · d∗). S = −1

is the passive state and S = 1 is the active state. S = 0 corresponds to
�G = F · d∗, usually called degenerated state. During integrin activation, the
adhesion site passes from passive to active states due to the conformational
change of integrins. If a force F is exerted on the adhesion site, the mechanical
work F · d∗ contributes to reduce the activation energy required for adhesion
site activation.

intracellularly by actomyosin motors, which also contribute to internal ten-
sion. The traction force generates a more or less local stress distribution inside
the substrate whose area integral is equal to the traction force (T). Using lin-
ear elasticity theory, it can be shown, in 1-D and 3-D continuous mechanical
models, that the substrate stress field cannot depend on the elasticity proper-
ties of the substrate [4,20]. The reaction forces exerted by the substrate on a
stationary adhesion site are therefore independent of substrate rigidity. Hence,
the activation of stationary adhesion sites, which contain force-sensitive pro-
teins at the cell–substrate interface, cannot be regulated by substrate rigidity.
This is not inconsistent with the idea that regulation of mature adhesion sites
is still determined by mechanical forces. These mechanical forces are normally
traction forces generated intracellularly by myosin II motor proteins coupled
to the actin filaments that are connected to the site (Figure 8.1), but external
forces can also stimulate adhesion site development [3,39]. It is indeed well-
known that the size of mature focal adhesion sites reversibly increases and
decreases as a function of the applied force [25], but the lack of sensitivity of
mature adhesion sites for mechanical properties of extracellular environment
constitutes a rather new idea [4,20].

8.2.2.2 Dynamic Adhesion Sites

In contrast to the stationary case, the dynamic adhesion site already used by
[4,20] is assumed to be connected to the actin filament bundle through a link



228 Cell Mechanics

potential energy U (�, S) that describes the variable mechanochemical linkage
between the actin filament bundle and the adhesion site. Thus, compared to
the stationary adhesion site, the filament bundle in a dynamic adhesion site is
similarly exposed to a traction force T directed along the x-axis in Figure 8.2,
but the difference is that the force F exerted on the site (which has direction T)
could be only a fraction of the actomyosin traction force T. The link potential
energy U (�, S) depends on two variables: (1) �(t)(= Z(t) − X (t)), which is
the relative displacement (at the nanometer scale) between the actin filament
bundle and the linked adhesion site (see Figure 8.2); and (2) the variable S,
which characterizes the variable state of a given site changing from passive
(S = −1) to active (S = 1).

The feature of the link potential energy U and the variable distance � be-
tween adhesion site and actin filament resembles that found for surface ad-
hesion molecules (see curve with dotted line in Figure 8.3 and the paragraph
above): (1) U (�, S) has an absolute minimum near � = 0, (2) U (�, S) tends
toward 0 as � increases toward large values, (3) the activation energies to
escape out of the potential well (barriers) are denoted �U for S = −1 and
��U for S = 1. These maxima of U (�, S) are supposed to occur at � = � f

(see Figure 8.3). �U/� f is supposed to be much smaller than T, meaning that
the force of the link potential is much weaker than the traction force (passive
state). In the active state, the activation level is supposed to be much higher
than in the passive state: �U/� f < ��U/� f ∼ T .

The state of the dynamic adhesion site is supposed to reversibly vary be-
tween an inactivated (or passive) state (S = −1) and an activated sate (S = 1),
which takes into account integrin activation induced by phosphatase activity
triggered by a force-induced conformational change of adhesion site integrins.
Under chemical equilibrium conditions, the likelihood value of the site variable
S is obtained by the expression:

〈S〉F = tanh
1

kB T
(−�G + F · d∗) (8.1)

where �G, the Gibbs free energy difference between these two states (in the
absence of applied force), depends on the number of integrins at the site and
on the concentration of reactants involved in the activation reaction. F · d∗

is the thermodynamic work performed by the force F to the link between the
adhesion site and the cytoskeleton; d∗ is the characteristic length scale (in the
nanometer range) of the molecular displacement during the conformational
change of integrins. The typical evolution of the state variable S is shown in
Figure 8.4.

The main feature of the dynamic adhesion site model presented in Figure
8.2 is to integrate microscale and nanoscale effects in a unique set of equations.
In response to the force F derived from the link potential energy and applied
to the adhesion site—from the cellular side—a recoil force resulting from the
viscoelastic reaction of the substrate is exerted on the adhesion site. This
recoil force consists of the viscous drag �B

d X
dt

proportional to substrate friction



Understanding Adhesion Sites as Mechanosensitive Cellular Elements 229

coefficient �B(≈ �a) added to the substrate recoil force −k X proportional to
the spring constant k(≈ Esub · a), where a is the size of the dynamic adhesion
site supposed to be unchanged during the maturation. f (t) is the thermal
random noise exerted on the site and is provided by fluctuation–dissipation
theorem. The dynamic adhesion site motion is described by the equation:

�B

d X

dt
+ k X =

dU (�, S)

d�
+ f (t) (8.2)

The motion of the actin filament bundle depends on the equilibrium of the
sum of forces exerted on the bundle on the cellular side, that is, the constant
traction force (T ), the link force, the thermal fluctuation random force f ∗(t),

and the viscous retarding force �R
d Z
dt

, the latter resulting from the friction
between actin filaments and the cytoplasm (friction coefficient: �R).

�R

d Z

dt
=

dU (�, S)

d�
+ T + f ∗(t) (8.3)

T (= �R ·VR) is also responsible for the retrograde motion of the actin bun-
dle at a constant velocity VR . VR , the velocity of actin retrograde motion, can
thus be used to characterize the basic activity of actomyosin motors in the
cell, which is close to the concept of internal tension [47]. Note that when
the link force F is cancelled i.e., under conditions such that the link potential
energy function U (�, S) reaches a minimum (dU/d� ≈ 0), the filament bundle
is under the unique effect of T, not arrested by the adhesion site linkage, and
therefore the filament bundle is drawn intracellularly at the speed VR .

Equations (8.2) and (8.3) can be combined to provide the equation of
motion—at the nanoscale—of the adhesion site relative to the actin filament
bundle. Moreover, assuming times much shorter than the mechanical relax-
ation time (i.e., t ≪ � = (�B + �R)/k(= �R/k because �B ≪ �R , a condition
experimentally verified when polyacrylamide gels are used [43]), the relative
motion of the adhesion site of coordinate �(t) can be described by the following
equation:

�B

d�

dt
+ k� − kV R t ∼= −

dU (�, S)

d�
+ �B VR + f (t) (8.4)

Equation (8.4) is a Langevin equation that describes the nanoscale motion
of a particle of coordinate �(t), moving in a link potential U (�, S), subjected
to a small fraction of the constant traction force (�B/�R)T and responsible
for a time-dependent reaction force Fex (t)(= kVR t), the latter depending on
the global mechanical properties of both the substrate and the cell. The ef-
fective potential energy is given by Ue f f = U (�, S) + 0.5k(� − VR t)2 and its
variation with the relative distance � is shown in Figure 8.3. The term 0.5
k(� − VR t)2 corresponds to the elastic energy accumulated in the deformable
substrate (giving a time-dependent parabola not plotted in Figure 8.3). Ue f f

has the form of a double well potential with a first minimum �1 near � = 0
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and a second minimum �2 near � = VRt. The first minimum corresponds to
an adhesion site bound to the filament bundle while the second minimum cor-
responds to a dissociated site. Note that a few percent of the traction force
(�B/�R)T transmitted to the adhesion site is sufficient to initiate the reaction
force Fex (t)(= kVR t) and thereby the adhesion site development. According
to Equation 8.4, this reaction force can even be viewed as the sole oppor-
tunity for the adhesion site to maturate with time. The slope (kVR) of the
time-dependent reaction force plays a role equivalent to the “loading rate”
described above by limiting (thus controlling) the adhesion site maturation.
The two limiting factors are k and VR . The spring constant k represents the
passive and global elasticity properties of the substrate while the velocity of
actin retrograde motion VR can be related to the global intracellular level of
activation of actomyosin motors.

At the instant of dissociation, the most likely force 〈F(k)〉 exerted on the
adhesion site can be estimated by applying Kramers’ method to Equation
8.4 [28]. This leads to a logarithmic dependence on kVR , which has the same
physical origin as the logarithmic dependence on force loading rate of the well-
known Bell-Evans expression for surface adhesion molecules [17] (see above):

〈F(k)〉

f�

≈ ln

{

kVR

J f�

}

+
1

f�

〈�U 〉

� f

wi th f� = kB T/� f (8.5)

Equation (8.5) is transformed into a nondimensional equation (see Equation
(8.6)) after appropriate normalization of force by f�, energy by kB T , distance
by � f . Moreover, after considering that 〈�U 〉, the likelihood value of activation
energy of the potential during dissociation, or thermal average of the passive
(S = −1) and active (S = 1) activations energies, can be written in terms of
activation energies �U (S = −1) and ��U (S = 1); that is, 〈�U 〉 = �U +

1/2��U (1+〈S〉F ).

F̃(k̃) ≈ lnk̃ +

[

�Ũ +
��Ũ

2

{

1 + tanh

[

(F̃(k̃) − F̃c)
d∗

� f

]}

]

(8.6)

Results of Equation 8.6 are plotted in Figure 8.5.
The logarithmic dependence on substrate rigidity occurs up to a force level

F̃c corresponding to the threshold rigidity k̃c where the energies of active and
passive states degenerate (Fc = �G/d∗) and the dissociation force level di-
verges (see curve in Figure 8.5). These critical conditions correspond to S = 0
in Equation (8.1). For −1 < S < 0 (i.e., k̃ < k̃c), the dynamic adhesion site
follows a substrate-dependent reinforcement, meaning that the dissociation
force will increase logarithmically with the normalized substrate stiffness k̃.
Results in Figure 8.5 also suggest that extremely soft substrates and/or to-
tally immature adhesion sites (S = −1) will not be able to reinforce even
partially. This case would correspond to fully slipping adhesion sites. On the
other hand, in the case of too rigid substrates and/or fully mature adhesion
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FIGURE 8.5 Graph of the function given by Equation (8.6). The nor-
malized dissociation force F̃(k̃) for a given adhesion site is plotted versus
the normalized substrate stiffness k̃. The characteristic stiffness used for such
a normalization is given by: k0(= J f �/VR), a stiffness scale which charac-
terizes the dynamic properties of the adhesion site at the molecular level.
J [= J0 exp(− �U

kB T
)] is the attempt rate for “escape out of the well” or rate

of dissociation (i.e., close to kof f in the Bell’s law above) which intricately
depends on (1) local curvature of U (�) in the vicinity of site dissociation,
(2) friction coefficients, and (3) temperature. Values of the state parameter
S increase from −1 to 1 as the energy level required for adhesion site disso-
ciation increases. S ∼ −1 corresponds to the lowest level of dissociation en-
ergy (�Ũ = �U/kB T ) and thus to a fully slipping adhesion site which could
never maturate. Dynamic adhesion sites would correspond to an intermediate
range of S values (−1; 0) corresponding to the transition between logarith-
mic dependence and the increasing contribution of elastic energy associated
to the substrate elasticity (i.e., 0.5k(� − VR t)2). Substrate-dependent adhesion
site reinforcement is a reversible process. Beyond a critical value of substrate
rigidity k̃c (also called degenerated state), the adhesion site is reinforced and
can fully transmit the actomyosin traction force toward the substrate. Sta-
tionary adhesion sites pertain to the upper (nonlogarithmic) zone of the di-
agram (S varies in the range (0; +1) in which adhesion sites are stationary
and irreversibly reinforced, fully locked once the level of dissociation energy
(��Ũ = ��U/kB T ) expected for S ∼ 1 is reached. (Modified from [20].)

sites, cells would also remain insensitive to substrate stiffness, following the
upper horizontal line with no backward evolution, as previously indicated by
Bruinsma [4]. This case corresponds to fully locked adhesion sites, which can
be described by the stationary adhesion site model treated above.
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FIGURE 8.6 In response to the traction (or only a weak part of the trac-
tion), the reaction force Fex increases linearly as time increases. The slope
of the reaction force (kVR) constitutes the loading rate. The present diagram
sketches the case of a rather soft substrate (small k1) and rather low tensed
cell (small VR). Because the dissociation force level is low (S close to −1),
the reaction force will rapidly reach the dissociation threshold and the adhe-
sion linkage will break, leading to a succession of binding, dissociation, and
rebinding. Note that dissociation always occurs for an instantaneous local
minimum of the link potential energy function and a time much shorter than
the mechanical relaxation time.

To summarize the main message brought by the dynamic adhesion site
model and to synthesize the knowledge brought by Equations (8.4) through
(8.6), we have plotted in Figure 8.6 and Figure 8.7 the time evolution in the
two typical cases described below.

1. For soft substrates (k1) and/or low tensed cell, the loading rate (k1VR) is
low and the reaction force starts to increase in response to even a small
fraction of intracellular traction transmitted. Due to the low dissocia-
tion force level (close to �U/� f ), the reaction force rapidly reaches
the dissociation level, the adhesion site breaks, and one can expect a
succession of binding, dissociation, and rebinding. Note that dissocia-
tion occurs much before the time for mechanical relaxation, which is
approached by �1 = �R/k1 (see Figure 8.6).

2. For stiff substrates (k1) and/or highly tensed cell, the loading rate (k2VR)

is higher and the reaction force increases more rapidly in response to
intracellular traction. Due to the higher dissociation force level asso-
ciated with stiffer substrate (see Figure 8.5 and Equations (8.5) and
(8.6)), the dissociation force increases, which allows sufficient time for
the reaction force to reach the degenerated state (S = 0), integrin
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FIGURE 8.7 The same graph as in Figure 8.6 but for a stiffer substrate
(k2 > k1) and/or a more tensed cell. Because the loading rate is increased, the
reaction force will reach more rapidly a higher level while, at the same time,
the dissociation force level is increased secondary to the increase in substrate
rigidity (see Figure 8.5 and Equations (8.5) or (8.6)). Therefore, the adhesion
site has more chances to become reinforced, thus impeding breaking. Hence,
after a time equivalent to the new mechanical relaxation time �2, the whole
traction force can be transmitted to the adhesion site, and the actin filament
bundle is arrested. Once reinforced, the adhesion site behaves as a stationary
adhesion site.

activation, and thus adhesion site reinforcement. Then the adhesion site
has a chance to maturate toward a fully locked and fully reinforced link.
The traction force is fully transmitted to the adhesion site and the fil-
ament bundle is arrested. The adhesion site could not dissociate before
the mechanical relaxation time �2 = �R/k2 even though �2 < �1 (see
Figure 8.7).

In conclusion, a key assumption in understanding cell sensitivity to substrate
mechanical properties is to consider that the activation of substrate-sensitive
cell elements must be mechanically limited by substrate relaxation and not by
chemical reaction between active and passive states, which is definitely much
faster.

8.3 Experiments on Cell Mechanosensitivity

We recently characterized cell sensitivity to substrate stiffness using two cel-
lular models to represent two different systems of adhesion [20]: (1) alveolar
epithelial cells (AECs) grown at confluence or subconfluence representative



234 Cell Mechanics

of a stationary adhesion system and (2) resting alveolar macrophages (AMs)
representative of a dynamic adhesion system. We used: (1) rigid substrates of
plastic or glass (i.e., Young’s modulus Esub ≥ 3 MPa), (2) stiff polyacrylamide
gel substrate (i.e., Esub ≈ 60 kPa), and (3) soft polyacrylamide gel substrate
(i.e., Esub ≈ 20 kPa). AMs were also cultured on epithelial cell monolayers
(i.e., Esub ≈ 0.5-1 kPa) [19]. The results are summarized in Figures 8.8 and 8.9.

The two cellular models—AECs and AMs—were chosen because they are,
respectively, representative of stationary (Figure 8.8(d)) and dynamic (Figure
8.8(c)) adhesion systems. Alveolar epithelial cells grown at confluence or sub-
confluence (AECs) are representative of a focal adhesion system (bottom
right of Figure 8.8(d)), which is also a stationary adhesion site system [1,5].
Alveolar macrophages (AMs) provide a cellular model representative of the
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(c) (d)

(a) (b)

FIGURE 8.8 (See color insert following Page 398.) Comparison of alve-
olar macrophages (AMs) and epithelial cells (AECs) for cell structures and
adhesion sites. (a) and (b): 3-D reconstructions of F-actin structures and 3-D
localizations of paxillin, an adhesion molecule present in adhesion sites of both
cell types. (c) and (d): The ultrastructure of adhesion sites in AMs (c): the
podosome-like structure with a core of actin and a ring of paxillin. The ultra-
structure of adhesion sites in AECs (d): the well-known focal adhesion sites
made of bundles of parallel filaments connected to integrins through numerous
specific molecules including paxillin.
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FIGURE 8.9 The effect of substrate stiffness of rigid (3 MPa), stiff gel
(60 kPa), soft gel (20 kPa), epithelial cell monolayer (0.5 to 1 kPa) on the
shapes of alveolar macrophages (AMs). The maximal basal surface area of
AMs decreases as substrate stiffness decreases. This result is confirmed by the
3-D reconstructions of actin structure of AMs shown for glass substrate (top
left) and cell substrate (top right). (Modified from [19,21,33].)

podosome-like system (sketched on Figure 8.8(c)), which can be seen as a dy-
namic system of adhesion [3,11]. Spatial reconstruction of paxillin and F-actin
after immunostaining (see reconstructed images in Figures 8.8(a) and (b)) has
allowed us to verify that the two cellular models are both physically linked to
the substrate through adhesion sites containing paxillin. Moreover, the cellu-
lar and molecular structures existing between the cell and the substrate are
markedly different in terms of F-actin organization and adhesion site struc-
ture. In AECs (Figures 8.8(b) and (d)), the dense F-actin network near the
basal plane covers the entire cell due to multiple interconnections between
short and long dense actin stress fibers. The latter generally end at focal
adhesion plaques visible through reconstructed aggregates of paxillin. These
plaques are notably located at the cell periphery in AECs. In AMs (Fig-
ures 8.8(a) and (c)), the dense F-actin network does not extend throughout
the entire cell, forming either punctuated structured or only local networks,
the exception may be at the origin of the circumferential lamellipodium.
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We concluded that AECs correspond to adhesion sites with the highest
maturation (or affinity; i.e., 0 < S < 1) which means highest dissociation
forces. Energy values of such a reinforced link could approach 100kB T and
might correspond to dissociation forces in the range 50 to 100 pN. Single-bond
mechanics of macrophage adhesion via a variety of specific ligands has been
investigated by Knöner et al. [31], leading to a maximum dissociation force of
10 pN at 10 pN s−1 loading rate. Such data confirm that AM adhesion sites
have rupture forces markedly smaller than AECs (see Figures 8.5 through
8.7). The present theory predicts that AMs probably adapt their shape to
substrate properties in a stiffness-dependent manner (Figure 8.5). Results in
Figure 8.9 indeed confirm that AMs are able to adapt their shape to substrate
stiffness. This is evidenced by the passage from a flattened shape to a more
rounded cell with higher cell height as substrate stiffness decreases [21]. In
contrast, AECs grown at confluence or subconfluence do not really modify
their shape when cultured on different substrates (results not shown in this
chapter). Surprisingly, this AM adaptation occurs despite an evident lack of
stress fibers, the latter elements classically considered the key mechanotrans-
duction pathways in tissue cells [8,10,46]. This suggests that AECs and AMs
fundamentally differ in terms of mechanosensitive pathways, as suggested in
a previous study [19].

Note that assuming a 1-�m-wide site, for the three substrates tested in this
study (plastic, stiff gel, soft gel), typical values of spring constant are k =
3000 pN nm−1, 58 pN nm−1, and 23 pN nm−1, respectively. Corresponding
values of �B for the polyacrylamide gels tested remain within the range 3.10−1

to 3.10−4 pN s nm−1 [43]. �R is on the order of 0.1 pN s nm−1 per filament,
that is, 10 to 100 pN s nm−1 for 102 to 103 filaments per actin bundle. Thus,
�B ≪ �R is a condition generally verified by the values given above for poly-
acrylamide gels (a condition required for the validity of Equation (8.4)). VR

is in the micrometer-per-minute (�m/min) range and characterizes actin dy-
namics in the lamellipodia. Values of kVR were 48000 pN s−1, 928 pN s−1,
and 368 pN s−1 for the three substrates tested.

8.4 Conclusions

As time or force increases, adhesion sites reinforce from initial adhesion sup-
porting the piconewton range to adhesion complex supporting the nanonewton
range. Fully mature focal adhesion can support up to a hundred nanonewtons.
Fully mature adhesion sites are mainly stationary while non mature adhesion
sites are more dynamic, leading to different sensitivities to substrate or envi-
ronmental stiffness.

Fundamental principles of continuum mechanics predict that reaction forces
exerted by the substrate on a stationary adhesion site are independent of
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substrate rigidity. Hence, activation of stationary adhesion sites (containing
force-sensitive proteins) at the cell–substrate interface could not be regulated
by substrate rigidity.

Considering the nanoscale displacement of the dynamic adhesion site rela-
tive to an actin bundle on which actomyosin exerts a constant traction force
reveals that, in response to this intracellular traction, a time-dependent re-
action force generated extracellularly by the substrate and intracellularly by
actomyosin motors raises and dramatically slows the physicochemical linkage
between adhesion site and actin filament. It also reveals that the dissociation
force depends on the logarithm of substrate stiffness. This mechanism limits
the time response to integrin activation and, moreover, makes cell sensitivity
to substrate stiffness dependent on more global intracellular and extracellular
factors such as intracellular tension or mechanical properties of the extracel-
lular environment.
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9.1 Introduction

Cell migration is an important feature of many biological processes such as tis-
sue invasion, the immunologic response, etc. and involves sophisticated mecha-
nisms such as the development of focal adhesions, possible extracellular matrix
(ECM) degradation, and activation of the actin–myosin complex to develop
forces necessary for traction. Depending on their type and the environment,
cells can move according to different types of locomotion, either in 2-D or 3-D.
For example, fibroblasts move on a 2-D substrate in the most conventional
way, as described by Sheetz [34]: they form a lamellipodium at the front, and
develop adhesion complexes so that they can pull on such anchors to detach
the rear part and move forward. On the other hand, fish keratocytes migrat-
ing on 2-D substrates take the form of a crescent [6,22]. In 3-D, two types
of motions have been observed for cancer cells migrating in 3-D collagen, the
amoeboid motion and the mesenchymal one [15,16].

2-D migration can depend on cell type and ligand matrix density, as shown
in previous works on substrates covered by different densities of ECM [27].
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The migration velocity versus ligand density curve usually exhibits a bell-
shaped curve with a maximum velocity at an intermediate ligand density,
which is the signature of an optimum affinity between receptor and ligand
molecules. This is the basis for understanding the complex machinery provided
by cells developing focal adhesions at the front while removing them at the
back in the conventional five-step motion [34]. To better understand these
features, fluorescence (confocal) microscopy is a very useful tool to show the
precise location of adhesion complexes involved during cell migration. The
formation of such focal contacts [4] allows the development of important forces
that the cell uses to move forward, usually called “traction forces.” They are
difficult to determine by straightforward analysis. Therefore, many attempts
have been made in the past 10 years to measure such forces in an indirect way
and different techniques have been developed:

� The original technique of Harris and co-workers [18], consisting of ob-
serving the magnitude and shape of wrinkles on a soft elastic film below
a cell

� The most classical method of Dembo and co-authors [9,10] measures the
motion of fluorescent beads embedded in a gel deformed by a cell

� Micro-patterned substrates [4,12,35] with thin poles whose deflection
directly gives the forces exerted by the cell

All these techniques have been tested in vitro and were quite effective for the
study of the motion of cells on 2-D rigid substrates. The first technique [18]
was initially qualitative, but further developments by Burton et al. [6], in
particular devoted to the study of keratocyte locomotion, revealed them as
quite quantitative. The last one, introduced by Balaban et al. [4], recently has
received a lot of interest [17] and important results concerning cell migration of
3T3 fibroblasts on rigid substrates have been obtained regarding the influence
of substrate rigidity. Indeed, as earlier understood by Lo et al. [24], cells
usually exert larger traction forces on more rigid substrates, this behavior
correlated with an increased contact surface and a reduced migration velocity.
The traction force increases for larger stiffnesses until a critical rigidity is
reached (around 80 kPa), where the force exhibits a plateau [17]. Although
very elegant, the technique of Balaban et al. still poses questions such as
whether cells behave similarly on micropatterned substrates as compared to
classical polyacrylamide gels or when migrating in vivo.

In this chapter we focus on the technique developed by Dembo and Wang
[10], and its further recent developments [2,3,25,30]. The basic idea is to mea-
sure the displacements of fluorescent beads embedded in rigid substrates of
polyacrylamide (a mixture of acrylamide and bis-acrylamide to be more pre-
cise). Component concentrations can be tuned to obtain the desired gel rigid-
ity, usually ranging between 1 and 100 kPa. As cells are laid onto the func-
tionalized substrate, they adhere and start to exert tractions that deform the
substrate so that fluorescent beads located in the underlying gel are displaced.



Cancer Cell Migration on 2-D Deformable Substrates 245

Based on the hypothesis that the gel is isotropic and elastic, and displacements
are small enough so that linear elasticity applies, the gel depth being large
enough so that it can be approximated by a half space, the Boussinesq equa-
tions can be solved in the whole gel. Usually a thickness of 100 �m is enough,
but a recent work argues about the advantages of using thinner gels [25], so
that one can compute the traction stresses exactly at the gel surface. This
is an inverse problem, because the particle displacement vectors u(x, t) are
known at certain locations (with an unavoidable experimental error) and the
traction stresses T(x, t) are to be computed everywhere on the gel surface. The
solution of the Boussinesq problem for an elastic gel with Young’s modulus E
and Poisson coefficient � reads:

u(r) =
∫

G(r − r′)T(r′) dr′ (9.1)

where the kernel G is a Green’s function tensor [21]:

G(r) =
1 + �

�E

(

(1 − �)
1

r
+ �

r ⊗ r

r3

)

(9.2)

while r denotes the modulus of r.
In the initial approach of Dembo and Wang [10], bead displacements are first

determined. Bilinear shape functions are defined on an unstructured quadri-
lateral mesh. The optimal stress field is obtained minimizing the error by an
iterative procedure under force magnitude penalization. Because the method
is rather complicated, other methods have been introduced [7] that make use
of the particular structure of the equations. Noticing that Equation (9.1) is a
convolution, one can compute the Fourier transform F̃(k) =

∫ ∞

−∞
e−ik.r F(r) dr

on both sides of Equation (9.1), k being the wave vector:

ũ(k) = G̃(k)T̃(k) (9.3)

Following the approach of [7], the expression of G̃(k) is given by a 2 × 2
matrix, assuming that vertical displacements can be neglected. This is usually
the case as long as gels are stiff enough and are not deformed by vertical trac-
tions exerted by cells, which is a good enough hypothesis in this case. Finally
Equation (9.3) can be inverted to obtain T̃(k) and then going back into the
real space gives the traction stress field T(r):

T(r) = FT−1
2 (G̃−1(k) ũ(k)) (9.4)

where FT−1
2 denotes the two–dimensional inverse Fourier transform and

G̃−1(k) is the inverse of G̃(k), which can be computed explicitly thanks to
simple manipulations [7]. The main drawback of this method is that despite
its simplicity, it requires a periodic displacement field to compute the fast
Fourier transforms.



246 Cell Mechanics

One further work [33] deals with pointwise traction force reconstruction and
the effect of noise, which are well known to affect the results. Due to the ill
posedness of the problem, it is necessary to use a regularization algorithm to
obtain significant data. Other useful information is the location of focal ad-
hesions. Another possible hypothesis [25] is to use thin substrates (typically
10 �m thick), which can help get explicit solutions of the Boussinesq equa-
tions. This allows for increased accuracy in the determination of these trac-
tion stresses. To conclude, let us mention the recent work of Sabass et al. [30]
who combined three approaches to determine traction forces, one based on
the integral boundary element method (BEM) [10], one using Fourier trans-
form traction cytometry (FTTC) [7], and the last one using traction recovery
with point forces (TRPF) [33]. All methods can be improved when proper
regularizations are used and can lead to an increased resolution. The TRPF
procedure seems to be the most promising one, as long as focal adhesions are
well developed, but requires more sophisticated experiments. These experi-
ments are needed in any case, as one wants to clearly understand how forces
are connected with focal adhesions, and also how the cell cytoskeleton plays
a role in the different motility regimes.

In this chapter a different method [2,3] is used as a promising tool for
studying the migration of cancer cells. It is based on a formulation arising from
the minimization of an energy, combined with the use of a penalty parameter.
The method is presented in the next section. Then detailed experimental
methods are given, followed by the results showing displacements and stresses
in the case of migration T24 cancer cells. The discussions concern the effect
of gel rigidity, as well as comparisons with other cell types.

9.2 Adjoint Method for Cell Traction

An alternative approach to obtain the pattern of the shear stresses exerted by
a cell on a flat substrate is the adjoint method proposed by Ambrosi [2,3]. The
mathematical model is based on the classical functional analysis framework
due to Lions [23]; the general theory is applied to the specific problem of
small deformation of a homogeneous elastic material subjected to body forces
only.

Let � be the whole domain and u(x) the displacement vector field, x ∈

� ⊂ R
3. The displacement is known only in a subset �0 ⊂ � where beads

are located; the related function u0(x) has support in �0. Let �c ⊂ � be the
region covered by the cell and where the shear stress is applied. As explained
before, the traction forces are generated through the actin–myosin interactions
and act on the underlying substrate through focal adhesion sites. These areas
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are not localized precisely in our experiments and we do not restrict the force
support to these sites as is done in the algorithm of Schwarz et al. [33].

Consider the following elastic problem in the whole domain �:

−��u − (� + �)∇ (∇ · u) = f , u|∂� = 0 (9.5)

where � and � are the Lamé constants that characterize the material. The
problem can be rewritten in the form Au = f , where A is a linear operator
that is deduced easily from the above equation. The aim is to obtain the
force field f , which is inferred by a known displacement (inverse problem). If
we try to invert directly the equation, we find that the problem is ill posed
because the displacement is known only in a subset �0 of �. It is necessary to
introduce the projector P, P : � → �0, and a functional J(f), J : L2(�) → R,
defined as

J(f) =

∫

�0

|u − u0|
2 dV + ε

∫

�

|f |2dV (9.6)

where ε is a real positive number. This functional measures the difference be-
tween the displacement field produced by f and the experimental one defined
by u0 under penalization of the square norm of the force field itself. We look
for g minimizing J:

J(g) ≤ J(f), ∀f ∈ Vc (9.7)

where Vc ⊂ L2(�) is the space of the finite energy functions with support
in �c. The minimization of J accomplishes the minimization of the distance
of the solution from the measured value u0 under penalization of the mag-
nitude of the associated force f per unit surface. The penalty parameter ε

balances the two requirements. An equivalent condition of inequality (9.7) is
given by J′(g)[f −g] ≥ 0; making the Gateaux derivative explicit suggests the
introduction of the adjoint equations, A∗ : L2(�) → �0

A∗q = Pu(g) − u0, q|∂�
= 0 (9.8)

Substituting back in the functional derivative allows us to obtain the solu-
tion of inequality (9.7) that represents the optimal body force:

g = −
�c

ε
q

�c is the characteristic function of the domain �c and q is a volume force.
In short, the set of equations that we need to solve is given by two elliptic

partial differential equations, one for the displacement u and the adjoint one
for the volume force q.
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On the basis of dimensional arguments, it is possible to reduce this 3-D
system (in space) into a 2-D one. In fact, vertical averaging along an effective
thickness h allows us to introduce two parameters �̂ and �̂:

�̂ = h
E

2(1 + �)
, �̂ = h

E�

1 − �2

E and � are the Young’s modulus and the Poisson ratio, respectively; h is the
averaging height fixed by the depth of field of the microscope, that is, 1.5 �m
in our case. Below this depth, the beads are not in focus and their positions
are not measured; the displacement u should be understood as the average
displacement along h, which is nearly the displacement of the center of the
beads. Finally, the 2-D system becomes

−�̂�u − (�̂ + �̂)∇ (∇ · u) = −
�c

ε
p, u|∂�

= 0

−�̂�p − (�̂ + �̂)∇ (∇ · p) = �ou − u0, p|∂�
= 0

(9.9)

where �c and �0 are the characteristic functions related to �c and �0, re-
spectively. Note that the structure of the two equations is the same because
the problem is self-adjoint. p now represents the traction stresses (N/m2) pre-
viously introduced as T and will be determined once the two equations are
solved.

In the ill-posed problem, the penalty parameter, ε in our case, plays an
important role. In order to fix ε, it is necessary to re-interpret the system
in Equation (9.9) on the basis of arguments suggested by modal analysis.
Suppose that �0 = �c = � under periodic boundary conditions; the previous
system of equations rewrites like a Tikhonov filter. The amplitude of the
Fourier components of the solution uk, pk satisfies the algebraic relations

hEk2uk ≃ −
1

ε
pk

hEk2pk ≃ uk − u0,k

(9.10)

that is,

uk ≃
u0,k

1 + εh2E2k4 (9.11)

where u0,k represents the amplitude of the kth Fourier component of u0. Ac-
cording to Equation (9.11), if the data are known all over the domain, the sys-
tem of Equations (9.9) is a filter damping the modes corresponding to wave
numbers k > ε−1/4h−1/2E−1/2. The choice of ε can be interpreted in terms
of filtering modes falling below the experimental accuracy. Equation (9.11)
shows that the key parameter of the inversion procedure is actually εh2 and
the solution does not change for combinations of the averaging layer h and
penalty parameter ε that preserve this quantity.
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FIGURE 9.1 Discrete L-curve with 17 values of ε obtained for our model
in the case of the stiff gel (E = 10 kPa). The corner corresponds to the optimal
balance between data agreement and regularization.

A convenient tool for the analysis of discrete ill-posed problems is the
L-curve criterion, which is a log-log plot, for all valid regularization param-
eters, of the norm of the regularized solution || f ||2 versus the corresponding
residual norm ||u − u0||2. In this way, the L-curve displays the minimization
of these two quantities and its corner, which is intrinsic to the data, corre-
sponds to the optimal balance between data agreement and regularization.
Figure 9.1 shows an example of the discrete L-curve obtained for 17 values of
the ε parameter for our model in the case of the stiff gel (E = 10 kPa). In
our work we take the minimum value of ε that does not yield erratic results
in the displacement, that is, the corner of the L-curve.

The system of Equations (9.9) has been discretized by a finite element
method using linear basis functions on an unstructured mesh. To avoid any it-
erative coupling between the two equations in (9.9), a global conjugate method
has been used to solve the resulting system of linear equations numerically.
Figure 9.2 shows an example of the computational setting: the computational
mesh, the bead displacement, and the cell contour. The triangular mesh sat-
isfies two constraints: it has a node in every point where displacements are
known (bead locations) and a sequence of element sides coincides with the cell
contour. In particular, the boundary �c of the cell, is described as a piecewise
linear curve following the shape of the cell and represents the boundary be-
tween the intracellular domain over the substrate and the rest of the domain
where the forces are not applied.
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FIGURE 9.2 Graphical representation of the numerical set-up. The com-
putational mesh, made of triangles, is represented in light gray. The mesh
satisfies two constraints: it has one node at every point where the displace-
ment is known and a sequence of element sides coincides with the boundary of
the cell. The arrows indicate the experimental bead displacement. The scale
bar at the bottom left corner is 0.5 �m long.

9.3 Experimental Methods

In this work we characterize cell migration on gels with different rigidities. T24
epithelial cells from a bladder cancer line are used. This type of cancer cell is
known to be invasive. Regarding gel preparation, the following experimental
procedure is used:

� Gel preparation and stiffness. To prepare gels with different stiffnesses,
we change the ratio between polyacrylamide and bis-acrylamide com-
ponents. Three different gels have been prepared containing 5, 7.5,
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and 10% polyacrylamide and the bis-acrylamide percentage is 0.03%.
The mechanical properties have been measured using conventional dy-
namic shear rheometry tests on a Malvern rheometer (Gemini 150,
stress-controlled). Sinusoidal oscillations at a known shear deformation
� = �0 sin(�t) are applied within the linear regime (small enough defor-
mation �0 ∼ 0.01) at different angular frequencies �. The stress response
	 = 	0 sin(�t + 
) (where 	0 is a constant stress and 
 is the phase
angle) is measured and the elastic (G ′) and viscous moduli (G ′′) are
deduced. These gels are quite elastic, as long as the acrylamide con-
centration is large enough, which is the case. Indeed, experiments show
a constant elastic modulus G ′ when the frequency f (related to � by
� = 2�f) ranges from 0.1 to 10 Hz. The loss modulus G ′′ is usually lower
by two orders of magnitude. Therefore we can assume that � = 0.5, for
an incompressible gel, thus E = 3G′. Note that the hypothesis that
E = 3G′ is relevant here in comparison to the work of Boudou et al. [5]
showing that � ∼ 0.48 in such polyacrylamide gels, as determined us-
ing micropipettes. This leads to the typical gel Young’s moduli 2, 6.3,
and 10 kPa for the soft, medium, and hard gels, respectively, used in
this study. An example of the influence of the polyacrylamide content
(for the three gels) is shown in Figure 9.3. The typical slope of ∼2 is
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FIGURE 9.3 Elastic moduli E (Pa) as a function of the acrylamide con-
centration. Bis-acrylamide concentration is fixed at 0.03%.
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current in such biological networks as observed, for example, in actin
and fibrin gels [20]. Comparisons have been made previously [3] with
other authors [5,13,14,37] and revealed good qualitative agreement.

� Methodology. Gels were prepared on a silanated square cover glass 22
mm × 22 mm, covered with a circular cover glass (35 mm diame-
ter) and treated with NaOH (0.1 M), (3-aminopropyl)trimethoxysilane
(APTMS, 10 min), and 0.5% glutaraldehyde (30 min). Fluorescent beads
(Molecular Probes, 0.2 �m diameter) were seeded before addition of the
crosslinker. Gels were laid onto the square cover glass, and the circular
cover glass was brought carefully to capture the gel by capillarity, to
avoid flipping the preparation. Indeed, beads need to sediment fast so
that they are located closer to the gel upper surface where measure-
ments are made. The gel volumes were chosen to have a thickness of
about 70 �m, as described in other works [28]. The gels were left to
polymerize for nearly 90 min.

� Gel functionalization. After polymerization, the square cover glass was
gently removed and sulfo-Sanpah 1 mM mixed with dimethylsulfoxide
(DMSO) and phosphate buffered saline (PBS) was added to function-
alize the gels (15 min under UV). This procedure was repeated twice;
then the surface was rinsed with PBS. Finally a 20 �g/ml fibronectin
solution was used overnight to bind the above surface.

� Cell seeding. Cancer cells of epithelial bladder type (T24) were then
seeded at a low density. They usually adhered rapidly and spread. The
cover glass was attached at the bottom of a 35-mm culture dish (con-
taining medium) in order to carry out microscopic observations. Two
types of images were made: a phase contrast one to observe the cell and
its contour, and a fluorescent one focused on the beads (at a slightly
different vertical position). The depth of field of the images was around
1.5 �m. All operations were carried out automatically in order to take
one set of images at regular time steps (2 min, for example).

� Microscopy. Images were then collected and treated using ImageJ soft-
ware [19] to determine trajectories and/or displacements with respect
to the initial position, as explained in the following section. The initial
bead position was determined at the end of the experiment by adding
distilled water to detach the cells, allowing a few minutes for the gel to
go back to its initial position.

The basic idea in this work is to follow cells as they move to determine
displacements, traction stresses, and velocities of migration during a
significant duration (usually around 1 hour or more). This feature is
indeed important because most other studies focus on stresses at a given
time, but it will be shown here that stresses can vary significantly as cell
migration proceeds. Then displacements and tractions will be studied
as functions of gel rigidity.
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9.4 Determination of Displacements

The basic step for the calculation of the traction field is the determination
of the bead displacements. Essential data for the computation were the cell
boundary, the initial bead position, and the in-plane displacement of the mark-
ers. The displacement field was extracted from a stack of images: the first one
showed the beads in the undeformed position and the other images showed
the gel deformed under cell traction. Usually a stack of 30 images was used
and the times between frames were chosen to be 2 or 3 min. This enabled
us to capture sufficient changes in the bead positions so that beads could be
followed along their trajectories.

The processing of these images began with the correction for relative trans-
lational shifts. Here we used the ImageJ software and, in particular, the “Align
Slice” plug-in to perform a recursive alignment of a stack of images. The
alignment proceeded by propagation: each image was used as a template with
respect to which the next slice was aligned.

From the corrected images sequences, we localized cells and divided images
into small areas, typically 100 �m × 100 �m, each containing one isolated cell.
Bead detection was made using “Particle Tracker,” another ImageJ plug-in.
The plug-in implemented point detection and a tracking algorithm as de-
scribed in [32]; it performed two different steps: first the detection of the bead
positions in each image and then the bead link into trajectories. The esti-
mation of the bead center location was done by finding the maximum local
intensity in the image. The point locations were refined under the assumption
that the bead local intensity maxima were near the true geometric centers of
the beads, and finally spurious detections such as dust or particle aggregates
were rejected. The linking algorithm identified centers corresponding to the
same physical particle in subsequent frames, using a graph technique theory,
and linked these positions into trajectories.

An example of the image processing technique is provided in Figure 9.4;
in particular, Figure 9.4(a) represents the fluorescent beads as recorded with
the microscope; this configuration is related to the undisturbed position of
the markers. Figure 9.4(b) shows the trajectories of these fluorescent markers
under cell traction after 70 min. They are obtained after treatment of a stack
containing 30 images.

9.5 Determination of Traction Stresses

To investigate the traction field generated by T24 cancer cells, we observed
cells on different substrates, with Young’s modulus (E) ranging from 2 to 10
kPa. After extracting the bead displacements as described in the previous
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(a) (b)

FIGURE 9.4 (a) Images of undisturbed positions of the fluorescent beads
as recorded with the microscope. The scale bar is 10 �m. (b) Bead trajectories
detected with ImageJ after processing a stack containing 30 images. The scale
bar is 2 �m. (b) is a zoom of the square area delineated in (a).

section, the traction stress field was obtained by solving the system in Equa-
tion (9.9).

Figure 9.5(a) shows a T24 cancer cell on the soft gel, E = 2 kPa. The cell was
observed for 2 hours and the image was recorded 30 min after the beginning
of the experiment. The tumor cell is moving on the surface toward the bottom
right part of the figure; it is quite elongated on such a surface. There are many
beads whose displacements are significant, usually around 0.5 �m; they occur
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FIGURE 9.5 (a) T24 cell adhering on a soft polyacrylamide substrate (E =

2 kPa). The cell is elongated on the surface. (b) The bead displacements under
and around the cell are detected with ImageJ. (c) The traction stresses are
shown as a gray-level map for the magnitude. The maximum value is around
50 pN �m−2. The scale bar for displacements is 0.5 �m long. The grayscale
map is in pN �m−2.
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FIGURE 9.6 (a) T24 cell adhering on a medium stiffness polyacrylamide
substrate (E = 6.3 kPa). The cell looks elongated, with small shape protrusion
compared to Figure 9.5(a). (b) The displacement field has roughly the same
magnitude as Figure 9.5. (c) The traction field has a maximum magnitude
of about 80 pN �m−2. The scale bar for displacements is 0.5 �m long. The
grayscale map is in pN �m−2.

essentially at the cell edges, as seen in Figure 9.5(b). In this same region, the
maximum value of the traction stress is obtained, that is, around 50 pN �m−2

as seen in the gray-scale map of Figure 9.5(c), representing the traction stress
levels.

A T24 cell is shown next on the medium stiff gel, E = 6.3 kPa in Figure
9.6(a). After 46 min, the cancer cell is quite elongated and exhibits a less
symmetric shape than in the previous case. The beads have moved by about
0.5 �m maximum (Figure 9.6(b)). The stresses exerted by the tumor cell are
shown in Figure 9.6(c): the traction stresses are small along the cell edges
with peaks at the front and tail where the maximum magnitude is around
80 pN �m−2.

Finally, Figure 9.7(a) shows a T24 cancer cell moving on the stiffer gel,
E = 10 kPa, as well as the related numerical traction field in Figure 9.7(c).
The picture was taken 10 min after the beginning of the experiment; the cell
exhibits a shape with protrusions and it is anchored by the tail at the bottom
right side where the shear stress reaches its maximum value, around 145 pN
�m−2. In this case, the beads are located close to the cell contour and the bead
maximum displacements are still around 0.5 �m, as shown in Figure 9.7(b).

From the above, the maximum displacements in these three experiments
seem to be in the same range (around 0.5 �m), independent of the rigidity of
the substrate.

It is important to study the maximum value of the traction stresses at each
time step. For the T24 cancer cell adhering on the rigid substrate, values of
the traction stresses were recorded and vary between 90 and 190 pN �m−2

as presented in Figure 9.8. Cells do not move in a simple way, but their
motion requires the development of protrusions until corresponding stable
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FIGURE 9.7 (a) T24 cell adhering on a stiff polyacrylamide substrate
(E = 10 kPa). The cell has a less symmetric shape. (b) The displacement
field is of the same magnitude as in Figures 9.5 and 9.6. (c) The traction field
has a maximum magnitude around 145 pN �m−2. The reference vector for
displacements is 0.5 �m long. The grayscale map is in pN �m−2.
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FIGURE 9.8 Evolution of the maximum value of the traction stresses dur-
ing T24 cell migration on the rigid substrate (E = 10 kPa).
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FIGURE 9.9 Migration of a T24 cell on a stiff gel (E = 10 kPa), at time t =

2, 14, 22, 26, 34, 38, 44, 50 min. The cell first adheres strongly (dark region) at
its lower right part (a), then starts to exhibit protrusions in (b) through (e)
until it eventually forms new adhesion sites on the upper left of the picture
as in (e) and (f). At this precise time, it is able to pull on these adhesion
sites, contract and detach its rear (see (f) and (g)); then it starts to move
back toward the right direction (h). Note that the grayscale is reset to a range
between minimum and maximum values in each frame.

focal adhesions can be formed. After this is achieved, cells can retract their
uropods by pulling on focal adhesions; thus they move in a noncontinuous
way [34]. This is precisely the significance of Figure 9.8 where an unsteady
regime of traction stress is observed changing abruptly from one value to
another due to rapid pulling on focal adhesion sites. Clearly such mechanisms
involved during migration require tight spatial and temporal regulation; we
can study this process more accurately in terms of traction stress maps, as
proposed in Figure 9.9 on the stiff gel.

The cell first adheres and binds to the lower right part (a), then it devel-
ops protrusions (b) through (e), as explained, with the formation of stable
adhesion sites (d) through (f). This corresponds to the dark regions (large
stresses). The T24 starts to pull on these new adhesion sites until it moves (f)
and (g). The disassembly of adhesions at the rear of the cell and the retrac-
tion of the tail complete the migration picture and enable cell translocation.
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This mechanism of locomotion for the T24 cancer cell is comparable with the
four- or five-step picture [1,34] that describes the motion of many cell types
and is summarized as follows:

� Formation of a lamellipodium at the front by actin polymerization
� Development of new focal adhesions coupled with the actin cytoskeleton
� Force traction—cell contraction
� Release of bonds at the rear—actin and protein recycling

In the next section the observed features are discussed and compared with
previous works.

9.6 Discussion

The study presented here demonstrates some advantages of the adjoint
method [2] when combined with relevant experiments [3]. The major interest is
that, instead of solving the CPU-consuming integral equation [10], it directly
forces the 2-D averaged problem of partial differential equations to be solved
by finite element method. In this respect, the resolution becomes easier and
can be performed on a personal computer in a few seconds. The longest part
is the data processing of images for the determination of the displacements,
whatever the method [7,10,33]. The results strongly depend on the quality
of the images. Further refinements have been made recently as compared to
our initial work [3]: pictures are now taken at different heights separated by
0.2 �m; stacks of about eight to ten pictures are taken at each time step, and
the best focused images are selected. Thus beads are localized more easily
and fewer beads are lost during the collection of trajectories. Then a good
resolution is obtained, as shown by the squared error in Figure 9.1, which is
around 10−5. More precisely, we obtain an error ||u − u0||2 ∼ 3.0 10−3 �m,
which is small compared to displacements in the range of 0.05 to 0.5 �m. This
clearly indicates a good resolution as compared to experimental data.

Nevertheless, improvements can still be made; in particular, recent work
by two groups [25,30] suggests how the resolution can be further enhanced.
Merkel et al. [25] use thinner substrates, allowing an analytical resolution of
the problem. Sabass et al. [30] illustrate the advantage of a combination of
complementary fluorescent microscopy to capture the location and evolution
of focal adhesions in relation to traction forces, a method also proposed ear-
lier in [4]. This enables us to show an increased accuracy in all techniques,
in all cases (boundary element method [10], Fourier transform traction cy-
tometry [7], traction recovery with point forces [33]). In our case, we limit
ourselves to the usual traction stress determination but it is possible to com-
bine fluorescence and observe focal adhesions as well as the actin cytoskeleton
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FIGURE 9.10 (See color insert following Page 398.) T24 cells adhering on
substrates with various stiffness E = 10 − 6.3 − 2 kPa (decreasing from left to
right). The actin cytoskeleton has been marked with GFP. Note the formation
of stress fibers and a large cell area on the more rigid substrate. Conversely,
in the case of the very soft gel, the actin structure is less developed and the
cell barely adheres to the substrate, showing a very small contact area. The
scale bar represents 20 �m.

development. As an example, Figure 9.10 shows the actin cytoskeleton or-
ganized in stress fibers, in the case of T24 cells adhering on substrates with
different rigidities (respectively the ones used earlier, E = 10−6.3−2 kPa). It
is known that stress fibers are colocalized with focal adhesions [1]. In Figure
9.10, most of the stress fibers come close to the cell edges where focal adhesion
complexes are usually localized. These photographs clearly indicate that T24
cells form many stress fibers on rigid substrates (E = 10 kPa) but fewer on
soft ones (E = 2 kPa). The intermediate case also shows stress fibers but they
are less numerous as compared to the case of the rigid substrate.

To continue the discussion of substrate rigidity further, let us concentrate on
the stresses exerted by cells on such substrates, a subject already discussed by
other authors [3,11,17,24]. This current work emphasizes the ability of cells to
adapt to a different environment. T24 cancer cells also obey this principle; they
develop similar strains when adhering to various rigid substrates. Indeed, the
level of deformation does not seem to be affected by substrate rigidity in the
relevant range, as shown in Figures 9.5, 9.6, and 9.7 where it was mentioned
that the displacements are very similar (of the order 0.5 �m). Additionally,
the ratio between maximum stress and Young’s modulus is almost a constant
(strain) on the order 0.02 [3]. This is in agreement with previous work [11,31].
It is likely that, as the substrate rigidity increases, such a (stress-rigidity)
linear behavior will fail and there should be a saturation [17] because one
expects that cells cannot reinforce their integrin–cytoskeleton links indefi-
nitely [8]. Note that such behaviors can be related to the cell microrheological
properties [36], in particular their ability to modulate the growth of stress
fibers.

It has been also shown that migration of cancer cells on 2-D rigid sub-
strates follows a rather classical picture divided into four or five steps. Indeed,
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Figure 9.8 and Figure 9.9 provide direct evidence of the motion, which can be
decomposed into these different steps. First, the cancer cell adheres and is not
very active in Figure 9.9(a); thus stresses are low. Then it searches for new
adhesion sites until it reaches some places that will allow it to establish larger
traction stresses. This is precisely where the traction maxima are obtained
in Figures 9.8(e) and (f). Thanks to these forces, the rear (uropod) can be
detached. The cell again relaxes its stresses in Figure 9.9(g) until it starts
again to try and move in another direction (Figure 9.9(h)). Therefore, a clear
connection has been made between the stress diagram in Figure 9.8 and the
migration patterns showing stress maps in Figure 9.9.

Finally, our study also shows that cell contact area with the substrate in-
creases with substrate rigidity, in close correspondence with the development
of stress fibers (see Figure 9.10). This fact was only observed previously re-
garding cell area [24]. The velocity of migration also varies in the usual way [3]:
cells with more stable focal adhesions on rigid substrates definitely move less
rapidly as compared to soft substrates, where they move faster because of the
difficulties in developing stable adhesions [11].

The order of magnitude of tractions can finally be discussed. T24 cells seem
to develop smaller stresses (typically 0.05 to 0.2 kPa here) in the range of
stresses found for human airway smooth muscle (HASM) cells [7] and much
lower than the ones usually found with fibroblasts [10] or endothelial cells [29].
This may provide a possible explanation of why cancer cells move rapidly to
form metastases and therefore use small traction stresses to migrate faster.
Still, this hypothesis needs to be confirmed in more realistic situations such
as in vitro 3-D migration.

9.7 Conclusions

The study developed here has revealed some interesting features of cancer
cell migration on rigid substrates. It is important to note that although many
studies have already focused on the determination of traction forces, the cur-
rent method is very efficient and shows interesting time-dependent features.
This method is promising and should allow us to investigate new problems
related to cancer cells. The ability to distinguish cell types is of course one
perspective. Second, attempts should be made to differentiate invasive from
noninvasive cancer cells [26]. This could lead to early diagnosis. Finally, sub-
strate specificity may also be used to compare cell migration characteristics
such as their velocity or exerted traction stresses. But the most promising
follow-up of this work will probably rely on the ability to correlate precisely
the cytoskeleton and focal adhesion dynamics with the development of forces
exerted by cancer cells.
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10.1 Introduction

Calcium ions (Ca2+) play an important role in the regulation of many as-
pects of cellular activities, such as muscle contraction, embryogenesis, cell
differentiation, proliferation, gene expression, secretion, learning and mem-
ory, and apoptosis [3,6,14,23,26,29,33,38,46,49,56]. Recent evidence indicates
that mechanical stimulation plays an important role in regulating various
cellular functions, including Ca2+signaling [17,21,22,50]. For example, me-
chanical factors such as substrate stiffness play important roles in deter-
mining the differentiation lineage and commitment of human mesenchymal
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stem cells [9]. Substrate stiffness also regulates Ca2+ oscillatory signals via
the RhoA pathway in human mesenchymal stem cells [22]. Furthermore, ca-
pacity Ca2+ entry channels and mechanosensitive channels can be activated by
mechanical stimulation, which results in an increase in intracellular calcium
concentration and consequently the alteration of a variety of cellular activities
[17,47,58].

The application of fluorescent dyes for imaging of intracellular calcium dy-
namics and the improvement in fluorescence microscopy systems have led
to a revolution in our understanding of the ubiquitous roles of Ca2+ in the
physiological functions of cells over the past two decades. The introduction
of fluorescent proteins (FPs) with a variety of spectra and the advancement
of genetically encoded calcium indicators have made possible the visualiza-
tion of calcium signaling in a living single cell at subcellular levels with high
spatiotemporal resolutions. These calcium imaging techniques in combination
with modern technologies that are able to create diverse mechanical environ-
ments have allowed us to explore calcium signaling of a single cell in response
to mechanical stimulation. In this chapter we introduce design strategies on
how to approach the single cell imaging of calcium in response to mechanical
stimulation. In particular, we provide a detailed discussion of the integration
of genetically encoded calcium FRET biosensors and stiffness matrix with
different elasticity and optical laser tweezers.

10.2 Ca2+ Signaling

10.2.1 Fundamental Mechanism of Ca2+ Signaling

Most cells maintain their cytosolic Ca2+ concentration at a low level (approx-
imately 100 nM) by major players such as the Na+/Ca2+ exchanger (NCX),
the plasma-membrane Ca2+-ATPase (PMCA), and the sarco(endo)plasmic
reticulum Ca2+-ATPase (SERCA) for calcium homeostasis [4,5]. When cells
are stimulated, the intracellular Ca2+ concentration ([Ca2+]i) rapidly increases
and reaches the micromolar range, which subsequently impacts many different
cellular processes. In general, Ca2+ entry from the extracellular pool is medi-
ated by three main entry channels: (1) voltage-operated channels (VOCs), (2)
receptor-operated channels (ROCs), and (3) store-operated channels (SOCs)
[20,24,25]. Ca2+ release from internal stores is mediated by two families of
Ca2+ channels—ryanodine receptors (RyRs) and 1,4,5-trisphophate receptors
(IP3Rs)—each of which has three major isoforms identified [16,28,30,42,55].
Restoration of Ca2+ homeostasis is achieved primarily by pumping across the
plasma membrane by NCX and PMCA, and uptaking into the endoplasmic
reticulum (ER) and sarcoplasmic reticulum (SR) by SERCA [37,48].
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10.2.2 Ca2+ Entry Mechanisms

Ca2+ entry is driven primarily by a large electrochemical gradient across the
plasma membrane. Cells utilize the external Ca2+ by activating various Ca2+

entry channels that have very different kinetic properties. Voltage-operated
Ca2+ channels (VOCCs) have been studied extensively in excitable cells in
brain, skeletal, cardiac and smooth muscle endocrine glands, and other tissues.
Fundamentally, VOCCs respond to changes in membrane potential through
a voltage-sensor domain integral to the channel pore forming protein, which
results in a conformation change that opens the channels to allow for the in-
flux of extracellular Ca2+. VOCCs can be activated very rapidly in response
to depolarization and generate rapid Ca2+ increases in the cytoplasm to reg-
ulate fast cellular processes such as muscle contraction, excitability, and ex-
ocytosis. ROCs open in response to the binding of extracellular ligands. For
instance, NMDA (N-methyl-D-aspartate) receptors (NMDARs) are NMDA-
gated ion channels that are permeable to Ca2+. When glutamate binds to the
NMDARs, Ca2+and Na+ enter the cell and K+ leaves through NMDA-gated
channels [5]. Belonging to ATP receptors and Ach receptors, P2X7 and nico-
tinic acetylcholine (nACh) are also permeable to Ca2+ upon ligand binding
[13,36]. SOCs are regulated by filling or depleting internal stores through a
mechanism known as capacitative calcium entry, later called store-operated
Ca2+ entry (SOCE) [24,44,45]. When the internal Ca2+ stores are empty, Ca2+

channels are activated in the plasma membrane to aid in refilling the Ca2+

store. Most SOC channels appear to belong to the transient receptor pro-
tein (TRP) channels associated with mechanosensitive channels, such as ther-
mosensors and stretch-activated channels. These channels have been largely
classified into three groups—canonical TRPC, vanilloid TRPV, and melas-
tatin TRPM—which are all involved in mechanical transduction. In particu-
lar, TRP channels have low conductance and play a crucial role in controlling
slow cellular processes such as smooth-muscle contractility and cell prolifera-
tion. To date, the detailed mechanism of SOCE remains unclear because the
identity of the entry channels is not clear. However, the discovery of stromal
interaction molecules (STIM) sheds new light on our understanding of the
molecular mechanism of SOCE. This STIM1 is localized mainly in the ER
membrane. STIM1 senses ER Ca2+ to activate Orai1, a pore-forming subunit
of the Ca2+ release-activated Ca2+ channel (CRCA) in the plasma membrane
for SOCE [11]. Thus, STIM1 can activate SOCE and help refill the ER Ca2+

store.

10.2.3 Ca2+ Release from Internal Stores

There are two main channels responsible for releasing Ca2+ from the internal
stores: (1) IP3 receptors (IP3Rs) and (2) ryanodine receptors (RyRs). Activa-
tion of phospholipase C�(PLC�) by G protein coupled receptors (GPCRs) and
PLC� by receptor tyrosine kinases can induce cleavage of phosphatidylinositol
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4, 5 bisphosphate (PIP2) into 1,4,5-inositol trisphosphate (IP3) and diacyl-
glycerol (DAG). IP3 can bind to the IP3 receptors located in ER membrane to
trigger Ca2+ from ER stores. The RyRs are also intracellular calcium channels
located primarily in the ER/SR of various excitable cells, particularly muscle
and neuronal cells. RyRs are similar to IP3Rs, which can be stimulated to
transport Ca2+ into the cytosol by recognizing the low level of Ca2+ on its cy-
tosolic side. Both channels are very sensitive to calcium. Therefore, it appears
that the process of calcium-induced calcium release (CICR) contributes to the
increase in intracellular calcium concentration, and as such CICR contributes
to the generation of calcium spikes and calcium waves.

10.3 Genetically Encoded FRET-Based Ca2+ Biosensor

Fluorescence resonance energy transfer (FRET)-based Ca2+ biosensors for
single cell imaging have allowed researchers to quantitatively monitor Ca2+

dynamics and their signaling cascades in live cells with high spatiotempo-
ral resolution. FRET is a phenomenon of quantum mechanics and describes
an energy transfer mechanism between two chromophores. When one chro-
mophore (donor) and another (acceptor) are in proximity and the emission
spectrum of the donor overlaps the excitation spectrum of the acceptor, the
excitation of the donor will cause a sufficient energy transfer to the accep-
tor and result in emission from the acceptor. This FRET efficiency depends
on the relative orientations and the distance between these two chromophores
[52,54]. Hence, the conformational change in orientation and distance between
the two chromophores can alter the FRET efficiency and change the accep-
tor/donor emission ratio. A wide range of FRET-based Ca2+ biosensors has
been developed to visualize calcium dynamics and activities [41]. In general,
there are three different categories, classified according to properties such as
binding moiety and strategy for Ca2+ sensing:

1. Calmodulin/FRET-based Ca2+ biosensors

2. Troponin C/FRET-based Ca2+ biosensors

3. Single fluorophore biosensors

These genetically encoded Ca2+ biosensors have been applied for targeting
various organelles such as the nucleus, endoplasmic reticulum (ER), mitochon-
dria, Golgi, and plasma membrane in living single cells in an effort to visual-
ize dynamic Ca2+ signals [12,15,18,19,27,32,34,40,41]. Here we briefly describe
the calmodulin/FRET based Ca2+ biosensor, which is one of the most popular
and commonly used among the various kinds of FRET-based Ca2+ indicators.
Calmodulin (CaM) is a calcium binding protein and is ubiquitously expressed
in all eukaryotic cells. As a monomer with an approximate molecular weight of
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17,000, CaM is located primarily in the cytosol, but can be translocated to the
nucleus where it regulates transcription and gene expression. CaM mediates
numerous fundamental cellular processes, such as inflammation, apoptosis,
cell cycle progression, metabolism, and calcium transport. Structurally, CaM
has four EF-hand motifs, each of which binds a Ca2+ion and undergoes a
conformational change. These CaMs can be applied to the development of
calcium sensors. In fact, a variant of CaM and a CaM-binding peptide con-
nected by two FPs was developed as a FRET-based Ca2+ biosensor by Tsien
and co-workers; this was the first generation of genetically encoded calcium
sensors called “Cameleons” [32]. The sensor originally consisted of blue and
green FPs (BFP as the donor and GFP as the acceptor), flanking Xenopus

calmodulin (XcaM) and peptide M13. Upon Ca2+ binding, Ca2+/calmodulin
wraps around the neighboring M13 peptide, thus causing a conformational
change and increasing the energy transfer efficiency from BFP to GFP [32]. To
overcome the weak fluorescence brightness and relatively poor photobleaching
property of BFP, this BFP-GFP FRET pair was switched to cyan FP (CFP)
and yellow FP (YFP) in Yellow Cameleon 2.0 (YC 2.0), which provided bet-
ter signal-to-noise ratios and more stable FRET signals in live cells. Further
efforts for making better Cameleons were carried out afterward, resulting in
the improvement of signal strength of the biosensors and a reduction in per-
turbation to endogenous cell signaling cascades. At present, various improved
versions of Cameleons have been developed, ranging from YC2.0 to YC6.1
[15,31,32,34,51].

10.4 Single Cell Imaging of Calcium in Response

to Mechanical Stiffness

To date, it is clear that all organisms from bacteria to mammals are me-
chanically sensitive. They possess highly specialized and widely expressed
mechanosensitive systems that are involved in a wide range of physiological
functions. Recently, emerging evidence indicates that mechanical stimulation
such as fluid shear stress and mechanical strain regulate the proliferation
and differentiation of stem cells by means of various signaling pathways. In-
terestingly, it appears that many cells sense and respond to the dynamic
and static characteristics of mechanical stimulation, including the elastic-
ity of the extracellular microenvironment. In fact, there is a wide range of
tissues in the human body with varying degrees of stiffness, ranging from
soft tissues like the brain with a Young’s modulus of tenths of a kilopas-
cal (kPa) to hard tissues like bone with a Young’s modulus of hundreds of
kilopascals.
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10.4.1 Cell Culture Protocol on Substrate Stiffness Gel

At present, polyacrylamide gels with varying acrylamide and bis-crosslinker
concentrations can be applied to control the substrate rigidity of the extracel-
lular environment with defined elastic moduli to mimic the mechanical prop-
erties of in vivo systems [43]. In our experiment, 200 �L of a 0.1 N NaOH
solution was dropped on the surface of a glass cover slip and left overnight to
air dry. 3-Aminopropyltrimethoxysilane (3-APTMS) was then smeared over
the surface for 6 min. After washing twice with water for 15 min, 100 �l of
0.5% gluteraldehyde was applied to the glass surface for 30 min. The glass
cover slip was then rinsed with distilled water. Polyacrylamide gel solutions
were then prepared with 40% w/v acrylamide stock solution (5%) and 2%
w/v bis-acrylamide stock solution (0.03–0.3%). 10% w/v ammonium per-
sulfate (APS), and N,N,N9,N9-tetramethylethylenediamine (TEMED) were
added to catalyze the polymerization of the solutions. After rinsing with 100
nM HEPES, sulfo-SANPAH was used to crosslink the extracellular matrix
proteins onto the gel surface and 200 �L of freshly made SANPAH solution
(1 mM solution of SANPAH with DMSO in 100 mM HEPES) was applied to
each surface before it was exposed to UV photoactivation for 6 min. After rins-
ing off the SANPAH solutions, the photoactivation procedure was repeated
one more time. The gels were then washed for 3 min with 100 mM HEPES
and coated with fibronectin (FN). An elastic gel with controlled stiffness and
FN-coated surface was developed and ready for use. Human mesenchymal
stem cells (HMSCs) were ultimately cultured on top of these coated gels in
human mesenchymal stem cell growth medium (MSCGM) containing 10% fe-
tal bovine serum, 2 mM L-glutamine, 100 U/mL penicillin, and 100 �g/mL
streptomycin in a humidified incubator of 95% O2 and 5% CO2 at 37◦C.

10.4.2 Ca2+ Imaging Utilizing FRET-Based Ca2+ Biosensor

in Response to Mechanical Stiffness

A FRET biosensor for reporting Ca2+ dynamics in live cells (Cameleon) was
initially developed by Atsushi Miyawaki in Roger Y. Tsien’s lab [32]. This
Ca2+ biosensor has been modified into new versions, improving the proper-
ties of the biosensor in terms of its sensitivity and other factors. We have
also developed a calcium biosensor, pairing an enhanced cyan FP (ECFP)
with a newly developed yellow FP (Ypet) [35]. This Ca2+ biosensor provides
a high dynamic range in monitoring intracellular Ca2+ concentrations [39].
The application of this FRET-based Ca2+ biosensor in HMSCs has allowed us
to successfully monitor the spontaneous Ca2+ oscillation at subcellular loca-
tions inside HMSCs, as shown in our previous work [22] and Figure 10.1. We
were also able to monitor ER calcium signaling using an ER-targeted calcium
biosensor that has an ER retention sequence to anchor the biosensor inside
the lumen of ER (Figure 10.1D) [22,40].
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FIGURE 10.1 (See color insert following Page 398.) The application of
FRET-based Ca2+ biosensors in human mesenchymal stem cells (HMSCs). A:
A schematic drawing of the activation mechanism of the Ca2+ FRET biosen-
sor. B: HMSCs were immunostained by monoclonal antibody against STRO-
1, a MSCs marker. C: The FRET change of the Ca2+ biosensor targeted at
cytoplasm. HMSCs were transfected with the cytoplasmic Ca2+ biosensor,
which visualizes a spontaneous Ca2+ oscillation. Color images represent the
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time course curves represent the oscillatory FRET changes of the Ca2+ biosen-
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FIGURE 10.2 The effect of substrate stiffness on the spontaneous Ca2+

oscillation. A: The time courses represent the cytoplasmic Ca2+ concentrations
in cells cultured on gels with different rigidity, as indicated. Bar graphs (mean
± SEM) represent the (B) frequency and (C) magnitude of spontaneous Ca2+

oscillations in cells cultured on gels with different rigidity, as indicated. Error
bars indicate standard errors of mean; *P < 0.05; ***P < 0.001. (From Kim,
T.J. et al., J. Cell Physiol., 218, 289, 2009. With permission.)

10.4.3 Regulation of Ca2+ Signaling by Substrate Rigidity

of Extracellular Environment

Because both mechanical stiffness and Ca2+ oscillatory signals play a crucial
role in regulating the stem cell commitment for differentiation [7–9], we inves-
tigated whether mechanical stiffness can affect spontaneous Ca2+ oscillation
in HMSCs. As shown in Figure 10.2, gels with lower elasticity reduced the
spontaneous Ca2+ oscillation activity in HMSCs [22].

Interestingly, we found that a 1-kPa gel inhibited both the frequency and
magnitude of Ca2+ oscillation whereas 5-kPa and 8.5-kPa gels only affected
the frequency. Therefore, these results demonstrate that the substrate rigidity
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of the extracellular environment can affect Ca2+ signaling in HMSCs, with the
frequency of Ca2+ oscillation possibly more sensitive to mechanical stiffness
than the magnitude [22]. It remains unclear as to the detailed molecular mech-
anism by which the substrate rigidity affects Ca2+ oscillation. The substrate
rigidity of the extracellular environment was shown to affect cell morphology,
cytoskeletal structure, and cell adhesion [57]. Another study postulated that
substrates with different rigidities may regulate cellular functions by differ-
entially altering signaling molecules and cytoskeletal structures involved in
cell adhesion and force sensing [10]. Thus, we have further examined whether
cytoskeletal elements and intracellular tension mediate the oscillatory Ca2+

signals in sensing the substrate rigidity of the extracellular environment [22].
As shown in Figure 10.3, the spontaneous Ca2+ oscillation of HMSCs was
found to be independent of cytoskeleton and MLCK/myosin.

However, RhoA and its downstream molecule, Rho-associated kinase
(ROCK), were demonstrated to be involved in the regulation of Ca2+ os-
cillation of HMSCs in response to substrate rigidity. Moreover, we found that
RhoA is not sufficient to restore the Ca2+ oscillation modulated by substrate
rigidity [22]. This suggests that other factors, independent of RhoA, possi-
bly participate in regulating the Ca2+ oscillation in response to mechanical
stiffness.

10.5 Ca2+ Imaging and Mechanobiology in Live Cells

with Optical Laser Tweezers

Since Ashkin trapped a bead with a focused laser [1], optical laser tweezers
have become a powerful tool for force measurement and mechanical stimula-
tion in mechanobiology. Optical laser tweezers are based on the transfer of
mechanical momentum change from the trapping beam to the particle. Using
this method, beads, spherical particles, or microspheres can be trapped at
the focal plane of a high numerical aperture (NA) objective lens within an
inverted microscope. When a bead is mechanically coupled to a cell surface,
the forces generated in the bead by laser tweezers can be adjusted and cal-
ibrated, and transmitted into the cell. Recently, FRET technology has been
used in combination with optical laser tweezers to study mechanotransduction
[53]. In these experiments, beads were coated with fibronectin (FN). Because
of adhesion between FN and cell membrane receptors, integrins can induce
the formation of adhesion complexes to mechanically couple the bead to the
cytoskeleton. The FN–integrin–cytoskeleton coupling can transmit the laser-
induced force from the bead into the cell. When the FN beads are bound
to integrins on the plasma membrane of human umbilical vein endothelial
cells (HUVECs) pre-transfected with a FRET-based Src biosensor, a series of
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FIGURE 10.3 The roles of the cytoskeleton and RhoA signaling pathway
in spontaneous cytoplasmic Ca2+ oscillation. A: Representative time courses
of the cytoplasmic Ca2+ concentration in cells pre-treated with Cyto D, Noc,
ML-7, blebbistatin, Y-27632, and LPA. Bar graphs (mean ± SEM) represent
the (B) frequency and (C) magnitude of spontaneous Ca2+ oscillations in cells
pretreated with different reagents, as indicated. Error bars indicate standard
errors of mean; *P < 0.05. (From Kim, T.J. et al., J. Cell Physiol., 218, 290,
2009. With permission.)
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signal transduction events at the cell membrane can be observed in response
to mechanical force in the form of wave propagations of the FRET signals
[53]. Recently, it has also been shown that the mechanical force induced by
pulling FN-coated beads on the membrane of vascular smooth muscle cells can
trigger Ca2+ sparks, followed by global Ca2+ mobilization [2]. More recently,
it has been reported that direct mechanical stimulation of an actin stress fiber
using optical laser tweezers can activate mechanosenstive channels and sub-
sequently cause a local intracellular calcium increase near focal adhesions in
HUVECs [17]. However, when different beads that are not linked to cytoskele-
ton were used, mechanical force did not induce calcium signaling events. These
results indicate that actin filaments and cytoskeleton play important roles in
transducing mechanical force into intracellular Ca2+ signaling events.

10.6 Future Directions

The combination of genetically encoded FRET Ca2+ biosensors with various
technologies, including elastic gels with different rigidities and optical laser
tweezers capable of applying mechanical stimulation, has proven powerful for
the study of molecular mechanisms by which cells perceive and transduce
mechanical cues into biochemical signals, that is, mechanobiology. The devel-
opment of and improvement in new FRET-based Ca2+ biosensors targeted
at subcellular compartments of individual cells (such as nucleus, endoplasmic
reticulum, mitochondria, Golgi complex, and the plasma membrane) are un-
dergoing intensive investigation. Hence, it is envisioned that different kinds
of sensitive Ca2+ biosensors localized at any subcellular compartment will be
available soon such that Ca2+ signaling in response to mechanical stimula-
tion can be monitored at global levels and local sites in live cells with high
spatiotemporal resolution.
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Chapter 11. Mathematical Framework to Model Migration of

Cell Population in Extracellular Matrix

Cell migration is an essential feature of physiologic and pathologic phenom-
ena in biology, such as embryonic development, wound healing, and tumor
invasion. According to the local micro-environment and the function of the
migrating cell, the characteristics of migration may vary considerably. In con-
nective tissue, cells (cancer cells, fibroblasts, etc.) interact both with other cells
and with the surrounding tissue (ECM, extracellular matrix), which provides
them with a natural complex scaffold to which to adhere in order to migrate.
Recently much attention has been devoted to the description of the mechan-
ics of cell motion as a result of their interactions with the ECM. Experiments
have evidenced two types of motion, amoeboid and mesenchymal, that re-
late to different migration strategies. The amoeboid motion corresponds to a
“path finding” strategy involving morphological adaptation of cells, while the
mesenchymal motion corresponds to a “path generating” strategy involving
proteolytic activity of cells to degrade the fibers of the ECM. This chap-
ter takes a closer look at the individual interaction mechanisms to develop a
model for amoeboid cell migration that includes both a preferential movement
of cells along the collagen fibers of the ECM—a phenomenon called “contact
guidance”—and a randomly oriented migration due to interactions among
cells in denser areas. A modeling framework is derived at the mesoscopic
(kinetic) scale, and a continuous (macroscopic) model is deduced through a
diffusive limit of the kinetic one. The response of the cells to external stimuli
(taxis), capable of influencing and biasing the motion, is also included. Finally,
numerical simulations are presented to illustrate the ability of the model to
account for the influence of (1) the heterogeneity and/or the anisotropy of the
ECM medium and (2) various sorts of taxes (chemotaxis, haptotaxis, repellent
behavior).

Chapter 12. Mathematical Modeling of Cell Adhesion and Its

Applications to Developmental Biology and Cancer Invasion

Cellular adhesion is a key factor in many biological processes. Interactions of
adhesion molecules at the molecular scale lead to cell rearrangements at the
cellular scale and these can generate macroscopic patterns at the tissue scale.
A multitude of discrete and continuous models of cell adhesion have been
proposed that take into account the effects at the various scales. Such models
are reviewed and then a continuous model of cell adhesion [N.J. Armstrong et
al. (2006), J. Theor. Biol. 243:98–113] is discussed in more detail. This model
captures molecular and cellular scale effects in an integral (nonlocal) term
defining a cell velocity due to adhesive effects. This velocity is then employed
to drive rearrangements of cell densities at the tissue scale in an advection–
diffusion–reaction system. The application of this framework to successfully
model effects as observed in cell sorting experiments and cancer cell invasion
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demonstrates the suitability and generality of the approach. Analytical and
numerical challenges of the framework are discussed and possible extensions
are outlined.

Chapter 13. Bridging Cell and Tissue Behavior in Embryo

Development

Embryological tissues undergo massive morphological changes that present
a challenge to a mechanistic understanding of developmental biology. One
outstanding issue concerns the mechanisms through which molecular infor-
mation leads to the individual or collective movement of cells that robustly
shape tissues. Recent imaging and computational advances now allow us to
track thousands of cells and monitor their shapes and reorganization over time.
Here we present and discuss recent progress to measure and decompose tissue
deformations into the relevant cellular and multicellular components, that is,
cell shape change and cell–cell slippage. This multiscale approach works with
unprecedented spatial and temporal resolution to dramatically extend the
scope of phenotypic descriptions available to biologists. It thus provides a suit-
able framework for extracting representative features and for quantitatively
comparing mutant phenotypes or species. This opens up new opportunities
to understand the cellular mechanisms underlying tissue deformation and to
identify the physical and biological parameters controlling embryo morpho-
genesis.

Chapter 14. Modeling Steps from Benign Tumor to Invasive

Cancer: Examples of Intrinsically Multiscale Problems

The step from benign tumors to invasive cancer is characterized by neo-
vascularization, detachment of cells from the main tumor, and eventually in-
vasion of cells into the surrounding tissue and blood vessels, leading to distant
metastases. We will for each of these steps show how experimental observations
can be explained by the interplay of processes on the molecular and the cellular
scale within a framework using individual-based models. The representation
of the cell in the models permits us to analyze physical, particularly biome-
chanical, constraints. We first study how a neoformation of blood vessels can
affect the development of tumor size and shape if the nutrients transported in
the vessels control the growth rates of the individual cells. Cell detachment is
often triggered by a malfunctioning of the beta-catenin-degrading apparatus
in the cytosol. We demonstrate how an elevated beta-catenin concentration
in one cell can trigger a cascade of other cells stepwise detaching as well, and
migrating freely into the surrounding tissue. Before the cells can form distant
metastases, they need to invade blood vessels. We show how the competition
between N-CAM and VE-cadherin bonds can facilitate invasion of a cancer
cell into a blood vessel if the involved pathways have defects.
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Chapter 15. Delaunay Object Dynamics for Tissues Involving

Highly Motile Cells

Biomechanics is now recognized as a major organization principle in biolog-
ical pattern formation. Therefore, mathematical modeling must incorporate
biomechanical parameters beyond the level of imposing physical constraint.
Many tools are now available to tackle different aspects of biomechanical phe-
nomena from single cells to tissues. The method of Delaunay object dynamics
allows us to investigate a large number of individual cells, each having its
own phenotype dynamics and mechanical properties. The simulation frame-
work is, in particular, applicable to studies of highly dynamic systems such
as fast migrating cells. The method is illustrated with the example of sec-
ondary lymphoid tissue organization. With a small set of local interactions,
the typical morphology of this immune tissue can be reproduced in silico. The
model demonstrates the appearance of stable patterns built from motile cells
in a flow equilibrium. An experimentally well-known intermediate state of the
pattern formation process can be traced back to the biomechanics of lympho-
cytes without the need to impose any additional regulatory mechanism to the
system.
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11.1 Introduction and Biological Background

Cell migration is an essential feature of both normal and pathological bio-
logical phenomena. Tissue formation in embryonic development requires cell
movements and coordination among cells. Migration of cells plays a fundamen-
tal role in immune response and tissue homeostasis in mature multicellular
organisms. It is also the main process of metastasis dissemination and tumor
invasion in cancer.

285
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The characteristics of migration may vary considerably, being either intrin-
sic properties of the cells or resulting from their adaptation to the environ-
ment. Cell movement is partially regulated by external factors that may in-
clude diffusive (such as chemoattractant) and nondiffusive (like ligands bound
to the extracellular matrix or ECM) chemicals. Physical interactions of cells
and the ECM also play an important role in cell movement.

The ECM is the defining feature of connective tissue and serves many func-
tions, such as providing support and anchorage for cells. It regulates the cell’s
dynamic behavior and has additional regulatory functions for apoptosis and
proliferation. The ECM is composed of an interlocking mesh of fibrous pro-
teins as collagen and fibronectin, and provides directional information either
through matrix-bound ligands (a process called haptotaxis) or directly through
the fibers along which cells tend to align. This last process is known as contact

guidance and is illustrated in Figure 11.1.
From recent experimental studies, much has been learned about cell move-

ment in fibrous tissues [16]. Various cell migratory behaviors in the ECM have

1 2

3 4

(a) (b)

FIGURE 11.1 (See color insert following Page 398.) Contact guidance pro-
cess. Amoeboid T-cell migration, cell–fiber interaction, and contact guidance
within 3-D collagen matrix. (a) Alignment along fiber strands (black arrow-
heads). Image sequence 1–4 is a time series spanning 8 min of observation
time. (b) T-cell alignment is parallel to matrix fibers (white arrowheads)
upon forward migration (black arrow). Scale bars are 5 �m. From K. Wolf, R.
Müller, S. Borgmann, E.-B. Bröcker, and P. Friedl (2003). Amoeboid shape
change and contact guidance: T-lymphocyte crawling through brillar collagen
is independent of matrix remodeling by MMPs and other proteases. Blood

102(9):3262–3269. (With permission).
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been identified [15]. Cells can migrate while only interacting briefly with other
migrating cells (individual migration) or develop adhesive bonds to form clus-
ters (collective migration). Additionally, individual cell migration in the ECM
can be split into the amoeboid and mesenchymal types. The mesenchymal
migration relates to the cell strategy to generate space to move by secreting
matrix degrading enzymes (MMPs). In the amoeboid case, cells migrate using
the ECM as a scaffold and squeeze into free spaces of the matrix, establishing
brief contacts with fibers and frequently changing direction. They generate
only minor fiber bending that does not permanently alter the ECM.

In this chapter the focus is on individual amoeboid cell migration. We pro-
pose a didactic approach to derive our modeling framework. The structure
of the chapter is the following. In Section 11.2 we introduce two different
ways to represent both the migrating cell population and the ECM, namely
statistical and continuum descriptions. We present the generic mesoscopic
framework of transport equations for the velocity-jump processes that we use.
In Section 11.3 we review various models based on velocity-jump processes
that have been used for cell migration modeling. We present first the ba-
sic approach for random migration and then extend this further to account
for contact guidance. We show how simple cell–cell interactions can also be
included and conclude with the extension of the earlier models to account
for the influence of environmental factors that we specialize for chemotaxis,
haptotaxis, and self-repellent behavior. Then in Section 11.4 we show how
macroscopic continuum models can be derived from the mesoscopic trans-
port equations and focus on the so-called diffusive approximation. We derive
further our generic macroscopic model of cell migration in the ECM. The
governing drift-diffusion equation will be solved numerically. In particular in
Section 11.5 we present numerical simulations to illustrate the ECM effects
on cell migration. We include evidence of the influence of heterogeneity and
anisotropy, and conclude with the effects of environmental factors previously
introduced in the derivation of our generic macroscopic model.

11.2 Mathematical Descriptions of System

11.2.1 Statistical Description

We consider a cell population moving within a d-dimensional domain D ⊆ R
d .

Each cell of the population moves with its own velocity v ∈ V ⊆ R
d . The

cell population is thus described by the distribution function p = p(t,x,v),
which depends on time t > 0, location x ∈ D, and velocity v ∈ V . Here, d ≥ 1
represents the spatial dimension of interest, with in vivo motion corresponding
to d = 3 and planar motion on a substrate to d = 2. We assume that the space
V of allowed velocities is radially symmetric and can be written V = |V |×Sd−1,
where |V | denotes the range of possible speeds and Sd−1 is the unit sphere
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in R
d . We furthermore introduce the unit vector v̂ = v/v ∈ Sd−1 in direction

of velocity v, where v = |v| ∈ |V | denotes the modulus of the velocity.
The fibers of the extracellular matrix are described by the distribution func-

tion m. In this chapter we focus on describing the amoeboid cell motion. Thus
we neglect alteration of the ECM by the cells and assume a time independence
of m. Thanks to the observation that ECM fibers are symmetrical along their
axis, both fiber directions are identical and we finally write the distribution
function m = m(x,n), where n ∈ Sd−1

+ is a unit vector that represents the
fiber orientation defined over the half unit sphere Sd−1

+ . However, it will be
useful to extend m to Sd−1 by introducing the distribution function

me(x,n) =

{

m(x,n) for n ∈ Sd−1
+

m(x, −n) for n ∈ Sd−1
−

(11.1)

The modeling framework is formulated in the form of a transport equation in
which changes in cell velocity are described through an operator that mod-
els the characteristic properties of cell migration. This continuous transport
equation approach uses a microscopic description for cell motion; however, it
provides an output at the level of a cell population described by the distribu-
tion function. This approach is therefore commonly referred to as a mesoscopic

description. In this chapter our attention focuses on velocity-jump processes
to describe cell motion and is formulated as follows:

∂p

∂t
(t,x,v) + v · ∇ p(t,x,v) = M(t,x,v) (11.2)

where the operator ∇ denotes the spatial gradient and M is an integral oper-
ator describing peculiar cell motion with velocity-jump processes. The nature
of this operator is illustrated in Section 11.3 for various examples from the
literature and specialized for movement into the ECM.

We remark that when the matrix is remodeled or degraded by cells, Equa-
tion (11.2) can be coupled to an evolution equation for the distribution func-
tion m as proposed in [8, 21, 31].

11.2.2 Continuum Description

A so-called continuum description of the system can be derived from the above
mesoscopic description by means of averaging processes. These processes relate
to the classical notion of moments used in the kinetic theory framework. In this
section we introduce these moments for both the cell and fiber populations,
and give an interpretation of each of them. The cell (number) density � is
defined by

�(t,x) =

∫

V

p(t,x,v) dv (11.3)
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The next-order moment gives the cell population flux (or momentum) j = �U,
where U denotes the mean cell velocity, defined as

U(t,x) =
1

�(t,x)

∫

V

p(t,x,v)v dv (11.4)

The second-order moments relate to pressure and internal energy. Because
the focus of this chapter is the dynamical behavior of the cell population, all
energetic considerations are neglected. Thus we introduce only the notion of
the pressure tensor P. This tensor is also known as the variance–covariance
matrix of the velocity distribution and is defined by

P(t,x) =

∫

V

p(t,x,v) [v − U(t,x)] ⊗ [v − U(t,x)] dv (11.5)

where the operator ⊗ denotes the tensorial product. It measures the statistical
deviations of the cell velocities v from the local mean velocity U.

Regarding now the moments of the fiber distribution, we define the fiber
density by

M(x) =

∫

Sd−1
+

m(x,n) dn =
1

2

∫

Sd−1

me(x,n) dn (11.6)

Due to the symmetry property (11.1), of the distribution function me, its first
moment is null which corresponds to

∫

Sd−1

me(x,n)n dn = 0 (11.7)

For this reason, the orientation of the fiber network must be described by
the so-called orientation tensor D (see [32]). This tensor is also known as the
variance–covariance matrix of the angle distribution and is defined by

D(x) =
d

M(x)

∫

Sd−1
+

m(x,n)n ⊗ n dn (11.8)

This tensor is symmetric, positive definite, and trace-invariant with tr(D) =

d. It also provides a visualization tool, when one refers to the ellipsoid x ·

(D−1)x = 1. Indeed, the mean quantity of fibers projected in a certain direction
n is proportional to the square root of the distance between the center of the
ellipsoid and the intersection of the line directed along n with the ellipsoid.
This ellipsoid has its axes identified by the eigenvectors of the tensor D and
gives the principal directions of the orientation of the fiber network. More
precisely, the main direction is given by the eigenvector associated with the
principal eigenvalue and corresponds to the largest axis of the ellipsoid. In the
case of fibers all aligned along the same direction n, the ellipsoid degenerates
into a segment with direction n. Other examples detailed below are illustrated
for three cases in Figure 11.2 in a 2-D configuration for simplicity reasons.
Through them we aim to provide a better understanding of the meaning of
the orientation tensor.
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(a) Isotropic

(c) General

(b) Two directions
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FIGURE 11.2 Local angular fiber distributions in the ECM. (a) Isotropic
configuration. (b) Bi-directional configuration. (c) General fiber distribution.
We graphically represent the orientation tensor D by the ellipse x · (D−1)x = 1
whose eigenvectors r1 and r2, respectively, associated with the eigenvalues �1

and �2, give locally the principal orientation of the fibers.

� We consider a locally isotropic distribution of fibers in the element dx =

dx dy centered at one point x of the domain D. At this point the fiber
distribution is modeled by

m(x,n) =
1

�
M(x)

that results in the orientation tensor being the identity tensor. Its
graphical representation is simply the circle of unit radius as shown in
Figure 11.2a.

� We consider now an ECM having locally only two fiber directions given
by the unit vectors ni = cos �i ex + sin �i ey with �i ∈ [0, �] for i = {1, 2}

and assume that these two angles satisfy �1 +�2 = �. This configuration
is described by

m(x,n) =
1

2
M(x)[�(n − n1) + �(n − n2)]
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where � denotes the Dirac function. The corresponding orientation ten-
sor at x is diagonal and written

D(x) = 2

⎛

⎝

cos2 �1 0

0 sin2 �1

⎞

⎠

The two eigenvalues are respectively �1 = 2 cos2 �1 (with eigenvector
r1 = ex) and �2 = 2 sin2 �1 (with eigenvector r2 = ey). The direction of
the eigenvector associated with the maximum eigenvalue gives the main
fiber direction, which is the largest axis of the ellipse. In the schematic
representation of Figure 11.2(b), the maximum eigenvalue is �2 and the
main fiber direction is therefore given by r2 = ey .

� Finally we illustrate the general case that we describe by the distribution
function

m(x,n) = M(x)
f (n)

∫

Sd−1
+

f (n) dn

We write the unit vector n = cos � ex + sin � ey with � ∈ [0, �] so that
the angle distribution can be performed through the function f (�). The
corresponding orientation tensor at x is then

D(x) =
d

∫ �

0

f (�) d�

⎛

⎜

⎜

⎝

∫ �

0

f (�) cos2 � d�

∫ �

0

f (�) cos � sin � d�

∫ �

0

f (�) cos � sin � d�

∫ �

0

f (�) sin2 � d�

⎞

⎟

⎟

⎠

A sample angular distribution modeling the configuration (c) in Figure
11.2 may be

f (�) = 1 + cos
(

2
[

� −
�

4

])

that will lead to

D(x) =

⎛

⎜

⎜

⎝

1
1

2

1

2
1

⎞

⎟

⎟

⎠

with

⎧

⎪

⎪

⎨

⎪

⎪

⎩

�1 =
3

2
and r1 = ex + ey

�2 =
1

2
and r2 = ex − ey

Therefore the orientation of the fiber network at x can be graphically
represented by the rotated ellipse of axes ex + ey and ex − ey as shown
in Figure 11.2(c). Because the highest eigenvalue is �1, the main fiber
orientation is given by r1 = ex + ey .
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In Section 11.4 we present methods to derive evolution equations for the
macroscopic variables that characterize cell migration, such as the cell den-
sity � or the cell mean velocity U. We explain how to link the statistical and
continuum descriptions introduced above. In particular, we focus on scaling
methods and detail the so-called diffusive approximation that leads to an evo-
lution equation for the cell density � in the ECM described by the fiber density
M and the orientation tensor D.

11.3 Mesoscopic Modeling of Cell Migration in ECM

In this section we review various models based on velocity-jump processes
that have been used for cell migration modeling. We start with the simplest
modeling approach and show further on how ECM effects can be included.
We conclude by showing how environmental factors can be accounted for in
this modeling framework.

11.3.1 Random Migration

A basic behavioral mode of motion modeled by a velocity-jump process is
the so-called run and tumble motion, in which cells move by smooth runs
interrupted at discrete times by an instantaneous random reorientation. In
general, the choice of a new velocity and the average runtime between re-
orientations would depend on environmental factors. This kind of movement
has been modeled within the mesoscopic framework (Equation (11.2)) by the
turning operator

M(t,x,v) = −�p(t,x,v) + �

∫

V

T (v′;v)p(t,x,v′) dv′ (11.9)

The first term of the right-hand side describes turning of cells away from
velocity v with a frequency � that may depend on environmental factors. The
integral term calculates the rate at which cells reorient into velocity v given
previous velocity v′. The reorientation function T (v′;v) defines a probability
distribution for a cell with previous velocity v′ to choose the new velocity v,
and satisfies

∫

V

T (v′;v) dv = 1 (11.10)

dictated by cell number conservation, which yields

∫

V

M(t,x,v) dv = 0 (11.11)
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The simplest illustration of velocity-jump process is a uniform reorientation
probability associated with the turning operator

T (v′;v) ≡ TR(v′;v) =
1

Vd

�(v) (11.12)

In Equation (11.12), Vd =
∫

Sd−1 dv̂ is the surface of the unit sphere in R
d , and

� gives the distribution of newly chosen speeds that, due to Equation (11.10),
satisfies

∫

|V |

�(v)vd−1 dv = 1 (11.13)

This simple mechanism leads to the turning operator

M(t,x,v) ≡ MR(t,x,v) = �

(

�(t,x)
�(v)

Vd

− p(t,x,v)

)

(11.14)

Examples of the speed distribution function are proposed below for:

� Cells moving with a constant speed U:

�(v) =
1

Ud−1
�(v − U) (11.15)

� Cells moving with speed randomly chosen within a range [U1, U2]:

�(v) =
d

Ud
2 − Ud

1

(11.16)

The basic turning operator proposed in Equation (11.12) is based on com-
pletely random reorientation that assumes neither memory effect of the prior
velocity to tumble (therefore no orientational persistence) nor information to
orient the motion toward a particular direction. Such a description assumes
then that inertia in cell movement is out of resolution. We should mention here
that polarization processes that lead to orientational persistence in motion are
observed for many cells. To model persistence mechanisms, memory effect can
easily be introduced by adapting the turning operator T as in [19,28], includ-
ing a dependence on the prior direction of motion (that is the vector v̂′).
Representation of persistence can also be absorbed in the turning frequency,
that could depend on environmental factors such as chemical fields [1] in order
to avoid an increased complexity of the model. A more detailed presentation of
effects of environmental factors is given in Section 11.3.4. In the next section
we focus rather on the directional effect of ECM fibers.

11.3.2 Contact Guidance

To model the movement of a cell in a given fiber network, it is commonly
assumed that the dominant process is contact guidance. The matrix or tis-
sue gives a selection of preferred directions along which a cell can move. This
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alignment process has been modeled in [21] by neglecting cell–cell interactions.
This type of model refers to the class of alignment models that has also been
developed for reorientation of actin filaments [17]. In [21] the turning opera-
tor that models cell alignment along the fibers depends then on the angular
distribution me of fiber and, in our notation, reads

T (v′;v) ≡ Tm(v′;v) =
me(x, v̂)

2M(x)
�(v) (11.17)

We notice that in Equation (11.17) the spatial dependence in me allows the
description of heterogeneous ECM, which was not originally possible in [21].
From Equation (11.17) one can derive

M(t,x,v) ≡ Mm(t,x,v) = �

(

�(t,x)�(v)
me(x, v̂)

2M(x)
− p(t,x,v)

)

(11.18)

In [31], Painter assumes that 2-D random reorientation is biased by contact
guidance and that a parameter b ∈ [0, 1] reflects the degree of bias. This
assumption leads the author to write the associated turning operator as a
linear combination of Equations (11.12) and (11.17), which we extend to

T (v′;v) ≡ Tb(v
′;v) =

[

1 − b

Vd

+
b me(x, v̂)

2M(x)

]

�(v) (11.19)

This leads to

M(t,x,v) ≡ Mb(t,x,v) = �

(

�(t,x)�(v)

[

1 − b

Vd

+
b me(x, v̂)

2M(x)

]

− p(t,x,v)

)

(11.20)

In the models mentioned above, we reformulated the corresponding operators
in our notation and considered potential heterogeneity of the ECM. How-
ever, this form does not enable us to account truly for ECM heterogeneity
because the spatially dependent ECM density M(x) is only used as a normal-
ization factor. This simplification can be readily illustrated when considering
the angular fiber configurations in Section 11.2.2. In contrast, heterogeneity
influence was introduced in [8] in the context of kinetic theory, by also incor-
porating cell-cell interactions. In the following we introduce this kinetic theory
framework and start with the general expression of the migration operator

M(t,x,v) = −L(t,x,v) + G(t,x,v) (11.21)

where L is a loss term (that is, the rate at which cells turn away from velocity
v) and G is a gain term giving the rate at which cells reorient into velocity v

(see [6] for more details). The cell number conservation dictates that property
(11.11) has to be satisfied also for the above expression of M. We first focus
on describing the contact guidance process and assume that realignment along
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Moving cell
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(x, n´) (x, n´)

FIGURE 11.3 Schematic representation of cell–fiber interaction. At loca-
tion x the moving cell with velocity v′ aligns along the fiber with orientation
n′, choosing its new velocity direction into v̂ = n′.

the fibers does not appear at a turning frequency, but is caused by interactions
between cells and fibers of the ECM that occur with rate 	m . A schematic
representation of the interaction is shown in Figure 11.3. Then we can state
the following expressions:

L(t,x,v) ≡ Lm(t,x,v) = p(t,x,v)

∫

Sd−1
+

	m m(x,n′) dn′ (11.22)

G(t,x,v) ≡ Gm(t,x,v) =

∫∫

V ×Sd−1
+

	m �m(v′,n′;v)p(t,x,v′)m(x,n′) dv′dn′

(11.23)

The function �m(v′,n′;v) defines a transition probability distribution for a
cell with given velocity v′ to chose a new velocity v when interacting with a
fiber oriented toward n′, and satisfies

∫

V

�m(v′,n′;v) dv = 1 (11.24)

which, similar to Equation (11.10), is dictated by cell number conservation. In
general the encounter rate 	m would depend on microscopic quantities to ac-
count for the cell velocity or for the fiber size. For example, in classical kinetic
theory, the encounter rates are proportional to the relative velocity modulus
raised to some power (see [3], for example). For simplicity, we assume that 	m

is constant. Additionally, we assume that the alignment process along a fiber
is independent of the prior velocity v′. Using the generic speed distribution
function � introduced previously, we write

�m(v′,n′;v) = �(v)
1

2
[�(v̂ − n′) + �(v̂ + n′)] (11.25)

which leads to

M(t,x,v) ≡ Jm(t,x,v) = 	m M(x)

(

�(t,x)�(v)
me(x, v̂)

2M(x)
− p(t,x,v)

)

(11.26)
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We first observe the similarity between Jm (Equation (11.26)) and Mm (Equa-
tion (11.18)). The two approaches lead to the same expression, assuming
that the turning frequency � is locally proportional to the ECM density,
i.e. � ≡ �(x) = 	m M(x). This dependence states that the turning frequency
increases for an increasing ECM density. Then the average movement (that
could be characterized by the mean squared displacement) is slowed down
for an increasing ECM density, which is in agreement with numerical results
of [7]. The second observation is that by substituting into Equation (11.26)

	m →
�

M
, me → b me + (1 − b)

2M

Vd

(11.27)

we find the operator (11.20) that models random walk biased by contact
guidance. This enables us to work with the operator Jm to model contact
guidance, knowing that it can be straightforwardly extended to account for
random motion by substitutions (11.27). This random effect leads to a partial
alignment along the fibers, which could also be modeled by considering a
smooth alignment distribution �m as in [17,25] rather than the Dirac function
used in Equation (11.25).

11.3.3 Influence of Cell–Cell Interactions

Interactions between cells are very complex and of many different types: con-
tact inhibition, adhesion, and repulsion are well-known examples. Here we
focus on dynamical aspects and consider only the orientational effect that
results from the interaction between two moving cells. We also assume that
realignment processes are dominated by fiber guidance. In a similar manner,
as in the previous section, we now focus on cell–cell interactions for which we
state the following loss and gain terms:

L(t,x,v) ≡ Lc(t,x,v) = p(t,x,v)

∫

V

	c p(t,x,v′
∗) dv′

∗ (11.28)

G(t,x,v) ≡ Gc(t,x,v) =

∫∫

V

	c �c(v
′,v′

∗;v)p(t,x,v′)p(t,x,v′
∗) dv′dv′

∗

(11.29)

Here, the function �c(v
′,v′

∗;v) defines a transition probability distribution
for a moving cell with given velocity v′ to choose the new velocity v when
interacting with a field cell, that is, a surrounding cell with velocity v′

∗, and
satisfies

∫

V

�c(v
′,v′

∗;v) dv = 1 (11.30)
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FIGURE 11.4 Schematic representation of cell–cell interaction. The mov-
ing cell collides with another cell and randomly reorients its movement by
changing its velocity from v′ to v.

For coherence with the previous paragraph, we assume that:

1. Cell–cell interactions occur with rate 	c that is constant.

2. Collision between two migrating cells leads to random reorienta-
tion of their movement independently of pre-collision velocities (see
Figure 11.4).

We model this process by the uniform transition probability

�c(v
′,v′

∗;v) =
1

Vd

�(v) (11.31)

More complex phenomena could be accounted for, for example, alignment
caused by cell–cell interaction described in [27], that would lead to other
expressions of �c. We remark that the formation of cell clusters mentioned in
the introduction (which relates to collective migration) could also be modeled
but would lead to much more sophisticated aggregation models that we do
not present here. For didactical reasons, we maintain the description of the
simplest type of interaction through Equation (11.31) and derive accordingly

M(t,x,v) ≡ Jc(t,x,v) = 	c�(t,x)

(

�(t,x)
�(v)

Vd

− p(t,x,v)

)

(11.32)

which models random reorientation of colliding cells. Expression (11.32) can
be compared to Expression (11.14). Both are identical when assuming that
the frequency � is proportional to the cell density, i.e. � ≡ �(t,x) = 	c�(t,x).
Similar to cell–fiber interaction, density effects are considered by our approach
and result in the deceleration of the average movement when cell density
increases.

At this point, we have briefly reviewed some mathematical models of differ-
ent cell migration types in the mesoscopic framework of transport equations.
We introduced the basic requirements to model random motion, alignment
processes, and cell–cell interactions. In the next section, we show how to in-
corporate the influence of environmental factors.
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11.3.4 Influence of Environmental Factors

Environmental factors can be of various natures. They can be diffusible chem-
icals secreted into the environment that will trigger a chemotactic movement
of the cell in response. This response results from the external detection of
a signal that is transducted to internal pathways. Signaling molecules can
also be released and felt by the same population in order to communicate,
enabling a single cell to sense its surrounding density (a phenomenon called
quorum sensing [36]). They can also be any other exogenous chemical within
the environment, like fibronectin present in the ECM [9].

In this section we propose a mathematical description of the cell response
to environmental signals, a phenomenon called taxis, and focus in particular
on chemotactic and haptotactic cues, the latter associated to nondiffusive sig-
nals. A common feature of taxis models is a reduction of the signaling pathway
complexity into a sensitivity function that could depend on the signal itself.
Mathematical modeling of chemotaxis has been widely developed, and the in-
terested reader can find a review in [24]. In the context of transport equations
that we present, chemotaxis is introduced as a bias of the main movement,
which is often assumed to be random motion [29]. Different structures of the
bias lead to particular sensitivity functions that can also account for inter-
nal mechanisms [13,18]. The derivation of the bias is performed according
to the cell-sensing strategy, which depends on the cell nature. Mathematical
modeling usually refers to strictly local, local average, neighbor-based, and
gradient-based as listed in [2], or more sophisticated sampling radius-based
models [23]. A few models have been developed for taxis in which the struc-
ture of the surrounding tissue impacts also on cell movement (see [10,34], for
example).

In the following we use the formalism introduced in previous sections and
extend it to account for taxis modeling in a generic way based on the approach
developed in [5]. We start from the description of cell migration in the ECM as
a combination of random motion, contact guidance, and cell–cell interaction.
Therefore we propose to integrate the influence of signaling as a bias of the
main motion described by the operator

M(t,x,v) = Jm(t,x,v) + Jc(t,x,v) (11.33)

where Jm and Jc are given by Equations (11.26) and (11.32), respectively. We
assume that cells are able to detect or measure environmental properties of
their local neighborhood, for example, by detecting signaling molecules that
are released into the environment, and adapt their behavior on the basis of
this information. The direction of movement v̂ is then chosen according to a
signal with a probability that depends on the signal’s nature and intensity.
In [5] the approach is based on the assumption that one cell measures the
density S of signaling molecules in its neighborhood described by a sampling
radius, compares the values in every direction, and finally evaluates the signal
direction thanks to this comparison. Both random reorientation and alignment
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processes along the fibers are affected; hence, a cell may choose to follow a
fiber up or down according to the external signal. Therefore Jm and Jc are
extended to

JB
m (t,x,v) = 	m M(x)

(

�(t,x)�(v)
me(x, v̂)

2M(x)
[1 + B(t,x, v̂)] − p(t,x,v)

)

(11.34)

JB
c (t,x,v) = 	c�(t,x)

(

�(t,x)
�(v)

Vd

[1 + B(t,x, v̂)] − p(t,x,v)

)

(11.35)

In Equations (11.34) and (11.35), the bias B accounts for an external stimulus
that modifies the rate at which a cell reorients into v̂. Under the assumption
of a small sampling radius, in [5], the simplest expression is derived, leading
to the following gradient-based bias:

B(t,x, v̂) = ±Ŵ
∇S(t,x) · v̂


S + S(t,x)
(11.36)

In Equation (11.36) the parameter Ŵ reflects the cell sensitivity to the signal
and represents the small sampling radius around each cell. The ± sign is
associated with repellent (−) or attractive (+) effect in the direction of the
gradient ∇S of signaling molecule density S, while 
S > 0 is introduced
to avoid a singular behavior when S = 0. The meaning of B is illustrated
in Figure 11.5 for a 2-D configuration. The gradient of signaling molecules
can be written as ∇S = |∇S|eS where eS = cos �S ex + sin �S ey is the unit
vector in the direction of the gradient. Similarly we write the velocity direction
v̂ = cos � ex + sin � ey . Both �S and � belong to the interval [−�, �]. Thus the
bias can be rewritten as

B(t,x, �) = ±Ŵ
|∇S(t,x)|


S + S(t,x)
cos (� − �S) (11.37)

and is illustrated in Figure 11.5. In Equation (11.37) the sign is respectively
associated with attractive and repellent signals. In Figure 11.5(b) the attrac-
tive signal increases the probability that direction eS of the gradient is chosen.
In Figure 11.5(a) the repellent signal has the opposite effect: the lowest reori-
entation probability corresponds to the direction eS of the gradient while the
highest one is in the opposite direction �S − �.

The modified probability distribution that accounts for the influence of
signaling molecules may be used for different types of stimulus S. A diffusive
chemical substance C yields the Chemotactic bias:

B(t,x, v̂) ≡ BC(t,x, v̂) = ±Ŵ
∇C(t,x) · v̂


C + C(t,x)
(11.38)

Usually C refers to a chemoattractant that corresponds to the positive sign
in Equation (11.38). However, chemorepulsion has also been evidenced lately
in [35] for glioma cells, which would require the negative sign in the bias.
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(a) Repellent bias

(b) Attractive bias

1 + ϐ (t, x, θ)
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ex

θ
v̂

FIGURE 11.5 Schematic representation of the generic bias B. On the left
we represent geometrically the velocity direction v̂ and the gradient of chem-
ical density S. On the right we illustrate the typical probability distributions
to choose � as the new direction of movement when sensing (a) a repellent
chemical and (b) an attractive one. In the center, these probability distribu-
tions are also illustrated in polar coordinates: the dotted circles represent the
uniform distributions while the solid lines are the biased ones.

In a similar manner we model haptotaxis, that is, the movement of cells
toward a gradient of ligands into the ECM. We assume that these nondiffusive
ligands are proportional to the ECM density and write the corresponding
Haptotaxis bias:

B(t,x, v̂) ≡ BH(x, v̂) = +Ŵ
∇M(x) · v̂


H + M(x)
(11.39)

We already introduced repellent chemotaxis evidenced in [35]. In a more
recent article [12], Eckerisch et al. proposed that contactin is an interesting
counter-adhesive molecule that may contribute to repulsion between adjacent
tumor cells. We assume that this repellent auto-inducer is proportional to the
cell density and call this assumption Repellent quorum sensing bias:

B(t,x, v̂) ≡ BR(t,x, v̂) = −Ŵ
∇�(t,x) · v̂


R + �(t,x)
(11.40)

The dependence on the density field could also be more complicated.
It is straightforward to consider a combination of chemotaxis, haptotaxis,

and repellent quorum sensing by deriving the associated bias as a linear
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combination of Equations (11.38), (11.39), and (11.40). Additionally, other
mechanisms may also be included using our framework, with the remaining
assumption that these mechanisms influence the main movement as a bias of
the initial operators (11.26) and (11.32).

Throughout this section we introduced mesoscopic modeling of cell mo-
tion and reviewed various models of biological phenomena of importance that
can be accounted for in the mesoscopic framework. Specifically, we presented
the basic approaches to model random motion and how contact guidance is
included in this context, thus accounting for anisotropy of the ECM. Then
we extended existing models using the description provided by the kinetic
theory framework and evidenced density effects arising from cell–ECM and
cell–cell interactions. We finally derived a generic formulation to account for
environmental factors in the ECM. This concludes the presentation of meso-
scopic modeling of cell motion in the ECM. In the next section we show how
macroscopic models can be derived from a mesoscopic description.

11.4 From Mesoscopic to Macroscopic Modeling

11.4.1 Introduction to Methods

The derivation of macroscopic equations from the transport Equation (11.2)
was introduced in the context of fluid dynamics. We start with a short review
of the methods that have been developed in the literature.

The first class of methods is based on the direct derivation of equations
for the moments � and U introduced in Section 11.2.2. Note that second-
order moments associated with pressure or energy can also be considered.
This approach leads to an open system in which, typically, an equation for
the ith order moment requires knowledge of the (i + 1)th order moment. The
moment closure method is a fast and easy method to obtain a closed moment
system. Generally, there are many ways to close a moment system. From a
modeling point of view it is sensible to assume that the pressure term is
dominated by the equilibrium distribution of the system. However, using this
closure, it is not obvious that the solution of the macroscopic system is an
approximation of the moments of the solution p. Other physically motivated
moment closure techniques use entropy or energy minimization approaches to
justify the moment closure (see, for example, [20,26]).

The second class relates to asymptotic methods that require the existence of
a small parameter ε for scaling processes. They rely on the scaling choice and
may give rise to the so-called hydrodynamical and diffusive limits. An excellent
overview of the hydrodynamical limits, including Hilbert’s and Chapman-
Enskog’s methods, can be found in [33]. In [22], Hillen and Othmer detail the
diffusion limit of transport equations derived from velocity-jump processes.
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These methods have been often used for chemotaxis [11,14,30] and contact
guidance [8,21] modeling, and gave rise to a wide variety of sophisticated
models.

In the next section we use Hilbert’s method to derive the diffusive limit
for the type of transport models introduced throughout Section 11.3. To this
end we need to identify the small parameter ε that is required for asymptotic
methods. We start then with the nondimensionalization of the kinetic equation

∂p

∂t
(t,x,v) + v · ∇ p(t,x,v) = JB

m (t,x,v) + JB
c (t,x,v) (11.41)

for the following expressions of the r.h.s. operators that model biased migra-
tion in the ECM:

JB
m (t,x,v) = 	m M(x)

(

�(t,x)�(v)
me(x, v̂)

2M(x)
[1 + B(t,x, v̂)] − p(t,x,v)

)

(11.42)

JB
c (t,x,v) = 	c�(t,x)

(

�(t,x)
�(v)

Vd

[1 + B(t,x, v̂)] − p(t,x,v)

)

(11.43)

We introduce reference values �0 and M0 to scale the cell and fiber densities,
and scale velocity by a maximal speed U0 that occurs in |V |. Thus the ap-
propriate reference values are, respectively, p0 = �0/U

d
0 for the distribution

function p and �0 = 1/Ud
0 for the speed distribution function �. We intro-

duce now a typical time t0 associated with the reorientation processes that
occur with frequency �c ≡ 	c� due to cell–cell interaction and �m ≡ 	m M

for cell–fiber interaction. Thus we introduce the typical microscopic length
ℓ0 = U0t0 that corresponds to the mean free path, that is, the distance cov-
ered by a moving cell during a time interval [t, t + t0] without reorientation.
Finally, we introduce macroscopic scalings T0 for time and X0 for length, and
assume that X0 ≫ ℓ0 so that we can introduce a small dimensionless parame-
ter ε > 0 defined by ε = ℓ0/X0 that is equivalent to a Knudsen number. This
assumption gives rise naturally to two time scales corresponding, respectively,
to drift and diffusive macroscopic processes. The first one is associated with
a typical time T0 = Tdrift = X0/U0 = t0/ε, while the second one relates to a
diffusive time T0 = Tdiff characterized, for one cell, by a diffusion coefficient
D = U2

0 t0/d in R
d . Because Tdiff = X2

0/D, it is straightforward to calculate
Tdiff = d t0/ε2. We use now the above reference values to perform the following
nondimensionalization:

p =
�0

Ud
0

p̃ , � = �0 �̃ , m = M0 m̃ , M = M0 M̃ ,

t = T0 t̃ , x = X0 x̃ , v = U0 ṽ , � =
1

Ud
0

�̃
(11.44)

According to the choice of the time scaling, that is, either T0 = Tdrift or
T0 = Tdiff, the change of variables will lead to different approximations of the
transport equation associated with different time scales.
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While both scalings are interesting, we focus on the diffusive one and use
the reference time scale T0 = Tdiff to rewrite the initial Equation (11.41) as

ε
2 ∂ p̃

∂t̃
(̃t, x̃, ṽ) + ε d ṽ · ∇̃ p̃(̃t, x̃, ṽ) = d J̃B

m (̃t, x̃, ṽ) + d J̃B
c (̃t, x̃, ṽ) (11.45)

where ∇̃ denotes the gradient associated with the rescaled space variable.
We assume that contact guidance remains the mechanism that drives cell
migration in the ECM and take the typical microscopic time t0 = 1/(	m M0).
We remark that assuming dominant cell–cell interactions would simply lead
to t0 = 1/(	c�0) and would not change the dimensionless structure. The right-
hand-side operators of Equation (11.45) are thus rewritten as:

J̃B
m (̃t, x̃, ṽ) = M̃(x̃)

(

�̃(̃t, x̃)�̃(ṽ)
m̃e(x̃, v̂)

2M̃(x̃)
[1 + ε B̃(̃t, x̃, v̂)] − p̃(̃t, x̃, ṽ)

)

(11.46)

J̃B
c (̃t, x̃, ṽ) = � �̃(̃t, x̃)

(

�̃(̃t, x̃)
�̃(ṽ)

Vd

[1 + ε B̃(̃t, x̃, v̂)] − p̃(̃t, x̃, ṽ)

)

(11.47)

In Equation (11.47) we introduced � = (	c�0)/(	m M0), which reflects the
influence of cell–cell interaction compared to cell–fiber interaction. Addition-
ally, the bias B has been normalized using a reference value S0 for the generic
density S and assuming that the coefficient Ŵ, which represents the typical
sampling radius, is rescaled as Ŵ = ℓ0Ŵ̃ with Ŵ̃ = O(1). This means that the
surrounding neighborhood in which a cell feels a signal is, at most, on the
order of the microscopic length scale ℓ0.

Starting from the rescaled governing Equation (11.45), we now present the
derivation of its diffusive approximation.

11.4.2 Formal Limit of Diffusive Approximation

In this section we derive the formal diffusive limit of Equation (11.45), for
which the interaction operators J̃B

m and J̃B
c are of the form discussed in the

previous section. We recall that, as dictated by the cell number conservation
in Equation (11.11), these operators satisfy

∫

V

J̃B
m (̃t, x̃, ṽ) dṽ =

∫

V

J̃B
c (̃t, x̃, ṽ) dṽ = 0 (11.48)

For the sake of clarity in this section, we suppressed the tilde notation and
the dependence on time and space variables, which do not play a role in the
calculations. Solutions for the distribution function p is sought in terms of the
Hilbert expansion p(ε) = p(0) + εp(1) + O(ε2). The right-hand-side operators
are expanded in a similar manner as JB(ε)

m = JB(0)
m + εJB(1)

m + ε2 JB(2)
m + O(ε3)

and JB(ε)
c = JB(0)

c + εJB(1)
c + ε2 JB(2)

c + O(ε3). We also introduce the density

�(0) =

∫

V

p(0)(v) dv (11.49)
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and recall that the vector v is, throughout this section, the normalized velocity
that belongs to the normalized velocity domain. Substituting these expansions
into the transport equation and equating the coefficients of εn gives rise to the
following equations:

In ε0:

0 = JB(0)
m (v) + JB(0)

c (v) (11.50)

In ε1:

∇ · [p(0)(v)v] = JB(1)
m (v) + JB(1)

c (v) (11.51)

In ε2:

∂p(0)(v)

∂t
+ d ∇ · [p(1)(v)v] = d JB(2)

m (v) + d JB(2)
c (v) (11.52)

The solution p(0) to Equation (11.50), also called the equilibrium solution,
can be determined explicitly as:

p(0)(v) =
�(0) �(v)

M + ��(0)

(

1

2
me(v̂) +

�

Vd

�(0)

)

(11.53)

which leads to the associated mean cell velocity U(0) = 0. We summarize below
the methodology that is detailed in [5] to derive the diffusive approximation:

1. We find the expression of p(1) from Equation (11.51).

2. We integrate Equation (11.52) over the velocity domain V , which yields

∂�(0)

∂t
+ d ∇ ·

∫

V

p(1)(v)v dv = O(ε) (11.54)

thanks to property (11.48) that is satisfied for any order of the expan-
sions JB(ε)

m and JB(ε)
c .

3. We evaluate the first moment of p(1) that appears in Equation (11.54)
and find

∫

V

p(1)(v)v dv = ±
�

d

T
(0)∇S


S + S
�(0) −

1

d

∇ · P
(0)

M + ��(0)
(11.55)

where

� = Ŵ

∫

|V |

�(v)vd dv (11.56)

On the right-hand side of Equation (11.55) the first term relates to the
bias accounting for external factors with normalized signaling molecule
density S. Additionally we introduce the tensor

T
(0) =

MD + ��(0)
I

M + ��(0)
(11.57)
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where D is the orientation tensor defined in Equation (11.8) to describe
macroscopically the angular fiber distribution. The last term in Equa-
tion (11.55) relates to the main cell motion in the ECM. There, P

(0)

corresponds to the pressure tensor defined in Equation (11.5) that is
evaluated at equilibrium:

P
(0) =

∫

V

p(0)(v)v ⊗ v dv = �(0)
T

(0) with  =

∫

|V |

�(v)vd+1 dv

(11.58)

4. We substitute Expression (11.55) into (11.54) and take the limit ε → 0
to obtain the diffusive approximation:

∂�(0)

∂t
± � ∇ ·

[

�(0) T
(0)∇S


S + S

]

=  ∇ ·

[

∇ ·
[

T
(0)�(0)

]

M + ��(0)

]

(11.59)

Equation (11.59) is our governing macroscopic model of cell migration within
the ECM. It is a drift-diffusion equation for the cell density �(0) that is the
leading order of the approximation �(ε) assumed to converge to �. We use this
assumption and cancel the superscript to reformulate our macroscopic model
equation in the generic form:

∂�

∂t
= ∇ ·

[



(

T ∇�

M + ��
+

� ∇ · T

M + ��

)

∓ � X∇S

]

(11.60)

In Equation (11.60), the first term on the right-hand side relates to anisotropic
and nonlinear diffusion, while the second term may be seen as a drift term
that accounts for spatial variation of the ECM anisotropy. The last term is
also a drift term, caused by the gradient of signaling molecule density S with a
coefficient called sensitivity [29]. The positive sign refers to a drift in direction
of the gradient (attractive signal) while the negative sign refers to the opposite
direction (repellent signal). In our model the sensitivity is actually a tensor
that reads

X =
� T


S + S
(11.61)

whose signal dependence comes from the structure of Equation (11.36) that
we proposed as the simplest choice of the bias. In Equation (11.61), the tensor
T accounts for the local ECM orientation in taxis modeling. Therefore, sen-
sitivity Expression (11.61) belongs to the set of signal-dependent sensitivity
models, but extended to ECM effects. When the ECM is isotropic, the drift
velocity X∇S becomes �∇S, where the sensitivity � is the extension of the lo-
gistic model [24] that corresponds to 
S = 0. In the next section we illustrate
the effect of this drift term and put in evidence its role for the phenomena
introduced in Section 11.3.4, that is, chemotaxis, haptotaxis, and repellent
quorum sensing.
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11.5 Numerical Illustrations

We consider the 2-D square domain D of side length X0 containing Nc cells and
describe the ECM with Nm fibers whose angular distribution is described later
in this section. We take the reference values �0 = Nc/X

2
0 and M0 = Nm/X2

0.
Therefore we deal throughout this section with the dimensionless configuration
in the domain [0, 1] × [0, 1] in which we have

∫

[0,1]×[0,1]

�(t,x) dx =

∫

[0,1]×[0,1]

M(x) dx = 1 (11.62)

where x = (x, y) are the normalized space variables.
To perform numerical simulations, we use a mass-preserving finite volume

method to solve numerically the generic Equation (11.60) with a symmetric
splitting scheme for both directions and operators. The nonlinear parabolic
component is solved with a Crank-Nicholson scheme, in which the implicit
nonlinear term is treated by a Beam and Warming scheme. The hyperbolic
component is solved through a high-resolution wave-propagation algorithm
developed for spatially varying flux, using Van-Leer limiter. Periodic boundary
conditions are used for the sake of simplicity.

To avoid additional complexity, we also assume that all cells are moving
with the same velocity. We already presented this assumption that leads to
the particular Expression (11.15) for the speed redistribution function �. This
assumption yields  = 1 in Equation (11.60) and � = Ŵ in Equation (11.61),
where the dimensionless parameter � may be seen as a Peclet number that
compares advective processes to diffusive ones.

In the following we illustrate the effects of fiber guidance on cell migration
in an inhomogeneous and anisotropic ECM. We focus first on density and
anisotropy effects and do not consider chemical factors. We will consider their
influence in Section 11.5.2.

11.5.1 Spreading in Heterogeneous and Anisotropic ECM

In this section we illustrate the influence of ECM heterogeneity and anisotropy
on cell motion and do not consider taxis. Thus we provide some numerical
results for the following equation:

∂�

∂t
= ∇ ·

[

∇ · [T�]

M + ��

]

(11.63)

In Equation (11.63) the only parameter is � = (	c�0)/(	m M0) =

(	c Nc)/(	m Nm) because we took �0 = Nc/X
2
0 and M0 = Nm/X2

0 as reference
values. We use the value � = 0.01 and will maintain it for all simulations.
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FIGURE 11.6 Contour levels of the fiber density M(x, y). (Left) The plain
line corresponds to M(x, y) = 1. (Right) Areas of high (M(x, y) ≥ 1.4) and low
(M(x, y) ≤ 0.5) fiber density. Areas that impact on motion are indicated and
respectively named hi for high-density regions and li for low-density ones.

This value corresponds to a “dilute” configuration in which the surrounding
ECM effects are dominant.

To account for the inhomogeneity of the ECM, we choose a randomly dis-
tributed fiber density M(x, y). The characteristics of this distribution are pre-
sented in Figure 11.6. To account for the anisotropy of the ECM, we choose
now a particular orientation tensor D, namely the diagonal configuration in
Figure 11.2(b). In this case the anisotropy of the matrix is completely de-
scribed by the first element of the diagonal denoted by D while the second
element is 2 − D. Therefore the anisotropy of the ECM is described by a ran-
domly space-dependent coefficient D(x, y) later referred to as the anisotropy

coefficient. The corresponding random distribution and areas associated with
high anisotropy are presented in Figure 11.7.

We choose the initial condition �(t = 0, x, y) arbitrarily. It is represented
in the first row of Figure 11.8 by its contour levels. The influence of the ECM
is shown in the columns (b) and (c) of Figure 11.8, which must be compared
with the homogeneous and isotropic case presented in column (a).

In column (b) of Figure 11.8, only heterogeneity is considered. The circular
shape of the cell density contour levels changes due to the spatial variations
of the fiber density. While the areas of high fiber density slightly affect the
evolution, an important effect of the low ones is observed. An accelerated
spreading is observed early in zones l1 and l2, which deforms the contour
levels. When area l3 is later reached (see last snapshot), the movement is again
affected and accelerated. Concerning the weak effect of high fiber density, it
has already been shown in [7] that the effect exists but needs larger density
values to be clearly observed. Attention now focuses on anisotropy effects, that
is, column (c) of Figure 11.8. The elongated shape of the central part is caused
by the horizontal fiber orientation in x1, while vertical deformations of the
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FIGURE 11.7 Contour levels of the anisotropy coefficient D(x, y). (Left)
The plain line corresponds to D(x, y) = 1 (i.e., a locally isotropic fiber dis-
tribution) and the arrows evidence the main local orientation of the fiber
network. (Right) Areas of high anisotropy of the ECM. The two contour
levels indicate respectively zones with preferentially horizontal orientation
(D(x, y) ≥ 1.33) of the fiber network and preferentially vertical orientation
(D(x, y) ≤ 0.77). Areas that impact on motion are indicated and respec-
tively named xi when the fiber orientation is mainly horizontal and yi when
mainly vertical.

contour levels appear in areas y1 and y2 due to the vertical fiber orientation.
Additionally, an acceleration of the front is also observed horizontally in x2

and vertically in y3.
To illustrate in the next section the effects of various types of external

factors, we introduce the reference configuration of a population spreading
in a heterogeneous and anisotropic ECM configuration. We consider both
heterogeneity through the nonuniform fiber density M shown in Figure 11.6
and anisotropy through the anisotropic coefficient D shown in Figure 11.7.
Therefore the simulation of Figure 11.9 is actually a combination of the effects,
respectively, evidenced in columns (b) and (c) of Figure 11.8. We use it as a
reference in what follows to illustrate the effects of the environmental factors
previously introduced.

11.5.2 Illustration of Taxis Effects

In the previous section we evidenced the effects of ECM heterogeneity and
anisotropy on the spreading of a cell population. In this section we aim to
illustrate taxis mechanisms that we modeled through Equation (11.60) by
the drift term associated with the gradient of a generic signaling molecule
density S.

We start with the illustration of positive chemotaxis and take S ≡ C, where
C denotes the normalized density of an exogenous chemoattractant. We con-
sider a time-independent Gaussian distribution of C centered at x = 0.3,
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FIGURE 11.9 Reference configuration. Spatio-temporal evolution of the
cell density contour levels in an anisotropic and heterogeneous environment.
The corresponding fiber density M and anisotropy coefficient D we used are
shown in Figures 11.6 and 11.7, respectively.

y = 0.3 that, thanks to the adapted reference value used to nondimension-
alise our problem, satisfies

∫

[0,1]×[0,1]

C(x) dx = 1 (11.64)

The extension to a time-dependent distribution of a diffusive endogenous at-
tractant can be easily performed by introducing an evolution equation for C
to form a coupled system of the type of Keller-Segel as generally used (see [4],
for example). However, here we simply illustrate in Figure 11.10 the effect
of a stationary nonuniform distribution of chemoattractant (that is, neither
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FIGURE 11.10 Chemotaxis effects. Spatio-temporal evolution of the cell
density contour levels in an anisotropic and heterogeneous environment biased
by a time-independent chemoattractant C spatially distributed as a Gaussian
centered at x = 0.3, y = 0.3 with variance 0.005. Parameter values are Ŵ = 1
and 
C = 1.

decay nor diffusion of the chemical) and present a numerical solution to our
drift-diffusion model equation for chemotactic migration in the ECM:

∂�

∂t
+ Ŵ ∇ ·

[

�
T∇C


C + C

]

= ∇ ·

[

∇ · [T�]

M + ��

]

(11.65)

The effect of the chemoattractant is straightforward: the cell density expan-
sion is strongly modified in the lower-left area of the domain, and cells ac-
cumulate toward high chemical concentration values. The expansion in other
areas remains almost unaffected due to the limited operating range of the
chemoattractant. It is worth mentioning that although we only provide a
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FIGURE 11.11 Haptotaxis effects. Spatio-temporal evolution of the cell
density contour levels in an anisotropic and heterogeneous environment biased
by haptotactic cues. Parameter values are Ŵ = 1 and 
H = 0.

simple illustration here, Equation (11.65) is the only continuum representa-
tion of chemotactic effect in an anisotropic environment.

The second application of our model is also a significant improvement to
former approaches. We illustrate in Figure 11.11 the effects of haptotactic cues
by taking S ≡ M and presenting a numerical solution to our Drift-diffusion
model equation for haptotactic migration in the ECM:

∂�

∂t
+ Ŵ ∇ ·

[

�
T∇M


H + M

]

= ∇ ·

[

∇ · [T�]

M + ��

]

(11.66)

The effects of a drift velocity in the direction of the fiber density gradient
are not surprising but particularly significant. The spatio-temporal evolution
shown in Figure 11.11 differs strongly from the reference one in Figure 11.9.



314 Cell Mechanics

The areas li of low fiber density defined in Figure 11.6 are clearly circum-
vented, while aggregation processes are triggered toward the areas hi of high
fiber density. We suggest that haptotactic cues may increase heterogeneities in
the expansion of a cellular population. By this example we also demonstrate
the importance of our model. This last example has the ability to strongly
reflect asymmetrical spreading when various effects of the ECM are accounted
for, in particular fiber density, anisotropy and haptotaxis.

We conclude with the application of our framework to repellent quorum
sensing and take S ≡ � to state our Diffusion model equation for repellent
quorum sensing migration in the ECM:

∂�

∂t
= ∇ ·

[

∇ · [T�]

M + ��
+

Ŵ �


R + �
T∇�

]

(11.67)

The mathematical structure of governing Equation (11.67) adds to the original
unbiased term a second diffusion one with a nonlinear coefficient that results
from the self-repellent mechanism. We remark that 
R is not necessary to
avoid singularities in the coefficient and take the value 
R = 0. In this case,
the nonlinearity of the additional diffusion coefficient simplifies and provides
linear diffusion whose intensity is reflected by Ŵ. However, the influence of
the anisotropy remains present through the tensor T. Thus, repellent quo-
rum sensing acts as an additional diffusion that does not take into account
density effects. Therefore the main effects observed in Figure 11.12, com-
pared with the reference configuration of Figure 11.9, are diffusion related
and namely: a faster spreading of the cells from the center of the domain
and a faster decrease of the central mass. Additionally, a smoothing effect
is observed, caused by weaker density effects while anisotropy ones remain
significant.

We provided throughout this last section numerical examples of our model
for various phenomena of importance that occur during cell migration in the
ECM. We qualitatively compared results obtained for the spreading of a cell
population in a heterogeneous or anisotropic ECM, to a uniform and isotropic
one. We put in evidence significant differences, which lead us to point out
the pertinence of the type of model we derived. Indeed, current modeling of
complex biological phenomena involving cell migration in the ECM does not
usually take both heterogeneity and anisotropy ECM properties into account.
We believe that our framework can provide significant improvements to the
current modeling when ECM description is required. We finally conclude here
by pointing out the didactical way with which we chose to present our work
in this chapter. Some assumptions or simplifications could have seemed näıve
to an expert reader. However, we wanted to contain the complexity level of
such approaches to promote their development. We hope that the interested
reader will have found enough material within this chapter to acquire a good
overview and develop his or her own modeling.
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FIGURE 11.12 Repellent quorum sensing effects. Spatio-temporal evolu-
tion of the cell density contour levels affected by repellent quorum sensing in
an anisotropic and heterogeneous environment. Parameter values are Ŵ = 1
and 
R = 0.
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[14] F. Filbet, P. Laurençot, and B. Perthame (2005). Derivation of hyper-
bolic models for chemosensitive movement. J. Math. Biol. 50:189–207.



Mathematical Framework to Model Migration of Cell Population 317

[15] P. Friedl (2004). Prespecification and plasticity: shifting mechanisms of
cell migration. Curr. Opin. Cell Biol. 16:14–23.
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12.1 Introduction

From the earliest embryonic stages to the complexity of the adult, the ability
of cell populations to adhere to each other or the surrounding extracellu-
lar matrix (ECM) is of critical importance to the survival of the organism.
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During embryonic development, carefully regulated adhesion plays a funda-
mental role directing the various cell populations into the developing organs
while maintaining strong adhesive contacts is essential in preserving the in-
tegrity and structure of the adult tissues. The manifest importance of cel-
lular adhesion is exposed by its abnormal functioning in a wide variety of
pathological conditions, including malignant cancer growth (e.g., [49]) and
cardiovascular diseases (e.g., [40]).

Adhesion can generally be classified into two principal forms: cell–cell adhe-
sion and cell–matrix adhesion. The former defines the direct binding between
cells through the creation of transmembrane protein–protein complexes, the
prototype examples of which are the strong contacts maintaining epithelial
structures such as the epidermal skin layer. The latter describes the attach-
ment of cells to the surrounding ECM, the scaffold support surrounding cells
and composed of a variety of molecules including collagens, fibronectins, and
laminins. While the ECM is present in all tissues, its prevalence in connective
tissues such as the dermal skin layer makes cell–matrix adhesion particularly
important for stromal populations such as fibroblasts and immune cells.

The control of cell–cell and cell–matrix adhesion is fundamentally deter-
mined through the expression and regulation of a wide variety of membrane-
based proteins, the cell adhesion molecules (CAMs); for a general review,
see [1]. Four principal families of CAMs have been classified: the cadherins
(e.g., E-cadherin, N-cadherin); the immunoglobin superfamily (e.g., NCAM,
EpCAM); the integrins; and the selectins. Members of these families generally
consist of transmembrane molecules with an intracellular domain linking to in-
tracellular signaling pathways and an extracellular domain connecting to other
cells or the matrix. Adhesion is achieved through protein–protein coupling of
the extracellular domain to form either homophilic interactions (i.e., binding
between two proteins of the same type, such as E-cadherin–E-cadherin) or
heterophilic interactions (binding between two molecules of different types).

The cadherins form a large family of transmembrane adhesion molecules
widely recognized for their capacity to mediate direct cell–cell adhesion, al-
though their function extends to a host of other cellular processes, ranging
from apoptosis to signaling (for reviews on the behavior and function of cad-
herins, see [36,57]). Classic cadherins tend to form homophilic interactions in
the intermembrane space separating two cells, although heterophilic interac-
tions can also occur (e.g., E-cadherin–P-cadherin), albeit with different adhe-
sive intensity [25]. The transmembrane binding fastens cells in a zipper-like
manner, conferring a key role to cadherins in all aspects of an organism’s life-
span, from coordinating multicellular tissue movements during development to
maintaining the tissue structure of the adult. A wide variety of cadherins have
been identified, distributed across different cell populations. For example, the
E-cadherins are mainly associated with epithelial cell populations, while more
migratory mesenchymal cells (e.g., fibroblasts) tend to favor N-cadherins [79].

The integrins form the dominant CAMs regulating adhesion to the extracel-
lular matrix [10]. The extracellular domain couples the cells to ligands of the
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ECM to create various types of cell–matrix adhesion structures that, in turn,
modulate the intracellular component to interact with intracellular signaling.
These adhesion structures have the capacity to recruit additional molecules
(e.g., matrix proteases) and therefore locally alter the structure of the ECM.
Dynamic control of cell–matrix adhesion is crucial to the migration of cells in
ECM-rich environments, such as connective tissue, where migration proceeds
through a continuous cycle of attachment at the leading edge, extension and
translocation of the cell body, and detachment at the cell rear (e.g., see Friedl
and Wolf [29]). Consequently, the structure of the ECM plays a significant role
in directing migration: certain cells may migrate toward ligand-dense (i.e.,
more adhesive) regions of the matrix, a process termed haptotaxis; toward
more rigid regions, called durotaxis [46]; or even along the aligned collagen
fibers, called contact guidance [26].

12.1.1 Cell Adhesion during Pattern Formation

and Development

In a series of classical experiments, Townes and Holtfreter [74] demonstrated
the intrinsic capacity for certain embryonic cell populations, when dissoci-
ated and randomly mixed, to spontaneously reorganize into their original em-
bryonic relationship, a process attributed at the time to tissue affinity. The
underlying mechanism(s) governing this cell sorting have been subject to a
significant degree of speculation and experimentation over the years, with the
differential adhesion hypothesis (DAH) of Steinberg (see the reviews [27,68] of
Foty and Steinberg) at the forefront of theories. The series of experiments by
Steinberg in the 1960s [65–67] demonstrated that embryonic cell types obey
strict rules. Whatever the initial distribution for two separate populations was,
the cells always rearranged into the same configuration; see Figure 12.1(a).
Furthermore, populations formed hierarchical relationships. If cells of type B
are engulfed by cells of type A and cells of type C are engulfed by cells of
type B, then C will always be engulfed by A; see Figure 12.1(b).

Based on these observations, the DAH employs thermodynamic principles,
proposing that cell sorting derives from variation in cell surface tensions that,
in turn, depend on the different adhesive properties of the cell types; Cells are
assumed to rearrange in a manner to minimize their free adhesive energy, anal-
ogous to the behavior of two immiscible liquids. Through these arguments, a
mixture of two cell populations, A and B, can be predicted to rearrange into
four basic configurations according to the relative strengths of self-adhesion
(i.e., the binding between two cells of the same type, SAA and SB B) and cross-
adhesion (i.e., binding between two cells of different type, CAB): mixing, en-
gulfment, partial engulfment, and complete sorting; see Figure 12.1(c).

Over the past decade or so, a series of thorough experiments have substanti-
ated the DAH for sorting (see reviews [27,68] for further details). Experiments
with two cell lines expressing different levels of cadherins (and hence varying
degrees of adhesiveness) resulted in the population expressing higher cadherin
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FIGURE 12.1 Sketches showing the behavior of two adhesive cell popula-
tions, as predicted by the DAH. (a) The same populations always approach
the same final configuration, regardless of initial distribution. Starting from
the left, populations of mixed and dissociated cells coalesce before evolving to
a final configuration (shown here as “engulfment”). Starting from the right,
the same two populations, when placed together as fragments, spread over one
another before reaching the same pattern. (b) Hierarchical relationships in ad-
hesive populations. (c) Two populations, A and B, evolve into various final
configurations according to their self-adhesion SAA, SB B (between A and A,
between B and B) and cross-adhesion CAB (between A and B) strengths. For
two populations, the observed patterns are mixing (in which the populations
are uniformly distributed, requiring dominant cross-adhesion CAB > SAA+SB B

2
);

engulfment (in which the more cohesive population is engulfed by the less
cohesive population, requiring SB B < CAB < SAA or SAA < CAB < SB B); par-
tial engulfment (for which the cross-adhesion strength is less than both the
self-adhesion strengths—CAB < SAA and CAB < SB B); and complete sorting
(for which CAB = 0 and the two populations form separate aggregations).
Adapted from R.A. Foty and M.S. Steinberg (2004). Cadherin-mediated cell–
cell adhesion and tissue segregation in relation to malignancy. Int. J. Dev.
Biol. 48:397–409.

levels aggregating to the center, with the other line confined to the periphery,
consistent with the predictions of the DAH [25,69]. Recent experiments of
Foty and Steinberg [28] have directly linked the surface tensions underlying
sorting of tissues to differing strengths of cell–cell adhesion.
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The capacity for differential adhesion to spatially sort out different pop-
ulations implies an important role during the morphogenetic patterning of
the embryo; indeed, examples of spatio-temporally controlled alterations to
the adhesive properties of cells and the matrix include whole-embryo tissue
movements during gastrulation, formation of the boundaries during segmen-
tation of the hindbrain, and the precisely controlled movements of differenti-
ated cell types during the patterning of the insect compound eye (for these
and further examples, see [13,36,44,68,72,73]). In segmentation, the embryo is
subdivided into a number of discrete blocks along the anterior–posterior axis,
laying a blueprint for future development. For a number of organisms, includ-
ing birds, fish, and mammals, this proceeds through somitogenesis, in which
parallel stripes of mesenchymal tissue (the paraxial mesoderm) metamerically
pinch off to form somitic pairs on either side of the developing neural tube.
Compaction from the mesenchyme into epithelialised somites is thought to
arise through increases to cell adhesion [16], with a number of studies indi-
cating roles for both matrix molecules such as fibronectin (e.g., [24,53]) and
cadherins (e.g., [45,71]). Somites undergo subdivision, first into distinct an-
terior and posterior portions (e.g., [59]) before they subsequently sort into
further embryonic subpopulations [8]. Differential cell–cell adhesion has been
suggested to pattern somites into their anterior and posterior segments [70], a
theory strengthened by the distribution of various cadherins in the developing
somite (e.g., [24,42]).

12.1.2 Cell Adhesion in Cancer Invasion

Understanding the processes that regulate the control of adhesion during tis-
sue development and homeostasis is crucial when it comes to determining the
factors that lead to tumor progression. The transition from a benign, compact
tumor to an invasive, spreading tumor capable of forming metastases is a piv-
otal moment for prognosis, and it is now widely accepted that modifications
to the adhesive properties of the cells and surrounding ECM correlate with
malignant development for a wide range of cancer types (e.g., [14,15,17,49]).

For many tumors of epithelial origin, a link between increased malignancy
and progressive loss of function in the cell–cell adhesion molecule E-cadherin
has been observed [17], with forced expression of E-cadherin in cultures re-
sulting in a reversal from an invasive to a benign phenotype (e.g., [11]). In
a number of cancers, the loss of E-cadherin is accompanied by a gain in
N-cadherin expression, a “cadherin-switching” mechanism [79] similar to those
seen in various embryonic processes—for example, ingression of cells through
the primitive streak. Such transitions are believed to give rise to the evolution
of a more invasive migratory form.

To infiltrate surrounding healthy tissue it is necessary for the tumor cells
to interact with the surrounding ECM, a structure that can both provide a
substrate through which cells can move as well as a physical barrier against
migration. To migrate, cells must attach to the matrix through the formation
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of focal adhesions, mediated through the integrin family of CAMs. These focal
adhesions provide a site for recruiting matrix proteases (e.g., MMPs) that
degrade the ECM and hence provide space for tumor invasion and expansion
to occur [29]. A wide number of in vitro and in vivo studies have investigated
the importance of integrins and MMPs for cancer cell invasion, yet the precise
impact on invasion (e.g., promoting or inhibiting) varies widely according to
cancer origin.

The form of the invasive front is also variable, with different tumors dis-
playing diverse patterns of invasion, often resulting in an indistinct and diffuse
tumor–host tissue interface [29]. Certain tumors (e.g., lymphomas, glioblas-
tomas) tend to invade as individual cells, occasionally forming single-file cell
chains known as “Indian chains” (e.g., in breast carcinomas). Other tumor
types, particularly those of epithelial origin, tend to invade in a collective
fashion in which multicellular strands of tumor cells known as “fingers” pro-
trude into the host tissue or cell clusters migrate out from the tumor while
maintaining close contacts. Once again, these distinct patterns of invasion
correspond to different patterns of CAM expression, with the individual cell
migration phenotypes, typified by mesenchymal and amoeboid cell types, ex-
pressing high levels of integrins and proteases while collective cell invasion is
characterized by epithelial cell types with strong cell–cell adhesion.

12.1.3 Chapter Outline

Clearly, cellular adhesion plays a crucial role in many biological processes.
While a wide range of models have incorporated adhesion at the discrete
level, the incorporation into continuous models has received relatively little
attention, a fact that can be attributed primarily to a lack of models able to
replicate the characteristic behaviors of adhesive populations. In this chapter
we first explore the history of modeling in this fundamental process. We review
the derivation of the continuous model for cell–cell adhesion developed in [6]
and show how it captures the fundamental properties of aggregation and cell
sorting. In Section 12.5 we consider an application of this model to tumor
invasion [33,64]. Finally, we raise a number of biological, modeling, analytical,
and numerical challenges stimulated by these works.

Supplementary material for this chapter, including color figures and simu-
lation movies, is available online at

http://sim.mathematik.uni-halle.de/gerisch/2009/GerischPainter09

12.2 Mathematical Modeling of Cell Adhesion

The recognition of cellular adhesion as a major driving force behind vari-
ous biological processes has led to the development of a variety of modeling
approaches and models. Naturally, the structure of a model will inevitably
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depend on the precise biological question to be addressed. However, it is rea-
sonable to expect that any model of cell–cell adhesion at a population level
should capture core properties, such as an ability to predict the aggrega-
tion/coalescence of a population as the “adhesivity” of the cells is increased
and, when expanded to include multiple populations, the various sorting prop-
erties predicted by the DAH. The mechanism of cell–cell adhesion—a nonlo-
cal interaction between two cells through transmembrane receptor binding—
naturally suggests the usage of discrete cell (i.e., individual cell or agent-based)
approaches, which retain the finite cell size and permit relatively straight-
forward incorporation of the molecular interactions and/or forces that act
between cells. Weighed against such advantages, however, are the signifi-
cant computational times required to simulate large populations and diffi-
culties in obtaining analytical insight. Consequently, it is desirable to aug-
ment such methodologies with continuous models that capture the dynamics
of population-level behavior.

12.2.1 Discrete Models for Cell Adhesion

The past decade has witnessed the development of a wide variety of discrete
models that incorporate cell adhesion and are of increasing sophistication.
Generally, such models can be classified into two major classes: lattice-based
and lattice-free approaches. We start this section with a brief discussion of
a number of discrete lattice-based models (the book by Deutsch and Dor-
mann [21] reviews these models in greater detail with a specific focus on cel-
lular adhesion in its Chapter 7) and consider cellular automata, the discrete-
continuum technique, and cellular Potts models.

In lattice-based approaches, the morphology of a cell is restricted according
to some underlying discretization of space, which can be either regular (e.g.,
rectangular or hexagonal in two dimensions) or irregular (e.g., a Voronoi tes-
sellation). These approaches can generally be further subclassified into those
for which one cell correlates to one lattice site and spatially extended ap-
proaches, with a cell defined by a connected set of sites. Examples of the
former class include many cellular automata models: for the evolution of cells
under the influence of differential adhesion, see, for example [20]; in [50], a
similar approach was employed to demonstrate how different adhesive prop-
erties can generate zebrafish pigmentation stripes. A second example of the
single-site class is the discrete-continuum technique developed by Anderson
and co-workers [2,4]. Here, the discrete cells interact with each other and
surrounding continuous fields representing extracellular matrix densities and
growth factor concentrations. Movement probabilities are derived from these
interactions, which include adhesion of cells to the extracellular matrix, and
drive the reorganization of the cell pattern in space and time. The primary
application of this technique has been in models of tumor cell invasion.

A prime example of a spatially extended approach is the cellular Potts model
(or Glazier-Graner-Hogeweg model). Originating in theoretical physics, it was
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adapted and applied to cell populations by Graner and colleagues in the 1990s
(see [34,35]). Here, each (biological) cell is of a certain cell type and repre-
sented as a number of sites (vertices) of a regular lattice. For a given state
of the system, a Hamiltonian function is defined based on the surface energy
along the cell boundaries and deviations of cell sizes from typical values. The
evolution of the system is then driven by a Monte Carlo-like scheme that aims
to reduce the value of the Hamiltonian by changing the cell association of a
randomly chosen lattice site to that of one of its neighboring sites. The surface
energy depends on the cell types on either side of the cell surface and conse-
quently accounts for self- and cross-adhesive effects. A background medium
(e.g., representing the extracellular matrix) can also be included in the model.
The generic model structure of this Potts model has been elaborated by var-
ious authors to make it suitable for particular application areas, for example,
cellular slime mold morphogenesis [48], vertebrate development [58], epider-
mal homeostasis [62], solid tumor growth [75], and angiogenesis [9].

The artificiality of the imposed grid can be countered through the adop-
tion of a lattice-free approach in which individual cells are allowed to move
freely through continuous space. In a number of models of this type, cells are
given variable, yet predefined, shapes such as deformable ellipsoids of fixed
volume in a model for cell movement of Dictyostelium discoideum [19,55,56].
Another option, which allows for cell growth and division, is that the average
cell shape at any point in the life cycle of a cell is predefined while the actual
cell shapes are reconstructed from that by taking neighboring cells into ac-
count. This approach, introduced by Drasdo et al. [23], is followed in models
of tumor growth, epidermal homeostasis, and early development; for a brief
review and further references, we refer the reader to [30]. One recent extension
of this approach has been the incorporation of intracellular and transmem-
brane molecular interactions, courtesy of an ordinary differential equation
system for each cell that describes the regulation of E-cadherin through the
�-catenin signaling pathway [60]. In both these and the deformable ellipsoid
model described above, movement of individual cells is driven by equilibrating
forces, including adhesive ones; alternatively, as in [23], movement is governed
by a Monte Carlo algorithm based on a suitable interaction potential.

A number of further lattice-free models provide even greater flexibility to
the manner in which cells refine their shape. The model of Schaller and Meyer-
Hermann [63] adopts a Voronoi-Delaunay method, permitting cells to shift
smoothly between spherical and polyhedral with increasing tissue density,
thereby providing greater control over the amount of cell–cell contact. The
subcellular element model of Newman [51] provides additional intracellular
structure through subdividing each cell into a set of continuously deforming
elements, giving high malleability to the shape of a cell according to its inter-
actions with neighbors and the environment. Finally, in the immersed bound-
ary models for individual cells [22,61], each cell is described as a fluid-elastic
structure in which its membrane is represented by a deformable boundary
immersed in a fluid. Force balances again are used to represent the adhesive
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forces that describe the movement and deformation of cells while channels at
the membrane permit the influx of fluid required for growth into the cell.

12.2.2 Continuous Models Incorporating Cellular Adhesion

While discrete models for cells permit the straightforward incorporation of
many intra-, extra-, and intercellular processes, they also have their draw-
backs. Of particular concern is that the transition from the cellular to the
tissue scale can require a formidable number of cells, which in many models—
and certainly for the more detailed ones—is computationally infeasible. In
addition, discrete models often resist a thorough analytical investigation that
can shed light on generic properties of the system under study. Both of these
issues can be relaxed by considering continuum-scale (PDE) models where
cells are represented through their density at the tissue level, and events at
the cellular level are accounted for by the particular choice of terms and pa-
rameter functions in those models. In the following we briefly review some
continuous models that account for cellular adhesion.

The modeling of cell–extracellular matrix adhesion has been phenomenolog-
ically captured in a number of models through the idea of haptotactic migra-
tion (e.g., [3]). Here, cells are assumed to migrate up gradients in the density
of an extracellular matrix through the incorporation of an advective-flux type
term qualitatively the same as those traditionally employed in continuous
chemotaxis models (e.g., [39]).

Incorporation of cell–cell adhesion, however, has proved generally problem-
atic at a continuous level. One approach, adopted in a number of models
(e.g., [41]) has been to include cell–cell adhesion through a density-dependent
cell diffusion coefficient. While this phenomenologically captures one aspect
of adhesion (i.e., the restricted movement of cells in regions of high density),
its capacity to describe more complex phenomena such as self-aggregation
and sorting of multiple populations is unknown. Byrne and Chaplain [12]
presented a model of cancer growth and invasion that accounts for cell–cell
adhesion through the incorporation of a surface tension force at the tumor
surface controlling the evolution of the tumor shape during growth. This idea
has been taken up and extended in recent models [18,47]. The single-phase
approach in these models has been broadened to multiphase using a diffuse
interface framework in [80]. This model accounts for cell–cell and cell–matrix
adhesive effects by incorporating them into a system energy that drives the
system following an energy variation scheme. The nonlocal energy term is as-
sumed to be sufficiently localized and the corresponding truncated expansion
of that term leads to a fourth-order PDE model of Cahn-Hilliard type.

The modeling approach of Armstrong et al. [6], which is the focus of this
chapter, also employs nonlocal terms to account for adhesive effects. In con-
trast to [80], no expansion of these terms is performed so that the resulting
model equations are nonlocal or integro-partial differential equations of second
order. This approach has been employed to show that upregulated adhesion
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can drive both the formation and subsequent anterior–posterior compartmen-
talization of somites [7] and, as we expand on below, incorporated into models
for tumor invasion [33,64].

A highly desirable objective is to develop continuous models for cellular ad-
hesion as the appropriate limit from an underlying individual model for cell
movement; in the case of chemotactic cell movement; this has been studied in
detail (see [37] for a review) and an obvious advantage lies in the determina-
tion of the macroscopic parameters (such as diffusion coefficients and chemo-
tactic sensitivities) in terms of measurable microscopic parameters (e.g., cell
velocities, turning rates). A number of recent attempts have been made to
approach this problem. In [77], a 1-D representation of a cellular Potts model
incorporating adhesion was taken, under specific scaling arguments, to its
continuous limit, yet the resulting model is relatively unwieldy and it has not
been shown whether sorting properties can be captured. Another approach
adopted is to consider the evolution of a particle executing one-step jumps on
a discrete lattice (e.g., [5,54]). While these models can capture self-aggregation
of a population, the ill-posed nature of the resultant continuum equations can
create singular behavior. Finally, [52] considers the limit of a Langevin-based
individual model. Interestingly, the resulting continuum model incorporates
nonlocal terms similar to those of the phenomenological model of Armstrong
et al. [6], described below.

12.3 Derivation of a Nonlocal Model for Cell Adhesion

We begin by reviewing and extending the phenomenological derivation for an
integro-partial differential equation model for cell–cell adhesion first developed
in [6]. Here, a mass conservation approach was employed in which the cell
density for an adhesive cell population u(x, t) (x ∈ R

n) was proposed to be
governed by:

∂u(x, t)

∂t
= − ∇ · J + h(·) (12.1)

where J represents the cell flux and h(·) describes cell kinetics. A multitude of
factors are known to dictate cell movement in vivo, ranging from long-range
chemoattractants to local cell-cell and cell-ECM interactions, indicating a flux
of the form

J = Jrandom + Jadhesion + Jtaxis (12.2)

where Jrandom is the flux due to random cell movement (typically modeled
as a Fickian diffusion, Jrandom = −Du∇u, where Du is the cell diffusion co-
efficient), Jadhesion is the flux due to adhesion, and Jtaxis is the flux due to



Mathematical Modeling of Cell Adhesion 329

long-range substances such as chemoattractants. For the latter, the classical
assumption is to take Jtaxis = u�(u, c)∇c, where c represents the chemoat-
tractant concentration and the function � is referred to as the chemotactic
sensitivity [39,43].

To model the contribution of adhesion to the cell flux, Jadhesion, we assume
that movement occurs due to the forces generated when cells bind with other
cells or the surrounding matrix, the density of which we denote by m(x, t).
For a cell at x, binding with a cell at x + r will create a local force f in
the direction r (equally, the cell at x + r experiences the opposite force).
To describe adhesion-based movement, we assume that the size of this local
force depends on the adhesivity of this site, namely the numbers and types
of adhesion molecules. Rather than explicitly modeling the concentrations of
such molecules, the adhesivity is taken to simply depend on the cell density
(indicating the likelihood of forming a cell–cell bond) and the matrix density
(indicating the likelihood of forming a cell–matrix bond) at x+ r through the
function g(u(x + r, t), m(x + r, t)). Note that the density of additional cell
types can be included here, allowing for cross-adhesion between cell types.
The possibility of a cell at x forming a bond at x + r is further expected to
depend on the distance between the two sites: cells establish adhesive bonds
at the membrane-substrate interface, yet their capacity to change shape (e.g.,
become elongated) or extend thin cell protrusions ranging from shorter range
lamellipodia to longer range filopodia (occasionally up to 100 �m in length,
[81]) suggests that the probability of forming bonds may vary with distance.

Together, these assumptions lead us to propose the local force generated at
x via adhesive binding at x + r to be

f(x, r) =
r

|r|
�(|r|)g(u(x + r, t), m(x + r, t)) (12.3)

where the right-hand side terms break down into the direction of the force (a
vector), the dependence of the force magnitude on the distance at which bonds
are formed, � (a scalar), and the dependence of the force on the adhesivity,
g (a scalar). We discuss various functional forms for these terms below.

The total force exerted at x, F(x), will be the sum of all local forces f(x, r),
where r ranges over a finite volume V indicating the sensing region: the space
over which the cell at x can make adhesion bonds. As described above, this V is
minimally determined by the mean cell volume, yet is likely to be significantly
larger due to cell shape change and protrusions. Thus, we compute the total
force to be

F(x) =

∫

V

r

|r|
�(|r|)g(u(x + r, t), m(x + r, t)) dr (12.4)

To incorporate the above into the mass balance Equation (12.1), we note
that at the low speeds of eukaryotic cell migration (typically 0.1 to 10 �m/min,
according to cell type) we can reasonably expect inertia to be negligible and
drag proportional to velocity and the cell radius R (Stokes law for a ball of
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radius R in a laminar flow). The adhesive flux will then be proportional to
the cell density and the forces between them and therefore we take

Jadhesion =
�u

R
F (12.5)

where � is a constant of proportionality. Finally, we substitute Equation (12.5)
with F as given in Equation (12.4) into Equation (12.2), and assume Fickian
diffusion and a generic taxis cue c(x, t) to obtain the following cell density
evolution equation:

∂u(x, t)

∂t
=

Random movement
︷ ︸︸ ︷

Du∇
2u −

T axis movement
︷ ︸︸ ︷

∇ · (u�(u, c)∇c)

−

Adhesive movement
︷ ︸︸ ︷

∇ ·

[
�u

R

∫

V

r

|r|
�(|r|)g(u(x + r, t), m(x + r, t)) dr

]

+

Cell kinetics
︷︸︸︷

h(·)

(12.6)

The above forms our basic model for cell adhesion and, when combined with
appropriate dynamics for matrix and chemical signaling, can be applied to
a wide range of biological processes; a version of the above equation was
first considered in [6] to model the basic properties of an adhesive population
and, through the incorporation of an extra adhesive population, extended to
model cell sorting (see Section 12.4). An amalgamation of Equation (12.6)
into a chemical signaling system has been developed to model somite for-
mation during embryonic development (see [7]), and the incorporation into
the modeling of tumor invasion has been considered in [33] and [64] (see
Section 12.5).

12.3.1 Cohesion through Adhesion

A fundamental test for any model for cell–cell adhesion is to determine its
capacity to predict the organization of a population of dispersed cells into
aggregations. Populations of cell lines aggregate rapidly into large and cohesive
clumps with increasing cadherin expression (e.g., [28]). To demonstrate the
ability of Equation (12.6) to allow this basic phenomenon, we neglect any
effects from cell–matrix adhesion and chemoattractants and ignore cell kinetics
(i.e., cell growth is assumed to be negligible on the time scale of adhesion-
driven movement) to derive:

∂u(x, t)

∂t
= Du∇

2u − ∇ ·

[
�u

R

∫

V

r

|r|
�(|r|)g(u(x + r, t)) dr

]

(12.7)

It remains to define appropriate functional forms for the various components
in the nonlocal term. In the simulations that follow, we restrict to two spatial
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dimensions and take the cell sensing region V to be a circle. The function �

defines the dependence on the distance from x. The simplest assumption is to
assume that � is constant throughout the sensing region; however, a form in
which � decreases due to the diminished likelihood of forming a bond with
distance from the cell may be more appropriate. For the purposes here, we
adopt the simplest form and take �(|r|) = constant; the impact of other forms
has been considered in [64] for a 1-D version of the model.

For the adhesivity component, with attractive interactions we expect g to
(at least initially) increase with cell density u due to the increased likelihood
of forming bonds within areas of higher cell densities (and hence more ad-
hesion receptors). Yet at even higher cell densities, it is reasonable to expect
the attractive force magnitude to either saturate (e.g., due to all receptors
becoming bound) or even decrease (due to an impedance against migrating
into “crowded” regions). To explore the impact from different forms of g, we
consider respectively linear, saturating, and logistic forms, all depending on
an adhesion parameter �:

g(u) = �u, g(u) =
�u

K + u
, g(u) = �u max

{

0, 1 −
u

Umax

}

(12.8)

We have solved Equation (12.7) for each functional form of g from Equa-
tions (12.8) on a square spatial domain (0, 10)2 ⊂ R

2 with periodic boundary
conditions. The initial cell density u(x, 0) = 0.1 + U(x) is constant with a
uniformly distributed perturbation U(x) ∈ 10−2[−0.5, 0.5]. The sensing region
V is a circle of radius 1 and the other parameters used are

Du = � = R = 1 , �(|r|) = 1 for |r| ∈ [0, 1] , � = 30 , K = Umax = 2

(12.9)

The numerically computed cell density u(x, t) at three output times t is
shown in Figure 12.2. With the setting described above, we observe aggre-
gation of cells for all three functional forms of g given in Equations (12.8).
With the linear form of g, we obtain a very fast aggregation process leading
to many small cell clusters with large cell density up to 20. As time proceeds,
some of these clusters coalesce, leading to a further increase in cell density;
see Figure 12.3 (top). The diffusion in the model prevents a further increase
(also the finite grid width contributes to this; on finer grids, the maximum
solution value becomes even larger). With the saturating form of function g,
the onset of aggregation becomes visible only much later than with the other
two forms. This can be understood from observing that at the low initial cell
densities (≈0.1), the saturating form gives g ∼ �u/2, whereas g ∼ �u for the
other two functional forms; the adhesive pull driving aggregation is therefore
much lower. Once the clusters have formed, a slow but steady increase in
the maximum density occurs, which only flattens off as the density increases
above 10 and the impact of the saturation in g takes hold. Finally, the logistic
form for function g leads, like the linear form, to a quick formation of cell
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FIGURE 12.2 Simulation results u(x, t) for Equation (12.7) with linear
(top row), saturating (middle row), and logistic (bottom row) form of function
g; see Equations (12.8), at three output time points t . Note the different color
scalings for the three functional forms of g. (A color version of this figure can
be found in the online supplementary material.)

aggregates. However, unlike in the linear case, the maximum cell density is
much smaller here and appears to be bounded by ≈4. This value is larger than
the parameter Umax = 2; for the dependence of the maximum cell density on
the value of �, see Figure 12.3 (bottom). In a reduction of the 2-D case to a
quasi-1-D problem, Sherratt et al. [64] have shown that the density is bounded
by Umax = 2, provided the adhesion parameter � is below some critical value;
consequently, this result appears either not to generalize to the genuinely 2-D
setting or imposes additional constraints on the size of � for boundedness by
Umax.

Based on the reasonably fast aggregation and the capacity to bound cell
densities at lower levels, the choice of the logistic form for function g is rec-
ommended and will be considered in the remainder of this chapter.
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FIGURE 12.3 Top: The maximum cell density as a function of time for
the numerical experiments shown in Figure 12.2 using � = 30 and a function
g that is of linear (dot-dashed), saturating (dashed), or logistic (solid) type.
Bottom: The maximum cell density as a function of time for the numerical
experiment shown in Figure 12.2 (bottom), i.e., with logistic type function g,
but with different � values: no aggregation for � = 12 (solid gray line) and
aggregation for � = 16 (solid), � = 20 (dotted), � = 30 (dashed), and � = 40
(dot-dashed).

12.4 Modeling Cell–Cell Sorting

In this section we aim to demonstrate whether the continuous framework
developed in Section 12.3 can replicate the predictions of the DAH for cell
sorting; cf. Figure 12.1. The prototypical setting here is to consider two cell
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populations that differ only in their adhesive properties. Initially, the two
cell populations are distributed more or less arbitrarily and one is interested
in the long-term configuration of the system; see Figure 12.1. We denote the
densities of the two cell populations by u A(x, t) and u B(x, t). It is reasonable to
assume that cell proliferation is negligible on the time scale of cell sorting and
we further assume that the random motility coefficient is approximately the
same for each population. Under these simplifications we obtain the following
set of PDEs describing the spatio-temporal evolution of the system:

∂ui (x, t)

∂t
= D∇2ui − ∇ ·

[

�ui

R

∫

V

r

|r|
�(|r|)gi (u A(x + r, t), u B(x + r, t)) dr

]

,

i = A, B (12.10)

This system is considered on the 2-D spatial domain (0, 10)2 ⊂ R
2 and com-

plemented with periodic boundary conditions for both species. We consider
two sets of initial conditions u A(x, 0) and u B(x, 0), corresponding to the left-
and right-most frames of Figure 12.1(a): a single pellet of randomly mixed cell
types, Figure 12.4 (center row, left), and a pellet of cell type A juxtaposed
to a pellet of cell type B, Figure 12.4 (bottom row, left). The initial masses
of cell types A and B are approximately equal for the initial condition shown
in Figure 12.4 (center row, left), whereas there is a larger initial mass of cell
type B in Figure 12.4 (bottom row, left).

The functions gi in the cell adhesion term are parameterized by the self-
and cross-adhesion parameters, SAA, SB B, CAB = SAB = SB A of the two cell
types and we employ a logistic functional form (cf. Section 12.3.1, [6,64]):

gi (u A, uB) := (Si Au A + Si BuB) max

{

0, 1 −
u A + u B

Umax

}

, i = A, B (12.11)

The contributions Si i ui account for self-adhesion whereas Si j u j with i �= j

account for cross-adhesion. The factor max{0, 1 − u A+u B

Umax
} is employed to limit

the density to which an aggregate can reach; see the effect of the various forms
for g in Figure 12.2. Under this form, the adhesive pull of a region increases at
lower cell densities before decreasing at higher densities. The sensing region
V is a circle with radius 1 and we use

D = � = R = 1 , �(|r|) = 1 for |r| ∈ [0, 1] , Umax = 1 (12.12)

Our first test is to demonstrate the capacity of Equation (12.10) to pre-
dict various final configurations according to the self- and cross-adhesion pa-
rameters, as illustrated in Figure 12.1. Accordingly, we start with a random
mixture of cells of the two types in a pellet centered in the domain. The self-
adhesion coefficients are fixed at SAA = 30 and SB B = 15 (i.e., population A

has stronger self-adhesion), and we consider the impact of variation in the
cross-adhesion strength CAB . The results of the simulations are represented
by plotting the differences of the cell densities u A and u B at large times (i.e.,
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FIGURE 12.4 (See color insert following Page 398.) The plots show nu-
merical approximations to the cell density differences u A(x, t) − uB(x, t) of
the cell–cell sorting model (Equation (12.10)). In regions with cell densities
u A < 0.05 and uB < 0.05, the difference value is suppressed in the plots. Top
row: The difference is plotted at time t = 100, when a (numerical) steady state
is reached, for four different values of the cross-adhesion parameter CAB and
starting with the initial condition consisting of a single pellet with randomly
mixed cell types (described below); all other parameters are as detailed in
the main text. Depending on the choice of CAB , from left to right, the four
final configurations “complete sorting,” “partial engulfment,” “engulfment,”
and “mixing” (cf. Figure 12.1(c)) are attained. Middle and bottom rows: The
plots show the time courses as solutions evolve to the steady-state distribu-
tion for the fixed cross-adhesion parameter CAB = 7 but for the two different
initial cell distributions; all other parameters are as detailed in the main text.
For the middle row we initially consider a single pellet of radius 2.5 in the
center of the domain with a random mixture of cells of type A and B such
that u A(x, 0) + uB(x, 0) = 0.8 in the pellet’s center and slightly decreasing
toward the periphery; densities are zero outside the pellet. For the bottom
row we initially consider two adjacent cell pellets, of radii 1.25 (type A) and
≈1.87 (type B), containing one cell type each at a density of ≈0.8; densities
are zero outside the pellets. (This figure together with movies can be found
in the online supplementary material.)
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at numerical steady states), shown in Figure 12.4 (top row). Depending on
the value of CAB , the steady-state distribution attained corresponds to that
predicted by the DAH based on the relative size of the adhesion coefficients
(cf. Figure 12.1(c)). In particular, it is noted that the more strongly adhesive
cell type A tends to accumulate in the center of the pellet, except for the case
without any cross-adhesion, CAB = 0, that is, total separation.

As a second exploration, we investigate the relatively insensitive nature of
the final configuration with respect to the initial distribution of the popula-
tions (cf. Figure 12.1(a)). Here we choose SAA = 30, SB B = 15, and CAB = 7;
according to the DAH this predicts the partial engulfment of A by B at the
steady state. Starting from the two sets of initial conditions described above,
the time courses as solutions evolve to the steady-state distribution are plotted
in the middle and bottom rows of Figure 12.4. Clearly, we observe evolution to
the same pattern phenotype at the steady state; the differences in the right-
most configurations stem from the smaller proportion of A used in the bottom
row.

As a final test of the continuous cell sorting model, we explore whether
Equation (12.10), when extended to three cell populations, can predict the
hierarchical relationship of adhesive populations, similar to Figure 12.1(b).
For three populations A, B, and C obeying the self-adhesion hierarchy
SAA > SB B > SCC , simulations predict that population A becomes engulfed
at the center, population C is confined to the periphery, and population B is
sandwiched between A and C ; see Figure 12.5.

12.5 Modeling Adhesion during Cancer Invasion

In this section we demonstrate the applicability of the continuous framework
for cellular adhesion by considering a simple and minimalist model of cancer
cell invasion into healthy tissue (cf. [33]). The model consists of three equations
describing the cancer cell density (c), the extracellular matrix (ECM) density
(v), and the concentration of a (generic) matrix degrading enzyme (MDE)
(m). The model equations are given by:

∂c(x, t)

∂t
= D1∇

2c − ∇ ·

[

�c

R

∫

V

r

|r|
�(|r|)g(c(x + r, t), v(x + r, t)) dr

]

+ �1c(1 − c − v) (12.13a)

∂v(x, t)

∂t
= −�mv + �2(1 − c − v) (12.13b)

∂m(x, t)

∂t
= D3∇

2m + �c − �m (12.13c)
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FIGURE 12.5 (See color insert following Page 398.) The plots show nu-
merical solutions of Equation (12.10) extended to three cell types A, B, and
C . Top row: Solutions u A, uB , and uC at time t = 50. Bottom row: Pair-
wise solution differences at time t = 50. The initial condition is a randomly
mixed pellet of the three cell types. The adhesion parameters are SAA = 45,
SB B = 30, SCC = 15, CAB = 31, CAC = 0, CBC = 16. (This figure together
with a movie can be found in the online supplementary material.)

For simplicity, we restrict our attention to a 2-D geometry and consider the
above equations on the spatial domain (−1.5, 1.5)2 ⊂ R

2, subject to periodic
boundary conditions. In this model, both the cancer cells and ECM occupy
physical space while the volume occupied by MDE is assumed negligible. The
cancer and ECM density equations above have been normalized such that the
total density c + v = 1 characterizes fully occupied physical space.

In this simple model, cancer cell migration is assumed to arise from (1)
random motility (the corresponding coefficient D1 is rather small) and (2)
a directed movement due to adhesive effects of cancer cells with themselves
and the surrounding ECM. The sensing region V for the adhesion term is a
circle of radius 0.1 and for the function �(|r|) we select a linearly decaying
function

�(|r|) =
3

	R2

(

1 −
|r|

R

)

for |r| ∈ [0, R] (12.14)

The linear decay of �(|r|) models a diminishing influence of adhesive bonds
toward the periphery of the sensing region. The leading factor in �(|r|) follows
from a normalization ensuring that the integral of �(|r|) over the sensing
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region V is equal to 1, stipulating a fixed maximum capacity of cells to form
adhesive bonds within the sensing region independent of its actual size. The
magnitude of that capacity is captured in the (parameters of the) function g,
which takes the form

g(c, v) = (Sccc + Scvv) max{0, 1 − (c + v)} (12.15)

This functional form implies that cancer cells adhere to themselves (self-
adhesion parameter Scc) and to the matrix (cross-adhesion parameter Scv).
Again, we include the limiting term such that g becomes 0 if the total density
c + v approaches the value of 1. In addition to cell migration, cancer cell prolif-
eration is also incorporated through the employment of a logistic growth type
law with growth rate �1 and “carrying capacity” dependent on the locally
available space, 1 − c − v.

The ECM is assumed to be nonmotile and degraded upon contact by MDEs
at a rate �. In the general formulation, a simple ECM production term permits
regeneration of the ECM with rate �2 (note that in the simulations below, it
is assumed that �2 = 0). Finally, MDEs diffuse throughout the tissue (with
diffusion constant D3), are produced by the cells at rate �, and decay at rate
�. The following set of parameters is used in the simulation

D1 = 10−3, D3 = 10−3, �1 = 0.1, �2 = 0, � = 0.1,

� = 10, � = 0.5, R = 0.1, Scc = 0.05, Scv = 0.1
(12.16)

Clearly, the model in Equations (12.13) through (12.16) is highly simplified
in its nature and excludes many pertinent biochemical interactions. However,
the focus here is on the incorporation and effect of the adhesion term in a
model of tumor invasion and, consequently, we wish to retain the simplicity
of the model. Crucial questions for any model of cancer invasion are whether
it permits the breakage of cancer cells from a central tumor mass and how
cancer cell migration is affected by a heterogeneous tumor environment. To
address these issues, we consider an initial tumor population concentrated
at the center of the domain (representing the central tumor mass) and lying
within a spatially structured ECM matrix. The initial MDE concentration
is chosen to be proportional to the cell density. Simulations for a striped
distribution in the initial ECM densities are shown in Figures 12.6 and 12.7.

In Figure 12.6 we observe the preferential accumulation and invasion of
cancer cells along stripes of higher ECM density, in concert with degradation
of that ECM. Cell migration obeys the restriction of physical space, that is,
cells do not move into densely packed tissue. Cells at the tumor periphery do
not accumulate in regions of low ECM density, but rather quickly cross these
areas to concentrate at the front of the next ECM barrier. The variation in
ECM density also leads to the formation of protrusions that stretch from the
cancer mass into the healthy tissue. Due to the regular structure of the ECM,
these protrusions are also regular. Similar results apply when cell proliferation
is excluded; however, the protrusions now take the form of high-density tumor
clumps extending along the ECM stripes; see Figure 12.7.
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FIGURE 12.6 Simulation results for the model given by Equations (12.13)
through (12.16) with a diagonally striped initial ECM distribution. Shown are
the tumor cell density (top row) and the ECM density (bottom row) in the
central part (−1, 1)2 of the spatial domain at four time points. The MDE
concentration displays similar features as the cell density and is not shown.
(A color version of this figure together with a movie can be found in the online
supplementary material.)
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FIGURE 12.7 Simulation results for the model given by Equations (12.13)
through (12.16) as in Figure 12.6 but without cancer cell proliferation (i.e.,
�1 = 0). (A color version of this figure together with a movie can be found in
the online supplementary material.)
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12.6 Discussion and Open Questions

In this chapter we discussed the critical role played by cellular adhesion during
a wide spectrum of biological processes, highlighting the need for mathemati-
cal models to capture this fundamental phenomenon. A brief review of existing
models, discrete and continuous, has demonstrated their individual strengths
and weaknesses. Of particular note is the lack of continuous models that can
replicate the sorting behavior of multiple adhesive populations. As far as we
are aware, the only continuous model that has been demonstrated to capture
this property is that developed in [6]. Here we expanded the derivation of this
model and corroborated its suitability through an extended numerical anal-
ysis that replicates the wide variety of cell sorting experiments, as predicted
by the differential adhesion hypothesis (DAH). The ultimate success of this
approach lies in its capacity for integration with existing continuous models;
as a demonstration of its suitability, we considered its extension into a model
for cancer invasion as originally studied in [33] (see also [64]). A second appli-
cation, considered in [7], has been to the process of chick somitogenesis. There
it was shown that upregulation of cellular adhesion, regulated through an un-
derlying chemical signaling network, could drive both the epithelialization and
subsequent sorting of pre-somitic cells into somites. The ubiquity of cellular
adhesion would allow a catalog of potential applications to be listed: some
typical examples, based on the history of modeling in these areas, include an-
giogenesis, wound healing, development of the slime mold Dictyostelium, and
skeletal patterning.

In the continuous adhesion model, the microscopic processes (e.g., receptor
binding) can be accounted for by a suitable choice of cell adhesion parameters.
A crucial extension of this work lies in the development of truly multiscale
models of cell adhesion, in which the sizes of adhesion parameters in the
continuous model can be determined from the processes occurring at a mi-
croscopic scale. To achieve this, it will be necessary to derive models for cell
adhesion from a realistic underlying description of individual cell behavior; as
discussed in Section 12.2, a number of attempts have been made at exploring
some of these issues (e.g., see [52,76]).

Mathematically, a striking feature in the modeling approach is that cellular
adhesion is accounted for via a nonlocal (integral) advective type term. This
fits coherently into the typical taxis–diffusion–reaction frameworks frequently
employed in the modeling of pattern-formation type phenomena. Similarly,
existing simulation packages for diffusion–reaction systems can be extended
in modular fashion to allow the incorporation of such nonlocal terms. One dif-
ficulty, however, is the additional computational effort required to evaluate the
nonlocal term. A suitable solution to this problem is outlined in the Appendix
to this chapter, and results in a scheme that provides high-resolution simula-
tions within reasonable computing times (at least for the case of a rectangular
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spatial domain with periodic boundary conditions). However, extra work will
be required to extend the numerical techniques to more general situations,
such as irregular geometries or three dimensions.

Analytically, a number of results are available on the properties of solu-
tions. In [64], the boundedness of solutions was addressed under particular
forms of the model. Specifically, it was shown (in one dimension) that for
g(u) = �u max {0, 2 − u}, boundedness of u below 2 is possible under specific
restrictions for the size of � and the form of �(|r|). In [38] a related nonlocal
model for chemotaxis was derived and global existence of solutions was proven
for all finite sampling radii. A considerable number of questions, however, re-
main unanswered. Of particular interest are an extension of the boundedness
results to spatially 2-D settings, the proper incorporation of other boundary
conditions from both an analytical as well as a modeling point of view, and
an analysis of the limiting scenario as the sampling radius R → 0.

The formulation of the model presented here clearly simplifies many crucial
components regarding the behavior of adhesive populations in vivo. For ex-
ample, the dynamics of adhesive binding are assumed to correlate to overall
cell–matrix densities rather than the concentrations of adhesive molecules at
the cell membrane, the dynamics of which can vary both spatially and tempo-
rally according to intra- and extracellular signals. Further, while adhesion is
assumed here only to generate forces resulting in cell migration, the signaling
initiated through binding interplays with many facets of cell behavior, in-
cluding division and apoptosis. Extending the model to include some of these
complexities will further advance its relevance to understanding the role of
adhesion in a wide variety of biological processes.

12.7 Appendix: Numerical Method

The models in this chapter are all solved following the method of lines (MOL).
The rectangular spatial domain is covered with a uniform grid where each grid
cell, or finite volume, is a square of side length h. In a first step of the MOL, the
spatial derivatives are discretized on that grid and we employ a finite volume
method (FVM) of order 2 (see, e.g., [32]). This transforms the PDE model into
a large and, in general, stiff system of ordinary differential equations (ODEs),
the MOL-ODE system:

dU(t)

dt
= F(t,U(t)) , U(0) = U0 (12.17)

As is customary when using the FVM, the components of this ODE sys-
tem represent approximations to the averages of the PDE solution in each
finite volume. The numerical solution of the MOL-ODE in Equation (12.17)
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constitutes the second step of the MOL and an appropriate time integration
scheme must be selected. Implicit time integration schemes can deal efficiently
with the inherent stiffness of the MOL-ODE. We favor the linearly implicit,
fourth-order Runge-Kutta method ROWMAP [78]. The multiple Arnoldi pro-
cess used within this method for the solution of the linear equation systems
in each time step makes this scheme particularly suited for the large ODE
system at hand. Furthermore, the method does not require any computation
of the Jacobian of the MOL-ODE by the user; the required Jacobian-times-
vector products are computed automatically by a suitable finite difference
approximation using the right-hand side F of the MOL-ODE.

The FVM described in [32] has been applied to taxis–diffusion–reaction
systems. There, difficulties arise in regions of strong variation of the solution of
the PDE, for example, near moving fronts. These are due to the taxis term
of the model and special attention was given to ensure that the discretization
of that term does not introduce oscillations or negative solution values in
the solution of the MOL-ODE. This goal can be achieved, while maintaining
the order 2 of the FVM as much as possible, using a second-order upwind
discretization together with a nonlinear limiter function. The models of this
chapter have a nonlocal adhesion term that is similar to the taxis terms in [32].
So we apply the same discretization to that term, with the added difficulty
of the approximation of the integral. The adhesion term, in general, takes the
following form for the adhesive species ui of a vector u of concentrations or
densities in the models

−∇ · [ui (x, t)
�

R

∫

V

r

|r|
�(|r|)gi (u(x + r, t)) dr

︸ ︷︷ ︸

the adhesive velocity in (x, t)

] (12.18)

The adhesive velocity, and consequently the integral, must be approximated
on each edge of the spatial grid for each evaluation of the right-hand side
of the MOL-ODE. This task constitutes the computational bottleneck of the
whole numerical solution process. If we assume that (1) the sensing region V

at each x is the same and time independent, and (2) we solve the PDE system
on a rectangular domain with periodic boundary conditions, then the adhesive
velocity in Equation (12.18) can be approximated on all vertical (or all hori-
zontal) edges of the spatial grid simultaneously by evaluating a matrix–vector
product MG. Here, the matrix M ∈ R

N ,N , N the number of grid cells, and
each row of M corresponds to the approximation of the nonlocal term on one
edge. We arrive at this by first evaluating function gi at the approximation
U(t) yielding G ∈ R

N ; second by reconstructing a function g̃i (x) from that
data using bilinear interpolation; and third, by approximating the integral
with g̃i instead of gi . Thanks to a suitable basis representation of g̃i , the ma-
trix M will be independent of the data G and can be precomputed before the
time integration of Equation (12.17) commences. Furthermore, the third step
can be performed to any desired accuracy so that the overall accuracy of the
nonlocal term evaluation hinges solely on the quality of the reconstruction
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of function gi by g̃i , that is, can be controlled by the spatial grid width h.
Typically, the sensing region V is much smaller than the spatial domain of the
PDE model. Consequently, the matrix M contains many zeros. However, in
contrast to the approximation of derivatives, the fraction of non-zero elements
of M remains constant with decreasing spatial grid width h. In that sense,
sparse matrix techniques can only have a limited impact for the efficient eval-
uation of the matrix–vector product MG. At this point the periodic boundary
conditions become important. These give rise to a matrix M having the struc-
ture of a block–circulant matrix with circulant blocks. Matrix–vector products
with such matrices can be evaluated efficiently with fast Fourier transform
(FFT) techniques. This substantially reduces the computational complexity
and hence CPU time requirements for the evaluation of MG. More details of
the integral approximation and evaluation can be found in [31].

In the discussion above we have assumed periodic boundary conditions for
the PDE problem. This is not always suitable from the point of view of model-
ing. No-flux boundary conditions are frequently encountered and in the follow-
ing we describe how they can be included in the computational framework. For
the nonlocal term, the boundary conditions become only important in points
x where the set V , centered at x, intersects the boundary of the spatial domain
of the PDE. For such x we follow the approach taken in [7]: that the integral of
the nonlocal term is taken only over those r ∈ V such that x+ r is within the
spatial domain. This modification implies that the matrix M changes from a
block–circulant matrix with circulant blocks to a block–Toeplitz matrix with
Toeplitz blocks. FFT techniques cannot be applied directly to such matrices
but any such matrix can be embedded into a block–circulant matrix M̃ with
circulant blocks. The size of M̃ will be larger than the size of M but for our
application the increase will be modest. The vector G must also be padded
with zeros in appropriate places to yield the extended vector G̃. Now, the
result vector of the matrix–vector product MG, which we want to compute,
can be extracted from the result vector of the efficiently to evaluate extended
matrix–vector product M̃G̃. We illustrate this for the Toeplitz to circulant
case (i.e., no block structure), which is applicable for the simulation of spa-
tially 1-D models. In that case, the matrix M is a banded Toeplitz matrix
with, say, upper bandwidth m and lower bandwidth n

M =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜
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l0 l1 . . . lm 0 . . . 0
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. . .
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. . .

. . .
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. . .
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0
. . .

...
. . .

0
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⎟
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⎟

⎟

⎟

⎟
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∈ R
N ,N (12.19)
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The corresponding circulant matrix M̃ then has N + max{n, m} rows and
columns and is defined by its first column

(l0, l−1, . . . , l−n, 0 . . . , lm, lm−1, . . . , l1)
T ∈ R

N+max{n,m} (12.20)

The extended vector G̃ is given by G̃ = (G,0)T ∈ R
N+max{n,m} and then holds

MG =

[

M̃G̃
]

1,...,N
(12.21)

That is, only the first N entries of M̃G̃ are used.
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The tissues of animal embryos utilize large-scale morphological transforma-
tions to bring about highly sophisticated body plans. In contrast with plant
tissues, where differential growth and change in cell shapes are the main mor-
phogenetic mechanisms, animal cells have in addition the ability to move
with respect to their neighboring cells. Movement can be either active (cell
motility) or passive, for instance as a response to an imposed strain. Despite
the progress in genetics and molecular biology, our understanding of develop-
mental biology still suffers a lack of experimental description and mechanistic
interpretation of how individual cell behaviors lead to well-organized collective
movements at the tissue scale. One of the outstanding issues concerns the role
of mechanical forces, for instance as a driving force for passive morphological
changes, or as involved in signaling pathways regulating active cell behavior.
In this chapter we summarize a framework specifically designed to quantify
the kinematics of embryo development. By analyzing clusters of neighboring
cells, we developed a multiscale geometrical description that decomposes tis-
sue strains into two contributions: one associated with changes in cell shapes
and the other with cell–cell slippage or motility. The emphasis on cell shapes
and cell–cell slippage provides, in particular, a fully continuous framework
especially suitable to capture temporal and spatial heterogeneities regardless
of discrete events such as neighbor exchanges. We also show here explicitly
how the statistics of cell shape changes depend on a microscopic assumption
regarding cell–cell slippage and propose a simple geometrical principle that
can be used to deploy a consistent and robust approach.

13.1 Quantifying Embryo Morphogenesis

13.1.1 Morphogenesis of the Animal Embryo

Modern views of morphogenetic mechanisms have been built from a multi-
disciplinary approach to the study of the problem. Models must span from
subcellular mechanisms of cellular mechanics, adhesion, and polarized cell be-
haviors to a mechanical understanding of substantial portions of the embryo
and its environment. Morphogenetic mechanisms appear to encompass many
classes of cell behavior, ranging from individual cell shape changes and move-
ments to the collective reshaping of sheets of cells during such movements as
invagination during sea urchin gastrulation [15], the convergence and exten-
sion of the vertebrate body axis [14], or the neurulation of the brain [8]. This
class of collective reorganization is considered here, and key questions remain
about identifying the patterns of passive and active cell behavior that shape
the change in tissue morphology.

Our current understanding has closely followed the availability of tools,
principally for microscopy, that have provided a means to address the
dynamics of morphogenetic change in a noninvasive way. Variations among
the trajectories of cells is the first indication of deformation of the tissue. For
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instance, early studies by Jacobson on the neural plate of the newt pointed
to a way of combining microscopic analyses and experimental manipulation
to find a link between patterned regional variation in cell behavior—in this
case, cell shape changes suggesting external mechanical forces responsible for
the shaping of the neural plate [5].

While these early studies have been superseded, the basis of this approach
is still recapitulated in current studies, including our own. To collect high-
resolution and comprehensive 3-D data from which cell behavior and tissue
morphogenesis can be measured has required the development of labeling and
imaging methods capable of resolving cells in living embryos [17]. Software
tools have been developed from which the trajectories and shapes of cells can
be followed over time. Trajectories of cell centroids reveal the patterns of cell
movements [7,16] but this is in itself difficult to interpret in terms of morpho-
genetic mechanisms until used to calculate tissue deformation [8,10] in the
form of strain rates. Microscopic analysis of passive [13] and active tissue re-
shaping [20] has also provided evidence for cell movements or rearrangements
underlying the morphogenesis of tissues.

13.1.2 Cell Intercalation and Rearrangements

Measures of cell area [5], cell neighbor number [22], and the change in cell
neighbor topology [3] have been used to investigate the cellular mechanisms
of morphogenesis. Interpretation of observations of cell rearrangements as pas-
sive or active events is highly dependent on additional biological or experimen-
tal insight into the problem. In recent years the power of molecular and genetic
manipulation to investigate the relationship between cell behavior and mor-
phogenesis has flourished, for instance in the role of planar cell polarity [23].
Deficiencies in cell behavior can be directly correlated with gross abnormali-
ties of tissue morphogenesis [21]. However, to make full use of such methods,
we require means of assaying the local morphogenetic characteristics of cells
such as changes in their shapes and neighbor rearrangements. Independently,
these measures give only their correlation but do not provide a direct link be-
tween events at the cell and tissue level. Linking them in a quantitative way
is therefore necessary to explore causality and eventually identify underlying
mechanisms.

Along that line, several novel approaches have been introduced to extract
statistical and tensorial representations of cell behavior at a mesoscopic scale.
Graner et al. [12] recently generalized tools primarily developed for foam me-
chanics into a generic framework for quantifying the strain and reorganization
of cellular or granular materials based on the movement of cell centers and
the evolution of their network of contacts. Their approach succeeds in relating
material strains with the dynamics of neighbor exchanges, which represents
one of the most visible characteristics of the long-term evolution of tissues.

On short time scales, however, neighbor exchange is a rare event and
the local evolution of a piece of tissue is more appropriately described by



354 Cell Mechanics

a combination of cell shape change and minute relative movements of cells
that is referred to as cell–cell slippage. To account for this continuous reor-
ganization, one can develop a kinematic approach by quantifying cell shape
change rather than the dynamics of the cell contact network. In the following
sections, we present in detail the construction of such a framework recently
developed to analyze strains and cell behaviors during embryo morphogene-
sis [4]. It has been validated on a number of experimental situations in 2-D,
such as the Drosophila germband extension [6], Drosophila dorsal closure [11],
or zebrafish neural plate formation [19]. Another novelty in the framework,
introduced in the final section, is the explicit link to a microscopic model of
relative movement at the interface of neighboring cells. Although in practice
reasonable choices can be made at that level, this opens the possibility of more
subtle adjustments of the kinematic model in order to better account for the
biological variety of cell behavior at the microscale.

13.2 Strain Measurements

The experimental measure of strain and strain rates during tissue morpho-
genesis requires us to monitor the motion of material points over time. In
heterogeneous and composite materials, such as biological tissues, internal
displacement fields can be highly complex and one needs to consider at which
length scale and time scale a coarse-grained description is relevant. In the con-
text of embryo morphogenesis, time scales are typically on the order of tens of
minutes up to a few hours, and movements typically involve a large number
of cells. Quantifying cytoskeletal and cytoplasmic movements inside cells is
largely irrelevant as such flows occur on much shorter time scales and length
scales. Although these might be important to understand the biological origin
of collective movements, it is a priori enough, in order to characterize the
deformation at the tissue scale, to average internal motion at the cell scale.
This can be done, for instance, by tracking the cell center of mass (determined
from the cell contour) or the locations of nuclei if the latter are labeled [8]1. As
discussed in Section 13.3, movements within the cell will also be considered,
encompassed in a single tensorial quantity, the cell shape strain rate.

13.2.1 Introduction of a Mesoscopic Scale

From 3-D movies of developing embryos where cell membranes are fluores-
cently labeled [17], the contour of each cell is detected by image analysis and

1Only a marginal amount of extracellular matrix is present in embryo tissue at the early stages
of development. One can therefore assume that cells are contiguous in the tissue and occupy all
its volume.
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the cell center of mass is computed [4]. Individual cells can be followed over
time and their trajectories recorded, as well as their full shape, at any time.
This can be implemented either for a 2-D epithelium or a 3-D tissue. A com-
mon situation corresponds to planar processes along curved surfaces, where
the local strain is suitably accounted for by a 2-D description. In this chapter,
the methods are illustrated using 2-D examples, although each step can be
generalized in 3-D.

Kinematic quantities in the tissue are then defined and measured at a meso-
scopic length scale at which we linearize the cell displacement field. We in-
troduce a time scale �t and length scale nc expressed as a number of cell
diameters. The latter can either represent a topological distance (first neigh-
bors, second neighbors, . . . ) or a physical distance. These two quantities are
used to select a domain surrounding each cell at each time (Figure 13.1). More
precisely, such a neighborhood, denoted by N (i, t), is defined as the collection
of cells located around the cell i , at time t , at a distance at most nc; all
these cells are followed during a time interval [t −�t/2, t +�t/2]. Although the
connectivity of the cells can be used to define the neighborhood, it should be
stressed that it is not a requirement; it only serves the purpose of conveniently
defining a cohort of cells whose relative motion is tracked for a certain time.

13.2.2 Tissue Strain Rates

Defining absolute strains in embryos is often inconvenient due to the lack of
a meaningful reference state and the complexity of handling the large finite
strains that accumulate over time. Rather than using such quantities, we
therefore focus on strain rates that can be easily mapped to reveal temporal
and spatial patterns and conveniently integrated if necessary. In the following,
we describe the generic approach used to estimate tissue strain rates from cell
trajectories. Such methods are broadly used in hydrodynamics [18] and solid
mechanics [9] to quantify intrinsic strains and strain rates, and have been
successfully applied to geophysical measurements, in particular in the context
of plate tectonics [1].

13.2.2.1 Velocity Gradient

By convention in this chapter the index i represents the identity of a cell.
Vector symbols are underlined, and tensors are written in bold characters.
The position of a cell over time, or trajectory, is denoted by r i (t). The cell
velocity in the reference frame of the microscope is vi (t) = dr i/dt , and is
calculated by linearizing the cell displacement over a time interval t ± �t/2.
Within a neighborhood N (i, t), one can define a number of averaged quantities.
The position of the cohort is defined by:

Ri (t) =
〈

ri ′(t)
〉

i ′∈N (i,t)
(13.1)
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Anterior

FIGURE 13.1 Example of tracking for a cell cohort in the zebrafish trunk.
(a) Image of the first cellular layer flattened on a plane from a 3-D confocal
stack. (b) Reconstructed cell membranes. (c) Evolution of a cell cohort, for
the group radius corresponding to nc = 2, and �t = 8 min. (d) Displacement
field calculated from the above images. (e) Residual displacements once the
mean velocity is subtracted. (f) Velocity gradient tensor Lt resulting from
the linearization of the velocity field. The cross indicates the direction of
eigenvectors of the symmetric part Dt. The corresponding eigenvalues are
coded in the length of the bars, with an arrow pointing outward for a positive
eigenvalue (extension) or inward for a negative eigenvalue (convergence). The
scythe motif represents the spin tensor Wt, with a diameter in proportion to
the magnitude of the antisymmetrical element. The radii of the dashed circles
correspond to 0.8% and 1.6% per minute. (Data from [4].)

The average velocity of the cohort is:

Vi (t) =
〈

vi ′

〉

i ′∈N (i,t)
(13.2)

The velocity field is then linearized within the neighborhood to calculate the
velocity gradient tensor Lt:

vi ′(t) = Vi (t) + Lt

(

ri ′(t) − Ri (t)
)

+ �vi ′ (13.3)

The tensor Lt is, for instance, obtained from a least-squares fit of the ex-
perimental data. The residuals �vi ′ can be used to assess the fit quality. The
variation of the residuals with the neighborhood size nc and integration time
�t is in itself an interesting quantity that informs about the sources of the
deviation, such as spatial heterogeneities, uniform noise in the position, etc.
Nonaffinity in the displacement field is discussed later in this chapter.
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13.2.2.2 Stretch and Rotation Rates

As strain rates intrinsically characterize infinitesimal strain increments, they
can be appropriately decomposed into a sum of a stretch rate tensor Dt and
a spin tensor Wt, that is, a tensor accounting for the rate of rotation of the
cohort domain. The tissue stretch rate tensor is defined as:

Dt =
(

Lt + Lt
T
)

/2 (13.4)

It is a symmetric tensor; its eigenvectors indicate the main axes of deforma-
tion, while the corresponding eigenvalues indicate the rate of elongation along
these axes. The tissue spin tensor corresponds to the antisymmetrical part of
the velocity gradient tensor:

Wt =
(

Lt − Lt
T
)

/2 (13.5)

13.2.3 Applications of Velocity Gradient Strain Tensor

in Biology

The measurement of the velocity gradient tensor field has been applied to di-
verse embryological tissues, containing hundreds or thousands of cells, and for
periods up to 3 hours [6,11,19]. For example, the fruit-fly germband converges
to the ventral side of the embryo as it extends in the anterior–posterior axis
in movements analogous to the convergence and extension of the vertebrate
trunk. Analysis revealed that there was a gradient of increasing extension to
the posterior, and a gradient of increasing convergence toward the ventral mid-
line [6]. The latter gradient was correlated with tissue rotation in the flanking
regions both anterior and posterior. The total accumulated strain of the tissue
was comparable to published “shoelace” methods, and the time evolution of
the process was found to be biphasic with a fast early phase followed by a
slower phase. One direct advantage of mapping these quantities is to allow
comparison between individuals to estimate inter-individual variability. The
morphogenesis of the wild-type flies was then compared to various mutant fly
strains whose morphogenesis is known to be abnormal during the convergence
and extension process.

13.3 Cell Shapes and Intercalation

As mentioned in Section 13.1, changes in tissue morphology are accounted
for at the cell scale by two main classes of evolution: cells can change shape
and cells can rearrange (i.e., move relative to their closest neighbors). Both
have a direct geometrical signature, and a proper kinematic description of
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(a)

(b)

(c)

(d)

FIGURE 13.2 Schematic representation of the deformation of a piece of
tissue; time increases from left to right. (a) Evolution of the cell centers, from
which we can extract the tissue strain tensor. (b) and (c) Two opposite modes
of shape deformations consistent with the tissue strain field shown in (a). The
evolution of a ring of first neighbors is highlighted by line segments. (d) Shows
another example where there is no tissue deformation, only a transfer between
shape deformation and intercalation.

tissue morphogenesis must account for this. First, it should be highlighted
that such information cannot be extracted from the motion of cell centers
only. Figure 13.2 illustrates, for a uniform stretching of a regular hexagonal
lattice, two different types of cellular dynamics that are consistent with the
same overall tissue strain. In the first case (Figure 13.2(b)), the shape of
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each cell experiences exactly the same strain as the piece of tissue. In the
second situation (Figure 13.2(c)), although cell shapes slightly evolve over
time, cells mostly compensate the tissue strain by moving past each other
while remaining, on average, isotropic. This movement corresponds to a purely
intercalating group of cells where all the deformation is associated with cell
slippage, eventually leading to topological reorganizations in the sample, that
is, neighbor exchanges. These two examples therefore demonstrate that cell
shape evolves independently of the tissue strain according to their ability to
intercalate. As shown in Figure 13.2(d), even if the tissue is not changing
shape, there can be an interplay between cell shapes and cell slippage leading
to a reorganization of the cells in the tissue. In addition to the motion of the
centers, information must therefore be extracted from the dynamics of cell
reorganization or cell shape evolution in order to discriminate between cell
shape and intercalation-driven tissue reshaping processes.

The approach introduced by Graner et al. [12] addresses that issue; it uses
the dynamics of the network of neighboring cells to track rearrangements in
addition to the tissue strain. The authors build a number of statistical quanti-
ties from the distribution of links between first or second neighbors. Each cell
rearrangement causes the network of first neighbors to evolve since links are
gained where cells come closer, and lost in directions where cells move away.
This allows the building of tensorial quantities to quantify both the tissue
strain and the reorganization of the cell within the tissue. This method has a
number of advantages, including a simple implementation in 2-D and 3-D, and
a broad range of applications, in particular in the field of granular systems
and colloidal suspensions where the contact network is more relevant than the
individual shape of the particles. However, in the context of biological tissues,
it starts capturing intercalation only when neighborhood relationships evolve.
For instance, in the first two examples in Figures 13.2(b) and 13.2(c), such
a method would see a difference between the shape- and intercalation-driven
processes only after cells rearrange (second half) because until then, both the
center of mass locations and contact networks are exactly identical in the two
examples.

To capture the continuous nature of cell shapes and cell motility indepen-
dently of cell rearrangements, we introduce in this section a general approach
based on cell shape and its statistical evolution that allows us to quantify the
respective contributions of both shape variations and intercalation movements
to the total tissue extension previously studied. The definition of the interca-
lation tensor is then discussed in light of its microscopical interpretation.

13.3.1 Cell Shape Evolution

We aim to determine the strain tensor that accounts for the evolution in
shape of the cells contained in a given neighborhood during the time interval
�t , that is, that transforms the initial collection of cell shapes into a collection
of shapes that is statistically equivalent to the final cell shapes, in terms of
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0 minutes 8 minutes

Lc

FIGURE 13.3 Illustration of the shape measurements. Top images show
the evolution of a cohort of cells. Elliptical fits of individual cells are overlayed.
The shape strain rate tensor is the transformation that, when applied to the
initial collection of ellipses, matches the distribution of shapes in the final
configuration.

orientation and elongation. Information concerning the relative placement of
cells (as used in the previous section) and their neighborhood relationship is
here irrelevant and discarded (see Figure 13.3).

Several approaches can be used to tackle this question. One is to consider,
for each cell individually, the strain rate that best matches the shape evolu-
tion. The question of identifying the strain that transforms one shape into
another has been extensively studied in image processing. Most registration
methods (optical flow, digital image correlation, etc.) estimate the physical
displacement of points in images and use it to deduce the local deforma-
tion. Unfortunately, such methods are not suitable for identifying the de-
formation of the cell shape because the movements of details of the mem-
brane geometry (which is the only morphological feature available here) is
locally non-affine and does not necessarily represent the average strain of
the cell bulk. This is illustrated on Figure 13.4 where a regular arrange-
ment of hexagon centers follows a simple shear deformation and cells ac-
commodate it mostly by sliding on each other. We used a full registration
method to estimate the strain tensor of individual shapes. The resulting ten-
sor captures primarily the movement of membranes, which results in typically
three solutions where the spin of the shape is either null or twice as big
as the rotation component of the tissue velocity gradient. It is difficult to
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(a) (b) (c)

FIGURE 13.4 Typical issues arising with full registration methods applied
to situations where non-affine shape deformations are present. (a) Regular
hexagonal pattern. (b) Its evolution after a pure shear deformation. Shapes
are recalculated in this example from the Voronoi tesselation of the cell centers.
(c) Three local solutions for the shape strain typically obtained when trying
to find the strain tensor that minimizes the nonoverlapping area. Dashed
lines show the target shape displayed in (b), and the solid line, the calculated
transformation of the initial hexagon in (a).

choose between these options, and there is no reason to believe a priori that
the bulk of the cell tends to rotate on itself with respect to the tissue. This
simple situation shows that, in general, registration methods on the membrane
contour cannot be used to extract the cell shape strain. The only reliable
information we can use at this stage corresponds to the global anisotropy
of the cell shape, represented, for instance, by an elliptical fit to its shape.
Another approach, introduced by Aubouy et al. [2] and not developed here,
uses a (symmetric) texture tensor to characterize the average cell shape at the
neighborhood scale. In all cases, we end up with an “elliptical” representation
of the cell shapes, and we basically need to know what linear application
transforms a given ellipse into another. Unfortunately, there is not a unique
solution to the problem.

Let us define two elliptical shapes C1 and C2. Each of them is fully char-
acterized by a pair of orthogonal vectors (a1, b1) and (a2, b2) representing,
respectively, their minor and major axis directions and length (see Figure
13.5a). To transform C1 into C2, one can, for instance, first rotate C1 until
a1 is along a2, and then stretch the shape accordingly; or equivalently, first
stretch the shape and then rotate it (Figure 13.5c). In both cases, points lo-
cated along the main axis of C1 end on the main axis of C2. One could also
directly search for a symmetric tensor that transforms C1 into C2 (Figure
13.5d). The eigenvectors of this tensor are not, in general, along the axis of
either ellipse and, in contrast to the previous situation, the vectors a1 and
b1 would not be mapped into the vectors a2 and b2. In fact, a continuum
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C2 C2
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b2
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FIGURE 13.5 Family of deformations that transform one ellipse into an-
other. (a) Description of the two ellipses C1 and C2. (b) Generic decomposition
of the transformation into two stretches and an arbitrary rotation. Symbols
indicate how a few specific points move with the deformation. (c) Example of a
deformation that preserves the position of points with respect to the main axis
of the ellipse. (d) Example of a deformation constrained to be symmetrical.

of solutions can easily be found. Let C1 and C2 be the (symmetric) stretch
matrices that transform a circle of radius one onto, respectively, C1 and C2:

C1 =

[

a1 0

0 b1

]

,C2 =

[

a2 0

0 b2

]

(13.6)

expressed on the basis of unit vectors along the principal axis of C1 and C2,
respectively. Let R(�) be a rotation of angle �. For all values of �, the trans-
formation A(�) = C2R(�)C1

−1 transforms C1 into C2 (see Figure 13.5b).
Depending on the value of the angle �, the image of a given point along C1 is
going to move along C2, as illustrated on Figure 13.5. This simple argument
shows that building a strain tensor based on an elliptic representation of a
shape is fundamentally undetermined.

A natural hypothesis to fully specify the shape deformation is to set the
shape rotation component to match the tissue rotation, that is, so that the
cells are not rotating with respect to the tissue. This ensures, in particular,
that if a piece of tissue is uniformly rotated, the cell shape strain matches the
tissue strain. In the case of a pure stretch of a tissue without intercalation,
the shape deformation is also identical to the tissue strain, as expected. If we
denote Lc as the cell shape strain rate, and use the same decomposition into
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FIGURE 13.6 Evolution of the strains for the examples presented on
Figures 13.2(b) (a to c) and 13.2(c) (d to f). The stretch ratio represents
the ratio between the current tissue length and the initial length. Solid lines
correspond to the direction of extension (horizontal), and dashed lines to the
direction of convergence (vertical). From G.B. Blanchard, A.J. Kabla, N.L.
Schultz, L.C. Butler, B. Sanson, N. Gornkiel, L. Mahadevan, and R.J. Adams
(2009) Tissue tectonics: morphogenetic strain rates, cell shape change and
intercalation. Nature Methods, in press. (With permission).

a symmetrical and anti-symmetrical part, we obtain:

Lc = Dc + Wc with Wc = Wt (13.7)

A general method used to calculate the symmetrical component of the cell
shape strain rate for a local domain is introduced in [4]. Figures 13.6(a) and
b show the evolution of the total tissue strain for the hexagonal pattern de-
scribed on Figure 13.2(b). In this example we find, as expected, that the cell
shape follows precisely the tissue stretch. The same kind of plot is presented
in Figures 13.6(d) and 13.6(e) for the intercalating tissue (Figure 13.2(c)). In
that case, the shape strain slightly varies about zero, indicating indeed that
cells do not deform on average.

As all the volume of the local group of cells is simply the sum of cell volumes
(there is no free space between cells), the cell shape strain rate tensor must
also account for any variation in tissue volume. This implies that the trace of
Lc is identical with the trace of Lt.

Tr Lt = Tr Lc (13.8)
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13.3.2 Tensorial Representation of Cell Intercalation

As suggested by the examples above (Figure 13.2), identical shape and tissue
strain rates are a signature of nonintercalating tissues. On the other hand,
the presence of collective slippage between cells leads to a mismatch between
tissue strain rate and cell shape strain rate. More generally, the part of the
tissue strain that is not accounted for by the shape evolution reflects collective
movements of cells past each other. This suggests a very simple definition for
a strain rate tensor Li characterizing intercalation based on the shape change
and tissue strain rate tensors, defined as:

Lt = Lc + Li (13.9)

The physical meaning of this tensor is explored further in the next section.
We calculated that quantity for the examples introduced on Figures 13.2(b)
and 13.2(c), as plotted on the graphs in Figures 13.6(c) and 13.6(f) showing
the evolution of the accumulated intercalation strain for both examples. As
expected, there is no intercalation for the first case. More interestingly, there is
a monotonic and continuous increase in the total intercalation for the second
example. We can identify a few important properties of the intercalation rate
tensor Li. First, the trace of Li is zero, as all volume variations in the tissue
are accounted for by the shapes. Second, assuming that the shape rotation is
identical to the tissue rotation, Li is symmetrical. It therefore has a diagonal
form with two eigenvalues of opposite sign.

13.3.3 Handling Cell Division

While we monitor the evolution of a neighborhood, cell division might happen
and rules regarding the handling of such events should be defined in the light
of their influence on tissue deformation. If one considers the situation of a
local neighborhood in which a cell division event occurs during the time of
observation �t , the mere fact that a new membrane now splits a large cell
into two smaller units does not influence directly the surrounding tissue (see
Figure 13.7).What matters in practice is the change in cell shape before and
after the division. As a consequence, to measure kinematic quantities that
are relevant for a neighborhood, cells that divide during the time �t of the
measurement are maintained artificially linked: the location and shape of the
composite entity are obtained by merging the two cells. In practice, �t is small
enough that cells remain in contact during the strain measurement.

13.3.4 Applications

The breakdown of the tissue strain rate tensor into cell shape and cell inter-
calation strain rate tensors allows us to map these two cell behaviors in space
and over time in real tissues, just as can be done for the tissue strain rate ten-
sor. Measured intercalation strain rates emerged as predominantly pure shear



Bridging Cell and Tissue Behavior in Embryo Development 365

FIGURE 13.7 Illustration of the evolution of a cell elongating in a nonin-
tercalating tissue. On the top path, one cell is followed through a sequence of
change in shape, division event, and change in shape. On the bottom path, we
represent a cell changing shape with a strain that is identical to the top sit-
uation with the daughter cells merged together. Both scenarios are expected
to have the same effect on the surrounding tissue at a mesoscopic scale.

deformations, as predicted. In the fruit fly example [6] introduced in Section
13.2.3, the relative contributions of two cellular mechanisms were very reveal-
ing. Cell shape change and intercalation were equally strong during the early
fast phase of germband extension, but cell shape change then reduced quite
quickly, leaving only cell intercalation during the slow phase. Interestingly,
in a mutant where the cell intercalation machinery was significantly compro-
mised, the total tissue deformation was unaffected during the fast phase, but
the relative contribution of the cellular mechanisms was different, with cell
shape stretch significantly increased, compared to the wild-type flies, at the
expense of cell intercalation. During the slow phase, cell shapes rounded up,
suggesting that cell shape elongation was an elastic response to an external
pull. Further insights have been gained into the formation of the zebrafish
forebrain [8], convergence and extension in the zebrafish trunk [19], and the
amnioserosa tissue of the fruit fly [11] using these methods.

13.4 Intercalation and Slippage

Intercalation is defined as the mismatch between the tissue strain rate and
the cell shape strain rate. Its definition has been postulated from the fact that
only cell intercalation can explain the difference between shape deformation
and tissue strain. In this section we develop a microscopic interpretation of
this tensor and show that it is intimately related to cell–cell slippage.

13.4.1 Cell–Cell Slippage

Our approach is based on the simultaneous quantification of movements within
the cells (cell shape tensor) and at the cell cohort scale. The cell shape tensor
is a very coarse description of material movement in the cell, which is known
to be highly complex; it provides, however, the minimal description needed to
compare cell and tissue strains. Figures 13.8(a) and 13.8(c) reuse the examples
introduced on Figures 13.2(b) and 13.2(c) to illustrate the link between cell
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FIGURE 13.8 Illustration of the link between intercalation and slippage.
(a) and (c) show a few cells extracted from Figures 13.2(b) (cell shape change)
and 13.2(c) (intercalation), respectively. The ellipses in (b) and (d) represent
the average shapes of cells in (a) and (c). White triangles within each ellipse
are deformed accordingly to the cell shape strain tensor. (e) and (f) illus-
trate the construction of the slippage velocity (see text). (g) and (h) show
the representation of the intercalation tensor in terms of slippage velocity.
Vectors plotted along the circle correspond to the tangential (g) and normal
(h) components of the slippage vector.
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slippage and intercalation. The white triangles inside cells in Figures 13.8(b)
and 13.8(d) evolve according to the cell shape strain rate Lc and allow us to
visualize the strain within each cell. The shifts appearing among the three
facing triangles during intercalation highlight, at the microscopic scale, the
consequences of a mismatch of tissue and cell shape strain rates: in intercalat-
ing tissues, slippage occurs between neighboring cells, meaning that a domain
about the cell interface necessarily experiences a local strain that does not
correspond to the cell shape strain. Because we decided to ignore the com-
plexity of the movements within cells, we represent here this complex flow
near the cell membrane by a discontinuity at the cell interface, which can
then be estimated geometrically.

We consider two neighboring cells C1 and C2. A point P is chosen along
their interface. The velocity of P can be calculated in two different ways.
Assuming it belongs to C1, its velocity relative to the center of mass of C1

is u1 = Lcr1P . Assuming now it belongs to the cell C2, its velocity would
be u2 = Ltr12 + Lcr2P . The discontinuity u at the interface can therefore be
deduced:

u = u2 − u1 = Ltr12 + Lcr2P − Lcr1P = (Lt − Lc)r12 = Lir12 (13.10)

This construction demonstrates that the intercalation rate tensor is indeed
a natural physical quantity for characterizing the movement of cells past each
other. The velocity u has a priori components along and perpendicular to the
cell membrane. In the case of the intercalating hexagons, the corresponding
intercalation tensor as well as the tangential and normal components of the
velocity u are shown in Figures 13.8(g) and 13.8(h).

The component us of u along the cell membrane is a direct measurement of
slippage velocity. It has a maximum at an angle of about 45◦ of the main axis
of the intercalation tensor (see Figure 13.5(g)). However, along the eigendirec-
tions of the latter, the slippage velocity vanishes, and most of the movement
occurs normal to the interface. This component indicates the evolution of the
ellipses overlap, corresponding qualitatively to the surface area of the cell–cell
interfaces. Where u points inward, the contact area between the cells increases;
where u points outward, the contact area decreases. Ultimately, this means
that new neighbors are, respectively, gained or lost along these directions.

The description above sets the microscopic picture underlying the definition
of the intercalation tensor introduced in the previous section. The framework
provides us with three different scales: (1) the cell cohort, which is a meso-
scopic scale to describe local tissue strain; (2) the single cell, for which we
measure an internal strain rate; and finally (3) the cell–cell interface, along
which slippage can be estimated.

13.4.2 Total Slippage

We assumed in the previous section that the rotation rate of cell shapes was
the same as the tissue rotation rate. One argument for such a choice is that
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FIGURE 13.9 Geometrical symbols used in the text. The ellipse is
parametrized by the angle �: r(�) = (a cos(�); b sin(�)).

it guaranties that cells of non-intercalating tissues do not rotate against each
other. We need, however, to analyze further this choice as it is unclear how
the same argument applies to fully or partially intercalating tissues.

We showed on Figure 13.5 that the choice of the shape rotation has a direct
influence on the movements of points at the surface of an ellipse. Because
these movements control, in part, cell slippage in the context of tissues, one
can study how any particular assumption regarding cell rotation influences
cell slippage at the microscale. A first step is to construct a measure of the
total slippage required to transform the cell cohort and then explore ways to
use such a physical quantity to build a self-consistent kinematic description.

The amount of cell–cell slippage S locally in the tissue can be quantified
by integrating the squared slippage velocity along an elliptical contour C

representing the average cell elongation in a neighborhood:

S =

∫

C

(

u · es

)2
ds (13.11)

where s corresponds to the curvilinear abscissa along the ellipse. The ellipse
contour C is parameterized by an angle � so that r(�) = (a cos(�); b sin(�))

(see Figure 13.9). Defining the matrix:

C =

[

a 0

0 b

]

(13.12)

the position along the contour can be rewritten as r(�) = Cer (�). The tangent
to the ellipse is along dr/d� = Ce�. The unit vector tangent to the ellipse is
given by es = Ce�/(ds/d�). The total slippage can therefore be rewritten as:

S =

∫

C

(

LiCer (�) · Ce�

)2
(

ds

d�

)−1

d� (13.13)
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In Section 13.3.1, we characterized the family of deformations that trans-
forms a particular ellipse into another. For each value of the angle �, we obtain
a different shape strain tensor A(�) that can be written for small strains as
A(�) = Id + Lc(�)�t . From this, the decomposition of the shape strain rate
directly allows us to determine the tensors Dc(�) and Wc(�), the latter asso-
ciated with the angular velocity �c(�). For simplicity, we directly express the
different tensors as a function of �c rather than � in the following.

For each value of �c, we therefore have a corresponding intercalation rate
tensor Li(�c). Unless �c is identical to the tissue angular velocity, denoted
by �t , Li is not symmetrical, and has an antisymmetrical component corre-
sponding to an angular velocity �i = �t − �c. For a given cell elongation and
a given tissue velocity gradient and shape evolution, we can now study how
the total slippage S varies as a function of the shape angular velocity �c or
equivalently �i . It remains true that Tr Li = 0 for all �i , although all elements
of the tensor change with �i , taking the general form below:

Li(�i ) =

[

�(�i ) �(�i ) − �i

�(�i ) + �i −�(�i )

]

(13.14)

For small anisotropy of the cell shapes, the total slippage becomes (see
Appendix at end of chapter for details):

S(�i ) = 2�(ab)3/2

(

�2
i −

1

2

(a

b
− 1

)

�i � +
�2 + �2

2

)

(13.15)

The expression above shows that the total slippage S(�i ) depends on both the
cell shape aspect ratio and orientation with respect to the deformation. This
leads to the identification of several cases of interest, as discussed below.

13.4.3 Typical Situations

13.4.3.1 Tissue Strain without Intercalation

If the tissue deforms with the velocity gradient Lt, and if the same tensor
Lt also deforms the cell shapes, this implies that Li(�i = 0) = 0. Therefore,
slippage is minimal for �i = 0, as S(�i = 0) is strictly equal to zero. In
the simple case of nonintercalating tissues, the shape strain rate that provides
minimal slippage gives a meaningful output. Figure 13.10a shows the evolution
of S(�i ) in the context of a simple shear of both the tissue and the shape for
a cell elongating along the shear direction (a/b = 1.21).

13.4.3.2 Tissue Intercalation along the Orientation of Cell

Elongation

In the case where the tissue intercalates along one of the main orientations of
the cell shape, Li(0) is diagonal in the basis of the ellipse axes. It results in
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�(�i = 0) = 0. Moreover, by symmetry, �(�i ) is an odd function, implying
that �(�i ) ∼ �i . This means, in particular, that S(�i ) = S(−�i ). Figure
13.10b displays the total slippage as a function of �i for such a situation,
with highly elongated cells (a/b = 2). We observe indeed that the slippage is
minimal when the shape rotates exactly with the tissue. This situation is quite
frequent in reshaping tissues as the cell elongation is usually caused by the
strain history itself, either as a passive adaptation or as an active contribution.
In that situation, a symmetry argument is, in practice, enough to rule out any
cell shape rotation other than the tissue rotation itself. It is also consistent
with the minimal slippage idea.

13.4.3.3 Tissue Intercalation not along the Orientation of Cell

Elongation

This corresponds to the most generic type of deformation. A common example
is a simple shear deformation of a tissue with cells elongated along or normal
to the shear direction. Such a case is addressed on Figure 13.10(c) for four
values of the cell anisotropy. We observe that the shape spin that provides the
smallest slippage is therefore different from the tissue spin. Consistent with
Equation (13.15), this shift increases with the cell anisotropy. However, even
for highly deformed cells (a/b ≥ 2), the difference between tissue and shape
rotation would be less than 10%.

In the three situations described above, our initial choice for the cell shape
rotation rate seems justified a posteriori based on a minimal slippage argu-
ment. Assuming that the cells do not rotate in a reference frame attached to
the tissue (i.e., �t = �c, �i = 0) provides an excellent approximation, if not
an exact answer. In many situations the result could come from symmetry
arguments. However, in cases where the cell shape is not aligned with the
eigenvectors of the intercalation strain rate tensor, there is no trivial answer
and the robustness of the kinematic approach had to be verified. Although we
provide here a workable and generic approach to quantify tissue morphogene-
sis, the kinematic description of cellular movements remains empirically linked
with a microscopic assumption that sets the cell rotation and the amount of
cell–cell slippage.

The main advantage of developing an approach based on slippage is to
clearly highlight the microscopic origin and consequences of choices made at
the tensorial level. Although it seems natural to penalize choices of rotation
that induce unnecessary cell slippage, one should question how this penalty is
practically determined, and in particular if slippage should be penalized the
same way for all directions as we did above. The case of steady simple shear
deformation is, for instance, a situation that remains to be explored. If cells
move along layers, one can reasonably imagine that the slippage is mostly
localized between layers, and not so much between cells of the same layer, as
depicted on Figure 13.11. In such a situation, the kinematic description should
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Lt Lc

(a) (b)

Li Lt Lc Li

FIGURE 13.11 Two different shear situations: (a) Typical approach de-
veloped here, where cells rotate according to the tissue spin and slippage is
shared among all neighbors; (b) Alternative situation in which slippage is
more localized. To account for such a case, the minimal slippage argument
must be adapted.

therefore account for the peculiarity of cell–cell interactions and be aware of
the existence of planes of sliding arising either from anisotropic adhesion or
active cell crawling. Allowing the intercalation tensor to have, in general, a
rotational component then provides a natural way to express, within the same
kinematic framework, that slippage inside cell layers is low compared to its
value between layers.

13.4.4 Intercalation and Tissue Microstructure

Figure 13.8 provides a microscopic interpretation of the intercalation strain
rate tensor. We first characterized in detail the slippage behavior of cells
past each other, which mostly concerns cells contacting at about 45◦ to the
eigenvectors of the intercalation tensors, where relative cell slippage is non-
negligible (see Figure 13.8(g)). Cell movements along the direction of exten-
sion or convergence of the tissue are more subtle. Along these directions,
slippage is low on average and the orientation of the relative velocity u de-
fined in Equation (13.10) is mostly normal to the cell membrane, indicating
that neighboring cells tend in practice to decrease or increase their contact
area. However, these simple dynamics can only exist for a finite amount of
time. The example of intercalating hexagons provides a good illustration of
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FIGURE 13.12 (a) Evolution of a purely intercalating tissue. During the
first three steps, the hexagon network can deform in an affine way. Beyond
that, non-affine displacement is required (images are only qualitative illustra-
tions). (b) and (c) Details of the evolution of a few neighboring cells extracted
from experimental data (zebrafish, [4]). As cells 1 and 2 come closer, the field
is nearly affine. Once cells 1, 2, and 3 form a chain along the converging axis,
highly non-affine displacements are required to satisfy the mean tissue and
shape strains.

the process (Figure 13.12(a)), showing that even if it is well ordered, a purely
intercalating tissue can reorganize in a homogeneous or affine manner only up
to deformations on the order of 60%.

As cells move past each other, the detail of the distribution of mem-
brane orientation evolves, creating, in particular, new contacts along the
direction of convergence, and decreasing their number in the extension di-
rection. Once cells come into contact along the direction of convergence,
the affine displacement of cells becomes impossible and cells have to move
in a non-affine way to accommodate the strain by intercalation. The last
two steps of Figure 13.12(a) show a schematic of that process. Evidence of
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such behavior can be readily found in experimental records. Figures 13.12(b)
and 13.12(c) show the evolution over time of an intercalating cluster of
cells. During the first 15 minutes, the displacement field is globally affine,
and a pair of cells can be seen converging and forming a new interface.
However, after 20 minutes, the cells 1, 2, and 3 form a chain that can-
not intercalate further in an affine way without overlapping. From the re-
sulting displacement fields, the non-affinity can be quantified by the value
of < �v2

i > at each time, �vi being the residual velocity in Equation (13.3).
For the five time steps shown on Figure 13.12(c), we measure < �v2

i >=

0.10, 0.19, 0.87, 0.68, 0.52, respectively, showing as expected a dramatic rise
between 12 and 23 minutes.

Non-affine cell displacements cause significant heterogeneities in the velocity
field (quantified above from the residuals). This also leads to variations in
the cell shape strain rates within a neighborhood. The precise amount of
slippage in a tissue has been therefore underestimated in our previous first-
order approach, which neglected heterogeneities in the relative displacement
field, in slippage, and in cell shapes. Non-affinity is probably not relevant at
the tissue scale but, because it reflects the detailed structure and dynamics of
the tissue and membrane orientation, it may highlight intrinsic mechanisms
used by cells to produce or respond to macroscopic strains. In the case of living
tissues, experimental studies must be carried out to quantify non-affinity and
relate it to intrinsic material properties and in particular to its geometrical
organization at the cell scale.

We developed a formalism here to quantify strains in reshaping tissues. In
addition to strain rate measurements based on individual cell trajectories in
the tissue, we introduced a quantification of cell shape changes and interca-
lation. The kinematic approach leads to a set of tensorial quantities defined
for a local group of cells, approximating the local complexity by an affine
description of the tissue deformation, and an elliptical representation of the
cell shapes. Such a level of description represents a strong advantage to ac-
count for the global tissue morphogenesis; it allows us to define quantities that
are continuous and easy to map with high resolution in space and time. We
showed, in particular, that these quantities also reflect intrinsic cell behavior,
such as shape change or slippage.

This framework introduces an explicit dependence on a microscopic as-
sumption for cell–cell movements that sets the amount of rotation of the cell
shapes. We propose to choose the rotation component so that cell–cell slip-
page is minimal; this corresponds in most practical cases to assuming that
cells do not rotate in the tissue frame. However, this leads to nontrivial sit-
uations when, for instance, slippage occurs during a simple shear flow. Fur-
ther development in quantifying morphogenetic movements will therefore be
concerned with higher-order descriptions, accounting for the common and
as yet unresolved situation of sheared layers and non-affine displacement
fields.
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13.5 Appendix: Total Slippage for Nearly Isotropic Cell

Shapes

The measure S of the total slippage along the membrane of an ellipse can be
calculated analytically if the intercalation rate tensor is known.

The geometrical notations used below are defined on Figure 13.9. The quan-
tity S is calculated from Equations (13.13) and (13.14). We define the mean
ellipse radius R and anisotropy 	 by R2 = ab and 	 = a/R = R/b. Equation
(13.13) writes:

S̃ =
S

R3
=

∮

C

(

LiC̃er (�) · C̃e�

)2
(

ds̃

d�

)−1

d� with C̃ = C/R =

[

	 0

0 1/	

]

(13.16)

and s̃ = s/R. This leads to:

ds̃

d�
=

√

1

2

(

	2 +
1

	2
−

(

	2 −
1

	2

)

cos(2�)

)

(13.17)

and

LiC̃er (�) · C̃e� =
dr̃

d�
· ũ = � cos(2�) −

�

2

(

	2 +
1

	2

)

sin(2�) + �i (13.18)

Assuming small anisotropy for the cell shape, we define A = 1
2
( a

b
− 1) such

as 	 ≈ 1 + A and 	−1 ≈ 1 − A. The two expressions above can be simplified
into:

ds̃

d�
= 1 − A cos(2�) (13.19)

and

LiC̃er (�) · C̃e� = � cos(2�) − � sin(2�) + �i (13.20)

By substituting the slippage integral, we get:

S̃ =
S

R3
=

∮

C

(

�2
i − 2A�i � cos2(2�) + (� cos (2�) − � sin (2�))2

)

d� (13.21)

providing after integration a relationship corresponding to Equation (13.15):

S̃ =
S

R3
= 2�

(

�2
i − A�i � +

�2 + �2

2

)

(13.22)
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14.1 Introduction

Cancer arises from a series of mutations manifested in phenotypic changes of
both the cells and the local tissue structure. At the stage of an in situ tumor
or neoplasia, a pre-state on the path to invasive cancer, cells divide out of
control but still form a compact colony well separated from its environment.
The transition from an in situ tumor to invasive cancer is marked by a number
of steps. This includes angiogenesis, the formation of new blood vessels to
supply the growing tumor with oxygen and nutrients, and detachment of cells
from the tumor that subsequently invade the tissue and the blood vessels to
be transported into distant organs where they can lead to the formation of
secondary tumors called metastases. Angiogenesis is the process during which
endothelial cells divide and generate new vessels sprouting toward the tumor
as a response to angiogenesis factors secreted directly and indirectly by the
tumor cells. Many angiogenesis factors have been identified [77]. The most
prominent one is probably VEGF, which is related to platelet-derived growth
factors (PDGF). A shortage of oxygen triggers an increase in the intracellular
concentration of an active form of the protein hypoxia-inducible factor 1 (HIF-
1), which then stimulates transcription of the VEGF gene. The protein VEGF
is secreted into the extracellular space acting on the nearby endothelial cells
as described above. A lack of oxygen favors cells that can survive at a lower
oxygen concentration, which explains why in hypoxic regions cells with a small
oxygen demand can be found.

Significant lack of oxygen and nutrients such as glucose triggers the death
of cells by a process called necrosis. Multicellular spheroids grown in homo-
geneous isotropic liquid suspensions, often used as an in vitro model to study
tumors in the avascular phase, show the formation of a central spheroidal
necrotic core above a certain size at which nutrients become limiting. In mul-
ticellular spheroids, the oxygen and glucose enter the tumor border equally
from all sides. Comparisons of experiments with models suggest that the con-
centration of oxygen and glucose controls the size of the necrotic core while the
speed at which the tumor diameter grows seems to be constant (i.e., the tumor
diameter grows linearly) and controlled by a biomechanical form of contact
inhibition [27]. The same linear growth of the diameter can be observed in
monolayers [14], where cell colonies grow as an approximately one-cell-thick
layer. It can also be found in vivo, for example in xenografts of human NIH3T3
cells in the mouse model [66], indicating a generic character of this growth law.
However, different from monolayers and multicellular spheroids, which grow
only up to about a millimeter in diameter, the NIH3T3 tumors can grow up
to several centimeters. As the multicellular spheroids, the xenografts have a
largely spherical shape but in contrast to multicellular spheroids they are well
vascularized and show only decent necrotic and apoptotic figures. Hence the
induction of new vessels permits growth of the tumor cell population up to
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about three to four magnitudes more than multicellular spheroids and, as in
the case of NIH3T3 cells, is capable of avoiding the formation of a central
necrotic core.

Metastasis emerges from cancer cells invading distant organs and creating
new tumors. At this stage, the prognosis of the individual becomes poorer and
surgical methods are insufficient to eradicate cancer. To achieve metastasis,
a malignant cell needs first to reach the vascular or lymph system, penetrate
into a vessel, and extravasate in a new distant position where it can generate
a new colony. The processes of intravasation and extravasation are similar:
the cancer cell opens a gap in the wall of the tunica intima after disrupting
the cell–cell bonds between endothelial cells and deforms its cytoplasm to
cross into the stream. Angiogenesis, as a process that stimulates the growth
of vessels into the tumor, facilitates metastasis.

We present in this chapter mathematical models of angiogenesis, cell de-
tachment, and intravasation (Figure 14.1). Many aspects of tumor growth
have been studied using mathematical models. In most cases deterministic
models of the reaction–diffusion type or continuum mechanical models have
been used (for comprehensive reviews, see [1,10,50,53,70]). Continuum models
addressing this issue assume that growth is mechanically regulated [7,16] or
nutrient limited (e.g., [19,51,76]). These are well suited to the description of
large-scale phenomena where the cell and tissue properties vary smoothly over
a length scale of several cell diameters.

To study small-scale phenomena or situations in which the properties of
the cells vary over distances comparable to the size of a cell, single-cell-
based models permit a higher degree of spatial resolution than models in
which subcellular properties are replaced by locally averaged quantities. Most
individual-based models can be characterized as either lattice-based or lattice-
free models (for reviews, see [4,9,22,25,56,58]). In some lattice models, each
lattice site can be occupied by at most one cell (e.g., [3,8,13,24,26,48]) while
in others one cell may span many lattice sites (e.g., [39,42,74]). Within the

1 2 3 4

FIGURE 14.1 Stages of the transition from an in situ tumor to invasive
cancer. (1) Loss of contact inhibition leads to uncontrolled growth; (2) necrotic
core of tumor induces angiogenesis; (3) invasive tumor cells gain ability to mi-
grate into surrounding tissue and (4) blood vessels that results in metastasis.
(The pictures represent results of our 3-D model simulations explained in this
chapter.)
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class of lattice-free models, cells have been parameterized by measurable bio-
physical and biological parameters and approximated by deformable spheres
or ellipses (e.g., [23,27–30,36,37,62,68]) and, more recently, in a multi-center
approach by aggregates of spheres [60].

In our models the tumor cells will be represented by individual agents. In
the section on angiogenesis we compare the growth kinetics of cell populations
in 3-D from a single precursor cell up to a population of several thousands of
cells in cases where nutrients or oxygen are not limiting, a tumor grows in a
static vascular environment, and where tumors can induce the formation of
new vessels. The models consider the competition between contact inhibition-
and nutrient/oxygen-limited growth. For these questions it turns out to be
sufficient to model individual cells within a cellular automaton model where
the dynamics are rule based. The vessels are modeled explicitly as discrete ob-
jects with a simplified lumped model relating flow and pressure inside them
while the diffusion of oxygen, nutrients, and growth factors is represented
by continuum equations. In the subsequent section we study cell detachment
and intravasation in a multiscale model where the cells are modeled as ho-
mogeneous, isotropic elastic sticky objects, and where the cell–cell adhesion
forces are controlled by the intra-regulatory processes, represented by coupled
systems of ordinary differential equations [67,68].

14.2 Tumor Growth and Angiogenesis

At small population sizes where oxygen, nutrients, and contact inhibition are
not limiting, a tumor grows exponentially fast. In liquid suspension, EMT6/Ro
mouse mammary carcinoma cells form multicellular spheroids; they show a
transition from exponential to linear growth at a population size of about 1000
cells at nutrient conditions similar to those in vivo. Experiments in agarosis
gel mimicking a tissue-like biomechanical environment show that the growth
kinetics of multicellular spheroids is almost unaffected at moderate agarosis
gel concentrations [41] so the transition between the exponential and linear
growth phase would be expected to occur at about the same size. The tran-
sition size also varies with the cell type. For example, for those fibroblasts
for which cells migrate almost freely at small population sizes, a later transi-
tion is expected but the growth of the population is still expected to become
eventually linear [13,26]. This is observed for NIH3T3 cells, which show a sig-
nificant migratory activity until several days of growth in monolayer culture.
However, NIH3T3 cells also eventually form linearly growing cell assemblies in
monolayer culture (Hoehme, Drasdo, Hengstler, unpublished). In vitro grow-
ing multicellular spheroids form an approximately central spheroidal necrosis
at about 400 �m [59]. However, the linear expansion is almost unaffected by
the formation of the necrotic core except in very unfavorable nutrient and
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oxygen conditions [34]. This may be explained by a biomechanical form of
contact inhibition known as the key growth-limiting factor [27–29,71]. Freyer
and Sutherland observed a significant slow-down in tumor expansion only if
both oxygen and glucose concentrations were low [33,34].

The in vivo situation is extensively described in a recent book [54] on tumor
angiogenesis. A tumor grows up to a size of 1 to 2 mm in diameter, nourished
by the diffusion of oxygen and nutrients of the existing vasculature. This phase
is often called avascular growth; many aspects of this growth phase are stud-
ied in vitro by growing multicellular spheroids that are described above. A
tumor can remain stable at that size. However, if as a consequence of their
proliferation, tumor cells lack oxygen and nutrients, they can trigger several
mechanisms to generate a higher density of blood vessels and thus increase
their needed supply [12,69]. The main mechanism is the formation of new
capillaries (angiogenesis), sprouting from existing vessels, as a consequence of
two phenomena. Hypoxic and underfed tumor cells and other cells from the
micro-environment secrete soluble factors that target the nearby blood ves-
sels, make their endothelial cells proliferate, migrate, sprout, or form a tube.
These endothelial cells also produce soluble factors such as VEGF [32] that
amplify the preceding effect. In parallel with these angiogenic factors, anti-
angiogenic factors are also produced. The angiogenic switch occurs if growth
factor promoters overbalance anti-angiogenic factors [40]. New blood vessels
are created toward the hypoxic regions of the tumor [18]. Cancer tissues have
indeed extensive regions of hypoxia compared to normal tissue [75], usually
associated with necrotic regions. This is due to the rapid growth of tumor
mass that increases the distance between some cells and blood vessels, and to
the nonfunctioning of some of the generated blood vessels (structural malfor-
mation, fluctuation in blood flow). A constant vessel network remodeling thus
occurs, as the blood vessels inside the tumor may not be very functional, may
collapse due to the high pressure generated by the surrounding proliferating
tumor cells that cannot be counterbalanced by a too unstable flow, or may
die due to hypoxia or anti-angiogenic factors (see in addition the references
to biological articles in [11] and [53]).

The dynamics and the heterogeneous 3-D spatial structure of a tumor are
thus governed by a complex interplay of different components and scales (from
gene expression changes to population competition at the tissue level). In this
section we model the key players of the first stages of tumor growth: tumor
cells, factors influencing them or secreted by them, and the influence of and
on the vascularization.

There are mainly three types of approaches for which representative recent
references are given: (1) continuum models (PDEs in time and space) that
describe how the solid tumor front grows (see, e.g., [15]); (2) more precise
continuum models where the density of the different components evolves in
time and space (see, e.g., [63,79]); and (3) agent-based models that describe
each entity individually (for example, at the cellular level and individually
how tumor and endothelial cells grow, divide, move, and die). The different
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approaches have also been combined in hybrid or multiscale models, mostly
in two dimensions of space. Examples include agent-based models for cells
and continuum models [2,45,47,71,78] or simplified assumed profiles [11,48]
for diffusion of oxygen, nutrients, and/or growth factors or inhibitors. Note
that in [47] the different tumor zones were represented with either agent-
based models or continuum models. The effect of the vasculature is explored
with a given network [2] or includes angiogenesis and remodeling [11,48,51,61];
angiogenesis alone is an active subject of modeling (see, e.g., [17,53,55]).

In this section we model the cell population by a cellular automaton model.
The advantage of this model type is that it permits efficient simulations at
moderate computation time while the dynamics have been shown to be as
for more detailed biophysically related individual-based models [13,26]. The
subcellular scale of oxygen, nutrients, and growth factors induces the choice of
a continuum description of their respective conservations of mass. The diam-
eter of a capillary is of the same order of magnitude as the size of tumor cells.
Therefore blood vessels are represented individually. Constitutive laws and
threshold-based rules express the interplay of the different components of the
system. This chapter aims to describe, through modeling, the key mechanisms
of tumor growth rather than targeting a specific system for which more pre-
cise information would be needed to go beyond qualitative results, although
parameters were chosen to be as realistic as possible to determine relevant
macroscopic behaviors (see Table 14.1).

14.2.1 The Model

14.2.1.1 Cellular Automaton Model

The cellular automaton model is an extension of a similar introduced in pre-
vious work [13,26] and is defined by the following set of rules:

R1: Cell: One cell can either occupy one or two sites on a Voronoi diagram.
(In the following we refer to a Voronoi cell as a Voronoi lattice site to
distinguish it clearly from a biological cell.) At the beginning of a cycle,
a cell always occupies only one Voronoi lattice site.

R2: Cell cycle/replication: The cell cycle is subdivided into m intervals
that reflect how far a cell is advanced in the cycle. At the beginning
of the cycle the internal counter M is set to M = 0. If the oxygen and
glucose conditions are permissive for proliferation, then the cell enters
the cell cycle. This is mimicked by the transition M = 0 → M = 1 that
takes place only if the product of glucose and oxygen concentrations
satisfies [G] · [O2] ≥ Pcri t [71]. A proliferating cell successively increases
its internal counter starting from M = 0 with a rate m� by one until
M = m. Here � = �−1, where � is the expectation value of the cycle
time.
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TABLE 14.1 Parameters for Tumor Growth and Its Environment

Parameter Value Unit Ref.

Vvc 1200 �m3 [45]
�max 0.032 cell·h−1 Fitted from [34]
k 5 — Fitted from [34]
m 10 — Fitted from [34]
mg 2 — Fitted from [34]
md 8 — Fitted from [34]
�n 0.0072 cell·h−1 [71]
Pcri t 0.025 mM2 [71]
�l 0.01 cell·h−1 this work
K G

G 0.07 mM Fitted from [33]
K G

O 0.05 mM Fitted from [33]
qG,max 52.8 · 10−17 mol·cell−1·s−1 Fitted from [33]
qG,min 11.2 · 10−17 mol·cell−1·s−1 Fitted from [33]
K O

O 0.005 mM Fitted from [33]
K O

G 0.39 mM Fitted from [33]
qO,max 16.6 · 10−17 mol·cell−1·s−1 Fitted from [33]
qO,min 8 · 10−17 mol·cell−1·s−1 Fitted from [33]
DO 6300000 �m2·h−1 [71]
DG 378000 �m2·h−1 [71]
DG F 100 �m2·h−1 [45]

[O2]
bv 0.07 mM [33,34,45], order of magnitude of [11]

[G]bv 5.5 mM [33,45]

[G F ]bv 1 mM [48]
dbv 150 �m Order of magnitude of [48]
ri j

0 10 �m [11]
�bv 0.1 Pa·s Order of magnitude from [35]
Pin 100 Pa Defined up to a multiplicative constant
Pout 100 Pa Defined up to a multiplicative constant
lmax 100 �m [48]
�G F 0.01 mM [11]
�O2 0.01 mM [11]
tEC 40 h [11]
dmax 35 �m [11]
�ss 0.5 — [48]
pT C

c 80 % [48]
tr 50 h [48]

�
O2

bv 0.01 mM [48]

R2CG: Cell growth: At M = mg ≤ m, a cell tries to grow (i.e., to increase
its volume). It can grow only if there is an empty Voronoi lattice site
within a distance �L = kl(k ≥ 1, l: cell diameter) and if the oxygen and
glucose conditions are still permissive. As a consequence of cell growth,
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this Voronoi lattice site is filled. Hence, for mg < m, the doubling of
the mass takes place in the cell cycle and not in the moment of cell
division as in the case of the classical Eden model [31] or more recent
work [26].

R2CD: Cell division: After a cell doubles its volume, it increases its internal
counter M until M = m by increments of one, again with rate m�.
If M = m the cell splits into two daughter cells where each daughter
occupies only one Voronoi lattice site.

R3: Cell necrosis: Glucose and oxygen concentrations control necrosis. If
the product of glucose and oxygen concentrations [G] · [O2] < Pcri t , then
cells become necrotic with the rate �n [71].

R4: Cell lysis: Necrotic cells decompose with the rate �l and consequently
free the Voronoi sites they were occupying.

We consider early stages of vascularization where detachment and inva-
sion of cells into their environment do not occur yet. For this reason we
here neglect cell migration as it could be shown to not affect the growth
kinetics as long as migration occurs only along the tumor surface [13]. The
time evolution of the system is computed using the Gillespie algorithm [38]
assuming that the underlying system dynamics of the multi-cellular system
can be modeled by a master equation for the multivariate probability dis-
tribution to find the configuration X at time t . Here, X = (x1, x2, x3, ...)

where xi denotes the number of cells in compartment i . In other words,
the space is subdivided into compartments that here are the Voronoi lat-
tice sites. In our model each Voronoi lattice site can only be occupied at most
by one cell, xi ∈ [0, 1] (0: unoccupied, 1: occupied). The master equation
applies to the conditional probability distribution so it needs the specifica-
tion of an initial condition. In our simulations we start with a single cell
N (t = 0) = 1 centered in the middle of our 3-D Voronoi lattice. The possible
transitions from this into another configuration are denoted by rates for each
process (cell growth, division, and death). This implies that each is assumed
to be a Poisson process. However, for M > 1 the duration � of the cell cycle
emerges from the sum of M Poisson processes and thus is Erlang distributed.
Within the Gillespie algorithm, the time until the next event is calculated by
�t = − log(�)/

∑

�′ W (� → �′) where
∑

�′ W (� → �′) is the total rate by
which the current state � can be left. W (� → �′) denotes the individual rates
that lead from the current state � to the accessible state �′ characterized by
any of the processes explained above. � ∈ (0, 1] is a uniformly distributed
random variable. After time �t a transition is chosen with regard to its rel-
ative weight W (� → �′)/

∑

�′ W (� → �′). To eliminate fluctuation effects
that emerge from individual time evolution paths in the configuration space
we average parameters that we use to quantify our observations (observables)
over many realizations.
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14.2.1.2 Oxygen and Nutrients

The nearby vasculature releases oxygen and glucose, which diffuse into the
local environment and nourish the tumor. This behavior is described by the
following diffusion equation:

∂[c]

∂t
= Dc�[c] − �c (14.1)

[c] = [c]bv at EC nodes

[c] = [c]bv on the external boundary

c = O or G reads for oxygen or glucose. The stationary boundary sources
[c]bv = [G]bv and [O2]

bv represent capillaries that provide glucose and oxygen
to the nearby tissue, respectively. Dc is the diffusion coefficient. �G and �O

are the cancer cell consumption rates of glucose and oxygen defined by:

�c(i, j, k) =

{

qc If there is a cancer cell at position (i, j, k)

0 Otherwise
(14.2)

where qc are the functions

qG = qG,max ·
[G]

K G
G + [G]

·

[

1 −

(

1 −
qG,min

qG,max

)

·
[O2]

K G
O + [O2]

]

(14.3)

qO = qO,max ·
[O2]

K O
O + [O2]

·

[

1 −

(

1 −
qO,min

qO,max

)

·
[G]

K O
G + [G]

]

(14.4)

14.2.1.3 Growth Factors

In this model the endothelial growth factors are released by the (hypoxic)
necrotic cells and diffuse into the tumor environment following the equation

∂[G F ]

∂t
= DG F�[G F ] (14.5)

[G F ] = [G F ]bv at necrotic nodes

[G F ] = 0 on the external boundary

where DG F is the diffusion constant and [G F ]bv is the boundary source of
growth factors released by the necrotic cells.

For a list of all the parameters used in the simulations, see Table 14.1.

14.2.1.4 Vascularization, Angiogenesis, and Remodeling

The models for the vascularization and its adaptation to the micro-
environment are largely inspired by the 2-D model of [11] and the 3-D model
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in [48]. We also refer to [11] for biological references of every mechanism that
these models describe.

� Preexisting network: The preexisting network of vessels is generated on
the random lattice, in common with the tumor cells. The vessel ori-
entation follows the three spatial directions, with an average distance
between vessels of dbv. Each node of the lattice is thus either free, a tu-
mor cell (TC), or an endothelial cell (EC). Two neighboring EC nodes
are linked by an edge ei j of length |ei j | that represents a blood vessel
of radius ri j , initially at the homogeneous value of ri j

0. Flow through
a vessel Qi j and pressure at the nodes Pi and Pj are computed in all
the vessels based on the simplest resistance law (Poiseuille law) that
linearly relates the pressure gradient in a segment to the flow through
it. Poiseuille law reads as follows:

Pi − Pj =
8�bv|ei j |

�ri j
4

Qi j (14.6)

�bv is the dynamic viscosity of the blood, taken constant as a first ap-
proximation. Pressure is prescribed as a boundary condition at the en-
trances Pin and exits Pout of the network, and solved at nodes using
Kirchoff’s law. A measure of the shear stress fi j in the vessel is cal-
culated as a linear function of the pressure gradient and the radius:
fi j = ri j (Pi − Pj ). We denote by f 0

i j its value in the initial network.
� Angiogenesis: A sprout can form from a blood vessel with a probability

proportional to the time step divided by the endothelial proliferation
time tEC , if certain criteria are met. From a given EC node i , a new blood
vessel that goes until the sprouting node j can emanate if the distance
between the two existing EC nodes is smaller than a maximum length
lmax. In addition, along the possible new vessel path all nodes must be
free and the growth factor concentration higher than the threshold �G F

that characterizes the angiogenic switch.
� Remodeling: Within the living tumor zones (proliferating and quiescent

zones), blood vessels cannot sprout but they can dilate due to prolifera-
tion induced by growth factors if the local growth factor concentration
is above the threshold �g f . This occurs with a certain probability pro-
portional to the time step divided by the endothelial proliferation time
tEC , up to a maximum diameter dmax, with an increment of the radius
ri j of 1/2�(|ei j | + 1). In contrast, under-perfused vessels can also col-
lapse due to the high pressure generated by the proliferation of tumor
cells or disappear because they are not functional enough and thus ex-
perience hypoxia or are sensitive to the anti-angiogenic factors. This is
modeled by the collapse of a vessel if its shear force is too low ( fi j/ f 0

i j

is below a critical value �ss) and the density of tumor cells is too large
(percentage of TC nodes above pT C

c ), with a probability proportional
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to the time step divided by the collapsing time constant tr . The vessel
can also be removed with probability 0.5 if the flow is zero and the local
concentration of oxygen is below a critical threshold �

O2

bv .

The vascular network responds to changes in the local micro-environment
by angiogenesis or remodeling. The local radius, pressure, flow, and shear
values are thus continuously updated. In turn, the changing vascular network
influences the growth of the tumor as explained in the cellular model above.

14.2.2 Results

We compared the growth of a tumor not constrained by nutrient and oxygen
limitation with a tumor in a static blood vessel environment and a tumor
that is able to modify the static blood vessel environment by triggering the
formation and remodeling of blood vessels. In Figure 14.2, the radius of the
tumor is plotted versus time for three cases: (1) without oxygen or nutrient
limitation, (2) with nutrient limitation but without the angiogenic switch, and
(3) with nutrient limitation and angiogenesis.

In the “no limitation” scenario, oxygen and nutrient concentrations are set
to be high enough to meet the tumor demands, both in space and time. All
cells can divide and the tumor thus first expands exponentially (zone a of
Figure 14.2). After some time, the cells in the center cannot divide further
due to contact inhibition and they become quiescent. When the proliferating
rim reaches a constant thickness, the radius becomes a linear function of time
(zone c of Figure 14.2).

FIGURE 14.2 Time evolution of the radius of a tumor cell population for
three different scenarios: (1) without any nutrient limitation (solid line), (2)
nutrient limited growth in vascularized tissue (dashed line), and (3) nutrient
limited growth inducing angiogenesis (dotted line).
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For the two other simulated scenarios there is nutrient limitation: oxygen
and nutrients are supplied by sources (blood vessels) and diffuse out of them
in the interstitial space but they are also locally consumed by the cells. As
the tumor mass expands, there is a first period where demands are lower
than supplies (as seen by the superposition of the three curves in zone a of
Figure 14.2). Then, supplies cannot balance demands due to an increasing
consumption: this is the nutrient limitation phase. This slows the growth of
the tumor, as can be seen by the decreasing slope in zone b of curves (2) and
(3) of Figure 14.2.

After some time, the angiogenic switch occurs and enables the tumor to
expand with a higher speed as indicated by the higher slope of the curve
(3) compared to curve (2) in zone c of Figure 14.2: its demands of oxygen
and nutrients are better fulfilled. Indeed, it reaches back the speed of the no
limitation case (slopes of curve (1) and (3) in the zone c).

In addition to the tumor size, its structure varies significantly with the dif-
ferent environmental conditions. When there are neither oxygen nor nutrient
limitations (Figure 14.3 (1a),(1b),(1c), (2a), (3a)), cells are either proliferating
(yellow) or quiescent (green), but none of the cells are necrotic. In contrast,
when oxygen or nutrients are lacking because their diffusion from blood ves-
sels is not fast enough and their local concentrations are too low, necrotic cells
(blue) appear in the center (Figure 14.3 2b and 3b).

As a response to hypoxia and hyponutrition, cells produce growth factors
that diffuse through the tissue, reach the existing blood vessels, and finally
trigger sprouting from them to create new blood vessels (Figure 14.3 (3c)). If
no new blood vessels are created, the necrotic zone increases (blue region in
Figure 14.3 (2c) larger than in Figure 14.3 (3c), where little necrosis can be
observed). Note the quiescent zones around the blood vessels inside the tumor
(Figure 14.3 (2c) and (3c)): in these regions, cells have enough oxygen and
nutrients but they cannot divide due to contact inhibition of growth. As time
passes, the case without limitation continues to grow with a spherical shape
and without any necrosis (Figure 14.3 (1c)). In the limited case, the tumor
continues to grow and tries to grow toward or along blood vessels (Figure
14.3 (2c)). In the angiogenic case, new vessels are forming toward and inside
the tumor (Figure 14.3 (3c)) as it continues to grow with a speed closer to
the no-limitation case (Figure 14.2).

14.2.3 Discussion

In this section we studied the interplay of biomechanically induced contact
inhibition and oxygen/nutrient limitation on the growth kinetics of tumors
in three cases: (1) tumor growth not constrained by the lack of oxygen or
nutrients as it can be partly observed in monolayers and the early avascu-
lar phase of tumors or multicellular spheroids growing in vitro; (2) tumor
growth in a static vascular network, where neovascularization does not oc-
cur; and (3) tumor cell growth can induce the formation of new vessels.
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(a) (b) (c)

FIGURE 14.3 (See color insert following Page 398.) Screenshots from the
simulations at times t/� = 4.8 (left), t/� = 9.6 (center) and t/� = 17.6 (right).
Each figure consists of an exterior view on the left-hand side and a central-
cropped view of the simulated domain on the right-hand side. The colors indi-
cate proliferating (yellow), quiescent (green), and necrotic cells (blue), as well
as blood vessels (red). The upper sequence shows the reference simulation of
growth without any nutrient limitation in contrast to the lower two sequences
showing the scenarios of nutrient-limited tumor growth in vascularized tissue
without (center) and with angiogenesis (bottom).

For the angiogenesis we used a cellular automaton approach for the tumor
cells and for the blood vessels and modeled the blood flow by Poiseuille
technique and allowed for leakage of oxygen and nutrients in the extracel-
lular space, which we mimicked by reaction–diffusion equations. The rules of
angiogenesis were largely motivated by the work of Rieger and co-workers
[11,48,78].

In all cases we found the tumors to grow approximately spherical for the
parameter values we had chosen. So the expansion can be quantified by study-
ing the time development of the tumor radius. We find that the radius grows
exponentially fast for small times, changing to linear growth later on. This
is precisely what could be observed in monolayers, multicellular spheroids,
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and in xenografts (see Section 14.1). The existence of linear growth is closely
related to a proliferating rim of constant size. If the spatial density of pro-
liferating cells is constant (as we find), then the size of the proliferating rim
determines the speed of growth. In case (1) the speed of growth is controlled by
a biomechanical form of contact inhibition (e.g., [27] and references therein).
In this and other references [15,37] we have shown that this form of con-
tact inhibition of growth can be explained by the degree of compression of
cells within the tumor caused by the local pressure within the tumor tissue.
During tumor expansion, this pressure profile increases from a small value at
the tumor border (marking the outer border of the proliferating rim) toward
a value at which cell proliferation is contact inhibited (marking the interior
border of the proliferating rim). In case (2) the speed of growth is controlled
by the penetration depth at which the concentrations of the oxygen and nu-
trients fall below the value necessary to permit cell proliferation. Because this
penetration depth is below the size of the proliferating rim dictated by con-
tact inhibition (case (1)), the growth speed in case (2) is below that in case
(1). In case (3), angiogenesis after its onset generates sufficient new blood
vessels so that oxygen and nutrient supply is—after a short transient—not
limiting as in case (2). Accordingly, the tumor grows with the same speed
as in the oxygen/nutrient-unlimited case (1). Moreover, in case (3) we find
only decent mitotic figures. Both the linear growth and the decent mitotic
figures have been observed in xenografts of NIH3T3 cells, which are well
vascularized [72].

14.3 Later Stages of Cancer: Invasion and Intravasation

In this section we give an introduction to two versions of a multiscale force-
based model. The first version studies the importance of cell–cell adhesion
in cancer cell invasion. The second version approaches the problem of cancer
cell intravasation. They are both structured as follows. At the intracellular
scale, the protein concentrations are governed by a system of ordinary differ-
ential equations derived from the reaction systems (14.11) and (14.13) (for
the exact formulation of the equations, see [67, 68]). At the cellular scale,
the cell–cell forces are based on a modified Hertz model (Equations (14.7) to
(14.9)) where the intensity of the adhesive forces depends on the intracellu-
lar cadherins available to travel to the cell surface to form bonds. Finally, a
cell moves according to a (Langevin) equation of motion, which accounts for
the main biophysical characteristics of the multicellular system (Equations
(14.10), (14.12), (14.14), and (14.15)). For a more detailed explanation of the
equations and methods, a detailed list of parameter values, and further results,
see [67,68].
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14.3.1 Biophysical Model of a Single Cell

The cell is characterized as an isotropic elastic object capable of migration and
division and parameterized by kinetic, biophysical, and biological parameters
that can be experimentally measured. We describe below the key features of
this modeling approach.

Cell–cell shape: We assume that an individual cell in isolation is spher-
ical and characterized by a radius R.

Cell–cell interaction: With decreasing distance between the centers of
two cells (e.g., upon compression), both their contact area and the num-
ber of adhesive contacts increase, resulting in an attractive interaction.
On the other hand, if cells are spheroidal in isolation, a large contact
area between them significantly stresses their cytoskeleton and mem-
branes. Furthermore, experiments suggest that cells only have a small
compressibility (the Poisson numbers are close to 0.5, [6,52]). In this
instance, both the limited deformability and the limited compressibility
give rise to a repulsive interaction. We model the combination of the re-
pulsive and attractive energy contributions by a modified Hertz model
[37,71] where the potential Vi j between two cells of radius Ri and R j is
given by:

Vi j =

√

(Ri + R j − di j )5
1

5Ẽi j

√

Ri R j

Ri + R j
︸ ︷︷ ︸

repulsive contribution

+ As
︸︷︷︸

adhesive contribution

(14.7)

The first term of the equation models the repulsive interaction, the
second term the adhesive interaction, and Ẽi j is defined by

Ẽ−1
i j =

3

4

(

1 − �2
i

Ei

+
1 − �2

j

E j

)

(14.8)

Here, Ei , E j are the elastic moduli of the cells i, j , �i , � j the Poisson
ratios of the spheres. As ≈ −	i j Ai j Ws , where Ws ≈ 25kB T (T : tempera-
ture, kB : Boltzmann constant) is the energy of a single bond, Ai j (di j ) the
contact area between cells i, j , and ̺m the density of surface adhesion
molecules in the contact zone, in our case the density of E-cadherin [21].
The interaction force results from deriving the potential function

F i j = −

(
∂Vi j

∂di j

)(
d(di j )

dx
,

d(di j )

dy
,

d(di j )

dz

)

(14.9)

The modified Hertz model approximates a cell as an elastic sphere. It
superimposes the repulsive force that emerges in case of a deformation
or compression of the sphere with an attractive contribution due to
cell–cell adhesion.
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14.3.2 Coupling Intracellular and Extracellular Scales

Adhesion forces between cells are controlled by the density of the 
-catenin–E-
cadherin complexes ([E/
]) positioned at the cell membrane within the cell–
cell contact zone. Following our previous work [68] we take as the adhesion
energy Ws̺m = 200 �Nm−1, so that the surface receptor density is ̺m =

200 �Nm−1W −1
s . We use this value as a maximum density of the cadherin–
-

catenin complex in the membrane and define the actual density by:

	i j = min(	i , 	 j ), 	i =
[E/
]i

ET

̺m

Figure 14.4 shows the resulting force function depending on the different ̺i j
m

values. By modifying the intracellular concentration of 
-catenin, the cells can
control the concentration of [E/
] complexes and thereby the strength of the
intercellular adhesion force.

14.3.3 Cell Movement

Cells move under the influence of forces and a random contribution to the
locomotion that results from the local exploration of space. A simple form
of the force equation that accounts for the basic elements of our biological
systems can be written in the form:

Ŵ f

is
vi

︸ ︷︷ ︸

substrate friction

+
∑

i nn j

Ŵ f

i j

(
vi − v j

)

︸ ︷︷ ︸

cell-cell friction

=
∑

i nn j

F i j

︸ ︷︷ ︸

forces

+ f
i
(t)

︸ ︷︷ ︸

noise

(14.10)

Inertia terms have been neglected due to the high friction of cells with
their environment. vi is the velocity of the cell i at time t , and the sums
are over the nearest neighbors in contact with cell i . The substrate friction
term denotes the friction force with the substrate and the cell–cell friction
denotes the friction forces with the nearest neighbor cells. The tensors Ŵ f

i j
and Ŵ f

is
denote cell–cell friction and cell–substrate friction, respectively. The

forces term denotes the force that cell i exerts on the other cells in contact
with it, previously calculated in Equations (14.7) and (14.8). The noise term
models the random component in the cell movement (the micro-motility) and
is chosen to be uncorrelated as explained in [28,68].

14.3.4 Cell–Cell Detachment and Invasion of Local Tissue

Cadherins are the main proteins involved in preserving cell–cell adhesion and
tissue structure. They are integral membrane calcium-dependent proteins.
Historically they were named after the spatial distributions where they were
first discovered: N-cadherin (neural), E-cadherin (epithelial), P-cadherin (pla-
cental), etc. Lately they have been found present in other different tissues and
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FIGURE 14.4 The top plot shows the force function between two cells.
Variables are cell–cell distance (in �m) and adhesion energy per unit of area in
contact (in �N/m). The bottom plot shows the vertical view of the same graph
for better observation of the adhesive interaction between cells depending on
the E-cadherin concentration forming bonds. The gridded part determines the
zone where the net force is adhesive.

organs. Among them, the most studied molecule is E-cadherin, which binds
at the extracellular domain to the E-cadherin molecules of other cells and,
in the intracellular domain, to a multi-protein complex formed by catenins
(p120, 
- and �-catenin).

In the E-cadherin adhesive system, 
-catenin joins �-catenin in a com-
plex that links E-cadherin and the actin filaments of the cytoskeleton. When

-catenin is not forming part of the adhesive complex, it is rapidly phos-
phorylated and degraded within the ubiquitin proteasome pathway. If the
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degradation of 
-catenin is not performed efficiently, it can eventually bind
to transport proteins such as T cell factor (Tcf) and be translocated into the
cell nucleus where it interacts with transcription factors. As a result of this
interaction, the cells expressing high levels of nuclear 
-catenin become more
invasive [49,80]. The implications of 
-catenin deregulation are essential in
cancer invasion.

Here we model a simplified version of the cadherin–
-catenin pathway as
follows. When the cells come into contact, the cadherin travels from the cy-
tosol to a position at the membrane where it links the neighboring cell with
the cytoskeleton via the scaffolding proteins of the catenin family. In the case
where the cells separate from each other, the 
-catenin and the E-cadherin
molecules are internalized into the cytosol so that 
-catenin can interact with
proteasome units and be degraded. If the degradation of 
-catenin does not
occur fast enough, it is transported into the cell nucleus where it interacts with
transcription factors. As a result of this interaction, the cell may change its ad-
hesive state to a nonadhesive state by sequestering the rest of the cadherins
forming bonds with other cells into the cytosol [44]. Some experimentalists
have proposed the existence of a soluble 
-catenin threshold over which the
concentration is high enough to be transported into the nucleus and interact
with transcription factors. We assume that a cell will undertake the decision to
detach from its neighbors if the soluble 
-catenin levels overcome the thresh-
old of cT ≈ 50 nM . This mimics the observations of Kemler et al. [46] when
studying epithelial bud development. They showed that an upregulation of sol-
uble 
-catenin was followed by a downregulation of the E-cadherin-mediated
bonds with the local neighbors.

There is evidence that cytoplasmic E-cadherin translocates to the mem-
brane after binding to 
-catenin at the endoplasmic reticulum [20]. For sim-
plicity we assume that the complexes are formed in the cell membrane. We
consider three possible different states of the E-cadherins: catenin free in the
cytoplasm ([Ec]), catenin free in the cell membrane ([Em ]), and the complex
E-cadherin–
-catenin forming bonds in the cell membrane ([E/
]). As one cell
comes into contact with another cell, the cadherin in the cytoplasm moves to
the cell surface. These interactions can be described by the following reaction
scheme:

[Ec] →{contact} [Em ]

[
] + [Em ]
�

→ [E/
] (14.11)

[E/
] →{detachment} [Ec] + [
]

The 
-catenin degradation process takes place after forming a complex with
the proteasome. In the framework of our model, this proteasome variable
should be understood as a complex of proteins that, after different biochemical
interactions, degrades soluble 
-catenin; that is,

[
] + [P]
k−

⇋

k+
[C ]

k2
→ [P] + �
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SignalingTranslocation

β - catenin
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FIGURE 14.5 Schematic diagram showing the modeling of cell–cell adhe-
sion dynamics. From an initial set of three cells in an adhesive state, one cell
detaches and this induces the translocation of 
-catenin from the membrane
to the nucleus of the other two binding neighbors. This in turn stimulates
intracellular signaling pathways [43,44] that promote a temporal change in
the adhesive state of the neighboring cells to become nonadhesive. Eventu-
ally the levels of soluble 
-catenin become downregulated and all the cells
become adhesive again. From O. Huber, C. Bierkamp, and R. Kemler (1996).
Cadherins and catenins in development. Curr. Opin. Cell Biol. 8:685–691,
and C. Jamora, R. DasGupta, P. Koclenlewski, and E. Fuchs (2003). Links
between signal transduction, transcription and adhesion in epithelial bud de-
velopment. Nature 422:317–322. (With permission).

where � denotes the product of the degradation process. Using the law of
mass action, this scheme is converted into a system of four ODEs governing
the intracellular dynamics of the concentrations of the molecules. Figure 14.5
shows how this system of reactions can trigger cell–cell detachment. If the
concentration of soluble 
-catenin is high enough to be transported into the
nucleus and interact with transcription factors, this may trigger a decision
process in the cell to detach from the neighbors. As a consequence of the
detachment, the neighbors in contact will suffer an upregulation of soluble

-catenin, starting the detachment cycle again.

The active decision of a cell to migrate can be triggered in different ways, all
of them involving an upregulation of the soluble 
-catenin, which overcomes
the critical threshold cT . One case where this happens is if the cytoplasmic
concentration of 
-catenin is upregulated due to a failure in the proteasome
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system. A further case would be if the detachment of local neighbors upreg-
ulates the soluble 
-catenin concentration. In both cases, 
-catenin enters
the nucleus and triggers cell migration (the precise model of the intracellular

-catenin regulation is explained in the next subsection). In our simulations
we extended Equation (14.10) with a chemotaxis term as in [73] modeling a
morphogen gradient:

Ŵ f

is
vi

︸ ︷︷ ︸

substrate friction

+
∑

i nn j

Ŵ f

i j

(
vi − v j

)

︸ ︷︷ ︸

cell-cell friction

=
∑

i nn j

F i j

︸ ︷︷ ︸

forces

+ f
i
(t)

︸ ︷︷ ︸

noise

+ ∇Q(t)
︸ ︷︷ ︸

chemotaxis

(14.12)

We have chosen the parameters of the chemotaxis term such that the chemo-
taxis force remained below the threshold at which the cells can detach from
the tumor surface by the pulling force generated by the chemotaxis force.
Hence, the cells would need to downregulate the cadherin–
-catenin adhesion
complexes to be able to detach from the neighbors.

14.3.5 Protein Dynamics

To illustrate the response of possible malfunctions in the intracellular con-
trol of the 
-catenin concentration, we study simulations for different attach-
ment/detachment scenarios. If the cell remains adhered to its neighbors, al-
most all of the 
-catenin remains bound to the E-cadherin complexes at the
cell membrane. Alternatively, if a cell detaches, 
-catenin is released into the
cytosol so that the concentration of soluble 
-catenin (i.e., 
-catenin in the
cytosol) increases.

Figure 14.6 shows the protein dynamics of a single cell that attaches to other
cells. As can be seen from the figure, soluble 
-catenin is rapidly sequestered
from the cytoplasm by the cadherins to form the [E/
] complex. As long as
the contacts are maintained, the soluble 
-catenin concentration remains at
a low level. If some of the neighboring cells detach, then the concentration of
E-cadherin forming bonds will be partially reduced.

Figure 14.7 shows concentrations of the intracellular variables for two dif-
ferent detachment scenarios. In the plot at the top we assume that a cell that
had contacts to many neighbor cells loses all its bonds with all its neighbors
at t ≈ 0.4, which triggers a dramatic increase in the 
-catenin concentra-
tion in the cytoplasm. This soluble 
-catenin enters the nucleus in excess of
the threshold concentration necessary to initiate migration and promote cell
movement via transcription. In the plot at the bottom, at time t ≈ 0.4, the
cell has lost only about 1/4 of its bonds with the neighbors and the soluble

-catenin concentration is insufficient to cause cell migration.

We implement the intracellular dynamics model explained above in every
single cell of the individual-force-based model. The advantage of using this
type of modeling approach is that it not only allows us to explicitly include the
influence of intracellular pathways, but also provides a realistic approach to
model the biophysical properties of individual cells, which cannot be neglected
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FIGURE 14.6 Plot showing the intracellular concentrations of different
biochemicals (see legend) over time when a cell attaches to a group of cells at
t ≈ 0.4 min. 
-Catenin is rapidly sequestered by the cadherins that travel to
the cell surface to form bonds.

when studying tissue organization. We reproduce in silico different scenarios of
relevance in cancer growth and invasion, and study the behavior of detachment
waves in epithelial layers and how it can produce the epithelial–mesenchymal
transition (EMT). We also study the 
-catenin distribution in small tumors
and how its upregulation can induce invasion.

14.3.6 Results: Invasion of Local Tissue

The epithelial-to-mesenchymal transition is a process in which a well-polarized
layer of cells becomes diffuse and loses the initial structure and compactness.
This transition occurs in a similar way at the tumor surface when invasion
occurs: the mass of outer cells loses contact and invades further into the tissue.
To model the epithelial–mesenchymal transition, we set as initial conditions a
layer of cells with fixed boundaries (i.e., unable to move). We include a con-
stant force term as if it were a constant source of chemoattractant (chemotaxis
term in Equation (14.9)) that diffuses toward the tissue in the form of the
equation

∂Q(t)

∂t
= DQ△Q(t)

We assume that in one of the cells the 
-catenin concentration is upregulated,
as discussed in Section 14.3.4. Figure 14.8 shows how the cells migrate and the
configuration of the epithelial layer is lost. The color of the cells determines
the intracellular concentrations of soluble 
-catenin. The lighter color cells
(in yellow) have higher concentration of soluble 
-catenin and will tend to
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FIGURE 14.7 Plots showing the concentrations over time of the intra-
cellular variables under two different scenarios. In the top plot, a cell which
previously had many neighbor cells has lost contact with each of its neighbors
(for details see [67]). The 
-catenin concentration increases dramatically and
it enhances mechanisms that promote invasion. In the bottom plot, the total
contact area has been only moderately reduced (for details see [67]); soluble

-catenin is maintained under the threshold levels (cT = 0.5) that enhance
migration.

detach from their neighbors. The darker cells (in red) have low concentrations
of soluble 
-catenin, and most of the 
-catenin is found at the membrane
forming a complex with E-cadherin. If the proteasome system is downregu-
lated and one cell detaches, it induces the same behavior in neighboring cells.

The same migration mechanism can be observed in a tumor: cells detach
from the outer rim and migrate toward a source of attractants. Figure 14.9
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FIGURE 14.8 (See color insert following Page 398.) Plots showing how
malfunctions in the proteasome system can alter the layer configuration pro-
ducing the epithelial–mesenchymal transition. In this figure, the cells migrate
toward a source of attractants escaping from the initial epithelial configura-
tion. Migration can occur only when the catenin levels are above a determined
threshold (yellow/lighter color cells). Time is measured in minutes.
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T = 1,100 T = 1,200

T = 1,500

FIGURE 14.9 (See color insert following Page 398.) Plot showing how
a small tumor invades further tissue stimulated by a source of morphogen
located on the right-hand side of the tumor. Cells decide to detach gradu-
ally when the intracellular concentration of 
-catenin is upregulated (yellow/
lighter color cells). Time is measured in minutes.
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shows the spatio-temporal dynamics of an invasive tumor undergoing EMT.
The proteasome functionality has been downregulated to the point where
migration occurs. It can be observed that the outer cells migrate and detach
from the main tumor mass, the new cells at the outer rim lose part of their
E-cadherin bonds, upregulate soluble 
-catenin as well, and also enhance their
migration and invasion. These findings suggest how invasion can be a gradual
process produced by activity of cells that detach from the tumor surface.

14.3.7 Cell Intravasation: Hallmark of Metastasis

Metastasis is a crucial process in the growth of a cancer leading to the forma-
tion of secondary tumors at sites distant from the primary tumor in the host.
To colonize distant organs, the malignant cells need to get into a blood or
lymph vessel, be transported in the vascular system and eventually attach to
the inner wall of the vessel, and escape from the vasculature. In this new loca-
tion, the malignant cell proliferates to form a secondary tumor. Intravasation
and extravasation are defined as the processes of a cell entering and leaving
the vascular network, respectively. These are essential natural mechanisms
used by specialized cells to travel to distant organs. However, the same mech-
anisms are used by cancer cells to create colonies and secondary tumors [57].
Both intravasation and extravasation occur in a similar way. During intrava-
sation the cancer cell attaches to the endothelial wall of a vessel, and pushes
apart the endothelial cells to squash in and enter the vascular network. During
extravasation the cell leaves the vascular network by the same process. This
migration through the endothelial tissue is also known as transendothelial mi-
gration (TEM). The physical properties of the cell combined with the intra-
and intercellular protein interactions that govern cell–cell adhesion are the
driving forces of TEM. Formation and detachment of bonds involve the inter-
actions of, among other molecules, N-cadherins and VE-cadherins (vascular
endothelial cadherins), and the activation of related protein pathways.

The blood vessel wall consists of three distinct layers of tunics [5] from the
inner wall to the outer wall. The tunica intima is composed of endothelium
and rests on a connective tissue membrane rich in elastic and collagenous
fibers. The tunica media makes up the bulk of the vessel wall and includes
smooth muscle fibers and a thick layer of elastic connective tissue. Finally,
the tunica adventitia attaches the vessel to the surrounding tissue. It is a thin
layer that consists of connective tissue, elastic collagenous fibers, and minute
vessels that are the beginnings of small capillaries which will help to irrigate
the surrounding tissue. The tunica intima is the last cell layer that a cancer
cell needs to cross to reach the inside of the vasculature. To achieve TEM,
the metastatic cell needs to break, among other cellular adhesion molecules,
the VE-cadherin bonds that hold the endothelial cells of the tunica intima.
Whether these bonds are broken by the mechanical pressure exerted by the
malignant cell on the endothelial wall, or whether there are other biological
mechanisms involved is not yet completely elucidated.
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The cells in our model can attach to each other via VE-cadherin or N-
cadherin molecules. Precisely which of these two binding proteins is used by
an endothelial cell to bind to another cell will depend on the adhesion molecule
that the adhering cell is expressing at that precise moment. If the malignant
cell is attaching to the endothelial cell, it will create an N-cadherin-mediated
bond. If on the other hand, the endothelial cell comes into contact with another
endothelial cell, they will try to preserve the architecture of the tunica intima,
creating VE-cadherin-mediated bonds [64,65].

When two cells come into contact, the cadherins change into a stimulated
state prior to forming cell–cell bonds. Here we refine the intracellular dynam-
ics used in the invasion version of the multiscale model by including that
cadherins are transported to the intermembrane region to form bonds with
the neighbors after forming a complex with 
-catenin [20]. This is translated
into our model by considering the following possible states for VE- and N-
cadherin: (a) free in the cytoplasm ([V E ], [N ]); (b) in the cytoplasm in a
stimulated state before forming a complex with 
-catenin ([V E s ], [Ns ]), and;
(c) forming bonds at the intermembrane position ([V E/
], [N/
]).

The expression of N-cadherin molecules forming bonds between the malig-
nant cell and the endothelial cells activates the Src kinase activity [64,65].
In our model, these enzymes can target both the N-cadherin mediated bonds
between the cancer and the endothelial cells, and the VE-cadherin mediated
bonds formed between two endothelial cells. Figure 14.10 shows the action
of the Src kinases in the bonds of the cells forming the endothelial wall. The
cancer cell comes into contact with the tunica intima and activates the kinases
after forming N-cadherin-mediated bonds (Figure 14.10.1). The kinases do not

1 2Cancer Cancer

Endothelial Endothelial Endothelial EndothelialTEM

ceancCa

Endothelial

β-catenin

N-cadherin

VE-cadherin

Src

FIGURE 14.10 Diagram showing the intra- and intercellular protein path-
ways considered in the model. 1: The cancer cell comes into contact with the
endothelial cells forming the wall and creates N-cadherin-mediated bonds.
As a consequence of the activation of the N-cadherin pathway, the Scr
kinase activity is upregulated. 2: The 
-catenin linked to the VE-cadherin
and N-cadherin molecules is phosphorylated by the Src kinases. After the

-catenin molecules bound to VE-cadherin are phosphorylated, the VE-
cadherin-mediated bonds holding the endothelial cells are downregulated and
TEM migration can be achieved.



404 Cell Mechanics

only target the N-cadherin–
-catenin complexes but also the VE-cadherin–
-
catenin complexes and disrupt the bonds between endothelial cells thereby
facilitating TEM (Figure 14.10.2). As we did for modeling the degradation
of soluble 
-catenin, we include a generic proteasome (variable [P]) that de-
grades 
-catenin after forming a complex with it ([C ]). We also assume that
both types of cadherins can be recruited to form bonds again. The main bio-
chemical reactions affecting the cadherin adhesion pathways are the following
(z denotes either V E or N):

[z]⇀{contact}[zs ]

[
] + [zs ]⇀[z/
]

Cell–cell detachment can happen by a combination of physical stress, that is:

[z/
] →{detachment} [z] + [
] (14.13)

and the action of tyrosine kinases:

[z/
] + [Src]
k+

z

⇋

k−
z

[Sz ] → [z] + [
] + [Src]

where [Sz ] denotes the complex Src-z-cadherin–
-catenin. Finally, the generic
proteasome variable accounts for the degradation of 
-catenin:

[
] + [P]
k−

⇋

k+
[C ]

k2
→[P] + �

where again � denotes the product of the degradation process. These reac-
tions will produce different adhesion dynamics, depending on the type of cell
observed. Following the observations of Qi et al. [65], we assume that the
malignant cell does not express VE-cadherin. Hence for the set of intracellu-
lar equations for the cancer cell, z = N . In the case of the endothelial cells
there will be a set of equations where z = N to explain the heterotypic bonds
with the malignant cell and a set of equations where z = V E to explain the
homotypic bonds between endothelial neighbors.

14.3.7.1 Equations of Motion

We model the cell movement by two sets of equations of motion, being slightly
different for the endothelial and for cancer cells. In the equation for the malig-
nant cell, we take into account friction terms with the environment and with
cells, adhesive–repulsive forces between cells, random movement, and directed
movement.

Ŵ f

cs
vc

︸ ︷︷ ︸

substrate friction

+
∑

c nn j

Ŵ f

cj

(
vc − v j
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cell-cell friction
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Fcj
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+ f
c
(t)
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r. movement

− F̂c
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directed movement

(14.14)
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The directed movement term models the active decision of the malignant cell
to move toward the vessel. Endothelial cells forming the tunica intima move
according to the force balance equation:
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response forces

(14.15)

On the right-hand side, the third term (response forces) is only active when
the malignant cell comes into contact with the endothelial wall and is the
response to the force exerted by the malignant cell in the endothelial cells

(directed movement in Equation (14.14)). We set F̂c,i = −
[N/
]c,i∑

c nn i [N/
]c,i
F̂c where

the subscripts denote the pair of cells sharing the N -cadherin bonds to ensure
the total force is zero if the cancer cell squashes in the vessel.

14.3.8 Results: Cell Intravasation

Figure 14.11 shows the spatio-temporal dynamics of the multiscale simula-
tions. The coloring of the cells denotes the scale of the type of protein used

1

4

2

5

3

6

FIGURE 14.11 (See color insert following Page 398.) Plot showing the
spatio-temporal evolution dynamics of malignant cell (solid arrow pointing
at red colored nucleus cell) approaching a blood vessel to undergo TEM.
The green (dark) initial color of the endothelial cells forming the blood vessel
denotes the V E/
 concentration. When the malignant cell attaches the vessel,
the VE–cadherin bonds are disrupted and new N-cadherin bonds are formed
(yellow/light gray). After some time, the malignant cell manages to disrupt
the endothelial bonds enough to open a gap in the vessel and undergo TEM.
Time scales in the frames correspond to the intracellular simulations of Figure
14.12 at time 1 = 0 min, 2 = 50 min, 3 = 100 min, 4 = 200 min, 5 = 300 min,
6 = 400 min.
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when forming bonds, that is, green (dark gray) is used for VE-cadherin bonds
and yellow for N-cadherin bonds. The malignant cell approaches the tunica
intima and attaches to the endothelial cells. At the moment when contact oc-
curs (frame 3, t ≈ 100 min), the malignant cell and the endothelial cells start
forming heterotypic N-cadherin bonds (light gray/yellow). As time evolves it
can be observed how the VE-cadherin bonds (dark gray/green) between the
endothelial cells are disrupted, and the malignant cell is able to open a gap
in the endothelial wall and undergo TEM (frame 6, t ≈ 400 min).

From the assumptions, a malignant cell that is only able to express N-
cadherin therefore only induces the formation of N-cadherin bonds with the
endothelial cells. At this stage within the endothelial cells, the two types of
cadherins start competing for the soluble 
-catenin. Figure 14.12 shows the
intracellular dynamics of the cadherin and 
-catenin proteins corresponding
to the simulations shown in Figure 14.11. The plot at the top shows the
intracellular protein dynamics of an endothelial cell to which the cancer cell
attaches. At the moment when the malignant cell comes into contact with the
endothelial cell (t ≈ 100 min), the VE-cadherin concentration forming bonds
between the endothelial neighbors decreases. This is initially caused by the
degradation of the VE-cadherin–
-catenin complexes by the Src enzymes. At
time t ≈ 450 min, due to a combination of the degradation of the VE-cadherin
bonds by the Src activity and the physical forces exerted by the malignant
cell on the wall, the bonds between endothelial cells are totally disrupted and
the VE-cadherins are internalized in the cytosol. As a consequence, soluble 
-
catenin is upregulated. The plot at the bottom shows the intracellular protein
dynamics of the cancer cell. When it attaches to the endothelial wall at time
t ≈ 100 min, the N-cadherin in the cytosol is stimulated and binds to 
-
catenin. This complex is transported to the membrane to form heterotypic
bonds with the endothelial cells. At time t ≈ 450 min, the cancer cell succeeds
in opening a gap in the tunica intima and undergoes TEM. As a consequence
of this intravasation and losing contact with the tunica intima, the N-cadherin
molecules forming bonds in the intermembrane position are internalized into
the cytosol.

Figure 14.13 shows the time evolution dynamics of the adhesive forces be-
tween the endothelial cell to which the cancer cell attaches at time t ≈ 100 min,
and its endothelial neighbors forming the tunica intima. It can be observed
that the strength of the adhesive forces decreases until cell detachment (at
t ≈ 450 min), as far as the VE-cadherin concentration is downregulated (see
top plot of Figure 14.12). The slow reduction of the adhesive forces is caused
by the intracellular action of the Src enzymes. At time t ≈ 450 min the cancer
cell undergoes TEM, thereby breaking the bonds between the endothelial cells
and the adhesive forces disappear. In this simulation, detachment occurs by
a combination of physical and biological causes.
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FIGURE 14.12 The plots in the top figure show the temporal evolution
of the intracellular protein concentrations of an endothelial cell to which the
cancer cell attaches at time t = 100 min. As time evolves, the VE-cadherin
concentration at the surface of the cell is partially decreased by the action of
the enzymes. At t ≈ 450 min the cancer cell disrupts the bonds formed by
the endothelial cells and, as a consequence, the VE-cadherin at the surface of
the endothelial cell is dramatically decreased. The plot at the bottom shows
the protein concentrations of the cancer cell when attaching to the endothelial
wall. At time t = 100 min the cell comes into contact with the tunica intima
and the N-cadherin travels to the membrane to form heterotypic bonds. As a
combination of the biochemical pathways and the physical forces, the cancer
cell undergoes TEM at time t ≈ 450 min.



408 Cell Mechanics

0

–1

–2

Fo
rc

e 
(μ

N
*1

0–
3 )

–3

–4
0 100 200

Time (minutes)

300 400 500

FIGURE 14.13 Plot showing the time evolution of the adhesion force of
the same endothelial cell as the one in Figure 14.12 with the neighbors forming
the vessel. It can be observed that the intensity of the adhesive forces decreases
over time.

14.3.9 Discussion

In this section we studied the epithelial–mesenchymal transition that leads to
cell detachment and invasion, and the subsequent intravasation, the process
by which a malignant cell enters a blood vessel. We find that the interplay of
biomechanical forces and the biochemical reactions that trigger their strength
are able to explain the detachment of cells leading to both invasion and in-
travasation.

In TEM we assumed a morphogen release from the neighboring blood ves-
sels that directs the movement of cells after they detached. We studied the
case where chemotactic forces alone were insufficient to trigger a mechanical
rupture of the cell–cell contacts necessary for cell detachment. We considered
this case because the morphogen gradient is sensed by all cells at the tumor
surface up to a certain penetration depth, so the forces would have to be
very strong to pull out individual cells. In our model the strength of adhe-
sion is controlled by the concentration of E-cadherin–
-catenin complexes in
the cell membrane. We represented the 
-catenin core module explicitly in
our model to realistically mimic the possible key functions to which 
-catenin
contributes in the EMT (epithelial–mesenchymal transition). We find that an
upregulation of 
-catenin in the cytosol of a single cell (e.g., due to a defect
in the degrading apparatus of 
-catenin in the cytosol) can be sufficient to
trigger a detachment cascade from other cells at the surface as a consequence
of the inter- and intracellular dynamics of 
-catenin.

In intravasation, a malignant cell arriving at the wall of a blood vessel un-
der the influence of a chemotaxis force pushes against the endothelial wall
and thereby induces the formation of N -cadherin-mediated bonds with the
neighboring endothelial cells. As a consequence VE-cadherin-mediated bonds
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among endothelial cells are locally downregulated by a competition process
that involves the Src enzyme. This competition weakens the strength of the
contacts between the endothelial cells, which enables the cancer cell to squash
in between endothelial cells—again under the influence of the chemotaxis
force—and eventually enter the blood vessel. So here the interplay of the
biochemical control of the strength of cell–cell contacts and the chemotaxis
force permit the cancer cell to deploy its malignant potential.

14.4 Conclusion

In this chapter we presented model results of different steps from an in situ
tumor to invasive cancer. These are angiogenesis, the process of formation
of new blood vessels stimulated by tumor cells to ensure their oxygen and
nutrient supply, and the detachment of cells from the tumor mass and their
intravasation, the process by which they invade into blood vessels. In our
models, which are all in three dimensions, the tumor cells were presented
individually within agent-based models.

In the first part of this chapter we compared the growth kinetics of tumors
for (1) oxygen and nutrient unlimited growth, (2) growth in a static vascular
environment, and (3) growth if the vascular environment is remodeled by
angiogenesis. Our model is able to explain the growth characteristics found
in approximately spherically growing tumors such as multicellular spheroids,
an experimental system used to mimic tumors in their avascular phase, and
xenografts of NIH3T3 mouse fibroblast cells, which also have spherical shapes.

In the second part we studied the influence of intracellular biochemical
pathways involved in cell–cell contact formation on the strength of cell–cell
adhesion forces. We find that it is crucial to include the intracellular machin-
ery that controls the cell–cell adhesion to mimic the experimental observa-
tions both during cell detachment from a tumor leading to tissue invasion and
during intravasation. Hence our results stress the importance of taking into
account both biomechanical and biochemical factors at the relevant scales of
the different processes. Moreover, including the intracellular molecular regu-
lation in the models permits the simulation of predictions that can be vali-
dated experimentally because cell parameters such as micromotility, strength
of cell–cell adhesion or material parameters cannot be directly modified in the
experiment while molecular concentrations can.

In all our simulations we used multiscale models. In the first part on an-
giogenesis we coupled individual-cell-based models with a continuous descrip-
tion of the concentration of oxygen, glucose, and growth factor. In the sec-
ond part on the epithelial–mesenchymal transition and intravasation, we ex-
plicitly represented the key functions of the intracellular biochemical path-
ways that control the strength of cell–cell adhesion by a coupled system of
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ordinary differential equations for the concentration of the involved intracel-
lular molecules, and coupled them directly to the strength of cell–cell forces,
that is, a parameter on the cellular scale. In all our simulations we tried to
choose realistic parameter values inferred from the literature—except in our
model in the first section where we shifted the process of angiogenesis toward
smaller tumor sizes to reduce computational expense.

We believe that simulations that permit an analysis of the development of
cancer from a single precursor cell up to its size at the stage of clinical man-
ifestation may soon become possible, even in quantitative agreement with
experimental and clinical observations, provided that the necessary data on
all respective scales will be made available. This might enable us to mimic
the effect of therapies in silico, and guide experiments and tests to improve
therapy schedules and therapies in the not so distant future.
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[27] D. Drasdo and S. Höhme (2005). A single-cell based model to tumor
growth in-vitro: monolayers and spheroids. J. Phys. Biol. 2:133–147.
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15.1 Introduction

At present a variety of methods exist to investigate and simulate the orga-
nization of cellular compounds with different levels of spatial and temporal
resolution. Delaunay object dynamics (DOD) provides a platform to model
different systems on a common physical basis [7,34]. The biophysics of mul-
ticellular systems, although influenced by details of the biological system in
consideration, is the guiding principle common to different species or tissues.

417
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Within the DOD platform, only the specific properties of cells in a given sys-
tem have to be adapted. It allows us to separate the phenotype of a cell seen
in experiments (surface markers, gene expression patterns, signaling cascades)
from more universal biophysical phenotypes (such as speed, cell division, sur-
face area, adhesion). The latter phenotypes can be mapped to physical forces
acting on cells. In analogy with molecular dynamics methods, a reference
“force field” representing classes of biophysical interactions forms the basis of
a DOD simulation. Assuming that, on the qualitative level, biophysical prop-
erties of cells are universal, the DOD platform can be refined independently
of the considered biological system. The biophysical parameters will differ on
the quantitative level only, which are easily adapted.

The DOD simulation is applied to secondary lymphoid tissues (SLTs)
[14,62], which only recently gained modelers’ interest [8]. SLTs develop shortly
after birth and are the sites of interaction of immune effectors with pathogens.
Several immune responses are triggered in this tissue, including the genera-
tion of specific antibodies. In contrast with the majority of other multicellular
systems, SLTs are dominated by fast migrating cells. Stable structures emerge
despite the cell population exchanged by cell influx and efflux on a daily ba-
sis. A simulation of SLT ontogenesis is presented here and the effects of the
biophysical cell features on pattern formation are highlighted.

15.2 Delaunay Object Dynamics

The DOD framework is designed to cover contact-dependent forces acting
between cells [7,34]. It is based on a weighted Delaunay triangulation, an ex-
tension of the normal Delaunay triangulation [17,41]. The triangulation pro-
vides the cell neighborhood topology, which might change rapidly due to fast
cell migration. The topology determines the interaction partners—or field of
view—of a cell, permitting us to determine the local environment of every
cell independent of its position, size, and the cells surrounding it. The dual
Voronoi tessellation [2,41] can provide information about the shape of a cell as
defined by cell contact surfaces and volume [51]. The contact area determines
the strength of the adhesion and friction forces between cells and allows us
to describe contact-dependent signals in terms of receptor–ligand pairs. Im-
munological tissue is a prime example where nonadhesive contact-dependent
signals also play a major role [22].

15.2.1 Weighted Delaunay Triangulation

In DOD each cell i is represented as a sphere at position xi with radius Ri . For
the purpose of the weighted Delaunay triangulation, each cell corresponds to
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a vertex that is defined by the pair X i = (xi , Ri ). The weighted Delaunay tri-
angulation is defined using the empty orthosphere criterion [2,17,41]. In three
dimensions, four vertices Xk, Xl , Xm, Xn forming a tetrahedron uniquely define
an orthosphere. The orthosphere is empty if for any vertex X i �= Xk, Xl , Xm, Xn
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holds, provided that the four vertices are oriented positively, that is, if
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xi = (xi,1, xi,2, xi,3) are the position coordinates of the vertex X i .
A set of nonoverlapping tetrahedrons covering a set of vertices forms a

Delaunay triangulation if all orthospheres attributed to these tetrahedrons
do not contain any further vertices. The Delaunay triangulation, and with
it the neighborhood topology, change when cells are moving, and when they
are added or removed from the system due to flux, death, or division. The
algorithms that allow a local adaptation of the triangulation in response to
these processes have been developed and published previously [9,52]. Thus, a
total re-triangulation after a simulation time step is not necessary.

15.2.2 Geometry of the Cell

The mechanical interaction of cells relies on geometric variables such as dis-
tance, contact surface, and volume. These quantities can be drawn from the
weighted Delaunay triangulation using its dual graph, the Voronoi tessella-
tion [2,41,52]. The calculation is based on the decomposition of the Voronoi
polyhedra into triangles. The corners of the polyhedra are identical to the cen-
ters of the orthosphere (Figure 15.1). Herefrom the center-contact distances,
the contact areas, and the volume of a cell follow.

The Voronoi tessellation is not an optimal approximation for the cell shape
under all circumstances. If cells are not densely packed—thus, not in physical
contact—the Voronoi contact surface and volume would grow to artificially
large values with increasing distance between the cells. A better approximation
is to compute the contact area as the minimum of the sphere overlap and the
Voronoi face (Figure 15.2). Both are located in the same plane, thus not
changing the position or orientation of the cell contact. The Voronoi contact
area is the better description for high density of cells because it takes into
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Voronoi cell

Orthosphere

Triangulation

xi, Ri

FIGURE 15.1 Duality of the Delaunay triangulation and the Voronoi
tessellation. The Voronoi cell (black polygon) of a sphere representing the cell
at position xi with radius Ri (gray disk) is determined by the orthospheres
(dashed circle) of the triangulation (dashed lines).

Free surface

Sphere overlap

Equilibrium face

Voronoi face

FIGURE 15.2 Different surface contributions of a cell. For physical cell
contacts, the minimum between Voronoi surface area and the sphere overlap
is used. This choice can result in small parts of the cellular surface being in
contact with the medium (thick black arc, “free surface”). The integral of
these parts of the cell membrane is taken into account to model the part of
the surface in contact with the medium. For parts of the cell lacking phys-
ical contact with a distant cellular neighbor, the overlap of a sphere within
equilibrium distance (the equilibrium face) is used to calculate the contact
surface.
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account many-body configurations. The virtual overlap of the spheres is the
better approximation for low-density systems and becomes zero in the limit
of cells losing physical contact to each other [51,53]. Thus, the minimum of
the two contact areas turns out to be close to the real contact of two elastically
deforming spherical cells.

If the sphere overlap becomes zero and cells lose contact, the cell is con-
sidered in contact with the medium. The contact surface with the medium is
calculated as the minimum of the Voronoi face and the sphere overlap with an
equal-sized virtual cell of the same kind at equilibrium distance (Figure 15.2).
The equilibrium distance is defined with respect to the Johnson-Kendall-
Roberts forces [26] (introduced below). It is assumed that the cell’s contact
surface with the medium corresponds to a relaxed cell configuration. The in-
termediate state where cells are in contact with other cells but a part of the
surface is still in contact with the medium (Figure 15.2) is not resolved in the
model. Only the total surface in contact with the medium can be estimated
by calculating the difference between the ideal sphere surface and the sum of
all contact areas.

A similar argument is applied to the volume of cells, which is defined as the
minimum of the sphere volume and the Voronoi cell volume.

It is not required to use the Voronoi tessellation for the geometry of the cell.
It is also possible to use the Delaunay triangulation only for neighborhood
relationships and use an independent description of the cell shape. Note that
the neighborhood topology limits the complexity of cell shapes. For example,
dendritic or strongly elongated shapes cannot be described with the Delaunay
triangulation.

15.2.3 Equations of Motion

The dynamics of cells in the DOD platform are determined by the forces acting
on and generated by cells in physical contact. The method is as flexible in the
choice of forces as are molecular dynamics methods. A generic decomposition
of force components is provided in this section.

The underlying equations are Newtonian equations of motion in the over-
damped approximation [15,53]. In the approximation, acceleration of cells and
conservation of moment are neglected and therefore the inertial term can be
omitted. The equation of motion for the cell i at position xi then reads

0 ≈ mi ẍi

= Fact
i (�i ) + F

drag
i

(

ẋi , {ẋ j }N c
i

)

+
∑

j∈Ni

Fact
i j (�i )

+
∑

j∈N c
i

[− Fact
j i (� j ) + F

pass
i j (xi ,x j )] (15.3)

The various contributions to the force acting on cell i are listed below and
further explained in the subsequent sections (Figure 15.3).
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FIGURE 15.3 Essential parameters of the DOD model. (a) The geometry
of the cell is determined by its position xi and radius Ri . Depending on the
position of the surrounding cells j , the contact area ai j and virtual cell/sphere
overlap hi j are calculated. In addition the contact area is characterized by the
normal vector êi j . (b) The normal vector êi j determines the direction of the
passive forces between cells F

compress
i j and FJ K R

i j . The forces Fact
i j generated

by the cytoskeleton of the cell i act either on neighbor cells or the medium.
Forces Fact

j i generated by cell j act on cell i only when both cells are in physical
contact. Cytoskeletal forces acting on the medium are summarized into one
vector Fact

i . The speed vi of the cell results from the balance of all the afore-
mentioned forces with the drag forces F

drag
i j , which act tangentially on each

contact surface, and from the resistance F
drag
i,med of the medium (not shown).

1. The active forces Fact
i and Fact

i j on a cell i depend only on the phenotype
�i of cell i and the phenotypes, � j of the interaction partners. �i is a
state vector of the cell’s internal degrees of freedom. The details of �i

define the biological system under consideration. The degrees of freedom
may include surface molecule concentrations, cell cycle status, or cell-
type or cell-specific parameters. Variables of the state vector �i can be
dynamic or static. The dynamics of some internal degrees of freedom
may, for example, depend on cytoskeletal changes. All forces resulting
from cytoskeletal rearrangements are summarized as active forces. The
forces can be exerted on neighbor cells or to the surrounding medium.
Therefore the set Ni includes all cells j that are next neighbors in the
Delaunay triangulation, independent of whether they are in physical
contact with the cell i . This accounts for forces acting on the noncellular
environment. In addition, the active forces Fact

j i (� j ) of neighbor cells act
on cell i . But in this case, only the set of cells j ∈ N c

i in physical contact
to cell i are included.

2. Passive forces Fpass depend on the positions of the cell i and those
neighbor cells j ∈ N c

i in physical contact with cell i . There are
two contributions to this force resulting from the cell’s deformability
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and compressibility:

F
pass
i j (xi ,x j ) = FJ K R

i j (xi ,x j ) + F
compress
i j (xi ,x j ) (15.4)

where FJ K R
i j contains elastic interactions and adhesion (see Equa-

tion (15.6)).

3. Passive and active forces are counterbalanced by drag forces Fdrag. They
depend on the velocity ẋi of the cell i and the velocities {ẋ j }N c

i
of the

neighbors cells j being in physical contact with cell i .

15.2.4 Active Force of Migrating Cells

Cells are not only subject to forces exerted on them by their environment,
but are themselves major sources for mechanical stress due to the dynamics
of their cytoskeletons. One cause for cell-generated mechanical stress is mi-
gration. Lymphocyte migration is most relevant for the application of DOD
to immunological tissue, and thus a model is needed to show how cells exert
forces on their surroundings.

It is known that during movement, cells do exert strong forces perpendicular
to their direction of motion [43,58]; these forces can even exceed the net force
in the direction of cell migration [43]. Immune cells use a migration mode
that depends on the so-called constriction ring [29,39,46,65]. Cells use a ring
formed by their cytoskeleton as an anchor to the extracellular matrix (ECM).
The contraction of the rear of the cell generates outward-directed pressure
conveyed to the environment.The cell squeezes itself through the ring, which
remains fixed with respect to the ECM. In a simplified modeling approach [7],
a cell forms only one ring that is traveling to the end of the cell before a new
ring forms at the front. The force acting on cell i by exerting active forces on
a neighbor cell j is given by

Fact
i j = ai j p∗

i sign[(x∗
i j − x∗

i ) · oi ]
x∗

i j − x∗
i

‖x∗
i j − x∗

i ‖
(15.5)

with the cell polarization vector oi , cell surface contact point x∗
i j , constriction

ring center x∗
i (which generally differs from the cell’s center), interaction area

ai j , and the pressure p∗
i generated by the cell i cytoskeleton.

In addition to the forces resulting from the ring, a constant active force
−Fact

i (�i ) is directly exerted on the ECM opposite to the direction of the
cell’s orientation oi , that is, the cell is pushed forward against the ECM by
the force Fact

i (�i ) in the direction oi . This additional force may be gener-
ated either by the integrated pressure of the constriction ring model directly
exerted to the ECM or by the filopodia dynamics of the classical multistep
migration model (reviewed in [28,36]). Recent data demonstrate that both
migration modes are active in immune cells [68] although the contribution
of the constriction ring seems to be greater during chemotactic responses of
migrating lymphocytes [20,68].
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The polarization oi of the cell is part of its phenotype �i . It is dynamic
and therefore the direction of the migration and the active forces are also
dynamic. In the model the persistence time Tp, which describes how long
the cell maintains its orientation [1,35], is used. The cell reorients according
to a sufficiently strong gradient of a chemotactic stimulus [47] only if the
persistence time has past since the last reorientation event. Without sufficient
chemotactic stimuli, cells orient randomly and perform a persistent random
walk. This model could be extended by including the texture of the ECM
and coupling the direction of motion to the direction of fibers that guide
lymphocyte movement [3].

15.2.5 Adhesive and Elastic Cell–Cell Interaction

Mechanical parameters of cells are typically measured either in suspension in
which cells adopt a spherical shape or—in the case of fibroblast-like cells—
spread on substrates [5,13,37]. In most cases both conditions deviate strongly
from the in situ situation. The Johnson-Kendall-Roberts (JKR) model [26] is
applicable to the spherical cells in suspension [13] and therefore may also apply
to immune cells, which belong to the few cells that show roughly spherical
shapes in the tissue [35]. Cells in the present simulation are treated as soft
elastic adhesive spheres according to the JKR model. Other cell types may
require different mechanical models for an adequate description [60].

The JKR force is typically formulated independent of the contact area be-
tween two spheres [26]. However, the contact area derived in the DOD frame-
work is a result of a multibody configuration of cells and is not directly related
to the forces acting between two cells. In particular, when cells are densely
packed and get closer to each other, the contact area decreases such that the
repulsive force by the JKR model would decrease instead of the required in-
crease of repulsion. Thus, the JKR model is rewritten based on the virtual
cell overlap hi j = Ri + R j − ‖xi − x j‖ where Ri and R j are the cell radii:

F J K R
i j (xi ,x j ) = E∗

i j

√

R∗
i j h

3/2
i j −

√

6��i j E∗
i j R∗

i j
3/2h

3/2
i j

1

E∗
i j

=
3

4

[

1 − �2
i

Ei

+
1 − �2

j

E j

]

1

R∗
i j

=
1

Ri

+
1

R j

(15.6)

with the cell’s elastic moduli Ei and E j , Poisson numbers �i and � j , and the
surface energy �i j . The force acts in the direction of the normal êi j on the
contact face:

FJ K R
i j (xi ,x j ) = F J K R

i j (xi ,x j )êi j (15.7)

The approximation using the virtual cell overlap treats attachment and de-
tachment symmetrically, while in reality one would expect different relations
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[51,67]. To account for this difference would require the calculation of the rel-
ative movement between each cell pair in every time step. It is not clear, a
priori, which neighbor cells will detach or attach. This depends on the move-
ment of all cells calculated from the equations of motion (Equation (15.3)).
An iterative procedure is needed to determine whether cells are attaching or
detaching, and the equations of motion have to be solved again until a con-
sistent solution is found [44]. Solving the equations under these conditions is
a nontrivial task. Concerning the experimental situation (i.e., the available
data and the little contribution of adhesion molecules to immunological tissue
organization [27]), this seems to be an unnecessary effort.

The JKR model treats adhesion differently from the common biological
terminology [10,18]. In physical terms it is a reversible process while in biol-
ogy many phenomena imply active changes by the cell (e.g., affinity changes
of integrins). The attachment of a cell to a substrate by means of adhesion
requires additional forces. The forces generated by the adhesive contact are
not sufficient to drive the required deformation of the cell [18]. The required
additional forces can be active forces of the cell generated by the cytoskele-
ton or outside forces acting on the cell (e.g., the experimentalist pushing the
cell). On the contrary, the forces required to detach the cell can be sufficiently
high that the cell may break before contact with the substrate is lost. Thus,
the JKR model can only be applied in situations in which adhesion forces do
not dominate the system behavior. For tissues that strongly depend on ad-
hesion (such as endothelial layers), the JKR force will be replaced with more
appropriate descriptions within the DOD framework.

15.2.6 Many-Cell Interactions

As pointed out in the previous section the JKR model cannot properly account
for many-body interactions. In tissue, however, this is the normal situation.
Therefore using the JKR force alone can impose a problem in certain situa-
tions. The JKR model defines an equilibrium distance of two cells induced by
the balance of surface energy and elastic repulsion. For two cells, this leads
to a negligible deviation of the volume compared to the (conserved) real vol-
ume of a cell. However, in the case that a cell is strongly compressed by its
surrounding cells, a corresponding large relaxing force is not generated by the
JKR model. Thus, cells might remain in a highly compressed state for too long
because many-body interactions are neglected. To account for this and approx-
imately ensure volume conservation, a cell pressure concept is included [15,53].
The pressure of cell i is calculated as deviation of the actual (simulated) cell
volume Vi from the target (real cell in relaxed state) volume V ∗

i

Pi = Ki

(

1 −
Vi

V ∗
i

)

(15.8)

Ki =
Ei

3(1 − 2�i )
(15.9)
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where a linear compression model with compressibility Ki is used. The forces
resulting from this pressure are exerted between cells by adding the term

F
compress
i j = ai j (Pi − Pj )êi j (15.10)

to the passive cell forces F
pass
i j (xi ,x j ) (Equation (15.4)). ai j is the contact

area of the cell with neighbor cells or the medium. This effective many-cell
interaction force vanishes in the limit of low-density cells.

15.2.7 Friction Forces

The motion of cells is damped by friction forces that arise from several sources.
Adhesion molecules impose resistance to cellular movement when dragged
laterally along the plasma membrane. Also the unbinding and rebinding of
adhesion molecules to their ligands on other cells and the ECM effectively
generate a friction force. In addition to specific adhesion, a number of cell
membrane components can also interact and contribute to friction [10].

Similar to active forces, the friction forces are split into two components.
One component represents the interaction with the environment (e.g., the
ECM):

F
drag
med,i = −�med ẋi (15.11)

The linear velocity dependence is justified by the low Reynolds numbers of cell
migration and the overdamped approximation [15,45,53]. The second compo-
nent describes the friction between two cells i and j in contact:

F
drag
i j = �i j [ẋi j − êi j (êi j · ẋi j )] (15.12)

which depends on the relative cell velocity ẋi j = ẋ j − ẋi . Only the component
of the relative velocity tangential to the contact surface is taken into account
(Figure 15.3). The restriction on the tangential part is justified because a tra-
versed part would contradict the energy-conserving nature of the JKR model
(Equation (15.6)).

The friction coefficient �i j has the dimension of viscosity times length scale
and is symmetric (�i j = � j i ). �i j is chosen proportional to the contact area ai j

between the cells. The overall drag force in Equation (15.3) is then given by

F
drag
i = F

drag
med,i +

∑

j∈Ni

F
drag
i j

= −�med Ri

(

1 −
Ai

Atot
i

)

ẋi +
∑

j∈N c
i

(�i Ri + � j R j )
ai j

Atot
i

[ẋi j − êi j (êi j · ẋi j )]

(15.13)

with medium viscosity �med and the cell-specific viscosities �i . Ai =
∑

j∈N c
i

ai j

is the surface in contact with other cells. Atot
i =

∑

j∈Ni
ai j is the total surface of

a cell. The specific form of the friction coefficients is motivated by the Stokes
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relation for the friction of a sphere at velocity ẋ in a medium with viscosity
�: FStokes = 6��Rẋ.

15.2.8 Three-Level Delaunay Object Dynamics

The concrete phenotype �i and its dynamics depend on the multicellular
system under consideration. In general they will be influenced either by the
contact interaction with neighbor cells, which can be described using the con-
tact face ai j introduced above, or by long-range communication using secreted
molecules. The simplest way of communication via molecules is diffusion.
The DOD simulation is completed with an underlying grid to solve reaction–
diffusion equations. In particular, such a grid is used for chemotactic factors
that influence the polarization oi j of a cell. Thus, in total, DOD covers three
scales to simulate biological systems:

1. The level of highest resolution is the representation of the single cell
phenotype �i , which specifies how cells adapt their behavior to the en-
vironment.

2. The second level represents biophysical and contact-dependent interac-
tions of cells based on the weighted Delaunay triangulation.

3. The third level describes long-distance communication via diffusive
substances.

15.3 DOD Simulation of Secondary Lymphoid Tissue

SLTs (secondary lymphoid tissues) are important sites for hosting immune
cells and provide a platform for immune reactions [21]. To understand their
function, the development of the unique organization of SLT has been studied
using DOD simulations [7,8]. The striking difference between SLTs and the
majority of other tissues that have gained attention is their more fluid-like
nature. Most of the volume of lymphoid tissue is occupied by highly motile
and fast cells, which are predominantly lymphocytes along with other im-
mune cells. The motility of these cells is comparable to the migration pattern
seen in the slug stage of Dictyostelium discoideum [15,45]. However, in con-
trast to slime mold, there is still a network of sessile cell populations present
and, moreover, lymphocyte numbers are only kept constant on average by a
equilibrium of influx and efflux of cells into and out of the tissue.

Secondary lymphoid tissues have a specific structure in mammals in which
B and T cells are kept in separate compartments [14,21,38,62]. B cells are
attracted by the chemokine CXCL13 produced by follicular dendritic cells
(FDCs). Together these two cell types form several spherical or ovoid primary
lymphoid follicles (PLFs) in each SLT, which altogether form the B zone.
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T cells occupy the area between the follicles and are supported by stromal cells
called fibroblastic reticular cells (FRCs). The FRCs produce the chemokine
CCL21, which is supposed to keep the T cells in the T zone. While FDCs
and FRCs are sessile populations, B and T cells enter the tissue via blood
vessels that are exclusively located in the T zone. After several hours of travel
through their respective compartments, lymphocytes leave the tissue again
via lymphatic vessels that are also located in the T zone.

15.3.1 Speed Distribution of B and T Cells

The model for active cell migration (Equation (15.5)) requires knowledge of
several parameters for each cell type in SLTs: the force on the ECM Fact

i , the
cell pressure p∗

i , and the friction parameters �. Unfortunately, corresponding
experimental data for the biophysics of lymphocytes are not available. To
reduce the parameter space and for the purpose of illustration, the friction
is assumed to be equal for all cell types and the medium (�med = �i , ∀i).
Although the values for the friction are not known explicitly, the order of
magnitude for the “strength” Fact of a cell is provided by experiments [4,12],
thus confining the physiological range for � to values around 500 nN �m−2s.
This value is consistent with cytoplasmatic viscosities [5,6].

As a reference parameter set for lymphocyte migration, the remaining force
parameters for B and T cells have been determined by a fit to measured
speed distributions [7,35]: Fact

Bcell = 18 ± 3 nN, p∗
Bcell = 0.04 ± 0.01 nN �m−2,

Fact
T cell = 22 ± 3 nN, p∗

T cell = 0.06 ± 0.02 nN �m−2. The full parameter set used
for the simulation of the SLT ontogenesis is given in Tables 15.1, 15.2, 15.3,
and 15.4 in the Appendix (Section 15.5).

15.3.2 Essential Cellular Interactions

The formation of the SLT organization has been discussed in detail previously
[7,8]. Briefly, the simulations start from a background composed of chemokine-
negative stromal cells and few blood vessels. The emerging organization of the
SLT is a result of the following minimal set of assumptions (Figure 15.4):

� There is constant immigration of lymphocytes via blood vessels.
� Lymphocytes leave SLT via lymphatic vessels.
� Stromal cells differentiate into FRCs upon sufficient lymphocyte contact.
� FRCs are replaced by FDCs upon sufficient B cell contact.
� FDCs are replaced by FRCs upon loss of sufficient B cell contact.
� FDCs secrete a diffusing substance that inhibits FDC generation.
� Vessels are dynamic and positively correlated with FRC.
� Vessels are negatively correlated with FDC.
� FRCs secrete CCL21, which attracts B and T cells.
� FDCs secrete CXCL13, which attracts B cells.
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FIGURE 15.4 Essential interactions in SLT ontogenesis. Interactions are
directed from open circles to arrows for positive feedback and with lines
for negative feedback. Receptor–ligand pairs are indicated with closed and
open circles, respectively. Stromal cell differentiation is indicated with dashed
lines. Gray lines show effects of the vessel structure with migration of cells
represented by double arrows. Interactions shown with dotted lines are not
taken into account in the model. They represent possible interactions with
experimental evidence that they are not mandatory. From Y.X. Fu, and
D.D. Chaplin (1999). Development and maturation of secondary lymphoid
tissues. Ann. Rev. Immunol. 17:399–433; G. Muller, U.E. Hopken, and M.
Lipp (2003). The impact of CCR7 and CXCR5 on lymphoid organ develop-
ment and systemic immunity. Immunol. Rev. 195:117–135; and A.V. Tumanov,
S.I. Grivennikov, A.N. Shakhov, S.A. Rybtov, E.P. Koroleva, J. Takeda, S.A.
Nedospasov, and D.V. Kuprash (2003). Dissecting the role of lymphotoxin in
lymphoid organs by conditional targeting. Immunol. Rev. 195:106–116. (With
permission.)
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Thus, the stromal cells together with FRCs and FDCs represent a twice ex-
citable medium that receives positive feedback from T and B cells and self-
inhibition of the highest excited state (i.e., FDCs).

15.3.3 Primary Lymphoid Follicle Formation

Based on the above assumptions, the typical structure of secondary lymphoid
tissues can be generated (Figure 15.5). The resulting structures are stable
while B and T cells constantly flow in through blood vessels and leave the
tissue through lymphatic vessels. The flow equilibrium of the immune cells
is accompanied by equilibrated dynamics of FRCs, FDCs, and vessel genera-
tion. These components are in steady state with respect to their number and
position.

According to the simulation, the SLT forms via a sequence of the follow-
ing steps (Figure 15.5). With the first lymphocytes entering the tissue, FRCs
are induced that produce CCL21 and attract both T and B lymphocytes.
The presence of FRCs drives the development of vessels, leading to a homo-
geneous distribution of blood and lymphatic vessels inside the T zone. The
presence of B cells is sufficient to replace some FRCs by FDCs. FDCs secrete
CXCL13, attracting further B cells and leading to the formation of an ag-
gregate. The attraction of B cells by CXCL13 and the induction of FDCs by
B cell contact form a positive feedback loop. The growth of the developing
PLF is limited by the negative feedback in which FDCs suppress the forma-
tion of new FDCs. Due to the anti-correlation of vessels and FDCs, B cells
have to migrate through the T zone to reach the PLF. B cells can only leave
the follicle and the SLT by migration to the surface of the follicle where they
come into close contact with the lymphatic vessels in the T zone. This mi-
gration pattern is facilitated by a rather flat CXCL13 distribution in follicles.
In addition, the B cells in a follicle extend beyond the FDC network such
that a proportion of B cells migrates at the border of the follicle where the
exit vessels are located. This implies that the PLF can be subdivided into the
FDC area (which is smaller than the total B cell area) and a follicular border
that is devoid of FDCs. Therefore vessels can develop in the follicular border,
permitting the exit of B cells. B cells from the center of the follicle reach the
periphery by random motion and can also leave the PLF.

15.3.4 Chemokinesis versus Chemotaxis

In the simulation, CCL21 and CXCL13 are described as chemotactic fac-
tors. However, in particular for CCL21, experimental data indicate a predom-
inantly chemokinetic effect [55,66]. The simulation framework provides a hint
as to why chemotactic effects cannot be seen easily by two-photon microscopy
[36,65]. The distribution of each chemokine is rather flat within each com-
partment and chemotactic gradients are virtually absent (Figure 15.6). Thus,
cells will not respond chemotactically in these zones and perform a random
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100 micron

00:00

100 micron

150:00

FIGURE 15.5 (See color insert following Page 398.) PLF formation. Time
is shown as hh:mm. The simulation starts with a stromal background, few
blood vessels, and some lymphocytes (00:00). The induction of CCL21 pro-
duction by FRCs is correlated with the presence of vessels in the T zone
(150:00). B cells induce and colocalize with FDCs to form a PLF adjacent to
the T zone. The presence of FDCs largely suppresses vessel formation in the
PLF (white: B cells, dark blue: T cells, green: FRC, yellow: FDC, red: blood
vessels, dark gray: lymphatic vessels).



432 Cell Mechanics

CCL21

(a)

CXCL 13

(c)

CXCL 13 gradient

(d)

(e) (f )

l/L = 1
l/L = 0.5
l/L = 0.3
l/L = 0.1
l/L = 0.05
l/L = 0.03
l/L = 0.01

321
0

0.2

C
on

ce
nt

ra
ti

on
 c

( f
/κ

)

0.4

0.6

0.8

1

Radial Coordinate ρ/L

l/L = 1
l/L = 0.5
l/L = 0.3
l/L = 0.1
l/L = 0.05
l/L = 0.03
l/L = 0.01

3210
–0.02

0S
en

si
ti

vi
ty

 s
(f

/κ
)

0.02

0.04

Radial Coordinate ρ/L

(b)

CCL21 gradient

FIGURE 15.6 (a) through (d): chemokine distributions of the follicle. Val-
ues increase from gray to white. For both chemokines the gradients are sig-
nificant at the periphery while the central regions show a rather flat profile.
(e) and (f): chemokine profiles (concentration c) and sensitivity for various
chemokine ranges l/L (Equation (15.15)) in response to a spherical homo-
geneous source of radius L. The concentration c is plotted against the ra-
dial coordinate 	 scaled by the radius of the source L. Cells respond to the
chemokine gradient when the sensitivity s = 2R |dc/d	|−
c > 0 with 
 = 0.02
following the observation that the cell can respond to a 2% difference in the
chemokine concentration across its length 2R [47]. The sensitivities are plot-
ted for 2R = L/25, which corresponds to a homogeneous chemokine source of
2L = 300 �m diameter and a cell diameter of 2R = 6 �m [7].
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motion. Only at the boundary do cells show a preference for their direction of
motion, in agreement with previous experimental work [63]. This effect also
becomes obvious when looking for the analytical solution of a homogeneous
spherical source. Solving the stationary diffusion equation with an unspecific
decay of the chemokine � and a homogeneous spherical source f of size L

(spherical coordinates with radius 	)

0 = D

(

∂
2
c

∂	2
+ 2	

∂c

∂	

)

− �c − f �(L − 	) (15.14)

yields the solution

c=
f

�	

{

	�(L−	) + �(	−L)

[

L cosh
	−L

l
+ l sinh

	 − L

l

]

−(L+l)e− L
l sinh

	

l

}

(15.15)

with l =
√

D/� the typical length scale of the system. Even for relatively long-
ranged chemokines (e.g., l = 0.3), the central part (	 < 0.5) does not permit
chemotaxis responses of cells that occur only at the periphery (0.5 < 	 < 1)
(Figure 15.6).

15.4 Summary

The Delaunay object dynamics (DOD) method centers the description of mul-
ticellular systems around the geometry and physics of cell–cell contacts [7,34].
The architecture of the simulation tool is agent based and relies on a weighted
Delaunay triangulation to deal with a continuous representation of cell posi-
tions and sizes. The Delaunay triangulation provides information about the
next neighbors of a cell. The dual Voronoi tessellation can serve to extract
information about geometry parameters such as cell volume and cell contact
areas. In line with other models [15,16], DOD concentrates on the impact of a
physical description of cells onto pattern formation of multicellular systems.
Similar to molecular dynamics, DOD relies on equations describing elemen-
tary cellular interactions that are thought to be universal for large classes of
tissues. Thus the different terms underlying the dynamics (Equation (15.3))
can be adapted and refined as necessary without the need to change the re-
maining platform architecture. This permits a straightforward extension to
other specific biological systems with specific cell behavior and properties. In
the multiscale agent-based approach of DOD, only the internal dynamics of
cells need to be adapted while the equations describing contact interaction
can remain unchanged. Improved experimental and/or theoretical data on
the mechanical cell interactions can be a easily included in the model without
touching the specific properties of an already-implemented specific biological
system like SLT. Thus, the DOD framework combines the discrete and specific



434 Cell Mechanics

nature of cell phenotypes with their universal nature as physical objects and
allows for an incremental improvement in biomechanical and biological fea-
tures. In particular, this makes it possible to disentangle the effects of specific
pathways and biophysical parameters on the system’s behavior.

The pattern formation and homeostasis of SLT were presented to exemplify
the DOD approach. The set of known local (molecular and cellular) interac-
tions leads to the formation of the final structure of the SLT with the two
compartments and is sufficient to explain the emergence of the global tissue
pattern in all stages of its development. A hallmark of SLT organization is
that, in contrast to classical pattern formation, these patterns are the result
of a flow equilibrium of cells. Lymphocytes are exchanged on a daily basis and
still self-organize into the observed stable pattern.

This example clearly demonstrates that the DOD method has the poten-
tial to uncover subtle effects of the cell biophysics on tissue organization.
DOD is a quantitative method in the sense that each parameter of the model
corresponds to a measurable quantity. This, together with the modular archi-
tecture, improves the predictive power of this method. The predictive power
is a fundamental requirement for using computational approaches to identify
relevant mechanisms in complex biological systems and for the design and
guidance of novel experiments that verify these predictions.

15.5 Appendix: Simulation Parameters

The parameters used in the simulation of the SLT are listed in the tables.
The references support the used value. If no reference or comment is given,
a systemic model parameter was chosen to achieve sufficient accuracy in the
simulation. SLT-specific parameters are discussed in detail in [7,8].

TABLE 15.1 Biophysical Parameters for Lymphocytes.

Parameter Value Remarks/Ref.

B/T cell diameter 6 �m [11,23,56,59]

Ei 1 kPa [5,6,13,19]

�i 0.4 [24,32]

�i j 0–0.3 nN �m−1 [37,60]

Fact
Bcell 18 nN [7,35]

Fact
T cell 22 nN [7,35]

p∗
Bcell 0.04 nN �m−2 [7,35]

p∗
T cell 0.06 nN �m−2 [7,35]

Tp 120–180 s [35,63]

�i , �med 500 nN �m−1 s [5–7,28,35,63]
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TABLE 15.2 Threshold-Model for FDC Induction by B Cell
Contact

Parameter Value Remarks/Ref.

LT
1�2 threshold 1 Arbitrary units
B cell LT
1�2 expression 0.025 �m−2 Unknown
FRC/FDC differentiation time 3 h [31,33,59]

TABLE 15.3 Reaction of Chemokines CXCL13 and CCL21 with Their
Receptors CXCR5 and CCR7

Parameter Value Remarks/Ref.

diffusion coefficient D 10–100 �m2 s−1 [49]
receptor internalization rate ki 5 · 10−5 . . . 3 · 10−2 s−1 [40]
receptor recycling rate kr 1 · 10−4 . . . 7 · 10−3 s−1 [40]
dissociation constant Kd 0.2 . . . 5 nM [30,48,54,64,69]
association rate kon 2.5 · 105 . . . 108 M−1s−1 [48]
dissociation rate koff 10−4 . . . 1 s−1 (from Kd and kon)

number of receptors 104–105 [42,64]
per lymphocyte Rtot

chemokine production rate 2.5 · 101 . . . 104 s−1 [25,61]
per stromal cell Q

TABLE 15.4 System Parameters and Numerical Tolerances

Parameter Value Remarks/Ref.

Size of diffusion grid 1200 �m
Grid resolution 22 �m
Max. cell displacement �x 0.5 �m
Min. time resolution �t 10 s
Lymphocyte influx 1 s−1 [50,70]
B:T cell ratio 0.4:0.6 [50,70]
Size of simulation area 600 �m
Number of FRC 3500

References

[1] E. Albrecht and H.R. Petty (1998). Cellular memory: neutrophil orien-
tation reverses during temporally decreasing chemoattractant concen-
trations. Proc. Natl. Acad. Sci. USA 95(9):5039–5044.

[2] F. Aurenhammer (1987). Power diagram: properties, algorithms and
applications. SIAM J. 16(1):78–96.



436 Cell Mechanics

[3] M. Bajenoff, J.G. Egen, L.Y. Koo, J.P. Laugier, F. Brau, N. Glaichen-
haus, and R.N. Germain (2006). Stromal cell networks regulate lym-
phocyte entry, migration, and territoriality in lymph nodes. Immunity
25(6):989–1001.

[4] N.Q. Balaban, U.S. Schwarz, D. Riveline, P. Goichberg, G. Tzur, I.
Sabanay, D. Mahalu, S. Safran, A. Bershadsky, L. Addadi, and B. Geiger
(2001). Force and focal adhesion assembly: a close relationship studied
using elastic micropatterned substrates. Nature Cell Biol. 3(5):466–472.

[5] A.R. Bausch, W. Moller, and E. Sackmann (1999). Measurement of local
viscoelasticity and forces in living cells by magnetic tweezers. Biophys.
J. 76(1):573–579.

[6] A.R. Bausch, F. Ziemann, A.A. Boulbitch, K. Jacobson, and E. Sack-
mann (1998). Local measurements of viscoelastic parameters of adherent
cell surfaces by magnetic bead microrheometry. Biophys. J. 75(4):2038–
2049.

[7] T. Beyer and M. Meyer-Hermann (2007). Modeling emergent tissue or-
ganization involving high-speed migrating cells in a flow equilibrium.
Phys. Rev. E 76(2):021929.

[8] T. Beyer and M. Meyer-Hermann (2008). Mechanisms of organogenesis
of primary lymphoid follicles. Int. Immunol. 20(4):615–623.

[9] T. Beyer, G. Schaller, A. Deutsch, and M. Meyer-Hermann (2005). Par-
allel dynamic and kinetic regular triangulation in three dimensions.
Comput. Phys. Commun. 172(2):86–108.

[10] P. Bongrand (1995). Adhesion of cells. In Handbook of Biological Physics,
Ed. R. Lipowsky and E. Sackmann, Vol. I, Amsterdam, Elsevier Science,
pp. 755–803.

[11] M. Bornens, M. Paintrand, and C. Celati (1989). The cortical microfil-
ament system of lymphoblasts displays a periodic oscillatory activity in
the absence of microtubules: implications for cell polarity. J. Cell Biol.
109(3):1071–1083.

[12] K. Burton, J.H. Park, and D.L. Taylor (1999). Keratocytes generate
traction forces in two phases. Mol. Biol. Cell 10(11):3745–3769.

[13] Y.S. Chu, S. Dufour, J.P. Thiery, E. Perez, and F. Pincet (2005).
Johnson-Kendall-Roberts theory applied to living cells. Phys. Rev. Lett.
94(2):028102.

[14] J.G. Cyster (2005). Chemokines, sphingosine-1-phosphate, and cell mi-
gration in secondary lymphoid organs. Annu. Rev. Immunol. 23:127–
159.



Delaunay Object Dynamics for Tissues Involving Highly Motile Cells 437

[15] J.C. Dallon and H.G. Othmer (2004). How cellular movement deter-
mines the collective force generated by the Dictyostelium discoideum
slug. J. Theor. Biol. 231(2):203–222.

[16] D. Drasdo (2003). On selected individual-based approaches to the dy-
namics in multicellular systems. In Polymer and Cell Dynamics: Multi-
scale Modeling and Numerical Simulations, Eds. W. Alt, M. Chaplain,
M. Griebel, J. Lenz, Basel, Birkhäuser, pp. 169–204.
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Dirichlet boundary conditions, 58
discrete net, 53
dispersion relation, 46, 47, 50
elastic Brownian ratchets, 380
elastic chemical potential, 55
elementary cell, 54
experimental observations, 31–37

actin polymerization in vitro,
32–33

biochemistry of actin polymerization
and organization of leading edges
of advancing cells, 32–35

biomimetic experiments, 35–37

proteins regulating actin
polymerization in vivo, 34–35

symmetry breaking, 36–37
F-actin, 32
filament lengths, 56
fish keratocytes, 30
formins, 34
G-actin, 32, 33
gel thickness steady state, 57
grafting speed, 39
grafting velocity, 39
homogenization assumption, 54
ideal ratchet velocity, 38
kinetic relation, 46
Lagrangian curvilinear coordinates, 53
macroscopic concept, 37
molecular displacement, 47
monomer binding proteins, 34
multistability, 43–44
Newtonian fluid, 42
perspectives, 59–60
phase-field formulation, 50
Poisson ratio, 48
push–pull mechanism, 41
relaxation oscillation, 39
symmetry breaking of circular gel, 51
tethered ratchets, 38, 39
theoretical approaches, 37–59

Brownian ratchet models, 38–41
homogenization models, 51–59
macroscopic models, 41–59
nonlinear study on symmetry

breaking in actin gels, 47–51
phenomenological model of symmetry

breaking, 42–44
role of tensile stress during symmetry

breaking in actin gels, 44–47
thermal excitation energy, 49
treadmilling speed, 60
Wasp/Scar protein, 34
Young’s modulus, 48

Active polymerization forces, 106, 107
Active tip polymerization, 113

443
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Actomyosin contractility, 161
ADF/cofilin, 34
Adhesion(s), 134. See also cytoplasm and

adhesion dynamics, coupling of;
mechanosensitive cellular
elements, adhesion sites as

complex, deformation of, 225
lack of, 188
point formation, 171
site, mechanochemical response of, 227

Adhesive rolling of leukocytes, 185
Advection time scales, 202
AECs. See alveolar epithelial cells
AFM. See atomic force microscopy
Age-structured population models, 138
Alveolar epithelial cells (AECs), 224, 236
Alveolar macrophages (AMs), 224, 234
AMs. See alveolar macrophages
Angiogenic switch, 383
Aisotropy coefficient, 307
Arginine–glycine–aspartic sequence, 8
Atomic force microscopy (AFM), 6, 14, 225
ATP-actin, 33
Avascular growth, 383

B

Bell’s law, 225
BEM. See boundary element method
Bernoulli random variable, 19
Binding between sphere and plane in shear

flow, 187
Biomimetic motility, modeling of, 39
Biphasic evolution of cell speed, 171
Boltzmann constant, 393
Boltzmann distribution, 194
Boltzmann factor, 225
Boundary cytosol pressure, 105
Boundary element method (BEM), 246
Brownian ratchet models, 38–41, 106

general concept, 38–39
quantitative model for velocity

oscillations in actin-based
motility, 39–41

Bulk fluid movement, 96

C

Cadherins, 70, 320, 403, 408
Calcium, single-cell imaging of in response

to mechanical stimulation, 265–279
Ca2+ imaging and mechanobiology in

live cells with optical laser
tweezers, 273–275

capacitative calcium entry, 267
Ca2+ signaling, 266–268

Ca2+ entry mechanisms, 267
Ca2+ release from internal stores,

267–268
fundamental mechanism of Ca2+

signaling, 266
cyan FP, 269
fibronectin, 273
fluorescence resonance energy transfer,

268
fluorescent proteins, 266
FRET-based Ca2+ biosensor, 269
future directions, 275
genetically encoded FRET-based Ca2+

biosensor, 268–269
G protein coupled receptors, 267
human umbilical vein endothelial cells,

273
IP3 receptors, 267
mechanical stiffness, 269–273

Ca2+ imaging utilizing FRET-based
Ca2+ biosensor in response to
mechanical stiffness, 270–271

cell culture protocol on substrate
stiffness gel, 270

regulation of Ca2+ signaling by
substrate rigidity of extracellular
environment, 272–273

nicotinic acetylcholine, 267
NMDA receptors, 267
proteins, fluorescent, 266
receptor-operated channels, 266
Rho-associated kinase, 273
ryanodine receptors, 267
store-operated Ca2+ entry, 267
store-operated channels, 266
stromal interaction molecules, 267
transient receptor protein, 267
vanilloid TRPV, 267
voltage-operated Ca2+ channels, 267
voltage-operated channels, 266
Xenopus calmodulin, 269

CAMs. See cell adhesion molecules
cancer, benign tumor to invasive, 379–416

angiogenesis, 380, 388
angiogenic switch, 383, 390
avascular growth, 383
blood vessels, 384
Boltzmann constant, 393
cadherin, 403, 408
cell–cell adhesion dynamics, 397
cell–cell adhesion forces, 382
cell–cell interaction, 393
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cell cycle, 384
cell division, 386
cell growth, 385
cell lysis, 386
cell necrosis, 386
cellular automaton model, 384
E-cadherin, 396
endothelial cell, 388
growth kinetics, 382
growth-limiting factor, 383
Hertz model, 393
hypoxia, 38, 390
hypoxia-inducible factor 1, 380
later stages of cancer, invasion and

intravasation, 392–409
biophysical model of single cell, 393
cell–cell detachment and invasion of

local tissue, 394–398
cell intravasation, 402–406
cell movement, 394
coupling intracellular and

extracellular scales, 394
discussion, 408–409
equations of motion, 404–405
hallmark of metastasis, 402–405
invasion of local tissue, 399–402
protein dynamics, 398–399

malfunctions in proteasome system, 401
metastases, 380
necrosis, 380
NIH3T3 tumors, 380
parameters for tumor growth, 385
platelet-derived growth factors, 380
preexisting network, 388
remodeling, 388
single-cell-based models, 381
transendothelial migration, 402
tumor growth and angiogenesis,

382–392
cellular automaton model, 384–386
discussion, 390–392
growth factors, 387
model, 384–389
oxygen and nutrients, 387
results, 389–390
vascularization, angiogenesis, and

remodeling, 387–389
vascular network, 389
VE-cadherin, 407
VEGF, 380, 383

Cancer, cell migration on 2-D deformable
substrates, 243–263

actin–myosin interactions, 246
actin polymerization, 258

adjoint method for cell traction, 246–249
bead detection, 253
boundary element method, 246
Boussinesq problem, 245
cell seeding, 252
determination of displacements, 253
determination of traction stresses,

253–258
discussion, 258–260
experimental methods, 250–252
force magnitude penalization, 245
Fourier transform traction cytometry,

246
Gateaux derivative, 247
gel functionalization, 252
gel rigidity, 246
graph technique theory, 253
integrin–cytoskeleton links, 259
keratocyte locomotion, 244
lamellipodium, 258
L-curve, 249
Malvern rheometer, 251
numerical set-up, 250
Particle Tracker, 253
Poisson coefficient, 245
polyacrylamide substrates, 244, 254
traction forces, 244
Traction Recovery with Point Forces,

246
traction stresses, 256
undisturbed positions of fluorescent

beads, 254
Young’s modulus, 245, 253

Cancer, cell motility and tumor suppressor
genes, 67–83

actin-related protein, 71
cadherins, 70
confocal laser-scanning microscopy, 75
E-cadherin, 70
epithelial–mesenchymal transition, 70
extracellular matrix, 70
extravasation, 75
fibronectin, 73
genome gatekeepers, 68
immunoglobulin superfamily, 70
ING gene involvement in cell migration,

79–80
ING1 knockout mouse model, 78
integrins, 69, 70
in vitro methods for cell migration

studies, 72–75
2-D migration assays, 72–74
3-D migration assays, 74–75

leukocytes, 72
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migration assay with modified Boyden
chamber, 75

molecular mechanisms involved in cell
migration and invasion, 69–72

adhesion proteins, 70
cytoskeleton, 71–72

new family of tumor suppressor genes,
75–79

oncogenes, 67
Rho kinase, 70
RNA virus, 68
tumorigenesis, 68–69
tumor suppressor genes, 68
Wiskott-Aldrich syndrome protein, 71
Xeroderma pigmentosum genes, 68

Cancer, disease of genome, 67–68
Cancer cell metastases, adhesion

mechanisms, 185
Cancer invasion, mathematical modeling

of cell adhesion, 319–349
adhesion-based movement, 329
adhesion forms, 320
attractive interactions, 331
cadherins, 320
cancer growth model, 327
carrying capacity, 338
cell adhesion in cancer invasion,

323–324
cell adhesion during pattern formation

and development, 321–323
cell adhesion molecules, 320
cell adhesivity, 325
cell density differences, 334, 335
chemotactic sensitivity, 329
cohesion through adhesion, 330–332
contact guidance, 321
continuous cell sorting model, test of,

336
continuum-scale models, 327
cross-adhesion, 329
derivation of nonlocal model for cell

adhesion, 328–332
differential adhesion hypothesis, 321
discussion and outstanding questions,

340–341
durotaxis, 321
embryonic development, 320
fast Fourier transform techniques, 343
fibronectin, 323
finite volume method, 341
form of invasive front, 324
Glazier-Graner-Hogeweg model, 325
Hamiltonian function, 326

haptotaxis, 321
homophilic interactions, 320
Indian chains, 324
integrins, 320
intracellular structure, 326
lattice-free models, 326
local force, 329
mathematical modeling of cell adhesion,

324–328
continuous models incorporating

cellular adhesion, 327–328
discrete models for cell adhesion,

325–327
matrix degrading enzyme, 336
matrix–vector product, 342
method of lines, 341
modeling adhesion during cancer

invasion, 336–339
modeling cell–cell sorting, 333–336
morphogenetic patterning of embryo,

323
numerical method, 341–344
ordinary differential equations, 341
PDE model, 327
Potts model, 325, 326
self-aggregation, 327, 328
somitogenesis, 323, 340
taxis–diffusion–reaction frameworks, 340
total force, 329
transmembrane protein–protein

complexes, 320
transmembrane receptor binding, 325

Capping proteins, 34
Cauchy stress tensor, 53
CCD camera, 9
Cell adhesion molecules (CAMs), 320
Cell attachment strength, 171
Cell–cell adhesion, 320
Cell–cell slippage, 354, 365, 368
Cell–cell sorting, 333–336
Cell deformations, 162
Cell fragment of constant height with

involved proteins, 95
Cell–matrix adhesion, 320
Cell mechanosensitivity. See

mechanosensitive cellular
elements, adhesion sites as

Cell motility, cytoskeletal and adhesion
dynamics for modeling, 159–179

actin fibers in fibroblast cell, 163
actin turnover, 159
actomyosin contractility, 161
adhesion point formation, 171
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application of computational framework,
165–175

cell migration on homogeneous
substrate, 165–171

cell motility on network of adhesive
patches, 171–175

biphasic evolution of cell speed, 171
cell attachment strength, 171
cell deformations, 162
cell trajectories, 170
computational framework, 161–165

adhesion, 163–164
cell motility, 161–162
cytoskeleton, 164–165
extracellular environment, 165

computational model, 166, 175
extracellular matrix, occurrence of, 160
fast migrating phase, 169
focal complex, 164
membrane curvature, 166
membrane protrusion, 166
model, cell deformations, 165
polymerization-induced protrusion, 166
simulation parameters, 176–177
subcellular models, 160
temporal simulation parameters, 177
translocation, 166

Cell polarization and locomotion. See

cytoplasm and adhesion
dynamics, coupling of

Cells, highly motile. See Delaunay object
dynamics

Cell shape evolution, 359
Cell–substrate interaction, 134
Cell trajectories, 170
CFP. See cyan FP
Chemokine distribution, Delaunay object

dynamics, 430, 432
Chemotactic sensitivity, 329
Clamp motor model, 106
Clockwise filaments, 135
Computational framework, cytoskeletal

and adhesion dynamics for
modeling cell motility, 159–179

application of computational framework,
165–175

cell migration on homogeneous
substrate, 165–171

cell motility on network of adhesive
patches, 171–175

computational framework, 161–165
adhesion, 163–164
cell motility, 161–162

cytoskeleton, 164–165
extracellular environment, 165

simulation parameters, 176–177
Computational model, 166, 175
Constriction ring, 423
Consummated bond density, 191, 205
Contact guidance, 286, 321
Contour levels of fiber density, 307
Contractile actin–myosin network, 92
Contractile stress, 104
Counterclockwise filaments, 135
Cyan FP (CFP), 269
Cytoplasm

mechanical behavior of, 134
self-organizational power of, 95

Cytoplasm and adhesion dynamics,
coupling of, 89–131

active polymerization forces, 106, 107
active tip polymerization, 113
biology of cell polarization and

migration, 90–92
asymmetry of actin polymerization

and substrate adhesion, 90
flow of actin filaments and myosin

gradient, 90–92
boundary cytosol pressure, 105
Brownian ratchet model, 106
bulk fluid movement, 96
cell fragment of constant height with

involved proteins, 95
clamp motor model, 106
contractile actin–myosin network, 92
contractile stress, 104
cytoplasm, self-organizational power of,

95
Darcy’s law, 108
Dirichlet conditions, 101
discussion and outlook, 124–126
effective stress, 104
F-actin dynamics, 93
F-actin network responsiveness, 114
F-actin polymerization speed, 107
focal adhesion complexes, 86
force vector, 100
free polymerization pressure, 106
membrane sticking, 98
membrane tension, 108
model variables and functions, 117
myosin kinetics, 95
Navier slip, 99
Neumann condition, 105, 107
nucleation rate, 97
onset of polarization, 109
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parameters for 1-D simulations, 118–119
polarized state, 86
pressure balance, 105
previous models of cytoplasm and

adhesion dynamics, 92–94
protrusion–reaction cycles, 94
pseudo-steady-state assumptions, 92
reactive flow model, 93
rear release of adhesion sites, 113
results of model simulations, 108–124

induced onset of cell polarization and
migration in 1-D model, 111–121

migration speed in simplified 1-D
model, 121–124

spontaneous cell polarization in 2-D
model, 108–111

retrograde F-actin flow, 109
solvent pressure, 104
substrate force distribution, 120
substratum adhesiveness, 114
swelling pressure, 104
tip polymerization pressure, 107
two-phase flow model for cytoplasm

coupled to myosin-II and integrin
protein reaction, diffusion, and
transport, 94–108

boundary pressure functions at cell
edge, 106–107

force balance equations, 102–108
global force balance at adhesive

substratum, 108
mass balance and flow equations,

96–101
mass conservation for cytoskeleton

and cytosol phases, 96–97
mass conserving flow of dorsal plasma

membrane, 98–99
mass flux conditions at free boundary,

101
reaction–transport–diffusion equations

for membrane integrins, 99–101
reaction–transport–diffusion equations

for myosin oligomers, 97–98
stress and pressure balance conditions

at free boundary, 105–106
two-phase flow equations for

cytoskeleton and cytosol, 102–105
unpolarized state, 86
viscoelastic units, 92
viscous polar gel, 93

Cytoskeleton dynamics and cell migration,
mathematical modeling, 133–157.
See also computational
framework, cytoskeletal and

adhesion dynamics for modeling
cell motility; mathematical
modeling, cytoskeleton dynamics
and cell migration

actin crosslinking proteins, 134
actin meshwork, stabilization, 133
actin network, microscopic organization

of, 134
adhesions, 134
age-structured population models, 138
cell–substrate interaction, 134
clockwise filaments, 135
counterclockwise filaments, 135
cytoplasm, mechanical behavior

of, 134
Euler-Lagrange equations, 150, 151
filamin, 133
functional framework of model, 139
Hooke constants, 143
Lagrange multiplier, 153
lamellipodia, 133, 134
limit of instantaneous crosslink and

adhesion turnover, 144–151
linearized beam theory, 143
modeling, 135–144
nondimensionalization, 145
pathogens, 133
protrusion, 133
pseudo-2-D actin network, 134
pushed lamellipodium, 152
quasi-stationarity assumption, 142
rotationally symmetric solutions,

152–155
scaled energy contributions, 145
singular perturbation theory, 147
time-dependent simulation, 151
treadmilling of filaments, 143
twisting energy of crosslinks, 143

D

DAH. See differential adhesion hypothesis
Darcy’s law, 108
Delaunay object dynamics (DOD), 284,

417–441
active force of migrating cells, 423–424
active forces, 422
adhesive and elastic cell–cell interaction,

424–425
biophysical parameters for lymphocytes,

434
cell elastic moduli, 424
cell geometry, 419–421
cell neighborhood topology, 418
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cell polarization, 424
cell volume, 421
chemokine distribution, 430, 432
constriction ring, 423
cytoskeletal changes, 422
drag force, 427
equations of motion, 421–423
fibroblastic reticular cells, 428
follicular dendritic cells, 428
friction forces, 426–427
Johnson-Kendall-Roberts forces, 421,

424
linear compression model, 426
lymphocyte migration, 42, 424
many-cell interactions, 425–426
model parameters, 422
passive forces, 422
primary lymphoid follicles, 428, 431
reaction of chemokines CXCL13 and

CCL21 with their receptors
CXCR5 and CCR7, 435

secondary lymphoid tissues, 418, 427
simulation parameters, 434–435
simulation of secondary lymphoid tissue,

427–433
chemokinesis versus chemotaxis,

430–433
essential cellular interactions, 428–430
primary lymphoid follicle formation,

430
speed distribution of B and T cells,

428
SLT ontogenesis, interactions in, 429
SLT pattern formation, 434
sphere overlap, 421
summary, 433–434
system parameters and numerical

tolerances, 435
three-level, 427
threshold-model for FDC induction by

B cell, 435
Voronoi tessellation, 419, 420, 433
weighted Delaunay triangulation,

418–419
Dictyostelium discoideum, 30, 31, 326
Differential adhesion hypothesis (DAH),

321
Diffusive approximation, 287, 292
Dirichlet boundary conditions, 58
Discrete net, 53
DOD. See Delaunay object dynamics
Drosophila germband extension, 354
Durotaxis, 321
Dynamic adhesion site model, 223

E

E-cadherin, 70
ECM. See extracellular matrix
Effective stress, 104
Embryo development, bridging cell and

tissue behavior in, 351–377
cell displacement field, 355
cell shapes and intercalation, 357–365

applications, 364–365
cell shape evolution, 359–363
handling cell division, 364
tensorial representation of cell

intercalation, 364
dynamics of neighbor exchanges, 353
generic deformation, 371
gross abnormalities of tissue

morphogenesis, 353
intercalation and slippage, 365–374

cell–cell slippage, 365–367
intercalation and tissue

microstructure, 372–374
tissue intercalation along orientation

of cell elongation, 369–371
tissue intercalation not along

orientation of cell elongation,
371–372

tissue strain without intercalation,
369

total slippage, 367–369
typical situations, 369–372

membrane movement, 360
non-affine cell displacements, 374
non-affine shape deformations, 361
purely intercalating tissue, 373
quantifying embryo morphogenesis,

352–354
cell intercalation and rearrangements,

353–354
morphogenesis of animal embryo,

352–353
shape measurements, 360
shear situations, 372
shoelace methods, 357
software tools, 353
strain measurements, 354–357

applications of velocity gradient
strain tensor in biology, 357

mesoscopic scale, 354–355
stretch and rotation rates, 357
tissue strain rates, 355–357
velocity gradient, 355–356

strain rate tensor, 364
stretch ratio, 363
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symmetric tensor, 357
tissue velocity gradient, 361
total slippage for nearly isotropic cell

shapes, 375
trajectories of cell centroids, 353
zebrafish trunk, tracking for cell cohort

in, 356
EMT. See epithelial–mesenchymal

transition
Epithelial–mesenchymal transition (EMT),

70, 399
Equations of motion, Delaunay object

dynamics, 421
Escherichia coli, 30
Euler-Lagrange equations, 150, 151
Evolution equation, 197
Extracellular matrix (ECM), 70, 160,

423
attachment of cells to, 70, 320
cell migration, 287, 321
constriction ring, 423
degradation, 243
Delaunay object dynamics, 423
fibers, symmetry, 288
friction forces, 426
occurrence of, 160
tumor progression and, 222

Extracellular matrix, mathematical
framework to model migration of
cell population in, 285–318

anisotropy coefficient, 307
biological background, 285–287
contact guidance, 286
contour levels of fiber density, 307
diffusive approximation, 287, 292
ECM, cell migration types, 287
ECM fibers, symmetry, 288
equilibrium solution, 304
haptotaxis, 286
hydrodynamical limits, 301
individual migration, 286
mathematical descriptions of system,

287–292
continuum description, 288–292
statistical description, 287–288

matrix degrading enzymes, 287
mean cell velocity, 289
mesoscopic description, 288
mesoscopic to macroscopic modeling,

301–305
formal limit of diffusive

approximation, 303–305
introduction to methods, 301–303

mesoscopic modeling, 292–301

contact guidance, 293–296
influence of cell–cell interactions,

296–297
influence of environmental factors,

298–301
random migration, 292–293

numerical illustrations, 306–315
illustration of taxis effects, 308–315
spreading in heterogeneous and

anisotropic ECM, 306–308
orientation tensor, 289

quorum sensing, 298
run and tumble motion, 292
sensitivity, 305
taxis, 298
tissue formation, 285
variance–covariance matrix
angle distribution, 289
velocity distribution, 289
velocity-jump processes, 288

Extravasation, 75

F

FA. See focal adhesion
F-actin

dynamics, 93
network responsiveness, 114
polymerization speed, 107

Fast Fourier transform (FFT) techniques,
343

Fast migrating phase, 169
FDCs. See follicular dendritic cells
FFT techniques. See fast Fourier

transform techniques
Fibroblastic reticular cells (FRCs), 428
Fibronectin (FN), 73, 273, 323
Filamin, 133
Finite volume method (FVM), 341
Fluctuation–dissipation theorem, 229
Fluorescence resonance energy transfer

(FRET), 268
Fluorescent proteins (FPs), 266
FN. See fibronectin
Focal adhesion (FA), 90, 100, 224
Focal adhesion complexes, 86
Follicular dendritic cells (FDCs), 428
Force vector, 100
Formins, 34
Fourier transform traction cytometry

(FTTC), 246
FPs. See fluorescent proteins
FRCs. See fibroblastic reticular cells
Free polymerization pressure, 106
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FRET. See fluorescence resonance energy
transfer

FTTC. See Fourier transform traction
cytometry

Functional framework of model, 139
FVM. See finite volume method

G

Gateaux derivative, 247
Genome gatekeepers, 68
Glazier-Graner-Hogeweg model, 325
GPCRs. See G protein coupled receptors
G protein coupled receptors (GPCRs), 267
GTPases, 91

H

Hamiltonian function, 326
Haptotaxis, 286, 321
HASM. See human airway smooth muscle
HAT. See histone acetyltransferase
HDAC. See histone deacetylase
Hertz model, 393
HIF-1. See hypoxia-inducible factor 1
Highly motile cells. See Delaunay object

dynamics
Histone acetyltransferase (HAT), 76
Histone deacetylase (HDAC), 76
Homogenization models, 51–59

coupling between growth and mechanics,
55–56

homogeneous gel growth and linear
stability analysis, 56–59

Hooke constants, 143
Human airway smooth muscle (HASM),

14, 260
Human umbilical vein endothelial cells

(HUVECs), 273
HUVECs. See human umbilical vein

endothelial cells
Hydrodynamical limits, 301
Hydrodynamics, 355
Hypoxia, cancer tissues, 383, 390
Hypoxia-inducible factor 1 (HIF-1), 380

I

IA. See initial adhesion
Immunoglobulin superfamily, 70
Indian chains, 324
ING gene family, 79
ING1 knockout mouse model, 78
ING protein structures, 78

Initial adhesion (IA), 224
Integrability condition, 108
Integrin(s), 69, 70, 320

activation, 227
–cytoskeleton links, 259

Intracellular structure, 326
IP3 receptors (IP3Rs), 267
IP3Rs. See IP3 receptors

J

JKR model. See Johnson-Kendall-Roberts
model

Johnson-Kendall-Roberts (JKR) model,
421, 424, 425

K

Keratinocyte
fragments, unpolarized, 112
locomotion, 244

L

Lagrange multiplier, 153
Lamellipodia, 133, 134, 258
Laplace transform, 7
Leukocytes, 72, 185
Linearized beam theory, 143
Listeria monocytogenes, 31, 34, 51
Lymphocytes, Delaunay object dynamics,

423, 424, 434

M

Macrophage adhesion, 236
Macroscopic modeling (ECM), 301–305

formal limit of diffusive approximation,
303–305

introduction to methods, 301–303
Magnetic twisting cytometry (MTC), 13
Malvern rheometer, 251
Mathematical modeling, cancer invasion,

319–349
adhesion-based movement, 329
adhesion forms, 320
attractive interactions, 331
cadherins, 320
cancer growth model, 327
carrying capacity, 338
cell adhesion in cancer invasion, 323–324
cell adhesion during pattern formation

and development, 321–323
cell adhesion molecules, 320
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cell adhesivity, 325
cell density differences, 334, 335
chemotactic sensitivity, 329
cohesion through adhesion, 330–332
contact guidance, 321
continuous cell sorting model, test of,

336
continuum-scale models, 327
cross-adhesion, 329
derivation of nonlocal model for cell

adhesion, 328–332
differential adhesion hypothesis, 321
discussion and outstanding questions,

340–341
durotaxis, 321
embryonic development, 320
fast Fourier transform techniques, 343
fibronectin, 323
finite volume method, 341
form of invasive front, 324
Glazier-Graner-Hogeweg model, 325
Hamiltonian function, 326
haptotaxis, 321
homophilic interactions, 320
Indian chains, 324
integrins, 320
lattice-free models, 326
local force, 329
mathematical modeling of cell adhesion,

324–328
continuous models incorporating

cellular adhesion, 327–328
discrete models for cell adhesion,

325–327
matrix degrading enzyme, 336
matrix–vector product, 342
method of lines, 341
modeling adhesion during cancer

invasion, 336–339
modeling cell–cell sorting, 333–336
morphogenetic patterning of embryo,

323
numerical method, 341–344
ordinary differential equations, 341
PDE model, 327
Potts model, 325, 326
self-aggregation, 327, 328
somitogenesis, 323, 340
taxis–diffusion–reaction frameworks, 340
total force, 329
transmembrane protein–protein

complexes, 320
transmembrane receptor binding, 325

Mathematical modeling, cytoskeleton
dynamics and cell migration,
133–157

actin crosslinking proteins, 134
actin meshwork, stabilization, 133
actin network, microscopic organization

of, 134
adhesions, 134
age-structured population models, 138
cell–substrate interaction, 134
clockwise filaments, 135
counterclockwise filaments, 135
cytoplasm, mechanical behavior of, 134
Euler-Lagrange equations, 150, 151
filamin, 133
functional framework of model, 139
Hooke constants, 143
Lagrange multiplier, 153
lamellipodia, 133, 134
limit of instantaneous crosslink and

adhesion turnover, 144–151
linearized beam theory, 143
modeling, 135–144
nondimensionalization, 145
pathogens, 133
protrusion, 133
pseudo-2-D actin network, 134
pushed lamellipodium, 152
quasi-stationarity assumption, 142
rotationally symmetric solutions,

152–155
scaled energy contributions, 145
singular perturbation theory, 147
time-dependent simulation, 151
treadmilling of filaments, 143
twisting energy of crosslinks, 143

Mathematical modeling, extracellular
matrix, 285–318

anisotropy coefficient, 307
biological background, 285–287
contact guidance, 286
contour levels of fiber density, 307
diffusive approximation, 287, 292
ECM, cell migration types, 287
ECM fibers, symmetry, 288
equilibrium solution, 304
haptotaxis, 286
hydrodynamical limits, 301
individual migration, 286
mathematical descriptions of system,

287–292
continuum description, 288–292
statistical description, 287–288
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matrix degrading enzymes, 287
mean cell velocity, 289
mesoscopic description, 288
mesoscopic to macroscopic modeling,

301–305
formal limit of diffusive

approximation, 303–305
introduction to methods, 301–303

mesoscopic modeling, 292–301
contact guidance, 293–296
influence of cell–cell interactions,

296–297
influence of environmental factors,

298–301
random migration, 292–293

numerical illustrations, 306–315
illustration of taxis effects, 308–315
spreading in heterogeneous and

anisotropic ECM, 306–308
orientation tensor, 289
quorum sensing, 298
run and tumble motion, 292
sensitivity, 305
taxis, 298
tissue formation, 285
variance–covariance matrix

angle distribution, 289
velocity distribution, 289
velocity-jump processes, 288

Matrix degrading enzyme (MDE), 287, 336
Maxwell fluid, 102
MDE. See matrix degrading enzyme
Mean inward F-actin polymerization

speed, 107
Mechanosensitive cellular elements,

adhesion sites as, 221–241
adhesion complex, deformation of, 225
adhesion site

maturation, 230
mechanochemical response of, 227

alveolar epithelial cells, 224
alveolar macrophages, 224, 234
atomic force microscopy, 225
Bell’s law, 225
Boltzmann factor, 225
degenerated state, 227, 231
dynamic adhesion site motion, 223, 229
experiments, 233–236
fluctuation–dissipation theorem, 229
focal adhesion, 224
initial adhesion, 224
integrin activation, 227
linear elasticity theory, 227

loading rate, 230
macrophage adhesion, 236
multistate potential energy, 223
rationale, 224–233

dynamic adhesion sites, 227–233
force regulation of adhesion sites,

226–233
force regulation of surface adhesion

molecules, 224–226
stationary adhesion sites, 226–227

receptor-ligand binding, 225
slip-and-catch bonds, 225
state-of-the-art, 221–224
stationary adhesion site model, 222

Membrane
protrusion, 166
sticking, 98
tension, 108

Mesoscopic description, 288
Mesoscopic modeling (ECM), 292–301

contact guidance, 293–296
influence of cell–cell interactions,

296–297
influence of environmental factors,

298–301
random migration, 292–293

Metastases, 380
Method of lines (MOL), 341
Microbead adhesion under varying shear

rate, history dependence of,
185–219

2-D binding, 192
adhesion, lack of, 188
adhesive rolling of leukocytes, 185
adhesive sphere in shear flow,

190–203
forces and torques, 198–200
geometry and kinematics, 191–192
model of binding kinetics between

moving surfaces, 192–198
nondimensionalization, 200–203

advection time scales, 202
binding between sphere and plane in

shear flow, 187
Boltzmann distribution, 194
cancer cell metastases, adhesion

mechanisms, 185
cell deformability, accounting for, 216
consummated bond density, 191, 205
discussion, 212–216
evolution equation, 197
hydrodynamics of sphere near wall,

188–190
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lack of adhesion, 188–189
rolling without sliding, 189–190

intermediate state, 210
leukocytes, adhesive rolling of, 185
models, cell adhesion, classes, 186
normalization factor, 194, 203
numerical results, 204–212

nonlinear force-velocity and
torque-velocity relations, 204–207

steady-state motion of sphere in shear
flow, 207–212

P-selectin, 194
rapid kinetics assumption, 212
receptor–ligand binding, 193
schematic description of notation, 192
sliding friction law, 186
sphere sliding speed, 211, 213
sphere state diagram, 215
tank-treading behavior, 210, 216
translation speed, 210

Microrheology, 5–28
arginine–glycine–aspartic sequence, 8
atomic force microscopy, 6, 14
Bernoulli random variable, 19
CCD camera, 9
creep experiments, 10
creep function, 9, 11, 20, 24
cytoskeletal network, 16, 18, 24
elements of rheology, 6–8
experimental set-ups and protocols,

8–10
optical tweezers experiments, 8–9
uniaxial stretcher experiments,

9–10
exponents and prefactors obtained in

microrheology experiments, 15
human airway smooth muscle, 14
inferred cell deformation, 9
Laplace transform, 7
linear response theory, 7
magnetic twisting cytometry, 14
Nd:YAG laser, 8
oscillatory experiments, 10
power law rheology behavior, 13, 14
prefactor of response function, 24
relaxation times, 19
results and discussion, 11–16
semiphenomenological model, 24
statistical self-similar model for cell

rheology, 16–23
analysis of results, 21–23
discretization, 19
power law distribution of relaxation

times, 17

randomization, 19–20
self-similar time and length scales,

17–19
structural damping, 6
summary, 24
viscoelastic coefficient, 12
viscoelastic complex modulus, 7
viscoelastic systems, 6

Migration assays
2-D, 72–74

ring assays, 74
single cell tracking, 73
wound healing model, 73–74

3-D, 74–75
cell tracking methods, 75
filter assays, 74–75

Model(s)
age-structured population, 138
Brownian ratchet, 106
cancer growth, 327
cell adhesion, classes, 186
cell deformations, 165
cellular automaton, 384
clamp motor, 106
constriction ring, 423
dynamic adhesion site model, 223
Glazier-Graner-Hogeweg, 325
Hertz, 393
homogenization, 51–59
ING1 knockout mouse, 78
Johnson-Kendall-Roberts, 424, 425
lattice-free, 326
PDE, 327
Potts, 325, 326
reactive flow, 93
single-cell-based, 381
stationary adhesion site, 222
subcellular, 160
tethered ratchet, 39
Voronoi-Delaunay, 326
wound healing, 73

MOL. See method of lines
Monomer binding proteins, 34
MTC. See magnetic twisting cytometry
Multiscale problems. See cancer, benign

tumor to invasive
Myosin kinetics, 95

N

nACh. See nicotinic acetylcholine
Navier slip, 99
Nd:YAG laser, 8
Necrosis, 380
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Neumann condition, 105, 107
Nicotinic acetylcholine (nACh), 267
NIH3T3 tumors, 380
NLS. See nuclear localization sequence
NMDA receptors (NMDARs), 267
NMDARs. See NMDA receptors
Nondimensionalization, 145
Nuclear localization sequence (NLS), 76
Nucleation rate, 97

O

ODEs. See ordinary differential equations
Oncogenes, 67
Onset of polarization, 109
Ordinary differential equations (ODEs),

341
Orientation tensor, 289

P

Particle Tracker, 253
Pathogens, 133
PDGF. See platelet-derived growth factors
PHD. See plant homeodomain
Plant homeodomain (PHD), 76
Platelet-derived growth factors (PDGF),

380
PLFs. See primary lymphoid follicles
Poisson coefficient, 245
Poisson ratio, 48
Polarized state, 86
Polymerization-induced protrusion, 166
Potts model, 325, 326
Pressure balance, 105
Primary lymphoid follicles (PLFs), 428,

431
Proteasome system, malfunctions in, 401
Protein(s)

actin crosslinking, 134
actin-related, 71
capping, 34
dynamics, malfunctions in intracellular

control, 398
filamin, 133
G protein, 267
ING, 78
transient receptor, 267
VEGF, 380
Wasp/Scar, 34
Wiskott-Aldrich syndrome, 71

Protrusion–reaction cycles, 94
P-selectin, 194

P-selectin glycoprotein ligand-1 (PSGL-1),
224

Pseudo-2-D actin network, 134
Pseudo-steady-state assumptions, 92
PSGL-1. See P-selectin glycoprotein

ligand-1
Pushed lamellipodium, 152
Push–pull mechanism, 41

Q

Quasi-stationarity assumption, 142
Quorum sensing, 298

R

Rapid kinetics assumption, 212
Reactive flow model, 93
Rear release of adhesion sites, 113
Receptor–ligand binding, 193, 225
Receptor-operated channels (ROCs), 266
Relaxation oscillation, 39
Retrograde F-actin flow, 109
Rho-associated kinase (ROCK), 273
Rho kinase, 70
RNA virus, 68
ROCK. See rho-associated kinase
ROCs. See receptor-operated channels
Run and tumble motion, 292
Ryanodine receptors (RyRs), 267
RyRs. See ryanodine receptors

S

Secondary lymphoid tissues (SLTs), 418,
427

ontogenesis, interactions in, 429
pattern formation, 434

Self-aggregation, 327, 328
Single-cell imaging. See calcium, single-cell

imaging of in response to
mechanical stimulation

Singular perturbation theory, 147
Sliding friction law, 186
Slip-and-catch bonds, 225
SLTs. See secondary lymphoid tissues
SOCE. See store-operated Ca2+ entry
SOCs. See store-operated channels
Soft glassy materials, 6, 16
Solvent pressure, 104
Somitogenesis, 323, 340
Sphere

sliding speed, 211, 213
state diagram, 215
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Spin tensor, 356
Stationary adhesion site model, 222
STIM. See stromal interaction molecules
Store-operated Ca2+ entry (SOCE), 267
Store-operated channels (SOCs), 266
Stromal interaction molecules (STIM), 267
Subcellular models, 160
Substrate force distribution, 120
Substratum adhesiveness, 114
Swelling pressure, 104

T

Tank-treading behavior, 210, 216
Taxis, 298
TEM. See transendothelial migration
Temporal simulation parameters, 177
Time-dependent simulation, 151
Tip polymerization pressure, 107
Tissue formation, 285
Tissue spin tensor, 357
Traction recovery with point forces

(TRPF), 246
Transendothelial migration (TEM), 402
Transient receptor protein (TRP), 267
Transmembrane receptor binding, 325
Treadmilling of filaments, 143
TRP. See transient receptor protein
TRPF. See traction recovery with point

forces
Tumorigenesis, 68–69
Tumor suppressor genes. See cancer, cell

motility and tumor suppressor
genes

Twisting energy of crosslinks, 143

U

Uniaxial stretching rheometer (USR), 9
Unpolarized state, 86
USR. See uniaxial stretching rheometer

V

Vaccinia virus, 31
VE-cadherin, 407
VEGF, 380, 383
Velocity gradient tensor, 356
Velocity-jump processes, 288
Viscoelastic complex modulus, 7
Viscoelastic systems, 6
Viscoelastic units, 92
Viscous polar gel, 93
VOCCs. See voltage-operated Ca2+

channels
VOCs. See voltage-operated channels
Voltage-operated Ca2+ channels (VOCCs),

267
Voltage-operated channels (VOCs),

266
Voronoi-Delaunay model, 326
Voronoi tessellation, 419, 420, 433

W

Wasp/Scar protein, 34
Wiskott-Aldrich syndrome protein, 71
Wound healing model, 73

X

XcaM. See Xenopus calmodulin
Xenopus calmodulin (XcaM), 269
Xeroderma pigmentosum genes, 68

Y

Young’s modulus, 36, 48, 245, 253

Z

Zebrafish trunk, tracking for cell cohort in,
356
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