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Abstract

High-throughput next-generation sequencing is now entering its second decade. How-
ever, it was not until 2008 that the first report of sequencing the brain transcriptome
appeared (Mortazavi, Williams, Mccue, Schaeffer, & Wold, 2008). These authors com-
pared short-read RNA-Seq data for mouse whole brain with microarray results for
the same sample and noted both the advantages and disadvantages of the RNA-Seq
approach. While RNA-Seq provided exon level resolution, the majority of the reads were
provided by a small proportion of highly expressed genes and the data analysis was
exceedingly complex. Over the past 6 years, there have been substantial improvements
in both RNA-Seq technology and data analysis. This volume contains 11 chapters that
detail various aspects of sequencing the brain transcriptome. Some of the chapters are
very methods driven, while others focus on the use of RNA-Seq to study such diverse
areas as development, schizophrenia, and drug abuse. This chapter briefly reviews the
transition from microarrays to RNA-Seq as the preferred method for analyzing the brain
transcriptome. Compared with microarrays, RNA-Seq has a greater dynamic range,
detects both coding and noncoding RNAs, is superior for gene network construction,
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detects alternative spliced transcripts, and can be used to extract genotype information,
e.g,, nonsynonymous coding single nucleotide polymorphisms. RNA-Seq embraces the
complexity of the brain transcriptome and provides a mechanism to understand the
underlying regulatory code; the potential to inform the brain-behavior—disease rela-
tionships is substantial.

1. INTRODUCTION

Next-generation sequencing (NGS) refers to a variety of related tech-
nologies, often termed massively parallel sequencing. The first NGS plat-
form (Roche 454) was introduced in 2004. Subsequently, other platforms
were released by several manufacturers: Illumina (Solexa), Helicos, Pacific
Biosciences, and Life Technologies (ABI). Although the instruments difter
in the underlying chemistry and technical approach, the platforms are similar
in their capability of producing very large numbers of simultaneous reads
relative to traditional methods. Thus, it is now possible to sequence whole
genomes, exomes, and transcriptomes for a reasonable cost and effort. The
technology of transcriptome sequencing, also known as RNA-Seq, has
matured to the point that it is reasonable to propose substituting RINA-
Seq for microarray-based assessments of global gene expression. Of partic-
ular importance to our laboratories are the advantages RNA-Seq has over
microarray platforms when analyzing complex rodent crosses, e.g., hetero-
geneous stocks (HSs). However, the same argument can be made when ana-
lyzing any outbred population, including humans. Of particular relevance to
the brain transcriptome are the advantages RNA-Seq has over microarrays
in analyzing alternative splicing. This chapter provides a starting point for
understanding the emergence of RNA-Seq and emphasizes transcriptome/
behavior relationships.

2. FROM MICROARRAYS TO RNA-Seq

Cirelli and Tononi (1999) were among the first to report genome-
wide brain gene expression profiling associated with a behavioral pheno-
type; both mRNA differential display and ¢cDNA arrays were used to
examine the effects of sleep deprivation on rat prefrontal cortex gene expres-
sion. Sandberg et al. (2000) used Affymetrix microarrays to detect differ-

ences in brain gene expression between two inbred mouse strains
(C57BL/6] |B6] and 129SvEv [129; now 129S6/SvEvTac]). Importantly,
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these authors observed that some difterentially expressed (DE) genes were
found in chromosomal regions with known behavioral quantitative trait loci
(QTLs). For example, Kenj9 that encodes for GIRK3, an inwardly rectifying
potassium channel, was DE (higher expression in the 129 strain) and is
located on distal chromosome 1 in a region where QTLs had been identified
for locomotor activity, alcohol and pentobarbital withdrawal, open-field
emotionality, and certain aspects of fear-conditioned behavior (see
Sandberg et al., 2000). Subsequently, Buck and colleagues (Buck, Milner,
Denmark, Grant, & Kozell, 2012; Kozell, Walter, Milner, Wickman, &
Buck, 2009) have shown that Kenj9 is a quantitative trait gene (QTG) for
the withdrawal phenotypes. Over the past decade, this alignment of global
brain gene expression data and behavioral QTLs has been reported in
numerous publications and discussed in numerous symposia and reviews
(e.g., Bergeson et al., 2005; Farris & Miles, 2012; Hoffman et al., 2003;
Matthews et al., 2005; Mcbride et al., 2005; Saba et al., 2011; Sikela
et al., 2006; Tabakoff et al., 2009). The association gained further support
as the focus turned to genes whose expression appeared to be regulated
by a factor or factors within the behavioral QTL interval. Web tools have
been developed to facilitate integrating behavioral and brain microarray data
(e.g., www.genenetwork.org and  http:/phenogen.ucdenver.edu/
PhenoGen/index.jsp; Chapter 8). This integration has been successful in
detecting several candidate QTGs for behavioral phenotypes (see, e.g.,
Hitzemann et al., 2004; Hofstetter et al., 2008; Mulligan et al., 2006;
Saba et al., 2011; Tabakoft et al., 2009).

The alignment of DE genes with a behavioral phenotype can be further
examined using a variety of secondary analyses, e.g., examining if the DE
genes cluster within known gene ontology categories (Pavlidis, Qin,
Arango, Mann, & Sibille, 2004) or are part of a known protein—protein
interaction network (Bebek & Yang, 2007; Feng, Shaw, Rosen, Lin, &
Kibbe, 2012). DE genes can also be grouped on the basis of common tran-
scription factors and other regulatory elements (e.g., Vadigepalli,
Chakravarthula, Zak, Schwaber, & Gonye, 2003). In addition to DE genes,
microarrays have also facilitated gene coexpression-based analyses, such as
the Weighted Gene Coexpression Network Analysis (WGCNA; Horvath
et al,, 2006; Zhang & Horvath, 2005). The rationale behind these
approaches is that coexpressed genes frequently code for interacting pro-
teins, which in turn leads to new insights into protein function(s) and in
some cases leads to discovery of protein function (Zhao et al., 2010).
Coexpression analysis has been used to analyze differences in functional
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brain organization between nonhuman primates and humans (Oldham,
Horvath, & Geschwind, 20006), regional differences in the functional orga-
nization of the human brain (Oldham et al., 2008), and the molecular
pathology of autism (Voineagu et al., 2011) and alcoholism (see Chapter 11).

Despite these successes, microarray-based approaches are not without
problems. First, differences in brain gene expression among genetically
unique individuals or lines selected for behavioral traits are generally small;
reported differences of 15-25% are not uncommon. To some extent, these
small variations occur because hybridization isotherms for oligonucleotide
arrays are frequently not linear due to probe saturation (Pozhitkov,
Boube, Brouwer, & Noble, 2010).

A second problem with oligonucleotide arrays is the effect of single
nucleotide polymorphisms (SNPs; Duan, Pauley, Spindel, Zhang, &
Norgren, 2010; Peirce et al., 2006; Sliwerska et al., 2007; Walter et al.,
2009, 2007). Rodent oligonucleotide arrays are based upon the sequence
of the B6 mouse or Brown-Norway (BN) rat. Even inbred strains closely
related to the B6 or BN strains may differ by several million SNPs (see,
e.g., Keane et al., 2011), which in turn can cause significant hybridization
artifacts (Walter et al., 2009, 2007). Masking for SNPs can improve this sit-
uation but results in deleting probes or even an entire probe set from the
analysis. Walter et al. (2009) used NGS to address the SNP problem, build-
ing upon the repeated observation that, when comparing gene expression in
the B6 and DBA/2] (D2) inbred mouse strains (or crosses and selected lines
formed from these strains) and after masking for known SNPs in the D2
strain, there remained an excess of genes showing higher expression in
the B6 strain. Similarly, this was also observed in the case of cis-eQTLs
showing higher expression associated with the B6 allele (see Mulligan
etal., 2006; Peirce et al., 2006; Walter et al., 2007). The two possible expla-
nations for these observations were the following: (a) gene expression was
actually higher in the B6 strain or (b) there were many uncharacterized
D2 SNPs, which led to decreased binding of D2-derived target on probes
containing the SNP locale. Preliminary direct sequencing and quantitative
PCR data pointed to missing SNPs. NGS was used to analyze a 3-Mbp
region of Chr 1 (171.5-174.5 Mbp) that was enriched in a number of behav-
1oral QTLs and transcripts DE between the B6 and D2 strains. B6 and D2
BAC clones tiled across the region were sequenced using the short-read
[Mlumina IIx and ABI SOLiID 2 platforms. The results obtained (30—100 x
coverage) illustrated that there were 160% more SNPs in the region than
previously reported (Walter et al., 2009); these data have been confirmed
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(Keane et al., 2011; R. Williams, unpublished observations). The integra-
tion of these SNPs to the mask markedly reduced the disparity in DE genes
between the B6 and D2 strains.

A third problem with oligonucleotide arrays is the annotation and sum-
marization issues associated with predefined reporters/probes (e.g., Allison,
Cui, Page, & Sabripour, 2006; Lu, Lee, Salit, & Cam, 2007). Interestingly,
on some arrays, a significant number of the represented transcripts are actu-
ally long noncoding RNAs (ncRNAs) (see, e.g., Liao et al., 2011). But tens
of thousands of ncRNAs, many of which have important regulatory func-
tions (Mattick, 2011; also see Chapter 7), are not represented on the arrays.

A fourth problem with oligonucleotide arrays is that 3'UTR -orientated
microarrays provide relatively little information about alternative splicing,
which is particularly high in brain (Johnson et al., 2009; Li, Lee, &
Black, 2007; Licatalosi & Darnell, 2006; Mortazavi, Williams, Mccue,
Schaefter, & Wold, 2008). The Affymetrix Mouse 1.0 Exon ST array col-
lects data on alternative splicing, but when used to detect differential alter-
native splicing, it is particularly sensitive to the “SNP effect” due to the
smaller number of probes per probe set (Laderas et al., 2011).

3. NGS PLATFORMS

There are several excellent reviews of the various NGS platforms (e.g.,
Mardis, 2008, 2011; Martin & Wang, 2011; Metzker, 2010; Ozsolak &
Milos, 2011; Rothberg et al., 2011). Understanding in some depth how
the platforms work is critical to understanding where errors develop and
are propagated from sample preparation to alignment to data analysis.
The differences in platforms will not be discussed here. We simply note that
for RNA-Seq experiments, the majority have used the Illumina platform
(see, e.g., Costa, Angelini, De Feis, & Ciccodicola, 2010). The promise
of a high-throughput, high read instrument with minimal library prepara-
tion remains a promise. Such an instrument would be particularly welcome
for sequencing the brain transcriptome given the diversity of cell types pre-
sent and the numerous comparisons that could be made.

4. RNA-Seq OVERVIEW

The first and perhaps the most important step of an RNA-Seq exper-
iment is the same as that for a microarray experiment, the isolation of high-
quality RNA. Although both RNA-Seq and microarrays can be used on
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fragmented RINA such as that found in formalin-fixed-paraffin-embedded
samples, the biases present in such samples for genome-wide sequencing
are difficult to assess. RNA quality is routinely examined on the Agilent
BioAnalyzer or a similar instrument; an RNA integrity number (RIN)
of > 8 is generally considered high quality. Unfortunately for brain samples,
the amount of beginning tissue may be very small, and obtaining a reliable
RIN or even accurately measuring the amount of RNA may be difficult.
Even within very discrete brain regions, there are multiple cell types, and
some experiments need to focus on a specific subset of cells or even a single
cell. Eberwine and colleagues at the University of Pennsylvania have
pioneered techniques for the linear amplification of small amounts of
RNA,; an online audio describing the procedures when beginning with only
fentograms of material is available (Morris, Singh, & Eberwine, 2011). Many
RNA-Seq experiments begin with postmortem material that has been
stored, often under variable conditions, including differences in the postmor-
tem interval (PMI). Depending on the length of the PMI, the RINA in a sam-
ple may be moderately to significantly degraded as assessed by the RIN and
other Q/ Cmeasures. For samples with integrity numbers <6, one should con-
sider ribosome depletion as opposed to a polyA + preparation. Ribosome-
depleted samples also have the advantage of including coding and ncRNAs
which are not polyadenylated; tiling array data suggest that more than 40%
of transcripts are not polyadenylated (Cheng etal., 2005). Cui etal. (2010) have
compared RNA-Seq of RiboMinus (rmRNA) and poly(A)-selected (MR NA)
samples; the starting total RINA was extracted from BALB/c mouse whole
brain. The authors found (on a percent basis) that there were marked read dis-
tribution differences between samples. The percentage of known exon reads
was twice as high in the mRINA sample (60%), while the percentage of both
intronic and intergenic reads was twice as high in the rmRNA sample (25%
and 44%, respectively). Both samples detected reads in essentially the same pop-
ulation of RefSeq-defined genes, i.e., there was not a substantial read bias. So
the use of IRNA-depleted or poly(A)-selected RINA depends on the questions
being asked and the estimated read density per sample. Data collected in our
laboratory and elsewhere (Bottomly et al., 2011; Marioni, Mason, Mane,
Stephens, & Gilad, 2008; Mortazavi et al., 2008) have found that 20—40 million
reads are generally adequate for most estimates of gene expression. If the goal is
to quantitatively measure expression at the exon level, then the read density
must be increased significantly, perhaps by an order of magnitude (see Labaj
et al., 2011; Lee, Mayfield, & Harris, 2014). Such exon level measurements
are obviously best suited for poly(A)-selected samples, especially when one is
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dealing with multiple biological replicates and assuming resources are reason-
ably limited; i.e., it is very likely that it will be necessary to multiplex samples.
But if one is only interested in gene expression and can maintain total exonic
read density at 20—40 million, then rmRNA could be used, and significant
information on ncRNAs and mRINAs without a poly(A) tail can be obtained.
Cui etal. (2010) also used a procedure that facilitates both the quantification of
transcripts derived from opposite strands and determining the directionality of
transcription (Costa et al., 2010; Martin & Wang, 2011; see also Chapter 2).
Using the strand-specific data, Cui et al. (2010) made several salient observa-
tions: (a) 99.9% of the junction reads are in the sense orientation; (b) nearly
all expressed genes have natural antisense transcripts (the proportion may be
as high as 70% of expressed genes [Katayama et al., 2005]); (c) poorly expressed
genes tend to have more pronounced antisense transcription; and (d) the anti-
sense transcripts are enriched in the promoter and terminal transcript regions.
This enrichment is likely the result of divergent transcription initiation of RINA
polymerase II (Core, Waterfall, & Lis, 2008; Preker et al., 2008).

Samples from very discrete brain regions are often prepared by laser cap-
ture microdissection (LCM). Given the steps involved in preparing the
LCM samples, including staining and dehydration, care needs to be taken
to maintain RNA quality. Chen etal. (2011) appear to be the first to couple
LCM and RNA-Seq to examine brain gene expression. They examined rat
GABAergic neurons projecting from the nucleus accumbens to the ventral
pallidum. Cells were labeled using the retrograde tracer, Fluorogold.
Approximately 1500 cells were labeled and isolated by LCM in each of four
animals; this in turn produced ~4 ng of RINA per animal, and the average
RIN was 8.1. Samples were independently amplified for microarray and
RNA-Seq; for genes detected on both platforms, the correlation for gene
expression was ~(0.7. Not surprisingly, the correlation was better for the
highly expressed genes. We have used LCM to examine gene expression
in discrete regions of the mouse brain (prelimbic cortex, nucleus accumbens
shell, and central nucleus of the amygdala; Colville, AM & Hitzemann, R]J
unpublished observations). Sufficient high-quality RINA was obtained from
each sample (>100 ng) that amplification was not necessary. Although the
samples were only used for RNA-Seq, the data obtained for the nucleus
accumbens shell appear at the gene level to be very similar to data previously
obtained for the ventral striatum when using microarrays (e.g., lancu
et al., 2010).

In addition to examining gene expression in discrete brain regions and
discrete cell types, for some applications, it is desirable to assess the synaptic
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transcriptome (see, e.g., Eipper-Mains, Eipper, & Mains, 2012). A key
mechanism of synaptic plasticity is the local synthesis of proteins from syn-
aptic mRINA. Techniques for isolating synaptosomes from adult brains and
growth cones from developing brains are well established using gradient
centrifugation (e.g., Hitzemann & Loh, 1978). Synaptoneurosomes are pre-
pared by filtration of tissue homogenate through a series of filters to obtain a
fraction that is enriched in pinched-off dendritic spines (Lugli & Smalheiser,
2013). Regardless of preparation, once isolated, these fractions can be sub-
jected to sequencing as outlined earlier (e.g., Eipper-Mains et al., 2011).
A key to the use of these fractions will be assessments of subcellular
contamination.

The next step in an RNA-Seq experiment involves the synthesis of high-
quality double-stranded (ds) cDNA. The most widely used procedure frag-
ments the RNA before reverse transcription, followed by second-strand
synthesis. This approach has the advantage of minimizing the effects of sec-
ondary RNA structure on first-strand synthesis. If the adapters needed for
the sequencing are added after the ds ¢cDNA is formed, information on
strandedness is lost. There are several procedures, including ligating adapters
to the fragmented RINA, that will maintain strand information (Ingolia,
Ghaemmaghami, Newman, & Weissman, 2009; Li et al., 2008;
Parkhomchuk et al., 2009). The alternative to using fragmented RNA is
to synthesize the cDNA from intact RNA and then fragment. This approach
has a clear advantage for platforms that are capable of long to very long reads.
For the lllumina, SOLiD, and 454 platforms, the final step prior to the actual
sequencing is the clonal amplification of the fragmented cDNA. Both 454
and SOLID use emulsion PCR on a bead surface, while Illumina uses enzy-
matic amplification on a glass surface (flow cell). The sequencing and detec-
tion methods differ among the three platforms (see Mardis, 2011 and
Metzker, 2010 for details). The 454 sequencer use a polymerase-mediated
incorporation of unlabeled nucleotides; detection is via light emitted by sec-
ondary reactions with the released PPi. Illumina also uses a polymerase-
mediated sequencing but uses end-blocked fluorescent nucleotides in a
protocol similar to traditional Big Dye sequencing; detection comes from
following the incorporation of the nucleotide attached fluorescent tags.
SOLiID sequencing uses the ligase-mediated addition of 2-base encoded
fluorescent oligonucleotides; detection is from fluorescent emission of the
incorporated oligonucleotides. The SOLiID system differs from Illumina
and 454 in that each base is determined twice. The quality of the base calls
for all three platforms is very good. Quality is measured in terms of a Phred
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Score (Q), which was originally developed to assess base calls for the human
genome project (Ewing, Hillier, Wendl, & Green, 1998). A Q score of
20 indicates a 99% accuracy rate, and a score of 30 indicates a 99.9% accuracy
rate. Q30 values are routinely obtained for NGS platforms. Typically, the Q
value decreases with increasing read length.

5. RNA-Seq AND DATA ANALYSIS

Before commenting on the analysis of RINA-Seq data, it is useful
to recount the analysis controversies that arose with the introduction of
microarrays. In 1999, Nature Genetics devoted an entire issue (volume
21—January) to microarrays. Cautionary concerns were raised around issues
of data analysis (Lander, 1999). Microarray experiments, at the time, were
generally expensive, limiting sample sizes. Small sample sizes and thousands
of independent observations per sample were seen as a prescription for sta-
tistical disaster. Initial attempts to deal with this problem frequently involved
using a nonstatistical threshold for a meaningful difference, e.g., a twofold
difference in expression. This approach frequently worked well in some
applications, e.g., when comparing cancerous and noncancerous tissue;
however, this approach was destined not to work well in brain, where dif-
ferences in expression among experimental groups were much smaller. Ini-
tially, journal reviewers, editors, and study sections panned microarray
experiments as being “fishing expeditions,” with no clear hypothesis. The
idea of discovery science as a valuable strategy was a minority opinion.

Despite the obstacles, microarray experiments eventually flourished;
technology and analysis methods improved. One might have predicted that
the microarray experience would have laid the groundwork for the accep-
tance of NGS. However, the introduction of the 454 sequencer (Margulies
et al., 2005) was met with a similar resistance; the argument was made that
the data sets were so large that only one of the established genome centers
would have the necessary bioinformatics expertise. But as NGS technology
improved so did the analytic approaches, such that by 2007/2008, RNA-
Seq data appeared from several different laboratories (Marioni et al.,
2008; Mortazavi et al., 2008; Sugarbaker et al., 2008; Torres, Metta,
Ottenwalder, & Schlotterer, 2008; Weber, Weber, Carr, Wilkerson, &
Ohlrogge, 2007). Workflows emerged that addressed the measurement of
not only DE genes but also differential alternative splicing and the detection
of novel transcripts (Marioni et al., 2008). Bullard, Purdom, Hansen, and
Dudoit (2010) examined a number of statistical issues associated with using
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RNA-Seq to detect DE genes. Similar to Marioni et al. (2008), they found
that most sources of technical variation had only small effects on detecting
DE transcripts. The most significant effect on DE transcripts was data nor-
malization. Bullard et al. (2010) concluded that their “main novel finding is
the extent to which normalization aftects differential expression results: sen-
sitivity varies more between normalization procedures than between test
statistics. . .we propose scaling gene counts by a quantile of the gene count
distribution (the upper-quartile).”

This volume contains several chapters that address in some detail the
analysis of RNA-Seq data (see Chapters 2, 3, and 11); these chapters espe-
cially emphasize the evolution of RNA-Seq analysis over the past 3—4 years.
In addition to improvements in analysis strategy, sample power has in gen-
eral improved with decreasing costs and the ability to multiplex samples with
adequate read depth (at least at a level sufficient for gene summarization sta-
tistics). If one is interested in quantifying alternative splicing, then substan-
tially greater read depth is required (see, e.g., Lee et al., 2014).

RNA-Seq data have some unique properties that affect the strategies
for data analysis (Garber, Grabherr, Guttman, & Trapnell, 2011). First,
unlike microarray data where the output is fluorescence intensity (more
or less a continuous measure), the output from an RINA-Seq experiment
is digital in the form of read counts. For the microarray experiment, famil-
lar statistics such as a t-test or ANOVA are appropriate (assuming variances
are equal); for RINA-Seq data, these statistics are not directly applicable.
Robinson, Mccarthy, and Smyth (2009) proposed the use of the empirical
analysis of digital gene expression in R (edgeR), a variant of a procedure
used to analyze SAGE data. edgeR models count data using an over-
dispersed Poisson model and use an empirical Bayes’ procedure to moder-
ate the degree of overdispersion across genes; the overdispersion reflects
the biological variation among samples (Robinson et al., 2009). An imple-
mentation of edgeR to mouse brain RNA-Seq data is found in Bottomly
et al. (2011).

Second, RINA-Seq data are biased in several important ways. First, the
majority of the counts are produced by a small number (<10% of the total) of
very highly expressed genes. Thus, many genes of interest may have only
moderate to low counts. Also, for genes with equal levels of expression,
the long genes will be overrepresented, distorting the relative expression
among genes. Similarly, within a given gene, long exons are overrepre-
sented. Normalization and weighting algorithms can be used to address these
issues, but they in turn may introduce new biases (Bullard et al., 2010).
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Third, RNA-Seq provides a substantial amount of data with very low
read counts, which will be quite variable (see, e.g., Cui et al., 2010), and
thus, regardless of the analytic strategy, makes detecting DE genes difficult.

Fourth, RINA-Seq data includes multireads, i.e., reads that map equally
well to multiple genomic locations. The multireads arise predominantly
from conserved domains in paralogous genes and from repeats (Costa
et al., 2010). Mortazavi et al. (2008) found that, in the mouse brain, 76%
of the 25-bp transcriptome sequence segments uniquely mapped; 6%
mapped 2—10 times in the genome; and the remainder mapped more than
10 times. Depending on the gene model used and assuming a high-read den-
sity, ignoring the multireads may only have a minimal effect on detecting DE
genes. But one can easily contrive a situation involving alternative splicing
and multireads where this would not be the case.

Fifth, RINA-Seq collects data across splice junctions that (a) are ignored
by many alignment tools and (b) may be unknown. While there are <25,000
known protein-coding genes in the mammalian genome, the number of
gene-related transcripts may well be 10-20 times higher (Pan, Shai, Lee,
Frey, & Blencowe, 2008; Johnson et al., 2009). Given the heterogeneous
nature of brain tissue, the complexity problem is significantly amplified.
Tools are available that detect splice junctions and will estimate the mini-
mum number of gene isoforms that account for the observed data
(Guttman et al., 2010; Katz, Wang, Airoldi, & Burge, 2010; Trapnell,
Pachter, & Salzberg, 2009; Trapnell et al., 2012, 2010). Roberts,
Pimentel, Trapnell, and Pachter (2011) illustrate a procedure that makes
use of annotated model organism genomes, such as those available for the
laboratory mouse and rat. For both correctly aligning multireads and splice
junctions, paired-end sequencing is a useful approach. The downside is the
added expense of sequencing the cDNA fragment from both ends.

Sixth, RINA-Seq data can be used to detect allele-specific expression and
both synonymous and nonsynonymous SNPs within gene-coding
sequences. This application may be particularly useful in complex crosses
such as the HS-CC (Iancu et al., 2010) where RNA-Seq can provide
detailed genotype information. In the RNA-Seq context, the advantages
of using model organisms with a well-annotated genome cannot be under-
estimated (Martin & Wang, 2011). Reference genome alignment is compu-
tationally simpler and faster as the problem is reduced from assembling
millions of reads to assembling a much smaller number of reads to known
loci. For both the mouse and rat, the reference genomic sequence was
obtained using tiled BAC clones, and thus, there are essentially no gaps.
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But if one believes that there are a substantial number of missed exons, then
some combination of reference-based and de novo alignment may be the
most effective approach (Martin & Wang, 2011). The Mouse Genomes
Project (Keane et al., 2011) released genomic sequence data for 17 inbred
strains; the data are aligned to the B6 reference strain. It is important to note
that these data are not equivalent to the reference genome. The data were
acquired using a short-read NGS platform (Illumina), which naturally means
that in regions of high repeats/low genetic complexity, it is not possible to
correctly align the sequence data. For the standard laboratory strains, this
effect is most notable on the proximal aspect of chromosome 7 (Keane
et al., 2011). RINA-Seq data are also available for six tissues from a B6D2
F, hybrid and for whole brain transcriptome data from 15 strains. These data
sets can be freely downloaded and provide an excellent training set for
RNA-Seq analysis.

6. SEQUENCING THE BRAIN TRANSCRIPTOME

PubMed lists 2702 RINA-Seq publications (6/1/14) with the first
appearing in June 2008 (Nagalakshmi et al., 2008); the number has steadily
increased from 11 in 2008, to 34 in 2009, to 127 in 2010, to 339 in 2011, to
639 in 2012, and to 1123 in 2013. Of these publications, 162 are also coded
as “RNA-Seq and Brain” (~6% of total). However, this number most
certainly represents a low estimate of the number of publications where
RNA-Seq is used to assess the brain transcriptome or brain surrogates
such as induced pluripotent stem cells. Nonetheless, sequencing the brain
transcriptome is still an emerging area. The first publication using RINA-
Seq to compare brain gene expression between two inbred mouse strains
appeared in 2011 (Bottomly et al., 2011). The first application of RNA-
Seq to brain WGCNA appeared in 2012 (Iancu et al., 2012). lancu and col-
leagues extend this network approach to cosplicing in Chapter 4 building
upon the earlier work of Dai, Li, Liu, & Zhou (2012) and Aschoff et al.
(2013). Mudge et al. (2008) is an early example of using RNA-Seq in a
neuropsychiatric context (schizophrenia) but as noted by Wang and
Cairns in Chapter 6 most of the work in this area has appeared within
the last 2 years. Chapter 7 details just how quickly our understanding of
the functional roles of the ncRINAs has changed due to the introduction
of RNA-Seq; further, Guennewig and Copper make compelling arguments
for the roles of the ncRINAs in both normal brain function and disease states.
Alternative splicing is higher in the brain as compared to other tissues
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(Johnson et al., 2009); RNA-Seq facilitates a genome-wide assessment of
alternative splicing which is key to understanding both brain development
(Dillman and Cookson—Chapter 9) and normal brain function (Zaghlool
et al.—Chapter 5). Lewohl et al. (2000) were among the first to use micro-
arrays to study the human brain transcriptome, comparing alcoholics and
matched controls. Zhou et al. (Chapter 10) and Farris and Mayfield
(Chapter 11) illustrate how readily investigators in the fields of alcoholism
and drug abuse research have adopted RNA-Seq to examine human sam-
ples. Although still in the preliminary data stage, RINA-Seq is being exten-
sively used to examine the brain transcriptome in nonhuman primates
chronically exposed to alcohol (Grant KA, Hitzemann R]J, Darakjian P,
& lancu OD, unpublished observations).

For many investigators, the interest in RNA-Seq and the brain trans-
criptome is not matched by available funding. Williams and Pandey
(Chapter 8) describe a number of freely available mouse resources that allows
one to interrogate the relationship(s) between phenotypes and RNA-Seq
data. A key element to these resources has been the use of mouse reference
populations such as the BXD recombinant inbred series and the Collabora-
tive Cross (Churchill et al., 2004).

RNA-Seq has many applications outside of those mentioned in this vol-
ume. One area where it proven to have particular value has been in the
examination of the brain transcriptome in nonmodel organisms. Frequently,
these organisms have a significant behavioral and/or evolutionary value.
A de novo assembly of the data can be used in the absence of high-quality
genomic sequence data by aligning the reads to conserved protein sequence
and/or the annotated genomes of closely related organisms. Four examples
are described. Fraser, Weadick, Janowitz, Rodd, and Hughes (2011) assem-
bled brain transcriptome data from the guppy (Poecilia reticulata) and were
able to detect both sex-specific expression and the effect of predator (Rivulus
hartii) exposure. Malik et al. (2011) examined the brain transcriptome of
blind subterranean mole rat (Spalax galili); some modest differences in brain
gene expression were found after prolonged exposure to low oxygen con-
centrations (a normally occurring condition in the underground tunnels).
Tzika, Helaers, Schramm, and Milinkovitch (2011) used RNA-Seq in an
evolutionary context to compare brain transcriptomes of four divergent
reptilian and one reference avian species: the Nile crocodile, the corn snake,
the bearded dragon, the red-eared turtle, and the chicken. Somewhat sur-
prisingly, the data suggest that the turtle was evolutionarily closer to the
crocodile than was expected. All three of these examples used the Roche
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454 platform for sequencing; the longer reads compared with other instru-
ments facilitated the de novo transcriptome assembly. Balakrishnan et al.
(2014) used RNA-Seq to examine the relationships among the brain trans-
criptome, avian vocal communication, and social behavior. Brain trans-
criptomes were sequenced for three emberizid model systems, song
sparrow Melospiza melodia, white-throated sparrow Zonotrichia albicollis,
and Gambel’s white-crowned sparrow Zonotrichia leucophrys gambelii. Each
of the assemblies covered fully or in part, over 89% of the previously anno-
tated protein-coding genes in the zebra finch Taeniopygia guttata, with
16,846, 15,805, and 16,646 unique BLAST hits in song, white-throated
and white-crowned sparrows, respectively. As in previous studies, these
authors found tissue of origin (auditory forebrain versus hypothalamus
and whole brain) as an important determinant of the expression profile.

7. CONCLUSIONS

Historically, the main arguments against using RINA-Seq (as opposed
to using microarrays) have been cost and difficulties with data analysis. Over
the past 6 years, technical improvements have and will continue to reduce
costs; if the primary goal is gene-wide summarization, transcriptome samples
can now be multiplexed and sequenced at adequate depth for less than $200/
sample (not including the cost of library preparation). RNA-Seq data anal-
ysis remains substantially more complex than a comparable microarray
analysis. The data sets are much larger and are generally not suitable for anal-
ysis on a personal computer. While the analysis of RINA-Seq data could still
be described as not for the “faint of heart,” a rapidly improving data analysis
trajectory is clear as indicated by the numerous reports described in this vol-
ume. RNA-Seq has several distinct advantages over microarray-based
approaches to transcriptome analysis. RINA-Seq data have a significantly
greater dynamic range (there are no probe saturation effects); the gene
expression data are not biased to the 3’'UTR (although there is a bias to
the most highly expressed and longest genes) and data are collected on both
alternative splicing and inter- and intragenic ncRNAs. Overall, RNA-Seq
embraces the complexity of the transcriptome and provides a mechanism to
understand the underlying regulatory code.
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Abstract

RNA-Seq allows one to examine only gene expression as well as expression of noncod-
ing RNAs, alternative splicing, and allele-specific expression. With this increased sensi-
tivity and dynamic range, there are computational and statistical considerations that
need to be contemplated, which are highly dependent on the biological question
being asked. We highlight these to provide an overview of their importance and the
impact they can have on downstream interpretation of the brain transcriptome.
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1. INTRODUCTION

The utilization of RNA-Seq studies is rapidly increasing (over 2500
publications in PubMed as of 4/2014 with first publication in 2008). We
note that approximately 7% of those publications are focused on RINA-
Seq applications using brain or neuronal tissue. With the decreasing costs
and rapid changes in technology, it is reasonable to expect more studies rou-
tinely using RINA-Seq, particularly in neuroscience. Given this, this chapter
focuses on some of the key considerations in the analysis of an RNA-Seq
experiment that should be reviewed at the design of the experiment and
in the context of the primary research hypothesis. We refer the reader back-
ground papers on general experimental design considerations (e.g., Fang &
Cui, 2011; Mclntyre et al., 2011; Robles et al., 2012; and citations therein)
and instead focus on three areas: defining and quantifying transcript/gene
expression, detecting differential expression (DE) and frameworks for inter-
pretation (Fig. 2.1).

Primary research question

$

Computational processing RNA-seq reads
Alignment of reads
Transcriptome reconstruction
Quantification of expression

Statistical analysis
Normalization
Unit of analysis + experimental design
Statistical modeling

Interpretation
Impact of library construction
Gene models
Functional annotation

Y

Figure 2.1 Overview of the key components for consideration in the analysis of RNA-
Seq data. The choices made are determined by the primary research question of
interest.
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2. DEFINING AND QUANTIFYING TRANSCRIPT/GENE
EXPRESSION

The ultimate goal of transcriptome profiling is to define and quantify a
precise map of the expressed transcripts and genes in a given sample. RINA-
Seq profiling of a transcriptome results in short sequenced segments
(~100 bps), known as short reads, of expressed transcripts. The computa-
tional challenge is to analytically “reassemble” these short reads to define
the transcript of origin and subsequently quantify its expression. Depending
on the biological questions and the genomic resources available for a given
organism, there are several scenarios for processing reads to define and quan-
tify expression (Fig. 2.2). For example, if your organism of interest has an
annotated reference genome and your focus is on quantifying previously
annotated genes, transcripts, or exons, the available genomic/transcriptomic
information can be leveraged to greatly increase the sensitivity of your
RNA-Seq experiment. A typical protocol in this case would involve
aligning the RNA-Seq reads to the reference genome followed by quanti-
tying (counting) the aligned reads within the annotated transcriptome to
obtain expression levels. The aligned reads may also be used to define and
discover as yet annotated transcripts in well-curated (and less well curated)
transcriptomes (Roberts, Pimentel, Trapnell, & Pachter, 2011). Alterna-
tively, one may have an RINA-Seq experiment involving an organism that
is lacking a reference genome or transcriptome sequence. In this scenario,
the RNA-Seq reads would first be used to define and then subsequently
quantify the transcriptome. Although these scenarios highlight the diversity

Scenario 1 Scenario 2 Scenario 3

RNA-seq reads RNA-seq reads

\ 4
’ Alignment to reference sequence ‘

RNA-seq reads

v
l Transcriptome reconstruction |

A 4
Alignment to reference sequence |

v
| Transcriptome reconstruction ‘

v

v
Quantify expression Quantify expression

Figure 2.2 Scenarios for processing RNA-Seq reads which are dependent upon the bio-
logical question(s) and the genomic resources available for a given organism.

Quantify expression
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Table 2.1 Overview of common RNA-processing tools

Tool Type Source
BedTools Q.E. https://code.google.com/p/bedtools/
Bowtie Alignment (N)  http:/bowtie-bio.sourceforge.net/index.shtml
BWA Alignment (N)  http://bio-bwa.sourceforge.net/
Cufflinks T.R. (RG)/ http://cuftlinks.cbcb.umd.edu/
Q.E.
GSNAP Alignment (S)  http:/research-pub.gene.com/gmap/
HTSeq Q.E. http://www-huber.embl.de/users/anders/
HTSeq/doc/overview.html
Oases T.R. (G]) https:/www.ebi.ac.uk/~zerbino/oases/
RSEM Q.E. http://deweylab.biostat.wisc.edu/rsem/
Scripture T.R. (RG)/ http://www.broadinstitute.org/software/
Q.E. scripture/
SOAPdenovo- T.R. (RI) http://soap.genomics.org.cn/SOAPdenovo-
Trans Trans.html
STAR Alignment (S)  https:/code.google.com/p/rna-star/
Subread Alignment (N)  http:/bioinf.wehi.edu.au/subread/
TopHat Alignment (S)  http:/tophat.cbcb.umd.edu/
Trinity T.R. (G]) http://trinityrnaseq.sourceforge.net/

Alignment, short read aligner; N, non-splice-aware; S, splice-aware; T.R., transcript reconstruction;
RG, reference guided; RI, reference independent; Q.E., quantify expression.

and power of RNA-Seq profiling, it also helps to highlight the three uni-
fying steps involved in computationally processing RINA-Seq reads to define
and quantify transcriptome expression: (1) alignment of RINA-Seq reads to a
reference sequence, (2) transcriptome reconstruction, and (3) quantification
of expression. Table 2.1 summarizes common RINA-processing tools used
in each of these three steps.

2.1. Step 1: Alignment of RNA-Seq reads to a reference
sequence

In an effort to identify the transcript/gene origin of the RINA-Seq reads, the

short reads may be mapped to either a reference transcriptome or a reference

genome sequence. Alignment of sequences based on sequence similarity is a
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classic problem in bioinformatics (Pearson, 2013). The mapping of RNA-
Seq reads to a reference sequence is analogous to the mapping of expressed
sequenced tags (ESTs) to a reference genome (Kent, 2002; Wu & Watanabe,
2005); however, its short length (~36—-125 nucleotides), higher sequence
error rates, and its sheer volume, currently as many as hundreds of millions,
introduce a host of additional challenges. Thus, the development of RINA-
Seq alignment tools is an active area of research (Engstrom et al., 2013;
Fonseca, Rung, Brazma, & Marioni, 2012; Lindner & Friedel, 2012)
resulting in a great number of alignment tools currently available for
RNA-Seq. This then leads many researchers asking the question, which
is the best aligner to use. The answer ultimately depends on the biological
question and the genomic resources available for your organism of interest.
Different alignment tools have been developed to answer specific biological
questions such as the identification of novel splice sites (Dobin et al., 2013;
Forster, Finkel, Gould, & Hertzog, 2013; Huang et al., 2011; Kim et al.,
2013) or gene fusions (Carrara et al., 2013; Kim et al., 2013; Liu, Ma,
Chang, & Zhou, 2013). Alignment tools have also been designed to specif-
ically cater to the needs of specific sequencing platforms (Cloonan et al.,
2009; De Bona, Ossowski, Schneeberger, & Ratsch, 2008; Trapnell,
Pachter, & Salzberg, 2009). Below we introduce a few key features of dif-
ferent alignment approaches and discuss their potential impacts. Please refer
to recent reviews for a more comprehensive comparison and evaluation of
different alignment tools (Engstrom et al., 2013; Fonseca et al., 2012).

2.1.1 Splice-aware aligners
One of the most distinctive features of RINA-Seq alignment tools is its ability
to accommodate large sequence gaps corresponding to spliced exon—exon
junctions (i.e., introns). Splice-aware aligners such as STAR (Dobin
et al., 2013), GSNAP (Wu & Nacu, 2010), and TopHat (Trapnell et al.,
2009) should be targeted to alignments with genomic sequences, particularly
with biological questions pertaining to the identification of novel or anno-
tated spliced junctions while nonsplice-aware aligners such as Bowtie
(Langmead, Trapnell, Pop, & Salzberg, 2009) and BWA (Li & Durbin,
2009) should be targeted toward alignments to transcriptome sequences.
To increase their sensitivity in identifying spliced junctions, many splice-
aware aligners use information from previously annotated exon—exon junc-
tions (Dobin et al., 2013; Trapnell et al., 2009; Wu & Nacu, 2010).
Interestingly, a number of spliced aligners are adaptations/extensions of
nonsplice-aware aligners. For example, TopHat is an adaptation of Bowtie.
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TopHat first uses Bowtie to align reads to the genome in a nonsplice-aware
manner and then all reads which were not mapped (unmapped) are broken
into smaller segments and remapped to the genome in search of candidate
splice sites. This method is termed the exon-first method as exons are
identified first. Another major category of splice-aware aligners are the
“seed-and-extend” methods. Seed and extend methods such as GSNAP,
STAR, and Subread (Liao, Smyth, & Shi, 2013) segment the reads into
shorter segments which are then placed on the genome to localize the align-
ment. Candidate genomic regions are then extended and merged with initial
seeds. With this approach, all reads are aligned at the same time, thus will not
be biased toward continuous alignments such as exon-first approaches are.
However, due to their more efficient approach of only remapping
unmapped reads, exon-first approaches are computationally faster.

2.1.2 Sequence variations between the short read and reference
sequence

To better accommodate potential sequencing errors or sequence variations
among individuals (SNPs, single nucleotide polymorphisms) or different
animal strains, in addition to exact matches, alignment tools must also allow
approximate matches of the reads to the reference sequence. To do so, align-
ment tools allow for varying degrees of sequence mismatches or insertions/
deletions (indels) between the short read and the reference sequence. Many
tools also allow sequences of the read to be trimmed (clipped), particularly
within the ends of the reads, where sequencing quality is known to suffer
(Dohm, Lottaz, Borodina, & Himmelbauer, 2008). However, it is important
to note that different alignment tools handle and tolerant each of these cases
very difterently. For example, although GSNAP and Subread allow for
sequence mismatches, the maximum number of mismatches allowed is dic-
tated by the overall score of the alignment, while other programs such as
STAR and TopHat allow users to define the maximum number allowed.
In an attempt to improve computational efficiency, tools such as BWA
impose constraints on the maximum number of mismatches and indels
allowed, while other tools such as Bowtie once again impose alignment
score thresholds in place of imposing constraints on the number of each
allowed. As expected, alignment tools which automatically trim reads result
in overall higher numbers of aligned reads however at the price of decreased
coverage of the aligned reads (Engstrom et al., 2013). Understanding the
individual characteristics of how different alignment tools computationally
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handle sequence variations should be an important consideration in the final
choice of the aligner.

2.1.3 Uniquely mapping or multimapping reads

When a read is aligned to a reference sequence, the read may align uniquely
to one position or may align to multiple positions (multimapped) in the ref-
erence sequence. Multimapped reads may be a result of the repetitive nature
of the original transcriptome or genome sequence, multiple isoforms of a
gene when aligning to a transcriptome, or potential sequencing errors. Once
again different aligners process and report multimapped reads differently. For
example, GSNAP and STAR allow for the option of reporting the uniquely
mapped reads separately from the multimapped reads, while other aligners
such as Bowtie and TopHat can be tuned to report the alignment(s) with
the best score up to a user-defined limit of alignments. The use of either
uniquely or multimapped reads has potential consequences in downstream
analyses (discussed below) and should be a factor when considering the
aligner of choice.

2.2. Step 2: Transcriptome reconstruction

The ultimate goal of RNA-Seq profiling is to reconstruct a precise map of all
transcripts and isoforms expressed in a given sample. However, the complex
nature of the transcriptome (i.e., multiple isoforms for one gene, gene
expression differences spanning orders of magnitude across genes, and the
mix of processed and unprocessed transcripts) and the short length of
RNA-Seq reads make reconstructing the transcriptome a very difficult com-
putational task. There are two main approaches to transcriptome construc-
tion, genome guided and genome independent. Genome-guided
approaches reconstruct transcripts by assembling spatially adjacent or over-
lapping reads previously mapped to a genome reference sequence, while
genome-independent approaches reconstruct transcripts by assembling reads
together with direct sequence (de novo) similarity sans alignment to a refer-
ence genome. Each is described more below.

2.2.1 Genome guided

Two of the most widely used genome-guided approaches are Scripture
(Guttman et al., 2010) and Cufflinks (Trapnell et al., 2010). Both methods
utilize spliced reads to directly guide their reconstructions, but they differ in
their approach to the problem. Scripture approaches the reconstruction
problem as a segmentation problem and attempts to identify significant
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transcript paths from a graph topology of all possible connections of bases in
the transcriptome. Cufflinks approaches the problem with more of an exon
focus and connects aligned reads into a graph based on the locations of their
spliced alignments. Conceptually, the two approaches build similar graphs;
however, Scriptures strength is in identifying all isoforms compatible with
the read data (sensitivity), while Cufflinks focuses on reporting the minimal
number of compatible isoforms (specificity). Both tools have been found to
assemble similar transcripts at high expression levels, however differ substan-
tially for lower expressed transcripts (Garber, Grabherr, Guttman, &
Trapnell, 2011).

2.2.2 Genome independent

Genome-independent approaches, however, aim to reconstruct the trans-
criptome directly from the short reads themselves, thus bypassing the align-
ment of the reads to a reference genome particularly when a reference
genome is not available. A commonly used strategy of genome-independent
approaches such as Oases (Schulz, Zerbino, Vingron, & Birney, 2012), Trin-
ity (Grabherr et al., 2011), and SOAPdenovo-Trans (Xie et al., 2014) is the
use of de Bruijn graphs to model overlapping subsequences (k-mers) of the
reads, thus reducing the complexity of millions of reads to a fixed number of
all possible k-mers originating from the reads. The overlaps of k-1 bases
between the k-mers constitute the graph of all possible transcript paths.
The short reads are then used to identify transcript paths which are either
supported or not supported by the reads. Genome-independent transcript
reconstruction and de novo assembly of whole genomes from short reads
(Zhang et al., 2011) share many computational strategies; however,
genome-independent transcriptome reconstruction has the added challenges
introduced by differential read distribution across genes (difterential gene
expression), nonuniform read coverage within individual transcripts
(sequencing biases), and the added complexity of multiple isoforms for
one gene making this a very active area of research (Li et al., 2013;
Martin & Wang, 2011).

The method of reconstruction chosen should once again be dictated by
the biological question and also the availability of a reference genome.
Genome-independent methods are an obvious choice for organisms lacking
a reference genome, whereas the increased sensitivity of genome-guided
approaches is recommended for organisms with reference genomes.
Genome-guided approaches may also help to guide the discovery of novel
or as yet annotated transcripts (Roberts et al., 2011). However in cases
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where genomic rearrangements are suspected such as in cancer or among
different strains of a model organism (i.e., laboratory mouse strains), a hybrid
approach incorporating both genome-guided and genome-independent
approaches might be a powerful avenue in capturing both known and novel
variations.

2.3. Step 3: Quantification of expression levels

The alignment of the RNA-Seq reads to a reference sequence provides a
digital count of the expressed transcripts in a given sample. Once again
depending on the biological question and the genomic annotation available,
digital counts can be obtained at the level of exons, transcripts, and/or genes.
One common method of obtaining digital counts at the gene level is to sum
up reads mapped to all annotated exons within a gene. Digital counts at the
exon level are commonly obtained in a similar fashion for both constitutively
and alternatively expressed exons (Anders, Reyes, & Huber, 2012; Griffith
et al.,, 2010). Tools such as HTSeq (Anders, Pyl, & Huber, 2014) and
BEDTools (Quinlan & Hall, 2010) allow users to indicate how the read
should be “counted” in cases where the read maps to a genomic location
with multiple annotations (i.e., overlapping genes) or on a different strand
(i.e., stranded RNA-Seq libraries).

Due to the added complexity of shared exons across different isoforms of’
the same gene, some reads cannot be unequivocally assigned to individual
isoforms; thus, obtaining digital counts for individual isoforms of a gene
becomes a much more complicated task. Some approaches attempt to sim-
plify the problem by obtaining counts for only unique portions of an isoform
(Griffith etal., 2010); however, this approach is limited for genes that do not
contain unique exon(s) or exon portions for a particular isoform. Alternative
methods such as Cufflinks (Trapnell et al., 2010) and RSEM (Li & Dewey,
2011) approach the read assignment uncertainty in a probabilistic manner by
constructing a maximum likelihood estimation of isoform abundance that
best explains the short reads. Thus, the abundance estimates are greatly
impacted by the coverage of, the number of, and any incorrectly anno-
tated/assembled isoforms.

For the digital counts to be meaningful and comparable across different
samples and different genes, two main sources of variability need to be
accounted for. The first sources of variability result from differences in
the total number of mapped reads per sample (i.e., library size), while the
second variability results from differences in transcript/gene lengths. Larger
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library sizes and longer transcripts/genes are expected to have greater num-
bers of reads than their smaller and shorter, respectively, counter parts. One
popular approach to account for these variables is to normalize the digital
counts by reads or fragments (for paired-end reads) per kilobase of transcript
per million mapped reads resulting in the metric reads per kilobase per mil-
lion (RPKM) reads (Mortazavi, Williams, McCue, Schaeffer, & Wold,
2008) or FPKM (Trapnell et al., 2010), respectively. These metrics account
for both differences in library sizes across samples and differences in trans-
cript/gene lengths within samples. Additional approaches for accounting
for these and additional variables will be described in Section 3.

Irrespective of the chosen quantification method, the choice of the type
of mapped reads (i.e., uniquely or multimapped) used greatly impact tran-
script quantification and its interpretation. For example, the use of only
uniquely mapping reads has become common practice when quantifying
at the exon and gene level, while the exclusion of multimapped reads has
been warned to skew and misguide results particularly when quantifying
at the transcript level (Li & Dewey, 2011; Trapnell et al., 2010).

3. DETECTING DIFFERENTIAL EXPRESSION

The primary goal of many RNNA-Seq studies is gene expression pro-
filing between samples. This can be between two or more groups or an anal-
ysis of subgroups or outliers relative to a main group or groups, depending
on the biological question/primary hypothesis of interest. For smaller stud-
ies, these analyses can be done on available desktop workstations.
Approaches such as Myrna are being introduced allowing large datasets to
be analyzed utilizing cloud computing or on local Hadoop clusters
(Langmead, Hansen, & Leek, 2010).

3.1. The need for normalization

Prior to sequencing, mRINA is fragmented to obtain read coverage through-
out the length of the transcript. Therefore, longer transcripts will have more
reads than shorter transcripts with similar expression. Total read count is
proportional to the expression level of a gene times the length of the gene.
This results in more power to detect DE for longer genes than for shorter
genes and creates bias in comparing genes between libraries with differences
in sequencing depth. Normalization is a means to correct for any systematic
errors in the counts based on various technical factors and is critical for both
within sample gene comparisons and across sample comparisons. Factors
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such as library preparation, personnel, sequencing depth, read length, exon
length, GC content, and other technical differences result in differing read
counts per gene that are not related to differences in the particular compar-
ison of interest. Normalization enables accurate comparisons of expressions
levels between and within samples. Many approaches have been developed
to investigate appropriate methods for analyzing RINA-Seq data and
improve the accuracy of the final DE estimates. We discuss several of these
approaches below.

The first normalization method proposed, RPKM, divides the summa-
rized gene counts by the length of the gene (Mortazavi et al., 2008).
Although an intuitive solution, the RPKM approach introduces a bias in
the lower abundant genes because only a small number of genes make up
a large proportion of the total reads in a library. The proportion of expression
for each gene in a library is related to the expression level of all the genes, and
small changes in highly expressed genes affect the proportion of lower abun-
dance genes to a greater extent (Finotello et al., 2014; Ramskold, Wang,
Burge, & Sandberg, 2009). RPKM may also overcorrect for exon length bias
(Finotello et al., 2014). Similarly, accounting for the RINA fragments
observed in a library as is used for paired-end RINA-Seq experiments in
the method, fragments per kilobase per million (FPKM) reads from the Tux-
edo suite of RNA-processing tools (Trapnell et al., 2010) suffers from the
same biases.

Another way to correct for differences in sequencing depth between
libraries is simply to normalizing by the total counts where gene counts
are divided by the total number of mapped reads (or library size) and mul-
tiplied by the mean total counts across all samples of the dataset. This method
also suffers from the same bias as RPKM due to the greater proportion of
small numbers of highly expressed genes in a library and has relatively lower
sensitivity for detecting DE (Bullard, Purdom, Hansen, & Dudoit, 2010).

Quantile normalization, a method first developed in the context of
microarray data, has been extended to RNA-Seq data (Bullard et al.,
2010). A reference distribution is created from all samples in the data set
by sorting the read counts from each sample and computing the median
counts across all of the sorted samples. The distribution of each sample is
matched to this reference and rounded to produce integer values. This
method ensures that all samples have the same distribution of counts and
are implemented in the Bioconductor package limma (Smyth, 2004). In
some instances, this procedure can increase the intragroup variability
(Dillies et al., 2013).
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Methods that compute scaling factors have an advantage that the raw
count data are not transformed and scaling factors can be estimated from
the data. One approach is to match libraries on the upper 25% quartile
(Bullard et al., 2010). Another way to estimate scaling factors, implemented
in the Bioconductor package DESeq, uses the median of'scaled counts under
the assumption that most genes are not differentially expressed (Anders &
Huber, 2010). Another method that assumes most genes are not differen-
tially expressed first excludes highly expressed genes and highly variable
genes and calculates a trimmed mean of the log expression values (TMM)
(Robinson & Oshlack, 2010). TMM is implemented in the poplar
R package edgeR (Robinson & Smyth, 2007).

The PoissonSeq package (Li, Witten, Johnstone, & Tibshirani, 2012)
determines a least variable gene set through goodness-of-fit estimation,
which is then used as the reference. The library scaling factors for each sam-
ple are computed using the ratio of the sum of the counts of the reference
gene set for that sample and the sum of the reference gene set counts for all
samples.

Several multiple step procedures have been suggested (Kadota,
Nishiyama, & Shimizu, 2012; Risso, Schwartz, Sherlock, & Dudoit,
2011; Trapnell et al., 2013). GC content biases seem to be driven by library
preparation (Risso et al., 2011) and can be reduced through a procedure
where a within lane normalization is followed by a between-lane distribu-
tional normalization. However, depending on the counting method used,
this approach may not perform better than scaling factors (Finotello et al.,
2014). A different approach is where genes potentially different are removed
in the first step and then scaling factors for the final normalization are com-
puted using the TMM normalization method (Kadota et al., 2012). This
method has been expanded to include multiple combinations of other nor-
malization methods and DE analysis methods (Sun, Nishiyama, Shimizu, &
Kadota, 2013).

To account for transcript isoform differences, Cuftdiff (Trapnell et al.,
2013) uses a two-step scaling procedure first by within a condition and then
between conditions. An additional transcript-level normalization that esti-
mates isoform abundance is implemented.

It 1s unclear that more complex normalization methods perform better
than scaling factors (Bullard et al., 2010; Dillies et al., 2013). However, there
is no one solution for all challenges with RNA-Seq (Dillies et al., 2013;
Finotello et al., 2014) and the best normalization procedure will depend
on both the data set-specific issues and the methods used for counting



RNA-Seq to Characterize the Brain Transcriptome 33

features (Finotello etal., 2014). Careful exploratory data analysis such as plots
of the data distributions is critical to determining the best normalization pro-
cedure for a specific data set. In addition, the eftect of different normalization
procedures on the downstream distributions of the DE p-values should be
evaluated. The method chosen should reflect the least biases and more uni-
form distributions of the final DE p-values.

3.2. Inferring putative DE

The goal of a DE analysis is to highlight genes that are significantly different
in abundance across experimental conditions. This is a problem of assigning
a probability to whether, in reality, each gene has different number of reads
mapped to it. Results from a DE analysis are therefore probabilities that the
genes are differently expressed at some level between the conditions of inter-
est. Therefore, obtaining reliable and accurate estimates of the variability
inherent in each condition of interest is a key factor in determining the prob-
ability that the gene is differently expressed in the groups. Due to the
inherent variability among biological samples, detection of a transcript
that is differentially expressed is challenging because high overdispersion
(Standard deviation (STD) is greater than the mean of the distribution) across
the samples and the conditions means that only studies with many samples
and high coverage can be used to detect DE reliably (Anders & Huber,
2010). Therefore, the usual assumption is that the number of conditions
is small compared to the number of biological samples.

A number of algorithms have been developed to test for DE between
two or more groups and are approached using either parametric or nonpara-
metric methods. Parametric algorithms often model the data using either the
Poisson or negative binomial (NB) distributions. Algorithms using nonpara-
metric approaches model the noise distribution based on the actual data and
therefore do not depend on the assumptions associated with a known prob-
ability distribution model (Li & Tibshirani, 2013; Tarazona, Garcia-Alcalde,
Dopazo, Ferrer, & Conesa, 2011). We discuss several of the major paramet-
ric approaches below.

RNA-Seq data are discrete count data and as such multiple methods have
been developed using the discrete probability distributions Poisson and NB.
Early RNA-Seq studies using a single biological sample and technical
replicates showed that the distribution of read counts fit well to a Poisson dis-
tribution (Bullard, 2010; Marioni, Mason, Mane, Stephens, & Gilad, 2008).
However, the assumption that the variance is equal to the mean that defines a
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Poisson distribution is violated when using biological replicates, given the
extensive variability across biological replicates in RNA-Seq (over-
dispersion). This underestimates the sampling error and results in greater
false-positive rates (Anders & Huber, 2010). RNA-Seq has a high dynamic
range (Anders & Huber, 2010), making the gene-specific dispersion estima-
tion a critical and challenging problem.

Many modifications to the simple Poisson DE test have been developed
to address this challenge. Assuming that only a subset of genes demonstrate
overdispersion, a two-stage Poisson model has been proposed (Auer &
Doerge, 2011). In the first stage, each gene is first tested for overdispersion
relative to a Poisson model. A Poisson quasi-likelihood approach was devel-
oped to test DE for the overdispersed genes. The other genes are tested using
Poisson model. The false discovery rate (FDR; Benjamini & Hochberg,
1995) is controlled separately on the two lists of genes. This method was
shown to correct for severe overdispersion only and so leads to greater
false-positive rates for less variable genes (Lund, Nettleton, McCarthy, &
Smyth, 2012). QuasiSeq (Lund et al., 2012) implements two improvements
to the quasi-likelihood approach by incorporating more flexibility into the
variance estimation using an F-test and sharing information across genes to
estimate gene-specific error variances similar to the approach developed for
microarray analysis (Smyth, 2004).

Another method develops a generalized Poisson (GP) model
(Srivastava & Chen, 2010) that adds an additional parameter to model the
position-level read counts. This model takes into consideration the potential
positional bias in a DE analysis by accounting for reads mapped to each posi-
tion of an exon. When there is no sequencing bias, the model reduces to the
Poisson model. Likelihood ratio tests are used to identify differentially
expressed genes by position-level read counts.

In PossionSeq, the normalized library size and the correlation of the gene
expression with the condition are modeled by a log-linear relationship. If a
gene is not significantly correlated with the condition based on score statis-
tics, there is no DE. A novel permutation method for obtaining the p-value
distribution appears to result in a more accurate FDR (L1 et al., 2012).

The NB distribution specifically characterizes the feature variation and,
as such, is a natural extension to the Poisson distribution. The observed read
counts are modeled by the Poisson distribution, while the unobserved true
expression levels in each biological sample follow a gamma distribution. The
NB distribution allows greater flexibility in modeling the mean—variance
relationship through the addition of a dispersion parameter modeled by
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the gamma random variable. The difference among these NB methods is
how the dispersion, or biological variation, is modeled, estimated, and used
in inference. Accurate estimates of this critical parameter determine whether
a DE signal can be found above the natural noise of biological variation
inherent in the samples. Improving the model fit to the data also increases
the ability to identify DE genes across all levels of abundance.

edgeR (Robinson & Smyth, 2007) and DESeq (Anders & Huber, 2010)
are the most widely used methods for DE analysis and compute p-values for
the tests based on exact test or approximation of exact test derived from the
probabilities. Both methods utilize information across the genes to generate
dispersion estimates. edgeR was based on methods for small sample sizes
developed for SAGE data (Robinson & Smyth, 2007) where a common dis-
persion parameter across all genes was suggested. This can be measured accu-
rately as all the data are used in the computation but depends on the
assumption is that all genes have similar biological variance. In practice,
genes have different variabilities and a method for estimating gene-specific
dispersion by borrowing information across genes similar to that used in
microarray data (Smyth, 2004) is also implemented. In addition, methods
similar to the QuasiSeq algorithms have been implemented.

DESeq assumes a locally linear relationship between the variance and
mean expression levels. The dispersion estimates are generated by pooling
data from genes with similar expression levels. Since these methods use
the dispersion parameter as a fixed, known constant, they can result in
greater false-positive rates in some instances from not considering possible
uncertainty in the parameter estimates. In particular, genes with higher bio-
logical variability are more likely to be reported as DE (Lund et al., 2012;
Wu, Phan, & Wang, 2013; Wu, Wang, & Wu, 2013). The methods
implemented in QuasiSeq have also been shown improve the accuracy of
the NB models (Lund et al., 2012).

A recent approach takes a Bayesian approach by modeling the dispersion
parameter using a log-normal prior and an NB likelihood (Wu, Phan, et al.,
2013; Wu, Wang, etal., 2013) and is deployed in the Bioconductor package
DSS  (http://www.bioconductor.org/packages/release/bioc/html/DSS.
html).

Another Bayesian method, baySeq, also models an NB distribution esti-
mating the prior probability parameters by sampling from the data under the
assumption that similar samples should fit the same distribution
(Hardcastle & Kelly, 2010). The result of a baySeq analysis is the posterior
likelihood of a DE model, given the data for each gene. There is some
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inherent variability in these estimates from repeated analyses due to the
resampling approach. Fold changes or test statistics are not given making this
method difficult to compare to others and the direction of expression cum-
bersome to determine.

Parametric methods are powerful when the distributional assumptions
hold but will fail as the data deviate from the specified distribution. In addi-
tion, for parametric methods, the number of significant DE genes is aftected
by the sequencing depth where increasing library read depth resulted in
increasing false-positive rates due to increased power to detect smaller count
differences between groups (Tarazona et al., 2011) and a sensitivity to out-
liers (L1 & Tibshirani, 2013). Methods using nonparametric methods have
no such explicit assumptions about the data distribution. A nonparametric
approach that models the noise distribution in the data, NOISeq, has been
shown to be unaftected by library size (Tarazona et al., 2011). The noise dis-
tribution is determined by comparing all within-group log ratios and absolute
count differences in a pairwise fashion. DE genes are determined by the odds of
the gene being DE above the noise distribution. Since it does not estimate
model parameters, NOISeq performs well without replicates. In this case, it
estimates the noise distribution by simulating technical replicates from the data.

In general, gene-specific variability is higher for genes with higher read
counts and this phenomenon has recently been exploited to improve the
estimate of the mean—variance relationship (Law, Chen, Shi, & Smyth,
2014). The method used in variance modeling at the observational level
(voom) uses a LOWESS regression of the log counts per million (logycpm)
to estimate precision weights for each observation nonparametrically from
the data. The transformed read counts are used for linear modeling utilizing
the widely used limma pipeline (Smyth, 2004, 2005), and the many tech-
niques originally developed for modeling DE in gene expression microarrays
can be applied to RNA-Seq data. The voom/limma pipeline has been
shown to improve the accuracy of the type I error rate compared to other
methods particularly when the sequencing depths for each sample are differ-
ent (Law et al., 2014).

In conclusion, there is no one-size-fits-all analysis procedure for testing
for DE in a particular dataset (Guo, Li, Ye, & Shyr, 2013; Rapaport et al.,
2013). Caution should be exercised and extensive evaluation of different
methods should be conducted before choosing a final analysis method for
the analysis of the data. It is noted that the challenge of accurately estimating
the dispersion across all genes highlights the importance of planning for bio-
logical replicates in the study design.
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3.3. Outliers, subgroups, and individual expression

For designed experiments, one determines a priori the variables of impor-
tance and can fit a model testing the significance of all or part of the model
corresponding to the hypotheses of interest. These procedures have been
described above in the context of RINA-Seq. A simple example would be
the comparison of the expression levels between cases and controls. Signif-
icance of this model for a given gene would imply that the expression pattern
for the cases is higher or lower than the controls relative to the observed var-
iation. However, it need not be true that all the cases are expressed in a sim-
ilar fashion. It was shown in Tomlins et al. (2005) that the use of
methodology that ranked genes on the basis of whether some genes had
“outlier” microarray gene expression profiles could be used to find genes
involved in fusion events in the context of prostate cancer. Their method,
cancer outlier profile analysis (COPA), was the first of many such approaches
which looked for biologically meaningful outliers or subgroups in gene
expression datasets. For instance, the outlier sum (Tibshirani & Hastie,
2007) and the mCOPA (Wang, Sun, Ji, Xing, & Liang, 2012; Wang,
Taciroglu, et al., 2012) methods are refinements on the COPA approach
and involve detection of outliers after a robust transformation. If both cases
and controls are present, a number of methods have been proposed to find
genes difterentially expressed in a subset of patients including those similar to
traditional DE approaches (Gadgil, 2008; Ghosh, 2010; Gleiss, Sanchez-
Cabo, Perco, Tong, & Heinze, 2011; Hu, 2008; Ji et al., 2010; Karrila,
Lee, & Tucker-Kellogg, 2011; Lian, 2008; Liu & Wu, 2007; Pinese
et al.,, 2009; Wang & Rekaya, 2010; Wang, Sun, et al., 2012; Wang,
Taciroglu, et al., 2012; Wang, Wu, Ji, Wang, & Liang, 2011; Wu, 2007).

Other approaches focus on the observation that the outliers detected by
COPA were really indicative of the expression distribution in the cases being
bi- or multimodal and were amendable to mixture models (Ghosh &
Chinnaiyan, 2009; Wang, Wen, Symmans, Pusztai, & Coombes, 2009).
As detection of outliers and subgroups is not only of interest in genomics,
other approaches have been suggested based on approaches used in other
fields such as variations in the outlying degree (Bottomly, Ryabinin,
etal., 2013; Bottomly, Wilmot, et al., 2013), as well as the gene tissue index
(Mpindi et al., 2011). Other related approaches include the antiprofile
method (Bravo, Pihur, McCall, Irizarry, & Leek, 2012). However, all of
these methods were devised for microarray analysis and although it has been
suggested that some microarray array methodology may be applicable to
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RNA-Seq data after some correction (Law et al., 2014), methodological
developments and assessment are necessary with several having been carried
out so far. The first is an extension of the bimodality index (Wang et al.,
2009) called SIBER (Tong, Chen, Su, & Coombes, 2013). The SIBER
method allows the count data of RNNA-Seq to be modeled using mixtures
of the NB distribution, GP, or a normal mixture after using a box—cox trans-
formation. Interestingly, they found that the best performer was modeling
the counts after the use of a log transformation (which was what the box—
cox transformation suggested empirically for many genes). Importantly,
incorporation of scaling normalization (Bullard et al., 2010; Dillies et al.,
2013) procedures was allowed providing a mechanism for accounting for
technical variation. However, one of the issues with mixture model-based
approaches is the reliance on large sample sizes (>50 samples) for accurate
parameter estimation and the computationally intensive procedures involved
in expectation—maximization or Markov chain Monte Carlo methods.

The second approach to assessment of outliers/subgroups in RNA-Seq
(termed OASIS in their paper) assesses and builds on previous work on the
theory of spacings developing several methods call MAST and MIST and
compares these methods to other statistical approaches as well as SIBER
(Pawlikowska et al., 2014). No method is found to perform best overall,
each with its strengths in certain situations. All of these approaches appear
more computationally efficient than SIBER and perform similarly in their
assessment, if not better. However, they utilize their own custom normal-
ization procedure though do not provide evidence that it removes the eftect
of technical noise as has been done with other normalization procedures in
the context of DE (Bullard et al., 2010; Dillies et al., 2013). One of the most
salient arguments in the paper is that the choice of method should be dictated
by the underlying biological hypothesis. For instance, a single outlier may be
important in some contexts where it is expected that a given sample is dras-
tically different than the others in the cohort. In other contexts, mutually
exclusive bimodal subgroups may be expected such as in Tomlins et al.
(2005). Also, it is important to correct for relevant covariates which could
lead to false positives. For instance, the presence of gender or ethnicity dif-
ferences in the cohort could lead to the formation of multiple expression
subgroups in the cases where none would be expected. An ideal method
would be able to adjust for technical artifacts and confounders to increase
power and limit false positives.

While the application of these methods has been primarily in cancer,
there is exciting opportunity for psychiatric disorders and pharmacogenomic
applications.
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Being able to detect single sample outliers as well as multiple sample sub-
groups has implications for the integration of genomics data in personalized
medicine. Approaches to discern differences among patients can potentially
be useful to assign patients to drugs based on their subgroup or outlier status
or to tease apart less common etiology in the research context. Given the
difficulty of this problem and the fact that no method performs optimally
in all situations, it is likely to remain a research question of interest for
the foreseeable future.

3.4. Isoform-specific DE

Much more complex than gene-level expression, isoforma-specific DE
requires the use of sophisticated statistical models in order to estimate, rather
than count, expression levels of the transcript isoforms (Leng et al., 2013;
Li & Dewey, 2011; Trapnell etal., 2013, 2010). DEXseq uses the differential
exon usage based on read counts per exon and applying the DESeq normal-
ization (Anders et al., 2012). The above GP method models position-level
counts by exon in addition to gene-level counts. NOISeq will determine
DE for exons or transcripts as well as genes. While gene-level DE is fairly
well established, solving the challenges surrounding transcript-level DE is
still in development. Given the recent studies showing complicated forms
of gene expression across the genome (Djebali et al., 2012), this is likely
to become a more critical aspect of RNA-Seq analysis.

4. FRAMEWORKS FOR INTERPRETATION

Throughout this chapter, we have focused on the importance of being
guided by our biological questions throughout the experiment. In doing so,
we also need to be cognizant of the impact these different choices have on
the ultimate interpretation of our biological results. We highlight a few
examples below.

4.1. RNA-Seq library construction

Many steps during the preparation of RINA-Seq libraries could aftect or even
bias the interpretation of RNA-Seq experiments (Van Dijk, Jaszczyszyn, &
Thermes, 2014). For example, the choice of strand-specific protocol (Levin
et al., 2010) and RNA fragmentation method (Wery, Descrimes, Thermes,
Gautheret, & Morillon, 2013) was found to affect the coverage, assembly,
and quantification of analyzed transcripts. Multiple studies have also
reported on the increased transcript diversity and more uniform transcript
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coverage obtained through polyA selection as compared to other protocols
(Beane et al., 2011; Sun, Asmann, et al., 2013; Tariq, Kim, Jejelowo, &
Pourmand, 2011). Moreover, a recent study highlighted the overarching
effects initiated by the design choices made during library construction
on the downstream analyses of exon/transcript/gene quantification, SNV
detection, and DE (Sun, Asmann, et al., 2013). Both for primary analy-
sis/study design and for secondary analysis of public data, library construc-
tion must be evaluated for its impact on downstream interpretation.

4.2. Gene-model databases

There are numerous ongoing efforts annotating gene models including
Ensembl (Gencode) (Harrow et al, 2012), NCBI RefSeq (Pruitt,
Tatusova, Klimke, & Maglott, 2009), and AceView (Thierry-Mieg &
Thierry-Mieg, 2006). Each effort utilizes different annotation strategies;
thus, high variability exists among these different gene-model sources. Gen-
code annotation is guided by manual curations of transcriptional evidence of
cDNAs, ESTs, and protein sequences; AceView uses heuristics to closely
reproduce manual curation in an automated fashion, while Refseq utilizes
a combination of both manual and automatic curation. A recent study found
RefSeq to have the fewest number of annotated transcripts and genes when
compared to Ensembl and AceView (Chen et al., 2013). The choice in gene
model was found to have a significant eftfect on the analysis and interpreta-
tion of RNA-Seq results (Wu, Phan, etal., 2013) with less complex (smaller
number of transcripts/genes) gene models having more reproducible and
robust gene estimates as compared to more complex gene models which
were better suited for exploratory/novel transcriptional or regulatory
mechanisms.

Interestingly, a more comprehensive transcriptomic and genetic analysis
of RNA-Seq was obtained by combining multiple gene annotation data-
bases (Chen et al., 2013). However, even with the combination of multiple
gene annotation databases, the majority (over 95%) of the genome is not
included in known gene models. A more comprehensive genome-wide
annotation framework is needed for annotating the genome in its entirety.
Within this framework, basic individual genomic features could be created
for genes, exons, introns, and intergenic regions. To preserve the double-
stranded nature of DNA, each genomic feature can be further annotated
on both strands (i.e., exon, opposite an exon, intron, opposite an intron).
By preserving the strandedness of each genomic feature, one would be able
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Figure 2.3 Schematic highlighting ambiguity for reads that overlap two genes.
Stranded libraries can allow assignment of reads to the appropriate gene along with
appropriate annotation frameworks.

to disambiguate and subsequently accurately quantify overlapping genes and
antisense noncoding/regulatory RNAs, two genomic features that are com-
monly ignored or inaccurately counted (Fig. 2.3).

For gene-level annotation, all of the exon features from the ENSEMBL
GTF file can be examined and gene-level ranges (start of first exon to end of
last exon, including introns) can be calculated for each gene. Gene—gene
overlap type can then be annotated (see Table 2.2) and used by any number
of read-counting methods. Gene-model annotation is an area where the
impact on downstream discovery and interpretation can be quite high, war-
ranting serious evaluation during study design.

4.3. Functional annotation databases

A wealth of functional genomic annotation is currently available to help
interpret RINA-Seq results. Annotation efforts such as the Kyoto Encyclo-
pedia of Genes and Genomes (Kanehisa, Goto, Furumichi, Tanabe, &
Hirakawa, 2010), Reactome (Croft et al., 2014), Database of Interacting
Proteins (Salwinski et al., 2004), Gene Ontology (GO) (Gene Ontology
Consortium, 2010), and Encyclopedia of DNA Elements (ENCODE)
(Qu & Fang, 2013) have provided invaluable knowledge bases at the level
of biological pathways, protein—protein interactions, individual genes, and
all the way down to individual nucleotides (i.e., SNPs). Functional annota-
tion analysis using GO terms and biological pathways has become routine
with respect to the interpretation of RNA-Seq results (Hung, 2013). Func-
tional annotations provided by ENOCDE are also heavily used to interpret
and further understand RINA-Seq experiments with regard to splicing, gene
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Table 2.2 Annotation framework to capture gene-level overlap to guide interpretation
Gene-level overlap
categories Description

ggNonOlap Genes that do not overlap any other gene

ggOlapDiffFuncMultStr  Overlapping genes that have different functions and are
in the same and opposite directions, i.e., a lincRNA
overlaps one protein-coding gene in the opposite
direction and also overlaps miRINA in the same
direction

ggOlapDiffFuncOppStr  Overlapping genes that have different functions and are
in the opposite direction

ggOlapDiffFuncSameStr  Overlapping genes that have different functions and are
in thesame direction

ggOlapMultFunc Same gene overlaps two other genes, one with same
function and the other with different functions (same
gene has two overlaps: 1. Protein_coding to protein
coding. 2. Protein_coding to lincRNA)

ggOlapSameFuncMultStr  Overlapping genes that have the same function and are
in the same and opposite directions, i.e., a protein-
coding gene overlaps one protein-coding gene in the
same direction and the other protein-coding gene in
the opposite direction

ggOlapSameFuncOppStr  Overlapping genes have same function and are in the
opposite direction

ggOlapSameFuncSameStr Overlapping genes have same function and are in the
same direction

regulations, and epigenetic factors (Hart, Komori, LaMere, Podshivalova, &
Salomon, 2013; Mitra, Das, & Chakrabarti, 2013; Ye et al., 2014).
However, before using any knowledge base, we need to be aware of
potential limitations and/or biases which may affect the final interpretation
of our RNA-Seq results. For example, pathways with the same name were
found to be inconsistent across independent knowledge bases (Bauer-
Mehren, Furlong, & Sanz, 2009; Mitrea et al., 2013); thus, the use of dif-
ferent pathway knowledge bases may lead to different interpretations of
the same result. Furthermore, although many knowledge bases are at the res-
olution of individual genes, meaning that annotations of isoform/exon
results obtained from RINA-Seq are going to be limited or misleading,
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within these same knowledge bases many genes either have very limited or
no annotation available (Khatri, Sirota, & Butte, 2012; Mitrea et al., 2013).
Moreover, many knowledge bases are curated by experiments performed in
different cell types at different times point under different conditions; how-
ever, these details are not always adequately captured, thus resulting in inac-
curate and/or redundant annotations (Khatri et al., 2012). Interestingly, as
many knowledge bases have been criticized for not being comprehensive
enough, ENCODE annotations has been criticized for maybe being too
comprehensive. From the production of 1640 datasets, using 24 experimen-
tal platforms on 147 different cell types, the ENCODE consortium reports
that 80.4% of the human genome displays some biochemical functionality in
at least one cell type (Qu & Fang, 2013). However, many question if
ENCODE’s definition of a functional element is too lenient, thus leading
to a very high false-positive rate of functional annotations (Doolittle,
2013; Eddy, 2012). This highlights how assessment of functional annotation
prior to its incorporation is key to ensure confidence in the downstream
interpretation. We note again that this is influenced by the primary question
of interest and trade-off between discovery and hypothesis testing.

5. SUMMARY

Throughout this chapter, we have focused on three major compo-
nents in the analysis of RNA-Seq data (Fig. 2.1). The choices made regard-
ing computational processing, statistical analysis, and frameworks for
interpretation should be driven by the primary research question. It is of
course critical that these decisions are made early during the initial experi-
mental design to ensure best chances for the success of the study. With the
rapid advances in technology and algorithms, the complexity will only
increase, adding additional considerations in each of the three components.
It is therefore critical for the full promise of routine brain transcriptome pro-
filing to be met that continual reevaluation and assessment of these compo-
nents are made.
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