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Abstract

High-throughput next-generation sequencing is now entering its second decade. How-
ever, it was not until 2008 that the first report of sequencing the brain transcriptome
appeared (Mortazavi, Williams, Mccue, Schaeffer, & Wold, 2008). These authors com-
pared short-read RNA-Seq data for mouse whole brain with microarray results for
the same sample and noted both the advantages and disadvantages of the RNA-Seq
approach. While RNA-Seq provided exon level resolution, the majority of the reads were
provided by a small proportion of highly expressed genes and the data analysis was
exceedingly complex. Over the past 6 years, there have been substantial improvements
in both RNA-Seq technology and data analysis. This volume contains 11 chapters that
detail various aspects of sequencing the brain transcriptome. Some of the chapters are
very methods driven, while others focus on the use of RNA-Seq to study such diverse
areas as development, schizophrenia, and drug abuse. This chapter briefly reviews the
transition from microarrays to RNA-Seq as the preferred method for analyzing the brain
transcriptome. Compared with microarrays, RNA-Seq has a greater dynamic range,
detects both coding and noncoding RNAs, is superior for gene network construction,
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detects alternative spliced transcripts, and can be used to extract genotype information,
e.g., nonsynonymous coding single nucleotide polymorphisms. RNA-Seq embraces the
complexity of the brain transcriptome and provides a mechanism to understand the
underlying regulatory code; the potential to inform the brain–behavior–disease rela-
tionships is substantial.

1. INTRODUCTION

Next-generation sequencing (NGS) refers to a variety of related tech-

nologies, often termed massively parallel sequencing. The first NGS plat-

form (Roche 454) was introduced in 2004. Subsequently, other platforms

were released by several manufacturers: Illumina (Solexa), Helicos, Pacific

Biosciences, and Life Technologies (ABI). Although the instruments differ

in the underlying chemistry and technical approach, the platforms are similar

in their capability of producing very large numbers of simultaneous reads

relative to traditional methods. Thus, it is now possible to sequence whole

genomes, exomes, and transcriptomes for a reasonable cost and effort. The

technology of transcriptome sequencing, also known as RNA-Seq, has

matured to the point that it is reasonable to propose substituting RNA-

Seq for microarray-based assessments of global gene expression. Of partic-

ular importance to our laboratories are the advantages RNA-Seq has over

microarray platforms when analyzing complex rodent crosses, e.g., hetero-

geneous stocks (HSs). However, the same argument can be made when ana-

lyzing any outbred population, including humans. Of particular relevance to

the brain transcriptome are the advantages RNA-Seq has over microarrays

in analyzing alternative splicing. This chapter provides a starting point for

understanding the emergence of RNA-Seq and emphasizes transcriptome/

behavior relationships.

2. FROM MICROARRAYS TO RNA-Seq

Cirelli and Tononi (1999) were among the first to report genome-

wide brain gene expression profiling associated with a behavioral pheno-

type; both mRNA differential display and cDNA arrays were used to

examine the effects of sleep deprivation on rat prefrontal cortex gene expres-

sion. Sandberg et al. (2000) used Affymetrix microarrays to detect differ-

ences in brain gene expression between two inbred mouse strains

(C57BL/6J [B6] and 129SvEv [129; now 129S6/SvEvTac]). Importantly,
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these authors observed that some differentially expressed (DE) genes were

found in chromosomal regions with known behavioral quantitative trait loci

(QTLs). For example,Kcnj9 that encodes for GIRK3, an inwardly rectifying

potassium channel, was DE (higher expression in the 129 strain) and is

located on distal chromosome 1 in a region where QTLs had been identified

for locomotor activity, alcohol and pentobarbital withdrawal, open-field

emotionality, and certain aspects of fear-conditioned behavior (see

Sandberg et al., 2000). Subsequently, Buck and colleagues (Buck, Milner,

Denmark, Grant, & Kozell, 2012; Kozell, Walter, Milner, Wickman, &

Buck, 2009) have shown that Kcnj9 is a quantitative trait gene (QTG) for

the withdrawal phenotypes. Over the past decade, this alignment of global

brain gene expression data and behavioral QTLs has been reported in

numerous publications and discussed in numerous symposia and reviews

(e.g., Bergeson et al., 2005; Farris & Miles, 2012; Hoffman et al., 2003;

Matthews et al., 2005; Mcbride et al., 2005; Saba et al., 2011; Sikela

et al., 2006; Tabakoff et al., 2009). The association gained further support

as the focus turned to genes whose expression appeared to be regulated

by a factor or factors within the behavioral QTL interval. Web tools have

been developed to facilitate integrating behavioral and brain microarray data

(e.g., www.genenetwork.org and http://phenogen.ucdenver.edu/

PhenoGen/index.jsp; Chapter 8). This integration has been successful in

detecting several candidate QTGs for behavioral phenotypes (see, e.g.,

Hitzemann et al., 2004; Hofstetter et al., 2008; Mulligan et al., 2006;

Saba et al., 2011; Tabakoff et al., 2009).

The alignment of DE genes with a behavioral phenotype can be further

examined using a variety of secondary analyses, e.g., examining if the DE

genes cluster within known gene ontology categories (Pavlidis, Qin,

Arango, Mann, & Sibille, 2004) or are part of a known protein–protein

interaction network (Bebek & Yang, 2007; Feng, Shaw, Rosen, Lin, &

Kibbe, 2012). DE genes can also be grouped on the basis of common tran-

scription factors and other regulatory elements (e.g., Vadigepalli,

Chakravarthula, Zak, Schwaber, & Gonye, 2003). In addition to DE genes,

microarrays have also facilitated gene coexpression-based analyses, such as

the Weighted Gene Coexpression Network Analysis (WGCNA; Horvath

et al., 2006; Zhang & Horvath, 2005). The rationale behind these

approaches is that coexpressed genes frequently code for interacting pro-

teins, which in turn leads to new insights into protein function(s) and in

some cases leads to discovery of protein function (Zhao et al., 2010).

Coexpression analysis has been used to analyze differences in functional
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brain organization between nonhuman primates and humans (Oldham,

Horvath, & Geschwind, 2006), regional differences in the functional orga-

nization of the human brain (Oldham et al., 2008), and the molecular

pathology of autism (Voineagu et al., 2011) and alcoholism (see Chapter 11).

Despite these successes, microarray-based approaches are not without

problems. First, differences in brain gene expression among genetically

unique individuals or lines selected for behavioral traits are generally small;

reported differences of 15–25% are not uncommon. To some extent, these

small variations occur because hybridization isotherms for oligonucleotide

arrays are frequently not linear due to probe saturation (Pozhitkov,

Boube, Brouwer, & Noble, 2010).

A second problem with oligonucleotide arrays is the effect of single

nucleotide polymorphisms (SNPs; Duan, Pauley, Spindel, Zhang, &

Norgren, 2010; Peirce et al., 2006; Sliwerska et al., 2007; Walter et al.,

2009, 2007). Rodent oligonucleotide arrays are based upon the sequence

of the B6 mouse or Brown-Norway (BN) rat. Even inbred strains closely

related to the B6 or BN strains may differ by several million SNPs (see,

e.g., Keane et al., 2011), which in turn can cause significant hybridization

artifacts (Walter et al., 2009, 2007). Masking for SNPs can improve this sit-

uation but results in deleting probes or even an entire probe set from the

analysis. Walter et al. (2009) used NGS to address the SNP problem, build-

ing upon the repeated observation that, when comparing gene expression in

the B6 and DBA/2J (D2) inbred mouse strains (or crosses and selected lines

formed from these strains) and after masking for known SNPs in the D2

strain, there remained an excess of genes showing higher expression in

the B6 strain. Similarly, this was also observed in the case of cis-eQTLs

showing higher expression associated with the B6 allele (see Mulligan

et al., 2006; Peirce et al., 2006; Walter et al., 2007). The two possible expla-

nations for these observations were the following: (a) gene expression was

actually higher in the B6 strain or (b) there were many uncharacterized

D2 SNPs, which led to decreased binding of D2-derived target on probes

containing the SNP locale. Preliminary direct sequencing and quantitative

PCR data pointed to missing SNPs. NGS was used to analyze a 3-Mbp

region of Chr 1 (171.5–174.5 Mbp) that was enriched in a number of behav-

ioral QTLs and transcripts DE between the B6 and D2 strains. B6 and D2

BAC clones tiled across the region were sequenced using the short-read

Illumina IIx and ABI SOLiD 2 platforms. The results obtained (30–100�
coverage) illustrated that there were 160% more SNPs in the region than

previously reported (Walter et al., 2009); these data have been confirmed
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(Keane et al., 2011; R. Williams, unpublished observations). The integra-

tion of these SNPs to the mask markedly reduced the disparity in DE genes

between the B6 and D2 strains.

A third problem with oligonucleotide arrays is the annotation and sum-

marization issues associated with predefined reporters/probes (e.g., Allison,

Cui, Page, & Sabripour, 2006; Lu, Lee, Salit, & Cam, 2007). Interestingly,

on some arrays, a significant number of the represented transcripts are actu-

ally long noncoding RNAs (ncRNAs) (see, e.g., Liao et al., 2011). But tens

of thousands of ncRNAs, many of which have important regulatory func-

tions (Mattick, 2011; also see Chapter 7), are not represented on the arrays.

A fourth problem with oligonucleotide arrays is that 30UTR-orientated

microarrays provide relatively little information about alternative splicing,

which is particularly high in brain ( Johnson et al., 2009; Li, Lee, &

Black, 2007; Licatalosi & Darnell, 2006; Mortazavi, Williams, Mccue,

Schaeffer, & Wold, 2008). The Affymetrix Mouse 1.0 Exon ST array col-

lects data on alternative splicing, but when used to detect differential alter-

native splicing, it is particularly sensitive to the “SNP effect” due to the

smaller number of probes per probe set (Laderas et al., 2011).

3. NGS PLATFORMS

There are several excellent reviews of the various NGS platforms (e.g.,

Mardis, 2008, 2011; Martin & Wang, 2011; Metzker, 2010; Ozsolak &

Milos, 2011; Rothberg et al., 2011). Understanding in some depth how

the platforms work is critical to understanding where errors develop and

are propagated from sample preparation to alignment to data analysis.

The differences in platforms will not be discussed here. We simply note that

for RNA-Seq experiments, the majority have used the Illumina platform

(see, e.g., Costa, Angelini, De Feis, & Ciccodicola, 2010). The promise

of a high-throughput, high read instrument with minimal library prepara-

tion remains a promise. Such an instrument would be particularly welcome

for sequencing the brain transcriptome given the diversity of cell types pre-

sent and the numerous comparisons that could be made.

4. RNA-Seq OVERVIEW

The first and perhaps the most important step of an RNA-Seq exper-

iment is the same as that for a microarray experiment, the isolation of high-

quality RNA. Although both RNA-Seq and microarrays can be used on
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fragmented RNA such as that found in formalin-fixed-paraffin-embedded

samples, the biases present in such samples for genome-wide sequencing

are difficult to assess. RNA quality is routinely examined on the Agilent

BioAnalyzer or a similar instrument; an RNA integrity number (RIN)

of �8 is generally considered high quality. Unfortunately for brain samples,

the amount of beginning tissue may be very small, and obtaining a reliable

RIN or even accurately measuring the amount of RNA may be difficult.

Even within very discrete brain regions, there are multiple cell types, and

some experiments need to focus on a specific subset of cells or even a single

cell. Eberwine and colleagues at the University of Pennsylvania have

pioneered techniques for the linear amplification of small amounts of

RNA; an online audio describing the procedures when beginning with only

fentograms of material is available (Morris, Singh, & Eberwine, 2011). Many

RNA-Seq experiments begin with postmortem material that has been

stored, often under variable conditions, including differences in the postmor-

tem interval (PMI). Depending on the length of the PMI, theRNA in a sam-

ple may be moderately to significantly degraded as assessed by the RIN and

otherQ/Cmeasures. For sampleswith integrity numbers<6, one should con-

sider ribosome depletion as opposed to a polyA+preparation. Ribosome-

depleted samples also have the advantage of including coding and ncRNAs

which are not polyadenylated; tiling array data suggest that more than 40%

of transcripts are not polyadenylated (Cheng et al., 2005).Cui et al. (2010) have

comparedRNA-SeqofRiboMinus (rmRNA) andpoly(A)-selected (mRNA)

samples; the starting total RNA was extracted from BALB/c mouse whole

brain. The authors found (on a percent basis) that there were marked read dis-

tribution differences between samples. The percentage of known exon reads

was twice as high in the mRNA sample (60%), while the percentage of both

intronic and intergenic reads was twice as high in the rmRNA sample (25%

and44%, respectively).Both samples detected reads in essentially the samepop-

ulation of RefSeq-defined genes, i.e., there was not a substantial read bias. So

the use of rRNA-depleted or poly(A)-selectedRNAdepends on the questions

being asked and the estimated read density per sample. Data collected in our

laboratory and elsewhere (Bottomly et al., 2011; Marioni, Mason, Mane,

Stephens,&Gilad, 2008;Mortazavi et al., 2008) have found that 20–40million

reads are generally adequate formost estimates of gene expression. If the goal is

to quantitatively measure expression at the exon level, then the read density

must be increased significantly, perhaps by an order of magnitude (see Labaj

et al., 2011; Lee, Mayfield, & Harris, 2014). Such exon level measurements

are obviously best suited for poly(A)-selected samples, especially when one is

6 Robert Hitzemann et al.



dealing with multiple biological replicates and assuming resources are reason-

ably limited; i.e., it is very likely that it will be necessary to multiplex samples.

But if one is only interested in gene expression and can maintain total exonic

read density at 20–40 million, then rmRNA could be used, and significant

information on ncRNAs and mRNAs without a poly(A) tail can be obtained.

Cui et al. (2010) also used a procedure that facilitates both the quantification of

transcripts derived from opposite strands and determining the directionality of

transcription (Costa et al., 2010; Martin & Wang, 2011; see also Chapter 2).

Using the strand-specific data, Cui et al. (2010) made several salient observa-

tions: (a) 99.9% of the junction reads are in the sense orientation; (b) nearly

all expressed genes have natural antisense transcripts (the proportion may be

as high as 70%of expressed genes [Katayama et al., 2005]); (c) poorly expressed

genes tend to have more pronounced antisense transcription; and (d) the anti-

sense transcripts are enriched in the promoter and terminal transcript regions.

This enrichment is likely the result of divergent transcription initiationofRNA

polymerase II (Core, Waterfall, & Lis, 2008; Preker et al., 2008).

Samples from very discrete brain regions are often prepared by laser cap-

ture microdissection (LCM). Given the steps involved in preparing the

LCM samples, including staining and dehydration, care needs to be taken

to maintain RNA quality. Chen et al. (2011) appear to be the first to couple

LCM and RNA-Seq to examine brain gene expression. They examined rat

GABAergic neurons projecting from the nucleus accumbens to the ventral

pallidum. Cells were labeled using the retrograde tracer, Fluorogold.

Approximately 1500 cells were labeled and isolated by LCM in each of four

animals; this in turn produced �4 ng of RNA per animal, and the average

RIN was 8.1. Samples were independently amplified for microarray and

RNA-Seq; for genes detected on both platforms, the correlation for gene

expression was �0.7. Not surprisingly, the correlation was better for the

highly expressed genes. We have used LCM to examine gene expression

in discrete regions of the mouse brain (prelimbic cortex, nucleus accumbens

shell, and central nucleus of the amygdala; Colville, AM & Hitzemann, RJ

unpublished observations). Sufficient high-quality RNA was obtained from

each sample (>100 ng) that amplification was not necessary. Although the

samples were only used for RNA-Seq, the data obtained for the nucleus

accumbens shell appear at the gene level to be very similar to data previously

obtained for the ventral striatum when using microarrays (e.g., Iancu

et al., 2010).

In addition to examining gene expression in discrete brain regions and

discrete cell types, for some applications, it is desirable to assess the synaptic
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transcriptome (see, e.g., Eipper-Mains, Eipper, & Mains, 2012). A key

mechanism of synaptic plasticity is the local synthesis of proteins from syn-

aptic mRNA. Techniques for isolating synaptosomes from adult brains and

growth cones from developing brains are well established using gradient

centrifugation (e.g., Hitzemann & Loh, 1978). Synaptoneurosomes are pre-

pared by filtration of tissue homogenate through a series of filters to obtain a

fraction that is enriched in pinched-off dendritic spines (Lugli & Smalheiser,

2013). Regardless of preparation, once isolated, these fractions can be sub-

jected to sequencing as outlined earlier (e.g., Eipper-Mains et al., 2011).

A key to the use of these fractions will be assessments of subcellular

contamination.

The next step in anRNA-Seq experiment involves the synthesis of high-

quality double-stranded (ds) cDNA. The most widely used procedure frag-

ments the RNA before reverse transcription, followed by second-strand

synthesis. This approach has the advantage of minimizing the effects of sec-

ondary RNA structure on first-strand synthesis. If the adapters needed for

the sequencing are added after the ds cDNA is formed, information on

strandedness is lost. There are several procedures, including ligating adapters

to the fragmented RNA, that will maintain strand information (Ingolia,

Ghaemmaghami, Newman, & Weissman, 2009; Li et al., 2008;

Parkhomchuk et al., 2009). The alternative to using fragmented RNA is

to synthesize the cDNA from intact RNA and then fragment. This approach

has a clear advantage for platforms that are capable of long to very long reads.

For the Illumina, SOLiD, and 454 platforms, the final step prior to the actual

sequencing is the clonal amplification of the fragmented cDNA. Both 454

and SOLiD use emulsion PCR on a bead surface, while Illumina uses enzy-

matic amplification on a glass surface (flow cell). The sequencing and detec-

tion methods differ among the three platforms (see Mardis, 2011 and

Metzker, 2010 for details). The 454 sequencer use a polymerase-mediated

incorporation of unlabeled nucleotides; detection is via light emitted by sec-

ondary reactions with the released PPi. Illumina also uses a polymerase-

mediated sequencing but uses end-blocked fluorescent nucleotides in a

protocol similar to traditional Big Dye sequencing; detection comes from

following the incorporation of the nucleotide attached fluorescent tags.

SOLiD sequencing uses the ligase-mediated addition of 2-base encoded

fluorescent oligonucleotides; detection is from fluorescent emission of the

incorporated oligonucleotides. The SOLiD system differs from Illumina

and 454 in that each base is determined twice. The quality of the base calls

for all three platforms is very good. Quality is measured in terms of a Phred
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Score (Q), which was originally developed to assess base calls for the human

genome project (Ewing, Hillier, Wendl, & Green, 1998). A Q score of

20 indicates a 99% accuracy rate, and a score of 30 indicates a 99.9% accuracy

rate.Q30 values are routinely obtained for NGS platforms. Typically, theQ

value decreases with increasing read length.

5. RNA-Seq AND DATA ANALYSIS

Before commenting on the analysis of RNA-Seq data, it is useful

to recount the analysis controversies that arose with the introduction of

microarrays. In 1999, Nature Genetics devoted an entire issue (volume

21—January) to microarrays. Cautionary concerns were raised around issues

of data analysis (Lander, 1999). Microarray experiments, at the time, were

generally expensive, limiting sample sizes. Small sample sizes and thousands

of independent observations per sample were seen as a prescription for sta-

tistical disaster. Initial attempts to deal with this problem frequently involved

using a nonstatistical threshold for a meaningful difference, e.g., a twofold

difference in expression. This approach frequently worked well in some

applications, e.g., when comparing cancerous and noncancerous tissue;

however, this approach was destined not to work well in brain, where dif-

ferences in expression among experimental groups were much smaller. Ini-

tially, journal reviewers, editors, and study sections panned microarray

experiments as being “fishing expeditions,” with no clear hypothesis. The

idea of discovery science as a valuable strategy was a minority opinion.

Despite the obstacles, microarray experiments eventually flourished;

technology and analysis methods improved. One might have predicted that

the microarray experience would have laid the groundwork for the accep-

tance of NGS. However, the introduction of the 454 sequencer (Margulies

et al., 2005) was met with a similar resistance; the argument was made that

the data sets were so large that only one of the established genome centers

would have the necessary bioinformatics expertise. But as NGS technology

improved so did the analytic approaches, such that by 2007/2008, RNA-

Seq data appeared from several different laboratories (Marioni et al.,

2008; Mortazavi et al., 2008; Sugarbaker et al., 2008; Torres, Metta,

Ottenwalder, & Schlotterer, 2008; Weber, Weber, Carr, Wilkerson, &

Ohlrogge, 2007). Workflows emerged that addressed the measurement of

not only DE genes but also differential alternative splicing and the detection

of novel transcripts (Marioni et al., 2008). Bullard, Purdom, Hansen, and

Dudoit (2010) examined a number of statistical issues associated with using
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RNA-Seq to detect DE genes. Similar to Marioni et al. (2008), they found

that most sources of technical variation had only small effects on detecting

DE transcripts. The most significant effect on DE transcripts was data nor-

malization. Bullard et al. (2010) concluded that their “main novel finding is

the extent to which normalization affects differential expression results: sen-

sitivity varies more between normalization procedures than between test

statistics. . .we propose scaling gene counts by a quantile of the gene count

distribution (the upper-quartile).”

This volume contains several chapters that address in some detail the

analysis of RNA-Seq data (see Chapters 2, 3, and 11); these chapters espe-

cially emphasize the evolution of RNA-Seq analysis over the past 3–4 years.

In addition to improvements in analysis strategy, sample power has in gen-

eral improved with decreasing costs and the ability to multiplex samples with

adequate read depth (at least at a level sufficient for gene summarization sta-

tistics). If one is interested in quantifying alternative splicing, then substan-

tially greater read depth is required (see, e.g., Lee et al., 2014).

RNA-Seq data have some unique properties that affect the strategies

for data analysis (Garber, Grabherr, Guttman, & Trapnell, 2011). First,

unlike microarray data where the output is fluorescence intensity (more

or less a continuous measure), the output from an RNA-Seq experiment

is digital in the form of read counts. For the microarray experiment, famil-

iar statistics such as a t-test or ANOVA are appropriate (assuming variances

are equal); for RNA-Seq data, these statistics are not directly applicable.

Robinson, Mccarthy, and Smyth (2009) proposed the use of the empirical

analysis of digital gene expression in R (edgeR), a variant of a procedure

used to analyze SAGE data. edgeR models count data using an over-

dispersed Poisson model and use an empirical Bayes’ procedure to moder-

ate the degree of overdispersion across genes; the overdispersion reflects

the biological variation among samples (Robinson et al., 2009). An imple-

mentation of edgeR to mouse brain RNA-Seq data is found in Bottomly

et al. (2011).

Second, RNA-Seq data are biased in several important ways. First, the

majority of the counts are produced by a small number (<10% of the total) of

very highly expressed genes. Thus, many genes of interest may have only

moderate to low counts. Also, for genes with equal levels of expression,

the long genes will be overrepresented, distorting the relative expression

among genes. Similarly, within a given gene, long exons are overrepre-

sented. Normalization and weighting algorithms can be used to address these

issues, but they in turn may introduce new biases (Bullard et al., 2010).
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Third, RNA-Seq provides a substantial amount of data with very low

read counts, which will be quite variable (see, e.g., Cui et al., 2010), and

thus, regardless of the analytic strategy, makes detecting DE genes difficult.

Fourth, RNA-Seq data includes multireads, i.e., reads that map equally

well to multiple genomic locations. The multireads arise predominantly

from conserved domains in paralogous genes and from repeats (Costa

et al., 2010). Mortazavi et al. (2008) found that, in the mouse brain, 76%

of the 25-bp transcriptome sequence segments uniquely mapped; 6%

mapped 2–10 times in the genome; and the remainder mapped more than

10 times. Depending on the gene model used and assuming a high-read den-

sity, ignoring themultireads may only have aminimal effect on detectingDE

genes. But one can easily contrive a situation involving alternative splicing

and multireads where this would not be the case.

Fifth, RNA-Seq collects data across splice junctions that (a) are ignored

bymany alignment tools and (b) may be unknown.While there are<25,000

known protein-coding genes in the mammalian genome, the number of

gene-related transcripts may well be 10–20 times higher (Pan, Shai, Lee,

Frey, & Blencowe, 2008; Johnson et al., 2009). Given the heterogeneous

nature of brain tissue, the complexity problem is significantly amplified.

Tools are available that detect splice junctions and will estimate the mini-

mum number of gene isoforms that account for the observed data

(Guttman et al., 2010; Katz, Wang, Airoldi, & Burge, 2010; Trapnell,

Pachter, & Salzberg, 2009; Trapnell et al., 2012, 2010). Roberts,

Pimentel, Trapnell, and Pachter (2011) illustrate a procedure that makes

use of annotated model organism genomes, such as those available for the

laboratory mouse and rat. For both correctly aligning multireads and splice

junctions, paired-end sequencing is a useful approach. The downside is the

added expense of sequencing the cDNA fragment from both ends.

Sixth, RNA-Seq data can be used to detect allele-specific expression and

both synonymous and nonsynonymous SNPs within gene-coding

sequences. This application may be particularly useful in complex crosses

such as the HS-CC (Iancu et al., 2010) where RNA-Seq can provide

detailed genotype information. In the RNA-Seq context, the advantages

of using model organisms with a well-annotated genome cannot be under-

estimated (Martin &Wang, 2011). Reference genome alignment is compu-

tationally simpler and faster as the problem is reduced from assembling

millions of reads to assembling a much smaller number of reads to known

loci. For both the mouse and rat, the reference genomic sequence was

obtained using tiled BAC clones, and thus, there are essentially no gaps.
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But if one believes that there are a substantial number of missed exons, then

some combination of reference-based and de novo alignment may be the

most effective approach (Martin & Wang, 2011). The Mouse Genomes

Project (Keane et al., 2011) released genomic sequence data for 17 inbred

strains; the data are aligned to the B6 reference strain. It is important to note

that these data are not equivalent to the reference genome. The data were

acquired using a short-read NGS platform (Illumina), which naturally means

that in regions of high repeats/low genetic complexity, it is not possible to

correctly align the sequence data. For the standard laboratory strains, this

effect is most notable on the proximal aspect of chromosome 7 (Keane

et al., 2011). RNA-Seq data are also available for six tissues from a B6D2

F1 hybrid and for whole brain transcriptome data from 15 strains. These data

sets can be freely downloaded and provide an excellent training set for

RNA-Seq analysis.

6. SEQUENCING THE BRAIN TRANSCRIPTOME

PubMed lists 2702 RNA-Seq publications (6/1/14) with the first

appearing in June 2008 (Nagalakshmi et al., 2008); the number has steadily

increased from 11 in 2008, to 34 in 2009, to 127 in 2010, to 339 in 2011, to

639 in 2012, and to 1123 in 2013. Of these publications, 162 are also coded

as “RNA-Seq and Brain” (�6% of total). However, this number most

certainly represents a low estimate of the number of publications where

RNA-Seq is used to assess the brain transcriptome or brain surrogates

such as induced pluripotent stem cells. Nonetheless, sequencing the brain

transcriptome is still an emerging area. The first publication using RNA-

Seq to compare brain gene expression between two inbred mouse strains

appeared in 2011 (Bottomly et al., 2011). The first application of RNA-

Seq to brain WGCNA appeared in 2012 (Iancu et al., 2012). Iancu and col-

leagues extend this network approach to cosplicing in Chapter 4 building

upon the earlier work of Dai, Li, Liu, & Zhou (2012) and Aschoff et al.

(2013). Mudge et al. (2008) is an early example of using RNA-Seq in a

neuropsychiatric context (schizophrenia) but as noted by Wang and

Cairns in Chapter 6 most of the work in this area has appeared within

the last 2 years. Chapter 7 details just how quickly our understanding of

the functional roles of the ncRNAs has changed due to the introduction

of RNA-Seq; further, Guennewig and Copper make compelling arguments

for the roles of the ncRNAs in both normal brain function and disease states.

Alternative splicing is higher in the brain as compared to other tissues
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( Johnson et al., 2009); RNA-Seq facilitates a genome-wide assessment of

alternative splicing which is key to understanding both brain development

(Dillman and Cookson—Chapter 9) and normal brain function (Zaghlool

et al.—Chapter 5). Lewohl et al. (2000) were among the first to use micro-

arrays to study the human brain transcriptome, comparing alcoholics and

matched controls. Zhou et al. (Chapter 10) and Farris and Mayfield

(Chapter 11) illustrate how readily investigators in the fields of alcoholism

and drug abuse research have adopted RNA-Seq to examine human sam-

ples. Although still in the preliminary data stage, RNA-Seq is being exten-

sively used to examine the brain transcriptome in nonhuman primates

chronically exposed to alcohol (Grant KA, Hitzemann RJ, Darakjian P,

& Iancu OD, unpublished observations).

For many investigators, the interest in RNA-Seq and the brain trans-

criptome is not matched by available funding. Williams and Pandey

(Chapter 8) describe a number of freely available mouse resources that allows

one to interrogate the relationship(s) between phenotypes and RNA-Seq

data. A key element to these resources has been the use of mouse reference

populations such as the BXD recombinant inbred series and the Collabora-

tive Cross (Churchill et al., 2004).

RNA-Seq has many applications outside of those mentioned in this vol-

ume. One area where it proven to have particular value has been in the

examination of the brain transcriptome in nonmodel organisms. Frequently,

these organisms have a significant behavioral and/or evolutionary value.

A de novo assembly of the data can be used in the absence of high-quality

genomic sequence data by aligning the reads to conserved protein sequence

and/or the annotated genomes of closely related organisms. Four examples

are described. Fraser, Weadick, Janowitz, Rodd, and Hughes (2011) assem-

bled brain transcriptome data from the guppy (Poecilia reticulata) and were

able to detect both sex-specific expression and the effect of predator (Rivulus

hartii) exposure. Malik et al. (2011) examined the brain transcriptome of

blind subterranean mole rat (Spalax galili); some modest differences in brain

gene expression were found after prolonged exposure to low oxygen con-

centrations (a normally occurring condition in the underground tunnels).

Tzika, Helaers, Schramm, and Milinkovitch (2011) used RNA-Seq in an

evolutionary context to compare brain transcriptomes of four divergent

reptilian and one reference avian species: the Nile crocodile, the corn snake,

the bearded dragon, the red-eared turtle, and the chicken. Somewhat sur-

prisingly, the data suggest that the turtle was evolutionarily closer to the

crocodile than was expected. All three of these examples used the Roche
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454 platform for sequencing; the longer reads compared with other instru-

ments facilitated the de novo transcriptome assembly. Balakrishnan et al.

(2014) used RNA-Seq to examine the relationships among the brain trans-

criptome, avian vocal communication, and social behavior. Brain trans-

criptomes were sequenced for three emberizid model systems, song

sparrow Melospiza melodia, white-throated sparrow Zonotrichia albicollis,

and Gambel’s white-crowned sparrow Zonotrichia leucophrys gambelii. Each

of the assemblies covered fully or in part, over 89% of the previously anno-

tated protein-coding genes in the zebra finch Taeniopygia guttata, with

16,846, 15,805, and 16,646 unique BLAST hits in song, white-throated

and white-crowned sparrows, respectively. As in previous studies, these

authors found tissue of origin (auditory forebrain versus hypothalamus

and whole brain) as an important determinant of the expression profile.

7. CONCLUSIONS

Historically, the main arguments against using RNA-Seq (as opposed

to using microarrays) have been cost and difficulties with data analysis. Over

the past 6 years, technical improvements have and will continue to reduce

costs; if the primary goal is gene-wide summarization, transcriptome samples

can now bemultiplexed and sequenced at adequate depth for less than $200/
sample (not including the cost of library preparation). RNA-Seq data anal-

ysis remains substantially more complex than a comparable microarray

analysis. The data sets are much larger and are generally not suitable for anal-

ysis on a personal computer. While the analysis of RNA-Seq data could still

be described as not for the “faint of heart,” a rapidly improving data analysis

trajectory is clear as indicated by the numerous reports described in this vol-

ume. RNA-Seq has several distinct advantages over microarray-based

approaches to transcriptome analysis. RNA-Seq data have a significantly

greater dynamic range (there are no probe saturation effects); the gene

expression data are not biased to the 30UTR (although there is a bias to

the most highly expressed and longest genes) and data are collected on both

alternative splicing and inter- and intragenic ncRNAs. Overall, RNA-Seq

embraces the complexity of the transcriptome and provides a mechanism to

understand the underlying regulatory code.
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Abstract

RNA-Seq allows one to examine only gene expression as well as expression of noncod-
ing RNAs, alternative splicing, and allele-specific expression. With this increased sensi-
tivity and dynamic range, there are computational and statistical considerations that
need to be contemplated, which are highly dependent on the biological question
being asked. We highlight these to provide an overview of their importance and the
impact they can have on downstream interpretation of the brain transcriptome.
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1. INTRODUCTION

The utilization of RNA-Seq studies is rapidly increasing (over 2500

publications in PubMed as of 4/2014 with first publication in 2008). We

note that approximately 7% of those publications are focused on RNA-

Seq applications using brain or neuronal tissue. With the decreasing costs

and rapid changes in technology, it is reasonable to expect more studies rou-

tinely using RNA-Seq, particularly in neuroscience. Given this, this chapter

focuses on some of the key considerations in the analysis of an RNA-Seq

experiment that should be reviewed at the design of the experiment and

in the context of the primary research hypothesis. We refer the reader back-

ground papers on general experimental design considerations (e.g., Fang &

Cui, 2011; McIntyre et al., 2011; Robles et al., 2012; and citations therein)

and instead focus on three areas: defining and quantifying transcript/gene

expression, detecting differential expression (DE) and frameworks for inter-

pretation (Fig. 2.1).

Primary research question

Computational processing RNA-seq reads
Alignment of  reads

Transcriptome reconstruction
Quantification of  expression

Statistical analysis
Normalization

Unit of  analysis + experimental design
Statistical modeling

Interpretation
Impact of  library construction

Gene models
Functional annotation

Figure 2.1 Overview of the key components for consideration in the analysis of RNA-
Seq data. The choices made are determined by the primary research question of
interest.
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2. DEFINING AND QUANTIFYING TRANSCRIPT/GENE
EXPRESSION

The ultimate goal of transcriptome profiling is to define and quantify a

precise map of the expressed transcripts and genes in a given sample. RNA-

Seq profiling of a transcriptome results in short sequenced segments

(�100 bps), known as short reads, of expressed transcripts. The computa-

tional challenge is to analytically “reassemble” these short reads to define

the transcript of origin and subsequently quantify its expression. Depending

on the biological questions and the genomic resources available for a given

organism, there are several scenarios for processing reads to define and quan-

tify expression (Fig. 2.2). For example, if your organism of interest has an

annotated reference genome and your focus is on quantifying previously

annotated genes, transcripts, or exons, the available genomic/transcriptomic

information can be leveraged to greatly increase the sensitivity of your

RNA-Seq experiment. A typical protocol in this case would involve

aligning the RNA-Seq reads to the reference genome followed by quanti-

fying (counting) the aligned reads within the annotated transcriptome to

obtain expression levels. The aligned reads may also be used to define and

discover as yet annotated transcripts in well-curated (and less well curated)

transcriptomes (Roberts, Pimentel, Trapnell, & Pachter, 2011). Alterna-

tively, one may have an RNA-Seq experiment involving an organism that

is lacking a reference genome or transcriptome sequence. In this scenario,

the RNA-Seq reads would first be used to define and then subsequently

quantify the transcriptome. Although these scenarios highlight the diversity

Scenario 1

RNA-seq reads RNA-seq reads

Alignment to reference sequence

Alignment to reference sequence

Alignment to reference sequence

Transcriptome reconstruction

Transcriptome reconstruction

Quantify expression Quantify expression Quantify expression

RNA-seq reads

Scenario 2 Scenario 3

Figure 2.2 Scenarios for processing RNA-Seq reads which are dependent upon the bio-
logical question(s) and the genomic resources available for a given organism.

23RNA-Seq to Characterize the Brain Transcriptome



and power of RNA-Seq profiling, it also helps to highlight the three uni-

fying steps involved in computationally processing RNA-Seq reads to define

and quantify transcriptome expression: (1) alignment of RNA-Seq reads to a

reference sequence, (2) transcriptome reconstruction, and (3) quantification

of expression. Table 2.1 summarizes common RNA-processing tools used

in each of these three steps.

2.1. Step 1: Alignment of RNA-Seq reads to a reference
sequence

In an effort to identify the transcript/gene origin of the RNA-Seq reads, the

short reads may be mapped to either a reference transcriptome or a reference

genome sequence. Alignment of sequences based on sequence similarity is a

Table 2.1 Overview of common RNA-processing tools
Tool Type Source

BedTools Q.E. https://code.google.com/p/bedtools/

Bowtie Alignment (N) http://bowtie-bio.sourceforge.net/index.shtml

BWA Alignment (N) http://bio-bwa.sourceforge.net/

Cufflinks T.R. (RG)/

Q.E.

http://cufflinks.cbcb.umd.edu/

GSNAP Alignment (S) http://research-pub.gene.com/gmap/

HTSeq Q.E. http://www-huber.embl.de/users/anders/

HTSeq/doc/overview.html

Oases T.R. (GI) https://www.ebi.ac.uk/�zerbino/oases/

RSEM Q.E. http://deweylab.biostat.wisc.edu/rsem/

Scripture T.R. (RG)/

Q.E.

http://www.broadinstitute.org/software/

scripture/

SOAPdenovo-

Trans

T.R. (RI) http://soap.genomics.org.cn/SOAPdenovo-

Trans.html

STAR Alignment (S) https://code.google.com/p/rna-star/

Subread Alignment (N) http://bioinf.wehi.edu.au/subread/

TopHat Alignment (S) http://tophat.cbcb.umd.edu/

Trinity T.R. (GI) http://trinityrnaseq.sourceforge.net/

Alignment, short read aligner; N, non-splice-aware; S, splice-aware; T.R., transcript reconstruction;
RG, reference guided; RI, reference independent; Q.E., quantify expression.
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classic problem in bioinformatics (Pearson, 2013). The mapping of RNA-

Seq reads to a reference sequence is analogous to the mapping of expressed

sequenced tags (ESTs) to a reference genome (Kent, 2002;Wu&Watanabe,

2005); however, its short length (�36–125 nucleotides), higher sequence

error rates, and its sheer volume, currently as many as hundreds of millions,

introduce a host of additional challenges. Thus, the development of RNA-

Seq alignment tools is an active area of research (Engstrom et al., 2013;

Fonseca, Rung, Brazma, & Marioni, 2012; Lindner & Friedel, 2012)

resulting in a great number of alignment tools currently available for

RNA-Seq. This then leads many researchers asking the question, which

is the best aligner to use. The answer ultimately depends on the biological

question and the genomic resources available for your organism of interest.

Different alignment tools have been developed to answer specific biological

questions such as the identification of novel splice sites (Dobin et al., 2013;

Forster, Finkel, Gould, & Hertzog, 2013; Huang et al., 2011; Kim et al.,

2013) or gene fusions (Carrara et al., 2013; Kim et al., 2013; Liu, Ma,

Chang, & Zhou, 2013). Alignment tools have also been designed to specif-

ically cater to the needs of specific sequencing platforms (Cloonan et al.,

2009; De Bona, Ossowski, Schneeberger, & Ratsch, 2008; Trapnell,

Pachter, & Salzberg, 2009). Below we introduce a few key features of dif-

ferent alignment approaches and discuss their potential impacts. Please refer

to recent reviews for a more comprehensive comparison and evaluation of

different alignment tools (Engstrom et al., 2013; Fonseca et al., 2012).

2.1.1 Splice-aware aligners
One of themost distinctive features of RNA-Seq alignment tools is its ability

to accommodate large sequence gaps corresponding to spliced exon–exon

junctions (i.e., introns). Splice-aware aligners such as STAR (Dobin

et al., 2013), GSNAP (Wu & Nacu, 2010), and TopHat (Trapnell et al.,

2009) should be targeted to alignments with genomic sequences, particularly

with biological questions pertaining to the identification of novel or anno-

tated spliced junctions while nonsplice-aware aligners such as Bowtie

(Langmead, Trapnell, Pop, & Salzberg, 2009) and BWA (Li & Durbin,

2009) should be targeted toward alignments to transcriptome sequences.

To increase their sensitivity in identifying spliced junctions, many splice-

aware aligners use information from previously annotated exon–exon junc-

tions (Dobin et al., 2013; Trapnell et al., 2009; Wu & Nacu, 2010).

Interestingly, a number of spliced aligners are adaptations/extensions of

nonsplice-aware aligners. For example, TopHat is an adaptation of Bowtie.
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TopHat first uses Bowtie to align reads to the genome in a nonsplice-aware

manner and then all reads which were not mapped (unmapped) are broken

into smaller segments and remapped to the genome in search of candidate

splice sites. This method is termed the exon-first method as exons are

identified first. Another major category of splice-aware aligners are the

“seed-and-extend” methods. Seed and extend methods such as GSNAP,

STAR, and Subread (Liao, Smyth, & Shi, 2013) segment the reads into

shorter segments which are then placed on the genome to localize the align-

ment. Candidate genomic regions are then extended and merged with initial

seeds. With this approach, all reads are aligned at the same time, thus will not

be biased toward continuous alignments such as exon-first approaches are.

However, due to their more efficient approach of only remapping

unmapped reads, exon-first approaches are computationally faster.

2.1.2 Sequence variations between the short read and reference
sequence

To better accommodate potential sequencing errors or sequence variations

among individuals (SNPs, single nucleotide polymorphisms) or different

animal strains, in addition to exact matches, alignment tools must also allow

approximate matches of the reads to the reference sequence. To do so, align-

ment tools allow for varying degrees of sequence mismatches or insertions/

deletions (indels) between the short read and the reference sequence. Many

tools also allow sequences of the read to be trimmed (clipped), particularly

within the ends of the reads, where sequencing quality is known to suffer

(Dohm, Lottaz, Borodina, &Himmelbauer, 2008). However, it is important

to note that different alignment tools handle and tolerant each of these cases

very differently. For example, although GSNAP and Subread allow for

sequence mismatches, the maximum number of mismatches allowed is dic-

tated by the overall score of the alignment, while other programs such as

STAR and TopHat allow users to define the maximum number allowed.

In an attempt to improve computational efficiency, tools such as BWA

impose constraints on the maximum number of mismatches and indels

allowed, while other tools such as Bowtie once again impose alignment

score thresholds in place of imposing constraints on the number of each

allowed. As expected, alignment tools which automatically trim reads result

in overall higher numbers of aligned reads however at the price of decreased

coverage of the aligned reads (Engstrom et al., 2013). Understanding the

individual characteristics of how different alignment tools computationally
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handle sequence variations should be an important consideration in the final

choice of the aligner.

2.1.3 Uniquely mapping or multimapping reads
When a read is aligned to a reference sequence, the read may align uniquely

to one position or may align to multiple positions (multimapped) in the ref-

erence sequence. Multimapped reads may be a result of the repetitive nature

of the original transcriptome or genome sequence, multiple isoforms of a

gene when aligning to a transcriptome, or potential sequencing errors. Once

again different aligners process and report multimapped reads differently. For

example, GSNAP and STAR allow for the option of reporting the uniquely

mapped reads separately from the multimapped reads, while other aligners

such as Bowtie and TopHat can be tuned to report the alignment(s) with

the best score up to a user-defined limit of alignments. The use of either

uniquely or multimapped reads has potential consequences in downstream

analyses (discussed below) and should be a factor when considering the

aligner of choice.

2.2. Step 2: Transcriptome reconstruction
The ultimate goal of RNA-Seq profiling is to reconstruct a precise map of all

transcripts and isoforms expressed in a given sample. However, the complex

nature of the transcriptome (i.e., multiple isoforms for one gene, gene

expression differences spanning orders of magnitude across genes, and the

mix of processed and unprocessed transcripts) and the short length of

RNA-Seq reads make reconstructing the transcriptome a very difficult com-

putational task. There are two main approaches to transcriptome construc-

tion, genome guided and genome independent. Genome-guided

approaches reconstruct transcripts by assembling spatially adjacent or over-

lapping reads previously mapped to a genome reference sequence, while

genome-independent approaches reconstruct transcripts by assembling reads

together with direct sequence (de novo) similarity sans alignment to a refer-

ence genome. Each is described more below.

2.2.1 Genome guided
Two of the most widely used genome-guided approaches are Scripture

(Guttman et al., 2010) and Cufflinks (Trapnell et al., 2010). Both methods

utilize spliced reads to directly guide their reconstructions, but they differ in

their approach to the problem. Scripture approaches the reconstruction

problem as a segmentation problem and attempts to identify significant
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transcript paths from a graph topology of all possible connections of bases in

the transcriptome. Cufflinks approaches the problem with more of an exon

focus and connects aligned reads into a graph based on the locations of their

spliced alignments. Conceptually, the two approaches build similar graphs;

however, Scriptures strength is in identifying all isoforms compatible with

the read data (sensitivity), while Cufflinks focuses on reporting the minimal

number of compatible isoforms (specificity). Both tools have been found to

assemble similar transcripts at high expression levels, however differ substan-

tially for lower expressed transcripts (Garber, Grabherr, Guttman, &

Trapnell, 2011).

2.2.2 Genome independent
Genome-independent approaches, however, aim to reconstruct the trans-

criptome directly from the short reads themselves, thus bypassing the align-

ment of the reads to a reference genome particularly when a reference

genome is not available. A commonly used strategy of genome-independent

approaches such as Oases (Schulz, Zerbino, Vingron, & Birney, 2012), Trin-

ity (Grabherr et al., 2011), and SOAPdenovo-Trans (Xie et al., 2014) is the

use of de Bruijn graphs to model overlapping subsequences (k-mers) of the

reads, thus reducing the complexity of millions of reads to a fixed number of

all possible k-mers originating from the reads. The overlaps of k-1 bases

between the k-mers constitute the graph of all possible transcript paths.

The short reads are then used to identify transcript paths which are either

supported or not supported by the reads. Genome-independent transcript

reconstruction and de novo assembly of whole genomes from short reads

(Zhang et al., 2011) share many computational strategies; however,

genome-independent transcriptome reconstruction has the added challenges

introduced by differential read distribution across genes (differential gene

expression), nonuniform read coverage within individual transcripts

(sequencing biases), and the added complexity of multiple isoforms for

one gene making this a very active area of research (Li et al., 2013;

Martin & Wang, 2011).

The method of reconstruction chosen should once again be dictated by

the biological question and also the availability of a reference genome.

Genome-independent methods are an obvious choice for organisms lacking

a reference genome, whereas the increased sensitivity of genome-guided

approaches is recommended for organisms with reference genomes.

Genome-guided approaches may also help to guide the discovery of novel

or as yet annotated transcripts (Roberts et al., 2011). However in cases
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where genomic rearrangements are suspected such as in cancer or among

different strains of a model organism (i.e., laboratory mouse strains), a hybrid

approach incorporating both genome-guided and genome-independent

approaches might be a powerful avenue in capturing both known and novel

variations.

2.3. Step 3: Quantification of expression levels
The alignment of the RNA-Seq reads to a reference sequence provides a

digital count of the expressed transcripts in a given sample. Once again

depending on the biological question and the genomic annotation available,

digital counts can be obtained at the level of exons, transcripts, and/or genes.

One common method of obtaining digital counts at the gene level is to sum

up reads mapped to all annotated exons within a gene. Digital counts at the

exon level are commonly obtained in a similar fashion for both constitutively

and alternatively expressed exons (Anders, Reyes, & Huber, 2012; Griffith

et al., 2010). Tools such as HTSeq (Anders, Pyl, & Huber, 2014) and

BEDTools (Quinlan & Hall, 2010) allow users to indicate how the read

should be “counted” in cases where the read maps to a genomic location

with multiple annotations (i.e., overlapping genes) or on a different strand

(i.e., stranded RNA-Seq libraries).

Due to the added complexity of shared exons across different isoforms of

the same gene, some reads cannot be unequivocally assigned to individual

isoforms; thus, obtaining digital counts for individual isoforms of a gene

becomes a much more complicated task. Some approaches attempt to sim-

plify the problem by obtaining counts for only unique portions of an isoform

(Griffith et al., 2010); however, this approach is limited for genes that do not

contain unique exon(s) or exon portions for a particular isoform. Alternative

methods such as Cufflinks (Trapnell et al., 2010) and RSEM (Li & Dewey,

2011) approach the read assignment uncertainty in a probabilistic manner by

constructing a maximum likelihood estimation of isoform abundance that

best explains the short reads. Thus, the abundance estimates are greatly

impacted by the coverage of, the number of, and any incorrectly anno-

tated/assembled isoforms.

For the digital counts to be meaningful and comparable across different

samples and different genes, two main sources of variability need to be

accounted for. The first sources of variability result from differences in

the total number of mapped reads per sample (i.e., library size), while the

second variability results from differences in transcript/gene lengths. Larger
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library sizes and longer transcripts/genes are expected to have greater num-

bers of reads than their smaller and shorter, respectively, counter parts. One

popular approach to account for these variables is to normalize the digital

counts by reads or fragments (for paired-end reads) per kilobase of transcript

per million mapped reads resulting in the metric reads per kilobase per mil-

lion (RPKM) reads (Mortazavi, Williams, McCue, Schaeffer, & Wold,

2008) or FPKM (Trapnell et al., 2010), respectively. These metrics account

for both differences in library sizes across samples and differences in trans-

cript/gene lengths within samples. Additional approaches for accounting

for these and additional variables will be described in Section 3.

Irrespective of the chosen quantification method, the choice of the type

of mapped reads (i.e., uniquely or multimapped) used greatly impact tran-

script quantification and its interpretation. For example, the use of only

uniquely mapping reads has become common practice when quantifying

at the exon and gene level, while the exclusion of multimapped reads has

been warned to skew and misguide results particularly when quantifying

at the transcript level (Li & Dewey, 2011; Trapnell et al., 2010).

3. DETECTING DIFFERENTIAL EXPRESSION

The primary goal of many RNA-Seq studies is gene expression pro-

filing between samples. This can be between two or more groups or an anal-

ysis of subgroups or outliers relative to a main group or groups, depending

on the biological question/primary hypothesis of interest. For smaller stud-

ies, these analyses can be done on available desktop workstations.

Approaches such as Myrna are being introduced allowing large datasets to

be analyzed utilizing cloud computing or on local Hadoop clusters

(Langmead, Hansen, & Leek, 2010).

3.1. The need for normalization
Prior to sequencing, mRNA is fragmented to obtain read coverage through-

out the length of the transcript. Therefore, longer transcripts will have more

reads than shorter transcripts with similar expression. Total read count is

proportional to the expression level of a gene times the length of the gene.

This results in more power to detect DE for longer genes than for shorter

genes and creates bias in comparing genes between libraries with differences

in sequencing depth. Normalization is a means to correct for any systematic

errors in the counts based on various technical factors and is critical for both

within sample gene comparisons and across sample comparisons. Factors
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such as library preparation, personnel, sequencing depth, read length, exon

length, GC content, and other technical differences result in differing read

counts per gene that are not related to differences in the particular compar-

ison of interest. Normalization enables accurate comparisons of expressions

levels between and within samples. Many approaches have been developed

to investigate appropriate methods for analyzing RNA-Seq data and

improve the accuracy of the final DE estimates. We discuss several of these

approaches below.

The first normalization method proposed, RPKM, divides the summa-

rized gene counts by the length of the gene (Mortazavi et al., 2008).

Although an intuitive solution, the RPKM approach introduces a bias in

the lower abundant genes because only a small number of genes make up

a large proportion of the total reads in a library. The proportion of expression

for each gene in a library is related to the expression level of all the genes, and

small changes in highly expressed genes affect the proportion of lower abun-

dance genes to a greater extent (Finotello et al., 2014; Ramskold, Wang,

Burge, & Sandberg, 2009). RPKMmay also overcorrect for exon length bias

(Finotello et al., 2014). Similarly, accounting for the RNA fragments

observed in a library as is used for paired-end RNA-Seq experiments in

the method, fragments per kilobase per million (FPKM) reads from the Tux-

edo suite of RNA-processing tools (Trapnell et al., 2010) suffers from the

same biases.

Another way to correct for differences in sequencing depth between

libraries is simply to normalizing by the total counts where gene counts

are divided by the total number of mapped reads (or library size) and mul-

tiplied by themean total counts across all samples of the dataset. This method

also suffers from the same bias as RPKM due to the greater proportion of

small numbers of highly expressed genes in a library and has relatively lower

sensitivity for detecting DE (Bullard, Purdom, Hansen, & Dudoit, 2010).

Quantile normalization, a method first developed in the context of

microarray data, has been extended to RNA-Seq data (Bullard et al.,

2010). A reference distribution is created from all samples in the data set

by sorting the read counts from each sample and computing the median

counts across all of the sorted samples. The distribution of each sample is

matched to this reference and rounded to produce integer values. This

method ensures that all samples have the same distribution of counts and

are implemented in the Bioconductor package limma (Smyth, 2004). In

some instances, this procedure can increase the intragroup variability

(Dillies et al., 2013).
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Methods that compute scaling factors have an advantage that the raw

count data are not transformed and scaling factors can be estimated from

the data. One approach is to match libraries on the upper 25% quartile

(Bullard et al., 2010). Another way to estimate scaling factors, implemented

in the Bioconductor package DESeq, uses the median of scaled counts under

the assumption that most genes are not differentially expressed (Anders &

Huber, 2010). Another method that assumes most genes are not differen-

tially expressed first excludes highly expressed genes and highly variable

genes and calculates a trimmed mean of the log expression values (TMM)

(Robinson & Oshlack, 2010). TMM is implemented in the poplar

R package edgeR (Robinson & Smyth, 2007).

The PoissonSeq package (Li, Witten, Johnstone, & Tibshirani, 2012)

determines a least variable gene set through goodness-of-fit estimation,

which is then used as the reference. The library scaling factors for each sam-

ple are computed using the ratio of the sum of the counts of the reference

gene set for that sample and the sum of the reference gene set counts for all

samples.

Several multiple step procedures have been suggested (Kadota,

Nishiyama, & Shimizu, 2012; Risso, Schwartz, Sherlock, & Dudoit,

2011; Trapnell et al., 2013). GC content biases seem to be driven by library

preparation (Risso et al., 2011) and can be reduced through a procedure

where a within lane normalization is followed by a between-lane distribu-

tional normalization. However, depending on the counting method used,

this approach may not perform better than scaling factors (Finotello et al.,

2014). A different approach is where genes potentially different are removed

in the first step and then scaling factors for the final normalization are com-

puted using the TMM normalization method (Kadota et al., 2012). This

method has been expanded to include multiple combinations of other nor-

malization methods and DE analysis methods (Sun, Nishiyama, Shimizu, &

Kadota, 2013).

To account for transcript isoform differences, Cuffdiff (Trapnell et al.,

2013) uses a two-step scaling procedure first by within a condition and then

between conditions. An additional transcript-level normalization that esti-

mates isoform abundance is implemented.

It is unclear that more complex normalization methods perform better

than scaling factors (Bullard et al., 2010; Dillies et al., 2013). However, there

is no one solution for all challenges with RNA-Seq (Dillies et al., 2013;

Finotello et al., 2014) and the best normalization procedure will depend

on both the data set-specific issues and the methods used for counting

32 Christina L. Zheng et al.



features (Finotello et al., 2014). Careful exploratory data analysis such as plots

of the data distributions is critical to determining the best normalization pro-

cedure for a specific data set. In addition, the effect of different normalization

procedures on the downstream distributions of the DE p-values should be

evaluated. The method chosen should reflect the least biases and more uni-

form distributions of the final DE p-values.

3.2. Inferring putative DE
The goal of a DE analysis is to highlight genes that are significantly different

in abundance across experimental conditions. This is a problem of assigning

a probability to whether, in reality, each gene has different number of reads

mapped to it. Results from a DE analysis are therefore probabilities that the

genes are differently expressed at some level between the conditions of inter-

est. Therefore, obtaining reliable and accurate estimates of the variability

inherent in each condition of interest is a key factor in determining the prob-

ability that the gene is differently expressed in the groups. Due to the

inherent variability among biological samples, detection of a transcript

that is differentially expressed is challenging because high overdispersion

(Standard deviation (STD) is greater than themean of the distribution) across

the samples and the conditions means that only studies with many samples

and high coverage can be used to detect DE reliably (Anders & Huber,

2010). Therefore, the usual assumption is that the number of conditions

is small compared to the number of biological samples.

A number of algorithms have been developed to test for DE between

two or more groups and are approached using either parametric or nonpara-

metric methods. Parametric algorithms often model the data using either the

Poisson or negative binomial (NB) distributions. Algorithms using nonpara-

metric approaches model the noise distribution based on the actual data and

therefore do not depend on the assumptions associated with a known prob-

ability distribution model (Li & Tibshirani, 2013; Tarazona, Garcı́a-Alcalde,

Dopazo, Ferrer, & Conesa, 2011). We discuss several of the major paramet-

ric approaches below.

RNA-Seq data are discrete count data and as suchmultiple methods have

been developed using the discrete probability distributions Poisson and NB.

Early RNA-Seq studies using a single biological sample and technical

replicates showed that the distribution of read counts fit well to a Poisson dis-

tribution (Bullard, 2010; Marioni, Mason, Mane, Stephens, & Gilad, 2008).

However, the assumption that the variance is equal to themean that defines a
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Poisson distribution is violated when using biological replicates, given the

extensive variability across biological replicates in RNA-Seq (over-

dispersion). This underestimates the sampling error and results in greater

false-positive rates (Anders & Huber, 2010). RNA-Seq has a high dynamic

range (Anders & Huber, 2010), making the gene-specific dispersion estima-

tion a critical and challenging problem.

Many modifications to the simple Poisson DE test have been developed

to address this challenge. Assuming that only a subset of genes demonstrate

overdispersion, a two-stage Poisson model has been proposed (Auer &

Doerge, 2011). In the first stage, each gene is first tested for overdispersion

relative to a Poisson model. A Poisson quasi-likelihood approach was devel-

oped to test DE for the overdispersed genes. The other genes are tested using

Poisson model. The false discovery rate (FDR; Benjamini & Hochberg,

1995) is controlled separately on the two lists of genes. This method was

shown to correct for severe overdispersion only and so leads to greater

false-positive rates for less variable genes (Lund, Nettleton, McCarthy, &

Smyth, 2012). QuasiSeq (Lund et al., 2012) implements two improvements

to the quasi-likelihood approach by incorporating more flexibility into the

variance estimation using an F-test and sharing information across genes to

estimate gene-specific error variances similar to the approach developed for

microarray analysis (Smyth, 2004).

Another method develops a generalized Poisson (GP) model

(Srivastava & Chen, 2010) that adds an additional parameter to model the

position-level read counts. This model takes into consideration the potential

positional bias in a DE analysis by accounting for reads mapped to each posi-

tion of an exon. When there is no sequencing bias, the model reduces to the

Poisson model. Likelihood ratio tests are used to identify differentially

expressed genes by position-level read counts.

In PossionSeq, the normalized library size and the correlation of the gene

expression with the condition are modeled by a log-linear relationship. If a

gene is not significantly correlated with the condition based on score statis-

tics, there is no DE. A novel permutation method for obtaining the p-value

distribution appears to result in a more accurate FDR (Li et al., 2012).

The NB distribution specifically characterizes the feature variation and,

as such, is a natural extension to the Poisson distribution. The observed read

counts are modeled by the Poisson distribution, while the unobserved true

expression levels in each biological sample follow a gamma distribution. The

NB distribution allows greater flexibility in modeling the mean–variance

relationship through the addition of a dispersion parameter modeled by
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the gamma random variable. The difference among these NB methods is

how the dispersion, or biological variation, is modeled, estimated, and used

in inference. Accurate estimates of this critical parameter determine whether

a DE signal can be found above the natural noise of biological variation

inherent in the samples. Improving the model fit to the data also increases

the ability to identify DE genes across all levels of abundance.

edgeR (Robinson & Smyth, 2007) and DESeq (Anders & Huber, 2010)

are the most widely used methods for DE analysis and compute p-values for

the tests based on exact test or approximation of exact test derived from the

probabilities. Both methods utilize information across the genes to generate

dispersion estimates. edgeR was based on methods for small sample sizes

developed for SAGE data (Robinson & Smyth, 2007) where a common dis-

persion parameter across all genes was suggested. This can bemeasured accu-

rately as all the data are used in the computation but depends on the

assumption is that all genes have similar biological variance. In practice,

genes have different variabilities and a method for estimating gene-specific

dispersion by borrowing information across genes similar to that used in

microarray data (Smyth, 2004) is also implemented. In addition, methods

similar to the QuasiSeq algorithms have been implemented.

DESeq assumes a locally linear relationship between the variance and

mean expression levels. The dispersion estimates are generated by pooling

data from genes with similar expression levels. Since these methods use

the dispersion parameter as a fixed, known constant, they can result in

greater false-positive rates in some instances from not considering possible

uncertainty in the parameter estimates. In particular, genes with higher bio-

logical variability are more likely to be reported as DE (Lund et al., 2012;

Wu, Phan, & Wang, 2013; Wu, Wang, & Wu, 2013). The methods

implemented in QuasiSeq have also been shown improve the accuracy of

the NB models (Lund et al., 2012).

A recent approach takes a Bayesian approach by modeling the dispersion

parameter using a log-normal prior and an NB likelihood (Wu, Phan, et al.,

2013;Wu,Wang, et al., 2013) and is deployed in the Bioconductor package

DSS (http://www.bioconductor.org/packages/release/bioc/html/DSS.

html).

Another Bayesian method, baySeq, also models an NB distribution esti-

mating the prior probability parameters by sampling from the data under the

assumption that similar samples should fit the same distribution

(Hardcastle & Kelly, 2010). The result of a baySeq analysis is the posterior

likelihood of a DE model, given the data for each gene. There is some
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inherent variability in these estimates from repeated analyses due to the

resampling approach. Fold changes or test statistics are not given making this

method difficult to compare to others and the direction of expression cum-

bersome to determine.

Parametric methods are powerful when the distributional assumptions

hold but will fail as the data deviate from the specified distribution. In addi-

tion, for parametric methods, the number of significant DE genes is affected

by the sequencing depth where increasing library read depth resulted in

increasing false-positive rates due to increased power to detect smaller count

differences between groups (Tarazona et al., 2011) and a sensitivity to out-

liers (Li & Tibshirani, 2013). Methods using nonparametric methods have

no such explicit assumptions about the data distribution. A nonparametric

approach that models the noise distribution in the data, NOISeq, has been

shown to be unaffected by library size (Tarazona et al., 2011). The noise dis-

tribution is determined by comparing all within-group log ratios and absolute

count differences in a pairwise fashion.DEgenes are determined by the odds of

the gene being DE above the noise distribution. Since it does not estimate

model parameters, NOISeq performs well without replicates. In this case, it

estimates the noise distributionby simulating technical replicates from the data.

In general, gene-specific variability is higher for genes with higher read

counts and this phenomenon has recently been exploited to improve the

estimate of the mean–variance relationship (Law, Chen, Shi, & Smyth,

2014). The method used in variance modeling at the observational level

(voom) uses a LOWESS regression of the log counts per million (log2cpm)

to estimate precision weights for each observation nonparametrically from

the data. The transformed read counts are used for linear modeling utilizing

the widely used limma pipeline (Smyth, 2004, 2005), and the many tech-

niques originally developed for modeling DE in gene expressionmicroarrays

can be applied to RNA-Seq data. The voom/limma pipeline has been

shown to improve the accuracy of the type I error rate compared to other

methods particularly when the sequencing depths for each sample are differ-

ent (Law et al., 2014).

In conclusion, there is no one-size-fits-all analysis procedure for testing

for DE in a particular dataset (Guo, Li, Ye, & Shyr, 2013; Rapaport et al.,

2013). Caution should be exercised and extensive evaluation of different

methods should be conducted before choosing a final analysis method for

the analysis of the data. It is noted that the challenge of accurately estimating

the dispersion across all genes highlights the importance of planning for bio-

logical replicates in the study design.
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3.3. Outliers, subgroups, and individual expression
For designed experiments, one determines a priori the variables of impor-

tance and can fit a model testing the significance of all or part of the model

corresponding to the hypotheses of interest. These procedures have been

described above in the context of RNA-Seq. A simple example would be

the comparison of the expression levels between cases and controls. Signif-

icance of this model for a given gene would imply that the expression pattern

for the cases is higher or lower than the controls relative to the observed var-

iation. However, it need not be true that all the cases are expressed in a sim-

ilar fashion. It was shown in Tomlins et al. (2005) that the use of

methodology that ranked genes on the basis of whether some genes had

“outlier” microarray gene expression profiles could be used to find genes

involved in fusion events in the context of prostate cancer. Their method,

cancer outlier profile analysis (COPA), was the first of many such approaches

which looked for biologically meaningful outliers or subgroups in gene

expression datasets. For instance, the outlier sum (Tibshirani & Hastie,

2007) and the mCOPA (Wang, Sun, Ji, Xing, & Liang, 2012; Wang,

Taciroglu, et al., 2012) methods are refinements on the COPA approach

and involve detection of outliers after a robust transformation. If both cases

and controls are present, a number of methods have been proposed to find

genes differentially expressed in a subset of patients including those similar to

traditional DE approaches (Gadgil, 2008; Ghosh, 2010; Gleiss, Sanchez-

Cabo, Perco, Tong, & Heinze, 2011; Hu, 2008; Ji et al., 2010; Karrila,

Lee, & Tucker-Kellogg, 2011; Lian, 2008; Liu & Wu, 2007; Pinese

et al., 2009; Wang & Rekaya, 2010; Wang, Sun, et al., 2012; Wang,

Taciroglu, et al., 2012; Wang, Wu, Ji, Wang, & Liang, 2011; Wu, 2007).

Other approaches focus on the observation that the outliers detected by

COPAwere really indicative of the expression distribution in the cases being

bi- or multimodal and were amendable to mixture models (Ghosh &

Chinnaiyan, 2009; Wang, Wen, Symmans, Pusztai, & Coombes, 2009).

As detection of outliers and subgroups is not only of interest in genomics,

other approaches have been suggested based on approaches used in other

fields such as variations in the outlying degree (Bottomly, Ryabinin,

et al., 2013; Bottomly, Wilmot, et al., 2013), as well as the gene tissue index

(Mpindi et al., 2011). Other related approaches include the antiprofile

method (Bravo, Pihur, McCall, Irizarry, & Leek, 2012). However, all of

these methods were devised for microarray analysis and although it has been

suggested that some microarray array methodology may be applicable to
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RNA-Seq data after some correction (Law et al., 2014), methodological

developments and assessment are necessary with several having been carried

out so far. The first is an extension of the bimodality index (Wang et al.,

2009) called SIBER (Tong, Chen, Su, & Coombes, 2013). The SIBER

method allows the count data of RNA-Seq to be modeled using mixtures

of the NB distribution, GP, or a normal mixture after using a box–cox trans-

formation. Interestingly, they found that the best performer was modeling

the counts after the use of a log transformation (which was what the box–

cox transformation suggested empirically for many genes). Importantly,

incorporation of scaling normalization (Bullard et al., 2010; Dillies et al.,

2013) procedures was allowed providing a mechanism for accounting for

technical variation. However, one of the issues with mixture model-based

approaches is the reliance on large sample sizes (>50 samples) for accurate

parameter estimation and the computationally intensive procedures involved

in expectation–maximization or Markov chain Monte Carlo methods.

The second approach to assessment of outliers/subgroups in RNA-Seq

(termed OASIS in their paper) assesses and builds on previous work on the

theory of spacings developing several methods call MAST and MIST and

compares these methods to other statistical approaches as well as SIBER

(Pawlikowska et al., 2014). No method is found to perform best overall,

each with its strengths in certain situations. All of these approaches appear

more computationally efficient than SIBER and perform similarly in their

assessment, if not better. However, they utilize their own custom normal-

ization procedure though do not provide evidence that it removes the effect

of technical noise as has been done with other normalization procedures in

the context of DE (Bullard et al., 2010; Dillies et al., 2013). One of the most

salient arguments in the paper is that the choice of method should be dictated

by the underlying biological hypothesis. For instance, a single outlier may be

important in some contexts where it is expected that a given sample is dras-

tically different than the others in the cohort. In other contexts, mutually

exclusive bimodal subgroups may be expected such as in Tomlins et al.

(2005). Also, it is important to correct for relevant covariates which could

lead to false positives. For instance, the presence of gender or ethnicity dif-

ferences in the cohort could lead to the formation of multiple expression

subgroups in the cases where none would be expected. An ideal method

would be able to adjust for technical artifacts and confounders to increase

power and limit false positives.

While the application of these methods has been primarily in cancer,

there is exciting opportunity for psychiatric disorders and pharmacogenomic

applications.
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Being able to detect single sample outliers as well as multiple sample sub-

groups has implications for the integration of genomics data in personalized

medicine. Approaches to discern differences among patients can potentially

be useful to assign patients to drugs based on their subgroup or outlier status

or to tease apart less common etiology in the research context. Given the

difficulty of this problem and the fact that no method performs optimally

in all situations, it is likely to remain a research question of interest for

the foreseeable future.

3.4. Isoform-specific DE
Much more complex than gene-level expression, isoforma-specific DE

requires the use of sophisticated statistical models in order to estimate, rather

than count, expression levels of the transcript isoforms (Leng et al., 2013;

Li &Dewey, 2011; Trapnell et al., 2013, 2010). DEXseq uses the differential

exon usage based on read counts per exon and applying the DESeq normal-

ization (Anders et al., 2012). The above GP method models position-level

counts by exon in addition to gene-level counts. NOISeq will determine

DE for exons or transcripts as well as genes. While gene-level DE is fairly

well established, solving the challenges surrounding transcript-level DE is

still in development. Given the recent studies showing complicated forms

of gene expression across the genome (Djebali et al., 2012), this is likely

to become a more critical aspect of RNA-Seq analysis.

4. FRAMEWORKS FOR INTERPRETATION

Throughout this chapter, we have focused on the importance of being

guided by our biological questions throughout the experiment. In doing so,

we also need to be cognizant of the impact these different choices have on

the ultimate interpretation of our biological results. We highlight a few

examples below.

4.1. RNA-Seq library construction
Many steps during the preparation of RNA-Seq libraries could affect or even

bias the interpretation of RNA-Seq experiments (Van Dijk, Jaszczyszyn, &

Thermes, 2014). For example, the choice of strand-specific protocol (Levin

et al., 2010) and RNA fragmentation method (Wery, Descrimes, Thermes,

Gautheret, & Morillon, 2013) was found to affect the coverage, assembly,

and quantification of analyzed transcripts. Multiple studies have also

reported on the increased transcript diversity and more uniform transcript
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coverage obtained through polyA selection as compared to other protocols

(Beane et al., 2011; Sun, Asmann, et al., 2013; Tariq, Kim, Jejelowo, &

Pourmand, 2011). Moreover, a recent study highlighted the overarching

effects initiated by the design choices made during library construction

on the downstream analyses of exon/transcript/gene quantification, SNV

detection, and DE (Sun, Asmann, et al., 2013). Both for primary analy-

sis/study design and for secondary analysis of public data, library construc-

tion must be evaluated for its impact on downstream interpretation.

4.2. Gene-model databases
There are numerous ongoing efforts annotating gene models including

Ensembl (Gencode) (Harrow et al., 2012), NCBI RefSeq (Pruitt,

Tatusova, Klimke, & Maglott, 2009), and AceView (Thierry-Mieg &

Thierry-Mieg, 2006). Each effort utilizes different annotation strategies;

thus, high variability exists among these different gene-model sources. Gen-

code annotation is guided by manual curations of transcriptional evidence of

cDNAs, ESTs, and protein sequences; AceView uses heuristics to closely

reproduce manual curation in an automated fashion, while Refseq utilizes

a combination of both manual and automatic curation. A recent study found

RefSeq to have the fewest number of annotated transcripts and genes when

compared to Ensembl and AceView (Chen et al., 2013). The choice in gene

model was found to have a significant effect on the analysis and interpreta-

tion of RNA-Seq results (Wu, Phan, et al., 2013) with less complex (smaller

number of transcripts/genes) gene models having more reproducible and

robust gene estimates as compared to more complex gene models which

were better suited for exploratory/novel transcriptional or regulatory

mechanisms.

Interestingly, a more comprehensive transcriptomic and genetic analysis

of RNA-Seq was obtained by combining multiple gene annotation data-

bases (Chen et al., 2013). However, even with the combination of multiple

gene annotation databases, the majority (over 95%) of the genome is not

included in known gene models. A more comprehensive genome-wide

annotation framework is needed for annotating the genome in its entirety.

Within this framework, basic individual genomic features could be created

for genes, exons, introns, and intergenic regions. To preserve the double-

stranded nature of DNA, each genomic feature can be further annotated

on both strands (i.e., exon, opposite an exon, intron, opposite an intron).

By preserving the strandedness of each genomic feature, one would be able
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to disambiguate and subsequently accurately quantify overlapping genes and

antisense noncoding/regulatory RNAs, two genomic features that are com-

monly ignored or inaccurately counted (Fig. 2.3).

For gene-level annotation, all of the exon features from the ENSEMBL

GTF file can be examined and gene-level ranges (start of first exon to end of

last exon, including introns) can be calculated for each gene. Gene–gene

overlap type can then be annotated (see Table 2.2) and used by any number

of read-counting methods. Gene-model annotation is an area where the

impact on downstream discovery and interpretation can be quite high, war-

ranting serious evaluation during study design.

4.3. Functional annotation databases
A wealth of functional genomic annotation is currently available to help

interpret RNA-Seq results. Annotation efforts such as the Kyoto Encyclo-

pedia of Genes and Genomes (Kanehisa, Goto, Furumichi, Tanabe, &

Hirakawa, 2010), Reactome (Croft et al., 2014), Database of Interacting

Proteins (Salwinski et al., 2004), Gene Ontology (GO) (Gene Ontology

Consortium, 2010), and Encyclopedia of DNA Elements (ENCODE)

(Qu & Fang, 2013) have provided invaluable knowledge bases at the level

of biological pathways, protein–protein interactions, individual genes, and

all the way down to individual nucleotides (i.e., SNPs). Functional annota-

tion analysis using GO terms and biological pathways has become routine

with respect to the interpretation of RNA-Seq results (Hung, 2013). Func-

tional annotations provided by ENOCDE are also heavily used to interpret

and further understand RNA-Seq experiments with regard to splicing, gene

Reads

Exon 1 Exon 2 Exon 4

Intron antisense Natural antisense

Natural antisense

5¢

3¢

Figure 2.3 Schematic highlighting ambiguity for reads that overlap two genes.
Stranded libraries can allow assignment of reads to the appropriate gene along with
appropriate annotation frameworks.
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regulations, and epigenetic factors (Hart, Komori, LaMere, Podshivalova, &

Salomon, 2013; Mitra, Das, & Chakrabarti, 2013; Ye et al., 2014).

However, before using any knowledge base, we need to be aware of

potential limitations and/or biases which may affect the final interpretation

of our RNA-Seq results. For example, pathways with the same name were

found to be inconsistent across independent knowledge bases (Bauer-

Mehren, Furlong, & Sanz, 2009; Mitrea et al., 2013); thus, the use of dif-

ferent pathway knowledge bases may lead to different interpretations of

the same result. Furthermore, althoughmany knowledge bases are at the res-

olution of individual genes, meaning that annotations of isoform/exon

results obtained from RNA-Seq are going to be limited or misleading,

Table 2.2 Annotation framework to capture gene-level overlap to guide interpretation
Gene-level overlap
categories Description

ggNonOlap Genes that do not overlap any other gene

ggOlapDiffFuncMultStr Overlapping genes that have different functions and are

in the same and opposite directions, i.e., a lincRNA

overlaps one protein-coding gene in the opposite

direction and also overlaps miRNA in the same

direction

ggOlapDiffFuncOppStr Overlapping genes that have different functions and are

in the opposite direction

ggOlapDiffFuncSameStr Overlapping genes that have different functions and are

in thesame direction

ggOlapMultFunc Same gene overlaps two other genes, one with same

function and the other with different functions (same

gene has two overlaps: 1. Protein_coding to protein

coding. 2. Protein_coding to lincRNA)

ggOlapSameFuncMultStr Overlapping genes that have the same function and are

in the same and opposite directions, i.e., a protein-

coding gene overlaps one protein-coding gene in the

same direction and the other protein-coding gene in

the opposite direction

ggOlapSameFuncOppStr Overlapping genes have same function and are in the

opposite direction

ggOlapSameFuncSameStr Overlapping genes have same function and are in the

same direction
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within these same knowledge bases many genes either have very limited or

no annotation available (Khatri, Sirota, & Butte, 2012; Mitrea et al., 2013).

Moreover, many knowledge bases are curated by experiments performed in

different cell types at different times point under different conditions; how-

ever, these details are not always adequately captured, thus resulting in inac-

curate and/or redundant annotations (Khatri et al., 2012). Interestingly, as

many knowledge bases have been criticized for not being comprehensive

enough, ENCODE annotations has been criticized for maybe being too

comprehensive. From the production of 1640 datasets, using 24 experimen-

tal platforms on 147 different cell types, the ENCODE consortium reports

that 80.4% of the human genome displays some biochemical functionality in

at least one cell type (Qu & Fang, 2013). However, many question if

ENCODE’s definition of a functional element is too lenient, thus leading

to a very high false-positive rate of functional annotations (Doolittle,

2013; Eddy, 2012). This highlights how assessment of functional annotation

prior to its incorporation is key to ensure confidence in the downstream

interpretation. We note again that this is influenced by the primary question

of interest and trade-off between discovery and hypothesis testing.

5. SUMMARY

Throughout this chapter, we have focused on three major compo-

nents in the analysis of RNA-Seq data (Fig. 2.1). The choices made regard-

ing computational processing, statistical analysis, and frameworks for

interpretation should be driven by the primary research question. It is of

course critical that these decisions are made early during the initial experi-

mental design to ensure best chances for the success of the study. With the

rapid advances in technology and algorithms, the complexity will only

increase, adding additional considerations in each of the three components.

It is therefore critical for the full promise of routine brain transcriptome pro-

filing to be met that continual reevaluation and assessment of these compo-

nents are made.
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Abstract

The rapid advances in high-throughput transcriptomics allow individual investigators to
rapidly and comprehensively interrogate the transcriptome. This phenomenon has
placed large volumes of gene expression data in public repositories presenting oppor-
tunities for secondary analysis, discovery, and in silico modeling. We focus here on
guidelines for best practices for transcriptomics data integration and considerations
for reproducibility. In addition, we discuss some considerations for multi-omic and
cross-species comparisons.

1. OPPORTUNITIES FOR SECONDARY USE OF DATA
AND META-ANLAYSIS IN TRANSCRIPTOMICS

Transcriptomic technologies have become a powerful tool for biol-

ogists and have provided a wealth of knowledge about the genetic activity
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of cells under various conditions. The ability to detect and quantify

virtually all transcripts within a tissue sample at a particular time point

has allowed researchers to gain insight into the complex network of gene

regulation that leads to specific phenotypes. In addition, profiling the

transcriptome has also allowed researchers to identify factors that influence

the regulation of gene expression, such as DNA variation and environ-

mental exposures.

The enormous potential for new knowledge that is offered by trans-

criptomic studies has led to an explosion of gene expression data generated

over the past decades. In the year 2000, 28 scholarly articles associated with

the terms “transcriptome” or “transcriptomics” were indexed in PubMed.

Since then, the number of studies has grown exponentially, and in 2013

alone there were 5039 papers published.

The large amount of data being produced across a wide variety of exper-

imental conditions (animal models, tissue types, phenotypes, etc.) presents a

great opportunity for secondary analysis of data, including meta-analyses and

replication studies. However, the appropriate use of data frommultiple stud-

ies (combining or comparing datasets) requires a thorough understanding of

the differences among the technologies used to create the data.

1.1. Transcriptomics platforms
Next-generation sequencing technologies are quickly becoming a popular

choice for transcriptomics experiments and are proving to have numerous

advantages over older technologies (Hitzemann et al., 2013). However, over

the past decade, the vast majority of transcriptomics studies have used other

technologies, most notably the hybridization-based techniques (micro-

arrays) and sequence-based approaches, such as serial analysis of gene expres-

sion (SAGE) and cap analysis of gene expression (CAGE).

Hybridization-based techniques use arrays of oligonucleotide probes,

each targeted to a particular known transcript, to capture and measure the

abundance of mRNA molecules present in a sample. RNA is isolated from

the tissue sample of interest, reverse transcribed to produce complementary

DNA (cDNA), and fluorescently labeled. The quantity of each RNA prod-

uct is reported based on the level of fluorescence measured at the location on

the array containing the corresponding probe. Typical microarrays contain

only a few probes per gene, primarily located in the 30-region of the tran-

script, and are typically not capable of distinguishing between alternatively

spliced transcripts. However, specialized versions of microarrays, such as
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exon arrays and tiling arrays, allow for a higher resolution interrogation of

the transcriptome.

Exon arrays contain probes in each exon of the transcript, including at

exon/intron boundaries, and therefore increase the potential to detect alter-

natively spliced isoforms.

Tiling arrays, in contrast to the other microarray platforms mentioned

above, do not require a priori knowledge about the local structure of the

transcriptome. These arrays contain overlapping or closely spaced probes

along continuous stretches of a sequenced genome. Because these arrays

contain probes at much higher densities than traditional microarrays, they

allow for detection of alternatively spliced transcripts as well as previously

unknown transcripts.

While microarrays are an extremely powerful technique and have pro-

duced an enormous amount of new knowledge, they do have several lim-

itations. First, compared to RNA-Seq, microarrays have a limited range of

sensitivity on both the low and high ends. Cross-hybridization issues (i.e.,

nonspecific hybridization) make it impossible to distinguish low-abundance

transcripts from random background noise. On the other hand, probe

saturation can limit the ability to accurately quantify high-abundance

transcripts.

Second, as mentioned above, the limited number of probes on traditional

microarrays does not allow for the collection of information about alterna-

tive splicing or for the detection of novel transcripts. Exon and tiling arrays

do provide some improvement in this area.

And finally, sequence variation within a probe’s target region can have a

significant impact on probe performance. Reduced hybridization or cross-

hybridization due to DNA polymorphisms can produce misleading results.

Masking (or removal) of affected probes can help reduce the impact of

sequence variation but leads to loss of information and, of course, will

not account for any unknown variants (i.e., this method is less effective

for species with less information about genome variation) (Agarwal et al.,

2010; Bottomly et al., 2011; Roy, Altermann, Park, & McNabb, 2011

May; Walter et al., 2007; Wang, Gerstein, & Snyder, 2009).

Sequence-based techniques do not use probes and therefore do

not depend on prior knowledge of the transcriptome. High-throughput

sequence-based methods are referred to as tag-based methods since small

portions of transcripts, called “tags,” are isolated, cloned into a vector,

and then sequenced. These short tags are then mapped to reference genome

for transcript identification. It should be noted that short tags often map to
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multiple locations in the genome, which can cause uncertainty in the detec-

tion and quantification of some transcripts, particularly those containing

repetitive elements. Also, because only a small portion of the transcript is

sequenced, it is often not possible to distinguish between splice variants.

There are a variety of closely related tag-based methods that differ based

on the location and the size of the tag derived from the transcript. SAGE

traditionally isolates a tag from the 30-region of the transcript, while CAGE

isolates a tag from the 50-end. Long-SAGE and Super-SAGE produce

longer tags, which are more likely to map uniquely to the genome and

can increase the chances of detecting alternatively spliced transcripts

(Anisimov, 2008; Harbers & Carninci, 2005; Horan, 2009; Kodzius et al.,

2006; Matsumura, Krüger, Kahl, & Terauchi, 2008; Takahashi, Kato,

Murata, & Carninci, 2012).

A number of repositories have been created to store and share the vast

amount of data produced by these technologies (Table 3.1). The availability

of these data not only makes secondary analyses possible but also aids the

development of improved methodology for transcriptome studies.

Table 3.1 Transcriptome public repositories for secondary and meta-analysis
Repository URL References

Gene Expression

Omnibus (GEO)

www.ncbi.nlm.

nih.gov/geo/

Barrett et al. (2013)

ArrayExpress www.ebi.ac.uk/

arrayexpress/

Parkinson et al. (2011)

Expression Atlas www.ebi.ac.uk/

gxa/home/

Kapushesky et al. (2012)

Sequence Read

Archive (SRA)

www.ncbi.nlm.

nih.gov/sra/

Kodama, Shumway, Leinonen, and

International Nucleotide Sequence

Database Collaboration (2012), Leinonen,

Sugawara, Shumway, and International

Nucleotide Sequence Database

Collaboration (2011)

RNA-Seq Atlas medicalgenomics.

org/rna_seq_atlas/

Krupp et al. (2012)

ReCount bowtie-bio.

sourceforge.net/

recount/

Frazee, Langmead, and Leek (2011)
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2. SELECTING THE UNIT OF COMPARISON

Given that different technologies interrogate the transcriptome at dif-

ferent resolutions, comparing the results across platforms is not a trivial exer-

cise (Fig. 3.1). Depending on the data available, one must first choose the

genomic or transcriptomic unit that will be used to make comparison across

the datasets. For instance, in order to compare traditional microarray expres-

sion values to count data from RNA-Seq, both the expression values and

counts must be mapped to common entities (e.g., genes or transcripts).

The choice of the unit of comparison will depend on the limitations of

the datasets. Ideally, we would like to compare values that represent mea-

surements of precisely the same entities (i.e., the exact same stretch of

RNA). An example of this would be the counts of all reads that map to

the corresponding sequence of a particular microarray probe. However, this

would only be possible if there is enough sequence coverage (read depth) to

get an accurate measurement at the precise location. In addition, there are

known spatial biases present across the genome, which means that transcripts

are not uniformly covered by RNA-Seq reads (Hansen, Brenner, & Dudoit,

2010; Mortazavi, Williams, McCue, Schaeffer, & Wold, 2008). Because of

these issues, it is often more appropriate to produce summary measurements

for larger entities, such as whole genes (Bottomly et al., 2011; Frazee et al.,

2011). Typically,RNA-Seq reads are firstmapped to knownexons (discarding

any ambiguously mapped reads), then the reads mapped to all exons associated

with a particular gene are summed to provide a gene-level read count.

Figure 3.1 Visual comparison of how diverse technologies interrogate the trans-
criptome, providing different levels of resolution and influencing mapping and selec-
tion of the unit of analysis for cross-platform comparisons.
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However, more precise mapping strategies, which map sequencing

reads or microarray probes to specific transcript isoforms (a.k.a. splice var-

iants), are also possible. Using transcript-level models (rather than gene-

level models) allows for the detection of alternative exon usage (Laderas

et al., 2011).

3. METRICS FOR AGREEMENT

A valid comparison of expression values produced under different

experimental conditions can be performed only after appropriate normali-

zation of the data has been done. This normalization procedure accounts

for the various experimental conditions that can produce different base-line

values across data sets, such as different starting concentrations of RNA or

different sequencing depths.

Bullard and colleagues have suggested that the factor with the greatest

impact on the ability to detect differential expression is the normalization

procedure (Bullard, Purdom, Hansen, & Dudoit, 2010). Because the num-

ber of reads for a particular transcript will depend on both the concentration

of the transcript in the sample and the length of the transcript, it is common

practice to report a normalized read count as the reads per kilobase of exon

model per million mapped reads (RPKM) (Mortazavi et al., 2008). How-

ever, this method can be affected by a small number of highly expressed tran-

scripts. Bullard and colleagues suggest that a quantile-based normalization

procedure is a more robust alternative (Bullard et al., 2010).

A comparison of seven different normalization methods applied to both

real and simulated datasets found that most normalization procedures pro-

duced similar results. However, there were some exceptions. The results

obtained using the total count normalization method, RPKM, and

unnormalized raw counts appeared to cluster together and were somewhat

different from the five other methods tested. The DESeq and Trimmed

Mean of M-values (TMM) methods were recommended because of their

ability to control the differential expression false-positive rate in the presence

of high-count genes (Dillies et al., 2013).

Given the “analog” nature of hybridization-based technologies, and the

variable performance of probes, normalization of microarray data can be a

complex task. However, the accurate absolute expression levels produced

by RNA-Seq data can be used to improve the quality and utility of micro-

array expression measures. Miller et al. (2014) found that filtering probes and

scaling probe intensities using RNA-Seq expression values improved the

biological reproducibility of microarray data from human brain tissues. This
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technique could significantly aide the secondary analysis of the large amount

of publicly available microarray data.

After the normalization of datasets has been completed, a decision must

be made about how to evaluate the agreement or concordance between the

datasets. Agreement is often measured in three ways: transcript detection

(i.e., the presence or absence of a particular transcript), correlation between

normalized expression levels, and whether or not there is significant differ-

ential expression between two conditions of interest. Agreement in terms of

differential expression should be further evaluated by examining the corre-

lation of fold change between experiments, or at the very least comparing

the direction of expression change.

For some research questions, the focus is on measures of absolute expres-

sion, or the ability to distinguish active from inactive transcripts within indi-

vidual samples. Characterizing samples by their overall transcriptional state

(i.e., the binary on/off pattern across all transcripts) also enables the compar-

ison of samples across multiple experiments. The “bar-code” method has

been used to estimate absolute expression values for microarray data by com-

paring probe-level expression values to a large reference database of micro-

array samples (McCall, Uppal, Jaffee, Zilliox, & Irizarry, 2011). This focuses

on addressing the simple question of what is expressed and what is not

expressed in a given sample. Piccolo and colleagues have proposed a related

technique that does not require a reference database for comparison and is

applicable to both hybridization-based technologies and RNA-seq (Piccolo,

Withers, Francis, Bild, & Johnson, 2013). The algorithm, called Universal

exPression Code (UPC), calculates “evidence codes” on a scale of 0–1,

which indicate the likelihood that an expression value is a true deviation

from a modeled background distribution.

The interpretation of these “evidence codes” is the same across platforms

and therefore allows the integration of multiple datasets (particularly samples

from the same subject across platforms). However, the increased sensitivity

of RNA-seq compared to microarrays can lead to discrepancies regarding

the classification of genes expressed at a low level. Therefore, care is still

needed when combining datasets from these different technologies

depending on the direction of discordance.

4. STUDIES ON REPRODUCIBILITY AND VALIDATION

Overall, both RNA-Seq and microarray technologies have been

shown to generate highly reproducible results when standardized experi-

mental protocols and data processing procedures are used.
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A large-scaling RNA-Seq analysis was conducted by GEUVADIS (the

Genetic European Variation in Disease, a European Medical Sequencing

Consortium) to examine the sources of technical variation, and the feasibil-

ity of sharing and combining RNA-Seq data across laboratories (‘t Hoen

et al., 2013). Four hundred sixty-five samples were randomly distributed

across seven laboratories, with five samples sequenced by all labs. Although

they observed slight variations in GC content and insert size, overall the

technical variation observed was small and the results consistent across labs.

Marioni and colleagues assessed technical variation of RNA-Seq data

from liver and kidney samples by sequencing each sample seven times, using

two different concentrations of cDNA. They evaluated technical variation

by looking for lane effects, indicating systematic differences in the results for

the same sample sequenced at the same concentration in different lanes.

They consistently found very small numbers of genes (<0.5%) with signif-

icant lane effects (Marioni, Mason, Mane, Stephens, & Gilad, 2008).

Similar studies have been conducted to examine the reproducibility of

microarray data. However, the conclusions drawn from these studies have

been somewhat inconsistent. The MicroArray Quality Control (MAQC)

project conducted a large-scale study of microarray technologies and found

high levels of reproducibility both across platforms and within the same plat-

form in terms of the ability to detect differential expression (MAQC

Consortium et al., 2006). However, the methods used in this study have

been criticized (Liang, 2007) and were inconsistent with other findings

(Tan et al., 2003).

More recent advances in methodology and standardization of protocols,

not to mention advancements in the technologies, have improved the reli-

ability of microarray data (Draghici, Khatri, Eklund, & Szallasi, 2006;

Larkin, Frank, Gavras, Sultana, & Quackenbush, 2005). However, second-

ary analysis and reproducibility of publicly archived high-throughput gene

expression studies still have challenges given gaps in meta-data and study

annotation needed to appropriately process and analyze the data (Rung &

Brazma, 2013).

5. GUIDELINES FOR CROSS-PLATFORM STUDIES

Numerous studies have evaluated the comparability of RNA-Seq and

hybridization-based technologies. Here, we will give an overview of the

approaches used in these cross-platform studies and provide some guidelines

for best practices (Fig. 3.2).
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Effective cross-platform comparisons depend on good quality data

processing procedures that account for any biases inherent to the specific

technologies. In addition, when comparing the detection of differential

expression, appropriate test statistics must be used. Bullard et al. (2010)

addressed these issues with a comparison of RNA-Seq normalization pro-

cedures and tests for differential expression. They recommend against using

global normalization procedures and instead propose a quantile-based nor-

malization procedure that matches the distribution of read counts per lane to

a reference distribution derived from the median counts across lanes. They

also warn against the use of the t-statistic for differential expression, since

this statistic has low sensitivity for genes with low read counts (Bullard

et al., 2010).

There is no consensus about the proper way to map and summarize

expression values, although generally better concordance has been observed

Figure 3.2 A Schematic of the Guidelines Framework for best practices for cross-
platform studies. Each step highlights a key area for consideration during the planning
of the study. This includes choosing the unit of comparison based on the primary
research question for the datasets being analyzed; appropriately dealing with ambigu-
ously mapped probes or sequencing reads, and accounting for the effects of DNA
variation; selecting a robust normalization procedure; providing a thorough report of
agreement; and validation/investigation of discrepancies via quantitative PCR.
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for gene-level summarization compared to transcript-level summarization,

likely due to the uncertainty involved in distinguishing between splice var-

iants of the same gene (Bullard et al., 2010; Marioni et al., 2008; Mortazavi

et al., 2008).

An important component of summarizing expression values is dealing

with sequencing reads that map equally well to multiple genome locations.

Often researchers make the decision to discard all ambiguously mapped

reads, but this can lead to inaccurate expression values for gene families with

closely related sequences. An effective alternative is to assign ambiguously

mapped probes to each matched location proportionally, based on the num-

ber of uniquely mapped probes assigned to each of the matched genes

(Mortazavi et al., 2008).

Agreement regarding differential expression is the most common ques-

tion asked in cross-platform gene expression studies. It is not sufficient to

simply examine the overlap of the lists of differential expressed genes from

each platform. Agreement should be assessed both in terms of the presence

or absence of statistically significant differential expression, as well as the cor-

relation between fold changes reported by each platform.

Any discrepancies between platforms should be investigated further to

identify possible sources of the disagreement. For example, concordance

may be lower for genes with low expression levels. The use of quantitative

PCR can be used to validate findings (Guo et al., 2013; Li, Dai, Kang, &

Zhou, 2014; Marioni et al., 2008; Nookaew et al., 2012; Soneson &

Delorenzi, 2013; ‘t Hoen et al., 2013).

6. OTHER DATA INTEGRATION CONSIDERATIONS

We note that there are other key challenges in data integration related

to transcriptomics beyond that of gene expression cross-platform issues, such

as multi-omic integration and cross-species comparisons. As each of them

warrants their own chapter, we provide a brief summary here (providing

the reader with references for further information).

6.1. Multi-omic data integration
With an increasing focus on systems biology, experimental samples are being

interrogated by multi-omic approaches (transcriptomics, proteomics, met-

abolomics, etc.) in order to gain insight into the dynamic relationship among

diverse cellular components. It is thought that utilizing multiple data types

may more accurately reflect the complex biology involved. To achieve this,
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similar guidelines such as those for the cross-platform analyses are needed.

Processing and analyzingmultiple omic data types require in-depth technical

knowledge about how each individual data type was generated. In addition,

understanding the resolution, temporal considerations, and accuracy for

each technique is key to ensure appropriate comparisons across data types.

Finally, multi-omic integrative statistical and computational methods are

needed to provide a true systems perspective.

One of the areas of frequent interest for integration with the trans-

criptome is the proteome (Cox, Kislinger, & Emili, 2005; Waters,

Pounds, & Thrall, 2006; Waters, Singhal, Webb-Robertson, Stephan, &

Gephart, 2006). The correlation between mRNA and protein expression

can be quite low for a wide range of reasons including differences in

half-life, variability in expression level due to changes in cell cycle, and post-

transcriptional modifications. This has led to a shift from single data type

individual analysis to joint multi-omics approaches.

A wide range of integration approaches have been suggested including

probabilistic networks (e.g., Hartemink, Gifford, Jaakkola, & Young,

2002; Troyanskaya, Dolinski, Owen, Altman, & Botstein, 2003), machine

learning methods (e.g., Daemen et al., 2008; Zhang et al., 2006), and statis-

tical models (e.g., Fagan, Culhane, & Higgins, 2007; Lê Cao, Rossouw,

Robert-Granié, & Besse, 2008). The primary challenge for all of these

methods is the extremely heterogeneous sources of data (Palsson &

Zengler, 2010).

In a recent review by Haider and Pal (2013), they survey transcriptomic-

proteomics integration approaches and classify them into eight classes (with

the classification based on initial algorithm and final analysis goal). Gibbs,

Gralinksi, Baric, and McWeeney (2014) proposed a classification system

based on when the integration takes place from a network perspective.

“Late” integration is when the integration step takes place after independent

model building of each network. In this case, coexpression networks are

individually constructed using transcript and peptide level data and then

“later” integrated. This is in contrast to what they denote as “early” integra-

tion that involves joint or simultaneous integration of diverse omic data

types (e.g., de Tayrac, Lê, Aubry, Mosser, & Husson, 2009; Tan et al.,

2009; and others). With each of these classification systems, the goal is to

make the underlying approaches, limitations, and assumptions accessible

to researchers. It is critical to remember that selection of the appropriate

integration method for a study is dependent upon the primary research

hypothesis and the experimental design.
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6.2. Cross-species comparisons
Comparing gene expression patterns across species is of great interest for

understanding gene function, conservation, evolution, and for insights with

respect to disease. Species-specific differences in the genome and

corresponding transcriptome as well as gene duplication events after speci-

ation make cross-species analyses challenging. A large number of approaches

and databases allow cross-species comparisons of expression. We refer the

readers to the Jay (2012) for an in-depth examination of cross-species inte-

gration methods. Here, we highlight a few of these approaches, highlighting

consideration for analysis and interpretation.

Gene Ontology (GO) (www.geneontology.org) is one of the most well-

known biomedical ontologies, providing annotations to over 600,000 gene

products. To functionally describe gene products, annotations are made

using GO describing the associated biological processes, cellular component

in which the gene product is found, and molecular function. With regard to

species comparisons, GO is species independent and enables retrieval and

analysis of data from disparate database sources. Using data annotated with

GO, it is possible to infer information about gene function in other species

(e.g., Roslan et al., 2010) or compare candidate gene lists across species

based on GO enrichment. For cross-species comparisons based on GO

annotation or enrichment, it is critical to also evaluate the accompanying

evidence codes that indicate how the annotation to a particular term is

supported.

The database bgee (http://bgee.unil.ch/) compares expression patterns

between species by leveraging ontologies for anatomy and development

(Bastian et al., 2008). Homology relationships that allow anatomical com-

parisons are defined based on a modified ontology alignment. Expression

is then mapped unto the aligned ontologies. Evaluation of expression com-

parisons should therefore be interpreted in the context of the ontology itself.

GeneWeaver.org and the tools within provide the ability to integrate

functional genomics data across different species (Baker, Jay, Bubier,

Langston, & Chesler, 2012). In GeneWeaver, it is critical to note that the

definition of a “gene” actually refers to homologous gene clusters (i.e., an

entire group of genes that share homology to each other). Utilizing both

homology and semantic information, GeneWeaver is capable of more com-

plex comparisons, such as examination of expression patterns in other species

in human disease candidate genes, allowing it to be used in a wide range of

studies (e.g., Bhandari et al., 2012; Chesler et al., 2012).
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Xspecies (http://bioinformatics.math.chalmers.se/Xspecies/) provides

an approach for cross-species meta-analysis of gene expression profiles that

takes all orthologous and co-orthologous genes into account (Kristiansson

et al., 2013). For each species, the expression data is analyzed individually

resulting in a p-value for each measured gene’s differential expression for

the comparison of interest. Homology group information can be leveraged

from public databases such as Homologene or inferred using de novo

approaches. Gene-specific p-values are calculated in a method similar to

Fisher’s combined probability test that has been extended to take

in-paralogous genes into account. It is important to note that this approach

is heavily dependent upon the statistical analysis of the individual data sets. In

addition, the approach assumes that the gene-specific p-values are indepen-

dently and uniformly distributed under the null hypothesis. Therefore, care-

ful examination of the original data sets, homology group definitions, and

method assumptions should all be considered when utilizing this approach.

For both cross-platform andmulti-omic integration, there is again a need

for best practice guidelines for selection of data sets, processing, analysis,

annotation, and integration of cross-species transcriptomics. We note that

cross-platform issues can further complicate cross-species comparisons war-

ranting careful study design, particularly for secondary analysis where meta-

data can be limited.

7. SUMMARY

The objective of integrating data from multiple transcriptome studies

is to increase the reliability and generalizability of the results. This can now

routinely be done given the vast amount of data available in public databases.

However, within public transcriptomics data, there is tremendous hetero-

geneity due to platform, experimental conditions, and quality of annotation.

In this chapter, we have developed an initial guideline for best practices for

cross-platform transcriptomics integration. We note that the crux of this

framework also applies to multi-omics integration and cross-species com-

parisons even though the underlying details of the components are distinct.

In each case, it is key to carefully evaluate the datasets and identify the appro-

priate unit of comparison based on primary research question. A mapping

strategy must be considered (across platform, data type, or species). The data

sets will need to be carefully preprocessed to ensure comparisons can be

made. Metrics will need to be identified a priori to evaluate agreement,
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concordance, and the integration itself. Finally, consideration should be

made at the time the study is designed regarding how it will be validated.

By following these best practices, we can increase the potential for reproduc-

ibility and meaningful data integration.
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Abstract

Next-generation sequencing experiments have demonstrated great potential for trans-
criptome profiling. While transcriptome sequencing greatly increases the level of bio-
logical detail, system-level analysis of these high-dimensional datasets is becoming
essential. We illustrate gene network approaches to the analysis of transcriptional data,
with particular focus on the advantage of RNA-Seq technology compared to microarray
platforms. We introduce a novel methodology for constructing cosplicing networks,
based on distance measures combined with matrix correlations. We find that the
cosplicing network is distinct and complementary to the coexpression network,
although it shares the scale-free properties. In the cosplicing network, we find a set
of novel hubs that have unique characteristics distinguishing them from coexpression
hubs: they are heavily represented in neurobiological functional pathways and have
strong overlap with markers of neurons and neuroglia, long-coding lengths, and high
number of both exons and annotated transcripts. We also find that gene networks are
plastic in the face of genetic and environmental pressures.
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1. INTRODUCTION

Several different methodologies can be used to construct gene net-

works based on expression data (Allen, Xie, Chen, Girard, & Xiao, 2012;

Jay et al., 2012). Correlation networks such as the Weighted Gene

Coexpression Network Analysis (WGCNA) (Langfelder & Horvath,

2008) infer relationships between genes based on correlations between their

expression levels, either across samples or across time points. Generally,

coexpression networks are derived de novo, which implies that new data from

a particular experiment and biological context are used to infer the topology

of the network. Alternative approaches use previously curated databases such

as protein–protein interactions to infer a network topology.

Coexpression analysis has established several principles regarding the

organization of gene networks. First, it has been shown that coexpression

structure follows a power-law distribution (Zhang &Horvath, 2005), which

from a computational point of view implies that a few select genes (denoted

as network hubs) have a relatively high number of connections with other

genes, while the majority of genes have a low number of connections and are

denoted as network “leaves.” From a biological point of view, a scale-free

structure implies that within a specific context (a pathway, tissue, or cell

type), a few genes are key drivers of the biological activity. Given these

observations, the emphasis on gene connectivity is driven to a large extent

by the focus on detecting the highly connected hub genes that are potential

targets for therapeutic manipulation. The relationship between a gene’s net-

work role and its biological significance has been validated experimentally in

protein networks ( Jeong, Mason, Barabasi, & Oltvai, 2001).

A second important general principle is “guilt by association”: genes or

transcripts that cluster together are assumed to share some similar function,

likely context dependent. Importantly, this principle allows role inference

for genes without current annotations. Additionally, in some configurations,

transcriptome sequencing experiments allow the quantification of noncod-

ing RNAs and inference of their roles by virtue of their association with the

generally better annotated protein-coding genes.

The third principle regards the plasticity of biological networks and their

responsiveness to environmental pressures. Even though biological interac-

tions are dynamic, many network analysis approaches have been based on an

implicitly static model. In contrast, differential network analysis leverages

the dynamic nature of network interactions and aims to detect connections
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between genes or gene clusters (modules) that are most affected by changing

environments, often under the assumption that these genes are most ame-

nable to potential therapeutic intervention. Under this model, the quantity

of interest is the change in the strength of the connections between genes, as

opposed to the change in the expression levels of one or more genes.

This chapter reviews brain gene networks in the context of behavioral

genotypes and mouse genetics. I will review construction, annotation,

and analysis of gene networks, with several examples that illustrate each

of the principles listed above. I will especially emphasize the advantages that

RNA-Seq offers in comparison to microarray technologies.

2. CONSTRUCTION OF COEXPRESSION AND COSPLICING
NETWORKS

The construction of a gene coexpression network starts typically from

a gene expression experimental dataset, either microarray or RNA-Seq. The

number of samples must be sufficient for reliable inference of correlation

values; the exact number is dependent on the level of noise in specific exper-

iments. We investigated the effect of using low number of samples in pre-

vious studies, finding that about 15–20 samples were at the lower limit for

reliable inference of the network structure (Iancu, Darakjian, et al., 2012).

Importantly, when comparing the stability of network structure for compa-

rable microarray versus RNA-Seq data, we found that for similar number of

samples, RNA sequencing data appear to give more reliable and stable

estimates of network structure (Iancu, Kawane, et al., 2012).

The next step in network construction is the selection of the number of

genes to include in the analysis. While recognizing that one of the main

advantages of network approaches is the capacity to evaluate the trans-

criptome as a large system, several factors limit the inclusion of very large

number of genes (>10,000). First, even with adequate computing power

and with efficient implementation of network construction functions, com-

putational issues still arise. The number of edges (connections between

genes) grows with the square of the number of nodes/genes, so even assum-

ing that computational needs grow linearly with the number of edges, a net-

work with 10,000 genes will require twice as much computing power as a

7000 genes network. We have generally limited the size of our networks

at 10,000 genes or less.

In addition to computational power, lack of sufficiently high expression

and especially low variability in expression also limits the number of genes

75Coexpression and Cosplicing Network Approaches



to be included in the network. As noted above, network edges are inferred

based on correlations between expression levels. If a gene does not have suf-

ficient variability in expression, then all its correlations with other genes will

be low, regardless of its average expression level. Once again, RNA-Seq

appears advantageous from this point of view: for roughly equivalent samples,

the variability of sequencing data appears much higher than variability of

microarray-derived expression data (Iancu, Kawane, et al., 2012). This higher

variability is likely due to the fact that microarray inference of gene expression

levels is subject to saturation at high levels, while at low levels transcriptome

sequencing has been shown repeatedly to offer more reliable estimates

(Marioni, Mason, Mane, Stephens, & Gilad, 2008; Wang, Gerstein, &

Snyder, 2009). To facilitate robust network construction, often the coefficient

of variability (CV) is computed for each gene, and only the top quantile(s) are

retained for network construction. As an alternative, the network connectiv-

ity (sum of connection strengths) for each gene is computed, and only genes

with sufficiently high connectivity are retained. When comparing gene con-

nectivity inmicroarray platforms versusRNA-Seq, we observed higher values

for the sequencing data, not unexpectedly given the higher variability.

Regardless of the source, one common approach in construction of the

coexpression network is implemented in the WGCNA package

(Langfelder & Horvath, 2008; Zhang & Horvath, 2005). Here, the first step

is the computation of the correlation coefficient between transcript pairs to

be included in the network. The correlation matrix is subsequently trans-

formed into an adjacency matrix (A) using a power function. The connec-

tion strength aij between transcripts xi and xj then becomes aij¼jcorr(xi,
xj)jβ; β is selected in accordance to the scale-free topology criterion

(Zhang & Horvath, 2005). In some case, the adjacency is further processed

and the “topological overlap” (TO) between two transcripts is computed. In

essence, the TO averages adjacency information over several network

“neighbors” of the two transcripts (Ravasz, Somera, Mongru, Oltvai, &

Barabasi, 2002; Zhang & Horvath, 2005). The TO between two transcripts

i, j is computed as

wij ¼ lij + aij

min ki, kj
� �

+1� aij
,

where lij¼
P

uaiuauj represents the number of transcripts connected to both

transcripts i, j, while u indexes all the transcripts in the network. Both the

adjacency matrix A and the TO matrix are N�N square matrices, where
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N is the number of genes selected for network construction. For each gene,

the sum of its connection strengths to all other genes is denoted as the

connectivity.

The next step in network analysis is the clustering of the adjacency or TO

matrices, which results in the detection of gene modules, or groups of

cotranscribed genes. While in principle any clustering procedure can be

used, the specifics of transcriptional data have spurred the development of

customized gene expression clustering procedures (Langfelder, Zhang, &

Horvath, 2008). One potential limitation of clustering procedures, although

one not limited to genomic data, regards the optimal number of clusters to

be detected. In many applications, this is difficult to determine and in prac-

tice the level of granularity is ultimately dependent on the biological ques-

tions that are addressed. The number of modules detected in transcriptional

data has ranged from as few as 6 (Iancu, Kawane, et al., 2012) to as many as

95 (Drnevich et al., 2012) or even hundreds (Vanderlinden et al., 2013). It is

important to note that the number of modules detected does not necessarily

reflect on the biological properties of the system under analysis, but rather

the level of granularity chosen by the investigator.

To facilitate comparison of gene network properties across experiments,

and to allow for a more rigorous evaluation of the gene modules, Langfelder,

Luo, Oldham, and Horvath (2011) introduced a comprehensive procedure

for the analysis of network modularity. This procedure addresses two related

questions. First, how does a module differ from a random group of genes of

the same size? A high-quality module will have much stronger edges than

random groups of genes. Second, if the same genes are quantified in different

experiments and different networks are constructed, are modules detected in

one network still detectable (preserved) in the second network? To address

these questions, three different measures of quality/preservation were

defined. Density preservation implies that network hubs remain highly con-

nected across the networks compared. Connectivity preservation implies

that the pattern of connections between groups of genes remains unaltered.

Separability measures whether genes assigned to modules/clusters are indeed

more connected to each other than to genes outside the module. All net-

work measurements can be expressed as Z scores; Z scores<2 are taken

to imply poor module quality. For complete mathematical definitions of

these concepts, the reader is referred to Langfelder et al. (2011). In the fol-

lowing sections, we will offer specific examples of the level of module qual-

ity we detected inmammalian brain transcriptome data, as well as the level of

preservation of modules across brain regions and species.

77Coexpression and Cosplicing Network Approaches



3. COSPLICING NETWORK CONSTRUCTION

The network construction steps outlined above are equally applicable to

microarray or RNA-Seq data. However, RNA-Seq offers an important

advantage overmanymicroarray platforms: it is possible to infer the expression

levels of each individual exon. The availability of exon-level data has allowed

the construction of cosplicing networks. Two specific observations have led us

to the development of cosplicing methodology. First, it is well established that

a majority of mammalian genes have alternative isoforms, which are distin-

guished from different exon inclusion rates. The isoform diversity is particu-

larly pronounced in the mammalian brain. Second, we observed in our data

that in many cases, individual exons from different genes show high levels of

correlation, even though the overall gene expression levels are not correlated.

These observations suggested to us that the isoform production of different

genes could be jointly regulated. To evaluate and quantify the extent of this

phenomenon transcriptome wide, we devised a methodology for evaluating

correlations in the isoform ratios across different genes. Previous descriptions

of cosplicing networks (Chen & Zheng, 2009; Dai, Li, Liu, & Zhou, 2012)

have revealed that in some cases individual exons from different genes are cor-

related when the overall gene expression levels appear unrelated. However,

these approaches resulted in networks where the nodes were individual exons.

While exon-level analysis has a high level of granularity, it lacks ease of inte-

gration and summarization, since annotation databases are focused on genes

and not individual exons. Additionally, since in our framework the nodes

in both the coexpression and cosplicing networks are the genes, a direct com-

parison of network properties is possible.

The essential feature of this new approach is a more complex but math-

ematically complete and rigorous representation of gene transcripts. Gene

transcripts are represented as a list/vector of exon expression levels, which

for RNA-Seq datasets are proportional to the exon-level read counts. Rel-

ative abundance of isoforms translates into relative exon inclusion rates and

the goal of the cosplicing analysis is to detect correlations between the exon

inclusion rates. We can illustrate this approach by example. Consider the

case where two kinds of information are collected about the same set of

N individuals: geographical location and DNA sequence information.

Two sets of pairwise distances between samples/individuals can then be con-

structed: geographical distance and genetic distance. To see if these distances

are related, Mantel tests (Mantel, 1967) can be performed, in essence
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computing the correlations between the N(N�1)/2 unique distances.

A similar approach can be used to the evaluation of the gene expression vec-

tors derived from the exon data. Each gene defines a different set of distances

among samples; correlating these distances can offer an estimate of the relat-

edness between the gene’s exon inclusion profiles. The advantage of

adopting this representation of a gene rests in moving away from a single

scalar value as a summary of gene expression. Scalar representation is

unavoidable in the case of some microarray platforms, where each gene is

probed by one or a few individual probes. Gene cosplicing networks are

constructed using the WGCNA approach with the networks based on

theMantel correlations to derive network edge weights. The cosplicing net-

work inference procedure is illustrated in Fig. 4.1.

In the case of count data such as generated by RNA-Seq, two commonly

used distance measures are the Manhattan and Canberra distance measures:

dMA i, jð Þ¼
Xp

e¼1

aie� aje
�� ��, dCA i, jð Þ¼

Xp

e¼1

aie� a je
�� ��

aie + a
j
e

�� ��,

Figure 4.1 Illustration of cosplicing network construction.
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where i and j are two samples, and e iterates over all exon counts a. The

Manhattan metric has the disadvantage that it can be dominated by long

exons with many reads. Therefore, we deemed more appropriate to use

the Canberra metric, where each exon contributes a value between 0 and

1 to the total distance. On the other hand, the Canberra metric can poten-

tially be skewed by the weighing equally exons with very low or noisy

counts; this situation can be remedied by removing exons with low (bottom

quartile) network connectivity, under the assumption that noisy exon data

will be uncorrelated for different genes, resulting in low connectivity.

The network information derived from Mantel correlations appears dis-

tinct from networks based on Pearson or Spearman correlations and we

argue is generated by including an accurate representation of cosplicing.

Experimental support for coordinated gene cosplicing is extensive, particu-

larly in the mammalian nervous system (Calarco, Zhen, & Blencowe, 2011;

Fagnani et al., 2007); computational studies have also suggested that coor-

dination between splicing and transcription events plays a pivotal role in

gene regulation (Kosti, Radivojac, & Mandel-Gutfreund, 2012).

We recently derived both coexpression and cosplicing networks from

the same mouse striatal dataset. We have found that both networks are scale

free, with the cosplicing network displaying faster convergence as the power

β is increased in accordance to the scale-free topology criterion. In terms of

network properties, the cosplicing network displayed faster convergence to

a scale-free structure as the power β is increased. As discussed in detail in

Zhang and Horvath (2005) and Langfelder and Horvath (2008), the role

of the soft threshold β is to emphasize the stronger correlations between

genes and to minimize the effect of low and presumably less reliable corre-

lations. We also contrasted other network properties such as connectivity,

density, centralization, and heterogeneity as defined in Langfelder and

Horvath (2008). Briefly, heterogeneity is the CV (standard deviation over

mean) of the connectivity, while centrality is the difference between the

maximum and average connectivity. Generally, we observed that the

coexpression network was more connected and dense, while the cosplicing

network was more centralized and heterogeneous.

To evaluate whether the two networks provide distinct information, we

compared the two networks node connectivity distributions. We found that

the connectivity values in the two networks were largely unrelated; in par-

ticular, we found that some hub nodes (top 10% connectivity) in one type of

network were in the bottom 80% of connectivity (“leaf” nodes) in the other

type of network—in other words, these hubs are highly connected in only
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one type of network. We illustrate and contrast these differences in connec-

tivity patterns in Fig. 4.2A, where the cosplicing hubs with low coexpression

connectivity are outlined in top left, while the coexpression hubs with low

cosplicing connectivity are outlined in bottom right. We found that the

coexpression hubs could be distinguished from the cosplicing hubs by sev-

eral characteristics. In terms of variability, the cosplicing hubs had lower CV

in terms of gene counts, but higher variability in terms of Canberra pairwise

distances. Cosplicing hubs have higher average number of exons (Fig. 4.2B)

and annotated transcripts, more protein domains, longer coding size, and

lower GC content. In mouse embryonic stem cells, the measured mRNA

decay rate is higher for the splicing hubs. We also overlayed the hubs with

known markers of neurons and neuroglia (Cahoy et al., 2008), finding that

cosplicing hubs were overrepresented among neurons, astrocytes, and oligo-

dendrocytes (Fisher exact test p values 2�10�5, 0.03, and 4�10�8, respec-

tively), while the coexpression hubs were underrepresented (p values

5�10�11, 0.01, and 0.004, respectively).

In terms of GO annotations, the differences between the two hub cat-

egories were striking. The cosplicing hubs, nearly half the significant GO

enrichment categories, corresponded to neural development, neural cell

components, or synaptic transmission. In contrast, the coexpression hubs

had no annotation in the above categories but were significantly enriched

in terms generally associated with cellular energy exchange and metabolism.

Figure 4.2 Distinct properties of coexpression and cosplicing hubs. We focus on hubs
that are exclusive to either the coexpression (A—bottom right outline) or cosplicing
(A—top left outline). These hubs differ in the number of exons per gene (B).
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In summary, our approach is utilizing a distance measure approach,

coupled with matrix correlations, to examine genome-wide alternative

splicing coordination among genes. In this framework, the contribution

of each exon is weighted equally, utilizing most of the data generated in

the RNA-Seq experiment. The detection of strong network edges allows

one to conclude that two genes coordinate their isoform production but

does not directly indicate which isoform or isoforms contribute the most

to this coordination. However, it is certainly possible to further examine

exon–exon correlations and infer the most likely isoforms involved in the

cosplicing. This additional analysis is facilitated by the fact that for most

genes, there are relatively few and in a majority of cases only two highly

expressed isoforms. Splicing is estimated to occur for 95% of all multiexon

genes (Pan, Shai, Lee, Frey, & Blencowe, 2008), 86% of which have a minor

isoform that accounts for >15% of total gene expression (Barrie, Smith,

Sanford, & Sadee, 2012; Wang et al., 2008).

4. BIOLOGICAL ANNOTATION OF COEXPRESSION
AND COSPLICING NETWORKS

One essential question in gene network analysis is the biological sig-

nificance of the observed connectivity patterns: it is important to distin-

guish between randomly occurring structure in high-dimensional data

and network structure clearly attributable to biological factors. To address

this issue, we quantified functional and shared regulatory mechanisms

that we predicted are likely to influence coexpression and cosplicing

between gene pairs. Leveraging several public bioinformatics databases,

we evaluated the following factors: known protein–protein interactions,

shared transcription factor-binding sites (TFBSs), shared splicing factor-

binding sites (SFBSs), sharedmicroRNA-binding sites, shared chromosomal

folding topological domains, spatial colocalization within the striatum,

and membership in gene sets that are markers of cell types within the

mouse brain.

We found that for genes with known protein–protein interactions (PPI),

the edge weights were significantly higher than for randomly selected gene.

In the consensus network, there weremore cosplicing edges overlapping with

knownPPI. Forgenepairs sharingTFBSs,wedetected increasedcoexpression,

but these common TFBSs did not affect cosplicing. The reverse was true

for SFBSs: gene pairs sharing SFBSs had stronger cosplicing but coexpression

was only mildly increased. For genes sharing microRNA-binding sites, we
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detected increased coexpression, but decreased cosplicing. This latter observa-

tion is more challenging to interpret biologically, but it is consistent with

one putative microRNA activity, namely decreasing transcript stability

(Valencia-Sanchez, Liu, Hannon, & Parker, 2006). Decreased transcript

stability is likely to generate uncorrelated variability in the exon counts,

decreasing the matrix correlations.

Comparison of the SFBS sharing by two genes required a special repre-

sentation of the SFBSs present within the gene region. Binding sites can be

present within both exonic and intronic sequences. To identify the SFBSs

for all network genes, we used the SFMap database of predicted SFBSs for

the mouse genome (Akerman, David-Eden, Pinter, & Mandel-Gutfreund,

2009; Paz, Akerman, Dror, Kosti, & Mandel-Gutfreund, 2010). We started

by using biomaRt to retrieve the genomic coordinates of all genes in our

networks. The SFMap database returned predicted binding sites of the fol-

lowing 21 splicing factors: SF2ASF, 9G8, SC35, Tra2alpha, Tra2beta,

SRp20, SRp40, SRp55, hnRNPA1, hnRNPA2B1, hnRNPF, hnRNPH1,

hnRNPM, hnRNPU, MBNL, NOVA1, PTB, CUG-BP, YB1, FOX1,

and QK1. An accurate representation of the SFBS structure within a gene

needs to take into account their both identity and multiplicity. We therefore

constructed vectors of length 21: each entry in this vector simply records the

number of the corresponding SFBSs within the gene sequence. Next, two

different genes are compared by computing the distance measure between

these vectors. We deemed two genes to have similar splicing regulatory

regions if the distance was in the lower quantile of the collected distances

between all pairs of genes.

Recent findings (Dixon et al., 2012) have revealed that chromosomal

folding is a complex and highly regulated process that results in chromo-

somal regions in close spatial proximity (chromosomal spatial domains) that

could nevertheless be well separated in terms of base-pair distance. Using the

chromosomal domain boundaries detected in mouse cortex, we investigated

whether the spatial folding of the chromosome affects coexpression and

cosplicing, comparing gene pairs that are within the same topological

domain versus gene pairs that belong to different domains but are within

comparable base-pair distance. We found that genes sharing topological

domains display increased coexpression but not cosplicing.

We previously found (Iancu et al., 2010; Iancu, Kawane, et al., 2012)

that gene coexpression is strengthened for genes with spatially overlapping

patterns of expression within the striatum. These results leveraged Allen

Brain Atlas data on the spatial extent of gene expression, together with
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the extent of spatial overlap of different genes (Ng et al., 2007).We extended

these results to cosplicing analysis, finding that gene cosplicing is strength-

ened for genes with spatial overlap, to an even larger extent than

coexpression.

Biological functionality of gene modules is often inferred from the Gene

Ontology (GO) annotation database. Here, the annotation of the genes

within a module is evaluated for enrichment in specific GO categories, as

compared to what is expected for random groups of genes of the same size.

An important consideration in this analysis is the identity of the overall

groups of genes considered. There are several choices: the whole trans-

criptome, the genes represented on a particular microarray or sequencing

platform, or the genes included in network construction. We have opted

for the third choice, contrasting the genes in a particular module against

the genes selected for network construction. This choice was based on

the following consideration: contrasting modules against the whole trans-

criptome revealed that each module was enriched in similar GO categories,

namely categories under the general “neurological system process.” Further-

more, contrasting the genes selected for network construction against the

transcriptome revealed the same enrichment for “neurological system

process” GO categories. This is not unexpected given that the genes selected

for the network have relatively high expression and variability and our data

originate from the mouse brain and therefore, as expected, expressed gene

will be involved in neurological processes. We conclude that the general

neurological function annotation applies to the whole network and by

extension to each module of the network. Evaluation of individual modules

against the network genes will then reveal module specific annotation above

and beyond the general participation in neurological processes, which is

common to all modules.

We conclude that membership in specific modules is generated by sev-

eral interacting biological factors. First, there is spatial proximity between

genes, either as chromosomal position on the same folding domain or as

expression within the same brain subregions. Second, there is regulation

by the same elements such as transcription factors, splicing factors, and

microRNAs. Finally, there is participation in the same molecular mecha-

nisms, as evidenced by shared GO annotations. For the genes that are poorly

annotated, the principle of “guilt by association” allows inference of their

functionality by virtue of their association or membership in the same mod-

ule with well-annotated genes.
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5. EFFECTS OF GENETIC SELECTION ON GENE
NETWORKS

Differential network analysis has recently emerged as one of the most

active research areas in computational biology; it has been suggested that:

“[it] will become a standard mode of network analysis in the future, just

as differential gene expression and protein phosphorylation studies are

already pervasive in genomic and proteomic analysis” (Ideker & Krogan,

2012). To facilitate a better understanding of network plasticity, it might

prove useful to offer an analogy in terms of evolutionary biology. A gene

network or module could be considered equivalent in a general sense with

an organ. Preservation/homology is important from a translational perspec-

tive: quantifying network effects on model organisms can potentially inform

investigations in human populations.

For two species with a common ancestor, a homologous organ can be

traced back to an ancestral structure and any differences accrued during spe-

ciation do not obscure the fact that both species have a physical structure

fulfilling basically the same functionality. In contrast with physical organs

where homology is more easily established, gene networks/modules are

comprised of dispersed interactions between large number of genes and

therefore it is necessary to computationally establish their homology or pres-

ervation across species or subpopulations. It is also important to clearly state

the null hypothesis when establishing module homology/preservation: one

tests the alternative hypothesis that two modules share some common struc-

ture versus the null hypothesis that two modules, even though composed of

the same genes, do not share any commonality in terms of their interactions.

In contrast to module preservation, module disruption aims to detect sig-

nificant changes in module structure that overlap with differences in external

phenotypes such as behavioral measures. Here, homology of the modules is

either assumed or formally established. However, homology does not pre-

clude the emergence of more subtle differences in network structure that are

not strong enough to completely abolish homology, but are still statistically

significant. Here, we test the alternative hypothesis that there are significant

changes in module structure versus the null hypothesis that network struc-

ture differences are small and not above the level expected from random var-

iability in the data. It is important to note that two modules could be

preserved and disrupted at the same time.
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6. MODULE PRESERVATION ACROSS SUBPOPULATIONS
AND SPECIES

Statistically, network preservation can be evaluated at several different

levels (Langfelder et al., 2011). In addition to density, connectivity, and sep-

arability measures described above, tabulation-based metrics can also be used

to evaluate whether modules independently detected in different networks

share resemblance even though they are not identical in composition. We

have examined the preservation of overall network structure between

mouse populations of dramatically different genetic backgrounds (Iancu

et al., 2010). We independently constructed networks from three different

mouse populations of vastly different genetic backgrounds. Our populations

were comprised of an B6�DBA/2J (D2) F2 intercross, a 4-way (HS4) cross

between the B6, D2, BALB/cJ, and LP/J strains, and an eight-way cross

between the same eight inbred strains used to create the used to create

the collaborative cross (CC; Threadgill, Miller, Churchill, & de Villena,

2011). The eight inbred lines used for the CC are C57BL/6J (B6), A/J

(A), 129S1/SvImJ (129), NOD/LtJ (NOD), NZO/HILtJ (NZO),

CAST/EiJ (CAST), PWK/PhJ (PWK), and WSB/EiJ (WSB). Between

any two of our three populations, there are no more than one inbred line

in common (B6). Additionally, the HS-CC captures >90% of the available

genetic diversity within Mus musculus, mainly because of the inclusion of

three wild-derived strains CAST (Mus musculus castaneus), PWK (M. m.

musculus), and WSB (M. m. domesticus).

In comparing module structure across these three mouse populations, we

focused on tabulation-based preservation measures. Modules were detected

independently in the three networks, and their overlaps in terms of gene

membership were evaluated statistically. We observed that nearly all mod-

ules had one, or at most two to three counterpart modules in the other net-

work, signifying very strong preservation. The results of the comparison

between F2 and HS-CC modules are presented in Fig. 4.3.

Evaluation of module preservation was also performed across species.

Using RNA-seq data from mouse (striatum), macaque (ventral–medial pre-

frontal cortex), and human (prefrontal cortex), we constructed both

coexpression and cosplicing networks. Here, we used a slightly different

methodology for comparison of module preservation, focusing on density,

connectivity, and separability. We also detect modules only in the HS-CC

mouse data, and these modules were tested for preservation in a mouse
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population of different genetic background (HS-Npt), and also in macaque

and human cortical RNA-Seq data; preservation measures are presented in

Fig. 4.4. Network measurements were expressed as Z scores; Z scores<2

were taken to imply poor module preservation, while higher values were

taken to signify moderate (>2) or high (>10) module preservation.

The results presented in Fig. 4.4 indicate that cosplicing modules are

more preserved across species than coexpression modules (compare

Fig. 4.4A and C versus B and D, respectively). Connectivity and separability

were more preserved than density measures. Intuitively, we can think of

connectivity as the patterns or the blueprints of organization of gene inter-

actions. Conversely, density measures quantify the actual strength of the par-

ticular patterns. There results therefore indicate that nearly all mouse

modules have preserved connectivity in the human and primate data; how-

ever, the strength (density) of these patterns varies more widely across

species.

7. MODULE DISRUPTION RELATED TO BEHAVIORAL
CHANGES

In a more current study (Iancu, Oberbeck, Darakjian, Kawane, et al.,

2013), we addresses the relationship between gene network topology and
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and gene numbers note on sides. Intensity of red color (dark gray in the print version)
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excessive ethanol consumption as reflected in blood ethanol level (BEC).

Mice from a genetically diverse population used were selectively bred for

high BEC achieved after 2–4 h access to 20% alcohol solution early in

the circadian dark period, when the animals consume the most liquid

(Crabbe et al., 2009). Animals often will drink to intoxication, and at the

end of the alcohol access period, the BEC is measured and used as a selection

phenotype. After 15–20 generations of selected breeding, selected

populations differ significantly in BEC from their unselected ancestors.

We compared striatal gene network structure between the selected

populations and the unselected ancestors. Importantly, because two

Figure 4.4 Gene module preservation across genetic backgrounds and species. We
compare coexpression (A, C) and cosplicing (B, D) module preservation of HS-CC mod-
ules compared to HS-Npt mice striatum (A, B), macaque cortical tissue (C, D), and human
cortical tissue (E, F). We observe generally better preservation of cosplicing modules
compared to coexpression modules.
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selections were performed independently, we could evaluate reproducibility

of the network analysis results.

To facilitate comparison across networks from selected and unselected

groups, we first constructed a “consensus” network using all available sam-

ples. Module assignment was detected in this network and used for
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Figure 4.5 Multidimensional scaling plots of the coexpression networks in the unse-
lected ancestors and selected group networks. For visual clarity, only the four modules
most consistently affected by selection (“black,” “magenta” (gray in the print version),
“dark-red” (dark gray in the print version), and “green” (light gray in the print version))
are depicted. Each dot represents a transcript, with colors corresponding to module
assignments. The distances between points correspond to network adjacency. The fig-
ure illustrates (1) the modularity of the networks, with similar colors clustered together
and (2) the effect of selection on the network structure. The “dark-red” (dark gray in the
print version) module appears more dispersed, while the “magenta” (gray in the print
version) module appears more compacted in the selection networks.
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subsequent comparisons. To evaluate statistical significance of observed

changes in network structure, we constructed a set of N¼1000 networks

composed random mixtures of samples from the two categories. Next,

we compared the changes between selected/unselected groups versus

changes that could occur between networks inferred between random

groups of samples. Significant changes were quantified as disruption Z

scores. At the whole module level, we observed that some modules became

more connected, while another set of modules displayed lower connectivity.

These changes can be visualized in Fig. 4.5 as increases or decreases in the

compactness of the module representation.

The module representation in Fig. 4.5 is well suited to illustrate both

module preservation and module disruption. For each of the four modules

depicted, the shape and distribution are clearly similar in all three networks,

illustrating preservation.At the same time, themodules are not identical in the

three networks and the more subtle differences in dispersion/compactness

illustrate module disruption. Importantly, the number of generations in the

two selections is predictive of the extent of module disruption.

8. SUMMARY AND FUTURE DIRECTIONS

In this chapter, we presented an overview of the network methodol-

ogies that can be applied to transcriptional sequencing data. Using several

example datasets, we illustrate several network analysis concepts, including

scale-free structure, modularity, and the inference of functional roles for

unannotated genes, and most importantly differential network analysis.

Our results illustrate that genetic factors influence the network topology

in a predictable and reproducible manner (Iancu, Oberbeck, Darakjian,

Kawane, et al., 2013, Iancu, Oberbeck, Darakjian, Metten, et al., 2013).

While in our work we focused on effects of genetic differences on network

topology, others (Mulligan et al., 2011) have considered the effects of alco-

hol consumption on network structure.

The advent of RNA-Seq technology is likely to provide even more

impetus to network approaches. As we have demonstrated, RNA-Seq data

offer better estimation of the gene expression levels and their variability,

greatly improving the accuracy of network measurements (Iancu,

Kawane, et al., 2012). Additionally, exon-level data allow the construction

and analysis of gene cosplicing networks.

Network analysis can potentially be extended in several additional direc-

tions. One particularly promising potential area of inquiry is cross-regional
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network analysis. Recent results have revealed that gene expression levels

can be correlated between distinct tissues (Dobrin et al., 2009). Extending

network analysis to several brain regions is potentially of high interest given

the complexity of behavioral phenotypes and their likely recruitment of sev-

eral brain regions. A second direction with particular promise is the integra-

tion of gene network with other modalities of system-level evaluation of

brain function. In this respect, recent advances in rodent MRI brain imaging

hold the promise of overlaying molecular/genetic mechanisms with struc-

tural and functional brain imaging results.
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Abstract

It has become increasingly clear over the past decade that RNA has important functions
in human cells beyond its role as an intermediate translator of DNA to protein. It is now
known that RNA plays highly specific roles in pathways involved in regulatory, structural,
and catalytic functions. The complexity of RNA production and regulation has become
evident with the advent of high-throughput methods to study the transcriptome. Deep
sequencing has revealed an enormous diversity of RNA types and transcript isoforms in
human cells. The transcriptome of the human brain is particularly interesting as it con-
tains more expressed genes than other tissues and also displays an extreme diversity of
transcript isoforms, indicating that highly complex regulatory pathways are present in
the brain. Several of these regulatory proteins are now identified, including RNA-binding
proteins that are neuron specific. RNA-binding proteins also play important roles in reg-
ulating the splicing process and the temporal and spatial isoform production. While sig-
nificant progress has been made in understanding the human transcriptome, many
questions still remain regarding the basic mechanisms of splicing and subcellular local-
ization of RNA. A long-standing question is to what extent the splicing of pre-mRNA is
cotranscriptional and posttranscriptional, respectively. Recent data, including studies of
the human brain, indicate that splicing is primarily cotranscriptional in human cells. This
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chapter describes the current understanding of splicing and splicing regulation in the
human brain and discusses the recent global sequence-based analyses of transcription
and splicing.

1. Pre-mRNA SPLICING IN HUMAN CELLS

Pre-mRNA splicing is one of the fundamental processes in the intrin-

sic and regulated gene expression in eukaryotes. It is a highly precise process

that involves the removal of noncoding intronic sequences from the pre-

mature RNA transcript (pre-mRNA) to produce the mature form of

protein-coding messenger RNA (mRNA). Several signals exist within

introns that are critical for the splicing process including a 50 splice site, a

branch site, and a 30 splice site. The splice sites are located at the 50 and 30

ends of introns and contain almost invariant sequence: GU at the 50 splice
site and AG at the 30 splice site. The branch site is often located anywhere

between 21 and 34 nucleotides upstream of the 30 end of introns and typ-

ically contains the consensus yUnAy, where the underlined A is the branch

point, n is any nucleotide, and the lowercase pyrimidines are not as con-

served as the uppercase A and U. Pre-mRNA splicing is a sequential process

catalyzed by a macromolecular machine called the spliceosome, a large com-

plex of small nuclear ribonucleoprotein units (snRNPs) and a large number

of non-snRNP factors (Fig. 5.1).

2. ALTERNATIVE Pre-mRNA SPLICING

Pre-mRNA splicing can give rise to different RNA transcripts from a

single gene by alternative splicing, a process where different combinations of

exons are joined together to create a diverse pool of mRNA transcripts.

Alternative splicing events can be classified into five major categories:

(a) exon skipping, representing the most common mode of alternative splic-

ing; (b) intron retention; (c) alternative 50 splice site usage; (d) alternative 30

splice site usage; and (e) mutually exclusive exons (Fig. 5.2).

Alternative splicing is more common in multicellular than unicellular

eukaryotes. For example in Saccharomyces cerevisiae, alternative splicing is very

rare (Ares, Grate, & Pauling, 1999; Howe, Kane, & Ares, 2003) as it contains

only 250–300 introns and pre-mRNA splicing affects only 3% of the genes.

In other unicellular eukaryotes like trypanosomes, most genes are even

intronless (Liang, Haritan, Uliel, & Michaeli, 2003). In contrast, alternative
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splicing in metazoans is prevalent and represents an important component of

gene expression regulation. Several examples from Drosophila melanogaster

highlight the biological importance of alternative splicing in controlling

gene expression. Sex determination in D. melanogaster is controlled by alter-

native splicing that ultimately gives rise to sex-specific expression of two

splicing variants of the Doublesex transcription factor (Salz, 2011; Salz &

Erickson, 2010). The Drosophila’s DSCAM gene exemplifies the extreme

capability of alternative splicing in expanding the coding capacity of meta-

zoan genes through encodingmore than 38,000 distinctive mRNA isoforms

essential for nervous system development (Park & Graveley, 2007;

Schmucker et al., 2000). Remarkably, the number of DSCAM isoforms

exceeds the total number of genes encoded in D. melanogaster genome.

In recent years, alternative splicing has emerged as one of the most essen-

tial mechanisms underlying the complex phenotypic and functional diversity

displayed by the mammalian cells. In the human genome, the number of

protein-coding genes is estimated to be around 21,000. These genes are able

to code for more than 120,000 proteins (Flicek et al., 2013; Harrow et al.,

2012; Modrek & Lee, 2002). The poor correlation between the number of

genes and proteome diversity suggests an important association between
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Figure 5.1 Pre-mRNA splicing. The spliceosomal factors are sequentially recruited to
the 50 splice site, 30 splice site, and to the branch point. Once the complete spliceosome
is assembled over the intron, the exons are joined together and the intron lariat is
released.
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alternative splicing and organismal complexity. Moreover, recent research

suggests that alternative splicing may be the driving force of evolutionary

changes differentiating primates and humans from other species (Merkin,

Russell, Chen, & Burge, 2012). It is estimated that up to 95% of multiexon

genes in human are subjected to alternative splicing, thereby greatly expan-

ding the functional diversity of the human proteome and adding additional

layers of regulation of gene expression (Black, 2000; Irimia & Blencowe,

2012; Nilsen & Graveley, 2010). This enormous diversity is achieved by

a tight regulation of alternative splicing outcomes. Alternative splicing of

a gene may create mRNA isoforms that differ in their coding capacity,

Exon skipping

Mutually exclusive exons

Alternative 5¢ donor sites

Alternative 3¢ acceptor sites

Intron retention

Patterns of alternative splicing

Figure 5.2 Major patterns of alternative splicing. In this figure, exons are represented by
boxes and introns are represented by lines. Constitutive exons are shown in black and
alternatively spliced regions are white. Dashed lines indicate splicing options.
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transcript stability, and which can even display distinctive protein properties

(Kelemen et al., 2013; Stamm et al., 2005). In fact, particular mRNA

isoforms might be specific to a sex, developmental stage, cell or tissue type,

or environmental conditions (Ellis et al., 2012; Grabowski & Black, 2001;

Yap & Makeyev, 2013). The production of multiple mRNA transcripts

from a single gene often occurs through the inclusion or exclusion of differ-

ent combinations of exons. In a typical mRNA transcript, some exons are

constitutively spliced, i.e., they are always included in the transcript. Other

exons are alternatively spliced; therefore, they are sometimes included and

sometimes excluded. Although the pre-mRNA splicing machinery depends

mainly on splice sites for defining intron borders, the inclusion or exclusion

of an alternatively spliced exon relies on a complex network of regulatory

mechanisms that primarily involve specialized RNA-binding proteins called

splicing factors that recognize cis-acting sequence elements located in the

vicinity of the regulated splice sites (Black, 2003; Chen & Manley, 2009).

Cis-acting elements located in both exonic and intronic regions can either

promote exon inclusion (splicing enhancers) or exon skipping (splicing

silencers). These elements are classified as exonic splicing enhancers (ESEs)

or exonic splicing silencers (ESSs) if they function from exonic locations,

and as intronic splicing enhancers (ISEs) or intronic splicing silencers (ISSs)

if they function from intronic locations (Fig. 5.3). ESEs are the best-

characterized sequence elements, serving as binding sites for a family of

3¢ss

Exon Exon
5¢ss

Exon
U2AF U1

ESE

ESS

hnRNP ISS

ISE

ISS

ISESR

Splicing regulation

Figure 5.3 Splicing regulation by the cis-acting elements and trans-acting splicing fac-
tors. Two alternative splicing pathways with the middle exon either included or excluded.
Splicing enhancing signals are shown in green (light gray in the print version), while
splicing inhibitory signals are shown in red (dark gray in the print version). In this model,
ESSs or ISSs are bound by hnRNPs and repress exon inclusion by inhibiting the recruit-
ment of the splicing machinery (e.g., U2AF and U1). ESEs or ISEs serve as binding sites
for SR proteins that influence the inclusion of exons by recruiting the splicing machinery.
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proteins called SR (Ser-Arg) proteins. SR proteins influence the inclusion of

exons by recruiting the splicing machinery to the adjacent exon/intron

borders (Chen & Manley, 2009; Graveley, 2000). ESS and ISS repress

exon inclusion by recruiting members of the heterogeneous nuclear ribonu-

cleoprotein family (hnRNP), such as hnRNPA1 (Del Gatto-Konczak, Olive,

Gesnel, & Breathnach, 1999). Cis-elements may also influence splice site

selection by forming secondary structures that prevent the accessibility of cer-

tain regulatory proteins to the transcript (Grover et al., 1999). Furthermore,

the concentration ratios between negative and positive splicing factors in a

given cell influence splice site selection (Zhu, Mayeda, & Krainer, 2001).

3. TISSUE-SPECIFIC ALTERNATIVE SPLICING

Alternative splicing also acts as an important mechanism in defining tis-

sue specificity by regulating the tissue-specific expression of transcript

isoforms. Tissue-specific alternative splicing is usually controlled by the com-

binatorial effect of ubiquitous and tissue-specific expression of splicing regu-

latory proteins (splicing activators and splicing suppressors) that interact with

cis-acting elements to influence splicing at nearby splice sites (Black, 2003;

Matlin, Clark, & Smith, 2005). There are several known examples of

tissue-specific regulation of alternative splicing. Prominent examples include

the tissue-specific alternative splicing ofMTMR1 in muscles (Buj-Bello et al.,

2002), the brain-specific isoform of the renin gene (Lee-Kirsch, Gaudet,

Cardoso, & Lindpaintner, 1999), cancer-associated splicing of CD44

(Naor, Nedvetzki, Golan, Melnik, & Faitelson, 2002), and the tissue-specific

pattern of alternative splicing of TCF7L2 (Prokunina-Olsson et al., 2009).

Initial genome-wide analyses of tissue-specific alternative splicing have iden-

tified hundreds of tissue-specific splice isoforms and revealed high levels of

alternative splicing events in the human brain, liver, and testis (Xu,

Modrek & Lee, 2002; Yeo, Holste, Kreiman, & Burge, 2004). In addition,

recent high-throughput studies indicated that, among the tissues analyzed,

around 50% of alternative splicing isoforms exhibit differential expression

between tissues (Wang et al., 2008). These observations strongly suggest that

alternative splicing is subjected to tissue-specific regulation.

4. ALTERNATIVE SPLICING IN THE BRAIN

The human brain is an immensely complex system, containing more

than a trillion neurons, which are accurately connected to one another via
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the synapses. Neurons have an enormous biochemical complexity that

builds up the physical and biological basis of the humans’ superior cognitive

abilities. The outstanding complexity of the human brain depends on flex-

ible and precise regulation of its underlying transcriptome. Remarkably, the

human brain exhibits high levels of gene expression. It has been estimated

that around 50% of known protein-coding genes are expressed across the

human brain (International Human Genome Sequencing Consortium,

2004), and the expression patterns of these genes showed distinctive profiles

compared to other tissues in a study that included 45 different human tissues

(Roth et al., 2006). Moreover, using exon arrays (de la Grange, Gratadou,

Delord, Dutertre, & Auboeuf, 2010) and RNA-seq (Ramskold, Wang,

Burge, & Sandberg, 2009), several studies have suggested that the human

brain, together with the testes and kidney, has a higher gene expression levels

and transcriptome complexity than other tissues. Intriguingly, a recent study

from the Allen Human Brain Atlas explored the adult human brain trans-

criptome in unprecedented anatomical details and demonstrated significant

variation of transcriptional landscape across different brain regions. They

further investigated transcripts of 700 genes, previously shown to be differ-

entially expressed in the postsynaptic density, and found that 31% of

these transcripts exhibit highly specialized regional expression (Hawrylycz

et al., 2012). Another important recent study analyzed transcriptional

dynamics during human brain development from 57 postmortem human

brains ranging in age from 5.7 weeks postconception to 82 years and found

that over 80% of the genes examined are differentially regulated across brain

regions and/or over time (Kang et al., 2011).

Alternative splicing is a critical mechanism throughout the body, but

probably most important in the brain. The high level and complexity of gene

expression of the human brain transcriptome is accompanied with high

levels of alternative splicing. In fact, the brain contains the highest number

of alternative splicing events and highest occurrence of tissue-specific alter-

native splicing compared to other tissues (de la Grange et al., 2010; Xu,

Modrek, & Lee, 2002). These observations suggest that alternative splicing

can serve as a major mechanism contributing to the enormous levels of

molecular and cellular diversity observed in the brain. Indeed, alternative

splicing has been implicated in several neurodevelopmental and neurological

processes such as the development of neurons and the formation of func-

tional synapses (Norris & Calarco, 2012).

The human brain contains billions of neurons that communicate through

formation of highly specific and complex patterns of synaptic connections.
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The identity, development, and maintenance of these synaptic connections

are likely to be mediated through specific interaction between highly poly-

morphic pre- and postsynaptic cell adhesion molecules. The genome size is

not sufficient to achieve such diversity; nevertheless, alternative splicing may

represent the most versatile way to amplify the number of cell adhesion mol-

ecules to account for the complexity of synaptic connections. One of the

outstanding examples that support the functional importance of alternative

splicing in neuronal interactions is the extensive splicing of Neurexin genes.

Neurexins are a family of neural proteins that function as cell adhesion mol-

ecules during synaptogenesis and interneuronal signaling. Although there

are only three Neurexin genes in human genome, designated NRXN1,

NRXN2, andNRXN3, each of these genes contains multiple cassette exons

and one alternative promoter (Ullrich, Ushkaryov, & Sudhof, 1995).

Recent estimates indicate that thousands of Neurexin isoforms are generated

and regulated by alternative splicing (Treutlein, Gokce, Quake, & Sudhof,

2014). Particular presynaptic alternative Neurexin isoforms bind preferen-

tially to a postsynaptic Neuroligin receptor, which also undergoes alternative

splicing, although to a lesser extent (Scheiffele, Fan, Choih, Fetter, &

Serafini, 2000). Accordingly, it has been proposed that the differential bind-

ing affinity between the alternative isoforms of Neurexins and Neurologins

may lead to unique neuron identity that tunes the trans-synaptic signaling

properties (Boucard, Chubykin, Comoletti, Taylor, & Sudhof, 2005;

Chih, Gollan, & Scheiffele, 2006; Graf, Kang, Hauner, & Craig, 2006).

For instance, the binding of presynaptic β-Neurexins to the postsynaptic

Neuroligins is sufficient to trigger synaptic function (Scheiffele et al.,

2000). Notably, the interaction occurs only if exon 20 of β-neurexins is
excluded from the transcript (Ichtchenko et al., 1995). Although the precise

function of the exon 20 containing transcript is not well understood, it has

been speculated that the differential inclusion or exclusion of this exon may

control the formation of a functional synapse (Graveley, 2001). Moreover, a

recent study showed that constitutive inclusion of exon 20 decreased the

postsynaptic AMPA receptor levels and enhanced its endocytosis (Aoto,

Martinelli, Malenka, Tabuchi, & Sudhof, 2013). From these observations,

the authors suggested that alternative splicing of exon 20 controls the

postsynaptic AMPA receptor trafficking and further supported the role of

alternative splicing in trans-synaptic regulation of synaptic strength and

long-term plasticity.

Alternative splicing can also influence neural activity through expanding

the diversity of responses to neural signals. For example, calcium signaling
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has been previously reported to play a role in neuronal activity modulation

and in learning and memory formation (West et al., 2001). It was also

reported that calcium signaling regulates gene expression at the transcription

and alternative splicing levels (Alonso & Garcia-Sancho, 2011; Xie, 2008).

There are several examples of altered alternative splicing patterns in neurons

in response to variation in the intracellular levels of calcium. Increased inter-

nal levels of calcium cause the exclusion of exon 5 and exon 21 of NMDA

receptor type 1 in hippocampal neurons (Han, Yeo, An, Burge, &

Grabowski, 2005; Zhu et al., 2001). The inclusion or exclusion of these

exons influences the localization and trafficking of the NMDA receptor

to regulates synaptic strength and plasticity (Lee et al., 2007).

5. BRAIN-SPECIFIC SPLICING REGULATION

Alternative splicing requires highly accurate and orchestrated regula-

tion especially in the nervous system, where subtle changes in splicing out-

puts may lead to profound effects on properties of the many different types of

neurons (Lipscombe, 2005). Alternative splicing is primarily regulated by

combinatorial interaction of ubiquitously expressed splicing factors such

as hnRNPs and ER proteins (Black, 2003; Chen & Manley, 2009;

Graveley, 2000). Therefore, tissue-specific splicing events are, at least par-

tially, achieved by the differential expression of these factors. During the last

years, several tissue-specific splicing factors have been identified especially in

the brain, including NOVA1, NOVA2, nPTB, Fox1, and Fox2 (Boutz

et al., 2007; Dredge, Stefani, Engelhard, & Darnell, 2005; Fogel et al.,

2012; Li, Lee, & Black, 2007; Ule et al., 2005; Zhang et al., 2008). Because

they are exclusively expressed in the nervous system and control the choice

of mRNAs expressed and thereby influence RNA metabolism, processing,

localization, and expression, these factors are considered as key contributors

to spatial–temporal control of neuronal RNA functions (Doyle & Kiebler,

2011; Kusek et al., 2012; Vessey et al., 2012). Therefore, extended under-

standing of their functions, sites of action, and regulation may contribute to

better understanding for the functional and physiological complexity of the

nervous system. In fact, recent technologies that employ cross-linking and

immunoprecipitation followed by high-throughput sequencing (HITS-

CLIP) have provided valuable insights on the function of some tissue-

specific splicing factors, among themost studied are NOVA and PTB/nPTB

(Licatalosi et al., 2008; Xue et al., 2009).
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NOVAs are a family of RNA-binding proteins that were discovered as a

target antigen for the autoantibodies in patients with paraneoplastic

opsoclonus-myoclonus ataxia syndrome, a rare neurologic disease that cau-

ses defects in the motor systems (Buckanovich, Posner, & Darnell, 1993;

Luque et al., 1991; Yang, Yin, &Darnell, 1998). In human, theNOVA fam-

ily consists of two proteins designated NOVA1 and NOVA2. The amino

acid sequences of the two proteins are highly similar and contain three

KH-type RNA-binding domains (Buckanovich & Darnell, 1997; Yang

et al., 1998). NOVA1 and NOVA2 were among the first known tissue-

specific alternative splicing regulators. They bind to sequences in nascent

transcripts containing UCAYmotifs (Dredge &Darnell, 2003). The expres-

sion of NOVA1 and NOVA2 is highly tissue specific. While NOVA2

appears to be primarily expressed in the neocortex, NOVA1 is exclusively

expressed in the subcortical regions and in the postmitotic neurons of the

central nervous system (Buckanovich et al., 1993; Racca et al., 2010;

Yang et al., 1998; Yano, Hayakawa-Yano, Mele, & Darnell, 2010). The first

insights into NOVA1 function came from analysis of NOVA knockout

mice; in those mice, NOVA1 was shown to be essential for neuronal via-

bility through regulating alternative splicing ( Jensen et al., 2000). Of note,

the binding position of NOVA within the nascent transcript is a key deter-

minant for splicing outcomes. In other words, NOVA binding within

regions located upstream of alternative exons causes their exclusion, while

binding to downstream sites induced alternative exon inclusion (Ule

et al., 2006). Subsequent genome-wide studies have supported the regula-

tory role of NOVA proteins in various alternative splicing events and iden-

tified a NOVA regulatory network active in transcripts associated with

functions in the synapse, in formation of neuromuscular junctions, in motor

neuron function, in Reelin signaling, and in neural migration (Park &

Curran, 2010; Ruggiu et al., 2009; Ule et al., 2005; Yano et al., 2010).

Recently, HITS-CLIP analysis and advanced computational approaches

led to the identification of �700 alternative exons regulated by NOVA

in mouse brain (Licatalosi et al., 2008; Zhang et al., 2010). In line with

the previous findings, these studies demonstrated that NOVA2 null mice

showed major splicing defects particularly in the neocortex, where NOVA2

is exclusively expressed. Intriguingly, a more recent study demonstrated

that NOVA-dependent splicing regulation induced dramatic changes in

the abundance of several synaptic proteins implicated in epilepsy, likely

through inclusion of cryptic exons and nonsense-mediated decay (NMD)

(Eom et al., 2013).
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nPTB (also called PTB2) is another well-studied neuronal RNA-

binding protein that contains four RNA-binding motifs. PTB, an nPTB

paralog, is among the first identified alternative splicing regulators

(Garcia-Blanco, Jamison, & Sharp, 1989). Generally, PTB and nPTB func-

tion as splicing silencers by binding to the polypyrimidine tract near the 30

end of introns. The binding of PTB to this region interferes with the assem-

bly of the spliceosome, which ultimately leads to the exclusion of down-

stream exons (Sharma, Falick, & Black, 2005). In spite of their high

similarity in polypeptide sequence and RNA-binding specificity, PTB

and nPTB are expressed in a mutually exclusive pattern in different brain

parts (Boutz et al., 2007). While PTB is expressed in neuronal precursors,

nPTB is specifically expressed in differentiated neurons (Boutz et al.,

2007; Makeyev, Zhang, Carrasco, & Maniatis, 2007). This fascinating

pattern of reciprocal expression is achieved by a cross-regulatory mechanism

where, in neuronal precursors, PTB induces skipping of exon 10 in

nPTB, thereby producing a transcript degraded by NMD (Spellman,

Llorian, & Smith, 2007). On the other hand, differentiated neurons express

miR-124, which was reported to mediate PTB downregulation, and

consequently relieves the expression of nPTB (Makeyev et al., 2007). These

observations suggest that these proteins have different physiological

functions during neuronal differentiation (Boutz et al., 2007). In fact,

upregulation of nPTB and downregulation of PTB are suggested to explain

25% of neuron-specific alternative splicing events (Boutz et al., 2007).

Taken together, these observations provide a strong evidence for the funda-

mental role of alternative splicing regulation in the function and develop-

ment of the brain and nervous system.

6. TRANSCRIPTION-COUPLED REGULATION
OF ALTERNATIVE SPLICING

Alternative splicing is not only regulated through trans-acting splicing

factors but also by processes linked to the transcriptionmachinery. Recently,

several lines of research have established that splicing is physically and func-

tionally coupled with transcription, and that this coupling may influence

alternative splicing regulation and other downstream RNA processing

mechanisms (Kornblihtt et al., 2013; Moore & Proudfoot, 2009;

Shukla & Oberdoerffer, 2012). This implies that RNA processing factors

are recruited to the emerging RNA transcript during transcription and that

splicing occurs cotranscriptionally. Two models have been suggested to
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explain the coupling between the transcription unit and the splicingmachin-

ery (Kornblihtt, 2006). The first model is called recruitment coupling where

the CTD of RNA pol II plays a major role in cotranscriptional coupling

between RNA biogenesis and processing (Munoz, de la Mata, &

Kornblihtt, 2010). In this model, the CTD of RNA pol II offers a flexible

landing pad for various transcription and splicing factors and facilitates their

recruitment to the emerging nascent RNA transcript (Phatnani &Greenleaf,

2006). This recruitment may influence alternative splicing regulation by the

ability of different transcription factors to recruit distinct splicing factors

(Cramer et al., 1999). The second model is called the kinetic coupling

(Carrillo Oesterreich, Bieberstein, & Neugebauer, 2011). This model pro-

poses that RNA pol II-mediated elongation rate influences the regulation of

alternative splicing and splicing outcomes by affecting the period during

which splice signals are exposed to the splice factors in the growing nascent

RNA transcript (Perales & Bentley, 2009). For example, if the RNA pol II

elongation rate is high due to a strong upstream promoter or an open chro-

matin structure, it increases the possibility that weak 30 splice sites around

cassette exons will be outcompeted by an already transcribed strong 30 splice
site downstream. In comparison, low RNA pol II processivity will provide

enough time for the splicing machinery to recognize any weak 30 splice sites
leading to the inclusion of a cassette exon (de la Mata et al., 2003). There are

several lines of evidence that support this model (de la Mata, Lafaille, &

Kornblihtt, 2010; Dutertre et al., 2010; Schmidt et al., 2011). For example,

it has been demonstrated that slow transcription of the fibronectin gene

(FN1) leads to the inclusion of the fibronectin extra domain 1 (ED1) exon

which is preceded by a weak 30 splice site. However, when transcription

elongation rate was higher, this exon was excluded (Kadener, Fededa,

Rosbash, & Kornblihtt, 2002).

More recent global studies have revealed a pausing of RNA pol II near

the 30 end of intron-containing genes. It is suggested that the pausing rep-

resents a check point to allow the splicing machinery to cope with transcrip-

tion (Alexander, Innocente, Barrass, & Beggs, 2010). There is also increasing

evidence that chromatin status and histone modifications also play a key role

in alternative splicing regulation (Allo et al., 2010; Luco, Allo, Schor,

Kornblihtt, &Misteli, 2011). The outcome of alternative splicing might also

be affected by other posttranscriptional mechanisms such as RNA editing,

mRNA decay, and microRNA binding (Graveley, 2009; Hughes, 2006;

Luco & Misteli, 2011).
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7. COTRANSCRIPTIONAL AND POSTTRANSCRIPTIONAL
SPLICING

Transcription and pre-mRNA splicing are performed by different

molecular complexes and were initially considered as two independent

and separate processes. However, over the past decade, there has been an

accumulation of evidence indicating that transcription and splicing are

tightly coupled processes, and that splicing frequently occurs cot-

ranscriptionally. Cotranscriptional splicing means that the splicing machin-

ery is active, while the nascent RNA molecule is still being produced by

the elongating RNA pol II, prior to the initiation of the polyadenylation

process. Cotranscriptional splicing therefore occurs while the pre-mRNA

is still bound to the chromatin. An illustration of cotranscriptional splicing

is depicted in Fig. 5.4. Initial support for cotranscriptional splicing came

from experiments using electron microscopy of D. melanogaster embryonic

transcription units, visualizing lariat intron formation and associated ribo-

nucleoprotein splicing complexes on transcripts still attached to the

DNA (Beyer & Osheim, 1988). Additional evidence came from studies

using immunofluorescent microscopy, providing proof of spliceosome

assembly at sites of active transcription (Misteli, Caceres, & Spector,
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Figure 5.4 Cotranscriptional splicing. As the newly synthesized RNA emerges from RNA
pol II, the splicing factors are recruited to the nascent transcript and the introns are
excised prior to completion of the transcription process.
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1997; Neugebauer & Roth, 1997). RNA-FISH targeted to exon–exon

junctions also showed partially spliced mRNA located at their DNA tem-

plate, indicating that pre-mRNA splicing occurs prior to transcript release

(Zhang, Taneja, Singer, & Green, 1994). Further studies identified spliced

mRNA, spliceosome components, and splicing factors associated with chro-

matin at transcriptionally active genes (Kotovic, Lockshon, Boric, &

Neugebauer, 2003; Lacadie & Rosbash, 2005; Listerman, Sapra, &

Neugebauer, 2006; Pandya-Jones & Black, 2009). The current consensus

is that splicing primarily occurs cotranscriptionally, where introns are

removed prior to completion of transcription, as opposed to posttranscrip-

tional splicing, where introns are removed from a fully transcribed template.

However, the data show evidence for both processes occurring in human

cells, and although several recent studies support cotranscriptional splicing

as a general phenomenon (Ameur et al., 2011; Khodor et al., 2011;

Tilgner et al., 2012), there is also clear evidence that splicing can occur post-

transcriptionally (Bauren & Wieslander, 1994; Brody et al., 2011;

Wetterberg, Bauren, & Wieslander, 1996), and that cotranscriptional splic-

ing rates can vary within individual genes (Tilgner et al., 2012). There are

also some clear examples of how posttranscriptional splicing can provide an

efficient way to regulate nuclear export and translation of transcripts

(Boothby, Zipper, van der Weele, & Wolniak, 2013; Denis et al., 2005).

Analyses of splicing patterns in chromatin-associated and chromatin-free

RNA in the nucleoplasm of human cells reveal that introns adjacent to con-

stitutive exons are mostly cotranscriptionally spliced and that these introns

are typically removed in a 50–30 order. Meanwhile, introns close to the 30

end of transcripts are more likely to be posttranscriptionally excised

(Pandya-Jones & Black, 2009; Tilgner et al., 2012). Internal introns harbor-

ing alternative exons are also removed during transcription, but with vari-

able efficiencies (de laMata et al., 2010; Pandya-Jones & Black, 2009). These

observations were recently validated using single-molecule imaging of tran-

scriptionally coupled and uncoupled splicing (Vargas et al., 2011). These

data, in addition to the fact that cotranscriptional recruitment of SR proteins

increases splicing efficiency (Das et al., 2007), suggest a regulatory potential

of cotranscriptional splicing. The kinetic coupling between transcription

and splicing has been shown by several studies. Analysis of chromatin-

associated nascent transcripts shows that RNA pol II pauses at terminal exons

(Carrillo Oesterreich et al., 2011). Terminal exons are typically short, and

the authors therefore suggest that polymerase pausing occurs to allow suffi-

cient time for intron removal before transcript release. Another study shows
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a general RNA pol II pausing at the 30 end of introns in reporter genes, coin-
ciding with splicing factor recruitment (Alexander et al., 2010). All these

indirect observations indicate that cotranscriptional splicing represents the

rule rather than the exception. As shown below, this assumption is now

supported by direct estimates of global analyses of cotranscriptional splicing.

8. GLOBAL ANALYSIS OF Pre-mRNA SPLICING

With the ability to perform global studies of the human transcriptome,

it has become clear that there is an enormous diversity of alternative tran-

scripts generated by alternative splicing. The first global studies using arrays

designed to detect splicing events gave the first insight into this diversity

(Calarco, Saltzman, Ip, & Blencowe, 2007; Pan et al., 2004). The introduc-

tion of RNA-seq, representing an even more unbiased view of the RNA in

the cell, has further expanded the repertoire of alternative splice variants and

as well as alternative starting and end sites of transcripts. At the same time,

deep sequencing studies using targeted enrichment of specific transcripts

have shown that the transcript diversity detected in a typical RNA-seq

experiment is far from complete and that additional alternative splice variants

are present at very low levels and can only be detected using extremely deep

sequencing (Halvardson, Zaghlool, & Feuk, 2013; Mercer et al., 2012).

However, the goal of a global RNA-seq experiment is to reconstruct the

best possible representation of the transcripts present in the sequenced sam-

ple, i.e., to estimate both the qualitative (which transcripts and isoforms) and

quantitative (expression levels) presence of RNAmolecules, normalized in a

way that samples can be compared. The relative importance of gene expres-

sion levels and different transcript isoforms to both function and total tran-

script abundance in cells has long been a topic of discussion. It has been

shown that differential splicing and differential expression may be used

for regulation of different biological processes (Dittmar et al., 2012) and that

genes regulated by alternative splicing may often be different from genes reg-

ulated by expression level differences (Pan et al., 2004). However, recent

data from ENCODE indicate that variability of gene expression contributes

more than variability of splicing ratios to the variability in transcript abun-

dance across cell lines (Djebali et al., 2012; Gonzalez-Porta, Calvo,

Sammeth, & Guigo, 2012). It is not yet clear whether the same is true for

different cell types in the human brain. It is important to consider that there

are many regulatory processes in the cell exerting their effect at the level of

RNA, which will affect the mRNA transcripts that are eventually used for
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translation. In general, the difficulty of obtaining high-quality brain tissue,

and the limited possibilities to perform in vivo studies in brain, means that we

have a relatively limited understanding of the RNA processing regulation in

brain as compared to other tissues. At the same time, the brain seems to have

more regulation at the level of RNA, with more genes expressed, more

splice isoforms, and more RNA editing, compared with other human tis-

sues. In order to describe the transcriptome, it is therefore important to con-

sider how the RNA to be sequenced is extracted. Furthermore, the

computational analysis of the resulting RNA-seq data for detection of tran-

script isoforms will also have an effect on the final results. Overall, the main

experimental steps that will influence the outcome of RNA-seq analyses are

the way the samples are prepared, how the RNA is sequenced, and how the

resulting data are analyzed. Here, we will go into further detail to describe

different steps in the preparation of RNA and analysis of the data.

9. THE INFLUENCE OF RNA EXTRACTION METHODS
ON TRANSCRIPTOME ANALYSIS

Preparation of RNA for downstream analysis is a crucial decision that

will have important implications for the results of any analysis performed,

whether that is based on PCR, targeted sequencing, or global RNA

sequencing. The RNA preparation should be guided by what hypothesis

to test or what question to address. Since RNA goes through multiple

processing steps, a cell contains a mixture of RNA molecules at different

levels of maturation. This implies that analysis of, e.g., splicing and alterna-

tive transcripts will give different results depending on what RNA popula-

tion is investigated. To attain a higher-resolution view of specific pools of

RNA within the cell, a number of different protocols have been developed

to fractionate the cell or to extract RNA associated with certain subcellular

structures. The most common strategy for RNA-seq is to isolate the

polyadenylated fraction of RNA, representing mature transcripts that have

gone through capping and splicing. Most of the polyadenylated RNA mol-

ecules will be present in the cytosol, but some will remain in the nucleus

awaiting transport. Normally, poly-A is selected by capture with synthesized

poly-T oligonucleotides in a column or by magnetic beads. If there is very

limited material, e.g., single cell sequencing, the poly-A RNA is instead

amplified using a poly-T primer (Picelli et al., 2014). This is the most com-

monly used approach as it focuses on mRNA that is mature and therefore

regarded as representative of the transcripts that will be used for translation,
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i.e., better reflecting the protein production. However, it is clear that the

situation is more complex as many mRNAs are degraded or inhibited from

being translated (Valencia-Sanchez, Liu, Hannon, & Parker, 2006), and the

correlation between mRNA and protein is therefore far from perfect (Guo

et al., 2008). Sequencing of poly-A RNA also simplifies analysis of splicing

events and alternative transcripts as the intronic sequences have been

removed.

Since not all RNA molecules in a cell are polyadenylated, an alternative

approach that is commonly used is to sequence total RNA. With this

approach, there is less bias in terms of which RNA molecules are included,

except that most protocols, either at the stage of extraction or at the stage of

library preparation, will lead to exclusion of small RNAs. The extraction of

total RNA will also require an additional step to remove ribosomal RNA

prior to RNA-seq, something that is not necessary in poly-A based

RNA-seq. Two major reasons make total RNA sequencing less attractive

for RNA-seq. First, there are significant amounts of pre-mRNA and nascent

RNAmolecules present in the cell, covering a large fraction of the genome.

This means that a large fraction of sequence reads will map to intronic

regions, making the approach less attractive for expression analysis

(Ameur et al., 2011). It is also challenging to identify splice junctions in total

RNA-seq data, as only a minor fraction of sequence reads will originate from

mature transcripts. Total RNA-seq is therefore excellent for providing a

global view of all the RNA present in the cell and works well for analysis

of nascent transcripts but is less suitable for analysis of differential expression

levels and alternative transcript detection.

In addition to the standard protocols of poly-A RNA-seq and total

RNA-seq, several protocols have been developed to gain additional insight

into specific RNA populations in the cell. One commonly used approach is

to divide the nuclear and cytosolic RNA fractions and sequence them sep-

arately. The nuclear RNA will then primarily represent nascent transcripts

and the cytosolic fraction will primarily contain the mRNA. The cytosolic

fraction will also contain most of the rRNA, making it necessary to perform

either rRNA depletion or poly-A selection of the cytosolic fraction to study

mRNA. One challenge of using poly-A sequencing that is circumvented

using cytosolic RNA-seq is that poly-A selection is not perfect, and there

may exist a background of pre-mRNA leading to noise in the analysis. This

background is especially pronounced in poly-A RNA-seq data from brain

samples (Zaghlool et al., 2013). The reason this problem is more apparent

in the brain is that many neuronal genes are very long, with long introns,
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and have very high levels of expression in the brain. The ratio of total RNA

to mRNA for these transcripts is therefore very high, and even a low total

level of background in poly-A selection may lead to significant amounts of

sequence reads mapping to introns in the final results. An extreme example

of this is shown in Fig. 5.5, which also shows how extraction of cytosolic

RNA diminishes this problem. Another factor that differentiates poly-A

selected and cytosolic RNA is that some introns seem to be spliced only after

polyadenylation is completed (Bhatt et al., 2012). These introns will then be

included in poly-A selected RNA, but will not be included in the cytosolic

RNA fraction. Separating the nuclear fractions is excellent for studies of

splicing dynamics and provides a view of which transcripts that are fully

processed and exported from the nucleus (Bhatt et al., 2012; Tilgner

et al., 2012).

Further refinement of subcellular populations of RNA may be per-

formed by isolation of specific protein complexes, with subsequent extrac-

tion of RNA molecules associated with them. An approach to study RNA

that is undergoing transcription or maturation is to extract RNA associated

with the chromatin. Once the splicing and polyadenylation processes are

completed, the mRNA will be released from the chromatin for export

out of the nucleus. By studying both the chromatin-bound and

nonchromatin-bound nuclear RNA, it is possible to gain further insight into

the RNA processing and how it is linked to nuclear export (Djebali et al.,

2012). The analysis of chromatin-bound RNA is also an excellent approach

for investigation of the splicing process, as was shown in the ENCODE pro-

ject (Pandya-Jones et al., 2013; Tilgner et al., 2012).

Once the RNA is exported to the cytosol, there are still several processes

that will regulate which RNA transcripts that are eventually used for trans-

lation, including regulation by microRNAs, NMD, and differential ribo-

some recruitment. In order to facilitate the analysis of the subset of

transcripts undergoing translation, methods have been developed to isolate

the ribosome-associated RNA (Masek, Valasek, & Pospisek, 2011). By

comparing the ribosome-associated RNA with the remaining cytosolic

RNA, it is been determined that splicing has important effects also for

the transcripts that are actually translated. Using an approach called

Frac-seq (for subcellular fractionation and high-throughput RNA sequenc-

ing), Sterne-Weiler and colleagues partitioned the mRNA isoforms

between the cytosolic and the polyribosome-associated fractions and were

able to show that 30% of alternative splicing events exhibit isoform-specific

polyribosome associations (Sterne-Weiler et al., 2013).
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While the techniques described above will work also in tissue samples,

including brain, there are additional strategies that can be used only in model

systems and cell lines. These include, for example, protocols where modified

nucleotides are introduced to perform time course studies of RNA tran-

scription rates (Marras, Gold, Kramer, Smith, & Tyagi, 2004; Singh &

Padgett, 2009), RNA splicing rates (Singh & Padgett, 2009), and RNA

turnover (Munchel, Shultzaberger, Takizawa, & Weis, 2011). One way

to study nascent transcripts is called native elongating transcript sequencing

which relies on the stability of the DNA–RNA–RNAP ternary complex.

By expressing a FLAG-tagged RNA polymerase II in yeast, the authors used

an antibody to pull down the polymerase with attached nascent RNA mol-

ecules, which could then be sequenced (Churchman & Weissman, 2011).

Another approach limited to cell lines is global run-on sequencing combined

with a next-generation sequencing readout, which is a way to specifically

sequence actively transcribed genes in a genome (Core, Waterfall, &

Lis, 2008).

10. COMPUTATIONAL METHODS TO STUDY SPLICING
DYNAMICS

Analyses of data from RNA-seq experiments enable us to investigate

RNA processing and splicing on a global scale. A typical RNA-seq exper-

iment generates several million reads of lengths around 100–200 bp, and

these reads represent the diversity of RNA molecules present in the sample.

The majority of computational tools developed for RNA-seq data are

focused on analyzing the read densities over exons, aiming to quantify

expression levels of genes and splice isoforms. However, instead of analyzing

read densities over the introns, it is possible to also obtain information on the

levels of nascent transcription and cotranscriptional splicing from the same

experiment. The foundation for such analyses of intronic RNAs is the obser-

vation that nascent transcripts in combination with cotranscriptional splicing

give rise to a 50–30 slope across each intron, generating a “saw-tooth”-like

pattern over the full-length transcript (Ameur et al., 2011; Fig. 5.6). These

50–30 slopes are more apparent for longer introns, since they have more time

to accumulate nascent transcripts at the 50 ends of introns before they are

spliced out. Since many of the highly expressed genes in the human brain

contain a large number of exons separated by very long introns, this type

of analysis is particularly suitable for studying nascent transcript formation

in samples originating from the brain. Consistent with this, the percentage
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of intronic RNA-seq reads is higher in brain samples compared to liver

(Ameur et al., 2011). It is important to note that this does not necessarily

mean that brain tissue contains a higher proportion of nascent transcription

and cotranscriptional splicing as compared to other tissues. Rather, it is just a

reflection that the brain is actively expressing genes with long introns, which

makes these processes easier to study by RNA-seq in that particular tissue.

Recently, a number of computational methods have been developed for

studying cotranscriptional splicing rates by analysis of RNA-seq data

(Brugiolo, Herzel, & Neugebauer, 2013). What is common between all

these methods is that they are making use of intronic read coverage to quan-

tify the levels of cotranscriptional splicing. The cotranscriptional splicing

rates can be calculated for each individual exon in the genome, either by

calculating a score based on the coverage in intronic regions surrounding

each exon (Ameur et al., 2011) or by also taking into account the reads that

are mapping to exon junctions and borders (Tilgner et al., 2012). The esti-

mation of the frequency of cotranscriptional splicing in human cells deter-

mined by these global computational methods is similar in several

independent studies using different analytical approaches, all arriving at a

cotranscriptional splicing frequency of 0.75–0.85 (Brugiolo et al., 2013).

This frequency is further supported by analysis in other eukaryotes

(Carrillo Oesterreich, Preibisch, & Neugebauer, 2010). Interestingly, sev-

eral of these studies indicate that constitutive splicing is more

cotranscriptional than alternative splicing.

Potentially, the intronic reads from total RNA-seq experiments can be

used also for other purposes than just for the study of cotranscriptional splic-

ing. Methods are being developed to also investigate other transcriptional

events by exploiting the information that is contained in the intronic

RNA-seq data, including rates of pre-mRNA synthesis, intron degradation,

and mRNA decay (Gray et al., 2014). These new computational methods

could make it possible to study the rates of ongoing transcription and splicing

Figure 5.6—Cont'd total RNA-seq data give rise to a typical saw-tooth pattern across
genes that are actively transcribed. The gradient of RNA across the introns can be
explained by a large number of nascent transcripts in various stages of completion.
The pattern is repeated for each intron because the nascent transcript is spliced very
rapidly after the polymerase completes transcribing each intron. The sequence read
coverage is comparatively higher for exons, as the RNA-seq is measuring both the pool
of nascent transcripts and the pool of mature polyadenylated RNA. Figure adapted from
Ameur et al. (2011).
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in relation to other RNA processing dynamics by a single RNA-seq

experiment.

Similar computational strategies can also be used to study RNA-binding

proteins that bind to intronic sequences and regulate splicing. By CLIP-seq

experiments, the binding profiles of FUS and TDP-43, two RNA-binding

proteins linked to amyotrophic lateral sclerosis and frontotemporal lobar

degeneration, were recently investigated in mouse and human brain

(Lagier-Tourenne et al., 2012; Rogelj et al., 2012). In both cases, a saw-

tooth pattern was observed over FUS-regulated genes, indicating that

FUS is binding to intronic sequences within the newly formed transcript

and remains bound until cotranscriptional splicing of the intron occurs.

TDP-43, on the other hand, was mainly bound to other targets and did

not show any clear evidence of cotranscriptional deposition.

As new techniques are constantly developed, we will certainly see more

applications that can be targeted also to increase our understanding of the

complex brain transcriptome. The revolution in single cell biology will

make it possible to obtain cells from patients’ brains as a side product from

other medical procedures where thin needle biopsies are utilized. The

advances in long-read sequencing will also enhance the ability to sequence

across intron–exon boundaries and will provide better insight into alterna-

tive transcript variants and splicing mechanisms. We are at the start of very

exciting times in research of the human brain transcriptome science.

REFERENCES
Alexander, R. D., Innocente, S. A., Barrass, J. D., & Beggs, J. D. (2010). Splicing-dependent

RNA polymerase pausing in yeast. Molecular Cell, 40(4), 582–593.
Allo, M., Schor, I. E., Munoz, M. J., de la Mata, M., Agirre, E., Valcarcel, J., et al. (2010).

Chromatin and alternative splicing. Cold Spring Harbor Symposia on Quantitative Biology,
75, 103–111.

Alonso, M. T., & Garcia-Sancho, J. (2011). Nuclear Ca(2+) signalling. Cell Calcium, 49(5),
280–289.

Ameur, A., Zaghlool, A., Halvardson, J., Wetterbom, A., Gyllensten, U., Cavelier, L., et al.
(2011). Total RNA sequencing reveals nascent transcription and widespread
co-transcriptional splicing in the human brain. Nature Structural & Molecular Biology,
18(12), 1435–1440.

Aoto, J., Martinelli, D. C., Malenka, R. C., Tabuchi, K., & Sudhof, T. C. (2013). Presyn-
aptic neurexin-3 alternative splicing trans-synaptically controls postsynaptic AMPA
receptor trafficking. Cell, 154(1), 75–88.

Ares, M., Jr., Grate, L., & Pauling, M. H. (1999). A handful of intron-containing genes pro-
duces the lion’s share of yeast mRNA. RNA, 5(9), 1138–1139.

Bauren, G., & Wieslander, L. (1994). Splicing of Balbiani ring 1 gene pre-mRNA occurs
simultaneously with transcription. Cell, 76(1), 183–192.

Beyer, A. L., & Osheim, Y. N. (1988). Splice site selection, rate of splicing, and alternative
splicing on nascent transcripts. Genes & Development, 2(6), 754–765.

117Splicing in the Human Brain



Bhatt, D. M., Pandya-Jones, A., Tong, A. J., Barozzi, I., Lissner, M. M., Natoli, G., et al.
(2012). Transcript dynamics of proinflammatory genes revealed by sequence analysis
of subcellular RNA fractions. Cell, 150(2), 279–290.

Black, D. L. (2000). Protein diversity from alternative splicing: A challenge for bioinformatics
and post-genome biology. Cell, 103(3), 367–370.

Black, D. L. (2003). Mechanisms of alternative pre-messenger RNA splicing. Annual Review
of Biochemistry, 72, 291–336.

Boothby, T. C., Zipper, R. S., van derWeele, C. M., &Wolniak, S. M. (2013). Removal of
retained introns regulates translation in the rapidly developing gametophyte of Marsilea
vestita. Developmental Cell, 24(5), 517–529.

Boucard, A. A., Chubykin, A. A., Comoletti, D., Taylor, P., & Sudhof, T. C. (2005).
A splice code for trans-synaptic cell adhesion mediated by binding of neuroligin 1 to
alpha- and beta-neurexins. Neuron, 48(2), 229–236.

Boutz, P. L., Stoilov, P., Li, Q., Lin, C. H., Chawla, G., Ostrow, K., et al. (2007). A post-
transcriptional regulatory switch in polypyrimidine tract-binding proteins reprograms
alternative splicing in developing neurons. Genes & Development, 21(13), 1636–1652.

Brody, Y., Neufeld, N., Bieberstein, N., Causse, S. Z., Bohnlein, E.M., Neugebauer, K.M.,
et al. (2011). The in vivo kinetics of RNA polymerase II elongation during
co-transcriptional splicing. PLoS Biology, 9(1), e1000573.

Brugiolo, M., Herzel, L., & Neugebauer, K. M. (2013). Counting on co-transcriptional
splicing. F1000Prime Reports, 5, 9.

Buckanovich, R. J., & Darnell, R. B. (1997). The neuronal RNA binding protein Nova-1
recognizes specific RNA targets in vitro and in vivo.Molecular and Cellular Biology, 17(6),
3194–3201.

Buckanovich, R. J., Posner, J. B., & Darnell, R. B. (1993). Nova, the paraneoplastic Ri anti-
gen, is homologous to anRNA-binding protein and is specifically expressed in the devel-
oping motor system. Neuron, 11(4), 657–672.

Buj-Bello, A., Furling, D., Tronchere, H., Laporte, J., Lerouge, T., Butler-Browne, G. S.,
et al. (2002). Muscle-specific alternative splicing of myotubularin-related 1 gene is
impaired in DM1 muscle cells. Human Molecular Genetics, 11(19), 2297–2307.

Calarco, J. A., Saltzman, A. L., Ip, J. Y., & Blencowe, B. J. (2007). Technologies for the
global discovery and analysis of alternative splicing. Advances in Experimental Medicine
and Biology, 623, 64–84.

Carrillo Oesterreich, F., Bieberstein, N., & Neugebauer, K. M. (2011). Pause locally, splice
globally. Trends in Cell Biology, 21(6), 328–335.

Carrillo Oesterreich, F., Preibisch, S., & Neugebauer, K. M. (2010). Global analysis of
nascent RNA reveals transcriptional pausing in terminal exons. Molecular Cell, 40(4),
571–581.

Chen, M., & Manley, J. L. (2009). Mechanisms of alternative splicing regulation: Insights
from molecular and genomics approaches. Nature Reviews. Molecular Cell Biology,
10(11), 741–754.

Chih, B., Gollan, L., & Scheiffele, P. (2006). Alternative splicing controls selective trans-
synaptic interactions of the neuroligin-neurexin complex. Neuron, 51(2), 171–178.

Churchman, L. S., & Weissman, J. S. (2011). Nascent transcript sequencing visualizes tran-
scription at nucleotide resolution. Nature, 469(7330), 368–373.

Core, L. J., Waterfall, J. J., & Lis, J. T. (2008). Nascent RNA sequencing reveals widespread
pausing and divergent initiation at human promoters. Science, 322(5909), 1845–1848.

Cramer, P., Caceres, J. F., Cazalla, D., Kadener, S., Muro, A. F., Baralle, F. E., et al. (1999).
Coupling of transcription with alternative splicing: RNA pol II promoters modulate
SF2/ASF and 9G8 effects on an exonic splicing enhancer.Molecular Cell, 4(2), 251–258.

118 Ammar Zaghlool et al.



Das, R., Yu, J., Zhang, Z., Gygi, M. P., Krainer, A. R., Gygi, S. P., et al. (2007). SR proteins
function in coupling RNAP II transcription to pre-mRNA splicing. Molecular Cell,
26(6), 867–881.

de la Grange, P., Gratadou, L., Delord, M., Dutertre, M., & Auboeuf, D. (2010). Splicing
factor and exon profiling across human tissues. Nucleic Acids Research, 38(9), 2825–2838.

de la Mata, M., Alonso, C. R., Kadener, S., Fededa, J. P., Blaustein, M., Pelisch, F., et al.
(2003). A slow RNA polymerase II affects alternative splicing in vivo. Molecular Cell,
12(2), 525–532.

de la Mata, M., Lafaille, C., & Kornblihtt, A. R. (2010). First come, first served revisited:
Factors affecting the same alternative splicing event have different effects on the relative
rates of intron removal. RNA, 16(5), 904–912.

Del Gatto-Konczak, F., Olive, M., Gesnel, M. C., & Breathnach, R. (1999). hnRNP A1
recruited to an exon in vivo can function as an exon splicing silencer. Molecular and Cel-
lular Biology, 19(1), 251–260.

Denis, M. M., Tolley, N. D., Bunting, M., Schwertz, H., Jiang, H., Lindemann, S., et al.
(2005). Escaping the nuclear confines: Signal-dependent pre-mRNA splicing in
anucleate platelets. Cell, 122(3), 379–391.

Dittmar, K. A., Jiang, P., Park, J. W., Amirikian, K., Wan, J., Shen, S., et al. (2012).
Genome-wide determination of a broad ESRP-regulated posttranscriptional network
by high-throughput sequencing. Molecular and Cellular Biology, 32(8), 1468–1482.

Djebali, S., Davis, C. A., Merkel, A., Dobin, A., Lassmann, T., Mortazavi, A., et al. (2012).
Landscape of transcription in human cells. Nature, 489(7414), 101–108.

Doyle, M., & Kiebler, M. A. (2011). Mechanisms of dendritic mRNA transport and its role
in synaptic tagging. EMBO Journal, 30(17), 3540–3552.

Dredge, B. K., & Darnell, R. B. (2003). Nova regulates GABA(A) receptor gamma2 alter-
native splicing via a distal downstream UCAU-rich intronic splicing enhancer.Molecular
and Cellular Biology, 23(13), 4687–4700.

Dredge, B. K., Stefani, G., Engelhard, C. C., & Darnell, R. B. (2005). Nova autoregulation
reveals dual functions in neuronal splicing. EMBO Journal, 24(8), 1608–1620.

Dutertre, M., Sanchez, G., De Cian, M. C., Barbier, J., Dardenne, E., Gratadou, L., et al.
(2010). Cotranscriptional exon skipping in the genotoxic stress response. Nature Struc-
tural & Molecular Biology, 17(11), 1358–1366.

Ellis, J. D., Barrios-Rodiles, M., Colak, R., Irimia, M., Kim, T., Calarco, J. A., et al. (2012).
Tissue-specific alternative splicing remodels protein-protein interaction networks.
Molecular Cell, 46(6), 884–892.

Eom, T., Zhang, C., Wang, H., Lay, K., Fak, J., Noebels, J. L., et al. (2013). NOVA-
dependent regulation of cryptic NMD exons controls synaptic protein levels after
seizure. Elife, 2, e00178.

Flicek, P., Ahmed, I., Amode, M. R., Barrell, D., Beal, K., Brent, S., et al. (2013). Ensembl
2013. Nucleic Acids Research, 41(Database issue), D48–D55.

Fogel, B. L., Wexler, E., Wahnich, A., Friedrich, T., Vijayendran, C., Gao, F., et al. (2012).
RBFOX1 regulates both splicing and transcriptional networks in human neuronal devel-
opment. Human Molecular Genetics, 21(19), 4171–4186.

Garcia-Blanco, M. A., Jamison, S. F., & Sharp, P. A. (1989). Identification and purification of
a 62,000-dalton protein that binds specifically to the polypyrimidine tract of introns.
Genes & Development, 3(12A), 1874–1886.

Gonzalez-Porta, M., Calvo,M., Sammeth,M., &Guigo, R. (2012). Estimation of alternative
splicing variability in human populations. Genome Research, 22(3), 528–538.

Grabowski, P. J., & Black, D. L. (2001). Alternative RNA splicing in the nervous system.
Progress in Neurobiology, 65(3), 289–308.

119Splicing in the Human Brain



Graf, E. R., Kang, Y., Hauner, A. M., & Craig, A. M. (2006). Structure function and splice
site analysis of the synaptogenic activity of the neurexin-1 beta LNS domain. Journal of
Neuroscience, 26(16), 4256–4265.

Graveley, B. R. (2000). Sorting out the complexity of SR protein functions. RNA, 6(9),
1197–1211.

Graveley, B. R. (2001). Alternative splicing: Increasing diversity in the proteomic world.
Trends in Genetics, 17(2), 100–107.

Graveley, B. R. (2009). Alternative splicing: Regulation without regulators. Nature Struc-
tural & Molecular Biology, 16(1), 13–15.

Gray, J. M., Harmin, D. A., Boswell, S. A., Cloonan, N., Mullen, T. E., Ling, J. J., et al.
(2014). SnapShot-Seq: Amethod for extracting genome-wide, in vivo mRNA dynamics
from a single total RNA sample. PLoS One, 9(2), e89673.

Grover, A., Houlden, H., Baker, M., Adamson, J., Lewis, J., Prihar, G., et al. (1999). 50 splice
site mutations in tau associated with the inherited dementia FTDP-17 affect a stem-loop
structure that regulates alternative splicing of exon 10. The Journal of Biological Chemistry,
274(21), 15134–15143.

Guo, Y., Xiao, P., Lei, S., Deng, F., Xiao, G. G., Liu, Y., et al. (2008). How is mRNA
expression predictive for protein expression? A correlation study on human circulating
monocytes. Acta Biochimica et Biophysica Sinica, 40(5), 426–436.

Halvardson, J., Zaghlool, A., & Feuk, L. (2013). Exome RNA sequencing reveals rare and
novel alternative transcripts. Nucleic Acids Research, 41(1), e6.

Han, K., Yeo, G., An, P., Burge, C. B., & Grabowski, P. J. (2005). A combinatorial code for
splicing silencing: UAGG and GGGG motifs. PLoS Biology, 3(5), e158.

Harrow, J., Frankish, A., Gonzalez, J. M., Tapanari, E., Diekhans, M., Kokocinski, F., et al.
(2012). GENCODE: The reference human genome annotation for The ENCODE Pro-
ject. Genome Research, 22(9), 1760–1774.

Hawrylycz, M. J., Lein, E. S., Guillozet-Bongaarts, A. L., Shen, E. H., Ng, L., Miller, J. A.,
et al. (2012). An anatomically comprehensive atlas of the adult human brain trans-
criptome. Nature, 489(7416), 391–399.

Howe, K. J., Kane, C. M., & Ares, M., Jr. (2003). Perturbation of transcription elongation
influences the fidelity of internal exon inclusion in Saccharomyces cerevisiae. RNA, 9(8),
993–1006.

Hughes, T. A. (2006). Regulation of gene expression by alternative untranslated regions.
Trends in Genetics, 22(3), 119–122.

Ichtchenko, K., Hata, Y., Nguyen, T., Ullrich, B., Missler, M., Moomaw, C., et al. (1995).
Neuroligin 1: A splice site-specific ligand for beta-neurexins. Cell, 81(3), 435–443.

International Human Genome Sequencing Consortium. (2004). Finishing the euchromatic
sequence of the human genome. Nature, 431(7011), 931–945.

Irimia, M., & Blencowe, B. J. (2012). Alternative splicing: Decoding an expansive regulatory
layer. Current Opinion in Cell Biology, 24(3), 323–332.

Jensen, K. B., Dredge, B. K., Stefani, G., Zhong, R., Buckanovich, R. J., Okano, H. J., et al.
(2000). Nova-1 regulates neuron-specific alternative splicing and is essential for neuronal
viability. Neuron, 25(2), 359–371.

Kadener, S., Fededa, J. P., Rosbash, M., & Kornblihtt, A. R. (2002). Regulation of
alternative splicing by a transcriptional enhancer through RNA pol II elongation. Pro-
ceedings of the National Academy of Sciences of the United States of America, 99(12),
8185–8190.

Kang, H. J., Kawasawa, Y. I., Cheng, F., Zhu, Y., Xu, X., Li, M., et al. (2011). Spatio-
temporal transcriptome of the human brain. Nature, 478(7370), 483–489.

Kelemen, O., Convertini, P., Zhang, Z., Wen, Y., Shen, M., Falaleeva, M., et al. (2013).
Function of alternative splicing. Gene, 514(1), 1–30.

120 Ammar Zaghlool et al.



Khodor, Y. L., Rodriguez, J., Abruzzi, K. C., Tang, C. H., Marr, M. T., 2nd., &
Rosbash, M. (2011). Nascent-seq indicates widespread cotranscriptional pre-mRNA
splicing in Drosophila. Genes & Development, 25(23), 2502–2512.

Kornblihtt, A. R. (2006). Chromatin, transcript elongation and alternative splicing. Nature
Structural & Molecular Biology, 13(1), 5–7.

Kornblihtt, A. R., Schor, I. E., Allo, M., Dujardin, G., Petrillo, E., & Munoz, M. J. (2013).
Alternative splicing: A pivotal step between eukaryotic transcription and translation.
Nature Reviews. Molecular Cell Biology, 14(3), 153–165.

Kotovic, K. M., Lockshon, D., Boric, L., & Neugebauer, K. M. (2003). Cotranscriptional
recruitment of the U1 snRNP to intron-containing genes in yeast.Molecular and Cellular
Biology, 23(16), 5768–5779.

Kusek, G., Campbell, M., Doyle, F., Tenenbaum, S. A., Kiebler, M., & Temple, S. (2012).
Asymmetric segregation of the double-stranded RNA binding protein Staufen2 during
mammalian neural stem cell divisions promotes lineage progression.Cell StemCell, 11(4),
505–516.

Lacadie, S. A., & Rosbash, M. (2005). Cotranscriptional spliceosome assembly dynamics and
the role of U1 snRNA:50ss base pairing in yeast. Molecular Cell, 19(1), 65–75.

Lagier-Tourenne, C., Polymenidou,M., Hutt, K. R., Vu, A.Q., Baughn,M., Huelga, S. C.,
et al. (2012). Divergent roles of ALS-linked proteins FUS/TLS and TDP-43 intersect in
processing long pre-mRNAs. Nature Neuroscience, 15(11), 1488–1497.

Lee, J. A., Xing, Y., Nguyen, D., Xie, J., Lee, C. J., & Black, D. L. (2007). Depolarization
and CaM kinase IV modulate NMDA receptor splicing through two essential RNA ele-
ments. PLoS Biology, 5(2), e40.

Lee-Kirsch, M. A., Gaudet, F., Cardoso, M. C., & Lindpaintner, K. (1999). Distinct renin
isoforms generated by tissue-specific transcription initiation and alternative splicing.
Circulation Research, 84(2), 240–246.

Li, Q., Lee, J. A., & Black, D. L. (2007). Neuronal regulation of alternative pre-mRNA splic-
ing. Nature Reviews. Neuroscience, 8(11), 819–831.

Liang, X. H., Haritan, A., Uliel, S., & Michaeli, S. (2003). trans and cis splicing in
trypanosomatids: Mechanism, factors, and regulation. Eukaryotic Cell, 2(5), 830–840.

Licatalosi, D. D., Mele, A., Fak, J. J., Ule, J., Kayikci, M., Chi, S. W., et al. (2008). HITS-
CLIP yields genome-wide insights into brain alternative RNA processing. Nature,
456(7221), 464–469.

Lipscombe, D. (2005). Neuronal proteins custom designed by alternative splicing. Current
Opinion in Neurobiology, 15(3), 358–363.

Listerman, I., Sapra, A. K., &Neugebauer, K.M. (2006). Cotranscriptional coupling of splic-
ing factor recruitment and precursor messenger RNA splicing inmammalian cells.Nature
Structural & Molecular Biology, 13(9), 815–822.

Luco, R. F., Allo, M., Schor, I. E., Kornblihtt, A. R., & Misteli, T. (2011). Epigenetics in
alternative pre-mRNA splicing. Cell, 144(1), 16–26.

Luco, R. F., & Misteli, T. (2011). More than a splicing code: Integrating the role of RNA,
chromatin and non-coding RNA in alternative splicing regulation. Current Opinion in
Genetics & Development, 21(4), 366–372.

Luque, F. A., Furneaux, H. M., Ferziger, R., Rosenblum,M. K.,Wray, S. H., Schold, S. C.,
Jr., et al. (1991). Anti-Ri: An antibody associated with paraneoplastic opsoclonus and
breast cancer. Annals of Neurology, 29(3), 241–251.

Makeyev, E. V., Zhang, J., Carrasco, M. A., & Maniatis, T. (2007). The MicroRNA
miR-124 promotes neuronal differentiation by triggering brain-specific alternative
pre-mRNA splicing. Molecular Cell, 27(3), 435–448.

Marras, S. A., Gold, B., Kramer, F. R., Smith, I., & Tyagi, S. (2004). Real-timemeasurement
of in vitro transcription. Nucleic Acids Research, 32(9), e72.

121Splicing in the Human Brain



Masek, T., Valasek, L., & Pospisek,M. (2011). Polysome analysis andRNA purification from
sucrose gradients. Methods in Molecular Biology, 703, 293–309.

Matlin, A. J., Clark, F., & Smith, C. W. (2005). Understanding alternative splicing: Towards
a cellular code. Nature Reviews. Molecular Cell Biology, 6(5), 386–398.

Mercer, T. R., Gerhardt, D. J., Dinger, M. E., Crawford, J., Trapnell, C., Jeddeloh, J. A.,
et al. (2012). Targeted RNA sequencing reveals the deep complexity of the human trans-
criptome. Nature Biotechnology, 30(1), 99–104.

Merkin, J., Russell, C., Chen, P., & Burge, C. B. (2012). Evolutionary dynamics of gene and
isoform regulation in Mammalian tissues. Science, 338(6114), 1593–1599.

Misteli, T., Caceres, J. F., & Spector, D. L. (1997). The dynamics of a pre-mRNA splicing
factor in living cells. Nature, 387(6632), 523–527.

Modrek, B., & Lee, C. (2002). A genomic view of alternative splicing.Nature Genetics, 30(1),
13–19.

Moore, M. J., & Proudfoot, N. J. (2009). Pre-mRNA processing reaches back to transcrip-
tion and ahead to translation. Cell, 136(4), 688–700.

Munchel, S. E., Shultzaberger, R. K., Takizawa, N., & Weis, K. (2011). Dynamic profiling
of mRNA turnover reveals gene-specific and system-wide regulation of mRNA decay.
Molecular Biology of the Cell, 22(15), 2787–2795.

Munoz, M. J., de la Mata, M., & Kornblihtt, A. R. (2010). The carboxy terminal domain of
RNA polymerase II and alternative splicing. Trends in Biochemical Sciences, 35(9),
497–504.

Naor, D., Nedvetzki, S., Golan, I., Melnik, L., & Faitelson, Y. (2002). CD44 in cancer.Crit-
ical Reviews in Clinical Laboratory Sciences, 39(6), 527–579.

Neugebauer, K. M., & Roth, M. B. (1997). Distribution of pre-mRNA splicing factors at
sites of RNA polymerase II transcription. Genes & Development, 11(9), 1148–1159.

Nilsen, T. W., & Graveley, B. R. (2010). Expansion of the eukaryotic proteome by alter-
native splicing. Nature, 463(7280), 457–463.

Norris, A. D., & Calarco, J. A. (2012). Emerging roles of alternative pre-mRNA splicing
regulation in neuronal development and function. Frontiers in Neuroscience, 6, 122.

Pan, Q., Shai, O., Misquitta, C., Zhang, W., Saltzman, A. L., Mohammad, N., et al. (2004).
Revealing global regulatory features of mammalian alternative splicing using a quantita-
tive microarray platform. Molecular Cell, 16(6), 929–941.

Pandya-Jones, A., Bhatt, D. M., Lin, C. H., Tong, A. J., Smale, S. T., & Black, D. L. (2013).
Splicing kinetics and transcript release from the chromatin compartment limit the rate of
Lipid A-induced gene expression. RNA, 19(6), 811–827.

Pandya-Jones, A., & Black, D. L. (2009). Co-transcriptional splicing of constitutive and alter-
native exons. RNA, 15(10), 1896–1908.

Park, T. J., & Curran, T. (2010). Alternative splicing disabled by Nova2. Neuron, 66(6),
811–813.

Park, J. W., & Graveley, B. R. (2007). Complex alternative splicing. Advances in Experimental
Medicine and Biology, 623, 50–63.

Perales, R., & Bentley, D. (2009). “Cotranscriptionality”: The transcription elongation com-
plex as a nexus for nuclear transactions. Molecular Cell, 36(2), 178–191.

Phatnani, H. P., & Greenleaf, A. L. (2006). Phosphorylation and functions of the RNA poly-
merase II CTD. Genes & Development, 20(21), 2922–2936.

Picelli, S., Faridani, O. R., Bjorklund, A. K., Winberg, G., Sagasser, S., & Sandberg, R.
(2014). Full-length RNA-seq from single cells using Smart-seq2. Nature Protocols,
9(1), 171–181.

Prokunina-Olsson, L., Welch, C., Hansson, O., Adhikari, N., Scott, L. J., Usher, N., et al.
(2009). Tissue-specific alternative splicing of TCF7L2.HumanMolecular Genetics, 18(20),
3795–3804.

122 Ammar Zaghlool et al.



Racca, C., Gardiol, A., Eom, T., Ule, J., Triller, A., & Darnell, R. B. (2010). The neuronal
splicing factor Nova co-localizes with target RNAs in the dendrite. Frontiers in Neural
Circuits, 4, 5.

Ramskold, D., Wang, E. T., Burge, C. B., & Sandberg, R. (2009). An abundance of ubiq-
uitously expressed genes revealed by tissue transcriptome sequence data. PLoS Compu-
tational Biology, 5(12), e1000598.

Rogelj, B., Easton, L. E., Bogu, G. K., Stanton, L. W., Rot, G., Curk, T., et al. (2012).
Widespread binding of FUS along nascent RNA regulates alternative splicing in the
brain. Scientific Reports, 2, 603.

Roth, R. B., Hevezi, P., Lee, J., Willhite, D., Lechner, S. M., Foster, A. C., et al. (2006).
Gene expression analyses reveal molecular relationships among 20 regions of the human
CNS. Neurogenetics, 7(2), 67–80.

Ruggiu, M., Herbst, R., Kim, N., Jevsek, M., Fak, J. J., Mann, M. A., et al. (2009). Rescuing
Z+ agrin splicing in Nova null mice restores synapse formation and unmasks a physio-
logic defect in motor neuron firing. Proceedings of the National Academy of Sciences of the
United States of America, 106(9), 3513–3518.

Salz, H. K. (2011). Sex determination in insects: A binary decision based on alternative splic-
ing. Current Opinion in Genetics & Development, 21(4), 395–400.

Salz, H. K., & Erickson, J. W. (2010). Sex determination in Drosophila: The view from the
top. Fly (Austin), 4(1), 60–70.

Scheiffele, P., Fan, J., Choih, J., Fetter, R., & Serafini, T. (2000). Neuroligin expressed in
nonneuronal cells triggers presynaptic development in contacting axons. Cell, 101(6),
657–669.

Schmidt, U., Basyuk, E., Robert, M. C., Yoshida, M., Villemin, J. P., Auboeuf, D., et al.
(2011). Real-time imaging of cotranscriptional splicing reveals a kinetic model that
reduces noise: Implications for alternative splicing regulation. The Journal of Cell Biology,
193(5), 819–829.

Schmucker, D., Clemens, J. C., Shu, H., Worby, C. A., Xiao, J., Muda, M., et al. (2000).
Drosophila Dscam is an axon guidance receptor exhibiting extraordinary molecular
diversity. Cell, 101(6), 671–684.

Sharma, S., Falick, A.M., & Black, D. L. (2005). Polypyrimidine tract binding protein blocks
the 50 splice site-dependent assembly of U2AF and the prespliceosomal E complex.
Molecular Cell, 19(4), 485–496.

Shukla, S., & Oberdoerffer, S. (2012). Co-transcriptional regulation of alternative pre-
mRNA splicing. Biochimica et Biophysica Acta, 1819(7), 673–683.

Singh, J., & Padgett, R. A. (2009). Rates of in situ transcription and splicing in large human
genes. Nature Structural & Molecular Biology, 16(11), 1128–1133.

Spellman, R., Llorian, M., & Smith, C. W. (2007). Crossregulation and functional redun-
dancy between the splicing regulator PTB and its paralogs nPTB and ROD1. Molecular
Cell, 27(3), 420–434.

Stamm, S., Ben-Ari, S., Rafalska, I., Tang, Y., Zhang, Z., Toiber, D., et al. (2005). Function
of alternative splicing. Gene, 344, 1–20.

Sterne-Weiler, T., Martinez-Nunez, R. T., Howard, J. M., Cvitovik, I., Katzman, S.,
Tariq, M. A., et al. (2013). Frac-seq reveals isoform-specific recruitment to polyribo-
somes. Genome Research, 23(10), 1615–1623.

Tilgner, H., Knowles, D. G., Johnson, R., Davis, C. A., Chakrabortty, S., Djebali, S., et al.
(2012). Deep sequencing of subcellular RNA fractions shows splicing to be predomi-
nantly co-transcriptional in the human genome but inefficient for lncRNAs. Genome
Research, 22(9), 1616–1625.

Treutlein, B., Gokce, O., Quake, S. R., & Sudhof, T. C. (2014). Cartography of neurexin
alternative splicing mapped by single-molecule long-read mRNA sequencing.

123Splicing in the Human Brain



Proceedings of the National Academy of Sciences of the United States of America, 111(13),
E1291–E1299.

Ule, J., Stefani, G., Mele, A., Ruggiu, M.,Wang, X., Taneri, B., et al. (2006). An RNAmap
predicting Nova-dependent splicing regulation. Nature, 444(7119), 580–586.

Ule, J., Ule, A., Spencer, J., Williams, A., Hu, J. S., Cline, M., et al. (2005). Nova regulates
brain-specific splicing to shape the synapse. Nature Genetics, 37(8), 844–852.

Ullrich, B., Ushkaryov, Y. A., & Sudhof, T. C. (1995). Cartography of neurexins: More than
1000 isoforms generated by alternative splicing and expressed in distinct subsets of neu-
rons. Neuron, 14(3), 497–507.

Valencia-Sanchez, M. A., Liu, J., Hannon, G. J., & Parker, R. (2006). Control of translation
and mRNA degradation by miRNAs and siRNAs. Genes & Development, 20(5),
515–524.

Vargas, D. Y., Shah, K., Batish, M., Levandoski, M., Sinha, S., Marras, S. A., et al. (2011).
Single-molecule imaging of transcriptionally coupled and uncoupled splicing. Cell,
147(5), 1054–1065.

Vessey, J. P., Amadei, G., Burns, S. E., Kiebler, M. A., Kaplan, D. R., &Miller, F. D. (2012).
An asymmetrically localized Staufen2-dependent RNA complex regulates maintenance
of mammalian neural stem cells. Cell Stem Cell, 11(4), 517–528.

Wang, E. T., Sandberg, R., Luo, S., Khrebtukova, I., Zhang, L., Mayr, C., et al. (2008).
Alternative isoform regulation in human tissue transcriptomes. Nature, 456(7221),
470–476.

West, A. E., Chen, W. G., Dalva, M. B., Dolmetsch, R. E., Kornhauser, J. M.,
Shaywitz, A. J., et al. (2001). Calcium regulation of neuronal gene expression. Proceedings
of the National Academy of Sciences of the United States of America, 98(20), 11024–11031.

Wetterberg, I., Bauren, G., &Wieslander, L. (1996). The intranuclear site of excision of each
intron in Balbiani ring 3 pre-mRNA is influenced by the time remaining to transcription
termination and different excision efficiencies for the various introns. RNA, 2(7),
641–651.

Xie, J. (2008). Control of alternative pre-mRNA splicing by Ca(++) signals. Biochimica et
Biophysica Acta, 1779(8), 438–452.

Xu, Q., Modrek, B., & Lee, C. (2002). Genome-wide detection of tissue-specific alternative
splicing in the human transcriptome. Nucleic Acids Research, 30(17), 3754–3766.

Xue, Y., Zhou, Y., Wu, T., Zhu, T., Ji, X., Kwon, Y. S., et al. (2009). Genome-wide anal-
ysis of PTB-RNA interactions reveals a strategy used by the general splicing repressor to
modulate exon inclusion or skipping. Molecular Cell, 36(6), 996–1006.

Yang, Y. Y., Yin, G. L., & Darnell, R. B. (1998). The neuronal RNA-binding protein
Nova-2 is implicated as the autoantigen targeted in POMA patients with dementia. Pro-
ceedings of the National Academy of Sciences of the United States of America, 95(22),
13254–13259.

Yano, M., Hayakawa-Yano, Y., Mele, A., & Darnell, R. B. (2010). Nova2 regulates neu-
ronal migration through anRNA switch in disabled-1 signaling.Neuron, 66(6), 848–858.

Yap, K., & Makeyev, E. V. (2013). Regulation of gene expression in mammalian nervous
system through alternative pre-mRNA splicing coupled with RNA quality control
mechanisms. Molecular and Cellular Neurosciences, 56, 420–428.

Yeo, G., Holste, D., Kreiman, G., & Burge, C. B. (2004). Variation in alternative splicing
across human tissues. Genome Biology, 5(10), R74.

Zaghlool, A., Ameur, A., Nyberg, L., Halvardson, J., Grabherr, M., Cavelier, L., et al.
(2013). Efficient cellular fractionation improves RNA sequencing analysis of mature
and nascent transcripts from human tissues. BMC Biotechnology, 13, 99.

Zhang, C., Frias, M. A., Mele, A., Ruggiu, M., Eom, T., Marney, C. B., et al. (2010). Inte-
grative modeling defines the Nova splicing-regulatory network and its combinatorial
controls. Science, 329(5990), 439–443.

124 Ammar Zaghlool et al.



Zhang, G., Taneja, K. L., Singer, R. H., & Green, M. R. (1994). Localization of pre-mRNA
splicing in mammalian nuclei. Nature, 372(6508), 809–812.

Zhang, C., Zhang, Z., Castle, J., Sun, S., Johnson, J., Krainer, A. R., et al. (2008). Defining
the regulatory network of the tissue-specific splicing factors Fox-1 and Fox-2. Genes &
Development, 22(18), 2550–2563.

Zhu, J., Mayeda, A., & Krainer, A. R. (2001). Exon identity established through differential
antagonism between exonic splicing silencer-bound hnRNP A1 and enhancer-bound
SR proteins. Molecular Cell, 8(6), 1351–1361.

125Splicing in the Human Brain



CHAPTER SIX

Understanding Complex
Transcriptome Dynamics in
Schizophrenia and Other
Neurological Diseases Using
RNA Sequencing
Xi Wang*, Murray J. Cairns*,†,1
*School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, The University of Newcastle,
Callaghan, New South Wales, Australia
†The Schizophrenia Research Institute, Sydney, Australia
1Corresponding author: e-mail address: murray.cairns@newcastle.edu.au

Contents

1. Introduction 128
2. RNA-Seq Studies on Neurological Disorders 130

2.1 Study design 130
2.2 Sequencing platforms and strategies 133
2.3 Data analysis 133

3. Quantifying Transcriptome Dynamics in Neurological Disorders 136
3.1 Gene/transcript expression 136
3.2 Alternative splicing 140
3.3 Allele-specific expression 141
3.4 RNA editing 141
3.5 Integrative analysis 142
3.6 Noncoding RNA alterations in neurological disorders 142

4. Discussion and Perspectives 144
References 147

Abstract

How the human brain develops and adapts with its trillions of functionally integrated
synapses remains one of the greatest mysteries of life. With tremendous advances in
neuroscience, genetics, and molecular biology, we are beginning to appreciate the
scope of this complexity and define some of the parameters of the systems that make
it possible. These same tools are also leading to advances in our understanding of the
pathophysiology of neurocognitive and neuropsychiatric disorders. Like the substrate
for these problems, the etiology is usually complex—involving an array of genetic
and environmental influences. To resolve these influences and derive better
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interventions, we need to reveal every aspect of this complexity and model their inter-
actions and define the systems and their regulatory structure. This is particularly impor-
tant at the tissue-specific molecular interface between the underlying genetic and
environmental influence defined by the transcriptome. Recent advances in trans-
criptome analysis facilitated by RNA sequencing (RNA-Seq) can provide unprecedented
insight into the functional genomics of neurological disorders. In this review, we outline
the advantages of this approach and highlight some early application of this technology
in the investigation of the neuropathology of schizophrenia. Recent progress of RNA-
Seq studies in schizophrenia has shown that there is extraordinary transcriptome
dynamics with significant levels of alternative splicing. These studies only scratch the
surface of this complexity and therefore future studies with greater depth and samples
size will be vital to fully explore transcriptional diversity and its underlying influences in
schizophrenia and provide the basis for new biomarkers and improved treatments.

1. INTRODUCTION

Complex polygenic neurobehavioral syndromes such as schizophre-

nia, bipolar, and autism spectrum disorders are associated with multiple

genetic variants in combination with numerous environment risk factors.

While significant progress has been made toward identifying the small num-

ber of more penetrant rare variants in family studies and a large number of

less penetrant common variants through genome-wide association studies

(McCarroll & Hyman, 2013; Mowry & Gratten, 2013; Owen, 2012), we

are far from entirely understanding the underlying genetics of these disorders

(Kim, Zerwas, Trace, & Sullivan, 2011; Tiwari, Zai, Muller, & Kennedy,

2010). Through epidemiology, twin studies, and animal models, we are also

making progress toward understanding many of the environmental risks fac-

tors and their relationship with epigenetic marks that transform the fate of

neural lineages and their developing tissues. These combined influences cul-

minate in the transcriptional signal that provides the basis for cell growth,

homeostasis, differentiation, and more specialized functions. Transcriptional

dysregulation is also the daily reality driving many pathophysiological pro-

cesses. Therefore to come to terms with this complex, dynamic, and highly

heterogeneous signal and to identify programmatic alterations, we need to

explore the rich texture of transcription using the most sophisticated high-

resolution genomics. In only a relatively short time since the explosion in

microarray-based genome-wide expression analysis, the field is undergoing

another transformative advance through the application of high-throughput

next-generation transcriptome sequencing technologies (RNA-Seq). This
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new platform provides a unique opportunity for researchers to connect gene

expression with disease associated genetic and epigenetic variation by ana-

lyzing transcription at nucleotide resolution.

This revolutionary approach has many advantages over the existing

microarray platforms. Read count data, for example, have a relatively high

signal-to-noise ratio, which enables extraordinary dynamic range and the

power to detect and quantify novel transcripts (Mortazavi, Williams,

McCue, Schaeffer, & Wold, 2008; Ozsolak & Milos, 2011). By directly

gathering base-resolution sequence information, RNA-Seq can also detect

and quantify alternative isoforms induced by alternative splicing and alter-

native usage of promoters and polyadenylation (Trapnell et al., 2010;

Wang et al., 2008). Alternative splicing is important in neural development,

and aberrations in splicing events have been shown to be associated with

neurological or neurodegenerative disease including schizophrenia and

Alzheimer’s disease (Black & Grabowski, 2003; Clinton, Haroutunian,

Davis, & Meador-Woodruff, 2003; Dredge, Polydorides, & Darnell,

2001; Licatalosi & Darnell, 2006; Mazin et al., 2013). Many genes expressed

in brains are differently spliced comparing other tissues and the splicing pat-

tern in different brain regions can also vary (Wang et al., 2008), which indi-

cates the functional importance of splicing in neural cells. Thus, examining

alternative splicing will be essential for illuminating the full diversity of

mechanisms underlying the pathogenesis of neurological disorders. More-

over, transcriptional analysis by deep sequencing facilitates the ascertainment

of allele-specific gene expression by distinguishing heterozygous reads by

single-nucleotide polymorphisms (SNPs) or other mutations transcribed

into RNA (Pickrell et al., 2010; Zhang et al., 2009). Allele-expression

imbalance occurs when cis-regulatory polymorphism or cis-acting quantita-

tive trait loci (cis-eQTLs) affect trans-factor regulation. Alternatively,

allele-expression imbalance can occur when there is differential chromatin

structure between the maternal and paternal chromosomes, such as at

imprinted loci. Nucleotide resolution expression analysis also enables the

identification of RNA-editing events by comparing the transcriptional

polymorphisms with the genomic sequence in the same individual (Park,

Williams, Wold, & Mortazavi, 2012). RNA editing plays a critical role in

brain development and abnormal RNA editing has been shown to be asso-

ciated with neurological disorders and brain disease (Li & Church, 2013;

Park et al., 2012). RNA-Seq has unprecedented power to discern these

alterations and will be vital to revealing this functionally significant genomic

modifications and their role in pathophysiology.
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In this chapter, we summarize the recent progress in transcriptional anal-

ysis of neurological disorders facilitated by RNA-Seq and discuss the chal-

lenges and opportunities with a focus on schizophrenia. While the past a few

years have witnessed the early exploration of transcriptome dynamics in

schizophrenia and other neurological disorders using high-throughput

sequencing technologies, we are only scratching the surface of their potential

for shedding light on the mechanism of disease development. It is therefore

tantalizing to speculate that the further implementation of these technologies

will have tremendous prospects for the development of new diagnostic and

treatment approaches.

2. RNA-Seq STUDIES ON NEUROLOGICAL DISORDERS

Several studies have applied RNA-Seq based advanced transcriptome

analysis for the investigation of neurological disorders. We summarized

some of these studies in Table 6.1 and discuss the experimental design

and data analysis strategies employed.

2.1. Study design
The high heterogeneity of gene expression from human individuals requires

a substantial cohort of neurological patients and matched controls for

disease-related transcriptomic alteration profiling (Table 6.1), in order to

account for biological variability and identify changes that are reproducible.

Power analysis has also shown that increasing biological replicates rather than

sequencing depth is more effective at identifying robust differential expres-

sion patterns in RNA-Seq studies (Hansen, Wu, Irizarry, & Leek, 2011).

Unfortunately, the sample size is usually limited by the availability of

postmortem tissue with appropriate controls and the relative cost of

high-throughput sequencing. Most of the early studies employing high-

throughput sequencing have been performed on limited number of samples

(Xu et al., 2012). However, with the cost of sequencing going down, the

assembly of large consortiums for neurological disease research may gather

more substantial cohorts of samples to facilitate sequencing-based trans-

criptome studies with sufficient power.

Different anatomical regions in human brain, such as cerebral cortex and

cerebellum, carry out different motoric, sensory, and cognitive functions,

and all display region-specific gene expression patterns (Evans et al.,

2003; Khaitovich et al., 2004). The cytoarchitectonics of cerebral cortex

are further divided into Brodmann’s areas (BAs), and these subregions have
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Table 6.1 RNA-Seq studies on schizophrenia and other neurological disorders
Study Analysis Tissue used Sample size Platform

Wu et al.

(2012)

Differential

expression,

promoter usage, and

splicing

Postmortem

superior

temporal gyrus

(STG or BA22)

9 SZ and 9

controls

Illumina GA

II, 76 nt SR

Fillman

et al. (2013)

Differentially

expressed transcripts

Postmortem

dorsolateral

prefrontal

cortex

(DLPFC or

BA46)

20 SZ and

20 controls

SOLiD v4,

50 nt SR

Mudge

et al. (2008)

Differential

expression and

splicing

Cerebellar

cortex

14 SZ and 6

controls

Illumina GA,

32–36 nt SR

Xu et al.

(2012)

Differential gene

expression

Blood

lymphocytes

3 SZ and 3

controls, 1 SZ

pool and 1

control pool

Illumina GA

II, 2�43 nt

PE for

subjects, SR

for pools

Hwang

et al. (2013)

Differential

expression and

coexpression

network

Postmortem

hippocampus

14 SZ and

15 controls

Illumina GA,

2�50 nt PE

Hong,

Chen, Jin,

and Xiong

(2013)

Coexpression

network

Anterior

cingulate

cortex (ACC

or BA24)

31 SZ,

25 BPD and

26 controls

Illumina

HiSeq

Silberberg,

Lundin,

Navon, and

Ohman

(2012)

A-to-I RNA editing Postmortem

DLPFC or

BA46

20 SZ,

20 BPD, and

20 controls

454 FLX on

target genes,

median 236

nt

Smith et al.

(2013)

Allele-specific

expression and

RNA editing

Nine brain

regions,a and

DLPFC

(BA46)

1 sample for

each brain

region, and

14 DLPFC

samples

SOLiD

5500/4, PE

Continued
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also been characterized by differences gene expression pattern, though not as

dramatic as the anatomical regions (Khaitovich et al., 2004). Transcriptome

profiling of postmortem brains with neurological diseases therefore usually

focus on one of the brain regions or areas (Table 6.1). We have focused on

the superior temporal gyrus (STG or BA22) and the dorsolateral prefrontal

cortex (DLPFC or BA46) (Fillman et al., 2013;Wu et al., 2012). These stud-

ies are, however, still rather limited, as complex brain disorders are likely to

affect many brain regions and evolve over considerable time periods. The

analysis of these conditions therefore represents a multidimensional problem

requiring very significant research investment.

For case–control studies based on human subjects, study design should

strive to match in demographics and other extraneous parameters, to elim-

inate the effect of unwanted confounds. Demographic features such as gen-

der (Vawter et al., 2004), age (Glass et al., 2013), and the cause of death, as

well as postmortem interval (PMI) (Bauer, Gramlich, Polzin, & Patzelt,

2003) and RNA sample quality indicator (RQI) (Stan et al., 2006), have

shown some correlation with gene expression or its measurement. In our

RNA-Seq analyses of schizophrenia transcriptome (Fillman et al., 2013;

Wu et al., 2012), cases were selected to minimize difference between cases

and controls in age, gender, PMI, pH, and RNA integrity. Where these

confounders correlate with gene expression, their effects should be regressed

through analysis of covariates (ANCOVA) or similar approaches to account

for their influence (Wu et al., 2012).

Considering the relatively low quality of RNAs from postmortem brain

tissues and the sample size limited by matching demographics for case and

Table 6.1 RNA-Seq studies on schizophrenia and other neurological disorders—cont'd
Study Analysis Tissue used Sample size Platform

Lin et al.

(2011)

Expression of

coding gene, long

noncoding RNA,

pseudogenes, and

splice variants

iPSCs and

neural

differentiation

1 iPSCs and 1

neural

differentiation

Illumina

HiSeq 2000,

2�100 nt PE

Lin et al.

(2012)

Allele-specific

expression

iPSCs and

neural

differentiation

1 iPSCs and 1

neural

differentiation

Illumina

HiSeq 2000,

2�100 nt PE

aThe nine brain regions are BA10, BA22, BA24, insular cortex, amygdala, hippocampus, putamen, cer-
ebellum, and raphe nuclei.
BA22, Brodmann area 22; BA46, Brodmann area 46; SZ, schizophrenia; BPD, bipolar disorder; SR, sin-
gle reads; PE, paired end.
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control cohorts, performing RNA-Seq on peripheral tissues can serve as an

alternative to achieve higher RNA quality and larger cohorts of samples.

Cells from the blood tissue, such as lymphocytes (Xu et al., 2012) and

peripheral blood mononuclear cells (PBMCs) (Beveridge & Cairns, 2012;

Gardiner et al., 2012, 2013), are often used as a surrogate tissue for expres-

sion analysis. Wherever possible the transcriptome dynamics in these tissues

can also be linked with brain imaging and assessments of neurocognitive

phenotypes and may have utility as biomarkers of schizophrenia or associ-

ated subphenotypes.

2.2. Sequencing platforms and strategies
There are now a variety of platforms suitable for transcriptome analysis each

with their advantages and disadvantages. With various research aims to pro-

file neurological disease transcriptomes (Table 6.1), the selection of high-

throughout sequencing platforms and strategies can be varied to suit the

requirements of the study. With the capacity to identify alternative splicing,

it is desirable to use longer reads and utilize a paired-end (PE) strategy. In the

Illumina platforms, it is now possible to read up to 150 bp from each end of

the cluster, although studies to date have not gone beyond 100 bp PE (Lin

et al., 2011). Instruments such as 454 FLX and PacBio RS can generate lon-

ger reads and will facilitate unambiguous spliceoform identification. For

example, PacBio referred to as the third-generation platform can generate

reads with average length at 2–3 kb and can confidentially capture transcripts

up to 1.5 kb (Au et al., 2013; Sharon, Tilgner, Grubert, & Snyder, 2013).

Measuring allele-specific gene expression is another capability of RNA-

Seq, which facilitates the identification of expression eQTLs across hetero-

zygous segments. This fantastic new insight into the genome is somewhat

more demanding because it usually requires significantly more depth to

resolve allele-specific transcripts in genes with low to modest expression

levels. For example, the study performed by Lin et al. (2012) yielded more

than 100 million pairs of reads per sample to study allele-specific gene

expression more effectively than most studies around 20–40 million reads.

2.3. Data analysis
Typical RNA-Seq data analysis pipeline can be found in Fig. 6.1, and here

we also emphasize some specific technical issues in case–control investiga-

tions with human subjects in studying neurological disorders.
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Mudge et al. applied two strategies to align RNA-Seq reads back to their

original gene loci: align to the reference genome and to the reference trans-

criptome (RefSeq) (Mudge et al., 2008). Surprisingly, differentially regu-

lated genes in the schizophrenia cohort detected by the two alignments

had very limited overlaps—88 differentially expressed gene from genome

alignment and 152 genes from transcriptome alignment, but only 25 genes

in common, although most of the genes (96% of 215) showed consistent

direction of expression change. This inconsistency could be explained by

the incomplete annotation of RefSeq genes so that reads derived from

unannotated exons and isoforms would be incorrectly aligned to other genes

or be discarded without effective alignment (Mudge et al., 2008). Currently,

there are considerably more software tools that perform better than those

available at the time of the study; however, together with software for trans-

criptome reconstruction and expression-level estimation, large divergence

still can be observed between different computational tools (Engstrom

et al., 2013; Steijger et al., 2013). The high complexity of human trans-

criptomes imposes this technical limitation and cannot be easily solved with

current sequencing technologies. To control possible false positives in

RNA-Seq studies, validation with other technologies rather sequencing

Figure 6.1 Typical RNA-seq data analysis pipeline. Fastq and BAM are file format to store
reads and read mapping data, respectively; words highlighted in yellow (bold text in the
print version) are outputs of the pipeline. QC, quality control; SNP, single nucleotide poly-
morphism; DB, database; ASE, allele-specific expression; GWAS, genome-wide association
study; eQTL, expression quantitative trait loci; sQTL, splicing quantitative trait loci.
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(e.g., qPCR) usually performed (Fillman et al., 2013; Hwang et al., 2013;

Wu et al., 2012; Xu et al., 2012).

One other possible issue in RNA-Seq with postmortem tissues is RNA

degradation in samples. When using poly-A selection protocol for sequenc-

ing library preparation, transcripts degraded from 50-end can also be

enriched, which results in extremely nonuniform read distribution along

transcripts—reads will be biasedly mapped toward the 30-untranslated
regions (30UTR). This characteristic would further cause large inaccuracy

in isoform expression level estimation. Methods like NURD (Ma &

Zhang, 2013) can remedy this situation by modeling this nonuniform read

distribution with empirical methods.

To interpret differentially expressed/spliced genes, knowledge-based

functional analysis links genes of similar function or located in the same path-

way together, highlighting the functional importance of gene categories or

pathways with enrichment of differentially regulated genes. Gene set enrich-

ment analysis (GSEA) (Subramanian et al., 2005), a powerful functional

analysis method, can gather subtle gene expression changes in the predefined

gene sets to yield differentially regulated gene sets. Due to high heterogene-

ity of disease causality, gene expression alteration with respect to complex

diseases including neurological diseases often has small effective size in the

entire population, and thus GSEA is an important strategy for the functional

analysis of transcriptome data in these disorders. Moreover, alternative splic-

ing is increasingly believed to play functionally important roles in regulating

gene expression in a tempospatial specific manner and is also involved in dis-

ease biogenesis and development. In order to functionally reconcile both

these features of transcriptome alteration, we have developed method called

SeqGSEA (Wang & Cairns, 2013) and implemented this as an R-package in

Bioconductor (Wang & Cairns, 2014). We applied this analytical approach

to RNA-Seq data in schizophrenia enabling both statistically significant and

biologically meaningful gene sets associated to be derived where existing

strategies focused on individual genes failed (Wang & Cairns, 2013).

While we found the SeqGSEA strategy to be the most effective on our

data sets, functional analysis can also be determined without preexisting

knowledge of functional annotation. Methodologies like coexpression net-

work analysis generate graphic interpretation of gene expression changes

with respect to diseases (Carter, Brechbuhler, Griffin, & Bond, 2004).

Hwang et al. applied the coexpression network analysis to seek for biological

interpretation from RNA-Seq data (Hwang et al., 2013). A recently publi-

shed study proposed a new approach for construction of coexpression
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networks with RNA-Seq data, by accounting for exon-specific expression

alteration caused by differential alternative splicing and allele-specific

expression resulted from SNPs or RNA-editing, yielding more biologically

relevant results (Hong et al., 2013).

3. QUANTIFYING TRANSCRIPTOME DYNAMICS IN
NEUROLOGICAL DISORDERS

3.1. Gene/transcript expression
Microarray-based transcriptome profiling studies of schizophrenia carried

out over the last decade have frequently reported differentially regulated

genes related to synaptic plasticity (Arion, Unger, Lewis, Levitt, &

Mirnics, 2007; Aston, Jiang, & Sokolov, 2004; Hakak et al., 2001;

Haroutunian, Katsel, Dracheva, Stewart, & Davis, 2007; Mirnics,

Middleton,Marquez, Lewis, & Levitt, 2000), glutamatergic and GABAergic

neurotransmission (Arion et al., 2007; Hakak et al., 2001; Maycox et al.,

2009), inflammatory/immune response (Saetre et al., 2007), and many

others (Sequeira, Martin, & Vawter, 2012). More recently, RNA-Seq based

studies have emerged (summarized in Table 6.2), most of which are consis-

tent with previous results by microarrays, with strong support for the eleva-

tion of inflammatory/immune pathways (Fillman et al., 2013; Hwang et al.,

2013; Xu et al., 2012). Genes and transcripts differentially regulated in

schizophrenia according to RNA-Seq analysis are summarized below.

3.1.1 Synaptic plasticity and neurotransmission
To the best of our knowledge, the first RNA-Seq study in schizophrenia was

carried out by Mudge et al. in 2008. They preformed Illumina RNA

sequencing on postmortem cerebellar cortex from a cohort of schizophrenia

patients including 14 individuals and 6 matched controls (Table 6.1), yield-

ing 12.5–38.7 million 32–36 nt short reads for each sample, which resulted

in 215 differentially expressed genes (Table 6.2). Functional analysis showed

that the differentially expressed genes were overrepresented in function cat-

egories including Golgi apparatus and vesicular transport, and 23 genes were

involved in a pathway responsible for presynaptic vesicular transport/Golgi

function and postsynaptic neurotransmission, of which 20 genes were

involved in Golgi-associated transport and presynaptic vesicular transport

(13 upregulated and 7 downregulated). The other three genes were

postsynaptic membrane genes (GABRA1 and CACNG2 upregulated and

ZACN downregulated). While one of the gamma-aminobutyric acid

(GABA)-mediated neuroinhibitory receptor, GABRA1, showed significant
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Table 6.2 Numbers of genes reported by the reviewed RNA-seq studies with altered
expression/splicing/ASE/editing in schizophrenia and other related disorders

Study Disorder, tissue
Type of
alteration Number Validated

Wu et al.

(2012)

Schizophrenia,

BA22

Differentially

expressed

genes

772 genes (374 up, 398

down)

3 genes

(down)

Wu et al.

(2012)

Schizophrenia,

BA22

Differential

promoter

usage and

splicing

1032 genes –

Fillman

et al.

(2013)

Schizophrenia,

BA46

Differentially

expressed

transcripts

798 transcripts (537 up

and 261 down, 316

genes)

3 genes (up)

Mudge

et al.

(2008)

Schizophrenia,

cerebellar

cortex

Differentially

expressed

genes

215 genes (147 up,

68 down)a
–

Xu et al.

(2012)

Schizophrenia,

blood

lymphocytes

Differentially

expressed

genes

218 genes (92 up, 126

down)

19 genes

(9 up,

10 down; by

pooled

samples)

Hwang

et al.

(2013)

Schizophrenia,

hippocampus

Differentially

expressed

genes

114 genes (123 up,

21 down)

6 genes (up)

Silberberg

et al.

(2012)

Schizophrenia

and bipolar

disorder, BA46

Genes with

different

RNA-editing

rate

1 gene (SZ vs.

controls) and 1 gene

(BPD vs. controls) out

of 7

–

Smith

et al.

(2013)

Brain regions Genes with

ubiquitous

AEI

2 genes across

8 regions (NHP2L1,

SLC1A3)

–

Lin et al.

(2011)

iPSCs and

neural

differentiation

Differentially

expressed

genes

9008 (1443 lincRNA:

3055 up and 5953

down; lincRNA: 228

up and 220 down)

4 by

RT-PCR,

and 2 by

q-PCR

Lin et al.

(2012)

iPSCs and

neural

differentiation

Genes with

allele-biased

expression

48 schizophrenia genes

in neurons, 17 in

iPSCs

Most can be

validated by

Sanger

sequencing

Continued
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increased expression (by �50%) in schizophrenia cohort, majority of other

GABA receptors were also increased (e.g., GABRB1, by �170%) although

not significantly.

More recently, we carried out RNA-Seq analysis of postmortem cortical

gray matter from the superior temporal gyrus (STG or BA22) from nine

schizophrenia patients and nine matched nonpsychiatric controls

(Wu et al., 2012) (Table 6.1). This effort generated much longer reads

(76 nt) than the previous study at similar sequencing depth (13.1–39.2

million reads per sample) and yielded 772 differentially expressed genes

using the Illumina GAII. Gene ontology analysis showed that 40 and

42 core enrichment genes were related to synaptic vesicle trafficking and

neurotransmission-related functions, respectively. Overlapped differentially

expressed genes with previous microarray studies also showed relevance to

GABA function, glutamate function, myelin and oligodendrocyte, etc.

GABA is the principal inhibitory neurotransmitter in mammalian brains,

and glutamate is the main excitatory neurotransmitter, also the precursor

for GABA. It has shown that the two neurotransmitters are associated with

synaptic plasticity in both presynaptic and postsynaptic process (Debanne,

Daoudal, Sourdet, & Russier, 2003; Raimondo, Markram, & Akerman,

2012). Meanwhile, the main function of myelin and oligodendrocytes is

to provide insulation to axons, which has also shown to be related to synaptic

plasticity (Fields, 2005). Taking together, the two studies discussed above,

although investigated in different brain regions (cerebellar cortex and cere-

bral cortex), have both reported the association between schizophrenia and

synaptic plasticity/neurotransmission.

3.1.2 Inflammatory/immune pathways
In another study, we investigated postmortem dorsolateral prefrontal cortex

(DLPFC or BA46) from 20 schizophrenia patients and 20 matched controls

Table 6.2 Numbers of genes reported by the reviewed RNA-seq studies with altered
expression/splicing/ASE/editing in schizophrenia and other related disorders—cont'd

Study Disorder, tissue
Type of
alteration Number Validated

Lin et al.,

2012 (Lin

et al.,

2012)

iPSCs and

neural

differentiation

Genes with

allele

switching

42 genes –

aUp-/downregulation is according to the alignment against transcriptome.
AEI, allelic expression imbalance; lincRNA, long intergenic noncoding RNA; iPSC, induced pluripo-
tent stem cell.
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using RNA-Seq preformed on the Applied Biosystems SOLiD platform.

This yielded 135 million 50 nt reads on average (Table 6.1) (Fillman

et al., 2013). Functional analysis on 798 differentially regulated transcripts

showed that inflammatory response was the key player among others, and

genes in the inflammatory pathway, such as interleukin 6 (IL-6) and a serpin

peptidase inhibitor (SERPINA3), were upregulated. It was found by

different experiment technologies that microglial markers were signifi-

cantly increased in schizophrenia. Microglial cells play the main immune

defense role in the central nervous system, preventing most infections from

reaching the vulnerable nervous tissue. Increased expression of microglial

markers and increased density of microglia in schizophrenia largely

supported a relationship between inflammation and the physiopathology

of schizophrenia.

Meanwhile, the study by Hwang et al., which focused on the hippocam-

pus, also emphasized the expression changes of immune genes in schizo-

phrenia individuals. This study yielded paired-end reads (2�50 nt) by

the Illumina GA sequencer from 14 individuals with schizophrenia and

15 matched controls (Table 6.1) (Hwang et al., 2013). Functional analysis

and coexpression network analysis both showed the enrichment of inflam-

matory response genes. Similar as in DLPFC, these immune genes also

showed increased expression in schizophrenia. However, contrary to their

expectations, they did not find any immune-related proteins expressed in

microglia in representative individuals with the disorder.

Prenatal infection showed positive correlations with schizophrenia

developing (Brown & Derkits, 2010), and it may also result in an increase

in peripheral body inflammatory makers for schizophrenia patients. This

increase has been reported in many previous studies based on other technol-

ogies rather than RNA-Seq (Drexhage et al., 2010; Kurian et al., 2011;

Miller, Buckley, Seabolt, Mellor, & Kirkpatrick, 2011) and was also con-

firmed by a recent RNA-Seq study by Xu et al. (2012). They executed

paired-end (2�43 nt) Illumina sequencing in lymphocytes from blood of

3 schizophrenia patients and 3 controls, as well as 2 pools of 10 schizophrenia

and 10 controls, respectively (Table 6.1). More than 200 differentially

expressed transcripts were identified, and KEGG pathway analysis based

on these candidate transcripts showed the enrichment in immune and

inflammatory systems.

Summarizing the findings in the three papers above, it is clear that

immune/inflammatory response is highly associated with the development

of schizophrenia, and the exposure to virus or bacteria is implicated in the

etiology of schizophrenia and many other psychiatric disorders (Torrey,
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Miller, Rawlings, & Yolken, 1997). This consistent result also suggests that

medical intervention targeted to immune/inflammatory pathways in high-

risk individuals may be effective in preventing the disorder or improving the

outcomes of patients with symptoms.

3.2. Alternative splicing
Alternative splicing is shown to be largely involved in high primates and

plays important functions in regulating gene expression in a tissue-specific

manner (Wang et al., 2008). Association between aberrant alternative splic-

ing and human disease has also been reported (Caceres & Kornblihtt, 2002;

Oldmeadow et al., 2014; Tazi, Bakkour, & Stamm, 2009). With RNA-Seq,

alteration of splicing in schizophrenia can be more easily detected than using

microarray, which serves another important layer in underlying mechanism

in schizophrenia pathogenesis. Mudge et al. used a sophisticated read align-

ment approach to identify novel splicing isoforms associated schizophrenia

and identified an intron-retained isoform in the PRODH gene locus, con-

sistent with other independent reports (Mudge et al., 2008). We also ana-

lyzed schizophrenia-associated differential promoter usage and alternative

splicing in the STG between cases and controls, and the results showedmore

2000 and 1032 genes were associated alternative promoter usage and differ-

ential splicing in schizophrenia, respectively (Wu et al., 2012). This large

numbers indicate the huge transcriptome dynamics in schizophrenia, which

may be underappreciated in previous studies. Seven genes (GABRA5,

HCRTR1,MBP, PRKG1, SYP, SYT1, andDCLK1) with differential pro-

moter usage and two differentially spliced genes (PLP1 and DCLK1) were

overlapped with core enrichment genes discussed in Section 3.1. Interest-

ingly, biased allelic expression was also found in two of four expressed tran-

scripts from the DCLK1 gene locus. The two genes with both altered overall

expression levels and differential splicing (PLP1 and DCLK1) are of partic-

ular interest for future investigation. Both splice form of PLP1 encode

important proteins to form the myelin protein complex, and the two forms

switch during different stages of myelination ( Jacobs, Bongarzone,

Campagnoni, & Campagnoni, 2004; Jahn, Tenzer, & Werner, 2009;

Sporkel, Uschkureit, Bussow, & Stoffel, 2002). DCLK1 is expressed in cen-

tral nerves system and its splice variants play potential roles in neuronal

migration and neural plasticity (Burgess & Reiner, 2000; Silverman

et al., 1999).
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3.3. Allele-specific expression
Another exciting dimension captured in RNA-Seq data is the transcript

sequences themselves. This feature enables allele-specific discrimination of

gene expression (Zhang et al., 2009). Biased allelic expression has shown

to be relevant to human diseases in exemplified cases (Li et al., 2006) and

can explain the contribution of SNPs and rare mutations to gene expression

directly and enable the identification of eQTLs.

Smith et al. performed an RNA-Seq study focusing on allelic expression

across nine human brain regions and found two genes (SLC1A3 and

NHP2L1) with allelic expression imbalance through all regions and many

other genes with regional specific biased allelic expression (Smith et al.,

2013). In the analysis of DLPFC tissues from 14 individuals, they also

observed 500 genes with biased allelic expression in more than samples.

Intriguingly, GABA receptor subunit beta-1 (GABRB1) showed imbal-

anced allelic expression in two DLPFC samples out of five measured.

Lin et al. executed RNA-Seq-based allele-specific gene expression anal-

ysis on induced pluripotent stem cell (iPSC) and differentiating neurons.

With stringent criteria to filter out low-quality data, the RNA-Seq data

resulted in 314 genes on iPSCs and 801 genes on differentiating neurons that

contain at least one high-quality SNP inducing expression imbalance. Of

those, 181 were neuronal genes, which were overrepresented in schizophre-

nia and autism spectrum disorders candidates. Specifically, 48 schizophrenia

genes showed allelic imbalance in neurons, while 17 in iPSCs. Sanger

sequencing validated five schizophrenia and autism genes, some of which,

however, could not be validated on a biological replicate. The sporadic dif-

ferences in allelic expression imbalance in some tissues and genes indicate a

caution in explaining functional SNPs or mutations in gene expression. In

some cases, these differences may be attributed to epigenetic modifications/

interactions particularly at imprinted loci.

3.4. RNA editing
Similarly, RNA-editing information can also be gleaned directly from reads

derived through RNA-Seq (Peng et al., 2012). Smith et al. analyzed RNA

editing in addition to allele-specific expression in their data set and discov-

ered more sites undergoing RNA editing in DLPFC from 14 individuals

(3249 sites) than comparing nine brain regions (2358 sites). Moreover,

targeted sequencing in postmortem dorsolateral–prefrontal cortices from

141RNA-Seq analysis of Neurological Disorders



20 schizophrenia, 20 bipolar disorder patients and 20 controls identified

A-to-I RNA editing in 6 genes coding for neuroreceptor subunits using

the 454 platform (Silberberg et al., 2012). Among 21 previously known

and novel RNA editing sites on the 6 genes, only 1 site (in GRIA3) showed

significantly lower editing ratio in schizophrenia comparing with controls

and two sites (both in genes GRIK2, one marginally significant) in bipolar

disorder comparing to controls. Interestingly, very large variance of editing

level in schizophrenia has been observed on some editing sites, suggesting

possible dysregulation in upstream where the capacity to maintain steady

editing level was lost.

3.5. Integrative analysis
The analyses and results described above largely focused on only one dimen-

sion of transcriptome dynamics, ignoring, however, the interaction between

different layers of regulation/function. Integrative analysis plays an irre-

placeable role in connecting these components together. When we inte-

grated differential expression and splicing from RNA-Seq data (Wang &

Cairns, 2013, 2014), we found significant alterations in the total abundance

and/or individual transcript composition in GABA receptor genes, although

the overall expression levels of the GABA receptor genes were marginally

altered. This finding is highly significant to our understanding of schizophre-

nia and demonstrates the power of integrative analysis for exploring complex

disease mechanisms.

3.6. Noncoding RNA alterations in neurological disorders
In addition to protein coding genes, the dynamic transcriptome contains

many other noncoding players that have historically not been well covered

using microarray platforms. MicroRNAs (miRNAs) are a class of endoge-

nous, functional, and small RNAs of length 21–24 nt, regulating up to hun-

dreds of target genes after transcribed (Bartel, 2009; Shukla, Singh, & Barik,

2011). Abnormal miRNA expression causes various human diseases ( Jiang

et al., 2009), and thus disease-associated miRNAs can serve as biomarkers in

disease diagnostics (Leidinger et al., 2013). RNA-Seq analysis offers some

significant advantages over microarray for small RNA analysis and studies

are beginning to emerge. High-throughput sequencing studies of small

RNA are summarized in Table 6.3. Although there are only two such stud-

ies currently available, the two studies represent miRNA research in schizo-

phrenia quite well—one was carried out on the postmortem brain tissue and
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the other on blood focusing on biomarker discovery (Shi et al., 2012;

Smalheiser et al., 2014).

Shi et al. performed two Illumina small RNA-Seq experiments: they first

investigated miRNAs that were enriched in synaptosomes in normal human

PFCs, and then they looked into miRNAs that had different abundance

levels in schizophrenia synaptosomes comparing with normal ones. The

results showed that a subset of miRNAs differentially enriched in synapto-

somes comparing with the whole tissue, about 15% of miRNAs showing

>1.5-fold enrichment and about 6% showing >2-fold. Interestingly,

comparing with schizophrenia and control synaptosomes, they found

that miRNAs highly enriched in normal synaptosomes were dramatically

depleted in schizophrenia synaptosomes. For example, mir-219-5p showed

the most highly enriched (fivefold) in synaptosomes relative to whole tissue,

but in schizophrenia synaptosomes its abundance level decreased the most

(70%). This phenomenon could partially explain the conflicting direction

of miRNA changes in schizophrenia observed from the whole tissue and

the synaptosomes and would also suggest the compartment-specific regula-

tion of a subset of miRNAs, which may include miRNA transport, and dif-

ferential processing or turnover (Goldie & Cairns, 2012).

In the other study by Smalheiser et al., serum samples from 115 subjects

with schizophrenia and 40 healthy controls were analyzed to identify differ-

entially expressed circulating miRNAs in schizophrenia (Table 6.3)

(Smalheiser et al., 2014). From these data, they proposed serum miR-

181b, miR-195, miR-219-2-3p, miR-1308, and let-7g could serve as bio-

markers for schizophrenia diagnostics, with miR-181b achieving the highest

prediction sensitivity (85%) and specificity (80%). It was noticed that some of

the above circulating miRNAs exclusively expressed (miR-219-2-3p) or

Table 6.3 Small RNA-Seq studies on schizophrenia and other neurological disorders
Study Analysis Tissue used Sample size Platform

Shi et al.

(2012)

Differentially

expressed

miRNAs

Post-mortem

prefrontal cortex

(PFC or BA10)

synaptosomes

Pooled samples

from

schizophrenia

and controls

Illumina

Smalheiser

et al.

(2014)

Differentially

expressed

miRNAs/

miRNA

biomarkers

Serum 115

schizophrenia

and 40 controls

SOLiD
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highly expressed (miR-181b and miR-195) in human brains, and therefore

the source of such miRNAs in the serum potentially originated in the brain.

These miRNAs were all found to be elevated in cortical gray matter in our

studies of postmortem schizophrenia (Beveridge, Tooney, Gardiner,

Carroll, & Cairns, 2010; Beveridge et al., 2008).

Long noncoding RNAs (lncRNAs) can also be profiled through trans-

criptome sequencing. Although this class of RNAs are of none or low

protein-coding capacity, they are suggested to be functionally important in

regulating other molecules. For example, a recent evidence showed that a

lncRNAGomafuwas downregulated in cortical graymatter frompostmortem

superior temporal gyrus in schizophrenia, and this lncRNA can directly bind

to splicing factors QKI and SRSF1, which suggested that the dysregulation

of Gomafu may contribute to schizophrenia through alternative splicing in

a few genes (Barry et al., 2014). Lin et al. (2011) performed RNA-Seq on

iPSCs and differentiating neurons and discovered a number of lncRNAs

differentially expressed during the transition besides many protein-coding

genes, including a few schizophrenia candidate genes. Additional analysis

showed that a few lncRNAs with expression increased in differentiating

neurons were located near SNPs associated with schizophrenia and may be

abnormally regulated in schizophrenia patients (Lin et al., 2011).

Circular RNAs (circRNAs) are formed by covalent linkage of both ends

of linear RNA molecules as a consequence of back splicing events.

Recently, properties and potential functions of circRNAs have been largely

studied (Hansen et al., 2013; Memczak et al., 2013). As circRNAs are

observed enriched in brain tissues, they would have particular associa-

tions with brain diseases and neurological disorders (Lukiw, 2013). Ghosal

et al. provided a database with comprehensively annotated association

between circRNAs and human disease using network-based computational

predictions (Ghosal, Das, Sen, Basak, & Chakrabarti, 2013). Searching for

schizophrenia-associated circRNAs on this database, five predictions are

obtained, but all need further validation, possibly with RNA-Seq. Enrich-

ment of circRNA in RNA-Seq analysis can be accomplished by an RNA

exonuclease (RNase R) treatment prior to library construction ( Jeck

et al., 2013). This depletes linear RNA molecules and gives better coverage

of these rare new regulatory RNAs.

4. DISCUSSION AND PERSPECTIVES

Recent progress in characterizing transcriptome dynamics in schizo-

phrenia using RNA-Seq not only deepens our understanding on the
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expression changes of schizophrenia-associated genes but also extends our

knowledge of schizophrenia-associated alternative splicing and, potentially,

biased allelic gene expression and abnormal RNA editing. Prior to the wide

application of high-throughput sequencing, transcriptome analysis in

schizophrenia has already been profiled in numerous studies using microar-

ray technologies. Much of the previously identified schizophrenia-

associated changes have also been observed with RNA-Seq. For instance,

we reported that half of the differentially expressed genes were previously

observed in at least two microarray studies (Wu et al., 2012). However, a

noticeable number of new genes with expression changes were only detect-

able by RNA-Seq, suggesting there is higher sensitivity in RNA-Seq

because of its larger dynamic range and less bias, although some will be a

result of heterogeneity. Enlarging the sample size in future studies would

be desirable to provide a better coverage of variance in this complex

population.

Although different brain regions have substantially different gene expres-

sion patterns, a few genes found significantly regulated toward the same

direction. For example, neuropeptide B was upregulated in both the cere-

bellar cortex and the cerebral cortex (DLPFC), and interferon-induced

transmembrane protein 2 (IFITM2) upregulated in both hippocampus

and the DLPFC (Fillman et al., 2013; Hwang et al., 2013; Mudge et al.,

2008). Moreover, cross-reference to microarray studies, 17 of 215 differen-

tially expressed genes identified in cerebellar cortex have previously shown

changes in cerebral cortex (DLPFC or superior temporal gurus) (Evans et al.,

2003), including genes GABRA1, GOLGA1, and CACNG2. The same or

similar schizophrenia-related expression changes of a few genes in different

brain regions suggest that these genes might be regulated under a similar trans

environment despite the regional difference, and the roles that they play

might be similar across all these regions and need connecting all regions

together to facilitate understanding.

To assess the linkage between the transcriptome dynamics and

schizophrenia-associated SNPs or mutations, the most direct way is to check

whether differentially regulated genes are overlapped with previous

genome-wide association studies (GWASs). Allen et al. reported that several

differentially expression genes in cerebellar cortices of schizophrenia subjects

had also been previously shown association with schizophrenia in genetic

association studies. The genes include CACNG2, GABRA1, GPSN2,

HIRA, PSAP, RNABP5, and TCF4 (Allen et al., 2008). Xu et al. (2012)

also showed a twofold enrichment than expectation of their detected differ-

entially expressed genes overlapped with genetic association analysis results.
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Such connections provide possible causal evidence of the functional SNPs/

mutations, assuming that they have changed the local cis-regulatory ele-

ments. However, SNPs/mutations can also function through distal cis-

elements or even trans-factors, which relationship could be constructed

by analyzing eQTL.

The simultaneous availability of transcriptome dynamics profiling and

genome-wide assay of genetic variation allows the mapping of eQTL, which

would offer a more direct molecular basis for explaining the susceptibility

SNPs/mutations identified through GWAS, rather than concealing biolog-

ical mechanisms in the “black box” lying in between (Cookson, Liang,

Abecasis, Moffatt, & Lathrop, 2009; Nica & Dermitzakis, 2013). Based

on microarray technologies for gene expression profiling (Mirnics et al.,

2000; Vawter et al., 2002), many eQTL studies on schizophrenia and other

psychiatric disorders have already been performed (Kim, Cho, Lee, &

Webster, 2012; Richards et al., 2012), not only validating the functional

importance of particular SNPs/mutations in developing schizophrenia but

also facilitating the discovery of molecular pathways relevant to the etiology

of the disorder resulted from genetic polymorphism. Limited by micro-

arrays, such analysis for QTLs was, however, restricted to only each gene’s

overall expression levels. Provided by RNA-Seq, multiple layers of trans-

criptome dynamics can also be involved in such analysis for a more compre-

hensive understanding of genetic effects on transcriptome alterations. The

analysis of eQTL on isoform expression levels has already been proposed

(Kwan et al., 2008) and, equivalently, exon eQTL to link exon-specific

usage with genetic factors. In this sense, such strategies to bridge genetic var-

iations and alternative splicing in transcriptome are call splicing QTL or

sQTL (Oldmeadow et al., 2014). Although Oldmeadow et al. presented

a paradigm for studying sQTL in schizophrenia, the sensitivity was plausibly

limited by using exon-array data. Due to the advantages we discussed pre-

viously, RNA-Seq, rather than microarrays, provides more accurate mea-

surements for all dimensions of transcriptome dynamics and thus can

largely enhance the research on eQTL and sQTL, especially on large pop-

ulation studies (Montgomery et al., 2010; Pickrell et al., 2010).

Epigenetic and environmental factors may also affect gene expression

dynamics ( Jaenisch & Bird, 2003). Recently, many efforts on studying epi-

genetic effects on gene expression have been made (Dempster et al., 2011;

Melas et al., 2012). Together with genetic and epigenetic effects, expression

of regulatory genes and genes encoding regulatory proteins can largely

determine the expression/splicing levels of their target genes and may
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further regulate RNA degradation and translocation, and protein synthesis

and decay. To fully understand the transcriptome dynamics in schizophrenia

and other neurological disorders, integrating different levels of data from its

upstream and downstreamwould be critically important. Exploring the con-

nection between different brain regions and peripheral tissues would also

facilitate elucidating the underlying regulatory mechanisms and moreover

the etiology of these disorders. Ultimately, new insight into the trans-

criptome and its underlying genetic and epigenetic influences will lead to

new biomarkers and better diagnostic approaches, as well as new treatment

strategies for improved clinical management of neurological and neuropsy-

chiatric disorders.
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Abstract

Less than 3% of the human genome generates protein-coding transcripts; the majority,
far from being strewn with evolutionary “junk,” is dynamically transcribed into non(pro-
tein)-coding RNAs (ncRNAs). These ncRNAs provide another provide another, previously
hidden, level of regulatory information that appears to be involved in hard- and
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soft-wired epigentic processes. The extensive and intricate level of gene regulation
provided by ncRNAs may be the major driver for the accelerated development of
the human brain and its associated increase in complexity and cognition. Support
for this is provided by the correlation between the evolutionary increase of complexity
in the nonprotein-coding transcriptome paralleling cognitive evolution in primates, in
contrast to the coincidently modest evolutionary changes of the protein-coding
transcriptome. The essential role of these regulatory RNAs is reflected in almost every
aspect in neuroscience, including chromatin modification, transcriptional regulation,
alternative splicing, RNA editing and translation. Dissecting this plethora of regulatory
networks and editing events, which are orchestrated through long and small noncod-
ing RNAs, and their interaction with transcription factors, chromatin-modifying
enzymes, and other protein effectors will provide essential insights into the transcrip-
tional complexity and plasticity in the development and function of the human brain.
Such complexity provides susceptibility to internal and external perturbations, which
in rare cases might act as evolutionary catalysts, but in many cases could manifest as
neuropsychiatric or neurodegenerative diseases. NcRNAs (especially lncRNAs) are
therefore excellent candidates for both disease biomarkers and disease-ameliorating
therapies.

1. INTRODUCTION

The established DNA!RNA!protein paradigm of biology is cur-

rently receiving a significant renovation to accommodate the recently dis-

covered impact of regulatory RNA. This revolutionary shift has been

facilitated by the genome-wide sequencing effort of multiple groups utiliz-

ing recent advances in sequencing technology. The discovery of introns in

the 1970s as nontranslated (and thus noncoding) intragenic RNA was inter-

preted as “junk” RNA. This concept was questioned for the first time in the

1990s by the alternative proposal that intronic and other noncoding RNAs

(ncRNAs) provide a highly parallel regulatory information network

required for the development of multicellular organisms (Mattick, 1994).

The full extent of ncRNA transcription is reflected in the fact that, while

<3% of the human genome encodes protein-coding exons, >80% is tran-

scribed into ncRNA (Djebali et al., 2012; Hangauer, Vaughn, &

McManus, 2013).

A large proportion of ncRNAs show primate specificity and the rapid

increase of ncRNA numbers, sequence, and expression complexity

(Necsulea et al., 2014) parallels the rapid cognitive evolutionof primates.This

contrasts with only modest evolutionary changes in the protein-coding
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portion of the genome (Capra, Erwin, McKinsey, Rubenstein, & Pollard,

2013). It has therefore been postulated that the increased capacity in primate

brainswas facilitated by the rapid increase in the number of ncRNAs and their

expanded degree of tissue-specific expression (Taft, Pheasant, & Mattick,

2007). Rapidly accumulating recent data (Kutter et al., 2012; Liu,

Mattick, & Taft, 2013; Necsulea et al., 2014) indicate that ncRNAs (specif-

ically lncRNAs) have expanded with increasing developmental complexity

and might be the major driver of cognitive evolution.

The role of ncRNA is predominantly regulatory, playing complex and

crucial roles in cell function, developmental regulation, evolutionary expan-

sion, as well as disease initiation and progression. Current data indicate that

ncRNAs achieve this by regulating gene expression at a number of levels

including epigenetic modification, enhancer function, alternative RNA

splicing, and translation (Mercer, Dinger, Trapnell, & Mattick, 2012;

Mercer & Mattick, 2013a, 2013b; Ng, Lin, Soh, & Stanton, 2013). Expres-

sion profiling in different tissues and developmental systems has shown that

the majority of ncRNA transcripts are actively regulated, spliced, and local-

ized, especially in the brain, with tissue-specific and stimulus-dependent

expression (Dinger et al., 2008; Dinger, Pang, et al., 2009; Mercer,

Dinger, Sunkin, Mehler, & Mattick, 2008; Necsulea et al., 2014). In addi-

tion to encoding regulatory RNAs, noncoding regions in the genome can

also serve other regulatory functions by providing binding sites for both

ncRNA and regulatory proteins, such as transcription factors.

The human brain best exemplifies the maximal diversity and complexity

of the human transcriptional landscape. To perform its functions, many of

which appear either unique to or far more advanced in Homo sapiens. The

human brain has developed as an intricately sophisticated network compris-

ing�90 billion neurons with trillions of synaptic connections. This remark-

able organizational feat is achieved using a similar number of protein-coding

genes as that of C. elegans (which has 302 neurons), through extensive

enhancement in complexity of the human brain’s transcriptome to provide

a vast array of molecular and cellular specialization. ncRNAs, many of them

lncRNAs specific to primate brains, contribute substantially to the brain’s

enhanced transcriptome providing complex regulation and modulation

gene expression at almost every level. lncRNAs, themselves showing spe-

cific and highly regulated developmental and spatiotemporal expression,

bind to chromatin-modifying proteins and recruit their catalytic activity

to specific sites in the genome, to modulate chromatin states and impact
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regulation of gene expression. The abundance of lncRNAs (predicted to

reach as many as 56,000 distinct transcripts; Xie et al., 2014) in combination

with this regulatory potential suggests that lncRNAs may be part of a broad

epigenetic regulatory network.

The brain’s transcriptional diversity is also expanded by alternative splic-

ing, which is profuse in the brain, of both mRNAs and lncRNAs. RNA

editing, particularly of lncRNAs, additionally modulates the repertoire of

targets and further expands the sphere of regulatory influence. These mech-

anisms likely underpin the dynamic changes in the transcriptome of individ-

ual neurons in response to developmental and external environmental cues,

including memory formation and neuroplasticity.

The brain’s enhanced sophistication mediated through ncRNA regula-

tory mechanisms also provides a vulnerability to dysfunction and disease.

Dysregulation of ncRNA has already been identified as contributing to neu-

rodegeneration and disorders of the brain.

The plethora of ncRNA functions and their potential role in the swift

increase in size and complexity in primate/human brain will be highlighted

in this review to showcase the central role of regulatory RNA in the brain.

2. THE LONG AND SHORT OF NONCODING RNAs

Defined by size, ncRNA molecules are classified as either short

(<200 nt) or long (>200 nt). Long noncoding RNAs (lncRNAs) are a het-

erogeneous group (see below for classification) that can reach multiple kilo-

bases in length and are predominantly located in the nucleus. Small

noncoding RNAs (sncRNAs) include the well-studied transfer RNAs

(tRNAs) and ribosomal RNAs (rRNAs) and the more recently discovered

short small interference RNAs (siRNAs), piwi-interacting RNAs

(piRNAs), small nucleolar RNAs (snoRNAs), y-RNAs, and the prominent

microRNAs (miRNAs).

Bifunctional transcripts span these boundaries of coding/noncoding

RNA or short/long ncRNAs in many ways that include ncRNA transcripts

encoding previously undiscovered small proteins like the steroid receptor

RNA activator and tumor protein (TP53) (Candeias, 2011; Cooper

et al., 2011; Kageyama, Kondo, & Hashimoto, 2011; Kapranov et al.,

2007). Bifunctionality also occurs among the ncRNA, where some

lncRNAs can be processed into miRNAs (Dieci, Fiorino, Castelnuovo,

Teichmann, & Pagano, 2007; Necsulea et al., 2014).
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2.1. Short noncoding RNAs
Although<200 nt in their mature form, sncRNAs are often generated from

longer primary transcripts, including introns, by endogenous RNA cleavage

enzymes. Their final size, function, or localization pattern define their

nomenclature. sncRNAs have been reported to play a major role in embry-

onic neuronal differentiation (Landgraf et al., 2007; Skreka et al., 2012) and a

clear spatiotemporal differentiated expression in the human brain (Kang

et al., 2011; Nowak & Michlewski, 2013; Ziats & Rennert, 2013). Inhibi-

tion of the sncRNA biogenesis results in a range of phenotypes, due to con-

strained differentiation in various tissues and mechanistic deficits as well as

neurodegeneration (Cuellar et al., 2008; Davis et al., 2008; Haramati

et al., 2010; Yoo et al., 2011).

Here, we will discuss the various functions of sncRNAs according to the

role they are playing in gene expression (Fig. 7.1).

The 18 nt long class of transcription initiation RNAs (tiRNAs) map

within 60–120 nt of transcription start sites (Taft, Glazov, Cloonan, et al.,

2009). They are located in the nucleus and have been identified to bind

to the sense and antisense DNA strand as well as up- and downstream to

the transcription start site of their origin (Taft, Simons, et al., 2010). tiRNAs

also show epigenetic modifications associated with transcription initia-

tion indicated through enrichment with CCCTC-binding factor (Taft,

Glazov, Cloonan, et al., 2009; Taft, Kaplan, Simons, & Mattick, 2009;

Taft, Simons, et al., 2010). A body of work showed that these combined

features affect the transcription level of the p21 locus and indicates that

tiRNAs can be classified as another functional group of transcriptional reg-

ulators (Taft, Simons, et al., 2010). Splice site RNAs (spli-RNAs, 17–18 nt)

show precise mapping to the splice donor site of internal exons in animals.

Similar to tiRNAs, spli-RNAs are weakly expressed, but display develop-

mental and tissue-specific expression (Taft, Simons, et al., 2010). Addition-

ally, they present 30 terminal guanine enrichment in their sequence, which

might be explained due to the complementary 50 consensus sequence of

splice sites. Small nuclear RNAs (snRNA; 100–150 nt) or U-RNA are vital

components of the spliceosome, where they contribute to the orchestration

of transcript splicing (Guo et al., 2009).

Infrastructural ncRNAs are classified as ubiquitously expressed RNAs,

which do not perform regulatory functions, e.g. transfer, ribosomal, mito-

chondrial, and snoRNAs. rRNA, despite being a hindrance due to their

abundance in current sequencing approaches, is the core of the ribosome.
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Figure 7.1 Schematic ncRNA roles and functions around a protein-coding locus.
Depicted in this scheme is the central paradigm of biology, the transcription of a
protein-coding gene, the splicing of the primary transcript, and its subsequent transla-
tion into proteins. Complementary depicted is the transcription from the antisense
strand, which gives birth to a subfamily of lncRNAs and a canonical biogenesis of
sncRNAs either from a noncoding gene or with introns as there origin. We show exem-
plary roles of lncRNA function that impacts upon diverse biological processes (Djebali
et al., 2012; Hangauer et al., 2013; Mercer, Dinger, & Mattick, 2009; Zhang, Zhang, et al.,
2012), including epigenetic modification (Gupta et al., 2010; Mercer, Dinger, Trapnell, &
Mattick, 2012; Mercer & Mattick, 2013a; Ng et al., 2013), transcriptional regulation
(Dinger et al., 2008; Dinger, Pang, et al., 2009; Feng et al., 2006; Mercer et al., 2008;
Necsulea et al., 2014), splicing (Derrien et al., 2012; Ponjavic, Ponting, & Lunter, 2007;
Smith, Gesell, Stadler, & Mattick, 2013; Yan et al., 2005), and translation (Dinger,
Amaral, et al., 2009; ENCODE Project Consortium et al., 2012; Wang et al., 2005). We show
the role of (i) tiRNA in transcriptional initiation upstream of transcription start sites (Taft,
Glazov, Cloonan, et al., 2009), (ii) si- and miRNA in their function in posttranscriptional
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rRNA introns can additionally be processed into miRNAs which unveil an

additional layer of translational regulation (Son et al., 2013). Transfer RNAs

or tRNA are adapter molecules with their well-described role in translation.

These molecules undergo various editing events, with new modifications

still being revealed to researchers even today (Kim et al., 2013). Mediators

of these modifications are snoRNAs, which guide chemical modification of

other RNAmolecules including rRNA and tRNA (Bachellerie, Cavaillé, &

Huttenhofer, 2002). snoRNAs can also act as precursors for miRNAs and

sno-derived RNAs (sdRNAs) (Taft, Glazov, Lassmann, et al., 2009). These

infrastructural ncRNAs are not restricted to the nuclear genome as the

human mitochondrial genome encodes also ncRNAs (mito-RNAs), which

to date comprise of 22 tRNAs and 2 rRNAs with a broad variance in their

expression pattern (Mercer et al., 2011). Additionally, there are reports of

various small mito-RNAs (Ro et al., 2013) and three long ncRNAs

(Rackham et al., 2011) expressed in mitochondria.

Posttranscriptional sncRNAs often mediate their function via the RNA-

induced silencing complex or RISC. miRNA and siRNA, which belong to

a group of RNA interference molecules, are the best-studied regulatory

ncRNAs to date. We describe the miRNA canonical biogenesis as one

example for other sncRNAs here. It starts with the transcription of the

primary miRNA (pri-miRNA) by either RNA polymerase II (Cai,

Hagedorn, & Cullen, 2004; Lee et al., 2004) or III (Borchert, Lanier, &

Davidson, 2006). They can originate from introns of annotated protein-

coding genes (Kim & Kim, 2007) or from intergenic or antisense

regions (Lagos-Quintana, Rauhut, Lendeckel, & Tuschl, 2001; Lau, Lim,

Weinstein, & Bartel, 2001; Lee & Ambros, 2001; Mourelatos et al.,

2002). Pri-miRNAs have a characteristic hairpin structure with unstruc-

tured flanking sequences. This results in an RNA “fold-back” structure

(hairpin), which is recognized and processed by the RNase III DROSHA

(Lee et al., 2003) and its cofactor DGCR8 (Denli, Tops, Plasterk, Ketting, &

regulation of protein expression and their recently discovered sponge inhibitors
circRNA, (iii) snoRNA and their mediating function in the modification of infrastructural
RNAs like rRNA and tRNA, and (iv) piRNA to protect the germline from transposable ele-
ments. In the process of splicing, we show the spli-RNAs, which show precise mapping
to the splice donor site of internal exons in animals (Taft, Simons, et al., 2010) and
snRNAs, like U2-snoRNA, which are vital components of the spliceosome (Guo,
Karunatilaka, & Rueda, 2009; Padgett, Grabowski, Konarska, Seiler, & Sharp, 1986;
Ruby, Jan, & Bartel, 2007).
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Hannon, 2004; Gregory et al., 2004; Han et al., 2004; Landthaler, Yalcin, &

Tuschl, 2004). The product of this endonucleolytic cleavage is a precursor

miRNA (pre-miRNA) which is exported to the cytoplasm and is the major

source of the double-stranded mature miRNAs (mat-miRs) resulting from

RNase III Dicer1 cleavage (Grishok et al., 2001; Ketting et al., 2001;

Knight & Bass, 2001; McLachlan, Pasquinelli, Bálint, Tuschl, & Zamore,

2001; Zhang, Kolb, Jaskiewicz, Westhof, & Filipowicz, 2004). The

double-stranded RNA (dsRNA) species is unraveled and one of the strands

is subsequently loaded into a complex containing one of the four human

argonaute proteins (Wang et al., 2009) resulting in the RISC. The RISC

mediates the repressive function of themiRNA through partial complemen-

tarity to targeted mRNA transcripts. Each of these so far 1872 identified pre-

miRNA molecules (miRBase; Griffiths-Jones, Grocock, van Dongen,

Bateman, & Enright, 2006) is capable of targeting thousands of mRNAs

either with their 5p-, 3p-, or through dual activity (Guennewig et al.,

2014). It is predicted that 60% of all expressed proteins are modulated

through miRNAs. Although originally thought to be predominantly cyto-

solic, given both their biogenesis location and interaction with 30 UTRs of

coding mRNA, recent studies have shown that the majority of the mature

miRNAs are located in the nucleus of neuronal stem cells ( Jeffries, Fried, &

Perkins, 2011). A current study unveiled the interaction of miRNA-9 with

Malat-1 in the nucleus, which interconnects two ncRNA classes (miRNA

and lncRNA) in novel manner (Leucci et al., 2013).

Y-RNAs are similar in size to miRNAs, but have a distinct biogenesis

(Nicolas, Hall, Csorba, Turnbull, & Dalmay, 2012). They are associated

with DNA replication and a part of the Ro60 complex (Hall,

Turnbull, & Dalmay, 2013), which contributes to the quality control of

RNA folding (Reinisch & Wolin, 2007).

Another group of ncRNAs are newly identified molecules called circular

RNA (circRNA). These noncoding regulatory molecules have recently

been identified to be spatiotemporal expressed and show stable circRNAs

in a variety of tissue, species, and developmental stages (Memczak

et al., 2013).

piRNAs are slightly longer (26–31 nt) than miRNA, with a Dicer-

independent biogenesis mechanism that still has to be determined. Their

conserved function is to protect germline cells from mobile elements like

transposons. piRNAs are themselves generated from sense or antisense trans-

posons and are therefore to a large extent sequence identical to their

origin (Siomi, Sato, Pezic, & Aravin, 2011). Their biogenesis includes the
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interaction with the piwi-clad proteins whose slicer activity leads to the

processing of the piRNA antisense strand, which then itself acts as a lead

against the original sequence. Downregulation of proteins associated with

piwi biogenesis leads to accumulation of retrotransposons and LINE ele-

ments in the germline with a potential effect of increased mutagenesis

(Malone & Hannon, 2009).

These assorted regulatory functions of sncRNAs showcase the immense

interlaced and adaptable complexity of these regulators, and their influence

leads to multiple associations in a broad spectrum of disease (see section 11.

ncRNAs and Disease).

2.2. Long noncoding RNAs
Distinct from sncRNAs, lncRNAs are RNA transcripts of >200 nt that

function by binding RNA, DNA, or proteins to modulate transcription,

alternative splicing, mRNA stability, mRNA translation, and epigenetic

events, such as chromatin remodeling (Carrieri et al., 2012; Mercer et al.,

2009; Qureshi & Mehler, 2013; Taft, Pang, Mercer, Dinger, & Mattick,

2010). Recent annotations of the human transcriptome estimate that the

human genome encodes �25,000 lncRNAs, a number larger than

protein-coding genes, with recent indication of over 50,000 potential can-

didates (Carninci et al., 2005; Hangauer et al., 2013; Xie et al., 2014).

lncRNA transcripts are in many cases produced like classic mRNAs via

polymerase II activity, with such hallmarks as histone modification, tran-

scription initiation, and elongation (50 capping and polyadenylation)

(Carninci et al., 2005; Derrien et al., 2012; Guttman & Rinn, 2012;

Kapranov et al., 2007; Kutter et al., 2012; Liu et al., 2013; Necsulea

et al., 2014; Ponjavic et al., 2007; Taft et al., 2007). Nonpolyadenylated

lncRNAs have also been identified and point to the involvement of

RNA polymerase III procession (Candeias, 2011; Cooper et al., 2011;

Dieci et al., 2007; Kageyama et al., 2011; Kapranov et al., 2007;

Necsulea et al., 2014) or that they are products of splicing ( Johnston &

Hobert, 2003; Yin et al., 2012). Most nuclear-encoded lncRNAs are

restricted to the nucleus (Derrien et al., 2012; Kapranov et al., 2007) with

exceptions showing functionality in the cytoplasm (Carrieri et al., 2012;

Mercer et al., 2009; Qureshi & Mehler, 2013; Taft, Pang, et al., 2010).

The scarcity of protein-coding capacity, the lack of sequence conserva-

tion, the low fidelity/high promiscuity of RNA polymerase II (Ponjavic

et al., 2007; Struhl, 2007), and the typically low expression levels relative

161The Central Role of Noncoding RNA in the Brain



to mRNA (Hangauer et al., 2013; He, Vogelstein, Velculescu,

Papadopoulos, & Kinzler, 2008; Mattick & Makunin, 2006) have all con-

tributed to the still active controversy questioning the relevance and func-

tionality of lncRNA. Data supporting the likely functionality of lncRNAs

include expression profiling in divergent tissues and developmental systems

showing that the majority of lncRNA transcripts are expressed in a highly

regulated manner (Dinger et al., 2008; Dinger, Pang, et al., 2009;

Hangauer et al., 2013; Katayama et al., 2005; Mercer et al., 2008, 2012;

Okada et al., 2008) and the evolutionary conservation of lncRNA pro-

moters, splice sites, and secondary structure (Atkinson, Marguerat, &

Bahler, 2012; Dinger, Amaral, Mercer, & Mattick, 2009; Ponjavic,

Oliver, Lunter, & Ponting, 2009; Smith, Gesell, et al., 2013; Ulitsky,

Shkumatava, Jan, Sive, & Bartel, 2011). Also regulatory molecules such

as lncRNAs, especially when they act upstream (e.g., direct interaction

with a specific genomic locus), need very few copies to generate an effect,

which multiplies through a cascade (comparable to hormones or tran-

scription factors). Indeed, although a field in its infancy, >150 lncRNAs

already have an ascribed biological function and the number is growing

rapidly (Amaral, Clark, Gascoigne, Dinger, & Mattick, 2011). A large

fraction of lncRNAs (849 out of 1328 examined) are expressed in mouse

brain tissues and are easily detectable by in situ hybridization in specific

cells in, for example, the hippocampus, cortex, or cerebellum (Mercer

et al., 2008).

3. TYPES AND FUNCTION OF lncRNAs

Like mRNA, lncRNAs themselves typically consist of multiple exons

and undergo alternative splicing to produce a diverse range of transcripts

(Derrien et al., 2012; Wang et al., 2005). Even though the highest propor-

tion (42%) of lncRNAs consists of two exons, every combination imagin-

able is represented. Unlike other classes of ncRNAs, such as miRNAs

and snoRNAs that have related functions, lncRNAs exhibit a broad range

of functions that impact upon diverse biological processes (Djebali et al.,

2012; Hangauer et al., 2013; Mercer et al., 2009; Zhang, Zhang, et al.,

2012), including epigenetic modification (Gupta et al., 2010; Mercer

et al., 2012; Mercer & Mattick, 2013a; Ng et al., 2013), transcriptional reg-

ulation (Dinger et al., 2008; Dinger, Pang, et al., 2009; Feng et al., 2006;

Mercer et al., 2008; Necsulea et al., 2014), splicing (Derrien et al., 2012;

Ponjavic et al., 2007; Smith, Gesell, et al., 2013; Yan et al., 2005), translation
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(Dinger, Amaral, et al., 2009; ENCODE Project Consortium et al., 2012;

Wang et al., 2005), and structure and organization of cellular components

(Necsulea et al., 2014; Sunwoo et al., 2009).

3.1. Current lncRNA classification according to origin
and function

A frequently employed classification system of lncRNAs is based on their

genomic origin and/or their functional role. Since the functional character-

ization of these molecules is under extensive investigation with an increased

publicationrate in recent years (255 (2011), 371 (2012), and 476 (2013) in

a PubMed search for “long noncoding RNA”), we face an expanding

nomenclature.

Intronic lncRNAs are transcribed from within an intron of a known

protein-coding locus in either sense or antisense orientation. Due to their

location, they are most often under the same transcriptional regulation as

the surrounding gene, with very similar spatiotemporal expression pattern.

Such intronic lncRNAs frequently function to stabilize or regulate alterna-

tive splicing of the flanking protein-coding transcript (Nakaya et al., 2007).

In cis-acting examples such as ANRASSF1 and other intronic lncRNAs, the

transcript recruits the polycomb repression complex to their promoter and

facilitates an epigenetic modification, which leads to reduced expression pat-

terns (Guil et al., 2012; Hangauer et al., 2013; Zhao et al., 2010). Intronic

lncRNAs with trans-acting functions and differing expression pattern to

their surrounding loci have been additionally reported (Hill et al., 2006;

Mercer et al., 2008).

Antisense transcripts are lncRNAs solely transcribed antisense to a

protein-coding region (including introns or not) with varying functions

and tissue dependence (Carninci et al., 2005; He et al., 2008; Katayama

et al., 2005; Okada et al., 2008). These lncRNAs are less frequently spliced

and show lower abundance than their coding counterparts (He et al., 2008).

Antisense transcripts most frequently function in a cis-regulatory manner,

through blocking its counter strand transcript and therefore masking their

features, be it protein binding, splicing, or other recognition sites similar

to the way miRNA impacts its target sites (Buske, Mattick, & Bailey,

2011; Faghihi et al., 2010; Shearwin, Callen, & Egan, 2005; Werner &

Sayer, 2009). The potential of building dsDNA:RNA triplexes that in turn

inhibit transcription has also been reported, as well as the potential to recruit

epigenetic factors or polysome to up- or downregulate its bound partner

mRNA (Carrieri et al., 2012; Magistri, Faghihi, St Laurent, &

Wahlestedt, 2012; Morris, 2011). An additional mechanism of action is

163The Central Role of Noncoding RNA in the Brain



the production of endosiRNA which, when in their mature state, either

affects their sense strand or their origin (the antisense strand) (Tam et al.,

2008; Watanabe et al., 2008; Werner & Sayer, 2009).

A subgroup of the antisense lncRNAs are called bidirectional lncRNAs,

given they are not overlapping and are found head to head in a surrounding

less than 1 kb to either side of the UTR ends of a protein-coding transcript.

These molecules can share a common bidirectional promoter, but show dis-

cordant expression patterns, which speaks against sole open chromatin

expression (Chakalova, Debrand, Mitchell, Osborne, & Fraser, 2005;

Mercer et al., 2008; Struhl, 2007). A study found that these bidirectional

promoters are well conserved between human and mouse indicating a cru-

cial function during evolution (Trinklein et al., 2004). A famous example for

a bidirectional transcript is the FMR4 locus, which expresses FMR1 and

shows downregulation in fragile X syndrome (Khalil, Faghihi, Modarresi,

Brothers, & Wahlestedt, 2008; Nakaya et al., 2007). Another one is

sox8OT, which is a bidirectional lncRNA with still unknown functions.

The SOX8 locus additionally shows adjacent expression, which plays an

important role in oligodendrocyte development (Mercer et al., 2010).

Antisense transcripts may also act by trans-regulation (regulation of a

locus not immediately adjacent to the locus of their origin by antisense tran-

scripts). A cross-species study predicted 25% of ESTs and their trans antisense

transcripts are lncRNAs in humans (Engstr€om et al., 2006), with functions in

various mechanism through a sense–antisense binding mechanism. The nit-

ric oxide synthase (NOS2A)-encoding mRNA is regulated by an antisense

transcript transcribed from a NOS pseudogene termed anti-NOS2A. The

anti-NOS2A RNA and NOS2A mRNA display reciprocal expression pat-

terns, suggesting that lncRNA anti-NOS2A plays an important role in the

regulation of the nitric oxide (NO) signaling pathway in the CNS (Korneev

et al., 2008).

If an lncRNA is generated from a locus at least 1 kb distant from the next

protein-coding sequence, it is called an intergenic long noncoding RNA

(lincRNA). Initial nomenclature named these transcripts according to their

nearest 30 protein-coding protein gene. A subfamily of these lincRNAs are

enhancer RNAs (eRNAs) named after their transcription origin, which is

often the enhancer or promoter region of a gene. Their proposed mode

of action is through transcription machinery recruiting or chromatin open-

ing (Kim et al., 2010). Another function could be associated to transcripts

acting in an activating fashion on their surrounding transcripts as described

for activating lncRNAs (Ørom, Ørom, & Shiekhattar, 2011). Trans-acting
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lincRNAs include Neat1, which is a part of the assembly in paraspeckles

(nuclear components associated with RNA editing) (Chen & Carmichael,

2009; Mercer et al., 2010) and a critical component of transcription through

protein sequestration into paraspeckles (Hirose et al., 2014).

The final group is named sense-overlapping lncRNA. These molecules

are considered variants of the coding transcript, since they show a partial

overlap with coding regions. They can lack or contain predicted open read-

ing frames, but typically show no protein expression. This is due to prema-

ture stop codons, which activate the nonsense-mediated degradation

mechanism or have alternative reading frames, which inhibit the potential

coding capacity of the lncRNA open reading frame. The FMR1 locus pro-

duces two sense-overlapping lncRNAs, which are differentially expressed in

fragile X syndrome (Pastori et al., 2014).

4. RNA STRUCTURE

ncRNA functions are mediated through folded modular domains of

RNA, which are the major mediators of their abilities to sense and guide

their regulatory potential. The function of these modular RNA domains

is primarily mediated through its secondary structure, which is based on

hydrogen bonding of different moieties in the RNA nucleotides (mainly

Watson–Crick base-pairing). The resulting bulges, loops, pseudoknots,

and various helices encompass the basis for the tertiary structure. Tertiary

structures gain stability through base-pair stacking (hydrophobic interac-

tions) and other non-Watson–Crick base-pairing properties (Cruz &

Westhof, 2009). Remarkable is that tertiary as well as the secondary struc-

tures are classifiable through a number of modules, which are influenced

only to a certain extend by their neighboring sequences (Lescoute,

Leontis, Massire, & Westhof, 2005). These modular entities, as well as

the canonical antisense complementarity binding capacities, provide

ncRNAs the ability to host a plethora of interactions, which is most com-

monly recognized among the miRNAs and their imperfect complementar-

ity against an mRNA 30 UTR. A good example of a structure-to-function

relationship are ribozymes, which themselves have catalytic moieties to

cleave either substrates or themselves to deliver their activity and are a crucial

part in the theory of the RNA world (Wan, Kertesz, Spitale, Segal, &

Chang, 2011). These interactions are extended by the countless RNA bind-

ing proteins, which modulate various aspects of coding as well as noncoding

RNA functionality (Loughlin et al., 2012; Michlewski & Cáceres, 2010;
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Ricci et al., 2014). Until recently, the structural properties of infrastructural

RNAs like rRNA or tRNAs were in the focus of structural analysis

studies, with recent reports to analysis the structure of short and long

ncRNA like let-7 or SRA1 (Loughlin et al., 2012; Novikova, Hennelly,

& Sanbonmatsu, 2012).

5. SPLICING

Almost all human transcripts can generate multiple distinct RNA

transcript variants via alternative splicing of their exons and variable 50

and 30 untranslated regions (UTRs) (Derrien et al., 2012; Irimia &

Blencowe, 2012; Kelemen et al., 2013; Sánchez-Pla, Reverter, Ruı́z de

Villa, & Comabella, 2012; Smith, Webb, et al., 2013; Taggart,

DeSimone, Shih, Filloux, & Fairbrother, 2012). Alternative splicing, which

is especially prevalent in the brain (Derrien et al., 2012; Dinger, Amaral,

et al., 2009; ENCODE Project Consortium et al., 2012; Guo et al.,

2009; Irimia & Blencowe, 2012; Kelemen et al., 2013; Mills & Janitz,

2012; Ponjavic et al., 2007; Sánchez-Pla et al., 2012; Smith, Gesell, et al.,

2013; Taggart et al., 2012), shows regulation in both tissue- and/or cell-

type-specific manner (Bernard et al., 2010; Grabowski, 2011; Kalsotra &

Cooper, 2011; Necsulea et al., 2014; Tripathi et al., 2010). Alternative splic-

ing might be the single biggest source of transcription diversity and enriches

the transcript complexity. The selection of the branch point, which gener-

ates the splicing lariat, is considered to determine the possible splicing pat-

tern (Barry et al., 2014; Beltran et al., 2008; Taggart et al., 2012). snRNAs,

specifically U2-snoRNA, are important mediators in determining the splice

isoform produced and are vital components of the spliceosome (Guo et al.,

2009; Padgett et al., 1986; Ruby et al., 2007). Additional studies found that

the lncRNA Malat1 can regulate alternative splicing through phosphoryla-

tion of the SR splicing factor (Berezikov et al., 2010; Bernard et al., 2010;

Tripathi et al., 2010; Westholm, Ladewig, Okamura, Robine, & Lai,

2012; Westholm & Lai, 2011). Other lncRNA examples are Gomafu and

ZEB2NAT, dysregulation of either leads to alternative splicing and might

in the case of Gomafu cause an association with neurodegenerative disease

(Barry et al., 2014; Beltran et al., 2008; Havens, Reich, Duelli, &

Hastings, 2012).

Another important area where splicing plays a role is in ncRNA biogen-

esis. In the case of miRNAs, it is called the mirtron pathway, in which an

miRNA is produced from a short miRNA intron (mirtron) where the
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intron constitutes the entire pre-miRNA. Their sequences are adjacent

to intron–exon boundaries (Berezikov, Chung, Willis, Cuppen, & Lai,

2007; Padgett et al., 1986; Ruby et al., 2007). Mirtrons are less strongly

expressed and are therefore thought to play more modest roles in biological

processes. They are less conserved and have evolved faster than canonical

miRNAs (Berezikov et al., 2007, 2010; Westholm et al., 2012; Westholm &

Lai, 2011). The most prominent difference, however, is their biogenesis;

rather than by DROSHA/DGCR8 processing, the pre-miRNA is pro-

ducedby splicing.Themirtron is spliced out and forms a typical intron lariat,

which is subsequently linearized by the debranching enzyme DBR1

(Havens et al., 2012). After these initial steps, the biogenesis of mirtrons

and canonical miRNAs is identical; the pre-miRNA is further processed

for incorporation into the RISC. The analysis of matched anatomical

regions of human and rhesus macaque brain unveiled 16mirtrons expressed

in primate brains (Berezikov et al., 2007; Pan, Shai, Lee, Frey, & Blencowe,

2008). Even though primate brains have a lower number of short introns

than invertebrates like flies and worms, they express more mirtrons, which

provide additional hints that the diversity of ncRNAs might have contrib-

uted to primate evolution (Bass, 2002;Berezikov et al., 2007;Maas,Rich,&

Nishikura, 2003).

Splicing, as the removal of lncRNA “introns” during transcript matura-

tion, also plays a role in lncRNAs, specifically in the subgroup of intronic

lncRNAs. The frequency of splicing events in noncoding transcripts is lower

in comparison to protein transcripts (Dinger et al., 2008; Dinger, Pang, et al.,

2009; Melcher et al., 1996; Mercer et al., 2008; Necsulea et al., 2014;

Tilgner et al., 2012).

The first reports of alternative splicing in a tissue- and cell-specific man-

ner (Pan et al., 2008; Paul & Bass, 1998) opens the discussion if the branch

point selection is part of plasticity and inherits a regulatory code. Another

possible role for alternative splicing is the context of brain development

as well as human disease association; both points are fields of research, which

are under strong investigation, but would exceed the scope of this chapter

and are additionally discussed, in another chapter of this book.

6. NcRNA EDITING

The most abundant RNA editing in animals is the conversion from

adenosine (A) into inosine (I) by adenosine deaminases (ADARs) (Bass,

2002; Luciano, Mirsky, Vendetti, & Maas, 2004; Maas et al., 2003). There
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are three ADARs reported in humans (ADAR1–3), with ADAR3 showing

brain-specific expression (Melcher et al., 1996; Yang et al., 2006). Since the

Watson–Crick base-pairing properties of inosine (I) are similar to those of

guanosine (G), the editing process alters RNA/RNA interactions, affecting

target recognition, alternative splicing, structure, and degradation, thereby

altering gene expression. It is clear that a significant amount of RNA editing

occurs in the human brain as all three ADARs are highly expressed there and

the brain contains the highest level of inosine in the body (Blow et al., 2006;

Paul & Bass, 1998).

Editing is reported in mRNA-coding regions that can change the codon

and thereby alter the amino acid in the encoded protein. However, a far big-

ger proportion of editing occurs in ncRNAs. Editing can play a role in

miRNAs, with the first reported editing of a pre-miRNA in miR-22

(Kawahara et al., 2007; Luciano et al., 2004) with following reports for

miR-1-1, miR-142, miR-143, and miR-223 (Scadden, 2005; Yang

et al., 2006) as well as miR-99a, miR-151, miR-197, miR-223, miR-

376a, and miR-379 (Blow et al., 2006; Kawahara, Zinshteyn,

Chendrimada, Shiekhattar, & Nishikura, 2007). A-to-I editing in the target

recognizing regionwas shown to alter the suppressive activity of miR-376 in

mice (Kawahara et al., 2008; Kawahara, Zinshteyn, Zinshteyn, et al., 2007).

In addition to affecting miRNA targeting, ADAR-dependent editing can

significantly impact the biogenesis of miRNAs. The editing of miR-142

led to inhibition of its cleavage by DROSHA and subsequent degradation

(Peng, Cheng, Tan, Kang, & Tian, 2012; Scadden, 2005; Yang et al., 2006),

while editing impaired Dicer1 cleavage of miR-151 (Kawahara, Zinshteyn,

Chendrimada, Shiekhattar, & Nishikura, 2007; Prasanth et al., 2005).

In contrast, editing by ADAR can also enhance miRNA biogenesis through

acceleration of DROSHA cleavage (Audas, Jacob, & Lee, 2012; Kawahara

et al., 2008).

Editing has been reported on several bases of lncRNAs JPX and Malat1

(Peng et al., 2012; Yang, Zhou, & Jin, 2013), although functional conse-

quences have yet to be attributed. ncRNA transcript CTN-RNA shows

nuclear retention after hyperediting in its 30 region. This edited region is

cleaved off under stress and the truncated transcript is exported to the cyto-

plasm and subsequently translated into a protein (Gustincich et al., 2006;

Prasanth et al., 2005). This elegant way of regulation through nuclear reten-

tion seems to be more common than expected, with a report of a family of

ncRNA immobilizing proteins in the nucleolus unveiling another ncRNA

regulatory mechanism (Audas et al., 2012; Pollard et al., 2006).
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Apart from the A-to-I editing, RNA can carry more than a hundred

chemical modifications on their nucleotides (Cantara et al., 2011). Thus,

RNA editing and/or modification is a further posttranscriptional regulatory

layer in the ncRNA transcriptome as well as the epigenetic landscape, and

likely contributes to plasticity, brain development, functional diversifica-

tion, and along that line to neurodegenerative disease. The editing of 30

UTRs, introns, and repeat elements is varied (reviewed in Skreka et al.,

2012; Yang et al., 2013) and beyond the scope of this chapter.

7. EPIGENETIC MODIFICATIONS

At present, the most likely hypothesis of the role of lncRNAs in

epigenetic modulations involves lncRNAs binding and guiding protein

effector complexes to specific genomic locations where they execute their

modulation on expression predominantly through epigenetic modifications

(Mercer &Mattick, 2013a). This model finds its most prominent example in

the imprinted lncRNA Xist, which acts through lncRNA-mediated chro-

matin regulation during X-chromosome inactivation (XCI), a process nec-

essary in females to maintain equal X-chromosome expression (Leeb,

Steffen, & Wutz, 2009). Xist achieves XCI by scanning and modifying

the three-dimensional structure of the X-chromosome and detecting acces-

sible sites to dock its silencing domain (Dimond & Fraser, 2013). This func-

tion is mediated through the A-repeats in Xist, which recruits Polycomb

Repressive Complex 2 (PCR2) (Zhao, Sun, Erwin, Song, & Lee, 2008)

and additionally relocates its functional domain over the remaining

X-chromosome (Chaumeil, Le Baccon, Wutz, & Heard, 2006). Another

well-studied lncRNA is Hotair, which showed association with chromatin

remodeling proteins PCR2 (Rinn et al., 2007) and LSD1 (Tsai et al., 2010),

which together contribute to specifying the histone modification on partic-

ular target genes. The recruitment of chromatin-modifying enzymes by

lncRNAs such as Xist appears to be a frequent occurrence in lncRNA

function. Alternative reported mechanisms include the inhibition of

transcription due to a binding of the lncRNA to the promoter region in

a reverse complementary fashion and subsequent methylation of histone

H3K9 residues as demonstrated by lncRNA Airn (Santoro et al., 2013).

A similar functional pattern can be postulated for Meg3, an maternally

imprinted lncRNA highly expressed in normal human brain, which shows

a strong upregulation of genes involved in angiogenesis and microvessel for-

mation upon Meg3 downregulation in mouse brains and an connection to
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Huntington’s disease (HD) and glioma (Aramayo, 2009; Gordon et al.,

2010; Johnson, 2012; Zhang et al., 2010).

Similar functional patterns in which lncRNAs are used to guide the

modulation of expression through histone modifications have been discov-

ered during development (Guttman & Rinn, 2012; Khalil et al., 2009;

Koziol & Rinn, 2010).

8. ncRNAs ARE INVOLVED IN NEURONAL
DEVELOPMENT, MAINTENANCE, AND PLASTICITY

The vertebrate central nervous system (CNS), with its largest portion

being the brain, is one of the most complex and diverse networks known.

The CNS/brain contains a multitude of neuronal and glia cell types, and its

development and differentiation require an enormous amount of coordina-

tion and both intrinsic and extrinsic stimuli to mature to its full form, func-

tion and potential. Fully developed human brains show prolific

transcriptional activity of ncRNAs in their neurons (Gustincich et al.,

2006; Kang et al., 2011; Ziats & Rennert, 2013). In humans, the brain went

through a rapid evolution and specific accelerated genomic features are ter-

med human accelerated regions. Tellingly, these regions are primarily (96%)

located in nonprotein-coding regions of the genome (Cuellar et al., 2008;

Davis et al., 2008; Haramati et al., 2010; Pollard et al., 2006).

sncRNAs have been reported to play a major role in embryonic neuronal

differentiation with frequent discoveries of yet to be categorized non-

canonical sncRNAs (Landgraf et al., 2007; Skreka et al., 2012) and a clear

spatiotemporal differential expression in the human brain (Kang et al.,

2011; Nowak & Michlewski, 2013; Ziats & Rennert, 2013). Inhibition

of sncRNA biogenesis in mice, in most cases through Dicer knockout,

leads to assorted phenotypes, due to constrained differentiation in various

regions and mechanistic deficits, as well as neurodegeneration (Cuellar

et al., 2008; Davis et al., 2008; Haramati et al., 2010; Yoo et al., 2011).

A significant number of miRNAs are specifically expressed in the brain

(Cabili et al., 2011; Hangauer et al., 2013; Landgraf et al., 2007; Mercer

et al., 2008; Necsulea et al., 2014 and reviewed in Nowak &

Michlewski, 2013) with hallmark miRNAs like miR-9* and miR-124,

whose expression in fibroblasts leads to their conversion into neurons

through chromatin remodeling (Yoo et al., 2011).

lncRNAs show strong enrichment of expression in the nervous system

(Cabili et al., 2011; Eacker, Dawson, & Dawson, 2013; Hangauer et al.,
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2013; Mercer et al., 2008; Necsulea et al., 2014) with high tissue-,

developmental-, and subcellular compartment specificity (Derrien et al.,

2012; Krol et al., 2010; Lipovich et al., 2014; Necsulea et al., 2014;

Ponjavic et al., 2009), including brain-specific expression of �40% of the

most highly and differentially expressed lncRNAs (Derrien et al., 2012;

Konopka et al., 2010).

Specific examples of lncRNA (cis or localized) action in the CNS include

the transcription factor Emx2os, which is associated with cerebral cortex

development and is activated by a short antisense transcript (Heins et al.,

2001; Spigoni, Gedressi, & Mallamaci, 2010). Another prominent example

is BDNF, which shows strong involvement in the nervous system with at

least 12 isoforms and 4 antisense transcripts and a specific expression

pattern in the brain. The inhibition of BDNF-AS leads to BDNF

upregulation and therefore suggests potential pharmacological uses for

lncRNAs (Bibel & Barde, 2000; Modarresi et al., 2012; Pruunsild,

Kazantseva, Aid, Palm, & Timmusk, 2007). Additional brain-specific

lncRNA examples are Nrgn and camk2n1 which are involved in

corticogenesis (Ling et al., 2011).

A prominent CNS lincRNA is Neat2 (Malat1) (Mercer et al., 2010),

which when knocked down in cultured hippocampal neurons decreased

synaptic density (Bernard et al., 2010), but was dispensable in an in vivo

mouse model with modest transcriptional cis effects on neighboring genes

(Zhang, Arun, et al., 2012). A separate study performed differential expres-

sion analysis of mouse brain regions and identified 66 lincRNAs showing

stronger transcriptional correlation to their neighboring protein-coding

genes than nondifferentially expressed lincRNAs (Belgard et al., 2011).

An example of sense-overlapping lncRNA is EVF2, which regulates the

transcription of Dlx5 and Dlx6 (DLX proteins are involved in mutiple func-

tions in the forebrain), which is facilitated through the binding of Dlx2

(Bond et al., 2009; Feng et al., 2006). EVF2-deficient mice show reduced

GABAergic receptors, which points to implications in autism, schizophrenia

(SZ), epilepsy and tourette (Bond et al., 2009). SOX2OT has brain-specific

expression and indicated association with adult neurogenesis and correlation

with expression of SOX2, a gene required for stem-cell maintenance in the

CNS (Amaral et al., 2009; Mercer et al., 2008).

There is determined interest to identify the function of lncRNAs in neu-

ronal tissues and their roles in brain development, activity and stress

response, memory formation, plasticity, cell identity, and how their dys-

function contribute to neurological diseases.
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8.1. Stimuli depend on expression, specificity, and memory
A number of ncRNAs have recently been discovered to display expression

dependent upon increased neuronal activity or stress-induced stimuli,

suggesting a strong involvement in fine-tuning neuronal plasticity (reviewed

in Banerjee, Neveu, & Kosik, 2009; Eacker et al., 2013). miRNAs show a

higher metabolism (rapid decay and increased transcription) in neuronal cells

than in nonneuronal cells, with an activity-dependent turnover pattern

(Krol et al., 2010; Miura, Shenker, Andreu-Agullo, Westholm, & Lai,

2013). Articles of increased learning and memory function in mice upon

inhibition of the canonical miRNA biogenesis through Dicer inactivation

(Konopka et al., 2010; Nudelman et al., 2010), with linkage of the RISC

pathway and an increase in protein synthesis have been reported previously

(Banerjee et al., 2009; Rogelj, Hartmann, Yeo, Hunt, & Giese, 2003). This

suggests that specific miRNAs are rapidly degraded upon neural activity,

resulting in increased translation of their specific targets. These reports go

hand in hand with recent evidence, which showed brain-specific lengthen-

ing of the 30 UTRs in brains containing thousands of conserved miRNA

target site, with enriched sites for neuronal-specific miRNAs (Lee et al.,

2011; Miura et al., 2013). Not surprisingly, downregulation of miRNA

upon stimulus is not the sole regulatory mechanism as miR-132 expression

displays activity-dependent upregulation (Nudelman et al., 2010;

Rajasethupathy et al., 2012). Similar modulation patterns (up- as well as

downregulation) were reported for brain-specific snoRNAs in mice hippo-

campi after fear conditioning (Landry, Kandel, & Rajasethupathy, 2013;

Rogelj et al., 2003). piRNAs are another class which has been shown to

be of importance in the nervous systems (Gustincich et al., 2006;

Kapranov et al., 2010; Lee et al., 2011). They are considered to act upon

neural activation (Liu et al., 2013; Necsulea et al., 2014; Rajasethupathy

et al., 2012; Taft et al., 2007) in their function as epigenetic modifiers

and might therefore play a role in “memory storage” bridging generations

(Landry et al., 2013; Pollard et al., 2006). lncRNA Gomafu shows

activation-dependent transcription and involvement in alternative splicing

in schizophrenia (Barry et al., 2014; Mercer et al., 2010).

The subsequent step from activation-dependent expression to modula-

tion at the mRNA and protein level will most likely have its implications in

memory formation and cognition. Long-term memory formation is consid-

ered as the stable strengthening of synaptic interactions and alterations in pat-

terning between neurons in the brain. Given the increasing body of
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evidence for ncRNAs as modulators of activity-dependent gene expression,

it very likely that this additional regulatory layer will be found to play a sig-

nificant role in human brain plasticity.

9. EVOLUTIONARY ROLE OF ncRNAs AND PRIMATE
SPECIFICITY

The contribution of ncRNAs to brain function is indicated by both

their diversity and robust expression in the human brain (Chimpanzee

Sequencing and Analysis Consortium, 2005; Gustincich et al., 2006;

Kapranov et al., 2010; Nielsen et al., 2005). As highlighted below

(Fig. 7.2), the correlation between the increasing number and diversity of

ncRNAs and the developmental complexity of species is remarkable

(Hu et al., 2011; Liu et al., 2013; Necsulea et al., 2014; Taft et al., 2007).

Particularly interesting is that the most accelerated evolutionary develop-

ment could be mapped to regions in humans which are responsible for the

expression of ncRNAs and connected to cortical development (Necsulea

et al., 2014; Pollard et al., 2006). The lncRNAs HARF1 A and B, which

are associated with forebrain development in early gestation, exemplify this

idea (Pollard et al., 2006). Further, Chodroff et al. found similar expression

patterns among lincRNAs in various vertebrates in close association to brain

development (Chodroff et al., 2010).

The likely contribution of ncRNAs to human brain evolution includes

both sncRNA and lncRNA. miRNA expression patterns between human

and closely related chimpanzee differ by 11%, while between humans and

macaques (old world monkeys) differ by 35%, with human-specific locali-

zation in neurons and an indication of changes after the split between human

and Neanderthal lineage (Hu et al., 2011; Muslimov, Banker, Brosius, &

Tiedge, 1998; Wang et al., 2002). The correlation between human and

chimpanzee lncRNA brain expression is lower than between its coding

counterparts between human and xenopus (Gemayel, Vinces, Legendre, &

Verstrepen, 2010; Necsulea et al., 2014).

Additional potential explanations for an increased acceleration of evo-

lution in certain neuronal regions among primates/humans could be

(mosaic) copy number variations (McConnell et al., 2013) which might

lead to increased organismal evolvability (Gemayel et al., 2010; Lin

et al., 2011).
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10. THE ROLE OF (RETRO)TRANSPOSONS
AND PSEUDOGENES IN ncRNA EVOLUTION

Transposons, or transposable elements, are small DNA sequences pre-

sent many times in the human genome. They can change their position

within the genome, thereby creating or reversing mutations, and as a con-

sequence of their insertion, change the genome size. Transposable elements

exist as either retrotransposons that utilize RNA intermediates in the trans-

position process or as DNA transposons, which bypass the RNA interme-

diate step and are directly transferred as DNA into their new genomic

location. Due to their insertion/excision character, transposable elements

are considered mutagens whose often deleterious nature is proposed to be

restricted in the germlines of eukaryotes by piRNAs. Thus, the abundance

of piRNA in germline tissue may reflect the high levels of transposons and

other repeat-derived RNA. The brain is the only nongermline-associated

somatic tissue presently known to express piRNAs where they may act as

a regulatory mechanism for L1 retrotransposons. The expression of L1

retrotransposons is regulated during neuronal differentiation and proposed

to give rise to neuronal heterogeneity and somatic mosaicism in brain

(Iyengar et al., 2014).

The contribution of transposable elements to evolution remains under

lively discussion, although leaning toward a functional role. Transposable

elements are highly abundant in human lncRNA, comprising�30% of total

lncRNA sequence, and are key to lineage-specific diversification of the ver-

tebrate lncRNA portfolio (Hoekstra, 2013). Additionally, transposable ele-

ments in the lncRNAs have evolved under stronger constraints than intronic

transposable element sequence or random DNA sequences, suggesting the

Figure 7.2 Depicting the correlation between the evolutionary increase of organismal
complexity in the nonprotein-coding transcriptome and cognitive evolution.
(A) Increase of biodiversity throughout biogenesis on earth and the protein-coding
(PC) percentage in variousdomains. Thedomainsof archae andbacteria showahighper-
centage of PC transcripts (Liu et al., 2013), whereas the arising of protest presents a sig-
nificant lower PC level with an additional decrease in the domain of animalia. The
Cambrian explosion led to a huge increase in biodiversity, which finally led to emergence
of primates, whose genomes only contain around 2% PC regions. (B) The evolution and
extension of noncoding families goes hand in hand with the diversification of genera.
(C) The evolutionary increase of complexity in the non-PC transcriptome may be an
underlying cause for the accelerated growth in primate brains and the result of
higher-order cognition in humans. Figure adapted from Barry (2014).

175The Central Role of Noncoding RNA in the Brain



transposable elements may functionally contribute to lncRNAs. Many of

their features contain signals critical for lncRNA biogenesis including splic-

ing, transcription, initiation, and polyadenylation, or alternatively transpos-

able elements appear associated with to cis regulation of downstream

lncRNA transcripts (Hoekstra, 2013).

Pseudogenes are gene remnants produced by the loss of regulatory

sequences or inactivating mutations, often following retrotransposition

events or gene duplication. Currently, >11,000 pseudogenes are annotated

in humans of which a significant proportion of them are transcriptionally

expressed in the brain and associated with open chromatin marks (Pei

et al., 2012). Although viewed as junk, differentiation of human iPS cells

into human neurons was accompanied by significant expression changes

in over a thousand of these pseudogenes (Lin et al., 2011), suggesting a

functional roles for these elements. One possible function of expressed

pseudogenes is to act as decoys for regulatory entities (Hawkins &

Morris, 2010; Poliseno et al., 2010; Tam et al., 2008; Watanabe et al.,

2008). The sequence similarity/homology with a protein-coding gene pro-

vides pseudogene transcripts with the capacity to bind miRNAs targeted to

the parent protein-coding transcript and thus act as an miRNA decoy or

sponge to buffer or potentially regulate the activity of miRNAs on physio-

logically relevant targets ( Johnsson et al., 2013; Wang et al., 2013).

11. ncRNAs AND DISEASE

lncRNAs can regulate gene expression through a wide range of

mechanisms (e.g., chromatin modification, transcription, splicing, transla-

tion), and hence, it is not surprising that lncRNA dysfunction or mutations

are associated with neurological and neurodegenerative disorders with

many lncRNAs transcribed from loci associated with these diseases. The rap-

idly increasing identification and functional analysis of new lncRNAs will

undoubtedly associate many more lncRNAs with diseases of the human

brain.

miRNAs are well established as regulating human disease-associated

genes, and polymorphisms in their 30 UTR binding sites provide further

possibilities for their dysregulation.

11.1. Alzheimer's disease
The proteolytic processing of the amyloid precursor protein (APP) to neu-

rotoxic amyloid peptide Aβ42 in the brain by BACE1 (beta-secretase) is a
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significant contributor to Alzheimer’s disease (AD). Elevated BACE1

expression and BACE1’s intracellular processing access to APP, mediated

by SORL1, can increase production of toxic Aβ42. BACE1 expression is

regulated by both miRNAs and lncRNAs: miRNAs miR-107 and miR-

29a/b-1 have binding sites within the BACE1 30 UTR and are significantly

decreased in sporadic AD patients, correlating with significantly increased

BACE protein levels (Hébert et al., 2008; Wang et al., 2008; Zhang

et al., 2013). lncRNA BACE1-AS is a transcript, antisense to BACE1 that

regulates BACE1 mRNA and protein expression, and which is elevated

in AD patients. BACE1-AS is proposed to act by masking a miRNA binding

site, preventing miRNA-induced translational repression of BACE1 mRNA

and resulting in increased BACE1 protein levels (Barry et al., 2014; Faghihi

et al., 2008). Intriguingly, BACE1-AS is elevated upon exposure to Aβ42,
producing a posttranscriptional feed-forwardmechanism that results in further

increased BACE1 and Aβ42.
By regulating membrane trafficking of APP, SORL1 modulates expo-

sure of the substrate APP to BACE1 and thus Aβ42 production, with down-
regulation of SORL1 leading to increased Aβ formation. lncRNA 51A,

whose expression is upregulated in AD patients, is antisense to the first

SORL1 intron and its expression shifts SORL1 mRNA splicing from the

long protein variant SORL1-A to an alternatively spliced protein form.

The resulting decreased production of SORL1-A is associated with signif-

icant overproduction of Aβ (Chubb, Bradshaw, Soares, Porteous, & Millar,

2008; Ciarlo et al., 2013). Thus, alterations in ncRNA expression can con-

tribute to increased BACE1 and Aβ42 levels in sporadic AD (Kerin et al.,

2012; Zhang et al., 2013).

11.2. Schizophrenia
Alternative splicing of mRNA is associated with the pathology of SZ with

many of the genes associated with the disease displaying aberrant splicing

patterns. Gomafu is an lncRNA highly regulated by neural activity, binds

directly to splicing factors, and is significantly downregulated in the cortex

of SZ patients. Modulation of Gomafu expression alters splicing patterns of

at least two SZ-associated genes. Knockdown of Gomafu resulted in the

upregulation of SZ pathology-related splice variants of DISC1 and ERBB4,

matching the observation that overexpression of these same splice variants

are associated with SZ. In contrast, Gomafu overexpression produced sig-

nificant downregulation of the same disease-associated splice variants of both
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genes (Barry et al., 2014; Vaishnavi, Manikandan, Tiwary, & Munirajan,

2013). This suggests that the lncRNA Gomafu may contribute to the path-

ogenic splicing pattern of these key SZ genes.

Both DISC2 (disrupted in schizophrenia 2) and DISC1 are disrupted by a

translocation in a large SZ cohort. DISC1 encodes a protein with roles in

neurodevelopment whereas DISC2 encodes a putative ncRNA antisense

to DISC1 and thus may contribute to the regulation of DISC1 (Chubb

et al., 2008; Oiglane-Shlik et al., 2006).

11.3. Autism spectrum disorder
Accumulating evidence indicates that lncRNAs contribute to autism spec-

trum disorder (ASD) risk. Moesin regulates neuronal architecture and the

3.9 kb lncRNA MSNP1AS, transcribed in antisense to a moesin

pseudogene, is 94% identical and antisense to moesin and can bind moesin

mRNA (Kerin et al., 2012; Le Meur et al., 2005). Overexpression of

MSNP1AS in cultured cells led to decreased moesin levels while MSNP1AS

transcript levels were 12-fold higher in postmortem brain samples fromASD

cases. High levels of the MSNP1AS transcript were associated with the pres-

ence of an ASD risk SNP and thus MSNP1AS is thus strongly positioned to

be an lncRNA risk factor for ASDs.

The role of miRNAs in the pathophysiology of ASD has also emerged

following the identification of copy number variants (CNVs) in the form of

microdeletions and microduplications at multiple chromosomal loci impli-

cated in autism. In addition to protein-coding genes being identified in the

CNVs, miRNAs present in deleted and duplicated CNV loci may explain

the difference in dosage of the crucial genes controlled by them (Bartolomei,

2013; Vaishnavi et al., 2013).

11.4. Parkinson's disease
α-Synuclein is an aggregation-prone neural protein that plays a central role

in the pathogenesis of both sporadic and familial Parkinson’s disease (PD).

Elevated level of wild-type α-synuclein is disease causative and demonstrates

the essential need for precise regulation of α-synuclein expression. miRNAs

miR-7 and miR-153 have both been demonstrated to inhibit α-synuclein
levels posttranscriptionally via binding sites in α-synuclein’s long 30 UTR.

Modulation of miRNA levels causes reciprocal changes in α-synuclein
mRNA/protein levels although it is unclear if PD patients display reduced

levels of these miRNAs (Doxakis, 2010).
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11.5. Angelman syndrome
Angelman syndrome (AS), a neurogenetic disorder characterized by severe

intellectual and developmental disability, is typically caused by mutations or

deletions of the maternally inherited UBE3A gene, which encodes an E3

ubiquitin ligase. UBE3A is biallelically expressed in most tissues, but is only

maternally expressed in neurons due to epigenetic silencing of the paternal

allele (Bartolomei, 2013; Oiglane-Shlik et al., 2006). Loss or inactivation of

the maternal UBE3A gene leaves neurons devoid of functional UBE3A

expression and results in AS. The antisense lncRNA transcript UBE3A-

ATS acts in cis to regulate epigenetic silencing of the paternal allele

(Chung, Rudnicki, Yu, & Margolis, 2011; Le Meur et al., 2005) by tran-

scriptional interference between convergent UBE3A and UBE3A-ATS

transcripts (Bartolomei, 2013; Rao, Benito, & Fischer, 2013). Depletion

of UBE3A-ATS in the AS mouse model activated neural expression of

UBE3A from the paternal chromosome, and reduced many disease-related

symptoms in the mouse (Bartolomei, 2013; Leidinger et al., 2013), esta-

blishing the importance of this lncRNA in disease pathology.

11.6. Huntington's disease
HD is caused by a CAG trinucleotide repeat expansion within exon 1 of the

HTT gene. The resulting elongated polyglutamine tract causes the mutant

Huntington protein to aggregate and confer gain-of-function toxicity. The

cellular consequences are many and complex and involve protein mis-

folding/impaired degradation as well as broad transcriptional dysregulation.

A transcript antisense to HTT (Huntingtin antisense; HTTAS v1) overlaps

the repeat expansion exon and its expression is reduced in humanHD frontal

cortex. Modulation of HTTAS v1 expression has reciprocal effects on HTT

mRNA levels, strongly suggesting that HTTAS v1 regulates HTT expres-

sion (Chung et al., 2011).

11.7. ncRNA as biomarkers
The clinical diagnosis of neurodegenerative diseases such as AD and PD

remains difficult and postmortem confirmation is typically required. Bio-

markers for neurodegenerative and neurological disorders are therefore

urgently needed to provide early and accurate diagnosis as well as for mon-

itoring disease progression and therapeutic efficacy.

ncRNA networks are centrally involved in cellular regulatory mecha-

nisms and as such, early signs of cellular dyshomeostasis may be reflected
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in changes in their expression pattern much earlier than presentation of clin-

ical symptoms. The extensive range of ncRNA transcripts provides a spec-

trum of candidate transcripts from which to identify potential biomarkers.

Furthermore, the opportunity exists to assess changes in a number of

ncRNAs whose multiplexing combination could enhance diagnostic sensi-

tivity and accuracy.

A further challenge in diagnosing brain disorders is the lack of access to

the tissue directly affected. However, neurons and other cells of the CNS

release miRNA and other small noncoding RNA extracellularly, often

packaged in exosomes or microvesicles, that could act as indicators of path-

ological processes. Recent studies have demonstrated the existence of

miRNAs in multiple body fluids including blood, CSF, and saliva are poten-

tial candidates for informative biomarker discovery (Rao et al., 2013). This

approach is already showing success with a 12-miRNA signature obtained

from blood showed >90% accuracy, specificity, and sensitivity in dis-

tinguishing AD patients from healthy controls (Leidinger et al., 2013).

12. PERSPECTIVES AND OUTLOOK

The human brain is based on a multitude of neuronal and glia cell

types and its development and differentiation require an enormous amount

of coordination and stimuli, both intrinsic and extrinsic, to blossom to its full

form and function. Estimates are that>85 billion neurons and about 10-fold

the number of synapses comprise this network. However, the increased

intellectual ability in humans is unlikely to be that our brains simply repre-

sent a linearly scaled-up primate brain according to number and cell com-

position (Herculano-Houzel, 2009). Instead, it is likely that an increased

regulatory capacity has provided our brains with the ability to form a far

more complex network than that of other primates. The rapid expansion

in ncRNAs, especially lncRNAs, during our recent primate evolution has

likely provided this significantly enhanced regulatory ability and played a

part in the evolution of human brain form and function (Liu et al., 2013;

Taft et al., 2007). The ability of ncRNA to orchestrate the sophisticated

regulation of gene expression, coupled with their own intricate spatiotem-

poral expression patterns in different cell types, and their activation in

learning and memory as well as environmental response together provide

a combinatorial matrix of the required complexity. Such intricate and

sophisticated regulatory complexity in the human brain also likely provides
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the opportunity for intellectual enhancement, but its complexity also leaves

it susceptible to dysregulation as represented by neurodegeneration or psy-

chological disorders.

It is clear that ncRNA plays a central role in the functioning of the

human brain, a role that will only be strengthened as more lncRNAs are

discovered and their many functions unveiled. It is therefore clear that

the full integration of ncRNAs into modern molecular neuroscience is crit-

ical for a complete understanding of the human brain and its disorders.

Since the divergence from the great apes and especially in recent decades,

human brains are put under an enormous developmental pressure on the

account that the numbers of extrinsic inputs in a single day in the life of

human being living in an metropolitan area would easily accumulate to

the amount of input of an entire life span two to three generations ago.

In the light of activation-dependent expression to modulation and in com-

bination with potential epigenetic modification and reports about the

increased permeability of the Weismann barrier (Mattick, 2012), these find-

ings open the door for speculation, on whether certain parts of our inher-

itance might be acquired rather than solely inherited and therefore following

the rule Lamarck proposed in 1809.

Contrary to the speculative nature of the last paragraph, one aspect is

becoming increasingly clear: the role of ncRNA in the transcriptome and

especially in the brain is a central one and will gain more and more impor-

tance with the rapidly growing ncRNA-centric paradigm.
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Abstract

Transcriptome studies have revealed a surprisingly high level of variation among indi-
viduals in expression of key genes in the CNS under both normal and experimental con-
ditions. Ten-fold variation is common, yet the specific causes and consequences of this
variation are largely unknown. By combining classic gene mapping methods—family
linkage studies and genomewide association—with high-throughput genomics, it is
now possible to define quantitative trait loci (QTLs), single-gene variants, and even sin-
gle SNPs and indels that control gene expression in different brain regions and cells. This
review considers some of the major technical and conceptual challenges in analyzing
variation in expression in the CNS with a focus on mRNAs, rather than noncoding RNAs
or proteins. At one level of analysis, this work has been highly successful, and we finally
have techniques that can be used to track down small numbers of loci that control
expression in the CNS. But at a higher level of analysis, we still do not understand
the genetic architecture of gene expression in brain, the consequences of expression
QTLs on protein levels or on cell function, or the combined impact of expression dif-
ferences on behavior and disease risk. These important gaps are likely to be bridged
over the next several decades using (1) much larger sample sizes, (2) more powerful
RNA sequencing and proteomic methods, and (3) novel statistical and computational
models to predict genome-to-phenome relations

1. INTRODUCTION

For many years, gene mapping studies have focused on the identifica-

tion of single-gene variants and molecular causes of diseases ranging from

albinism and phenylketonuria to neurodegenerative diseases such as

Huntington’s and Alzheimer’s disease (Charles, Moore, & Yates, 1992;

Gusella et al., 1983; St George-Hyslop et al., 1987; Woo, Lidsky,

Guttler, Thirumalachary, & Robson, 1984). The same linkage mapping

methods that have been used to track down the CAG trinucleotide repeat

expansion that causes Huntington’s disease (MacDonald et al., 1993) can

now be used to study the causes of variation in levels of microtraits, such

as RNAs, metabolites, and proteins, in any tissue, organ, or cell. All that

is required is a cohort of individuals and matched expression data for a spe-

cific brain region or cell type for each subject. A major goal of expression

genetics research is to uncover primary and causal sequence variants that

modulate expressions levels, but the long-term focus is on the complex hier-

archical networks that link genetic variation, through mRNA and protein
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levels, to higher order phenotypes that influence disease risk and progres-

sion. If we understand the networks of causal linkages between differences

in expression and differences in CNS function, then it may become possible

to push just the right molecular buttons to prevent and cure many still intrac-

table diseases of the brain.

Compared to a classic genetic analysis of a Mendelian trait such as

Huntington’s, there are two fundamental differences in mapping RNA or

protein expression levels. First, the control of expression is usually geneti-

cally complex (polygenic), and large numbers of other genes and sequence

variants (polymorphisms) can potentially influence expression of the target

transcript or protein. For example, a group of cooperating transcription fac-

tors may control expression of a key transmitter receptor or an ion channel.

These effects give rise to so-called trans-expression quantitative trait loci

(trans-eQTLs) (Fig. 8.1A) that map far from the target gene itself—usually

on different chromosomes. In contrast, expression of mRNAs may also

be controlled by sequence variants that are in or very near to the parent gene

itself (Fig. 8.1B and C). For example, a polymorphism in a promoter,

enhancer, splice acceptor site, or the 30 UTR of a gene may produce differ-

ences in transcriptional rates, mRNA stability, or ratios of alternative tran-

scripts. When mapping the expression of mRNAs or proteins, this type of

genetic “self-control” produces so-called cis-acting QTLs or cis-eQTLs

(Schadt et al., 2003). cis-eQTLs are first-order local effects, whereas trans-

eQTLs are second-order distant effects. In this review, we consider both

the technical and conceptual utilities of cis- and trans-eQTLs. In short,

cis-eQTLs can be used to evaluate the quality of expression data sets (more

cis-eQTLs are always better), and validated cis- and trans-eQTLs can both be

used as causal anchor points in genome-to-phenome studies (Ciobanu

et al., 2010).

1.1. The history
Since the introduction of proteome and transcriptome methods in the mid-

1990s, gene mapping methods have been applied to study progressively

larger molecular data sets generated using segregating populations of F2

intercrosses, backcrosses, sets of recombinant inbred (RI) strains, genetic

diversity panels, and families and cohorts of humans ( Jansen & Nap,

2001; Li & Burmeister, 2005). Damerval and colleagues were the first to

apply high-throughput methods to map what they called protein quantity loci

in an F2 intercross of corn in 1994 (Damerval, Maurice, Josse, & de Vienne,
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1994). Their groundbreaking study is still a model of sophisticated genetic

and genomic analysis. In 2002, microarray methods were exploited by

Brem, Yvert, Clinton, and Kruglyak (2002) to study gene expression in bud-

ding yeast, and in 2003, Schadt et al. (2003) published a remarkable study on

the genetic control of mRNA levels in three tissue types from three species:

ear leaves of an F3 intercross of corn, livers of an F2 intercross between two

strains of mice (C57BL/6J and DBA/2J), and blood cells from four large

Mormon families. These landmark studies introduced much of the

Figure 8.1 Linkage maps of trans- and cis-eQTLs in mouse hippocampus. (A) Gabrg2
expression is controlled by a trans-eQTL on Chr 5 at 138 Mb (LOD score of 3.94 on
Y-axis). The Gabrg2 gene itself is located on Chr 11 at 41 Mb (triangle on the X-axis).
(B) In contrast, Grin2b expression is controlled by a cis-eQTL with a peak LOD score
of 17 located on Chr 6 at 135 Mb. This location corresponds precisely to the location
of the Grin2b gene (triangle). (C) Magnified view of the Grin2b cis-eQTL that provides
much more detail on the QTL map and its chromosomal context. The small shaded
or colored blocks along the top represent genes on mouse Chr 6. Shading is used to
encode the density of polymorphic SNPs within each gene. The horizontal lines provide
genomewide significance thresholds for the QTL determined by permutation analysis
(upper line at p<0.05 and lower line at p<0.63). The hash-lines overlapping the X-axis
summarizes the density of SNPs along the chromosome. Regions of the genome that
are identical by descent (i.e., not variable in the BXD family) have almost no X-axis hash.
Finally, the so-called additive genetic effect (see Williams &Mulligan, 2012) is marked by
the thinner line on the right-side Y-axis. All data here were generated in GeneNetwork
(www.genentwork.org) using the BXD mouse Hippocampus Consortium M430v2 (Jun06)
PDNN array data set (GeneNetwork.org, accession number GN112, n¼67, probe sets
1418177_at and 1457003_at).
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vocabulary and many of the types of analyses that are still used a decade later.

In 2005, our group marked the first publication of a genetic analysis of

expression in the CNS. We used a second-generation Affymetrix array—

the U74v2—to estimate the expression of about 10,000 genes in whole

brains of a set of 32 BXD-type RI strains of mice. A decade later, these

eQTL methods have been applied to study over 20 brain regions in mice,

rats, and humans using both arrays and RNA-seq, and most of these large

eQTL data sets are accessible online for reanalysis and meta-analysis at the

Gene-Network web site (www.genenetwork.org; see Williams &

Mulligan, 2012 for a primer on using GeneNetwork).

1.2. How much variation is there in gene expression in brain?
Common and rare gene variants—SNPs, insertions, deletions, and

inversions—are a major source of phenotypic diversity and of variation in

gene expression in wild-type populations, model organisms, and human

cohorts (Brem & Kruglyak, 2005; Brem et al., 2002; Damerval et al.,

1994; Hubner et al., 2005; Massouras et al., 2012; Morley et al., 2004;

Schadt et al., 2003; Storey et al., 2007; Turk et al., 2004). Variation in gene

expression levels can be high. For example, in hippocampus of normal

young strains of mice, the coefficient of variation (the standard deviation

of strain means divided by the mean of all strains) averages about 7%

(Fig. 8.2) but the range is often twofold or more. A significant fraction of

this variation is under genetic control. Heritability of gene expression data

is a function of the genetic diversity of the cases, the genetic complexity of

the phenotype, the stability of the environment, and technical error and

confounds. Heritability estimates are rough benchmarks that will be

depressed by low gene expression (high noise), signal dilution due to cellular

heterogeneity, poor technique, or specificity, and uncontrolled environ-

mental factors. Conversely, heritability estimates will be inflated by poor

experimental design (e.g., processing related individuals in single batches

is a well-known statistical mistake) and by allele-specific hybridization or

alignment artifacts.

Despite these problems, heritability estimates are used to gauge the like-

lihood of detecting one or more cis- or trans-eQTLs that modulate gene

expression. It is not uncommon for variation in mRNA expression to have

heritabilities in the range of 25–50% (Geisert et al., 2009) and to be under

relatively strong genetic control in the CNS. This reflects modulation by

a sizable number of sequence variants in upstream genes, including
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transcription factors, RNA-binding proteins, transporters, and microRNAs

(miRNAs) involved in degradation. Even house-keeping genes have not

been spared, and genes such asGAPDH,ACTB, SNRPD3,RAB7, PSMB2,

GPI1, REEP5, and RAB7A are surprisingly variable and heritable among

individuals (Eisenberg & Levanon, 2013).

1.3. Brain gene expression studies—A summary
A growing number of eQTL studies have explored the genetics of expression

both in whole brain and in specific brain regions of mice, rats, nonhuman pri-

mates, and humans over the last decade (Chesler et al., 2005; Heinzen et al.,

2008; Hovatta et al., 2007; MacLaren & Sikela, 2005; Mulligan et al., 2012;

Myers et al., 2007; Webster et al., 2009; Zou et al., 2012). Virtually, all of

this work has been restricted to large and structurally heterogeneous nuclei

and cortical regions. In this review, we focus on mouse, and even more

specifically on the BXD family of mice for which there are remarkably

deep and systematic expression data. Large open-access data are available

online (Table 8.1) for neocortex (Gaglani, Lu, Williams, & Rosen, 2009),

baso-lateral amygdala (Mozhui, Hamre, Holmes, Lu, &Williams, 2007), stri-

atum (Rosen et al., 2009), nucleus accumbens (Wolen et al., 2012), hypo-

thalamus (Mozhui, Lu, Armstrong, & Williams, 2012), hippocampus

Figure 8.2 Expression variation in hippocampal mRNA expression. Log-transformed
gene expression values were used to calculate the coefficient of variation (X-axis) across
99 genetically diverse strains. The Y-axis represents log2 of numbers of assays. A total of
�44,500 probe sets in the Hippocampus Consortium data (GN112) were used to gen-
erate this plot. Data points representing absolute counts of <2 were excluded.

200 Ashutosh K. Pandey and Robert W. Williams



(Overall et al., 2009), midbrain (Ye et al., 2014), ventral tegmental area

(Wolen et al., 2012), cerebellum (Robert W. Williams and Lu Lu,

unpublished), and retina (Templeton et al., 2013). All of these data sets along

with tools for gene mapping and eQTL analysis are accessible online

(Williams & Mulligan, 2012). Given the high structural heterogeneity of

the brain and the logistic difficulties of eQTL studies, there are still no data

sets for many other key CNS regions including olfactory bulb, dorsal

thalamus, globus pallidus, hindbrain, spinal cord, or dorsal root ganglia.

Table 8.1 CNS eQTL data sets for BXD strains (see www.genenetwork.org for a
complete list)
GN
accession CNS region

BXD
n Platform

mRNA
assays

cis-
eQTLs*

trans-
eQTLs*

GN323 Amygdala

(BLA)

54 Affy Mouse Gene

1.0 ST

34,760 1824 3058

GN394 Whole brain 28 SOLiD RNA-seq,

(transcript level)

26,408 418 1075

GN123 Whole brain 39 Affy Mouse 430 2.0 45,101 2162 2771

GN56 Cerebellum 30 Affy Mouse 430 2.0 45,101 2559 6631

GN112 Hippocampus 67 Affy Mouse 430 2.0 45,101 4927 5520

GN281 Hypothalamus 46 Affy Mouse Gene

1.0 ST

34,760 1759 4230

GN375 Neocortex 43 Illumina Mouse

WG-6 v2

45,281 2614 4120

GN156 Nucleus

accumbens

34 Affy Mouse 430 2.0 45,101 3648 4624

GN135 Prefrontal

cortex

27 Affy Mouse 430 2.0 45,101 2256 4392

GN399 Striatum 32 Affy Mouse 430 2.0 45,101 2115 3652

GN228 Ventral

tegmental area

35 Affy Mouse 430 2.0 45,101 3156 3629

GN381 Midbrain 37 Agilent SurePrint

G3 GE

55,681 6526 7258

GN302 Retina 73 Illumina Mouse

WG-6 v2

45,281 3833 6941

*cis-eQTLs defined as LOD>3 and within�5 Mb of the parent gene. trans-eQTLs defined as LOD>3
and >10 Mb from the parent gene.
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What is clear from these initial studies is that the genetic control of gene

expression in different CNS regions is highly variable. Even when using the

same cases andmethods, only a small fraction of cis- and trans-eQTLs are well

conserved across brain regions. In part this is due to differences in cellular

demographics of brain regions, but it would not be surprising if even rela-

tively homogeneous cell types in different regions (e.g., layer 5 projection

neurons in different parts of neocortex) had variable eQTL patterns due

to cell-extrinsic factors and axonal connectivity differences.

1.4. Missing pieces
There are still key missing pieces to the brain’s gene expression puzzle. This

should not be surprising given the difficulties and costs of eQTL studies of

the CNS. Consider the short list that follows as a set of important and still

open research areas.

1. RNA-seq eQTL studies. While RNA-seq technology has great prom-

ises (Hitzemann et al., 2013, 2014), the method has not been widely

exploited yet for eQTL analysis (Hitzemann et al., 2013; Sun & Hu,

2013). The largest study in mouse that we know of for any CNS tis-

sue is our own modest analysis of whole brains of �30 genotypes

of BXD strains (Li et al., 2010; Mulligan et al., 2012). This eQTL

RNA-seq data set is accessible in GeneNetwork for analysis of

200,000 exons and 26,400 transcripts. The largest RNA-seq study

of humans is the NIH Genotype-Tissue Expression (GTEx) program

(GTEx Consortium, 2013). GTEx data sets for CNS regions are still

small (n<30 cases for most brain regions), but by 2016, there will be

excellent data for more than 10 regions for several hundred humans.

2. eQTL studies of alternative splicing. There are no comprehensive eQTL

studies of RNA splice variants in the CNS using array technology or

RNA-seq. We know that a majority of genes expressed in brain have

multiple isoforms and that eQTL analysis imperfectly combine isoforms

into one or two mean “gene level” estimates of expression. The standard

protocol used to convert mRNA to complementary DNA relies on a T7

polymerase that is specific to the poly-A tail of the 30 UTR (Van Gelder

et al., 1990). As a result, the great majority of array data only measure

expression of the last few coding exons and the 30 UTRs of mRNAs.

New RNA amplification methods do not have this 30 bias and the latest
generation of arrays—so-called exon arrays and splice-junction arrays—

can provide estimates of expression over a 500-fold range for exons and
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splice-junction sites. It is ironic that just as arrays are reaching full matu-

rity and sophistication, they are being pushed aside (prematurely in our

view) by RNA-seq.

3. Developmental eQTL studies.There are virtually no developmental studies

of genetic control of gene expression during development in any species

or tissue type. We know of only two small studies in mouse. Glenn D.

Rosen analyzed eQTLs in the neocortex of the BXD family at three

stages—postnatal days 3, 14, and young adult (unpublished), and Daniel

Goldowitz, Douglas J. Swanson, Thomas Ha (unpublished) are studying

expression in cerebellum at eight stages—from embryonic day E12 to

young adult. Given the dynamics of gene expression during develop-

ment and the need to understand the coupling among expression, pro-

liferation, differentiation, and cell death in brain, this is a potentially

fascinating topic that warrants much more attention.

4. Experimental eQTL studies.There are only a handful of studies on changes

in eQTLs in brain after experimental perturbations of any type. The rea-

son is that these studies are doubly hard as they require genetically mat-

ched case and control cohorts and exceedingly careful experimental

design to avoid statistical confounds. Two studies have evaluated the

impact of ethanol treatment (in isolation and in combination) on expres-

sion in prefrontal cortex and whole brain (Vanderlinden et al., 2013;

Wolen et al., 2012). What will be required to make these types of exper-

imental eQTL studies more practical is a significant reduction in cost of

transcriptome data sets and more sophisticated, accessible, and faster sta-

tistical workflows that incorporate linear mixed models.

5. Heterogeneity of brain tissue.No one has yet attempted an eQTL study of a

single type of CNS cell. A genetic dissection of genetic variability of

Purkinje cells, dopaminergic neurons, or a subtype of primarily motor

neuron would be extremely interesting and could reveal the extent to

which cellular heterogeneity obscures eQTL patterns. Use of averaged

expression over many cell types may dilute expression variation and

obscure genuine eQTLs (more on this topic below). Given the rapid

progress in single-cell genomic methods (Islam et al., 2014; Jaitin

et al., 2014), these critical studies will certainly be accomplished in

the next decade, but getting down to this level will probably come at

the cost of increased technical noise. Large sample sizes may be a

necessity.

6. miRNA eQTL studies. Finally, no one has yet evaluated the extent, cau-

ses, and consequences of miRNA expression variability at the population
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level. A large number of miRNAs are expressed in brain and serve as

important regulators of gene expression (Bak et al., 2008; Shao et al.,

2010). There is a growing body of evidence demonstrating important

roles of miRNAs in brain development (Shao et al., 2010; Somel

et al., 2011; Ziats & Rennert, 2013). A few eQTL studies have used

RNA-seq to sequence small RNA molecules from lymphoblastoid cell

lines and adipose tissues (Lappalainen et al., 2013; Parts et al., 2012). Par-

sons and colleagues used RT-PCR to quantify hippocampal expression

of five mature miRNAs in the BXDs (n¼24) (Parsons et al., 2012). The

largest study in mouse that we know of is our own RNA-seq analysis of

hippocampal miRNA expression differences in 45 genotypes of BXD

strains (AK Pandey, K Hamre, L Lu, unpublished). A systematic eQTL

study ideally would involve joint analysis of miRNA and mRNA

expression from matched biological samples. Such work would be

extremely helpful in revealing the shared genetic control of miRNA

and mRNA transcripts.

1.5. Genetic architecture of expression traits
One of the main surprises of the genetics of gene expression is that it has

nearly the same level of complexity as higher order behavioral traits. cis-

eQTLs represent one welcome exception to this complexity—they are

relatively common, have strong effect sizes, and are easy to validate

and interpret (Peirce et al., 2006), albeit with some difficulties related to

hybridization artifacts (Ciobanu et al., 2010). While the specific SNP or

indel that causes a cis-eQTL may not be known, there is a very strong prior

probability that polymorphisms in or near the parent gene are responsible for

almost all cis-eQTLs, and this can be provedn using allele-specific assays in

reciprocal F1 hybrids (more on this below). In contrast, the mapping, anal-

ysis, and validation of trans-eQTLs are far more interesting and complicated.

A single mRNA can be associated with several trans-eQTLs. These associ-

ations define the core elements of molecular networks. But a side effect of

the polygenic nature of trans-eQTLs is that individual effects and the mat-

ched logarithm of odds (LOD) scores of trans-eQTLs are typically much

smaller than those of cis-eQTL (Peirce et al., 2006). Figure 8.3 plots the

abundance of cis- and trans-eQTLs at different LOD scores. trans-eQTLs

with smaller effect sizes and lower LOD scores are numerous (left side of

Fig. 8.3), but the ratio of cis- to trans-eQTLs increases steeply with the

LOD score.
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The naive hope that trans-eQTLs would often turn out to be polymor-

phic transcription factors or RNAmetabolism genes has not been borne out

by a decade of research. In retrospect, this is perhaps not surprising, since

expression of transcription factors, RNA-binding proteins, and miRNAs

will themselves be under intense genetic control leading to a regression of

causality and an increase in complexity. It is also possible that the genetic

complexity of trans-eQTL effects is an artifact caused by the high cellular

heterogeneity of brain regions. The problem may be analogous to trying

to follow one conversation in a noisy restaurant with a single microphone

placed high above the crowd. If cellular complexity explains the problem,

then it should be much more effective to dissect and make sense of patterns

of eQTLs in relatively homogenous parts of the CNS such as the cerebellum

(�90% of all cells are granule cells) or the dorsal striatum (�60% of all cells

are medium spiny neurons) than in heterogeneous tissues such as whole

brain, neocortex, or hippocampus. We evaluated the impact of cellular het-

erogeneity and possible signal dilution on the detection of cis-eQTLs using

the cerebellum as a test case (Fig. 8.4). The cerebellum makes up 12% of the

mouse brain—52 mg versus 430 mg—an eightfold dilution. cis-eQTLs with

Figure 8.3 Comparison of LOD scores of cis- and trans-eQTLs. Numbers of cis-eQTLs
(solid) and trans-eQTLs (dashed) are plotted on the left Y-axis as a function of LOD score
(X-axis). The fraction of cis-eQTLs (dotted) are plotted on the right Y-axis. cis-eQTLs are
defined as those eQTLs within 5 Mb of the parent gene. trans-eQTLs are usually on dif-
ferent chromosomes or more than 10 Mb of the parent gene. A total of 44,500 probe
sets in the Hippocampus Consortium data were analyzed.
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strong effects in the cerebellum can be easily reidentified using comparable

sample sizes and the same array type in whole-brain data (compare gray cer-

ebellum bars vs. black whole-brain bars). However, more than half of small

and modest effect eQTLs in cerebellum do not have a large enough signal to

be detected in whole brain (left-most bars in Fig. 8.4).

Cellular heterogeneity can also reduce expression correlations between

associated genes and transcripts. For example, Fev and Slca64 are two genes

with expression in serotonin neurons in midbrain with tightly correlated

expression (r¼0.88). However, transcripts of these two genes have almost

no correlation in whole-brain data (r¼0.15). To the best of our knowledge,

there have been no systematic attempts to relate the complexity of cis- or

trans-eQTLs to levels of cellular heterogeneity except in the hematopoietic

stem cell lineage (Gerrits et al., 2009), but current data for the BXD strains

certainly make this a tractable problem.

This dilution effect does not imply that every cell type has to be isolated

for eQTL analysis, but it does mean that the signal-to-noise ratio of mRNA

measurements needs to be optimized for mapping. Resampling to reduce

noise may often be more effective than the finest laser microdissection.

Figure 8.4 Impact of cellular heterogeneity on the detection of cis-eQTLs. Numbers of
cis-eQTLs identified in the cerebellum (gray bars) are plotted as a function of LOD score.
A subset of these cerebellar cis-eQTLs were also identified in matched whole-brain data
(black bars). A total of �44,500 probe sets in the GE-NIAAA cerebellum (GN72, n¼28)
and whole-brain (GN123, n¼30) set were used for this analysis.
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For example in a recent study of the whole midbrain, we measured mRNA

levels using four arrays for each genotype. By averaging across these biolog-

ical replicates, we reducedmeasurement noise andmapped strong cis-eQTLs

that originate from the small population of serotonin neurons (Fig. 8.5).

Engrailed 1 (En1) is a gene with highly selective expression in a few thou-

sand serotonin neurons, and despite �500-fold dilution in midbrain, En1

maps as a very strong cis-eQTL (LOD �17).

1.6. RNA-seq to the rescue?
Recent progress in high-throughput sequencing has substantially improved

the assessment of individual variation at multiple levels including whole

genome, transcriptome (RNA-seq), and even the metagenome. RNA-

seq uses high-throughput sequencing to profile gene expression and poten-

tially provides more accurate estimates of transcript abundance over a wider

dynamic range than arrays. RNA-seq should eventually facilitate detection

of eQTLs with small effects and should also provide insight into the control

of alternative splicing and polyadenylation, making it useful to study tissues

Figure 8.5 Highly selective but diluted expression of En1 (Engrailed 1) in midbrain.
(A) Sagittal section of the brainstem and ventral tegmental area (VTA) from the Allen Brain
Atlas (www.brain-map.org). (B) Matched in situ hybridization image of En1 expression
in serotonin neurons from the Allen Brain Atlas. (C) En1 expression in the midbrain is
controlled by a cis-eQTL on Chr 1 with a LOD of 16.7 (Y-axis). This location corresponds
to the location of En1 itself (triangle on the X-axis). Dilution is clearly not a factor in this
instance.

207Genetics of Gene Expression in CNS

http://www.brain-map.org


such as brain (Blencowe, 2006; Dredge, Polydorides, & Darnell, 2001;

Grabowski & Black, 2001; Johnson et al., 2009; Ule et al., 2005; Xu,

Modrek, & Lee, 2002). Another remarkable feature of RNA-seq is the abil-

ity to assess genome-wide allele-specific expression (ASE) by exploiting iso-

genic F1 hybrids (Bell, Kane, Rieseberg, & Adams, 2013; Korir & Seoighe,

2014; McManus et al., 2010; Rozowsky et al., 2011; Skelly, Johansson,

Madeoy, Wakefield, & Akey, 2011).

1.7. RNA-seq data generation
Until recently, generating high-quality RNA-seq data for a large number of

samples was not feasible due to technical complexity and cost. However,

over the past 6 years, RNA-seq is emerging as a viable alternative to exon

arrays for eQTL studies. AnRNA-seq sample “library” can now be prepared

and sequenced at a depth of 20–30 million reads for the same cost of an exon

array (about $400). Ten million RNA-seq reads have been shown to pro-

vide roughly similar dynamic range as arrays (Montgomery et al., 2010). To

prevent wastage of sequencing resources due to highly abundant ribosomal

RNA (rRNA), RNA libraries are either selectively enriched for mRNAs

using poly(A)+ selection methods or depleted of rRNA. Selective enrich-

ment of mRNAs with poly(A) tails is done using poly-T oligo-attached

magnetic beads. Alternatively, rRNA can be depleted through a hybridiza-

tion approach. A comparison of these methods showed higher yield of exon

reads from poly(A) enrichment (60% of total reads) compared to rRNA sub-

traction (�30% of total reads) (Cui et al., 2010). The rRNA-depleted librar-

ies generate higher numbers of intron and intergenic reads (�25% and�45%

of total reads) compared to poly(A) methods (�15% and 23%). Although

expression estimates from both methods were highly correlated,

poly(A) method seems to be a more suitable choice for eQTL studies.

Achieving higher numbers of reads in exons is critical to the detection of

small expression differences and provides higher power to detect ASE dif-

ference using F1 hybrids. The downside of poly(A) enrichment is that it

ignores a small number of mRNAs lacking poly(A) tail and most

noncoding RNAs.

2. GENETIC RESOURCES FOR eQTL ANALYSIS IN MICE

Mapping eQTLs involves linkage analysis between variation in

expression and genetic polymorphisms (markers) that segregate in a family,
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cohort, or population of individuals. F2 intercrosses, sets of RI strains, and

heterogeneous stock (HS) have been used to map eQTLs (Churchill, Gatti,

Munger, & Svenson, 2012; Hitzemann, Belknap, & McWeeney, 2008;

Svenson et al., 2012; Taylor et al., 1999; Threadgill, Miller, Churchill, &

de Villena, 2011; Valdar et al., 2006). cis-eQTLs are relatively easily identi-

fiable compared to trans-eQTLs due to their strong effects and prior knowl-

edge about their location. Mapping and narrowing down trans-eQTLs to

single genes remains challenging because trans-eQTLs have small effects

and require a large sample size for detection, but also because mapping pre-

cision of the currently available mouse crosses is poor (particularly in F2s),

generally in the range of tens to hundreds of genes. In this section, we con-

sider advantages and disadvantages of different crosses currently available for

eQTLmapping. Data sets generated from different crosses can now be easily

combined using a number of statistical methods, and there are good reasons

to combine the best of each of the mapping resources described below in

eQTL mapping.

2.1. Intercross progeny
Test-cross progeny—either F2 intercrosses or backcrosses—is the traditional

mapping population described in the experiments of Gregor Mendel. Gen-

erating an F2 intercross is a simple two-generation affair. Two distinct strains

(often inbred strains) are bred to produce the first filial (F1) generation. F1s

are mated to generate a cohort of F2s—usually several hundred individuals.

Alternatively, F1s can be backcrossed to either parent to generate a back-

cross. Meiotic recombination in the F1s produces genetically diverse F2

individuals that segregate for gene variants and heritable phenotypes. Lusis,

Schadt, and colleagues have successfully exploited large mouse F2

populations to study eQTLs in the brain and other tissues (Lum et al.,

2006; Yang et al., 2006), and many of their data sets are available in

Gene-Network. Each member of an intercross needs to be genotyped at

100–200 markers. Large sample sizes (n>100) are often required to map

eQTLs in F2s because recombination density per animal is low. For the same

reason, F2 crosses often lack adequate positional precision. This makes

narrowing down a trans-eQTL to a single gene almost impossible.

2.2. RI strains
RI strains have been used widely for mapping of both Mendelian and quan-

titative traits and, for reasons described below, are advantageous for eQTL
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studies. RI strains are families of fully inbred strains that are produced by

intercrossing two parental strains, followed by repeated sibling matings

for at least 20 generations. EachRI strain represents a unique and fixed chro-

mosomal mosaic of the parental genomes. Once an RI strain is fully inbred

and genotyped, it can be used as an immortal and genetically defined

resource. RI strains are ideal for developmental and experimental eQTL

studies because the same genotype can be studied at many time points

and under many conditions. They are also ideal for studies of gene-by-

environmental interactions because cases and controls can be matched.

Finally, in the context of noisy eQTL experiments, one can resample a given

strain and brain regions (multiple independent biological replicates) to

reduce technical and unintended experimental variability (as in Fig. 8.5).

But the most important advantage of RI strains is that legacy phenotypes

and eQTL studies can be combined to assemble massive phenomes. The

current champion in terms of phenome depth is the BXD family of RI

strains—a group of individuals for whom there are now close to 100 inde-

pendent eQTL studies.

The historical disadvantage of RI strains was their limited numbers and

modest power and precision of associated QTL studies. Throughout most of

the 1990s, there were fewer than 30 strains per family. Now however, three

mouse RI families—BXD, LXS, and the Collaborative Cross (CC), each

have well over 60 strains (Williams et al., 2004; Williams, Gu, Qi, & Lu,

2001). The main disadvantage of RI strains is not QTL power or precision

but steadily rising costs of acquisition and maintenance of large numbers of

strains. It is now possible to achieve average eQTL precision of �1–4 Mb

across most of the genomewith a set of only 60–80RI strains (Fig. 8.6), even

without any replication within strain. Thus, RI strains together with whole-

genome sequence data of parental strains can be used to achieve single-gene

resolution.

2.3. The BXD family
The BXDs—anRI set made by crossing C57BL/6J (B) with DBA/2J (D)—

is the largest and oldest RI set. They have been used to study complex traits

since the mid-1970s and the genetics of gene expression since the early

2000s.

In addition to the remarkably deep phenome data sets available for the

BXDs, a further advantage is that both parents have been fully sequenced

(Keane et al., 2011; Waterston et al., 2002). A complete compendium of
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B versus D sequence variants is available online and can be used to track

down causal SNPs, indels, and CNVs. It is possible to use reverse genetic

methods with the BXDs and to look up those phenotypes that map to

the location of a particular sequence variant (Carneiro et al., 2009). The cur-

rent BXD panel contains around 80 lines that are almost fully inbred and

available from the Jackson Laboratory, and another set of 40–50 that are

being inbred by Robert W. Williams and Lu Lu at UTHSC.

2.4. Heterogeneous stock
HS mice (Hitzemann et al., 2008) and rats (Baud et al., 2013) were created

by repeated random mating of stock animals. Unlike RI strains that descend

from two parental strains, some HS crosses have incorporated as many as

eight founder strains. This adds a high level of genetic diversity to HS

Figure 8.6 QTLmapping precision of the BXD family. The precision of QTLmappingwas
estimated empirically by measuring the distance between the marker closest to the
cis-QTL peak and the location of the parent gene (specifically, the position of the
proximal-most nucleotide in each probe set associated with a cis-eQTL). A total of
�27,500 cis-eQTLs were used for this analysis (GN206, n¼67 BXD strains). Average pre-
cision in megabases (Y-axis) is plotted as a function of LOD score (X-axis). Each bar
includes a count of cis-eQTLs and the SEM. Four levels of shadings were used to evaluate
the effects of marker density (per 5-Mb bin) on precision. Precision varies from �1.2 to
1.8 Mb for cis-eQTLs with modest LOD scores to �0.5 Mb for cis-eQTL with high LOD
scores in regions with high marker density. Precision would be improved by a factor
of two by including all strains.
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progeny. The high recombinant density of HS increases the resolution of

QTL and eQTL mapping. Huang and colleagues used an HS cross to

map eQTLs in several tissues with an average precision of 2.45 and

3.75 Mb for cis- and trans-eQTLs, respectively (Huang et al., 2009). How-

ever, eQTL mapping of HS progeny is not straightforward (Hitzemann

et al., 2014). The family structure causes genotype correlations that can pro-

duce spurious eQTLs. As a result, sophisticated statistical approaches such as

mixed model associations have been designed for QTL analysis in heteroge-

neous populations (Brem&Kruglyak, 2005; Huang et al., 2009; Saarikangas

et al., 2008; Valdar, Flint, &Mott, 2003). High level of genetic diversity may

also cause spurious cis-eQTLs due to hybridization artifacts (microarray) or

allelic bias in aligning RNA-seq reads. The eQTL study mentioned earlier

(Huang et al., 2009) found a significant enrichment of SNPs in probes

corresponding to large-effect cis-eQTLs. HS also requires high-density

genotyping and large sample sizes to map moderate effect eQTLs.

2.5. The Collaborative Cross
The CC is multiparental RI set derived from eight genetically diverse strains

(Churchill et al., 2004) that combine features of an HS with those of a con-

ventional RI family. The parents of the CC include five common inbred

strains (A/J, C57BL/6J, 129S1/SvImJ, NOD/ShiLtJ, and NZO/HlLtJ)

and three wild-derived strains (CAST/EiJ, PWK/PhJ, and WSB/EiJ),

and consequently, it has much higher genetic complexity than a normal

RI panel. Like an HS panel, the CC can have high-potential eQTL preci-

sion at a given sample size (Aylor et al., 2011; Philip et al., 2011). Aylor and

colleagues used the CC to map cis-eQTLs at a resolution of <1 Mb (Aylor

et al., 2011). A 1-Mb interval in the CC will contain nearly 10� as many

sequence variants as the BXDs. In some cases, this will be a major advantage,

but in other cases, it will make it hard to find the causative SNPs. As of 2014,

70 CC are ready for distribution. This is a resource that is now ready for

prime time.

3. GENETIC MAPPING METHODS

Several statistical approaches have been developed for genomewide

linkage analysis of traditional phenotypes. The same approaches can be used

to map eQTLs. These approaches range from single marker tests (t-test,

ANOVA, and simple regression analysis) to multiple locus mapping

methods. The only major difference is that eQTL studies involve tens of
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thousands of expression traits and require fast algorithms. Since an eQTL

study tests for thousands of markers and many thousands of molecular traits,

associations must be statistically adjusted to account for multiple testing at

two levels of analysis (Chesler et al., 2005).

3.1. Single marker test
As the name suggests, the single marker test considers an individual marker

or SNP without regard to information about adjacent markers. Single

marker tests can be as simple as t test between two sets of expression values,

where each set represents expression values for a distinct genotype. Analysis

of variance (ANOVA) can also be used. The advantage of ANOVA is that it

can incorporate covariates such as sex and nongenetic variables such as envi-

ronmental effects and technical error.

3.2. Interval mapping
Interval mapping is widely used for QTL mapping of F2 and RI crosses and

human linkage analysis. Interval mapping interrogates region between the

two adjacent marker loci to precisely determine the location of the QTL.

It imputes the genotypes at intervals (for, e.g., every 1 cM) between each

pair of adjacent markers and tests for the presence of QTL. The results

are expressed as LOD scores. This score represents the ratio of likelihoods

of a statistical model that includes a genetic effect at a particular locus versus

a model that does not include that effect (the null expectation). A downside

of interval mapping is that it is can be computationally intensive. Haley and

Knott (1992) devised accurate and computationally tractable regression-

based methods to compute interval maps. Their method is now widely used

in eQTL analysis because of its speed. It is now possible to map an entire

transcriptome in short time, and single mRNAs and proteins can be mapped

with up to 10,000 permutation tests to compute genomewide significance in

less than a minute.

3.3. Composite interval mapping
The mapping methods discussed so far assume that a QTL acts indepen-

dently. However, a QTL can be linked to or interact epistatically with other

QTLs. Composite interval mapping ( Jansen & Stam, 1994; Zeng, 1994)

combines interval mapping with multiple-marker regression analysis, which

controls for the effect of a known QTL. In short, composite interval map-

ping uses a subset of significantly associated markers as covariates and
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controls for variation produced at these controlled markers. Thus, compos-

ite interval mapping helps to detect weaker but biologically relevant QTLs.

This is particularly important for mapping small-effect eQTLs, as strong cis-

eQTLs often mask secondary eQTLs.

3.4. Evaluation of mapping precision
Mapping precision for a genetic population can be empirically determined

by measuring the offset distance between cis-eQTL peaks and locations of

the parent genes. cis-eQTLs are essentially used as positional “gold

standards,” and any errors in this assumption will tend to be conservative

and degrade apparent precision. In other words, cis-eQTL offsets will be

conservatively biased estimates. We evaluated the QTL mapping precision

of the BXD family using a hippocampus exon array data set generated

using 67 BXD strains. We divided the genome into 5-Mb bins, and coun-

ted the number of markers within each bin. Bins with similar marker

density—less than 5 markers/5 Mb, 5–9, 10–15, and greater than

15 markers—were pooled. cis-eQTLs were operationally defined as QTLs

with LOD score above 3 and an offset distance of less than �5 Mb. Strong

cis-eQTLs with LOD scores greater than 22 (genomewide p value <10�6)

have a mean gene-to-QTL peak distance of 1.44, 0.70, 0.61, and 0.53 Mb

for genomic regions with different marker densities (Fig. 8.6). Similar

results were seen when the offset distance of less than �10 Mb was used

to define cis-eQTL.

4. RNA-seq eQTL STUDIES

Only a handful of eQTL studies have yet exploited RNA-seq

(Montgomery et al., 2010; Pickrell et al., 2010). Most have unfortunately

involved immortalized human lymphoblastoid cells—a cell type that is rid-

dled with chromosomal abnormalities that make analysis problematic. As far

as we know, the only accessible RNA-seq eQTL study of the brain is our

own modest study of the BXD strains, in which we generated an average of

30 million 50 nt reads for each of 28 BXD strains and both parents (Li et al.,

2010; Mulligan et al., 2012) but without any biological replication. Each

fragment library was generated using a pool of RNAs from three or more

cases using an rRNA depletion method and a protocol that preserved strand

polarity. We mapped 350 transcripts with LOD scores above 5, of which

225 were cis-eQTLs with a median LOD of 6.4 and an average gene-to-

marker offset of �3 Mb, whereas 125 were trans-eQTLs with a median
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LOD score of 5.3. The precision of theseQTLs is impressive, given the small

sample size and the lack of biological replication. The precision of trans-

eQTLs can be expected to be closely matched to those of cis-eQTLs—

perhaps�3.5 Mb—a small enough interval to begin candidate gene analysis.

Among the most interesting trans-eQTLs relevant to CNS function areAtf4,

Atp2b1, Atp13a2, Atrx, Cacnb4, Foxa1, Foxc1, Gap43, Kcnk10, Lifr, Ntsr2,

Per3, Pdyn, Pou5f1, and Ptprz1. Those with strong cis-eQTLs are Mrps5

(Houtkooper et al., 2013), Alad, Ckb, Glo1 (Williams et al., 2009), Ntn4,

Prdx2, and Sae1.

5. PROS AND CONS OF ARRAYS AND RNA-seq
FOR eQTL STUDIES

5.1. Advantages of arrays
For fully sequenced model organisms, commercial arrays now have essen-

tially comprehensive coverage of protein-coding RNAs. The latest arrays

from Affymetrix also include a nearly complete set of probes for miRNAs,

exons, and even splice junctions. This intense focus on the core subset of

RNAs can be an advantage in many situations—particularly in eQTL studies

in which investigators are interested on the impact of mRNA variation on

phenotypes. The modest dynamic range of arrays relative to RNA-seq is

rarely an issue in eQTL studies, as the key variable is variation across indi-

viduals rather than across transcripts. In fact, many eQTL studies discard

mean expression values and retain only the offset from the mean (the

z-score). A second advantage of arrays is that every transcript has its own

“real estate” on the array. Even those genes with low expression have an

opportunity to produce a hybridization signal. In contrast, RNA-seq count

data have a highly skewed distribution, and a small number of genes account

for a large fraction of the reads, and many transcripts have no or very low

read counts (<5). Consequently, the power to detect differential expression

among shorter and more modestly expressed genes is poor due to high

Poisson noise (Bullard, Purdom, Hansen, & Dudoit, 2010). A final prag-

matic advantage of arrays is that the analysis workflow is far less computa-

tionally intensive and can be performed on a desktop computer. A strong

case can still be made in favor of arrays for large eQTL studies.

5.2. Advantages of RNA-seq
RNA-seq offers advantages relative to arrays and can provide more accurate

estimates of isoform abundance over a wider dynamic range. Dynamic range
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is only limited by the RNA complexity of samples (library complexity) and

the depth of sequencing. In a small study, Fu and colleagues compared

RNA-seq and array data with protein levels in cerebellar cortex and found

a slightly better relation between RNA-seq and protein (Fu et al., 2009).

The higher dynamic range of RNA-seq could potentially facilitate detection

of eQTLs associated with transcripts that have either low or very high

expression. Saturation of signal at the high end or at the low end of the

expression spectrum could obscure genetic expression differences. How-

ever, to the best of our knowledge, this has never been tested. In

Fig. 8.7, we compare cis-eQTL effect sizes from the RNA-seq data discussed

earlier with a matched Affymetrix M430 array data set. We extracted all cis-

eQTLs in both data sets—around 2000 and 3000, respectively—and com-

pared their LOD scores. For those transcripts with cis-eQTLs in both data

sets, there was no advantage to the RNA-seq in terms of effect size or

LOD scores of the eQTLs. In this particular case, four arrays per strain out-

performed 30 million reads per strain.

The second factor is more compelling—RNA-seq enables expression

quantification of novel transcripts and transcripts not represented on arrays.

RNA-seq analysis tools such as Cufflinks (Roberts, Pimentel, Trapnell, &

Pachter, 2011) can utilize reads to annotate novel transcripts by performing

reference-based de novo assembly of transcripts. This is particularly important

in analyzing a complex tissue such as brain known to have high frequency of

alternative splicing events (Pan, Shai, Lee, Frey, & Blencowe, 2008). How-

ever, most RNA-seq analysis ignores reads mapped to unannotated regions

in the reference genome, somewhat reducing the significance of this

advantage.

Third, RNA-seq is a hybridization-free approach and does not suffer

from confounds such as cross hybridization and artifacts due to variants in

probe sequences. Probes with variants—SNPs and small indels—influence

hybridization kinetics and cause incorrect detection of the expression level

of genes. Ciobanu and colleagues found 25% of apparent cis-modulation

detected in the hippocampus was caused by probe variants rather than gen-

uine mRNA quantitative differences (Ciobanu et al., 2010). RNA-seq suf-

fers from a similar problem of allele bias inherent when aligning reads to a

single reference genome. However, alignment methods allow for mis-

matches and are less sensitive to sequence differences (see below).

Finally, RNA-seq makes it possible to study complex transcriptional

events including alternative splicing andpolyadenylation.Hybridization-based

approaches use probes targeting small regions of the transcript, mostly single
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exons. As a result, they have not been used to study splicing extensively. High-

density exon arrays consisting of both exon and splice junction probes are now

available; although they still suffer from systematic errors that lead to over-

estimation of alternative splicing (Gaidatzis, Jacobeit, Oakeley, & Stadler,

2009; Laderas et al., 2011). Splicing array also require a priori information of

isoforms for probe design. In contrast, RNA-seq reads mapping to splice junc-

tions provide direct evidence of splicing. These reads can be quantified to

roughly estimate the relative abundance of alternative isoforms. Additionally,

they can be combinedwith read distribution across different exons to precisely

quantify alternatively spliced isoforms of a gene (Griffith et al., 2010; Jiang &

Wong, 2009; Trapnell et al., 2010). Of course, the near term technical goal

is to sequence and count entire mRNAmolecules—so-called single-molecule

sequencing. Once this goal has been reached, it will be possible to use quanti-

tative genetic methods to study splice isoform usage in brain regions and even

single cells.

Figure 8.7 Comparison of cis-eQTLs identified by arrays and RNA-seq. (A) The box plots
show LOD score distributions (Y-axis) for RNA-seq (n¼1779) versus arrays (n¼2839). cis-
eQTLs are defined as those eQTLs having an LOD score of >2.0 and within 5 Mb of the
parent gene. A total of �44,500 assays in a whole-brain array data set (GN123, n¼30)
were compared to �200,000 exons in a whole-brain RNA-seq data set (GN394, n¼28).
(B) Scatter plot of LOD scores for 105 cis-eQTLs shared by array and RNA-seq data sets.
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6. RNA-seq READ ALIGNMENT AND NORMALIZATION

Accurate estimation of transcript abundance is critical for the success

of eQTL studies. Unbiased alignment of short sequences and correct nor-

malization of RNA-seq counts are important for accurate estimates. There

are now accurate RNA-seq aligners that can align reads in a splice-aware

manner, but normalization methods for RNA-seq counts are still evolving.

Details of RNA-seq data analysis are covered in Chapter 2. Here, we will

only discuss data analysis issues that are important for conducting a more

error-free eQTL study.

6.1. Allelic bias in read mapping
Though RNA-seq is a hybridization-free approach, it still requires read

mapping—essentially digital hybridization—against the reference genome.

Unlike hybridization, RNA-seq alignment is not particularly sensitive to

the presence of variants because the algorithms allow for specified numbers

of mismatches and gaps. Nevertheless, a significant allelic bias can still occur

when aligning reads with large numbers of genetic variants relative to a sin-

gle reference genome (Degner et al., 2009). This is because reads with ref-

erence alleles will match the reference genome precisely, whereas reads that

contain nonreference alleles will not. For example, reads originating from B

haplotypes in BXD strains will show better alignment rate to the reference

genome (B genome) than theD haplotypes. This bias will appear as a strong

cis-eQTL, similar to ones produced by hybridization artifacts in arrays. This

bias can be more of a problem in complicated crosses with multiple and

highly divergent haplotypes such as HS and CC.

Degner and colleagues (2009) proposed using a masked reference

genome in which each polymorphic position (SNP) in the reference

genome is masked with a third allele that is neither the reference allele

nor the allele from the nonreference haplotype. Their approach cannot

reduce allelic bias completely; moreover, it increases the number of

unmapped reads because SNPmasking this way adds an obligatory mismatch

in the alignment. As a result, expression values of genes with large number of

variants are underestimated. The advantage of their method is that it only

requires read alignment against a single genome. A more widely used

method (Blencowe, 2006; Rozowsky et al., 2011) to reduce allelic bias is

to create strain-specific genomes for alignment by substituting reference

alleles with known variants. Reads are aligned to both the reference genome
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and substituted strain-specific genomes. Aligned reads are then combined in

a nonredundant manner to estimate transcript abundance. If sequence var-

iants between a nonreference genome and the reference genome are not

known, RNA-seq can also be used to detect variants. In this case, RNA-

seq reads are as usual aligned against the reference genome and sequence var-

iants are generated for the nonreference case. The locations of these variants

can be used to identify genomic regions corresponding to different haplo-

types. RNA-seq reads can then be realigned in a haplotype-sensitive manner

to reduce bias.

6.2. Correct normalization of RNA-seq counts
Choice of normalization procedure can significantly affect the outcomes of

gene expression studies. Similar to arrays, normalized estimates of expression

are necessary to evaluate whether differences among samples used for eQTL

mapping are genuine. Systematic biases in RNA-seq experiments can result

from differences in the sequencing depth of the sample libraries and differ-

ences in the length of genes. Deeply sequenced libraries generate more reads

per gene than less deeply sequenced libraries. Similarly, longer genes will

have more aligned reads compared to shorter genes. Mortazavi and col-

leagues introduced a normalization method called the reads per kilobase per

million mapped reads (RPKM) that rescales counts to correct for differences

in library size and gene length (Mortazavi, Williams, McCue, Schaeffer, &

Wold, 2008). RPKM values enable between- and within-library sample

comparisons. Sandberg and colleagues found that RPKM values that take

only exonic reads into account correlate better with qRT-PCR data

(Ramskold, Wang, Burge, & Sandberg, 2009). Recent work has criticized

RPKM normalization when detecting for differentially expressed transcripts

(Bullard et al., 2010; Dillies et al., 2013; Rapaport et al., 2013). Dudoit and

colleagues found a bias that favors longer transcripts with small differences

over shorter transcripts with large differences (Bullard et al., 2010).

The total number of RNA-seq counts generated for a gene depends not

only on its expression level, length, and depth of sequencing but also on the

library composition and complexity that is used for sequencing. Differences

in library composition between samples can contribute to high levels of var-

iability and spuriously high variance in expression. To address this problem,

normalization methods such as Trimmed Mean of M-values (implemented in

edgeR Bioconductor package) (Robinson, McCarthy, & Smyth, 2010) and

DESeq (Anders &Huber, 2010) have been proposed. Bothmodel RNA-seq
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counts using a negative binomial distribution and have outperformed several

other methods in studies focused on differential expression (Bullard et al.,

2010; Dillies et al., 2013; Rapaport et al., 2013). No comparison of normal-

ization methods with respect to eQTL mapping has yet been performed.

Traditional eQTL mapping methods based on linear regression are highly

sensitive to outliers and work best when the expression data are roughly nor-

mally distributed. Unfortunately, raw RNA-seq expression counts are

strongly right skewed, with a few transcripts having extraordinarily high

expression. Thus, RNA-seq counts must be transformed in order to apply

linear regression or equivalent approaches for eQTL mapping. A log2 trans-

form is often suitable. Pickerell and colleagues used a normal quantile trans-

formation of RNA-seq counts in their eQTL study (Pickrell et al., 2010).

Another study showed that modeling RNA-seq counts using a discrete dis-

tribution, such as a negative binomial or a beta binomial distribution, results

in higher statistical power in eQTL mapping (Sun, 2012).

7. eQTL MAPPING OF ALTERNATIVE SPLICING
AND POLYADENYLATION

Alternative splicing and alternative polyadenylation increase the com-

plexity of the transcriptome and diversity protein isoforms. Xu and col-

leagues showed that brain is highly enriched for alternative splice forms

(Xu et al., 2002). Similarly, highly expressed genes in mammalian brain

are known to have unusually long 30 UTRs (Miura, Shenker, Andreu-

Agullo,Westholm, & Lai, 2013). Alternative splicing plays an important role

in neuronal differentiation, synaptic transmission, and plasticity. Splicing dif-

ferences and mutations have been linked with several disorders (Faustino &

Cooper, 2003; Nissim-Rafinia & Kerem, 2005). Alternative poly-

adenylation also plays a role in the stability and localization of the mRNA

through interactions with RNA-binding proteins, ribosomes, miRNA, etc.

Several association studies have utilized exon arrays and RNA-seq to study

variability and heritability of splicing in human lymphoblastoid cell lines

(Montgomery et al., 2010; Nembaware et al., 2008; Pickrell et al., 2010).

These studies have confirmed genetic control of splicing variation in

humans. However, eQTLs regulating alternative splicing in brain have

not been studied extensively. To the best of our knowledge, the only eQTL

study that has systematically investigated splicing eQTLs genomewide is by

Heinzen and colleagues. They studied expression in human cortex and

peripheral blood using the Affymetrix Human Exon 1.0 ST array
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(Heinzen et al., 2008) and identified 23 and 84 associations at the transcript

and the exon level, respectively. This is likely to be a massive underestimate

of the actual number of splice isoforms that are under genetic control.

8. RNA-seq FOR ALLELE-SPECIFIC EXPRESSION

A remarkable feature of RNA-seq is its ability to assay genomewide

ASE using isogenic F1 hybrids (Bell et al., 2013; Korir & Seoighe, 2014;

McManus et al., 2010; Rozowsky et al., 2011; Skelly et al., 2011) made

by crossing inbred parents. RNA-seq can reliably distinguish mRNA rep-

resenting the alternative alleles and can be used to detect unequal production

of alleles. An advantage of using F1 animal for ASE analysis is that the two

alleles in these animals share all environmental and trans-acting influences.

As a result, any genetic expression differences in heterozygotes must be

attributed to the local allele-specific endogenous effect.

8.1. Key factors in design of genomewide ASE
A key factor to consider for measuring cis-eQTLs on a genomic scale is the

presence of appropriate coding variants—usually SNPs—to assay allelic

imbalance. Another factor is the sequencing depth needed to detect

differences with good statistical power. Fontanillas and colleagues showed

that the read depth required to detect an allelic imbalance depends on

the size of difference in the allelic expression (Fontanillas et al., 2010).

They determined that 50 reads per SNP is enough to provide 60% statis-

tical power for larger than twofold differences in expression. Small allelic

expression differences of less than 1.25 fold will require more than 500

reads to reach the same power.

ASE can be used to identify imprinted genes by comparing ratios of

expression in reciprocal F1 crosses. The reciprocal F1 females are genetically

identical but the polarity of parents differ (e.g., B mother to D father, or

D mother to B father). An initial RNA-seq study of this type reported an

implausibly high number of imprinted genes in the CNS (Griffith et al.,

2010). Correct modeling of biological and technical variation brought this

estimate down to less than 100 genes (DeVeale, van der Kooy, & Babak,

2012). Several other factors can contribute to error in estimating ASE. Alle-

lic bias in read mapping to a single reference genome has already been dis-

cussed. Other mapping artifacts can also produce false positives include using

nonunique reads (reads that can be mapped to multiple locations) and reads
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that map to low-complexity genomic regions. PCR amplification bias dur-

ing library preparation can also cause false-positive allelic imbalances.

8.2. Advantages and disadvantages of ASE
An advantage of using ASE-based approach to identify cis-eQTLs on a geno-

mic scale is that it requires relatively few samples. Additionally, it does not

depend on arbitrary window cut-off as used in eQTL mapping.

A disadvantage of ASE analysis over eQTL mapping is its complete inability

to locate trans-eQTLs. Babak and colleagues compared array-based eQTL

mapping with RNA-seq ASE to detect cis-eQTLs (Babak et al., 2010). They

found an extensive agreement between cis-eQTL results. For genes showing

discrepancies between methods, RNA-seq more frequently matched subse-

quent validation using conventional qRT-PCR protocols.

9. CONCLUSIONS

The last decade has seen a rapid growth in the number of eQTL

studies of the CNS and large efforts to accumulate massive gene expression

data sets across multiple brain regions and cell types. There are two very gen-

eral findings. First, cis-eQTLs have large effects, are often replicable across

different data sets and even regions, and are comparatively easy to validate

and interpret. However, these first-order cis-effects usually do not expose

critical gene–gene interactions that define molecular networks. They can,

however, be used as seeds to define downstream effects on protein levels

and higher order behavioral traits (Ciobanu et al., 2010). Second, trans-

eQTLs usually have smaller effects, are harder to validate, and often do

not replicate well across different data sets. But they are also most interesting

because they can define gene–gene interactions (e.g., Ciobanu et al., 2010,

figure 4). Although trans-eQTLs are common in expression data sets, they

are hard to pin down to single causative genes. But this problem is being

resolved. For example, eQTL mapping resolution in the CC will soon pro-

vide 1-Mb resolution (5–10 genes in mouse). The BXD family can already

routinely achieve a resolution of 2–5 Mb (around 10–50 genes, Fig. 8.6)

with high power. Once they are more fully developed, these RI families will

each contain 150 strains and they should routinely achieve single-gene res-

olution suitable for high power trans-eQTL studies of any part of the CNS.

RNA-seq offers the high dynamic range and resolution essential for cap-

turing small expression differences. Additionally, this method can be used for
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isoform-specific eQTL mapping. While RNA-seq offers great promises,

it has not yet been widely exploited for eQTL mapping studies. This is

primarily because of the cost and complexity of library preparation and

the high bioinformatics overhead required to process and analyze data.

Rapid technical advances have dramatically reduced both types of costs,

and the interpretation of RNA-seq is now becoming much more tractable.

Gene expression studies of the brain are particularly challenging due to

the extreme cellular heterogeneity. There are probably well over 7000 sta-

tistically distinct cell types with unique mRNA and protein expression pro-

files in brain. This estimate is based on thewell-known cellular complexity of

retina—a CNS tissue in which there are�70 cell types in mouse and human

(Marc, Jones, Lauritzen,Watt, &Anderson, 2012)—and a conservativemul-

tiplier of 100 for the effective number of equally complex CNS regions. The

high level of still undefined cellular and molecular heterogeneity in the brain

is a major issue that still confounds neuroscience. For eQTL studies, the use

of averaged expression over diverse cell types dilutes but does not eliminate

the important genetic signals. The ultimate genetic studies of gene expression

will require extremely efficient workflows to quantify mRNAs, proteins,

and metabolites for hundreds of cells belonging to thousands of unique

CNS cell types. This may now seem daunting, but rapid progress in

single-cell genomics methods (Islam et al., 2014; Jaitin et al., 2014) will make

this just as practical in a decade as whole-genome sequencing is today.
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Abstract

The transcriptome changes hugely during development of the brain. Whole genes,
alternate exons, and single base pair changes related to RNA editing all show differences
between embryonic and mature brain. Collectively, these changes control proteomic
diversity as the brain develops. Additionally, there aremany changes in noncoding RNAs
(miRNA and lncRNA) that interact with mRNA to influence the overall transcriptional
landscape. Here, we will discuss what is known about such changes in brain develop-
ment, particularly focusing on high-throughput approaches and how those can be used
to infer mechanisms by which gene expression is controlled in the brain as it matures.

1. INTRODUCTION

The cellular and molecular complexity of the mature adult brain is

influenced both by processes in development and by the experience-

dependent formation of neuronal circuits (Innocenti & Price, 2005;

Sur & Rubenstein, 2005). Brain development occurs throughout embry-

onic growth and, in most species, continues after birth with a wide variety

of developmental programs between species (Borrell & Calegari, 2014). To
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form the mature brain, many different cell types need to differentiate from

basal progenitors, migrate to their anatomical positions, and, for neurons,

form synapses. As such, brain development is a highly regulated process.

Part of the regulation of brain development includes the coordinated

expression of many different genes in a spatially and temporally appropriate

context. Virtually all levels of gene expression, from whole genes to splicing

and RNA editing, show evidence of regulation during brain development.

The purpose of this review is to discuss all levels of gene expression in the

development of the brain with a particular emphasis on genome-wide tech-

niques that have allowed for an overall view of the generality of expression

changes in this organ.

2. GENE EXPRESSION

A number of studies have employed microarray technology in an

attempt to study the molecular changes occurring during brain development

including many reports at a genome-wide scale. Although these could be

organized by species or brain region, here we will use the order of publica-

tion as, in general, the depth of coverage in genome-wide techniques has

increased over time.

In 2001, two papers were published using arrays to look at development in

the mouse hippocampus (Mody et al., 2001) and cerebellum (Kagami &

Furuichi, 2001) using Affymetrix arrays. These two brain regions have slightly

different trajectories of development in the mouse and the two studies used

slightly different choices for developmental time point. Mody et al. examined

the hippocampus at embryonic day 16 (E16) andpostnatal days 1 (P1), P7, P16,

and P30, whereas E18, P7, P14, P21, and P56 were used in the cerebellum by

Kagami and Furuichi. Despite the differences between the two regions and

slight differences in the choices of time points, there are some substantial over-

lap in the genes and, more importantly, types of genes identified in both stud-

ies. In both studies, there was a decrement in expression of gene related to

neuronal proliferation or cell division from embryonic to postnatal stages

(Kagami & Furuichi, 2001; Mody et al., 2001). This presumably represents

the maturation from dividing neuronal precursor cells to mature, postmitotic

neurons. One example of gene expression that tended to increase with brain

development noted by Mody et al. was the upregulation of genes involved in

glycolysis, consistentwith a shift fromketone to glucosemetabolismwithbrain

maturation (Mody et al., 2001). Similarly, gene expression profiles consistent

with synaptic maturation and associated signal transduction were clearly seen
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in both studies (Kagami & Furuichi, 2001; Mody et al., 2001). A summary of

some of the key types of genes that are developmentally regulated in different

brain regions is shown in Fig. 9.1.

A similar study of the developing cerebellum focused particularly on

granule cells which largely develop during the postnatal period in the mouse

(Dı́az et al., 2002). As well as examining expression patterns in the cerebel-

lum, Diaz et al. used the same technology to look at cultured granule cells

developing in vitro, mutant mice where granule cells are lost in the postnatal

period, as well as the pontine nucleus to which the granule cells project.

Although the data series are therefore complex to interpret, they indicate

that gene expression in development involves both cell autonomous and

non-cell autonomous regulation.

Further studies extended these observations using whole brains using

additional embryonic stages (Matsuki, Hori, & Furuichi, 2005), focusing

on the prefrontal region of the cerebral cortex in postnatal development

(Semeralul et al., 2006), or examining the cortex from embryonic to post-

natal development (Pramparo et al., 2011). In general, these studies con-

firmed earlier results in that there were consistent decreases in cell

Figure 9.1 Categories of gene expression in the developing mouse brain. The timeline
from embryonic (E) to postnatal (P) gene expression is given in days and above the time-
line are schematics of the brain approximately equivalent to their positions. Three brain
regions where gene expression has been studied are colored in blue (dark gray in the
print version) (cerebral cortex), red (light gray in the print version) (hippocampus), and
green (gray in the print version) (cerebellum). Below the time line are groups of genes
that are prominently expressed at given developmental ranges in each region.
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division proteins and acquisition of genes that encode for synaptic proteins.

Another interesting observations across several of these experiments are the

sheer numbers of genes that show some evidence of regulation during brain

development. For example, Matsuki et al. reported that 1413 genes (�11%)

showed altered expression in the prenatal period, while Semeralul et al.

reported 366 differentially expressed probe sets in the postnatal period.

Although these two studies are not strictly comparable, they suggest that

effects on gene expression are greater in the prenatal compared to

postnatal period.

A similar picture of gene expression during development emerges from

studies of the human prefontal cortex (Colantuoni et al., 2011). The absolute

number of genes that show differential expression in prenatal development is

higher than those in postnatal development, which is higher still than in

aging. Furthermore, themagnitude of changes is higher in fetal development

than in later stages. Also consistent with mouse data were the types of genes

that showed changes during development with, for example, diminishment

of cell cycle genes and increases in synaptic components. One complication

with human gene expression studies is the genetic diversity of humans com-

pared to inbred mouse strains where genetic variation is minimal. Because

gene expression is under genetic control, including in the brain (Gibbs et al.,

2010), it is potentially important to dissect out genotypic and developmental

effects on gene expression. However, single nucleotide polymorphisms

(SNPs) that influence gene expression appear to influence overall expression

levels rather than rates of change, that is to say that most genes that are devel-

opmentally regulated retain that regulation irrespective of genotype

(Colantuoni et al., 2011).

One of the attractions of using genome-wide approaches is that they

might be mined to look for unexpected associations that, in turn, might

be used to predict mechanisms. One useful approach is to generate self-

organizing clusters of genes with similar trajectories of change with devel-

opment. For example, several transcription factors (SMBP2, FE65, and

Sox-M) show correlated expression with genes that increase in the postnatal

time period in the hippocampus (Mody et al., 2001). As specific transcrip-

tion factors are involved in neuronal specification (Thompson & Ziman,

2011), the increase in transcription factor expression in the postnatal period

suggests that such proteins might also be important in the maintenance of

neuronal phenotype through adulthood.

Genome-wide approaches can further be used to understand how spe-

cific transcription factors work during development. For example, knockout
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of the transcription factor aristaless-related homeobox (Arx) results in altered

migration of interneurons and abnormal neuronal differentiation. Using

Affymetrix arrays in a conditional knockout where Arx was depleted in

the subpallium, Fulp et al. were able to reconstruct a genetic network where

Arx normally represses additional transcription factors including Lmo1, Ebf3,

and Shox2 (Fulp et al., 2008).

As another example of the use of mutant mice, Prampano et al. compared

gene expression in several different mutations that are associated with deficits

in neuronal migrations (Lis1,Dcx, andYwhae) and found alterations in classes

of genes expressed (Pramparo et al., 2011). Specifically, disruption in neu-

ronal migration genes caused alterations in cell cycle and cytoskeleton cat-

egories, but for some mutants, there were also differences in genes encoding

synaptic proteins. These observations suggest that there is a dependency of

later gene expression events on earlier ones, i.e., that neuronal migration is a

required step for synaptic maturation.

The above datasets were generated using microarrays, but there are many

other ways to look at gene expression. In situ hybridization (ISH) has been

applied at a genome-wide level to bothmouse (Liscovitch &Chechik, 2013)

and human (Miller et al., 2014) brain development. The principle advantage

of ISH over arrays is that gene expression can be addressed at the level of

brain regions, layers, and even single cells. Such analyses have generally

found similar categories of genes as in the array studies but indicate that there

are specific genes that are developmentally regulated in germinal zones, for

example (Miller et al., 2014).

A deeper view of gene expression changes in the developing mouse cere-

bral cortex has been achieved using transcriptome sequencing or RNA-Seq

(Dillman et al., 2013; Han et al., 2009). Such techniques have been increas-

ingly chosen for gene expression studies as it has been reported that RNA-

Seq has greater linearity and reliability compared to microarrays (’t Hoen

et al., 2008). Consistent with previous array studies, genes with higher

expression in the embryonic brain included many genes involved in cell

division, while those that weremore highly expressed in the adult brain were

related to neurotransmission and ion homeostasis (Dillman et al., 2013).

However, probably due to the improved dynamic range of RNA-Seq, such

approaches tend to nominate many more genes as being regulated during

development compared to array-based studies. In our hands, from

�24,000 genes identified, about 4000 were differentially expressed compar-

ing E17 mice with adult (3–4 months old) females. There was also good

quantitative agreement between RNA-Seq and qRT-PCR for a subset
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of genes chosen for validation, again supporting the idea that RNA-Seq reli-

ably estimates fold differences between conditions. A similar estimate

(4000/16,000 detected genes) of differentially expressed genes was reported

by Han et al., comparing E18 and P7 mouse cortex (Han et al., 2009).

RNA-Seq data are also available for the human brain at various stages of

development (e.g., http://www.brainspan.org). Analysis of this dataset again

shows a distinct developmental trajectory for expression of a large number of

genes including many involved in synaptic function (Parikshak et al., 2013).

An important additional utility of RNA-Seq is that as well as estimating

overall gene expression, we examine more complex aspects of gene expres-

sion, which will be discussed later in the review, namely splicing and RNA

editing. However, it is perhaps interesting to discuss some genetic events

that may underly some of the changes in gene expression in brain

development.

3. DNA SEQUENCE VARIATION AND EPIGENETIC
MODIFICATION IN BRAIN DEVELOPMENT

A discussion of gene expression at the RNA level should also consider

the architecture of DNA itself. Within a given species, DNA is highly poly-

morphic and some of that variation can manifest itself as differences in

expression levels rather than coding sequence of genes. Mapping the rela-

tionship between DNA variation and gene expression levels identifies

expression quantitative trait loci (eQTLs). Conceptually, eQTLs are regions

of the genome where polymorphic variants are statistically associated with

differences in mRNA expression levels. Studies in human (Gibbs et al.,

2010) and mouse (van Nas et al., 2010) brain have identified a large number

of such eQTLs for many genes. Such polymorphic loci might, therefore,

influence brain development. In one study overlaying genetic data with

gene expression across brain development, there were very few examples

of genetic polymorphisms that altered the trajectory of gene expression

changes throughout development (Colantuoni et al., 2011). Nonetheless,

genetic background effects do need to be considered in gene expression pro-

filing experiments, including brain development.

As discussed above, alterations in expression levels of transcription factors

may be important in the control of gene expression during brain develop-

ment. However, the underlying interaction between transcription factors

and DNA is dynamic as DNA is subject to a number of regulatory modifi-

cations, including methylation. DNA methylation generally occurs at
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cytosine bases to form 5-methylcytosine in the promoter region of genes.

Cytosine methylation generally represses gene expression (Tate & Bird,

1993), although it may also be a mechanism involved in generation of alter-

nate splicing events (Zhou, Luo, Wise, & Lou, 2014).

Methylation seems to play a particularly important role in cell differen-

tiation in the brain. For instance, astrocyte differentiation is dependent on

the transcription factor STAT3, but expression levels alone are not enough

to trigger differentiation as the promoter of the astrocyte marker GFAP is

methylated to prevent STAT3 binding. Once this site is demethylated,

the cells can respond to the presence of STAT3 and differentiation can occur

(Takizawa et al., 2001). In this way, transcription factors and DNA modi-

fications work together to control gene expression.

DNAmethylation can also be involved in genomic imprinting, in which

a gene is expressed in a parent-of-origin-specific manner. A substantial pro-

portion of imprinted genes are highly expressed in the brain with unique

spatial and temporal expression. For example, UBE3A has maternally based

expression in specific subpopulations of neurons in the hippocampus and

cerebellum but is biallelically expressed in the rest of the brain and body

(Albrecht et al., 1997; Rougeulle, Glatt, & Lalande, 1997). In chimeric mice

embryos, duplicated maternal genomes contributed to the development of

the hypothalamic but not to the cerebral cortex, while a duplicated paternal

genome contributed to cortical but not to hypothalamic structures indicat-

ing unique differential roles for parent of origin genomes (Keverne, Fundele,

Narasimha, Barton, & Surani, 1996). An example of temporal regulation is

the gene Murr1, which has biallelic expression in embryonic and neonatal

mice but only the maternal allele is expressed in adult brain (Wang

et al., 2004).

Collectively, these examples show that the transcriptome of the brain is

regulated at multiple levels in a manner that depends on epigenetic modi-

fication. As might therefore be expected, these single examples likely gen-

eralize across the genome. It has been demonstrated recently that widespread

DNA methylation changes occur in development in both the mouse and

human brain (Lister et al., 2013; Numata et al., 2012). As seen with expres-

sion changes, the most dramatic differences in DNAmethylation occur dur-

ing prenatal development with a slowing of progression after birth and even

more modest changes in aging (Numata et al., 2012). In some cases, there are

DNA methylation events that reverse course after initial development, i.e.

where a sequence may undergo demethylation before birth then becoming

methylated after birth. This is generally consistent with previous data using
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smaller sets of methylation events that showed a general increase in meth-

ylation in the human brain with age that was also confirmed using isolated

neurons (Siegmund et al., 2007).

4. ALTERNATIVE SPLICING

Many of the above approaches generally considered each “gene” as a

single unit. However, many tissues, including the brain, show a large number

of splicing eventswith perhaps half of all genes showing some evidenceof alter-

nate exons being incorporated into mature mRNA (Lee & Irizarry, 2003).

As might therefore be expected, there are many examples of regulated

alternative splicing in neuronal development. In mice, fetal Mapt has only

minor incorporation exon 10 but by postnatal day 24 all tau contains this

exon (McMillan et al., 2008). Interestingly, human MAPT retains exon

10 throughout adulthood (Liu & Gong, 2008), perhaps related to the larger

size of human neurons compared to neurons leading to a higher requirement

for axonal stability. The glutamate receptor gene Gria2 has a pair of exons

that can be spliced in or out leading to two different protein isoforms, flip

and flop, that have different electrophysiological characteristics (Sommer

et al., 1990). In rats, flip is expressed at stable levels throughout develop-

ment, while flop expression is low until postnatal day 8 (Monyer,

Seeburg, & Wisden, 1991). Although not comprehensive, these examples

show how alternate splicing in brain-expressed genes can be functionally

important in different species.

Another level of regulation related to splicing is intron retention, where

sequences that would normally be spliced out are included in the mature

mRNA. In general, retention of introns is high in the brain than other tissues

and is developmentally regulated, with levels of retention higher in the fetal

brain than in the adult (Ameur et al., 2011). One example of intron retention

during development is in the axon guidance molecule Robo3 (Colak, Ji,

Porse, & Jaffrey, 2013). A Robo3 isoform containing an intronic sequence

(Robo3.2) is expressed but translationally repressed and allows for neuronal

attraction to the spinal cord midline. Once the axon crosses the spinal cord

midline, it receives signals from the floor plate to translate Robo3.2 allowing

nonsense-mediated decay to occur, causing repellence to the midline.

Whether other examples of intron retention are similarly functionally impor-

tant in brain development is not known, but given that intron retention is fre-

quent in the embryonic brain (Ameur et al., 2011), it is likely that this is an

important mechanism of gene regulation relevant for neuronal maturation.
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The brain also has been found to have longer 30-UTR regions (Miura,

Shenker, Andreu-Agullo, Westholm, & Lai, 2013; Ramsk€old, Wang,

Burge, & Sandberg, 2009) than other tissues, and this lengthening of UTRs

occurs during development ( Ji, Lee, Pan, Jiang, & Tian, 2009). This may be

related to stability of mRNA transcripts, as 30-UTR regions contain poly-

adenylation signals that control the turnover of mRNA; interestingly, the

brain has more alternate poly-adenylation than other tissues (Hu, Liu, &

Yan, 2014). Alternate 30-UTR signals may also be important in targeting

mRNA to neuronal processes as there are signals that direct mRNAs to

axons and dendrites (Mohr, 1999).

There have been several studies looking at alternative exon usage in brain

development in different species including humans and other primates using

genome-wide exon arrays ( Johnson et al., 2009; Mazin et al., 2013).What is

impressive about these studies is that, like measures of overall gene expres-

sion, they estimate that a large proportion of genes show alternative splicing.

In our own work using RNA-Seq in the mouse brain, we found almost 400

exons that were differentially expressed with examples where exon inclusion

were higher or lower in the adult compared to embryonic brain and these

includedwell-characterized examples such asMapt.We also found that there

were many types of alternative exon usage, including 50- and 30-UTR

sequences (Dillman et al., 2013), showing that some of the specific examples

discussed above may generalize to many genes.

An obvious mechanism for alterations in splicing during development is

that splicing factors might themselves be differentially expressed. There is

some support for this from large-scale experiments, which have found

age-dependent changes in expression of PTBP1, PTBP2, hnRNPA1,

hnRNPF, hnRNPH1, and hnRNPH3 in the developing human cerebral cor-

tex (Mazin et al., 2013). Differential expression of RNA binding proteins

also occurs in mouse development. One of the genes with the largest differ-

ences in gene expression in our own dataset (Dillman et al., 2013) was

Igf2bp1, which is associated with translational repression of a subset of

mRNA (Bell et al., 2013). Nova2, a neuron-specific RNA binding protein,

is required for the development of the spinal cord and brain stem. Using

high-throughput sequencing of RNA isolated by crosslinking, it was discov-

ered that the binding of Nova2 affects alternative splicing (Licatalosi et al.,

2008). These observations demonstrate that alternative splicing is therefore

required for normal brain development.

It is likely that there are additional levels of complexity in transcript gen-

eration that would also be relevant to brain development. One of the
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limitations of that RNA-Seq we used is that sequences were limited to

�200 bp, although there are technologies that allow for longer reads and

hence to recover a greater depth of information about full-length transcripts

(Au et al., 2013). Applying a similar approach to the developing brain would

be of particular interest in the future.

5. RNA EDITING

An additional source of transcriptome diversity is generated at the sin-

gle base level via RNA editing. Although there were some early claims of a

huge diversity of RNA editing events in the mammalian genome (Li et al.,

2011), many of the observed events were shown to be sequencing errors and

other technical artifacts (Pickrell, Gilad, & Pritchard, 2012). Instead, it is

generally accepted that in many species, RNA editing events are limited

to adenosine to inosine and cytosine to uracil, both of which have a

well-defined enzymatic basis.

Adenosine-to-inosine substitutions in mammalian RNA are carried out

by adenosine deaminases (ADARs), of which there are three isoforms.

ADAR1 and ADAR2 are ubiquitously expressed, with expression levels

are highest in the brain while ADAR3 is exclusively expressed in the brain

(Hogg, Paro, Keegan, &O’Connell, 2011). ADARs act on double-stranded

RNA and may require dimerization to be enzymatically active (Cho et al.,

2003; Gallo, Keegan, Ring, & O’Connell, 2003). ADARs are localized pri-

marily in the nucleolus and are bound to ribosomal RNA (Sansam,Wells, &

Emeson, 2003) but can translocate to the nucleus upon expression of specific

ADAR substrates (Desterro et al., 2003).

Inosine is recognized as guanosine in translation and, as such, editing in

the coding region of a gene can result in a change in the amino acid sequence

(Sommer, K€ohler, Sprengel, & Seeburg, 1991). Editing may be particularly

important in the brain as there are multiple isoforms of neurotransmitter

receptors that are targeted by ADARs (Seeburg, 2000). The majority of

A-to-I editing sites are highly conserved across genetically divergent mouse

strains (Danecek et al., 2012), supporting the idea that editing is biologically

important. In mice, editing of Gria2 leads to a lower permeability of this

glutamate channel to calcium ions. If only the unedited isoform of Gria2

is present, mice die within 2 weeks of birth due to seizures (Higuchi

et al., 2000). In octopuses, RNA editing plays a role in the temperature

adaptability of potassium channels (Garrett &Rosenthal, 2012), again show-

ing that RNA editing may influence neuronal excitability. There are
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examples of genes that are both edited and that undergo alternative splicing

during development (Barresi et al., 2014).

The other major editing enzyme in mammals, APOBEC1, deaminates

cytidine to produce uracil (Koito & Ikeda, 2012). Genome-wide surveys

suggest that C-to-U editing is far less numerous than A-to-I editing

(Kleinman, Adoue, & Majewski, 2012). APOBEC1 is expressed in neurons

and is thought primarily to have an antiviral role (Gee et al., 2011) and, per-

haps because of this, at the time of this review any potential role in devel-

opment has not been well studied.

There have been attempts to look at editing in a genome-widemanner in

brain development. For example, Wahlstedt et al. described examined

28 known A-to-I editing sites and found that many showed an increase

in editing as the brain develops (Wahlstedt, Daniel, Enster€o, & Ohman,

2009). In our own analysis of A-to-I editing, we discovered 176 sites in

the mouse brain. Although some coding edits were found, the majority

of sites were in the 30-UTR of genes. We also confirmed that there was a

tendency for increase in the proportion of edited transcripts with develop-

ment (Dillman et al., 2013). The tendency of RNA to become more

completely edited during development suggests that protein diversity is less

tolerated in the mature CNS than during development.

The mechanism underlying increased completion of A-to-I editing may

be partly related to increased expression of Adar enzymes through the post-

natal period (Dillman et al., 2013). However, why there is variation in the

level of editing between different sites, varying from less than 20% to nearly

100% edited as for Gria2, is not at all clear. One possible future experiment

would be to examine RNA editing in mice lacking specific Adar isoen-

zymes, which might allow for estimation of the redundancy in editing

between the different Adar genes.

6. NONCODING RNA

In recent years, it has become clear that the genome contains many

types of RNA distinct from protein-coding mRNA species. Some small

noncoding RNA (ncRNA), including microRNA (miRNA), have impor-

tant roles in regulating stability and translation of mRNAs (Dogini et al.,

2014). Others such as long noncoding RNAs (lncRNA) influence epige-

netic regulation by structural mechanisms (Peschansky & Wahlestedt,

2014) and are highly conserved across species (Chodroff et al., 2010).

Human accelerated regions (HARs) are noncoding regions of the genome
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that are conserved throughout vertebrate evolution but have significant sub-

stitution rates in humans. There is significant enrichment adjacent to genes

known to play a role in neuronal development (17082449, 16915236). One

particular HAR, HAR1, had the most genomic changes in humans with

18 substitutions compared to chimpanzees, while there were only 2 base dif-

ferences comparing chimpanzees to chickens. HAR1 overlaps with two

ncRNAs HAR1F and HAR1R. Interestingly HAR1F is specifically

expressed in the fetal brain in Cajal–Retzius neurons along with reelin a

gene critical in the specification of layering in the cortex (16915236). As

might be expected, there are many single examples of changes in expression

of ncRNAs as the brain develops (Barry, 2014; Iyengar et al., 2014;

Nowak &Michlewski, 2013), including instances where a neuronal specific

function is impacted by miRNA expression levels during development

(Schratt et al., 2006).

Several studies have attempted to use genome-wide approaches to look

at miRNA in brain development. In the developing rat forebrain from E2 to

P5, about 20% of mature miRNA species were shown to have altered

expression patterns using a custom array (Krichevsky, King, Donahue,

Khrapko, & Kosik, 2003). All of the proposed differences were validated

by Northern blots, suggesting that such changes are methodologically

robust. Similarly, in studies using several different microarray platforms, a

large proportion of miRNAswere found to show changes in expression dur-

ing development of the mouse brain (Miska et al., 2004; Sempere et al.,

2004), in the pig cortex and cerebellum (Podolska et al., 2011) and in many

regions of the human brain (Moreau, Bruse, Jornsten, Liu, & Brzustowicz,

2013). ncRNA can also be quantified by RNA-Seq, usually by making

libraries that are enriched for small RNA species. As for conventional

mRNA, sequencing tends to identify a greater number of genes than arrays

in brain ( Juhila et al., 2011). These types of methods have been applied to

the developing pig hypothalamus and pituitary and again reported a large

number of differences (Zhang et al., 2013). Collectively, these results show

that many miRNA are regulated during development.

Alterations in the expression levels of miRNA are an additional mech-

anism that might contribute to some of the changes in mRNA expression

and splicing discussed above. Because miRNA generally bind multiple

mature mRNA species, it has been predicted that they might be important

for coordinated control of gene expression in multiple species (Favre, Banta

Lavenex, & Lavenex, 2012). It has been suggested that miRNA:mRNA

interactions are particularly important in allowing for maintaining the
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overall stability in gene expression levels while still allowing for fine-tuning

in response to developmental stimuli (Follert, Cremer, & Béclin, 2014). The

lncRNA Evf2 binds to intergenic regions and influences expression of prox-

imal genes Dlx5/6 and Gad1 (Bond et al., 2009). There is some evidence

that a relationship between expression of lncRNAs and nearby protein-

coding genes generalizes across many examples (Mercer, Dinger, Sunkin,

Mehler, & Mattick, 2008). Small RNAs may also contribute to the gener-

ation of transcript diversity. For example, a miRNA expressed selectively in

the nervous system can influence splicing via the factors PTBP1 and PTBP2

(Makeyev, Zhang, Carrasco, & Maniatis, 2007).

7. SUMMARY

The examples above show that the brain transcriptome undergoes a

number of significant changes throughout development. Importantly, there

are many levels of regulation including at the levels of whole gene, single

exons, and single base pairs in the case of RNA editing sites. The mecha-

nisms underlying all of these changes are not always understood, but many

are likely to be important in the functional specification of the brain. Future

challenges include developing additional ways to look at the whole trans-

criptome in an unbiased manner.
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Abstract

Addiction is due to changes in the structure and function of the brain, including neu-
ronal networks and the cells that comprise them. Within cells, gene expression changes
can track and help explain their altered function. Transcriptional changes induced by
addictive agents are dynamic and divergent and range from signal pathway-specific
perturbations to widespread molecular and cellular dysregulation that can bemeasured
by “omic” methods and that can be used to identify new pathways. The molecular
effects of addiction depend on timing of exposure or withdrawal, the stage of adapta-
tion, the brain region, and the behavioral model, there being many models of addiction.
However, the molecular neural adaptations across different drug exposures, conditions,
and regions are to some extent shared and can reflect common actions on pathways
relevant to addiction. Epigenetic studies of DNA methylation and histone modifications
and studies of regulatory RNA networks have been informative for elucidating the
mechanisms of transcriptional change in the addicted brain.
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1. INTRODUCTION

Substance abuse and addiction to drugs and other addictive agents lead

to cellular andmolecular changes and are also caused in part by adaptations in

epigenetic regulation and gene expression that can be measured in cells.

Addictive behaviors are the outcome of allostatic maladaptation of neural

circuitries (Goldman, Oroszi, & Ducci, 2005; Koob & Le Moal, 2001).

Although great efforts have been made to understand the molecular basis

of addiction, the mechanisms are elusive, in part because they are likely

to be multiple. However, the study of gene expression in the addicted brain

has already yielded valuable insights to the molecular mechanisms of mal-

adaption. In model organisms and cellular models, several important

pathway-related changes induced by acute and chronic drug exposure have

been discovered. Human studies enabled by the availability of postmortem

brain tissues from addicted individuals (Albertson et al., 2004; Albertson,

Schmidt, Kapatos, & Bannon, 2006; Bannon, Kapatos, & Albertson,

2005; Kristiansen, Bannon, & Meador-Woodruff, 2009; Lehrmann et al.,

2003; Lewohl et al., 2011; Liu, Chen, Lerner, Brackett, & Matsumoto,

2005; Mash et al., 2007; Ponomarev, Wang, Zhang, Harris, & Mayfield,

2012; Tang, Fasulo, Mash, & Hemby, 2003; Zhou, Yuan, Mash, &

Goldman, 2011) have also provided critical, although somewhat divergent

results for the understanding of addiction. Overall, there appear to be many

common neuronal changes in gene expression among individuals addicted

to various agents (Lehrmann et al., 2006; Marie-Claire et al., 2007; Zhou

et al., 2011) and some commonalities with observations from model organ-

isms, reflecting impact on shared molecular pathways involved in neuronal

adaptation as well as drug-specific changes (Albertson et al., 2006; Celentano

et al., 2009; Zhou et al., 2011).

It is clear that several differences in type of exposure alter the pattern of

altered gene expression. One such factor is course of the exposure. Specific

changes in early response genes and signal transduction pathways are more

visible in the early stages of drug-induced neural adaptive processes

(Celentano et al., 2009; Marie-Claire et al., 2007; Zhou et al., 2011),

whereas prolonged exposure leads to widespread transcriptional changes

of genes involved in diverse cellular functions such as ion transport, chro-

mosome remodeling, stress and immune response, cell adhesion, cell cycle,

apoptosis, protein and lipid metabolism, and mitochondrial functions

(Albertson et al., 2004; Bannon et al., 2005; Mash et al., 2007; Renthal
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et al., 2007; Zhou et al., 2011). The impact of drug exposure on transcrip-

tion is also brain region specific. In two components of the mesolimbic sys-

tem, the dorsal striatum and nucleus accumbens (NAc), the expression of

genes involved in dopaminergic, glutamatergic, and GABAergic transmis-

sion (Ghasemzadeh, Mueller, & Vasudevan, 2009; Hyman & Malenka,

2001; McClung et al., 2005; Schumann & Yaka, 2009) and that play key

roles in drug-reward and drug-seeking behavior is strongly altered. In the

hippocampus, a brain region critical for associative learning and memory,

addiction alters the expression of genes involved in long-term potentiation

(LTP) (Zhou et al., 2011). Genetic studies, especially ones using genomic

sequencing of animal models selectively bred for addiction phenotypes, have

uncovered functional variants of genes involved in neural adaptation that are

directly responsible for genetic differences in the propensity to use addictive

agents and in response (Zhou et al., 2013). Using “omic” approaches, it has

also become possible to analyze the whole transcriptome and epigenetic pat-

terning of the genome, and new molecular adaptive processes that contrib-

ute to addiction have recently been revealed by applying these methods both

in humans and in model organisms.

2. MOLECULAR ADAPTATIONS ACCOMPANYING EARLY
RESPONSE AND LONG-TERM ADAPTATIONS IN THE
ADDICTED BRAIN

Knowledge of early gene expression changes in response to drug

exposure has largely derived from animal studies, many of which have

focused on preselected candidate genes and pathways. The molecular targets

are often drug specific, for example, the dopamine transporter for cocaine

and amphetamine exposure (Calipari, Ferris, Salahpour, Caron, & Jones,

2013; Peraile et al., 2010), opioid receptors and propeptide genes for opioid

exposure (Diaz, Barros, Antonelli, Rubio, & Balerio, 2006), and GABA and

glutamate receptors for other drug and alcohol exposure (Enoch et al., 2012;

Meinhardt et al., 2013; Nona, Li, & Nobrega, 2013; Schumann & Yaka,

2009; Swanson, Baker, Carson, Worley, & Kalivas, 2001; Zhang et al.,

2009; Zhou et al., 2013). Certain aspects of cell signaling, early transcrip-

tional response, and learning have been obvious, and fruitful, targets for

study in the addictions. Acute exposure to cocaine induces expression

of immediate-early genes such as Jun and Fos, which encode transcription

factors. The transcripts of these gene return to control levels, and following

repeated administration of the drugs, desentization is seen (Hope, Kosofsky,
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Hyman, &Nestler, 1992). The transcription factors FosB (Hope et al., 1992;

Nestler, 2008) and CREB (Carlezon, Duman, & Nestler, 2005) have also

been well documented as key components targeted by multiple signal trans-

duction pathways and are involved in regulating expression of drug response

genes. Binding of the Fos/Jun heterodimer to AP-1 sites and CREB to

cAMP-response elements (CREs) in gene promoters activates transcription

of the targeted genes. Another group of well-studied immediate-early gene

products is the Nur transcription factors that bind to Nur-responsive ele-

ments. These are widely present in the hypothalamus–pituitary–adrenal axis

and show rapid and transient increases in expression during acute exposure

to addictive drugs (Campos-Melo, Galleguillos, Sanchez, Gysling, &

Andres, 2013).

In the past decade, global analysis of gene expression using high-

throughput microarrays and, more recently, the use of genomic sequencing,

have been frequently applied to the problem of addiction (Hitzemann et al.,

2013) and have shed new light on molecular pathways that are altered in the

addicted brain. These studies have been conducted in diverse contexts

including rodents, nonhuman primates, and postmortem human brain sam-

ples and have revealed some important divergences. The differences in what

is observed appear to be mainly due to timing and exposure: each study is a

snapshot of the addicted brain in dynamic processes. In rodents, some studies

have profiled gene expression during drug-self administration, whereas

others during withdrawal. An important distinction between the rodent

models and human postmortem brain is that in rodents, “chronic exposure”

usually refers to a few days or weeks, whereas in humans, it usually denotes

many years of heavy use. This one fact appears to explain most of the dif-

ferences observed in studies of rodents versus those on people. More wide-

spread and divergent molecular and cellular changes have been observed in

the chronically addicted human postmortem brain. In a study of postmortem

prefrontal cortex from chronic cocaine abusers, Lehrmann and colleagues

found expression alterations in multiple cellular functional domains, includ-

ing energy metabolism, mitochondrial oxidative phosphorylation, oligo-

dendrocyte function, cytoskeleton and related signaling, and neuronal

plasticity (Lehrmann et al., 2003). Interestingly, they also noted two distinc-

tive states of transcription regulation, an elevated gene expression profile in

the recent active cocaine abusers and decreased expression state in the non-

active abusers. Altered expression in cocaine addicts has also been shown in

myelin-related genes. In a study by Albertson and colleagues (Albertson

et al., 2004; Bannon et al., 2005) on human postmortem NAc, the most
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prominent changes were decreases of myelin basic protein (MBP),

proteolipid protein, and myelin-associated oligodendrocyte basic protein.

The expression changes were also consistent with a decrease in the num-

ber of MBP-immunoactive oligodendrocytes. A study by Mash and

colleagues also found cocaine-induced expression changes in genes involved

in regulating extracellular matrix integrity and angiogenesis (Mash et al.,

2007). At the top of the list of affected genes was RECK, encoding a

membrane-anchored glycoprotein serving as an inhibitor for matrix

metalloproteinase-9. In addition, they also observed altered expression of

genes involved in apoptosis and cell death, neurogenesis and axon guidance,

signal transduction, transcriptional and translational regulation, and ion

transport (Mash et al., 2007).

Our study (Zhou et al., 2011) with genomic sequencing directly exam-

ined mRNA-based transcriptome (RNA-Seq) in human postmortem hip-

pocampal tissue from 24 men who were either cocaine addicts or alcoholics,

or age-, ethnicity-, and postmortem interval-matched drug-free controls.

Expression of 16,008 Refseq genes was detected. Among these, at an

uncorrected P<0.05, we observed a total of 1994 differentially expressed

genes in cocaine addicts, and 1275 differentially expressed genes in the alco-

holics. After genome-wide multiple testing correction using a relatively

stringent FDR cutoff of less than 0.2, there were 394 differentially expressed

genes in the cocaine addicts and 48 in the alcoholics. At FDR<0.05, there

were 80 differentially expressed genes in the cocaine addicts and 11 in the

alcoholics (Fig. 10.1A and B).

These genes differentially expressed in the human chronic cocaine brains

we studied are involved in diverse cellular functions, but there were patterns

that strongly implicated certain cellular functions. Cocaine depressed the

transcript levels for all five members of the BEX gene family (BEX 1–5),

which encodes brain expressed, X-linked proteins that are thought to medi-

ate neurotrophin signaling and neuronal differentiation (Vilar et al., 2006).

There were also significant expression changes for some histone protein

genes. Genes involved in regulation of transcription, gene silencing, and

chromatin modification were also affected. Several of these genes had been

previously implicated in cocaine addiction, including DNMT3a, a DNA

methyltransferase which was reported to play an important role in regulating

cocaine response and spine plasticity in the NAc in the rat (LaPlant et al.,

2010) and HDAC2, a histone deacetylase found to be involved in cocaine-

induced transcription changes in rat NAc and cocaine seeking behavior

(Chandrasekar & Dreyer, 2010). In addition, there was also convergent
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Figure 10.1 Differentially expressed genes in the hippocampus of cocaine- and alcohol-
addicted individuals, as detected by RNA-Seq. (A) Scatter plot of �log10 P (uncorrected
P value) versus FDR q value for all 16,008 expressed genes. FDR thresholds of 0.2 and
0.05 are marked, as well as corresponding uncorrected P values at an FDR of 0.2.
(B) Genes differentially expressed (FDR<0.2) in cocaine only, alcohol only, and common
to both. (C) Genes with significant differential expression (FDR<0.2) observed in both
chronic cocaine- and alcohol-addicted individuals.
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evidence that chronic cocaine exposure alters expression of genes involved

in RNA processing, including significant alteration in the expression of

genes encoding RNA-binding and processing proteins and enrichment

of differentially expressed small nucleolar (sno) RNA genes, which are

involved in both ribosomal RNA and mRNA processing (Kishore &

Stamm, 2006).

A particularly salient effect of long-term cocaine exposure in postmor-

tem brains we studied was alteration in the expression of genes involved in

mitochondrial inner membrane functions and oxidative phosphorylation

(Zhou et al., 2011). Interestingly, these genes integral to cellular energy pro-

duction have also been implicated in neurodegenerative diseases (Cho,

Nakamura, & Lipton, 2010). Among the 90 genes encoding components

of oxidative phosphorylation whose expression could be reliably evaluated

by RNA-Seq of hippocampal mRNA, 32 were differentially expressed

(uncorrected P<0.05), and all were downregulated. Furthermore, 74 of

the 90 genes (including the 32 genes that were significantly downregulated)

displayed reduced expression levels in cocaine addicts. These findings were

also highly consistent with previous brain imaging studies that have revealed

negative effects of cocaine on brain glucose metabolism (London et al.,

1990; Lyons, Friedman, Nader, & Porrino, 1996; Macey, Rice,

Freedland, Whitlow, & Porrino, 2004; Thanos, Michaelides, Benveniste,

Wang, & Volkow, 2008). Furthermore, alteration of certain genes encoding

for mitochondrial components induced by cocaine (Lehrmann et al., 2003)

and nicotine (Wang, Kim, Donovan, Becker, & Li, 2009) exposure had also

been reported previously.

3. SUBSTANCE-SPECIFIC AND SHARED GENE
EXPRESSION CHANGES IN ADDICTED BRAIN

Clearly, cellular and molecular changes of neural adaptation in addic-

tion occur in a substance-specific fashion as well as through common trans-

duction in neurotransmission pathways. Substance-specific effects are not

only due to the direct action of certain drugs of abuse on specific receptors,

but also by distinctive molecular and cellular changes related to the drugs

that may be related to distinctive signaling mechanisms or differences

in the modulation of specific neurons and circuits. Using microarray

gene expression profiling, Bannon and colleagues (Albertson et al., 2006)

observed decreased expression of many genes involved in presynaptic release

of neurotransmitter in the NAc of chronic heroin abusers, but not in chronic
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cocaine abusers. Similarly, the prominent depressed expression of myelin-

related genes found in cocaine abusers was not observed in heroin abusers.

Their results suggested the divergent effects of cocaine and heroin on gene

expression in the NAc, despite their common effects on dopaminergic trans-

mission. Another study by Marie-Claire et al. (2007) also reported differen-

tial effects of cocaine and 3,4-methylenedioxymethamphetamine on

expression of the Rnd gene family involved in actin cytoskeleton regulation

inmouse striatum and noted that the two drugs might act through distinctive

pathways to regulate these genes.

Comparing cocaine exposure with alcohol exposure, our analysis (Zhou

et al., 2011) of transcriptomes revealed a stronger shift in hippocampal

mRNA expression in cocaine-addicted brains. This was manifested by both

the larger number of differentially expressed genes (Fig. 10.1B) and changes

in molecular and cellular functions defined by gene ontology. For example,

the unidirectional depression of expression for the genes encoding for mito-

chondrial inner membrane and oxidative phosphorylation was only

observed in the cocaine-addicted brain (Zhou et al., 2011). This strongly

suggests that the inhibition is a specific effect of chronic cocaine exposure,

with potential negative implications for brain energymetabolism and diverse

brain functions that depend on it and with different metabolic consequences

in alcoholism.

Drug-induced neuroplasticity involves some common molecular and

cellular changes of the neurocircuitries (Hyman & Malenka, 2001;

Kauer & Malenka, 2007; Koob & Volkow, 2010), such as dopaminergic

transmission in mesolimbic system, and corticotropin-releasing factor and

norepinephrine systems in the extended amygdale. We have also observed

significant overlap of gene expression and pathway alteration in both

cocaine- and alcohol-addicted brains. Among the 48 differentially expressed

genes (FDR<0.2) in the alcoholics, 29 were common to cocaine addicts

and in each case the change was in the same direction. More strikingly,

for the 11 most significantly differentially expressed genes (FDR<0.05)

in alcoholics, 9 were also altered to the same degree in the cocaine addicts,

suggesting shared pathways impacted by both cocaine and alcohol in neu-

ronal adaptation. It is apparent that these commonly affected protein-coding

genes (Fig. 10.1C) play important roles in neuronal functions. They include

CDR1, a cerebellar degeneration-related protein; LRCH4, a leucine-rich

repeat-containing neuronal protein; CACNB2, a subunit of voltage-gated

calcium channel and involved in neuronal functions; and FAM123A

(AMER2), a member of the gene family involved in neurogenesis
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(Comai, Boutet, Neirijnck, & Schedl, 2010). Other commonly and most

significantly affected genes also encode for proteins critical in cellular func-

tions such as histone (HIST1H4E), transcription regulations (ZGPAT,

ERF, andHIVEP3) (Li et al., 2007), andmitochrondrial poly(A) polymerase

(PAPD1). A subsequent pathway-targeted analysis of GABAergic genes also

revealed common expression changes in the cocaine addicts and alcoholics

from our study, such as the downregulation of GABBR1, GABRG2, and

GPHN, a gene encoding the associated scaffolding protein gephyrin

(Enoch et al., 2012).

4. REGION-SPECIFIC GENE EXPRESSION CHANGES
IN ADDICTED BRAIN

It is apparent that many neuronal gene expression changes in the drug-

induced adaptive process are region specific and cell specific. The mes-

olimbic system is critically involved in drug-reward and drug-seeking

behavior and has been a focus for studies of addiction. In the dorsal striatum

and NAc, medium-sized spiny neurons mediate dopaminergic, gluta-

matergic, and GABAergic neurotransmission (Hyman & Malenka, 2001)

and rodents exposed to cocaine or during withdrawal show significant

changes in dopaminergic, glutamatergic, and GABAergic neurotransmission

(Ghasemzadeh et al., 2009; Hyman & Malenka, 2001; Nestler, 2001).

Expression changes of genes targeted by dopaminergic and glutamatergic

transmissions or genes involved in mediating transmission were also initiated

during adaptation to drug exposure. Some of these genes have been rela-

tively well analyzed such as CART (Douglass, McKinzie, & Couceyro,

1995), the Fos family (Hope et al., 1992; Nestler, 2008), CREB

(Carlezon et al., 2005), Arc (Fosnaugh, Bhat, Yamagata, Worley, &

Baraban, 1995), EGR1 (O’Donovan, Tourtellotte, Millbrandt, &

Baraban, 1999), Homer-1 (Swanson et al., 2001), MKP-1 (Ujike, Takaki,

Kodama, & Kuroda, 2002), Narp (Hyman & Malenka, 2001), NFκB
(Ang et al., 2001), and CdK5 (Bibb et al., 2001). During the adaptive pro-

cess, changes in the striatum take place in synergy with changes in other

brain regions, particularly with changes in dopaminergic neurons in the

midbrain ventral tegmental area where cocaine-induced glutamate release

activates calcium–calmodulin-dependent protein kinases such as CaMKII

which are involved in the process of behavioral sensitization (Fernandez-

Espejo, Ramiro-Fuentes, Portavella, & Moreno-Paublete, 2008).
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In our study of the hippocampal transcriptome (Zhou et al., 2011) of

cocaine addicts and alcoholics, we did not observe significant expression

changes for some of the genes that have previously been shown to be altered

in striatum, such as CART, FOSB, CdK5,NFκB, andHOMER. These dif-

ferences may be a manifestation of brain region-specific changes or may also

be the result of stage-specific alterations in response to drug exposure

because the rodent studies were performed following relatively short-term

drug exposure. However, in the cocaine addicts, we did observe expression

changes in genes important for hippocampal functions, such as LTP. Hip-

pocampal functions related to short- and long-term memory processes

involve synaptic plasticity, and drug-associated learning and memories are

important in craving. The hippocampus also directly projects excitatory

efferents to the NAc and can also activate dopaminergic neurons of the ven-

tral tegmental area, further implicating its involvement in drug-induced

changes of neural plasticity. The genes involved in LTP include specific

ionotropic and metabotropic glutamatergic receptors, calcium signaling-

related proteins such as calmodulin, calcium/calmodulin-dependent protein

kinase, protein phosphotase, adenylate cyclase, protein kinase A and C,

mitogen-activated protein kinase, and cAMP-response element binding

protein (CREB). Among these, the most significantly affected genes are

the N-methyl D-aspartate (NMDA) receptor 2B (GRIN2B), a subunit of

the ionotropic glutamate receptor; protein phosphatase 3 catalytic subunit

α isoform (PPP3CA), a part of the calcium-dependent phosphatase cal-

cineurin; and calcium/calmodulin-dependent protein kinase type IIΔ chain

subunit (CAMK2D). In addition, the list of genes relevant to LTP whose

expression is altered by long-term cocaine exposure includes protein phos-

phatase 1 catalytic subunit β and γ isoforms (PPP1CB and PPP1CC), cal-

modulin 2 (CALM2), CREB (CREB1), adenylate cyclase 1 (ADCY1),

protein kinase C β1 (PRKCB1), and an N-ras oncogene with intrinsic

GTPase activity (NRAS). Although we did not observe significant changes

of the LTP pathway in the alcoholics, the phosphatidylinositol signaling sys-

tem, which is closely related to the LTP pathway, was significantly altered by

chronic exposure to both cocaine and alcohol. These findings of gene

expression changes, together with other studies that have shown the effects

of cocaine on LTP (del Olmo et al., 2006; Dunwiddie, Proctor, & Tyma,

1988; Guan, Zhang, Xu, & Li, 2009; Huang, Lin, & Hsu, 2007; Smith,

Browning, & Dunwiddie, 1993; Thompson, Gosnell, & Wagner, 2002;

Thompson, Swant, & Wagner, 2005), provide evidence that chronic expo-

sure to cocaine, and possibly alcohol, leads to long-term changes in the
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plasticity of the hippocampus and underlines the importance in addiction of

molecular mechanisms for learning.

5. PERTURBATION OF THE GLUTAMATERGIC SYSTEM
IN ADDICTED BRAIN

The glutamatergic system, the major excitatory system in the central

nervous system, is of particular relevance to addiction through the network

of interactions with dopaminergic and GABAergic transmission that under-

lie alcohol and drug craving and relapse. Glutamate receptors work in syn-

ergy with dopamine receptors in dendritic spines of medium-sized spiny

neurons in the striatum (Cahill, Salery, Vanhoutte, & Caboche, 2014). Epi-

static interactions of glutamatergic and dopaminergic genes have been

claimed in alcoholics (Puls et al., 2008). Acute and chronic exposure to alco-

hol affects glutamate transmission (Ding, Engleman, Rodd, & McBride,

2012) and hyperfunctioning of glutamate transmission has been observed

during ethanol or drug withdrawal (Hermann et al., 2012; Prior &

Galduroz, 2011). Conditional knockout of the NMDA receptor GluN2B

subunit in mice eliminates LTP in the bed nucleus of the stria terminalis

(Wills et al., 2012) and makes the animals more sensitive to the locomotor

effects of ethanol (Badanich et al., 2011). Pharmacological manipulations

have demonstrated that activation of group II metabotropic glutamate

receptors decreases alcohol (Rodd et al., 2006; Zhao et al., 2006) and

cocaine ( Jin et al., 2010) seeking and decreases alcohol-induced neu-

rodegeneration (Cippitelli et al., 2010) in rats.

Alteration of gene expression has been linked to persistent behavioral

changes in alcohol- or drug-dependent individuals in both animal and

human studies (Edenberg et al., 2005; Heilig & Koob, 2007; Hwang,

Stewart, Zhang, Lumeng, & Li, 2004; Liang et al., 2010; Zhou et al.,

2011). In the “post-dependent” rats generated by intermittent alcohol vapor

intoxication and withdrawal, Meinhardt et al. (2013) identified a pro-

nounced deficit of the metabotropic glutamate receptor II (mGluR2) in

the pyramidal neurons of the infralimbic cortex. Among a group of gluta-

matergic genes that showed enriched downregulation of expression,

Grm2, which encodes for mGluR2, was one of the genes that were most

significantly affected, although the expression of Grm3, which encodes

mGluR3, the other member of the group II metabotropic glutamate recep-

tors, was not altered in this region. Reduction of extracellular glutamate

levels in the NAc, which was readily observed in control rats upon systemic
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injection of mGluR2/mGluR3 agonists, was also absent in the post-

dependent rats, consistent with the lack of mGluR2 function as a presynaptic

receptor to downregulate glutamate release upon activation. The role of

mGluR2 was further demonstrated by restoring the receptor through bilat-

eral injection of a lentiviral vector expressing mGluR2 into infralimbic cor-

tex. Expression of the receptor significantly reduced alcohol seeking in the

post-dependent rats during the cue-induced reinstatement tests.

Using genomic sequencing, genetic linkage, functional validation, and

transcriptome analysis, we found that a Grm2 stop codon functions as a

genetic determinant for alcohol preference in selectively bred alcohol pre-

ferring (P) and nonpreferring (NP) rats (Zhou et al., 2013). In contrast,

genetic studies in humans to identify genes and variants underlying complex

disorders and addiction have achieved only limited success, largely due to

genetic heterogeneity and the limited effect size of individual loci. Animals

selectively bred for alcohol and drug dependence provide potentially pow-

erful models for the identification of genetic variants influencing addiction

behaviors both because the artificial selection may collect to high frequen-

cies variants that are rare or uncommon in the ancestral population and

because of the ability to control environmental exposures and test animals

under the same conditions. By exome sequencing, we uncovered a Grm2

C407* variant from 25,715 SNPs that homozygously segregates between

P and NP rats. All P rats were homozygous for this stop codon in the

mGluR2 receptor ligand-binding domain, whereas none of the NP rats car-

ried this allele. The levels ofGrm2 transcript in both striatum and hippocam-

pus were significantly lower, and expression of mGluR2 protein was

undetectable in P rats (Fig. 10.2A and B). The loss of the mGluR2 receptor

was also consistent with the observation of uncompensated impairment in

synaptic depression in P rats, measured as field excitatory postsynaptic

potential or population spike in dentate gyrus/hippocampal and striatal

slices, upon activation of the receptor by the group II mGluR agonist

LY379268.

The causal role of the mGluR2 stop codon in altered alcohol preference

was supported by multiple layers of evidence (Zhou et al., 2013). Genetic

linkage analysis in the F2 rats derived from intercrossed inbred P and

NP rats showed that homozygous stop codon carriers had significantly

increased alcohol consumption and preference. Pharmacological blockade

of mGluR2 receptor by mGluR2/mGluR3 antagonist LY341495 also sig-

nificantly escalated alcohol self-administration in Wistar rats trained in an

operant self-reinforcement paradigm. To further validate whether the loss
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Figure 10.2 Differential geneexpression inhippocampusofPandNP rats. (A)Hippocampal
Grm2mRNA levels in P and NP rats. (B) Western blot of hippocampal mGluR2 protein in NP
and P rats (2 individuals in each group). (C) Average expression levels (normalized log2 read
counts, upper left) of 11,406 genesmeasured by RNA-Seq are compared between P andNP
rats. The fold change (P vs. NP) and nominal P values (�log10, t test) for each gene are also
plotted (lower left). SignificanceofdifferencebetweenPandNP foreachgene is color coded:
blue (black in the print version), not significant; orange (dark gray in the print version),
P<0.05;green (lightgray in theprintversion), falsediscovery rate<0.05.Fifteendifferentially
expressed genes among those in the overrepresented functional domains are highlighted
and details of their expression differences are listed in the table (right).
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of mGluR2 causally contributes to excessive alcohol intake, we examined

alcohol-drinking behavior in Grm2 knockout mice. Tested by a two-bottle

free choice scheme and an escalation procedure, Grm2-null mice showed

significantly higher levels of alcohol consumption and preference than the

wild-type control.

To examine gene expression changes related to alcohol-drinking behav-

ior, we also performed hippocampal transcriptome analysis in P and NP rats

(Fig. 10.2C) using RNA-sequencing (Zhou et al., 2013). The results indi-

cated an overall pattern of altered expression of genes involved in neural

development and synaptic functions. A total of 485 genes were differentially

expressed at FDR<0.05 following correction for genome-wide testing.

Differentially expressed genes were significantly enriched with segregating

SNPs located in the coding regions and UTRs, indicating the potential

involvement of cis-regulatory elements in these genes. Using functional

annotation analysis with twofold enrichment as a cutoff, we identified sev-

eral functional domains among the 485 differentially expressed genes,

including calmodulin binding, synapse, and neuronal projection. Of partic-

ular interest was overrepresentation of the genes that function in glutamate,

GABA, opioid, cholinergic, and adrenergic transmission (Fig. 10.2C). This

pattern was consistent with the loss of mGluR2 receptor in P rats, but also

more readily points to overall neuronal differences between P and NP rats

that influence alcohol-drinking behaviors. The gene expression differences

between P and NP rats are thus consistent and convergent with their genetic

and phenotypic differences and are likely to be influenced by their overall

genetic differences or the interaction of Grm2 C407* with other loci.

6. EPIGENETIC REGULATION OF GENE EXPRESSION
IN ADDICTED BRAIN

Epigenetics plays a key role in regulating gene expression. Studies have

shown that drug exposure causes changes in DNA methylation that lead to

alterations in transcription. Acute cocaine treatment was reported to increase

the expression of DNA methyltransferase genes, Dnmt3a and Dnmt 3b, in

mouse NAc, resulting in DNA hypermethylation and the increased binding

of methyl CpG binding protein 2 (MeCP2) at the promoter of protein

phosphatase-1 catalytic subunit gene (Pp1c). As a result, Pp1c expression

was decreased (Anier, Malinovskaja, Aonurm-Helm, Zharkovsky, &

Kalda, 2010). In contrast, chronic cocaine administration was found to

decrease expression of Dnmt3a. The attenuation of DNA methylation led
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to potentiated cocaine reward (LaPlant et al., 2010). Acute and repeated

cocaine administration was also shown to cause hypomethylation at the

FosB promoter, leading to upregulation of FosB expression (Anier et al.,

2010). It has also been shown that in heroin addicts, there was elevated

methylation at several CpG sites in the promoter of a μ-opioid receptor

gene, OPRM1, in lymphocytes, which might result in reduced expression

of that gene (Nielsen et al., 2009). Differential DNAmethylation at the pro-

moter of the pro-opiomelanocortin gene (POMC) was found to be associ-

ated with alcoholism in a human study (Muschler et al., 2010). DNA

hypomethylation was associated with activation of endogenous retroviruses

in alcoholic brain (Ponomarev et al., 2012).

Chronic drug exposure also causes significant changes of histone mod-

ification. Histone acetylation is known to be associated with activated gene

expression. Chronic cocaine exposure was shown to inhibit the function of

Hdac5, a histone deacetylase, in mouse NAc (Renthal et al., 2007). Activa-

tion of dopamine D1 receptor induced upregulation of histone acetylation at

the promoters of tyrosine hydroxylase (Th) and brain-derived neurotrophic

factor (Bdnf) genes in mouse NAc and the expression of the two genes

(Schroeder et al., 2008). There was a reported association in mice between

histone H3 acetylation-activated transcription of addiction-related genes,

such as CamkII-α and the motivation for cocaine (L. Wang et al., 2010).

In mice chronically administered amphetamine, the Δ-FosB-mediated

responses were also found to involve recruitingHdac1 to its target gene pro-

moters (Renthal et al., 2008). Inhibition of histone deacetylase reduced

behavioral sensitization to morphine in mice ( Jing et al., 2011). Alteration

of histone methylation also plays important roles in neuronal adaptation of

addicted brain. Repeated cocaine administration in mice was shown to

repress the expression of lysine dimethyltransferase G9a, resulting in decrease

of histone lysine 9 dimethylation (H3K9me2) in NAc (Maze et al., 2010).

Our chromatin immunoprecipitation and genomic sequencing (ChIP-

Seq)-based analysis in the postmortem hippocampus of cocaine addicts

and alcoholics revealed significant changes in histone H3 lysine 4

trimethylation (H3K4me3) (Zhou et al., 2011), a histone mark known to

be associated with activation of gene expression. Similar to the changes

observed in gene expression, there was a more widespread and greater

impact in response to chronic cocaine exposure than to alcohol exposure.

There were also concordant changes between H3K4me3 and gene expres-

sion at some loci. In cocaine addicts, these included components of

the mitochondrial oxidative phosphorylation pathway or regulators of
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cellular energy metabolism such as NDUFS2, NDUFA12L, UQCRB,

INSR, and IGF1R; genes involved in LTP and other neuronal functions

such as calmodulin 2 (CALM2), Synaptophysin-like protein 2 (SYPL2),

sodium/chloride-dependent neurotransmitter transporter (SLC6A15),

and nociceptin (PNOC). In alcoholics, there were concordant changes

between H3K4me3 and gene expression of Protocadherin alpha-7

(PCDHA7), Aquaporin-11 (AQP11), and potassium inwardly-rectifying

channel, subfamily J, member 5 (CIR), all of which are involved in critical

neuronal and cellular functions. Globally, among all 13,113 histone

H3K4me3 peaks mapped to the promoters of hippocampal expressed genes,

there was a trend of correlation between H3K4me3 and expression changes

in cocaine addicts. However, this trend was not observed in alcoholics.

Overall, there was no significant overlap between the genes with either sig-

nificant H3K4me3 changes or expression changes in both cocaine addicts

and alcoholics. This may reflect the fact that epigenetic regulation of gene

expression through chromatin remodeling involves many different types of

histone modifications at many different histone residues (Barski et al., 2007;

Wang et al., 2008), and cocaine- and alcohol-induced expression changes

are very likely the results of alterations of those many different histone

modifications.

Gene expression changes caused by chronic drug exposure may also be

mediated by regulatory RNAs, such as microRNAs (miRNAs) and long

non-coding RNAs (lncRNAs). Regulatory RNAs modify gene expression

through multiple means, such as altering mRNA stability, basal transcription

machinery, translational efficiency, and chromosomemodification. miRNA

array analysis in human prefrontal cortex revealed upregulation of approx-

imately 35 miRNAs in alcoholics relative to controls with predicted target

genes implicated in apoptosis, cell cycle, cell adhesion, nervous system

development, and cell–cell signaling (Lewohl et al., 2011). Exposure of

zebrafish embryos to cocaine reduced the expression of miR-133b in the

CNS, and this difference in miR signaling might in turn modulate expres-

sion of dopamine receptors, the dopamine transporter, and tyrosine hydrox-

ylase (Barreto-Valer, Lopez-Bellido, Macho Sanchez-Simon, & Rodriguez,

2012). The let-7 miR family may also interact with the 30-untranslated
region of μ-opioid receptor mRNA to regulate opioid tolerance (He &

Wang, 2012). miRNAs are both synaptically enriched and depleted by drug

exposure. Cocaine modulates levels of the miR-8 family which is enriched

at postsynaptic densities and regulates expression of cell adhesion molecules

(Eipper-Mains, Eipper, & Mains, 2012). Differential expression of multiple
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lncRNAs was identified in the NAc of cocaine-conditioned mice and those

lncRNAs were reported to regulate their target loci through both cis- and

trans-actions (Bu et al., 2012).

7. CONCLUSION

Profiling gene expression in the addicted brain has revealed both

agent-specific and common drug-induced neural adaptations, providing

valuable insights for the understanding of the relevant molecular and cellular

mechanisms. The development of transcriptome-based sequencing analysis

has equipped us with potent tools that can be combined with neuroscience

tools and approaches including the isolation of particular regions, circuits,

and cells involved in addiction, genetic models including artificially selected

strains and humans varying in vulnerability and response, and interventional

models including pharmacological challenges and gene-based manipulations

of pathway function and response. These approaches will further enable us

to deconstruct the transcription machinery and epigenetic regulation in the

addicted brain.
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Abstract

DNA microarrays have been used for over a decade to profile gene expression on a
genomic scale. While this technology has advanced our understanding of complex cel-
lular function, the reliance of microarrays on hybridization kinetics results in several tech-
nical limitations. For example, knowledge of the sequences being probed is required,
distinguishing similar sequences is difficult because of cross-hybridization, and the rel-
atively narrow dynamic range of the signal limits sensitivity. Recently, new technologies
have been introduced that are based on novel sequencing methodologies. These next-
generation sequencing methods do not have the limitations inherent to microarrays.
Next-generation sequencing is unique since it allows the detection of all known and
novel RNAs present in biological samples without bias toward known transcripts. In
addition, the expression of coding and noncoding RNAs, alternative splicing events,
and expressed single nucleotide polymorphisms (SNPs) can be identified in a single
experiment. Furthermore, this technology allows for remarkably higher throughput
while lowering sequencing costs. This significant shift in throughput and pricing makes
low-cost access to whole genomes possible and more importantly expands
sequencing applications far beyond traditional uses (Morozova &Marra, 2008) to include
sequencing the transcriptome (RNA-Seq), providing detail on gene structure, alternative
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splicing events, expressed SNPs, and transcript size (Mane et al., 2009; Tang et al., 2009;
Walter et al., 2009), in a single experiment, while also quantifying the absolute abun-
dance of genes, all with greater sensitivity and dynamic range than the competing
cDNA microarray technology (Mortazavi, Williams, McCue, Schaeffer, & Wold, 2008).

1. OVERVIEW

RNA-Seq utilizes highly efficient sequencing techniques and subse-

quent mapping of short sequence reads to a reference genome, making it

possible to identify exons and introns by mapping their boundaries of genes,

which in turn allows investigation of the complexity of transcriptomes in

unparalleled detail. Moreover, RNA-Seq enables identification of transcrip-

tion initiation sites and new splicing variants and permits quantitative deter-

mination of exon and splicing isoform expression. This innovative technology

facilitates detailed examination of individual expression differences in human

brain and makes it possible to dissect the genetic complexities of alcoholism

and a variety of physiological conditions (Wang, Gerstein, & Snyder, 2009).

This review addresses three critical barriers to progress in alcohol

research: (1) Regulation of cell function often occurs at the level of alterna-

tive splicing of mRNAs (Hartmann&Valcárcel, 2009; Tazi et al., 2009), and

emerging evidence indicates that this can be important for alcohol tolerance

(Pietrzykowski et al., 2008), yet we have little information about splicing

changes in human alcoholism. This can now be examined using next-

generation sequencing of brain RNA from alcoholics and controls. (2)

We do not know if our rodent and nonhuman primate models of alcohol

consumption or dependence contain any of the molecular signatures found

in human alcoholic brain. Because these animal models must serve as the

basis for future medication development, it is essential to determine which,

if any, display genomic convergence with human alcoholics. (3) Noncoding

RNAs (ncRNAs) are emerging as “master regulators” of gene expression

and may underlie many of the widespread genomic changes produced by

chronic alcohol consumption, yet we have limited knowledge of changes

in brain miRNA levels in human alcoholics or animal models and even less

is understood regarding the behavioral significance of changes in ncRNAs.

2. RNA-SEQ OF POSTMORTEM BRAIN TISSUE

Transcriptome profiling of postmortem brain tissue from alcoholics

and matched controls has revealed novel and detailed gene expression

changes, generating new avenues for addiction research. Although there
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are certain difficulties inherent with using postmortem brain tissue, such as

difficulty in obtaining samples and accounting for variable patterns of alcohol

use and other human variables, postmortem brain tissue remains the gold

standard against which all other model systems should be evaluated.

Next-generation sequencing provides a more comprehensive and accurate

tool for transcriptome analysis of this limited, valuable resource.

A first-pass examination of the transcriptome of alcoholics and matched

controls identified a number of molecular constituents within a specific brain

region (Fig. 11.1). The type of RNA molecules uncovered depends on the

initial experimental design, but novel biological features may also be rev-

ealed. By design, RNA-Seq of the prefrontal cortex primarily identified

protein-coding transcripts and also discerned an appreciable number of

pseudogenes and small nucleolar RNAs (snoRNAs) (Fig. 11.1). In addition

to having recognized roles in RNA processing and ribosomal RNA mod-

ification (Eddy, 2001; Kiss, 2002), snoRNAs are implicated in regulating

CNS function (Cao, Yeo, Muotri, Kuwabara, & Gage, 2006; Rogelj,

Hartmann, Yeo, Hunt, & Giese, 2003). The expression of snoRNAs and

other ncRNAs may have important roles in alcoholism and other diseases.

Comparing the overall expression of detected biological RNA categories

within individual samples illustrates consistency among nonalcoholics and
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Figure 11.1 RNA-Seq detection of biological features for alcoholics and matched con-
trols. Bar plot demonstrates the percentage of features detected in a representative
control (blue (black in the print version)) and alcoholic (red (dark gray in the print ver-
sion)) sample from a cohort of the prefrontal cortex. The left axis shows percentage of
features for the top three biotypes with the right axis showing percentage of remaining
biotypes (separated by dotted green (light gray in the print version) vertical line).
Protein-coding transcripts were the predominant feature detected in both groups.
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alcoholics (Fig. 11.2). Alternatively, any possible discrepancies that may

need special consideration in downstream analyses may also be revealed

through this type of comparison. The global expression level of trans-

criptome elements is stable among individuals from alcoholics and matched

controls (Fig. 11.3A), and is also similar in terms of sensitivity, determined

through the number of counts per million (CPM) mapped reads over vary-

ing levels of stringency (Fig. 11.3B). General agreement across the samples

indicates the absence of a potential batch effect or outliers within the exam-

ined cohort. Sequencing depth, based on reliably and unambiguously

mapped reads, is nearly uniform across controls and alcoholics for all of

the biological units (Fig. 11.4A), as well as for only protein-coding tran-

scripts (Fig. 11.4B). Although increased sequencing depth could improve

expression estimates, continuity between specimens suggests reliable biotype

measurements for comparing alcoholic and nonalcoholic subjects. Impor-

tantly, lack of overall expression differences in proportion to disease state

does not exclude finding potential differences in discrete RNA molecules,

which may be important players in the development of alcohol use disorder.

3. DETECTION OF TECHNICAL BIASES IN RNA-SEQ DATA

Obtaining an accurate assessment of RNA molecules that correspond

with disease is not a trivial undertaking and should include a comprehensive

evaluation of expression estimates for potential areas of artificial biases

(Ozsolak & Milos, 2011). Transcript length and guanine–cytosine content

(GC content) are two particular characteristics that may influence the quan-

tification of RNA-Seq data (Oshlack & Wakefield, 2009; Pickrell et al.,

2010). Nonnormalized expression counts follow a similar trend for alco-

holics and matched controls with respect to the length (Fig. 11.5A) and per-

centage of GC content of identified transcripts (Fig. 11.6A). The length and

GC content for mapped features, without normalization, are significantly

associated with expression for both groups (Figs. 11.5B and 11.6B).

Correcting expression estimates based on the number of collected reads

per kilobase per million (RPKM) mapped reads, one method accounting

for molar concentration and transcript length (Mortazavi, Williams,

McCue, Schaeffer, & Wold, 2008), effectively alleviated the significant bias

introduced by transcript length within controls and alcoholics (Fig. 11.5D).

Utilizing RPKM values also blunted the relationship between GC content

and computed expression values (Fig. 11.6D), although not to the same

degree as the length of expressed biotypes. The effect of GC content on
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Figure 11.2 Expression values of the detected biological features for alcoholics and
matched controls. Box and whisker plots for expression of biological features in repre-
sentative controls (A) and alcoholics (B) from the prefrontal cortex. Shown along the
x-axis is the number of corresponding biotypes determined for all samples having
greater than zero counts. The two groups have similar overall expression values for bio-
logical features.
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Figure 11.3 Comparison of individual samples for overall expression and sensitivity. (A)
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bar plot of binned expression based on counts per million (CPM) mapped reads across
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Figure 11.5 Assessment of gene expression for bias in sequencing length. The size of detected biotypes is binned along the x-axis and com-
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expression may be minimized with additional processing/normalization

strategies (Hansen, Irizarry, & Wu, 2012; Risso, Schwartz, Sherlock, &

Dudoit, 2011). At first glance, expression may appear nearly indistinguish-

able between alcoholics and controls (Figs. 11.5 and 11.6); however,

detailed examination of RNA-Seq can expose biases that may affect expres-

sion estimates, and an appropriate normalization strategy is therefore crucial.

4. NORMALIZATION OF RNA-SEQ DATA

No single procedure has yet emerged as a gold standard for RNA-Seq

analyses. Differing methodologies for profiling expression can reveal dis-

crepant findings in the identification of differentially expressed genes from

the same experimental dataset (Rapaport et al., 2013; Soneson & Delorenzi,

2013; Tarazona, Garcı́a-Alcalde, Dopazo, Ferrer, & Conesa, 2011). In order

to adequately manage bioinformatics pipelines, multiple in silico experimen-

tal designs, rather than a one size fits all approach, may initially need to be

explored before selecting a suitable model of normalization. RNA-Seq

expression data from the prefrontal cortex are illustrated using different rep-

resentative methods of normalization. The intersample correlations among

controls and alcoholics fluctuate according to the normalization strategy and

impact the extent of within group variation (Fig. 11.7). RPKM values have

the highest proportion of variability, whichmay impede the identification of

differentially expressed features between alcoholics and controls.

A comprehensive evaluation of normalization techniques for RNA-Seq data

has previously suggested the RPKM approach is ineffective and should cease

to be used for evaluating differential expression (Dillies et al., 2013). Addi-

tionally, RPKM data may fail to adequately account for RNA composition

bias (Robinson & Oshlack, 2010) or gene length (Bullard, Purdom,

Hansen, & Dudoit, 2010) in the detection of differentially expressed fea-

tures. Practical recommendations are available for generating fairly robust

datasets (Dillies et al., 2013) and will continue to evolve as RNA-Seq is

adopted in a larger number of laboratories. Selecting the appropriate statis-

tical method for minimizing the effects of technical error will also depend

upon additional known sources of systematic variation.

5. ALTERNATIVE SPLICING AND DIFFERENTIAL
EXPRESSION

Once an acceptable normalization method is determined, summarized

read counts can be evaluated for divergent expression profiles between two
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or more conditions. RNA-Seq is a powerful tool for the detection of dif-

ferentially expressed features, capable of capturing weakly expressed genes

and alternatively splices transcripts within a single experiment (Bottomly

et al., 2011; Marioni, Mason, Mane, Stephens, & Gilad, 2008). Although

it is challenging to use short-read sequencers to quantify splice variants hav-

ing identical exons, several algorithms exist for computing the expression of

full-length isoforms (Garber, Grabherr, Guttman, & Trapnell, 2011;

Trapnell et al., 2012; Xing et al., 2006). Recognition of alternatively spliced

transcripts, and their individual exons, is an important aspect for interpreting

the neurobiology of disease. The human transcriptome is able to generate a

tremendous degree of biodiversity, with �95% of all multiexon genes

undergoing alternative splicing (Pan, Kaiguo, Razak, Westwood, &

Gerlai, 2011). Humans, and closely related primates, exhibit the greatest

degree of complexity in splicing, with the human brain being the most
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Figure 11.7 Comparison of normalization strategies for assessing gene expression in
controls and alcoholics. Box and whisker plots for intersample Pearson correlation coef-
ficients of control and alcoholic prefrontal cortex gene expression across multiple strat-
egies for normalizing RNA-Seq count data. Differing methods of normalization exhibit
differing median intersample consistency and within group variation, which may affect
experimental outcomes. The appropriate method should be based on the quality con-
trol measures and hypothesis in question.
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diverse among several tissue types (Barbosa-Morais et al., 2012). The higher

rate of alternative splicing in human brain may underscore evolutionary

remodeling for higher cognitive function while generating greater suscep-

tibility to neuropsychiatric diseases.

Differential expression between alcoholics and controls is able to distin-

guish �1000 genes and �1200 significant alternatively spliced transcripts

(Fig. 11.8). Genes and corresponding spliced isoforms tend to follow similar

patterns of differential expression in relation to alcohol dependence. The

majority of genes and splice variants with a p-value�0.05 have only a mod-

est, less than twofold change in expression. Statistically significant genes, or

alternatively spliced transcripts, with larger fold changes in expression are

usually weaker in overall expression. In some circumstances, it may be

advantageous to remove missing or low-level counts; however, some

methods of statistical inference may account for extreme or missing variables

(Anders et al., 2013). Individual exons are more abundant in RNA-Seq

counts, making no assumption of its interconnection with other units to

form a functional RNA molecule. Approximately, 11,000 individual exons

are differentially expressed in the prefrontal cortex of alcoholics (Fig. 11.8).

Additionally, a greater number of exon features have fold-change values>2,

which may suggest some gene or isoform reconstructions underestimate

some of the differences occurring with alcohol dependence. Although indi-

vidual exons cannot function solely on their own accord, these molecular

units might serve as surrogate markers for differences in the functional

Figure 11.8 Differential expression for gene, transcript, and exon models of RNA-Seq
data. The mean log CPM is plotted against the log fold change in gene (left), alterna-
tively spliced transcript (middle), and exon (right) expression for alcoholics versus con-
trols in the prefrontal cortex. Horizontal blue (light gray in the print version) lines depict
a twofold change in expression (increased or decreased) between disease groups and
red (dark gray in the print version) dots indicate features with a p-value�0.05.
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transcript or gene product. Altered expression of individual exons may be of

substantial interest, especially if these changes coincide with the site of acti-

vation, a site of intramolecule docking, or an alcohol-binding site for the

fully formed protein substrate.

6. LONG NONCODING RNA

In the absence of forming a functional protein, intracellular molecules

can still function as ncRNAs (Mattick &Makunin, 2006). ncRNAsmake up

a sizeable share of the transcriptional landscape (Carninci et al., 2005;

ENCODE Project Consortium et al., 2012, 2007), but the precise function

of many noncoding elements remains largely unknown. Defining the

diverse biological roles carried out by multiple classes of ncRNAs is a

burgeoning aspect of transcriptomics that will likely match or rival the large

number and diversity represented by the proteome. Long noncoding RNAs

(lncRNAs) represent one of the most abundant classes of nonprotein-coding

RNAs in the brain ( Jia et al., 2010; Ravasi et al., 2006). Similar to protein-

coding transcripts, lncRNAs can be found within specific neuroanatomical

regions (Belgard et al., 2011; Mercer, Dinger, Sunkin, Mehler, & Mattick,

2008). A study of human alcoholic brain tissue showed an increase in the

expression of the lncRNA MALAT1 within multiple brain regions

(Kryger, Fan, Wilce, & Jaquet, 2012). Overall expression of lncRNAs

may be lower than protein-coding transcripts, but can be dynamically reg-

ulated in alcoholic brain tissue (Fig. 11.9). Although the role of lncRNAs on

alcohol dependence and drug addiction is still unclear, lncRNAs are known

to (1) mediate control of epigenetic factors for regulating gene expression

(Khalil et al., 2009; Lee, 2012; Wang et al., 2011), (2) act as endogenous

competitors (Cesana et al., 2011), (3) regulate alternative splicing events

(Barry et al., 2013; Massone et al., 2011; Tripathi et al., 2010), (4) control

neuronal development (Pollard et al., 2006), and (5) guide synaptic plasticity

(Bond et al., 2009). These diverse roles make it likely that even low-to-

moderate changes in lncRNA expression could significantly impact alcohol

use disorders and other psychiatric diseases.

7. NOVEL THREE PRIME UNTRANSLATED REGIONS

RNA-Seq can generate rich expression maps for annotated and

unannotated regions of the transcriptional landscape (Nagalakshmi et al.,

2008). The expression of transcribed RNA features can be extensively
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regulated across human tissues and cell types (Djebali et al., 2012; Wang

et al., 2008), which may involve alternative splicing of exons or pervasive

variation within the 30-UTR of transcripts. Differences in the 30-UTR of

transcripts are known to contribute to expression instability, translation,

and act as sites of posttranscriptional regulation ( Jackson, 1993). Unbiased

transcriptome sequencing of the human brain can identify novel 30-UTRs

for candidate genes (Fig. 11.10). Further characterization of the trans-

criptome across assorted brain structures, experimental circumstances, and

individuals may reveal unique 30-UTRs or other features for transcribed ele-

ments. Probing the neurobiology of novel 30-UTRs, though time consum-

ing, could eventually expose distinct mechanisms of neuronal function. For

example, a short 30-UTR of Bdnf RNA is restricted to neuronal somata,
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Figure 11.9 Fold change of long noncoding RNAs within the prefrontal cortex. Bar plot
of fold change in expression of the top 15 long noncoding RNAs (lncRNAs) between
alcoholics and controls within prefrontal cortex. Eleven lncRNAs show increased expres-
sion in the prefrontal cortex of alcoholics compared to controls, while four lncRNAs
show decreased expression.
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while a long form of the 30-UTR is trafficked to the dendrites where it can

act upon spinemorphology and synaptic transmission (An et al., 2008). Local

translation of BDNF, delivered via a long form of the 30-UTR, can mod-

ulate GABAergic transmission (Waterhouse et al., 2012), a well-

characterized neurotransmitter system targeted by alcohol and other drugs

of abuse (Davies et al., 2003; Harris, Trudell, & Mihic, 2008; Kauer &

Malenka, 2007).

8. GENETIC VARIATION AND ALCOHOL DEPENDENCE

Single nucleotide polymorphisms (SNPs) within GABA receptors,

and several other candidate genes, are likely contributors in susceptibility

to the development of alcohol dependence (Dick & Foroud, 2003). Similar

to other psychiatric diseases, alcoholism is influenced by multiple genes with

low-to-moderate effect (Sullivan, Daly, & O’Donovan, 2012). Polygenic

factors can account for 40–60% of the risk for developing alcohol depen-

dence (Schuckit, 2009); however, SNPs associated with disease usually

Novel 3� UTR

Figure 11.10 Example of a novel three prime untranslated region (30-UTR) from RNA-
Seq data. Snapshot of RNA-Seq counts for three representative samples of a novel long
form of a 30-UTR. Blue (black in the print version) boxes indicate the presence of the last
exon and currently annotated 30-UTR; however, RNA-Seq may detect previously
unknown details regarding transcript expression that may impact function.
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reside within noncoding regions. Surveying the alcoholic transcriptome for

genetic variants further corroborates this assertion (Fig. 11.11). The largest

percentage of detected variants is located with sequencing reads mapped to

intronic regions, followed by areas located up- or downstream of coding ele-

ments and intergenic regions. Introns are typically removed through RNA

splicing events, but may be retainedwithin individual isoforms harboring cis-

acting SNPs controlling their expression (Dieter & Estus, 2010). High-

throughput sequencing of human populations, as well as other model sys-

tems, is beginning to pinpoint numerous sites of nucleotide variation, that

regardless of genomic loci, are capable of gene, alternative splicing, and

downstream expression (Gerstein et al., 2010; Graveley et al., 2011;

Lappalainen et al., 2013). However, linking any causal points of genetic

inference with disease remains a significant challenge in the modern era

for quantitative biology. Isolated studies often lack statistical power to defin-

itively link any single SNP, let alone the interaction among multiple SNPs,

with disease progression. Strategies are emerging to overcome these types of

hurdles and identify unanticipated points of genetic interaction (Pan, 2008;

Pandey et al., 2010). Similar to other complex traits, alcoholism is driven by

the interaction of countless SNPs and competing environmental influences,

which shape the transcriptome and regulate neurobiological functions.

Although a number of differences may exist between human DNA and
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Figure 11.11 Classifying genetic variants within alcoholic prefrontal cortex. Genetic var-
iants detected within alcoholic prefrontal cortex classified by currently annotated gene
regions: intergenic, upstream, 50-UTR, exon, splice site donor, intron, splice site acceptor,
30-UTR, and downstream. Genetic variants are primarily located in unannotated geno-
mic areas or noncoding/intronic regions.
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RNA sequences from the same individual (Li et al., 2011), sequencing the

transcriptome in alcoholic brain tissue will continue to provide a valuable

resource that represents the multidimensional factors operating in alcohol

use disorders.

9. BIOLOGICAL COEXPRESSION NETWORKS

The number of genes implicated in alcohol dependence and other psy-

chiatric illnesses continues to grow, with no single factor being uniquely

responsible for the genotype–phenotype relationship. This is not a surprising

notion, given that genes and their ensuing proteins do not exist in isolation,

but work through coordinated pathways to govern cellular actions. Current

canonical pathways, although useful to some extent, are becoming increas-

ingly inadequate to account for the multitude of factors driving cellular

behavior and manifesting phenotypes (Califano, Butte, Friend, Ideker, &

Schadt, 2012). Using a variety of high-throughput approaches, both

expected and unexpected connections can be simultaneously established

among multiple cellular substrates to define biological networks for nearly

any condition (Barabási & Oltvai, 2004; Vidal, Cusick, & Barabási, 2011).

Not all genetic perturbations may be of equal value but may spread their

effects across a web of neighboring genes to propagate disease

symptomology.Disease-associated genes form an extended network that sur-

rounds highly connected hub genes, which are essential to influencemultiple

biochemical pathways for development and survival (Goh et al., 2007).

Understanding phenotypes across a spectrum of human disorders will require

understanding the corresponding network architecture of related diseases.

The human brain transcriptome represents highly organized gene

coexpression networks that are consistent across individuals (Hawrylycz

et al., 2012; Oldham et al., 2008). Defining gene coexpression patterns

for human diseases has revealed convergent molecular profiles (Voineagu

et al., 2011), predicted causal systems in neuropathology (Zhang et al.,

2013), and unveiled distinct network structures for similar phenotypes

(Parikshak et al., 2013). Gene coexpression networks of alcoholic brain tis-

sue, determined with microarray profiling, generated a systemic view of

gene expression alterations spanning multiple cell types and brain regions

(Ponomarev, Wang, Zhang, Harris, & Mayfield, 2012). A significant por-

tion of transcripts coregulated by chronic alcohol abuse may be conserved

within animal models of alcohol consumption (Nunez et al., 2013), permit-

ting an experimentally tractable mode of elucidating gene networks in
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complex behaviors. Mouse models of alcohol-responsive gene networks can

genetically dissect the interrelationship among endophenotypes (Wolen

et al., 2012) and clarify networks of candidate genes in alcohol-responsive

behaviors (Farris &Miles, 2013). Most network models of acute and chronic

alcohol exposure have relied primarily upon microarrays, excluding many

available ncRNA substrates. RNA-Seq-derived coexpression networks

for alcohol-related phenotypes are still emerging, but should offer greater

insight into the whole transcriptome (Giorgi, Del Fabbro, & Licausi,

2013; Iancu et al., 2012). Leveraging the network structure, in addition

to differential expression, of the complete transcriptome using RNA-Seq

will facilitate a more comprehensive assessment of transcribed features

involved in alcoholism and drug conditions.

10. FUTURE DIRECTIONS

Realizing the full potential of RNA-Seq will eventually involve

incorporating multiple levels of discrete data types and model systems

(Fig. 11.12). The entire complement of RNA molecules, including

miRNAs and lncRNAs, exists as a highly orchestrated network, regulated

in part by genetic variants or epigenetic phenomena spread throughout

the genome. Alternative splicing of mature RNA enables considerable bio-

diversity of protein products and protein–protein interaction networks. The

human proteome (Rual et al., 2005) is far from complete and will likely evo-

lve in parallel with information gleaned from the transcriptome. In the long

term, such information will further inform the interpretation of neurophys-

iological and neuroanatomical studies, including large-scale initiatives like

the Human Connectome Project (Van Essen et al., 2013, 2012), in human

health. A major challenge will be distilling the vast amount of biological data

that bridge multiple scales and also are linked to discrete phenotypes. Focus-

ing on intermediate phenotypes of complex traits may be useful for discov-

ering large, consistent effects exerted by gene networks.

Although it should be emphasized that many of the biological effects seen

in neuropsychiatric diseases may be specific to humans, model systems will

continue to serve a fundamental role in the post transcriptomic era of mod-

ern biology. For example, systematically combining multiple biological net-

works within a yeast reference population clearly demonstrated that

integrating several datasets can improve prediction of causal regulators of

complex system behavior (Zhu et al., 2008). Combining information from

human and animal models can ascertain core networks affecting disease
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Figure 11.12 Utilizing RNA-Seq in the context of a multiscale systems approach for understanding the neurobiology of alcohol dependence.
Differing brain regions of alcoholics and controls can be evaluated using high-throughput sequencing for regulation of DNA and RNA expres-
sion. Information from sequencing data can then be layered with current protein data, brain imaging, physiological function, a variety of
phenotypic traits (i.e., drinking behavior, withdrawal, craving), and additional influences (non-CNS tissues, human microbiota, and environ-
mental pressures). Pooling resources from both clinical and preclinical sources can clarify points of convergent validity to determine indi-
vidualized treatment plans incorporating behavioral therapy, current FDA approved compounds, or designer compounds that best target the
underlying structure of an individual's disease.



(Emilsson et al., 2008). Alternatively, animal models explicitly created for a

desired attribute may be sequenced to find novel causal contributors. Study-

ing alcohol preferring and nonpreferring rats identified a stop codon within

the metabotropic glutamate receptor 2 (Grm2) that controls protein expres-

sion and alcohol-drinking behavior (Zhou et al., 2013). This is just one

example of the presumably large collection of variants that will be identified

in alcohol consumption, which may eventually intersect with those recog-

nized in human populations. Identifying networks with convergent validity

across model organisms and humans (Fig. 11.12) has the potential to isolate

systems for therapeutic intervention tailored to the specific needs of the

individual.

Whole-transcriptome sequencing has far reaching effects in both clinical

and preclinical applications. As a foundation for basic sciences, RNA-Seq

continues to impart a deeper appreciation for the vast transcriptional struc-

ture of genes and quantification of transcript expression throughout differing

cells, tissues, and species. Although still in the early stages of use, RNA-Seq

can monitor spatial organization of the transcriptome (Lee et al., 2014) and

extract some of the subtle expression differences induced by individual neu-

rons and their microenvironments (Lovatt et al., 2014). With psychiatric ill-

nesses representing one of the most challenging areas of medicine,

sophisticated tools such as those furnished by deep sequencing technologies

are essential for deciphering all of the converging elements that orchestrate

these diseases.
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H. Bäzner and M. Hennerici

Visuospatial Neglect in Lovis Corinth’s Self-

Portraits

Olaf Blanke

Art, Constructional Apraxia, and the Brain

Louis Caplan

Section V: Genetic Diseases

Neurogenetics in Art

Alan E. H. Emery

A Naı̈ve Artist of St Ives

F. Clifford Rose

Van Gogh’s Madness

F. Clifford Rose

Absinthe, The Nervous System and Painting

Tiina Rekand

Section VI: Neurologists as Artists

Sir Charles Bell, KGH, FRS, FRSE

(1774–1842)

Christopher Gardner-Thorpe

Section VII: Miscellaneous

Peg Leg Frieda

Espen Dietrichs

The Deafness of Goya (1746–1828)

F. Clifford Rose

INDEX

Volume 75
Introduction on the Use of the Drosophila Embry-

onic/Larval Neuromuscular Junction as a Model

System to Study Synapse Development and

Function, and a Brief Summary of Pathfinding

and Target Recognition
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P. Dubový, R. Jančálek, and T. Kubek

Ghrelin: A Novel Neuromuscular Recovery Pro-

moting Factor?

Raimondo Stefania, Ronchi Giulia, Geuna Stefano,

Pascal Davide, Reano Simone, Filigheddu Nicoletta,

and Graziani Andrea

Neuregulin 1 Role in Schwann Cell Regulation

and Potential Applications to Promote Peripheral

Nerve Regeneration

Giovanna Gambarotta, Federica Fregnan, Sara

Gnavi, and Isabelle Perroteau

Extracellular Matrix Components in Peripheral

Nerve Regeneration

Francisco Gonzalez-Perez, Esther Udina, and

Xavier Navarro

SUBJECT INDEX

Volume 109
The Use of Chitosan-Based Scaffold to Enhance

Regeneration in the Nervous System

Sara Gnavi, Christina Barwig, Thomas Freier,

Kirsten Haarstert-Talini, Claudia Grothe, and

Stefano Geuna

Interfaces with the Peripheral Nerve for the Con-

trol of Neuroprostheses

Jaume del Valle and Xavier Navarro

349Contents of Recent Volumes



The Use of Shock Waves in Peripheral Nerve

Regeneration: New Perspectives?

Thomas Hausner and Antal Nógrádi

Phototherapy and Nerve Injury: Focus on Muscle

Response

Shimon Rochkind, Stefano Geuna, and Asher

Shainberg

Electrical Stimulation for Promoting Peripheral

Nerve Regeneration

Kirsten Haastert-Talini and Claudia Grothe

Role of Physical Exercise for Improving Post-

traumatic Nerve Regeneration

Paulo A.S. Armada-da-Silva, Cátia Pereira,

SandraAmado, and António P. Veloso

The Role of Timing in Nerve Reconstruction

Lars B. Dahlin

Future Perspectives in Nerve Repair and

Regeneration

Pierluigi Tos, Giulia Ronchi, Stefano Geuna, and

Bruno Battiston

INDEX

Volume 110
TheRelevanceofMetals in thePathophysiologyof

Neurodegeneration, Pathological Considerations

Kurt A. Jellinger

Pantothenate Kinase-Associated Neurodegener-

ation (PKAN) and PLA2G6-Associated Neuro-

degeneration (PLAN): Review of Two Major

Neurodegeneration with Brain Iron Accumula-

tion (NBIA) Phenotypes

Manju A. Kurian and Susan J. Hayflick

Mitochondrial Membrane Protein-Associated

Neurodegeneration (MPAN)

MonikaHartig, Holger Prokisch, ThomasMeitinger,

and Thomas Klopstock

BPAN: The Only X-Linked Dominant NBIA

Disorder

T.B. Haack, P. Hogarth, A. Gregory, P. Prokisch,

and S.J. Hayflick

Neuroferritinopathy

M.J. Keogh, C.M. Morris, and P.F. Chinnery

Aceruloplasminemia: An Update

Satoshi Kono

Therapeutic Advances in Neurodegeneration with

Brain Iron Accumulation

Giovanna Zorzi and Nardo Nardocci

The Neuropathology of Neurodegeneration with

Brain Iron Accumulation

Michael C. Kruer

Imaging of Iron

Petr Dusek, Monika Dezortova, and Jens Wuerfel

The Role of Iron Imaging in Huntington’s Disease

S.J.A. van den Bogaard, E.M. Dumas, and

R.A.C. Roos

Lysosomal Storage Disorders and Iron

Jose Miguel Bras

Manganese and the Brain

KarinTuschl, PhilippaB.Mills, andPeterT.Clayton

Update on Wilson Disease

Aggarwal Annu and Bhatt Mohit

An Update on Primary Familial Brain Calcification

R.R. Lemos, J.B.M.M. Ferreira, M.P. Keasey,

and J.R.M. Oliveira

INDEX

Volume 111
History of Acupuncture Research

Yi Zhuang, Jing-jing Xing, Juan Li, Bai-Yun Zeng,

and Fan-rong Liang

Effects of Acupuncture Needling with Specific

Sensation on Cerebral Hemodynamics and

Autonomic Nervous Activity in Humans

Kouich Takamoto, Susumu Urakawa, Kazushige

Sakai, Taketoshi Ono, and Hisao Nishijo

Acupuncture Point Specificity

Jing-jing Xing, Bai-Yun Zeng, Juan Li, Yi Zhuang,

and Fan-rong Liang

Acupuncture Stimulation Induces Neurogenesis

in Adult Brain

Min-Ho Nam, Kwang Seok Ahn, and Seung-Hoon

Choi

Acupuncture and Neurotrophin Modulation

Marzia Soligo, Stefania Lucia Nori, Virginia Protto,

Fulvio Florenzano, and Luigi Manni

Acupuncture Stimulation and Neuroendocrine

Regulation

Jung-Sheng Yu, Bai-Yun Zeng, and

Ching-Liang Hsieh

Current Development of Acupuncture Research

in Parkinson’s Disease

Bai-Yun Zeng, Sarah Salvage, and

Peter Jenner

350 Contents of Recent Volumes



Acupuncture Therapy for Stroke Patients

Xin Li and Qiang Wang

Effects of Acupuncture Therapy on

Alzheimer’s Disease

Bai-Yun Zeng, Sarah Salvage, and Peter Jenner

Acupuncture Therapy for Psychiatric Illness

Karen Pilkington

Acupuncture for the Treatment of Insomnia

Kaicun Zhao

Acupuncture for the Treatment of Drug

Addiction

Cai-Lian Cui, Liu-Zhen Wu, and Yi-jing Li

Acupuncture Regulation of Blood Pressure:

Two Decades of Research

John C. Longhurst and Stephanie Tjen-A-Looi

Effect and Mechanism of Acupuncture on

Gastrointestinal Diseases

Toku Takahashi

INDEX

Volume 112
An Introduction to the Clinical Phenomenology

of Tourette Syndrome

Davide Martino, Namrata Madhusudan, Panagiotis

Zis, and Andrea E. Cavanna

Functional Neuroanatomy of Tics

Irene Neuner, Frank Schneider, and N. Jon Shah

Functional Imaging of Dopaminergic Neurotrans-

mission in Tourette Syndrome
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