


M e t h o d s  i n  M o l e c u l a r  B i o l o g y ™

Series Editor
John M. Walker

School of Life Sciences
University of Hertfordshire

Hatfield, Hertfordshire, AL10 9AB, UK

	 For other titles published in this series, go to
	 www.springer.com/series/7651



wwwwwwwwwwwwwww    



Genetic Epidemiology

Edited by

M. Dawn Teare

University of Sheffield,  Sheffield, UK



Editor
M. Dawn Teare
Health Services Research
School of Health and Related Research
University of Sheffield 
Sheffield, UK 
m.d.teare@sheffield.ac.uk

ISSN 1064-3745	 e-ISSN 1940-6029
ISBN 978-1-60327-415-9	 e-ISBN 978-1-60327-416-6
DOI 10.1007/978-1-60327-416-6
Springer New York Dordrecht London Heidelberg

© Springer Science+Business Media, LLC 2011
All rights reserved. This work may not be translated or copied in whole or in part without the written permission of 
the publisher (Humana Press, c/o Springer Science+Business Media, LLC, 233 Spring Street, New York, NY 10013, 
USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of 
information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology 
now known or hereafter developed is forbidden.
The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified 
as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights.
While the advice and information in this book are believed to be true and accurate at the date of going to press, 
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that 
may be made. The publisher makes no warranty, express or implied, with respect to the material contained herein.

Printed on acid-free paper 

Humana Press is part of Springer Science+Business Media (www.springer.com)



v

Preface

Genetic epidemiology is the study of the role of genes and environments on markers of 
health and disease risk in populations. It emerged as a mainstream discipline in the early 
1980s, arising from firm foundations laid by mathematical population genetics, clinical 
genetics, and statistical epidemiology. Though genetic epidemiology attempts to identify 
the many components of risk attributable to genes, environments, and interactions 
between these two factors, the course of the research towards this goal can follow many 
diverse paths. In the last few years, the success of genome-wide association studies in their 
identification of hundreds of disease susceptibility loci has brought this specialist field to 
the forefront of biomedical research.

Advances in molecular genetics will soon offer affordable means to measure or observe 
study participant’s genetic material at the sequence level as well as more detailed func-
tional data, such as gene expression. It is evident that genetic epidemiology projects 
increasingly require long-term collaboration between bioinformaticians, geneticists, clini-
cians, statisticians, and epidemiologists. As with any field that is making rapid advances, 
technologies, and methodologies are both developed and superseded quickly. However, 
in spite of the rapid changes in techniques, much of the basic language, models, and prin-
ciples have remained the same.

Interdisciplinary research requires good communication and understanding across the 
participating disciplines, and this book aims to provide a basic framework for this commu-
nication suited to newcomers to the field as well as experienced researchers and graduate 
level students. Statistical methods are applied in a wide range of disciplines, and this is one 
subject area that is well catered for by existing text books, particularly at the introductory 
level. This book assumes a basic level of competence with regard to statistical and probabi-
listic reasoning, so readers lacking confidence in this respect are guided towards more 
introductory texts [1–3].

Section 1 consists of three chapters covering the very basics of modern molecular 
genetics, the terminology and models frequently employed in genetic epidemiology, and 
an introduction to epidemiology. This section concisely presents most of the language and 
key concepts that are required to understand the more specific topics discussed in the 
subsequent sections.

Principles of genetic linkage analysis are outlined in Sect. 2. Section 3 contains five 
chapters that cover genetic association studies, including an overview chapter of genomic 
resources available through the Web.

Sections 4 and 5 contain some more specialist topics and three case studies where many 
of the concepts introduced in earlier chapters are illustrated with interpreted examples.

Those wanting more detail on how to apply statistical reasoning or how to use the 
necessary computational methods can move onto the more advanced range of textbooks 
which each have their own perspective. There are a good number of texts specifically for 
genetic epidemiology [4–10]. For many years, Jurg Ott’s “The Analysis of Human Genetic 
Linkage” [11] was the key source for researchers in gene mapping, though more recent 
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books also cover these methods [12–15]. The founder disciplines, population, and 
quantitative genetics, are well covered by many textbooks, and we refer to just a selection 
of these [16–20]. Statistical modellers and graduate researchers find the handbook of 
statistical genetics [21] and the encyclopaedia of biostatistics and genetic epidemiology 
comprehensive source material [22]. In addition to printed texts, there are extensive 
ranges of educational material available online. Resources supporting education in genet-
ics are particularly well developed [23–25].

I thank sincerely all those who have helped to bring this book together, particularly 
the co-authors. The content and emphasis of this book has been strongly influenced by 
both colleagues on the academic staff and students of the MSc in Genetic Epidemiology 
that was lead by Professor Chris Cannings at the University of Sheffield.

M. Dawn Teare
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Chapter 1

Molecular Genetics and Genetic Variation

Mohammed-Elfatih Twfieg and M. Dawn Teare 

Abstract

This chapter contains brief notes on molecular genetics, focusing on those aspects most frequently 
encountered in genetic epidemiology. The main sections cover the organisation and physical structure of 
genetic material, the mechanisms involved in transmitting genetic material from one generation to the 
next, and forms of genetic variation.

Key words: DNA, RNA, Recombination, Mutation, Genetic polymorphism, Meiosis, Chromosomes

Genetics is defined as the study of heredity, that is, the study of 
units or characteristics that can be transmitted from parents to 
offspring. The term “gene” has been in use for over a century, 
and its definition has evolved as the field of molecular genetics has 
developed (1). When used in the context of molecular genetics 
“gene” commonly refers to a segment of a nucleic acid molecule, 
usually a deoxyribonucleic acid (DNA) that encodes a ribonucleic 
acid (RNA) molecule. These RNA molecules are then used to 
synthesise polypeptides (proteins).

In cellular organisms, the genetic information is stored in 
stable DNA molecules, though in viruses the heritable infor-
mation can be transferred by RNA molecules. This genetic 
information is organised into chromosomes. A chromosome is 
defined as a long string of DNA which is capable of regulated 
replication and can be transmitted to its descendents through 
a reproductive cycle. The reproductive cycle is a process dur-
ing which chromosomes are copied and passed from a parent 
organism to an offspring organism.

1. The Basic 
Building Blocks  
of Heritable 
Information
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DNA and RNA are long molecules composed of smaller 
molecular units called nucleotides. Each nucleotide is composed 
of a sugar residue (deoxyribose or ribose), a nitrogenous base, 
and a phosphate group. There are two classes of nitrogenous 
base; the purines, adenine(A), and guanine(G); and the pyrimi-
dines, cytosine(C), and thymine(T). RNA differs from DNA in 
the sugar residue (ribose) and the nucleotide uracil (U) in place 
of thymine. The DNA double helix results from nucleotide base 
pair bonds causing two linear molecules to “pair” (see Fig. 1). 
These two paired molecules are said to be complementary, and 
this results because A specifically binds to T and C specifically 
binds to G.

The “ends” of the DNA are referred to as either the 3¢ or 5¢ 
end (pronounced “three primed” or “five primed”). This is due 

====G C===

=======C G=======

===G C====

=======G C=======

=======A T=======
=====A T=======
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major groove

Fig. 1. The double helix.
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to the conventional labelling of the carbon atoms constituting the 
sugar molecules. If a segment of DNA is described by writing 
down its sequence of nitrogenous bases (for example 
AGGTGTAAA), this is usually done for one of the paired strands 
and in the 5¢ to 3¢ direction, in the same orientation as genes are 
transcribed.

The DNA alphabet consists of only four letters, A, C, G, and T. 
This language contains the basic instructions for building proteins. 
The protein building process has two steps, first the relevant sec-
tion of DNA is transcribed into RNA, and then the RNA is trans-
lated into a sequence of amino acids which form a protein. The 
relation between specific base triplets (codons) of RNA and the 
associated amino acid is termed the genetic code (see Table  1). 
There are 20 amino acids and 64 possible codons. Several amino 
acids correspond to more than one codon, so there is redundancy, 
or we say the code is degenerate. Codons that correspond to the 
same amino acid are termed synonymous. The translation pro-
ceeds from the 5¢ end to the 3¢ end of the mRNA starting at an 
initiation codon (almost always AUG which specifies methion-
ine). It proceeds one codon at a time until a termination or STOP 
codon is reached. The string of codons between the START and 
STOP codon is called the open reading frame. The physical and 
chemical properties of a protein molecule are heavily determined 
by its sequence of amino acids.

The linear sequence of DNA is first used as a template for the 
transcription of an RNA molecule. The RNA molecule then forms 
the basis for constructing a linear sequence of amino acids which 
constitute a polypeptide product, the translation step. However, 
before the translation step takes place the RNA transcripts are 
processed. The processing involves adding chemical markers to 
sites on the transcripts and removing “non-coding” regions of 
the RNA (splicing). The segments of the gene transcripts which 
are removed are termed introns, and these are flanked by exons 
(which are retained). The terms intron and exon can refer both to 
the RNA and DNA sequence. The processed RNA is called 
messenger RNA (mRNA).

The steps involved in producing mRNA are conducted in 
the cell nucleus, while the translation step involves ribosomes 
and occurs in the cytoplasm. In complex organisms, only a frac-
tion of the DNA is expressed to give rise to an RNA product. 
Some transcribed RNA units are not destined to mRNA 
production and have a different cellular function. DNA sequence 
which is not translated directly into protein is termed non-coding 

2. DNA Function 
from Transcription 
to Translation
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DNA. The ratio of coding to non-coding DNA varies among 
Eukaryotes. Only a small proportion (less than 5%) of human 
DNA is coding DNA. Until recently, non-coding DNA was 
termed “junk” DNA obviously implying it had no use. However, 
accumulating evidence strongly supports gene regulatory roles 
for non-coding DNA (2, 3).

In animal cells, DNA is found both in the nucleus and mito-
chondria. A very limited number of genes are contained within 
the mitochondrial DNA. The mitochondrial chromosome is cir-
cular in mammals and consists of a purine-rich heavy (H) strand 
and a pyrimidine-rich light (L) strand. The human mitochondrial 
genome codes for 37 genes. Cells contain different numbers of 
mitochondria and within each mitochondrion multiple copies 
of the chromosome occur. Unlike the nuclear DNA, the human 
mitochondrial genome is 93% coding sequence (4).

Table 1 
The genetic code

First base

Second base

U C A w

U UUU,F UCU,S UAU,Y UGU,C
UUC,F UCC,S UAC,Y UGC,C
UUA,L UCA,S UAA,X UGA,X
UUG,L UCG,S UAG,X UGG,W

C CUU,L CCU,P CAU,H CGU,R
CUC,L CCC,P CAC,H CGC,R
CUA,L CCA,P CAA,Q CGA,R
CUG,L CCG,P CAG,Q CGG,R

A AUU,I ACU,T AAU,N AGU,S
AUC,I ACC,T AAC,N AGC,S
AUA,I ACA,T AAA,K AGA,R
AUG,M ACG,T AAG,K AGG,R

G GUU,V GCU,A GAU,D GGU,G
GUC,V GCC,A GAC,D GGC,G
GUA,V GCA,A GAA,E GGA,G
GUG,V GCG,A GAG,E GGG,G

Codons and corresponding amino acids (indicated with single letter abbreviation).
The codon codes for the amino acid indicated by the single letter in bold font. The 
single letter (and three letter) representation for the 20 amino acids is as follows: 
A (Ala) alanine, C (Cys) cysteine, D (Asp) aspartic acid, E (Glu) glutamic acid, F (Phe) 
phenylalanine, G (Gly) glycine, H (His) histidine, I (Ile) isoleucine, K (lys) lysine,  
L (Leu) leucine, M (Met) methionine, N (Asn) asparagines, P (Pro) proline, Q (Gln) 
glutamine, R (Arg) arginine, S (Ser) serine, T (Thr) threonine, V (Val) valine, W (Trp) 
tryptophan, Y (Tyr) tyrosine, and X labels a STOP codon
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The full set of chromosomes for an organism is termed its 
genome. The number of chromosome sets per cell nucleus is 
termed ploidy. The human genome consists of 23 pairs of chro-
mosomes and the mitochondrial chromosome. Most human 
cells, in common with the majority of mammals, are diploid (two 
copies of each chromosome). The adult human arises from a 
single diploid zygote, which results from the fusion of two gam-
etes which are haploid cells (a single copy of each chromosome); 
one donated by each parent. Normal gametes contain 22 auto-
somes and 1 sex chromosome. Normal human zygotes consist of 
22 pairs of autosomes and a pair of sex chromosomes.

There are two sex chromosomes labelled the X and Y. The Y 
chromosome is much shorter than the X and contains a short 
section which is homologous to a region on the X chromosome 
(the pseudoautosomal region). In this context, homologous means 
the regions exhibit highly specific similarity in DNA structure. 
When a pair of chromosomes is described as homologous, this 
generally means two distinct molecules which belong to the same 
chromosome group (for example, chromosome 8). Chromosome 
homology is very important during meiosis, and ensures that 
the equivalent or corresponding pairs of chromosomes align cor-
rectly. Females have two copies of X and males have 1 X and 1 Y. 
Hence, females can only transmit X chromosomes to their  
offspring, while males can transmit X or Y. The mitochondrial 
chromosome is passed to offspring through the maternal line only.

Cell division is required for the growth and maintenance of an 
organism, and in reproduction. In order for a cell to undergo cell 
division, it must first make a full copy of its genome. In DNA 
replication, a double-stranded DNA (dsDNA) molecule is copied 
to produce two identical daughter molecules, referred to as a pair 
of sister chromatids (see Fig. 2). DNA replication is termed semi-
conservative as each daughter helix consists of one parental strand 
and one new strand.

For a zygote (fertilised egg) to develop into a full adult diploid 
organism, mitotic cell division or mitosis is required. Among other 
things, mitosis requires that a single cell can make an exact copy 
or duplicate of its DNA so that the two resulting daughter cells 
contain the same full and identical complement of DNA that was 
present in the originator cell. So each daughter cell must receive 
exactly one copy of the DNA originally inherited from each parent. 

3. �Ploidy

4. DNA Replication 
and Cell Division
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In mitosis, the two copies of the genome separate, the nucleus 
splits into two, and each daughter cell receives one nucleus.

Meiosis is also a form of cell division requiring DNA replica-
tion, but its primary function is to create haploid cells, containing 
exactly one copy of each chromosome. During meiosis, a single 
diploid cell is processed into four haploid cells. This requires a 
DNA replication step and cell division as in mitosis, but then a 
further cell division results giving rise to haploid cells. Unlike 
mitosis where the objective is to produce genetically identical 
daughter cells, meiosis results in genetically different haploid cells 
through two mechanisms, independent assortment of homolo-
gous chromosomes and recombination.

In multicellular organisms, meiosis occurs only in the germ 
cells. Cell division presents and opportunity for a copying error to 
be introduced to the DNA through the replication process so the 
germ cells are set aside early in the development of the organism. 
The primary function of the germ cells is to create haploid cells 
for the transmission of genetic material to the next generation. 
The non-germ cells are referred to collectively as somatic cells.

There are three types of recombination that occur in normal cells; 
these are termed transposition, site-specific, and general. These 
three forms of recombination differ in their physical and molecular 

5. �Recombination

tetrad

pair of sister chromatids

chiasmata

Four recombinant chromatids.

Fig. 2. A schematic of recombination and crossing over.
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processes; however, here we only consider the products or 
outcomes of the processes. It is general recombination that is of 
the most interest in the study of heredity.

General recombination is the process by which parental DNA 
within a chromosome is shuffled during meiosis. Homologous 
pairs of dsDNA align and then exchange lengths of DNA by first 
cutting the strands in the same place and swapping the dsDNA at 
the breakpoint. The sites of the crossover or recombination are 
marked by chiasmata. General recombination occurs throughout 
the whole genome, though the frequency and chromosomal loca-
tion of recombination events differs between males and females. 
Figure 2 shows an example of the product of recombination for 
one tetrad of sister chromatids. This random process occurs within 
meiosis for each pair of chromosomes and the longer the chromo-
some, the more likely recombinations occur. As can be seen in 
Fig. 2, recombination results in a shuffling of the genetic material 
so that for each chromosome potentially four distinct chromatids 
can be transmitted to the gamete or next generation. Aspects of 
recombination are further discussed in Chapters 4 and 5.

Site-specific recombination occurs as the name suggests at 
specific chromosomal sites and has the function of integrating 
DNA from non-homologous chromosomes, such as assembling 
genes in specific cells. Recombination by transposition inserts a 
fragment of DNA into a new chromosomal location (5).

The human autosomes are each referred to by the numbers 1–22. 
The chromosomes are numbered in decreasing size with the 
exception of chromosome 21 which is slightly smaller than chro-
mosome 22. While all DNA is made up of sequences of nucleic 
acids, some parts of the chromosome contain highly repetitive 
sequences giving the DNA molecule-specific structural properties 
(6). All of the nuclear DNA chromosomes have a centromere and 
two telomeres (each end of the chromosome). Eukaryal telomeres 
are complex structures protecting the chromosome from degra-
dation. The telomeres may also assist in sister-chromatid pairing 
during meiosis.

Chromosomes can be studied under the microscope (cytoge-
netics) using staining techniques to identify regions on the 
chromosome. Each chromosome is partitioned into a p (short) 
arm and a q (long) arm by the location of the centromere. These 
two arms can be further subdivided by consideration of other 
landmark positions, for which a suite of banding techniques has 
been developed. The International System for Human Cytogenetic 
Nomenclature (ISCN) laid out the basic terminology for label-
ling banded chromosomes. Each region of each arm is partitioned 

6. Chromosome 
Structure and 
Nomenclature
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into regions. For example, the p arm of chromosome 1 contains 
three distinct regions and each region may be further partitioned 
into subunits with the specific region labelled, for example, 
1p31.2. The bands are labelled out from the centromere towards 
the telomeres. The terms, distal and proximal, describe the loca-
tion relative to the centromere. For example, “distal 3p” means 
the portion of chromosome 3p nearest to the telomere, whereas 
“proximal 3p” refers to the portion closest to the centromere.

The physical manner in which the DNA is stored in the 
nucleus changes depending upon the state of the cell. When cells 
prepare to undergo cell division, the chromosomes link up in 
homologous pairs and appear packaged into very highly condensed 
units. The DNA double helix is capable of several levels of coiling, 
which require nucleosomes for the DNA to be wound around. 
The nucleosome consists of a core of eight histone proteins. 
Double-stranded DNA is wound around the nucleosomes, giving 
the DNA a “string of beads” appearance. The string of beads, 
which is around 10 nm in diameter is then itself coiled into a 
chromatin fibre of 30 nm in diameter.

Though all adult cells descend from one single zygote cell, the 
many rounds of replication and cell division inevitably result in 
some changes (mutations) remaining undetected and hence 
unrepaired. The mutation may or may not have an impact on 
cellular function. This depends upon both the site and form of 
the mutation and the cell type in which it occurred. Of course, 
if the mutation occurs in the germ line, the mutation may be 
passed on to the next generation. The errors or mutations may 
be introduced during replication or be due to exposure to DNA 
damaging agents. An alteration in a single base of DNA may 
result in a codon specifying a different amino acid and hence result 
in a potential functional change in the resulting protein. Even 
with the extensive DNA repair machinery a small number of 
mutations do arise and they may become established. If a muta-
tion has no functional consequences, it is termed neutral.

During DNA replication, nucleotide mispairing occurs 
approximately every 1,000  bp. However, the DNA repair 
mechanisms work within the replication process to ensure very 
low levels of mismatching (around 10−10). Even this low rate of 
mutation leads to a significant number of accumulated mutations 
when considering all the cells in the adult organism.

Genetic mutation can take several forms, resulting in either a 
sequence state change or a change in the length of the sequence. 
A sequence change results where one or more base pairs have 

7. �Mutation
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changed state compared to the original sequence. The other class 
of mutation is a change in length of the piece of DNA sequence, 
loss or gain of some material. The simplest form of a change in 
state is a single nucleotide change, for example, the base A is 
replaced by C at the equivalent sequence position. If instead the 
base A is lost (or duplicated) in the replicated DNA, this would 
be classed a deletion (or insertion).

Some sites within DNA are more prone to mutation, these 
sites include satellite DNA. The satellite DNA consists of highly 
repetitive sequences which are important for chromosome struc-
ture and function. The microsatellite class have been very fre-
quently used as genetic markers due to their presence throughout 
the genome and polymorphic nature of the variants. Microsatellites 
typically consist of dinucleotide repeats (such as CA or TA). At the 
respective genomic site, there are then variable numbers of these 
repeats seen in individuals. When a repeat is copied with error, 
the descendent cell may receive more (inserted) or less (deleted) 
copies of this tandem repeat.

On a larger scale, a length of sequence may be cut from one 
genomic site and inserted into another (translocation). An inver-
sion results when a length of sequence appears to cut and rotate 
but pasted at the same original site.

The term mutation is frequently reserved for describing the direct 
result of a change, or the change itself. Hence, if a change in 
sequence is seen between, say, a normal cell and a cancer cell 
within an individual, it will be described as a mutation. Similarly, 
if an offspring has presented an allele not present in either parent, 
then a mutation is said to have occurred. Once a mutation has 
occurred and is potentially transmissible to offspring in it is termed 
a genetic variant. Variants with a population frequency higher 
than 1% are classed as polymorphisms; below this threshold they 
are termed rare variants. If a variant has no apparent functional 
consequences, it is therefore potentially useful as a neutral genetic 
marker. This means it can be used to effectively “mark” the state 
of the DNA at a specific location (i.e. where the variant resides in 
the genome) and thereby enables DNA molecules from different 
origins to be studied for similarities and differences. In order for 
a marker to be useful in this context, it needs to be highly poly-
morphic, that is to have many frequent alleles, resulting in a high 
probability that a randomly studied individual will be heterozygous 
at this marker. In the 1980s and early 1990s, microsatellite DNA 
markers were very popular in human genetic linkage studies as 
they were individually highly polymorphic and evenly spaced 

8. Genetic 
Polymorphism  
and Genetic 
Markers
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throughout the genome. However, their highly polymorphic 
nature was also associated with technical difficulties.

Over the last decade, there has been a general shift towards 
using the individually less informative single nucleotide polymor-
phism (SNP) markers. These variants generally have only two 
alleles, but due to their high density in the genome and the fact 
that SNP variants are technically easy to genotype using high 
throughput technology these are now routinely employed.

Structural genetic variation is used to describe variants where 
a large length of DNA sequence (typically greater than 1,000 bp) 
is duplicated or deleted (7). The extent of this variation in human 
genomes is still being characterised, and this form of genetic vari-
ation is considered in the later Chapter 13.

Factors that are heritable (transmitted from a parent to offspring, 
or from cell to daughter cell) but are not seen at the DNA 
sequence level are termed epigenetic. The most well studied of 
these factors is DNA methylation (see Chapter 14). In mammals, 
methylation occurs preferentially at C residues. Cytosine bases 
that occur immediately upstream (i.e. 5¢) of guanine residues are 
frequently methylated. The effect of this is to make the chromatin 
functionally inactive at these methylated sites. Methylation is an 
important mechanism for functional regulation. Studies of gene 
expression observe differential allelic expression, assumed to arise 
due to differential levels of allelic methylation (8). Imprinting 
relies on a form of methylation where the allelic effects on pheno-
type depend upon whether the allele was inherited from the 
mother or the father. The quantitative extent of methylation is 
currently quite difficult to measure with accuracy.

References

9. Methylation  
and Demethylation 
of DNA

1.	 Gingeras, T.R. (2007) Origin of phenotypes: 
genes and transcripts. Genome Res 17, 
682–690.

2.	 Brent, M.R. (2008) Steady progress and 
recent breakthroughs in the accuracy of auto-
mated genome annotation. Nat Rev Genet, 
9, 62–73.

3.	 Mercer, T.R., Dinger, M.E., Mattick, J.S. 
(2009) Long non-coding RNAs: insights into 
functions. Nat Rev Genet, 10, 155–159.

4.	 Strachan, T., Read, A.P. (eds.) (2004) Human 
Molecular Genetics, 3rd edn. Garland Science, 
New York.

5.	 Ringo, J. (ed.) (2004) Molecular events of recom-
bination, in Fundamental Genetics. Cambridge 
University Press, Cambridge, pp 124–135.

6.	 Ringo, J. (ed.) (2004) Chromosomes in 
Eukarya, in Fundamental Genetics. Cambridge 
University Press, Cambridge, pp 34–42.

7.	 Feuk, L., Carson, A.R., Schere, S.W. (2006) 
Structural variation in the human genome. Nat 
Rev Genet 7, 85–97.

8.	 Cheung, V.G., Spielman, R.S. (2009) Genetics 
of human gene expression: mapping DNA 
variants that influence gene expression Nat 
Rev Genet 10, 595–609.



13

M. Dawn Teare (ed.), Genetic Epidemiology, Methods in Molecular Biology, vol. 713,
DOI 10.1007/978-1-60327-416-6_2, © Springer Science+Business Media, LLC 2011

Chapter 2

Terminology, Concepts, and Models in Genetic Epidemiology

M. Dawn Teare and Mauro F. Santibàñez Koref 

Abstract

Genetic epidemiology brings together approaches and techniques developed in mathematical genetics 
and statistics, medical genetics, quantitative genetics, and epidemiology. In the 1980s, the focus was on 
the mapping and identification of genes where defects had large effects at the individual level. More 
recently, statistical and experimental advances have made possible to identify and characterise genes asso-
ciated with small effects at the individual level. In this chapter, we provide a brief outline of the models, 
concepts, and terminology used in genetic epidemiology.

Key words: Population genetics, Mendelian segregation, Kinship, Identity by descent, Genetic 
components of variance

Genetic epidemiology studies the influence of genes and environ-
ment on measures of health and disease susceptibility in popula-
tions. This discipline emerged relatively recently and brings together 
established methodologies arising from population genetics, quan-
titative genetics, medical genetics, and epidemiology. Much of the 
terminology currently used was conceived when little was known 
about the molecular mechanisms mediating inheritance (1). The 
term gene is now frequently used to refer to a functional segment 
of DNA, which is transcribed into RNA and may code for a pro-
tein. However, within the field of population genetics “gene” 
continues to be used in its original meaning, and refers to the 
basic unit of heredity. As with any speciality the terminology has 
become specialised, and this in itself can form a potential barrier to 
newcomers. The purpose of this chapter is to present the basic 
terminology and outline the basic models used in genetic 
epidemiology.

1. Introduction
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Gregor Mendel was the first to propose a discrete model to explain 
the inheritance of genetic factors and their impact upon an organ-
ism’s phenotype (2). By phenotype we mean an individual’s mea-
surable characteristics or traits. When Mendel reported the results 
of his experiments on pea plants in 1865, he focused his attention 
on qualitative phenotypes of his plants, such as pea seed coat 
shape (wrinkled vs. round) or flower colour (white vs. violet). He 
postulated a mechanism of inheritance in which each organism 
carries two factors that determine together the organisms’ pheno-
type and that an adult organism can only transmit one of the two 
factors to each of its offspring.

With respect to the phenotype of wrinkled seed coat or round 
seed coat, he labelled the two possible factors r and w. For this 
phenotype, he proposed that the factor r was dominant to w (or 
conversely w was recessive to r). This means that the recessive 
phenotype of “wrinkled” is seen only in peas with two copies of 
the recessive factor w. Conversely, those pea plants with one or 
two copies of the dominant factor r would express the dominant 
phenotype of round seeds. We would now refer to these factors r 
and w as alleles of the gene determining the variation in seed coat 
shape. The physical location of this gene in the pea genome is 
referred to as the locus (plural loci). There are examples of alleles 
that are codominant, where in individuals carrying two different 
alleles the phenotypes characteristic for both alleles are displayed. 
For example, the ABO human blood group system has three 
classes of alleles, A, B, and O. The allele O is recessive with respect 
to A or B, but A and B are codominant, this gives rise to a four 
phenotype system (namely, blood groups A, B, AB, and O).

Mendel’s extensive experiments on peas led him to propose 
two laws: the law of segregation and the law of independent 
assortment. The law of segregation stipulates that when an organ-
ism produces gametes the two copies of the gene separate so that 
each gamete randomly receives one allele. The law of indepen-
dent assortment states that alleles at different loci are inherited 
independently from alleles at other loci, or that alleles of different 
genes segregate independently during gamete formation. We now 
know that genes are physically linked to other genes due to their 
location on chromosomes. Mendel happened to study traits aris-
ing from unlinked loci. The genes determining his seven pheno-
types are each located on a different chromosome. Though this 
was true for the traits Mendel studied, the law of independent 
assortment is generally true when loci are not genetically linked. 
We now use the term Mendelian segregation to describe the pat-
tern of allele transmission from one generation to the next, meaning 
that the probability of a parent transmitting one specific allele to 
one specific offspring is 50%.

2. Mendelian 
Genetics  
and Modes  
of Inheritance
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The pair of alleles found at a single locus in a diploid organism 
is referred to as the genotype. At a multi-allelic locus, such as ABO 
described above, there are six possible genotypes (AA, AB, AO, 
BB, BO, OO). When the two alleles are of the same type (e.g. 
AA) the individual is said to be homozygous at that locus. When 
both alleles are not the same, the individual is described as 
heterozygous at that locus. Loci are also defined using descriptors 
of their position in the genome (see Chapter 4).

Mendel’s model allows us to introduce the concept of a pen-
etrance function. The penetrance function is used in both dis-
crete and quantitative genetics, in the discrete setting it is the 
probability of having the trait or phenotype state of interest con-
ditional on the genotype. For example, for Mendel’s seed shape 
experiment we discussed earlier, there are three possible geno-
types labelled ww, rw, and rr. If we define round as the normal or 
common state and wrinkled as the phenotype of interest, then 
the penetrance function is defined by the three conditional 
probabilities:

	 1.	Prob(wrinkled/rr) = 0
	 2.	Prob(wrinkled/rw) = 0
	 3.	Prob(wrinkled/ww) = 1

Here, the mode of inheritance for the phenotype wrinkled is 
recessive.

Sexual reproduction is a mechanism by which the genetic units 
are transmitted from one generation to the next. Mendel’s model 
came from his experiments on peas. The diploid system that he 
discovered determines the distribution or patterns of phenotypes 
in a population. To illustrate these patterns, let us consider a locus 
that has two types of alleles which we designate as alleles of type 
A and of type B. The population relative frequency of the alleles 
of type A (termed gene frequency or allele frequency) is denoted as 
p. As there are only two types of alleles at this locus, and on a 
single chromosome the allelic state must be A or B, the frequency 
of alleles of type B is (1 − p). It is important to remember that the 
population gene frequency refers to the population of chromo-
somes and not diploid organisms, whereas the term genotype 
refers to the type of the pair of alleles found at the locus in a single 
(diploid) organism. In large populations, when alleles are inher-
ited independently, the expected frequencies of the genotypes in 
each generation are a simple function of the allele frequency, and 
they do not vary from one generation to the next. When such 
a state exists, the locus is said to be in Hardy–Weinberg Equilibrium 

3. Population 
Genetics
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(HWE). Under these circumstances, the expected genotype frequencies 
can be derived from a binomial distribution, where the probabil-
ity of success is p and the number of trials is two. The three geno-
types AA, AB, and BB should be seen in the frequencies p2, 
2p(1 − p), and (1 − p)2.

The relation above (which can be extended to multi-allelic 
systems) holds under random mating, when alleles are inherited 
independently, and in the absence of selection or mutation. 
Random mating or panmixia means that sexual partners ran-
domly select their partner, i.e. without reference to their geno-
typic state, their degree of relatedness or physical proximity. When 
sexual partners do exhibit some preference or selection, this is 
termed non-random mating. Mutation is the mechanism through 
which new alleles arise or one allele may change from one type to 
another.

HWE also implies that the gene frequency remains constant 
from one generation to the next. For this to be the case, all geno-
types must be equivalent with respect to viability or fitness of the 
organism. Viability can be thought of as an individual’s probabil-
ity of survival or the fraction of the population surviving to reach-
ing maturity. If organisms of one genotype have an advantage 
over another genotype (e.g. a better chance of survival to repro-
ductive age), then that genotype group will be over represented 
in the parents of the next generation. The presence of HWE is 
often used to confirm that a locus is neutral (no variation in 
fitness associated with genotype variation), and hence may be 
useful as a genetic marker.

The previous section requires a large population for these general 
properties to hold. However, all large populations must have 
gone through a small population phase at some time in their his-
tory. When the population is small, HWE may not hold even in 
the presence of random mating and equal viability. This is due to 
the random sampling of the gametes, and results in the popula-
tion gene frequency varying from one generation to the next 
(random genetic drift). As the population size increases, the effect 
of genetic drift reduces and once the population becomes suffi-
ciently large the gene frequency becomes effectively stabilised.

When a new population is established from a small number of 
founder individuals, the founder effect means the descendent pop-
ulation’s genetic variation is limited by the genetic diversity of the 
founder population. When isolated populations remain at small 
numbers over several generations (through disaster or migration 
to new territory), this is described as a bottleneck, and a significant 
amount of genetic variation can be lost from the gene pool. The 
founder effect can be responsible for the different genetic profile 
in neutral markers seen between populations (3), and also is 
responsible for some of the different rates of genetic disease seen 
when comparing isolated populations (4).

3.1. Effects of 
Population Size
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When considering more than one genetic locus, alleles tend to be 
co-transmitted to the same gamete when they are located physi-
cally close on the same chromosome. Genetic linkage between 
loci is generally a consequence of their being located on the same 
chromosome. When the segregation of alleles is followed through 
the generations in a pedigree, the allelic states tend to be co-inherited 
as the loci are “linked” by both occurring on the same chromo-
some, forming a haplotype (see Chapters 4 and 5).

The term linkage disequilibrium (LD) is used in a slightly 
different context. Rather than relating to the probability of an 
exchange of information at meiosis, LD is observed at the popu-
lation level. LD is a general term which exists when allelic asso-
ciation is seen between two loci. Sometimes, this is referred to 
as non-random association of alleles. LD can arise though sev-
eral mechanisms: by chance in small populations, by new muta-
tion and or selection, or by intermixture of previously isolated 
populations (5).

Such association arises when alleles at distinct loci are found 
together in gametic phase (the alleles originate from the same 
gamete) at frequencies different to those expected based on the 
allele frequencies alone. The existence of LD does not necessarily 
imply that the loci are “linked”, i.e. are in close proximity on a 
chromosome, however, when two loci are in close physical 
proximity, LD implies that the population frequency of the two locus 
haplotypes are not as expected based on the allele frequencies. 
For example, consider two genetic loci with alleles labelled A and 
B at locus 1 and C and D at locus 2. At the population level, these 
alleles occur at the following frequencies A: 30%, B: 70%; C: 40%, 
D: 60%. While these loci may be “linked” and hence the probabil-
ity of recombination between them at meiosis may be less than 
0.5, this “linkage” is not seen at the population level. After many 
generations, you would expect the alleles to be randomly associ-
ated with haplotypes occurring at frequencies dictated by the 
product of their population allele frequencies AC: 12%, AD: 18%; 
BC: 28%, BD: 42%. If the population haplotype frequencies differ 
from these expected numbers, the loci are said to be in LD. The 
extent of LD is quantified by the disequilibrium parameter D (6). 
LD is discussed further in Chapter 6.

Mendel’s laws imply certain patterns of allele sharing between 
pairs of relatives. For example, consider the four alleles found in 
two siblings at one specific locus, we would expect the siblings to 
share alleles inherited from their shared or common ancestors, 
the probability that they would share 0, 1, or 2 alleles inherited in 
common is 0.25, 0.5, and 0.25, respectively. If we consider half 
siblings, they are equally likely to share exactly 0 or 1 allele 
through their common parent, but they cannot share both alleles. 
In this example, we are considering the probability that they share 
an allele inherited from a common ancestor, these alleles are said 

3.2. Linkage 
Disequilibrium

3.3. Kinship, Gene 
Identity by Descent 
and Inbreeding
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to be identical by descent (IBD) (each allele is a descended copy 
from a common ancestor). Two alleles may be identical but have 
not been inherited from a recent common ancestor. In this case, 
the alleles are said to be identical by state. The relationship between 
a pair of individuals, labelled X1 and X2, can be summarised by 
the coefficient of kinship y(X1, X2) (7). This coefficient is defined 
as the probability that an allele randomly sampled from X1 and an 
allele randomly sampled from X2 at the same locus are identical 
by descent. The coefficient of inbreeding a(X) for a single indi-
vidual X, is defined as the probability that the pair of alleles that 
constitute the genotype of individual X at an arbitrary locus are 
IBD. The inbreeding coefficient for individual X is equal to the 
kinship coefficient for the parents of X. The gene identity states 
comprise the possible IBD sharing patterns for a pair of individu-
als. In the absence of inbreeding, pairs can share 2, 1, or 0 alleles 
IBD as argued above. The expected IBD sharing probabilities for 
each of these states are reported as a vector k = (k2, k1, k0). Pairs of 
individuals with the same kinship coefficient do not necessarily 
have the same k vectors. Table 1 lists some kinship coefficients 
and IBD sharing probabilities. It is interesting to note, though 
obvious from Mendelian segregation, that although parents and 
offspring have the same expected kinship as full siblings, the par-
ent offspring pairs always share exactly one allele IBD.

The terms phenotype and trait are often used interchangeably, 
however, trait is commonly used in the quantitative context, and 
phenotype in the qualitative context. A state of health such as 
diagnosis of diabetes (phenotype is “affected with diabetes”) is 
often the result of consideration of a single quantitative trait, such 
as blood glucose levels; if the level of the trait is above a specified 

4. Quantitative 
Genetics

Table 1 
Kinship coefficients and IBD sharing probabilities 
for relative pairs

Relative pair y (k2, k1, k0)

Full siblings 1/4 (1/4, 1/2,1/4)

Half siblings 1/8 (0, 1/2, 1/2)

Monozygous twins 1/2 (1, 0, 0)

Parent offspring 1/4 (0, 1, 0)

Cousins 1/16 (0, 1/4, 3/4)
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threshold, the individual is classed as affected. Most clinical 
conditions fall into the discrete or qualitative phenotype, though 
the diagnosis may reflect the presence of an extreme value for the 
underlying quantitative trait, such as the relationship between 
body mass index (BMI) and obesity.

The terminology introduced so far has focussed on the influ-
ence of genes on discrete or qualitative phenotypes. In the late 
nineteenth century, Francis Galton first used the term “regres-
sion” when describing the correlation he observed between traits 
measured in parents and offspring such as height (8). Galton’s 
work laid the foundations for later researchers who made infer-
ences about genetic models or trait inheritance by applying statistical 
methods to observations on pairs of relatives.

While quantitative and Mendelian genetics use the same princi-
ples regarding the inheritance of genes, in the former the 
penetrance function (the relationship between genotype and 
phenotype) links a discrete with a continuous variable. A normally 
distributed quantitative trait can be summarily described by its 
mean and variance. Quantitative genetics models assume that 
genetic variation contributes to phenotype variation. Hence, the 
quantitative phenotype observed in an individual, the phenotypic 
value, can be thought of as made up of several components, one 
of which may be due to genes and another due to environment. 
This allows us to decompose the trait value seen in an individual 
into a linear expression.

	 = + +g,c g cGY Em

where Yg,c represents the phenotype value observed in a person 
with genotype g and environment c. The genetic (Gg) and environ-
mental (Ec) contributions are generally represented as deviations 
from a population mean m (3). By breaking down the phenotype 
into these components and using Mendelian segregation to derive 
the expected IBD sharing between pairs of relatives, we can model 
the “correlation” between pairs of relatives. The model can also be 
used to predict trait values but is more usually used to assess the 
evidence for a genetic component. In the simplest form, we might 
assume that the genetic contribution to the trait is due to a single 
locus with two alleles. A locus with two alleles, A and A′, has three 
associated genotypes AA, AA′, and A′A′. Each of these genotypes 
makes a specific contribution to the trait value. However, the con-
tribution is rescaled so that the origin is at the value mid way 
between the two homozygote (AA and A′A′) values. If the alleles 
act in a simple additive fashion, the heterozygote value is exactly 
the mid-point between the two homozygote values. If there is an 
interaction between alleles at the same locus (dominance), then the 
value associated with the heterozygote, d, will deviate from this 

4.1. Components  
of Variance Models
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mid-point. According to our new scale illustrated on Fig. 1, the 
homozygote value ranges from −a to +a. If d = 0, we say there is no 
dominance, the alleles are codominant, or act additively. If d = −a, 
then A′ is recessive to A, if d = a, then A′ is dominant to A. If d is 
greater than +a or less than −a, then we have overdominance. The 
degree of dominance is sometimes reported as d/a. This model 
can be extended to allow for multilocus genotypes, where each 
locus contributes additive and dominance effects.

We can extend this notation to multiple loci, say we have 
three loci with alleles A and A′, B and B′, and C and C′ adding 
a suffix to indicate the source of the genotype effects. The 
genotypic value associated with the compound genotype AA′, 
BB, and C′C′ would be dA − aB + aC. This assumes no interac-
tion between alleles at different loci. Interaction between 
genotypes at distinct loci is termed epistasis. When studying 
the correlation between pairs of relatives in a pedigree, it is impor-
tant to remember that it is the allele that is transmitted from 
one generation to the next and not the genotype values directly. 
For this reason, “breeding values” are sometimes used when 
referring to the genotypic values of parents (3). The breeding 
value is the additive genotypic value, as the dominance effect 
arises only in the individual who receives the interacting alleles; 
it is not transmitted directly (though covariance due to domi-
nance effects can be seen in some relative pairs).

This model describing the relationship between phenotype 
and genetic factors gives rise to a variance components framework. 
The total (or population) trait variance is made up of variance 
components attributable to the genetic component and the envi-
ronmental component.

	 2 2 2 2 2 2
p A D l c e= + + + +s s s s s s

The terms above for each component of population variance 2
p( )s  

are defined as the additive variance 2
A( )s , dominance variance 

Fig. 1. Illustrating the relationship between the genotypes, the genotypic values and the phenotypic values. In this linear 
model, the impact of the genotype on the quantitative trait is described in terms of three parameters, m, a, and d.



21Terminology, Concepts, and Models in Genetic Epidemiology

2
D( )s , common environment variance 2

c( )s  and random non 
attributed variance 2

e( )s . Epistatic variance 2
l( )s  or the variance 

attributable to interaction between loci, is included in the expres-
sion above for completeness but is very difficult to characterise in 
practice. The expression above assumes that there is no interac-
tion between the environment and genotype. The genetic vari-
ance is the sum of all the genetic components 2 2 2

A D l( )+ +s s s . 
While we have stated the model in terms of these components, 
these components cannot be identified by sampling from a popu-
lation, unless relative pairs are studied. The expected sharing of 
alleles between pairs of relatives enables inferences to be made on 
the components of genetic variance. We can write down the 
expected covariance for pairs of relatives (see Table 2).

While Mendelian segregation dictates how the alleles are 
shared among relatives, the degree of shared environment is 
more open to discussion. In Table 2, you can see that only full 
sibs are assumed to share a common sibling environment. This 
type of shared environment is commonly assumed, but other 
models can be proposed depending upon the characteristic of 
interest (9).

We have presented a framework where a trait value is made 
up of contributions from many sources. The genetic component 
may arise from additive effects of alleles, an interaction between 
alleles at the same locus and interaction between genotypes 
at different loci. Similarly, the influence of the environment 
can be dissected in more detail. Particularly, if we want to 
know how much of the correlation in relatives is due to shared 
environment.

Table 2 
Expected co-variances between relative pairs

Relative pair Expected covariance

Full siblings 2 2 2
A D c

1 1

2 4
+ +s s s

Half siblings 2
A

1

4
s

Monozygous twins 2 2 2
A D c+ +s s s

Parent offspring 2
A

1

2
s

Cousins 2
A

1

8
s
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The magnitude of the genetic contribution is frequently  
summarised as heritability. Heritability is defined as the proportion 
of the trait variance that is attributable to genetic variation. It is 
therefore the ratio of the genetic variance compared to the total 
variance. Heritability in the broad sense (H 2) includes additive, 
dominant, and epistatic effects. Heritability in the narrow sense 
(h 2) restricts attention to additive effects only. Given these defini-
tions heritability must always lie between 0 and 1. Values close to 1 
suggest a strong genetic component with most trait variation due 
to genetic variation. Conversely, values close to zero suggest that 
genetic variation only weakly contributes to trait variation. Caution 
needs to be used when comparing heritability estimates from dif-
ferent populations as the heritability is defined relative to the popu-
lation phenotypic variation and hence is population specific.

In human genetics, twin studies are commonly used to establish 
and identify the strength of a genetic component. This study 
design uses the variance component framework and is frequently 
used to estimate heritability. Monozygous (MZ) twins are geneti-
cally identical, whereas dizygous (DZ) twins can be thought of as 
age-matched siblings. So the classic twin study design (contrast-
ing covariances between MZ and DZ twins) offers a means to 
estimate the components of genetic variance. If the MZ and DZ 
correlation are similar, then this would be evidence that any 
genetic component is weak. However, if the MZ correlation is 
greater than the DZ correlation, this is evidence for a genetic 
component. As can be seen from the table the co-variance is a 
function of three parameters, but there are only two equations to 
link the observations and the model. Hence, only two of the three 
components of variance can be estimated and investigators can 
only report if the evidence for a shared environmental component 
is stronger than the evidence for a dominance component (10). If 
the basic twin design can be extended to include observations on 
other relatives, such as additional siblings or parents, more spe-
cific components of variance can be modelled and potentially esti-
mated (see Chapter 11).

One extension to the twin study is to compare co-variances 
between twins reared together and those reared apart (adoption 
studies). This design allows the estimation of both the dominance 
and shared environment component. A common criticism of the 
twin study design is the validity of the key assumption that the 
shared environment is equivalent for MZ and DZ twins. This may 
not be valid for the analysis of behavioural traits as MZ twins, and 
DZ twins can have socially very different experiences (10).

When a single gene has a strong influence on a trait, i.e. a large 
a, then this gene is called a major gene and the allele-specific 

4.2. Heritability

4.3. Twin Studies

4.4. Major Genes  
and Polygenes



23Terminology, Concepts, and Models in Genetic Epidemiology

effects of the gene can be identified, through the model outlined 
above. If, however, many genes are involved, it becomes diffi-
cult to isolate the allele-specific effects, and it is more common 
to then assume that the several (unlinked) genes involved all 
have a small but equivalent effect. As we allow more loci to 
contribute to the variation, the individual allelic effect must 
reduce. If we then further assume that all the alleles at these 
unlinked loci have equivalent and only additive effects, then 
the distribution of the compound genotypic values will 
approach the normal distribution. This leads to the polygenic 
model, the joint effect of an infinitely large number of loci 
results in polygenic values distributed about a mean of zero and 
variance 2

PGs .
The mixed model (11) allows for both a major gene and a 

polygenic effect, assuming no interaction between these two 
components. Hence, the variation in a phenotype can be attribut-
able to a major gene effect, a polygenic effect and environmental 
effects. It is important to note here that the source of the envi-
ronmental sharing is not directly measured but is often assumed 
due to familial factors.

The framework described in Section 4 relates to the variation 
in quantitative phenotypes, which lend themselves naturally to 
a variance component model. However, the same approach 
can be used to make inferences about binary traits with one 
extension to the framework. Instead of assuming that the 
model predicts phenotype, we allow the model to predict an 
underlying latent variable liability. The link between the model 
and our binary phenotype is established by defining a threshold. 
If an individual’s liability value exceeds a threshold, the indi-
vidual becomes affected with the disease. This extension 
enables the calculation or estimation of risk of disease or pen-
etrance function. In some variable age at onset models a log-
normal distribution of risk is assumed rather than the liability 
threshold (12).

Approaches to identify the genetic component for binary 
phenotypes frequently take a different form than for quantita-
tive traits. If a major gene is suspected, the genotype-specific 
penetrance estimates will be reported along with an estimate of 
disease allele frequency. These models can be fitted without 
the need for a variance component framework. Often families 
have been selected due to the presence of at least one relative 
with the disease or phenotype of interest. This individual is 

5. Familial 
Aggregation, 
Segregation 
Analysis, and 
Qualitative Traits
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designated as the proband. Proband-based sampling is common 
when a disease is rare, and it is expensive to study and record 
information on families who have no cases of disease occur-
ring. The manner in which such families are identified and the 
members of the family studied is called the ascertainment 
scheme. This biased sampling scheme, resulting in an oversam-
pling of affected individuals, needs to be taken account of in 
any subsequent analysis so that statistical inferences are not 
biased. Further constraints can be applied in segregation analysis 
to ensure that the model predicts incidence or prevalence rates 
consistent with population data.

Simple Mendelian traits or simple genetic models imply that 
one genotype determines one phenotype, such as the dominant 
and recessive examples above for Mendel’s peas. A deviation from 
this simple one to one correspondence is termed “complex”. 
A disorder is called a single gene disorder when it only arises when 
mutations occur in a specific gene. However, if the probability of 
being affected with the disease conditional on the risk genotype is 
less than 1, then the term incomplete penetrance is used. Cystic 
Fibrosis (CF) is an example of a single recessive gene disorder 
with variable severity of phenotype and showing extensive allelic 
heterogeneity. Over 1,000 distinct mutations (alleles) in the CFTR 
gene have been described, and the clinical phenotype varies from 
severe when detected soon after birth, to mild and clinically unde-
tectable until well into adulthood. The term locus heterogeneity is 
used when several genes can each independently give rise to the 
same phenotype. In qualitative phenotype analysis, the term spo-
radic case or phenocopy is used to indicate an affected individual 
whose phenotype has arisen due to an environmental cause and 
not the genetic predisposition. When the model permits pheno-
copies and incomplete penetrance, both phenotypes (e.g. affected 
and unaffected) are possible for all genotypes, hence all pene-
trance probabilities are greater than 0.

Rather like the study of correlations between pairs of rela-
tives, observed familial aggregation of binary phenotypes is 
often reported as the familial relative risk or familial recurrence 
ratios (FRR) (13). These are simply defined as the risk of disease 
in relatives of a case compared to the risk in the general popula-
tion. The FRR can be reported for all relatives within kinship 
groups, such as first degree relatives, or by the specific form of 
the relationship, for example, sibling. Though a genetic model 
gives rise to predictable patterns of FRR, the FRR merely sum-
marises the pattern of risk and does not necessarily imply a 
genetic cause to a correlation in risk. The FRR are often referred 
to as the “lambda” risks (Greek letter l), with a subscript indi-
cating which relative of the case is considered. Commonly con-
sidered relative types are the sibling (l

s), parent (lp), and 
offspring (l0).



25Terminology, Concepts, and Models in Genetic Epidemiology

The use of segregation analysis and the variance components 
approaches rely only on measuring the phenotypes in relatives. 
Large extended pedigrees or observations on many different types 
of relative pair enables the exploration of more complex models 
than those outlined above. However, when only phenotype data 
is available, these models lack the power to distinguish between 
common genes with low penetrances and the polygenic compo-
nents. Advances in both molecular genetics and statistical com-
puting are now making it feasible to identify and characterise 
locus-specific effects, by incorporating measured genotypes into 
the analysis. It is the identification and characterisation of the 
environmental components that present the next major challenge 
to the field.
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Chapter 3

An Introduction to Epidemiology

Cother Hajat 

Abstract

Epidemiology as defined by Last is “the study of the distribution and determinants of health-related 
states or events in specified populations and the application of this study to the prevention and control of 
health problems”. Traditional epidemiological studies include quantitative and qualitative study designs. 
Quantitative study designs include observational and interventional methodology. Observational meth-
ods describe associations that are already present at population (descriptive) or individual (analytical) 
level. Although they form the mainstay of epidemiological studies, observational methods are prone to 
bias and confounding. These can be dealt with by various means involving both the study design and 
statistical analysis. Interventional methods involve changing variables in one or more groups of people 
and comparing outcomes between those with the changed and unchanged variable. Interventional stud-
ies can more readily account for bias (such as through randomisation) and confounding (such as through 
controlling) as is seen in randomised, controlled trials. Qualitative studies employ non-numeric methods 
to obtain “richer” information on how people perceive or experience situations. Much of epidemiology 
and epidemiological methods have been stable for many years. There are, however, emerging issues in 
epidemiology, including those of causal inference, counterfactuals and Mendelian randomisation, among 
others. There are also several modern and emerging uses of traditional epidemiological techniques in the 
fields of infectious disease, environmental, molecular and genetic epidemiology.

Key  words: Observational studies, Interventional studies, Bias, Confounding, Emerging 
epidemiology

Epidemiology was described by Last in 1995 as “the study of the 
distribution and determinants of health-related states or events in 
specified populations and the application of this study to the pre-
vention and control of health problems” (1). Epidemiological 
studies are usually focused on a geographical unit, such as a sec-
tion of the population and are one of the major tools employed in 
improving public health. The scope of epidemiology is large and 
includes both interventional and observational studies.

1. Traditional 
Epidemiology
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Interventional studies involve changing a variable in one or more 
groups of people and then comparing outcomes between those 
with the changed and unchanged variable. The commonest form 
of interventional study used in epidemiology is that of the ran-
domised controlled trial although other forms of trial are also 
commonly found. Randomised controlled trials are not covered 
in detail here.

The mainstay of epidemiology is the observational study design, 
which may be descriptive or analytical.

Descriptive studies describe patterns of disease occurrence within 
a population and can include study designs, such as ecological 
(also termed correlational) studies, cross-sectional surveys, case-
reports and case-series. As the data used are often routinely col-
lected, these are the least time and resource intensive study 
designs. Although commonly used, it is difficult to convincingly 
demonstrate causation between an exposure and outcome using 
descriptive study designs. Also, as the findings are at population 
level, they do not necessarily reflect what is true at the level of the 
individual and may lead to the phenomenon of “ecological 
fallacy”, a form of bias that is the major limitation of descriptive 
studies. It is also usually not possible to control for other types of 
bias or confounding in descriptive studies. For all of these rea-
sons, descriptive studies are often used as the first step in generat-
ing a hypothesis for further testing using analytical or interventional 
study designs.

Analytical studies analyse the relationship between health status 
and other variables, typically risk factors for disease causation, at 
the individual level within a section of the population. It is easier 
to make causal inferences from analytical, compared with descrip-
tive, studies as the study can be controlled by varying degrees for 
bias and confounding. The most frequently used designs are those 
of case–control and cohort studies.

Case–control studies are a type of longitudinal study in which 
subjects are selected on the basis of their disease status relating to 
the disease of interest. The two groups (cases with disease and 
controls without disease) are compared for exposure to the char-
acteristic of interest.

Cases should ideally be representative of cases in the source popu-
lation. If all cases are not to be included, then a random sample of 

1.1. Interventional 
Study Designs

1.2. Observational 
Study Designs

1.2.1. �Descriptive Studies

1.2.2. �Analytical Studies

2. Case–Control 
Studies

2.1. �Case Selection
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cases should be chosen, for example, those attending a disease 
clinic. However, the latter is likely to introduce some form of bias 
in the method of recruitment of cases if they are no longer repre-
sentative of all cases in the source population. For example, clinic 
attendees for asthma may have a more severe form of the disease 
than those who do not attend asthma clinics, thereby introducing 
a bias in terms of severity of disease.

Controls should ideally also be from the same (source) popula-
tions as for cases and be as similar as possible in all other ways, 
other than the disease status, to the cases. The study is said to be 
population based if controls are sampled directly from the source 
population and both cases and controls are representative of those 
with and without disease in the source population. Commonly 
used sources for selection of controls include:

hospital or clinic attendees●●

friends/spouses●●

randomly derived individuals from a GP register●●

random household sampling●●

It is usual for there to be one control per case. However, if 
the control group chosen are not sufficiently comparable to the 
cases then up to four groups of controls, often from different 
sources or with different attributes, may be chosen. For example, 
if the cases are selected from inpatients with coronary heart dis-
ease and controls from inpatients with lung cancer, there may be 
something inherent in the selection method (both are inpatients) 
that link them with the exposure of interest. In this case, other 
types of inpatients, or attendees at a hospital clinic, may provide a 
broader range of controls that are more comparable. A ratio of up 
to four to six controls per case may also be used in order to 
increase the power of the study. Controls may or may not be 
matched to cases but the results should confirm that the groups 
are similar in aspects that are pertinent to the research question, 
such as age, sex, and other key factors.

Case–control studies are often termed “retrospective” because 
the investigator looks back in time after the disease state is known 
to establish past exposures. However, case–control studies can 
actually be either prospective or retrospective. In a prospective 
case–control study, the data collection continues prospectively, 
whereas a retrospective case–control study deals only with expo-
sures and outcomes that have already taken place.

The analyses in case–control studies compare the frequencies of 
exposure to a particular “risk factor” (or risk factors) between 
those who have the disease outcome (cases) and those who do 
not (controls). The association between exposure and outcome is 

2.2. �Control Selection

2.3. Analyses  
in Case–Control 
Studies



30 Hajat

estimated using an odds ratio (OR), with relevant confidence 
intervals which estimates the odds of exposure among cases com-
pared with the odds of exposure amongst controls. The estimates 
obtained can only, therefore, provide a picture of relative risk and 
not of absolute risk from that risk factor in the population. 
However, if the disease is rare, the OR approximates to the risk 
ratio of the disease in the population.

Advantages of the case–control design in epidemiology stud-
ies include:

	 1.	A relatively simple method of looking at disease causation
	 2.	They are good for studying rare outcomes
	 3.	They are less time and resource intensive relative to cohort 

studies
	 4.	They are better than cohort studies for investigating condi-

tions with long latent periods following exposure
	 5.	Multiple exposures can be investigated quite readily

Limitations of the case–control design in epidemiology stud-
ies include:

	 1.	They are not optimal for the study of rare exposures.
	 2.	They can only provide an estimate of relative, and not abso-

lute, risk in the population.
	 3.	They cannot provide information on the temporal relation-

ship between exposure and outcome. As a result, any asso-
ciation may be prone to reverse causation. For example, a 
patient with a terminal condition such as lung cancer may 
be less likely to stop smoking than someone without this 
condition. This would increase the apparent association 
between smoking and lung cancer without the possibility 
of  detecting this reverse causation with a case–control 
design.

	 4.	They are particularly prone to some forms of bias, especially 
selection and observation bias.

	 5.	There is less scope to control for confounding factors com-
pared with cohort studies.

This is particularly problematic if both the exposure and disease 
outcome have already occurred (retrospective case–control 
design) leading to bias in the inclusion of either cases and/or 
controls depending on the exposure of interest. For example, if a 
low response rate is achieved for either cases or controls, there 
may be something inherently different between those who 
participate and those who either refuse or for other reasons do 
not participate in the study resulting in bias in the association 
under investigation.

2.4. Bias in Case–
Control Studies

2.4.1. �Selection Bias
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Types of observation bias particularly seen in case–control studies 
include recall bias and misclassification.

Recall bias refers to a difference in reporting of the same exposure 
by cases, which have the disease outcome, and the controls that do 
not. Those with the disease are more likely than controls to recall 
past exposures, which they may have already considered as con-
tributing to disease causation, and are more likely to confer greater 
significance on them. For example, a childhood vaccination, if fol-
lowed by the onset of illness, is more likely to be attributed by the 
parent as causative than if no illness followed. Later, recall of the 
vaccination is likely to be higher in the parent of the child who 
developed the illness compared with those who did not.

Misclassification refers to the incorrect classification of either 
exposure or disease status. If the misclassification affects cases and 
controls similarly, then it is termed non-differential or random 
misclassification and the consequence on any association would 
be regression to the null. However, if it affects either cases or 
controls to a greater or lesser extent than the other, this leads to 
differential or non-random misclassification and the consequence 
is either an increase or decrease in apparent size of the true asso-
ciation between exposure and disease outcome.

Various other types of case–control study designs exist, the com-
monest ones of which include:

A nested case–control design is one where the cases and controls 
are chosen from a cohort in which information on exposures is 
already available. Additional information for the subset of the 
cohort selected for the case–control study is often collected. This 
type of design makes efficient use of cohort data.

In situations where the study is conducted after all of the poten-
tial cases have occurred, for example, after an epidemic of a short-
lived condition following a single specific exposure, the remainder 
of the population who did not contract the disease would for the 
source for selection of controls.

The control is replaced by a (known or assumed) prior distribution 
of exposure in the source population, such as with the distribution of 
genotypes in genetic studies (2). Gene environment interaction may 
also be studied with the case-only design (3). Further details of genetic 
epidemiology study designs are provided in Chapter 3.2.

Case–control studies are particularly useful for the investigation 
of rare diseases and are less time and resource intensive than 

2.4.2. �Observation Bias
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cohort studies but are particularly prone to bias and cannot 
determine temporal relationships between exposures and out-
come. They produce estimates of relative rather than absolute 
risk in the form of ORs.

Cohort study is another type of longitudinal study in which indi-
viduals are defined on the basis of their exposure status, i.e. the 
presence or absence of exposure to the characteristic of interest, 
and are followed up over time to monitor disease outcome. The 
two groups (cases with exposure and controls without exposure) 
are compared for occurrence of the disease outcome.

The selection of the exposure and its source population depends 
on many factors relating to the research question including:

the frequency of exposure●●

the feasibility of recording exposure status●●

the feasibility of recording disease outcomes after follow-up●●

the type of comparison to be made, for example, incidence ●●

rate ratios or standardised mortality rate.

The duration of follow-up is often measured in person-time 
years. Each person in the cohort contributes one person-year for 
each year (or other time such as day, week, or month) of observa-
tion before the person leaves the study due to the development of 
the disease outcome or loss to follow-up.

The population from which the exposed cohort is obtained 
also varies. They may be selected from an open population, also 
termed a dynamic population (4) in which the person-time years 
of exposure are derived from changing individuals rather than a 
fixed cohort of people. The alternative is of a closed population or 
fixed cohort in which the cohort is fixed from the outset and fol-
lowed up for a certain duration, with little migration of individu-
als from the study. This type of selection of exposed individuals is 
particular prone to loss to follow-up (4).

In its simplest form, an exposure would be recorded as a binary 
variable, such as ever-smoked versus never-smoked. More often, 
the research question warrants further, varying degrees of infor-
mation, for example the duration of exposure, such as number of 
years smoked, or quantity of exposure, such as number of ciga-
rettes smoked per day, or a combination such as for cigarette pack 
years. If quantity of the exposure is the most informative measure, 
a continuous measurement of amount, rather than binary or 

3. �Cohort Studies

3.1. Selection  
and Definition  
of Exposure

3.2. Definition  
of Exposure
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categorical measurements, would provide the greatest amount of 
information for study analyses. If the duration of exposure is the 
main measure, consideration should be given to the confounding 
effects of age on the duration of any exposure. A combination of 
quantity and exposure may provide a neat summary measure of 
the exposure. However, if either the quantity or duration is 
of greater importance, the result will be of “diluting” its effect 
by use of this composite measure.

As with case–control studies the unexposed group should be as 
similar as possible to the exposed group in all but exposure status. 
Sources for selection of the unexposed group can include:

	 1.	General population cohorts
		 Also called internal comparison groups, a single cohort is split 

into exposure categories. An internal cohort allows greater 
control of the exposure measure to be compared, e.g. quan-
tity or duration, rather than just a binary measure of expo-
sure. It also enables greater accounting for potential bias and 
confounding.

	 2.	Special Exposure Cohorts
		 These are employed when discrete and identifiable sections 

of the population are known to have been exposed to a par-
ticular factor, such as an occupational hazard. There may not 
be an obvious unexposed group for comparison. The con-
trols may then be obtained from pre-collected data, such as 
from population rates known as external comparison groups. 
External comparison groups have less random variation 
compared with internal controls. However, there are many 
limitations with their use. They are only available for a 
restricted range of outcomes, in particular mortality. External 
comparison groups for morbidity are uncommon but do 
exist in certain forms, such as from cancer and chronic dis-
ease registries. There is usually less data available for the 
comparison group than if collected as part of an internal 
comparison group which may restrict the research question. 
For these reasons, it is difficult to ensure that the group are 
comparable with the exposed cohort in other aspects, 
although age and sex can usually be accounted for using 
standardisation. Other confounding factors may include 
ethnicity and socio-economic status. There may be bias in 
the selection of either the study or reference population. 
One example of this is the “healthy worker” effect – a form 
of selection bias whereby occupational cohorts are fitter 
than the general population resulting in lower rates or 
risk of illness. Not only is it more difficult to control these, 
but also there may be a greater degree of unknown bias and 
confounding.

3.3. Selection of the 
Unexposed Group
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They are often termed prospective studies as they start by 
identifying exposure and follow-up subjects to determine whether 
the disease outcome has occurred. However, they may truly be 
prospective or retrospective depending on whether the disease 
outcome has already occurred in the cohort (retrospective or his-
torical cohort study design) or whether they are prospectively fol-
lowed up to determine outcomes in the future (prospective cohort 
study design). They may also be ambi-directional whereby some 
(shorter term) outcomes have already taken place, but the cohort 
is also followed up for another outcome with a longer latency 
period.

The analysis in a cohort study is essential to determine the diff
erence in the occurrence of the disease outcome between the 
exposed and unexposed groups. The association between the expo-
sure and outcome(s) can be estimated using a form of relative 
risk/rate or time to event if using an internal comparison group. 
The two groups should also be compared to ensure that they 
are sufficiently comparable in all other relevant aspects. Some 
studies may choose to look at when an event (disease outcome) 
happens rather than just the total number of events that occur. 
With this method, if a person leaves the study due to developing 
the event under investigation, death or loss to follow-up for other 
reasons, then they would no longer contribute to the person-
time years of follow-up recorded. This type of analysis is also 
termed survival analysis, event history analysis, duration analysis, 
or hazard modelling.

If comparing with an external reference group, a standardised 
mortality or morbidity ratio is determined. Age and sex are the 
most common factors to be standardised.

Advantages of the cohort study design include:

	 1.	In general, cohort studies provide a better indication of 
causation than case–control studies and are more direct mea-
sures of the risk of developing disease following a particular 
exposure.

	 2.	The cohort can be used to investigate several disease outcomes.

	 3.	Cohort studies are efficient at following rare exposures which 
would be difficult to investigate using the case–control 
design.

	 4.	They afford greater control over confounding factors and are 
less prone to certain types of bias, such as selection and recall 
bias, compared with case–control studies.

	 5.	A temporal relationship between the timing of the exposure 
and the onset of the disease outcome can usually be estab-
lished in cohort, but not case–control, studies.

3.4. �Analyses
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Limitations of the cohort study design include:

	 1.	Cohort studies can be very time and resource intensive.  
In order to obtain sufficient person-time years of follow-up, 
the study would need to either include a large source popula-
tion or have a long follow-up period. The resource implica-
tions for both of these often determine whether a cohort 
study is feasible. There are several means by which these can 
be reduced such as:

	 (a)	 use of existing mechanisms or tools for recording of 
disease outcomes, such as cancer and chronic disease 
registers

	 (b)	 use of a retrospective or historical cohort design
	 (c)	 use of an external comparison group

	 2.	Cohort studies are not optimal for investigating rare disease 
outcomes or for diseases where multiple exposures may be 
causally related.

	 3.	Cohort studies, while less prone to selection bias and recall 
bias, are prone to loss to follow-up if the design is prospective 
(survivor bias).

Historical cohort studies use past exposure data and are termed 
retrospective if all of the exposure and outcome data are retrospec-
tively obtained. Otherwise, the study can be extended to further 
follow-up for secondary outcomes with longer latency periods fol-
lowing exposures. The advantage is that it reduces the cost of the 
study, which is often a limiting factor in cohort study feasibility and 
the time taken for results to be obtained. However, it is uncommon 
to find sufficiently detailed information from past records. One 
example of a retrospective cohort study might use records of drug 
therapy from general practice to establish an association with a par-
ticular disease outcome. In this case, both the exposure status (drug 
therapy) and the disease outcome should already be recorded with 
reasonable accuracy and completeness in the records.

Nested case–control studies use data already collected as part 
of a  cohort study and are described earlier in the chapter (see 
page 2).

Cohort studies are well suited for investigating the effects of rare 
exposures on disease outcomes and usually provide stronger evi-
dence for a causal effect compared with case–control studies. It is 
easier to control for bias and confounding in cohort studies and 
the temporal relationship between exposure and outcome is evi-
dent. However, they can be time and resource intensive and are 
not suited to the study of rare outcomes.

3.5. Variations of the 
Cohort Study Design

3.5.1. Historical Cohort 
Studies

3.5.2. Nested  
Case–Control Study Design

3.6. �Summary
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While the above study designs are all quantitative, it is also worth 
noting the role of qualitative study designs in epidemiology. 
Qualitative studies “employ non-numeric information to explore 
individual or group characteristics producing findings not arrived 
at by statistical procedures or other quantitative means” (1).

Qualitative research is quite frequently used to supplement 
quantitative health services research data with “richer” informa-
tion that relates to how people perceive or experience situations. 
It is also particularly good for investigating complex or sensitive 
issues where subjects might be less forthcoming with information 
in response to a structured questionnaire. In these and other situ-
ations, qualitative research can provide a “deeper” understanding 
of individuals’ perspectives.

Qualitative data can be very varied but often takes the form of 
interviews (one-one interviews or focus groups), direct observa-
tion (such as in field research), or use of written documents.

There are four main approaches used.

	 1.	Ethnography
		 This method stems from anthropology and is concerned with 

studying the entire culture surrounding the subject of inter-
est. An example is of participant observation whereby the 
researcher immerses themselves in the culture too.

	 2.	Phenomenology
		 Uses a philosophical approach and is interested in the subjec-

tive experience and interpretation of the world.
	 3.	Field Research
	 4.	Grounded Theory

�The researcher uses participant observation to form extensive 
field notes which are then coded and analysed.

The researcher uses generative questions to guide the direc-
tion of the inquiry until a core theoretical concept is identified.

The determination of causal effect is the main goal of epidemio-
logical studies. The Bradford Hill criteria of causation (5) identified 
nine components that gave weight to an observed association 
being causal. However, an emerging theme is that of the coun-
terfactual approach that states that the above causal criteria are 
an over-simplification of the approaches necessary to establish 

4. Qualitative 
Study Designs

5. Emerging Issues 
in Epidemiology

5.1. Causal Effect  
and Counterfactuals
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causation. The term counterfactual refers to the situation where 
an event A can only occur if a counter event B does not. The 
“counterfactual theory” insists that there should be a well-de-
fined answer, in this situation, to the question of what would 
have happened if A had not been performed. The opposing “pre-
dictive theory” considers only what can be predicted before the 
choice between A and B is made.

In terms of causal inference, causal effects are defined as a 
contrast of the values of counterfactual outcomes but only one of 
those values is observed (6). Some epidemiologists argue that it is 
not possible to directly prove causation because at least one of the 
disease frequency parameters must be counterfactual and, there-
fore, unobservable. They postulate that under the counterfactual 
approach, causal contrasts are the only meaningful effect mea-
sures for aetiological studies (7). Thus, causal rate ratios and rate 
differences should be used rather than measures that are not 
causal contrasts, such as correlation coefficients, percentage of 
variance explained, p-values, chi-squared statistics, and standard 
regression coefficients (7).

However, other epidemiologists argue that the original 
Bradford Hill Criteria for proving causation already incorporate 
the supposition of counterfactual outcomes and that no further 
accounting is required for this (8).

Mendelian Randomisation relies on the use of intermediate phe-
notypes (genetic variants that can influence an individual’s 
response to an environmental factor). This method assesses cau-
sality in associations observed between these intermediate pheno-
types and disease and, thereby, whether interventions to modify 
the intermediate phenotype could be expected to influence risk of 
disease. There are many advantages of using these intermediate 
phenotypes over conventional disease end-points, such as dealing 
with the problems of confounding, reverse causation, selection 
bias, and regression dilution bias. However, in order to undertake 
such a study, a clear association between the genotype and disease 
end-point would need to be established. There is also often insuf-
ficient understanding of the function of such genetic variants in 
the disease process. This emerging epidemiological methodology 
is discussed further in Chapter 6.4.

Among the earliest epidemiological observations was John Snow’s 
hypothesis on the causation of cholera by contaminated drinking 
water (9). However, newer methods of epidemiology are now 

5.2. Mendelian 
Randomisation

6. Emerging Uses 
of Epidemiology

6.1. �Infectious Disease
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routinely employed in the surveillance, prevention, and control of 
outbreaks of infectious disease.

Most diseases are caused or influenced by environmental factors. 
Environmental epidemiology produces a scientific basis for study-
ing and interpreting the relationships between the environment 
and population health.

Molecular epidemiology employs the addition of molecular tools 
to traditional epidemiological approaches and aims to use molec-
ular markers to establish associations between exposures and 
disease.

The rapidly emerging field of genetic epidemiology aims to use 
the systematic methods of epidemiology described above to inves-
tigate the influence of human genetic variation on health and dis-
ease and increasingly on the relationship between environmental 
factors and disease. Genetic epidemiological study designs have 
been largely based on traditional study designs, such as case–control 
and cohort studies. Case–control studies are naturally suited to 
the study of genetic risk because they can be used for uncommon 
disease outcomes, such as those seen with single gene disorders. 
They also allow the simultaneous investigation of multiple genetic 
risk factors alongside environmental risk factors and their gene-
environmental interaction.

Previously, large cohort studies that have been used to under-
take genetic analyses have been designed with the primary aim of 
investigating environmental risk factors, such as the Framingham 
Study (10) and Atherosclerosis Risk in Communities Study 
(ARIC) (11). Increasingly, large longitudinal studies are now 
being designed and undertaken with the genetic basis of common 
diseases as their primary aim, such as the UK biobank Study (12). 
Emerging study designs are also being adapted to account for 
characteristics specific to genetic, rather than environmental, fac-
tors such as family structure. Family-based study designs form the 
most commonly used study design for genetic epidemiological 
studies. This is further discussed in Chapter 3.2.
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Chapter 4

Genetic Distance and Markers Used in Linkage Mapping

Kristina Allen-Brady and Nicola J. Camp 

Abstract

In this chapter, we focus on maps and markers used for a linkage analysis. More detail regarding the 
actual linkage analysis methodology follows in Chapter 11. There are two major types of maps: genetic 
maps and physical maps. Genetic maps indicate the expected number of meiotic crossover events between 
two loci on a chromosome and are measured in centiMorgans (cM). Physical maps use molecular tech-
niques, such as DNA sequencing, to determine the location of markers on a chromosome and are measured 
in base pairs (bp). Linkage analysis relies on genetic maps, and hence they are discussed in this chapter. 
In addition to a discussion of genetic maps and various map functions, we also discuss the selection of markers 
for a linkage analysis, including the more traditional microsatellite markers and the newer single nucleotide 
polymorphism (SNP) markers.

Key words: Recombination, Genetic map, Map functions, Microsatellite markers, SNP markers

Meiosis is the primary mechanism by which haploid gametes 
(eggs or sperm) are formed from parental germ cells. Meiosis 
contains a number of stages, including prophase I during which 
chromosome pairs line up and sometimes exchange material, 
otherwise known as “crossover” or “chiasma” (plural chiasmata). 
As a consequence of crossover events, new combinations of alleles 
are generated along the newly formed haploid chromosomes. 
The process of crossing over or “recombining” and forming 
new patterns of alleles is known as recombination. Through 
recombination, the haploid gametes can receive a mixture of 
genetic contributions from both chromosomes in the parental 
pair. Essentially, an infinite number of genetically different gametes 
can be produced depending on where on the chromosome 
recombination occurs. Recombination is more likely to occur 

1. �Introduction

1.1. Recombination

M. Dawn Teare (ed.), Genetic Epidemiology, Methods in Molecular Biology, vol. 713,
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between loci that are far apart on a chromosome than between 
loci that are close together. Hence, loci that are close together 
on the chromosome are often inherited together from parent to 
offspring and are said to be linked. Loci on different chromosomes 
segregate independently, and there is no linkage between 
them. Recombination events do not occur uniformly across a 
chromosome. Crossover rates vary by chromosomal region and 
chromosome. In general, recombination is more likely to occur 
near the tail of a chromosome (i.e., the telomere) and less likely 
near the middle of the chromosome (i.e., the centromere). 
Furthermore, the likelihood of a new crossover in the region of an 
existing crossover is much smaller than expected, a phenomenon 
known as chiasma interference.

The genetic distance between two loci located on the same 
chromosome is defined as the number of crossover events between 
those two loci averaged from all meioses (parent to offspring 
transmissions) across multiple families. In simple terms, all the 
meioses in the family data are inspected for recombinant events 
and the positions are noted. For example, a study may find that 
recombination occurs between two loci 10% of the time. The 
recombination rate between those two loci then is 10%.

Genetic distance between two loci is measured in units of 
Morgans (M), in honor of the American geneticist Thomas Hunt 
Morgan who hypothesized the process of crossover in 1910. One 
Morgan unit between two markers indicates an expected rate of 
one recombination between the loci per meiosis. A more com-
monly used unit for recombination, however, is the centiMorgan 
(cM). Two markers are 1 centiMorgan (cM) apart if a crossover 
event occurs during meiosis only 1 time in 100 (0.01), in other 
words a rate of 1%. Morgan’s student, Alfred Sturtevant, recog-
nized that the percentage of recombinants across multiple fami-
lies could be used as quantitative index of the linear distance 
between two genes. He realized that the greater the distance 
between two linked genes, the greater the chance that recombi-
nation would occur between them, and importantly that genes 
are arranged in some linear order. Sturtevant created the first 
genetic map in 1913 (1).

Figure 1 illustrates a simple example of a genetic map. In this 
map, it is estimated that the recombination rate between loci X 
and loci Y is 5%, or 5 cM, and the recombination rate between 
loci Y and loci Z is 2%, or 2 cM. If the physical order of the loci is 
known to be X–Y–Z, then a simple additive rule can be used and 
it can be inferred that loci X and Z are 7 cM apart.

2. Genetic Maps
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There are several issues that need to be considered with 
genetic maps. First, genetic distance is estimated and relies on the 
ability to recognize crossover events in family data. Uninformative 
genetic markers and genotyping errors can create problems. 
Crossover events are best observed if at least one of the parents is 
doubly heterozygous for both loci of interest. If the parents are 
homozygous for the loci of interest, a recombinant in the 
offspring cannot be recognized. This is illustrated in Fig.  2 
where the father has a genotype of CT at one locus and GG at 
another locus. If the resulting offspring inherits C and G alleles at 
the two loci from this parent, it cannot be determined if a recom-
bination occurred between the two loci since the alleles at the 
second locus are identical. Second, crossover rates vary by the sex 
of the parent. Females form approximately 1.5 times the number 
of crossover events as compared to males, therefore it is best to 
estimate sex-specific genetic maps. However, sex-averaged genetic 
maps are most often used for convenience and because histori-
cally, some of the most widely used linkage analysis packages did 
not support sex-specific maps. Lastly, it should be noted that 
crossover events do not necessarily always lead to an observable 
recombination. If two crossovers (a double crossover) occur 
between two loci, then this does not result in a new combination 
of alleles at the two loci. Only an odd number of crossover events 
result in an observable recombinant event. Hence, relying on 
observable recombinant events can underestimate map distance. 
For loci that are close together, it is highly probable that only 

Chromosome segment

X

X

Y Z

Y Z

Y

2 cM

5 cM

7 cM

Fig. 1. A chromosomal segment is shown with two loci X and Y being separated by 5 cM. Loci Y and Z are determined to 
be 2 cM apart. If the physical location of X, Y, and Z are known, it can be determined that loci X and loci Z are 7 cM apart.
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one crossover occurs between them. For markers that are farther 
apart, the probability of more than one recombination events 
increases.

For markers that are closer together, a related measure to the 
recombination rate is the recombination fraction. The recombi-
nation fraction, q, indicates the probability that a recombination 
occurs between two markers. Although a probability, its maximum 
value is 0.5 indicating a 50:50 chance of recombination, or that 
two loci sort independently and are unlinked. A recombination 
fraction less than 0.5 indicates that two loci are not sorting inde-
pendently and there is linkage between them. The minimum value 
for q is zero. For example, if recombination occurs between two 
loci with probability 0.1, that is, 10% of the time, then q = 0.1.

Mathematically, the expected number of recombination 
events between two loci, the recombination rate (measured in 
Morgans), can be written as:

	 ( ) ( ) ( ) ( )recomb events 1 1 recomb event 2 2 recomb events 3 3 recomb events= × + × + × +E P P P

	( ) ( ) ( ) ( )recomb events 1 1 recomb event 2 2 recomb events 3 3 recomb events= × + × + × +E P P P

where E = expected and P = probability.
For small distances where the probability of multiple recom-

bination events is extremely unlikely, only the first term in the 
equation above is nonzero, and the recombination rate becomes 
equivalent to the recombination fraction, q.

	 ( ) ( )recomb events 1 recomb event .=E P

C T

G G

C

G

Fig. 2. This figure represents a simple pedigree of two parents and their offspring. Males 
are represented by squares and females are represented by circle. The father has 
alleles C/T at the first marker and alleles G/G at the second marker. When the father 
transmits a chromosomal segment to his son, it cannot be determined if a recombination 
between the two markers occurred or not because the alleles at the second marker are 
homozygous. The situation where parents are heterozygous at both markers is the most 
informative for a linkage analysis to determine where a recombinant occurs.



47Genetic Distance and  Markers Used in Linkage Mapping 

The advantage of using map distance is that it is an additive function, 
as illustrated in Fig. 1. Recombination fractions are not addi-
tive; they have an upper bound of 0.5. Hence, map distances are 
preferred for mapping chromosomes and are used for linkage 
analysis. However, recombination fractions are more convenient 
to estimate because they are determined over small distances 
where the simplifying assumption of no multiple recombination 
events can be made. Map functions are used to define the rela-
tionship between genetic distance and recombination fraction. 
The simplest genetic mapping function is that the genetic distance 
(d) between two loci is equal to the recombination fraction (q).

θ=d

This simple equation holds true if the two loci are close 
together, for example, when q < 0.10.

When multiple recombination events occur over a longer 
interval, the simple formula listed above no longer applies. 
Multiple different map functions have been suggested. In this 
chapter, we mention only the two most common: the Haldane 
map function and the Kosambi map function. For more details 
behind these functions, we refer interested readers to Ott (2). 
The Haldane map function derived in 1919 assumes that recom-
bination events are rare and follow a Poisson distribution (3). 
There is no correction made for a previous recombination occur-
ring in the same region.

Haldane map function:

( )21
1

2
θ −= − de

and solving for the distance,

1
ln(1 2 ).

2
θ= − −d

While the Haldane mapping function assumes that a previous 
recombination does not increase or decrease a subsequent recom-
bination, the Kosambi map function published in 1944 (4), adjusts 
the map distance based on a level of interference from a nearby 
recombination. In essence, the Kosambi map function adjusts the 
proportion of double crossovers because it modifies the map 
distance based on interference. The adjustment for interference 
has been found to more adequately reflect the actual location of 
markers observed in humans and other mammals and has been 
found to produce more realistic map distance values. For this reason, 
the Kosambi map function has been widely used in genetic maps.

3. �Map Functions
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Kosambi map function:

2 41
( 1)/( 1)

2
= − +d de eθ

and solving for distance,

1
ln[(1 2 )/(1 2 )]

4
= + −d θ θ

As has been described above, genetic maps are built on counting 
the number of recombinants that can be inferred in a large number 
of families genotyped across a large number of genetic markers. 
Physical maps are based on sequence data to determine the order 
and spacing of markers and genes. While an increase in genetic 
map distance translates directly into an increase in physical map 
distance, the actual distance between two loci may not correlate 
well between the genetic map and the physical map. A rough rule 
of thumb is that 1  cM corresponds to 1  megabase (Mb), or 
1,000,000 bp, of DNA. However, this estimate is very rough and 
has been shown to vary considerably depending on the chromo-
somal region examined.

Much work has been done to construct genetic maps that can be 
used for a linkage analysis. The first reference genetic map was 
proposed and implemented by Jean Dausset in Paris. He proposed 
that a human genetic map be based on a reference group of families 
and that the results are made available to all genetic researchers 
(5). The set of families selected were from France and Utah 
and became known as CEPH families (Centre d’Etudes du 
Polymorphisme Humain). The 40 original families selected each 
consisted of an average of 8.3 siblings, their parents and their four 
grandparents. Thus, each family contributed approximately 16 
meioses (from each parent to all offspring) with the grandparents 
used to establish the haploid chromosomes in the parental 
generation. As more genetic markers were discovered, these were 
genotyped and mapped; however, many were not genotyped in 
all 40 families, but rather in only 8 or 9 families. Genome-wide 
genetic maps predate physical maps, and therefore genetic maps 
were also used to establish marker order. Early genetic maps were 
typically built to map a locus order that required the smallest 
number of recombination events between markers. The first published 
human genome-wide genetic map was based on biallelic (i.e., two 
alleles) polymorphisms that have rather low informativeness 
(6). Genetic maps based on more informative multiallelic short 

3.1. Genetic Maps 
Versus Physical Maps

4. Genetic Map 
Resources
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tandem-repeat (microsatellite markers) are the classical linkage 
genetic maps. More recently, integrated genetic maps of micro-
satellite and single nucleotide polymorphism (SNP) markers have 
been developed (e.g., MAP-O-MAT (7)). Here, we briefly mention 
some of the genetic maps that are currently available.

The Marshfield genetic map was built using eight CEPH families 
and based on genotype data from polymorphic microsatellite 
markers (8). Within these eight families there are 188 meioses. 
When markers are close together and there are no recombination 
events separating them, the markers are listed in an arbitrary 
order. Hence, in the Marshfield map, the marker order is not well 
determined when marker distance is small, although physical 
maps can be used to order the markers appropriately. The total 
number of microsatellite markers incorporated in the Marshfield 
map to date is 8,325.

The Généthon genetic map was prepared from 1990 to 1996 
under the direction of Jean Wissenbach (9–11). The Généthon 
map was also built using the microsatellite marker (AC)n repeats 
and the same eight families as used for the Marshfield map. The 
group originally built a map using 814 microsatellite markers in 
1992 and progressed up to 5,264 microsatellite markers by 1996.

Just as Marshfield and Généthon maps are based on individuals 
with European ancestry, the deCODE genetic map also uses indi-
viduals with European ancestry, Icelandic ancestry specifically 
(12). The deCODE genetic map is considered the most accurate 
to date as it is based on a larger sample size compared to other 
genetic maps. The deCODE map utilizes genotype data for 870 
individuals in 146 Icelandic two-generation families (1,257 meiotic 
events). The map is based on 5,136 microsatellite markers.

In addition to genetic linkage maps based on estimating recombi-
nation in family data, other types of genetic maps have also been 
constructed. We mention only one, the radiation hybrid map. 
Radiation hybrid maps are maps that are created based on irradi-
ating chromosomes with X-rays, such that they break into several 
fragments. The breaks are somewhat analogous to crossovers in 
genetic linkage maps and are measured in Rays (R), or centiRays 
(cR), where 1 cR is equivalent to a 1% probability that a chromo-
some break has occurred between two markers after irradiation. 
The chromosomal breaks are recovered in rodent cells and the 
rodent–human cells are cloned. The farther apart two markers 
are, the more likely it is that a break occurs between them. In 
radiation maps, the loci need not be polymorphic as do markers 
for genetic maps.

4.1. Marshfield  
Genetic Map

4.2. Généthon  
Genetic Map

4.3. deCODE  
Genetic Map

4.4. �Other Maps
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Much work has been done to integrate information between the 
various types of maps to produce a map that contains the most 
informative information from each type of map. These types of 
maps are called integrated maps. As different metrics are used to 
create different maps, for example, cM distances from genetic 
maps, bp positions from physical maps, and cR distances from 
radiation hybrid maps, it is difficult to combine map information. 
The first level of integration typically focuses on ensuring that a 
locus is on the same chromosome for all maps. The next level of 
integration focuses on ensuring that locus order on a correct 
chromosome is the same across all different types of maps. Finally, 
integration of interlocus distance across maps is considered. 
Reconciling differences is not trivial. Sequencing errors or missing 
sequence can be problematic for physical maps. For genetic maps, 
the number of meioses studied, the informativeness of the DNA 
markers used, and genotyping errors impact its reliability. Map 
misspecification can have serious negative consequences on gene-
mapping studies.

A combined genetic linkage and physical map is available from 
the Human Genetics Institute at Rutgers University, USA. The 
resource is an integrated genetic linkage map that incorporates 
sequence-based positional information. Currently, it includes 
28,121 polymorphic markers (including both miscrosatellites and 
SNPs) with physical positions corroborated by recombination-
based data (7). Radiation hybrid data is not incorporated. The map 
data is called MAP-O-MAT and is available at http://compgen.
rutgers.edu/mapomat/.

Linkage analysis relies on the ability to model the positions of 
recombination events in families. Hence, it is imperative that the 
marker maps used in a linkage analysis are designed with this in 
mind. As was discussed above and illustrated in Fig. 2, recombi-
nants are best identified if all markers are heterozygous in the 
parents. A marker has an increased likelihood of being heterozy-
gous if it has a substantial number of alleles and that each allele 
has a high enough frequency in the population being studied. 
Markers meeting these criteria are considered to have high 
heterozygosity and are often referred to as being highly polymor-
phic. Microsatellite markers are the traditional marker of choice 
for a linkage analysis because they are highly polymorphic markers. 
They have a variable number of tandem repeating units which 
usually comprise a simple sequence consisting of two, three, or 
four nucleotides. The varying numbers of repeating units are 

4.5. Integrated  
Genetic Maps

4.5.1. �MAP-O-MAT

5. Marker 
Selection  
for Linkage 
Analysis



51Genetic Distance and  Markers Used in Linkage Mapping 

considered alleles. As the number of repeating units can vary 
between individuals, genotypes within a pedigree can be fully 
informative such that one can determine which ancestor origi-
nated a particular microsatellite marker and subsequently where 
recombination events occur between markers.

Microsatellite markers are neutral (i.e., free from natural 
selection) and have an increased rate of mutation compared to 
other regions of DNA. The increased rate of mutation results in 
an increased likelihood that the marker has high heterozygosity. 
Another advantage of using microsatellite markers is that they 
generally have no physiologic function; they are usually located in 
the noncoding region of the chromosome. They do not interfere 
with the phenotypic expression at other loci. There are also limi-
tations of microsatellite markers. Microsatellite marker alleles are 
recognized as bands on a gel (i.e., Southern blot), but if there are 
too many alleles, the bands may be so close together that they 
cannot be distinguished without error.

More recently, SNPs are also being used for linkage analysis. 
These markers can be processed rapidly on chips, in large quanti-
ties, with high accuracy, and for a relatively low cost. These markers 
only have two alleles at each marker and taken independently have 
low heterozygosity; however, considered together in the vast 
number that can be typed genome-wide, they can generate the 
necessary information with respect to identifying recombination 
events. The advantages of using SNP markers are that they are 
much more abundant than microsatellite markers, and they are 
less prone to error in the laboratory. A disadvantage arises at 
the analysis stage due to the correlation that occurs between SNP 
markers on the dense maps available.

The classical statistical algorithms in linkage analysis assume 
that the alleles at the genetic markers being analyzed are indepen-
dent of one another, or in other words a genotype at one marker 
has no effect on a genotype at a neighboring marker. For sparsely 
spaced genome-wide microsatellite markers, this is the case. 
Often, however, SNP markers are in close proximity to each other 
and cannot be assumed to be independent of each other. An allele 
at one SNP marker may be associated with an allele at another 
marker, such that two alleles are correlated in the population. For 
example, an “A” allele at one SNP locus may appear with a “T” 
allele at a second SNP locus more often than expected by chance 
across a population. This phenomenon of correlated alleles across 
loci is known as linkage disequilibrium (LD), or the nonrandom 
association of alleles at two or more loci.

Applying classical linkage techniques to SNP data can be 
problematic, because linkage algorithms assume that markers are 
in linkage equilibrium (i.e., no allelic correlation across markers), 
and not in LD as is often the case with SNP markers. Linkage 
analysis results can be artificially inflated if the markers are in LD, 
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and therefore some control for LD must be made. We finish 
the chapter with a brief discussion of controlling for LD using 
SNP markers.

One option for dealing with SNPs in high LD is to prune the set 
of linkage markers to generate a list of SNPs that are in approxi-
mate linkage equilibrium. This is often done by calculating 
measures of LD for pairs of markers that are contiguous (next to 
each other) along a chromosome. If two markers are in high LD, 
one of the markers is eliminated. The process continues until a set 
of markers is generated in which all contiguous pairs of SNPs are 
in approximate linkage equilibrium. There are other options of 
eliminating high LD SNPs, including testing for LD between all 
SNPs (contiguous or not) within a window (e.g., a 50 SNP 
window). The window can then “slide” a designated number of 
markers (e.g., slide 5 SNPs) and the process can be repeated until 
a set of SNPs is selected that is in again approximate linkage equi-
librium. At the time of the publication of this chapter, a useful 
tool for selecting a low LD set of SNPs can be found online in the 
freely available analysis package PLINK (http://pngu.mgh.
harvard.edu/~purcell/plink) (13). For those interested in addi-
tional methods for pruning a set of dense SNP data to use for a 
linkage analysis, we refer readers to other methods proposed by 
the authors of this book chapter (14). Once a low LD set of SNPs 
is generated, these SNPs can then be analyzed in the usual way 
using standard linkage analysis software.

More advanced techniques for controlling LD attempt to model 
the LD as part of the linkage analysis. In a two step approach, SNPs 
in LD can first be grouped such that they are considered simultane-
ously as a single “multi-allelic” locus (assuming no recombination 
between loci), and second, be used in the linkage analysis in these 
groupings that minimize between group correlation. This approach 
has been incorporated in the linkage software MERLIN (15). 
A more integrated approach uses graphical modeling to establish 
an optimal model of LD for all the markers which is then incorpo-
rated into the linkage algorithm. This approach is incorporated in 
the linkage package McLink (14, 16). In both approaches, SNP 
markers are not discarded, rather LD between markers is modeled, 
and the model is incorporated into a linkage analysis.

Linkage analysis can only be successful for identifying disease 
genes if appropriate maps and markers are used. In this chapter, 
we have discussed criteria for what makes a good genetic map and 

5.1. Eliminate SNPs  
in High LD

5.2. Incorporate LD 
into the Linkage 
Analysis

6. Conclusion
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what types of markers or subsets of markers are most informative 
for linkage analysis. We stress that the information provided here 
only briefly covers the topics, and we encourage interested indi-
viduals to read additional sources.
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Chapter 5

Approaches to Genetic Linkage Analysis

M. Dawn Teare 

Abstract

Genetic linkage analysis concerns the estimation of genetic distance between two or more genetic loci. 
In genetic epidemiology, it is predominantly used to identify, or map, a genetic locus that is associated 
with quantitative trait variation or, in the case of binary or discrete traits, modification of the risk of being 
affected with a disease or phenotype. Linkage analysis uses a panel of reference genetic markers to track 
the segregation of genomic segments within families or sets of relatives. Individuals within the families 
must be measured for the trait, and often the families have been selected because they segregate the phe-
notype of interest.

Key words: Human genetic linkage, Recombination fraction, Allelic segregation, Model-based linkage 
analysis, Model-free linkage analysis

When a phenotype or trait is influenced by a gene, then correla-
tion is seen between the phenotype and the genetic variation 
within the gene. When the gene is known and variation directly 
observed, this correlation can be precisely measured; however, 
genetic linkage analysis uses this expected or anticipated correla-
tion to actually map or identify the location of the gene. So the 
objective of the analysis is to infer how frequently marker alleles 
are co-inherited with the disease alleles, and thereby estimate the 
recombination fraction between them (see Chapter 4).

We illustrate genetic linkage analysis for a binary trait with 
two hypothetical pedigrees drawn in Fig. 1. These two families 
have been selected for study due to the occurrence and segrega-
tion of a rare dominant disorder in some of the family members. 
In this illustrative example, four polymorphic markers have been 
genotyped at 5 cM intervals and the measured genotype at each 

1. �Introduction
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locus is displayed in the figure. For example, person 2.8 is 
heterozygous at all four markers and carries alleles 2 and 5 for 
Marker 2. From the pedigree you can see that person 2.8 has 
inherited allele 2 from her mother and allele 5 from her father. 
As we are assuming a simple dominant disease, the pattern of phe-
notypes tells us the disease locus genotypes for most people in the 
pedigree. Anyone unaffected must carry two copies of the wild 
type (“d”) allele, whereas affected individuals may carry one or two 
copies of the mutant or “disease” (“D”) allele. In the absence of 
new mutation, the affected offspring must have one inherited one 
wild type allele from their unaffected parent, and the disease allele 
from the affected parent. The only affected individuals who may 
carry two copies of the disease allele are the founders 1.1 and 2.2. 
The probability that they are each homozygous for the mutant is 
a function of the disease allele population frequency. For purposes 
of illustration, we shall assume that the parents of 1.1 and 2.2 were 
observed for phenotype only. Provided one of both pairs of the 
ancestral parents were unaffected, we can further assume that 1.1 
and 1.2 each carry only one risk copy of the disease allele D.

Evidence for genetic linkage is traditionally presented in terms of 
a logarithm of the odds (LOD) score (1). These are directly 
related to the classic likelihood ratio methodology widely used in 
statistical methods. For historical reasons (1) the likelihood ratio 

2. �LOD Scores
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Fig. 1. Numbers above the symbol on the left identify the person in the pedigree, e.g. 1.7, person 7 in family 1. Shaded 
bold numbers below each symbol indicate the pair of alleles that make up the genotype for the person above.
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is reported as a logarithm to the base 10, in place of a natural 
logarithm. Maximum likelihood methods enable efficient estima-
tion of parameters within a formal statistical hypothesis frame-
work. A parametric model is proposed such that the null and 
alternative hypothesis is both specified within the model. In the 
case of linkage analysis, the null hypothesis assumes that the gene 
associated with variable risk of disease is not linked to this genetic 
location. In terms of the model, this is equivalent to saying 
that the recombination fraction, denoted as q, is equal to exactly 
0.5. The alternative hypothesis states that the gene is linked to 
this region, i.e. q < 0.5. Recall from Chapter 4, that q represents 
the probability of a recombination between two loci at meiosis. 
The likelihood of the hypothesis given the data is found by com-
puting the probability of the data conditional on the hypothesis 
or model. The likelihood function is then examined to find the 
parameter value which maximises the likelihood. This is then 
termed the maximum likelihood estimate. The maximised likeli-
hood is compared to the likelihood under the null, and twice the 
natural logarithm of this ratio is then compared with a chi-square 
distribution with one degree of freedom. Genetic linkage analysis 
focuses on the maximisation of the LOD score function.

In our carefully constructed hypothetical example, there are 
potentially five informative meioses in pedigree 1 and 7 informative 
meioses in pedigree 2. As we assume a dominant phenotype, the 
only informative meioses are those involving allele transmissions to 
offspring from an affected parent. Person 1.1 transmits alleles to 1.4 
and 1.5, 1.4 transmits to 1.7, and 1.5 transmits to 1.8 and 1.9. 
Hence, pedigree 1 consists of 5 potentially informative meioses. 
Pedigree 2 consists of 7. We say potentially because in some cases it 
is not possible to distinguish whether a recombination has occurred 
or not. For example, person 2.4 is homozygous at marker 4 so we 
cannot track the segregation at this meiosis to person 2.8. Though 
we appear to have potentially 12 informative meioses, this is not 
strictly true. As we cannot observe the gametic phase (where the 
parental origin of each allele is known) of the disease locus alleles 
and the marker alleles directly we do not know the phase in the 
ancestral genotyped affected (here denoted by 1.1 and 1.2). We 
have to allow for both possible phases in the likelihoods, and this 
means we effectively lose one informative meiosis per family (2). 
The LOD score is computed by comparing the likelihood for a 
range of values of q and comparing to the likelihood when q  = 0.5.

Two point LOD scores have been computed for these two 
families and are listed in Table 1. In genetic epidemiology, two 
point LOD scores evaluate the evidence for linkage between the 
disease locus and only a single marker. As families are assumed 
to be independent, family-specific LOD scores can be added 
(since the probabilities of independent events can be multiplied). 
A positive LOD score is evidence for linkage at the specific value of q. 
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Table 1 
LOD scores for each marker and family computed at seven 
distinct values of the recombination fraction q

Marker q = 0.0 q = 0.01 q = 0.05 q = 0.1 q = 0.2 q = 0.3 q = 0.4

1 (Total) −Infinity −1.05 0.18 0.55 0.67 0.52 0.27
Family 1 1.19 1.17 1.08 0.97 0.74 0.50 0.25
Family 2 −Infinity −2.22 −0.91 −0.42 −0.07 0.02 0.01

2 (Total) 2.40 2.36 2.20 2.46 1.56 1.08 0.57
Family 1 1.19 1.17 1.08 0.97 0.74 0.50 0.25
Family 2 1.20 1.19 1.12 1.02 0.82 0.58 0.32

3 (Total) 3.00 2.95 2.73 2.46 1.87 1.25 0.62
Family 1 1.19 1.17 1.08 0.97 0.74 0.50 0.25
Family 2 1.81 1.78 1.65 1.49 1.13 0.75 0.37

4 (Total) 0.89 0.87 0.80 0.72 0.54 0.35 0.17
Family 1 0.89 0.87 0.80 0.72 0.54 0.35 0.17
Family 2 0.00 0.00 0.00 0.00 0.00 0.00 0.00

A negative LOD score is evidence against linkage at the specified 
q. You will notice that one of the entries in the table is “−Infinity”, 
this represents negative infinity which results from taking a loga-
rithm of 0. This means that for marker 1 the observed data in 
family 2 is impossible (i.e. has probability 0) if the two loci are 
completely linked (i.e. when q = 0.00). This is because it is clear 
that two recombinations have taken place in the transmission 
from 2.4 to 2.9 and 2.6 to 2.11. This result is interpreted as very 
strong evidence against complete or tight linkage to marker 1, 
but the maximum LOD score for marker 1 corresponds to a 
(maximum likelihood) estimate of 0.2, in other words in ten 
meioses we see two recombinants.

You may notice that family 2 gives an LOD score of 0 for 
every value of q reported for marker 4. This means that the likeli-
hood of the model with linkage is equal to the likelihood with no 
linkage. If you examine family 2 at marker 4, while all individuals 
are genotyped it is not possible to track the segregation of alleles 
due to 2.2, 2.4, and 2.6 being homozygous. We would say that 
family 2 is uninformative for this marker. The highest LOD scores 
are seen for markers 2 and 3. In each case, the maximum LOD 
score occurs at q = 0.00, so what is the difference between the 
two markers? The difference again is due to the occurrence of 
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homozygosity in a key individual 2.2 at this marker. This results 
in a loss of information due to the inability to track the alleles.

Figure 1 has represented the genotypes as most probable haplotypes 
(alleles on the left inherited from the father, and those on the right 
inherited from the mother) and shading indicates how the genetic 
material has been inherited through the family from the original 
affected ancestor. So although some individuals are homozygous at 
some of the markers, all are heterozygous for at least one marker. If 
we use the extended haplotype information, we are able to see 
more clearly which haplotype is transmitted and where any recom-
binations have occurred. When more than one marker is consid-
ered, multipoint LOD scores are reported. Multipoint LOD scores 
for the two families are shown in Table 2.

3. Multipoint LOD 
Scores

Table 2 
Multipoint LOD scores for two families

Marker

Distance  
of disease LOD_scores

NPL_
score

p-value Information
Locus from 
Marker 1 Family 1 Family 2 Total Total

Marker 1 0.00 1.204120 −Infinity −Infinity 1.52074 0.082520 0.851789
1.00 1.202906 0.406956 1.609862 1.63727 0.077637 0.744463
2.00 1.202300 1.007582 2.209882 1.77544 0.063477 0.709101
3.00 1.202300 1.358906 2.561206 1.93561 0.052246 0.713407
4.00 1.202906 1.608500 2.811406 2.11821 0.039062 0.757690

Marker 2 5.00 1.204120 1.802611 3.006731 2.32370 0.027344 0.875791
6.00 1.202906 1.802059 3.004966 2.32562 0.027344 0.844485
7.00 1.202300 1.802141 3.004440 2.33015 0.027344 0.824344
8.00 1.202300 1.802855 3.005154 2.33730 0.027344 0.809935
9.00 1.202906 1.804201 3.007108 2.34708 0.027344 0.800280

Marker 3 10.00 1.204120 1.806180 3.010300 2.35949 0.025879 0.795989
11.00 1.198759 1.775932 2.974691 2.29878 0.029785 0.741715
12.00 1.193961 1.745990 2.939951 2.24218 0.029785 0.701580
13.00 1.189727 1.716358 2.906084 2.18953 0.035156 0.668154
14.00 1.186056 1.687037 2.873092 2.14066 0.039062 0.639786

Marker 4 15.00 1.182948 1.658030 2.840977 2.09543 0.041504 0.616051
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Unlike the two point case, the likelihood for linkage now 
jointly considers all of the fixed markers and the potential location 
of the disease locus within the region covered by the fixed set. 
In Table  2, the multipoint LOD scores have been calculated 
(using the program genehunter (7)) at 16 equally spaced loca-
tions beginning by placing the disease locus coincident with 
marker 1 then moving along in 1 cM steps. The table reports the 
family-specific LODs and the Total. Now, Family 2 is informative 
for linkage at MARKER 4 because the neighbouring linked mark-
ers provide some information about which chromosomal haplo-
type is more likely to have been transmitted at each meiosis.

The column of total LOD scores contains the summary evi-
dence for linkage. In this example, the maximum LOD score is 
obtained when the disease locus is placed coincident with 
MARKER 3. The LOD score just exceeds the threshold of 3 
which was historically regarded as the minimum score required 
to declare linkage (3). When the LOD score approach was first 
proposed by Morton in 1955, he envisaged many independent 
research groups working on genetic linkage in relative isolation 
and then pooling their results. Researchers would compute 
LOD scores at several standard values of q. As the likelihoods 
are probabilities, they can be added on the log scale enabling 
easy sharing of results. One of the most important aspects of his 
proposed method was his recognition of the problem of mul-
tiple testing. Morton proposed a sequential testing framework 
so that linkage would be declared if the total LOD score at a 
specified theta exceeded the threshold of 3 and linkage to a 
region or locus would be declared excluded if the total LOD 
score fell below −2. Though these thresholds were declared 
using a sequential testing argument, later it was shown (3) that 
a threshold of 3 was equivalent to a genome-wide p-value of 
around 9%. The stringent threshold of 3 helped to ensure that 
most significant linkage reports for single gene disorders were 
possible to replicate (i.e. the type 1 error rate was well 
controlled).

We have illustrated the LOD score method here for a simple 
dominant disease example as the properties of the disease locus 
itself makes the method easier to explain. If we had instead used 
a recessive disease example, the phenotype of affected tells you 
that the person must have two copies of the disease alleles at the 
disease locus, but unaffected individuals may be heterozygous or 
homozygous for the wild type. This makes the computation of 
the likelihoods more complex, though the principle is the same. 
Parametric LOD score analysis requires the full model at the dis-
ease locus to be specified so that only the recombination fraction 
(in two-point analysis) or the location (in multipoint analysis) 
is estimated.
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As the previous text has stated, the classic focus of parametric 
analysis estimates the recombination fraction q when consider-
ing the observed marker and the inferred disease locus geno-
types. In the 1980s, computing power increased enabling many 
more than one genetic marker to be considered at a time. The 
early linkage programmes used the statistical approach known as 
“peeling” (4, 5). This method was suited to the analysis of large 
extended pedigrees with few genetic markers. However, in the 
1990s very dense linkage markers were commonly used with as 
many as 50 markers on some chromosome arms. Further 
advances in statistical methods took advantage of the inheritance 
vector approach (6) enabled the multipoint analysis of the full 
chromosome though this methodology was limited in use to 
pedigrees with a small number of founders. Programmes using 
the inheritance vectors include genehunter (7) and merlin (8).

The application of parametric genetic linkage methods to 
complex disease presents a problem as the genetic component or 
familial aggregation could arise through a number of different 
genetic models. For example, if the model allows for incomplete 
(or partial) penetrance a rare dominant locus would to similar 
familial clustering as a common recessive. Hence, it is common to 
see linkage reports consisting of LOD scores computed under a 
variety of models (9). However, if the genetic component of a 
disease is heterogeneous the power to detect several distinct caus-
ative loci with a parametric (sometimes referred to as model-
based) approach is weak. In the early 1990s, non-parametric 
linkage (NPL) approaches became popular as these methods lim-
ited the analysis to affected members only, and hence did not 
require the genetic model to be specified.

The objective of genetic linkage analysis is to identify the location 
of the gene or genes which are assumed to influence the phenotype 
under consideration. In parametric or model-based linkage anal-
ysis, the manner in which the gene acts upon the phenotype is 
assumed to be known. This seems rather odd at first sight that you 
should have to declare what the characteristics of the gene are 
before you have characterised it. However, parametric linkage 
analysis is a powerful strategy for mapping genes with a simple 
Mendelian form of inheritance, when the mode of inheri-
tance was fairly easy to infer from clinic-based experience. By 

4. Computational 
Approaches

5. Model-Based 
Versus Model-Free 
Methods
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contrast, families presenting at clinic concerned about their family 
history with respect to non-Mendelian disease are not a random 
sample but rather families with exceptionally high incidence of 
disease and are not representative of patterns seen in the popula-
tion. So a clinic-based series is not a good resource for estimating a 
likely genetic model. However, in many cases, the most likely 
genetic model generating the familial aggregation of phenotypes 
can be found from prior segregation analysis of population based 
or systematically collected families. In complex disease, such 
major gene models usually assume that there is risk of the disease 
associated with each genotype but that carriers of the gene are at 
substantially higher risk of disease than non-carriers.

In the early 1990s, it became clear that though there had been 
some success in identifying major genes in diseases, such as breast 
cancer, the parametric approach suffered dramatically in power if 
there was any locus heterogeneity. Though parametric analysis can 
allow for locus heterogeneity through the heterogeneity LOD 
score, an extension to the model in which the alternative hypoth-
esis is that only a proportion of families are linked to the disease 
locus. A framework which more naturally allowed for locus hetero-
geneity became more popular partially because this also reflected 
the way that many studies of complex diseases were conducted. In 
adult onset disease, it is difficult to recruit extended families; 
affected sibling pair studies were more easily collected. When con-
sidering only pairs of affected relatives, the “identical-by-descent” 
allele sharing methods offer the advantage that the mode of inher-
itance does not need to be specified. Instead the observed allele 
sharing at a genetic region can be compared with that expected 
based on the relationship between the pairs of relatives.

In our pedigrees in Fig. 1, you can see that there are three 
pairs of affected siblings. We focus on the pair 2.4 and 2.6 for 
illustration. If we consider the states of their alleles, we see that 
they share 2 alleles identical by state (IBS) at markers 1, 3, and 4. 
At marker 2, they share only allele labelled “5” so here they share 
1 allele IBS. If you look at the parents of these two affecteds, you 
can distinguish between those alleles that are IBS and those that 
are identical due to having descended from the common ancestor, 
identical by descent (IBD). At marker 1, they share 2 alleles IBD, 
and at marker 2 they share 1 IBD; however, at the other two 
markers, they may share 1 or 2 alleles IBD. It seems that IBD = 1 
is more likely because they appear to have inherited different 
haplotypes from person 2.1. The estimated IBD distribution in a 
large number of such sibling pairs can be compared to the expected 

6. Linkage 
Analysis and 
Complex Disease
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distribution. In full siblings, the proportions should be 0.25, 
0.5, and 0.25 for sharing 0, 1, or 2 alleles IBD, respectively. The 
observed distribution can be compared with the expected distri-
bution and if the result is found to be statistically significant, 
then it can be inferred that a predisposing locus may be present 
at this location.

In the Lander and Green article in 1994 (6), a generalisation 
to this method was proposed to study affected relative pairs only, 
compare their IBD sharing with their expected sharing under the 
null and report this as an NPL score. We can illustrate how this is 
done with our two families in Fig. 1. In family 1, we have five geno-
typed affecteds, this makes a total of ten possible affected pairs. We 
then estimate their IBD sharing at a specific location with that 
expected if there was no predisposing locus present (i.e. what shar-
ing would be expected for this pair of relatives). Four of these 
relative pairs consist of a parent child pair. These are not informa-
tive for linkage in the absence of inbreeding, as a parent always 
shares exactly one allele IBD with an offspring. However, we can 
see that for the pair of siblings 1.4 and 1.5 they share 1 allele IBD 
at markers 2 and 3, and may share 1 or 2 alleles IBD for the markers 
1 and 4. The pair of first cousins 1.7 and 1.8 shares exactly 1 
allele IBD at each of the four markers.

The results of applying this methodology to the two families 
reported here are also presented in Table 2. The NPL statistic is a 
normalised score so in theory you can compare it to a standard 
normal distribution. However, as the IBD distribution is esti-
mated rather than known the exact p-value can be computed cor-
responding to the amount of statistical information contained in 
the analysed pedigrees.

Though the principal is simple to understand, it is actually 
not so straightforward to compute the most likely (maximum 
likelihood) estimate of the IBD distribution especially when 
only the affected pairs are genotyped. Though with the recent 
availability of high density SNP chips offering ten 1,000 SNPs 
per chromosome the observed IBS converges to the IBD distri-
bution (10).

Though the affected pair approach or model-free method is 
attractive and does not require the knowledge of the genetic 
model, its performance in terms of localising predisposing genes 
has been disappointing. This was one of the reasons behind the 
move to genetic association studies when it was realised that for 
many complex diseases the lack of identification of major genes 
by linkage meant one of two things, either the major gene com-
ponent was due to many private mutations and each family could 
be assumed to be linked to a different locus, or the genetic com-
ponents tended to be due to a polygenic model, where very many 
loci would have additive and accumulated effects on an individual’s 
risk (11).
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Linkage mapping in quantitative traits relies on the assumption 
that pairs of relative with similar trait values tend to share more 
alleles IBD at loci influencing those trait values. When pairs of 
relative are considered, the IBD distribution can be estimated as 
in the examples shown above. There are three distinctive 
approaches, using variance components, a regression model, and 
extreme sampling. Haseman and Elston (12) proposed a regres-
sion method for use on sibling pairs. They suggested that the 
square of the difference between the sibling pair of trait values 
could be modelled as the dependent variable in a regression taking 
estimated IBD for the pair, as the independent variable. Under 
the null hypothesis of no linkage the slope of the regression (or the 
coefficient for estimated IBD) is 0.

This simple and appealing approach was extended to work 
with other pairs of relatives but a considerable improvement was 
found in 1997 by Wright (13) observed that limiting attention to 
the similarity only between the pairs lost a lot of the linkage infor-
mation. He showed that the trait sum also contained useful data 
for detecting linkage. This observation was carried forward by 
Drigalenko (14) who proposed to use both the trait sum and the 
trait difference to gain power to detect linkage. A simple regres-
sion, where the mean corrected trait product (or covariance) was 
taken as the dependent variable, was shown to offer a significant 
robust advantage over the trait difference approach only. This 
development was termed trait-product regression, and further 
improvements have addressed some emergent problems, such as 
loss of power, when there is very high sibling correlation.

The extreme sampling methods rely on selecting pairs who 
show extreme differences (discordant) or show extreme and simi-
lar trait values (concordant). In discordant pairs, you would 
expect less sharing at those loci influencing trait values than under 
no linkage. While in concordant pairs, you would expect more 
sharing. This approach essentially maximises power while mini-
mising cost, in recognition that most statistical information comes 
from the extremes of the distribution. Risch and Zhang (15) 
compared these sampling strategies and found that discordant 
siblings generally are more powerful when it is likely that com-
mon environmental factors induce correlation. As the two forms 
of sampling are associated with different alternative hypotheses, a 
number of methods have proposed a testing framework to handle 
both designs jointly (16).

The variance components approach applies the model out-
lined in Chapter 2. In this application, the covariance between 

7. Quantitative 
Trait Linkage 
Analysis



65Approaches to Genetic Linkage Analysis

pairs of relatives can be modelled by partitioning the total genetic 
variance into that due to IBD sharing at a specific genetic location 
or marker and the variance due to other unmeasured genes. The 
component due to the specific region is isolated by estimating the 
actual IBD sharing at the candidate locus, and the residual covari-
ance is that defined by the expected sharing based on kinship. 
This approach can be applied to extended families, making it 
potentially more powerful that methods limited only to sibling 
pairs. This application relies on fitting a multivariate normal 
model to the measured trait values on relatives (17, 18), and 
therefore, assumes that the trait is normally distributed at the 
population level. As we have seen in Chapter 2, a major gene 
component (which is indeed the reason for conducting the link-
age analysis) results in a deviation from normality. This poses a 
difficulty when deriving robust statistical tests associated with the 
approach. A number of solutions have been offered to handle the 
non-normal distributions, and these are extensively reviewed by 
Feingold (16).

Genetic heterogeneity in this context means that more than one 
genetic risk variant accounts for the genetic component. For 
example, cystic fibrosis occurs when individuals receive two 
defective copies of the cystic fibrosis conductance regulator gene 
(CFTR) gene. However, a very large number of distinct mutant 
copies of this gene exist [OMiM 602421]. Linkage analysis is 
robust to this form of heterogeneity as it only considers co-
inheritance of marker and disease alleles within pedigrees. The 
main requirement of the marker is to be highly polymorphic and 
hence is as informative as possible. In the example families in 
Fig.  1, the strongest evidence of linkage is coincident with 
marker 3. In family 1, allele “2” is in phase with the disease 
allele, whereas in family 2 allele “1” is in phase. This is quite 
different to association studies, where the actual allelic state of 
the marker is important.

The form of heterogeneity that makes gene mapping difficult 
is locus heterogeneity, where a phenotype can arise due to muta-
tions occurring at one of several distinct genetic loci. Parametric 
linkage allows for this by assuming the heterogeneity is between 
families and maximises the heterogeneity LOD score (2). However, 
power reduces sharply in parametric models as soon as locus het-
erogeneity exists. Simulation studies strongly suggest that model 
free methods are much more robust to heterogeneity (19).

8. Genetic 
Heterogeneity
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The families in Fig. 1 are atypical of those encountered in practice, 
as everyone is measured for the phenotype and marker genotypes. 
When studying adult onset disease, it can be difficult to recruit 
parents and extended family members. Relatives in earlier genera-
tions may be deceased, they may be too ill to participate, they 
may refuse to consent or have lost touch with the rest of the fam-
ily. So the information on some members of the family is incom-
plete. Missing data inevitably makes an impact and reduces power 
as it becomes more difficult to track the genetic material though 
the pedigree.

As in any research, positive signals need replication. In the study 
of single gene disorders, crossover events can be identified and 
the region of interest refined. Replication in linkage can be diffi-
cult as the interval associated with the strongest signal in similar 
studies can be several tens of centimorgan (cM). In complex dis-
ease, distinct linkage studies frequently report strong signals to 
different loci. This can be due to genuine genetic differences 
between populations or to type 1 errors and lack of power. One 
way to handle the diverse nature of results is to perform a meta-
analysis. The GMSA method is frequently used to bring together 
the summary analyses of genome-wide linkage studies (20). They 
allow for different linkage marker sets by dividing the genome up 
into approximately equal-sized chromosome location bins, taking 
the “best” result for each bin in each study, then ranking these 
results. The distribution of these clustered ranks is then compared 
to that under random assortment. In this way, bins that receive 
more high ranks that would be expected under the null can be 
identified.

Genetic linkage analysis has somewhat fallen out of fashion in 
recent years, partly due to an accumulation of disappointing 
results in many well-powered linkage searches in complex disease 
and quantitative traits. This has to some extent helped to drive the 
enthusiasm for genome-wide association studies, where unrelated 
subjects are studied. However, as molecular genetic technology 

9. Missing Data

10. Following up 
Linkage Signals

11. Future 
Prospects
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provides ever denser means to measure and observe individual 
genetic data, the association and linkage methods inevitably overlap. 
Kinship estimation (21) and hence potential pedigree recon-
struction (22) from genome-wide genotyping may arise directly 
from the genetic analysis and may no longer require the family-
based sampling and recruitment that made studies so difficult in 
the past.
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Chapter 6

Fine-Scale Structure of the Genome and Markers  
Used in Association Mapping

Karen Curtin and Nicola J. Camp 

Abstract

In this chapter, mutation (specifically single-nucleotide polymorphisms, SNPs) and recombination will be 
covered in more detail, and the concepts of genotype and haplotype will be reviewed. Linkage disequi-
librium (LD) describes the strength of a relationship between alleles at different loci. The definition for 
LD, its visual representation, and the calculation of statistics that measure LD will be presented. The 
power of genetic association studies to identify disease susceptibility alleles fundamentally relies on the 
genetic variants studied. A standard approach is to determine a set of tagging-SNPs (tSNPs) that capture 
the majority of genomic variation in regions of interest by exploiting local correlation structures. The 
concept of LD and how it is used to select tSNPs will be addressed, as well as specific procedures and 
algorithms that are practiced by researchers to determine these variants.

Key words: Linkage disequilibrium, Haplotype blocks, Mutation, Recombination, Tagging-SNPs

A genome is an organism’s complete set of DNA. The human 
genome is made up of three billion bases of DNA across 23 dis-
tinct chromosomes and contains about 30,000 genes, which are 
the basic physical and functional units of heredity. Genes com-
prise only about 2% of the human genome, with the remainder 
consisting of noncoding regions, whose functions may include 
regulating proteins encoded by genes and providing chromo-
somal structural integrity (1). An understanding of genomic 
structure (the relationship between genetic variants at different 
positions in the human genome) and genetic architecture (the 
genetic model that underlies a trait) is knowledge used by 
researchers in their selection of genetic variants to study the inher-
ited basis of a disease, or other traits of interest (2).

1. �Introduction

1.1. Genome Structure

M. Dawn Teare (ed.), Genetic Epidemiology, Methods in Molecular Biology, vol. 713,
DOI 10.1007/978-1-60327-416-6_6, © Springer Science+Business Media, LLC 2011
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Evolutionarily, genomic structure is dynamic, changing as a 
result of recombination, mutation, selection, or genetic drift. 
Mutation events introduce new genetic variants that initially have 
strong relationships with the alleles at other variant positions close 
by. Recombinant crossover events physically break the genome 
and thus reduce the relationship between alleles on either side of 
the crossover. Initial studies using population data have clearly 
indicated areas of the genome that are more likely to experience 
recombination (recombination “hotspots”) and those less likely 
to experience recombination events, thus defining a variety of 
patterns for genomic structure across the human genome (3, 4).

A mutation is a permanent change in DNA. Hereditary muta-
tions are those in the germline, that is, mutations that are present 
in egg and sperm cells and therefore they can be transmitted from 
parent to offspring and be perpetuated in a population (see 
Fig. 1). DNA changes that cause harm may be removed from the 
population via selection, and tend to be very rare. If the changes 
are not of direct harm, then these genetic changes can become 
common in the population. Genetic changes that occur in more 
than 1% of the population are often called polymorphisms. They 
are common enough to be considered a normal variation in the 
DNA. Polymorphisms are responsible for many of the phenotypic 
differences observed between people for traits such as eye color, 
hair color, and blood type. Most polymorphisms influence per-
sonal characteristics and have no adverse effects on a person’s 
health; however, some may influence the risk of developing certain 
disorders (5).

1.2. �Mutation

Fig. 1. Hereditary mutation. Daughter cells are produced from parent germ cells during 
the process of meiosis. Daughter cells are haploid, each containing one set of chromo-
somes. New zygotes are the diploid cells resulting from fertilization, and thus contain 
two copies of each chromosome. A mutation (denoted as a black bar) that occurs in a 
germline chromosome may be inherited in new zygotes.
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Almost all (>99%) nucleotide bases are exactly the same in all 
humans. In the less than 1% of bases that differ, the most com-
mon form of variation (90%) is the single-nucleotide polymor-
phism (SNP). There are approximately ten million SNPs in the 
human genome. A SNP is a nucleotide site where different bases 
can reside. Most SNPs are biallelic, having only two alleles, for 
example, G or A, or, C or T. Other variants are single or multiple 
insertions or deletions of one or several bases.

In addition to mutation, genetic variation evolves by meiotic 
recombination (see Fig. 2). In germ cells which produce eggs or 
sperm, the chromosome pairs match up and may exchange seg-
ments of DNA, a process called recombination. After recombina-
tion, the chromosome pairs separate and produce haploid cells 
that contain only a single chromosome (6).

Over the course of many generations, segments of the ancestral 
chromosomes in a population are shuffled through repeated recom-
bination events, or ancestral recombination. In general, recombina-
tion occurs more frequently between positions that are a long way 
apart, and rarely between DNA sequences that are close together 
(7). However, it has been shown that there are regions in the 
genome that are more preferential to recombination events, and 
conversely those where recombination is suppressed. This leads to 
segments of ancestral chromosomes, that is, regions of DNA 
sequences, that are shared by multiple individuals in a population, 
and represent regions of chromosomes that have not been broken 
up by recombination (“haplotype blocks”), separated by places 
where recombination has occurred (“recombination hotspots”).

1.3. Recombination

Fig.  2. Recombination. During meiosis, the pairing process in the parent germ cells 
generates haploid daughter cells that contain exchanged DNA segments due to recom-
bination. New zygotes after fertilization may contain a mixture of the two chromosomes 
from each parent.
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Humans are diploid organisms. A genotype refers to the “type” 
seen at a single position (locus) on a chromosome pair in which 
the base is read across both chromosomes (see Fig. 3).

In contrast to a genotype, a haplotype consists of multiple bases 
that are read along a chromosome (see Fig. 4). Humans are dip-
loid; hence, these haplotypes exist in pairs. Often haplotypes are 
written to only note the positions that are polymorphic in the 
population; that is, the bases that are nonvariant are ignored.

The International HapMap Project is a consortium whose 
goal is to catalogue and compare the genetic sequences of differ-
ent individuals to identify haplotypes that are shared and not 
shared both within and across different populations (8). Such 
information is valuable to investigate the genetics behind com-
mon diseases, as discussed in this chapter.

Linkage disequilibrium (LD) is the association between alleles at 
two or more loci in a population (see Fig. 5). More specifically, 
LD describes a situation in which a haplotype occurs more (or 
less) frequently in a population than would be expected by chance. 

1.4. Genotypes  
and Haplotypes

2. Linkage 
Disequilibrium

2.1. Concept  
of Linkage 
Disequilibrium

Fig. 3. Genotype. At each SNP locus there are two alleles, read across a chromosome 
pair, which describe the genotype at that locus.

Fig. 4. Haplotype. A pair of haplotypes are illustrated across seven base pair positions. 
The haplotype pair is {A-G-C-T-A-A-C, A-G-C-C-A-A-G}. If in this sequence of DNA only 
two positions are variant in the population (say, positions 4 and 7), then the haplotypes 
may be referred to more succinctly as T-C and C-G.
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The concept of LD can also be thought of in terms of prediction. 
If knowledge of an allele at one locus can predict the allele that 
will reside at a second locus, then linkage disequilibrium exists 
between the alleles. However, if knowledge of an allele at the first 
locus cannot help predict the allele that is at the second locus, 
then linkage equilibrium exists.

There are many statistical measures for LD, the more common 
metrics are discussed here. In mathematical terms, if there is no 
association or dependence between alleles C and G at two loci, 
then:

	 − = ×P(haplotype C G) P(allele C) P(allele G), 	

where P denotes the probability of an event.
If alleles C and G are associated (in LD), then:

	 − = ×P(haplotype C G) P(allele C) P(allele G) + ,d 	

where d is the raw disequilibrium coefficient.
This equation can be rearranged to indicate the raw disequi-

librium as equal to the probability of a haplotype less the product 
of probabilities of the two alleles at each locus separately. If two 
alleles are in linkage equilibrium, d = 0.

	 = − − ×P(haplotype C G) [P(allele C) P(allele G)].d 	

The raw disequilibrium coefficient, d, can be difficult to inter-
pret because its range can vary dependent on allele frequencies at 
the two loci. Two popular measures of LD that have consistent 
ranges and that are widely used are D¢ (Lewontin’s D-prime) and 
r 2 (8, 9). D¢ is a scaled version of d that measures LD as a propor-
tion of the maximum amount of LD possible for the specific allele 
frequencies at the two loci. It can take values −1 £ D¢ £ +1 and can 
be expressed as follows:

	 max/ ,D d d=′ 	

where dmax = min[p(1−q), (1−p)q]; p denotes the frequency of 
the allele at the first locus and q the frequency of the allele at 
the second locus.

2.2. Common 
Measures of LD

Fig. 5. Two loci on a chromosome.
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The linear correlation of alleles, r2 has a range of 0 £ r2 £ 1 and 
can be calculated as follows:

	 =
− −

2
2 .

(1 ) (1 )
r

p p q q
d

	

The interpretation of these two LD measurements differs 
and each has respective advantages and disadvantages. An extreme 
value for D¢ (close to 1 or −1) indicates there is no evidence for 
recombination between the markers, since the initial mutation 
occurred. Because it is a strong indicator of recombination, it is 
useful for measuring phylogeny (evolutionary relatedness) and 
for selecting haplotypes to test in association analyses. On the 
negative side, D¢ is more likely to take on extreme values when 
allele frequencies are rare, and estimates are inflated in small 
samples. If allele frequencies are similar, a high D¢ value means 
the markers are good surrogates for each other; however, if allele 
frequencies are not similar, they will not be good surrogates. 
Hence, D¢ is not considered a good metric for SNP selection 
(see Section 3). Two positive characteristics of the r2 LD measure 
are that its value indicates how well an allele at one locus can 
predict the other allele at a second locus. Hence, it is a more 
useful metric for selecting tagging-SNPs, and it measures the loss 
of efficiency when one marker is replaced with another that has 
consequences for power in a subsequent association study (10). 
A drawback of r2, however, is that it has no direct relationship to 
recombination.

A list of internet sites and URLs that offer analyses of LD are 
available at: http://www.nslij-genetics.org/ld/. A list of genetic 
software packages and a description of their capabilities is avail-
able at: http://linkage.rockefeller.edu/soft/.

To estimate LD, haplotype probabilities are required. While gen-
otypes are observed directly from standard experimental assays, 
haplotypes are not. If there are two or more heterozygous loci in 
a segment of chromosome, then haplotype assignment based on 
genotype is ambiguous (see Fig. 6).

Haplotypes can be determined using experimental methods, 
such as, somatic cell hybrids or allele-specific PCR, or alterna-
tively using family data to follow inheritance. However, these 
options are costly and therefore more often statistical inference is 
used to estimate haplotypes and their frequencies, which are then 
used to determine LD. There are two general approaches to sta-
tistical inference of haplotypes, expectation maximization (EM) 
algorithms and Bayesian Monte Carlo Markov Chain (MCMC) 
methods. These methods estimate the population haplotype fre-
quencies as estimated from a group of independent individuals, 
and often use these haplotype frequencies to also represent the 

2.3. �Estimating LD
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possible haplotype pairs (and associated probabilities) for each 
individual.

Briefly, an EM algorithm (11–13) uses a two-step iterative 
process to reach the maximum likelihood estimates for haplotype 
frequencies. The iterations begin with an initial “guess” or set of 
starting values for the haplotype frequencies from the observed 
genotype data (an expectation, E step). For example, this could 
be the frequencies calculated only from the unambiguous haplo-
types. In the maximization step (M step), possible haplotype 
combinations with respective probabilities are assigned to the 
ambiguous based on the frequencies from the previous E step. 
Using the assigned haplotypes and frequencies, haplotype 
frequencies are recalculated across all individuals (a new E step), 
followed by another M step, and the process continues until the 
frequencies converge. Software packages that perform EM haplo-
type estimation include SNPHAP (14) and GCHap (15). For 
large numbers of loci, however, the time to find the solution 
becomes excessively large and local, rather than global, maxima 
may result. Techniques that have been offered as a solution 
include sampling techniques such as Gibbs sampling using mul-
tiple loci (16), for example, in the Haplotyper software.

Bayesian MCMC approaches are statistically more sophisti-
cated methods that can use prior expectations of genome struc-
ture to inform the haplotype reconstructions. Because they can 
accommodate more complex models of the evolutionary process, 
Bayesian MCMC methods have been shown to be slightly more 
accurate than EM; however, they generally take longer in terms of 
computing time (17). A commonly used software package for 
Bayesian MCMC haplotype estimation is PHASE (18). A list of 
genetic software packages is available at: http://linkage.rockefeller.
edu/soft/.

Fig. 6. Ambiguity of haplotypes.
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Linkage disequilibrium metrics are estimated and therefore are 
prone to sampling error. It may be important to determine 
whether LD is significant, that is, whether it is significantly differ-
ent than zero (linkage equilibrium). This can be statistically tested 
by using a likelihood ratio test of the null hypothesis of no LD 
and alternative hypothesis of LD between markers (19). A signifi-
cant p-value indicates that the LD exists.

Eventually, LD decays over time; random mating and recombi-
nation enable mutations from an ancestral haplotype to spread 
throughout a population. If there were no recombination 
between the loci, then LD remains the same in a population and 
does not decay. Recombination between the loci leads to reduced 
LD, and when sufficient recombination has occurred over time, 
a state of linkage equilibrium returns. Generally, if two loci are 
physically distant, recombination between them is common, and 
equilibrium returns quickly. If two loci are physically close, 
recombination occurs rarely, and LD is maintained. If recombi-
nation rates were consistent across the genome, varying only 
with physical distance, then a regular pattern of genome struc-
ture would be expected across the human genome. In 2002, 
Gabriel et al. (20) suggested that recombination rates were not 
consistent across the human genome and that, instead, the 
human genome was made up of haplotype blocks (areas of sup-
pressed historical recombination), interspersed with areas of 
preferential recombination, known as recombination hotspots. 
Other studies confirmed the unexpected extent of correlation 
and structure in haplotype patterns (21–25). Marked differences 
in correlation structure are seen when comparing LD between 
populations. LD tends to extend over longer distances in those 
populations that have passed through a recent bottleneck or arise 
from a small number of founders (22).

Linkage disequilibrium is commonly described using pair-
wise measures between two SNPs. However, the number of 
pairwise LD statistics increases exponentially with the number 
of markers, so that their interpretation becomes unwieldy and 
difficult to summarize in tabular form. This has led to the devel-
opment of software to provide visualization of LD. Haploview 
is one such visualization software that was adopted by the 
HapMap initiative to illustrate their data (26). Another graphi-
cal tool for LD is GOLD (http://www.sph.umich.edu/csg/
abecasis/GOLD) (27). These graphical summaries are called 
heat plots, and are well-suited for summarizing LD in densely 
genotyped map data. An example of a heat plot using Haploview 
is shown in Fig.  7, and an example of a GOLD heat plot is 
shown in Fig. 8.

2.4. �Significance of LD

2.5. Patterns of LD: 
Haplotype Blocks  
and Recombination 
Hot Spots
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Linkage disequilibrium may exist between loci as far apart as 
300 kb or more, or may only stretch a few kilobases (20, 23, 28). 
If LD exists between alleles at two loci (e.g., high r 2), this indi-
cates that the alleles are correlated and, to some extent, the two 
loci contain redundant information. When selecting SNPs to 
study in an association analysis, this redundancy can be exploited, 
such that a smaller set of SNPs can be chosen that adequately 
represent the majority of the genetic variation in a region. These 
subsets of SNPs are called tagging-SNPs (tSNPs) (14) because 
they are selected to “tag” all other variants within the region. The 
smaller set of tSNPs is selected to be genotyped, which is a much 

3. Selection  
of Genetic Variants 
for Association 
Studies

Fig. 7. Example of a heat plot generated using Haploview. The darker the shade of gray, the stronger the LD. This graph 
illustrates the haplotype blocks in NCF4 (Olsson et al. Arthritis Res Ther, 9: R98, 2007).
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more cost effective way to study genetic association than 
genotyping every SNP in a region of interest. Selecting SNPs 
using LD is, therefore, a widely used strategy in genetic associa-
tion studies.

Before tSNPs can be selected by any method, “full” data (geno-
types for “all” variants in a region) must be available for a sample 
of individuals such that LD can be estimated and used for the 
selection process. A discovery panel is such a sample of individuals. 
The data available on the discovery panel may vary from full 
sequencing, which will identify all variants in the individuals, to 
partial sequencing (such as across exons and regulatory regions in 
a candidate gene), to dense map data (1 SNP/500 bp). Clearly, 
dense map data and partial sequencing may miss some SNPs and 
all methods will be sensitive to the size of the discovery panel for 
picking up rarer SNPs. Extensive coverage of human genetic vari-
ation in discovery panels from diverse populations are now readily 
available to researchers (29). Publicly available, downloadable 
sequence data is available for specific genes or genomic regions 
from the NIEHS SNPs Program (30), SeattleSNPs (31), and 

3.1. Discovery Panels 
for Variant Selection

Fig. 8. Example of a heat plot generated using GOLD. LD in the 46 kb psoriasis candidate gene (29). Shades of gray 
represent the degree of LD between markers, as measured by D¢.
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HapMap ENCODE (32). In addition, dense map data is available 
from HapMap (33) for the entire human genome. These have 
provided investigators with the means to select variants for subse-
quent association study. See Section 5, “Web Resources,” for a 
list of URLs.

The resources outlined above were designed to target com-
mon population variants and sequencing and genotyping map 
data are based on discovery panels of limited size. For a single 
ethnic/racial group, the maximum discovery panel size with 
sequence data is 24 unrelated individuals (NIEHS SNPs Program, 
HapMap ENCODE), and the maximum panel size with map data 
is 60 unrelated individuals (SeattleSNPs, HapMap). The individ-
uals in the discovery panels for these resources are “neutral”; that 
is, population-based and chosen without regard to a disease or 
trait. The advantage of neutral discovery panels is that they are 
universally applicable. The disadvantage of small, neutral panels, 
however, is that they are inadequate for the detection and charac-
terization of genomic variation surrounding less common alleles 
(particularly those with minor allele frequencies, MAF, in the 
range of 0.01–0.05), and may lead to suboptimal tSNPs (34, 35). 
This problem is worsened if tSNP selection procedures are used 
that prescreen variants by considering only variants over a pre-
defined MAF or that use map instead of sequence. It has been 
shown that researchers can supplement data from existing sources 
for tSNP selection by sequencing additional population-based 
samples, or by sequencing a set of diseased individuals to increase 
their power to detect rarer susceptibility variants in subsequent 
association study (36). However, this is costly. The completion of 
the production phase of the 1000 Genomes Project (37), antici-
pated in 2011, will provide a new generation of universally 
useful tagging sets by sequencing of up to 200 people in each 
population-specific panel, which will adequately tag common 
susceptibility alleles and also rare variants that may have low- to 
moderate-effect sizes.

A number of algorithms have been proposed to define groups 
of SNPs that are in high LD and perform tSNP selection. There 
is no consensus as to which algorithm is best, although a 
comparison of three widely used algorithms indicated that even 
when distinct tSNPs were selected using different approaches, 
the area tagged was highly concordant between methods (38). 
Here we will briefly describe three different approaches, one 
that uses the pairwise-SNP LD measure r 2 (33), one that uses 
SNP-haplotype r2 (39) and one that uses principal component 
analysis (PCA) (40).

The simplest and one of the most widely used tagging methods 
uses pairwise r 2 between pairs of SNPs. In this method, a minimal 
set of tSNPs is selected such that each SNP that is not selected is 

3.2. Tagging-SNP 
Selection
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in high pairwise LD with a selected SNP (based on a user-defined 
r2 threshold, often 0.8). Basically, values for r2 between pairs of loci 
are calculated for all SNP pairs, and those values are used to assign 
SNPs in to “bins.” Within a bin, the algorithm identifies those 
SNPs that best represent the entire bin, that is, those SNPs that 
surpass the user-defined r2 threshold with all other SNPs in the bin. 
Each of these SNPs are identified as a potential tSNP for the bin; if 
not, the SNPs are designated as an “other” SNP in that bin. A user 
then simply selects one tSNP from each bin. This approach is 
implemented in ldSelect (31) (http://droog.gs.washington.edu/
ldSelect.html). An advantage is that it is quick and intuitively sim-
ple. Additional options are that specific SNPs can be specifically 
forced to be included (perhaps already genotyped, or putatively 
functional from previous studies) or excluded (assay doesn’t work 
well) in the final tSNP set, which adds to the flexibility of the soft-
ware. A disadvantage is that the frequencies of the two-locus hap-
lotypes from a pair of SNPs that are used to determine the r2 values 
use only data from the two loci to estimate haplotype frequencies, 
and ignore data at all other loci.

Another widely used tagging method is a haplotype r2 method. 
In essence, this differs from the pairwise r2 method described 
above, only in that the correlation used to identify tSNPs includes 
inspection of multiple SNPs together in haplotypes. This proce-
dure will allow that an unselected SNP is represented by a haplo-
type of selected tSNPs. Thus either single tSNPs, or haplotypes of 
tSNPs, can serve as proxies for the unselected SNPs. The advan-
tage of a haplotype r2 method is that fewer SNPs may be required, 
and hence, the method can be more cost-efficient for genotyping 
the tSNP set in a subsequent association analysis. However, there 
are disadvantages. Although theoretically this could be done for 
all haplotypes of any length, practically only two- and three-locus 
haplotypes are investigated, which may limit its advantage. A spe-
cific restriction of tSNPs selected in this way is that it requires the 
user to perform specific haplotype analyses to represent the unse-
lected SNPs, which can overcomplicate the analysis planned for 
subsequent association study. Both pairwise and haplotype r2 tag-
ging can be performed using the online resource Tagger (39), 
which can be easily implemented locally using Haploview (http://
www.broad.mit.edu/mpg/tagger/). Similarly to ldselect, SNPs 
can be specifically included and excluded. In addition, there is an 
option to identify the “best N” tSNPs for a specified N. Tagger 
can also evaluate an existing list of tSNPs to see how well they 
capture unselected SNPs.

Several algorithms based on PCA or other matrix decomposi-
tion methods have been proposed (40–43). The basic concept is 
that SNPs in high LD will load on to the same factors in the PCA 
procedure. The methods are similar to the r2 methods in that the 
factor loadings that define factor-membership in PCA are closely 
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related to multivariate r2. An advantage of PCA-based approaches 
is that the tSNPs are selected based on multivariate measures that 
assess each SNPs relationship to all others simultaneously and 
may therefore be able to select superior tSNPs. A disadvantage is 
that the method is more complicated, and hence less intuitive. An 
example of a PCA method is implemented in the software PCAtag 
(http://www-genepi.med.utah.edu/PCAtag/index.html).

Candidate gene association studies are undertaken based on func-
tional studies, biological hypotheses, or as a follow-up to regions 
of interest identified in genome-wide association. The aim of a 
candidate gene study is to thoroughly interrogate a gene or 
region, usually consisting of approximately 10,000–200,000 
DNA base pairs, either with an aim of finding novel evidence, or 
to pinpoint a putative disease variant if initial evidence has already 
been suggested. In general, candidate gene/region studies tend 
to study SNPs of both common and rarer MAFs and tSNP selec-
tion may be performed with a higher r2 and without a minimum 
frequency threshold. If variants are prescreened to consider only 
those with frequencies above a certain level (say 1 or 5%), then 
fewer tSNPs will be necessary; however, rare, potentially causal 
alleles will be missed. In addition, researchers will often supple-
ment their tSNPs sets with other SNPs that have been associated 
with a disease of interest in the literature, particularly if the SNP 
is in a coding region, and also may perform sequencing to dis-
cover additional variants that are not evident in the publicly avail-
able resources.

Power to detect associations in a genome-wide association (GWA) 
study depends on a high level of LD between an underlying causal 
variant and the SNPs that are studied (40). Major technological 
advances in high-throughput genotyping, with very low error 
rates, has resulted in low per-SNP costs and it is now possible to 
genotype 500,000 or more variants across the genome in thou-
sands of DNA samples. Hence, the GWA study has become pos-
sible and is currently a popular approach for identifying genes 
that influence common diseases or traits.

To maximize cost efficiency by minimizing the number of 
required tSNPs, most tagging methods (including all those 
detailed above) use greedy or exhaustive algorithms. Although 
useful for candidate genes or small regions, these implementa-
tions do not scale well to deal with large genome- or chromo-
some-wide datasets (41). Research has recently focused on the 
development of methods for choosing tSNPs for GWA study and 
has lead to the development of feature selection algorithms that 
do not involve computation-intensive searches for tSNPs. One 
such feature selection SNP selection tool that uses hierarchical 

3.3. Candidate Gene 
tSNP Selection

3.4. Genome-Wide 
tSNP Selection
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minimax clustering is CLUSTAG (42) (http://www.math.hkbu.
edu.hk/~mng/CLUSTAG/CLUSTAG.html).

The commercially available genome-wide gene chip arrays 
that are currently available can feature one million or more SNPs. 
These chip arrays are genome-wide tSNP sets designed to tag 
common variation, focused mostly on SNPs with MAF over 5% 
and which are most powerful to tag those with MAF over 20%. 
These gene chip arrays are often used as the first part of a multi-
stage association strategy. The first stage is the genome-wide 
tSNP set which is usually genotyped on moderate sample sizes 
(less than 3,000 individuals). At the second stage, selected mark-
ers from the first stage are genotyped in a larger number of indi-
viduals (sometimes 10,000 or more); and later stages involve 
more thorough investigation of SNPs identified as potentially 
important in earlier stages, in a candidate gene or region.

The Human Genome Project and the International HapMap 
Project have led to the cataloguing of millions of SNPs across the 
human genome, the majority of which have been genotyped on 
multiple, small discovery panels of different ethnic/racial back-
grounds. Focused gene/region initiatives such as NIEHS SNPs 
Program, SeattleSNPs, and the HapMap-ENCODE project have 
led to sequencing data for genes and regions in the same, or simi-
lar, discovery panels. All the data from these resources are pub-
licly and freely available and their existence has revolutionized 
genetic association studies. The characterization of genetic struc-
ture using linkage disequilibrium has enabled the selection of 
informative SNPs resulting in more powerful and comprehensive 
candidate gene association studies. In addition, and due to paral-
lel technological advances in high-throughput genotyping, 
genome-wide association studies have become not only a reality, 
but an increasingly common association study design.

Current resources have already begun to impact finding genes 
associated with disease in both candidate gene and genome-wide 
studies. A number of genes have been pinpointed and associated 
with breast cancer, prostate cancer, type II diabetes, idiopathic 
scoliosis, and age-related macular degeneration (43–47). Additio
nally, finding the DNA sequences underlying such common 
diseases as cardiovascular disease, diabetes, arthritis, and cancers 
is being aided by the human variation maps (SNPs) generated 
from the Human Genome Project in cooperation with the private 
sector. These SNPs also provide focused targets for the develop-
ment of effective new therapies (1). Beyond the current resources, 
by 2011 the 1000 Genomes Project initiative aims to provide 

4. �Summary
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publicly available genome-wide sequence data for over 1,000 
individuals (37). It will therefore provide the larger panels neces-
sary to select tSNPs that will have superior power to identify both 
common and rarer susceptibility alleles in association studies (36). 
As technological advances continue, it is expected that full 
genomic sequencing for all individuals may eventually eliminate 
the need for selecting tSNPs. However, until full sequencing of 
large numbers of individuals is technically and financially viable, 
the tSNP selection process remains an important part in the 
design of genetic association studies.

Abecasis, G. Linkage Disequilibrium Lecture Notes, available at: 
http://www.sph.umich.edu/csg/abecasis/class/666.03.pdf

Nickerson, D. SNP Discovery and Genotyping Workshop 
presentation, available at: http://pga.gs.washington.edu/presentations 
/SNPDiscovery&Genotyping_Sep.ppt

U.S. National Library of Medicine. Genetics Home Reference: 
Your Guide to Understanding Genetic Conditions, available at: 
http://ghr.nlm.nih.gov/handbook/mutationsanddisorders/
genemutation

Wellcome Trust. The Human Genome, available at: http://
genome.wellcome.ac.uk/
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Chapter 7

Genome-Wide Association Studies

Mark M. Iles 

Abstract

Genome-wide association (GWA) studies are best understood as an extension of candidate gene association 
studies, scaled up to cover hundreds of thousands of markers across the genome in samples usually of 
several thousand cases and controls. The GWA approach allows the detection of much smaller effect sizes 
than with previous linkage-based genome-wide studies. However, this sensitivity makes them vulnerable 
to false positive findings caused by subtle differences between cases and controls that may arise as a result 
of issues, such as genotyping errors, population stratification, and sample mix-ups as well as the more 
obvious issue of multiple testing.

After some background and an introduction to GWA, studies are considered stage-by-stage with 
particular focus on quality control as this is by far the most time-consuming and complex issue related to 
GWA.

Key words: Genetics, Epidemiology, Genome-wide, Statistics, Association

There has been a huge increase in the number of genome-wide 
association (GWA) studies conducted in recent years. Ten were 
published in 2006, 90 in 2007, 144 in 2008, and 48 up to the 
end of March 2009. In part, the prevalence of such studies reflects 
technological developments in genotyping technology, but the 
driving force behind these can be traced back to two key papers 
from 1996 (1, 2). In these papers, the authors proposed that 
common genetic variants may underlie many common traits or 
diseases and that these would be best found using population-
based association studies rather than family-based linkage analysis 
even though this may require the testing of every gene in the 
genome (1). This in turn would require identification of all common 
variants in human genes (2). These proposals gained credence 

1. Introduction
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and led to the International HapMap Project (3), with the aim of 
cataloguing common human genetic variation in a range of eth-
nic groups. Combined with the latest single nucleotide polymor-
phism (SNP) chip genotyping technologies, allowing the 
simultaneous genotyping of hundreds of thousands of markers, 
HapMap has enabled GWA studies to be conducted, leading to 
the recent discovery of common genetic variants associated with 
diseases, such as cardiovascular disease (4–8), breast cancer (9–11), 
and type II diabetes (6, 12–18).

Fundamentally, GWA studies differ little from traditional 
case-control studies conducted on candidate genetic regions. 
However, given that the common genetic variants that cause dis-
ease may have quite small effect sizes and the level of multiple 
testing inherent in genotyping many markers genome-wide, GWA 
studies require the collection of large numbers of cases with a 
particular disease and controls. As a result of the association (link-
age disequilibrium or LD) between nearby loci not all loci in a 
region need be typed for most common variation to be captured. 
Marker (usually SNP) spacing should be dense enough to capture 
the variation at those loci that have not been genotyped. SNPs 
may be chosen randomly across the genome or may be chosen 
specifically for their coverage (using a pilot sample or existing 
data such as HapMap) in which case they are known as tagging 
SNPs (19). Studies should be designed in terms of both sample 
size and marker coverage to have sufficient power to detect com-
mon disease susceptibility alleles of modest effect. Genotype data 
may be analysed in various ways, but the simplest is a comparison 
of frequencies between cases and controls. These issues are dis-
cussed in more depth below.

The strength of GWA is that it represents a method for captur-
ing a new class of disease-associated genetic variants. Pedigree-
based association studies utilise families in which disease clusters, so 
are well powered to find rare variants of large effect. GWA relies on 
population-based samples, so requires common variants (as rare 
variants are infrequently observed) of more modest effect, which 
could not be found using traditional linkage-based approaches.

The first stage of a GWA study is the collection of suitable sam-
ples. Most studies simply compare genotype frequencies in 
cases and controls for a particular disease. However, if the trait 
were quantitative, researchers would usually collect either a 
random sample of individuals or those with extreme values of 
the trait.

2. Sample 
Collection: Sample 
Size, Stratification, 
Case Enrichment
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As in any study, it is important that sufficient numbers of 
individuals are collected to ensure good power to detect an effect 
and that the cases and controls are reasonably matched. The 
power of a study depends on the frequency and effect size of 
the functional genetic variant(s), both of which are unknown. 
Furthermore, it is likely that despite the large number of SNPs 
that are now available on commercial platforms the true func-
tional variant is not genotyped; rather we depend on one of the 
SNPs that has been genotyped being in LD with it and therefore 
being able to pick up the effect. This results in a further reduction 
in power, inflating the required sample size proportional to the 
inverse of the correlation (measured by r 2) between the geno-
typed and causative markers. How strong this correlation is 
depends on the coverage of the platform being used. The latest 
1,000,000 SNP chips (http://www.illumina.com) capture at least 
80% of the variation in more than 90% of the genome in a 
European sample. As to effect sizes and frequencies, our best 
indicator is to look at the results of studies that have been con-
ducted. These suggest (20) that the median effect size detected is 
an odds ratio (OR) of 1.25 (with very few having an OR > 1.5) 
with a median allele frequency of 0.4. Thus, while common vari-
ants influencing disease do exist, they have quite small effect sizes 
requiring large samples. It is highly likely that there are genetic 
variants that have an even smaller effect on disease than those 
seen so far, but studies have simply not been large enough to 
detect these. If we assume we require a p-value of 5 × 10−7 (see 
Subheading 5 for a discussion of this) and are looking for a vari-
ant with an OR of 1.25 and a frequency of 0.4, where we have a 
SNP in LD with it (r 2 = 0.8) we require a sample size of 3,125 
cases and 3,125 controls for 80% power (for a GRR = 1.5 and 
frequency of 0.2, we require 1,290 cases and controls for 80% 
power). Thus, it is rare for studies to be conducted with fewer 
than 1,000 cases and 1,000 controls.

The next question is how such a sample should be obtained. 
Ideally, samples should always be collected with the study design 
in mind. However, this is usually not feasible for such a large 
study and instead existing collections must be utilised. Since 
these will not have been collected with GWA in mind, any design 
issues that are particular to GWA will not have been considered. 
Foremost among these is the problem of population stratifica-
tion. Population stratification usually arises when a sample con-
sists of distinct subpopulations between which there is little 
mating. Differences in allele frequency may then occur by chance 
between the subpopulations. If the subpopulations are not 
sampled equally frequently in cases and controls (for instance, 
one subpopulation is overrepresented in cases but underrepre-
sented in controls), any loci that differ in frequency between 
these subpopulations may appear to be associated with disease 
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risk. Differential sampling may occur as a result of bad design, 
by chance or because one subpopulation has a higher incidence 
of disease (for cultural, environmental, or genetic reasons). For 
instance, while Europe does not consist of completely distinct 
subpopulations, there is likely to be more mating between indi-
viduals from the same geographic region, thus alleles at many 
loci vary in frequency across Europe (21). These are too small 
to have affected previous studies, designed to find large effect 
sizes, but may give rise to false positives in a GWA study that is 
designed to find smaller effect sizes. Thus, while in previous 
studies it may have been enough to ensure that cases and con-
trols were from the same continent or very broad geographic 
region, in a GWA study matching should ideally be tighter, for 
instance within country, if this represents a narrow enough eth-
nic origin. Existing data sets may not record such information, or 
the definition of ethnicity may not be precise enough, for exam-
ple, samples from the USA of “European origin”. Fortunately, 
methods exist for detecting population stratification and for cor-
recting this. These are discussed below, but it should be remem-
bered that such approaches are never as satisfactory as a 
well-matched case-control set. The extreme of this is to use a 
ready-genotyped set of controls, which can be used against any 
set of cases. While this has been shown to be relatively unprob-
lematic for a UK set of controls against various sets of UK cases 
(6), stratification is always a potential hazard. There are also issues 
regarding cases and controls genotyped at different times (see 
Subheading 3 below).

The last issue to be discussed with regards to sample collec-
tion is “genetic enrichment”. Individuals who not only have the 
disease in question but also have other characteristics may be con-
sidered to be more likely to have a genetic basis to their disease. 
Such characteristics may include an early age of onset, a family 
history or a greater severity of disease. The main advantage to this 
approach is that such “genetic enrichment” may improve power 
by oversampling those individuals who are likely to have more 
genetic risk factors. However, there are various disadvantages. 
Firstly, such information may be unavailable, or unreliable, in 
which case such an approach is not possible. Secondly, there is no 
guarantee that the factors chosen do indeed “genetically enrich” 
the sample, at least not for the common low penetrance variants 
that GWA is well powered to detect. Thirdly, choosing only those 
individuals who are “genetically enriched” may lead to a smaller 
sample size, so there is a trade off here in power. Finally, there is 
no guarantee that the results from a genetically-enriched sample 
are applicable to the general population. Thus, the usefulness of 
“genetic enrichment” depends on the disease being studied and 
the samples available.
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Once the samples have been collected, the next stage is to 
genotype them. Genome-wide SNP chips output the results of 
each genotype in terms of the intensity of the two alleles at the 
SNP. Those who are homozygous have a high intensity for that 
allele and low for the other, while those who are heterozygous 
have an intermediate intensity for both. If the genotype intensi-
ties are plotted for all individuals at a particular SNP, these appear 
as three clusters of points (a cluster plot). Genotypes are called 
based on being within one of these clusters. The boundaries of 
each cluster may be declared based on either the current geno-
type data or on previously genotyped data and any genotypes 
lying outside of these boundaries is declared as “uncalled” and so 
is treated as missing data (see Fig. 1). Usually, calling of genotypes 

3. Genotyping: 
Interpretation  
of Scatter Plots, 
Calling Algorithms, 
Indicators of QC 
Problems

Fig. 1. Two examples of cluster plots. The x and y axes show the intensities for the two 
alleles so the three genotypes should form three separate clusters. (a) Is an example of 
good genotyping: the clusters are well-defined and most genotypes are called. (b) Is an 
example of poor genotyping: the clusters overlap to the extent that it is not even clear 
how many clusters there are.
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is performed automatically by software provided by the genotyping 
company. Problems may arise when minor allele frequency is low, 
in which case one homozygote may not be observed, and so iden-
tification of clusters becomes harder. Other problems may be 
caused by low sample quality or particular problems in genotyp-
ing some SNPs in which case clusters may be difficult to distin-
guish. A further issue that has been identified (6, 22) occurs when 
samples come from various sources and have been handled in dif-
ferent ways or were collected at different times. This can lead to a 
consistent difference in intensities between samples producing, in 
extreme cases, six clusters rather than three. Suggestions for deal-
ing with this are to either call genotypes for different groups (even 
cases and controls) separately (22) or to account for these poten-
tial strata within the data in the calling algorithm itself, as in 
CHIAMO (http://www.stats.ox.ac.uk/~marchini/software/gwas/
chiamo.html; (6)).

Problems in calling genotypes may not be identified by the 
calling algorithm itself, but may give rise to false positive results, 
particularly when there are differences between the calling of case 
and control samples. These are often readily apparent when the 
cluster plots are examined, but with one cluster plot for each SNP, 
this would require individual examination of hundreds of thou-
sands of plots. Instead other indicators of genotyping problems 
are usually employed and the cluster plots only examined for 
those SNPs that show strong evidence of association after statisti-
cal analysis as a final quality check.

Such indicators of genotyping problems may be low SNP call 
rates, deviation from Hardy–Weinberg equilibrium (HWE) or 
low minor allele frequency. There are no strict rules for what exact 
values constitute low quality genotyping. For instance, out of 
600,000 SNPs you would expect 600 to reach a HWE p-value of 
0.001 simply by chance, even in the absence of any genotyping 
problems. Thus, we would recommend not excluding SNPs on 
the basis of such measures until after statistical analysis for associa-
tion has been conducted. At this stage, those SNPs that appear to 
be strongly associated can then be considered more carefully in 
terms of their various quality measures. More often than not those 
SNPs that do poorly in terms of one quality measure do poorly in 
terms of others.

It is important, however, to exclude individuals on the basis 
of the quality of the sample before statistical analysis is conducted. 
So, for example, those samples missing more than 5%, or even 1% 
of the genotypes when considering all the tested SNPs may be 
excluded. This may seem quite stringent but it should be remem-
bered that this is not because the data is missing “at random” but 
because this indicates potential genotyping problems that might 
affect the genotyping of all SNPs in that sample. Only a very small 
proportion of samples is excluded even with such strict QC.
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Another check that ought to be conducted on samples is that 
none are duplicates or closely related. Any pair of samples that are 
closely related shares far more alleles identical by state than an 
unrelated pair. This is easily implemented using software, such as 
PLINK (http://pngu.mgh.harvard.edu/purcell/plink/; (23)). 
Duplicates may arise because individuals have accidentally been 
recruited more than once into the study or because samples have 
been mixed-up. Another simple check for sample mix-up is to 
compare individuals’ sex as recorded in their phenotype and their 
sex according to heterozygosity of the X chromosome (this is also 
implemented in PLINK, http://pngu.mgh.harvard.edu/purcell/
plink/; (23)). Further checks for genotyping problems can be 
applied when the sample being analysed consists of subsets defined 
either by case/control status, geographic origin, stratified geno-
typing or sample collection. The various quality measures dis-
cussed may be applied to each subset, in case one subset is of low 
quality, and this is not identifiable when all groups are considered 
together. Alternatively, there may be heterogeneity between sub-
sets in terms of quality measures or even minor allele frequency, 
also indicating possible quality problems.

As mentioned in Subheading 1, population stratification may give 
rise to false positive associations between disease phenotype and 
genotype. While careful study design (in terms of well-matched 
cases and controls) is the best approach to dealing with this, it is 
possible that ethnic/geographic matching is either not possible 
or that even if this is done there remains so-called cryptic stratifi-
cation, which is not identifiable from phenotype data. It is possi-
ble, however, to test for stratification and either to exclude 
population outliers or to some extent correct for such stratifica-
tion. By far the simplest method for identifying population strati-
fication is to check for deviation from HWE, which occurs as a 
result of population stratification. However, inflation of false pos-
itive association rates may be caused by quite modest levels of 
stratification, which are not detectable as significant deviations 
from HWE.

Another simple approach is that of the Q–Q (quantile–quantile) 
plot. Here, the test of association is conducted and the ordered 
test statistics for all SNPs (having excluded those of low quality) 
are plotted against their quantiles. While some SNPs may genu-
inely be associated with disease, the vast majority should not. 
Thus, a deviation from the x = y line indicates that there is some 
inflation of the test statistics above that expected under the null 
hypothesis of no association. Such inflation is usually measured by 

4. Identifying  
and Correcting  
for Population 
Stratification
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dividing the median of the test statistics by its expectation under 
the null hypothesis, denoting this ratio l (see Fig. 2). This gives 
rise to the genomic control method for correcting for such infla-
tion, whereby each test statistic is divided by l (24, 25). However, 
it has been shown that, in part because the inflationary effect of 
stratification varies from marker to marker and l is an averaging 

Fig. 2. Examples of Q–Q plots. The data come from a genome-wide study of melanoma, 
with samples from eight different centres in Europe and Australia (30). Observed chi-
squared values are plotted against expected values. (a) Shows the results when an 
unstratified analysis is conducted, not taking account of the potential differences in 
allele frequencies between centres. Here, l = 1.14. (b) Shows the results when a strati-
fied analysis is conducted, adjusting for potential differences in allele frequencies 
between centres. Here, l = 1.06. The results suggest that there is some stratification in 
the sample, but that this is mostly accounted for by differences between centres.
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of this, genomic control overcorrects those markers that are not 
very stratified and undercorrects those that are more stratified. 
Thus, the approach results in the test both losing power and hav-
ing an inflated false positive rate (26).

Other approaches include assigning individuals to theoretical 
subpopulations and testing conditional on these (27, 28), but 
such approaches assume that the sample consists of distinct sub-
populations (which may not be true) and, crucially, are highly 
computationally intensive.

By far the most popular approach for detecting and adjusting 
for population stratification is the application of principal compo-
nents analysis (PCA) (26). The idea is that individuals who are 
geographically close are likely to be more correlated in terms of 
genotypes (i.e. closely related) than those who are far apart. Even 
if there is only a slight correlation on a SNP-by-SNP basis, when 
this is considered genome-wide, it may be great enough to distin-
guish between subpopulations (when these are distinct) or reveal 
gradients in SNP frequencies when there are no distinct subpopu-
lations. The first principal component gives the linear combina-
tion of genotypes that best captures the variation in the data. The 
second principal component is the orthogonal combination that 
best captures the remaining variation in the data and so forth.

Thus, the sample may be combined with data from across the 
world (for example, the HapMap data (http://www.hapmap.org) 
which includes samples from Europe, Asia, and Africa) and PCA 
applied to the combined sample. This identifies individuals that 
are ethnically distinct from the rest of the sample. For example, in 
a study of a European population, combining with the HapMap 
data and applying PCA produces principal components 1 and 2 
that separate out the continents into three distinct clusters. 
Anyone who is not of European origin appears in one of the non-
European clusters (6). Ethnic outliers from the sample can then 
be excluded from further analyses.

Once outliers have been removed to give a more homoge-
neous sample, PCA can be reapplied to detect more subtle strati-
fication. It has been shown (21, 29) that the first and second 
principal components are likely to correspond to orthogonal two-
dimensional geographical axes, such as latitude and longitude. 
Further principal components may correspond to further orthog-
onal axes, depending on the structure of the population. It is 
important when applying PCA that the SNPs are first thinned so 
that LD is minimised, otherwise the principal components may 
just pick out regions of strong LD. The weightings within the 
components are also interpretable as representing regions that are 
particularly stratified, perhaps even having undergone selection. 
For instance, within both the UK (6) and Europe (30) it has been 
shown that there is particularly high population stratification 
around the lactase gene (which affects lactose intolerance and is 
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well known to have undergone ancestral selection), and HLA, 
which has also undergone selection. In Europe, PCA distinguishes 
individuals from different countries extremely well (21, 30). The 
principal components may then be used as covariates in a logistic 
regression on disease status, for instance, to adjust for potential 
stratification.

Once any problematic samples have been removed, association 
analysis can begin. Various complex association analyses may be 
applied to candidate gene studies but, given the number of SNPs 
that are tested and the number of samples involved in a GWA 
study, only very basic fast tests are currently computationally fea-
sible. The simplest of these is to test for an association between 
genotype and case-control status using Pearson’s chi-squared or 
equivalent. However, since this has two degrees of freedom in 
most cases (where all three genotypes are observed), the Cochran–
Armitage trend test is more commonly applied. Here, a log addi-
tive mode of inheritance is assumed, so the test is asymptotically 
equivalent to a logistic regression of case-control status on geno-
type measured as a continuous trait (taking the value 0, 1, or 2). 
While this makes the model less flexible and therefore likely a 
worse fit to the data, this is traded off against increased power 
because it has only one degree of freedom. Various authors have 
suggested simple alternatives to be more powerful (31, 32), such 
as applying tests assuming additive, recessive, and dominant 
modes of inheritance and picking the best of these, but the 
Cochran–Armitage trend test remains by far the most popular. 
Other possible approaches would be to apply multilocus tests, 
under the hypothesis that some disease risk is due to interaction 
effects that are undetectable when analysing one SNP at a time 
(33). Again, these are not widely applied and are unlikely to be 
used in a primary analysis.

The next question is the interpretation of such results. The 
usual approach would be to look at those SNPs with the most 
significant p-values. Given that hundreds of thousands of SNPs 
have been tested, the cut-off for significance must be quite strin-
gent. A simple Bonferroni correction is conservative because SNP 
genotypes are not independent (due to linkage disequilibrium). 
There is no agreed cut-off for GWA studies, although the values 
used are generally of the order of 10−5–10−8 (6, 7, 11) based on 
both frequentist and Bayesian arguments.

At this stage, the various SNP quality measures may be 
checked along with cluster plots (see above) to ensure as far as 
possible that significance is not a result of genotyping error. 

5. Analysis: 
Testing for 
Association  
and Interactions 
Estimating Effect 
Size
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Having several significant SNPs in a region is further evidence 
that genotyping error is not the cause, but is no guarantee that 
population stratification or a simple statistical false positive is not 
the reason. Such results can be displayed as a Manhattan plot 
(Fig. 3).

It is also of interest to estimate the contribution of any repli-
cable genetic variant to disease risk. Most commonly this would 
be by OR or relative risk, either for each genotype or assuming an 
additive risk model. Many authors also estimate in some way the 
proportion of overall disease risk that is explained by the variant 
using a measure such as heritability (or sibling relative risk) or 
population attributable risk. Although easily stated these are not 
always easy to interpret and may vary widely. For instance, a rare 
variant with a large effect size contributes greatly to heritability 
but little to attributable risk due to its rarity. A common variant 
with small-to-moderate effect size may have a high attributable 

Fig. 3. Manhattan plot showing-log10 p-values plotted against genomic location. Again the data are from a melanoma 
genome-wide association study (30), with results adjusted for stratification. Alternating colours are used simply to 
distinguish chromosomes more easily. The more convincing findings are those where there are multiple SNPs with high 
significance. Lone SNPs with high significance are more likely to be due to genotyping error.
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risk because it is common but a very small effect on heritability 
because of its small effect size. Population attributable risks (PAR) 
reported from GWA studies tend to be high as the variants found 
are common: 0.54 for Restless Legs Syndrome (34), 0.38 for 
Coronary Artery Disease (7), and 0.13 for Prostate Cancer (35); 
while measures of the proportion of the genetic risk are lower: 
excess familial risk of 0.036 for Breast Cancer (11) and 0.002 of 
the variance in risk for Multiple Sclerosis (36). Tellingly, estimates 
of PAR for the replicated SNP found for colorectal cancer vary 
between 0.11 and 0.42 (because of differences in frequency 
between populations), while explaining only 0.009–0.018 of the 
increased risk to siblings of cases (37). It should be remembered 
that the ORs estimated in the initial studies that find the causative 
locus are likely to overestimate: the so-called winner’s curse (38, 
39). Estimates from replication data are less biased.

Further analyses may include subgroup analysis if, say, certain 
phenotypic subtypes are suspected to have a different genetic 
basis and checking of heterogeneity of ORs (by Mantel–Haenszel 
test) across either disease subtypes or geographic regions. 
Adjustments may be made, both for p-values and ORs for pheno-
typic covariates, such as sex, age, etc., and for principal compo-
nents by logistic regression; the latter to ensure that stratification 
does not inflate false-positive rates.

It is common to require independent replication of any signifi-
cant results, giving further confirmation that the result is not due 
to either chance or error and allowing independent estimation of 
effect size (40). In terms of classical epidemiology, this may seem 
odd, as it could be seen as equivalent to splitting a dataset into “test-
ing” and “replication” sets which, while on the surface attractive, 
have less power than simply analysing everything together. But 
this ignores the special nature of GWA data – a replication data-
set allows confirmation that genotyping was not at error or that 
subtle stratification has not occurred. Furthermore, the replica-
tion data may be ethnically distinct from the rest of the data and 
so not well suited for combining. Finally, genome-wide genotyp-
ing is, of course, far more expensive than genotyping a single SNP, 
so that there may be more samples available to genotype genome-
wide than can be afforded. In this instance, the remainder may be 
genotyped at the few most significant SNPs after the GWA. For 
these reasons, it is common for replication in one or more inde-
pendent data sets to be published along with the initial study.

It is at this point that the initial study may finish, but this is 
only really the beginning of understanding the results of GWA. 

6. Replication  
and Imputation
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While one or more hits in a region at a suitable significance level 
and replication in independent datasets indicate genuine findings, 
it is unlikely that the causative locus has been identified. It is more 
likely that the most significant loci are simply in strong LD with 
the causative locus (or loci). The obvious next step would be to 
conduct further dense genotyping or even sequencing (or per-
haps sequencing a small sample to discover all common SNPs in 
the region followed by genotyping these in the full sample) to 
narrow down the location of the true causative locus. Such 
approaches may be prohibitively expensive, particularly if the 
region in question is large.

One alternative is to impute the genotypes at those SNPs that 
have not been typed. By using a dataset, such as HapMap (http://
www.hapmap.org) or the 1,000 genomes project (http://
www.1000genomes.org) which contain far denser genotype data 
than is currently available on commercial SNP chips, the pattern 
of LD between nearby SNPs can be established and then applied 
to the sample data such that SNPs that have not been genotyped 
may be estimated ((41); http://www.stats.ox.ac.uk/~marchini/
software/gwas/impute.html; http://www.sph.umich.edu/csg/
abecasis/MACH/). Those SNPs that are estimated with suitable 
confidence in sufficient samples can then be treated as though 
genotyped and the data analysed as usual, although it is more cor-
rect to account for this uncertainty. Such an approach offers a way 
of “genotyping” extra SNPs within a dataset and hopefully facili-
tating further narrowing down of the location of the causative 
locus. Researchers should of course be more cautious about the 
results at SNPs that are imputed rather than genotyped. They are 
only as good as the dataset from which they have been imputed 
which may either be quite small relative to the researchers’ sample 
or may not ethnically be a good match. Thus, the estimates of 
SNP frequencies and the LD patterns between them suffer. 
Furthermore, care should be taken in the sample to remove low 
quality SNPs before imputation – imputation based on a SNP 
that has been badly genotyped is unreliable. Imputation also 
allows the combination of samples that have been genotyped on 
different sets of SNPs (i.e. on different SNP chips). This allows 
analysis of more of the data than a simple meta-analysis based on 
p-values at common SNPs.

Clearly, GWA has been a success. Many new genetic variants have 
been identified that are associated with a wide range of diseases 
(20). The obvious extension to this is to continue to apply the 
method to further diseases and to increase sample sizes as far as 

7. The Future
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possible such that ever smaller effect sizes and rarer variants may 
be identified. But eventually there must be some limit to this – 
samples cannot increase in size indefinitely. Then, we need to 
either use other sources of information (such as bioinformatic 
tools) or approach the analysis of such data in a different way 
focusing, for instance, on the discovery of rarer variants. But it is 
likely that GWA will reveal more about the underlying genetic 
cause of diseases for some time.
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Chapter 8

Candidate Gene Association Studies

M. Dawn Teare 

Abstract

Candidate gene association studies aim to establish or characterise association between the genetic 
variation occurring within a specific gene or locus and a phenotype. If the phenotype is quantitative, then 
the effect size is often measured as the difference between the genotype specific means or a per allele 
effect. When the phenotype is binary and the disease is either present or absent, the effect is summarised 
as a genotype specific risk or relative risk. This chapter focuses on methodology employed when a single 
or small number of genetic loci are being investigated for an association with a specific phenotype.

Key words: Odds ratio, Relative risk, Genotype specific relative risk, Case–control study, Haplotype risk

Candidate gene association studies aim to establish or characterise 
association between the genetic variation occurring within a spe-
cific gene or locus and a phenotype. Historically, genetic associa-
tion studies became popular because it was clear that the genetic 
variants underlying risk of complex disease were likely to have 
individually weak effects, making each effect difficult to detect 
through the linkage approach. Weak effects due to common vari-
ants are possible to detect through genetic association studies; 
however, as the variant becomes rarer, this is also difficult for 
association studies (1). Many of the early positive reports of asso-
ciation studies suffered from being underpowered resulting in 
few convincing replications (2). Exactly what constituted a candi-
date gene was open to argument, and therefore how to control 
for the potential problem of multiple testing was also unclear as 
the size of the set of candidate genes was not defined. Since the 
onset of genome wide association studies (GWAS) the “prior interest” 

1. Introduction
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can now be justified and to some extent quantified. The further 
study of regions of the genome associated with risk of disease is 
now required to see which of the GWAS “top hits” are replicable 
and hence more likely to be genuine associations.

GWAS are designed or powered to detect weak effects, and 
hence the samples used are frequently not representative of the 
population. By contrast, the candidate gene study generally 
requires representative population-based samples, either cohort 
samples for quantitative traits or disease-based sampling for case–
control studies. In Chapter 2, we have introduced a number of 
terms which define a genetic component. When considering major 
genes, we present the effect of one or two copies of the risk allele 
by estimating the penetrances of specific genotypes for a binary 
trait and estimating the mean increase (or decrease) in trait value 
for a quantitative trait. Many phenotypes can be studied as a quan-
titative or qualitative trait. For example, obesity is frequently mea-
sured on the body mass index (BMI) scale; however, when the 
BMI exceeds a particular threshold, the individual can be classed 
as obese. The approaches to study the two forms of phenotype are 
considered separately as the methods employed are slightly different. 
For simplicity in the following examples, we assume that a candi-
date gene or locus has only two specific alleles, though all methods 
can be extended to multiple risk allele systems.

In the genetic analysis of quantitative traits, we may be interested 
to identify the proportion of total trait variance attributed to the 
variation at the candidate risk locus. This would be equivalent to 
an estimate of heritability. Put another way, we may want to esti-
mate the genotype specific mean values of the trait. This question 
can be addressed through linear regression. The measured trait in 
individual i is denoted by yi and the genotype by gi, which takes 
values 0, 1, or 2 reflecting how many risk alleles are present. The 
linear model takes the form

	
1 2( 1) ( 2)i i i c i iy g g xα ε= + = + = + + +b b b 	

where b1 is the effect on the trait value when an individual carries 
one copy of the candidate gene risk allele, b2 is the effect of two 
copies of the risk allele on the trait, and bcxi represents the term 
for the effect on the phenotype of another known covariate, such 
as age or sex. Further covariates can be added to the model as 
required. The final term ei is the random error term, assumed to 
be normally distributed. This parameterisation enables us to specify 
the genotypic means of the trait directly. While this form of analysis 

2. Quantitative 
Traits
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could be done by simple analysis of variance, the linear regression 
model allows additional covariates to be taken into account. The 
linear model has the further advantage that the trait distribution 
is not required to follow a normal distribution, only the residual 
error term is required to be normally distributed (3). An alterna-
tive parameterisation is to use additive and dominance 
coefficients.

	
1 2 ( 2)i i i c i iy g g xα ε= + + = + + +b b b

	
Now b1 represents the additive allelic effect and b2 is the domi-
nance effect (4).

While many quantitative traits have been studied, the vast majority 
of these are of interest because they are regarded as a surrogate 
marker for disease risk, or that a trait value above a specific thresh-
old is strongly associated with clinical disease. So the more fre-
quently encountered study design in genetic epidemiology (as 
with classic epidemiology) is the case–control study design. This 
form of study uses targeted sampling, setting the number of cases 
and controls to optimise statistical power. In Chapter 2, we dis-
cussed how the penetrance function was used in the study of 
binary traits. This is the conditional probability of disease in an 
individual with a specified genotype, an absolute risk. Some stud-
ies do report penetrance probabilities, for example, the impact of 
the BRCA1 gene on an individual’s risk is quite significant. The 
probability of a woman developing breast cancer by age 70 if she 
carries one high risk allele for BRCA1 is estimated to be 65% 
with a 95% confidence interval (CI) of 44–78% (5). This is a large 
risk compared to the average lifetime risk of breast cancer for 
women in the UK of 11% (6). If we compare the report of the 
effect of BRCA1 on disease risk with the more recently estab-
lished association of the CASPASE-8 gene genetic variant CASP8 
D302H (7), we find that these results are reported in a slightly 
different way. A comparative effect is reported rather than an 
absolute effect. In this example, the summary effect is reported 
as an odds ratio (OR) of 0.89 (95% CI: 0.85–0.94) for carriers 
of one allele and an OR of 0.74 (95% CI: 0.62–0.87) for car-
riers of two alleles, when compared with common homozygote 
genotype. The results are reported in this comparative manner 
because the case–control design prevents the estimation of abso-
lute risk. The reason for this is outlined in the next section, which 
gives a concise overview of the methods and terminology used in 
case–control studies.

3. Case–Control 
Studies
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The term risk is widely used in a number of disciplines though in 
epidemiology (and genetic epidemiology) it has a precise meaning. 
Disease risk is generally used in the context of binary traits to 
mean the probability of new or incident disease occurring within 
a specified time period in a defined group or subgroup of a popu-
lation, all of whom are disease free and therefore “at risk” at the 
beginning of the time interval. From this definition it is clear that 
risk is a cumulative probability and hence a dimensionless param-
eter which must lie between 0 and 1. An alternative way of char-
acterising risk is to consider the incidence rate of new cases of 
disease per unit of time, often reported in units of person-years at 
risk. Models that take account of incidence (or mortality) rates 
are based on probability density models. When the incidence rate 
is considered over shorter and shorter time intervals this con-
verges to the hazard function (a function of time) which can be 
thought of as the instantaneous probability of developing disease, 
conditional upon having survived disease free up to the instant 
before. This model allows the hazard rate to vary with time which 
makes it very suitable for the analysis of disease with variable age 
at onset. Statistical survival models can be used to derive the 
cumulative disease risk from the hazard function.

When population based sampling is used the risk or hazard 
can be directly estimated. However, as argued in Chapter 3, 
population-based sampling is costly as a means to study factors 
associated with disease risk when the disease is rare. A more effi-
cient design is to sample cases with disease and cases without, 
then compare the frequencies of exposures in the two groups to 
infer association. By sampling in this way, you can estimate the 
frequency of the exposure in cases and controls, but as you have 
fixed your numbers of cases and controls you cannot directly 
estimate the absolute risk of disease conditional on exposure. 
To illustrate the sampling, Table 1 shows genotype counts in a 
UK case–control study for lung cancer (8). In this example, their 
cases are restricted to “ever smokers”. From these data, we can 
estimate the probability of each of the three genotypes in lung 
cancer patients, we can report the estimated probability or risk 
that an “ever smoker” lung cancer case has genotype AA is 0.37. 
This knowledge appears to be not very useful as we would really 
like to know the risk of disease in those individuals with genotype 
AA. This is how penetrance is defined in Chapter 2. At first sight 
we are not even able to estimate the relative risk of disease in one 
exposure group vs. another (for example AA vs. AG), as the rela-
tive risk is a ratio of two penetrance probabilities. This apparent 
difficulty is resolved by reporting the Odds Ratio (OR). The OR 
is defined as the odds of disease in exposed divided by the odds of 

4. Terminology and 
Methodology Used 
in Case–Control 
Studies

4.1. Disease Risk
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disease in unexposed. In Table 1, we define genotype AG as the 
exposure and genotype AA as not exposed, the estimated OR is 
(448/415) ÷ (670/858), or 1.38.

While the OR appears to be difficult to interpret, its common 
utility comes from three features. Firstly, that it approximates the 
relative risk (or risk ratio) when the disease is rare, secondly in 
case-cohort designs it estimates the relative hazard or rate ratio 
without the rare disease assumption, and thirdly, the OR is the 
natural parameter in the logistic regression model which is dis-
cussed in the next section. Case-cohort designs are very common 
in genetic epidemiology where the “control” group are disease 
free at the beginning of the risk period only (9).

Candidate gene case–control analyses can be reported as shown 
in Table 1 with statistical significance computed through a chi-
squared test on two degrees of freedom. However, if the disease 
risk is known to be modified by other factors, such as age and sex, 
it is common to see “adjusted” ORs reported. This is frequently 
achieved by using a general linear model with a logit link, other-
wise known as logistic regression. In this model, the natural loga-
rithm of the odds of disease can be modelled by a linear function 
of the independent variables. If we denote the genotype specific 
probability (or risk) of disease as pi, where subscript i indicates the 
genotype class, the expression takes the form:

	
1 2ln ( 1) ( 2)

1
i

i i c c
i

g g x
π

α
π

 
= + = + = + − 

b b b
	

In this framework, the error terms are binomially distributed 
rather than normally distributed (10). You can see that the right 
side of this equation takes a similar form to that used by linear 
regression in quantitative traits. However, in the logistic regres-
sion analysis the coefficient terms are the natural logarithm of the 
ORs. The general linear model framework means that binary and 

4.2. Logistic 
Regression

Table 1 
Genotype-specific odds ratios in ever smoking lung cancer cases compared to 
population-based controls. The cases and controls are sampled from a UK  
population (8)

SNP genotypes 
rs8034191

Lung cancer cases 
(ever smokers) Controls

Odds ratio (95% 
confidence interval) p Value

AA 670 448 1.00 reference

AG 858 415 1.38 (1.17–1.63)

GG 303 97 2.09 (1.61–2.70) 1.5 × 10−8
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quantitative traits can be analysed in an essentially similar way. 
These statistical models can estimate the effect of the genetic variant 
on phenotype while adjusting for other known modifiers or 
covariates. More importantly, several independently conducted 
replication studies can be jointly analysed to produce a combined 
single estimate of the impact, or relative impact, of the genetic 
variant on phenotype.

The breast cancer CASP8 report referred to earlier (7) is a 
good example of how logistic regression can be used to jointly 
consider the evidence from many studies (in this case up to 15) to 
study the relative effect of extensive covariate measurements and 
investigate potential statistical interactions. However, among the 
15 studies they included there were many differences in the type 
of covariate data collected so to report their summary evidence 
they used the meta-analysis technique.

Statistical meta-analysis is used to bring together the summary 
results of similar studies to find an overall more precise estimate 
of the effect size in question. Meta-analysis techniques require 
only summary data, such as the point estimate and standard error, 
for each study and then a weighted analysis can be performed to 
estimate the overall effect (11). This can be a useful approach in 
many circumstances. In collaborative replication studies, it allows 
a weighted analysis of all the evidence, and the summary analysis 
produces a “forest” plot similar to that shown in Fig. 1. Here, 15 
hypothetical studies are presented. The summary statistics and 
95% confidence intervals for each study are visually presented in a 
columnar format. The study point estimate is displayed as a dark-
ened square, and the size of the square is inversely related to the 
standard error associated with the point estimate. The line extending 
from each square covers the numerical values included in the 
study specific 95% confidence interval. Hence, larger squares tend 
to have narrower confidence intervals. Studies 4, 10, and 15 are 
relatively small, whereas 3, 7, and 13 are relatively large. In this 
example, the 15 studies are in random order, but it is common to 
see studies ordered by sample size or date of publication. The 
figure shows that though all of the point estimates are above the null 
value of zero, the log of the OR when equal to 1, eight of the 
studies would not reject the null hypothesis of no association. 
Taking the 15 studies together, a weighted analysis results in a 
summary point estimate (log (OR) = 0.089) and 95% CI (0.064–
0.118). The overall summary estimate is represented as a diamond 
and the width of the diamond covers the range of values in the 
95% confidence interval. Taking all 15 studies together, there 

5. Meta-Analysis



111Candidate Gene Association Studies

is strong evidence against the null hypothesis of no association. 
By contrast, Fig. 2 shows an example analysis of 15 studies when 
there is no underlying association.

Meta-analysis methods have developed from the need to 
quantitatively synthesise a number of study results. These tech-
niques have frequently been used to summarise published evidence 
from similar studies or clinical trials. Relying only on published 
associations can lead to a concern of publication bias. Publication 
bias arises when many groups may study a particular hypothesis 
but only those reporting a statistically significant effect are accepted 
for publication. Figure 3 shows a rather exaggerated example of 
publication bias. In this example, the studies are listed in publica-
tion date order with study 1 the earliest and study 15 the latest. 
From the figure you can see that the first five studies all show a 
statistically significant effect, though their small sample size leads 
to wide confidence intervals. Once several positive reports are 
published, larger studies attempt to replicate the association for a 
more precise estimate of the effect. In this figure, the analysis of 
the 15 studies appears to show a marginally significant effect, as 
the diamond alongside the “Summary” appears to exclude zero. 
In this example, the result is likely to be strongly influenced by the 

Meta analysis – genuine association
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Fig. 1. Results of 15 hypothetical similar studies presented in a forest plot. Each study is 
represented by a horizontal line and central square. The studies are of varying sizes, the 
larger the sample size, the larger the central square.
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Fig. 3. Results of 15 hypothetical studies presented in a forest plot. The studies are listed 
in publication date order.
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Fig. 2. Results of 15 hypothetical studies presented in a forest plot. Studies have been 
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first five reports. Formal techniques for testing for publication 
biases include rank correlation tests and visual funnel plots (12).

Before the onset of GWAS, meta-analyses of candidate gene 
studies were also potentially prone to publication bias. However, 
one major advantage of the GWAS approach has been the general 
shift towards two-stage, collaborative designs. The first stage 
involves dense genotyping in a small highly selected sample. The 
strongest signals are then followed up in many independently 
conducted but essentially collaborative studies through Consortia 
(13). These multi-centre studies are then published jointly and 
frequently use the meta-analysis technique to allow for the very 
different study designs employed.

Candidate gene association studies the variation within a candi-
date region captured by one or more polymorphic loci. Though 
genetic variation can take many forms, the most frequently studied 
variants are currently of the SNP class. Chapter 6 has described 
how to select SNPs that collectively tag or capture as much of the 
variation present within a region. These SNPs can then be analysed 
separately or jointly as haplotype blocks suggest appropriate 
groupings. The consideration of haplotypes made up of the allelic 
states of several SNPs within a candidate region can be handled in 
two different ways. The haplotypes may be considered equivalent 
to a multi-allelic polymorphic marker, such as a micro-satellite, 
and risk is then examined with respect to each of these specific 
haplotypes (14), or an LD mapping approach can be used which 
considers all the variation seen in the gene but allows either a sliding 
window (15) or variable length haplotype method (16) to iden-
tify the locus showing the highest evidence for retention of a 
putative ancestral haplotype. It is generally assumed that the variant 
is either the causal variant or is in very strong LD with something 
that is causal.

Humans are diploid, and have two copies of each of the auto-
somal chromosomes. The alleles at each locus are therefore linearly 
arranged on the two chromosomes though the phase cannot easily 
be observed directly. When considering the functional consequences 
of genetic variation for example, in gene expression, cis effects 
(i.e. alleles in phase over short genetic distances) are known to be 
important (17). The phase effect can be thought of as an interac-
tion, and therefore it may be important to consider haplotype phase 
as well as compound genotype in candidate region analysis (18).

However, as the haplotypes are not directly observed and most 
association studies do not include genotypes relatives the “phased” 
haplotypes must be estimated. Various computational statistical 

6. Association with 
Specific Genotypes 
and Haplotypes
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methods are employed to estimate the haplotype phase. The 
simplest of these uses the Expectation–Maximisation algorithm. 
Rather as before when the counts of genotypes in each group are 
compared by a chi-squared test, now the estimated frequencies of 
each haplotype are compared between cases and controls. When 
considering only one SNP, the frequencies between cases and 
controls can be compared with a chi-squared test for two degrees 
of freedom. If we just compared compound genotypes between 
cases and controls, we would have nine possible compound geno-
types but only four haplotypes, so we appear to have more power 
to detect a difference when considering only haplotypes. This is 
the same argument as when allele frequencies are compared in 
cases and controls, this type of comparison assumes that there are 
only cis effects and no trans (opposite phase) type of interaction. 
Once more than two SNPs are considered, the number of degrees 
freedom involved in such tests becomes prohibitively large so it 
seems reasonable to restrict the model to cis effects.

One further complication of an analysis comparing estimated 
haplotype frequencies between cases and controls is that the estima-
tion of the frequencies must now be taken into account in the analysis. 
These frequencies cannot be compared with a simple chi-squared 
test but require a likelihood framework to compare the estimates. 
Several methods exist to both estimate the haplotype frequencies 
and perform a likelihood based test to test for association (18).

A statistically significant result in a haplotype-based study tells 
you there is evidence of differences between cases and controls, 
but it can be difficult to interpret the resulting association. Earlier 
we listed the quantities of interest when embarking upon these 
studies. In epidemiological terms, it is the risk or relative risk to 
the individual when falling into an exposure risk group that is of 
interest. If we compare estimates of haplotype frequencies, we 
have a haplotype relative risk. The only way to interpret this for a 
diploid individual is to assume no interaction between haplotypes 
and assume the individual genotype relative risk is the product of 
the two haplotype relative risks.

We illustrate the application of the case–control methods in a 
recent publication. Amos et al. (8) reported the follow-up of can-
didate SNPs identified through a GWAS in lung cancer cases and 
controls. The first stage examined the genotype distributions of 
over 300,000 SNPs in 1,154 lung cancer cases and 1,137 con-
trols. From this stage they selected the top ten (statistically sig-
nificant) SNPs from the GWAS study. These ten SNPs were then 
genotyped in two larger case–control collections, a Texan series 

7. Lung Cancer:  
A Case–Control 
Example
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of 711 case and 632 controls and a UK series of 2,013 cases and 
3,062 controls. Of the ten selected SNPs, two showed very strong 
evidence of association. The authors reported the p values resulting 
from a combined study allele-based test which were less than 
10−17, though methods allowing for an additive allelic effect (and 
without assuming Hardy–Weinberg equilibrium) also found 
highly significant signals (p < 10−12).

Although the set of first stage SNPs had been selected to be 
tagging SNPS (i.e. not be in strong linkage disequilibrium) two 
of the SNPs in the top ten set were in the same region or block of 
strong linkage disequilibrium. Within this region on 15q25.1 
there are several genes known to play a role in nicotine depen-
dence (CHRNA3 and CHRNA5). Amos et al. speculated that the 
statistically significant association to two SNPs in this region may 
be due to an individual’s propensity to be exposed to smoking 
through stronger addiction to nicotine. They were able to test 
this hypothesis by adjusting the analysis by pack years of smoking, 
number of cigarettes consumed per day and examining the distri-
bution of smoking patterns by SNP genotype. They found sug-
gestive evidence that the association with lung cancer is limited to 
ever-smokers but that the effect of the genotype and of smoking 
act independently on risk. Clearly, this hypothesis needs to be 
examined in further independent follow-up studies. The group 
was also able to explore the evidence for one vs. two causal loci, 
i.e. were the two SNPs capturing the same causal variant or two 
distinct causal variants. They estimated extended haplotypes in 
the original discovery set at seven further SNPs located within 
this candidate region on 15q25.1 and found that a single extended 
haplotype was significantly associated with lung cancer risk 
(p = 0.00007). This result would support the hypothesis that the 
two SNPs are detecting evidence for a single causal variant through 
LD. This hypothesis can also be further investigated through 
independently conducted follow-up studies.

Osteoporosis is defined as weakening or thinning of bone predis-
posing the individual to osteoporotic fracture (OF). The weakening 
and thinning of bone is measured by a number of quantitative markers, 
such as bone mineral density (BMD), bone size, and bone turnover 
markers (19). Studies investigating the genetic epidemiology of 
osteoporosis frequently choose to study surrogate phenotype markers 
such as BMD and the WHO Working Group defines osteoporosis 
according to measurements of BMD using dual-energy X-ray 
absorptiometry (DEXA) (20). The justification for the use of BMD 
alone as a surrogate marker of osteoporosis phenotype has been 

8. Osteoporosis:  
A Quantitative 
Trait Example
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brought into question as clinical trials have shown only a weak 
correspondence between BMD levels and fracture risk (19).

The vitamin D receptor gene (VDR) has been extensively 
studied as a candidate gene for osteoporosis risk. The keen interest 
was generated by an early report suggesting that 75% of the 
heritability of BMD could be accounted for by allelic variation 
within the VDR gene (21). Although this report was based on a 
small sample and subsequently declared genotyping errors weak-
ened the results, variation within the VDR gene has been the 
focus of many follow-up studies of BMD and OF. Though sev-
eral follow-up studies reported significant association with varia-
tion at this locus, many of the single studies suffered from small 
sample size. Three subsequent meta-analyses of published 
reports found evidence for only modest effects (22–24). Within 
the VDR gene there are five polymorphic loci that have been 
investigated for association with BMD, measured at femoral 
neck and lumbar spine, and OF. In 2006, the GENOMOS con-
sortium published a comprehensive participant level meta-anal-
ysis analysis of the association between these five VDR variants 
(Cdx2-promotor, Fok1, Bsm1, Apa1, and Taq1). The multi-
centre study was able to jointly consider results on over 25,000 
participants. This represented a mix of longitudinal and cross-
sectional studies. Some earlier reports suggested haplotype-
specific effects.

As the three loci Bsm1, Apa1, and Taq1 are known to be 
in strong LD, these were analysed as a multi-allelic locus, and 
common haplotype-specific effects were studied. The effect of 
the locus (genotype or haplotype) polymorphism on BMD 
variation was analysed with mixed model analysis of variance. 
This enabled a full joint analysis of all nine studies while allowing 
for variation between studies. Two quantitative outcomes were 
considered, lumbar spine, and femoral neck BMD. They found 
no statistically significant evidence of consistent differences in 
mean BMD between individuals from distinct VDR genotype 
or haplotype groups. When considering the binary outcome 
OF, they used the study reported measure classed as “all frac-
tures” and then also repeated the analysis limiting the outcome 
to “vertebral fracture”, this was to overcome the problem that 
each study had collected the fracture data in different ways. 
The binary outcome analysis was summarised by reporting per 
allele or per haplotype ORs arising from adjusted logistic 
regression.

In conclusion, they found no significant association between 
any of these considered polymorphisms with lumbar spine or femoral 
neck BMD. They reported a statistically weak association between 
Cdx2 alleles and vertebral fracture risk (a per allele relative risk 
reduction of 9%, p value = 0.039). It therefore appears that variation 
within the VDR gene has little or no effect on osteoporosis risk.
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Chapter 9

Family-Based Association Studies

Frank Dudbridge 

Abstract

Family-based association methods are useful because they offer improved matching of controls to cases, 
with the result that they are not susceptible to confounding by population stratification. They also allow 
analysis of parent-of-origin effects and maternal–fetal interactions. The transmission/disequilibrium test 
(TDT) is a test of linkage and association that is equivalent to a matched case/control analysis, from 
which various extensions are possible. A logistic regression formulation leads to modifications for multial-
lelic markers, haplotypes, and quantitative traits. Some pitfalls are described, for the situations in which 
one parent is missing, genotyping errors have occurred, and haplotype phase is uncertain. The problem 
of testing association in general pedigrees is discussed, with particular reference to sib pairs without 
parents.

Key words: TDT, Matched case/control, Population stratification, Linkage, Within-family test

Family-based association studies use the transmission information 
within families to infer association between genetic markers and 
disease or quantitative phenotypes. Typically, the family units are 
small, but a large number of them are collected for analysis. Most 
often, nuclear families are used that consist of two parents and 
some full siblings, but extended pedigrees may also be used for 
association analysis, as may subsets of nuclear families, such as sib 
pairs or single parent families.

Family-based association is appealing for several reasons. 
Firstly, in common with all epidemiological studies, there is the 
need to match cases to controls at the population and, ideally, the 
individual level. A situation of particular concern is population 
stratification, in which the study population actually consists of a 
mixture of subpopulations having different gene frequency and 

1. Introduction
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disease prevalence. When collecting cases and controls, relatively 
more cases might come from the subpopulations with higher 
prevalence, which would lead to a difference in the gene fre-
quency between cases and controls even if it has no influence on 
disease. This is an example of confounding in epidemiology. 
Family-based methods avoid this problem by essentially matching 
each case to a control from the same family. Since families are by 
definition in the same subpopulation, the problem of confound-
ing by stratification is avoided.

Members of the same family are likely to share a high propor-
tion of environmental exposures so that differences in phenotype 
are more likely to be due to genetic differences. This means that 
more evidence for association should be present in a family-based 
sample than a population-based sample of similar size, so the family-
based design is more powerful. However, this advantage is offset 
by the fact that family members share up to one-half of their 
genome in common so that a certain proportion of the informa-
tion in a family sample is redundant.

Another important advantage of family-based studies is that 
they allow parent of origin studies that allow for imprinting effects 
and interactions between maternal and fetal genotypes.

While family-based studies have compelling advantages, their 
primary limitation is the difficulty and cost of recruiting suitable 
family members into the study. For each case that is identified, its 
parents or siblings must also be located, consent must be obtained 
and their DNA extracted. This is particularly difficult for late-
onset disease, as family members may be dispersed or even 
deceased. Consequently, it is common for a family-based study to 
contain a mixture of family structures, which creates difficulties in 
analysis. For these reasons, family-based studies are more often 
applied to early-onset diseases, and there is a preference for 
smaller-scale candidate gene studies rather than genome-wide 
scans for which many thousands of cases are required.

The most commonly used family-based association test is the 
transmission/disequilibrium test (TDT) (1). In its original form, 
the TDT considers the transmission of the variant allele of a bial-
lelic marker from heterozygous parents to affected children. 
Table 1 shows the four cell counts relating to the transmissions 
from a parent to an affected child, arranged as a contingency 
table. The TDT treats the untransmitted allele as a matched con-
trol to the transmitted allele, in which case only the heterozy-
gous parents are informative. Intuitively, if the marker does not 
affect the disease, then we should observe Mendelian transmission 

2. Transmission/
Disequilibrium 
Test



121Family-Based Association Studies

in the family. Formally, we test the null hypothesis that heterozygous 
parents transmit each allele with equal probability. Let T = 1 when 
the parent transmits the variant allele, T = 0 otherwise; then 
under equally likely transmission ( ) 1/2E T ,=  var( ) 1/4,T =  and 
by applying the central limit theorem over the 12 21n n+  heterozy-
gous parents, we have the TDT statistic

	

( )
( )

−
=

+

2
12 21

12 21

TDT ,
n n
n n 	

which is asymptotically distributed as 
2χ with one degree of 

freedom.
It can be shown that equal transmission probability occurs 

either when there is no linkage between marker and disease, or 
when there is no association (2). Figure 1 shows the four situa-
tions that are possible when a parent carries a penetrant allele and 
is heterozygous at the marker. When there is no linkage, either 
marker allele is transmitted with the disease allele with probability 
½ regardless of the haplotype distribution in parental chromo-
somes: scenarios (a) and (b) are equally likely, as are (c) and (d). 
But when there is no association, there is no information on 
which marker allele occurs on the same haplotype as the disease 
allele, given that the parent is heterozygous: scenarios (a) and (c) 
are equally likely, as are (b) and (d). Therefore, either marker 
allele occurs on the disease haplotype with probability ½ and is 
then transmitted with probability ½ regardless of the recombina-
tion fraction. This means that the null hypothesis of the TDT may 
be taken to be either no linkage, or no association.

By regarding the TDT as a matched case/control design, in 
which the matched control is the nontransmitted allele, standard 

Table 1 
Counts of transmissions from n parents of affected  
children, used in calculating the transmission/ 
disequilibrium test

Transmitted allele

Non-transmitted allele

Variant Common Total

Variant n11 n12 n1.

Common n21 n22 n2.

Total n.1 n.2 n
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methods from epidemiology can be used to extend the test in various 
ways. The usual model for matched designs in epidemiology is 
conditional logistic regression, for which here transmission is the 
random outcome and alleles are the predictors. For a biallelic 
marker, we model the log odds ratio b for transmission of the variant 
allele from a heterozygous parent:

	

 
= = − 

logit( ) log .
1

p
p

p
b

	

The likelihood for n heterozygous parents is

	 =

=
+∏

1

exp( )
( ) ,

1 exp( )

n
i

i

L
b

bd
b

	

where 1=id when parent i transmits the variant allele, 0 other-
wise. Statistical theory shows that the TDT is the same as a score 
test for b = 0 from this likelihood.

This model can now be extended to allow for multiple alleles, 
multiple loci and environmental covariates. A useful approach is to 
regard the analysis not in terms of transmissions from parents, but 
rather of comparing cases, the affected children, to controls formed 

a b

c d

Fig. 1. Four transmission scenarios for a parent heterozygous at a test marker. The 
disease locus is shown above the marker locus. Disease risk allele is shown in black, 
variant marker allele in gray: (a) marker allele on disease chromosome, no recombina-
tion; (b) marker allele on disease chromosome, with recombination; (c) marker allele on 
normal chromosome, no recombination; (d) marker allele on normal chromosome, with 
recombination.
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from the other combinations of parental alleles. The likelihood 
contribution from a full case-parent trio is equivalent to that 
obtained by matching the case to three controls corresponding to 
each of the other three child genotypes that could be formed from 
the parental genotypes. A wide variety of analyses is possible in this 
framework, including parent of origin effects (3).

For quantitative traits, two types of regression models are in com-
mon use. The first uses logistic regression in a similar way as above, 
treating transmission as the random outcome. The second uses 
linear regression with the genotype as the independent variable 
and the quantitative trait as the dependent variable, with adjust-
ment to respect the family-based design. Generally, the linear 
regression approach is more sensitive to the assumption of trait 
normality, but it can be more flexible and powerful when this 
assumption is met.

The logistic regression approach treats transmission as the 
random outcome, as for binary traits, and treats the quantitative 
trait as an effect modifier for alleles acting as predictors (4). For a 
biallelic marker, the transmission probability of the variant allele 
from a heterozygous parent is given by

	 = +logit( ) ,p Ya b 	

where Y is the trait value of the child, regression coefficient b is 
the transmission parameter of the variant allele, and the intercept 
a is included to account for possible association to a different 
phenotype which determines inclusion in the study. In an unse-
lected sample, the intercept could be omitted. As for discrete 
traits, this model can be readily extended to allow for multiple 
alleles, multiple loci, and covariates (3).

The linear regression approach decomposes the total popula-
tion association into two components: between-family and with-
in-family (5). The within-family association is robust to population 
stratification, and a difference between the between- and within-
family association parameters can be taken as evidence of stratification. 
The model for the trait mean of child j in family i is

	 = + + − +b w ( ) ,ij i ij i ijY B G B ea b b 	

where bb and bw are between- and within-family coefficients for 
association, Gij codes for the genotype of child j in family i, and Bi 
is an expected value of Bij for family i. To allow for multiple chil-
dren, Bi is defined as

3. Quantitative 
Traits
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1
( ),

2i i iB G G= +
	

where GiF and GiM code for the father’s and mother’s genotypes, 
respectively, or when parents are not available

	 = ∑1 ,i ij
j

inB G 	

where ni is the number of children in family i. The likelihood for 
a nuclear family is the multivariate normal density with the mean 
vector specified by this model and the variance–covariance matrix 
constructed to allow for linkage and shared environment among 
sibs (5). Likelihood ratios are used to test for within-family asso-
ciation (bw = 0), total association (bw = 0 and bb = 0, with two 
degrees of freedom) and population stratification (bw = bb).

In spite of its simplicity, the TDT has some hidden pitfalls that 
arise from its use of a family structure. These can give misleading 
results, and various modifications of the TDT are available to 
allow for these problems.

If a parent is missing so that the data consist of one parent 
and the child, a bias can arise because the transmitted allele can-
not always be determined (6). Consider a biallelic marker and 
recall that only heterozygous parents are informative for the TDT. 
If the child is homozygous, then the transmitted allele is obvious, 
but if it is heterozygous, we cannot say which allele was transmitted 
by the observed parent. We might then naively restrict analysis to 
the homozygous children, but they are likely to be homozygous 
for the more common allele, whether or not the marker is associ-
ated with disease. The result is that we count more transmissions 
of the common allele than the variant allele, leading to a transmis-
sion probability different from one-half even when there is no 
association. This bias can only be corrected with specialized meth-
ods (7, 8).

A similar bias arises when there is genotyping error. If a 
truly heterozygous parent is misclassified as homozygous, 
then the transmission is disregarded and no information is 
gained. If, however, a truly homozygous parent is misclassi-
fied as heterozygous, then an apparently informative transmis-
sion of the homozygous allele will be counted. Again, this 
would lead to a preferential scoring for the more common 
allele, assuming that misclassification rates are similar for the 
three genotypes (9).

4. Some Pitfalls
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Sometimes, we may wish to perform a haplotype analysis. 
While haplotypes can usually be inferred from family data, 
there is one situation in which ambiguity occurs. This is when 
both the parents have the same heterozygous genotype and 
the child is also heterozygous. Then, we cannot say which par-
ent transmitted which allele, and the transmitted haplotypes 
become unknown. If families with ambiguous haplotypes are 
discarded, a bias can sometimes arise. Figure 2 shows a family 
in which the haplotypes can be deduced so that we can score 
two transmissions of the 1-1 haplotype. However, for these 
parents the haplotypes can only be deduced in this case and in 
the case in which the 1-1 haplotype is twice not transmitted, so 
the expected transmission count is 1, with variance 1. We have 
seen that the usual TDT assumes an expected transmission 
count of 1 for two parents, with variance ½, so scoring just the 
certain haplotype transmissions would lead to an underesti-
mate of the true variance and an inflated test statistic. Methods 
are available for haplotype analysis in the presence of ambigu-
ity (8, 10–12).

We have seen that the TDT is both a test of linkage and of 
association, but this is only true when there is one child per fam-
ily. When there are several affected siblings, the standard TDT is 
not a valid test of association, if linkage is present. To see this, 
note that one definition of linkage is an increase of alleles shared 
identical by descent (IBD) among affected sibs. Thus, while lack 
of association means that we cannot predict the marker on a 
parental chromosome (see Fig. 1), the transmissions from that 
chromosome are correlated so that we cannot treat them as inde-
pendent. This is potentially an important issue when following 
up a linkage scan, although in practice it seems to have a minor 
impact because the increase in IBD is quite small in a complex 
disease. Again, special methods have been developed for this 
situation (7, 8, 13).

Fig. 2. Family in which haplotypes can be deduced, but would not be deducible from other 
children of the same parents.
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Family-based methods are useful because they eliminate the 
possibility of confounding by population stratification, and 
increase power by matching on shared environmental variables. 
Their main limitation is the difficulty in recruiting all the suit-
able family members, and for this reason these methods are 
preferred for early onset disease, and tend to be applied in can-
didate gene or replication studies rather than genome-wide 
scans.

Although the analysis is similar to that of a matched case/
control design, we have seen that the family design introduces 
some subtleties, which can give rise to misleading results. Because 
of these complications, family-based analysis often uses special-
ized software: some commonly-used programs include QTDT 
(5), FBAT (7), UNPHASED (8), and PLINK (14).

The most widely used method, the TDT, is appropriate 
for nuclear family data, in particular trios consisting of a case 
and its two parents. In a general pedigree, case-parent trios 
can be extracted and the TDT applied to each one. This is 
always a valid test for linkage, but can lead to problems when 
testing for association in the presence of linkage. We have seen 
that transmissions to affected siblings are correlated, and sim-
ilar issues of correlation arise in general pedigree settings. 
Special conditioning approaches and adjustments are available 
for general pedigrees and are implemented in the FBAT 
software.

When parents are unavailable, which is often the case for a 
late-onset disease, the standard TDT cannot be applied. Variants 
of the TDT for sibships have been proposed (15), and again 
these have been generalized in FBAT. Another approach, imple-
mented in UNPHASED, is to average over all possible parents 
that are compatible with the observed children. This has the 
advantage of easily combining sibships with trio data, and it can 
also be combined with case/control data. The main disadvan-
tage is that a probability model has to be assumed for the 
missing parents, which may not be correct under population 
stratification, although this problem is not thought to be 
severe.

A very large number of variations on the TDT have been 
proposed, covering applications, such as multiple phenotypes, sex 
chromosomes, and gene–environment interaction, as well as fur-
ther developments on the topics covered here. The programs ref-
erenced here are adequate for most basic analyses, but the reader 
is encouraged to study some recent review articles (16, 17) for a 
more wide ranging survey of this area.

5. �Summary
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Chapter 10

Genome Variation: A Review of Web Resources

Andrew Collins and William J. Tapper 

Abstract

An enormous number of high-quality Web-based resources are now available to facilitate research into 
genome variation. Although identification of the most appropriate and informative resources can be chal-
lenging, a number of key sites provide links to more specialized resources that may be useful to follow 
up. Given ongoing research, focussing on the sequencing of many different genomes, we can expect 
sequence databases and their associated polymorphism-based resources to greatly increase in depth and 
complexity in a relatively short period of time. However, databases and tools developed to date, and 
described here, provide a sound basis for accommodating this next generation of genomic data. As well 
as sequence-oriented resources this review presents databases providing genotypic and common disease 
phenotype data, copy number variation, genetic maps, cytogenetic data, and gives an overview of key 
software tools, with the emphasis on analysis of the genetic basis of common disease.

Key words: Genome sequence, Single nucleotide polymorphism, Copy-number variation, Linkage 
maps, Linkage disequilibrium, Common diseases

The volume and quality of web-based resources for the analysis 
and interpretation of genomic variation has increased exponen-
tially in recent years. In many cases, the development of one 
resource has been essential for progress with another. An obvious 
example is the sequencing and analysis of the human genome (1) 
which was necessary for the development of single nucleotide 
polymorphism (SNP) genotyping panels, which are essential for 
the genome-wide association studies that are currently underway. 
SNP-based research has been greatly boosted by the International 
HapMap project (2) which presents SNP genotypes at very high 
density in a relatively small number of individuals. These data 
provided the raw material for detailed characterization of the 

1. �Introduction
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linkage disequilibrium (LD) structure of the genome and reliable 
panels of “tag” SNPs which capture most of the common varia-
tion with minimal genotyping effort and cost. Although arguably 
conflicting with this strategy, a further popular application of the 
HapMap data is the imputation of untyped genotypes in disease 
case-control association studies (3) which facilitates combining 
information across samples (meta-analysis) and modestly increases 
power.

The analysis of genomic variation is an extremely fast mov-
ing field and the study of copy number variation, for which 
Web resources are available, is gaining increasing prominence. 
Furthermore, the realization that common genes only explain a 
small fraction of the genetic variation related to disease has 
encouraged an ambitious undertaking to sequence many more 
genomes (http://www.1000genomes.org/), which is expected 
to provide a view of DNA variation at much higher resolution. 
The low resolution of current studies is evident because the 
genome is thought to contain at least 10 million SNPs (4), and 
therefore only about 1 in 20 is tested in most genome-wide 
association studies. One of the goals of the 1,000 genomes 
project is not only to identify rarer genetic variants which have 
a frequency of 1% or more, but also to include variants with 
0.5% or lower frequency when within genes. The database pre-
sumably becomes a valuable resource for future studies which 
aims to establish which of the variants are functionally impli-
cated in disease.

This review considers some of the more important Web-based 
resources that facilitate studies of genome variation. In addition 
to Web-based databases and browsing tools, a number of soft-
ware packages for the analysis of data are highlighted. The review 
is divided into sections with wide overlaps because many of the 
Web-based resources are useful across multiple categories. We ini-
tially consider resources that provide views of the genome 
sequence (sequence and physical map resources), where the 
emphasis is on browsing the genome structure at different levels 
of resolution. Secondly, we examine resources that emphasize 
polymorphic variation in the sequence, predominantly SNPs and 
sources of SNP genotype data, but, increasingly, copy-number 
variation. This is followed by resources which provide genetic 
maps, both linkage and linkage disequilibrium, which are valuable 
for multilocus analysis in linkage studies and association mapping 
of disease. Fourthly, we consider resources that provide pheno-
typic information and include cytogenetic variation (which may 
or may not influence phenotype) and also some of the sources for 
disease case-control and related data. We also consider here some 
of the sites that review current knowledge of genes and disease. 
Finally, we briefly describe some of the software tools that are 
valuable for the analysis of genome variation emphasizing those 
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that focus on aspects of association mapping. To illustrate some 
searches with real examples, we refer to the FGFR2 gene and, 
where relevant, its association with breast cancer.

The three main resources for sequence browsing are provided by 
the University of California Santa Cruz (UCSC), the National 
Center for Biotechnology Information (NCBI), and the Ensembl 
resources in the UK. A user’s guide to all three is provided at: 
http://www.nature.com/ng/journal/v35/n1s/full/ng1189.
html. The UCSC and NCBI resources are very similar as both 
integrate data from a variety of maps, including genes, polymor-
phisms, repetitive elements, and sequence conservation across 
species to form comprehensive annotations of the human genome 
that can be interrogated and presented as figures or tables. 
For conservation queries, UCSC takes preference as it presents 
histograms derived from multiple alignments of 28 vertebrate 
species or a subset of 17 placental mammals. As a result, each 
nucleotide is given a score that is readily accessible from the his-
togram or table browser. In comparison, NCBI aligns mRNA and 
EST sequences from five other organisms to the assembled human 
genomic sequence so that information on conservation is limited 
to a smaller number of species in coding regions. Unlike NCBI, 
the UCSC Web site also presents information on structural varia-
tion originating from the Database of Genomic Variants (DGV). 
Although Ensembl also presents data on conservation, polymor-
phisms, and repeat sequences, it focuses on the annotation of 
coding sequences and differs in this respect with UCSC and 
NCBI. Further differences between these three sites include the 
annotation of different mRNA sequences and using different 
symbols for the same genes which can complicate comparisons 
between them, despite links between the three sites.

The UCSC genome browser ((5), http://genome.ucsc.edu/, 
http://genome.ucsc.edu/cgi-bin/hgTracks?org=human) enables 
scrolling over chromosomes at different levels of resolution and 
represents the state-of-the-art in genome annotation. The huge 
volume of information presented here is provided through pow-
erful graphical interfaces and a large number of “tracks” which 
can be selected for display across many categories. These catego-
ries include mapping and sequencing data (for example, recombi-
nation rates, clones, GC content, chromosome band), phenotype 
and disease (quantitative trait loci, case-control associations), 
genes and gene prediction, mRNA and expressed sequence tag 
(EST) data, expression and regulation, comparative genomics, 
variation and repeats and detailed analysis in the ENCODE 

2. Sequence  
and Physical Map 
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regions (6). Other UCSC resources include the Human Gene 
Sorter (http://genome.ucsc.edu/cgi-bin/hgNear) which is use-
ful for examining gene families and the ways in which genes are 
interrelated. These relationships include those at the level of pro-
tein product, expression profiles, or map location. It is possible to 
determine a set of genes with shared properties for further analysis. 
A search for FGFR2 on protein homology unsurprisingly yields 
not only the FGFR genes 1, 3, and 4, but also less immediately 
obvious matches with RET, KDR, and FLT1. This type of infor-
mation may be useful in selecting further candidates for associa-
tion studies.

The NCBI mapviewer (http://www.ncbi.nlm.nih.gov/projects/
mapview/) provides powerful genome browsing tools for the 
human and many other genomes (http://www.ncbi.nlm.nih.
gov/sites/entrez?db=genome). The browser enables viewing of 
genomes by organism, displays chromosome maps and provides 
zoomed views with increasing resolution down to sequence level. 
Multiple maps on different scales can be aligned based on shared 
marker and gene names and a common coordinate system for 
sequences. Within this suite of programs is GenomeView (http://
www.ncbi.nlm.nih.gov/Tour/3a.html) which displays the genome 
graphically through scaled chromosome ideograms and presents 
the results of searches as marked locations on the ideograms. The 
SequenceView tool displays sequence data for a specific chromo-
somal region and graphically depicts any biological features 
annotated in that region.

Ensembl (http://www.ensembl.org/index.html) provides 
gene-oriented information, including ContigView which presents 
specific genes in genomic context (sequence position, gene length, 
cytogenetic band, microsatellite markers, protein coding regions) 
and a more detailed view which illustrates conservation, clones, 
and transcripts. For example, the link for the gene FGFR2 (http://
www.ensembl.org/Homo_sapiens/contigview?gene=ENSG000
00066468) contains much information which identifies three 
microsatellite markers in the gene, the sequence position, protein 
coding status, and the closest neighboring gene (ATE1). Also 
useful is a graphical display of syntenic regions for a wide range of 
organisms. Due to its focus on coding regions, Ensembl typically 
aligns more full transcripts, including some manual annotations 
and provides easier access to exon and intron information than 
the NCBI and UCSC sites.

The dbSNP database (http://www.ncbi.nlm.nih.gov/projects/
SNP/) is regularly updated to reflect clustering of SNPs which 

3. Polymorphism 
Databases
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map to the same location, thereby reducing redundancy. A search 
for human gene FGFR2 yields 1,274 SNPs listed by “rs” number 
and each with links to MapView, GeneView, SeqView, and pro-
tein databases. The GeneView link gives a categorical breakdown 
of coding SNPs (synonymous, missense, etc.) within each exon. 
Searches for individual SNPs by rs number yields sequence, SNP 
function (intronic, coding, etc.) and information on population 
diversity (genotype and allele frequencies in HapMap and Perlegen 
samples).

SNPper (http://snpper.chip.org/bio/snpper-enter/) is a 
similar database which combines information from dbSNP and 
the UCSC Human Genome Browser. SNPs can be searched for 
using dbSNP “rs” names, the SNP Consortium’s “TSC” names, 
or by position on the chromosome. Alternatively, one or more 
gene names can be submitted to find all relevant SNPs classified 
by promoter, 5¢UTR, intron, exon, intron boundaries, 3¢UTR, 
and downstream. The basepair location for each SNP, alleles, links 
to corresponding public databases and sequence surrounding the 
SNP are also displayed. Automatic primer design is also provided 
through the Primer3 program from the Whitehead Institute.

The SNPbrowser™ software (http://marketing.applied 
biosystems.com/mk/get/snpb_landing) is a free commercial 
tool which offers knowledge-guided selection of genotyping 
assays for association studies. The graphical display presents SNPs 
and LD maps together with haplotype blocks derived from the 
analysis of HapMap and Applied Biosystems SNPs. The tool enables 
searches for tagging SNPs using a wide variety of inputs, including 
SNP and gene names, chromosomal or microsatellite locations, 
and allows browsing of detailed SNP and gene information.

The International HapMap Project (http://www.hapmap.org/) 
started in 2002 with a goal to compare genetic sequences of 
different individuals and identify chromosomal regions with 
shared genetic variants to determine panels of tag SNPs across 
the genome. This is an international effort between Japan, the 
UK, Canada, China, Nigeria, and the USA. The database cur-
rently holds ~4 million SNP genotypes for populations of north-
ern and western European ancestry (CEPH samples from Utah, 
abbreviation CEU), Han Chinese from Beijing (CHB), Japanese 
individuals from Tokyo (JPT), and Yoruba in Ibadan, Nigeria 
(YRI). The genotypes are subject to rigorous quality control and 
the data are available for 270 individuals from the four popula-
tions. The search facility enables, for example, a search for the 
gene FGFR2 which yields 75 tag SNPs capturing the variation of 
270 alleles (from the CEU population) with an r-squared cut-off 
of 0.8.

The HGDP-CEPH Diversity Panel Database (http://www.
cephb.fr/hgdp-cephdb/) receives, stores, and provides marker 

3.2. �SNP Genotypes
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genotypes generated by users of the DNA samples from the 
HGDP-CEPH Diversity Panel. The DNA samples are derived 
from 164 individuals representing 51 populations worldwide. 
Along with the genotypic data, information on geographic and 
population origin, along with gender, are presented.

The Database of Genomic Variants (DGV, http://projects.tcag.ca/
variation/) provides data on structural variation defined as altera-
tions in DNA segments of at least 1  kb in length, along with 
insertion–deletion polymorphisms (InDels) in the range 
100 bp–1 kb. The database only considers variants that are found 
in healthy patient samples. These data are also available as a track 
on the UCSC genome browser.

The human genome structural variation project (http://hgsv.
washington.edu/) characterizes the extent of structural variation 
at the sequence level covering deletions, insertions, inversions, 
and other rearrangements. Eight individuals from HapMap are 
currently analyzed. This project maps clones against the reference 
sequence to systematically identify and sequence structural vari-
ants genome-wide (7). The database contains the data reported 
in Kidd et  al. (8) presented through a modified mirror of the 
UCSC genome browser and as a track on the browser.

Genetic linkage maps give the relative positions of genes along a 
chromosome with distances that depend on the frequency with 
which two loci recombine during meiosis. Accurate linkage maps 
are essential for multilocus mapping of disease genes by linkage in 
family pedigrees and other studies related to recombination. The 
Rutgers combined linkage-physical maps http://compgen.rut-
gers.edu/maps/ (9) combine genotype data from the Centre 
d’Etude du Polymorphisme Humain (CEPH, http://www.cephb.
fr/) and deCODE pedigrees (http://www.decode.com/) with 
genetic distances conditional on sequence-based positional infor-
mation. Build 36 of the Rutgers map comprises 28,121 markers. 
The maps include regression-based smoothing to separate all 
markers by nonzero distances, which facilitates interpolation of 
locations for markers not already in the map (including the enor-
mous number of SNPs not yet typed in these pedigrees). An 
online tool is provided to locate additional markers in the map 
given their sequence position.

The CEPH genotype database ((10), http://www.cephb.fr/
cephdb/), which has provided a resource for the development of 
linkage maps for many years, contains genotypes for 32,356 mark-
ers typed on the set of reference families and maps which describe 
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all the recombination breakpoints in the families. Other linkage 
map sources include the UCSC genome browser (http://genome.
ucsc.edu/cgi-bin/hgGateway) and the NCBI mapviewer (http://
www.ncbi.nlm.nih.gov/projects/mapview/map_search.cgi?taxid= 
9606) which both give recombination map locations from 
deCODE, Marshfield, and Genethon linkage maps.

The HapMap resource provides sex-averaged genome-wide 
“recombination rate” data computed through a coalescent model 
from LD using the HapMap SNP data (2). The maps have very 
high resolution but recombination patterns are distorted because 
LD patterns also depend on selection, mutation, and population 
history (11).

LD maps ((12), http://www.som.soton.ac.uk/research/genetic-
sdiv/epidemiology/LDMAP/map2.htm) provide an LD analog 
of the linkage map in linkage disequilibrium units (LDUs) for 
which one LDU represents the extent of LD that is useful for 
mapping (and spanning widely differing distances on the kilobase 
scale). The LDU scale has a simple relationship to time since a 
major population bottleneck. Recent applications include LD 
structure of isolated populations (13) and multilocus disease gene 
mapping (14).

The DatabasE of Chromosomal Imbalance and Phenotype in 
Humans using Ensembl Resources (DECIPHER, https://decipher.
sanger.ac.uk/) collects clinical information about chromosomal 
microdeletions, duplications, insertions, translocations, and inver-
sions and displays this information alongside the genome map. 
The project provides a research tool to increase knowledge about 
chromosomal rearrangements with a focus of improving medical 
care and providing genetic advice for the relevant families and 
individuals. Chromosome analysis remains an important tool in 
the diagnosis of children with developmental delay, learning dis-
ability, and/or multiple congenital anomalies. However, the reso-
lution of Giemsa banding is limited and many rearrangements are 
missed, hence the usefulness of array-CGH to detect imbalances 
genome-wide. The database provides the necessary tools to man-
age the voluminous data from more than 30,000 clones in each 
experiment. The Ensembl interface of DECIPHER allows the 
visualization of location of clones that are deleted or duplicated 
and matches them, where possible, against known microdeletion 
or microduplication syndromes. The database provides detailed 
information of known syndromes with a chromosome ideogram-
based interface, together with comprehensive lists of references.

4.2. Linkage 
Disequilibrium Maps

5. Phenotypic 
Variation

5.1. �Cytogenetic
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The chromosome anomaly collection (http://www.som.soton.
ac.uk/research/geneticsdiv/Anomaly%20Register/) is rather 
different in that it contains examples of unbalanced chromosome 
abnormalities (UBCAs) that lack detectable phenotypic effect. 
These are anomalous in the sense that cytogenetically visible 
UBCAs usually do have phenotypic consequences which would 
come to medical attention. The collection also includes euchro-
matic variants that form part of the continuum of copy number 
variation in the human genome (15). This resource enables the 
characterization of genomic regions with unbalanced anomalies 
which are consistently free of phenotypic consequences.

The Wellcome Trust Case Control Consortium (WTCCC, http://
www.wtccc.org.uk/) is analyzing case and control samples to 
identify common disease variants. Burton et al. (16) describe the 
genome-wide association study in the British population which 
contrasted 2,000 individuals for each of seven major diseases with 
a common set of 3,000 controls. The study determined 24 inde-
pendent association signals with genome-wide significance: 1 for 
bipolar disorder, 1 for coronary artery disease, 9 for Crohn’s dis-
ease, 3 for rheumatoid arthritis, 7 for type 1 diabetes and 3 for 
type 2. A second arm to the study has analyzed 15,000 polymor-
phic markers that alter protein sequence to look for genetic varia-
tion relating to four diseases – breast cancer, autoimmune thyroid 
disease, multiple sclerosis, and ankylosing spondylitis. The SNP 
genotypes and the case-control status information are available to 
researchers wishing to pursue studies on SNP variation and dis-
ease, along with population genetics analyses.

The Cancer Genetic Markers of Susceptibility (CGEMS, 
http://cgems.cancer.gov/) is a 3-year initiative of the National 
Cancer Institute focused on identifying genetic variants involved 
in susceptibility to prostate and breast cancer. The project is a 
genome-wide case-control study with more than 500,000 SNPs 
embracing five large prostate and breast cancer samples. For pros-
tate cancer, the study includes 1,177 individuals who developed 
prostate cancer during the observational period contrasted with 
1,105 individuals who did not. For breast cancer, CGEMS has a 
genome scan in a sample of 1,200 cases and 1,200 controls. 
The CGEMS study will follow up markers identified as promising 
in the first phase through further epidemiologic and case-control 
analyses.

Online Mendelian inheritance in Man (OMIM, http://www.ncbi.
nlm.nih.gov/sites/entrez?db=omim), is a database of human 
genes and genetic disorders. The database contains textual infor-
mation, references and copious links to MEDLINE, genome 
sequence, and related resources at NCBI and elsewhere. Searching 
is simple and the literature referenced is comprehensive. OMIM 
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is probably the first resource to access for specific gene and 
phenotype-based queries. As an example, a search of OMIM for 
FGFR2 yields a detailed text derived from 108 references. 
The breast cancer-specific text lists Easton et al. (17) as identify-
ing a G/A SNP rs2981582 strongly associated with familial breast 
cancer and identifies further studies which find associations with 
sporadic postmenopausal breast cancer and in BRCA2 gene carri-
ers, respectively.

The genetic association database: http://geneticassocia-
tiondb.nih.gov/ concisely lists seven references and five diseases 
associated with FGFR2, including breast cancer. GeneCards 
http://www.genecards.org/ presents data and generates gene-
specific links to numerous online databases, including compre-
hensive lists of gene symbol aliases, genomic location data, 
protein/expression information, gene ontology, mutation phe-
notypes, splice variants, orthologs, and details of SNPs (935 
NCBI SNPs listed for FGFR2).

Although this review is directed at online database and related 
genomic resources, we briefly outline here some of the key soft-
ware tools, and sites which supply these tools, with the analysis 
and interpretation of genomic variation in mind.

The Rockefeller Web site (http://linkage.rockefeller.edu/) 
provides a huge number of links to key references, software pack-
ages, and other resources, with a particular emphasis on linkage 
analysis and the LINKAGE suite of programs.

There are a large number of sequence analysis tools of which 
the best known is the Basic Local Alignment Search Tool 
(BLAST http://www.ncbi.nlm.nih.gov/blast/Blast.cgi) which 
finds regions of local similarity between sequences. The program 
compares nucleotide or protein sequences to sequence databases 
and calculates the statistical significance of matches. BLAST can 
be used to infer functional and evolutionary relationships between 
sequences as well as help identify members of gene families.

The construction of a multilocus genetic map is usually a prereq-
uisite for accurate fine mapping of disease genes. For constructing a 
linkage map, the CRI-MAP program (http://compgen.rutgers.
edu/multimap/crimap/) is efficient for constructing multipoint 
linkage maps in family data. The LDMAP program (http://www.
som.soton.ac.uk/research/geneticsdiv/epidemiology/LDMAP/
default.htm) constructs metric LD maps for SNP data, from unre-
lated individuals, which have distances in LDUs. The maps are useful 
in determining panels of SNPs for coverage of a genomic region, for 
fine mapping, and the analysis of population structure and history.

6. Software  
for the Analysis  
of Genome 
Variation
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For planning an association or other gene mapping study, the 
appropriate power calculations can be achieved effectively through 
specialized software packages. The genetic power calculator ((18), 
http://pngu.mgh.harvard.edu/~purcell/gpc/) provides power 
calculations for variance components, quantitative trait locus and 
linkage and association tests in sibships. The program CaTS ((19), 
http://www.sph.umich.edu/csg/abecasis/CaTS/) is designed 
for power calculations for large genetic association studies focus-
ing on two-stage designs in genome-wide association.

There are many programs which determine haplotypes for 
testing association with disease and for population-based studies. 
One of the best known is PHASE ((20), http://stephenslab.uchi-
cago.edu/software.html), which estimates haplotypes from pop-
ulation genotype data and incorporates methods for estimating 
recombination rates and identifying recombination hotspots.

For disease association mapping, particularly genome-wide 
association, the CHROMSCAN program (http://www.som.
soton.ac.uk/research/geneticsdiv/epidemiology/chromscan/) 
implements a composite likelihood approach for fine mapping, 
where locations are determined on an underlying LD map. The 
PLINK program (21) is a comprehensive and whole genome 
analysis suite (http://pngu.mgh.harvard.edu/~purcell/plink/) 
which embraces many tools useful for data management, quality 
control, examining population stratification, performing case-
control and quantitative association tests, haplotype analysis, gen-
otype imputation, and testing epistasis.

Inevitably, it is possible to include only a small fraction of the 
potentially useful resources that are available in such a review. 
However, the power of modern Web-searching tools should make 
it possible to identify other potential resources, where a specific 
and well-defined application is envisaged. The ongoing develop-
ments, which include the sequencing of multiple genomes, create 
many challenges for the development of tools which provide access 
and interpretation of these data, particularly as we have become 
accustomed to having a single reference genome. It is possible to 
anticipate extensive and profound changes to some of the key 
sites, particularly sequence browsers, in the next few years as these 
data are made available. However, the powerful and flexible Web-
based tools developed thus far for the presentation of genomic 
variation suggest that a smooth transition to embrace the new set 
of reference genomes can be achieved.

7. �Discussion
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Chapter 11

Advanced Methods in Twin Studies

Jaakko Kaprio and Karri Silventoinen 

Abstract

While twin studies have been used to estimate the heritability of different traits and disorders since the 
beginning of the twentieth century, statistical developments over the past 20 years and more extensive 
and systematic data collection have greatly expanded the scope of twin studies. This chapter reviews 
selected possibilities of twin study designs to address specific hypotheses regarding the role of both 
genetic and environmental factors in the development of traits and diseases. In addition to modelling 
latent genetic influences, current models permit inclusion of information on specific genetic variants, 
measured environmental factors and their interactive effects. Examples from studies of anthropometric 
traits are used to illustrate such approaches.

Key words: Quantitative genetics, Twins, Models, Behaviour genetics, Obesity, Longitudinal 
studies

When the data permit, the twin model can be extended to analyse 
more detailed questions about the variance and covariance struc-
tures than only heritability estimates (1). A simple example is to 
estimate heritability of height in different birth cohorts to inves-
tigate whether the magnitude of genetic and environmental vari-
ances of height have changed over time (2). Likewise, sex 
differences in the magnitude of the genetic and environmental 
variance components can be estimated in classical twin models. If 
the data are available also on opposite-sex dizygotic (OSDZ) twin 
pairs, the models of sex differences permit tests of whether differ-
ent sets of genes (or environmental factors) influence phenotypic 
variation in males and females.

To study sex differences in the genetic architecture of body 
mass index (BMI, kg/m2), data from approximately 37,000 twin 
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pairs aged 20–39 years from eight countries based on the 
GenomEUtwin consortium were analysed. The variance struc-
tures were mostly very similar across countries, and genetic differ-
ences explained 45–85% of the variation in BMI. There was 
greater variation in BMI among women than among men across 
the countries, and overall the analyses also indicated that sets of 
genes influencing variation in BMI at this age are not fully identi-
cal for males and females (3). Such twin findings prompted 
researchers to probe further the Xq22-24 region of the 
X-chromosome for genes associated with obesity. Linkage results 
suggested a sex-specific effect and association with haplotypes of 
the SLC6A14 gene, which encodes an amino acid transporter 
speculated to affect appetite regulation (4).

Although heritability for BMI is substantial, the recent 
increases in the prevalence of overweight cannot be attributed to 
changes in the gene pool. However gene–environment interac-
tions, whereby genetic differences between individuals modulate 
responses to obesity-promoting behaviours and environments, 
may account for a substantial part of the apparent heritability. 
Advances in statistical modelling allow tests of the effects of mod-
erators on heritability and estimate the role of gene–environment 
interactions (5).

The moderation model tests whether the magnitude of 
additive genetic variance (a), common environmental variance 
(c), and unique environmental variance (e) are changing as a 
function of a measured environmental factor M. In such struc-
tural equation models, a classic univariate twin model is modi-
fied to include a moderation component (6). Beta terms are 
added to the standard paths a, c, and e, which indicate the mag-
nitude of the effect of additive genetic influences, common 
environmental influences, and unique environmental influences 
as a function of the environmental factor. The extra terms thus 
indicate the significance of a potential moderator variable M on 
each of these sources of variance. The value of M can assume 
different values in each subject, unlike earlier models of gene–
environment interaction, where only pair-specific factors (such 
as age or sex or urban/rural residence) could be used. In the 
moderation model, the additive genetic value is a linear function 
of the moderator M, represented by the equation a + bxM, where 
bx is an unknown parameter to be estimated from the data. 
When bx is significantly different from zero, there is evidence 
for a moderating effect. Likewise, the by and bz terms represent 
the extent to which the moderator changes the impact of com-
mon and unique environmental influences. The pathway m + bmM 
models the effect of the moderator variable on the mean of the 
outcome variable as in a standard linear regression model. Any 
gene–environment correlation effects between the moderator 
variable and outcome are also included in this pathway. Figure 1a 
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shows the conceptual components of the model for additive 
genetic and unique environmental effects.

Using such moderator models, we have demonstrated that 
physical activity moderates the heritability of BMI and waist cir-
cumference (7), likewise that parenting variables modifies the 
relative contribution of genes and environment on adolescent 
smoking and drinking (8, 9).

Multivariate modelling of twin data can assess the existence of 
environmental and genetic correlations between traits. The ques-
tion asked is whether the phenotypic correlation between two or 

2. Multivariate 
Analyses of Twin 
Data
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Fig. 1. Conceptual figures for multivariate twin models, see text for details for the models. (a) The moderator model allows 
for modification of the genetic and environmental effects on the trait being studied by values of a moderator variable (M  ), 
thus permitting testing hypotheses on gene–environment interactions using twin data. Longitudinal data, for example of 
BMI at four ages (16, 17, 18, and 25) can be analysed with different approaches illustrated as (b) a Cholesky decomposi-
tion, (c) a Simplex model and (d) a longitudinal growth model with first order latent variables of level (intercept) and rate 
of change (slope), that are further decomposed into genetic and environmental components. As represent latent additive 
genetic variables and Es represent latent environmental variables. These models can also permit the inclusion of genetic 
effects due to dominance or environmental effects shared by family members (such as twins in twin pair), but these are 
not shown in the figures.
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more traits is due to genetic effects that are in common, i.e. 
pleiotropic effects. This might then guide phenotype construc-
tion and analysis approaches in linkage and association analyses. 
Alternatively, the association may be due to environmental factors 
affecting both traits or due to a causal relationship between them, 
in which case the nature of the research to investigate the more 
detailed aspects of the association is very different from attempt-
ing to find the common, underlying genes.

Analysis of longitudinal data to study causes of phenotypic 
stability and tracking over time uses many of the same models as 
used for cross-sectional multivariate studies. Longitudinal anal-
ysis of twin data naturally improves statistical power as multiple 
observations from the same individuals are available. When we 
are asking whether there are changes in the magnitude of genetic 
and environmental influences over time, a cross-sectional study 
design can be used assuming that there are no cohort effects. 
For example, we found in Finnish twin data that the effect of 
genetic factors on coffee consumption was higher in young than 
in middle-aged adults but increased again in old age (10). In 
order to investigate whether the same genetic and environmental 
factors operate over time, a longitudinal approach is needed. 
There are three commonly used methods to analyse this kind of 
longitudinal data.

The Cholesky decomposition approach has a useful concep-
tual interpretation as all factors are constrained to impact current 
and later (but not earlier) time points and is easy to apply to data 
sets if measurement points are reasonably few (Fig. 1b). The fig-
ure illustrates the concept of a Cholesky model for BMI measures 
at four time points (ages 16, 17, 18, and 25). The full model 
posits four latent genetic effects acting on each time point and 
each later point, with an equivalent number of latent environ-
ment effects, again at each time point and each later time point. 
The model can be reduced by dropping statistically non-significant 
paths, and for example end up with a model with only one latent 
genetic effect acting equally at all time points. This would imply 
that no new genes are activated in weight development as subjects 
age from 16 to 25 years of age. On the other hand, it may turn 
out that age-specific genetic effects are required implying that 
new genes are expressed at each age. As a model-free method, 
Cholesky decomposition can accommodate any pattern of change 
but is not falsifiable. It is a suitable method if the nature of the 
growth process or the relationships of the constituent variables 
are not well known in advance. For longitudinal analyses, Cholesky 
decomposition has the disadvantage that it makes no prediction 
about future time points. In longitudinal contexts, it provides 
information about the relative contribution of genetic and environ-
mental factors to the tracking of trait but is not directly informative 
about the rate of change in a trait.
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The Simplex model makes more restrictive predictions about 
covariance pattern and hence is falsifiable (Fig. 1c). The degree to 
which genetic (or environmental) effects are transmitted from 
one time point to the next can be estimated from the model, 
while change in BMI is seen as a dynamic process in which new 
genetic and environmental factors start to affect at each age. 
This new part of genetic or environmental variation is denoted 
as  innovation parameters (

1 4
ζ ζ−A A  and 

1 4
ζ ζ−E E , respectively). 

Simultaneously some, or all, of the factors affecting at the previ-
ous age can also be of importance. This genetic or environmental 
persistence is denoted as transmission paths in the model (from 
A1 to A2 or E1 to E2, etc.). Further an error variance term (e) is 
expected to affect each measure. It has the disadvantage that the 
future (next measurement point) depends on current state (most 
recent measurement) only (11). As with the Cholesky decompo-
sition, the number of parameters increases with the number of 
measurements. In a Swedish twin study, a simplex model was used 
to investigate longitudinal growth in height from age 3 to 18 
years of age (12).

The third useful set of longitudinal models is growth curve 
models (13). They construct two growth variables – initial level 
(“intercept, denoted as a”) and rate of change (“slope” or b) – to 
predict level at a series of time points (Fig. 1d). These growth 
variables are modelled as (first-order) latent factors which load on 
the observed longitudinal measures. Using twin data, second 
order latent variables (A11 and A12 for additive genetic effects, and 
E11 and E12 for environmental effects) are used to estimate the 
contribution of genes and environment to the growth variables 
(13). In addition, specific environmental effects on each measure-
ment point of BMI are specified (E1 through E4). The paths 
between the additive genetic effects on initial level and rate of 
change, and the paths between the environmental effects on initial 
level and rate of change can be used to estimate the genetic and 
environmental correlations of initial level with rate of change.

The simplest form of individual trajectories is one of constant 
rate of change over time, but with sufficient data points, such 
linear growth models can be extended to non-linear processes. 
Using linear growth models of twin data, we can ask what is the 
contribution of genetic factors to inter-individual variation in ini-
tial level and rate of change. Moreover, we can also conduct a 
bivariate analysis to see whether the same or different genes influ-
encing initial level and rate of change. This is done formally by 
estimating the genetic correlation between intercept and slope. 
Growth models are very efficient and the number of parameters 
does not increase with number of measurements. It also provides 
prediction about time points that have not yet been measured.

We have used a latent growth model to estimate genetic 
effects on BMI level at baseline and the rate of change in BMI 
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over a 15-year study period based on a longitudinal cohort of 
Finnish twins. They were aged 20–46 years at baseline and pro-
vided data on weight and height from mailed surveys in 1975, 
1981, and 1990. We found a substantial genetic influence on rate 
of change in BMI (h2 for men = 58% (95% CI 0.50–0.69), h2 for 
women = 64% (95% CI 0.58–0.69)) (14). The genetic correlation 
between BMI level and rate of change was virtually zero, suggest-
ing that the genes affecting BMI are different from those involved 
in weight changes in adults.

Other longitudinal models can be applied to estimate the 
heritability of traits with variable age of onset, but multivariate 
models to estimate whether the same genes contribute to say risk 
factors of disease and the variation in age of onset of the disease 
are not yet easily available.

The co-twin control design was first put forward by Gesell (15) 
over 60 years ago but was proposed by Fisher (16) in the late 
1950s as a design to test the causal versus constitutional hypoth-
eses of smoking as a cause of chronic diseases. Differences between 
monozygotic (MZ) pairs are taken to arise from environmental 
differences between them. It is a powerful design for investigat-
ing either causes or consequences of a disease by detailed investi-
gations into the differences between twins from discordant pairs. 
Over time, it has been realised that the environmental differences 
can arise from a very broad spectrum of effects and over a long 
time span. Thus, the effective genotype of MZ twins may begin 
to diverge over time as epigenetic and various environmental 
effects modify gene expression in the twins, even though their 
genomic DNA remains unchanged, except for possible somatic 
mutations. Recently, differences in copy number variants 
(CNVs) were found in MZ pairs discordant for Parkinson’s dis-
ease (17), illustrating the power of the discordant MZ twin pair 
design to investigate the importance of novel genetic mecha-
nisms for disease.

For example, the effects of obesity can be studied in the 
absence of confounding due to genetic effects using MZ 
twin pairs discordant for obesity. The obese and the non-obese 
co-twins share the same genes and differ only by environmental 
exposures (considered in the broadest sense including epigenetic 
effects) and the resultant acquired obesity. With this co-twin con-
trol design, we were able to identify and study up to 15 healthy 
MZ pairs with 10–25  kg differences in weight from the 
FinnTwin16 study. A control group of normal-weight or obesity 
concordant MZ pairs was also studied. These studies show that 
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acquired obesity is associated with increased liver fat content, 
insulin resistance, various vascular abnormalities, and multiple 
changes in adipose tissue metabolism and lipid profiles using 
lipidomics (18, 19). This observational approach of long-term 
obesity discordance complements the classic short-term experi-
mental studies of overfeeding MZ pairs (20).

Why then are these MZ twin pairs so strikingly discordant 
for obesity? They represent only a small fraction of the MZ pairs 
in the base population and showed some differences in birth 
weight; however, their growth and weight development was 
normal in childhood and adolescence until after puberty when 
intra-pair weight differences began to appear (21). There are 
differences in their physical activity at age 16–17 years preced-
ing their weight change (22). This suggests that physical activity 
may be a proximal causal factor for future obesity, consistent 
with much but not all of the epidemiological literature (23). 
Experimental evidence indicates a strong inverse link between 
fitness and fatness; in rats bred for low aerobic capacity, risk fac-
tors comprising the metabolic syndrome were much more com-
mon than in high capacity rats (24). In mid-adolescence, there 
may also be differences in dietary patterns and ingestion of spe-
cific foods or in other environmental factors. It is also possible 
that the manifestation of physical inactivity in adolescence and 
obesity in adulthood is preceded by much earlier events. One 
mechanism may be through epigenetic modification of gene 
expression in these MZ pairs. Fraga et al. (25) suggested that 
epigenetic methylation changes increase with increasing age in 
trait discordant MZ pairs, but the epigenetic effects relevant to 
obesity could possibly develop in childhood or even prenatally. 
Tsankova et  al. (26) showed that social stress induced lasting 
downregulation of brain-derived neurotrophic factor (BDNF) 
mRNA transcripts and repressive histone methylation of their 
promoters, suggesting a role for long-term histone remodelling 
in depression.

An interesting extension of the MZ discordant pair design is 
the children of twins design. Children of MZ twins share 50% of 
their genes both with their parents and with their parent’s co-
twin, i.e. their aunt or uncle. This means that all of the children 
of a discordant twin pair have the same average genetic risk for 
disease, while their environment during their upbringing may dif-
fer because of their parent’s phenotype. This has been used to 
confirm the importance of genetic liability not only in studies of 
offspring of MZ pairs discordant for schizophrenia (27), but also 
in studies of the role of smoking during pregnancy (28). The 
children to a DZ twin pair may be described as cousins both 
genetically and socially while the children to an MZ twin pair are 
social cousins but genetic half-siblings.
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Genotyping of DZ twins, like siblings, can contribute to estimate 
associations within and between families and has increased power 
when additional siblings are added. Including MZ pairs in such 
data sets, the role of residual polygenic effects can be better 
defined. In principle, specific genotypic data from DZ pairs can 
be included in any of the aforementioned twin models. Such 
models may be estimated by either incorporating the individual 
genotype data as a moderator variable or by estimating variance 
components using DZ twin pairs subdivided into groups by identity-
by-descent (IBD) status.

Genetic factors play an important role in the responsiveness 
to changing environmental conditions. Some 20 years ago, Kåre 
Berg (29) put forward the variability gene concept and indicated 
empirical evidence in its favour based on studies of intra-pair dif-
ferences of MZ twin pairs differing in phenotype to study whether 
specific genetic “variability” loci are associated with differences in 
lipid levels between the two members of a pair. An association 
may indicate that some alleles increase or restrict the effect of 
environmental factors or that environmental factors affect the 
gene expression differently for different alleles, and this is seen as 
elevated or diminished levels of variability in trait values. Such a 
result was seen in a recent study of genetic variants of the Ghrelin 
gene in MZ pairs discordant and concordant for obesity (30). In 
the largest study of its kind, genome-wide association (GWA) 
data for 1,754 MZ female twin pairs from GenomEUtwin con-
sortium (http://www.genomeutwin.org) was used to identify loci 
affecting serum lipid levels specifically in females (Ripatti et al., 
unpublished data). In addition to MZ twins, the variability gene 
effects may potentially also be tested in general population sam-
ples using repeated measures of the traits for each individual 
(however, then assessed at different ages), or even more simply by 
comparing the trait variances between different genotype classes 
in general population studies. However, MZ twins offer the addi-
tional benefit of controlling for possible confounding due to pos-
sible epistatic effects and more control over a range of unmeasured 
environmental influences in both members of the twin pair.

For a long time, much of the twin research conducted in the 
world emanated mostly from countries of Anglo-Saxon origin or 
Northern Europe. In the past 10–15 years, twin cohort studies 
and twin registries have expanded to many South and East-Asian 
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countries, thus providing information about the contribution of a 
much wider range of cultural and environmental influences and in 
population with different genetic inheritance. A compilation of 
such studies and registers can be found in two theme issues of 
Twin Research and Human Genetics from October 2002 and 
December 2006. In addition to such larger and more permanent 
studies, many smaller twin studies are continuously being carried 
out using a wide range of study designs (31). Approximately every 
50th person is a twin, and twins are born into all classes of society. 
While twins have some pregnancy and infancy characteristics, 
such as low birth weight, that distinguish them from singletons, 
twins are highly representative of the general population for nearly 
all traits after pregnancy and early childhood.

Research incorporating new methodologies (i.e. transcrip-
tomics, metabolomics and proteomics, neuroimaging) that target 
endophenotypes of the disease or trait under study is uniquely 
powerful when used in twin studies, such as the discordant MZ 
design. In order to take into account developmental aspects 
underlying the complexity of most phenotypes, it is essential to 
use longitudinal studies with repeated measures of biomarkers 
and environmental influences. Twin studies provide a cost-effective 
approach to such studies. Within the framework of genetically 
informative data sets, we might need detailed phenotyping starting 
from gene expression studies all the way to neurobiological and 
social correlates of human traits and diseases in relevant cultural 
contexts.
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Chapter 12

Mendelian Randomisation: A Tool for Assessing Causality  
in Observational Epidemiology

Nuala A. Sheehan, Sha Meng, and Vanessa Didelez 

Abstract

Detection and assessment of the effect of a modifiable risk factor on a disease with view to informing 
public health intervention policies are of fundamental concern in aetiological epidemiology. In order to 
have solid evidence that such a public health intervention has the desired effect, it is necessary to ascertain 
that an observed association or correlation between a risk factor and a disease means that the risk factor 
is causal for the disease. Inferring causality from observational data is difficult, typically due to confound-
ing by social, behavioural, or physiological factors which are difficult to control for and particularly 
difficult to measure accurately. A possible approach to inferring causality when confounding is believed 
to be present but unobservable, as it may not even be fully understood, is based on the method of instru-
mental variables and is known under the name of Mendelian randomisation if the instrument is a genetic 
variant. While testing for the presence of a causal effect using this method is generally straightforward, 
point estimates of such an effect are only obtainable under additional parametric assumptions. This chap-
ter introduces the concept and illustrates the method and its assumptions with simple real-life examples. 
It concludes with a brief discussion on pitfalls and limitations.

Key words: Causal inference, Instrumental variable, Confounding

The study of risk factors for disease is central to epidemiological 
research. Here, we distinguish between prognostic and aetiological 
research by considering the notion of risk in its original context of 
studying conditions thought to be caused by a particular factor 
and not in the broader sense of predicting the probability of a 
condition for prognostic purposes. For the latter, all factors asso-
ciated with the outcome are of interest, regardless of whether 
they are causal or not. For aetiological research, the focus is on 
assessing the effects of modifiable exposures on disease with view 
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to informing health intervention policies. It is hence important to 
verify that an observed association between the exposure and dis-
ease of interest indicates a causal relationship between the two. 
Inferring causality from observed associations is problematic as it 
is not clear which of two correlated variables is the cause, which 
the effect, or whether the association is due to another unmea-
sured factor, or confounder. Randomised controlled trials (RCTs) 
provide the accepted solution since they render reverse causation 
and confounding implausible. However, RCTs are neither ethical 
nor practical for many exposures of epidemiological interest, such 
as exercise, alcohol consumption, and diet regimes. From the 
practical viewpoint, many exposures develop over years so people 
cannot be randomised easily to “lifetime” exposure and trials 
attempting to do so are very costly. Moreover, the population of 
volunteers in a trial is likely to differ considerably from the gen-
eral population. Thus, we often have to make causal inferences 
from observational epidemiological studies and, arguably, we 
actually need to do so when public health interventions are of 
interest as we require a representative study population  (1).

There have been many success stories where evidence from 
epidemiological studies has informed public health policy and led 
to health improvements in the general population. These include 
the links between smoking and increased risk of lung cancer  (2), 
and between maternal folate supplementation and reduced risk of 
neural tube defects  (3, 4) leading to widespread banning of 
smoking in public places and the mandatory fortification of cereal 
flour with folic acid in the USA, Canada, and Chile, for example. 
There have also been many high-profile failures, where reported 
associations failed to be replicated in follow-up RCTs. For exam-
ple, the observation that increased beta-carotene intake reduces 
the risk of smoking-related cancers was not replicated in the sub-
sequent large-scale RCTs  (5–7). More recent failures to replicate 
observational findings in RCTs include the associations between 
hormone replacement therapy and cardiovascular disease and 
between oestrogen levels and Alzheimer’s disease or dementia.

There are many reasons why an observational study and an 
RCT could provide contradictory results. Different dose levels, 
different durations of follow-up and interactions with other risk 
factors are usually proposed, but they do not fully explain such 
discrepancies. The most likely reasons are confounding by unob-
served lifestyle, socioeconomic factors or baseline health status, 
reverse causation, where the presence of disease influences what is 
thought to be exposure rather than vice versa, and the usual prob-
lems of selection or reporting bias. Since only those associations 
with high observational support are ever likely to be verified in an 
RCT, we can only presume that many other reported associations 
are likely to be non-causal  (8). Given the tendency of high-profile 
findings to persist in the medical literature and thus influence 
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public health and clinical policy long after they have been refuted 
by RCT evidence  (9), it is important to have alternative methods 
for assessing causality from observational data. Here, we particu-
larly address the case where we have unobserved confounding 
factors and so cannot adjust our analyses in the usual way.

Mendelian randomisation is an instrumental variable (IV) 
approach to the problem of inferring causality when unobserved 
confounding is believed to be likely, possibly because the underly-
ing biological processes are not fully understood  (1, 10–16). It 
uses a well-understood genetic variant, known to be associated 
with the exposure but without direct effect on the disease, as an 
instrument. The exposure may itself be a phenotype or a geneti-
cally influenced behaviour. The fact that genes are assigned ran-
domly at meiosis (given the parental genes) implies that the 
instrument should be independent of any unobserved confound-
ing between the exposure and the disease, and so we can think of 
Mendelian randomisation as a natural imitation of a randomised 
trial although the randomisation is not, of course, perfect. Reverse 
causation is not an issue here since genes are determined before 
birth. The basic idea is that there should be no association between 
the genetic variant and the disease unless the considered exposure 
or phenotype is actually causal for the disease.

In this section, we introduce a formal framework for causal infer-
ence and the core conditions for IV methods with a brief discus-
sion of some of the implications for testing and estimating causal 
effects in epidemiological applications. We then illustrate the 
method with some examples.

We first need to formalise how we distinguish between association 
and causation. If we say that a variable X is associated with another 
variable Y, we mean that observing X is informative, or predic-
tive, for Y. The usual conditional probability notation P(Y = y|X = x) 
describes the distribution of Y, given that we happen to know 
that X = x has occurred.

We regard causal inference to be about studying the effect of 
intervening in a particular system  (17–20). Other causal frame-
works are based on counterfactual or potential outcome variables  
(21) or structural equation models  (15, 22). It can be argued 
that the notion of intervention is implicit to all these formal 
approaches to causality  (23, 24). Specifically, when we say that X 
causes Y, we mean that manipulating or intervening on X is infor-
mative for Y. Ordinary conditional probability notation does not 
reflect the changes in the distribution of Y when X is set to a 

2. Mendelian 
Randomisation

2.1. Causal Concepts
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particular value. We need some extra notation in order to formally 
distinguish between association and causation. We use the nota-
tion do(X = x) to represent the intervention of setting X to a value 
x, as suggested by Pearl  (22). The two conditional distributions 
P(Y = y|do(X = x) ) and P(Y = y|X = x) are not necessarily the same. 
The former depends on x only if X is causal for Y and corresponds 
to what we observe in a randomised study. The latter also depends 
on x, for instance when there is confounding or reverse causation, 
and this is what we observe in an observational study. As a simple 
example, let X be a binary variable indicating whether an indi-
vidual’s fingers are stained yellow or not, and let Y be a binary 
outcome for lung cancer. Since we know that stained fingers are 
due to smoking and smoking causes lung cancer, p(y|x) describes 
how someone’s risk of lung cancer can be predicted from inspec-
tion of their fingers. However, if we could intervene on X by 
staining or removing the stain from everyone’s fingers, for exam-
ple, p(y|do(x) ) would no longer depend on x since finger stain in 
its own right does not affect lung cancer risk.

A causal effect is some contrast of two different interventions 
on X (x1 and x2) on the outcome Y. For continuous outcomes, 
the average causal effect (ACE), describing the average change in 
Y induced by setting X to be some value x2 compared with a base-
line value x1, is an obvious causal effect parameter to consider and 
is the parameter that we focus on for illustrative purposes. It is 
defined as 

	 1 2 2 1ACE( , ) ( | do( )) ( | do( ).= = − =x x E Y X x E Y X x 	 (1)

When Y is binary, the causal relative risk (CRR), given by

	

2

1

( 1| do( ))
CRR ,

( 1| do( ))

= =
=

= =
P Y X x

P Y X x 	
or the causal odds ratio (COR), defined analogously, are both 
relevant parameters. A causal effect is identifiable if we can show 
mathematically, under the model assumptions and given the 
observable data, that the expression of the ACE in Eq. 1 – or 
equivalent expression for other parameters – is equal to an expres-
sion without the “do()” notation that depends purely on obser-
vational terms. Sometimes, this can be achieved by adjusting for a 
sufficient set of observed confounders in the usual way  (18, 22). 
IV methods provide an alternative approach when unobserved 
confounding is present.

The ACE, CRR, and COR are all population parameters in that 
they are defined in terms of changes across the whole population of 
interest. There are other local causal effect parameters defined on 
specific subgroups of the population that we might wish to target, 
depending on the focus of the analysis. One well-known local 
effect is the “effect of the exposure on the exposed” or, the “effect 
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of treatment received” as it is sometimes described in a clinical 
trials context. Different causal parameters are identifiable under 
subtly different assumptions which in turn need to be justified in 
any given case. The interpretation of the various parameters in 
epidemiological applications is also open to some debate. We do 
not go into details here but some discussion of these issues can be 
found in  (15, 25–27).

Let the variable X represent the modifiable phenotype or expo-
sure of interest, and let Y be the outcome or disease indicator, as 
before. We let G denote the known genetic variant associated 
with X which plays the role of instrument in our approach. We 
are interested in the causal effect of X on Y when we believe that 
unobserved confounding is present. Denote the unobserved 
confounder(s) by U. Causal inference using IV methods falls into 
two main categories. In order to test that an association is causal, 
we need to make certain (in)dependence assumptions concerning 
the four variables above. In addition, we have to make some 
structural assumption describing how any proposed intervention 
affects their joint distribution. For estimating the causal effect, 
should it seem likely that one is present, we need further paramet-
ric assumptions.

There are some core conditions that must be satisfied in order 
for the genetic variant, G, to qualify as an instrument (14, 16, 
20). Using the notation A  B|C to mean “A is independent of B 
given C”, these can be stated as follows:

	 1.	G      U – the genetic variant is unrelated to the confounding 
between X and Y.

	 2.	G  X – the genetic variant is associated with the exposure 
and the stronger this association, the better.

	 3.	G  Y|(X, U) – given the exposure status and the confound-
ers (if the confounders were observable), the genetic variant 
does not provide any additional information for the outcome, 
i.e. there is “no direct effect” of G on Y and no other indirect 
effect other than through X.

These three conditional independence assumptions define a 
unique directed acyclic graph (DAG) connecting the variables G, 
X, Y, and U as shown in Fig. 1. An equivalent statement is that 

2.2. Instrumental 
Variables

YG X

U

Fig. 1. The unique DAG connecting G, X, Y, and U described by the core IV conditions.
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the joint distribution of the four variables factorises in the 
following way:

	 ( , , , ) ( | , ) ( | , ) ( ) ( ).=p y u g x p y x u p x u g p u p g 	

Note that these assumptions do not imply that G  Y|X or  
G  Y, as has been sometimes misunderstood. Furthermore, 
assumptions 1 and 3 cannot be easily tested from data as they 
depend on U, which is unobserved, and hence have to be justified 
from background knowledge. In our case, the first assumption 
means that you must be reasonably satisfied that G is not associ-
ated with the sort of confounding you might typically expect for 
any particular X–Y relationship. However, Mendelian randomisa-
tion is based on the idea that genes are randomly assigned at meio-
sis and this implies that, across the population, genetic effects are 
relatively robust although not completely immune to confound-
ing  (28). Assumption 3 demands a comprehensive understanding 
of the underlying biological and clinical science and may be appro-
priately considered in a sensitivity analysis of alternative pathways.

So far, we have made assumptions about how our four vari-
ables are related “naturally”. The additional structural assump-
tion concerns what happens to the joint distribution when we 
intervene on X, and demands that the distributions p(y|x, u), 
p(g), and p(u) are not changed by the particular intervention in 
X, i.e. are not changed when conditioning on do(X = x). This 
implies that the joint distribution under intervention is given by

	 ( , , , | do( *)) ( | *, ) { *} ( ) ( ),= = =p y u g x X x p y x u x x p u p g1 	

where 1{x = x*} is the indicator function taking the value 1 if 
x = x* and 0 otherwise. The plausibility of this assumption 
depends, of course, on the type of intervention being considered 
and needs to be justified based on background knowledge. For 
instance, a drug that adjusts homocysteine level might plausibly 
be judged to leave an individual’s lifestyle behaviour unchanged. 
There could, however, be a placebo effect that changes the distri-
bution of Y more than is warranted by the new value of X (homo-
cysteine level), or the drug could affect other relevant biological 
processes in the body. On the other hand, if people are prevented 
from drinking alcohol by some change in the law, then their other 
health and lifestyle behaviours might change in order to compen-
sate. Graphically, as shown in Fig. 2, intervening on X removes all 

YG X

U

Fig. 2. The DAG representing the core IV conditions under intervention in X.
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directed edges into X. In particular, we can see from the graph 
that, under intervention, we get what is often called the exclusion 
restriction  (15): G  Y|do(X = x).

Note that by deleting either the edge U → Y or U → X from 
Fig. 1, a test for independence of Y and G given X (Y  G|X) is 
tantamount to a test for no confounding between X and Y, but 
we are not aware of this having been used in practice.

The three core IV conditions in Subheading 2.2, together with 
the structural assumption, are sufficient to test for a causal effect 
of X on Y regardless of the distributional form of the factors of the 
joint distribution. We do require that the joint probability distri-
bution is faithful to the relevant DAG in that there are no condi-
tional independence relationships, perhaps due to interactions 
that cannot be read from the graphs. Consequently, any appropri-
ate statistical test of association between the instrument G and 
outcome Y amounts to a test for a causal effect of X on Y. (See 
ref. 16 for a detailed discussion.)

Is there a causal relationship between high plasma homocysteine 
concentrations and risk of stroke  (29)? The T allele of the MTHFR 
C677T polymorphism is known to be associated with homo-
cysteine levels with TT homozygotes having higher levels than 
CC homozygotes, in particular. A summary estimate of the asso-
ciation between homocysteine levels and risk of stroke (X–Y 
relationship) from a meta-analysis gave an odds ratio of 1.59 
corresponding to a 5 mmol/L observed increase in homocysteine. 
Dichotomising MTHFR into TT and CC carriers, the odds ratio 
for the genotype–stroke association (G–Y ) was 1.26 and found to 
be significant. The conclusion is that a causal effect of homo-
cysteine level on risk of stroke is plausible. However, none of the 
reported values give any indication of the size of this effect as the 
homocysteine–stroke association could be confounded.

Do higher plasma fibrinogen levels increase the risk of coronary 
heart disease (CHD)  (30)? Various observational studies have re
ported increased risk associated with higher fibrinogen levels for 
various cardiovascular outcomes. The G-455 → A polymorphism 
in the promoter region of the b-fibrinogen gene is consistently 
associated with differences in fibrinogen levels and plays the role 
of the instrument. A meta-analysis of 16 studies produced a “per 
allele” odds ratio of 0.96 with associated 95% confidence interval 
of (0.89, 1.04). The conclusion is that there is no support for a 
causal effect of fibrinogen levels on CHD; or in other words, if 
fibrinogen has a causal effect then it is too small to be detected in 
this meta-analysis of 16 studies.

2.3. Testing  
for a Causal Effect

2.3.1. Homocysteine  
and Stroke

2.3.2. Plasma Fibrinogen 
and CHD



160 Sheehan, Meng, and Didelez

The previous examples concerned the effect of some intermediate 
phenotype on a disease. We can also use the idea of Mendelian 
randomisation when we have a modifiable exposure, such as alco-
hol consumption, for which positive (e.g. CHD) and negative 
(e.g. liver cirrhosis and some cancers) effects have been reported 
in observational studies. Besides being difficult to measure due to 
reporting bias, alcohol consumption is strongly associated with all 
kinds of confounding factors, and so there are doubts about the 
causal nature of any of the above associations  (31). We consider 
the issue of whether there is a causal effect of alcohol consump-
tion on blood pressure.

The ALDH2 gene determines blood acetaldehyde, the prin-
cipal metabolite for alcohol, and is known to be associated with 
alcohol consumption. In particular, individuals homozygous for 
the “null” variant *2 suffer unpleasant symptoms, such as facial 
flushing, nausea, drowsiness, and headache after alcohol con-
sumption. Heterozygotes have a limited ability to metabolise 
acetaldehyde but have a less severe reaction than *2*2 homozy-
gotes. Consequently, *2*2 homozygotes have lower alcohol con-
sumption than the “wild type” *1*1 homozygotes regardless of 
their other lifestyle behaviours while heterozygotes tend to drink 
intermediate amounts. In the meta-analysis of Chen et al.  (31), 
there was no apparent association between ALDH2 and typical 
confounding factors that one would expect for the alcohol–blood 
pressure relationship. This, together with the random allocation 
of genes at conception makes us fairly confident about core IV 
assumption 1. Current knowledge of the biochemical function of 
ALDH2 excludes the possibility that it could be associated with 
blood pressure via another pathway besides alcohol consumption 
(core IV assumption 3).

Blood pressure was found to be 7.44 mmHg higher on aver-
age for *1*1 homozygotes than for *2*2 homozygotes with 95% 
CI (5.39, 9.49) yielding a p value of p = 1.1 × 10−12 for high versus 
low consumption. Blood pressure was 4.24  mmHg higher on 
average for *1*2 heterozygotes than for *2*2 homozygotes with 
95% CI (2.18, 6.31) giving a p value of p = 0.00005 for moderate 
versus low consumption. Most of the studies were on Japanese 
populations (where ALDH2*2*2 is common) so these results are 
for males as Japanese women drink very little alcohol in general. 
The fact that there was no observed relationship between geno-
type and blood pressure for women indicated that the above asso-
ciation is indeed due to alcohol consumption, for which ALDH2 
is a proxy, and not due to the gene itself or some alternative path-
way by which ALDH2 might predict blood pressure. The highly 
significant association between the ALDH2 variant and blood 
pressure is strong evidence of a causal effect. In fact, contrary to 
reported observational claims, it would appear that even moder-
ate drinking can be harmful.

2.3.3. Alcohol Consumption 
and Blood pressure
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Once a test indicates that a causal effect is likely, we would typi-
cally want to know the size of this effect. This is more difficult. 
When all variables are binary, or categorical, only upper and lower 
bounds on the causal effect can be calculated without any extra 
assumptions  (32). The width – and hence usefulness – of these 
bounds depend on the strength of the IV and the amount of con-
founding, but they do give an idea of how informative the data 
are. Hence, the IV core conditions and structural assumption are 
not sufficient for point identification of causal parameters and 
extra parametric assumptions are required.

When the ACE of Eq. 1 is of interest and Y is continuous 
(possibly suitably transformed), it is popular to assume linearity 
of all relationships and no interactions. The structural (causal) 
assumption only appears in the regression of Y on X and U:

	 ( | , ) ( | do( ), ) .= = = = = = + +E Y X x U u E Y X x U u x um b d 	

This yields b = ACE(x + 1, x) as the relevant causal parameter. 
Note that the above assumes that there is no effect modification 
of the effect of X on Y by U on the linear scale, i.e. people in vari-
ous subpopulations, like men/women or older/younger people, 
all react in the same way to exposure. The parameter b cannot be 
estimated from the above regression as U is unobserved. Likewise, 
we cannot ignore U and estimate it from a regression of Y on X 
as this would give a biased estimate due to the collinearity U  X. 
From the regression of X on G and U

	 ( | , ) ,= = = + +E X G g U u g uh a z 	
we can estimate a by ignoring U since G  U. It is easy to show  
(16) that

	 ( | ) · ,ab= = +E Y G g gµ 	

so ab can be estimated from a regression of Y on G. Hence, a 
consistent estimator for ACE(x + 1, x) = b is given by the ratio of 
the estimated coefficients, |b̂Y G  and |b̂X G  from the regressions of 
Y on G and of X on G, respectively. It is useful that these could 
even be estimated from separate studies, one where X, G are 
observed and another one where Y, G are observed. In this 
situation, the above ratio estimator is equivalent to the popular 
“two-stage least squares” (2SLS) estimator which regresses Y on 
values of X predicted from the “first-stage” regression of X on G 
and the terms are often used interchangeably.

In an investigation into the causal effect of circulating C-reactive 
protein (CRP) and the metabolic syndrome, three-SNP haplotypes 
from the CRP gene were used as instruments for associations 
between serum CRP levels and various metabolic syndrome pheno-
types  (33). For one particular outcome – insulin resistance mea-
sured by homoeostasis model assessment (HOMA-R) – a clear 

2.4. Estimating  
a Causal Effect
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observational association was reported with a doubling of CRP lev-
els leading to a significant increase of about 8% in HOMA-R 
(p  <  0.0001). But CRP is known to be associated with a wide range 
of lifestyle and socioeconomic characteristics. Moreover, it could be 
elevated as a result of atherosclerosis or insulin resistance, so con-
founding and reverse causation cannot be excluded. The core IV 
assumptions appear to be reasonably satisfied, although not enough 
is known about the biological pathways involving CRP to be fully 
sure about assumption 3. Standard checks for linearity on log(CRP) 
and log(HOMA-R) looked reasonable. It is, of course, impossible 
to check any parametric assumptions about the unobserved con-
founders, especially the one of no effect modification. This has to be 
justified with subject matter background knowledge, instead. The 
2SLS approach, using the regressions of log(HOMA-R) on the 
CRP haplotypes and of log(CRP) on the CRP haplotypes, esti-
mated that doubling CRP levels reduces the HOMA-R score by 6% 
(p > 0.1). Since the result is non-significant, we conclude that the 
data do not support a causal effect of circulating levels of CRP on 
insulin resistance. This result appears to contradict the naive analysis, 
which may indeed be due to confounding and reverse causation.

There are well-known problems with the 2SLS-estimator. The 
standard deviation of the estimator is typically much larger than 
that of the estimator obtained from a naive regression of Y on X. 
This is especially so when we have a weak instrument, i.e. when 
Corr(G, X) » 0 so that IV is not very informative for X. Note that 
it is impossible to find a strong instrument when there is a lot of 
confounding. One notable problem is that the assumption of lin-
earity cannot be true when Y is binary, although it could be a 
good approximation over a particular range of exposure levels in 
some cases. This is an issue for epidemiological applications since 
many outcomes of interest are naturally binary.

The main problem for the non-linear case is that the relation-
ship between the two regressions (Y on G, and X on G ) and 
the  relevant causal parameter, i.e. CRR or COR, is no longer 
straightforward and any estimators derived from these are biased 
(16, 27). There are other IV methods that can yield estimates of 
certain causal effects for binary outcomes, but they all require 
strong additional assumptions  (15, 34–36). It is important to 
note that different approaches target different causal parameters 
in the sense that they estimate individual, local, or population 
effects. Some estimators, such as those derived from structural 
mean modelling approaches, also require joint observation of all 
three variables (G, X, and Y ) for all individuals, whereas the 
“Wald-type” estimators based on ratios of differences (of which 

3. Further Issues 
and Complications
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2SLS is an example), do not  (27). This has implications for meta-
analyses as not all studies typically supply joint observations. 
Structural mean models make weaker assumptions than the other 
approaches in that a parametric model for the regression of X on 
G and U is not required. However, these approaches target the 
local effect of exposure on the exposed and are only unbiased for 
a population effect with additional assumptions.

Violations of the core IV conditions are also possible and 
these have implications even for testing for a causal relationship. 
The most important and likely violation occurs when there is 
population stratification, where we have different allele frequen-
cies in subpopulations which may in turn also differ in their life-
styles (giving rise to an association between G and U) or in their 
disease risk (giving rise to an association between G and Y not 
screened off by X, U). A sensible study design should take this 
possibility into account. The chosen instrument could also be in 
linkage disequilibrium (LD) with another variant which is associ-
ated with the disease via a route other than through its effect on 
X, the exposure of interest. Likewise, problems can be caused by 
pleiotropic effects and canalisation or developmental compensa-
tion  (1, 10, 37). If only insufficient prior knowledge about the 
genetic or confounding mechanisms is available to justify the core 
conditions, results that seem to indicate a causal effect may very 
well have an alternative, non-causal explanation that we are not 
aware of. DAGs can be used to represent what is believed about 
the biology and then be queried regarding the validity of our 
assumptions  (12, 16). For example, the genetic variant chosen as 
instrument may not be the causal gene for the exposure of interest 
but is in LD with a causal gene which is unobserved. This could 
be thought of as measurement error in the genetic data. However, 
as illustrated in Fig. 3, this does not necessarily imply any viola-
tions of the core IV conditions. G1 might not be as good an 
instrument as G2 in the sense that its association with X is weaker, 
but it is (1) independent of U, (2) associated with X, and (3) 
conditionally independent of Y given X and U.

Finding a genetic variant that is a suitable IV is also problem-
atic, and there are currently not very many well-studied variants for 
the typical exposures of interest in epidemiology. Genetic variants 
that arise from genome-wide association studies could be prob-
lematic in that the gene–phenotype associations are often weak 

YX

UG2

G1

Fig. 3. The chosen instrument G1 is not causal for X  but is associated with another genetic 
variant, G2, which is driving all the association. All IV core conditions are satisfied for G1.
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and may not even be reproducible. Even when strong, reproducible 
associations are found, we then have to be convinced that enough 
is known about the functionality of the gene in order to claim that 
the core conditions are satisfied for an IV analysis. Such knowledge 
does not derive from an association study. On the positive side, 
thanks to the current rapid advances in functional genomics, the 
required information on such variants is gradually being accrued. 
Figure  4 depicts a situation, where we have a clear association 
between G and X, we can argue the independence between G and 
U but without understanding the functionality of the gene, there 
is no way of knowing that the third condition is violated. Since an 
association between G and Y is evident, we would incorrectly 
deduce that X causally affects Y, whereas an alternative explana-
tion for this association is that the gene causes an unobservable 
health problem S which then affects both X and Y.

A Mendelian randomisation analysis is not aimed at identifying 
genetic factors that are causal for disease risk. On the contrary, 
the method requires a known and well-understood genetic vari-
ant in order to facilitate causal inference about the effect of an 
exposure on the disease of interest. One of the limitations for IV 
methods is finding valid instruments. This is also an issue with 
genetic instruments in our applications but is hopefully becoming 
less so with the recent rapid advances in genetic epidemiology  
(8). Inferring causality from observational data is problematic, 
but we would argue that some of the confusion about misleading 
results from observational studies stems from the lack of clear 
delineation between the notions of association and causation, at a 
conceptual as well as formal level  (24). Only when this distinc-
tion is made explicit, can we identify and understand the crucial 
assumptions that permit a causal interpretation. Only then are we 
able to critically scrutinise these assumptions, justify or reject 
them, and hence assess the practical impact of any results. Solid 

4. Conclusion

Y

G

U

X

S

?

Fig. 4. G  X and G  U but the IV core conditions are not satisfied.
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background knowledge is essential for causal analysis. With 
Mendelian randomisation, we have an advantage over many other 
areas of application of IV methods in that genetics provide a rich 
source of information.
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Chapter 13

Copy Number Variation

Louise V. Wain and Martin D. Tobin 

Abstract

Recent genetic epidemiology studies have been dominated by genome-wide association (GWA) studies 
using single nucleotide polymorphisms (SNPs). However, a form of structural genomic variation, termed 
copy number variation (CNV), is also widespread throughout the human genome, and can be highly 
polymorphic between individuals. Such variation has long been shown, through candidate gene studies 
using low-throughput molecular biology techniques, to have direct consequences on human health and 
variation. Many studies have now sought to extensively characterise this variation on a genome-wide scale 
and, increasingly, attempts are being made to identify associations between CNV and human disease. 
Although many of the study design issues that have been described for SNP GWA studies are also relevant 
for CNV GWA studies, CNV studies also present their own unique set of challenges and considerations. 
New microarray-based technologies are enabling more accurate mapping of CNVs, and CNV maps of 
the human genome are being regularly refined with increasing resolution. The study of CNV and its 
effects on human health and disease therefore present a dynamic and exciting challenge for researchers in 
the field of genetic epidemiology.

Key words: Copy number variation, Structural variation, Genome-wide association studies, 
Genetic epidemiology, Human disease, Human variation

The human genome varies between individuals not only at the 
sequence level but also structurally. Specifically, deletions and 
duplications can result in alterations in the diploid copy number 
of affected segments of the human genome. This is referred to as 
copy number variation (CNV). In recent years, a number of stud-
ies have shown that human genomic CNV is widespread (1–12) 
and this evidence has not only prompted major efforts to further 
characterise CNVs, but it has also stimulated interest in the extent 
to which these variants may influence human health and disease.

1. Introduction

M. Dawn Teare (ed.), Genetic Epidemiology, Methods in Molecular Biology, vol. 713,
DOI 10.1007/978-1-60327-416-6_13, © Springer Science+Business Media, LLC 2011
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The term CNV is used to describe a sub-microscopic region of 
genomic DNA of up to several megabases, which can be deleted 
or duplicated (or both) such that its copy number on either chro-
mosome varies from one. This form of variation is analogous to 
microsatellites and minisatellites which consist of very short 
repeated units (2–4 nucleotides for microsatellites and 10–100 
nucleotides for minisatellites), but the term CNV usually refers to 
larger repeated regions of more than several hundred nucleotides. 
CNVs may contain any number of genes or partial genes depend-
ing on the size of the variable region and are polymorphic, to 
varying degrees, both within and between populations (13, 14). 
Simple deletions and duplications can be assigned to diallelic gen-
otypes (e.g. AA/A−/−− for deletions where “A” is the observed 
allele and “−” represents a deletion, or AA/A+/++ where “+” 
represents a duplication of “A” at one copy of the locus) (Fig. 1 
i, ii). However, unlike single nucleotide polymorphisms (SNPs), 
CNVs are not necessarily diallelic. Multiallelic CNVs show diploid 
copy numbers consistent with both deletions and duplications, or 
even multiple duplications (amplification) at the same locus 
(Fig. 1iii).

2. Copy Number 
Variation

2.1. Basic Genetics

{

cn = 2

cn = 4

iii) Multiallelic copy number variation

ii) Diallelic copy number variation

i) No copy number variation

a. Deletion b. Duplication

cn = 3

cn = 4
cn = 0

cn = 1

cn = 2

cn = 3

Fig. 1. Copy number variation. Grey boxes represent the presence of a locus. White and black boxes represent the flanking 
regions of the locus. (i) No copy number variation at the locus: diploid copy number (cn) of two. (ii) Diallelic copy number 
variation. (a) Heterozygous and homozygous deletion resulting in copy numbers of one and zero, respectively. 
(b) Heterozygous and homozygous duplication resulting in copy numbers of three and four, respectively. (iii) Multiallelic 
copy number variation. Deletion and duplication at the same locus, and multiplications, can result in overall copy numbers 
that are indistinguishable from those that result from diallelic situations or from situations where no copy number variation 
is present (cn = 2).
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Deviation from the “normal” diploid (two copies, Fig.  1ii(a)) 
state has profound consequences when large genomic regions are 
involved (15). The so-called genomic disorders such as Down 
syndrome, Cri du chat syndrome, and Charcot Marie Tooth 1A 
syndrome are examples of where the gain or loss of complete 
chromosomes or very large segments has very marked phenotypic 
consequences (16). On a more subtle level, copy number of many 
loci varies between apparently healthy individuals implying a con-
tributory role for CNV in normal human variation (13, 14, 17–
19). In some cases, this phenotypic variation has been associated 
with susceptibility to diseases such as glomerulonephritis (20), 
psoriasis (21), systemic lupus erythematosus (SLE) (20, 22, 23), 
and HIV (13, 24, 25).

The effects of a CNV depend upon its copy number and also 
on its location relative to genes or their regulatory elements. High 
copy numbers of the AMY1 gene, which encodes salivary amy-
lase, are associated with higher protein levels which in turn appear 
to be associated with dietary starch consumption on a population 
level (14). This suggests that extra copies of the AMY1 gene are 
expressed leading to higher concentrations of the product in 
saliva. Similarly, an association between the copy number of the 
CCL3L1 gene and expression of the chemokine, CCL3L1, has 
been shown; chemokine expression appears to be proportional to 
CCL3L1 expression for lower copy numbers, with a plateau of 
chemokine production for higher copy numbers (13, 26). The 
copy number of the Fc-gamma receptor gene, FCGR3B, corre-
lates with the level of protein expression and the ability of neutro-
phils to localise to immune complexes (27). On the other hand, 
duplication of the X chromosome green photopigment gene, 
OPN1MW, does not appear to lead to increased protein expres-
sion. Phenotypic variations in colour vision result only from 
sequence mutations affecting the first copy of OPN1MW. Perhaps 
the second and subsequent copies of OPN1MW are too far from 
the regulatory region to be expressed (28).

A deletion or duplication of one or both copies of a complete 
gene could result in a proportional reduction of the gene product 
or its absence. Heterozygous or homozygous deletion of the 
complement regulator genes CFHR1 and CFHR3 is associated 
with CFHR1 and CFHR3 deficiency with an increased risk of 
atypical haemolytic uremic syndrome (aHUS) (29). Similarly, the 
loss or gain of individual exons, the coding regions within a gene, 
could result in a defective gene product that is either non-
functional or has a mutated function (e.g. deletion of exons of 
the AAAS gene results in Triple A syndrome (30)).

Loss, gain, or disruption of regulatory regions, such as pro-
moters, enhancers, and transcription factor binding sites upstream 
of a gene, may also affect expression (31–33). While deletion of 
CFHR1/CFHR3 increases the risk of aHUS, it is possible to carry 

2.2. Effects of CNV
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the deletion with no obvious clinical effects suggesting that the 
phenotypic consequences of this deletion can be partially or 
wholly compensated for, possibly by downstream feedback mech-
anisms (29).

Candidate gene studies using molecular methods, such as fluores-
cent in situ hybridisation (FISH), Southern blotting, and poly-
merase chain reaction (PCR)-based methods, for the detection 
and quantification of CNV at individual loci predate the develop-
ment of the currently widely used microarray-based screening 
methods by decades (34–37). These low-throughput methods 
have continued to develop alongside high-throughput array-
based methods, but are not amenable to large-scale multiplexing 
and remain impractical for screening the entire genome, or even 
very large genomic segments. However, they are often utilised to 
validate findings from genome-wide studies (38–43).

Comparative genomic hybridisation (CGH) is used in cancer 
genetics to detect structural variation between normal cells and 
tumour cells. The DNA from each source is labelled with a differ-
ent fluorescent dye, mixed, and hybridised to a target. In tradi-
tional CGH, this target would be a chromosome spread, and 
regions of the genome that differed in copy number between the 
two cell types could be identified by the fluorescence ratios along 
the chromosomes. For array-CGH, rather than whole chromo-
somes, the target genome is represented at a much higher resolu-
tion by tens of thousands of probes on a microarray. This 
technology is now commonly used to identify regions of struc-
tural variation between individuals. The probes may be artificially 
synthesised oligonucleotides of 20–85 nucleotides in length, or 
clone constructs [such as bacterial artificial chromosome (BAC) 
clones] containing fragments of genomic DNA, typically 
80–200 kb. These cloned regions can be computationally mapped 
back to specific regions of the genome. Figure 2 illustrates array-
CGH. ROMA (representational oligonucleotide microarray anal-
ysis) (44) is a variation on array-CGH. Here, a representational 
subset of the genome based on amplification of short restriction 
endonuclease fragments that can be easily mapped against the 
human genome reference sequence is used thereby reducing the 
complexity of the genome.

SNPs within heterozygous deletions may be called as homozy-
gous during genotyping. Long runs of homozygous calls (loss of 
heterozygosity) may, therefore, be indicative of deletions (see 
Fig. 3a). Runs of SNPs deviating from Hardy–Weinberg equilib-
rium or showing Mendelian inconsistencies can also indicate 

3. CNV Discovery

3.1. Approaches  
to Detect CNVs
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underlying structural variation (Fig.  3b) (1, 6). In addition, 
derivations of the raw allelic intensities from SNP genotyping 
arrays have been used to screen for CNV. A number of algorithms 
have been developed to call CNVs from this information, many of 
which are based around Hidden Markov Models (45–54). These 
models assume that the data are generated by a stochastic process 
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Fig. 2. Array comparative genomic hybridisation (array-CGH). Test and reference DNA samples are differentially labelled, 
mixed, and hybridised to a target microarray containing probes (e.g. oligonucleotide probes or BAC clone probes). Where 
a genomic region is equally represented in both the test and reference samples (i.e. where the copy number of the region 
is the same in both samples), the ratio of fluorescence from the dyes at this spot on the array will be 1. Where one sample 
is over-represented with respect to the other, a ratio of greater than or less than 1 will be observed. These ratios are then 
mapped back against the genome to identify regions of variable copy number in the test sample. Reprinted with permis-
sion from Elsevier: The Lancet 2009 (74), originally adapted from Feuk et  al. (75) with permission from Macmillan 
Publishers Ltd: Nature Reviews Genetics.



172 Wain and Tobin

defined by a predetermined number of states representing copy 
number/genotype combinations (46, 55). More recently, hybrid 
genotyping arrays have been employed. These contain very large 
numbers of non-polymorphic probes as well as SNP probes (43, 
53, 56, 57). Array-based approaches to CNV discovery and asso-
ciation are considered further in Subheading 4.

Alternatives to the use of array platforms include sequencing-
based methods such as end-pair sequencing (11, 58). In this 
approach, the fragments of test genomic DNA are circularised 
and then randomly cleaved, and the ends of the resulting frag-
ments are sequenced and computationally mapped to a reference 
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Fig.  3. Effect of CNV on genotyping. (a) Loss of heterozygosity. SNPs in regions of 
heterozygous deletion are called as homozygotes. Unexpectedly, long regions of 
homozygosity may be indicative of a deletion. (b) Mendelian inconsistency. The three 
SNPs in the heterozygously deleted region of Parent 1 are called as homozygotes. The 
offspring has inherited the deletion from Parent 1 and a normal (in terms of structural 
variation) copy from Parent 2 and so is called as homozygous for the alleles from Parent 
2 for these three SNPs.
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genome sequence. The distance between the two points where 
the sequenced ends map to the reference genome is used to detect 
whether there is structural variation between the test genome and 
the reference genome. In simple terms, if the ends map closer 
together on the reference sequence than would be expected, then 
this may be indicative of an insertion in the test sequence relative 
to the reference sequence. Similarly, if the ends map further apart 
than expected, this may indicate a deletion in the test sequence. 
Unlike the array-based methods, this strategy is able to detect 
inversions which would result in a reversed orientation of the 
sequenced ends when mapped against the reference sequence 
(11, 59). The decreasing costs and wide availability of high-
throughput sequencing methods should increase the utility of 
these approaches in genome-wide CNV detection (60).

Any reported CNV needs to be interpreted in the light of the 
strengths and limitations of the approach used to detect the CNV. 
A principal factor affecting interpretation is the resolution of the 
detection method, which depends upon the size and spacing of 
the probes. BAC array-CGH can detect regions of copy number 
as small as 20 kb, but can only report the whole clone as being 
copy number variable and so the boundaries of small CNVs tend 
to be overestimated (recall that BAC clones are large, comprising 
around 80–200 kb of genomic DNA). SNPs that lie within copy 
number variable regions have had a greater propensity to be 
excluded from SNP genotyping arrays, as they are more likely to 
deviate from Hardy–Weinberg equilibrium and to show Mendelian 
inconsistencies (see Fig. 3b). This impacts on the SNP coverage 
of the relevant genomic regions and on inferences about CNV 
boundaries. The inclusion of CNV probes on hybrid genotyping 
arrays can circumvent this problem by providing coverage of 
regions often missed by SNP probes (56).

Further interpretational caveats arise from the use of refer-
ence samples. Array-CGH CNV calls are made relative to a refer-
ence sample, comprising DNA from a single individual. However, 
the reference sample is unlikely to have a copy number of two at 
all loci. Therefore, an apparent duplication may represent a true 
duplication in the test sample or a deletion at the same locus in 
the reference sample. Pooled DNA from two or more individuals 
may be used as a reference sample to minimise problems arising 
from a rare CNV in a reference sample, but interpretational dif-
ficulties may persist in regions of common CNVs and the increased 
variance of the reference signal may weaken the signal from CNVs 
in the test sample. Intensity for each SNP on an Illumina SNP 
genotyping array is derived from the average intensity of the gen-
otype clusters rather than from a reference sample (61).

The Database of Genomic Variants (DGV) (4) is currently 
the largest repository of CNV data from peer-reviewed screening 

3.2. CNV Discovery 
Findings and Their 
Interpretation
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studies using generally healthy control populations. Within the 
database, structural variants are sub-classified into indels, CNVs, 
and inversions. Variants termed CNVs in the database are all 
greater than 1 kb in length, and the term indel is used to define 
regions of CNV of between 100 bp and 1 kb. Any CNVs which 
overlap by at least 70% are merged into a single “CNV locus.” 
These definitions are guided by pragmatism and by the historical 
resolution of the array-based methods rather than any clear-cut 
biological significance.

The Redon et al. study of 2006 (8) was a key early paper in 
the field of CNV discovery. A genome-wide survey of structural 
variation was undertaken using a whole genome tile path (WGTP) 
array (CGH), comprising 26,574 large insert clones covering 
more than 93% of the genome, and an Affymetrix GeneChip 
Human Mapping 500K early access SNP array. A total of 270 
individuals from the HapMap collection (62) were analysed and 
12% of the genome was found to be within regions of CNV. 
A subsequent study which developed and utilised the Affymetrix 
6.0 array (containing around 940,000 CNV probes in addition to 
probes for over 900,000 SNPs) provided a new landmark (56) 
and challenged conclusions drawn by earlier studies (8) which 
employed lower resolution approaches. By combining information 
from both CNV and SNP probes, McCarroll developed a map of 
CNVs at ~2 kb breakpoint resolution. This indicated that many of 
the CNVs previously described were between 5 and 15 times 
smaller than initially reported. Importantly, this not only cast doubt 
on previous estimates of the proportion of the genome subject to 
large-scale CNVs (probably <5%), but it also means that inferences 
drawn about genes and other potentially functional sequence 
included in known CNVs will need to be revised (56).

Once appropriately characterised, most autosomal CNVs with 
frequencies >1% (common CNVs) appear to behave like SNPs in 
that most appear to be diallelic, in Hardy–Weinberg equilibrium, 
and are stably inherited in a Mendelian fashion (56). This contrasts 
to evidence from large, rare CNVs which frequently occur de novo 
and which are known or assumed to be deleterious (40, 63). 
Emerging evidence also suggests that most common CNVs are 
well-tagged by SNPs, and although available estimates of the tag-
ging vary, probably at least one-half of common CNVs will be 
tagged (r2 > 0.8) by the newest genome-wide SNP arrays (56, 64).

Genetic association studies employing SNP genotyping can rely 
on a very well-developed catalogue of SNP variants, their frequen-
cies, and inter-relationships in different populations (62, 65). 

4. Genome-Wide 
CNV Association 
Studies
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A researcher designing a SNP association study will have a good 
indication of the likely success of the assay, the allele frequency of 
an assayed SNP, and the extent to which it should capture (tag) 
variation at nearby SNPs. Until recently, researchers undertaking 
CNV association studies had little or no information about the 
presence and nature of CNVs in a given genomic region. This is 
beginning to change with the advent of more precise mapping of 
CNVs and their breakpoints using hybrid arrays and sequencing-
based approaches (56, 58). Improving CNV maps is a crucial step 
forward to more effective and efficient CNV association studies. 
For example, in planning a genome-wide CNV association study, 
one can utilise available information about previously discovered 
CNVs, such as data relating to its breakpoints, in order to target 
probes for reliably quantifying the copy number of a given CNV 
rather than refining its breakpoints (56). Thus, resources can be 
employed to optimise the detection (e.g. replicate probes might 
improve the signal-to-noise ratio of assays) or to type more CNVs 
by avoiding the use of wasteful probes which lie outside the 
known boundaries of the CNV. That said, it will only be possible 
to rely on CNV maps for studies focused on common CNVs. 
Different techniques are likely to be required for studies of unique 
or rare variants which may not occur in the reference populations 
used to develop CNV maps.

Studies aiming to relate the association of rare CNVs to disease 
rely first on CNV discovery and, second, on relating the presence 
or absence of a rare CNV to disease status. Several studies of this 
kind have been undertaken using data from genome-wide SNP 
arrays to detect rare CNVs hypothesised to underlie a range of 
disorders including schizophrenia and autism (Table 1). Deletions 
may be discovered from SNP genotype data by the detection of 
runs of contiguous SNPs that show loss of heterozygosity (due to 
hemizygous genotypes being called as homozygous, Fig. 3a). 
A more sensitive approach, however, is to utilise the fluorescence 
intensity signals from the SNP probes. Duplications or deletions 
cause changes in the normalised fluorescence intensity for neigh-
bouring SNPs. Thus, the approach has been called “SNP-CGH” 
(61), highlighting the similarities between this and array-CGH.

Association studies of this type have utilised the genome-wide 
SNP arrays of Affymetrix (40, 53, 61, 63) and Illumina (45, 51, 
53), and use a measure of the combined signal (R) from both 
alleles at a particular SNP. This is often expressed as the log2 R 
ratio; the logarithm to the base 2 of a ratio of the observed inten-
sity to an expected intensity (of the genotype clusters rather than 
a reference sample). Some studies also use information from the 
relative ratio of the fluorescence signals from one allelic probe to 
another, since these ratios would be expected to be 0, 0·5, and 
1·0 in the absence of CNV. A range of different normalisation 

4.1. Rare CNVs
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strategies have been employed to attempt to improve the 
signal-to-noise ratio, and a wide variety of different CNV calling 
algorithms have been utilised (45–54, 66, 67). A recently devel-
oped algorithm can make use of the combined information from 
both the SNP probes and the non-polymorphic probes that are 
available on the most recent genome-wide platforms such as the 
Affymetrix 5·0 and 6·0 arrays (67).

Since the detection of very rare CNVs often cannot rely on a 
priori knowledge of the relevant CNV, studies investigating rare 
CNVs that predispose to disease will rely on strict filtering strate-
gies to limit false-positive findings. Inevitably such strategies 
impact on the sensitivity to detect CNVs, particularly when using 
SNP arrays with limited coverage of the relevant genomic regions. 
These filtering strategies usually include either a minimal CNV 
size or a minimum number of contiguous SNPs, so that the 
reported findings of such studies tend to relate to large CNVs 
(39–43, 51, 53, 63, 68). Even so, validation and replication stud-
ies are necessary to exclude spurious findings. Studies of rare 
CNVs are akin to studies of genomic disorders, particularly those 
which employ family data in order to focus efforts on the detec-
tion of rare de novo variants (40, 42, 43, 51).

We appear to be on the threshold of undertaking genome-wide 
association (GWA) studies of common CNVs. These studies 
must exploit the new high-resolution CNV maps to develop 
assays capable of detection of common, generally smaller CNVs 
with much greater sensitivity and specificity than employed in 
association studies to date. Analytical approaches may be adopted 
to deal appropriately with data resulting from sub-optimal CNV 
assays. For example, where CNV boundaries are uncertain, use 
of the first principal component from the intensity measures of 
the different probes assumed to lie within a given CNV (rather 
than a mean intensity measure of the probes) can downweight 
the intensities of probes that actually lie outside the CNV bound-
aries (69).

However, it is still likely that for some CNVs (especially mul-
tiallelic CNVs) the data will be noisy and, particularly in case–
control studies, differential bias can impact on association tests 
and lead to false-positive findings. As with differential bias for 
SNP genotype calling (70), using a strict threshold for CNV call-
ing can actually worsen the differential bias due to differing rates 
of non-random missingness between cases and controls (69). One 
potential solution to this is to undertake likelihood ratio testing 
of quantitative CNV measurements in cases and controls rather 
than to separate CNV calling and association testing (69).

Notwithstanding the additional challenges of CNV typing 
and association testing, the epidemiological considerations that 
apply to genome-wide SNP association studies are highly relevant 

4.2. �Common CNVs
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for CNV association studies. Common CNVs are expected to 
have an individually modest effect on disease risk (as with SNPs) 
and therefore similarly large sample sizes are likely to be required, 
i.e. at least several thousand cases and controls. Accumulating 
such sample sizes is unlikely to be a major problem for the con-
sortia that have already established collaborative pooling of data 
across many studies. For GWA studies, stringent significance lev-
els are likely to be required, although the true extent of multiple 
testing may not be clear without further refinement of CNV 
maps. As with existing (SNP-based) GWA studies, independent 
replication of findings will remain pivotal to assessing the robust-
ness of findings of these studies.

Human genomic CNV is widespread and ongoing studies are 
attempting to refine the estimates of the proportion of the genome 
that is copy number variable. Crucially, CNV may contribute to 
variability in disease risk between individuals. In fact, association 
signals in some SNPs could be explained by nearby CNVs 
in strong LD with the tested SNP (56, 71). However, our under-
standing of CNV is much less well-developed than our understanding 
of SNPs, and fundamental questions remain unanswered in rela-
tion to the likely success and optimal approaches for association 
studies of common CNVs. Many CNVs remain inaccurately 
mapped and characterised. Even with rapid improvements in 
assays, it seems likely that copy number will be very difficult to 
measure for the more complex CNVs, such as multiallelic CNVs 
and especially overlapping or nested CNVs (8). How well common 
CNVs can be tagged by SNPs (thereby avoiding more expensive 
and possibly inferior assays) requires clarification (56, 64). The 
extent to which the risk of common diseases is influenced by 
structural rather than sequence variation is not known, but pro-
viding answers to this question seems set to be a major focus of 
genetic epidemiology research over the coming decade.
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Chapter 14

Epigenetic Variation

Kevin Walters 

Abstract

Epigenetics is a fast moving field and our understanding of epigenetic mechanisms has dramatically 
improved in recent decades. We present the role that epigenetics plays in genomic control in humans; the 
molecular basis of this control and the role that epigenetic aberrations play in the aetiology of human 
disease. We outline some of the laboratory techniques for characterising epigenetic variation from methy-
lation analysis of a single CpG to characterising histone variation across extensive genomic regions. The 
fields of computational epigenetics and population epigenetics have recently emerged and we discuss 
developments in statistical methods that use DNA methylation as biomarker for the prediction of disease. 
Finally we describe how DNA methylation errors that occur during somatic cell divisions have been used 
as a molecular clock that allows inferences about cell population histories to be made.

Key words: DNA methylation, Histone modifications, Chromatin remodelling, Transcriptional 
regulation, Cellular inheritance, Molecular clock

DNA is highly condensed into chromatin in the nucleus. The 
level of DNA packaging defines two contrasting forms of chro-
matin, tightly packed heterochromatin and (relatively) lightly 
packed euchromatin. Chromatin structure is strongly associated 
with the transcriptional activity of genes within that region: het-
erochromatic genes undergo limited transcriptional activity in 
contrast to actively transcribed euchromatic genes. The basic 
building blocks of chromatin are nucleosomes. Each nucleosome 
consists of 146 bp of DNA wrapped around an octamer of his-
tone proteins (two copies of each of four histone proteins). This 
extreme condensation of DNA makes it highly inaccessible to 
regulatory factors. This inaccessibility is resolved by a dynamic 
process allowing exposure of DNA to regulatory factors. The two 
main mechanisms involved in this process are DNA methylation 
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and histone modification and these two processes are intimately 
linked. The modulation of chromatin structure by DNA methyla-
tion, histone modifications, and other molecular mechanisms is 
an example of epigenetic control. The current use of the term 
“epigenetics” generally relates to the inheritance of cellular states 
that are not a result of DNA sequence variations. Epigenetic con-
trol plays a major role in several biological processes including 
tissue-specific control of gene expression, control of transposable 
elements, genomic imprinting, and X-chromosome inactivation. 
Epigenetic control of gene expression during development 
ensures transcriptional silencing of those developmental genes 
whose expression is no longer required. Post-development, the 
stable inheritance of chromatin states by daughter cells during 
somatic cell division is facilitated by somatic inheritance of gene-
specific patterns of DNA methylation and histone modifications. 
The stable inheritance of chromatin states ensures that gene-
specific transcriptional activity is perpetuated in somatic cell 
divisions.

In humans, DNA methylation occurs at CpG dinucleotides. 
CpGs are not evenly distributed throughout the genome and 
there exist so-called CpG islands; 7% of all CpGs reside within 
CpG islands (1). These islands are regions of higher than expected 
density of CpG dinucleotides and current research suggests that 
approximately 88% of active gene promoters are associated with 
CpG islands (2). The association with gene promoters implies a 
major transcriptional role for CpG islands; CpG islands are usu-
ally associated with open chromatin structures that are accessible 
to the transcription machinery. Genes with CpG islands in their 
promoter regions are very often found in ubiquitously expressed 
genes whilst tissue-specific genes often have no island. It would 
appear that the presence of a promoter-linked CpG island implies 
somatic stability whilst absence of an island makes it easier to 
reverse the transcriptional activity of a gene.

DNA methylation is maintained by methyltransferases. Five 
methyltransferases have been discovered to date: DNMT1, 2, 3a, 
3b, and 3L. The role of DNMT2 is not clear and DNMT3L is 
not thought to be capable of methylating cytosines but interacts 
with other active methyltransferases; the remaining three are 
involved in maintenance and de novo methylation with DNMT1 
being predominantly a maintenance methyltransferase but pos-
sessing the capability of de  novo methylation (3). These DNA 
methyltransferases interact with histone deacetylases and histone 
methyltransferases in regulating transcriptional activity.

There are two identified mechanisms by which DNA methy-
lation inhibits transcription. The first is direct inhibition in 
which DNA methylation itself inhibits transcription factor bind-
ing (4) and the second is via recruitment of an intermediary 
protein, namely methyl CpG-binding domain proteins (MBDs); 
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these MBDs bind to the DNA and inhibit transcription. There 
are several MBDs and they exhibit binding preferences in both 
the sequence context and number of CpGs. There are a host of 
complex interactions between the various MBDs and other pro-
teins such as histone deacetylases, histone methyltransferases, 
and nucleosome remodelling complexes (5).

There are several mechanisms that are involved in histone 
modification: histone variants, ATP-dependent chromatin remod-
elling, and various histone modifications. There are many modifi-
cations that can occur to histones and these different alterations 
allow them to take differing roles in a range of biological processes. 
These modifications include lysine acetylation and methylation, 
ubiquitination, serine phosphorylation, ADP ribosylation, and 
sumoylation. The effect of some of these modifications is not well 
understood, particularly ribosylation. Histone acetyltransferases 
are transcriptional co-activators (along with ATP-dependent 
chromatin remodelling proteins) and are involved in regulating 
gene transcription as part of much larger transcription regulatory 
complexes (6). Sumoylation is involved in the recruitment of his-
tone deacetylases (HDACs) and has a role in transcriptional 
silencing. Some of these histone modifications can have opposing 
outcomes depending on their location; ubiquitination of lysine 
123 on Histone 2B has a gene-activating effect while it is thought 
that ubiquitination of lysine 119 on histone 2A is associated with 
a repressive state of transcription (7). Histone phosphorylation is 
another regulator of transcription that is capable of either enhancing 
or repressing transcription.

The exact way in which these modifications modulate tran-
scription is unclear, but it is thought that they do so through the 
intermediate recruitment and binding of so-called effector mod-
ules (DNA regulatory proteins). Different effector modules are 
recruited according to the type of methylation (mono/di/tri) of 
the histone tail lysines and thus different outcomes can result 
according to which effector modules are recruited. Histone 
methylation plays a role in X-chromosome inactivation, DNA 
repair and transcriptional regulation depending upon which lysine 
residue is methylated and the extent the methylation. Chromatin 
conformation is controlled by both histone modification and 
DNA methylation, but the complex interactions between DNA 
methylation and histone modifications and the temporal aspects 
are poorly understood. Recent evidence from studies on Xenopus 
laevis suggests that histone acetylation and DNA methylation act 
in concert to reactivate the oct4 promoter (8). Histone deacety-
lases (HDACs) are recruited following the binding of methylated 
CpG-binding proteins (MeCPs). The histone deacetylation 
then allows methylation of the histones themselves. Methylated 
histones are targets for chromatin condensing proteins which 
lead to transcriptional inactivation (5). Clearly, much work needs 
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to be done in different cell lines looking at different genes subject 
to various states of epigenetic silencing to provide a fuller picture 
of the temporal relationships and interactions between these two 
mechanisms.

Another class of epigenetic regulatory proteins are the poly-
comb and trithorax group proteins; the latter being relatively 
poorly understood. Historically, the primary function of the poly-
comb group proteins was thought to be maintaining the silenced 
state of homeotic genes that are involved in specialisation of the 
various body segments during early development. Recent evi-
dence suggests that they have a much wider regulatory function 
in cell differentiation, are involved in the global regulation of 
many genes in different stages of development, and are involved 
in all the major mammalian developmental pathways (9). 
Polycomb group proteins play a key role in maintaining the inac-
tive state of facultative heterochromatin (X-chromosome inacti-
vation and imprinting, for example). Three multiprotein polycomb 
group complexes have been identified that co-operate to maintain 
the repressed state of genes that they regulate. Their specific func-
tions include binding to certain methylated lysines in histone 3 
and involvement in the ubiquitination of histone 2a.

Much of our understanding of how polycomb group proteins 
are recruited is through our work in Drosophila. It has been 
shown that genes regulated by polycomb group proteins contain 
specific sequence elements (polycomb response elements) that 
recruit polycomb group protein complexes (10). These response 
elements can act over large distance and can be tens of kilobases 
from the promoters that they regulate. They are capable of 
repressing multiple genes in their vicinity and their repressive 
capability appears to exhibit a dosage effect (11). The stable 
inheritance of the repressed state of a gene under polycomb group 
regulation following DNA replication is not known. It has been 
suggested that histone H3 K27 methylation could be one of the 
epigenetic marks that mediates the transmission of this epigenetic 
mechanism (9). The derepressive role of trithorax and AHS1 pro-
teins are poorly characterised; what is known is that they have H3 
methyltransferase activity and that they are associated with all 
polycomb response elements. They may play some part in revers-
ing the epigenetic states of target genes (12).

There are several putative mechanisms for the epigenetic inheri-
tance of histone modifications. The first proposes that histone 
octamers segregate randomly to the daughter strand creating a 
patchwork of octamers on each stand. The gaps are plugged 
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with naïve octamers and the chromatin modifying machinery is 
subsequently recruited to modify the naïve octamers. The sec-
ond scenario sees each octamer split into two heterodimers 
which are then made into octamers by the addition of four new 
histones following DNA replication. The final putative mecha-
nism of somatic transmission of the histone marks is one in 
which the DNA methylation and histone methylation interact in 
some way; there is evidence of interaction between histone 
methyltransferases and several DNA methyltransferases (13).

Compared to histone modifications, the mechanism by which 
methylation patterns are somatically inherited is relatively well 
understood. Following somatic cell division a new unmethylated 
DNA strand is synthesised. This process yields hemimethylated 
CpG sites and it is known that DNMT1 has a preference for 
hemimethylated CpGs (14). Certain N-terminal amino acids of 
DNMT1 possess a proliferating cell nuclear antigen (PCNA)-
binding domain (15). PCNA is involved in DNA replication and 
repair so the associated binding of PCNA and DNMT1 helps to 
target DNMT1 to replication foci. The PCNA-associated 
DNMT1 then methylates the unmethylated strand in a processive 
manner (16). Assuming an error-free process, this produces two 
daughter cells that have the same methylation pattern as the par-
ent cell. However, there is evidence of two types of error that can 
occur during the remethylation process at DNA replication. These 
errors are failures to methylate a CpG that should be methylated 
(failure of maintenance methylation) and methylating a CpG that 
should not be methylated (de  novo methylation). Neither 
DNMT3A nor DNMT3B localise to the replication loci (17) so 
that DNMT1, which is generally considered to be a maintenance 
methyltransferase, must also be capable of de novo methylation 
activity; this has been demonstrated in vitro (18).

A longstanding question relating to the stable inheritance of 
DNA methylation patterns is whether demethylation is an active 
or passive process. In a passive process, the nascent strand does 
not get methylated by maintenance methyltransferases at the next 
replication event, possibly as a result of protein–protein interac-
tions that inhibit DNMT1, leading eventually to predominantly 
unmethylated cells. In this scenario, the methylated CpG is not 
returned to an unmethylated state but it becomes highly diluted 
in a cell population. In active demethylation, some process facili-
tates the transition of a cytosine from a methylated to an unm-
ethylated state. Evidence has recently emerged for a protein that 
acts as an active demethylating agent. Gadd45a is thought to be 
recruited to sites of demethylation and promotes DNA repair; the 
methylated cytosines are excised and replaced by unmethylated 
nucleotides (1).

Transgenerational epigenetic inheritance relates to the pas-
sage of epigenetic information through the germ line. There are 
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now several studies showing that in certain genes epimutations 
are heritable and seen in multiple generations. Mono-allelic 
expression resulting from imprinting can be viewed as a form of 
transgenerational epigenetic inheritance where the silencing is sex 
specific but the specific mechanisms by which epigenetic informa-
tion could be inherited at certain loci is not understood. The 
previously accepted view that epigenetic states were not meioti-
cally inherited is supported by the fact that there is genomewide 
demethylation following fertilisation. How can epigenetic marks 
be transmitted across generations if the marks are erased and 
re-established in early development? Whilst the answer to this 
question is not known there are several studies demonstrating 
transgenerational epigenetic inheritance of DNA methylation 
levels (19, 20). The study of Tufarelli (20) also involved the 
inheritance of a deletion so that unravelling the genetic/epige-
netic influences is complex. In human studies, it is always difficult 
to rule out genetic control of apparent meiotic inheritance of the 
epigenetic state, and this remains a major obstacle to overcome. 
Most of the studies to date have involved a single family and 
usually a single generation. A study by Bjornsson et  al. (21) 
looked at the methylation changes in 21 three-generation families 
whose DNA methylation was measured at time points an average 
of 16 years apart. The analysis identified strong familial clustering 
of changes in DNA methylation levels over time averaged over 
807 genes (heritability was 0.743). A recent study using mono- 
and dizygotic twins found significantly higher methylation 
differences in dizygotic compared to monozygotic co-twins. 
Experiments conducted by the authors showed that this was 
unlikely to be due to DNA sequence differences, strengthening 
the evidence for epigenetic inheritance (22). Almost all studies 
have focussed on DNA methylation, but what happens to the 
epigenetic state of histones in these early stages is not known. 
Future studies investigating the relationship between DNA 
methylation and histone modifications in early development may 
provide some intriguing results.

Our knowledge of the role of epigenetic changes in disease is 
developing rapidly as a result of an increasing number of studies 
looking for epigenetic variation in a multitude of diseases. The 
marker of choice is invariably DNA methylation because it is a 
reliable and easily analysed biomarker but also because it is 
observed in many epigenetically silenced genes. Environmental 
exposure is likely to influence the epigenetic landscape and char-
acterising this as well as the between individual variation (in DNA 
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methylation patterns, for example) as a result of random errors in 
copying epigenetic marks is a major challenge. In studies looking 
at candidate genes, much of the focus has, understandably, been 
on genes detected through genetic studies (confirmed or putative 
oncogenes or tumour suppressor genes in cancer, for example). 
Many studies focus on a small number of CpGs out of the hun-
dreds contained within CpG islands although this approach is 
questionable as previous studies have reported both sequence 
(23) and density-dependent methylation (24).

Our understanding of the contribution of epigenetic varia-
tion to disease susceptibility is most advanced in the field of can-
cer where evidence of epigenetic alterations in just about every 
type of cancer have been reported (25). Hypermethylation of 
tumour suppressor genes (TSGs) is a common finding in cancer 
(26–28) and some TSGs are inactivated in a range of cancers (29). 
As well as cancer development, promoter hypermethylation is 
also associated with progression and metastasis (30, 31). The fac-
tors influencing aberrant CpG island methylation are not fully 
understood, but there is some evidence to suggest that it is related 
to whether the flanking sequence matches the preferred flanking 
sequences of the de novo methyltransferases (32). Aberrant meth-
ylation of CpG islands has also been shown to be influenced by 
distance from repetitive elements and the local chromatin pattern 
(33, 34). Recognition that some cancers had a high degree of 
DNA methylation lead to the controversial proposal of the CpG 
island methylator phenotype (CIMP). CIMP cancers were con-
sidered to be distinct in many molecular and histological ways 
and were thought to encompass those cancers in which there was 
a decreased fidelity of methylation maintenance (35). Decreased 
fidelity of cancer cells to replicate their CpG methylation signa-
tures has certainly been observed in some cancer cell lines (36).

In most cases, epigenetic changes occurring in tumour sup-
pressor genes are accompanied by DNA mutations and unravel-
ling causality is difficult. Clearly, the interplay between genetic 
and epigenetic factors in disease development will be an area of 
intense research as the evidence for disease-associated epigenetic 
modifications accumulates. Screening regions of known loss of 
heterozygosity for epigenetic changes revealed the TCF21 gene 
as a possible tumour suppressor gene. CDH1, a known tumour 
suppressor gene, appears to be silenced by a combination of 
genetic and epigenetic changes: a genetic mutation at one allele 
and DNA methylation of the other (37). Epigenetic changes can 
also be the precursor of genetic changes; for example, promoter 
hypermethylation of MLH1 leads to microsatellite instability in 
colon cancer (38). In leukaemia, genetic alterations have been 
shown to enhance the recruitment of DNA methyltransferases 
leading to aberrant promoter methylation (39). Much of the 
research effort has focussed on epigenetic variation in coding 
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genes, but there is emerging evidence of the role of microRNAs 
in epigenetic control. It has been suggested that some cancers 
may result from aberrant expression of miRNAs indicating the 
importance of considering non-coding genes when looking for 
changes in DNA methylation associated with disease (40).

Laboratory methods to quantify epigenetic variation have focussed 
on DNA methylation as a biomarker. Many methods and many 
adaptations of these methods have been used to identify, quantify, 
and characterise the variation in DNA methylation across the 
human genome. The choice of method depends upon the aim of 
the experiment. Is the interest in a single CpG, a single CpG 
island, or genomewide?. The choice also depends upon the antici-
pated heterogeneity of the methylation patterns likely to be 
encountered, whether the sequence context is known and how 
much quantification is required (number of molecules with a spe-
cific pattern of methylation or just whether the region can be 
considered to be methylated as opposed to unmethylated). The 
choice is also narrowed by the source of the DNA; whether it is 
from urine, serum, or plasma and also the desired sensitivity (how 
small a concentration of methylated sites is required to be 
detected). Demethylating agents can be used on cultured cells if 
the interest is purely in detecting gene expression changes in the 
absence of DNA methylation. Methods to detect histone modifi-
cations are usually based on mass spectrometry. Chromatin immu-
noprecipitation followed by microarray analysis (ChIP-on-chip) 
can be used to investigate histone variation over large genomic 
regions.

Looking for genomewide variation in DNA methylation pat-
terns can involve the use of enzymes to cleave CpGs embedded 
in specific sequences. Microarray methods (the use of methyl-
sensitive restriction enzymes or immunoprecipitation) yield 
semi-quantitative results (41) where only large differences are 
easily detectable. As a result of the decades of research into devel-
oping DNA technologies and analysis methods, the data avail-
able from epigenetic studies is already at the genome level. Like 
other genomewide methods, genomewide epigenetic studies face 
many problems, many of which are shared with gene-expression 
microarray studies: controlling the false discovery rate, removing 
or allowing for noise, ability to detect complex interactions and 
amplification bias.

Region-specific methods usually require sodium bisulphite 
treatment followed by PCR. Treatment with sodium bisulphite 
deaminates unmethylated cytosines to uracil. Uracils are replaced 
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with thymine following PCR and the methylation status is deter-
mined by the C to T ratio. The advantages of using PCR methods 
are that relatively small amounts of DNA are required and that 
many of the methods developed for DNA analysis can be used or 
easily adapted. These region-specific methods indicate the methy-
lation density in a genomic region. Methylation-specific PCR has 
the advantages of being able to detect very low levels of methyla-
tion and of requiring minimal equipment. Drawbacks are that it 
requires at least two CpG sites with variable methylation and that 
it is difficult to quantify the level of methylation at the sites ampli-
fied. Real-time methylation-specific PCR methods determine the 
absence or presence of a specific DNA methylation profile and 
gives information about the number of such cells. A recent tech-
nology called Methylight (42) is capable of very high sensitivities, 
being able to detect a methylated CpG among tens of thousands 
of unmethylated ones. It is frequently used to detect fully methy-
lated sequences and produces a highly quantitative measure: the 
percentage of methylated reference (PMR).

At the nucleotide level of resolution, Pyrosequencing, follow-
ing bisulfite treatment will reveal methylation patterns of an entire 
sequence of CpGs. This is useful in regions where it is known or 
suspected that the methylation profiles are likely to be heteroge-
neous (in tumour samples where there may be a mixture of 
tumour and non-tumour cells) or where the interest might be in 
combinations of methylated CpGs. If the interest is in the methy-
lation patterns of complementary strands of the same DNA mol-
ecule (looking at methylation error rates or determining the 
hemimethylated status of a CpG site, for example) then hairpin 
bisulphite PCR (43) allows this to be ascertained.

Depending on the technologies used, DNA methylation data can 
be slightly different to, for example, gene expression data in that 
there can be an excess of zeros resulting from unmethylated sam-
ples. When comparing two groups of such data (tumour vs. normal 
tissue, for example) a statistical test that treats the zeros sepa-
rately to the continuous part can be used (44). The test statistic 
is the sum of two separate statistics: a test statistic for the differ-
ence of two independent proportions and a statistic comparing 
the non-zero values (taking either a parametric or non-paramet-
ric form). A two-part permutation test has also been proposed 
and shown to be more powerful in some situations (45).

Another problem that has received much attention is that of 
class prediction (classes might be disease onset, severity or progres-
sion to a more severe form) using multivariate DNA methylation 
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data profiles of a set of gene promoters. This is a standard statistical 
classification problem since the number of classes that the data is to 
be partitioned into is known a priori. If the number of classes are 
not predefined then clustering, rather than classification, would be 
used to place each observation into natural groups. The data is 
partitioned according to some distance metric that depends upon 
whether the data is categorical or continuous. Hierarchical cluster-
ing has been successfully used to differentiate between different 
histological subtypes of lung cancer using DNA methylation pro-
files (46). As in microarray analyses, these types of analyses using 
DNA methylation data are under-determined problems, there may 
be thousands of genes but only tens of samples. In this situation the 
first step is usually one of dimensionality reduction (i.e. selecting 
those promoters that are best able to discriminate between the 
groups required). There are many methods that could be used 
including, Fisher’s criterion, principal components analysis, t tests, 
or regression methods. Reducing the number of gene promoters in 
classification problems based on DNA methylation data has been 
shown to be a key consideration in achieving small classification 
errors (47).

Machine learning methods are a group of supervised tech-
niques that “learn” from a subset of the data. Support vector 
machines are a machine learning technique that has been applied 
to DNA methylation data (47). More black box methods (artifi-
cial neural networks and neuro-fuzzy modelling) have also been 
applied to classification using DNA methylation data and have 
produced very small classification errors (48). It will be interest-
ing to see whether these methods receive further attention and if 
so, whether such low classification errors are obtained. More for-
mal statistical clustering methods have also been compared in the 
context of DNA methylation data including model-based hierar-
chical clustering and a Bernoulli-lognormal mixture model (49). 
As well as the Bernoulli-lognormal mixture model, other meth-
ods that explicitly allow for the excess of zeros often seen with 
DNA methylation data produced by the Methylight technology 
are starting to be developed (50) and promise even better classi-
fication error rates than the methods discussed in this review. 
Developments in bioinformatics and novel statistical methods are 
needed to prepare for data that current activities, such as the 
human epigenome project, are generating (51).

DNA methylation is also proving to be a useful molecular 
marker that can be exploited in population genetics models. 
Recent works (52, 53) have used DNA methylation copying 
errors during somatic cell division to begin to unravel colonic 
stem cell turnover. The advantage of DNA methylation errors 
over DNA sequence mutations is the approximately 1,000-fold 
higher error rate. This increased error rate leads to greater diversity 
in the methylation sequences over the relatively short number of 
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generations considered in these studies. The variation in the 
methylation sequences allow different models of stem cell replica-
tion and differentiation to be compared. DNA methylation is 
likely to become a popular marker in future research looking at 
various aspects of somatic cell populations.
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Chapter 15

Modeling the Effect of Susceptibility Factors  
(HLA and PTPN22) in Rheumatoid Arthritis

Hervé Perdry and Françoise Clerget-Darpoux 

Abstract

Numerous genome-wide analyses on common multifactorial diseases have been recently published in 
providing, for each associated Single Nucleotide Polymorphism (SNP), an Odds Ratio (OR), either for 
one of the susceptibility variant allele versus none, or for two copies of it versus one copy. Besides the 
poor information attached to these measures, it is a simplistic idea to reduce the effect of a gene to the 
one of an allele or of an haplotype. It is a far cry from detecting a signal indicating the presence of a 
causative factor in a genomic region to its identification and the important task of estimating the disease 
risk due to it. The contrast between cases and controls may be used for the estimation of the genotype 
relative risks. However, the same population distribution of a marker can be coupled with different 
modes of inheritance of the trait, and hence different risk estimates. Other sources of information, in 
particular at familial level must be used and can be crucial in discriminating the genotypes according to 
the disease risk. Illustration is given on two susceptibility factors to Rheumatoid Arthritis: HLA and 
PTPN22. In both cases, thanks to the sharing of parental alleles in affected sibs, a refining of the modeling 
was obtained. Tezenas du Montcel et al. (Arthritis Rheum 52:1063–1068, 2005) show that six HLA 
genotypes can be distinguished with different RA risks. One HLA genotype confers a risk 6.6-fold higher 
than another HLA genotype. For PTPN22, Bourgey et al. (BMC Proc 1 (Suppl 1):S37, 2007) show that 
observed data is not explained by a single variant as initially reported and that using the information on 
3 SNPs discriminates the genotypic relative risks (GRRs) from 1 to 4.7.

Key words: Genotype relative risks, Rheumatoid Arthritis, HLA, PTPN22

One of the greatest current challenges facing human genetics in 
the post-genome era is the understanding of the pathological 
pathways leading to multifactorial diseases. Genome-Wide 
Association (GWA) studies are successfully providing new strings 
to draw in the huge complexity of gene networks and lead some-
times to the identification of novel unsuspected pathways. This is 

1. �Introduction
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well illustrated by the huge progress accomplished in Inflammatory 
Bowel Diseases (IBD) (1) since the localization (2) and identifi-
cation (3, 4) of NOD2 as the first IBD susceptibility gene.

However, even if GWA studies have been quite productive for 
some multifactorial diseases in identifying new regions, new 
genes, new pathways, it is also clear that the limits of this approach 
will be reached soon and that a huge work will still need to be 
accomplished. First, we believe that many genes, playing an 
important role in the pathological pathway, are undetectable by 
this approach even with very large samples. Indeed, the approach 
is based on very simplistic assumption of independent effects, 
whereas interactions are extremely likely in most cases. Besides, 
when an association signal has been obtained on an SNP, there is 
still a long way to identify the causal variants, to obtain their mode 
of action and their connection with the other pieces of the path-
way. The length of the region to screen, after an association signal 
has been obtained, appears to be small when compared to the one 
of a linkage signal. However, the extent and non-monotony of 
LD may be such that the region may content many genes which 
are good candidates and several of them may act in interaction in 
the disease process. This is of course the difficulty encountered in 
the HLA region in which associations between antigen alleles and 
many diseases have been detected more than 30 years ago (5). 
For the majority of those diseases, the HLA component is not yet 
elucidated. This is also the case with the 5q31-33 and 4q27 
regions, in which linkage and/or association signals have been 
obtained for several autoimmune diseases.

Even when association with a disease pinpoints a single gene, 
the estimation of the risk corresponding to the different geno-
types is not that simple. The distribution of a marker in cases and 
controls is too poor for this purpose. They can be coupled with 
different modes of inheritance of the trait, i.e., different risk esti-
mates. Other sources of information, in particular at familial level 
must be used and can be crucial in discriminating the genotypes 
according to the disease risk.

We illustrate this on the modeling of two susceptibility factors 
to Rheumatoid Arthritis: HLA and PTPN22.

Rheumatoid Arthritis (RA) is one of the most common autoim-
mune diseases affecting circa 1% of adult population with a major-
ity of women. It is a chronic inflammatory syndrome with a wide 
clinical spectrum varying from mild to severe disabling disease. 
Little is known about its etiology. A higher concordance rate in 
monozygotic (15%) than in dizygotic twins (4%) was reported by 

2. Rheumatoid 
Arthritis
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Silman et al. (6), supporting a genetic component in the disease 
susceptibility.

Besides, the implication of Human Leucocyte Antigens 
(HLA) in this genetic susceptibility is known for a long time. 
Indeed, associations between HLA and RA were reported by 
Statsny (7) three decades ago. However, the biological mecha-
nism underlying these associations remains unknown. In 1987, 
Gregersen et al. (8) observed that the HLA-DRB1 alleles reported 
to be associated, share an RAA (arginine, alanine, alanine) 
sequence in position 72–74 of the amino acid. They hypothesized 
that this motif might be functional. Several studies tried to model 
the role of this shared epitope in RA (9–11), but all concluded 
that it could not explain HLA-DRB1 involvement in RA 
susceptibility.

More recently, the SNP rs2476601 has been repeatedly 
shown to be associated with RA (12–14). This SNP is located 
within the hematopoietic-specific protein tyrosine phosphatase 
gene, PTPN22. Its minor allele T confers 2.1-fold increased risk 
to heterozygote and 2.7-fold increased risk to homozygote carri-
ers (15) compared to the non-carrier individuals.

We show that using the simultaneous information of associa-
tion and linkage on these two factors – HLA and PTPN22 – 
allows a better modeling of their effect in RA susceptibility.

When a gene has been identified as involved in the disease suscep-
tibility, we need to better understand the role of this gene, in 
other words, to go from associated SNPs to the functional 
variant(s) and to evaluate the differential of risks according to the 
genotypes.

When information is available on several SNPs within the gene 
under consideration, we have to select first the set of SNPs that 
are the most associated. The association studies usually focused 
on one marker at a time and compared allele or genotype distri-
butions for the studied markers in cases and controls or in trans-
mitted versus untransmitted alleles in the case of family-based 
datasets. However, disease susceptibility may be due to the com-
bined effects of multiple sequence variants. The combination test 
was developed by Jannot et al. (16) to perform a joint analysis of 
multiple markers. The principle of the method consists in testing 
all possible subsets of SNPs within a gene. Such a systematic test-
ing of all SNP subsets poses a problem of multiple testing that is 
solved by the implementation of permutation procedures allow-
ing the estimation of corrected p-values. Using simulated data, 

3. Modeling a Gene 
Effect

3.1. Selection of the 
Most Associated  
Set of SNPs
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the combination test was shown to be powerful in many situations, 
in particular, when several SNPs interact and have small individual 
effects. H. Perdry extended the combination test to trio families 
and developed an efficient software1 for performing this test.

A set of SNPs selected in this step may be considered as a 
single multiallelic marker, each possible haplotype being consid-
ered as an allele. The genotypes are then defined by all combina-
tion of two haplotypes (identical or different). For this multiallelic 
marker, it is then possible to compute the Genotypic Relative 
Risks (GRRs) by using the genotypic distributions in patients and 
controls.

Note that several sets of SNPs (several markers) may be indis-
tinguishable in the strength of the association with the disease. 
When one selected set is nested in another one, we may keep the 
most parsimonious one. If it is not the case, we must keep in con-
sideration the equivalent sets (equivalent markers).

The number of parental alleles Identical By Descent (IBD) shared 
by the affected sibs for the gene under study depends on the gene 
model in the disease susceptibility (i.e., on the frequencies of the 
functional genotypes and on the corresponding GRR). Thus, a 
direct role of a marker selected in the previous step and the esti-
mated GRRs may be tested by comparing the observed IBD to its 
expectation under this model.

More information may be obtained on the model by using 
the IBD sharing conditioned on the genotype of one of the 
affected sibs (17). This information is most often ignored, whereas 
it may be very useful to confirm or refute a risk hierarchy estab-
lished in an association study. This is illustrated (Box A) on a 
VNTR flanking the insulin gene known to be associated to type 1 
diabetes (18, 19). The IBD distribution for the insulin gene is 
close to the expectation under the null (1/4, 1/2, 1/4) when 
observed on a sample of affected sib pairs but is highly stratified 
according to proband genotype for this VNTR. This observed 
IBD stratification fits a direct role of the VNTR in the susceptibility 
to type I diabetes (18).

It is possible that none of the gene markers selected in the first 
step represents what is functional in the disease process. In that 
case, the observations on the multiallelic marker (M) may be used 
to infer the modeling of the functional variation in the gene, con-
sidered as a multiallelic disease locus (S) (the number of S alleles 
and M alleles can differ). Additional parameters, which express a 

3.2. Use of Linkage 
Information  
in Affected Sibs

3.3. Modeling the Gene 
Effect While Taking 
into Account  
Both Linkage  
and Association 
Information

1Available on request (herve.perdry@inserm.fr).
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Box A. Stratified IBD Sharing

Let us assume the effect of a biallelic variant (a, A) where the 
probabilities of being affected of the genotypes aa, aA, and AA 
differ. The proportion of sibs sharing 2, 1, or 0 parental IBD 
allele(s) depends on the genotype for the variant of the index 
(one of the two sibs randomly chosen). The proportion of sibs 
sharing two IBD alleles (IBD = 2) is greater than 0.25 when the 
index has the highest risk genotype and is smaller than 0.25 
when the index has the lowest risk genotype (conversely for the 
proportion of sibs IBD = 0).

As an example, let us consider the VNTR flanking the insulin 
gene shown to be associated to type I diabetes (19, 20). This 
VNTR may be considered as a biallelic variant. The allele “a” 
represents a number of repeats lower than or equal to 1,000 
repeats and the allele “A” more than 1,000 repeats.

In Caucasian populations, the frequency of “a” is 0.70 
(the frequency of A = 0.30) and the relative penetrances esti-
mated from cases and controls of the Bell et al. study (20) are 
(1, 0.33, 0.06).

Under this model, we may compute with the MASC pro-
gram the IBD expectation conditioned on index genotype.

IBD 1 IBD 0 IBD 2 IBD 1 IBD 0 IBD 2 IBD 1 IBD 0

IBD stratified on
index genotype

Index genotype

IBD 2

.29 .50 .21 .20 .51 .29 .14 .47 .40

aa aA AA

Fig. 1. Expected proportions of sibs sharing 2, 1, or 0 IBD alleles according the index 
has the genotype aa, aA, or AA, respectively.

The proportion of affected sibs sharing two haplotypes with 
their index are expected to be 0.29 (greater than 0.25) when the 
index is homozygote for “a” (less than 1,000 repeats) but 0.14 
(lower than 0.25) when the index is homozygote for “A” (more 
than 1,000 repeats) (see Fig. 1). The observations on 95 affected 
sib pairs typed for the Genetic Analysis Workshop 5 (19) fit these 
expectations.

relation between the marker alleles and the disease locus alleles 
which are the coupling frequencies, have then to be considered. 
To deal with this high number of parameters (the risks associated 
to each disease locus genotype, the coupling frequencies between 
the marker alleles and the disease locus alleles), other sources of 
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information that the marker distribution in patient and controls 
samples have to be used, in particular familial segregation and 
linkage information.

This was the main idea of the MASC method proposed by 
Clerget-Darpoux et  al. in 1988 (17). The method integrates 
information on a sample of patients (index cases) at different lev-
els (Box B). Without going into details, it is useful to recall two 
basic notions underlying this method.

When a marker has been shown to be associated to a disease:
The marker genotype distribution in a patient sample depends ●●

upon the mode of ascertainment of the patients. In particular, 
the frequency of the more at risk genotype is higher in a sam-
ple of patients known to have affected relatives than in a ran-
dom sample of patients.
The IBD sharing of a patient with an affected sib depends ●●

upon the patient genotype. We expect an excess of sharing 
when the patient has the high-risk genotype and conversely a 
decrease of sharing when the patient has a low-risk genotype.

Box B. Principle of the MASC Method

The index cases are classified in three steps, each one being 
nested within the previous one:

1.	First, the index cases are classified following their familial 
configuration, i.e., the number of affected parents and 
the presence or absence of at least one affected sib.

2.	Each category defined at step 1 is divided in subcatego-
ries according to the index genotypes at the marker.

3.	Each category defined at step 2 is divided in three subcate-
gories according to the IBD of the index with a given sib.

The distributions expected under a given model at each step 
of classification can be expressed in term of the marker 
allele frequencies, the values of the coupling parameters, 
and the penetrances, which allows computing the likelihood 
of this model. This likelihood is then maximized using a 
numeric method. The fit of the model to the observations 
may then be tested; two nested models may also be com-
pared by a maximum likelihood ratio test.
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Rheumatoid Arthritis was shown to be associated with a variety of 
alleles of the class II gene HLA-DRB1. In 1987, Gregersen et al. 
remarked that the alleles associated with RA (8) share the epitope 
RAA at position 72–74. They formulated the so-called Shared 
Epitope hypothesis, according to which this specific sequence was 
responsible for the association between HLA-DRB1 and RA. The 
risks corresponding to the different associated alleles were not 
the same and Gao et al. (21) proposed to consider, according 
to the strength of associations, four different alleles E1, E2, E3, EX 
by pooling the HLA-DRB1 alleles as follows: HLA-DRB1*0101, 
*0405, *0408, and *1001 alleles as E1, the HLA-DRB1*0401 
alleles as E2, the HLA-DRB1*0102, and *0404 alleles as E3, and 
the other HLA-DRB1 alleles as EX. This classification, which was 
standard in the literature, was based on alleles known to be associ-
ated with RA.

The accuracy of Gao’s classification was tested on two differ-
ent French family samples, which differed in their ascertainment 
schemes. In the first sample, DNA was collected from one hun-
dred unrelated RA patients and from their two parents (Sample 1). 
The second sample comprised 132 patients (probands) with at 
least one affected sib.

The RA patients were recruited in France through the 
European Consortium on Rheumatoid Arthritis Families (ECRAF ). 
All patients fulfilled the 1987 American College of Rheumatology 
criteria. Blood samples were collected for DNA extraction and 
genotyping. HLA-DRB1 typing (Dynal Classic SSP “DR low 
resolution”) and subtyping (Dynal Classic, “high resolution” for 
HLA-DRB1*01, *04, *11 and *13) used the PCR-SSP method 
(Dynal Biotech, Lake Success, NY). The four alleles still ambigu-
ous after the high resolution subtyping were directly sequenced 
on exon 2.

The genotype distributions in Samples 1 and 2 (association 
information) were considered and, for each proband genotype of 
Sample 2, the proportion of sibs sharing 2, 1, or 0 alleles IBD 
(stratified IBD distributions). According to the proband geno-
type, these proportions are expected to differ (11). Tezenas du 
Montcel et al. (22) showed that this allele classification does not 
explain all the observations. In particular, 40% of the EX/EX 
patients, rather than the expected less than 25%, shared two iden-
tical by descent HLA-DRB1 alleles with their affected sib.

Consequently, a new classification of the HLA-DRB1 alleles 
was proposed (22). It was shown that the risk of developing RA 
depends on whether the RAA sequence occupies positions 72–74, 
but is modulated by the amino acid at position 71 (K confers a 
highest risk, R an intermediate risk, A and E a lower risk) and by 

4. Modeling the 
Effect of HLA-
DRB1 in the 
Susceptibility  
to Rheumatoid 
Arthritis
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the amino acid at position 70 (Q or R confer highest risk than D). 
The KRAA motif (denoted S2) at position 71–74 of HLA-DRB1 
confers the highest susceptibility and the RRRAA or QRRAA 
motif (denoted S3P) an intermediate risk. All other motifs were 
denoted L (see Table 1). Using the MASC method, Tezenas du 
Montcel et al. showed that the model which best fit the HLA-
DRB1 genotype distribution in the two samples and the distribu-
tion of parental alleles shared by affected sib pairs could be 
described by three alleles (S2, S3P, L) and six genotypes with dif-
ferent RA risks. The following risk hierarchy was established (see 
Table 2): risk was significantly higher for S2 than for S3P (p < 0.002), 
which in turn was higher than for L (p < 10−11). The maximum 
genotype risk was for the S2/S3P genotype; its risk was 6.6-fold 
higher than that for the L/L genotype, followed by S2/S2 
(GRR = 5.9), S3P/S3P (GRR = 3.3), S2/L (GRR = 2.7), S3P/L 
(GRR = 1.9).

In our study, the ERAA sequence is associated with the same 
level of risk as the alleles without the RAA motif at position 
72–74. Glutamic acid (E) at position 71 seems to suppress the 
effect of the RAA motif and, similarly, for an aspartic acid (D) at 

Table 2 
Genotype relative risks for rheumatoid arthritis

L S2 S3P

L 1

S2 2.7 5.9

S3P 1.9 6.6 3.3

Table 1 
Classification of HLA-DRB1 alleles following the amino acid 
sequence at position 70–74

Position

Allele 70 71 72 73 74

S2 * K R A A

S3P R R R A A

Q R R A A

L D R R A A
* E R A A

* * Non (R  A   A)

* indicates that the risk does not depend on the amino acid at that position
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position 70. In Gao’s classification, 50% of the alleles classified as 
low-risk allele actually shared the RAA motif. A large majority of 
these alleles share a DRRAA, ARAA, or ERAA motifs, which are 
indeed low-risk alleles, but 4% share the high-risk motif KRAA.

Our classification and hierarchy of genotypic risks was subse-
quently confirmed in a new sample of 100 French Caucasian fam-
ilies having one RA patient and both parents genotyped for the 
HLA-DRB1 gene (23). More recently, support to our modeling 
was also provided by several studies (24–28) both at statistical 
and functional levels.

Association between Rheumatoid Arthritis and an SNP of 
PTPN22 (rs2476601) has been confirmed by numerous studies. 
However, using data from the North American Rheumatoid 
Arthritis Consortium (NARAC), Carlton et al. (15) demonstrated 
that the variant rs2476601 does not fully explain the association 
between PTPN22 and RA and suggested the existence of at least 
another variant in PTPN22. Bourgey et al. (29) reanalyzed the 
NARAC data using both association and linkage information for 
modeling the role of PTPN22 in RA. Those data were made 
available though the 15th Genetic Analysis Workshop (GAW 15). 
A sample of 511 families with affected sib pairs typed for 14 SNPs 
of PTPN22 and 1,404 unrelated controls from the NARAC data 
were used. For each affected sib pair, the proband was considered 
as an index patient. The SNP rs2476601 was among the typed 
SNPs. An LD analysis leaded to the exclusion of 3 SNPs which 
were in complete LD with other SNPs.

The Combination Test was applied to the 11 remaining SNPs. 
Then, a forward procedure using nested chi-square tests was used 
to select a parsimonious and highly associated subset of SNPs. 
A set of three SNPs, rs2476601, rs12730735, rs11102685, was 
retained.

MASC was then used to estimate the GRR of each genotype, 
for rs2476601 alone, and for the selected three SNPs. The results 
are displayed in Table 3. It is interesting to note that:

	 1.	When the information is taken on the three SNPs, the GRR 
varies quite more largely (from 1 to 4.7) than when the infor-
mation is only taken on the SNP rs2476601 (from 1 to 2.7)

	 2.	Among individuals with the low-risk genotype CC for the 
SNP rs2476601, the two other SNPs strongly differentiate 
their GRR which ranges from 1 to 3.60.

In order to avoid cells with small number, some genotypes 
were pooled together according to their GRR value. This pooling 

5. Modeling the 
Role of PTPN22  
in Rheumatoid 
Arthritis
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leads to the definition of four different genotype risks for an indi-
vidual (Table 4).

The number of IBD alleles of PTPN22 shared by the index 
case and one affected sib were estimated using MERLIN (30). 
Their distributions conditional on the genotype class of the index 
case are displayed in Table 5.

Table 5 
IBD distribution stratified on genotype classes

Genotype class IBD = 0 IBD = 1 IBD = 2

L 0.47 (9) 0.42 (8) 0.11 (2)

I1 0.29 (85) 0.49 (146) 0.22 (64)

I2 0.26 (41) 0.50 (78) 0.24 (38)

H 0.09 (3) 0.65 (22) 0.26 (9)

In parenthesis, number of sib pairs

Table 4 
Genotype risk classes

Class GRR range Number of sib pairs in the class

Low (L) GRR = 1 19

Intermediate 1 (I1) 1 < GRR ≤ 2 295

Intermediate 2 (I2) 2 < GRR ≤ 3 157

High (H) GRR > 3 34

Table 3 
GRR estimates

rs2476601 GRR All 3 selected SNPs GRR

CC 1 CC-AA-AA 1.60
CC-AA-AG 1.76
CC-AA-GG 3.60
CC-AG-AA 1.73
CC-*G-AG 2.35
CC-GG-AA 1

CT 1.66 CT-AA-AA 2.88
CT-AA-AG 3.11
CT-AG-AA 2.61

TT 2.7 TT-A*-AA 4.68

*Either the A or the G alleles of rs12730735
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The stratified IBD distributions are consistent with the geno-
type risk classes. There is a large excess of IBD = 0 when the index 
has a low-risk genotype. The proportion of sibs that share no 
haplotype with their index decreases when the GRR increases 
(from 0.47 to 0.09) and conversely the proportion of sibs sharing 
two haplotypes increases (from 0.11 to 0.26)

In contrast, stratification of the IBD distribution on rs2477601 
genotypes alone is not consistent with the GRR estimates for 
these genotypes (Table 6).The proportion of sibs sharing 2 IBD 
alleles being the greatest when the index has the low-risk geno-
type CC.

The MASC method was applied using the four genotype 
classes defined above and the IBD stratified on them. The direct 
effect of rs2476601 is strongly rejected (p = 0.005). The hypoth-
esis of the effect of a single untyped SNP was also reject (p = 0.04). 
The data are compatible not only with an interactive effect of the 
three selected SNPs, but also with an effect of two untyped SNP 
in LD with those which have been typed.

We showed in this analysis (29) that observed data is not 
explained by a single variant as initially reported and that using the 
information on 3 SNPs discriminate the GRRs from 1 to 4.7 quite 
more largely than reported in the literature (from 1 to 2.7).

Familial information such as recurrence risks in sibs and parents 
of affected was, for long, the unique information used by geneti-
cists for modeling the genetic transmission of a disease. The bio-
logical revolution of the three last decades offering genetic 
markers along the genome has provoked a strong shift of the 
genetic studies with the more ambitious goal of localizing and 
identifying not only the disease genes involved in monogenic diseases, 
but also the genetic factors involved in the more complex multi-
factorial diseases. Geneticists first concentrated their effort in 
sampling and typing affected relatives, in particular affected sib pairs. 

6. �Discussion

Table 6 
IBD distribution stratified on rs2477601 genotypes

Genotype IBD = 0 IBD = 1 IBD = 2

CC 0.27 (96) 0.49 (177) 0.24 (85)

CT 0.25 (35) 0.53 (75) 0.22 (31)

TT 0.14 (2) 0.65 (10) 0.21 (3)

In parenthesis, number of sib pairs
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During the last decade of the twentieth century, the most popular 
approach was genome-wide linkage analysis. Very simple reason-
ing and observations made clear that the information of marker 
segregation in affected relatives was too poor in front of the com-
plex etiology of the majority of human diseases. However, instead 
of enriching and cumulating different sources of information to 
deal with this complexity, the genetic studies of the last decade 
promoted the idea that since very dense typing and even the 
entire sequence of individual human genome were available, it is 
sufficient to contrast the genome of affected versus unaffected 
individuals. GWA studies are currently being conducted on sam-
ples of unrelated persons in the belief that this is now the design 
of choice to discover genetic variants underlying relatively com-
mon complex diseases. Can we hope to anticipate, understand, 
and treat the many diseases to which humans are prone, simply by 
finding genomic locations in which allele frequencies slightly dif-
fer between those who have and those who do not have disease?

We firmly believe that the current efforts being put into the 
construction of huge databases for case-control studies should 
not be done to the detriment of continued collection of family 
data (31, 32). We simply show, in this paper, that it is possible to 
refine the modeling of a disease susceptibility gene by using both 
association and linkage information. The main motivation behind 
looking for genetic risk factors for complex diseases is to get a 
better insight into the pathological process of the diseases. 
This means that we must go further in looking at the simultaneous 
effect of the genes and their interaction. We probably have to 
model in the future the effect of sets of genes involved in the dis-
ease susceptibility through complex biological pathways. So many 
different biological mechanisms are possible that it would be 
foolhardy to restrict all human genetic research to a single strat-
egy. One of the greatest current challenges facing human genetics 
is that of how best to gather and synthesize the many lines of 
evidence possible in order to discover the genetic determinants 
underlying complex diseases.
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Chapter 16

Coronary Ar tery Disease: An Example Case Study

Jennifer H. Barrett 

Abstract

This chapter illustrates various general issues in genetic epidemiology in relation to coronary artery 
disease (CAD). This is a disease strongly influenced by environmental/lifestyle factors, such as smoking, 
but with substantial estimated heritability. Researchers aiming to identify susceptibility genes have used 
several different definitions of CAD, some focusing on the common presentation of myocardial infarc-
tion (MI) and others adopting broader criteria, often imposing an upper limit to age at diagnosis to mini-
mise environmental effects. Many candidate gene association studies and a few large genome-wide linkage 
studies have been conducted, but with limited success.

Several heritable quantitative traits are strongly related to risk of CAD (e.g. blood pressure and 
cholesterol levels), and much research has been focussed on identifying genes that influence these traits. 
Quantitative traits have the advantage of being measurable on any individual, allowing them to be studied 
in population-based cohorts. However, they also tend to vary considerably over time, and intra-individual 
variation needs to be taken into account in analyses.

In the last few years, both CAD itself and related quantitative traits have been studied in genome-
wide association studies using large sample sizes. Several novel genetic loci influencing CAD have been 
identified and replicated, in addition to many loci influencing related quantitative traits. However, despite 
this recent success, only a small fraction of the genetic contribution to risk has been explained.

Key words: Coronary artery disease, Myocardial infarction, Genetic epidemiology, Quantitative 
trait, Genome-wide association study

This chapter is not intended to provide a comprehensive guide to 
the genetic epidemiology of cardiovascular disease (1). Instead, 
we use this disease to illustrate various general issues in genetic 
epidemiology.

Cardiovascular disease (disease of the heart and circulatory 
system) is the main cause of death in the UK, accounting for more 
than one in three deaths (2). The common occurrence of the dis-
ease is not restricted to the developed world; it is also the main 
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cause of death world-wide, and over 80% of such deaths take place 
in low- and middle-income countries (3). The most common form 
of cardiovascular disease is coronary artery disease (CAD), which 
is heart disease associated with underlying atherosclerosis. 
Atherosclerosis is often undetected until the subject suffers from a 
myocardial infarction (MI). In other instances, the disease may 
first give rise to angina. If severe atherosclerosis is diagnosed, this 
may be treated by angioplasty or coronary artery bypass surgery. 
Other forms of heart disease contribute importantly to morbidity 
and mortality, such as cardiomyopathy, which is deterioration of 
heart muscle potentially leading to heart failure.

Some features of CAD add to the difficulty of studying its 
genetic aetiology: firstly, it is a complex heterogeneous pheno-
type, presenting in different ways as discussed above, and sec-
ondly disease risk is strongly influenced by lifestyle.

Because of the complexity of the phenotype, researchers have 
used several different definitions of CAD when studying its genetic 
epidemiology. For example, the British Heart Foundation (BHF) 
Family Heart Study (4) used as diagnostic entry criteria any one of 
MI, angina, angioplasty, or coronary artery bypass surgery before 
the age of 66. In contrast, the German MI Family Study (5, 6) 
focussed on subjects who had suffered an MI before their 60th 
birthday. Disease heterogeneity, if it reflects underlying differences 
in aetiology, may seriously reduce the power to detect risk factors, 
a point that argues in favour of a narrower phenotype definition, 
although any finding may then not be generalisable to other sub-
types of CAD. Such differences in phenotype definition hamper 
comparability between studies, although some recently-identified 
genetic risk factors, including the single nucleotide polymorphisms 
(SNPs) on chromosome 9p21.3 identified in recent genome-wide 
association (GWA) studies, seem to be robust to differences in 
CAD-related phenotype definitions (6–9).

Most genetic studies, like the two family studies mentioned 
above, impose some upper limit to age at diagnosis. The reasoning 
is that for many complex diseases early onset is more likely to 
indicate genetic susceptibility. This is of particular relevance to 
diseases like CAD, where incidence increases with age and there 
are strong environmental risk factors. Lifestyle factors that have 
been established as increasing risk of CAD include: smoking; a 
diet high in salt and saturated fat and low in fruit, vegetable, and 
fibre intake; physical inactivity; and psychosocial factors, such as 
stress and depression. Among these, smoking is the factor that 
combines relative ease of measurement with a strong effect on 
risk, with the increase in CAD mortality for smokers compared 
with lifelong non-smokers estimated at ~60% from 50 years 
follow-up of a cohort of British male doctors (10). An interest-
ing study design would therefore be to search for genetic risk 
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factors by studying non-smoking cases, a point we return to in 
Section 4.

Other features of CAD make its genetic epidemiology easier 
to study. For one thing, it is a common disease so that large studies 
are feasible, including studies of families with multiple affected 
members. Secondly, there exist several “intermediate” quantita-
tive phenotypes that influence risk, such as high- and low-density 
lipoprotein (HDL and LDL) levels, triglyceride levels and blood 
pressure (BP), which can be measured and investigated using 
samples of individuals from the population (see Section 3).

There are rare forms of CAD, such as familial hypercholester-
olemia, characterised by very high levels of LDL, where rare muta-
tions confer vastly increased risk of disease. Such forms of CAD 
have been successfully studied by carrying out linkage analysis on 
large pedigrees with several affected members often showing a clear 
pattern of inheritance (11). Although risk conferred by the muta-
tions subsequently identified in the LDL receptor gene is very 
high, because of their rarity the impact on population incidence of 
CAD is low. The main focus of this chapter is on common forms 
of CAD with multiple genetic and environmental risk factors.

A first step in studying the genetic epidemiology of any 
disease is to establish that there is an important genetic contri-
bution to disease risk, and this is often done by estimating the 
heritability. For a binary trait, this is done by modelling an 
underlying unobserved continuous variable representing lia-
bility (susceptibility to the trait) and estimating the proportion 
of variation in liability that is due to genetic factors. Because of 
the strong potential for ascertainment bias in estimating heri-
tability of CAD incidence, more reliable estimates can be 
expected by studying mortality. A Swedish study of over 20,000 
twins compared rates of concordance in death from coronary 
heart disease in monozygotic and dizygotic twin pairs (12). 
Heritability was estimated as 57% in males and 38% in females; 
genetic effects were shown to be important throughout life, 
but particularly at earlier ages. Another measure of familial 
contribution to risk is the sibling relative risk, denoted ls, 
which is the risk of disease in siblings of cases compared with 
the population risk. Ascertainment bias can also lead to diffi-
culties in obtaining unbiased estimates of this measure (13). 
For CAD, ls has been estimated at ~1.6 using the Framingham 
Heart Study, a large population-based prospective cohort study 
(14); adjustment for smoking and for risk factors, such as body 
mass index, systolic BP, and total cholesterol to HDL choles-
terol ratio did little to attenuate the estimated risk. It is thus 
established that genetic susceptibility contributes importantly 
to risk of CAD, justifying and motivating the search for 
disease-related genes.
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Until recently, the only available gene mapping methods available 
to researchers were linkage analysis across the whole genome and 
association analysis applied to candidate genes. As with other 
complex diseases, these approaches have had only limited success 
in CAD.

Numerous genome-wide non-parametric linkage studies of 
CAD have been conducted (1), the largest and most recent of 
which are the BHF Family Heart Study (4) and the PROCARDIS 
study (15), both of which collected genetic and phenotypic infor-
mation from ~2,000 families with at least two affected siblings. 
The studies had similar inclusion criteria, and both also reported 
subgroup analyses on the narrower MI phenotype. For the BHF 
study, the highest LOD score was 1.98 on chromosome 2 for 
CAD overall, with a pointwise p-value of 0.001 and a genome-
wide p-value estimated by simulation of 0.31. PROCARDIS 
employed a two-stage design and identified a locus on chromo-
some 17 showing evidence of linkage in the MI subgroup (LOD 
score 2.68 from combined analysis of both stages). Using exclu-
sion analysis, 85% of the autosomal genome was excluded for a 
locus-specific ls of 1.24, although interestingly the chromosome 
2 region from the BHF study was not excluded. However, despite 
the relatively large sample size of these two studies, the evidence 
for linkage is not overwhelming in either study, and in neither 
case has a disease gene in the linkage region subsequently been 
identified.

Overall, the regions identified as potentially important from 
linkage studies show little concordance with SNPs recently found 
to be associated with CAD from GWA studies (see Subheading 4). 
Although other factors such as heterogeneity may contribute, the 
principle factor giving rise to this is almost certainly the lack of 
power for even the larger linkage studies to detect loci with the 
magnitude of genetic risk now being identified.

The complexity of CAD and current understanding of its 
aetiology and related phenotypes have led to very many candidate 
genes being proposed and investigated through association analysis. 
Several of these have shown reasonable evidence of association in 
meta-analyses (e.g. APOE, PAI1, ACE, and MTHFR) although 
results have not been consistent. Morgan and colleagues (16) 
identified 85 genetic variants in 70 genes previously reported to 
be associated with atherosclerosis or acute coronary syndrome 
and tested for association in a case-control study of 811 patients 
and 650 controls. Only one variant showed nominal evidence of 
association and the overall results were entirely consistent with 
the global null hypothesis (i.e. none of the tested variants being 
associated with disease).

2. Candidate Gene 
Association 
Studies and 
Linkage Analysis
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Although several factors may contribute to the inability to 
replicate findings, including population heterogeneity, the most 
important factors are likely to be low power and the application of 
insufficiently stringent significance thresholds to candidate gene 
studies. A significance level of 0.05, or at most some correction for 
the number of loci reported within a particular manuscript, has 
generally been regarded as providing evidence of association. 
However, a consensus is emerging that, even for candidate loci, 
more stringent p-values and larger studies are required to avoid an 
unacceptably high proportion of false positive results (17).

Several quantitative traits which are strong predictors of CAD 
have themselves been shown to be heritable. For example, herita-
bility estimates of LDL and HDL cholesterol have been obtained 
of 33% and 44%, respectively, from population-based families in 
the UK (18), with even higher estimates obtained from twin 
studies (19). Another approach open to genetic epidemiologists 
is therefore to investigate genetic influences on the traits them-
selves. This has been the focus of a large number of linkage and 
candidate gene association studies (see summary in (1)), and 
more recently GWA studies have been conducted, for example of 
BP (7, 20) and lipid levels (21–26).

Quantitative traits differ in various respects from binary dis-
ease outcomes; most importantly they can be measured on any-
one, and they may vary widely over time and be strongly influenced 
by environmental factors, including treatment. These facts have 
implications for both design and analysis.

An important advantage of quantitative traits is that they can be 
analysed in a population-based sample, with no need to ascertain on 
the basis of disease status, and cohort studies are thus a feasible 
approach. There are an increasing number of large well-character-
ised population-based cohorts, where consent for genotyping has 
been obtained. Aside from the efficiency of being able to study 
many traits in the same cohort, prospective studies have a particular 
advantage for the study of gene–environment interaction, since 
environmental factors can be measured before the onset of disease 
(27). In contrast, case-control studies may be subject to recall bias, 
or it may not be possible to distinguish cause from effect.

A pioneering example of this approach is the Framingham 
Heart Study (http://www.framinghamheartstudy.org), an epide-
miological study which was started in 1948 with the objective of 
identifying common risk factors for cardiovascular disease. Initially 
~5,000 men and women were recruited from the town of 
Framingham, Massachusetts. In addition to questionnaires on 

3. Quantitative 
Traits
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lifestyle, various quantitative traits were measured on participants, 
and they were followed up with subsequent examinations and 
interviews at frequent intervals. Since then, second and third gen-
erations of the original participants’ families have been added to 
the study cohort. To date, nearly 2,000 research articles have been 
published based on this study, including recent large-scale genetic 
association studies of 17 groups of phenotypic traits (28).

It is important to minimise the effect of intra-individual varia-
tion on the study of a quantitative trait, ideally by measuring the 
trait on more than one occasion and ensuring that the conditions 
of measurement are as homogeneous as possible between sub-
jects. With detailed longitudinal data, attempts can be made to 
allow for treatment effects and other extraneous factors, and sum-
mary measures over time can be used. For example, BP was 
among the traits recently investigated in the Framingham Study 
(29), and genetic associations were analysed in relation to both 
measures taken at a single time point and a long-term measure 
based on average BP over at least 12 years (based on at least three 
time points), adjusted for age, sex, and body mass index.

Quantitative traits measured on a prospectively followed 
cohort also lend themselves to more complex statistical modelling 
fully exploiting the longitudinal nature of the data. Tobin and 
colleagues (30) recently analysed common variants in the WNK1 
gene in relation to BP in childhood. They used a mixed model 
that included random effects for individual-specific baseline BP 
and the gradient of increase in BP with age. The model takes 
account of the covariance in measures over time within individuals 
and allows the effects of SNPs on both baseline BP and the rate 
of increase with age to be modelled without the need to reduce 
the longitudinal data to summary form.

A potential disadvantage of the cohort approach is that study-
ing the whole range of the distribution of a trait in the population 
may not be powerful, especially if the genetic influences are more 
important in the extremes. In addition, from a clinical perspective 
most interest is generally in the tails of the distribution of the 
trait. One approach is therefore to select as “affected” individuals 
whose values exceed some threshold or have been diagnosed with 
disease on the basis of high values of the trait. An example of this 
approach is to study individuals diagnosed with hypertension 
compared with population-based controls as an alternative to 
studying BP as a quantitative trait. Genetic risk factors identified 
in this way may or may not have an important effect on the over-
all distribution of the quantitative trait.

For a relatively common trait like hypertension, population-
based controls are likely to include a substantial proportion of 
individuals who themselves have hypertension, thus reducing the 
power of the above strategy. In the WTCCC study of hypertensive 
cases versus population-based controls (7), this was recognised as 
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a potential contributory factor to the lack of significant findings 
at the genome-wide level. It was suggested that in future studies 
controls could be screened to exclude those with high BP. In a 
similar vein, methods have been proposed and investigated based 
on selecting individuals with extreme values at both ends of the 
distribution, both in linkage (where Risch and Zhang (31) sug-
gested the selection of extremely discordant sibling pairs) and 
association studies (31, 32).

In the last few years, an important new development in genetic 
epidemiology has been the advent of GWA studies, since the whole 
genome can now feasibly be searched for common genetic variants 
associated with increased disease susceptibility. These studies have 
resulted in the identification of many novel disease- or trait-
associated loci. One notable success of GWA studies is that, because 
of the recognition of the need for large sample size and the 
practice of adopting stringent standards of statistical significance, 
results reported in the literature have a good record of replication 
in independent data sets. However, although the associations are 
robust, usually the mechanism giving rise to the association is still 
not understood, and indeed some of the disease-associated variants 
identified do not lie within known genes.

A catalogue of published GWA studies is maintained by the 
US National Institutes of Health National Human Genome 
Research Institute (34). The number of published studies is 
increasing rapidly; at the time of writing, seven papers are listed in 
the catalogue under disease/trait CAD, “coronary disease” or MI 
(including MI [early onset]) (6–9, 35–37). Many more studies 
are listed under CAD-related traits, such as HDL and LDL cho-
lesterol (20–26).

The only locus showing genome-wide evidence of association 
in the four earliest GWA studies (6–9) is the 9p21.3 chromo-
somal region. This association has since been replicated many 
times, for example in a meta-analysis involving a total of 4,655 
MI cases and 5,177 controls (38); the per-allele odds ratio for the 
lead SNP rs1333049 was estimated in this study as 1.29 (95% 
confidence interval 1.22–1.37) with an additive mode of inheri-
tance. This represents a relatively strong and highly replicable 
association with CAD, but the underlying mechanism is not 
understood. The region includes the cyclin-dependent kinase 
inhibitors CDKN2A and CDKN2B, but the associated SNPs are 
some way from these genes.

Several other loci have since been identified through analysing 
in independent data sets the variants showing association at a level 

4. GWA Studies
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slightly below genome-wide significance. Associations with SNPs 
in regions 1p13, 1q41, and 10q11 have been confirmed in numer-
ous studies, as have SNPs in 19p13 and 1p32 near the LDL receptor 
and PCSK9 genes, respectively, which are understood to affect 
risk of MI through their effect on LDL cholesterol levels. The MI 
Genetics Consortium identified three novel loci, giving nine 
regions in total (including the six mentioned above) that show 
strong evidence of association (37). Based on nine SNPs from 
these regions, they constructed a genotypic risk score and estimated 
that individuals in the top quintile according to this score had a 
greater than twofold-increased risk of MI compared with those in 
the bottom quintile. (Such risk estimates tend to be upwardly 
biased unless estimated using data completely independent of the 
discovery data set.) However, they also estimate that these loci 
explain only ~3% of variance in risk of early-onset MI.

Hence, despite the success of GWA studies, it seems likely that 
only a small proportion of the genetic basis of CAD has been uncov-
ered. GWA studies are only powered to detect common variants, 
and it should be no surprise that the majority of variants discovered 
by this approach have had relatively large minor allele frequency 
combined with a modest effect on risk (39). Progressing further 
requires novel approaches to detect other possible genetic suscepti-
bility factors, including rare variants, copy number variation, and 
interactions between genes or between genes and environment.

One study has examined copy number variation across the 
genome in relation to CAD (37) and found no evidence of an 
effect, although this is an area still in its infancy and further work 
will be needed. Almost all GWA studies to date have restricted the 
genome-wide analysis to separate analyses of each SNP, often then 
carrying out haplotype or multi-locus analyses in regions showing 
evidence of association. Recently, two groups carried out genome-
wide haplotype analysis of CAD (36, 40) using different analytical 
approaches; the first group found a novel haplotype on 6q26-q27 
to be associated with CAD, with some evidence of replication. 
Haplotypic effects which are not uncovered by single-SNP analysis 
could arise from interaction between SNPs or because the haplo-
type tags another (possibly rare or copy number) variant, suggesting 
that this approach may be useful in detecting more complex pat-
terns of susceptibility. Research is being conducted into further 
novel methods of multi-locus analysis of genome-wide data (see 
(41) for a review), which may be successful in identifying suscep-
tibility not attributable to individual common SNPs.

Where there are strong known environmental risk factors, 
stratifying by exposure may help to identify disease genes, despite 
the inherent multiple testing penalty. For example, conducting a 
GWA study based on non-smoking CAD cases may increase 
power by removing subjects, the origins of whose disease lies pri-
marily in environmental/lifestyle factors. Conversely, searching 
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for genetic risk factors among exposed cases may be valuable in 
identifying genes that increase the risk posed by exposure (gene–
environment interaction). Now that sufficiently large studies of 
CAD have been established, it is of interest to stratify cases by 
smoking history in the search for disease genes.

This short account of some of the history of and current issues in 
CAD genetic epidemiology research illustrates issues common to 
the study of many complex diseases. Factors considered here are 
sometimes more and sometimes less important for other diseases; 
for example, difficulties arising from differences in phenotype are 
probably more acute in psychiatric illnesses and less acute in can-
cers, but always need to be considered when comparing or com-
bining studies. The identification of highly heritable disease-related 
quantitative traits opens up avenues of research that, although 
not unique to CAD, distinguish it from many other diseases.

After many years of searching for genetic risk factors using 
candidate gene association studies and linkage analysis, the recent 
advent of GWA studies has opened a new era of research in all 
common complex diseases. Although there have been many suc-
cesses, it is clear that findings to date only explain a small propor-
tion of genetic risk. In the near future, it is anticipated that further 
progress will be made, for example, by the systematic study of 
copy number variation, the analysis of sequence data and the 
investigate of gene–gene and gene–environment interaction.
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Chapter 17

The Genetic Epidemiology of Obesity: A Case Study

Laura M. Johnson 

Abstract

Obesity (OMIM #601665) is a disease where excessive stores of body fat impact negatively on health. 
The first law of thermodynamics dictates that energy cannot be created or destroyed so if energy is taken 
into the body, but not transformed to ATP for metabolic work or dissipated as heat, it will be stored as 
fat. Therefore, the ultimate cause of obesity is a long-term positive energy imbalance [energy intake (EI) 
exceeds energy expenditure (EE)]. Despite this simple explanation, there is no single reason why EI may 
exceed EE meaning that the proximate causes of obesity are multi-factorial in origin involving a complex 
interplay of genetic, behavioural, and environmental influences on metabolism, diet, and activity.

Key words: Obesity, BMI, Fat mass, Lean mass, Appetite, Energy intake, Energy expenditure

The human body is composed of four main components, namely, 
protein (in muscle), mineral (in bone), water (in and around 
cells), and fat mass. The best estimate of total body fat mass can 
be made by combining measurements of total body weight, den-
sity, protein, mineral, and water in a five component model. 
However, assessing each of these components separately involves 
complex and expensive analytical techniques, which limits their 
use in large samples (2).

Simpler, two component models of body composition, where 
body weight is partitioned into fat or fat-free mass, can be used 
instead. In this model, an assessment of just one component of 
fat-free mass is used along side assumptions about the density of 
the other components to estimate total fat-free mass. Fat-free 
mass is removed from body weight and the remaining mass is 
assumed to be fat. There are currently no data on which to base a 

1. The Obesity 
Phenotype
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cut-off, in terms of body fat, which represents the point that body 
fat stores become excessive and begin to have an impact on health. 
In reality, however, any cut-off would be arbitrary as evidence 
suggests a linear association between fat mass and health out-
comes (3, 4). Therefore, any search for the genes for obesity 
should be done using a continuous measure of body fat mass as a 
quantitative phenotype.

Traditionally the body mass index (BMI = body weight (kg)/
height (m)2), an indicator of excess body weight relative to height, 
has been used to define obesity in humans because it is simple and 
cheap to measure. According to the WHO criteria, overweight in 
adults is defined as a 25 < BMI < 30 kg/m2 and obesity is defined 
as a BMI > 30 kg/m2 (1).

The problem with BMI as a surrogate measure of body fat is 
that excess body weight could indicate excessive fat mass but 
could equally suggest high relative hydration or bone or muscle 
mass. The assumption that a high BMI indicates a large fat mass 
is not completely flawed, it has been shown that BMI correlates 
highly with the measures of fat mass (r = 0.5–0.9) (5). However, 
it also correlates with fat-free mass as well (6, 7). This lack of 
specificity for indicating the composition of excess weight means 
that a BMI of 30 kg/m2 can relate to different levels of actual 
fatness depending on gender, athleticism, age, and ethnicity 
(Fig. 1) (8).

If BMI reflects all components of excess body weight, then 
discovering the genes that effect BMI may lead to the discovery 
of genes for obesity but genes for body build, proportion, and 
components of lean mass may be discovered as well. Given this, 
the use of BMI as an obesity phenotype can be misleading and 
can add error to estimates of genetic effect. This may help to 
explain some of the inconsistency that characterises the literature 
on the genetic epidemiology of obesity.

The vast majority of estimates of the heritability of obesity have 
been made using measurements of BMI to represent fatness. 
Twin studies have reported that between 50 and 70% of the 

1.1. Evidence for the 
Heritability of Obesity

Fig. 1. The average proportion of body weight that is fat mass when BMI = 30 kg/m2 varies depending on gender, athleti-
cism, age, and ethnicity. Light grey = % lean mass; Dark grey = % fat mass. Based on data from Prentice and Jebb (8).
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variation in BMI can be explained by an additive genetic 
component (9–12). Family studies suggest a more modest effect 
of genes with heritability estimates in the range of 30–45% 
(13, 14). When an actual measure of fat mass is used, the propor-
tion of variation attributed to genetic effects has been estimated 
to be in the range of 50–80% (15–18).

Studies using a twin or family design have specifically mod-
elled genetic variation of different body weight components, i.e. 
fat, muscle, or bone, and overall BMI to establish the extent to 
which the same genes (pleiotropy) underlie variation in all com-
ponents of body composition (14, 16, 18). Separate components 
of body weight (fat mass, lean mass, and bone density) were esti-
mated using skin-fold thickness (14), bio-impedance analysis 
(16), or dual-energy X-ray absorptiometry (18). In the classic 
twin model of heritability, variation in a phenotype, e.g. fat mass 
is partitioned into additive genetic (A), dominant genetic (D), 
shared environment (C), and non-shared environmental (E) 
components based on differences in the proportion of genes 
shared by family members or monozygotic and dizygotic twin 
pairs. Whether any genetic effects are shared by two phenotypes 
can be established by assessing the correlation between the 
genetic component estimates using a multi-variate genetic model 
based on structural equation modelling, e.g. the Cholesky factor 
model. Evidence from these studies suggests that there is a little 
shared genetic variation between the individual components of 
body weight. For example, the correlation between the genetic 
components underlying fat and lean mass was just r = 0.16, 
equivalent to an estimated 2% shared heritability (18). In con-
trast, environmental factors explained a large proportion of 
shared variation between fat and lean mass (r = 0.51). This adds 
further support to the argument that BMI is not the best pheno-
type for identifying obesity genes as it may be identifying a range 
of genes that affect body weight that are not specific to variation 
in fat mass.

The last update of the Human Obesity Gene map reported that 
317 putative loci linked to obesity have been identified on every 
human chromosome except Y (19). However, only 15 loci have 
been replicated in more than three independent studies. A recent 
meta-analysis of genome-wide linkage scans for BMI and obesity 
with data from 37 independent samples found no regions with 
consistently significant evidence of linkage (20). This stark lack of 
evidence, despite sufficient power to detect an effect, suggests 
that there is substantial locus heterogeneity underlying variation 

2. Mapping Obesity 
Genes

2.1. Genome-Wide 
Linkage Scans  
for Genes for BMI
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in BMI. It might be expected that many different genes underlie 
fatness as fat stores can be altered via multiple pathways, e.g. 
appetite, energy metabolism, activity levels; but additional het-
erogeneity may be present in BMI as it characterises all compo-
nents of body weight which themselves are influenced by an even 
more diverse set of genes. Segregation analyses suggest that obe-
sity is most likely to be polygenic; the result of interactions 
between multiple genetic and environmental factors (21). The 
lack of significance of any one region in the meta-analysis of link-
age scans supports this.

The complex physiology underlying the regulation of energy 
balance has provided a large number of candidate genes for 
obesity. Single mutations in genes coding for neurotransmit-
ters, hormones, and their associated receptors in the appetite 
control pathways of the hypothalamus have been identified as 
the cause of most cases of extreme or early onset obesity in 
humans (22).

In most cases, evidence for an effect of these genes (with rare 
single mutations) on the expression of obesity in the general pop-
ulation is limited. To date association studies of candidate genes 
for obesity have often experienced problems with replicating 
observed effects. This may be explained by a large number of 
false-positive findings, a result of not using an appropriately con-
servative p-value to define a significant effect. Another problem is 
that replication studies may not include a large enough sample 
size to detect an effect that is likely to be small given the evidence 
for a polygenic model of obesity.

One exception is the gene coding for the Melanocortin 4 
receptor (MC4R), which has been documented as accounting for 
6% of early onset severe obesity (23). Multiple variants in the 
MC4R gene have been characterised and appear to affect obesity 
in the general population in opposing ways. For example, the 
most common mutation of the MC4R gene, the V103I variant, 
has a minor allele frequency of ~4% in western populations. 
A protective effect of this allele has been identified in three meta-
analyses, which showed that carriers of the minor allele have a 
reduced risk of being obese (24–26). The largest meta-analysis to 
date (n = 29,563) estimated that carriers were 18% less likely to be 
obese than non-carriers (26).

In contrast, a common variant (rs17782313) near the MC4R 
gene with a negative effect on BMI was identified by a meta-
analysis of genome-wide association data from 16,876 adults 
and confirmation analyses in 60,352 adults from cohorts of 
European descent (27). The minor allele frequency was ~24% 
and the overall per allele effect was estimated to be equivalent to 
0.22  kg/m2 or a 12% increase in the risk of being obese. 
Interestingly, this variant was highly associated with increased 

2.2. Candidate Genes 
for Human Obesity
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height in adults and modest increases in muscle and bone mass 
in children as well as increases in fat mass, suggesting that it may 
not be an obesity gene so much as a gene that enhances body 
size in general.

The first common variant for increased fat mass was recently 
identified and replicated in 13 cohorts with a total sample size 
of 38,759 (28). A variant (rs9939609, A allele) of the FTO 
gene (initially identified from a genome-wide association study 
of patients with type 2 diabetes) was associated with higher 
BMI in both adults and children as young as 7  years, which 
equated to a ~3 kg difference in body weight between homozy-
gous high- and low-risk allele carriers. Further analysis of fat 
and non-fat mass separately found that the association of the 
high-risk A allele with weight was mainly attributable to changes 
in fat mass with a 14% difference across the three genotype 
groups compared with a 1% difference in non-fat mass across 
groups.

The effect of FTO has since been confirmed in eight inde-
pendent cohorts of severely obese adults, children with extreme 
early onset obesity, as well as samples of healthy adults, children, 
twins, and newborns of European and American Caucasian 
descent (29–36). Further studies have failed to replicate the asso-
ciation in samples of African Americans, Chinese, Japanese, and 
Oceanic Islanders, suggesting that the effect of FTO may be spe-
cific to western Caucasians (37–40).

Evidence from a meta-analysis of genome-wide scans shows 
that the region containing the FTO gene 16q12 was among those 
with the most consistent evidence for linkage, albeit only nomi-
nally significant at the whole genome level (20). The identifica-
tion of FTO as a high-risk allele for obesity represents a previously 
unidentified candidate gene and its functional relevance to obe-
sity is currently under investigation. To date gene expression 
studies have shown that the FTO gene is highly expressed in both 
the appetite control regions of the hypothalamus (41, 42) and 
adipose tissue (43).

It has been hypothesised that functional mutation of the FTO 
gene may lead to a reduction in the sensitivity of the appetite 
control system, recent analyses of appetite in a sample of young 
twins genotyped for FTO supports this (30). Using question-
naire-based psychometric measures, the children’s sensitivity to 
internal signals of fullness and enjoyment of food was character-
ised. Children homozygous for the high-risk A allele were shown 
to have reduced sensitivity to fullness and a higher enjoyment of 
food score. Mediation analysis indicated that this variation in 
appetite, in part, explained the association between FTO and 
BMI. Much more work is needed to fully characterise the effect 
of FTO variants on obesity in humans.

2.3. Genome-Wide 
Association Studies
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The classic twin studies of Bouchard et  al. in the early 1990s 
demonstrated that the response to disruptions of energy balance, 
by overfeeding or prescribed exercise, is modified by underlying 
genetic susceptibility. In these studies, the variation in weight 
change between monozygotic twin pairs was greater than the 
variation observed within twin pairs; therefore, when genotype is 
the same, weight change is more alike. Progress on understand-
ing the details of the impact of interactions between genes and 
environmental factors on obesity has been slow. This is problem-
atic for studying the genetics of obesity as interactions are often 
not accounted for in analyses, which can reduce the power to 
detect a major gene effect. The modest effect of genes for obesity 
observed to date (44, 45) may be partly explained by the presence 
of unaccounted-for interactions.

Five models of interaction have been proposed to represent 
the combined effects of genes and environments on complex dis-
ease (Fig. 2) (46). (1) The gene alters the expression of a risk 
factor; (2) the gene alters the effect of a risk factor; (3) the risk 
factor alters the effect of a gene; (4) only the combination of gene 
and the risk factor affect disease; and (5) the gene and the risk 
factor have independent effects on disease risk. Some examples of 
each of these models have already been identified for obesity.

The PPARg gene is highly expressed in adipose tissue and is 
associated with the stimulation of adipocyte cell growth and 
differentiation. The b3-adrenergic receptor is also expressed in 
adipose tissue and influences fat metabolism and heat produc-
tion. An interaction between the Pro12Ala and the Trp64Arg 

3. Interaction  
in the Aetiology  
of Obesity

3.1. Gene–Gene 
Interactions
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Fig. 2. Models of interaction between genes and other genetic or environmental risk factors in the causation of disease. 
Adapted from (46).
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polymorphisms of the PPARg and b3-AR genes has been 
observed in a family study of Mexican Americans and a case con-
trol study of obesity in Spanish children (47, 48). In the Spanish 
case control study, a BMI enhancing effect of the Arg variant of 
the b3-AR gene is only significant among carriers of the Ala vari-
ant of the PPARg gene representing an example of interaction 
model 1.

An example of interaction model 5 is the additive indepen-
dent effects of the FTO gene and the variant near the MC4R 
gene on BMI in adults and children (27). Adults homozygous for 
both high-risk variants (1% of sample) had a BMI of ~1.17 kg/m2 
larger than adults carrying no risk alleles (19% of sample).

A similar example of independent additive effects was observed 
for an analysis of the combined impact of the FTO gene and diet 
on later fat mass in early adolescence. Dietary energy density, the 
amount of energy per gram of food eaten, is an environmental 
risk factor for obesity that is believed to override physiological 
indicators of satiety (49). In this study, the effect of both the gene 
and the diet was significant in a multiple linear regression model 
so that each high-risk A allele was associated with 330 g more fat 
mass at age 13 years, and each 1 kJ/g difference in dietary energy 
density was associated with 150 g more fat mass.

The modifying effect that the Pro12Ala variant has on the 
impact of dietary fat intake on BMI is an example of the 2nd 
model of interaction (50–52). In one study, the odds of obesity 
were no different across quintiles of fat intake for carriers of the 
rare Ala allele, whereas a positive linear trend was identified in 
those homozygous for the Pro allele, which suggests that this 
variant creates resistance to diet-induced obesity (52).

Tentative evidence that low physical activity accentuates the effect 
of the FTO gene is an example of interaction model 3 (32). 
In this analysis of data from a middle-aged Danish population, 
the difference in BMI of the homozygous AA compared with the 
TT variant carriers was four times greater among those with low 
levels of reported activity compared with high levels of physical 
activity.

In contrast, genes have also been shown to attenuate the 
impact of activity on obesity risk. The Gln27Glu variant b2-AR 
gene, involved in fat metabolism in adipocytes, interacts with 
physical activity and sedentary behaviour (50, 53). In a Spanish 
case–control study of obesity, adults with the Gln27 allele were 
protected from obesity regardless of activity, whereas the odds 
of obesity in adults with the 27Glu allele were linearly related to 
their physical activity. A similar study in children found that the 
detrimental effect of TV watching was attenuated in carriers of 
27Glu polymorphism, who were at increased risk of obesity 

3.2. Gene–Diet 
Interactions

3.3. Gene–Activity 
Interaction
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compared with carriers of the wild-type variant, which suggests 
that TV watching has little effect on obesity in children with 
this genetic predisposition to obesity. More studies are required 
to replicate these findings and confirm the mechanism of 
action.

The power to detect a significant interaction effect is dependent 
on the hypothesised mode of interaction as well as the precision 
with which the environment is measured. An important consider-
ation is how to define a purely environmental effect. For example, 
looking at activity levels, the direct measurement of energy expen-
diture may in itself represent a genetically determined trait, 
whereas the type of activity undertaken may be more environ-
mentally controlled by factors such as accessibility or availability 
of equipment. Alternatively, when assessing interactions with diet, 
environmental factors such as price and availability may govern 
food choice but taste preferences and appetite control may influ-
ence the amount that is eaten.

In order to detect interaction effects between multiple 
genetic and environmental factors that themselves have modest 
effects on disease, large samples are required. A suggestion for 
maximising power in a limited sample size when a risk factor is 
easy to measure is to only genotype those people in the extremes 
of the distribution (54). This approach assumes that there is no 
gene–environment correlation; however, most methods to assess 
interactions also fail to address this issue. As with all genetic asso-
ciations, interactions should be replicated, and establishing large 
consortia of cohort studies, as has been seen in recent genome-
wide association analyses, may help with this (55).

The collaboration of multiple research groups in combining data 
from a large number of population-based cohort studies has 
proven to be a successful method for identifying the small genetic 
effects associated with variation in the obesity phenotype. In addi-
tion, the inclusion of a sub-sample with data on body composi-
tion has allowed the genetic effect to be allocated to the appropriate 
component of body weight, i.e. fat mass or lean mass or general 
body size.

The clinical relevance of the effect of the FTO or MC4R 
genetic variants on the body weight of individuals is small. But 
when additive effects of multiple genes and environmental risk 
factors are combined, this may translate into a substantial effect 
on health. More importantly, small effects on many individuals 
can have a significant impact on public health.

3.4. Methodological 
Considerations

4. �Summary
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