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Preface

In the broad panorama of academic publishing regarding next-generation
sequencing, there is scarcity—if not a lack—of textbooks that tackle ex-
perimental issues, rationale of data analysis, and biological interpretation
of genome-level data simultaneously.
The current textbook is not intended to be a cookbook of quantitative

approaches in Biology, nor is it a rigorous collection of theorems. It aims
to create a common language that can be useful to experimental biologists
and data analysts: the former would be able to read papers critically based
on transcriptomics and to judge independently whether conclusions are
appropriate, to design their own transcriptomic experiments, and to create
a dialogue with data-analysts to determine together the most appropriate
approaches for the specific questions answered. The latter would have
a glimpse of the experimental biologist’s point of view, with numerous
examples of how techniques that are familiar to an analyst have answered
specific biological questions.
The target audience of this book are graduate students with a back-

ground in the Natural Sciences (for example, Cellular and Molecular Bi-
ology, Neurobiology, Evolutionary Biology, Applied Mathematics, Phys-
ics, or Chemistry) who are interested in acquiring the bases of next-
generation RNA sequencing and transcriptome analysis and learning how
these techniques can be used to derive new knowledge about the func-
tional organisation of the nervous system. It is beyond the scope of
this book to include a detailed review of RNA and neuron biology, or
of the needed mathematical tools. So we will take for granted some
basic knowledge in Molecular Biology, Neurobiology, Linear Algebra,
and Calculus. Throughout the book, we made our best effort to comple-
ment the basics of quantitative analysis with relevant practical examples
of how we used these tools to tackle specific questions in real laboratory
life. This approach may seem too simplified for students trained in the
quantitative sciences and still difficult to digest for ‘wet-lab’ biologists
but represents—in our opinion—the best possible compromise.
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The book is based mainly on notes for the Neurogenomics course that
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Introduction: why studying
transcriptomics?

Biological and physiological investigations classically involved the pains-
taking collection of measurements for single physical or chemical vari-
ables (pressure, volume, electrical potential, hormone concentrations, and
so on). In more recent times, quantitative measurements of gene and pro-
tein expression became available and represented a small revolution in
itself, since they allowed scientists to investigate the molecular landscape
underlying biological or physiological processes for the first time. How-
ever, this approach, as widespread and successful as it has been, is centred
on the selection of a handful of markers that is by its nature arbitrary.
The recent development of so-called ‘omics’ technologies has revolu-

tionised biomedical research. These methods permit a quantitative as-
sessment of the global molecular landscape associated with a biologi-
cal phenomenon and provide an extremely powerful tool to identify the
molecular upstream regulators as well as the downstream actuators of a
given process. The whole potential of these techniques can be realised
when these are coupled with the ever-growing toolbox of protocols avail-
able to experimentally modify gene expression in cells and even whole
organisms, thereby offering the possibility to experimentally validate hy-
potheses derived from the global analysis. The great power of these ex-
perimental approaches lies in their unbiased nature. The experimenter
assigns individual samples to different experimental groups and does not
provide any further a priori hypothesis on the molecular mechanisms to
be investigated. Therefore, the analysis may reveal novel and unexpected
players. In recent years, the analysis of the transcriptome has become
particularly widespread. Transcriptomics is the collective name for a host
of techniques that allow a genome-wide estimate of transcript abundance
(i.e. mRNAs) in a sample and is currently almost exclusively analysed
through sequencing-based techniques (RNA-seq).
Genome-wide techniques are now indispensable tools for biomedi-

cal research; this is the main motivation for writing this book. How-
ever, analysis of genome-scale datasets has almost become a discipline
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in and of itself, thus the processing, handling, and—most importantly—
interpretation of these datasets is now well beyond the basic statistical
knowledge of ‘wet-lab’ biologists. More importantly, there is a wide-
spread misconception that this kind of analytics is a tedious, but straight-
forward, process. And it is not uncommon to see scientists providing
biological samples to a facility specialised in genome-scale techniques
with the expectation of receiving publication-quality results. The wrong
assumption is that there is only one way of analysing these data, while,
on the contrary, analysis of genome-scale data requires a long series of
‘arbitrary’ decisions that are dependent on the specific questions of inter-
est. We chose to use the nervous system as the source of examples where
analytical approaches were applied to gain biological insight.
In this book, we will thus deal with three major levels and concepts.

A molecular level. The ribonucleic acid (RNA) is the carrier of the in-
formation flow that goes from the DNA to the phenotypes of a living
system. This information can be carried under the form of structural
scaffolds (an example is the ribosomal RNA), of protein-coding se-
quences, which are read by the ribosomes and translated in the amino
acid alphabet that composes the thousands of proteins in a cell, or of
regulatory RNAs that can modulate gene expression at various levels.
The complete set of RNAs (transcripts) of a cell type is called the
transcriptome and is the primary object of our analysis.

A quantitative level. Transcriptomics is a quantitative, data-oriented
science: its raw input is a list of strings (the ‘reads’), that must be
assigned to an object (the ‘genes’ or ‘transcripts’ in the genome).
Then the density of reads corresponding to each object is counted to
calculate its expression strength; in other words, these data come in
the form of a vector or a matrix. The numerosity of the datasets in
neurogenomics is usually of thousands to tens of thousands of genes
whose expression level is quantified in multiple samples and condi-
tions. The task is to detect significant relationships between biolog-
ical conditions and patterns of gene expression in the dataset. This
high dimensionality can be handled only through specific methods of
statistics and data science. Chapters 3 to 7 will be dedicated to pre-
senting and understanding the basic tools which are commonly used
to analyse transcriptomics data.

An organ and cellular level. The nervous system is the organ that in-
tegrates the stimuli from the external environment and the internal
state of an organism to generate a consequential and contextualised
response. Neurons are the fundamental cells and main computational
units of the nervous system and encode the reaction to a stimulus
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through a temporary change of their excitation state. This can be then
transmitted through a synapse to other neurons to eventually reach the
effector cells. Neurons are a unique class of cells due to their extreme
variability in terms of functional, morphological and molecular phe-
notypes. The retina alone contains almost one hundred of different
neuronal subclasses. The other cell types which compose the nervous
system, such as astrocytes or microglia, however, are not bystanders
of neural activity but have been associated with essential functions
in the nervous system computation and plasticity. Due to their com-
plexity and manifold functional outputs, the brain and the nervous
system represent testing grounds where the full potential of genome-
scale techniques can be employed. Chapters 8 and 9 will deal with the
application of Neurogenomics to the study of the nervous system and
neural function.
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An example of pipeline for iterative transcriptome analysis



Chapter 1
A primer on data distributions
and their visualisation

This chapter is intended for ‘wet-lab’ biologists to familiarise them with
some fundamental concepts (e.g., statistical distribution) and formats of
data visualisation that will be used in many points of this book and that
are necessary to critically read the scientific literature of interest.

1.1. Stochastic processes and Poisson distribution

When dealing with RNA-seq data, we will encounter many times the
concept of the stochastic process, that we can define here as an ensemble
of events that occur randomly in space and time (random variables). In
1898, the Russian statistician Ladislaus Bortkiewicz published the book
The Law of Small Numbers where he analysed the now classical dataset
of casualties in the Prussian cavalry corps from horse kicking measured
over 20 years among 14 corps (Figure 1.1A).
Let’s consider the frequency distribution of all the casualties in the

Prussian cavalry corps (Figure 1.1B). It can be shown that, given a sto-
chastic event whose probability of occurring is constant in the studied
interval of times, the probability that it will occur n times in a fixed time
interval τ is distributed according to a Poissonian

P(xτ = n) = λn
τ

n!
e−λτ (1.1)

where λτ is the expected frequency of occurrence of the event in the time
interval τ . It is thus possible to fit the casualties distribution with a Pois-
sonian with λ20yr = 0.7.
When we measure the concentration of a given mRNA in a sample

by sequencing-based techniques, the process that we undertake is, as a
matter of fact, analogue to sending a set of mRNA molecules one at a
time through an array of ‘mRNA detectors’, each counting every time it
is ‘hit’ by the specific mRNAs it is ‘tuned’ to. This is a stochastic process
just like the killing of a Prussian horseman from the kick of a horse!
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AA

BB

Figure 1.1. Data, distribution and Poisson fit (λ = 0.7) of the casualties in
the Prussian cavalry corps from horse kicking measured over 20 years. Data
from [3].
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For each gene, the number of ‘hits’ is a measure of its concentration and
from Equation (1.1) we can calculate the error of this measurement (see
discussion of confidence intervals below).

1.1.1. Gaussian and t-Student distributions

Another fundamental distribution is the normal (or Gaussian) distribu-
tion, which is associated with a continuous probability density function.
If x is a stochastic variable that is normally distributed, if one observes
x once, the probability that its value falls within an interval I given the
mean μ and the variance σ 2 of the distribution is

P(x ∈ I|μ, σ) =
∫
I

1√
2πσ 2

e
(x−μ)2

2σ2 dx . (1.2)

The distribution of many (approximately) continuous biological variables
can be modelled using a normal density function: just think about the
distribution of the heights in a group of people1. For neurogenomic ap-
plications, it is important to remember that the distribution of expression
values obtained from microarray techniques is (after appropriate normal-
isation procedures) distributed like a Gaussian function. In a real experi-
mental context, what we want to do is to make an estimation of the ‘real’
parameters of the population (μ and σ , see Figure 1.2A) from a finite,
possibly small, amount of measurements. The appearance of the vari-
ables from a normal distribution strongly depends on the sample size (the
degrees of freedom): if we sample a normally distributed population with
unknown standard deviation, the statistical distribution we want to use to
describe the subset of the population is the t-Student distribution. The
t-Student distribution is commonly used to test the statistical significance
of the deviation of an observation from the control distribution (see, for
example, at page 96). As shown in Figure 1.2B, with the increase of the
size of the sampled population, the t-Student distribution approximates
the normal distribution.

1.1.2. Parameters of a distribution

Figure 1.2A tells us some other information about the distribution of a
normal population: more than half of the sampled population (68% in
case of a Gaussian with σ = 1) stays within one standard deviation from

1 The reason why the Gaussian distribution is so widespread represented can be conduced to the
central limit theorem, that states that the average of a series of random variables (e.g., a series of
Poissonians) is distributed, at its limit, according to a normal distribution.
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the mean, 95% of the sampled population stays within two standard de-
viations, and almost the totality of the data (99.7%) are within three stan-
dard deviations. However, when we measure a variable (with biological
replicates) of a given population we can have two possible scenarios:

• the measurements are precise—that is, each measurement gives an
estimation of the population mean that is close to the others,

• the measurements are accurate—that is, the estimated population
mean is close to the real mean.

To make a classic example: if we throw four darts at a dartboard aiming at
the centre and we get all the darts in roughly the same position we made
a precise throw; a set of throws that, once averaged, hits the centre of the
board is accurate. In the same way, a measurement can be both precise
and accurate, only precise/accurate, or neither of those. The Confidence
Interval (CI) of a stochastic variable is the range of values wherein the

BB

Figure 1.2. A) Gaussian distribution with unit standard deviation and its rela-
tionship with the data of the population. B) Comparison between a Gaussian
distribution with zero mean and unit standard deviation (y(x) = ex

2/2, solid
black line), and associated left-tail Student t-distribution with three different de-
grees of freedom.
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real value of the population would fall with a given probability. For ex-
ample, if we have a population with estimated mean x̄ = 2.3 and a 95%
confidence interval (CI0.95) between 1.6 and 2.8, this means that there is
a 95% confidence that we will find the real population mean μx in the
CI0.95 interval2.
A commonway to compute a CI from a population which is assumed to

be distributed according to a normal distribution, but whose mean and the
standard deviation are not known, involves the use of the t-distribution.
Let’s set our confidence level 1 − α = 0.95, and consider a set of n
measurements (observed mean x̄ and standard deviation sx ) from a pop-
ulation with real (unknown) mean μ and standard deviation σ . We want
to find the interval of x for which we have a confidence of 95% that the
real mean falls into this interval. This can be done through setting up a
test of significance for the difference between the measured and the real
mean, which is called t-test:

−tn−1 ≤ μ − x̄

s/
√
n

≤ tn−1 (1.3)

where tn−1 is called the critical value from a one- or two-tailed t-distribu-
tion3 with n − 1 degrees of freedom and s/

√
n is called the standard

error of the mean. Arranging Equation (1.3) in order to evidence the
real mean we obtain

x̄ − tn−1
s√
n

≤ μ ≤ x̄ + tn−1
s√
n

(1.4)

and it is evident that, the higher the number of sampled measures, the
shorter the CI (if the standard error is reasonably narrow), and the t value
can be approximated with the cumulative normal distribution function
�−1(1 − α).

In many cases in genomic analysis, more sophisticated methods are
used to compute the CI of variables that cannot be assumed to be nor-
mally-distributed or whose distribution is not known. The concept of
CI remains the same, however, and—regardless of the method used—it
indicates the span of values within which the true value is expected to fall
with a probability of 95%.

2 However, in 5% of the cases, the chosen CI will not encompass the real value of the variable.

3 For more information on the different cases of underlying distributions (one-tailed, two-tailed,
paired, and so on) please refer to a textbook of biostatistics.



6 Alessandro Cellerino - Michele Sanguanini

1.2. Representation of quantitative biological data

Now that we have introduced some basic notions of statistics, it is pos-
sible to thoughtfully describe a representation of data distributions that
is widely used in genomics: the box plot (Figure 1.3A). The basic plot
comprises three different components:

• the whiskers usually define the 5% − 95% percentile interval of the
data (i.e. the CI), although in some cases they can represent the whole
span of the distribution (i.e. minimum/maximum of the dataset);

A

B

Figure 1.3. Commonly used graphic representation of data: A) classic (left)
and notched (right) box plot with the whiskers representing the 5-95% interval
and the outliers indicated with a ‘+’, B) violin plot. In both the plots, the set 1
is composed of n=100 points randomly picked from a normal distribution with
μ=0 and σ = 1, while the set 2 is picked from a normal distribution with μ=0
and σ = 2.
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• the box defines the interval of the data between 25% (first quartile)
and 75% (third quartile), also called the interquartile range (IQR),
i.e. the span that the central 50% of the data falls within;

• the bar indicates the median (second quartile), i.e. the value that
divides the distribution of the data in half, so that the probability for a
point to fall on either side of it is 50%.

Additional features can be added to indicate data points outside of the
5% − 95% percentile interval (outliers), the mean of the set and so on.
A variant of the box plot called notched box plot presents a narrowing
of the box around the median (‘notch’) which represents the 95% CI of
the median and thus it is a rough visual indication of probability that the
difference between the medians of the two samples is not due to chance
(statistical significance).

1.2.1. Violin plot

The violin plot is another very informative way to represent biologi-
cal data (Figure 1.3B). It combines the information of a box plot (Fig-
ure 1.3A) with an estimate of the probability distribution function of the
variable (see Figure 1.2). The whiskers of a violin plot can span the CI
of from the minimum to the maximum value of the set, and usually the
mean and/or the median of the set are shown. The density function of
the dataset is shown perpendicularly to the whiskers. The major advan-
tage of the violin plot—compared to the box plot—is the disclosure of
the distribution density. This could reveal the presence of a multimodal
distribution of the data—i.e. the frequency density of the set shows more
than one peak, that would be hidden in a box plot representation.

1.2.2. Scatter plot

The scatter plot is a way to make direct comparisons between datasets
which are composed of matrices M × 2 , for example where a given
set ofM features—e.g., expression strengths, fold-changes and so on—is
measured in two different conditions (young/old, normal/diseased, con-
trol/treated etc...). In a scatter plot, the value of the feature in each con-
dition is a coordinate of a Cartesian plot. In Figure 1.4 a dataset with
a clear monotonic relationship is shown with a scatter plot. Since gene
expression data often range several orders of magnitude, it is often nec-
essary to change the scale of the axes from linear to logarithmic. In the
example visualised, this transformation makes it possible to detect a clear
linear relationship between the logarithm of the values in X and the log-
arithm of the values in Y (a so-called power-law that is typical of many
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biological systems, for example the relationship between body mass and
metabolism).

AA

BB

CC

Figure 1.4. Scatter plot of a simulated dataset with different axis scaling: A)
both X and Y linear, B) X logarithmic and Y linear, C) both X and Y logarithmic.

1.3. Lists of genes and Venn diagrams

We have so far considered a specific class of data, which can be described
with frequency distributions and/or can be plotted in a Cartesian space.
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The data we have previously seen could be, e.g., a vector of abundance
values for the transcripts associated with a given gene, or the average
fold change associated with a given metabolic pathway in condition A
against condition B. Let’s now focus on a different type of data that could
arise from a neurogenomic study: a set of labels (gene names, biological
functions, and so on). If we consider the two lists of the genes that are
differentially regulated4 in the ageing human brain and in Alzheimer’s
disease (data derived from [9]), respectively. Given a single differentially
expressed gene, there are three possible scenarios:

• the gene is up-/down-regulated in one of the two conditions only;
• the gene is up-/down-regulated in both conditions;
• the gene is up-regulated in one condition and down-regulated in the
other.

An easy way to manipulate lists of differentially regulated genes is to
consider each list as a mathematical set, where each gene is an element
of the set. In this case the studied dataset can be written as follows:

A = {gene | gene is up-regulated in Alzheimer’s disease}
B = {gene | gene is down-regulated in Alzheimer’s disease}
C = {gene | gene is up-regulated in ageing}
D = {gene | gene is down-regulated in ageing}

(1.5)

In the previous annotation, the list of genes that are up-regulated during
both ageing and Alzheimer’s disease can be represented as the intersec-
tion of the sets A and C (A ∩ C)5. The easiest way to represent a group
of sets and the operations on them (for example the common elements,
and so on) graphically is the Venn diagram6, where each element of the
set is represented as a point in a closed region, and the common elements
of two sets are included in the overlapping region between the graphic
representation of the set (Figure 1.5). From the Venn representation of
the sets of Equation (1.5) it is almost immediately noticeable that in the
lists there are no genes that are up-regulated in Alzheimer’s disease and
down-regulated in ageing, or viceversa.

4 See Chapter 4.

5 Some trivial properties of the sets described above are that the intersection of sets of the genes
up-regulated and down-regulated in the same condition (say, in ageing) has no elements, that is
A ∩ B = C ∩ D = ∅, and thus that the genes which are differentially regulated only in Alzheimer’s
disease (but not during ageing) is (A ∪ B) \ (C ∪ D).

6 The curious reader can find an elegant representation of Venn diagrams on a stained glass window
in the Dining Hall of Gonville and Caius College, Cambridge.



10 Alessandro Cellerino - Michele Sanguanini

Figure 1.5. Venn diagram of up- and down-regulated genes in Alzheimer’s dis-
ease (AD) and in ageing. Due to the absence of an intersection between the genes
up-regulated in AD and down-regulated in ageing—or viceversa, the 4-way rep-
resentation (left) of sets A, B, C and D (see Equation (1.5)) can be simplified
in two 2-way representation of sets A-C and B-D (right). Venn diagram plot-
ted using the Venny 2.1 tool (http://bioinfogp.cnb.csic.es/tools/venny/) from the
data in [9].



Chapter 2
Next-generation RNA sequencing

2.1. Introduction

The Next-generation RNA sequencing (RNA-seq) is an high-throughput
experimental technique (and design) that allows sequencing of cDNA at
very high redundancy (depth), in the order of 107 individual sequences
(reads) per sample. This technique can provide a quantification-by-se-
quencing of RNA abundance and analysis of RNA sequence variation
from biological samples. The development of high-throughput technolo-
gies applied to biology has opened exciting avenues for computational
and data-driven biology1.

2.2. Advantages of RNA-seq

Compared to other high-throughput techniques, such as cDNA microar-
rays, an RNA-seq protocol offers the following advantages:

• the analysis of RNA transcripts can be both qualitative (allowing the
assembly of transcriptomes from non-model species and the discov-
ery of novel, previously not annotated transcripts), and quantitative
(providing a measure of the relative quantities for different transcripts
in a sample);

• the results show single-base resolution, which makes it possible to
study single-base characteristics such as RNA editing or Single Nu-
cleotide Polymorphisms (SNPs);

1 Data-driven science is a paradigm shift where experimental activities are informed and motivated
by unbiased analysis of large bodies of pre-existent global data (-omics). This approach is com-
plementary to the hypothesis-driven approach that is typical of cell and molecular biology, where
the experiments are tailored for testing a specific hypothesis derived from previous knowledge. The
combination of these two approaches is expected to give a huge momentum to life sciences and
neurosciences in particular.
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• the lack of pre-synthesised molecular probes offers flexibility in ex-
perimental design and a potentially unbiased source of transcrip-
tional information;

• it is not bound to existing species-specific ‘hardware’ (e.g., microar-
rays) and it allows genome-wide quantification of transcript abun-
dances in non-model species;

• there are virtually no limits on sensitivity2.

Three steps are necessary in order to sequence the transcriptome of a
biological sample: first the RNA has to be purified, second an RNA (or
cDNA) library needs to be synthesised, and eventually the library is
sequenced.

2.3. RNA purification

The first issue to be addressed while dealing with RNA purification is
the target RNA species of interest. There are three major categories of
RNA: protein-coding mRNAs (	 100 bp), long non-protein coding RNA
(>100 bp, such as rRNA, snRNA, lncRNA), and short non-coding RNAs
(
 100bp – tRNAs, miRNAs and related, snoRNAs, piRNAs, and so on).
There are some technical differences in the purification procedures for
the short RNAs as compared to long RNAs. Standard RNA purification
by column-based commercial kits loses the majority of the small species
(unless otherwise stated by the producer), so a guanidinium thiocyanate-
phenol-chloroform extraction3 coupled with specific silica membrane pu-
rification is usually adopted in order to extract small RNAs. These techni-
cal differences imply that the small RNA-oriented RNA purification leads
to a RNA sample which can be used to prepare both small RNA and total
RNA libraries, while a standard extraction can be used when the small
RNAs are not important for the study. At the moment, a standard RNA-
seq protocol requires a starting amount of 0.5-1μg of total RNA, but also
lower amounts of RNA (∼ 0.1μg) can be processed in routine RNA-seq
procedures. However, procedures of RNA amplification are available,
that allow RNA-seq to be performed from very small amount of material
and even single cells (see Chapter 9).

2 In the sense that, by increasing coverage, it would be possible to detect even genes that are expressed
as single RNA molecule per cell. However, it remains to be established where the the border lies
between a biological meaningful signal and transcriptional noise.

3 Commercially known as TRIzol R© or QIAzol R©.
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2.3.1. RNA quality assessment

Once the RNA is extracted, it is mandatory to assess the purity and in-
tegrity of the sample. If chemical or biological contaminants are present,
or the RNA is severely degraded, this could lead to poor quality or arte-
fact-ridden RNA libraries and therefore to sequencing that is not repre-
sentative of the true RNA populations of the sample.
The principal contaminant species are either related to the technical

processing of the RNA sample (phenol, EDTA and so on) or to biological
contaminants, such as proteins or genomic DNA. A careful purification
practice usually avoids these contaminants: the assessment for contam-
inants is done through UV spectrometry. The peak of absorbance for
RNA molecules is at 260 nm, while the peak for the contaminants is
usually distinct (see Table 2.1).
In order to evaluate the degree of purity of the RNA sample two ab-

sorbance ratios are used:

A260

A280
in order to quantify the protein contamination: a pure RNA solu-

tion has a ratio of ∼2.0, and a ratio of 1.8 is considered acceptable
for many RNA-seq protocols. However, these values should be
taken as a ‘rule of thumb’, due to the fact that the UV absorbance
of RNA at 280 nm depends on many factors such as the pH, the elu-
tion buffer, and the base composition of the RNA analysed, since
the different nucleotides have different values of absorbance.

A260

A230
quantifies the extraction solvent contaminants: a non-contaminated

RNA solution has no peak at 230, and shows a 230:260:280 pro-
portion which is about 1:2:1.

Contaminant λ peak

Proteins 280 nm
Phenol 230 and 270 nm

Thiocyanate 230 nm
EDTA 230 nm

Table 2.1. Wavelength of the peak of absorbance for potential contaminants in
RNA samples.

RNases are ubiquitous enzymes whose function is to degrade RNA: if
the operator does not pay attention during the RNA sample handling,
or the samples were stored inappropriately, some ambient RNases or
RNases from the tissue itself that were not inactivated promptly could
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contaminate the sample, thus degrading the molecules of interest4. The
most commonly used method to qualitatively determine the level ofRNA
degradation is direct visualisation through gel electrophoresis. In intact
RNA, the two bands of rRNA are sharp and the 28S is roughly twice as
intense as the 18S. Degradation results in smears and a reduced 28S/18S
ratio. In order to obtain a quantitative assessment of RNA integrity, the
Agilent BioAnalyzer can be used. It performs an electrophoretic run in a
microfluidic chip, thus profiling the RNA sample according to the molec-
ular size and the fluorescence signal of an intercalating dye. The degra-
dation is quantified in a score called the RNA Integrity Number (RIN)
whose major proportion is determined by the shape of the peaks of the
18S and 28S rRNAs, which normally account for about 80% of the total
RNA fraction. The RIN spans from a value of 1 (extremely degraded
sample) to 10. For microarray applications, RIN is an extremely impor-
tant parameter because it influences the intensity of the signal and binding
to the array. For RNA sequencing, there is not a consensus on which is
the minimum score required for further processing, especially since the
RNAs need to be fragmented in order to create the sequencing library.
A rule of thumb states that, for both microarray and RNA-seq, the RIN
should be higher than 7; however in the case of RNA-seq a RIN of 4-5
could be acceptable upon protocol optimisation and without poly-A en-
richment steps5.

2.3.2. Abundant RNA species

A standard RNA sample is composed of

∼ 83% rRNA
∼ 15 % tRNA, and
∼ 3% mRNA.

So, the fraction of mRNAs, which are usually the species of interest in
RNA-seq experiments, is also the least represented in the total RNA pool.
This fact implies that the RNA samples should not be sequenced as they
are, but should be first treated to remove the most abundant species.

4 To avoid the RNase contamination it is very important to keep the workbench clean (and pos-
sibly pretreated with RNase-inhibiting solutions) and to use nuclease-free Diethylpyrocarbonate
(DEPC) treated water

5 Of course these estimations should be taken cum grano salis, downstream quality controls (see next
chapter) need to be performed in order to ensure that the sequencing was representative.
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There are two opposing strategies to address this problem:

• to use poly-dT primers linked to magnetic beads in order to specifi-
cally enrich the mRNAs through binding their poly-A tails;

• to use specific probes binding known abundant RNA species to de-
plete them and therefore enrich the less abundant RNA species.

Both strategies have strengths and weaknesses. Isolating the mRNAs im-
plies that all long non-coding RNAs devoid of a poly-A tail are excluded-
not only the rRNAs and the tRNAs, but also rarer non-coding RNAs that
may be important for regulation of gene expression. On the other hand,
the exclusion of the abundant RNAs is possible only if their exact se-
quences are known. This is particularly problematic when working with
non-model species. Furthermore, depletion of abundant species can never
be complete and variable amounts will remain (for example, rRNA may
be reduced from 80% to 30% but will still represent a sizeable proportion
of reads6). Table 2.2 shows a comparison between the ups and the downs
of the two strategies.

Characteristic poly-T prim. RNA prob.

All mRNAs are retained yes yes
Abundant rRNAs are removed yes yes
Other long noncoding RNAs are retained no* yes
DNA contamination are removed yes no
Applicable to every animal model yes not always

Table 2.2. Comparison between strategies for abundant RNA species depletion.
*: there is a class of lncRNAs, called lincRNAs [56], that are poly-adenylated
and are thus retained after poly-T primer purification.

2.3.3. Tissue-specific abundant RNA species

Ribosomal RNAs and tRNAs are not the only abundant RNA species
which could determine an undersampling of the different transcripts in
the transcriptome. In some tissues, there are ‘structural’ transcripts which
could account for a predominant fraction of the sequenced dataset and
thus must be depleted in order to sample the whole complexity of the
transcriptome.

6 In fairness, with the current rRNA depletion protocols it is possible to achieve a reduction of
ribosomal RNA up to 99% in a consistent way.
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2.3.3.1. Example 1: the globins mRNAs in blood RNA-seq. Blood is a
liquid tissue composed of erythrocytes (92%), leucocytes (0.15%), and
thrombocytes (7.75%), all contributing to the isolated RNA pool. Ery-
throcytes contain very high concentrations of haemoglobin, a heterote-
trameric protein composed by two dimers of α- and β-globins, and it is
reasonable to suppose that a great fraction of the mRNA present in the
cells encodes for the α- and β chains of haemoglobin.
As an example, a sequencing of a polyA+ RNA library (a highly-

enriched mRNA pool) from a mouse blood sample, resulted in ∼ 20%
of uniquely mappable reads (reads mapping on the genome only once
and with a small number of mismatches), a very minor fraction of non
mappable reads, and about an 80% of redundant mappable reads—that
is, reads that map to more than one position on the genome, as it would
be the case for transcripts originating from the globin cluster. If we as-
sign a gene to the aforementioned redundant reads, more than the 95%
of them would originate from the α- and β-globin transcripts. This first
sequencing proves that it is necessary to deplete the globins transcripts
from the RNA pool before sequencing.

Reads % w/odepletion %withdepletion

Uniquely mappable ∼ 20% ∼ 64%
Non mappable < 1% < 1%
Redundant mappable... ∼ 80% ∼ 36%
... ofwhichmapped toglobins > 95% ∼ 15%

Data courtesy of Marco Groth, Leibniz Institute on Aging, Jena.

The depletion occurs with the same probe-bead system seen for the re-
moval of abundant noncoding RNAs.

2.3.3.2. Example 2: actin and myosin mRNAs in muscle RNA-seq. In a
second example (data courtesy of Marco Groth, Leibniz Institute on Ag-
ing, Jena), RNAs were extracted from the muscle of zebrafish. Actin and
myosin are fundamental structural proteins for the cells in the muscle fi-
bre, and for the cell in general, and their transcripts are expected to be
highly represented in the muscle transcriptome. However, sequencing of
the RNA library shows that these are abundant but not to the point that
they dominate the set of reads. Redundant mappable reads (i.e. reads
deriving from genes that are structurally redundant) and non-mappable
reads are <20% of the total number of reads. Actin and myosin account
only for ∼ 9.5% of the unique mappable reads (the ‘working’ dataset).
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So, in this case, there is no need to deplete the actin and myosin tran-
scripts, because their amount does not compromise the sampling of the
transcript diversity in the library (issues of effects of abundant transcripts
on library normalisation will be dealt with in Chapter 4).

2.4. Library preparation

Now we will deal with a fundamental step before performing the next-
generation sequencing: the preparation of the RNA library. From now on
the described platform will be the Illumina (Solexa) sequencing.
The rationale of the library preparation is to produce some short cDNA

fragments, which are adapted and linked to the sequencer cartridge and
then expanded through a peculiar type of PCR called bridge amplification
to form clusters, each originating from a single DNA molecule (clusters
can be thought as equivalent of DNA clones).

2.4.1. RNA fragmentation

The first step of the library preparation for Illumina sequencing is the
RNA fragmentation: the length of the fragment is technically required
to be smaller than 800 bp (otherwise the clustering by bridge amplifi-
cation would be negatively affected—see below), however, the optimal
fragment size depends on the sequencing strategy and the chosen read
length (see Section 2.5.3). A usual read length is between 50 and 300
bp7, and the sequencing could occur with two modalities (Figure 2.1):

Single-end sequencing where the sequencing occurs only at one end of
the molecule: the minimum length of the RNA fragment should be the
read length, so that the sequencing cycles are not wasted;

Paired-end sequencing where the sequencing occurs at both the ends of
the target and the sequence information from both ends is connected:
the minimum length of the fragment should be twice the read length
in order not to have an overlapping sequencing8.

Fragmentation can occur using many different methods, in particular
enzymatic (using RNA endonucleases9), chemical (sample at 94 ◦C in

7 It is important to notice that the longer the read, the lower the average quality of the last sequenced
positions in the read (see page 28);

8 The rationale for paired-end sequencing is to sequence the boundaries of a fragment so that it would
be easier to reconstruct the source transcript. This is particularly useful in transcriptome assembly
and analysis of alternative splicing. Having an overlapping sequencing would consume resources
without getting additional information.

9 The enzymatic fragmentation, however, suffers from a composition bias in hydrolysis, as some
regions of the RNAs are more susceptible than others.
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Figure 2.1. Illumina sequencing could occur with two set-ups: the single-end
sequencing (A), where the sequencing occurs only from one side of the frag-
ment, and the paired-end sequencing (B), where the sequencing occurs at both
sides of the fragment and the two sequences are coupled in the downstream
analysis. See text for further detail.

Tris-Magnesium salt buffer), or mechanical (sonication). The statis-
tics of the fragment population—in particular the mean, median and size
distribution—evolve as a function of time. For example, bringing the
buffered RNA solution to 94 ◦C generates a population of fragments rang-
ing from about 130 to 350 bp (with a median of 200 bp); after incubating
the solution at 94 ◦C for 12 minutes, the population ranges from about
130 to 180 bp with a median of 140 bp. The median of the population
scales down roughly linearly with time.
The quality of the fragmentation should be then directly assessed with

gel electophoresis—such as using the previously described Agilent Bio-
Analyzer platform.

2.4.2. Reverse transcription

After the fragmentation step, the RNA templates should be converted to
cDNA through the process commonly known as reverse transcription10

(RT). At this point, several options for RT strategies are available:

• using oligo-dT to prime the poly-A tail of mRNAs;
• using random primers, an assortment of all the possible hexamers11.
The probability of a random primer to bind to an RNAmolecule is not

10 The reverse transcription occurs using an RNA-dependent DNA-polymerase, also known as reverse
transcriptase, primed with a DNA oligonucleotide.

11 At each one of the six positions of the primer there is an equal probability to find one of the four
bases, so there are 46 i.e. ∼ 4000 different primers.
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higher in any specific region and therefore the random primer pool
will provide relatively even coverage along the RNA population by
priming randomly the RNA fragments;

• ligating special adaptor oligos at the end of the RNA using a T4
RNA-ligase, which can then be used to prime the RT.

These strategies have strengths and weaknesses which will be discussed
below.

2.4.2.1. Oligo-dT priming cannot be used for RT of fragmented RNA.
Oligo-dT priming starts the RT from the poly-A tail of the mRNA and
is one of the oldest RT methods. The principal advantage of this method
is that the probability of priming is not influenced in a major way by the
RNA sequence since all mRNAs are primed, regardless of their upstream
sequences, reducing possible biases in library construction. However,
this approach has several drawbacks. The first, and most important for
our purposes, is that in case of fragmented RNA, only the 3′ region at-
tached to the poly-A tail would be primed, while all the other fragments
would be excluded. A second similar limitation is that, even when the
RNA sample is not fragmented, every long RNA which is not polyadeny-
lated cannot be primed and therefore this method cannot be used when
detection of ncRNAs is required. Moreover, this method can be applied
only to eukaryotic mRNA12. Last but not least, the fact that the RT poly-
merase is not a ‘fast’ enzyme increases the bias of the read distribution
towards the 3′ end of the mRNA as opposed to the 5′ end.
In case of using non-fragmented RNA to reverse transcribe the cDNA,

the obtained library cannot be fragmented through chemical methods,
but only with enzymatic (not advised) or mechanical procedures (such as
nebulisation and sonication)13.

2.4.2.2. Advantages and disadvantages of random primers. Random
primers can be used to prime RT from fragmented RNA libraries due to
the fact that the probability of their binding to RNA molecules is roughly
equal along the 5′ - to 3′ extent for any RNA type (mRNA, lncRNA, and
so on). For this reason, they also solve the 3′ positional bias of the oligo-
dT priming.
However, there are two limitations to this method: the first one is

that the random priming is not exactly even, but there are some priming

12 In fact, bacterial mRNAs are not polyadenylated.

13 However, physical fragmentation induces the loss of at least the 50% of the starting cDNA!
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hotspots. Principally, that is because of the thermodynamic stability and
the propensity of each hexonucleotide to interact with its complemen-
tary sequence. The second one is that the combination of fragmentation
and RT (if not prepared ad hoc) usually leads to the loss of strand infor-
mation—this means that, given a cDNA molecule, it is not possible to
determine whether the cDNA was synthesised from the sense or the the
antisense strand14.

2.4.2.3. Use of end-ligated primers. Priming with pre-ligated oligos is
used in Illumina RNA-seq preparation of miRNA libraries and in other
RNA-seq platforms. This approach ligates an adapter with a known se-
quence to the 3′ of the RNA fragment using a T4-RNA ligase: the se-
quence can then be used to prime the RT. This approach combines the
strengths of the oligo-dT and of random primer strategies: it can be ap-
plied to fragmented libraries, but it is devoid of hotspot bias and it retains
strand-specific information.

2.4.2.4. Second strand synthesis and strand-specific libraries. At this
point, the RNA library would likely consist of fragmented RNA-cDNA
heterodimers. There are two possibilities of synthesising the second
cDNA strand,

• to prepare a strand-specific library, where the information from the
original strand of the transcript is retained,

• to synthesise the second cDNA strand without considering its orienta-
tion: this is commonly obtained through RNA nick synthesis, where
an RNase degrades part of the second-strand RNA, the E. coli DNA
polymerase I replaces it with a cDNA complementary strand, and a
DNA ligase eventually joins the nicks.

Retaining the strand-specific information is an advantage during the tran-
scriptome assembly from an unknown genome, or from a genome with
poor gene annotation (for example when working with a non-standard
animal model): this could reduce computing time—there is no need to
reverse-complement the reads, because the orientation is known—and
would identify the sense and anti-sense strand.
From an experimental point of view, the synthesis of a strand-specific

library exploits the property of the E. coli DNA Polymerase I, which is
able to incorporate in a DNA strand the deoxyuridine (dUTP) and the

14 This information can be relevant because a significant proportion of protein-coding genes also
generates some specific ncRNA transcripts from the opposite strand (antisense transcripts).
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deoxythymine triphosphate (dTTP). The cDNA then undergoes a PCR
using a polymerase which is blocked by dUTP, so that only the first strand
(devoid of dUTP) can be amplified.

2.4.3. Addition of the adapters

The adapters are short, asymmetrical DNA fragments which are com-
posed of various functional elements:

• two amplification elements, at the 5′- and at the 3′-terminus of the
fragment, which are used for the clonal amplification of the construct;

• a primary sequencing priming site, juxtaposed to the insert, which
is necessary to initiate the (single-end) sequencing reaction;

• an optional inline barcode (positioned at the 5′ of the insert), or
• a inline index (positioned at the 3′ end of the insert and sequenced in a
separate reaction), which provides a unique label in order to discrim-
inate reads obtained from different samples when these are pooled in
the same lane of the sequencing flowcell (see text below);

• in case of paired-end sequencing, a paired-end sequencing priming
site, which is necessary to initiate the coupled sequencing reaction.

There are many ways the adapters can be added to the fragments, such as
PCR or direct ligation.

2.4.4. Quality control

Quality control of the library is an important step, which can be achieved
with a quantitative real-time PCR (using adapter-specific primers) or
through elecrophoresis assessment using the previously mentioned Bio-
Analyzer. The quality control step gives the possibility to 1) quantify
the concentration of cDNA in the library and 2) to evaluate the presence
of primer dimers (in case of blunt-end ligation, with BioAnalyzer). Ta-
ble 2.3 shows the ups and downs for each quality control step.

qPCR BioAnalyzer

Precision of quantification +++ +
Tuning curve needed yes no
Detection of adapter dimers no yes
Fragment size determined no yes

Table 2.3. Comparison between qPCR and the Agilent BioAnalyzer when used
for the library quality control.
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2.5. Library sequencing

The principle of Illumina sequencing is to incorporate fluorescent nu-
cleotide analogues into the cDNA single-strand fragment at each sequenc-
ing cycle and to scan them in order to determine the sequence of the
transcript (sequencing by synthesis). Here we will present the method
briefly, since many resources (including the producer’s) are available to
obtain more details.

2.5.1. Bridge amplification and sequencing by synthesis

In order to sequence the library, the cDNAmolecules are heat-denaturated
at 95 ◦C and injected into the flowcell of the sequencer, a functionalised
surface where the DNA functional groups (3′ → 5′ oriented) are able to
bind the adapters15. A first cycle of cDNA elongation and denaturation
immobilises a single-stranded copy of the library element on the flow-
cell, while the original library templates are washed away. Then, the free
5′ end of the molecule bends and interacts with a free complementary
functional group on the flowcell forming a bridge and a new elongation
step occurs. After denaturation, this bridge amplification step leads to
two 3′-5′ oriented cDNA fragments. This process of solid state amplifi-
cation is repeated until a series of clusters of the same molecule (∼ 103

molecules per cluster) is created16. The reverse fragments are cleaved and
washed away, so that only the forward copies of the original template are
preserved.
After cluster formation, a primary sequencing primer is added to the

template so that it can seed further sequencing: at each cycle a reversible
fluorescent probe (one for each nucleotide), complementary to the respec-
tive template position, is added to the growing read fragment sequence
and imaged through laser excitation17. After reaching the desired read
length, the sequenced fragment is denatured and washed away, and the
index is primed and sequenced.
In case of paired-end sequencing a new step of bridge amplification

is performed, and—just like in the previous sequencing step—the for-

15 As a quality control step, some phage DNA (PhiX) is added in small amount: since the sequence
of the phage DNA is known, this will ensure that no global sequencing errors occurred.

16 The density of the initial library is a key player in the process: if the library is too concentrated,
clusters will overlap making sequencing impossible; if the library is too diluted many positions on
the flow cell will remain empty increasing the per base cost of the sequencing. For this reason,
quantifying the library concentration is an important step.

17 After one cycle of sequencing the fluorescence of the probe incorporated in that cycle is reversed,
so as not to interfere with the imaging of the next template position.
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ward template is cut and washed away. Then a secondary sequencing
primer is added to the reverse template, the paired read is sequenced as
previously seen, and, eventually, the second index is sequenced. The two
indexes/sequences are then paired during the data analysis.

2.5.2. Single-end or paired-end sequencing?

The choice between single-end or paired-end sequencing (see page 17)
should be made according to the experimental design and the biological
question to address.
Paired-end sequencing is more cost- and time-intensive than single-end

sequencing (virtually every fragment is sequenced twice), so it should be
chosen only when the additional cost is justified by the advantage of re-
trieving the structural information provided by coupled sequencing. Two
typical applications of paired-end sequencing are the assembly of a pre-
viously unknown transcriptome (particularly when the reference genome
is not available) and the analysis of different splicing isoforms. In the
latter case, single-end sequencing provides only limited information on
splice junctions18. For routine gene expression analysis in organisms with
known transcriptomes and annotated genome, the most common use of
RNA-seq, it is usually sufficient to opt for a single-end sequencing.

2.5.3. Choosing the right read length

The read length is determined by the sequencing platform and currently
is in the range 50-300. The optimal read length again depends on the
biological question to address:

• a simple gene expression analysis, where mapping of the reads
against an annotated reference genome is performed only for counting
purposes doesn’t require long reads (50 bp are sufficient to identify
the gene of origin);

• an analysis of splicing isoforms would require longer reads (∼ 100
bp), because the longer the read the higher the probability that it
includes a splicing junction, this analysis would also benefit from
paired-end information;

• a transcriptome assembly is improved by the availability of RNA
structural information, so the reads should be as long as possible
(>150-200 bp), ideally with paired-end information.

18 In this case the splicing information would be provided only by the reads which include the
splicing junction (see Figure 4.1), but it would not include which are the exon combinations for a
given RNA transcript.
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2.6. Other applications of next-generation RNA sequencing

There are many further possible applications of next-generation sequenc-
ing of RNA to the neurosciences. The most common are:

Small RNA sequencing. The only difference with ‘conventional’ RNA-
seq is that RNAs are size-sorted to enrich for specific classes of non-
coding RNAs. A very common application is miRNA-seq (by se-
lecting RNAs in the 18-30 bp length range) to profile microRNA ex-
pression. The statistical analysis of the data is very similar to RNA-
seq, however, a complication is that miRNAs are subject to post-
transcriptional events of RNA processing giving rise to a multitude
of isomiRs.

Ribosome footprinting. In this technique, binding of RNA to the ribo-
some is stabilised by cycloheximide and the RNA is then enzymat-
ically degraded. Only RNA molecules bound to ribosomes are pro-
tected and can be sequenced. This technique provides a quantification
of actively-transcribed mRNAs (translatome19), has a codon-level
resolution, and requires depletion of rRNAs—this step can be techni-
cally challenging. The use of the drug lactimidomycin, which induces
the specific stalling of the ribosomes initiating the translation (but not
the elongating ones), is very useful to identify alternative translational
starts on the mRNAs [29].

RNA-immunoprecipitation sequencing. In this approach, antibodies
that bind specific RNA-binding proteins are used in order to im-
munoprecipitate a specific population of RNAs before sequencing.
The use of antibodies against components of the RNA-induced si-
lencing complex (RISC) provides a picture of repressed RNAs that
can be particularly useful in combination with translatome analysis
and miRNA-seq.

Sequencing dependent on the RNA chemistry. The versatility of next
generation RNA-seq platforms makes it possible to further investi-
gate the molecular biology of RNA at a single-nucleotide level. Sam-
ple preparation protocols that focus on isolating the mRNA fragments
containing the 5′ cap (CAGE-seq, DECAP-seq, . . . ) are able to dis-
tinguish gene Transcription Starting Sites (TSS); other protocols are
tailored to recognise specific post-transcriptional modifications of
RNA sequences, such as pseudouridine (	-seq) or 2′-O-methylation
(2OMe-seq), as the reverse transcriptase blocks its activity in the pres-

19 A variation of the translatome analysis is the purification of polysomes by centrifugation methods.
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ence of pseudouridine conjugated with the molecule CMC or of 2′-O-
methylated nucleotides20. RNA-immunoprecipitation techniques us-
ing specific antibodies make possible to study other post-translational
modifications such as N1- and N6-methyladenosine (respectively,
m1A-seq and m6A-seq).

20 Indeed, some protocols designed to study the secondary structure of mRNA molecules (structure-
seq/DMS-seq, CIRS-seq) take advantage of this fact: the induction of chemical modifications, such
as the selective formation of a CMC-	 complex (that occurs when 	 is in a single-stranded po-
sition), or the 2-O-Methylation using the chemical DMS at the level of unpaired Cytosines and
Guanosines.



Chapter 3
RNA-seq raw data processing

3.1. Introduction

The human genome contains more than 20000 protein-coding genes, but
the complexity of the RNA population in any given human sample is at
least one order of magnitude higher due to alternative splicing that gen-
erates different splicing isoforms. To this, one has to add an increasing
number of non-coding RNAs and various forms of RNA editing. This
high complexity poses important technical and computational questions
such as,

• how ‘deep’ should the planned sequencing be (i.e. how many clus-
ters should be sequenced from the cDNA libraries) to obtain a good
representation of the transcript diversity?

• Is the processing of the dataset (i.e. the identification of the gene of
origin for each sequence) feasible in terms of computation time?

• Can the complexity be reduced?

In this chapter the problems of complexity and ofmapping the RNA-seq
reads to a the reference genome will be addressed from a probabilistic and
informational point of view. The issue of reducing the complexity will be
dealt with in Chapters 5 and 6.

3.2. General quality assessment

Having good-quality data is important in every branch of life sciences.
However, in high-throughput data analysis, quality becomes a fundamen-
tal issue which could undermine the validity of all downstream analysis
if not addressed correctly. The raw data from a sequencer come in the
FASTQ format1 and are associated to a quality score called the Phred

1 The FASTQ format could be considered an extension of the FASTA format—awidely used standard
for nucleotide and protein sequence deposition—that includes a Phred quality score (Q) for each
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Quality score (Q), whose classical definition, as applied to the Sanger
sequencing, is

Q = −10 log10(P) (3.1)

where P is the probability that the base-calling for a given nucleotide
sequence is inaccurate2 (in that sense, the Phred score is a measure of
sequencing quality).
The threshold to determine whether a single base in a read is of good

quality or not is obviously arbitrary, however a reasonable separation
adopted by the FastQC quality control software3 considers base calls to
be:

good quality bases if Q > 28 (i.e. the confidence is of at least 99.8%);
fair quality bases if 20 < Q < 28;
poor quality bases if Q < 20 (i.e. the confidence is less than 99%).

The threshold for acceptable base-calling also strongly depends on the
application: when analyzing RNA-seq data to obtain expression values,
lower Phred scores are acceptable (because only mapping is relevant
and sequence variation is disregarded) while analysis of RNA editing or
allele-specific transcription will require higher Phred scores. A common
quality bias in Illumina high-throughput sequencing is that the quality

nucleotide of the sequence (see text). The major structure of a FASTQ file is as follows:

• 1st line: a header in the form

@InstrumentID:RunID:FlowcellID:FlowcellLane:Tile:Xpos:Ypos pair:N:0:index

includes the technical information (from left to right: the instrument, the run, the position in the
sequencing cartridge) and other information (in case of paired-end sequencing, which part of
the pair is sequenced—1 or 2, Y/N shows if the read has been filtered or not, 0...2n attests that
2n control bits are on, and an esanucleotidic control index—e.g., ATGCAT);

• 2nd line: the sequence in the single letter nucleotide code (GTCA and N for undecidable posi-
tions);

• 3rd line: a +, optionally followed by the header;
• 4th line: the quality scores associated with the sequence.

2 That is, a Phred score of Q=30, which is close to the boundary between good and average measures,
means that there is a probability of 0.1% that the associated base is not accurate. There are slight
differences between the Sanger-applied quality scores (currently adopted by Illumina, after v1.8)
and the older Solexa/Illumina pipeline score which followed the definition

Qsolexa = −10 log10

(
P

1 − P

)

which differs from the reference Phred score in low-quality values (Q<18), but is asymptotically
equivalent for higher values.

3 http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
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A

BB

Figure 3.1. Simulated population distribution of Phred scores as a function
of position A) in a good quality Illumina sequencing and B) in a poor quality
sequencing. Notice the trend of lower Q scores for bases at higher positions in
the read. For the reader who is unfamiliar with the boxplot representation, see
Section 1.2 on page 6.

score of a base along the read is highly dependent on its position: the first
bases have higher Q scores compared to the last bases (Figure 3.1).
The single base Phred score in the sequencing pool of reads can be used
to assess global quality of the sequencing run by calculating the statis-
tics of Phred scores across the set at different positions, or by plotting the
distribution of the mean Phred score for each read (Figure 3.2).
Other important quality information is given by the statistical prop-

erties of the sequences: this is fundamental to assess the presence of
biological or technical sequence artefacts. The underlying assump-
tion is that a random sampling of the genome would imply a uniform
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distribution of the different bases at a given position4 and that no par-
ticular sequence pattern should be over-represented. If the frequency of
the different bases as a function of position is not constant, or there are
overrepresented sequences5, technical (e.g., Illumina primer dimers con-
tamination, sequenced adapters and so on) or biological contaminations
(e.g., rRNA, mtDNA, polyA tails) are likely.

Figure 3.2. Distribution of the mean Phred score for each read. In the case of
good quality sequencing (A), the distribution of the averaged per-read Q scores
should be biased towards the values of Q > 28, with little or no population of
lower quality scores (in particular with Q < 20), while poor-quality sequencing
(B) has a wider average distribution.

3.2.1. The analysis of Kmer levels permits estimation of the presence
of artifact sequences

A set of raw RNA-seq data could contain a certain amount of contaminant
sequences, derived from the next-gen sequencing platform or from issues
in sample handling. The presence of these contaminants can be detected
as a change in the statistics of the base content in the reads. The easiest
method to evaluate the presence of contaminant-related reads is to test for
over-represented sequences (e.g., duplicates), or to investigate the dataset
for the presence of primer or adapter sequences. However this procedure
depends on counting the occurrences of exact sequences. In the case of

4 That is, at a given position of the read the probability of finding a G, C, T or A should be the same
as their presence in the genome, so the dataset frequency of a given base in every position should be
roughly constant.

5 The quality control software FastQC (note 3) analyses which fraction of the dataset is composed of
duplicated reads (usually a high amount of duplicated sequences, > 30%, is an indicator of some
enrichment bias), the presence of overrepresented sequences in the reads (which could be associ-
ated with Illumina primers, or to other over-enriched molecular species), the presence of adapter
sequences, and the analysis of Kmer content (see text for further details).
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random errors, e.g., due to

• sparse low-quality reads (more common in longer reads), or
• sequences which are inserted in the reads at different positions

the identity between the repeated sequences is lost, thus resulting in an
underestimation of the presence of contaminants.
The analysis of the Kmer (read: k-mer) frequencies is a powerful and

more unbiased approach for estimating the presence of contaminants. A
Kmer is a string of K DNA bases: the Kmers derived from a read of
length L are L − K + 1, so the number of Kmers in a dataset of R reads
is R · (L − K + 1), and the complete set of DNA Kmers is composed of
4K different strings.
If we assume a uniform distribution of different Kmers in the reads, the

probability of finding n times a given Kmer in a certain part of the read
after R reads is given by a binomial distribution, so one can carry out a
binomial test to determine if there are overrepresented Kmers at a certain
position, which is a flexible indicator for technical contamination.

3.3. Removal of artefacts

In case contaminants are detected after the first quality check of the se-
quenced dataset, the user should decide whether to remove the contam-
inants and continue the analysis, or to re-sequence the sample(s). Both
options have drawbacks6, but in case of bias correction there are at least
four actions that can be undertaken.

Trimming The low-quality parts (e.g., the endings) can be trimmed from
the reads in order to get reads that can be mapped with more accuracy
to the reference genome.

Clipping The adaptor sequences, that can be included in the length of the
read when very short RNA fragments are sequenced, can be clipped7:
it is crucial to remove this form of contamination when it is required
to map short RNA fragments on the genome with high accuracy (e.g.,
during the sequencing of miRNAs).

Filtering Corrupted sequences with low average quality value, or high
amount of N (unassigned bases), Illumina derived sequences (e.g.,

6 Rerunning the experiment is costly and may cause a time delay, but removing the contaminants
from the dataset also causes a time delay and the resulting cleaned dataset might be suboptimal in
terms of coverage.

7 In some sources this process is called trimming of the adaptor sequences.
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primers, or the internal control PhiX), artifactual low-complexity se-
quences, polyA stretches can be excluded from the dataset.

Biological contaminants removal Homology searching for conserved
non-coding RNA sequences (such as rRNA, tRNA and so on) would
help to filter out the most abundant sources of biological contamina-
tion.

After removing the artefacts, a good practice is to run the quality control
pipeline again in order to test whether the quality issues have been solved.

3.4. Mapping the reads to the reference genome

Given a read, if we want to ask what gene it originates from, we need to
find the best sequence match (i.e. to align with the biggest possible accu-
racy8) in the reference genome (or transcriptome). This process is called
mapping. Many methods are available to identify the best match of a se-
quence in a database (the most used is probably BLAST[1]). However,
these are designed to match sequences several hundred bps in length.
Mapping the reads of a typical RNA-seq experiment is a formidable

task: a whole mapping would involve the matching of several tens of
millions of short reads (30-100 bp) against a much larger genome (on the
order of billions of base pairs in the case of vertebrate species). If, for
example, 32 million reads (the size of the dataset corresponding to one
sample in a typical RNA-seq experiment) need to be mapped and each
mapping is completed in one second, the whole process would require
roughly one year! So, the commonly used string alignment algorithms
would be computationally too expensive and would not complete the task
in a feasible time frame. In order to reduce the computational cost and
time for the alignment, the genome should be reversibly compressed and
associated with fast-to-consult reference indexes.

3.4.1. The Burrows-Wheeler transform

One of the most elegant approaches to solve the mapping problem applies
a compression algorithm called the Burrows-Wheeler Transform9.
Let’s consider a string (S) of DNA, which is encoded by the four bases

8 There are many possible principles to weigh the definition of a good alignment: for example the
alignment should contain only few, short mismatches and prefer that lower-quality bases would
mismatch compared to higher-quality bases.

9 The Burrows-Wheeler Transform is an algorithm which has been developed in the early 1990s
specifically in order to compress a large amount of text.
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(ACTG) and the termination symbol ($, which could be in a genome the
delimiter between two chromosomes):

A0G0C0C1A1T0G1A2$0

where the different subscripts are the rank of the base in the string10. If
we take all the rotations of the string (i.e. all strings that are obtained
by a recursive process where the last character is removed and placed
at the first position of the string) and sort them in a consistent order,
for example alphabetically (with crescent order $ACGT), we obtain the
following array

$0 A0 G0 C0 C1 A1 T0 G1 A2

A2 $0 A0 G0 C0 C1 A1 T0 G1

A0 G0 C0 C1 A1 T0 G1 A2 $0
A1 T0 G1 A2 $0 A0 G0 C0 C1

C1 A1 T0 G1 A2 $0 A0 G0 C0

C0 C1 A1 T0 G1 A2 $0 A0 G0

G1 A2 $0 A0 G0 C0 C1 A1 T0

G0 C0 C1 A1 T0 G1 A2 $0 A0

T0 G1 A2 $0 A0 G0 C0 C1 A1

which is called the Burrows-Wheeler Matrix (BWM) of S and where the
last column (in bold font) is the Burrows-Wheeler Transform (BWT) of
S. The BWT has the powerful property of retaining the information about
the suffixes11 of S (in italic font). It is easy to notice that the suffixes
of S are sorted accordiing to the same sort order of the rotations of S.
Moreover, the order of the ranks of the different bases is the same in
the first column of the BWM and in the BWT12: this is the basis of the
so called Last-to-First (LF) mapping. The LF function maps a given
position of the BWT to the original string and thus can be used to 1)
reconstruct the original string (Walk Left Algorithm), and 2) align a given
query to S given the BWT. The equation which describes the function is

10 The rank of a character in a string is the number of times the character has already occurred in the
string. A character that is found in the string for the first time has rank 0, for the second time has
rank 1, and so on.

11 The suffix of a string is a substring which includes the end of the string itself, for example -ying
is a suffix of both playing and copying

12 If we consider the ranks of the sorted A bases in the first column of BWM (A ranked 2 at position
2, A ranked 0 at position 3 and A ranked 1 at position 4), and the ranks in the BWT (A ranked 2
at position 1, A ranked 0 at position 8 and A ranked 1 at position 9), it is visible that the order of
occurrence of the ranks is the same.
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the following:

LF(idx, char) = rankBWT(idx, char) + occupancy(char) (3.2)

where char is the character which has to be mapped, rankBWT is the rank
of char in the BWT13, and the occupancy is the number of characters
lexically smaller of char which can be found in the BWT14. It can be
recognised that the LF mapping of char is its position in the first column
of the BWM.

I dx F BWT rankBWT occupancy LF(idx,BWT)

0 $0 A2 0 1 1

1 A2 G1 0 6 6

2 A0 $0 0 0 0

3 A1 C1 0 4 4

4 C1 C0 1 4 5

5 C0 G0 1 6 7

6 G1 T0 0 8 8

7 G0 A0 1 1 2

8 T0 A1 2 1 3

That is, given a character in the BWT, the LF function associated with
that character is the value of the position of that same character in the
first column of the BWM. This is fundamental, due to the property
that if a character X has a position P in the first column of the BWM
the character Y with position P in the BWT is going to be the charac-
ter preceding X in the generating string—that is, the string has a form
[...]YX[...].

13 See note 10. Be careful because the rank in the BWT is not necessarily the rank of the character
in the string (usually it isn’t)!

14 For example, the characters in the genome lexically smaller than G (if an alphabetical sorting is
adopted) are $, A, and C. It’s quite straightforward that

occupancy(char) =
∑

char∗<char

(rankmax
BWT(char∗) + 1).

Remember that here both the rank and the raw position in the BWM start from 0.
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The walk left algorithm permits reconstruction of the generator string.
Let’s start from the end of string sign ($) in our example BWT, which has
rankBWT = 3, and let’s calculate its LF value, which is 0. The character
of the string with rankBWT = 0 is A2, which has a LF=1. Following the
same procedure we thus find G1 (rankBWT = 1, LF=6 ), T0 (rankBWT = 6,
LF=8 ), and so on. After three steps of the walk left algorithm15 we
have thus reconstructed the string T0G1A2$, which is exactly the four-
characters suffix of the string S at page 32.

3.4.2. Application of the Burrows-Wheeler transform
to genome mapping

After presenting the BWT, the next step is to understand how we can
use it to reduce the computational time of genome mapping of RNA-seq
reads. One can intuit that the BWT of the genome, whilst it maintains all
the information of the originating genome, rearranges the indexes of the
string in order to make the relation between characters of the string more
accessible.
A fast way to search for a string Q = q0q1q2 · · · qlen(Q)−1 within a

string S using the BWT is to apply a backward search approach, which
involves a variant of the BWT data structure called the FM (Full-text
Minute-space16) index, where the first column of the BWM and the BWT
are stored, together with information of the offset of the suffixes17. Given
a n-character string Q = q0q1...qn−1 to query in a string S, the general

15 The name derives from the fact that the proposed ‘index translation’ of a character from the rank
in the BWM to the LF can be seen as going towards the left (i.e. the first column) of the BWM. This
becomes explicit while visualising the first step of the algorithm.

F BWT
$0 −→ A2
A2 ↖1 G1
A0 $0
A1 C1
C1 C0
C0 G0
G1 T0
G0 A0
T0 A1

16 But it was introduced in 2000 by Paolo Ferragina and Giovanni Manzini...

17 The suffixes shown earlier in the BWM of the string S (page 33) can be associated with the offset
of the suffix en respect of the first character of the string: the suffix which begins at the ith character
of the string will have offset i. So the suffix $ will have an offset equal to length(S)-1, while the
suffix coincident with the whole string will have offset 0.
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algorithm (in pseudo-code) is as follows:

top = 0

bottom = n

for char in Q

top := LF(top,char)

bottom := LF(bottom,char)

# [top, bottom) is the interval where

# to find the query after each step.

where in this case the function LF(idx, char) is always applied as if the
character in the BWT at position idx has value char.
As an example, let’s try to find the query ATG in the string S (page 32).

The first cycle of the algorithmwould compute LF(0,G) = 6 and LF(n =
9,G) = 8, as if there was a G concatenated at the beginning and at the
end of BWT18. The top and bottom pointers are then moved to position
6 and 7 (because the bottom value is excluded by the range), which are
coincident to the interval of Gs in the column F.

F BWT Offset
← top0

$0 A2 8
A2 G1 7
A0 $0 0
A1 C1 4
C1 C0 3
C0 G0 2

top1 → G1 T0 6
→ G0 A0 1

bottom1 T0 A1 5
← bottom0

The second cycle of the algorithm takes into consideration the character
T and evaluates the top = LF(6,T) = 8, and bottom = LF(7,T) = 9.
In this example, there is no other T in the S string, and the bottom pointer
goes outside the string, while the top pointer goes to position 8 of the F
column (pointing to the only T).

18 Caution is needed as LF(0,char) takes into account the original character at position 0 in the BWT,
while computing the occupancy of char.
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Query: ATG
F BWT Offset
$0 A2 8
A2 G1 7
A0 $0 0

top3 ⇒ A1 C1 4
bottom3 C1 C0 3

C0 G0 2
G1 T0 6
G0 A0 1
T0 A1 ← top2 5

← bottom2

The last step of the algorithm evaluates top = LF(8,A) = 3, and
bottom = LF(9,A) = 4: the query process has ended, and the query is
in the interval [3 4) of the BWM, that is at position 3 of the BWM:

I dx
3 A1 T0 G1 A2 $0 A0 G0 C0 C1

.

Given that the FM index includes the suffix index19, it can also be es-
tablished that the query string starts at position 4 of the original string

I dx 0 1 2 3 4 5 6 7 8
String A0 G0 C0 C1 A1 T0 G1 A2 $0

If the query was not present in the original string, GTG, the third step
of the algorithm would estimate top = LF(8,G) = 7 and bottom =
LF(9,G) = 7, that is the query is in the interval [7 7) which is a notation
nonsense.

Query: GTG
F BWT Offset
$0 A2 8
A2 G1 7
A0 $0 0
A1 C1 4
C1 C0 3
C0 G0 2
G1 T0 6

top3 = bottom3 ��� G0 A0 1
T0 A1 ← top2 5

← bottom2

19 In the shown example, it included the whole set of suffixes offsets.
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The BWT query algorithm can be, extended to take into account other
parameters as well, such as the Phred score of the aligned bases, or toler-
ance to mismatches/extensions, and so on.

3.4.3. Optimal storage of the suffixes index

In the example shown in Section 3.4.2, as soon as the backward search
algorithm ends, we can associate the found string in the FM index with
the sequence offset (i.e. the starting position of the query in the genera-
tor string), because all indexes of the suffixes associated with the BWM
are stored within the FM data structure. However, storing all the suf-
fixes indexes for the whole human genome would require about 12 Gb of
memory, which is too much to be handled in a fast and economical way.
A solution to this problem is to store only an evenly-spaced fraction

of the suffix indexes. If the found query is at a position which is not
indexed, it would be sufficient to use the walk-left algorithm until an
indexed position is reached.

Query: ATG
F BWT Offset
$0 A2 8
A2 G1

A0 $0
top ⇒ A1 C1

bottom C1 C0 3
C0 G0

G1 T0
G0 A0

T0 A1 5

In this case there is no saved suffix index for BWT position 3, so if we
apply the walk left algorithm (page 3.4.1) we get position LF(3,C)=4.
There is a saved suffix for BWT position 4, so we can apply the following

offset(query) = no stepswla + offset(charwla) (3.3)

where no stepswla is the number of steps performed by the walk-left al-
gorithm before finding a indexed BWT position (in the example = 1),
and offset(charwla) is the value of the found offset (in the example, = 3).
Applying the Equation (3.3) to the example thus gives offset(query) = 4,
which is the correct value of the index.
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3.4.4. Structure of a SAM file

In RNA-seq applications, some flexibility in the mapping is allowed (a
certain number of mismatches and indels is tolerated). After mapping
the reads on the reference genome, the output is usually encoded in the
SAM (Sequence Alignment/Map) data format. The key feature of
SAM files is that they contain information on the position of the match in
the genome and any mis-alignments between the individual read and the
reference sequence. If we have the following alignment:

Alignment: 12345678901234 5678901234567890
Refer0001: AGCATGTCAGATAG**GATAGCAGTGCTAGTA
Read001+: TCAGATAGAGGATA*CAG

The corresponding SAM format is as follows:

@HD VN:1.5 SO:coordinate
@SQ SN:ref LN:45
Read001+ 99 Refer0001 7 30

8M2I4M1D3M = 37 39 TCAGATAGAGGATACAG *

The sample SAM file above has two main components: the header and
the alignment sections. The header usually has multiple lines with each
line starting with an @ and encodes information from the sequencing
platform, the technical characteristics of the alignment and so on20.The
alignment section shows the alignment of the read with the reference se-
quence and is followed by a line with 11 mandatory fields (together with
optional fields), in the order:

GNAME the name of the read, the same in the FASTQ file;
FLAG bitwise flag, a combination of bitwise flags where each bit value

associates to the read a precise alignment property—e.g., 99 means
that the read is paired (0× 1), mapped in a proper pair (0× 2), whose
mate read should be reverse complemented (0 × 20), and it is first in
the pair (0 × 40);

RNAME is the reference sequence name as found by the alignment;
POS is the starting position of the alignment of the read in the reference

sequence;

20 For example: @HD–aligment header (sorting of aligments,...), @SQ–reference sequence dictio-
nary (reference genome, species, length of reference read,...) @RG–read group (sequencing plat-
form, read information,...), @PG–programme, @CO–comments.



40 Alessandro Cellerino - Michele Sanguanini

MAPQ is the mapping quality in Phred-scale, that evaluates the proba-
bility that a (high-Phred value) base is mismatched;

CIGAR the CIGAR string states how well the read is aligned to the ref-
erence, for example 8M2I4M1D3Mmeans that, starting from the POS

value of 7, there are 8 matches (8M), 2 insertions (2I), 4 matches (4M),
1 deletion (1D) and 3 matches (3M);21

MRNM is the Mate Reference Name (‘=’ if the same of RNAME, ‘∗’ if
unknown), that is the name of the reference for the paired sequence;

MPOS location of start alignment of pair mate on the reverse strand;
ISIZE inferred insert size, that is the maximal coverage of the reference

sequence RNAME given by all the mapped reads;
SEQ sequence of the read (‘∗’ if not stored);
QUAL are the quality scores of the read (Sanger Phred scores, as stored

in the FASTQ file, ‘∗’ if not stored).

3.5. Complexity and depth of the sequencing

A key issue is the estimation of the complexity (i.e. the number of differ-
ent molecules) of the library one has sequenced. A dataset of reads from
an RNA-seq experiment is derived from a library containing C distinct
cDNA species. The problem is to estimate the molecular complexity of
the original cDNA ensemble through this limited sampling (the mapped
reads). As it will be shown later, this is important from a conceptual and
a technical point of view, because an estimation of complexity allows the
scientist to make an informed decision as to increase the depth of the
sequencing (or not!), and is a quality checkpoint of the cDNA library22.
We show here a solution which is mostly applied to next-generation DNA
sequencing, but that can also be of use when building a transcriptome.

3.5.1. The Negative Binomial distribution is commonly used
to estimate the complexity of a library

As a first example, we want to estimate the complexity of a library com-
posed of C different molecules of DNA that differ in their concentration
using a given amount of reads R. The easiest way to estimate C is to con-
sider the detection of a read from a given cDNA to be a stochastic event.
While the Poissonian would be the easiest model, a major assumption un-

21 The insertions, or deletions, are always considered from the point of view of the aligned read
(deletion to the reference, insertion from the reference).

22 Usually, if the estimated complexity is particularly low, this should be taken as a strong indication
that something went wrong in the experimental preparation of the library.
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derlying this distribution is that each cDNA has a uniform representation
(i.e. concentration) in the library, and this is clearly not the case in tran-
script populations23. A widely-used approach is to model the distribution
of the reads using a statistically overdispersed distribution, such as the
Negative Binomial model:

P(xγ = x maps after r nonmapping) =
(
r + x − 1

x

)
px(1−p)r (3.4)

that describes the probability of having x reads mapped to the cDNA γ

after a number r of failures, if p is the probability of mapping a read.

In order to explain why the Negative Binomial is so commonly used, let’s
consider the probability that a given read comes x times from the cDNA γ .
This is likely to be a random process which follows a Poissonian probability
distribution

P(xγ = x |λγ ) = λx
γ

e−λγ

x!
(3.5)

where λ is an estimation of the frequency of the event to randomly occur, which
in the case of a library complexity estimation would be linked to the prevalence
of the species γ in the library, the effective complexity C and the number of
reads R. So the data that are mapped on the genome could be explained as a
mixture of Poissonians P(x |λγ ), with λγ composed of a constant component
and a variable λ, which is distributed as a gamma distribution24, that is

P(λ|α, β) = βαλα−1e−βλ

�(α)
(3.6)

where �(α) = (α − 1)! for α ∈ N, α and β are distribution parameters to be fit
from the data, and thus the gamma mixture will have the form:

P(x |α, β) =
∫ ∞

0

λxe−λ

x!

βαλα−1e−βλ

�(α)
dλ = NB2(x |α, β) (3.7)

which can be reconducted to a Negative Binomial distribution with the com-
plexity of the library and the dispersion of the data as parameters (for further
information see Appendix 3.1 at the end of the chapter).

23 Along highly-expressed transcripts (tRNAs, rRNAs, main homoeostatic genes), there is a plethora
of lowly expressed—and arguably more interesting—transcripts. This condition is called overdis-
persion, when the variance between a random sampling of the different transcripts is higher com-
pared to the one (expected) from a Poisson distribution.

24 The choice of this distribution is justified by the fact that the gamma distribution is the conjugate
prior of an a posteriori Poisson distribution.
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The approximate estimation of the complexity of the library (Ĉ) is
given by

Ĉ = M

1 − NB2(x = 0|R/C̃, ω̃)
(3.8)

where Ĉ is the estimated complexity from the sequencing, C̃ is the value
of complexity which is expected from the library, M is the number of
unique molecules mapped after the sequencing, and NB2 is the probabil-
ity value of no reads for a molecule assuming a negative binomial distri-
bution with parameters R/Ĉ (with R the number of reads) and dispersion
ω̃ (see Equation (3.15)). An interpretation of the Equation (3.8) is that
the number of molecules that can be mapped to a reference genome in
a run of sequencing depends on the effective complexity of the library,
multiplied by the probability of detecting a molecule25.

3.5.2. Marginal value of additional sequencing

Now that we have a good model to estimate the complexity of the library
from the data, e.g., from a shallow number (< 106) of reads, we can
use this parameter to answer an important question: how deep should
we sequence the library in order to get the most information in a cost-
time/effective way?
Given Equation (3.8), the number of molecules mapped after a round

of sequencing is proportional to the fitted complexity of the library and
the probability of not detecting any reads for a molecule after R reads,
as modelled by the Negative Binomial distribution (Equation (3.14)). So
the change in the number of different molecules detected after adding r
more reads is given by:

M(r) = Ĉ · (1 − NB2(x = 0|(R + r)/C̃, ω̃)) (3.9)

whose behaviour is shown in Figure 3.3. As it can be seen, the number of
different transcripts detected initially rises quickly when the number of
reads (coverage) is low. But after a certain number of reads the average
increase in the observed distinct molecules becomes almost flat—thus
meaning that a further increase in depth (and cost!) of the sequencing
would not be worth the amount of additional information that can be
obtained. Also, and equally importantly, the higher the dispersion, the
higher the numbers of reads necessary to obtain a substantial flattening

25 Which can be stated as the complementary probability of not having any read for a molecule.
Please note that Equation (3.8) contains the estimation of library complexity in both of its members,
so it does not have a trivial solution.
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Figure 3.3. Qualitative behaviour of the number of expected single molecules
to be observed (M) as a function of the total number of reads (R) in a synthetic
library of C = 15 · 106 unique molecules. The underlying model is a Negative
Binomial distribution with different dispersion estimations (ω1 < ω2 << ω3).

of the curve. In practical terms, a depth of 40 Million reads is generally
considered adequate for a typical vertebrate RNA-seq experiment.

Appendix 3.1 – Negative binomial derivation

Starting from Equation (3.7) it is possible to reconduct the gamma-
Poisson mixture to the Negative Binomial distribution (Equation (3.4)),
and, moreover, to reveal the relationship between the ancillary parameters
of Equation (3.4) (r and p) and the hyperparameters of the gamma distri-
bution which include the complexity (C) of the library and the dispersion
of the original sample (ω).
Let’s take out from the integral the functions which are not dependent

on lambda and rearrange Equation (3.7) as follows:

P(x |α, β) = βα

x!�(α)

∫ ∞

0
λx+α−1e−(β+1)λ dλ (3.10)

after resolving the integral of the form
∫
xne−axdx using x + α cycles of

integration by parts and remembering that �(x +1) = x! if x ∈ N we get

P(x |α, β) = βα

�(x + 1) �(α)

(
1

λ∗(β + 1)

)x+α

�(α + x) (3.11)
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which can be rearranged as

P(x, λ|α, β) = �(α + x)

�(x + 1) �(α)

(
1

β + λ∗

)x+α

βαλx
∗. (3.12)

Given that
�(α + x)

�(x + 1) �(α)
=

(
α + x − 1

x

)
(3.13)

we obtain the following:

P(x |α, β) =
(

α + x − 1
x

) (
1

β + 1

)x+α

βα

=
(

α + x − 1
x

) (
1

β + 1

)α (
β

β + 1

)α

=
(

α + x − 1
x

) (
1

1 + β

)x (
1 − 1

1 + β

)α

.

(3.14)

So, if we apply the transformations 1
1+β

→ p and α → r to the pre-
vious equation we get the combinatorial form of the Negative Binomial
distribution (Equation (3.4)).
One can also argue that the hyperparameter p (the probability of suc-

cess) and r (the number of failures before success) are a function of the
number of reads (normalised against the complexity of the library) and
of the dispersion of the library. It can be shown that

r = 1

ω̃
(3.15)

p = R/C̃

R/C̃ + r
(3.16)

where ω̃ and C̃ are estimated iteratively from the data, for example using
Expectation-Maximisation algorithms. For further information see [20,
Chapter 8].



Chapter 4
Differentially expressed gene detection
and analysis

4.1. Introduction

RNA-seq analysis of gene expression delivers, for any given sample, an
estimate of the the abundance of transcripts derived from a gene (ex-
pressed as number of reads mapping to that gene). However, in order
to derive useful biological information from these high-dimensionality
data, it is necessary to compare these data with those obtained from other
samples that differ in some biological variable of interest (e.g., different
tissues, conditions, time points, and so on). This requires a statistical
model that—for each pairwise comparison—provides the probability (p-
value) that the observed difference is due to chance (i.e. the probability
that the measurements in the two groups are extracted from the same
distribution). Only when this difference is significant (i.e. the p-value
is sufficiently small), the gene can be defined as differentially expressed
between the two conditions.
Due to the nature of the data, the methods of standard statistical cook-

books are not applicable to this problem. In this chapter, we will deal with
how to detect differentially expressed genes (DEGs) from two RNAseq
datasets.

4.2. Counting genes in a dataset

In Chapter 3, a simple strategy which employs the Burrows-Wheeler
Transform to map many short reads to the reference genome was pre-
sented (page 33). Since the genome is annotated (i.e. the position of
exons and introns are known, Figure 4.1) three different outcomes can
follow from the mapping:

non-mappable reads reads that do not map to the reference genome
(corrupted, artifactual, and so on);
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mappable reads reads that map on a given site of the reference genome,
i.e. reads from unspliced regions of the gene (the vast majority of the
reads if short reads are sequenced);1

‘splicing site’ reads reads that map partially on two disjunct stretches
of the reference genome (within the same gene), thus encompassing a
splicing site of the gene2.

The joint analysis of mapping and exon annotations makes it possible
to count how many reads are associated with a given gene3, which is
reasonably a measure of the intensity of gene expression.
An interesting visualisation of mapping is the density of reads mapped

along a genomic region. This can be obtained by ‘piling-up’ all readsmap-
ping to the same region and counting (with base-resolution, if needed) the
number of reads contained within a given sequence window. The cumu-
lative overlap (or coverage) of the reads to the reference genome—when
sequencing depth is sufficiently high—usually results in a roughly flat
distribution along the exons of a given gene (with decreasing density in
the vicinity of splice junctions) and much lower density on the introns.
These coverage vectors are very compact ways to store the tallying of
reads to the reference genome (they are integer vectors associated with
each base pair in the chromosome), and are an estimation of the prob-
ability density for a given base pair to be represented in the sequenced
dataset.

4.3. Detection of differentially expressed genes

Ideally, the process of gene counting can be compared to particle de-
tection in physics. In the latter, a detector will count every time it is
hit by a particle. In RNA-seq, we can image that all reads run sequen-
tially through an array of detectors, each corresponding to one gene of
the genome. Each detector will count how many times it was ‘hit’ by a
read. So the processing of the sequenced dataset delivers a list of unique

1 A special case of this scenario consists of the redundant mappable reads. That is, reads that map
onto genes that are structurally repeated in the genome.

2 This is an interesting piece of information when dealing with different isoforms of a given mRNA.
A simple alignment algorithm would classify these reads as non-mappable: the algorithm requires
special steps in order to detect the reads including a splicing site.

3 The same dataset can be counted multiple times using different references. For example, one can
use first using protein-coding RNAs, then non-coding RNAs, and finally transposable elements as
reference. More importantly, the same dataset could (and should) be reanalysed if a new reference
genome/transcriptome becomes available for the species of interest.
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Figure 4.1. The mapping process can provide information on the splicing sites
of the different transcripts. A mature mRNA is usually formed by splicing sev-
eral exons together. The sequencing occurs randomly, starting from different
base pairs of the corresponding cDNA, and could include (dashed black arrows)
or not (solid black arrows) the splicing junction. In the former case, the read
cannot be mapped completely to the same region of the reference genome, but
to two disjunct, but neighbouring regions within the same gene; in the latter
the read is mapped uniquely to a given region. A minority of reads (<10%
in good-quality sequencing) cannot be mapped to the reference genome (solid
grey arrows). The mapping density can be represented using a coverage vector
(vector reproduced from [62] under a CC-BY License).

gene identifiers4 each with an associated with an integer number (counts).
Since transcripts have different lengths and libraries from different sam-
ples have different sizes (number of reads), some form of normalisation

4 Every identifier is a string uniquely associated with a given genomic element (gene/exon/transcript)
that allows an algorithm to retrieve the sequence and other information relative to the gene from a
database. An example are the Entrez IDs, which refer to the NCBI database.



48 Alessandro Cellerino - Michele Sanguanini

is needed to compare transcript abundance across samples. Three com-
monly used procedures are:

RPKM (Reads Per Kilobase per Million mapped reads) where mapped
reads are first normalised to RPM (Reads Per Million, divided by the
total number of reads in the library scaled by the factor 106), in order
to compare datasets with different sequencing depths, and then for
the length of the gene, assuming that a longer gene L would likely
yield a larger amount of reads compared to a shorter gene S, when the
expression levels of S and L are the same;

FPKM (Fragment Per Kilobase per Million mapped reads) have the
same normalisation rationale of RPKM, however it is used in paired-
end RNA-seq, so that two paired reads (or a single unmatched one)
are considered a single fragment and are not counted twice;

TPM (Transcript Per Million), a relatively new normalisation strategy
where the mapped reads are first normalised with the length of the
gene and then with the total of the normalised reads scaled by the
factor 106.

The inverted order of the normalisation steps is not the only difference
between RPKM/FPKM and TPM. The TPM offers the great advantage
that the sum of the TPM for a given sample is always constant, no matter
the depth of the sequencing (this is not true for the RPKM values). A
mathematical derivation of this claim is available in Appendix 4.1.
However, all three methods suffer from a possible limitation: if some

highly-abundant transcripts change their level of expression—e.g., due to
the experimental condition—this can skew the entire distribution of reads
leading to errors in the estimation of the library size. We will now present
an early solution to this problem proposed by Anders and Huber [2]. In
order to make a comparison between the data from different samples, per-
haps with different sequencing depths, we have to model the properties
of the set (see also Section 3.5.1 on page 40), in particular its numeros-
ity and its gene expression mean and variance. In [2], the estimation of
the numerosity of a dataset j is called size factor s j . It is easy to recog-
nise that the global expected value of gene expression for the dataset j
is proportional to s j , and thus this factor can be used to later normalise
the single gene expression values. In fact, if we call E[Ki, j ] the expected
value of the gene i in the dataset of sample j and E[Ki, j ′] the expected
value of the gene i in the dataset of sample j’ we have that

E[Ki, j ]

E[Ki, j ′]
= s j

s ′
j

(4.1)
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if the gene i is not differentially expressed in the samples j and j’, or
if j and j’ are technical replicates. Anders and Huber make the reason-
able assumption that the large majority of the genes are not differentially
expressed. Therefore, in the case of two samples, the estimator of s j

s j ′

is the median of Ki j
Ki j ′

computed over all the expressed genes. In order

to estimate the size factor of a sample j (ŝ j ) from its sequenced dataset
ki j , in the case of multiple samples, Anders and Huber propose to use
a pseudo-reference dataset obtained from temperating the set with a ge-
ometric mean across all the samples and picking the median estimation
(between all the genes) from this new dataset:

ŝ j = median
i

⎡
⎣ki, j m

√√√√ m∏
ν=1

1

ki,ν

⎤
⎦ (4.2)

where m is the total number of samples. Empirical evidence shows that
this approach can really provide better estimates of library sizes as com-
pared to RPKM (Figure 4.2).
Let’s now consider to have two different datasets, which have been

prepared from samples with distinct conditions5. The first interesting
biological question one could ask is whether there are genes whose ex-
pression is modulated with high probability in response to the conditions.
This is a typical statistical question.

4.3.1. When is a difference significant?

To decide whether differences in gene expression are ‘real’, we need to
model the underlying statistics of the dataset in order to determine when
a given difference is unlikely to have occurred by chance. That is, when
the difference of gene expression is statistically significant. The prob-
lem is simple in principle and for each gene we need to follow three steps:

1. Identify the probability density function which describes the distribu-
tion of the gene expression data.

2. Estimate the variance and mean of expression (and other relevant pa-
rameters) for each gene in the two conditions.

3. Calculate the p-value.

5 e.g., prenatal neurons/adult neurons, young nervous tissue/aged tissue, brain of healthy aged peo-
ple/pathologically aged patients.
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Figure 4.2. Comparison between two different normalisation methods: the
RPKM and the ‘size factors’ normalisation step as described in [2] and dis-
cussed in the text. Each boxplot represents the distribution of expression val-
ues in one individual RNA-seq sample. The distribution of expression levels
is represented as conventional boxplots (see Figure 1.3A at page 6), where the
whiskers represent the 5-95% interval and there is no representation of the out-
liers. It is noticeable that the choice of a normalisation procedure can affect
the distribution of expression values: while the RPKM method fails to produce
homogeneous (i.e. correctly comparable) sets of transcript abundance, the ‘size
factors’ method achieves a better result. Data from [6].

However, there are three major hurdles that complicate this approach:

• the distribution of the data (counts) clearly does not follow a Gaus-
sian distribution (Figure 4.3), and the dynamic range of the data spans
several orders of magnitude (seven in the example shown);

• normally, only a few replicates per condition are available, so a precise
estimate of mean and variance is not possible;

• several thousand genes are compared in one experiment, so there is a
fundamental necessity to correct for multiple testing.

4.3.2. Modelling the data distribution

As we mentioned in Chapter 3, sequencing can be seen as a series of
Poissonian variables—as it represents a process of random sampling. In-
deed, experimental tests have shown that technical replicates of the same
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A

B

Figure 4.3. The distribution of the read counts associated with any gene inTh di t ib ti f th d t i
one example of RNA-seq dataset (in this case, the data derive from a killifish
transcriptome) plotted in log scale to illustrate how the dynamic range spans
several orders of magnitude. In this specific case, the depth of the sequencing
was ∼ 20 · 106 reads. A) Global count distribution with associated cumulative
frequency showing the extreme tail of the distribution: 99.95% of the genes are
represented by less than 900 reads, however a few genes have counts > 9000.
B) A close-up on the leftmost part of the distribution notes a strong prevalence
of genes with less than 50 counts (vertical dotted line). The distribution can be
fitted with a negative binomial.

experiment (i.e. replicate sequencing of the same library) are distributed
according to a Poisson distribution [33]. A characteristic of Poisson dis-
tributions is that mean and variance are equal. Following Anders and Hu-
ber [2] again, we can partition the variance of (normalised) gene counts
across samples in two components: the shot noise of the sequencing, that
represent the poissonian technical variability, and the ‘real’ variance (i.e.
related to biological processes)

σ 2
iσ , j = μi, j︸︷︷︸

shot noise

+ s2j νi,�(i)︸ ︷︷︷ ︸︸
raw variance

(4.3)
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where μi, j is the mean count of gene i in sample j, s j is the size of sample
j, and νI,�( j) is a smooth function6 of the expression level of gene i and
further depends on the effect of the experimental condition of the sample
j �( j).
As previously mentioned, the raw variance is the ‘interesting’ part of

the variance and is due to biological variation and experimental condition.
Our aim is to disentangle variation due to experimental conditions from
technical and biological variation.
A Poisson process which occurs in a highly overdispersed sample (i.e.

with high-variance, see note 23 at page 41) can be described as a Nega-
tive Binomial

Ri j = NB2(μi j , σ
2
i j ) (4.4)

where Ri j is the value of the read count in the sample j assigned to gene
i, distributed as a Negative Binomial with parameters7 μi j and σ 2

i j , which
are respectively the ‘real’ mean and the ‘real’ variance of gene i in sample
j. These population parameters are not known, but their value for each
gene has to be estimated from the datasets. This is not easy since usually
very few biological replicates are available.
Anders and Huber adopted a clever approach to solve this problem in

their widely used DEseq package [2]. They again start from the assump-
tion that the majority of genes are not differentially expressed. They fur-
ther assume that the relationship between mean and variance is a
‘smooth’ function. So, to derive this key feature, they average the μ

σ

values obtained from genes with similar expression levels and perform
a local regression. (Figure 4.4). This function estimates the expected
variance of expression for each gene. A very important aspect can be
appreciated from Figure 4.4: at low expression values, the variance is
dominated by the shot-noise (the Poisson and DEseq lines are very close)
but at high expression values the raw variance is two orders of magnitude
larger than the shot noise (note that the Y-axis is in log-scale).

6 A smooth function is a function whose derivatives are continuous up to a certain order.

7 A common parametrisation for NB2, derived from Equation (3.4) with p = σ2−μ

σ2 and r = μ2

σ2−μ
,

is as follows:

NB2(R = x |μ, σ) =
μ2

σ2−μ
+ x − 1

x

) (
1 − μ

σ 2

)x (
μ

σ 2

) μ2

σ2−μ
.
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Figure 4.4. Fitting of the relationship between the common-scale variance
from the scaled gene expression values (common-scale mean) of the genes in
a Drosophila RNA-seq dataset. A Poissonian process would underestimate the
relationship between mean and variance, because in a Poissonian trend μ is
equal to σ 2—hence the straight line in the graph—while the DESeq approach
(described by Anders and Huber [2] and partially discussed in the text) provides
a better fit for the dataset. A second algorithm, edgeR [46], models the negative
binomial by multiplying the variance with a constant instead of performing a
local regression. This is shown to overestimate the μ/σ 2 dependence at high ex-
pression values and to underestimate it at low expression values. Figure adapted
from [2] (http://creativecommons.org/licenses/by/2.0).

4.3.3. Testing the negative binomial model

Let’s assume that we want to test whether a given gene i is differentially
expressed between conditions A and B, where the number of replicates is
mA and mB . This requires us to calculate

the probability that the counts of i in condition A and B are equal
to the measured values Ki,A and Ki,B , under the hypothesis that
the real expression values for i are the same in both conditions
(H0HH : κi,A = κi,B).

Ki,A and Ki,B are respectively the expected values of mA and mB distinct
Negative Binomial distributions whose parameters were estimated using
the model described in Section 4.3.2. The paper from Anders and Huber
[2] also describes how to calculate this probability under the aforemen-
tioned conditions. Other approaches use different models and methods to
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obtain this probability8. Regardless of the statistical test used, the rele-
vant point is that the probability we previously stated is the probability
of accepting the null hypothesis (H0), which is the logical negation of
the working hypothesis. For each gene, one has to determine an ‘ide-
alised’ statistical model of the data (e.g., the statistical test T) that is
associated with the probability distribution of the null hypothesis. The
next step is to estimate the probability that the values obtained in the two
conditions were extracted from this distribution: this is the p-value for
the null hypothesis of the differential expression.
The gene is considered differentially-expressed if the p-value is smaller

than an arbitrary significance threshold α. In this scenario, the null hy-
pothesis is rejected under the assumption that the data are distributed as a
Negative Binomial9. The value of α is usually 5% when the significance
is evaluated for single hypothesis. However, in RNA-seq experiments,
the number of genes that are tested simultaneously is in the order of 104,
making it a clear case of multiple testing. In this case the probability
of observing rare random events increases, so randomly occurred fluc-
tuations could be erroneously detected as differential expression (type I
error, or false positive). This problem is of paramount relevance not only
in neurogenomics, but also in neuroimaging where a large number of
pairwise comparisons between voxels are performed. It is thus necessary
to correct the p-values for multiple comparisons, which would take into
account the possibility of occurrence of type I errors.
The family-wise error rate (FWER) describes the probability of re-

jecting at least one true null hypothesis (i.e. calling DEG a gene that
is not differentially-expressed). The Bonferroni correction (α′ = α/n,
where n is the number of multiple conditions) is proven to control the
FWER, under the assumption all genes are expressed independently—a
condition far from reality due to extensive gene co-expression patterns.
Applying the Bonferroni correction to gene expression data, however,
implies dividing α by ∼ 104: few genes, if any, would remain DEG after
this correction.

8 This point of the statistical analysis, here dismissed with a few lines, is actually an absolutely central
issue: different available programs make different assumptions to estimate mean and variance from
the data, thus resulting in different performances. See, for example, [2]. Also, a completely different
approach entails the transformation of the data into a nearly-normal distribution that allows us to use
generalised linear methods developed for microarrays. A promising strategy is the use of Bayesian
statistics—whose discussion would however greatly exceed the space of this book. The interested
reader is referred to the DESeq2 follow-up article from Love, Huber and Anders [30].

9 This assumption is not to be underestimated while evaluating the scientific value of a statistically
significant finding. See also [58] for an extensive discussion on the meaning and the correct use of
p-values in a scientific context.
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The false discovery rate (FDR) is a less stringent condition compared
to the FWER, as it is based on the concept that in high-dimensionality
datasets one might tolerate a certain fraction of error. In fact, it is defined
as the proportion of correct H0 which have been rejected. So, an FDR
with value 0.1 means that out of 1000 genes that are identified as DEGs,
100 are not real DEGs (obviously, by the chosen α). FDR-controlled
tests for multiple conditions thus have greater statistical power, but also
include more false positives (see also Appendix 4.2). A widely used
FDR-controlled procedure is the Benjamini-Hochberg-Yekutieli cor-
rection. Let’s consider n different null hypotheses H 1

0 , H 2
0 , ..., Hn

0 with
associated p-values P1, P2, ..., Pn and let’s rank the p-values in crescent
order P<1>, P<2>, ..., P<n> so that to each i = 1...n would correspond
a rank r = 1...n. Given a FDR (φ) and the ranked list of p-values, the
Benjamini-Hochberg-Yekutieli procedure defines a k ∈ N so that

max(k) : P<k> ≤ k

n · c(n)
φ

where c(n) is a function which takes into account the relationship be-
tween the tested conditions, and c(n) = 1 in case of independent condi-
tions, or c(i) = ∑n

i=1 i
−1 ∼ ln(n) (for n 	 1) if an arbitrary relationship

is assumed between the conditions. The process thus rejects every null
hypothesis associated with the ranked p-values P<1>, ..., P<k>.
A very important aspect of RNA-seq data, that derives directly from

the relationship between shot noise and raw variance (Equation (4.3) as
illustrated in Figure 4.4), is the relationship between expression level,
fold change and p-value. This is normally expressed as anMA plot (Fig-
ure 4.5A) where expression is reported on the X-axis and fold change
is reported on the Y-axis. DEGs are represented in a different shade of
grey and the dashed line represents the ‘border’ of DEGs. It is imme-
diately apparent that the lower the expression level, the higher the fold
change needs to be in order to reach significance. An important corollary
of this is that the number of DEGs that can be detected depends critically
on the sequencing depth. So, in order to test the differential expression
of genes with low expression levels high depths are necessary. Another
very common representation of DEG analysis is the so-called volcano
plot, where fold-change is represented on the X-axis and − log (p-value)
on the Y-axis (Figure 4.5B).

4.4. Testing alternative splicing

Given the single-base resolution of the RNA-seq data, these also lend
themselves to the analysis of differential splicing or of differential exon
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A
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Figure 4.5. Statistical significance test of diffff eff rential gene expression in two fly
neural datasets. A) Plot of gene expression change as a fuff nction of mean read
counts (MAMM plot). There is a strong correlation between statistical significance
and read count—in other words, the statistical effff eff ct of the shot noise is higher
in lower-represented transcripts. B) VoVV lcano plot associated with the diffff eff ren-
tial expression distribution A. Grey: statistically significant DEGs (Benjn amini-
Hochberg correction with 10% FDR, see Section 4.3.3), Black: non significant
DEGs. Figure adapted frff om [2] (http://creativecommons.org/licenses/by/2.0).

usage. A key requisite foff r this analysis is a high-quality annotation of all
exons and transcripts in the refeff rence genome. Several diffff eff rent methods
were proposed; foff r example when paired-end sequencing is avaa ailable,
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a sizeable proportion of paired reads will be placed in different exons
facilitating this analysis (and also the annotation of previously unknown
transcripts). An interesting approach to alternative splicing is taken by
the package SplicingCompass [4]. In this case, the mean distribution of
reads mapping to a gene is represented as a vector with n coordinates,
where n is the number of annotated exons and the coordinates are the
expression levels of each exon. The differential inclusion of an exon
would determine a change in the direction of the vector that can be tested
statistically.

Appendix 4.1 – Properties of TPM

The sum of the TPM for a given sample is always constant, no matter the
depth of its sequencing, while this is not true for the sum of the RPKM
values. Let’s consider the RPKM for gene i in sample j to be

rRPKMi, j =
(

Ri, j

s
∑

i Ri, j

1

Li

)
j

(4.5)

where Ri is the number of reads mapped to i, s is the scaling factor, and
Li is the length of gene i, and its TPM as

rT PM
i, j =

⎛
⎜⎜⎝ Ri, j

Li

1
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i
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⎞
⎟⎟⎠

j

. (4.6)

Now let’s consider the sum of the scores in the two cases:∑
i

rRPKMi, j =
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∑
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=
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∑
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∑
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and
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j

= s−1.

(4.8)

So, the sum of the TPM values of a sample is always a constant number
and in particular is the reciprocal of the scaling factor, thus it is usually a
multiple of one million.
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Appendix 4.2 – On errors and statistical tests

In Section 4.3.3 of this chapter we found the need to control for Type 1
errors in the statistical significance evaluation for multiple comparisons.
The hypothesis testing involves rejecting or failing to reject the null hy-
pothesis H0.
Four scenarios can occur:

H0 is →
and is ↓ True False

Rejected
Type I Error
False positive

Correct
True positive

Failed to Rej.
Correct

True negative
Type II Error
False negative

The statistical power β of a test (also called sensitivity) is defined as

β = 1 − φ (4.9)

where φ is the false discovery rate (see Section 4.3.3 at page 55). The
power is the ability of the test to reject the null hypothesis, thus getting
more sensitive in recognising the true positive data, but also more prone
to false positives10. On the contrary, the specificity of a statistical test,
which is the ability to recognise a true positive, depends on the signifi-
cance threshold α (see page 55).

10 A widely diffused minimum value for post-hoc power analysis of a statistical test is 80%.



Chapter 5
Unbiased clustering methods

5.1. DEGs analysis: the issue of complexity

After DEG analysis, the RNA-seq dataset becomes a matrix of vertically-
organised vectors, where the rows correspond to the genes (with iden-
tifiers associated with gene annotation databases) and the columns to
attributes such as fold-change (e.g., up-regulated, downregulated, non-
differentially regulated genes), p-value, FDR corrected p-value, or other
relevant information and measures (Table 5.1). At this point, the nu-
merosity of the data could easily overwhelm the human user and it is not
unusual for a ‘wet-lab’ scientist to struggle and fail to extract relevant
information from and make biological sense out of long lists of DEGs.

DEG ID (Ensembl) Gene Name Gene Description Control Treatment log2 (FC) p value

ENSDARG00000043856 amd1 adenosylmethionine 37.838 17.571 –1.107 0.037
decarboxylase 1

ENSDARG00000087012 BX004816.3 0.816 0.201 –2.019 0.0215
ENSDARG00000052948 BX323876.2 similar to C–type 0.018 1.129 5.985 5.10 ·10−5

natriuretic peptide 3
ENSDARG00000069620 BX323882.1 0.577 2.115 1.873 0.007
ENSDARG00000075757 BX510940.1 Gig2–like 20.275 5.533 –1.874 0.042

protein DreE
ENSDARG00000058094 C19H1orf51 si:ch211–284a13.1 15.578 5.835 –1.417 0.004
ENSDARG00000045139 ca7 carbonic anhydrase 0.665 0.022 –4.91 3.38 ·10−8

VII

Table 5.1. Example of output from a DEG-computing software.

It is a truth universally acknowledged that too much information is
no information (at least for a scientist). In order to extract biologically
relevant information from the detected DEGs, it is necessary to

• reduce the complexity of the data, i.e. to reduce the number of vari-
ables necessary to describe the dataset;

• find structures inside the data, using global methods in order to un-
derstand the relationships between samples, genes or group of genes:
for example, to reveal a sub-structuring of the samples, to test whether
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the experimental conditions influence global gene expression in a
meaningful way1, or to find groups of genes with similar expression
patterns in order to find the function of non characterised genes (‘guilt
by association’)2.

Clustering and Principal Component Analysis (PCA) are two widely-
used approaches to reduce complexity and detect structures within the
data.

5.2. Clustering

The goal of gene expression clustering is to partition a group of genes into
sub-sets, so that each sub-set contains genes that are ‘similar’ by some
metric (e.g., with similar expression pattern). This is ideally a straightfor-
ward approach to reduce the numerosity of the data and to capture some
of the relationships between DEGs. The major challenges in clustering
are

- to define a measure of similarity between two genes (i.e. to define a
distance),

- to apply the chosen similarity criterion in order to partition the data
(i.e to define a clustering algorithm), and

- to define what a cluster is, bearing in mind that the issue of defining
the optimal number of clusters is not trivial.

It is not hard to believe that this flexibility of definitions induced the de-
velopment of many, equally valid, clustering strategies and algorithms,
and there is indeed a vast literature on clustering methods3. There are
four main categories of clustering algorithms that found application in
transcriptome analysis: hierarchical, k-means, fuzzy c-means, and Self
Organising Maps.

1 For example, let’s consider an experimental setup where there are RNA-seq datasets of samples
from a disease model, a (healthy) control, and from the same disease model exposed to different
treatments. A common question would be which treatment drives the transcriptome of the diseased
model to be ‘more similar’ to the control one.

2 A reasonable assumption is that some groups of co-regulated genes have similar functions. So,
finding a non annotated gene with a similar expression pattern to other genes of a given class would
suggest that the unknown gene is somehow related to that class. See also the example on regional
gene expression and homogeneity at page 8.2.

3 There is no precise and workable definition of cluster [11]. This fact implies that 1) different clus-
tering algorithms are difficult to compare (unless they are based on a consistent set of assumptions),
and 2) each clustering method is usually tailored to solve a specific problem. The user undergoing
a clustering analysis should be careful to choose the best strategy according to the original data and
the scientific question being addressed.
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5.2.1. Hierarchical clustering

Hierarchical clustering organises the dataset as a dendrogram, where the
root is the whole dataset, the leavaa es are the single genes, and each internal
node (branching point) includes all the genes in the corresponding sub-
tree. If we make an analogy to phylogenetic trees, nodes connecting two
terminal branches define ‘sister genes’, and the subtree departing frff om
more internal nodes define more distant relationships (sub-genus, genus,
subfaff mily, faff mily, and so on). In order to cluster the data the user should
cut the dendrogram at a certain internal node height (which states how
‘distant’ are its child nodes) and consider the subtrees thereby obtained
as the clusters of the dataset. Obviously, the choice where to cut the tree
is totally arbr itrary and so is the number of clusters obtained.

Figure 5.1. In hierarchical clustering the dataset (root) is organised in sub-
trees according to a correlation measure between the elements of the set and the
clusters are obtained choosing a cutting threshold.

The usual input dataset foff r a clustering algorithm is a n × m matrix,
where n is the number of samples (which usually correspond to diffff eff rent
experimental/biological conditions), andm is the total number of genes to
be clustered. The first step is to calculate the pairwise distance between
all genes in the dataset, that provides a similarity measure between items
in the set, in order to get a m × m gene similarity matrix. Here we
describe some of the most applied distances. The Euclidean distance
measures the geometric distance between two genes, that are represented
as vectors in an Euclidean space of dimension n (where n corresponds to
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the number of samples):

dε
i j =

√√√√ n∑
k=1

(qik − q jk)2 (5.1)

where qik is the expression level of gene i in the sample k. The Pearson
distance (linear correlation) is a measure of how well the relationship
between two gene expression profiles can be fitted by a straight line and
the distance is 1 minus the correlation coefficient:

dR
i j = 1 −

∑n
k=1 (qik − μi)(q jk − μ j )√∑n

k=1 (qik − μi)2
√∑n

k=1 (q jk − μ j )2
(5.2)

where μi is the mean of the expression value of gene i across all the
samples. The Spearman distance (rank correlation) is a non-parametric
distance, so it doesn’t assume that the data are distributed normally:

dS
i j = 1 −

∑n
k=1 (q(ik) − μ(i))(q( jk) − μ( j))√∑n

k=1 (q(ik) − μ(i))2
√∑n

k=1 (q( jk) − μ( j))2
(5.3)

whose formula is the same as that of the Pearson correlation, except
the fact that the expression values qik are replaced by the correspondent
ranks4 q(ik). Figure 5.2 shows the behaviour of Spearman’s and Pear-
son’s correlation coefficients with different datasets. There are a variety
of other possible distances that could be used on gene expression data,
but these are applied less frequently.
After having applied the chosen distance to every pair of genes, we get

an upper-diagonal similarity matrix5 (S). The matrix is scanned in order
to find the highest value (i.e. the most similar pair of genes): this pair of
genes is linked by an internal node, which becomes a new ‘virtual gene’
whose distance to all other genes becomes the mean of the distance of
the two original nodes q(i, j)k = mean(qik, q jk). Both genes i and j are
replaced by the internal node (i, j) and his procedure is repeated m − 1
times until only the root remains6. A dendrogram is a tree-shaped graph

4 Ranking a gene expression value means to associate the value with its position in a coherently
ordered list (e.g., decreasing expression level and so on).

5 In fact, this matrix is symmetrical with respect to the diagonal, and the diagonal is composed of
ones.

6 This widely used procedure of hierarchical clustering was originally developed to reconstruct phy-
logenies and was first used by Eisen and colleagues in 1998 for gene expression data [13]. Some
refer to it as Eisen clustering.
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B

C

Figure 5.2. The main diffff eff rence between Pearson’s correlation and Spearman’s
correlation coeffiff cients is that the foff rmer is very sensitive to a linear relationship
between two variables (B) while the latter is less sensitive to linear relationships,
but can detect any monotonic relationship (A and C).

that can be flipped at any node (imagine a physical tree with a rotating
joint at every node). There are 2m−1 possible visualisations of a given
tree and there is no privileged ordering of the leavaa es. So the user should
apply a simpm le ordrr ering criterion, e.g., the avaa eraged expression level of
the gene, the time of maximal expression, and so on7.

7 Fitting an optimal linear ordering through minimisation of a cost fuff nction is possible, but compu-
tationally cumbersome and a waste of resources when done just foff r display purposes.
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A

B

Figure 5.3. Heatmaps are a common way to visualise gene expression
matrices—where the rows are usually the expression profiles of a given gene
across diffff eff rent samples. In 1D maps (A) the samples are hierarchically clus-
tered (black boxes) along one dimension—usually the samples—while in 2D
maps (B) also the second dimension is ordered according to a hierarchical clus-
tering. Adapted by permission frff omMacmillan Publishers Ltd: Nature Methods
[16], ©c (2012).
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The clustering is often coupled to a heat map of gene expression values,
where different colours code for the intensity of expression. Since nor-
mally there are too many genes to be displayed as rows in a heat map, a
very important issue is feature selection,, the process of selecting a subset
of genes on which to perform the clustering. We will explore this issue
in more detail in the PCA Section on page 70. (Figure 5.3A). Since the
genes have different expression baselines and different fold changes, the
rows in the heat maps are usually z-normalised. The z-normalised value
of a gene i in the sample j is

zi, j = ki, j − k̄i
σki

where ki, j is the non-normalised gene expression value, k̄i is the mean of
the gene expression across the samples, and σki is its standard deviation.
Hierarchical clustering can also be used to cluster samples based on

global gene expression and it is often used, for example, to subdivide
tumour samples into different groups based on their expression patterns.
Usually, the order of columns in the clustering is decided by the data ana-
lyst, for example corresponding to experimental series. It is also possible,
however, to visualise a two-ways clustering where the samples are first
clustered globally to decide the order of the columns (Figure 5.3B).
Hierarchical clustering is very important in quality control to detect

outliers and batch effects. If one or a few samples show great distances
from the other samples, they may be contaminated for various reasons
and may be excluded from the analysis (outliers). If samples cluster ac-
cording to the date of processing, then some systematic technical vari-
ability has influenced the results (batch effects). This effect can be later
mitigated by PCA-based decomposition (see below).

5.2.2. K-means clustering

K-means clustering subdivides genes in a pre-determined number (k) of
clusters. The clustering algorithm has three steps (Figure 5.4):

0. Initialise k cluster centroids at random positions (also called seeding);
1. Assign the genes to the closest centroid through minimisation of a

distance measure

ci = min
c( j)∈K

(∑
f

‖x ( f )
i − x ( f )

c( j)
‖
)

(5.4)

where ci is the centroid assigned to gene i, with features respectively
x ( f )
c( j) and x ( f )

i ;
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2. Calculate the centroids of the clusters by avaa eraging the feff atures of the
elements of the clusters

i → c( j), x ( f )
c( j)

= mean(x ( f )
i ); (5.5)

0′. Update the centroids.

A B C

D E F

Figure 5.4. Stepe s ofo tht e k-means clustering algorithtt m. A) Random initialisation
of k=3 centroids. B) Assignment of the points of the dataset to the nearest
centroid. C) Computation of the centroid of the foff und clusters. D) Update of all
centroids. E) Clusters frff om a given initialisation of three centroids (x), however
diffff eff rent initialisations (in particular with higher values of k) could result in
diffff eff rent clusters. F) If we initialise three centroids, the algorithm will always
find three clusters (centroid x), even if there are no noticeable subsets in the
dataset.

This procedure is repeated until the assignment of the genes to the clus-
ters is stable (i.e. no gene changes cluster). Aftff er k-means clustering,
each gene is depicted as a point in a 2D graph where the distances be-
tween the points are equal to the calculated distance between the genes.
Since diffff eff rent initialisations foff r the centroids might produce diffff eff rent
final clusters, it is necessary to repeat clustering with diffff eff rent seeding
initialisations, in order to check whether the clusters obtained are ro-
bust. It should be noted that k-means clustering will always divide genes
into k clusters, even when the genes are homogeneously distributed (Fig-
ure 5.4F). It is possible to evaluate the ‘goodness’ of clustering objb ec-
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tively using a clustering diagnostic such as the Davies–Bouldin index
(DBI).
The DBI evaluates the relationship between the intracluster distance

(that is, how much the genes in a cluster are packed around the centroid
of the cluster)

Si = 1

mi

mi∑
j=1

‖X j − Ai‖2 (5.6)

where ‖ · ‖2 is the Eucledian distance8 between the feature vectors of the
genes X j and the centroid Ai , and the intercluster distance (how much
close are the different clusters)

Mi, j = ‖Ai − A j‖2 (5.7)

which, again, is equal to

Mi, j =
√∑

f

(
a( f )
i − a( f )

j

)2
. (5.8)

A ‘good’ clustering would have its centroids as distant as possible, and
the genes in a cluster packed around its centroid as much as possible. If
we define the following index

Ri, j = Si + Sj

Mi, j
(5.9)

R would be always positive and the closer to zero, the better the clustering
of the elements of i and j. For every cluster i, let’s pick the cluster j which
is ‘not a good distinct cluster’ when compared to i (i.e. shows the highest
value of Ri, j )

Di = max
i �= j

Ri, j , (5.10)

the DBI is defined as the average of these worst-case scenario measures

DBI = 1

k

k∑
i=1

Di (5.11)

and thus, the smaller the value of the DBI, the better defined and more
distanced the clusters are.

8 This can be generalised as a p-norm given by the formula:

‖X j − Ai‖p = p

√∑
f

(
x( f )
j − a( f )

i

)p
.

It can be recognised easily that when p = 2, the p-norm is a Euclidean norm. When p = 1 the norm
is called theManhattan distance.
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5.2.3. Fuzzy C-means

One of the limitations of the k-means algorithm is that a gene can be
assigned only to one cluster. However, the transcription of a gene can be
controlled by several independent mechanisms and these can be shared
to various extents with other genes. For example, think about the binding
of transcription factors to promoters and enhancers (different genes have
different combinations of binding sites in their promoters). The Fuzzy
C-means algorithm (FCM) overcomes this limitation allowing a gene to
be member of more than one cluster.
The FCM is a three-step iterative procedure:

0. Initialise C random centroids;
1. Assign to every gene i amembership weight for the centroid c j , which

is a value 0 ≤ w
(c j )
i ≤ 1 which depends on the formula

w
(c j )
i = 1(∑C

k=1

‖Xi − Xcj‖
‖Xi − Xck‖

) 2
m−1

(5.12)

where ‖Xi − Xcj‖ is the distance between all the features of the gene
i and the centroid c j , and m is a fuzziness parameter (if m=1 the FCM
is reconducible to the k-means algorithm, while for m 	 1 the mem-
bership for every gene gets small and the clusters become fuzzier);

2. The new centroids are evaluated according to a weighted mean using
the membership of the genes

c j :=
∑n

i=1 (w
(c j )
i )m Xi∑n

i=1 (w
(c j )
i )m

(5.13)

where n is the number of genes, and m is the fuzziness parameter;
0′. Update the centroids.

The algorithm will continue until convergence: like for the k-means clus-
tering, the obtained clusters depend on the initial seed, so the procedure
should be repeated to evaluate their robustness.
A particularly useful application of k-means and FCM clustering is in

the analysis of temporal series or dose-dependent responses. They can,
for example, distinguish genes that are regulated at different times after
the onset of a stimulus. For example, Baumgart and colleagues [6] anal-
ysed the gene expression profiles in the killifish brain at different ages.
Using FCM clustering they could identify genes that change direction of
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Figure 5.5. Fuzzy C-mean clustering of a RNANN -seq dataset (killifish brain, 5
age steps frff om 5 weeks post hatching to 39 weeks). Notice that each cluster is
prototypical of a diffff eff rent ontogenetic regulation. For example, both cluster 1
and cluster 5 contain genes that are down-regulated during ageing, but cluster 1
shows faff ster downregulation then does cluster 5. Interestingly, there are genes
that show an invnn ersion in the direction of their expression regulation (clusters 3
and 4).

regulation during ontogeny—e.g., up-regulated during development and
down-regulated during ageing or vice versa (Figure 5.5).
Given that both the k-means and the FCM algorithms divide the dataset

in a given number of clusters, in a way the diffff eff rent centroids are ‘foff rcing’
a certain structure on the dataset. So if the number k (or C) of centroids is
not reasonable given the ‘real’ structure of the dataset, the resulting clus-
tering would be artefaff ctual and faff il to capture the biological phenomenon.
Unfoff rtunately, there is no consensus on which is the optimal method to
calculate the optimal number of centroids. A common approach is to try
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diffff eff rent centroid numbers and then to (hand-)pick the one that makes
more biological sense to the analyst.

5.3. Principal component analysis

The Principal Component Analysis (PCA) is, as already mentioned, one
of the most used approaches to 1) reduce the dimensionality of datasets
and 2) reveal some hidden structure of the data. The aim of PCA is to
take advantage of the strong patterns of correlation in gene expression
levels to find a small subset ofo dimensions which would describe as much
ofo thtt e variabilitytt in thtt e dadd tatt set as possible.

5.3.1. An intuitive view of PCA

The most straightfoff rward way to visualise the aim of PCA is to consider
a geometrical example, as pictured in Figure 5.6. So, if we imagine that

A BB

Figure 5.6. Simple geometric representation of PCA. A) New dimensions make
possible to visualise the diffff eff rences between two groups in the dataset (grey and
black). B) PCA can be used to diminish the dimensionality of the dataset: in the
example shown, all points in the dataset lie roughly on the same plane.

the data foff rm an ellipsoid in an n-dimensional space9, then PCA is a
transfoff rmation that creates a new set of axis that corresponds to the axis
of the ellipsoid. A quite naı̈ve explanation is that it is ‘easier’ to build
an ellipsoid frff om its axes rather than frff om a random set of n orthogo-
nal axes. The maja or axis would be the first principal component (PC1)
and it identifies the direction along which there is most dispersion of the
data. Computing the PCA is, in first instance, a problem of dimensional-
ity reduction. For example, the 3D dataset in Figure 5.6B was originally
described with three feff atures (x1, x2, and x3), however the data are ly-
ing on a plane, which can be described by only two feff atures—PC1 and

9 This would roughly be the case if all variables are distributed according to a Gaussian fuff nction.
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PC2, that could be obtained by a linear combination of x1, x2, and x3.
Therefore, PCA can be seen as a rototranslation of the axes that aligns
them with the direction of maximum variability. In a typical RNA-seq
experiment, the features (genes) are in the order of thousands whereas
the samples are usually in the order of tens and normally correspond to
different conditions. When applied to the analysis of RNA-seq data, PCA
has two really useful properties:

1. due to very high levels of gene co-expression, PCA normally provides
a tremendous reduction in the dimensionality of the data10. Usually
the first ten components are sufficient to describe the dataset with good
approximation and it is not uncommon for the first three components
alone to retain 80% or more of the variance (see below for further
discussion).

2. PCA can often dissect the effects of different variables on global
gene expression patterns, as shown in Figure 5.7. In this experiment,
neurons were generated by direct reprogramming of fibroblasts from
donors of different ages. The aim was to test whether the fibroblast-
derived neurons retained the age signature of the donor cells. From
the PCA graph it is clear that the first two components (the x,y plane
in the graph) capture the cell-specific components of gene expression
and the third component (the z axis) describes an effect of age on
global gene expression patterns that is very similar in both cell types.
An inspection of the loadings (see Section 5.3.2) of PC3 would then
easily reveal which genes contribute the most to this effect.

After having found the PCA components of the data, a widely used ap-
proach is to calculate the explained variation for each component. This
is defined as the fraction of variance that a single principal component
can account for (see the introductory explanation in Section 5.3.2). Let’s
consider Figure 5.8, which shows the retained variance distributions of
two datasets. The first thing that can be noticed is that there is an enor-
mous reduction of dimensionality with contained loss of information. At
this point there are two possible scenarios: a high amount of the variance
is explained by two or three components (Figure 5.8A), so that the other
components could be discarded without losing a lot of information, or the
variance is distributed among many of the principal components (e.g., the
first two components explain less than half the variability in the data, Fig-

10 By definition, the PCA is a set of features which describe the highest variability in the dataset—
assuming a linear correlation, so finding these features would automatically exclude redundant fea-
tures and optimise the remaining ones.
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igure 5.7. A PCA projo ection onto the first three principal components is
able to distinguish the age and the cell type in the trascriptional profiles of hu-
man fibroblasts (young and aged) and miRNANN -reconvnn erted neurons (frff om either
young or aged fibroblast). FB: host fibroblasts, MSN: directly-convnn erted stri-
atal medium spiny neurons. Adapted frff om [22]. https://creativecommons.org/
licenses/by/4.0/

A B

Figure 5.8. The retained variance distribution according to the diffff eff rent princi-
pal components (PCs) could vary massively with the dataset. A) The first two
PCs of a killifish RNANN -seq dataset (see Figure 5.12, analysis courtesy of Mari-
ateresa Mazzetto) retain most of the variance. B) The distribution of the retained
variance in the PCA on a dataset extracted frff om the Allen Human Brain Atlas
(see Section 8.2 at page 122) shows that the PCs excluded frff om a 2D visualisa-
tion account foff r more than 50% of the whole variance.

ure 5.8B). In the first case, the data could be easily represented in a 2D/3D
plot with only minimal loss of infoff rmation; in the latter11 a representation
of the higher principal components would take into account roughly 50%
of the total variance, so it would be better to represent the data with mul-
tiple combinations of principal components in order to look foff r diffff eff rent

11 Indeed, this variance distribution is not uncommon when dealing with biological datasets. See foff r
example the analysis of microarrays on breast cancer sample as shown in [45].
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structures inside the data12. In particular, correlation only captures linear

A B

Figure 5.9. Limitations of linear correlation: both the point distributions in A
and B havaa e a null linear correlation, however while in A there is no evident
relationship between the points, in B there is a markrr ed nonlinear dependence.

relationships among the data and does not capture more complicated re-
lationships (Figure 5.9). Indeed, PCA is tailored to normally-distributed
data and may not perfoff rm well in the case of data with distributions that
greatly deviate frff om normality. It should also be mentioned that PCA is
sensitive to the size of the variables and so z-normalisation (see note 5.2.1
at page 65) should be perfoff rmed befoff re PCA.
An important property of PCA, in particular when dealing with high-

throughput technologies, is the faff ct that, if an unfiltered systematic exper-
imental artifaff ct introduces a strong, highly-correlated source of variance,
this will result in a dominant principal component. However, this PC can
be subtracted frff om the data reducing this bias, that would normally mask
the biological sources of variance. Indeed, in some instances, PCA-based
methods were used to remove batch efe fff eff ctst , systematic effff eff cts due to pro-
cessing diffff eff rent samples at diffff eff rent times. Again, the raw data quality
is a fuff ndamental issue in RNANN -seq data analysis.
Another key issue in PCA analysis is feff ature selection, that is per-

foff rming a PCA analysis only on a subset of genes in order to obtain
a clearer separation of diffff eff rent samples according to a chosen feff ature.
Gene selection may be based on:

• the most expressed genes;
• the genes with the highest coeffiff cient of variation;

12 The linear correlation of the diffff eff rent principal components is zero, so each one could potentially
capture independent sources of the variance in the dataset [45]. However this is valid in strict sense
only if the variables are near-normally distributed, which is very oftff en not the case. Nonetheless, in
practical terms, PCA can provided usefuff l infoff rmation also foff r data that are clearly non-normal (see
Figure 5.7 and Figure 5.10).
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• the most differentially-expressed genes;
• the genes presenting characteristic defined a priori (e.g., being in-
cluded in a specific KEGG pathway, see Chapter 7, and so on).

This can be particularly useful when samples differ for more than one
experimental condition, as exemplified by the example of Figure 5.10.
In this case, samples from brain, liver, muscle and skin were analysed
at five different ages in two different strains of the turquoise killifish.
One can use either the genes differentially-expressed between the two
strains, or those differentially-expressed due to age13. When performing
PCA on these two sets, in both cases the first two components sharply
separate samples originating from different tissues. In Figure 5.10A, PC3
captures a tissue-independent effect of genetic background but samples
of different ages are not separated. On the other hand in Figure 5.10B a
tissue-independent effect of age is clearly visible, but the samples are not
separated according to the strain.

5.3.2. A computational approach to PCA

How can we find the set of dimensions which maximises the represented
variance? Another geometric interpretation, as seen in Figure 5.11, could
be helpful. The points in the dataset (a sample in our case) have n single-
feature values, which are their ‘projections’ on the corresponding feature
axis. So if we consider a new unit axis û (which is a linear combination
of the existing axis directions), projecting the points of the dataset on û
gives a new set of coordinates with associated statistics (e.g., variance,
mean, and so on). So the first principal component is the direction in
which the variance of the projections of the points in the dataset on the
new axis is maximal. If we remember that the distance of a vector x on a
versor û s given by

xu = xT · û (5.14)

where xT is the transposed vector of x, the problem to solve—when
considering the whole dataset X = [x(1)x(2) · · · x(m)] composed of m
samples—can be stated as follows

max
‖û‖=1

(
1

m

m∑
i=1

(x(i)T · û)2

)
(5.15)

13 In this case, since several time points are available, instead of the approach described in Sec-
tion 4.3.3—the test for differential expression in multiple conditions fitting a negative binomial—a
generalised linear model is used to test a regression with age.
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A

B

Figure 5.10. Example of feff ature selection in PCA. A) Feature selection foff r
the genes invnn olved in ageing makes it possible to distinguish the diffff eff rent ages
along the third principal component. However, the samples frff om the diffff eff rent
strains are mixed. B) On the other hand, feff ature selection foff r the strains is able
to distinguish the samples frff om GRZ and MZM, but it loses the age separation.
In both cases PC1 and PC2 resolve the tissue identity (liver, muscle, brain or
skin). ImII ages and analyl sis courtesys ofo MaMM riatererr sa MaMM zzetto.
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BA B

Figure 5.11. The projo ection of points of the dataset on a given axis u could
result in a group of vectors with high-variance (A), or with a more unifoff rm size
(B). For example if we consider the point a and its projo ection on u (au), in the
plot A) au is quite faff r frff om the origin and the global variance is quite high, while
in the plot B) au is close to zero and has a quite homogeneous size compared to
the other vectors.

with the condition ‖û‖ = 1, that is û should be a unit vector, and where
x(i) is the vector of feff atures associated with the condition i.
Let’s now workr on Equation (5.15):

1

m

m∑
i=1

(x(i)T · û)2 = 1

m

m∑
i=1

(ûT · x(i)) (x(i)T · û) (5.16)

which can be rearranged as

max
‖û‖=1

(
uT

(
1

m

m∑
i=1

x · x(i)T

)
û

)
= max

‖û‖=1

(
ûT · � · û) (5.17)

where � is the covariance matrixii of the data, under the assumption the
dataset has zero mean14.
It can be shown that the solution to Equation (5.17) is the principal

eigenvnn ector (i.e. the eigenvnn ector with the highest eigenvnn alue15) of the

14 In order to havaa e zero-mean data, provided that the data points are distributed as a Gaussian, the
foff llowing normalisation step is done:

x(i) := x(i) − μi

σi

where μi is the mean and σi is the standard deviation foff r a given experimental condition. The
resulting normalised dataset has zero mean and unit standard deviation.

15 Given the matrix �, there is a set of vectors u1, u2,..., and numbers λ1, λ2,..., so that

� · u = λu
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covariance matrix. In general, the first k principal components of the
dataset are the first k eigenvectors, as sorted by their associated eigen-
value. The projection of the dataset X on the matrix of the eigenvectors
(or of the selected principal components) U can be computed as follows:

XPC = UT · X. (5.18)

From Equation (5.15) and note 15 of this chapter one can easily derive
that the i th eigenvalue of the covariance matrix � includes the variance
of the dataset when projected on the i th principal component.
Let’s now try to compute the total dispersion (or variance) of the dataset

in function of the known parameters of the covariance matrix starting
from the following equation:

σ 2 = 1

m

m∑
i=1

‖xi − x̄‖2 (5.19)

where m is the number of samples in the dataset, xi is the vector of gene
expression in the sample i, x̄ is the vector of the mean of the gene expres-
sion values across the samples, and ‖ · ‖ is the norm operator. If we apply
the vectorial form of Equation (5.18) to Equation (5.19) we have:

σ 2 = 1

m

m∑
i=1

‖
p∑

j=1

ûTj (xi − x̄)‖2 (5.20)

where p is the number of principal components. So taking the sum out
from the norm we get

σ 2 = 1

m

m∑
i=1

p∑
j=1

‖ûTj (xi − x̄)‖2 =
p∑

j=1

(
1

m

m∑
i=1

‖ûTj (xi − x̄)‖2
)

. (5.21)

However, the expression in the parentheses is the variance of the projec-
tion of X on the principal component j, that is equal to the eigenvalue λ j ,
so the expression is reduced to

σ 2 =
p∑

j=1

λ j . (5.22)

where λ is called the eigenvalue and u is called the eigenvector of �.
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From the Equation (5.22) it is possible to estimate the retained variabil-
ity of a given principal component ûh:

σ 2
h = λh∑p

j=1 λ j
, (5.23)

σ 2
h is also called relative dispersion.
Let’s call � the diagonal matrix of the eigenvalues of X. We define the

matrix of the component loadings as the product

L = U · (�)
1
2 (5.24)

and because � is a diagonal matrix we have that the i th component load-
ing is given by

l(i) = û(i)
√

λi (5.25)

where λi is the eigenvalue associated with the i th principal component.
The component loadings are a sort of weighted principal component
which takes into account both the direction of maximal variability and
the value of the retained variability. In every loading, the position l(i)j
roughly corresponds to the ‘explanatory contribution’ of the component
i to the gene j. So, if a biological feature is strongly correlated with a
principal component, it is possible to recognise a set of genes which are
likely to be involved in that process.

5.4. Multi dimensional scaling

The aim of Multi Dimensional Scaling (MDS) is to map a high-dimen-
sional dataset to a lower-dimensional space (MDS Maps16) in order to
maintain the relative ‘general distances’ between two points in each rep-
resentation. MDS can be seen as an alternative data visualisation tool to
PCA. However, if the PCA takes into account the covariance matrix of
the dataset (see Equation (5.17)), the MDS can use any kind of similarity
or dissimilarity matrix, of which the covariance matrix is essentially a
particular case.
Let’s build a distance matrix applying to the gene dataset (made of n

genes) one of the measures of distance seen on page 61, and let’s call δi, j
the distance between the points i and j). The goal of MDS is to find a set
of n vectors p1, p2,..., pn ∈ M so that

min
M

(∑
i< j

(‖pi − pj‖ − δi, j )
2

)
= min (ϕ2) (5.26)

16 These MDS maps are usually 2D or 3D for obvious reasons.
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A

B

Figure 5.12. Principal Component Analysis (A) and Multi Dimensional Scal-
ing (B) of an RNANN -seq dataset including RNANN samples frff om five diffff eff rent ages
and two diffff eff rent killifish strains. Both techniques are able to discriminate the
diffff eff rent ages within the reduced dimensions, however the MDS is also able to
distinguish the samples frff om the two diffff eff rent strains (dashed line). ImII ages and
analyl sis courtesys ofo MaMM riatererr sa MaMM zzetto.

where ‖ · ‖ is the vector norm and ϕ is called stress fuff nction. The stress
fuff nction can usually be minimised by numerical methods.
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5.5. Nonlinear multidimensional mapping

T-Distributed Stochastic Neighbour Embedding (t-SNE). is a more ad-
vanced method of dimensionality reduction, which has proven to be par-
ticularly suitable for the analysis of single-cell RNA-seq to cluster large
numbers of samples (i.e. cells). Since it easy to forecast that single-cell
RNA-seq will become a ubiquitous technology in neuroscience, here we
dwell in some details of this method.
The rationale of t-SNE is the same as that of MDS. That is, to create a

low-dimensional, 2D or 3D, map in which each point is associated with
a gene expression profile (for example of a brain region, of a cell line,
etcetera). The distance between two points is related to the difference
in their expression profiles. However, the way to compute the distance
matrix between the gene profiles is not the minimisation of a cost func-
tion such as Equation (5.26), which includes a similarity function based
on gene expression, but of a new cost function which is nonlinear and
tempered by a Gaussian kernel. The aforementioned Gaussian kernel is
a normal probability density function. Given a pair of gene distributions,
the joint probability for the couple is higher if they are similar and lower
if they are different:

pi j = e− ‖xi−x j ‖2
2σ2∑

k �=l e
− ‖xk−xl ‖2

2σ2

(5.27)

where xi is the N-dimensional vector of the gene expression profile (for
N genes) of the set i ∈ D and with a σ chosen in order to get

∑
p = 1.

The aim of the Multidimensional Mapping is to get a map

M = {y1, y2, ..., yM} (5.28)

where M is the number of the gene profile sets, yi ∈ R
d is the projection

vector of the dataset xi on the d-dimensional mapM. Obviously, in order
to create a map that can be visualised, the dataset should be projected on
2D or 3D vectors. Similarly to what we see in Equation (5.27), in order to
measure the similarity between two vectors in the map17 we can use the
value of a probability distribution computed on the norm of the difference
between a given couple (i,j) of sets. In t-SNE the distribution chosen in
order to compute the similarity between the map vectors is a Student

17 It must be emphasised here that each vector in M has a correspondent gene profile set in the
starting dataset D, so when M is a good projection of D given two sets i and j, if ‖xi − x j‖ ∼ 0
then also ‖yi − y j‖ ∼ 0.
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t-distribution18

qi j = (1 + ‖yi − y j‖2)−1∑
k �=l(1 + ‖yk − y j l‖2)−1

(5.29)

which is derived from a renormalised Student t-distribution density of
probability function with a single degree of freedom (when a map M
with d = 2 is computed). At this point, we need to define a cost function
whose minimisation19 will provide the value of the vectors {y1,y2, ...,yM},
which would take into account

• the similarity measure for the sets inD, which is distributed as a Gaus-
sian function (Equation (5.27));

• the similarity measure for the vectors in M, which is distributed as a
t-distribution function (Equation (5.29)).

The cost function that will be chosen is the Kullback-Leibler diver-
gence,. However, in order to understand the rationale underneath this
choice, it would be better to introduce a few concepts of probability and
information theory.
A prior probability distribution is the the function associated with an

event before some evidence (e.g., experimental data) is taken into ac-
count. It is apparent that Equation (5.29) describes a prior model of the
system: a map is initialised and its probability density is assumed to be
Student t-distributed without taking into account the experimental data.
A posterior probability distribution is the conditional probability func-
tion that is assigned to an event after taking into account the relevant
experimental data. Also in this case it is straightforward to associate the
Gaussian kernel described in Equation (5.27) to a posterior distribution.
Now, the Kullback-Leibler divergence (also called discrimination in-

formation) is an indicator of the divergence between two probability dis-
tributions P and Q, and can be used as a test of difference between the
prior (Q) and the posterior (P) probability distribution:

DKL(P‖Q) =
∑
i �= j

pi j log

(
pi j
qi j

)
. (5.30)

18 The choice of the t-Student distribution takes into account the fact that the number of degrees
of freedom from the original dataset D (usually composed by many hundreds of sets, and possibly
normally distributed) collapses to just 2 in case of a 2D mapM.

19 The minimisation will be accomplished through numerical methods such as the gradient descent
algorithm.
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In a way, the value of the divergence describes how diffff eff rent the two
distributions are: if pi j = qi j , then DKL(P‖Q) = 0. So, a successfuff l
minimisation of Equation (5.30) through an iterative method would find
a set of projo ections yi which produce the probability distribution closest
to the one determined by the dataset.

As it can be seen frff om Figure 5.13, tSNE is able to cluster related samples
in a more robust way compared to PCA or MDS. This property makes
this analysis tool particularly suited to analyse groups of samples whose
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Figure 5.13. The tSNE analysis makes it possible to cluster the transcriptomes
derived frff om a variety of human tissues with high precision [55]. Each cluster
(foff und using the algorithm DBSCAN [15] and indicated with ellipses) corre-
sponds to a diffff eff rent tissue, e.g., brain, whole blood, muscle, and so on. As a
comparison, neither PCA nor classic MDS are able to cluster the transcriptomes
in a tissue-specific manner. FiFF gurerr courtesys ofo MaMM rtino UgUU olini, dadd tat set ded rived
frff orr m [55].
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biological variation could be subtle, such as subpopulations of a specific
cell type, or regions of a given tissue (such as the different brain cortical
regions).

5.6. Self-organising maps

The Self-Organising Maps (SOM) are a particular topology-oriented
neural network, which is formed by a 2D grid of interconnected arti-
ficial neurons whose aim is to map distinct features in the dataset [28].
In our case, each neuron is a centroid, and the features to find are the
clusters which are recognisable in the data. SOM can be seen as another
form of 2D clustering, but it is not applied often to gene expression data.



Chapter 6
Knowledge-based clustering methods

6.1. Introduction

In the previous chapter, we became familiar with unbiased methods for
reducing the complexity of RNA-seq data. These methods cluster genes
into groups based on co-expression patterns without taking any advantage
of prior knowledge on gene function.
A complementary method for dimensionality reduction clusters genes

into gene sets that are defined by a priori knowledge of gene function.
This method is widely used to test whether some gene sets are overrep-
resented in a list of DEGs and can be seen as an obligatory step in the
analysis of differential expression, but it is also possible to directly test
whether a gene set (rather that individual genes) is up- or down-regulated
according to a given condition (gene set enrichment analysis). The anal-
ysis of pathways and gene ontology is very often of great help in the at-
tempt to make biological sense out of a long list of DEGs and, therefore,
will be treated here in some detail.

6.2. Testing for gene set overrepresentation

The problem of testing the statistical significance (p-value) of the over-
representation of a gene set can be illustrated with the following example.
We have detected N down-regulated DEGs according to an experimental
condition (e.g., Alzheimer’s disease brain sample vs. control) and n of
these genes are part of a gene set of interest called G, for example the
list of genes coding for post-synaptic density. The set of all the protein-
coding genes detected in the experiment is called B (for background1).
Gene set G contains s genes, while gene set B contains S genes. We need
to calculate the probability of observing a ratio of n/N DEGs of a given

1 The issue of the correct background gene set is often not given the due attention. In many cases,
the entire set of protein-coding genes in the genome is used as a background.
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set if the expected ratio is s/S if there is no enrichment2. This is the proba-
bility of observing n genes fromG in a set of N genes randomly extracted
from B and it is equivalent to the well-described ‘urn problem’: we have
an urn containing N marbles, K black and N − K white. If we draw n
marbles from the urn, what is the probability that k are black? The prob-
lem is similar to the random sampling seen in Section 4.3.2 (underlying
Poisson distribution). However—due to the fact that we are not replacing
the extracted marbles—the situation is modelled by the hypergeometric
distribution

p(k|n, K , N ) =

(
K
n

)(
N − K
n − k

)
(
N
n

) (6.1)

while the ratio between the observed frequency (n/k) and the expected
frequency (N/K) is called enrichment score

E =
n
k
N
K

. (6.2)

In the example, if p is smaller than the significance threshold α (see Sec-
tion 4.3.3), then we can state that there is a statistically significant over-
representation of post-synaptic genes in the genes down-regulated during
Alzheimer’s disease. It is easy to prove that the sensitivity of the test is
reduced when either n or K are small, i.e. the smaller the gene set (e.g.,
synaptic proteins vs. GABAergic receptors) and the smaller the number
of DEGs, the larger the enrichment score E required to reach significance.
So, when the number of DEGs is small, one may relax the significance
(i.e. increase the False Discovery Rate—see Section 4.3.3) in order to
improve the sensitivity of the test.
In our specific case, we may be tempted to say that postsynaptic genes

are downregulated in the progression of Alzheimer’s disease. This claim
is not entirely correct: what we observed is an overrepresentation of this
gene set in the DEGs; however, the expression value of the gene set aver-
aged across all genes may not be different. The gene set overrepresenta-
tion test should be applied only to binary gene lists3, while the differential
expression of multiple gene sets can be directly tested by the Gene Set
Enrichment Analysis (GSEA, see Section 6.5).

2 In the case of the post-synaptic density example, s=187 (from the Gene Ontology entry 0014069 for
Homo sapiens), while a tipical value of S is in the order of 104, so the expected ratio is of ∼ 10−2.

3 That is, lists compiled using a yes/no criterion such as genes deleted or duplicated in the genome.
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6.3. KEGG pathways

A natural way of clustering genes is grouping them based on their in-
volvement in a given pathway (TP53 pathway, cell cycle, insulin path-
way, etcetera). This approach is adopted by the KyKK oto EnEE cyc clopo aedia ofo
Genes and Genomes (KEGG) [24, 25, 23], which makes it possible to vi-
sualise up- and down-regulated genes within a pathway through French-
flag colouring (Figure 6.1).

Figure 6.1. Example of KEGG pathway where each gene is coloured according
to its value of diffff eff rential expression. Reproduced with permission frff om the
KEGG database.

It should be noted that a KEGG pathway can contain genes with oppo-
site actions (e.g., inducers or inhibitors of a target protein), as exempli-
fied in the Notch signalling pathway (Figure 6.2). The Notch signalling
pathway is highly conserved and is of fuff ndamental importance to organ-
ismal development. The KEGG map contains Notch activators (the γ -
Secrerr tatt se compm lexee , Delta, TATT CA E) and inhibitors (Numb, Serrate). There-
foff re, an overrepresentation of the Notch pathway may not necessarily
mean that the activity of Notch is enhanced. The representation of the
pathway includes infoff rmation on the cell localisation of the processes.
Notch and Delta are plasma membrane proteins and mediate intercellu-
lar communication, the NICD (Notch Intracellular Domain, cleavaa ed by
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igure 6.2. KEGG pathway of Notch: the cleava ing of Notch protein oftff en in-
volves interaction with a membrane receptor of a diffff eff rent cell and exerts gene
expression regulation in the nucleus. Reproduced with permission frff om the
KEGG database.

the γ -Secrerr tatt se compm lexee ) is a transcriptional regulator and acts in the nu-
cleus.
In the KEGG database, each gene is annotatt ted with one or more u-

nique pathway identifiers. For example, the foff llowing list of annota-
tions is associated with the gene coding foff r PSEN1 (Presenilin1, whose
mutations are linked to faff miliar Alzheimer’s disease):

04310 Wnt signaling pathway
04330 Notch signaling pathway
04722 Neurotrophin signaling pathway
05010 Alzheimer’s disease.

This example illustrates one of the maja or diffiff culties in gene set analysis:
rerr dundadd ncyc . Since gene sets can be partially overlapping, the analysis
of a gene list oftff en results in the detection of a number of pathways that
are to some extent related because they include the same DEGs. This is-
sue becomes substantially more serious in the analysis of Gene Ontology
(GO) terms (see below).
KEGG pathway analysis oftff en offff eff rs a compact description of com-

plex transcriptional regulation. The main disadvantage of using KEGG
as a refeff rence is that thtt e maja oritytt ofo genes arerr not mapa ppp ed to anyn KEKK GG
patht waya (i.e. do not havaa e an annotation in KEGG), so only a minor pro-
portion of DEGs can be analysed using this approach.
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6.4. Gene ontology

Biological processes and structures are often organised in a hierarchical
fashion:

Neuron > process > synapse > postsynaptic density > neuro-
transmitter receptor > glutamatergic receptor > metabotropic glu-
tamatergic receptor.

The aim of the Gene Ontology (GO) Project4 is to develop a unified and
controlled vocabulary of terms for describing gene product properties.
The concept of ‘ontology’ has been borrowed from philosophy in order
to define a set of terms and logical connections between terms associated
with the entities of a certain domain of discourse. The ontology describes
the formally acceptable structure and the relationships between its gen-
erating entities—in our case, the genes in a genome and/or the proteins
they code for.
Notice that the previously given definition of ontology reminds us of

the one given for a graph (see page 101). Indeed, the GO Project organ-
ises the annotation data according to a taxonomy of annotation classes,
thus resulting in a direct acyclic graph5, where the direction of the edges
is usually the one from the leaves to the root of the graph. The GO
graph imposes a loose hierarchy on the annotations where the child nodes
(closer to the leaves) are more specialised than the parent ones (closer to
the root), but where a single node can have more parents6 and can have
different logical relations with them. In Figure 6.3, we show an exam-
ple of how the GO annotation is applied to the term ‘centriole’. The GO
annotation has three independent roots, called domains, which represent
three different aspects of the biological properties associated with a gene
product:

Cellular component terms are related to the localisation of the gene
product in the topography of the cell, both at the anatomical level
(e.g., ‘mitochondrion’) or in macromolecular assemblies, such as ‘ri-
bosome’ or ‘proteasome’;

4 http://geneontology.org/

5 This means that the relationships between the nodes of the graph have a direction (see also
page 101) and that there is no directed cycle (i.e. there is no circuit along the allowed directions—see
note 2 of Chapter 7). That is, the nodes are organised in a hierarchy where there are no connections
from the ‘upper’ levels to the ‘lower’ ones.

6 In a strict hierarchy there is only one ‘upper’ parent node. For example consider the Linnean
taxonomy, where a species has only one genre (higher-level node), while a genre can have many
species.
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igure 6.3. GO annotations of the term ‘centriole’. The image was produced
with QuickGO (http://www.ebi.ac.uk/QuickGO/).

Molecular fuff nction terms describe activities that occur at the molecular
level, regardless of the perfoff rming agents (single proteins or com-
plexes), and of the space, the time or the context where/when the ac-
tivity takes place (e.g., ‘catalytic activity’ or ‘ToTT ll receptor binding’);
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Biological process terms involve processes and pathways, that is an or-
ganised sequence of one or more assemblies of molecular functions
(e.g., ‘signal transduction’, or ‘calcium-dependent cell-matrix adhe-
sion’).

Each GO term has a unique zero-padded seven digit identifier, called the
accession term number. The organisation of the graph from the leaves
to the root relies on a series of logic relations between child nodes and
the parent ones. The majority of logical operations are grouped under
the categories ‘is a’, ‘part of’, ‘has part’, and ‘regulates’.
Each term has a set of direct relations towards the parent nodes (or the
child nodes), and of inferred relations towards non-adjacent nodes7.
The A is a B relation implies that A is a subtype of B (for example:

‘signal transduction’ is a ‘biological process’, that is the signal transduc-
tion is a type of biological process).
The A is part of B relation implies that A is necessarily part of

B: if A exists, then B also exists, but the converse is not necessarily true.
For example ‘nucleus’ is part of ‘cell’, so if we have a nucleus, then we
have also a cell, but the contrary is not valid—indeed, a cell could be
devoid of nucleus (e.g., the prokaryotes).
The A has part B is a relation from parent node to child node

(while is a and part of are from child to parent) and is logically
equivalent to part of: if A exists, then also B exists, but the contrary
is not necessarily true. For example: the ‘nucleus’ has as a part ‘chro-
mosomes’, because every nucleus contains at least one chromosome, but
there are chromosomes that are not nuclear (e.g., the bacterial chromo-
some).
The A regulates B relation is used in the graph of biological pro-

cess, and has three possible components:

• positively regulates, for example when A induces B;
• negatively regulates, for instance when A inhibits B;
• regulates, when some members of A positively regulate B, while
other members of A negatively regulate B.

Figure 6.4 shows maps of relations between terms—according to the GO
definitions—and a few examples of the kind of relations that can be in-
ferred.
Another important aspect of GO is that the level of evidence for a given

annotation is reported by a three-letter code:

7 An inferred relation applies the properties of the defined relations. For example: the relation is a
have the transitive property, so given ‘A is a B’ and ‘B is a C’ it can be inferred that ‘A is a C’.
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igure 6.4. Examples of Gene Ontology relations and infeff rrable relations.

Expx erirr mentatt l evidi edd nce codedd s
EXP Infeff rred frff om Experiment
IDA Infeff rred frff om Direct Assay
IPI Infeff rred frff om Physical Interaction
IMP Infeff rred frff om Mutant Phenotype
IGI Infeff rred frff om Genetic Interaction
IEP Infeff rred frff om Expression Pattern
Compm utatt titt onal Analyl sis evidi edd nce codedd s
ISS Infeff rred frff om Sequence or Structural Similarity
ISO Infeff rred frff om Sequence Orthology
ISA Infeff rred frff om Sequence Alignment
ISM Infeff rred frff om Sequence Model
IGC Infeff rred frff om Genomic Context
IBA Infeff rred frff om Biological aspect of Ancestor
IBD Infeff rred frff om Biological aspect of Descendant
IKR Infeff rred frff om Key Residues
IRD Infeff rred frff om Rapid Divergence
RCA Infeff rred frff om Reviewed Computational Analysis
Authtt or Statt tett ment evidi edd nce codedd s
TATT S TrTT aceable Author Statement
NAS Non-traceable Author Statement
Curarr tott rirr ai l statt tet ment codedd s
IC Infeff rred by Curator
ND No biological Data avaa ailable
Autott matitt callll yl -A- ssigi ned evidii edd nce codedd (the only class of codes not as-

signed by a GO curator)
IEA Infeff rred frff om Electronic Annotation

Since the GO Projo ect has less stringent criteria foff r gene annotations than
KEGG, more genes havaa e an annotation in GO than in KEGG. Also, a
gene has normally (many) more GO annotations as compared to KEGG
ones. As an example, TaTT ble 6.1 shows the GO annotations of PSEN1
(whose KEGG annotation has been shown at page 88).
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Molecular Function Evidence Code

PDZ domain binding IPI calcium channel activity IMP
aspartic endopeptidase activity, IDA endopeptidase activity IDA

intramembrane cleaving protein binding IPI
beta-catenin binding IPI cadherin binding IBA

Biological process Evidence code

Cajal-Retzius cell differentiation IEA L-glutamate transport IEA
Notch receptor processing TAS Notch signaling pathway IEA
T cell activation involved in immune response IEA T cell receptor signaling pathway IEA
activation of MAPKK activity IEA amyloid precursor protein catabolic process TAS
amyloid precursor protein metabolic process IDA autophagosome assembly IEA
beta-amyloid formation IMP blood vessel development IEA
brain morphogenesis IEA Ca2+ ion transmembrane transport IEA
canonical Wnt signaling pathway IBA cell fate specification IEA
cellular response to DNA damage stimulus IEA cerebral cortex cell migration IEA
choline transport IEA dorsal/ventral neural tube patterning IEA
embryonic limb morphogenesis IEA endoplasmic reticulum Ca2+ ion homeostasis IDA
endoplasmic reticulum Ca2+ ion homeostasis IGI epithelial cell proliferation IEA
heart looping IEA 45 more annotations [· · · ]
Cellular component Evidence code

Golgi apparatus IDA Golgi membrane IEA
aggresome IDA axon IEA
azurophil granule membrane TAS cell cortex IEA
cell junction IDA cell surface IEA
centrosome IDA ciliary rootlet IEA
dendritic shaft IEA endoplasmic reticulum IDA
endoplasmic reticulum membrane IEA gamma-secretase complex IDA
growth cone IEA integral component of membrane IDA
integral component of membrane TAS integral component of plasma membrane IDA
kinetochore IDA membrane IDA
membrane raft IDA mitochondrial inner membrane IEA
mitochondrion IDA neuromuscular junction IEA
neuronal cell body IEA nuclear membrane IDA
nuclear outer membrane IDA nucleus IDA
plasma membrane IDA plasma membrane TAS
presynapse IEA rough endoplasmic reticulum IDA
smooth endoplasmic reticulum IDA

Table 6.1. GO annotation of the Presenilin-1 (PSEN1) gene.

Notice that the redundancy of GO annotations is considerably higher
than for KEGG annotations. A second major difference between GO and
KEGG annotations is that, due to parent-child relationships, GO hasmul-
tiple levels. Therefore, in addition to an ‘horizontal redundancy’ (with
almost-synonym terms at the same hierarchical level), there can be a
‘vertical redundancy’ where a term as well as some of its parent terms
are overrepresented in a DEG list.
In practice, an analysis of GO terms associated with a gene list can

easily result in a long list of terms that are more or less related. The major
drawback of the redundancy of GO terms is that it makes it difficult to
have a compact description of the biological processes under study, thus
important aspects may be overlooked. There are at least two possible
solutions to reduce the redundancy of a list of GO terms:

1. to exclude all parent terms of an enriched child term:
2. to cluster related gene ontology terms (several packages are available

to perform this task, see Appendix 6.1 for one example).
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6.5. Gene set enrichment analysis

The aim of gene set enrichment analysis (GSEA) is to provide a sta-
tistical framework to test whether a set of genes is collectively up- or
down-regulated according to a given experimental condition. This is par-
ticularly relevant since small but consistent changes in expression for the
majority of genes within a pathway may result in a clear biological ef-
fect that could not be detected by DEG analysis. Here we present two
approaches to GSEA that use different statistical frameworks.

6.5.1. Non-parametric GSEA for multiple samples

The procedure described in this Section follows the seminal paper from
Aravind Subramanian, Pablo Tamayo and colleagues [52].
Let’s consider two sets: a list B of expressed genes and a set S of genes

associated in a knowledge-based way to a feature of interest. Each gene is
associated with an expression value in samples that differ for a biological
condition. The aim of GSEA is to compute an enrichment score � for
the set S based on the expression values of its members.
A common procedure is to rank-order all expressed genes according

to �, a metric for the correlation of their expression with the biological
variable of interest (fold-change, signed p-value, Spearman’s correlation
coefficient, and so on). Each gene in S will have a position in this ranked
list. The aim of GSEA is to provide a statistical framework to test whether
members of S occur more often than expected at the top or bottom of the
rank-ordered list.
One can evaluate, for every position i in the list, the fraction of genes

in S weighted according to � (‘hits’, H) and the fraction of genes not in
S (‘misses’,M). We define:

H(S, i) =
∑

gk∈S, j≤i

|�|p∑
gk∈S |�|p (6.3)

M(S, i) =
∑

gk �∈S,k≤i

1

#B − #S
(6.4)

�(S, i) = H(S, i) − M(S, i) (6.5)

where p is a coefficient8 that determines the skewness of the weight dis-
tribution towards high absolute values of � j , #B and #S are the numerosi-

8 If p = 0, the enrichment score becomes the standard Kolmogorov–Smirnov statistic, which is used
in the Kolmogorov-Smirnov test in order to assess the goodness of fit to a dataset. In [52] p = 1 so
the score is weighted using the feature-dependent correlation rank of the genes in list B.
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ties of the sets (in Equation (6.4) it is assumed that #B 	 #S). Given the
�(S, i) distribution, the enrichment score associated with a set S is:

�(S) = max
i

(�(S, i)). (6.6)

The � score, as calculated in Equation (6.5), has high values if the genes
in the label set S are densely positioned at either end of the ranking of B,
while it has low value in case of a random distribution (Figure 6.5).

A B

C

Figure 6.5. Qualitative behavaa ior of the enrichment score distribution �(S, i)
according to the diffff eff rent ranking in B of the genes in the label set S: A) if the
genes are in the top ranking of B, the enrichment score will be high and asso-
ciated with a low p-value, B) if the genes are distributed randomly, the � score
will be low, C) if the genes are distributed in a nonrandom way the enrichment
score will be high, but the p-value would be high (null hypothesis faff iled to be
reje ected).

In order to evaluate the significance of an enrichment score, a permuta-
tion test is perfoff rmed. This type of test is very widely used in genomics
and provides a p-value without any assumption on the distribution of the
variables. It uses a rarr ndod m rerr assignment ofo pff henotytt pyy e labels. This means
that a pseudoreplica of the experiment is generated by creating one set
that is the union of all samples and randomly extracting the pseudocases
and pseudocontrols frff om this set. This procedure is equivalent to reshuf-ff
fling the columns in the data matrix and recalculating the �t(S). The
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calculation of �t(S) for many different permutations of the label assign-
ment leads to an enrichment scores distribution �0(S) for the null hy-
pothesis ‘the S set is not enriched in the sample’, which can be used to
evaluate the p-value of the enrichment for the label set S. If the statistical
significance evaluation is made among more than two phenotypes, multi-
ple hypothesis testing through evaluation of a False Discovery Rate (see
Section 4.3.3 at page 55) is usually performed.

6.5.2. Generally applicable gene enrichment

In this case, we use an approach called meta-analysis, i.e. a summary of a
number of different statistical tests9. Let’s assume that we have a dataset
composed of n controls and m cases. If we have a gene set S, a back-
ground set B, and two individual samples, one case and one control, we
can compute the mean (μS) and variance (σ 2

S ) of the fold changes for all
genes in S between the two samples and compare these with mean (μB)
and variance (σ 2

B) of the fold-changes for all genes in B between the two
samples. It is now possible to use the conventional two-sample Student’s
t-test (or a non-parametric two-sample test) to calculate the p-value for
H0 : μs = μB . This procedure can be repeated for all possible pair-wise
comparisons between a specific case (j) and n controls to calculate the
mean of the log (p-value)

x j = −1

n

n∑
i=1

log (pi j ) (6.7)

where pi j is the p-value of the pair-wise test between the sample j and
the i-th control sample. This is a summary measure of the deviation of
case j from the controls. So, if we consider the sum of x j values over all
m cases,

X =
m∑
j=1

x j (6.8)

we obtain a new variable which is known to follow a � distribution (see
Section 3.5.1) with parameters m and 1. This allows us to calculate

P(y > X) = �m,1(y > X) (6.9)

which is the probability that a random variable y distributed as a �(m, 1)
is larger than X. This probability is the p-value for the enrichment of gene

9 This is often used in epidemiology when the results of different studies are combined.
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set S. False discovery rate correction (see Section 4.3.3 on page 55) needs
to be applied if more than one set is tested at the same time, as it would
be the case for analysis of KEGG pathways or GO.
A major advantage of this approach (Generally Applicable Gene En-

richment, or GAGE) [31] is it can be used for paired samples (e.g., leuko-
cytes of a patient before and after a treatment). In this case, it refers to a
paired t-test between the two samples.

Appendix 6.1 – GO redundancy reduction:
clustering of annotations

In this section we will present a commonly used service for the clustering
of Gene Ontology terms: the DAVID Bioinformatics Resources10. It is
informative to show a specific example from [43]. In this case, a total
of 4095 down-regulated DEGs were detected during ageing of the killi-
fish brain. If we analyse the 10 most overrepresented terms among these
DEGs (over 824 different terms), there is a high level of redundancy, as
all terms are somehow related to either development or cell cycle:

GO Domain Term Number hits % p-value Benjamini

Biological Process cell development 273 9,3 2,9E-19 1,3E-15

Biological Process neuron development 164 5,6 1,1E-17 2,4E-14

Biological Process DNA replication 57 1,9 1,4E-17 2,1E-14

Biological Process neuron projection
development 136 4,6 2,0E-17 2,3E-14

Biological Process nervous system
development 306 10,5 3,8E-17 3,5E-14

Biological Process cell morphogenesis
involved

in differentiation 123 4,2 3,8E-16 2,5E-13

Biological Process neurogenesis 214 7,3 6,4E-16 4,4E-13

Biological Process axon development 112 3,8 6,7E-16 3,8E-13

Biological Process neuron projection

morphogenesis 113 3,9 9,3E-16 4,5E-13

Biological Process generation of neurons 199 6,8 1,5E-15 7,1E-13

On the other hand, if we perform a clustering of the terms, we obtain 373
clusters. In this case, we show only the most statistically significant term

10 https://david.ncifcrf.gov/



98 Alessandro Cellerino - Michele Sanguanini

for each cluster. Novel functions appear that were not included in the first
list, such as hydrolase activity (in particular ATP-ases) or microtubule-
related terms.

Cluster 1 Enrich. score 12.22 n. terms 24
Biol. Proc. cell development p-value: 2.9E − 19 Benjamini: 1.3E − 15

Cluster 2 Enrich. score 11.91 n. terms 3
Biol. Proc. DNA replication p-value: 1.4E − 17 Benjamini: 2.1E − 14

Cluster 3 Enrich. score 9.62 n. terms 12
Biol. Proc. mitotic cell cycle p-value: 1.6E − 15 Benjamini: 6.9E − 13

Cluster 4 Enrich. score 7.86 n. terms 6
Mol. Funct. hydrolase activity p-value: 1.1E − 10 Benjamini: 2.0E − 7

Cluster 5 Enrich. score 6.94 n. terms 3
Mol. Funct. Tubulin binding p-value: 2.7E − 8 Benjamini: 1.0E − 5



Chapter 7
Network analysis

7.1. Introduction

Life is built on functional interactions—between molecules, macro-
molecular complexes, subcellular organells, cells and any other higher-
level organisation. If we consider a set of genes and their expression
changes across biological conditions, we could be interested to test
whether these coordinated changes might suggest functional interac-
tions among subsets of genes. The clustering methods we described
in Chapter 5 are the standard methods to reveal structures within gene
co-expression patterns. Since the early 2000s, graph theory has been in-
creasingly applied to biological datasets in order to build genome-scale
networks such as

• protein-protein interaction network, also called interactome,

• knowledge-based networks, such as KEGG pathways, which are
built upon findings from the scientific literature, or

• gene co-expression networks.

In this chapter, we will focus on the applications of graph theory to the
study of gene co-expression networks.
As a summary of the tools and the problems addressed in the first

part of this book, we will present in detail the work from Baumgart and
colleagues [6]. This paper clearly shows how information derived from
RNA-seq can be linked to higher-level molecular, cellular and integrated
functions. Moreover, it reveals how this experimental approach can iden-
tify key regulators of a biological process and how it can be used to study
the perturbation that an external factor (e.g., a drug) induces on the global
transcription patterns of the organism.
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A

B

C

Figure 7.1. Examples of biological networkrr s. A) The human connectome is
a mesoscale map of connections between brain areas (foff r example, built frff om
fMff RI images), or B) The C. elege ans connectome is a microscale networkrr where
each neuron of the worm is represented as an individual node). C) Portion of the
human metabolic networkrr frff om KEGG pathways. PaPP nel A adadd pa ted frff orr m [18]
under a CC-BY Crerr ative Commons Attribution License. PaPP nel B adadd pa ted frff orr m
[57] under a CC-BY Crerr ative Commons Attribution License. PaPP nel C adadd pa ted
frff orr m thtt e KEKK GG pathtt waya hsa:01100 [24, 25, 23].
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7.2. Biological networks

Many biological systems are organised in units (nodes) connected by
links (edges). This is most obvious to neuroscientists that study con-
nections between neurons or—at a higher level—between cortical areas
(connectome, Figure 7.1A and B). A very well (almost comprehensively)
described networkr is the metabolic networkrr , where the nodes are metabo-
lites and the edges are enzymatic reactions (Figure 7.1C). Intracellular
transduction pathways also can be immediately represented as networkrr s.
A problem of high biological relevance is the identification of the ‘key
nodes’ in these networkr s. In the case of gene networkr s, these nodes likely
correspond to key regulators of the biological process of interest and are
top candidates foff r downstream experimental validation. For these rea-
sons, applications of graph theory to gene-expression data havaa e gained
significant momentum in recent years.

7.3. A primer on graph theory

Graph theory is a field of mathematics that deals with objb ects–or grarr pa hs–
consisting in a series of points, called nodes, and connections between
nodes, called edgd es (Figure 7.2). So, given a set of genes G and a list of

A B

Figure 7.2. A) Basic characteristics of graphs: nodes, edges, hubs. B) Shortest
path between node A and node F.

connections between them1 defined as

C(G) = {v, u ∈ G : v �=�� u} (7.1)

the associated gene-wide networkr is the graph W = (G,C). W is called
an undirected graph if {u, v} = {v, u}, and a directed graph other-
wise. Connections derived frff om gene co-expression data are usually

1 The word is imprecise on purpose: the link between two genes could be a measure of the expression
level or a direct interaction between the coded proteins—but this case is more complicated because
it would likely need the extension of Equation (7.1) foff r the case u = v—or any other relationship.
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undirected, meaning that we cannot infer the direction/nature of the re-
lationship between two genes directly. On the other hand, neuronal con-
nectivity patterns and signalling networks unequivocally define a directed
network.
Other biologically relevant definitions of graph theory are:

hub: a hub is a node with high degree. It occupies a top position in a list
where nodes are ranked based on the number of their edges—a prop-
erty also called high connectivity; in a gene co-regulatory network,
this could be the case of key transcription factors or microRNAs;

weight: a weight function wuv associates each edge {u, v} with a real
value, see for example the case of synaptic strength in a neuronal net-
work. The resulting graph is thus called weighted graph;

path: a path from a node A to a node A’ is awalk between adjacent nodes
where each intermediate node is crossed only once. For example, this
is the case for the biosynthetic pathway of a neurotransmitter2;

shortest path: the shortest path from A to A’ is the path which crosses
the least number of nodes between A and A’ (in unweighted graphs)
or the path which shows the least cumulative weight (in weighted
graphs).

In the following Sections we will discuss other important properties of
graphs from a more quantitative point of view.

7.3.1. Algebraic graph theory offers some powerful tools to analyse
graphs... and biological networks

A graph, such as the one shown in Figure 7.2, can be represented in a
matrix form, called an adjacency matrix, where every element is defined
as

ai, j =
{

αi, j if {i, j ∈ G, i �= j } ∈ W (G,C)

0 otherwise
(7.2)

where αi, j = 1 in the case of an unweighted network, or αi, j = w(i, j) if
the network is weighted.

2 The first node can be crossed twice if it is coincident with the end of the path—in this case the path
is called a circuit.
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For example, the undirected graph of Figure 7.2 can be described by
the following adjacency matrix:

A B C D E F G H I

A 0 1 0 0 0 0 1 1 0

B 1 0 1 1 0 0 0 0 0

C 0 1 0 1 1 1 1 1 0

D 0 1 1 0 1 0 0 0 1

E 0 0 1 1 0 0 0 1 0

F 0 0 1 0 0 0 1 0 1

G 1 0 1 0 0 1 0 0 0

H 1 0 1 0 1 0 0 0 1

I 0 0 0 1 0 1 0 1 0

which is a symmetrical n × n matrix with zero diagonal, where n is the
number of the nodes in the graph.

The fact that a graph can be written as its adjacency matrix means that
it is possible to explore the graphs’ properties through algebraic manip-
ulation. First of all, it is possible to define the eigenvalues (λe) and the
eigenvectors (ve) of the adiacency matrix (A):

A · ve = λeve. (7.3)

A powerful property of the eigenvectors of the adjacency matrix is
that it is possible to define a eigenvector centrality measure, where
the values of the all-positive valued eigenvector corresponding to the
largest eigenvalue correspond to a measure of the importance of the node
inside the graph3. For example, a numerical approximation of the
eigenvectors of the shown adjacent matrix associated with the graph
of Figure 7.2 gives

λ∗
max = 3.8226 (7.4)

3 The definition of eigenvector centrality is quite self-referential: a node is important when it is linked
to important nodes. It can be demonstrated that eigenvector centrality is a measure of how probable
is that a random walk would pass through the node (Gould index of accessibility).
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and so the associated eigenvector (normalised to the maximum element)
is

v̂∗
max =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.2464
0.2979
0.5053
0.3709
0.3274
0.2774
0.2731
0.3572
0.2669

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

A
B
C
D
E
F
G
H
I

. (7.5)

So the node with highest rank is C, followed by D, H, E, B, F, G, I, and A
has the lowest rank. Indeed, it can be seen that C is the hub of the graph
of Figure 7.2, with six neighbours. Both D and H have four neighbours,
however H is connected with low-rank nodes (A and I, which are not
connected to the hub), so D has a higher eigenvector centrality. A similar
reasoning would explain the other centrality scores.

7.3.2. Topological properties of a graph

In this Section, we will discuss about other important metrics aimed at
describing 1) the general structure of the network, 2) the rank of a given
node in the network, 3) the interconnectivity between the nodes of the
network.
Neighbourhood and degree distribution. Two nodes i and j are adjacent
nodes if there is an edge {i, j} ∈ C(G). The neighbourhood of a node is
the set of its adjacent nodes (also called neighbours). The numerosity of
the neighbourhood is the degree4 of the associated node. In a real-world
analogy, the degree of a social network profile is defined by the number of
its connections (friends, followers, and so on). As previously mentioned,
the nodes with highest degree are called hubs of the network. It is also
possible to define a degree distribution P(k) as the ratio between the
number of nodes with a given value of degree k and the total number of
nodes:

P(k) = #Gk

#G
. (7.6)

The shape of the degree distribution provides key information as to the
structure of the network. In a random network, each node has a given

4 The term connectivity is used in the literature as a synonym of degree. However, in this book we
will be more prone to use ‘connectivity’ in the context of weighted graphs, while ‘degree’ will be
used for unweighted graphs.
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Figure 7.3. Graph, power law, and scaling of the clustering coeffiff cient in A)
a random networkrr , B) a scale-frff ee networkrr , and C) a hierarchical scale-frff ee
networkrr . The distribution of connectivity of a random networkrr is bell-shaped
and implies that individual nodes more frff equently havaa e a connectivity close to
the avaa erage 〈k〉 of the networkrr . The scaling of its clustering coeffiff cient is flat,
because there is no dependence between the degree of a node and its clustering
coeffiff cient. A scale-frff ee networkrr is characterised by a scale-frff ee distribution of
connectivity (see Equation (7.7)), so, if plotted on a log-log graph, it results in a
linear fuff nction with slope −γ that represents the scaling faff ctor. A hierarchical
architecture is observed in some biological systems and invnn olves the presence
of modular blocks that are added starting frff om a central hub. The connectivity
distribution foff llows a power law and so does the distribution of the clustering
coeffiff cient—the more connected nodes show smaller clustering coeffiff cients and
vice versa. Adadd pa ted byb permission frff orr m MaMM cmillan Publishers Ltdtt : NaNN turerr Rev.
Genet. [5], ©c (2004).

probability of being connected with another node according to a master
grarr pa h model: the degree distribution foff r these networkr s is oftff en bell-
shaped (Figure 7.3A).
Remarkr ably, biological networkr s are usually not distributed as a ran-

dom graph, but in many instances their degree distribution foff llows a
power law

P(k) = k−γ (7.7)



106 Alessandro Cellerino - Michele Sanguanini

where γ is a power factor determined by the network. The most evi-
dent result from the power law distribution of the degrees is that in a
biological network there are few highly-connected nodes and a major-
ity of low-degree nodes5. Networks whose degree distribution follows a
power law are called small-world networks (or scale-free networks). It
has been demonstrated that this network structure is an optimal compro-
mise between robustness against random failures, information capability,
and cost of the network. A rich-club small-world network is a network
wherein the highest degree nodes are also strongly interconnected.

Connectivity in a weighted network. A weighted network presents a
nonbinary connectivity matrix, so the concept of degree cannot be applied
to measure the strength of connection of a node in a weighted network6.
We can thus define a concept analogous to degree: the connectivity of a
gene i, which is defined as

ki =
∑
i �= j

αi j (7.8)

where αi, j is the value associated with the edge {i, j} in the weighted
adjacency matrix. If we define themaximum connectivity of the network
as the highest value of connectivity of the nodes in the network, we can
also define a scaled connectivity measure of the gene i

Ki = ki
maxi (ki)

(7.9)

as the ratio between the connectivity of the node and the maximum con-
nectivity of the network.

Measures of centrality of the nodes. In the previous paragraph, we were
introduced to the concept of eigenvalue centrality. Here we will define
other measures which can be used to ‘rank’ the nodes in a graph. What
does it mean for a gene to be ‘central’? In the case of eigenvalue cen-
trality, a central gene is a gene that is linked to other central genes (see
note 3). If we define a central gene as a gene which is ‘close’ to the other
genes (i.e. the average shortest path is as small as possible), we get a

5 To be precise: real biological networks follow a truncated power law distribution, which has
value zero for k > maxi (ki ).

6 The weight of a connection can be considered as the likelihood of passing from one node to another
during a random walk. Now let’s think about a node with a large neighbourhood of ‘weak’ connec-
tions and one with a smaller number very strong connections (high probability of being in the walks
from the neighbouring nodes): which is the real hub?
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closeness centrality measure

Ci = 1∑
j �=i si j

(7.10)

where si j is the length of the shortest path (see Figure 7.2) between nodes
i and j. The closeness centrality coefficient (in connected graphs) has val-
ues 0 < Ci ≤ (#G)−1, that is between a node which has few connections
with peripheral nodes to a node which has connection with every node in
the network. In a real-world analogy, the path is the number of shares a
post needs to reach website B from website A, so a website is central if
most of the shares transit through it.
Another possible definition of centrality of a node i is the betweenness

centrality, which measures the fraction of shortest paths in the network
passing through a node i:

Bi =
∑
j �=i �=k

#s jk(i)

#s jk
(7.11)

where #s jk is the total number of shortest paths between the nodes j and k,
and #s jk(i) is the number of shortest paths which pass through the node
i. This measure of centrality is particularly important in connectomics
because areas with high betweenness centrality connect cortical modules
processing multimodal information.
Clustering. Another interesting property of the nodes of a network is
the clustering coefficient, which evaluates the interconnectivity between
the neighbours of a node i

κi = 2ni
ki (ki − 1)

(7.12)

where ki is the degree of gene i, and ni is the number of links connect-
ing the ki neighbours of i with other neighbours of i. The clustering
coefficient has value 0 in the case of a star-shaped network (none of the
neighbours are interconnected) and maximum value when every node of
the neighbourhood has a connection with every other node. The distribu-
tion of clustering coefficients can provide important information regard-
ing the organisation of the network. If a network has a modular struc-
ture, i.e. it is composed of modular blocks that are added to a central hub
(Figure 7.3C), then the relationship between clustering coefficient and
connectivity is that of a power law. It is of note that the hierarchical or-
ganisation of the metabolic network was demonstrated using this method
[42].
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A B

C

Figure 7.4. Diffeff rent measures of centrality in the network shown in Fig-
ure 7.2. A) Degree centrality, B) closeness centrality, and C) betweenness cen-
trality. Each node of the graph has been associated with the corresponding mea-
sure. It can be seen how each centrality measure depicts some part of the prop-
erties of the networkrr .

7.4. WeWW ighted gene coexpression network analysis

RNANN -seq experiments provide a series of expression levels foff r n tran-
scripts in m diffff eff rent conditions; that is, a Dn×m dataset matrix.
As already seen in Chapter 5, we can use Pearson’s correlation coef-ff

ficient as a metric foff r the co-expression between two genes. WeWW then
generate a gene co-expression matrix Rn×n according to the coeffiff cients

ρi j =
∑n

k=1 (qik − μi)(q jk − μ j )√∑n
k=1 (qik − μi)2

√∑n
k=1 (q jk − μ j )2

(7.13)

where qik is the expression of the gene i in sample k and q jk is the expres-
sion of the gene j in sample k; μi and μ j are the means across samples of
the genes i and j respectively. Aftff er the construction of R, the next step
is to determine the adjd acency matrix of the networkr An×n . There are two
approaches:

• a hard thresholding, that constructs an unweighted matrix

ai, j =
{
1 if ρi j ≥ ϑ

0 otherwise
(7.14)
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where ϑ is a threshold value which determines the connections be-
tween genes to be discarded;

• a soft thresholding, where the value of the adjacency matrix is a func-
tion of the correlation coefficient

ai j = a(ρi j ) (7.15)

and thus determines the construction of a weighted network.

Choosing to build an unweighted graph has some important drawbacks:
because every edge whose correlation value falls below ϑ is considered
noise, but a fraction of the excluded edges might carry biological infor-
mation. Soft thresholding keeps all the information from the RNA-seq
dataset (noise included), so a good practice is to emphasise the high-
correlation edges and to ‘punish’ the weaker correlations—though with-
out annihilating them. This can be achieved by applying an exponential
function to the correlation coefficients

ai j = ρ
β

i j (7.16)

where the value of β ≥ 1 can be found using the scale-free topology
criterion (found in [61]) or set to β = 6, again following [61]. The
scale-free topology criterion states that the index β should be chosen in
a way that the obtained network has a scale-free degree distribution7.
After having computed the adjacency matrix with a soft threshold we
have obtained a weighted gene co-expression network.

7.4.1. Module analysis

A powerful way to start the downstream analysis of the weighted network
is to divide the network intomodules. That is, into groups of genes which
share high levels of co-expression. This adjacency matrix is, apart from
the power coefficient β, perfectly analogous to the correlation matrix seen
in Chapter 5 and could be used as such for hierarchical clustering. How-
ever, in WGCNA, the clustering is based on the topological properties
embedded in the adjacency matrix.
Let’s now introduce a new measure, called topological overlap (ω)

between two nodes i and j, which measures howmuch the neighbourhood

7 The argument for the scale-freedom of the obtained network could sound a bit circular, however it
is reasonable, as the majority of complex networks seen in biology behave like a scale-free network.
In practice, a β is chosen, the network is computed, then the log/log plot of P(nk) as a function of
the degree k is plotted. For the network to be accepted, the plotted function should be interpolated
by a linear function with correlation coefficient R2 ≥ 0.8 and slope roughly equal to −1.
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A B

Figure 7.5. The shape of a gene co-expression networkrr varies dramatically ac-
cording to the topology matrix that is applied: A) gene correlation distance,
B) topological overlap dissimilarity as described in [61]. It is apparent that the
networkrr built using the gene correlation appears more disconnected and shows
poorer evidence foff r the nodes’ centrality. In the one that considers the topolog-
ical overlap of each node, all the nodes are connected and a scale-frff ee organi-
sation of the networkrr is evident. FiFF gurerr adadd pa ted withtt permission frff orr m [36], ©c
(2006) NaNN tional Acaded mym ofo Sciences, U.S.A.

of the two nodes overlap. In the case of a unweighted networkr it has the
foff rm

ωi j = ai j + ∑
k aika jk

min (ki , k j ) + 1 − ai j
(7.17)

where ki is the connectivity of the node i. In a real-world analogy, given
two persons A and B, ω measures how many social networkr connections
they havaa e in common divided by the total number of connection of the
one that has the least amount. The topological overlap takes values 0 ≤
ωi j ≤ 1 when 0 ≤ ai j ≤ 1 (see [61] foff r fuff rther infoff rmation), so it is
possible to define a topological overlap dissimilarity distance

δω
i j = 1 − ωi j (7.18)

which can be used as a distance matrix foff r a hierarchical clustering
of the nodes (genes) of the networkrr . The rationale foff r using topologi-
cal overlap as a measure foff r clustering—and not, foff r instance, a simple
correlation measure—is that nodes with similar fuff nction usually present
connections with similar neighbours. Figure 7.5 shows the diffff eff rences
in the gene co-expression networkr when using a correlation matrix (A)
and a topological overlap matrix (B). The clusters obtained in a hierar-
chical clustering using the topological overlap dissimilarity distance are
the modules of the networkr .

7.4.1.1. Correlation of a module with a phenotypic trait. The second step
of module analysis is to find whether the genes of a module are related to
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AA B C

Figure 7.6. Hub genes in a module, eigengenes, and their trait-significance.
A) Each gene can be ideally represented as a vector. The eigengene can be seen
as a ‘representative vector’ of the module and the genes that are closest to its
expression pattern can be seen as module hubs. Genes that are more peripheral
in the module show an intermediate expression pattern. It can be shown [21] that
the intramodular connectivity of a gene in a module is a fuff nction of its distance
frff om the module eigengene (due to the way a topological overlap distance matrix
is built). B) It’s possible to assign a module a score of significance in relation
to a given biological/clinical trait. This can be evaluated using the correlation
of the trait with the module eigengene, or to a gene member. In the panel, foff r
example, GS(1) is the gene significance of the gene 1 with the trait of interest T1.
C) If a module is strongly associated with a trait T2, but not with a diffff eff rent trait
T1, then the value of the gene significance foff r a given gene in the module is a
fuff nction of its intramodular connectivity: the higher the connectivity, the higher
the significance value with the module-associated trait and the lower with the
non-module trait. FiFF gurerr adadd pa ted frff orr m [21] under a CC-BY Crerr ative Commons
Attribution License.

a given biological phenomenon (e.g., ageing, neurodegeneration, neural
fuff nction, and so on). A straightfoff rward approach is to define a trait-
based significance measure. For each sample, we can assign infoff rma-
tion on one or more traits (e.g., age, disease status, treatment). So each
gene is associated with a vector of its expression related to the variation
of the phenotypic trait. One can then study the correlation coeffiff cient
between the expression level of each gene i included in a module κ and
the biological trait of interest8 τ . The significance ψ of a gene i in rela-
tion to a trait is defined as an exponential fuff nction of the afoff rementioned
correlation coeffiff cient:

ψ
(κ)
i = |ρi,τ |b. (7.19)

Thus, the module significance is easily calculated as the avaa erage of the
significance measures of the genes in the module

	κ =
∑

i ψ
(κ)
i

#κ
. (7.20)

8 As τ could be either a quantitative or a qualitative trait, the user has to find the best way to encode
the variation of the trait in the correlation measure.
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Once having found the modules which are highly correlated with the
studied trait, the analysis could continue with, for example:

• the Gene Ontology analysis of the members of the module,
• the dissection of the module in sub-modules;
• the detailed analysis of the topological properties of the module;
• ...

7.4.1.2. Dimensionality reduction in module analysis. After having hav-
ing sectioned the network into the modules, it could be interesting to
further condense the information present in the module, thus finding a
collective description of the module expression pattern. If we consider
the expression matrix of the module (a #κ × m matrix), we can apply
singular value decomposition9, a procedure that is similar to principal
component analysis:

Dκ = U�V T (7.21)

where U is a #κ ×m matrix with orthnormal columns, � is an m ×m di-
agonal matrix, whose values are incidentally the square root of the eigen-
values of the intracondition correlation matrix, V is an m × m orthogo-
nal matrix of the corresponding eigenvectors. The eigenvector ve ∈ V
correspondent to the highest eigenvalue in � is called eigengene of the
module. The values of the eigengene offer a collective representation
of the expression pattern of the genes in the module. For example, the
eigengene values have been associated with the trait participation in trait-
significant modules (Figure 7.6).
Having the ‘condensed’ expression values of the eigengene of the mod-

ule, it is possible, instead of calculating the module significance accord-
ing to Equation (7.20), to correlate the eigengene with the trait of interest.
Moreover, one can determine which are the nodes in the module whose
expression pattern is closer to the eigengene (i.e. the correlation ρve,i has
the highest value, Figure 7.6A). These nodes are called module mem-
bership hubs and are often important in the function of the module or as
biological markers (Figure 7.6B–C).

9 Singular value decomposition is a generalisation of eigendecomposition, which is the decomposi-
tion of a square matrix as

M = V LV T

where L is a diagonal matrix with the eigenvalues of M and V is the matrix composed by the corre-
sponding eigenvectors.
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7.5. In conclusion: an explained example of the power
of (neuro)genomics analysis

In order to illustrate how the techniques we presented in the previous
chapters can be applied to a scientific question, we will comment on the
analysis of the dataset reported in the workr of Baumgart and colleagues
[6].
In this study, a longitudinal RNANN -seq design was applied to the turquoise
killifish. The aim of the study was

1. to test whether groups of fish with diffff eff rent longevity showed diffff eff r-
ences in gene expression at an early age and

2. to correlate these gene expression profiles with the ‘age at death’ in
order to identifyff predictors of lifeff span at early age.

A B

C D

Figure 7.7. A) AvAA erage lifeff span of the studied killifish population: short lived
fish havaa e a lifeff span below the median, while the longest lived fish are in the top
10% of lifeff span. B) The foff ld-change gene expression variation in the samples
frff om short lived fishes is higher compared to the variation in the longest-lived
fish. C) An even higher diffff eff rence in the foff ld-change variation is evident when
applied to a gene enrichment analysis on each KEGG pathway. D) Number of
diffff eff rentially expressed gene sets between short- and longest lived- fish at 10
(the list of the KEGG pathways is enclosed in the inbox) and 20 weeks. ImII age
adadd pa ted frff orr m [6], httptt ://// crerr ativecommons.orgr /licenses/byb /4// .0/00 .
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The study analysed 130 individual fish. For each animal two fin biopsies
were taken: one at age 10 weeks (25% of the median lifespan) and and
one at 20 weeks (50% of the median lifespan). Fins regenerate in fishes
and this procedure does not compromise survival. 45 individuals were
selected based on the age of death (AoD) and divided into three equal
groups: short-lived, long-lived and the longest-lived (Figure 7.7A).
As a first step, the authors calculated the median absolute fold-changes

in gene expression between 10 and 20 weeks for the short-, long-, and
longest-lived groups of fish. The largest differences were observed in the
short-lived fish and the smallest were observed within the longest-lived
fish (p = 10−7, Wilcoxon signed-rank test, Figure 7.7B). Note from the
panel that these differences are small in size, but given the large num-
ber of genes (>20000) that were compared, the statistical significance is
very high. This also demonstrates that the global rate of age-dependent
gene modulation is slower in the longest-lived group. A biological in-
terpretation of these data is that the biological time ‘ticks slower’ in the
longest-lived population and this is responsible for the longer lifespan.
In a second approach, a Generally Applicable Gene Enrichment

(GAGE) analysis was applied (see Section 6.5.2) and, for each KEGG
pathway, the absolute statistical mean of the fold-changes between 10
weeks and 20 weeks was computed for the three groups separately. This
was largest in the short-lived and smallest in longest-lived groups of fish
(p = 4·10−5, Wilcoxon signed-rank test, Figure 7.7C). It should be noted
that grouping genes into KEGG pathways resulted in larger effect size.
However, since the number of KEGG pathways for fishes is only 136, the
p-values are larger than at the gene-level comparison. An intuitive ap-
proach to this dataset would be to identify genes differentially expressed
among the three groups. The analysis of differential expression using
DESeq detected a small number of DEGs (<100) due to the small size
of the fold changes at the individual gene level. However, analysis by
GAGE detected 15 differentially-expressed pathways (FDR < 0.05) that
are more than 10% of all KEGG pathways in fishes. This illustrates how
small changes at the individual gene level can generate a robust signal if
they are consistent within a pathway.
A survey of the differentially-expressed KEGG pathways provides a

synthetic biological interpretation of the data that points out three major
cell processes:

global control of gene expression ‘RNA polymerase’, ‘Spliceosome’,
‘RNA transport’;

mRNA translation ‘Ribosome biogenesis’, ‘Ribosome’, ‘Aminoacyl-
tRNA biosynthesis’;
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processing and trafficking of proteins ‘Protein processing in the En-
doplasmic Reticulum’, ‘Protein export and recycling of proteins: Pro-
teasome and Phagosome’.

All these pathways are expressed at higher levels in the short-lived indi-
viduals (Figure 7.7D). A biological interpretation is that higher activity of
biosynthetic pathways early in life is correlated (and maybe predisposes)
with short lifespan. Furthermore, these pathways are differentially-
expressed at 10 weeks, but not at 20 weeks, i.e. the differences in gene
expression between the short- and longest-lived fish are largest at the
earliest time point. Intuitively, differences in gene expression between
individuals that differ in their ageing rate should become larger as age
progresses, but these data are rather reminiscent of the ‘hourglass’ model
of comparative embryology10. This view is consistent with transcriptome
studies of the human brain11. The biological interpretation of these data
is that the conditions favouring longevity are expressed early in life and
they leave a functional trace even after they vanish.
What are the dynamics of age-dependent regulation of those genes

whose expression is correlated with lifespan? This question can be an-
swered using k-means clustering (Section 5.2.2 at page 65) on a second
cross-sectional dataset, where the gene expression was measured in sam-
ples from three tissues (brain, liver, and skin) obtained from animals that
were euthanised at either of five time points ranging from young to very
old age. In the longitudinal study a number of genes (n=688) showed a
negative correlation with lifespan. The expression profiles of these genes
in the cross-sectional study were clustered into three clusters. The first
cluster showed up-regulation in all three tissues (261 genes, Figure 7.8A)
and these genes can be considered markers of the biological age of skin;
functionally, they may promote skin ageing. The second cluster (36%,
251, Figure 7.8B1) showed a U-shaped profile with a sharp decay be-
tween 5 and 12 weeks and up-regulation at later time points in all three
tissues. This behaviour may indicate that these genes show different pro-
files in short- and longer-lived individuals and the population pattern may
indicate higher mortality of those animals with early down-regulation.
This behaviour is most evident in genes coding for RNA transport pro-
teins (KEGG dre03013, Figure 7.8C).

10 The model, originally proposed to compare the morphology of embryos of different species,
postulates that phenotypes are more divergent at early developmental stages, converge at mid-
development and diverge again later.

11 See also the paper from Colantuoni and colleagues [10] described in Chapter 8 at page 131.
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WhWW at is thtt e prerr valent fuff nction ofo thtt e genes showing U-shapa ed be-
haviour? This question is best answered by testing the overrepresen-
tation of GO terms. This cluster of genes is significantly enriched in
transcripts coding foff r proteins of the mitochondrial inner membrane
(N=20, GO:0005743, Fold-enrichment=7.2, FDR=1.3 ·10−9, Fisher’s ex-
act test, Benjn amini-Hochberg correction). This is confirmed by a com-
plementary approach where the diffff eff rential expression of all genes of the
GO term ‘mitochondrion’ is tested by GAGAA E (FDR= 0.0078 foff r short-
versus longest-lived fish; Figure 7.8B2). Please note the complemen-
tary nature of these two tests. In the first case, a gene set is obtained
by a method that provides a binary output (a gene is either contained
within a cluster or it is not). In the second case, a statistical test is per-
foff rmed using the foff ld-changes of all genes belonging to a given gene
set as input.

A B1

C B2

Figure 7.8. K-means clustering of the gene profiles along ageing shows the
presence of clusters that are negatively correlated with lifeff span and either A)
up-regulated in ageing, or B1) U-shaped (i.e. up-regulated in development and
ageing but down-regulated during maturity) in three diffff eff rent tissues. B2) The
normalised expression of a GO term overrepresented in the U-shaped cluster
shows an early correlation with the lifeff span of the killifish. C) The early down-
regulation of the KEGG pathway related to RNANN transport is related to the lifeff s-
pan of populations of killifish with diffff eff rent lifeff span. ImII age adadd pa ted frff orr m [6],
httpt ://// crerr ativecommons.orgr /licenses/byb /4// .0/00 .
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WGCNA (see Section 7.4) is a third approach to identify genes and
pathways related to a biological condition12. The first step is the selec-
tion of the features (i.e. the genes) that are going to build up the gene
co-expression network. The analysis was thus restricted to the 936 genes
whose expression is correlated with age of death (Spearmann correlation,
p < 0.05). WGCNA identified five modules and for each of these mod-
ules the correlation of the eigengene with age of death was computed
(Figure 7.9A). Module 2 (149 genes) shows the largest absolute eigen-
gene correlation with age of death (r =−0.45, p = 10−5, Benjamini-
Hochberg correction, Figure 7.9B). Its most overrepresented terms are
for complex I of the respiratory chain (N=6, GO:0045271, p = 6 · 10−5,
Fisher’s exact test, Benjamini-Hochberg correction) and the members of
this complex occupy central positions in the network (Figure 7.9C).
The WGCNA analysis provided a clear working hypothesis: the

reduction of complex I activity should increase fish lifespan. This is
also a testable hypothesis, since complex I of the respiratory chain can
be potently inhibited by small molecules, such as rotenone (ROT, see
[49]). The treatment of killifish with a dose of rotenone correspond-
ing to 0.1% of the median lethal concentration (LC50) induced a life
span extension of ∼15% that was statistically significant (log-rank Test,
p = 0.0181).
Is this life-extension correlated with changes in age-related pheno-

types? The transcriptome can be considered as a multidimensional phe-
notypic trait that describes the global response of an organism (or of cells)
to a biological conditions or a treatment. Five animals treated with 15
pM ROT were taken after four weeks of treatment and RNA-seq was
performed on brain, liver and skin samples. These were compared with
animals of the same age treated with vehicle and with animals treated
with vehicle for four weeks starting at age 5 weeks (young controls).
The authors analysed the response to ROT of all genes differentially ex-
pressed with age (FDR-corrected p < 0.05, EdgeR and DEseq) detected
in comparisons of old versus young controls (brain: 1436 DEGs, liver:
839, skin: 1830). In Figure 7.10, these data are shown as 2D plot with
log2 of the expression ratio old controls/young controls on the X axis and
log2 of the expression ratio old ROT-treated/old controls on the w axis. In
all three tissues, the vast majority (∼90%) of genes up-regulated during
ageing were down-regulated by ROT and vice versa resulting in highly-
significant negative regression. This demonstrates that treatment with

12 In this case, the biological condition is the lifespan.
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Figure 7.9. WGCNANN analysis on the N. fuff rzrr eri dataset. A) Dendrogram with
module recognition and associated module-trait correlation. Green modules are
positively associated with the age of death (i.e. their genes are highly expressed
in fish that died later), while red modules are negatively correlated. B) As an
example of such correlation, the expression levels of the eigengene foff r the blue
module (genes negatively correlated with lifeff expectancy) is shown as a fuff nction
of the age of death. In the plot the components measured at adult age (10 weeks,
•) or in an aged fish (20 weeks, �) are distinct. As can be seen, the expression of
the eigengene at either 10 or 20 weeks is on avaa erage higher in fish that die earlier
(30 weeks) and lower in fish that die later (70 weeks). C) Networkrr representation
of the most connected genes in the blue module using a topological overlap
measure. The genes of Complex I (invnn olved in cellular respiration) are shown
in red and the mitochondrial ribosome genes are shown in red. ImII age adadd pa ted
frff orr m [6], httpt ://// crerr ativecommons.orgr /licenses/byb /4// .0/00 .
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Figure 7.10. Effff eff ct of rotenone on the gene expression profiles in brain, skin,
and liver of N. fuff rzrr eri and of zebrafish (D. rerr rio). The plots show each DEG as a
point whose coordinates are given by its log2 foff ld-change during ageing or aftff er
treatment with rotenone. The strong negative correlation (dadd shed line) between
the DEG foff ld-changes is an indication that rotenone has an ‘opposite’ global
effff eff ct on the transcriptomic profile of the diffff eff rent tissues compared to ageing.
ImII age adadd pa ted frff orr m [6], httptt ://// crerr ativecommons.orgr /licenses/byb /4// .0/00 .

ROT shiftff s the global gene expression towards a pattern more typical of
younger ages (reje uvenation).
In summary, this study illustrates how the techniques presented in the

previous chapters can be used to identifyff key regulators of specific bio-
logical phenomena and to generate hypotheses that can be tested experi-
mentally.



Chapter 8
Mesoscale transcriptome analysis

8.1. Introduction

In the current chapter, we will discuss some publications that applied
the previously described data analysis methods to genome-scale expres-
sion datasets in order to investigate aspects of brain organisation at the
mesoscale level (i.e. at the level of areas and their connections). The
high-throughput technique for quantification of gene expression used in
most of these works is the cDNA microarray that, until very recently,
represented the technique of choice to obtain genome-scale gene expres-
sion data. The output of a microarray experiment is an n×r matrix, where
n is the number of (oligonucleotide) probes printed in the microarray chip
(note that multiple probes may be associated with a single mRNA) and
r is the number of samples (brain regions) analyzed, and the elements of
the matrix are normalised hybridisation signal intensities for the different
probes (again, a single transcript may be represented by multiple probes).
The structure of the dataset is very similar to the output of RNA-seq, so
the down-stream analysis uses the same methods. A notable difference is
that normalised signal intensities for microarrays are near-normally dis-
tributed.
We wish to remark that, given the complexity of the brain at meso-,

micro-, and subcellular-scale, the neurosciences represent a playground
where the full potential of genome-wide technologies can be challenged.
We provide examples spanning from neurobiology to cognitive science,
in order to give the reader a hint of the full breadth of possible applica-
tions of transcriptomics at all different scales. The number of publica-
tions using these techniques is booming; it is not the aim of this book
to provide a comprehensive review of the literature. On the contrary, we
want to provide a few discussed examples to help the reader develop the
capacity to approach these types of publications critically.
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8.2. A comprehensive dataset of the human brain
transcriptome

The Allen Human Brain Atlas is the most comprehensive database of
spatially-resolved transcript expression in the human brain currently
available1. At the moment, it includes microarray data from over 150
brain regions from both hemispheres of two adult healthy individuals
[19] (the RNA samples from a part of these regions were analyzed with
RNA-seq too), and from the left hemisphere of four further adult healthy
individuals. Post-mortem NMR scans of these brains (while still in the
skull) were obtained before the explant; therefore, by interpolation, the
precise 3D origin of all regional samples can be identified. This produces
3D reconstructions of gene expression patterns. The database allows a
description of molecular differences between regions of the human brain
at an unprecedented level of spatial resolution and represents an interface
between genomics and brain imaging.
In their first presentation of the Allen Human Brain Atlas dataset,

Hawrylycz and colleagues [19] obtained the DEGs (see Chapter 4, and
Sections 5.2 and 5.3) between different brain regions in the two full emi-
spheres. They also applied the Weighted Gene Co-expression Network
Analysis (or WGCNA, see Section 7.4 at page 108) to the entire dataset in
order to find gene co-expression modules across different brain regions.
This initial analysis on the data produced some interesting insights on the
global and local structure of the human brain transcriptome and hints at
the wealth of information that can be harnessed from this dataset.
Conservation of transcriptional profiles The first question that

can be addressed from the Allen Human Brain Atlas dataset is: to what
extent does the regional gene expression differ 1) between individuals,
or 2) between the hemispheres of one individual? Hawrylycz and col-
leagues found a very high correlation in transcript expression when the
same regions were compared between two individuals (Pearson coeffi-
cient r = 0.98), and a significantly high correlation (r = 0.46) in the
DEGs computed between two given regions in the two individuals. These
data indicate a remarkable stability of the human brain transcriptome. A
very interesting finding was obtained when inter-hemispheric differences
in gene expression levels were analyzed: no statistically-significant dif-
ference between paired left and right brain regions was confirmed in both
individuals. Apparently, the well-established functional distinction be-
tween left and right hemispheres is not reflected in differences in tran-

1 http://brain-map.org/
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script expression that can be detected with conventional transcriptome
analysis tools. This datum suggests that the molecular correlates of brain
lateralisation are subtle and a higher power (i.e. more individuals, more
depth) is needed to detect them. A later study [40] confirmed that inter-
hemispheric differences of gene expression in the human brain are subtle
and mostly below statistical significance.
Regional gene expression and cortical homogeneity A number

of gene co-expression modules reproducible in the two individuals were
identified by WGCNA (Figure 8.1A and B). Some modules were more
highly expressed (i.e. the eigengene had higher values) in specific brain
regions (e.g., a striatum module, a choroid plexus module, and so on,
see Figure 8.1C) and some modules showed clear overrepresentation for
markers of specific cell-types (microglia module, cortical neurons mod-
ule, or oligodendroglia subcortical-enriched module, see Figure 8.1B).
Interestingly, the analysis of DEGs showed that almost half of these genes
were poorly annotated at the time, but also that roughly 10% of those un-
known genes were part of cell-type specific modules. This information
can be used to impute to these genes the function associated with the
module that contains them2. Using these data, it is also possible to com-
pute a brain-wide dissimilarity matrix using as criterion the number of
DEGs detected between each pair of brain regions (Figure 8.2A). This
matrix reveals that subcortical regions show large degrees of dissimilar-
ity on small spatial scales, as expected by the presence of many spatially-
segregated nuclei with different functions and cytoarchitectures. On the
other hand, the cerebellar- and the neo-cortical samples present much
smaller regional variations in their gene expression profiles, probably due
to their stereotypical cytological organisations. Some important excep-
tions to the neocortical uniformity are the primary sensory cortices and
the temporal pole. In particular, the primary visual cortex stands out as
an outlier (Figure 8.2B, see also Section 9.3.1 at page 154). The reasons
for this are not clear, but could be related to the specialisation required to
receive a large thalamic input and the expansion of layer IV that is typical
of the primary sensory cortices.
Local patterning reproduces the main hippocampal divisions The

authors performed an unsupervised hierarchical two-way clustering (see
Chapter 5 on page 65) using microarray data derived from the hippocam-
pal regions (CA1-CA4, dentate gyrus and subiculum). A two-way clus-

2 For example, an unknown gene which correlates with the oligodendrocyte module may be asso-
ciated with the specific functions of this cell type, such as membrane wrapping or biosyntheis of
myelin (guilt by association).
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Figure 8.1. WGCNANN analysis on the Allen Human Brain Atlas dataset. A) Den-
drogram of the gene set hierarchical clustering across brain regions, with B) as-
sociated division in modules, enrichment of cell-type specific markrr ers (yellow:
oligodrendrocytes, purple: astrocytes, white: microglia, turquoise: neurons),
value of correlation of the expression of a gene between the brains of two diffff eff r-
ent individuals, overall preservation of the modules—darkrr er modules are more
preserved, thus less variable interindividually—and the value of association of
the genes in the modules to cortical (red) or subcortical (green) regions. C) Ex-
pression of the module eigengene in the diffff eff rent analysed brain regions, with
the areas of interest markrr ed with an asterisk. The plot is essentially a graphic
representation of the vector of the eigengene—that has n components, where n is
the number of brain regions and each ki value can be seen as the contribution of
the region i to the eigengene—of the module. On the top-right of each histogram
there are the genes whose expression profiles correlate more strongly with the
eigengene. Adadd pa ted byb permission frff orr mMaMM cmillan Publishers Ltdtt : NaNN turerr [19],
©c (2012).

tering generates clusters on both the diffff eff rent genes (interregional expres-
sion profiles) and the regions (intraregional expression profiles) and then
orders these in a matrix of transcriptional profiles in the diffff eff rent sam-
ples. This analysis reveals that the diffff eff rent subregions of the hippocam-
pus can be separated based on their expression profiles3. This strongly

3 That is, the sample clustering produces a CA1 cluster that contains all samples whose origin is in
the CA1, a CA2 cluster, a DG cluster and so on. Interestingly, the CA3 and the CA4 regions are not
separated by the clustering, which confirms previous findings that the CA3 and CA4 regions do not
havaa e a fuff nctional distinction.
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A

Figure 8.2. A) Matrix representing the numbers of diffff eff rentially expressed
genes in each pair of analysed brain regions. Notice that the neocortex and
cerebellum are transcriptionally very homogeneous—with a feff w exceptions: the
primary visual cortex (purple), the temporal pole (green), and the postcentral
gyrus (orange). The variability of gene expression between subregions of a
given anatomical structure can be quantified in the associated histogram (bot-
tom panel). B) Histogram that represents the Pearson correlation coeffiff cient
between the gene expression profile of a cortical area and the first two principal
components of the PCA computed on the subset of the cortical samples. It can be
noticed how brain regions with higher variability in panel A also show a higher
correlation with (i.e. contribution to) the first two principal components. C) The
MDS projo ection of the gene expression profiles frff om diffff eff rent cortical regions
(right) reflects the spatial topology of the neocortical regions (lefe tff ). Adadd pa ted byb
permission frff orr m MaMM cmillan Publishers Ltdtt : NaNN turerr [19], ©c (2012).
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suggests that each subregion of the hippocampus has a specific transcrip-
tional fingerprint. An independent validation of this concept can be easily
obtained by classical staining techniques such as immunohistochemistry.
Although this may appear as a trivial control to a student trained in Neu-
roanatomy, in Systems Biology it is fundamental to experimentally vali-
date conclusions derived from computational analysis of high-throughput
datasets.
The neocortical transcriptome reflects the cortical topology As

already mentioned in the previous section, the gene expression patterns in
the neocortex are quite homogeneous on a spatial scale—excluding a few
exceptions. It is however still possible to select a set of genes with the
largest variation of expression across the different cortical samples (fea-
ture selection based on maximum variance). Howrylycz et al. chose 1000
highly variable genes in the 56 sampled cortical regions and performed
a PCA (see Section 5.3 at page 70) on the resulting matrix. It is under-
standable that the first two principal components—which take into ac-
count more than half of the variance in each brain—point out the regions
with highest variance (see Regional gene expression and cortical homo-
geneity). To obtain a compact graphical representation of the dissimilar-
ity between samples, they applied multidimensional scaling (MDS, see
Section 5.4 at page 78). Amazingly, the relative positions of the differ-
ent samples in the MDS plane reflect the spatial distances between the
associated brain regions and their relative organisation with a reasonable
accuracy. In particular, there is an almost linear correlation between the
‘genetic distance’ expressed in the MDS plane projection and the MRI-
related ‘physical distance’ between the regions. The goodness of fit be-
tween these coordinates is slightly less than 30% (Figure 8.2C)!

8.3. Evolutionary biology
Conservation and evolution of gene networks in humans and
apes

Another early example of the application of WGCNA to neurogenomics
was provided by Oldham and colleagues [36] in the field of Evolution-
ary Biology. Humans and apes show a high similarity at both genomic
(∼98% DNA base pair conservation between humans and chimps) and
gene expression level, but the differences from a neurobiological point of
view are striking. It has been classically recognised that potential driv-
ing forces of the peculiar evolutionary changes in the human brain are
1) gene loci with higher selective pressure and 2) differential species-
specific spatio-temporal regulation of mRNA transcription. As a result,
these two points might induce different properties in the transcriptome
network.
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Figure 8.3. WGCNANN analysis on microarray datasets derived frff om human
and chimpanzee brain regions. A) Dendrogram and module division derived
frff om the human brain samples. B) Dendrogram frff om the chimp dataset, with
each gene coloured according to the module of the associated human homo-
logue genes. C) Multi-Dimensional Scaling of the genes in the human dataset,
coloured according to their module membership and D) of the genes in the chimp
dataset, coloured according to the membership of their human homologue. The
plot illustrates the conserved and the less conserved modules between humans
and chimpanzees. FiFF gurerr adadd pa ted witht permission frff orr m [36]6 , ©c (2006)6 NaNN -
tional Acaded mym ofo Sciences, U.S.A.

Oldham and colleagues analysed microarray data frff om human and chim-
panzee samples originating frff om matched brain regions (Broca’s area,
anterior cingulate cortex, primary visual cortex, prefrff ontal cortex, cau-
date nucleus, and cerebellar vermis). A WGCNANN approach on the human
dataset identified six gene co-expression modules (Figure 8.3). Each of
the eigengenes of these modules was ‘highly represented’ in a diffff eff r-
ent brain region (pooling human and chimpanzee samples in the analy-
sis) with the exception of a smaller module, whose most central genes
are associated with myelination and glia4. Some of those modules (e.g.,
turquoise/cerebellum, yellow/caudate nucleus) are strongly conserved
between humans and chimps, while others—particularly the purerr lyl corti-
cal ones—are weakly conserved (Figure 8.3). The conservation of a mod-

4 The association between transcriptome and regional patterning was strongly confirmed later on in
the Allen Human Brain Atlas paper [19] (see page 123).
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ule is assessed using the correlation between the intra-module connectiv-
ity score kin (see Equation (7.8)). The score is the sum of the weights be-
tween the gene and its neighbours that are included in the same module.
For example, when a human gene i is strongly connected with genes in its
module, its kin(i) will be high; in case its chimpanzee homologue gene i’
shows fewer/less strong connections with the genes in its corresponding
module, its kin(i ′) will be low. This would be a hint of a variation of
the functionality of i in the network during the evolution of the human
brain5. The power of the analysis of the intramodular connectivity varia-
tion is that, once we have compiled the lists of human genes that are less
conserved in each module, it is possible to study their biological function
using the knowledge-based dimensionality reduction methods discussed
in Chapter 6 (e.g., Gene Ontology, or KEGG pathways). For example,
the genes in the ‘blue’ module, which is cortical, are the least conserved
in their connectivity between human and chimpanzee brains and show
some overrepresented GO categories such as

• protein transporter activity,
• microtubule cytoskeleton,
• ion transporter activity, particularly the electron transport chain (11
genes).

Interestingly, the electron transport chain has been linked in the scientific
literature with an accelerated evolution in anthropoid primates [38].
As we have seen in Chapter 7, a module hub gene is a gene with a

central position within a module in the network6. It is thus important
to study the conservation and the variation of the connectivity patterns
of the hubs in the different modules in order to recognise human-specific
network connections. Oldham and colleagues defined a human specificity
score HS according to the variation of the topological overlap ωi, j (see
Equation (7.17) at page 110) of a given gene couple (i,j):

HSi, j = ωhuman
i, j /〈ωhuman〉

ωhuman
i, j /〈ωhuman〉 + ω

chimp
i, j /〈ωchimp〉 (8.1)

where 〈ω〉 is the mean topological overlap in a given gene co-expression
network. The HS score for each couple of genes is then thresholded at

5 This difference is more striking if we consider that in some cases there is a strong difference in
the kin ranking between the chimpanzee and human modules of a given gene, while the transcrip-
tional level of the two homologue genes are constant in the two species. For example, Oldham and
colleagues discuss the case of the cortical gene NRG1.

6 See also the Figure 7.5B at page 110, which shows the organisation of the network from [36] when
a topological overlap metric is applied.
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0.8. This means that a connection between two genes i and j is deemed
‘present in human and absent in chimpanzees’ if the value of the nor-
malised topological overlap for the couple in chimpanzee is less than 25%
of the normalised topological overlap in the human network. The matrix
derived from the intra-modular HS can be then used to build a human-
specific network. This can be used to evaluate which modules are richer
in human-specific interactions and whether these interactions converge
on single hubs of the system or are evenly spread in the module. Inter-
estingly, the percentages of human-specific connections in each module
correlate with the ‘evolutionary specificity’ of each brain region, with
the cortex module showing the highest degree of human-specific connec-
tions (17.4%), while the more ancient caudate nucleus and cerebellum
show 7.8% and the 4.5% of human-specific connections, respectively.
Moreover, a large fraction of the human-specific connections are con-
verging onto a specific set of hub genes. It is likely that these genes—in
some cases poorly characterised or with unknown function—underwent
some important changes in recent human/chimpanzee evolution. These
changes could be, for example, an increase in the expression level of
the transcript, or a change in its interaction partners. Figure 8.4 shows
the analysis made by Oldham and colleagues in order to investigate why
some genes show a higher differential intra-modular connectivity

�k(i) = log (kin(i)) − log (kin(i
′)) (8.2)

where i is a human gene and i’ is its chimpanzee homologue. Plotting the
differential connectivity against the differential expression (Figure 8.4A)
shows a very significant positive correlation (Spearman coefficient 0.32,
P< 2.2 · 10−6). A second feature that can be investigated in silico is
whether the differences in the intramodular connectivity could be due
to genetic modifications such as in-dels, inversions, and other structural
variations. In order to test the effect of these modifications on the co-
expression network, the authors aligned the exonic sequences of a frac-
tion of the genes that show either a higher or similar connectivity in hu-
mans as compared to chimpanzees and then evaluated the presence of
gaps in the sequences (Figure 8.4B). The average number of gaps in the
sequences of genes with high �k(i) is three times higher than the num-
ber of gaps in the genes with �k(i) ∼ 0. This indicates that genomic
rearrangements have some effects on the structure and the evolution of
gene co-expression networks.
A third element of change that could contribute to the differential con-

nectivity of a gene is the divergence in the associated protein sequence—
which could potentially change its interaction partners and thus the as-
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Figure 8.4. Properties of the genes that show human-specific connectivity. A)
Genes that are more diffff eff rentially connected tend also to be diffff eff rentially ex-
pressed, each gene is associated with its module colour. B) The analysis of
the gaps in the alignment of the exon sequences of homologue genes suggests
that the genes with higher diffff eff rential connectivity are likely to be foff und in re-
gions that havaa e experienced more genomic rearrangements. C) Genes with more
human-specific connections show an accelerated protein sequence divergence
compared to the genes with conserved networkrr connectivity. FiFF gurerr adadd pa ted
withtt permission frff orr m [36], ©c (2006) NaNN tional Academym ofo Sciences, U.S.A.

sociated gene co-expression. A metric foff r the protein sequence diver-
gence is the ratio between the rate of non-synonymous nucleotide substi-
tutions7 (Ka) between i and i’ and the control rate of nucleotide substitu-
tion in interspersed repeats in a region of 250 kBp centered around each
gene (Ki ). If Ka/Ki is very low, it means that the protein sequence is
undergoing a strong purifyff ing selection, so that non-synonym mutations
are negatively selected. On the other hand, if Ka/Ki is high, there could

7 A non-synonymous mutation is a nucleotide mutation in the coding sequence that determines a
change in the encoded polypeptide sequence. A mutation in the protein coding sequence which does
not change the aminoacidic sequence is called sys nonyn mous mutatt tion.
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be either a relaxation in the selection or a positive selection for different
coding sequences. Figure 8.4C shows that the average protein sequence
divergence of the genes in the most differentially connected quartile is
significantly higher than the genes in the least differentially connected
quartile. This indicates that genes that experienced an accelerated evo-
lution in the human lineage also reshaped their connectivity in gene co-
expression network in a way that is possibly related to the new functions
they acquired.

8.4. Systems biology
Evolution of gene expression in the human prefrontal cortex
during development and ageing

In 2011, using microarrays, Colantuoni and colleagues analysed gene ex-
pression in samples derived post-mortem from the human prefrontal cor-
tex of 269 healthy individuals with age spanning from a few post-natal
days to over 70 years. A number of 38 fetal (weeks 14 to 20) samples
were included in the analysis. Moreover, the researchers obtained a geno-
type of > 600,000 Single Nucleotide Polymorphisms for each subject.
The first question they asked is how the rate of expression change8

evolves during development and ageing. The quantification of the rate
change was done by applying linear models to the gene expression data.
As can be seen in Figure 8.5A, the rate of expression change varies
strongly during fetal development (6 weeks) and slows markedly dur-
ing the post-natal months (infant, 0-6 months) and continues to slow
down during childhood and adolescence9, and stays almost constant in
adulthood (20-40s). In aged brains, however, a reversal of the trend in
expression change is visible, with an acceleration that persists through-
out ageing. In addition, the grey histogram in Figure 8.5A shows how
many genes invert their post-natal expression profiles—e.g., genes that
were down-regulated in infancy start being up-regulated with age or vice
versa. These phenomena are consistent with the previously mentioned
‘hourglass model’ of comparative embryology (see note 10 at page 115).
Colantuoni and colleagues were able to show a global effect of devel-

opment and ageing in the transcriptional profiles of the human prefrontal
cortex using two of the previously presented unbiased dimensionality re-

8 The rate of expression change computes how fast the expression of a given gene changes in a given
time window—in the case of the presented paper, the absolute expression change is represented in a
log2 scale, that is the number of doublings/halvings per year.

9 It’s worth noticing that the absolute rate of expression charge changes of one order of magnitude
between infancy and childhood.
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Figure 8.5. Evolution of gene expression in the human prefrff ontal cortex. A) Ex-
pression change and correlation across the human lifeff span. See main text foff r fuff r-
ther detail. B) Dimensionality reduction techniques such as Multi-Dimensional
Scaling (B1) and Principal Component Analysis (B2) are able to discriminate
samples frff om diffff eff rent developmental stages and age. C) Comparison between
the expression traja ectories in feff tal development and the ones in infaff nt devel-
opment (see main text). D) Expression traja ectory of foff ur representative genes
during development and ageing. E) The comparison between genetic distance
(number of diffff eff rent SNPs frff om two individuals) and transcriptional distance
(transcriptome-wide invnn erse linear correlation) shows that, overall, genetic vari-
ability does not significantly affff eff ct the gene expression architecture of the indi-
vidual. Adadd pa ted byb permission frff orr m MaMM cmillan Publishers Ltdtt : NaNN turerr [10], ©c
(2011).

duction techniques: Multidimensional Scaling (MDS, see Section 5.4 at
page 78) and Principal Component Analysis (PCA, see Section 5.3 at
page 70). In panels B1 and B2 of Figure 8.5 it is possible to see how both
MDS and PCA are able to roughly distinguish the diffff eff rent age stages of
the dataset. Moreover, the diffff eff rence in the global transcriptional profile
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between the fetal and post-natal samples is visible (along MDS dimen-
sion 1 and PC1), and the fact that the second component of the plot is able
to discriminate the fetal samples from the early second trimester and the
ones from the late second trimester. It is important to remark that sam-
ples of increasing age position themselves along the second component
of the projections ‘going’ upward initially, and later show a downward
trend. This is the reflection of inversions of the direction in gene expres-
sion that are described below. The strong difference in global expression
profiles in the fetal and the infant samples makes it reasonable to com-
pare the expression change during pre- and post-natal neurodevelopment
(Figure 8.5C). The ‘trajectory’ of the brain samples at different ages in
the space of the principal components would suggest that an expression
trajectory can be associated with each gene or functional group of genes
(Figure 8.5D). In Figure 8.5C there are four quadrants, corresponding to
genes that either keep the expression change of the fetal development (al-
though with a decreased absolute value in infancy), or to genes that invert
the trajectory in infancy. Interestingly, a pathway analysis on the genes
that present a statistically significant time-dependent slope at both fetal
and infant stages shows that genes in a same pathway are more likely
to be represented in the same quadrant. For example, the genes in the
cell cycle pathway are mostly present in the quadrant of negative ex-
pression change in both ages (the neurons are post-mitotic cells), or the
ATP-synthesis-related genes decrease during fetal development but then
increase again with post-natal development10. Interestingly, it is apparent
that the targets of some specific miRNA (e.g., the miR-9 target mRNAs)
show a similar quadrant clustering.
Furthermore, Colantuoni and colleagues investigated the influence of

the genetic background on RNA expression levels in the human prefrontal
cortex transcriptome. They used the SNP data collected from a DNA
microarray in order to confirm the strong role that single SNPs have
in affecting the RNA expression of individuals and to evaluate a score
of genetic distance (i.e. the genome-wide number of differing alleles).
They then compared the genetic distance to the transcriptional distance
between each pair of individuals11 and found, surprisingly, that there is
no association of genetic distance with their prefrontal cortex transcrip-

10 This can be explained by the fact that in fetal development the consumption of energy is mostly
due to the cell replication, while in the post-natal brain it’s the neural maturation and activity that
drives up the energy consumption.

11 In the paper the transcriptional distance is a transcriptome-wide linear correlation as in Equa-
tion (5.2) at page 62.
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tomes (Figure 8.5E). The lack of association is confirmed even after re-
stricting the analysis of genetic distance only to the SNPs that are associ-
ated with statistically significant modifications of genetic expression. A
possible conclusion of this finding is that, despite genetic differences be-
tween individuals, the human genome produces a robust molecular ar-
chitecture in the brain—or at least in the prefrontal cortex—throughout
ageing, so that population-wide variations in gene sequences do not in-
fluence the transcriptional architecture at a global scale.

8.5. Molecular neurobiology
RNA-seq makes it possible to investigate a non-canonical form
of RNA, the circular RNAs

Circular RNAs (circRNAs) are a relatively recently discovered splicing
variant of RNAs, where the 3′ terminus of the last exon is backspliced
with the 5′ terminus of the first exon (‘head-to-tail splicing’) resulting in a
circularised RNA. It has been proposed that this species of RNA function
as miRNAs and RNA-binding proteinmolecular sponges, thus indirectly
modifying the cellular processing of the associated linear mRNAs. Re-
cent evidence suggests that these RNAs might undergo cap-independent
translation [48]. You and colleagues [60] applied an RNA-seq strategy
on whole-tissue extracts and on hippocampal cell cultures in order to in-
vestigate the biology of circRNAs. This strategy was then complemented
with classical experimental validation, such as Fluorescence in situ hy-
bridisation (FISH).
The authors sequenced the total RNA samples (depleted of the rRNAs,

as seen in Section 2.3.2 at page 14) from five different mouse tissues:
brain, heart, liver, lung, and testis. In order to compute the fraction of the
RNAs that are circularised, one should look for reads that partially cover
the first and the last exon of a given gene—that is, the ones resulting
from a head-to-tail splicing event—and compare them to the reads that
are aligned to the gene and the canonical exon-exon junctions. From this
sequencing it is evident that the brain is highly enriched in circRNAs,
compared to the other tissues, at three different levels.

Relative abundance The relative abundance of reads related to circR-
NAs in the brain is about 0.08%, while the testis, which is the tissue
with second highest value, has an abundance of around 0.03%.

Hosting genes The authors found that about 20% of the genes detected
in the brain extract produced circRNAs. In contrast, other tissues had
either slightly more (again, the testis) or fewer than < 10% genes that
produced them.
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Tissue-specific circRNAs An analysis of the number of tissue specific
circRNAs again shows that the brain hosts the highest number of
tissue-specific genes from which circRNAs originate (> 200), while
the testis is second (around 150 genes) and the other analysed tissues
have 
 50 genes.

A GO analysis of the genes that produce circRNAs more frequently
shows that there is a strong enrichment of transcripts related to synaptic
function–such as ‘presynaptic active zone’ (∼ 5 fold enrichment), ‘post-
synaptic density’ (∼ 4 fold enrichment), or ‘synapse’ (∼ 3 fold enrich-
ment). It is well known that some neuronal transcripts are transported
into neuronal processes (see also Section 9.2.1 at page 145). In order to
prove experimentally that the circRNAs in the brain are enriched in the
neurite compartment, You and coworkers extracted the synaptic fractions
from mouse and rat brains either through the isolation of synaptosomes
or with the microdissection of the neuropile in the hippocampus12. The
RNA-seq data from these experiments show that most circRNAs can be
reliably detected in both synapse-enriched preparations and that the genes
hosting the circRNAs are conserved in mouse and rat. A further exper-
imental validation of the neuritic localisation of circRNAs was provided
through the hybridisation of a fluorescent probe designed against specific
circRNA targets in hippocampal cell cultures. The experiment confirmed
the presence of circRNAs at the soma-dendritic level.
Due to the observation that the regions around head-to-tail splicing

junctions are highly evolutionarily conserved in the genes hosting circR-
NAs, You et al. analysed whether the circRNAs profile of neurons would
change 1) during neural development13, and 2) after homoeostatic plastic-
ity protocols14. As expected, there was a massive regulation of different
synaptic circRNA species, which suggests that this species of RNA has a
functional role in neuronal activity.
More recently, it was shown that loss of a circular RNA causes brain

dysfunction providing direct evidence of the functional importance of cir-

12 The hippocampus has a highly-segregated structure, with a core zone which contains all the so-
mata (stratum piramidalis) and the surrounding region which contains the majority of the neurites
(stratum oriens and stratum radiatum in particular).

13 In particular between post-natal day 0 (P0) and P10, when the first wiring of synaptic connections
occurs.

14 Homoeostatic plasticity events occur when there is global scaling of the synaptic strength of the
synapses of a given neuron. The exposure of a cell culture to the GABA-A receptor agonist bicu-
cullin—i.e. a molecule that mimics the action of the neurotransmitter GABA, which is inhibitory
to adult neurons—triggers a general downscaling of the amplitude of the excitatory post-synaptic
potentials.
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cular RNAs in the nervous system [39]. In this case, the mechanism of
action was a post-transcriptional regulation of two microRNAs. How-
ever, there is also some evidence that circRNAs can be translated in ax-
ons [48] and at least one protein derived from circRNA was detected in
fly synapses [37]. The mechanisms by which circRNAs control neuronal
function are manifold. It is easy to predict that in the future circRNAs
will become a popular object of investigation in the neurosciences.

8.6. Brain networks
Correlation in gene co-expression is associatedwith synchronous
activity in cortex networks

As a last example of the application of transcriptomics to study brain
function, we will describe the work by Richiardi and colleagues [44].
The anatomical and functional connections between brain areas can
be described using the same formalism that is used to describe gene-
coexpression networks and network theory finds important applications
in the study of the brain connectome. An obvious question arises: are
the cortical modules identified by analysis of the connectome and those
identified by analysis of gene co-expression patterns related in the human
brain? The spatial resolution of the Allen Human Brain Atlas has allowed
us to answer this highly relevant question for the first time. Richiardi et
al. associated the networks of brain activity derived from resting-state
functional Magnetic Resonance Imaging (fMRI15) of 15 healthy subjects
with the corresponding gene expression data from the Allen Human Brain
Atlas ([19], see also Section 8.2 in this chapter).
Using Independent Component Analysis16, the researchers built a se-

ries of highly reproducible resting-state brain networks. Out of these,

15 Functional MRI is a neuroimaging technique that reveals the areas of brain activation during a
task or in the resting state relying on the association between enhanced neural activity in a brain
tissue and increased local blood flow. In this note, we will describe the biophysical signal underly-
ing BOLD (blood-oxygen-level dependent) fMRI—there are, however, different ways to get a signal
of brain activity in MRI, for example using the diffusion of water molecules. The BOLD signal
is present due to the chemical properties of haemoglobin. This molecule can exist in two different
states, either coordinated with a oxygen molecule (oxyhaemoglobin, oxHb) or non-complexed (de-
oxyhaemoglobin, dHb). While oxHb is a diamagnetic molecule (so it doesn’t interact with magnetic
fields), dHb is a paramagnetic molecule so it reorients itself in presence of a magnetic field, thus
forming a perturbation in it. The emission of a pulse of radio waves excites the hydrogens of the
molecule, that then reemits a radio wave due to the the relaxation of the protons to the ground state.
The relative abundance of oxHb:dHb in a specific neural tissue makes possible to build up an image
of the pattern of activation in the brain.

16 The ICA is a method similar to PCA that tries to separate the different components of a multivariate
signal, through the assumptions that 1) the sources of the signal are non-Gaussian and 2) each source
is statistically independent from the others.
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they chose four large and non-overlapping networks: the dorsal default
mode, salience, sensorimotor, and visuo-spatial networks. Each node
of the networks derived from fMRI was then linked to the Allen Hu-
man Brain Atlas regions using normalised Montreal Neurological Insti-
tute coordinates. The non-cortical regions (together with the deep grey
tissue such as the hippocampus) were excluded from the analysis, due to
the fact that some gross differences in the transcriptomes of these tissues
(compared to the cortical samples) are likely to arise from the differences
in the tissue ontogeny. The chosen functional networks include 241 sam-
ples from the Allen Human Brain Atlas dataset.
Richiardi and coworkers then built a network where nodes are brain

regions and edges are based on the correlation of gene expression across
samples. In this network, the strength of the connection between two
brain regions is related to the similarity in their expression patterns, com-
puted through the Pearson correlation coefficient between each pair of
brain regions17 (i, j)

ρi j =
∑

genes (qi − μi)(q j − μ j )√∑
genes (qi − μi)2

√∑
genes (q j − μ j )2

(8.3)

where qi is the expression value of a given gene in brain region i and μi

is the average gene expression in the region. If a correlation value ρi j is
negative, it is set to zero (that means there is no edge between the two
regions in the correlated expression network).
In order to determine whether the gene expression correlation is higher

in functionally connected regions—as found in the resting state fMRI
networks, which are non overlapping—Richiardi and coworkers defined
a measure of the ‘strength fraction’, which evaluates how much the nodes
in a specific fMRI network N ⊆ N are connected in the gene correla-
tion expression compared with the regions that aren’t in any functional
network (N̄ , ∼ 1500 nodes)

SN =
∑

i∈N ki∑
i∈N̄ ki

(8.4)

where ki = ∑
j ρi j is the weighted connectivity of the brain region i

(see also Equation (7.8) at page 106). High values of SN mean that the
correlation of the gene expression between the regions in a specific func-
tional network is higher compared to the correlation in the non-network

17 The co-expression network for each single patient was computed separately.
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regions18. In order to test the significance of the strength fraction for
a given network, the authors used a permutation test (see Section 6.5),
where the nodes of the set N are randomly reassigned, so that a density
distribution of the values of the strength fractions S′

N can be estimated
and the p-value computed. The strength fraction analysis showed that the
functional networks have a significantly higher relative correlation in the
gene expression compared to the one due to chance (P < 10−4).
From gene expression correlation networks it is possible to determine

the top-ranking genes that might affect the connection between functional
brain networks and gene expression correlation19. The consensus list in-
cluded 136 genes, mostly involved in the regulation of cationic channels20

or other membrane receptors such as the γ -aminobutyric acid receptor
GABRA5. The consensus list was used to validate the hypothesis that
the expression values of a specific set of genes correlated with the func-
tional connectivity of different brain regions using two approaches:

• using a dataset that pairs genetic variability measuring single nucleo-
tide polymorphisms (SNPs) with the resting state fMRI recordings of
256 adolescents (equally distributed between males and females), the
authors confirmed that sequence variations in members of the consen-
sus gene list are associated with variations in the ‘strength fraction’ of
the functional network computed for each individual;

• comparing the Allen Mouse Brain Atlas [34] (the mouse equivalent to
the Allen Human Brain Atlas) to the Allen Mouse Brain Connectiv-

18 In the Allen Human Brain Atlas annotation, some samples are associated with the same region, and
these regions are likely to be strongly connected according to their gene expression correlation. In
order not to boost the value of SN , in case N would include nodes with a high number of biological
replicates, Richiardi and coworkers removed the edges connecting samples with the same regional
ontology.

19 The detailed description of the methodology used to get the final gene list, the list intersection
discovery test, is beyond the aim of this book. It is sufficient to mention here that the authors chose
to use a False Discovery Rate of 5% (see also Section 4.3.3 at page 55); that is, it is expected that up
to 5% of the genes in the final list are false positives.

20 The statistically significant GO annotations in the consensus list are:

Molecular Function ‘Voltage-gated cation channel activity’
Cellular Compartment ‘Ion channel complex’, ‘Potassium channel complex’, ‘Voltage-gated

potassium channel complex’, ‘Extracellular region’, ‘Plasma membrane’, and ‘Cation channel
complex’

Biological Process no significant term.

Using a cell type-specific mouse transcriptome database [8] and the homologues of the consensus
list, the authors were able to find that ∼ 30% of the genes were overexpressed in the neurons,
∼ 14% in the astrocytes and a similar fraction in the oligodendrocytes (the remaining genes were
not significantly overexpressed in the mentioned dataset). It is thus arguable that the connection
between the brain activity correlation and the regional gene expression is mostly due to the neuronal
function.
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ity Atlas [35], which provides a mesoscale model of axonal connec-
tivity21, Richiardi and colleagues were able to produce a tissue gene
co-expression network using the orthologues of the consensus list as
the ‘feature selection’ gene set. They then compared it with the graph
of mouse brain connectivity. The correlation between the graph built
using the consensus list and the mesoscale connectome is significantly
higher than the correlation with a gene expression network built with
an equally sized set of randomly selected genes (P=0.022 or P=0.011
according to the connectome model used). It is quite interesting to
notice that the correlation between the resting state patterns of brain
activity and the gene expression profiles seems to be evolutionarily
conserved, as the human gene consensus list is significantly associ-
ated with brain connectivity in rodents.

This study represents an outstanding achievement of neurogenomics and
shows the full potential of combining genomic and functional studies.

21 Mesoscale cortical connectivity maps are available from high-throughput tract-tracing experiments
in mice and represent a highly valuable dataset since they provide a direct measure of physical
connections between brain areas that is not possible in humans. The mouse isocortex was then
parcellated in 38 mesoscale regions, which means the resolution of this part of the study is somehow
lower compared to the 88 single regions of the human study.



Chapter 9
Microscale transcriptome analysis

9.1. Introduction

In the previous chapter, we have analysed some important applications
of RNA-seq in the neurosciences. A common feature of the described
papers is that the spatial resolution of the analysed transcriptome corre-
sponds to a brain subregion (e.g., cerebellum, cortex, hippocampus, and
so on). However, this type of approach can neither discriminate the sig-
nals originating from different cell types (neurons astrocytes, other glia
cells) or subtypes1 nor can account for cell-to-cell variability in gene ex-
pression.
A growing number of techniques were devised to increase the spatial

resolution of the RNA-seq studies down to the single-cell transcriptome.
In this chapter, we will describe two different approaches to studying the
differential expression of genes at the microscale:

• the use of fluorescence-assisted cell sorting (FACS) or RNA immuno-
precipitation strategies, that makes it possible to isolate and sequence
RNAs from specifically tagged cell types and obtain cell population-
specific transcriptomes;

• Single-cell RNA-seq that combines either microfluidics or FACS with
cDNA amplification in order to quantify genome-scale transcript
abundance from single cells (or single nuclei).

We can easily predict that the future of RNA-seq studies of the nervous
system will be increasingly characterised by datasets at the single cell
level. However—before undergoing the analysis of these experimental
approaches—it is necessary to emphasise two important issues: cover-
age and signal-to-noise ratio. A single-cell RNA-seq dataset comprises

1 It is worth remembering that the central nervous system is home to extreme variability in cell
morphologies and behaviours. Consider, for example, the different sub-classes of inhibitory in-
terneurons.
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a large number of samples (up to 100,000 with the most recent technolo-
gies), each corresponding to a single cell, and it would be unsustainable
to produce the usual 40-50 million reads for a single sequencing exper-
iment. This implies that the number of reads per sample is reduced to a
handful of million reads. Moreover, the challenge of extracting, captur-
ing, and amplifying the mRNA molecules from a single cell could make
it impossible to detect many low- to even moderately-expressed genes, or
could lead to an artefactual enrichment of some species2 [51].

9.2. Microscale transcriptome strategies involving ribosome
immunopurification

In recent years, the interest in profiling the molecular fingerprint of spe-
cific classes of cells in the brain has driven the creation of several strate-
gies for enriching a sample with RNAs derived from specific cell pop-
ulations. A general blueprint of these microscale (but not single-cell)
methodologies—often called translating ribosome affinity purification,
or TRAP—is as follows:

1. find a promoter that can drive the expression of a transgene in the cell
population of interest;

2. tag the ribosome of these cells with a molecular tag3, such as a flu-
orescent protein [12] or haemagglutinin (HA) [48], nanobodies [14],
and so on, usually fused to ribosomal protein L10a. An alternative
choice is to use an endogenous tag—such as the phosphorylation of
the ribosomal subunit S6—to specifically select the ribosomes of neu-
rons that are activated after a specific stimulus [27];

3. purify the tagged ribosomes through immunoprecipitation4, extract
the bound mRNA and then perform microarray analysis or RNA-
sequencing. This technology allows to quantify the transcriptome of
neurochemically-defined cells (cholinergic cells by using the ChAT
promoter, GABAergic cells by using the GAD promoter, and so on).

2 These problems can be addressed through careful quantification of the technical variability in li-
brary construction and the sequencing, for example using exogenous RNA spike-in or molecular
barcodes. For more information see the review from Stegle and colleagues [51].

3 The strategy developed by the GENSAT project (http://www.gensat.org/), for example, applies a
Bacterial Artificial Chromosome (BAC) strategy with promoters that drive the expression of the
transgene in different cell types [12]. An alternative approach is to use a transgenic mouse with a
floxed ribosome transgene (i.e. its sequence flanked with two Cre-LoxP recombination sites) and to
express the CRE recombinase with a cell-specific promoter [48].

4 For example, in the case of ribosomes including a EGFP-tagged L10a, the immunoprecipitation is
performed using beads coated with antibodies against GFP that thus bind the GFP-tagged ribosomes
and pull down the ribosome-bound mRNAs upon centrifugation [12].
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TRAP and similar methods are emerging techniques alternative to fluo-
rescence-based cell sorting and are particularly useful for two reasons.
The first is that they allow us to enrich minute amounts of RNAs, such
as those originating from rare cell populations or even from specific cel-
lular compartments such as the axon terminals [48]—though cDNA am-
plification may be necessary, according to the amount of total mRNA
extracted. The second is that TRAP specifically targets the ribosome-
bound transcriptome (also called translatome) and therefore identifies
actively-translated RNAs. This is particularly relevant since proteins,
and not mRNAs, are the biologically-active molecules. Moreover mR-
NAs are subject to translational control. Given that proteomics tech-
niques have less depth and are not as standardised and easily available
as RNA-seq, analysis of the translatome is a step towards an analysis
of the biologically-active molecules. In the following Sections, we will
describe two applications of this method.
In 2014, Ekstrand and colleagues published a method that combines

the retrograde tracing of the pre-synaptic afferent neurons to a given brain
region with ribosome immunoprecipitation, thereby allowing the charac-
terisation of the transcriptome of a specific population of projecting neu-
rons [14]. The specific molecular tagging of the afferents can be achieved
using a retrograde tracing virus5 which encodes the construct for the flu-
orescent protein EGFP (Figure 9.1A). This allows scientists to express a
kind of molecular bait specifically in the population of pre-synaptic neu-
rons which are afferent to a specific brain region, in the case of this study
the Nucleus Accumbens.
In order to capture the ribosomes of the afferent neurons, a strategy

was devised to cross-link the ribosomes with the retrogradely expressed
GFP and then to purify the GFP-ribosome complex (Figure 9.1B). Ek-
strand and colleagues thus fused a camelid nanobody (a small protein
acting as an antibody) that specifically binds GFP to the ribosomal large
subunit protein L10a. This fusion construct can be expressed in all brain
neurons—using, for example, the human synapsin promoter—or can be
expressed in chemically-defined neuronal types, such as the dopamin-
ergic neurons, by using the dopamine transporter promoter. After the

5 Some viruses with neuronal tropism, such as the rabies virus, infect the neural terminals at the entry
point—naturally a bite or a scratch, experimentally the point of injection—then uses the retrograde
transport mechanisms of the neuron to reach the soma. Here they hijack the transcriptional and
translational machinery of the host in order to replicate, so the spread of the infection proceeds from
the post-synaptic neuron to the pre-synaptic one. Moreover, it is possible to modify the retrograde
virus so that it is able to infect effectively only once: this makes it possible to trace with precision
the afferent neurons to a given region.
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Figure 9.1. A) The mechanism of infeff ction of some viruses, such as the rabies
virus or the canine aded novirus tytt pyy e 2 (CAVAA , used in [14]), can be used to trace
the pre-synaptic neuronal affff eff rents (leftff neuron) of the neurons in a brain region
(right neuron) through the expression of a fluorescent markrr er. For more infoff rma-
tion see text. B) Immunoprecipitation strategy employed in [14]: the candidate
pre-synaptic neurons specifically express the ribosomal subunit L10a fuff sed to an
anti-GFP camelid nanobody, the retro-infeff cted neural affff eff rents start producing
GFP, which is then avaa idly bound to the ribosomes through the nanobody. The
GFP-ribosome complex can then be immunoprecipitated using a standard bead
coated with anti-GFP antibodies.

injn ection of the viral retromarkr er CAVAA -VV GFP, they then foff cused on two
populations of neurons: one that is composed of dopaminergic affff eff r-
ents frff om the VeVV ntral TeTT gmental Area (VTATT ) to the Nucleus Accumbens
and another population of melanin-concentrating hormone (MCH) neu-
rons frff om the Lateral Hypothalamus (LH). The GFP-ribosome complexes
were immunoprecipitated frff om brain sections of the VTATT /LH, the RNANN
extracted, sequenced, and the dataset analysed in order to provide a com-
prehensive molecular characterisation of the affff eff rents frff om these regions.
Some of the novel molecular markrr ers identified, such as the expression of
the protein p11 in a subset of hypocretin-producing cells in the LH, were
then validated using confoff cal imaging of brain slices frff om the region of
interest.
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9.2.1. RNA-seq can be used to study local translation in developing
and mature visual circuits

The development of the visual system is a textbook example of how a
neuronal circuit is constructed in a multistep process. The axons of the
retinal neurons that will relay the processed visual infoff rmation to the
higher brain centres (ganglion cells, RGC) must reach the first infoff r-
mation relay station in the superior colliculus (SC) and, starting frff om
a coarse spatial organisation, must produce a fine topographic projo ec-
tion. This process can be roughly described with a foff ur-step model (Fig-
ure 9.2A).

Axon growth The axons elongate and orientate their growth towards the
correct region of the colliculus guided by molecular cues.

Circuit foff rmation The axons of the optic nerve that reached their termi-
nation zone in the SC, start brarr nching and foff rm synapses (sys napa toge-
nesis) with the local target neurons.

A B

C

Figure 9.2. Schematic representations of A) the processes that occur during the
development of the retinotectal/retino-collicular circuit (see text foff r fuff rther in-
foff rmation) and B) the Axon-TRAP strategy in order to express haemagglutinin-
(HA-)tagged ribosomes in the retina ganglion cells. C) PCR on genomic
DNANN that demonstrates the specificity of the recombination of the HA-tagged
ribosome in the retina. FiFF gurerr adadd pa ted frff orr m [48] under a CC-BY license
(httpt ://// crerr ativecommons.orgr /licenses/byb /4// .0/00 )/ .
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Circuit maturation The early process of synapse formation is impre-
cise and redundant. This means that 1) the early wiring is not topo-
logically accurate—that is, there are axon branches which are ini-
tially found outside their presumptive adult termination zone—and 2)
more synapses are formed than the amount that is necessary for vi-
sual processing. During its maturation, the circuit undergoes extensive
activity-dependent synaptic plasticity and pruning (i.e. the deletion of
non functional branches or synapses).

Maintenance Neurons are post-mitotic cells and, in the mammalian vi-
sual system, there is no adult neurogenesis in the retina. So, once
the retino-collicular projections have been formed, these connections
must be maintained over the entire lifespan and their synaptic trans-
mission is strictly regulated. This implies a continuous turnover of
synaptic, structural and metabolic proteins localised to the axon ter-
minal.

It is known that in neurons, which are highly compartmentalised cells, the
phenomenon of local translation is fundamental for many cellular func-
tions, from neuritic development to synaptic plasticity. Ribosomes and
mRNAs are localised in the axon growth cone and at the mature synaptic
terminus. Moreover, a number of mRNAs that are locally translated in the
axon have been identified in different structures and conditions. However,
a global characterisation of axonal mRNAs that are locally translated is
missing. The analysis of the axonal translatome at different times dur-
ing the development of retinofugal connections is of particular interest,
because changes in gene expression can be related to well-characterised
anatomical and physiological transformations that have a functional rele-
vance.
Shigeoka and colleagues [48] developed a TRAP strategy to target the

question of how the local translation process in the RGC axons evolves
during development and in adulthood (axonTRAP). Similarly to the gen-
eral scheme that we presented in the previous section, the axonTRAP
method requires the expression of an haemagglutinin-tagged ribosome in
the cells of interest. Taking advantage of the large distance between the
RGC body and the superior colliculus, RGC terminals can be isolated
physically, and the ribosomes immunoprecipitated using anti-HA anti-
bodies cannot be contaminated by somatic ribosomes of the RGCs. As
can be seen from Figure 9.2B, the method which has been used to specif-
ically tag RGC cells is Cre-LoxP recombination. In the knock-in mouse
model that was used, the gene coding for the ribosomal large subunit pro-
tein L22 carries the last ‘wild type’ exon of the coding sequence (exon
4) floxed and collated with a sequence coding for exon 4 fused with an
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HA tag. In the absence of the Cre recombinase, the endogenous exon 4
is transcribed and the translation of L22 protein stops at the native stop
sequence; in presence of Cre, whose transcription can be controlled using
specific promoters6, the ‘wild type’ exon 4 is deleted from the genome,
and the fusion HA-L22 ribosomal proteins are produced only in the re-
gion of Cre expression (see Figure 9.2C for the demonstration of speci-
ficity via PCR on genomic DNA7).
One of the major sources of noise in the axonTRAP protocol is the

nonspecific binding of mRNA from the SC cells to the component of the
immunoprecipitation system. In fact, axon ribosomes are extracted from
a much larger pool of non-tagged ribosomes and RNA species. In or-
der to determine the level of background noise, Shigeoka and coworkers
performed a control immunoprecipitation and sequencing on the SC of
Cre-negative mice, arguing that this step would filter out all the spurious
components from the final signal.
Local translation is a tightly regulated process, and there are multi-

ple molecular mechanisms that can stall or prevent the translation of a
ribosome-bound RNA. So a second source of potential noise is the sig-
nal that comes from non-actively translating ribosomes. Notice that this
signal is considered noise because the object of study is the set of RNAs
actively translated (translatome) and not the set of species that are avail-
able at a given time in the axon (transcriptome). A way to quantify the
fraction of the total axonTRAP signal that is due to ribosome-bound non-
translating RNA is to perform a ribosome run-off assay followed by
immunoprecipitation8. As shown in Figure 9.3A, after ribosome run-off
assay the majority of the mRNA signal disappears or diminishes while
a minor fraction of ribosomes (∼ 15%) are insensitive to elongation in
vitro and thus likely to be stalled during translation.
In order to identify how the axonal translatome changes in time dur-

ing the genesis of the retino-tectal pathway, the authors extracted RNA
from tagged axons at four time points: embryonic day 17.5 (E17.5, elon-
gation), post-natal day 0.5 (P0.5, axon branching), P7.5 (pruning), and
adult (maintenance). The strict spatial division in the retino-tectal path-

6 For example, Shigeoka and colleagues used a promoter that induced the transient expression of the
Cre recombinase in the neural progenitors

7 In [48] the authors have demonstrated the specificity of the expression using TEM with immuno-
gold labelled anti-HA antibodies and anti-HA immunohistochemistry.

8 A ribosome run-off assay tests translational elongation in vitro. Only translationally active ribo-
somes can perform translation in the test tube until they detach from the mRNA. So, the ribosome
immunoprecipitate should contain only the mRNAs that are in stalled ribosomes.
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Figure 9.3. A) Ribosome run-offff assay allows us to quantifyff the frff action
of mRNANN s that are likely to be present in the axon but whose translation
is stalled. B) A scatter plot of the gene expression in two biological repli-
cates of the Cre-negative control immunoprecipitation shows high consistency
in the detected mRNANN s, while a comparison between Cre-positive and Cre-
negative samples shows a population of axon-enriched mRNANN s (leftff panel).
The right panel shows the DEGs (grey) between the RGC axons and the
spurious background (black). C) While the soma shows a consistent trans-
latome during the development, a high frff action of the (smaller) axonal trans-
latome consists of DEGs. FiFF gurerr adadd pa ted frff orr m [48] unded r a CC-BY license
(httpt ://// crerr ativecommons.orgr /licenses/byb /4// .0/00 )/ .
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waymakes it possible to specifically isolate the axons from the cell bodies
of RGCs—the soma can be used too as an internal control for the axonal
specificity of the identified translatome. The mRNAs were extracted, se-
quenced, and the DEGs were computed between the ribosome-captured
RNAs and the negative control of the Cre−/− mice (Figure 9.3B). As can
be seen from Figure 9.3C, there is a peak in the complexity of the trans-
latome (i.e. the number of axon-enriched transcripts) during the early
steps of wiring of the neural circuit (P0.5), then it decreases during mat-
uration and in adult life. In the case of the somatic translatome, on the
other hand, there is no detectable change in complexity over the studied
time periods.
From this axonTRAP experiment, it was possible to confirm the hy-

pothesis that local translation occurs in axons even in adult age, due to
the presence of translationally-active ribosomes and of DEGs with re-
spect to the soma. Moreover, the analysis of the axonal translatome
across all stages showed a relatively small set of mRNAs translated lo-
cally at every time point (∼ 27%). When contrasted with the obser-
vation that the complexity of the somatic translatome in RGCs is not
changing between E17.5 and adulthood, these data support a model of
active regulation of the local translatome during axon development and
maintenance.
A Gene Ontology (GO) analysis of the more represented terms of

the axonal translatome at different times confirmed that axonTRAP is
highly specific. In fact, there is an extremely low presence of terms re-
lated to specifically somatic functions such as ‘chromosome’, ‘spliceo-
some’, ‘nuclear lumen’, and an enrichment in the terms related to the
synaptic function, such as ‘synapse’, ‘actin cytoskeleton’, and (obvi-
ously) ‘axon’. When the GO analysis is applied to the axonal trans-
latomes at different time points, perhaps unsurprisingly, the most rep-
resented and statistically significant terms are related to the main process
undergoing at that developmental stage, like ‘neuron projection morpho-
genesis’ at E17.5, ‘neuron projection development’ at P0.5, ‘neuron re-
modelling’ at P7.5, and ‘regulation of synaptic transmission, GABAer-
gic’ during adulthood. Interestingly, the most enriched KEGG pathways
in the dataset are ‘Parkinson’s disease’ (E17.5, P0.5, P7.5), ‘Huntington’s
disease’ (E17.5, P0.5), ‘Oxidative phosphorylation’ (P0.5, adult), and ‘ri-
bosome’ (P0.5). As shown in Figure 9.4A, proteins that are of fundamen-
tal importance in neurodegenerative disorders, such as huntingtin, prion
protein, amyloid β precursor protein, and tau are locally translated in the
axon.
Once the set of DEGs at different time points is known, it is possible to

evaluate whether the mRNAs which are known to be regulated from spe-
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Figure 9.4. A) Fold change of the translation profiles of key proteins in var-
ious synaptic pathways during axon development. B) Change of distribution
of the foff ld-change of the known mRNANN targets of three translational regula-
tors (mTOR, FMRP, APC) in the transition to early branching (P0.5/E17.5)
and to the circuit maturation stage (P7.5/P0.5). C) AvAA erage of levels of the
target proteins of diffff eff rent translation faff ctors in the diffff eff rent axon develop-
mental stages. D) Fluorescence profile of tectal axons at two diffff eff rent de-
velopmental stages foff r phosphorylation-activated ribosomes (p-S6), mTOR (p-
mTOR), and foff r the presence of RNANN binding protein FMRP. See main text
foff r fuff rther infoff rmation. FiFF gurerr adadd pa ted frff orr m [4[[ 8] under a CC-BY license
(httpt ://// crerr ativecommons.orgr /licenses/byb /4// .0/00 )/ .
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cific translational factors (such as mTORC1, FMRP, APC, TDP-43, and
FUS)9 show different dynamics from E17.5 to adulthood. Figure 9.4B–
D show how the mRNAs that are regulated by different RNA binding
proteins are differentially translated at the analysed time points from dif-
ferent perspectives. Figure 9.4B for example, plots the fold-change in
the FPKM values of the axonal translatome in two consecutive stages A
and B

xi = log2

(
FPKMA(i)

FPKMB(i)

)
(9.1)

the cumulative values of xi in the translatome form a density plot whose
peak represent the trend in translational regulation from developmental
stage A (e.g., P0.5) and stage B (e.g., E17.5). It can thus be seen that the
targets of both FMRP and mTORC1 show a peak of translational regu-
lation at P0.5, while for APC the peak of translation is during the elon-
gation stage and steadily decreases thereafter. From Figure 9.4C, where
the average FPKM value for the set of genes regulated by a given protein
is plotted at any given time point, one should also appreciate that FUS
and TDP-43 do not have a strong developmental effect on the local trans-
latome. Indeed, a similar analysis can be performed with any selected
set of mRNAs: for example, the authors found that the axonal translation
of the targets of the miRNA miR-1 decreases with time. As an exper-
imental validation of their finding, they analysed the fluorescence pro-
files in axons at two different developmental stages—E17.5 and P0.5—
of phosphorylated mTOR (p-mTOR), phosphorylated S6 (p-S6, see also
page 142), and FMRP immunohistochemistry (Figure 9.4D). The nor-
malised quantification shows that the fluorescence of p-S6 and p-mTOR
increases, thus reflecting an increase in the general local translation and
in mTORC-mediated translation. The fluorescence of FMRP decreases
with time, as FMRP is a translation inhibitor; this is consistent with the
observed increase in the translation of its targets at P0.5.
All the results obtained up to this point could also have been gath-

ered using a different strategy of transcriptional profiling, such as cDNA
microarrays. A decisive advantage of RNA-seq, however, is that the un-
biased nature of the sequencing can reveal the existence of previously
unknown transcripts—such as novel splicing variants (see Figure 9.5A)

9 The mammalian target of rapamicin complex 1 (mTORC1) is known to be a regulator of activity-
dependent local translation, fragile X mental retardation protein (FMRP) is a mRNA binding protein
associated with the Fragile X syndrome, and adenomatous polyposis coli has been recently associ-
ated with the regulation of the microtubule assembly in the growing axon. The mRNA binding
proteins TDP-43 and FUS are both associated to the axon-related neurodegenerative disorder Amy-
otrophic Lateral Sclerosis (ALS).
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Figure 9.5. A) Schematic representation of the diffff eff rent splicing variants and
their relative abundance as foff und in the local translatome and in the somatic
(retina). B) Density plots of the ‘percentage spliced in’ (	) coeffiff cient foff r the
transcripts in the translatome that show two alternative splicing variants. C) The
use of the 5′-UTR of either the retinal or axonal splicing variants of Acot7 (a
gene computed in 	) coupled with a fluorescent reporter induces a faff st FRAP
signal in the axon terminus, implying that the local translocation of the axonmR-
NANN s also depends on diffff eff rential splicing of the RNANN species. FiFF gurerr adadd pa ted
frff orr m [48] unded r a CC-BY license (httptt ://// crerr ativecommons.orgr /licenses/byb /4// .0/00 )/ .

in the local translatome. Shigeoka and coworkrr ers decided to address the
problem as to whether the distribution of the various mRNANN splicing
variants diffff eff rs in the axonal as compared to the soma. The answer is
that not only there is a high representation of diffff eff rent splicing variants10

in the axonal translatome (Figure 9.5A), but the non-coding regions of
these variants are likely to play a fuff nctional role in the translocation of
the diffff eff rent constructs (Figure 9.5C, see below). In order to obtain a
quantitative assessment of diffff eff rential splicing in the axons, the authors

10 Moreover and unexpectedly, the authors detected some potential back-splicing events in three
genes, which would indicate the presence of ribosome-bound circular RNAs (see also Section 8.5
at page 134).
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focused on a set of splicing isoform couples, of which at least one mem-
ber is present both in the axonal and somatic translatomes. It is then
easy to compute the relative proportions of the two isoforms in either
translatome, expressed as a ‘percentage spliced in’ (	) coefficient. In
the retina (i.e. in the somatic compartment) there is an even distribution
of 	 coefficients from the different events, while in the axons the den-
sity distribution of the fractions is polarised towards 0% and 100% (Fig-
ure 9.5B)—meaning that only one of the alternative transcripts is present
in the axon. Eventually, from the different splicing isoforms which are
specific to the axon translatome, the authors were able to compute some
sequence consensus motives that are putatively linked to the specific ax-
onal translocation. The functional relevance of these motives for axonal
translation could be proven by fusing the 3′-UTR or 5′-UTR from the
axonal or the somatic splicing variants of some genes to a fluorescent
reporter (myr-d2EGFP) with very slow diffusion11. When the fluores-
cence in the axon is photobleached, axon-specific phenomena induce a
faster fluorescence recovery (FRAP signal) as compared to the construct
with somatically-enriched UTRs. Since the fluorescent construct cannot
diffuse from the soma, the recovery of fluorescence in the axon demon-
strates specific mRNA translocation and local translation.

9.3. Use of FACS to obtain the transcriptome
at the cell-population scale

Another strategy that could be used to derive transcriptomic data from
specific cell populations is to apply a procedure of whole-cell fluores-
cence labelling—either by genetic methods, tract-tracing techniques, or
immunostaining with fluorophore-conjugated cell-specific antibodies—
followed by Fluorescence-activated cell sorting (FACS). Cell sorting
separates one (or multiple) cell species of interest according to their flu-
orescence and light scattering profile. This approach, combined with mi-
croarray analysis, was applied by Sugino and colleagues [53] to produce
a dataset of brain cell-specific transcriptomes12. The insights into the bi-
ology of neurons derived from this dataset will be described in the next
section.

11 The myr-d2EGFP fluorescent reporter is post-translationally modified with a 14 carbon unsatu-
rated fatty acid (myristic acid), that induces a propensity to interact with the cell membrane. More-
over, this protein carries a destabilising tag that reduces its half-life to 2h.

12 Each distinct cell type (distinguished by the area of isolation and the transgenic line used) was
moreover associated with an electrophysiological activity profile.
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9.3.1. Network analysis of cell-population transcriptomes and novel
cytological properties of neurons

A systems biology approach to high-throughput datasets makes it possi-
ble not only to provide biological interpretations foff r global expression
patterns, but also to produce biological hypotheses that can be tested
experimentally at a molecular and/or cellular level. WiWW nden and col-
leagues [59] applied the WGCNANN approach to a transcriptomic dataset of
12 specific mouse neuronal subtypes. This approach identified 13 gene
co-expression modules (see also TaTT ble 9.1). They also showed that:

Figure 9.6. A) Dendrogram and WGCNANN module division of the microarray
dataset frff om various mouse brain cellular subtypes. B) As an example, the ex-
pression profiles of the diffff eff rent cell population samples of the 263 gene mem-
bers of the ‘red’ module is plotted as a heatmap. It is easy to notice how the
module genes are strongly coexpressed in specific cell types (the Lateral Genic-
ulate Nucleus interneurons in this case). This can also be confirmed frff om the
histogram showing the components of the eigengene of the module in the diffff eff r-
ent cell populations. C) Modules with generic cell specificity—such as the ‘light
yellow’ one, whose eigengene is expressed positively in the samples derived
frff om telencephalic interneurons (C1)—can be fuff rther divided in coexpression
sub-modules that show an eigenmodule representation of specific interneuron
types (C2). FiFF gurerr generarr ted frff orr m rar w dadd tatt in [59].
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Module Top hubs GO Cell types ρ<firing>

1
black Diras1, Plk2, Mast3 Cellular protein metabolism

Amygdala and hippocampal
pyramidal neurons −0.66

2
blue Hadhb, Gas6, Ppp1cc Mitochondria

Sst- and Pvalb-positive
interneurons;

Somatosensory layer V
pyramidal neurons

0.60

4
green Crym, Dnclc1, Klhl2 Synaptic transmission Glutamatergic neurons −0.34

6
light yellow Arx, Dlx1, Nxph1

Signalling/
Signal transduction Telencephalic interneurons p>0.05

11
red Tacr3, Lhx1, Sdsl Lipid biosynthesis LGN interneurons p>0.05

12
turquoise Uqcrfs1, Atp5b, Idh3a Mitochondria

Pvalb-positive interneurons;
Somatosensory layer V
pyramidal neurons

p>0.05

Table 9.1. Characterisation of selected WGCNAmodules from different classes
of mouse neurons with eigengene (hub), gene ontology (GO), Cell type enrich-
ment, and correlation of the module with the average firing rate (ρ<firing>). Table
generated from raw data in [59].

• somemodules are strongly correlated either with molecular traits (e.g.,
glutamatergic vs GABAergic neurons), or with regional/develop-
mental origin (e.g., telencephalic vs diencephalic) of the cells, thus
pointing out important global differences in the transcriptional pro-
files of distinct neuronal classes;

• the eigengene/eigenhubs of each module associate the modules to spe-
cific ontology: for example, the module with higher expression in lat-
eral geniculate nucleus (LGN) interneurons also shows enrichment
for genes within the ‘Lipid biosynthesis’ GO term and shows the
LIM Homeobox 1 (Lhx1) and Tachykinin Receptor 3 (Tacr3) genes
as hubs;

• a less specific module, associated with the various ‘telencephalic in-
terneuron’ classes, could be further divided into sub-modules that
show the regional and developmental origin of the different interneu-
ronal classes;

• surprisingly, the term ‘mitochondrion’ is enriched in two distinct mod-
ules—but only one shows correlation of the eigengene with the mean
firing rate of the different neuronal classes.

The last finding is particularly interesting. It is reasonable to couple a
high activity rate and a high energy requirement (i.e. mitochondrial ac-
tivity), however the existence of two distinct modules of which only one
is associated with the activity of the neuron lends credence to the hypoth-
esis that neurons contain two different populations of mitochondria; these
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Figure 9.7. A) By analyzing the membership of proteins frff om the synaptic and
mitochondrial proteomes in the modules, it becomes evident that two modules
are highly enriched in mitochondrial proteins (#2 and #12—see also TaTT ble 9.1),
but only one is also significantly enriched foff r synaptic proteins (p<0.004, Bon-
feff rroni correction). B) Quantification of western blots of proteins extracted aftff er
subcellular frff actionation provides infoff rmation on the relative foff ld change be-
tween the ‘frff ee mitochondrial’ frff action—i.e. somatic, Cyc(+) and Syp(–)—and
synaptosomal frff action, Cyc(+) and Syp(+), foff r hub proteins of the two modules.
Fis1/Ttc11, and Phb are hub proteins of the ‘blue’ module, while Uqcrfsff 1 and
Vdac2 are hub proteins of the ‘turquoise’ module. FiFF gurerr generarr ted frff orr m rar w
dadd tatt in [59].
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might differ in their physiology and subcellular localisation, possibly one
confined to the soma and the other enriched in dendrites/synapses13.
To validate the hypothesis that the distinct mitochondria-enriched

modules are associated with different compartments in the neurons,
Winden and colleagues performed an analysis on the membership en-
richment of synaptic proteins and of mitochondrial proteins in the dif-
ferent modules (Figure 9.7A). They demonstrated that only one of the
two mitochondria-associated modules is also enriched in synaptic pro-
teins. Further experimental validation—using western blot (Figure 9.7B)
and immunocytochemistry—shows that the hub proteins in the ‘somatic’
mitochondria module are depleted in the dendrites, while the opposite is
true for the proteins in the ‘synaptic’ module. In conclusion, neuronal
mitochondria present a peculiar transcriptomic fingerprint according to
their localisation, and it is likely that they are specialised on a molecular
level for their local activity. This is an example of how a quantitative ap-
proach can deliver novel biological hypotheses amenable to experimental
validation.

9.4. Single-cell RNA-seq strategies

The strategies that were presented in the previous sections produce tran-
scriptome expression profiles with resolution at the cell population level.
However, these approaches show two major limitations:

1. TRAP techniques are not general and targeting a specific cell pop-
ulation requires a dedicated promoter or marker; so, targeting some
populations may first require the identification of a suitable molecular
tag;

2. isolation from a population of cells is still a bulk technique and the
potential biological variability between single cells in what is assumed
to be a homogeneous population is lost through averaging. This also
implies that, if substructures exist within the population, these are not
detectable.

These two caveats can be overcome using single-cell RNA sequencing
platforms, where profiling of cDNA derived (and amplified) from single
cells is performed.
The single-cell approach creates some new technical and analytical

challenges both in the ‘wet lab’ and in the subsequent computational anal-

13 It was already known that soma and dendrites presented local populations of mitochondria, how-
ever no global transcriptomic difference had been reported among mitochondria from different sub-
cellular compartments.
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igure 9.8. Microfluidic devices that are commonly applied to single-cell
RNA-seq. A) The combined use of pumps and microfluidic channels foff rms iso-
lated chambers where the diffff eff rent steps of cell capture and RNANN extraction can
be perfoff rmed. These systems allow foff r tight control of the parameters, how-
ever they are more complex to design/produce and are diffiff cult to scale up. B)
Devices that produce nanodroplets of aqueous solution encapsulated in an in-
ert lipid solution can be used to capture single cells and process the extraction
of their RNANN with a really high throughput (up to thousands of cells). The
main downside of this technique is the low level of control the user has over the
droplets (whose manipulation is essentially stochastic). C) Chips with printed
micro-wells can be loaded with low-density solutions of cells using the foff rce of
gravaa ity, then closed and manipulated with the reagents of interest. This strategy
has a lower throughput than the droplets and gives less control than the valve-
assisted, it is thus optimal foff r minimalistic protocols. Adadd pa ted byb permission
frff orr m MaMM cmillan Publishers Ltdtt : NaNN turerr Reviews Genetics [41], ©c (2017).
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ysis as compared to convnn entional ‘bulk transcriptomics’. Firstly, the cells
to be studied must be dissociated (this is trickyk in the case of adult brain
tissues) and isolated so that no mixing of multiple cells in a single unit oc-
curs. This can be achieved through the use of diffff eff rentmicrorr flo uidic chipi s,
such as microfluidic channels coupled with valves (Figure 9.8A), lipid-
water nanodroplets (Figure 9.8B), or micro/nanowell chips (Figure 9.8C).
Secondly, the cell mRNANN must be extracted with minimum degradation,
captured, barcoded (i.e. a cell-unique sequence must be attached to the
frff agment to be sequenced in order to deconvnn olute the sequencing data
and assign sequences to individual cells), reverse-transcribed, and am-
plified in order to obtain a library that can be sequenced. Spike-ins and
unique molecular identifiers are normally used to test foff r sensitivity and
specificity. Finally, since the number of reads obtained is relatively low,
normalisation of the data is a serious issue.

9.4.1. A day in single-cell RNA sequencing

Providing a detailed description of single-cell RNANN -seq protocols is be-
yond the aim of this chapter and is also not meaningfuff l in such a rapidly
evolving field (foff r fuff rther refeff rence see the review frff om Prakadan and
colleagues [41]). In this Section, however, we will describe one specific
example of single-cell sequencing, as it is shown in Figure 9.9. The pre-
sented protocol is called InDrop [26] and can be used to derive a 3′-end
counting of the transcriptome (see also note 14) potentially frff om thou-
sands of single cells.
Let’s consider a microdroplet microfluidic device, where the combina-

tion of an aqueous solution channel—whose solution is derived frff om the
mixture of three convnn erging channels, one foff r lysis/reverse-transcription

Figure 9.9. Example of a single-cell RNANN -seq protocol that applies micro-
droplets (InDrop, [26]) to prepare barcoded samples foff r next generation RNANN -
seq. Adadd pa ted byb permission frff orr m MaMM cmillan Publishers Ltdtt : NaNN turerr Reviews
Genetics [41], ©c (2017).
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reagents, one for the isolated cells, and one for hydrogels of barcodes14—
and a perpendicular channel of an inert lipid solution that makes the rapid
generation of a series of droplets possible. A certain fraction of these
droplets will not be ‘productive’ (i.e. will not contain both the barcode
hydrogel and a single-cell), however, due to the design of the microflu-
idic chip, about the 90% of the productive droplets will contain a single
barcode hydrogel and a single cell and are thus suited for single-cell spe-
cific RNA extraction and barcoding. After the lysis of the captured cell,
its mRNA is freely available in the droplet: the use of a UV-light stimu-
lus triggers the dissociation of the barcoded hydrogels, thus making the
3′-end primers available for association with the mRNAs and reverse-
transcription. The droplets contain now cDNA that present a single cell-
specific barcode and can be used to prepare a next-generation sequencing
library.

9.4.2. A closer view on the taxonomy of mouse primary visual cortex
as revealed by single-cell RNA-seq

The nervous system is composed of a plethora of different cell types,
fromneurons of different neurochemical classes (glutamatergic, GABAer-
gic, secreting different neuropeptides, and so on), morphology and func-
tions, to glial cells. An exhaustive catalogue of the cell diversity of the
brain is far from being available and it is not known what the smallest
partition of different nervous system cells with a biological meaning is.
Performing extensive single-cell RNA-sequencing on different neural tis-
sues is an effective experimental strategy to answer these questions.
Tasic, Menon and colleagues [54] focused on the reconstruction of a

well-studied and easily accessible cortical region: the (adult male) mouse
primary visual (V1) cortex, whose architecture is not columnar, unlike the
human V1, but mixed/microcolumnar. In order to select both abundant
and rare cells, the authors exploited the availability of a variety of trans-
genic mouse lines where a fluorescent reporter tdTomato is expressed by
a defined cell type15. The V1 cortical samples were then microdissected,

14 The barcoded hydrogels are microdroplets made of a photo-sensitive polymer that is covalently
linked to reverse-transcription primers that carry a specific barcode sequence. These primers also
present a poly-T tail that specifically targets the poly-A tail of mature mRNAs. This also means
that the sequenced reads will map on the exon corresponding to the 3′-UTR of the gene (3′-end
counting), so each captured gene is counted only in a digital way, without distinctions between
RNA isoforms.

15 In practical terms, this is obtained by crossing a line expressing the recombinase Cre in specific
subsets of cortical cells with a transgenic line that carry a ‘floxed’ construct of the fluorescent re-
porter, which can thus be expressed only in the Cre-expressing cells. In order to get more specific
cell populations, the authors also used a fluorescent reporter with nested flanking of loxP (Cre re-
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treated with a protease mix (pronase) that permits the production of a
single-cell suspension through serial trituration of the tissue, and single
cells were then isolated using FACS.
After FACS, the mRNA was extracted, reference RNAs were added

as a control spike-in, the mixture was reverse transcribed using special
primers that flank the 5′- and 3′-ends of the cDNA with a stretch of iden-
tical sequences, and amplified using multiple cycles of PCR. This process
results in whole transcriptome amplification. From the cDNA, single-cell
tagged libraries were generated and sequenced with a minimum depth of
∼ 3.8 × 106 reads.
The single cell RNA-seq data were subsequently analysed according

to a combined iterative PCA (iPCA) and iterative WGCNA (iWGCNA)
pipeline. The steps of iPCA are:
1. identify the genes with variance larger16 than the technical noise (us-

ing the variance of reads derived from the spike-in RNA as reference,
see [7]). This procedure results in a data matrix that associates to
each cell a vector of values corresponding to the counts of the genes
selected based on the chosen CV threshold.

2. The matrix is log-transformed and z-normalised (see page 65), then
the PCs are computed (see Section 5.3 at page 70). The associated
real-part ordered list of eigenvalues of the matrix (the spectrum) is
then likely to show a shoulder, that is when the absolute value of the
real part of the eigenvalues starts ‘dropping’. A reasonable choice
in order to perform the subsequent clustering is to pick the principal
components up to the spectrum shoulder.

3. Using the selected components, generate a distance matrix, where
each point is determined as a weighted Euclidean distance (see page
62) between two cells in the PCA-projected space; the weight of each
principal component is the real part of its corresponding eigenvalue.

4. Perform a hierarchical clustering of the cells (see Section 5.2.1 at
page 61) and then split the cells into two groups according to the top
branch of the dendrogram.

combinase) and FRT (Flp recombinase), or of loxP and rox (Dre recombinase) sequences. In this
way the combination of a Cre line with a Dre/Flp line would result in the isolation of more specific
cell lines—i.e. lines that are positive for both promoters, the promoter of Cre and the one of Dre/Flp,
instead of a single one.

16 The threshold for the variance was set to each one of four percentages above the coefficient of
variation (CV) associated with the noise: 0%, 25%, 50% or 100% above the noise. The effective
threshold was chosen after downstream validation of the P-values for the segregated clusters. That
is, the threshold for the step was retroactively chosen as the one which provided more statistically
significant clustering after step 5 of iPCA. In general, according to the authors [54], when two
thresholds would determine statistically significant clusters, they resulted in identical clustering.
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5. Assess the significance of the binary split after computing the p-value.
The null hypothesis is that the dataset of the two groups of cells is
derived from the same multivariate Gaussian curve (and not from two
distinct Gaussian curves).

6. Repeat the procedure using one of the split groups found after the
previous step as starting point until one of four termination criteria is
met: there are no cells with variance greater than the noise, there is no
shoulder in the principal component spectrum, none of the thresholds
return a statistically significant split (considering p < 0.01), or if the
starting group of cells at the point 1 is smaller than an arbitrarily small
number (in [54] it is set as 4).

The final result is a dendogram similar to those conventionally obtained
from hierarchical clustering.
The iWGCNA is applied independently to the starting dataset follow-

ing a procedure conceptually similar to the one of iPCA. A detailed de-
scription of the procedure is beyond the aim of this book.
As previously discussed in Chapter 5, a major drawback of ‘hard’ clus-

tering methods is that data points (in this case, single cells) can be as-
signed to only one cluster, creating a problem for cells with intermediate
phenotypes. In order to avoid a binary cluster assignment, Tasic, Menon
and colleagues applied a machine learning classification method based
on a cross-validation algorithm (random-forest classifier17). In a nut-
shell, for each pair of clusters, their cell members are pooled and divided
into five groups (each group containing 20% of the cells). The classifier
is then trained with four out of five groups (80% of the cells assigned)
and assigns labels to the remaining group of cells using the learned rules.
This procedure is then repeated for each possible partition of the data, so
that each cell is reassigned to a cluster. Considering that the partition-
ing can affect the training of the algorithm and thus the cell assignment,
the partition and label assignment procedure was performed a total of
ten times. After this, a vector of 10 entries, corresponding to the cluster
assigned in different runs of the classifier, is associated with each cell:

core cells of a cluster are those that have been assigned to that cluster in
10/10 runs

17 In machine learning, a classifier is an algorithm that assigns predefined labels to data points after
being ‘trained’. During training, the algorithm is exposed to a group of points which already have
been labelled, for example by a human expert, and is left to change its internal parameters so that it
is able to re-assign the same starting label to the data points. In order to evaluate the quality of the
training of the algorithm, a cross-evaluation set is used. The algorithm is asked to classify a group
of points whose label has been previously assigned and the degree of identity of the classification is
then evaluated.
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intermediate cells havaa e been assigned to both clusters: the strength of
membership of an intermediate cell to a cluster can be defined as the
frff equency of assignment (e.g. 7/10).

This procedure to identifyff ‘core’ and ‘intermediate’ cells can be extended
to all possible pairs of clusters. The procedure previously described di-
vides the 1679 cells in the dataset into 49 clusters. Remarkr ably, the vast
maja ority of cells (1424) are core cells, and only 255 cells havaa e been as-
signed to more than one core cluster.

Figure 9.10. Cluster division (topo ) and associated violin plots foff r known molec-
ular markrr ers. The distribution of the violin plot foff r each gene is adjd usted ac-
cording to the maximum RPKM (right). Snapa 25 is a pan-neuronal gene; Gad1
is a pan-GABAergic markrr er; ViVV pi , Sst, and Pvalb are markrr ers associated with
GABAergic cell populations that express the neuropeptides vasointestinal pep-
tide, somatostatin, and parvalbumin; Slc17a77 7 is a pan-glutamatergic markrr er;
Rorb and FoFF xpx 2 are associated with distinct cortical layers; Aqpqq 4 is an astrocyte
markrr er, Pgdfd rff ar is associated with the oligodendrocyte precursor cells, MoMM g is
an oligodendrocyte markrr er, ItII gt am is specific to microglia, Flt1 is a markrr er of
endothelial cells, and Bgn is specific to smooth muscle cells. Adadd pa ted byb per-
mission frff orr m MaMM cmillan Publishers Ltdtt : NaNN turerr NeNN urorr science [54], ©c (2016).

Once the robustness of the clusters is reaffiff rmed, each cluster can be
screened foff r the expression of specific molecular markers to define the
identity of (core) cells of the clusters (Figure 9.10). The protein Snapa 25,
which is a key mediator in the exocytosis of synaptic vesicles, can be
used to recognise neurorr nal clusters; the cells in these neuronal clusters
can then express either Gad1 (Glutamate Decarbr oxylase 1), an enzyme
which is invnn olved in the production of the neurotransmitter GABA, or
Slc17a77 7 (also called VeVV sicular glutamate transporter 1), a fuff ndamental
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Figure 9.11. Summary of the cell types of the adult mouse visual cortex and
their relationships. The size of the circles indicates the number of cells in the
core cluster, while the width of the connecting lines indicates the number of
intermediate cells. A) Diffff eff rent clusters of GABAergic neurons expressing the
same neuropeptides can be predominantly foff und in distinct layers, such as the
upper ones (L1-4) or the lower ones (L5 and L6). B) The relationship between
the clusters associated with pyramidal excitatory neurons is strongly dependent
on which layers of the cortex their core cells are localised in. C) The glia cell
clusters are mostly isolated. D) Hierarchical clustering of the diffff eff rent core cell
types. Adadd pa ted byb permission frff orr m MaMM cmillan Publishers Ltdtt : NaNN turerr NeNN urorr -
science [54], ©c (2016).

faff ctor in the production of glutamate-containing synaptic vesicles18. The
main result of this paper is that neuronal diversity in V1 exceeds previous
predictions (Figure 9.11).
A total of 19 clusters of glutamatergic neurons and a total of 23 clusters

of GABAergic neurons were identified. In particular, populations that

18 In other words, cells that express the Snap25+/Gad1+/Slc17a7− markr ers are GABAergic neu-
rons (i.e. inhibitory in an adult brain), cells that are Snap25+/Gad1−/Slc17a7+ are glutamater-
gic (i.e. excitatory) neurons, and cells that do not express the synaptic vesicle markr er Snap25
(Snap25−/Gad1−/Slc17a7−) are non-neuronal cells.
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were thought to be homogeneous, such as those inhibitory neurons ex-
pressing vasointestinal peptide (Vip) or somatostatin (Sst), were demon-
strated to contain six different clusters each. Pyramidal neurons of layer
V were subdivided into eight different clusters. In the case of inhibitory
neurons, it became clear that cells expressing the same molecular mark-
ers, but localised in upper or lower layers, have different molecular fin-
gerprints, as demonstrated by multiple immunohistochemistry. For ex-
ample, two clusters of VIPergic cells are characterised by the mutually-
exclusive expression of synuclein gamma (Sncg) or Cysteine Rich Se-
cretory Protein LCCL Domain Containing 2 (Crispld2), and these cells
are only present in the upper layers (Figure 9.11A). Overall, histologi-
cal and molecular analysis demonstrated that there is a tendency for the
enrichment of cells of different core clusters in one or two adjacent cor-
tical layers, with more widespread intermediate cells bridging different
layers/clusters (Figure 9.11A-B). This suggests that the molecular finger-
prints of both excitatory and inhibitory interneurons are somehow spe-
cific for the localisation and the physiological function in the cortex.
The data obtained by single cell RNA-seq enable us to explore global

properties of gene expression at the population scale as well. For exam-
ple, Tasic, Menon and colleagues show how neurons express more genes
than glia cells when sequenced at the same depth. Also, neurons express
more genes at low- to medium-levels while glia tend to express a reduced
amount of genes, but at higher expression levels. This dataset also al-
lows us to probe differential splicing: at least 320 genes are differentially
spliced in cell types at various levels of the presented taxonomy.
An interesting example is the case of the glutamate AMPA receptors

Gria1 and Gria2, that show a cell type-specific alternative splicing of
two consecutive exons (flip and flop, as previously reported [50]). The
two isoforms encode receptor units with different electrophysiological
properties (Figure 9.12).
To conclude the paper, the authors demonstrated that 1) the sequenc-

ing data can be integrated with retrograde tracing to define the axonal
projection patterns associated with different cell clusters, and 2) it is pos-
sible to integrate electrophysiological data into the description of specific
cell clusters. In order to isolate the V1 pyramidal neurons that project to
specific brain regions, Tasic, Menon and coworkers used retrograde la-
belling from the thalamus or from the contralateral cortex19. The tagged

19 The labelling was done using a CAV expressing the recombinase Cre (see also Figure 9.1) in a
transgenic mouse Ai14 carrying a the red fluorescent protein tdTomato including a floxed STOP
cassette. In presence of the recombinase Cre, the STOP cassette is excised from the genome and the
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Figure 9.12. ‘Flip-flop’ architecture of the gene foff r the AMPAPP glutamate recep-
tors Gria1 (A) and Gria2 (B), with associated Miso score of diffff eff rential splicing
	 = b/(b + a) in diffff eff rent cell clusters (	 = 0 if only the flip variant is ex-
pressed, and the opposite is true when 	 = 1). The diffff eff rential slicing of two
consecutive exons (‘flip’ and ‘flop’) produces two variants of the receptor, each
presenting distinct biophysical properties. Adadd pa ted byb permission frff orr m MaMM cmil-
lan Publishers Ltdtt : NaNN turerr NeNN urorr science [54], ©c (2016).

cells were then isolated by FAFF CA S and sequenced with the same protocol
described befoff re. Using their molecular profiles, these cells can be as-

target cell becomes fluorescent. In the presented experimental setup, the cells that become Cre+ are
the ones that projo ect to the area injn ected with the canine adenovirus.
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signed to one or more of the previously described core clusters using the
same random forest classifier. The two classes of retrogradely-labelled
cells are assigned to small non-overlapping subsets of the cell clusters
previously localised in layer 5 and layer 6. This experiment allows the
authors to attach functional information to these clusters, which would
have been otherwise described only in molecular terms.
To prove the second point, the authors concentrated on a class of

GABAergic neurons that are characterised by the expression of the neu-
ropeptide neuron-derived neurotrophic factor (Ndnf ). These cells are
grouped into two separate core clusters (Ndnf-Car4 and Ndnf-Cxcl14)
that are localised in the uppermost layer of the cortex (L1) and express
the marker Reelin (Reln). From this information the authors were able to
assign the identity of neurogliaform cells. The production of transgenic
mice obtained by crossing the Ai14 line with a line expressing Cre un-
der the Ndnf promoter makes it possible to express a fluorescent tag in
the cells of the two Ndnf clusters. Electrophysiological analysis through
patch clamping of the tdTomato-tagged cells and 3D morphological re-
construction using fluorescence microscopy of cells intracellularly filled
with a dye confirmed that the members of the two Ndnf clusters are elec-
trophysiologically and morphologically distinct.
The results of this landmark paper demonstrate that the use of single-

cell technologies can greatly improve our understanding of the nervous
system by providing an unbiased account of cellular diversity and com-
bining morphological, electrophysiological, and molecular information.

9.5. Other applications of single-cell RNA-seq to the nervous
system

Two recent papers applied scRNA-seq to the retina. The retina is the
region of the brain that has been best characterised in terms of cellu-
lar diversity and connectivity20. Single-cell technologies have recapitu-
lated the diversity of retinal neurons in an unbiased manner and have,
moreover, identified novel molecular aspects of retinal diversity [32].
In a follow-up study, the authors concentrated on retinal bipolar cells,
a population of retinal cells that was thought to have been exhaustively
classified. The molecular classification identified all previously observed
types, as well as two novel types, one of which has a non-canonical mor-
phology and position [47].

20 In a sense, the retina is an outpost of the CNS 1) that is easily accessible to the experimenter
and 2) can provide a ‘simplified’ image of the properties of neuronal computation and rules of
connectivity—as it is essentially a thin and highly-ordered layer of nervous cells.
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Another method worth mentioning combines classical ‘pulse-chase’
experiments, which use nucleotide analogues to label newborn neurons,
with FACS sorting of nuclei rather than cells. Using this method—named
Div-seq, for sequencing of dividing cells—it has been possible to study
at single-cell resolution the transcriptome of an exceedingly rare popula-
tion: the newborn neurons of the adult hippocampus [17].

Conclusion: new tools, new challenges

In Chapters 8 and 9 we showed that next-generation RNA-seq provides
the neuroscientist with a wide range of new tools that allow for compre-
hensive molecular characterisation, from the whole organ to a single cell
or even subcellular compartment. In this embarrassment of riches, the
careful choice of a relevant scientific question and an informative experi-
mental design is of extreme importance. As single-cell technologies will
certainly become more standardised and prevalent in the neurosciences,
we must consider the trade-offs: do we better tackle our biological ques-
tions by trading depth for single-cell resolution, or by employing whole-
genome analyses that provide extreme depth at the expense of spatial
resolution?
In general, these types of technologies deliver more information than

you may desire. See an RNA-seq experiment as a hike through a forest:
in some cases you need to focus on single trees (‘is there a trail maker
on the trunk?’), but in others you will have to consider distinct patches of
the forest as single units (with specific branch density, and so on) to keep
yourself from getting lost.
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fication and bilaterality of human neocortical topographic gene ex-
pression, Neuron (2) 81 (2014), 321–332.

[41] S. M. Prakadan, A. K. Shalek, and D. A. Weitz, Scaling by shrink-
ing: empowering single-cell’omics’ with microfluidic devices, Na-
ture Reviews Genetics (6) 18 (2017), 345.

[42] E. Ravasz, A. L. Somera, D. A. Mongru, Z. N. Oltvai, and A.-L.
Barabási, Hierarchical organization of modularity in metabolic net-
works, Science (5586) 297 (2002), 1551–1555.

[43] K. Reichwald, and Petzold, Andreas and Koch, Philipp and Downie,
Bryan R and Hartmann, Nils and Pietsch, Stefan and Baumgart,
Mario and Chalopin, Domitille and Felder, Marius and Bens, Martin



173 Transcriptome Analysis. Introduction and Examples from the Neurosciences

and others Insights into sex chromosome evolution and aging from
the genome of a short-lived fish, Cell 163 (2015), 1527–1538.

[44] J. Richiardi, A. Altmann, A.-C. Milazzo, C. Chang, M. M. Cha-
kravarty, T. Banaschewski, G. J. Barker, A. L. Bokde, U. Bromberg,
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fluorescence in situ hybridisation,

134
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FPKM, 48
Fragment Per Kilobase Million,
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Full-text Minute-space index, see
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functional Magnetic Resonance
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clustering, fuzzy C-means
FWER, see family-wise error rate
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gene co-expression matrix, see
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gene expression analysis, 23
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gene counting, 46
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Gene Ontology, 112, 116, 128,
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Gene ontology, 89
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redundancy in analysis of, see
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overrepresentation in, 85

gene set enrichment analysis, see
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gene similarity matrix, see simi-
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richment, see GSEA, meta-
analysis
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Burrows-Wheeler transform

GO, see Gene Ontology, see Gene
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graph, 101
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hard thresholding, 108
soft thresholding, 109
topological overlap, 109
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eigenvector centrality, 103

clustering, 107
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direct acyclic, 89
directed, 101
hub, 102, 104, 129
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path, 102
power law, 105
random, 104
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meta-analysis, 96, 114
non-parametric, 94
enrichment score, 94
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head-to-tail splicing, see
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hierarchical clustering, see
clustering

hippocampus, 123, 135, 137
hourglass model (embryology),
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hub (graph), see graph
hydrolysis, 17
hypergeometric distribution, 86
hypothesis testing, 58
generalised linear model, 74

ICA, 136
immunohistochemistry, 126
immunoprecipitation, 24, 141
ribosome, 142, 147

Independent Components
Analysis, see ICA

InDrop, see single-cell RNA-seq
intra-module connectivity score,

see WGCNA, module
iterative PCA (iPCA), see PCA

k-means clustering, see
clustering, k-means

KEGG, 87, 114
Kmer, 31
Kullback-Leibler divergence, see

t-SNE, cost function

L10a (ribosome), 142, 143
L22 (ribosome), 146
library
complexity of, 40
density of library, effects, 22
minimum quantity of RNA, 12
preparation of
addition of the adapters, 21

Illumina sequencing, 17
loss of strand information,
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Reverse Transcription, 18
RNA fragmentation, 17
strand specific libraries, 20

quality control of, 21
sequencing of, see RNA-seq

lincRNA, 15
linear correlation, see Pearson

coefficient
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logarithmic transformation, 7
loss of strand information, see
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m1A-seq, 25
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MA plot, 55
mapping, 32
Burrows-Wheeler transform, 32
application, 35
storage of suffixes, 38

Full-text Minute-space index,
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last-to-first, 33
walk left algorithm, 35

MDS, 78, 126, 132
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microarray, 121, 122, 127, 131,
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Gaussian distribution of the reads,
3

RNA integrity requirements, see
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microfluidic, 159
microdroplet, 159

microfluidics, 141
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miRNA-seq, 24
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Negative Binomial distribution,

41
as a gamma-Poisson mixture,
41, 43

in DEG analysis, 54
neighbourhood (graph), see graph
network, see graph
neural promoters
dopamine transporter, 143
synapsin, 143
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norm, see distance
Notch signalling pathway, 87
null hypothesis, 54, 58, 96, 162
rejection of, 54
FDR-controlled, 55

outlier, 65
overdispersion, 41, 52

p-value, 45, 54, 138
α threshold, 54
correct use and caveat, 54
definition, 53
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alternative splicing and, 56
path (graph), see graph
PCA, 70, 126, 132, 136
covariance matrix, 76
explained variation, 71
feature selection, 73
iPCA, 161
loadings, 71

quality control with, 73
reduction in dimensionality, 71
requirement of near-normal

distribution, 73
retained variability, 78
total dispersion of variance, 77
Z normalisation and, 73

Pearson coefficient, 62, 108, 122,
137

limitations, 73
percentage-spliced-in coefficient,

see 	 coefficient
permutation test, 95, 138
PhiX DNA, 22
Phred score, 27
formula (Sanger), 28
formula (Solexa), 28
meaning, 28
minimum required, 28
positional quality bias, 29
single base, 29

Poisson distribution, 1, 40, 41,
50

and overdispersion, 41
in technical replicates of

RNA-seq, 51
posterior probability distribution,

81
power, 58, 123
post-hoc power analysis, 58

power law
scale-free topology criterion, 109

power law (graph), see graph
Presenilin1, see PSEN1
primary sequencing primer, 22
priming hotspot, 20
Principal Component Analysis, see
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prior probability distribution, 81
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	 coefficient, see alternative
splicing

	-seq, 24

qPCR, 21
quantitative real-time PCR, see

qPCR

random network, see graph
random-forest classifier, 162
rank correlation, see Spearman

coefficient
read length, see RNA-seq
reads, 11
alignment of, see mapping
coverage, 46, 141
including splicing sites, 46
mappable, 46
mapping of, see mapping
non mappable, 45
quality control of, 27
Phred score, see Phred score
sequence artefacts, 29

redundant mappable, 16, 46
Reads Per Kilobase Million, see

RPKM
redundancy (annotation), 88, 93
reduction of, 93, 97

redundant mappable reads, see reads
retrograde tracing, 143, 165, see

RNA-seq
Reverse Transcription, see library
ribosome footprinting, 24
ribosome run-off assay, 147
rich-club small-world network, 106
RIN
in microarray applications, 14
in RNA-seq, 14

RISC complex, 24
RNA
absorbance ratios, 13
abundant species, 14

depletion of, 15
tissue-specific, 15

circRNA, 134, 152
contaminants, 13
optical properties, 13

editing, 11
extraction, 12
integrity of, see RIN
miRNA, 12, 24, 31, 133, 151
non coding, xii, 12, 27
protein coding, xii, 12
ribosomal, xii
species of, 12

RNA integrity number, see RIN
RNA nick synthesis, see library
RNA quality control, see library
RNA-seq, 122, 134, 142
cDNA amplification, 143
depth, 11
advantages, 11
axonTRAP, 146
brigde amplification, 22
effect of library density, 22

choice of sequencing setup, 23
depth
and detection of differential
expression, 55
marginal value of increased,
42

library, see library12
non-conventional strategies, 24
optimal read length, 23
paired-end sequencing, 17, 21–
23

ribosome immunopurification,
142

sequencing depth, 27
single-cell, see single-cell

RNA-seq
single-end sequencing, 17

rotenone, 117
RPKM, 48
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RT, see library, Reverse
Transcription

S6 (ribosome), 142, 151
SAM file, 39
scale-free topology criterion, see

power law
scatter plot, 7
secondary sequencing primer, 23
Self-Organising Maps, 83
sensitivity (statistical), 58
Sequence Alignment/Map,

see SAM
sequencing flowcell, see flowcell
shortest path (graph), see graph
similarity
gene co-expression matrix, 61,
78, 108, 109

measure of, 60
Single Nucleotide Polymorphism,

see SNP
single-cell RNA-seq, 141, 156,

166
barcode, 142
cDNA amplification, 161
coverage of, 141
Div-seq, 168
Drop-seq, 167
InDrop, 159
spike in, 142

single-end sequencing, see
RNA-seq

singular value decomposition, 112
size factor, 48
versus RPKM, 49

small-world network, 106
smooth function, 52
SNP, 11, 131
genetic distance and, 133

solid state amplification, see
RNA-seq, bridge
amplification

sonication, 18
Spearman coefficient, 62, 94
specificity (statistical), 58
spectrum (matrix), 161
spike-in, 159
SplicingCompass, 57
stochastic process, 1
strand information, see library
strand specific libraries, see

library
stress function, see MDS
structure-seq, 25
Student t-distribution, 81
Student’s t-test, 96
synapse, xiii, 145, 146

T test, 54
t-SNE, 80
cost function, 81
Gaussian kernel, 80

topological overlap, see graph,
adjacency matrix

TPM, 48
constant sum of, 48, 57

trait-based significance measure,
see WGCNA, module

Transcript Per Million, see TPM
Transcription Starting Sites, 24
transcriptome, xii, 147
assembly, 11, 17, 20, 23
Allen Human Brain Atlas, 122,
127, 136
cortical topology, 126
hippocampal division, 124
regional variation in gene

expression, 123
chimp vs human, 126
differential connectivity, 129
human specificity score, 128
module conservation, 127

of ageing killifish, 113
global gene modulation, 114
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hourglass model, see
hourglass model

inhibition of complex I
activity, 117

of human prefrontal cortex, 131
gene expression change, 131
gene expression

trajectory, 133
genetic vs transcriptional

distance, 133
translatome, 24, 143, 147
axonTRAP, see RNA-seq

TRAP, see RNA-seq, ribosome
immunopurification

trimming, 31
TSS, see Transcription Starting

Sites
two-ways clustering, see cluster-

ing, hierarchical
2OMe-seq, 24
type I error, see false positive
type II error, see false negatives

Venn diagram, 9
violin plot, 7, 163
volcano plot, 55

walk (graph), see graph, path
walk left algorithm, see mapping
weight (graph), see graph
Weighted Gene Coexpression

Network Analysis, see
WGCNA

WGCNA, 109, 117, 122, 127, 154
iWGCNA, 161
module, 109
eigengene, 112, 117, 127, 155
intra-module connectivity

score, 128
module membership hub, 112
phenotypic trait significance
of, 111

Z normalisation, 65, 73, 161
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verture d’Options, 1998. ISBN 978-88-7642-291-1



185 Lecture notes

H. CLEMENS, Introduction to Hodge Theory, 1998. ISBN 978-88-7642-268-3

Seminari di Geometria Algebrica 1998-1999, 1999.

A. LUNARDI, Interpolation Theory, 1999. ISBN 978-88-7642-296-6

R. SCOGNAMILLO, Rappresentazioni dei gruppi finiti e loro caratteri,
1999.

S. RODRIGUEZ, Symmetry in Physics, 1999. ISBN 978-88-7642-254-6

F. STROCCHI, Symmetry Breaking in Classical Systems, 1999 (2000).
ISBN 978-88-7642-262-1

L. AMBROSIO, P. TILLI, Selected Topics on “Analysis inMetric Spaces”,
2000. ISBN 978-88-7642-265-2

A. C. G. MENNUCCI, S. K. MITTER, Probabilità ed Informazione, 2000.
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