

THE CARTOON GUIDE TO GENETICS (Updated edition). Copyright © 1983 by Larry Gonick and Mark Wheelis. All rights reserved. Printed in the United States of America. No part of this book may be used or reproduced in any manner whatsoever without written permission except in the case of brief quotations embodied in critical articles and reviews. For information address HarperCollinsPublishers, 10 East 53rd Street, New York, N.Y. 10022.

FIRST HARPERPERENNIAL edition published 1991

The Library of Congress has cataloged the previous edition of this book as follows:

Gonick, Larry.

The cartoon guide to genetics.

"CO/416."

Includes index.

1. Genetics—Caricatures and cartoons. I. Wheelis, Mark. II.Title. QH436.G66 1983 575.1'0207 82-48252 ISBN 0-06-460416-0 (pbk.)

ISBN 0-06-273099-1 (pbk.)

99 00 01 02 RRD-H 30 29 28 27 26 25 24 23 22

IN ANCIENT TIMES...

Our ancestors had a first-hand

KNOWLEDGE OF NATURE. IN THOSE DAYS, EVERYONE WAS A BIOLOGIST, AND THE WORLD WAS A CLASSROOM!

IN THE COURSE OF THEIR STUDIES, OUR ANCESTORS MUST HAVE NOTICED AN OBVIOUS FACT: SOME THINGS TENDED TO REPRODUCE THEMSELVES.

... AND, TO THE PRIMITIVE MIND, IT MAY WELL HAVE SEEMED THAT EVEN ROCKS COULD "GIVE BIRTH" TO LITTLE PEBBLES!

MANY SCHOLARS BELIEVE THAT PRIMITIVE PEOPLE SAW
MNO CONNECTION BETWEEN REPRODUCTION AND SEX.
THE NINE MONTHS BETWEEN CONCEPTION AND BIRTH WAS
SUPPOSEDLY ENOUGH TO STYMIE THE SMARTEST STONEAGER... AND WHAT DOES SEX HAVE TO DO WITH THE
REPRODUCTION OF ROCKS ??!!

FOR WEEKS I'VE BEEN WATCHING, AND I DON'T THINK THEY DO IT...

WE MUST ADMIT, THIS THEORY EVER NOTICE Y65... You CAN'T ANYTHING FUNNY LEAVES US ABOUT BABIES HAVE ONE WITHOUT THE SLIGHTLY AND SEX? SKEPTICAL. OTHER ... IT SEEMS POSSIBLE THAT MEN MIGHT HAVE MISSED THE C'MOV.. CONNECTION DON'T BE SHY BUT COULD WOMEN HAVE OVERLOOKED WHAT WAS happehing TO THEIR OWN BODIES??!

ENLIGHTENMENT CAME, ACCORDING TO THIS THEORY, WHEN PEOPLE FIRST DOMESTICATED ANIMALS—AND SAW THEIR REPRODUCTIVE CYCLE CLOSE-UP AND OFTEN MATING IP ONE SEASON, BIRTH IN ANOTHER.

IT MUST HAVE COME
AS A GREAT SHOCK
TO DISCOVER THAT
MEN HAD SOMETHING
TO DO WITH MAKING
BABIES... IT'S SAID
TO HAVE CAUSED
BIG CHANGES IN
SOCIETY, SUCH AS
FATHER'S DAY,
PATERNITY SUITS,
MARRIAGE, AND THE
PATRIARCHY — BUT THIS
IS A BIOLOGY BOOK,
AND WE WON'T GO
INTO ALL TRAT...

ALONG WITH THIS CAME THE NOTION THAT LIKE BEGETS LIKE—THE FIRST REALLY GENETIC IDEA...

AND SO BEGAN

PRACTICAL GENETICS,

OR "SELECTIVE BREEDING." THE HERDERS BEGAN CONTROLLING THEIR ANIMALS' MATING, CHOOSING THE "BEST" SPECIMENS FOR REPRODUCTION, AND GETTING RID OF THE "WORST."

RESULT ?

A BREED OF PROUD, TOUGH, WILD ANIMALS WAS REDUCED TO SOMETHING DOCILE, WOOLY, AND SHEEPISH!!

ESIGH:

(B)

THIS HAPPENED ALMOST EVERYWHERE IN THE WORLD: SCRAWDY WEEDS AND GRASSES WERE GRADUALLY TURNED INTO RICH, PRODUCTIVE CROPS. RICE, WHEAT, BARLEY, AND DATES IN ASIA; CORN, SQUASH, TOMATOES, POTATOES, AND PEPPERS IN AMERICA; YAMS, PEANUTS, AND GOURDS IN AFRICA — ALL SPECIALLY IMPROVED BY HUMANS!

The Way

THE EARLY
FARMERS REALLY
DIDN'T KNOW
WHY POLLINATION
WORKED—SO
THEY ADDED
SOME MAGIC,
JUST TO BE
ON THE SAFE
SIDE...

THESE ARE
ASSYRIAN PRIESTS,
POLLINATING
A DATE PALM,
AROUND 800 B.C.

WHAT WOULD HAPPEN IF WE DIDN'T WEAR THESE BIRD SUITS? PUK PUK; WHAT BIRD SUITS, HUMAN?

THIS COMBINATION OF SCIENCE AND MAGIC IS NICELY ILLUSTRATED BY A BIBLE STORY... BENESIS, CHAPTER 30, OR...

THE CASE OF JACOBS FLOOR

N THIS STORY, THE PATRIARCH **TACOB** AGREES TO TEND THE FLOCK OF HIS FATHER IN LAW **LABAN**. AS PAYMENT, JACOB MAY TAKE ALL THE "SPECKLED AND SPOTTED" ANIMALS FOR HIMSELF, WHILE LABAN KEEPS THE PURE BLACK ONES. THE TWO GROUPS ARE NOT TO INTERBREED.

THE BIBLE DESCRIBES JACOB'S FERTILITY MAGIC CAREFULLY: HE STRIPPED THE BARK FROM. WILLOW RODS, AND "MADE THE WHITE APPEAR WHICH WAS IN THE RODS", THEN SET THEM NEAR THE WATERING HOLE.

THE IDEA BEHIND JACOB'S ACTION IS THAT LIKE BEGETS LIKE:
BY SHOWING THE WHITE IN THE WILLOW RODS, HE WAS TRYING TO BRING OUT THE WHITE IN LABAN'S BLACK ANIMALS !!
THIS IS CALLED SYMPATHETIC MAGIC...

THE POINT, GENETICALLY SPEAKING, IS THIS: IN FACT, THE PURE BLACK ANIMALS BORE SPECKLED OFFSPRING—AND SO JACOB'S FLOCK INCREASED! WHY??

WE'LL COME BACK TO THIS LATER!

HERE WE SEE ACCURATE GENETIC OBSERVATION SIDE BY SIDE WITH A NEAR TOTAL LACK OF UNDERSTANDING.

THE CHINESE
DISCOVERED
"WALTZING" MICE,
A MUTATION WHICH
CAUSES THE
ANIMAL TO STAGGER
AROUND IN
CIRCLES.

THE HINDUS OBSERVED
THAT CERTAIN DISEASES
MAY "RUN IN THE
FAMILY." MOREOVER,
THEY CAME TO BELIEVE
THAT CHILDREN
INHERIT ALL THEIR
PARENTS' CHARACTERISTICS.
"A MAN OF BASE
DESCENTS CAN NEVER
ESCAPE HIS ORIGINS,"
SAY THE LAWS OF
MANU...

XENOPHON, A GREEK,
HAD THIS TO SAM
ABOUT BREEDING
HOUNDS:

"GET A GOOD
DOG FOR THE
PURPOSE."

ACTUALLY, ONE PHILOSOPHER, SOCRATES, WONDERED WHY THEY SOMETIMES DON'T... HE USED TO SAY THAT THE SONS OF GREAT STATESMEN WERE USUALLY LAZY AND GOOD FOR NOTHING... WE SHOULD ALWAYS BEAR THIS IN MIND, THAT NOT EVERY QUALITY IS INHERITED...

THE MOST COHERENT GREEK THEORY OF HEREDITY WAS THAT OF THE FAMOUS DOCTOR HIPPOCRATES.

HIPPOCRATES
RECOGNIZED THAT
THE MALE CONTRIBUTION
TO A CHILD'S
HEREDITY IS CARRIED
IN THE SEMEN.
BY ANALOGY, HE
ASSUMED THERE WAS
A SIMILAR FLUID IN
WIDMEN.

THESE FLUIDS, HE REASONED, WERE MADE THROUGHOUT THE BODY, AND THEN COLLECTED IN THE REPRODUCTIVE ORGANS.

THE SEMEN
FROM THE FINGERS
HAD THE MATERIAL
TO MAKE MORE
FINGERS; THAT
FROM THE HAIR
MADE HAIR, ETC
ETC...

AT CONCEPTION, A SORT OF BATTLE OF THE FLUID'S TOOK PLACE, AND WHETHER THE CHILD'S MANDS WERE MORE LIKE MOM'S OR DAD'S DEPENDED ON WHOSE FINGER-SEMEN WON OUT!

UNFORTUNATELY, THE GREEK WHOSE IDEAS MOST INFLUENCED LATER GENERATIONS WAS NOT HIPPOCRATES, BUT ARISTOTLE. WHEN IT CAME TO SCIENCE, ARISTOTLE NEVER LET HIS IGNORANCE STAND IN THE WAY OF HIS THEORIES!

ARISTOTLE — CALLED "THE PERIPATETIC" BECAUSE HE PACED WHILE HE LECTURED — BELIEVED THAT ALL INHERITANCE CAME FROM THE FATHER... THE MALE SEMEN, HE SAID, DETERMINED THE BABY'S FORM, WHILE THE MOTHER MERELY PROVIDED THE MATERIAL PROM WHICH THE BABY WAS MADE...

YES, THERE WAS NO GETTING AROUND IT... THIS SEEMED TO IMPLY THAT ALL CHILDREN OUGHT TO BE BOYS... WHO KNOWS? MAYBE THIS REVEALED SOME SUBCONSCIOUS WISH OF ARISTOTLE'S... THE ANCIENT GREEKS DID VALUE BOYS MORE HIGHLY THAN GIRLS.

A FINE THEORY ... EXCEPT
THAT IT DOESN'T ACCOUNT
FOR CHILDREN WHO DIFFER
FROM BOTH PARENTS!
BROWN-EYED PEOPLE OFTEN
HAVE BLUE-EYED BABIES,
AND DON'T FORGET JACOB'S
SPECKLED GOATS.

GREEK CIVILIZATION MAY HAVE PERISHED, BUT.

THE ONLY GENETIC IDEA THEY ADDED WAS THAT MARES COULD BE FERTILIZED BY THE WIND...

ORIGIPATING WITH THE GREEKS, THIS WAS THE BELIEF THAT LIVING ORGANISMS COULD ARISE ("SPONTANEOUSLY") FROM NON-LIVING MATTER.

MAGGOTS WERE SUPPOSED TO COME PROM DECAYING MEAT... HORSEHAIR TURNED INTO WORMS... AND PROGS, MICE, AND BUGS WERE NOTHING BUT SLIME COME TO LIFE II

BUT - AS WE MENTIONED, SCIENCE MARCHES OF ...

AND IN THE 17TH
CEPTURY, A SIMPLE
EXPERIMENT
SUCCESSFULLY
CHALLENGED
SPONTANEOUS
GENERATION.

THE ELEGANT DEMONSTRATION BY THE ITALIAN FRANCESCO REDI

REDI PLACED PIECES OF FRESH MEAT IN JARS... SOME OF THE JARS HE CAPPED TIGHTLY WITH CHEESE-CLOTH, WHILE LEAVING THE REST OPEN TO THE FLIES ... on

AFTER SOME TIME HAD PASSED, REDI FOUND MAGGOTS ONLY IN THE OPEN JARS.

THE MAGGOTS GREW, STIFFENED INTO COCOOPS, AND FINALLY EMERGED AS FULLY FORMED FLIES!

THUS, REDI HAD SHOWN THAT MAGGOTS COME FROM FLIES, AND FLIES COME FROM MAGGOTS. NOTHING VISIBLE HAD BEEN "SPON TANEOUSLY GENERATED" FROM THE ROTTING MEAT!

FLEAS, EELS, AND
WEEVILS, IN TURP,
WERE DISPOSED OF
BY ANTON VAN
LEEUWENHOEK
("LAY-VEN-HOOK"), AN
AMATEUR DUTCH
SCIENTIST AND THE
FIRST TO MAKE
SYSTEMATIC USE
OF THE
MICROSCOPE.

"THIS MINUTE AND
DESPISED CREATURE;
[HE WROTE] "IS ENDOWED
WITH AS GREAT A
PERFECTION IN ITS KIND
AS ANY LARGE ANMAL."

HE DISCOVERED THAT FLEAS, LIKE FISH, DOGS, AND HUMANS, WERE SEXUAL BEINGS!

YES... LEBUMENHOEK HAS
ALREADY CORRUPTED
THE MORALS OF
THE FLEA...

ONE MIGHT SAY THAT THIS
DISCOVERY OPENED A WHOLE
CAN OF WORMS...OR THAT
IT SPAWNED WRONG IDEAS...
FOR INSTANCE, LEEUWEPHOEK
HIMSELF BELLEVED EACH SPERM
CELL COUTAINED A COMPLETE
NEW ORGANISM IN
MINIATURE.

THE OBVIOUS PROBLEM WAS:
IF THIS "PRE-FORMED"
ORGANISM WAS A BOY, IT
MUST ALREADY HAVE TINY
TESTICLES, WHICH WOULD
CONTAIN MINIATURE
SPERM, WHICH WOULD
EACH HAVE EVEN TIMER
PREFORMED ORGANISMS...
AD INFINITUM ET
ABSURDUM III

HE PERSUADED THE KING TO LET HIM LOOK FOR MAMMAL EGGS IN THE ROYAL DEER PARK... DOZENS OF DISSECTED DEER LATER, HARVEY HAD TO ADMIT FAILURE.

FOR 200 YEARS THE HUNT WENT ON... AND STILL NO ONE COULD LOCATE THE ELUSIVE EGG.

IT'S NOT HAPD TO SEE WHY NOT... NOT OPLY IS THE MAMMAUAN EGG MICROSCOPIC, IT'S ALSO FAIRLY RARE...

MAMMALS "LAY"
VERY FEW E665:
A HUMAN FEMALE
PRODUCES ONLY
ONE A MONTH,
IN CONTRAST
TO THE MALE
AND HIS
TENS OF MILLIONS
OF SPERM
CELLS.

BUT THE SEARCH
WENT ON...THERE WERE
SOLID REASONS FOR
BELIEVING MAMMALS
HAD EGGS: WE HAVE
OVARIES AND OVIDUCTS...
IT WOULD BE PRETTY
SILLY NOT TO HAVE
EGGS, TOO...

IN FACT, SCIENTISTS GREW SO SURE EGGS WERE THERE, THAT WHEN ONE WAS FINALLY SEEN—A DOG'S EGG, IN 1827—IT CAME AS MORE OF A RELIEF THAN A SURPRISE N

THE ONLY REMAINING
RIDDLE WAS ANSWERED
WHEN OSCAR HERTWIG
OBSERVED THAT
FERTILIZATION
WAS THE UNION OF
A SINGLE SPERM
WITH A SINGLE EGG.

WHEN ONLY REMAINING
YOU'RE
NOT SINGLE
ANY MORE!

By 1700, THE
SEXUAL NATURE OF
PLANTS HAD BEEN
LARGELY RESOLVED
BY CAMERARIUS
(1665-1721), WHOSE
NAME EVEN SOUNDS
LIKE A PLANT...

CAMERARIUS SHOWED THAT FLOWERS BORE SEX ORGANS QUITE LIKE THOSE OF ANIMALS.

TO BREED OR NOT TO BREED?

LET'S SEE WHAT THEY ALREADY KNEW FROM EXPERIENCE:

Some Stable varieties nearly always breed true, their-offspring having the Same Characteristics as their parents. Some common examples are mackintosh apples, arabian horses, Labrador Retrievers, people with blue eyes, etc etc...

ON THE OTHER HAND, SOME BREEDING GROUPS SHOW GREAT VARIATION. JACOB'S FLOCK IS AN EXAMPLE OF VARIABLE COLOR. PEOPLE WITH BROWN BYES CAN HAVE BLUE-EYED CHILDREN.

SOMETIMES
POSSIBLE TO
MATE PARENTS
FROM TWO DIFFERENT
VARIETIES TO FORM

HYBRIDS.

FOR EXAMPLE, A
MULE 19 HALF HORSE
AND HALF DONKEY.
OF COURSE, NOT ALL
HYBRIDS ARE
POSSIBLE !!!

IMPOSSIBLE HYBRIDS:

HYBRIDS ARE DIFFICULT TO PREDICT... THEY MAY SEEM VIRTUALLY IDENTICAL TO DNE PARENT, OR THEY MAY COMBINE FERTURES OF BOTH—AND WHEN HYBRIDS, THE RESULT IS VARIATION IN THE EXTREME!!

DESPITE A GOOD DEAL OF WORK, NO TRULY GENERAL LAWS OF INHERITANCE WERE DISCOVERED.

SOME INVESTIGATORS CONFUSED THEMSELVES BY CROSSING BREEDS THAT DIFFERED IN TOO MANY CHARACTERISTICS...

OTHERS FAILED
TO KEEP A
CAREFUL COUPT
OF THE NUMBER
OF VARIETIES
PRODUCED
FROM EACH
CROSS.

}

INDEED, THE PROBLEM SEEMED
HOPELESS... GRADUALLY, SCIENTISTS
GAVE UP TRYING AND TURNED TO
EASIER PROBLEMS... AND THAT IS WHY,
WHEN THE LAWS OF INHERITANCE WERE
FINALLY FIGURED OUT, THE
DISCOVERY WAS IGNORED FOR
THRTY YEARS...

MONIX FINDS GENES World YAWNS !

FIFTY YEARS OF RESEARCH HAD FAILED TO FIND ANY PRECISE LAW OF INHERITANCE. OBNOUSLY, DISCOVERING THE RIGHT FORMULA, IF POSSIBLE, WAS A JOB REQUIRING SUPERHUMAN PATIENCE, UNLIMITED TIME, AND, AS IT HAPPENED, A MIRACUE OF LUCK.

NO WONDER IT HAPPENED IN A MONASTERY...

GREGOR MENDEL

(1822 - 1884) WAS AN AUGUSTINIAN MONK
PROM BRÜNN, AUSTRIA.
IN HIS SPARE TIME,
MENDEL BRED
PEA PLANTS IN
THE MONASTERY
GARDENS.

BUT MENDEL WAS
NOT JUST AN
AMATEUR GARDENER,
BUT A SCIENTIST
WHO STUDIED HIS PEA
PLANTS MOST
CAREFULLY—
HE CALLED THEM
HIS "CHILDREN."

CHOOSING PEAS WAS THE MIRACLE OF LUCK: THEY ARE PERFECTLY SUITED TO GENETIC RESEARCH, WITH A HUMBER OF STABLE VARIETIES WHICH MAY FORM HYBRIDS:

ONE TYPE MADE SMOOTH, ROUND PEAS, WHILE ANOTHER'S WERE LUMPY AND WRINKLED...

THERE WERE GREEN PEAS AND YELLOW; GREY SEED COATS AND WHITE; WHITE FLOWERS AND PURPLE. THERE WERE DIFFERENCES IN THE COLOR OF THE UNRIPE PODS, THE COLOR OF SEED ALBUMIN, AND THE POSITION OF THE FLOWERS.

EVERY PEA FLOWER HAS BOTH MALE AND FEMALE ORGANS, SO THEY ORDINARILY FERTILIZE THEMSELVES.

IT'S MATHEMATICAL!

THERE IS SOMETHING IN BOLLEN AND EGG WHICH DETERMINES THE HEIGHT OF PEA PLANTS.

EACH POLLEY GRAIN AND EGG HAS ONE HEIGHT GENE, SO THE PLANT FORMED BY THEIR UNION HAS TWO.

THE GEVE MAY BE ONE OF TWO DISTINCT TYPES, OR

ONE ALLELE, A, 13 FOR TALLNESS; THE OTHER ONE, a, 15 FOR SHORTNESS.

A PLANT MAY HAVE THE SAME OR DIFFERENT ALLELES.

THE ALLEGE A IS DOMINANT OVER a. THAT IS, THE PLANT WITH THE COMBINATION Aa IS TALL. THE ALLELES DO NOT "BLEPD."

WHAT HAPPENS
WHEN AA
BREEDS WITH
AA? POLLEN AND
EGG EACH GET
ONE COPY OF
THE GENE...
IN THIS CASE,
THE ALLELES
ARE THE SAME A - SO THE
OFFSPRING WILL
AGAIN BE AA, OR
TALL. LIKEWISE,
AA CAN YIELD
ONLY AA. THESE
ARE THE STABLE
SHOPT & TALL
VARIETIES.

MENDEL'S FIRST
HYBRID WAS A
CROSS BETWEEN
AA AND aa:
THE POLIEN (OR EEG)
FROM AA CONTAINS
ONLY A, WHILE
THE EGG (OR POLIEN)
FROM aa CONTAINS
ONLY A.

BESCULP &
Aa, WHICH
15 TALL.

TALL POLLEN.

SHORT EGG

SHORT POLLEY,

SHORT EGG

SHORT POLLEY, TALL EGG

TALL POLLEY.

TALL EGG

MENDEL ALSO CROSSED SMOOTH-PEA PLANTS WITH WRINKLED, PURPLE FLOWERS WITH WHITE, ETC ETC. IN EVERY CASE, HE FOUND THE CHARACTERISTIC TO BE CONTROLLED BY A SINGLE GENE WITH TWO DIFFERENT ALLELES, ONE OF WHICH WAS DOMINANT OVER THE OTHER.

SO IT SEEMED THAT POLLEN AND EGG WERE BOTH FULL OF THESE LITTLE "SOMETHINGS," ONE FOR EVERY HEREDITARY TRAIT OF THE ORGANISM. PRETTY CROWDED!

WITHOUT EVER SEEING A
GENE, MENDEL CONCLUDED
THAT HEREDITY IS
CONTROLLED BY THESE
"ATOMS OF INHERITANCE,"
WHICH MEVER BREAK OR
BLEND, MAINTAINING
THER CHARACTER FROM
GENERATION TO
GENERATION.

THE CROSS IS BETWEEN AASS AND aass.

HOW THAT WE'VE SEED HOW GENES WORK, HERE'S A BIT OF GENETICS JARGON, IN CASE YOU SHOULD EVER WANT TO EAVESDROP ON A MODERN GENETICIST...

WELL... NOT THAT KIND OF JARGON...

GENETICISTS DISTINGUISH
BETWEEN AN ORGANISM'S
PHENOTYPE - WHAT IT
LOOKS LIKE - AND ITS
GENOTYPE - WHAT
ALLELES IT HAS.

SAME PHENOTYPE, DIFFERENT GENOTYPE

AN ORGANISM IS
HOMOZYGOUS WITH
RESPECT TO A
GIVEN GENE IF ITS
TWO ALLELES ARE
THE SAME, AND
HETEROZYGOUS
IF THEY'RE
DIFFERENT.

55 Homozygous

Ss Heterozygous

SO NOW YOU KNOW
WHAT A GENETICIST
MEANS BY
"PHENOTYPICALLY SMOOTH,
GENOTYPICALLY
HETEROZYGOUS."

YES...
NOW TELL
ME ABOUT
RECOMBINANT
BANK
ACCOUNTS...

THE ALLEUE FOR A BLACK COAT, CALL IT B. WAS DOMINANT. THERE WAS ALSO A RECESSIVE ALLELE, W, FOR Bw WHITE SPECKLES. MANY OF LABAN'S PHENOTYPICALLY BLACK APIMALS SECRETLY HARBORED THIS W, SO THEIR KIDS WERE SOMETIMES SPECKLED.* Bw BW BB

* ACTUALLY, THE GENETICS OF COAT COLOR ARE MORE COMPLEX, BUT THE PRINCIPLE IS THE SAME: RECESSIVE ALLELES.

IF YOU SEE A DOMINANT PHENOTYPE, HOW CAN YOU TELL IF IT'S A HETEROZYGOTE?

FOR INSTANCE, IN HUMANS BROWN EYES ARE DOMINANT OVER BLUE. CALL THE GENES B AND 6, RESPECTIVELY.

HOW CAP WE TELL IF THIS BROWN EYED PERSON IS BB OR BL?

ONE WAY IS TO CROSS HIM WITH A RECESSIVE HOMOZYGOTE-I.E., A BLUE-EYED PERSON, bb.

SORRY...| HAVE
TO BACK OUT OF
THIS EXPERIMENT...
MONK'S VOWS,
YOU KNOW...

O.K. WE'LL USE SOMEBODY ELSE ...

IF AMY OF THE LITTLE
HYBRIDS HAS BLUE EYES,
THE BROWN-EYED PARENT MUST
HAVE BEEN A HETEROZYGOTE,
BL. IF HE HAD BEEN BB,
ALL THE CHILDREN WOULD
HAVE BEEN BB, WITH
BROWN EYES.

MY SECOND WIFE HAS BLUE EYES LIKE ME. IF OUR CHILD HAD BROWN EYES, WHAT WOULD WE MAKE OF THAT? BETTER ASK THE MILKMAN!

SOME EXAMPLES OF DOMINANT AND RECESSIVE GENES IN HUMANS:

BROWN EYES ARE DOMINANT OVER BLUE EYES.

COLOR VISION IS
DOMINANT OVER COLOR
BLINDNESS.

A HAIRY HEADS ARE DOMINANT OVER BALD ONES.

THE ABILITY TO CURL THE TOPOUE IS DOMINANT OVER THE IMABILITY TO CURL THE TOPOUE.

FIXTRA FINGERS ARE DOMINANT OVER FIVE FIVE FINE (000 BUT TRUE!).

Double Dose of Recessives Also cause such RARE DISEASES AS HEMD -PHILLA, SICKLE CELL ANEMIA, TAY-SACHS SYNDROME, THALASSEMIA, DWARPISM...

MY PRINCIPAL RESULTS:

HEREDITARY TRAITS ARE
GOVERNED BY GENES WHICH
RETAIN THEIR IDENTITY IN
HYBRIDS. GENES ARE NEVER
BLENDED TOGETHER.

3 EACH ADULT ORGANISM
HAS TWO COPIES OF EACH
GENE—ONE FROM EACH PARENT.
WHEN POLLEN OR SPERM AND
EGGS ARE PRODUCED, THEY
EACH GET ONE COPY.

ONE FORM ("ALLELE") OF A GENE MAY BE DOMINANT OVER ANOTHER. BUT RECESSIVE GENES WILL POP UP LATER!!

DIFFERENT ALLEUS ARE
TO SORTED OUT TO SPERM
AND EGG RANDOMLY AND
INDEPENDENTLY. ALL COMBINATIONS
OF ALLEUS ARE EQUALLY
LIKELY:

AABBCCDDEEFFGGHA
AABBCCCDDEEFFGGHA

WE'LL SEE SHORTLY THAT NOT ALL THESE POINTS ARE EXACTLY CORRECT... DOMINANCE IS SOMETIMES ONLY PARTIAL... THERE ARE ORGANISMS WITH ONLY A SINGLE SET OF BENES... AND SOME WITH FOUR SETS... AND DEVIATIONS FROM INDEPENDENT. ASSORTMENT TURN OUT TO BE VERY IMPORTANT...

MENDEL PRESENTED HIS THEORY IN 1865 TO THE BRÜNN NATURAL SCIENCE SOCIETY... IT PUT THEM TO SLEEP.

UNFORTUNATELY,
NOBODY CARED ABOUT
THE PROBLEM ANY
MORE... IT HAD
GONE OUT OF FASHION...
AND, BESIDES, SINCE
1859, BIOLOGISTS
HAD BEEN DISTRACTED
BY THE NEW THEORY
OF EVOLUTION,
AND COULDN'T BE
BOTHERED WITH
MENDEL'S EQUATIONS.

BY THE TIME MENDEL DIED, THE SCIENTIFIC COMMUNITY HAD TOTALLY FORGOTTEN HIS WORK. "MY TIME WILL COME," HE SAID, NOT LONG BEFORE HIS DEATH IN 1884...

AS FAR BACK AS THE 1600'S, ROBERT HOCKE (1635-1703) HAD NOTICED THE CELLULAR STRUCTURE OF CORK.
BUT IT WASN'T UNTIL THE 1800'S THAT SCIENTISTS, ARMED WITH BETTER MICROSCOPES, REALIZED THAT ALL OF US ARE DIVIDED INTO LITTLE COMPARTMENTS.

MOREOVER, SCIENTISTS SAW THAT ALL CELLS COME FROM THE **DIVISION** OF A PRE-EXISTING CELL. BEFORE DIVISION, EVERYTHING IN THE CELL IS DOUBLED.

CAREPUL STUDY REVEALED WHAT HAPPENS TO CHROMOSOMES DURING CELL DIVISION.

FIRST-WHILE STILL INVISIBLE— THE CHROMOSOMES DUPLICATE THEMSELVES, REMAINING ATTACHED AT A SPOT CAUGO THE CENTRO

THE MEMBRANE AROUND THE NUCLEUS DISSOLVES, AND A FIBROUS SPINDLE FORMS, ON WHICH THE CHROMOSOMES LINE UP.

NEXT THEY THICKEN AND SHORTEN, BECOMING VISIBLE UNDER THE MICROSCOPE.

THE CONTROMBRES DIVIDE AS THE SPINDLE FIBERS TUG THE CHROMOSOME PAIRS APART.

THE CHROMOSOMES ARRIVE AT THE OPPOSITE POLES, AND THE SPINDLE DISPERSES.

THE NUCLEAR MEMBRANE RE-FORMS; THE CHROMOSOMES UNWIND INTO INVISIBILITY; AND THE CELL DIVIDES.

THIS PROCESS IS CALLED MITOGIG.

MOREOVER, IT WAS
DISCOVERED (BY THE
AMERICAN WILLIAM SUTTON
IN 1902) THAT EACH
CHROMOSOME PROM
THE SPERM CAP BE
MATCHED WITH A
VIRTUALLY IDENTICAL
ONE FROM THE EGG.
(IT'S EASIER TO SEE WHEP
THEY'RE DOUBLED AND
CONTRACTED.)

THUS, THERE ARE REALLY ALREADY TWO COPIES OF EVERY CHROMOSOME IN THE CELL. THESE ARE CALLED "HOMOLOGOUS" MEANING "SAME SHAPE."

HUMANS, FOR EXAMPLE, WITH 46 CHROMOSOMES, REALLY HAVE 23* HOMOLOGOUS PAIRS: ONE FROM EACH PAIR COMES FROM MOM AND ONE FROM DAD.

THIS SUGGESTS
THAT THERE
MUST BE A
SPECIAL KIND
OF CELL DIVISION
JUST FOR MAKING
GAMETES...

THIS PROCESS, CALLED MEIOSIS, IS ACTUALLY A DOUBLE DIVISION:

AS IN MITOSIS, THE CHROMOSOMES DOUBLE AND THICKEN

BUT THEN THE HOMOLOGOUS CHROMOGOMES PAIR OFF -

AGAIN THE SPINDLE PIBERS FORM AND THE CHROMOSOME QUARTETS ("TETRADS") LINE UP ...

(MORE ON THIS LATER!)

AND THE PAIRS ARE SEPARATED.

NOTE THE
DIFFERENCE
PROM

THE CHROMOSOMES THEN SEPARATE, AS IN MITOSIS.

NCE MEIOSIS AND MITOSIS
WERE UNDERSTOOD, BIOLOGISTS
BEGAN TO SUSPECT THAT
CHROMOSOMES MIGHT BOVERN
HEREDITY... THEY LOOKED
AGAIN AT PATTERNS OF
INHERITANCE... AND SCIENCE
AGAIN MARCHED—BACKWARD,

TO THE LAWS OF MENDEL!

TOWARD THE END OF THE 19TH CENTURY THREE SCIENTISTS, WORKING INDERENDENTLY, MORE OR LESS DUPLICATED THE AUSTRIAN MONK'S EXPERIMENTS AND RESULTS. THEY WERE:

TO SUMMARIZE:

DOD THISY REALIZED

CHROMOSOMES BEHAVE LIKE GENES. THEY
RETAIN THEIR IDENTITY IN HYBRIDS, AND THEY
SEGREBATE INDEPENDENTLY WHEN GERM CEUS.
ARE MADE. THEREFORE, IT'S LOGICAL TO
ASSUME THAT GENES LIE ON CHROMOSOMES.
(THERE MUST BE MANY GENES ON FACH OPE,
BECAUSE THERE MUST BE FAR MORE GENES
THAN THE FEW DOZEN CHROMOSOMES TYPICAL OF
MOST SPECIES.)

THE DISCOVERY OF HOMOLOGOUS PAIRS REALLY CINCHED THE CONNECTION TO MENDEL'S FINDINGS. REMEMBER, EACH CELL HAS A PAIR OF ALLEUS FOR EACH GENE.

NOW IT WAS REALIZED THAT:

THE TWO COPIES OF A GIVEN GENE LIE AT THE SAME POINT ON HOMOLOGOUS CHROMOSOMES.

1.E., IF ONE GENE FOR HEIGHT LIES HERE —

ALL THIS TURNS OUT TO BE TRUE... BUT ONCE PEOPLE LOOKED MORE DEEPLY INTO THE MATTER, THEY DISCOVERED A FEW THINGS MENDEL HADN'T REALIZED... TSOR OPE THYB, NOT ALL ORGAPISMS I HAVE A DOUBLE SET OF CHROMOSOMES. MANY LOWER SPECIES, LIKE SOME FUNGI, HAVE JUST A SINGLE SET.

CELL WITH A
SINGLE SET OF
CHROMOSOMES IS
CALUED HAPLOID;
ONE WITH TWO SETS IS
CALUED DIPLOID. OUR
BODY CELLS ARE
DIPLOID, WHILE OUR
GERM (SEX) CELLS
ARE HAPLOID.

DIPLOID

DIPLOID ORGANISMS INCLUDE ALL THE FAMILIAR MAMMALS AND BIRDS AND MANY PLANTS. HAPLOIDS INCLUDE MALE HONEY BEES, MANY FUNGI, AND ASEXUAL ONE-CELLED CREATURES.

SESIDES ALL TIMESE,
THERE ARE ALSO
POLYPLOID ORGANISMS,
WITH MULTIPLE SETS OF
CHROMOSOMES. A
SUPPLIESING NUMBER OF
EVERYDAY PLANTS
ME POLYPLOID.
(NOT PERS, TROUGH!!)

THE OTHER MAIN PROBLEM WITH MENDEL'S THEORY WAS THE PRINCIPLE OF INDEPENDENT ASSORTMENT. A PREUSE MEASURE OF HOW WRONG IT WAS LED TO THE ABILITY TO MAP OUT EXACTLY WHERE ON THE CHROMOSOME EACH OF ITS GENES MIGHT LIE ... READ ON ...

OBSERVE: THE NUMBER OF GENES MUST BE TREMENDOUS TO GOVERN A COMPLEX ORGANISM, BUT THE NUMBER OF CHROMOSOMES IN A CELL IS FAIRLY SMALL. A PEA PLANT HAS JUST 7 PAIRS OF CHROMOSOMES, A HUMAN 23.

THE PROBLEM: IF TWO GENES LIE ON THE SAME CHROMOSOME, HOW CAN THEY BE INDEPENDENT?? AFTER ALL, CHROMOSOMES DON'T BREAK APART, DO THEY? SHOULDN'T DIFFERENT GENES SOMETIMES BE LINKED??

PHYSICALLY LINKED-BY THE CHROMOSOME!

SO-DO GENES ASSORT INDEPEN-DENTLY OR NOT? WELL, IT TURNED OUT TO BE SORT OF HALF-AND-HALF...

THERE IS LINKAGE BETWEEN CERTAIN GENES PLANTING

CHROMOSOMES ALSO ENGAGE IN A GOOD DEAL OF GENE SWAPPING, OR (AS IT'S CALLED) CROSSING OVER.

TO ILLUSTRATE, LET'S LOOK AT THE EXAMPLE OF THE ORDINARY, GARDEN VARIETY TOMATO.

WITH MUTANT MAYONNAISE?

...AND TRY NOT TO EAT THE EXAMPLE UNTIL PETER CLASS...

TO TEST THE PRINCIPLE OF INDEPENDENT ASSOPTMENT, WE CAN CROSS A DOUBLE RECESSIVE, PPAA, WITH A HETEROZYGOTE, PP+dd+.

HAIRY, DWARF
PPdd

SMOOTH, TALL pp+dd+

SUPPOSE MENDEL WAS RIGHT, AND THE P'S WERE INDEPENDENT OF THE d's. THEN THE HYBRID PP*dd+ WOULD MAKE GA-METES WITH ALL COMBINATIONS OF PS AND d's. ptdt pd+ CROSSING WITH THE DOUBLE RECESSIVE (ppdd+ ptd pptadt ppdd pptdd pd (ppddt) pptddt GIVES THIS: Pd ppdd *pptdd* ppddt pptdit ppdd pptdd ppddt ppdd yptad. ppdd

& HAIRY, TALL 4 HAIRY, DWARF & SMOOTH, DWARF

4 SMOOTH, TALL

NOW SUPPOSE P AND & LIE ON THE SAME CHROMOSOME. THEN THE HYBRID PP+dd+ HAS ITS ALLELES ON A HOMOLOGOUS PAIR:

During Mejosis, They Are Sorted Out Like This:

IN THIS CASE, ONLY TWO TYPES OF GAMETES CAN BE MADE: pd AND ptd+, RATHER TRAN THE FOUR PREDICTED BY MENDEL.

CROSSING WITH THE DOUBLE RECESSIVE PPDD, WE GET

1 SMOOTH, TALL PPT dd+

主 HAIRY, DWARF PP dd

AND OF COURSE, WHO'S ON THE SIDE OF THE ANGELS? WHEN THE CROSS IS ACTUALLY MADE, WHAT DOES ONE ACTUALLY GET: A 5050 SPLIT OR AN EQUAL 4-WAY SPLIT?

It's certainly cuser to the prediction based on linkage than to mendel's. But if p and d are linked, then where did those 2% combinations come from ??

NOT TO PROLONG THE MYSTERY — THE GENES P AND d ARE ON THE SAME (HROMOSOME, BUT CHROMOSOMES CAN EXCHANGE GENES. IT'S CALLED CROSSING OVER:

DURING MEIOSIS, HOMOLOGUES LINE UP WITH CORRESPONDING ALLELES OPPOSITE ONE ANOTHER.

SOME SEGMENTS CROSS OVER:

WHEN THAT HAPPENS TO OUR HETEROZYGOTE, SOME OF THE RESULTING GAMETES LET THE "RECOMBINANT" CHROMOSOMES. HENCE THE EXCEPTIONAL CROSSES!

AT CERTAIN POINTS, SEEMINGLY "CHOSEN" AT RANDOM, THE CHROMOSOMES TOUCH:

WHEN THEY SEPARATE, THEY HAVE NEW COMBINATIONS OF ALLELES.

NOTE: THANKS TO CROSSING OVER, THE CHROMOSOMES YOU PASS ALONG TO YOUR OFFSPRING ARE NOT EXACTLY YOUR OWN, BUT RATHER A SHUFFLED TOGETHER COMBINATION!

SINCE 1913, MAPPING HAS BEEN APPLIED TO A VARIETY OF ORGAHISMS, NEARLY 1000 GENES HAVE BEEN MAPPED IN THE BACTERIUM E. COLI; ABOUT 300 IN THE TOMATO; 200 IN THE HOUSE MOUSE...; AND A FEW HUNDRED IN HUMAN BEINGS, ALTHOUGH THIS WAS DONE BY DIFFERENT MEANS...

LET US DO

AUTATION , OR

EVEN AT THIS RATE, THEY DO ADD UP! A HUMAN HAS SOME 200,000 GENES, SO WE CARRY AN AVERAGE OF TWO NEW MUTATIONS APIECE.

SOMETIMES MUTATIONS ARE COMPLETELY SILENT—PRODUCING NO CHANGE AT ALL—AND SOMETIMES THEY CAUSE CHANGES SO SLIGHT AS TO BE BARELY PERCEPTIBLE....

MUTATION IN BODY CELLS (SOMATIC CELLS, AS DISTINCT FROM GERM CELLS) MAY BE INVOLVED IN CANCER... IT MAKES SENSE: THE GENES CONTROL EVERYTHING ABOUT THE CELL, INCLUDING THE PROCESS OF DIVISION. ALTHOUGH THERE ARE STILL MANY MYSTERIES ABOUT CANCER, IT INVOLVES MUTATIONS THAT LEAD THE CELL TO DIVIDE OUT OF CONTROL.

MANY MUTAGORIC AGOPTS ARE ALSO CARCINOGENIC (CAPLED. CMSING) — WHICH IS WHY THE FOOD + DRUG PEOPLE LOOK DUT FOR MUTAGORIC FOOD ADDITIVES... AND WHY YOU SHOULD LIMIT YOUR SUMBATIMING, ESPECIALLY IF YOU HAVE PALE SKIN. (ULTRAVIOLET LIGHT IS MUTAGORIC.)

WHAT DETERMINES

THE COLOR OF PEA FLOWERS, THE TEXTURE OF TOMATOES, THE PINCHING OF PEA PODS—EACH OF THESE QUALITIES 15 RULED BY A SINGLE GENE... BUT WHAT GOVERNS THAT MOST OBVIOUS, INTERESTING, AND (IN HUMANS) SUBSTANTIAL DIFFERENCE BETWEEN INDIVIDUALS: THE DIFFERENCE BETWEEN MALE AND FEMALE?

THROUGHOUT HISTORY, SO MANY THINKERS
TACKLED THIS QUESTION THAT ONE 18TH-CENTURY WRITER WAS INSPIRED TO COMPILE "2-62 GROUNDLESS HYPOTHESES." HIS OWN GROUNDLESS HYPOTHESIS BECAME THE 263 RD....

BUT OF COURSE IT'S IN THE GENES...
NOT LONG AFTER HOMOLOGOUS CHROMOSOMES WERE DISCOVERED, SOMEBODY NOTICED AN EXCEPTION:
HUMAN MALES HAVE ONE PAIR THAT IS NOT HOMOLOGOUS!!

THE ONLY GENETIC DIFFERENCE BETWEEN (HUMAN) MALES AND FEMALES IS THIS:

THE OTHER 22 OTHER PAIRS OF CHROMOSOMES ARE THE SAME.

LET'S JUST MAKE SURE THIS PRODUCES BOY AND GIRL BABTES IN THE RIGHT AMOUNTS.

MEIOSIS PRODUCES EGGS CARRYING THE X CHROMOSOME; SPERM ARE EQUALLY DIVIDED BETWEEN X AND Y-

HOWEVER, THE
BASIC GENETIC QUESTION
REMAINS: WHICH
GENES ARE RESPONSIBLE
FOR WHAT?
15 IT THE Y CHROMOSOME
THAT MAKES A
MALE, OR DOES IT
TAKE A DOUBLE
DOSE OF X TO
MAKE A FEMALE?
WHAT WOULD HAPPEN
TO SOMEBODY WITH
TWO X CHROMOSOMES
AND A Y ??

NOTHER ABNORMALITY IS THE "SUPER MALE" COMBINATION XYY CHILDREN WHICH OCCURS IN ABOUT ONE BIRTH IN A THOUSAND. XYY CHILDREN GROW UP TO BE NORMAL MALES — EXCEPT THAT THEY END UP IN PRISON ABOUT 20 TIMES MORE OFTEN THAN THE REST OF THE POPULATION. ABOUT 5% OF ALL PRISONERS HAVE AN EXTRA Y CHROMOSOME. SOME SAY:

MOST GEVETICISTS WOULD BE MORE CAUTIOUS... THE VAST MAJORITY (OVER 95 %) OF XYY MALES ARE NOT IN PRISON... SO IT'S IMPOSSIBLE TO SAY THAT THE XYY KARYOTYPE CAUSES CRIMINALITY!

NOW WE MIGHT ASK THE FOLLOWING

ARE THERE ANY OTHER GENES ON THESE CHROMO-SOMES ????

THERE'S A GOOD REASON TO ASK: HUMANS EXHIBIT SEVERAL DEPORTS THAT APPEAR TO BE SEX-LINKED...

MOST BALD PEOPLE ARE MEN

SO ARE MOST COLOR. BUND PEOPLE

POR HEMO-PHILIACS.*

* NEMOPHILIA = A FAILURE OF THE BLOOD TO CLOT. HEMOPHILIALS CAN BLEED TO DEATH FROM A SMALL CUT.

FROM THIS YOU MIGHT CONCLUDE THAT THESE GENES LIE OF THE Y CHROMOSOME -BUT YOU'D BE WRONG! ACTUALLY. HEMOPHILIA. COLOR BLINDHESS, AND HEREDITARY BALDNESS ARE ALL CAUSED BY RECESSIVE ALLELES LYING ON THE X CHROMOSOME!

THE REASON WOMEN ARE RARRLY BALD IS THAT, EVEN IF THEY HAVE THE BALDNESS' ALLELE ON ONE X (HROMOSOME, THEY USUALLY HAVE THE DOMINANT NON-BALD ON THE OTHER.

BUT IT SHOWS UP IN MEN BECAUSE THE Y CHROMOSOME HAS NO ALLELE FOR THAT GENE AT ALL. IN THE ABSENCE OF A DOMINANT ALLELE, THE RECESSIVE IS EXPRESSED!! LET'S SEE HOW THESE SEX-LINKED GENES ARE PASSED ALONG:

THERE IS NO RECORD OF HEMOPHILIA IN VICTORIA'S ANCESTORS, SO WE MAY ASSUME THE DEFECT APPEARED IN HER GENES AS A SPONTANEOUS MUTATION. THIS HAPPENS WITH HEMOPHICIA IN AN ESTIMATED 1 CASE IN EVERY 50,000 PARENTS.

HEMOPHILIA IS PASSED ALONG JUST LIKE BALDNESS, AND YOU CAN SEE THE PATTERN IN VICTORIA'S FAMILY TREE

WHITS ON A CELLS

... EACH OF WHICH IS FILLED WITH ALL SORTS OF EVEN TIMER BODIES...

STILL MORE COMPLEX, BUT MOST IMPORTANT IN GENETICS, ARE THE NUCLEIC ACIDS AND PROTEINS... WATCH CLOSEY:

THE BUILDING BLOCKS FOR NUCLEIC ACIDS ARE CALLED NUCLEOTIDES.
AN INDIVIDUAL NUCLEOTIDE ITSELF HAS 3 COMPONENTS: A SUGAR, A PHOSPHATE, AND A BASE, LIKE 50—

THESE ARE HOOKED TOBETHER TO MAKE A LONNINNING SUBAR-PHOSPHATE "BACKBONE" WITH A SEQUENCE OF BASES STICKING OFF:

sugar— base phosphate sugar — base phosphate sugar — base

phosphate ETC! THIS MAY 60 ON FOR MILLIONS OF NUCLEOTIDES!

THE SUGAR MAY BE ONE OF TWO KINDS, WHICH WE ILLUSTRATE HERE WITHOUT ALL THEIR PESKY HYDROGEN ATOMS. (THEY JUST CLUTTER UP THE PICTURE!)

PROTEINS

ARE THE MOST COMPLICATED MACROMOLECULES OF ALL.
THE BIOLOGIST MAX PERUTZ SPENT 25 YEARS—MOST OF HIS CAREER—ANALYZING JUST ONE OF THEM: HEMOGLOBIN, THE PROTEIN THAT CARRIES OXYGEN THROUGH THE BLOODSTREAM. FOR THIS, PERUTZ RECEIVED THE NOBEL PRIZE IN 1962...

IT WOULD TAKE TOO MUCH TIME TO EXPLAIN:

YET IN A CERTAIN SENSE, PROTEINS ARE SIMPLE, TOO: LIKE OTHER MACROMOLECULES, THEY ARE LONG CHAINS OF SMALLER SUBUNITS.

ACTUALLY, HEMOGLOBIN IS TWO PAIR OF SUCH CHAINS, WRAPPED UP IN A SYMMETRICAL TANGLE.

THE SUBUNITS
OF PROTEIN
MOLECULES ARE
AMINO ACIDS,
WINCH ARE NOT
NAMED AFTER

IDI AMIN,

THE FORMER DICTATOR OF UGANDA.

THE TYPICAL AMINO ACID LOOKS LIKE THIS:

IN ALL, SOME 20
"STANDARD" AMINO
ACIDS 60 INTO
PROTEINS:

AMINO ACID ABBRENATED			
GLYCIPE	614		
ALAPINE	ALA		
VALINE	VAL		
LEUCINE	LEU		
ISOLEUCIPE	ILE		
serine	SER		
THREONINE	THR		
ASPARTIC ACID	ASP		
GLUTAMIC ACID	GLU		
lysine	L45		
argivive	AR6		
ASPARABINE	ASN		
GLUTAMINE	6LN		
Cysteine	CYS		
METHIOHIPE	MET		
PHENYLALANINE	PHE		
Tyrosine	TYR		
TRYPTOPHAN	TRP		
HISTIDINE	HK		
PROLINE	PRO		

AMY TWO OF THEM CAN JOIN TOBETHER TO FORM A PEPTIDE...VERY PEPPY...
ADD SOME MORE AND YOU GET A POLYPEPTIDE, OR PROTEIN CHAIN...

(HYDROGENS OMITTED!)

ENZYMES ARE PROTEINS WHICH TAKE APART OR PUT TOGETHER OTHER MOLECULES. EACH ENZYME IS RESPONSIBLE FOR JUST ONE SPECIFIC REACTION.

A TYPICAL ENZYME LIES IN WAIT FOR THE RIGHT MOLECULES TO COME AROUND.

THE ENZYME BINDS TO THE SMALL MOLECULES...

... AND COMBINES THEM ...

... INTO A NEW MOLECULE, WHICH IS RELEASED.

THE ENZYME ITSELF REMAINS UNCHANGED IN THE PROCESS.

IN A SIMILAR WAY, **PIGESTIVE** ENZYMES BREAK DOWN LARGE MOLECULES. SEVERAL KINDS, FOR EXAMPLE, CHOP SUGARS OFF POLYSACCHARIDES III

SNAP

ONE GENE, ONE ENZYME

THE RELATIONSHIP BETWEEN GENES AND ENZYMES FIRST BECAME CLEAR IN THE 1940'S, THANKS TO EXPERIMENTS PERFORMED BY BIOLOGISTS GEORGE BEADLE AND EDWARD TATUM. WORKING WITH MUTANT STRAINS OF THE COMMON BREAD MOLD NEUROSPORA GROWN IN BATHS OF CHEMICAL NUTRIENTS.

EACH MUTANT WAS
FOUND TO REQUIRE
MORE CHEMICAL
NUTRIENTS IN ITS
DIET THAN WERE NEEDED
BY NORMAL MOLD
FOR EXAMPLE, ONE
MUTANT HAD TO BE
FED AN EXTRA AMINO
ACID, WHILE ANOTHER
REQUIRED A
CERTAIN VITAMIN.

The metabolic role of the genes is to make enzymes, and each gene is responsible for one, specific enzyme.

IN SHOP:F: ONE GENE, ONE ENZYME!

GRIFFITH WORKED WITH TWO STRAINS OF THE PHEUMONIA BACTERIUM PNEUMO COCCUS. ONE WAS THE VIRULENT "WILD TYPE" FOUND IN

WHEN INJECTED INTO MICE, THE WILD TYPE INVARIABLY CAUSED DISEASE...

THE MUTANT PNEUMO-COCCUS, ON THE OTHER HAND, HAD NO EFFECT.

IN THE 1940'S, OSWALD AVERY SET OUT TO IDENTIFY THIS "TRANSFORMING FACTOR"

WHEN AVERY ANNOUNCED HIS RESULTS IN 1940, FEW SCHOUTISTS BELIEVED HIM!

THE SPIRAL STAIRCASE

BEFORE AVERY, SCIENTISTS HAD PAID LITTLE ATTENTION TO DNA.

THEY KNEW IT
CONTAINED THE SUGAR
DEOXYRIBOSE,
PLENTY OF PHOSPHATE,
AND FOUR BASES.

THE FOUR BASES ARE KNOWN AS \boldsymbol{A} , \boldsymbol{C} , \boldsymbol{G} , AND \boldsymbol{T} , WHICH ARE SHORT FOR:

THESE WERE ASSUMED TO BE PRESENT IN EQUAL PROPORTIONS.

AFTER AVERY, HOWEVER, RESEARCHERS BEGAN TO LOOK MORE CLOSELY...

ERWIN CHARGAFF FOUND.

- D THE COMPOSITION OF DNA VARIED FROM ONE SPECIES TO ANOTHER, IN PARTICULAR IN THE RELATIVE AMOUNTS OF THE BASES A, C, T, G.
- IN ANY DNA,
 THE NUMBER OF A'S
 WAS THE SAME AS
 THE NUMBER OF T'S;
 SIMILARLY, THE
 NUMBER OF C'S WAS
 EQUAL TO THE
 NUMBER OF G'S.

WHAT DID THIS MEAN? CHARGAFF COULDN'T SAY...

BY STUDYING X-RAY
PICTURES OF DN A,
ROSALIND FRANKLIN
WAS ABLE TO SHOW
THAT THE DN A
MOLECULE PROBABLY
HAD THE CORKSCREW
SHAPE OF A HELIX
WITH TWO OR THREE
CHAINS...

BUT WAS IT TWO OR THREE ...?

IN 1952 JAMES WATSON AND FRANCIS CRICK CRACKED THE PUZZLE.

BY PLAYING WITH SCALE-MODEL ATOMS, THEY OBSERVED THAT ADENINE FITTED TOGETHER WITH THYMINE, WHILE GUANINE PAIRED NATURALLY WITH CYTOSINE.

EACH BASE PAIR
WOULD BE HELD
TOGETHER BY
HYDROGEN BONDING,
A WEAK ATTRACTION
THAT MAY OCCUR
BETWEEN A HYDROGEN
ON ONE MOLECULE
AND A NON-HYDROGEN
ATOM ON ANOTHER
MOLECULE.

REPLICATION

GENE-COPYING, OR DNA REPLICATION, AS WATSON AND CRICK SAW, IS SIMPLE IN PRINCIPLE. EACH STRAND OF THE DOUBLE HELIX CONTAINS THE INFORMATION NECESSARY TO MAKE ITS COMPLEMENTARY STRAND.

The MOLECULE the MESSAGE

IN VIEW OF THE RELATIONSHIP BETWEEN GENES AND PROTEINS, THIS SUGGESTS THAT THE SEQUENCE OF DNA MUST SOMEHOW PARALLEL OR REFLECT THE SEQUENCE OF THE PROTEIN.

The sequence of base pairs may be thought of as a series of "words" specifying the order of amino acids in each protein.

BACH 3 BASE CODON
STANDS FOR A SINGLE
AMINO ACID, AND THE
WHOLE MRNA STRAND
ENCODES A PROTEIN
(OR SEVERAL PROTEINS)
IT'S JUST LIKE A
MESSAGE IN CODE—

THE GENETIC CODE?

RACKING THIS CODE BEGAN IN 1961, WHEN MARSHALL
NIRENBERG WAS ABLE TO MAKE A SPECIAL MRNA, WHOSE ONLY BASE WAS URACIL, REPEATED OVER AND OVER. "POLY-U."

 ∇

Phe-Phe-Phe-Phe-

FROM IT HE OBTAINED A PROTEIN CONSISTING ENTIRELY OF THE AMINO ACID PHENYLALANINE.

SO W UUU WAS THE CODON FOR PHENYLALAPHYE...

NEXT THEY DECODED
POLY-A, AND
POLY-C, AND
POLY-VG, POLY-VGV,
ETC, ETC, ETC,
UNTIL THE CODE
WAS FINALLY
BROKEN——

OUU → Phe
AAA → Lys

CCC → THE COMPLETE
CODE TABLE
FOLLOWS

UUG → Leu
GUG → Val

		U	С	A	G	
FIRST LETTER	U	UUU } PHE UUA } LEU	UCU UCC UCA UCG	UAU } TYR UAA } STOP UAG }	UGU & CYS UGC } UGA STOP UGG TRP	V C A G
	С	CUU Z LEU CUA Z LEU CUG	CCU Z PRO CCA CCG	CAU ? HIS CAC & HIS CAA ? GLP CAG & GLP	CGU CGA ARG	U C A G
P	A	AUU Z ILE AUA) AUG MET	ACU Z ACC Z ACA Z ACG	AAU Z ASN AAC Z ASN AAA Z LYS AAG Z LYS	AGU 7 SER AGA 7 ARG AGA 7 ARG	U C A G
	G	GUU GUC GUA GUG VAL	GCU } ALA GCA }	GAU Z ASP GAC Z GLU GAG Z GLU	660 660 66A 666	U C A G

GCCA

SOME

SALIEPT

POPTS

THE CODE IS REDUNDANT: WITH 64 POSSIBLE CODOPS, BUT ONLY 20 AMINO ACIDS, THERE MUST BE "SYNONYMS," DIFFERENT CODOPS WHICH ENCODE THE SAME AMINO ACID.

THERE ARE "STOP" SIGNALS. THREE CODONS THESE SERVE TO TERMINATE MESSAGES.

ALSO? THE CODE IS NON OVERLAPPING. THE "WORDS" FOLLOW EACH OTHER WITHOUT GAPS OR OVERLAPS.
WE'LL SEE SHORTLY HOW IT KNOWS WHERE TO START...

THE LOOP END OF TRUA HAS THREE UNPAIRED BASES. THIS "ANTICODON" MAY BIND WITH THE COMPLEMENTARY CODON OF mRUA. AT THE "TAIL" END OF trua is a SITE FOR ATTACHING A SINGLE AMINO ACID.

POR EACH ANTICODON, THERE IS AN ENZYME WHICH RECOGNIZES IT AND ATTACHES THE APPROPRIATE AMINO ACID TO ITS trna.

SCHEMATICALLY, THIS
15 THE WAY A
STRING OF BASES
15 TRANSLATED
INTO A SEQUENCE OF
AMINO ACIDS.
III OWEVER
THE CELL NEEDS ONE
MORE PIECE OF
EQUIPMENT TO MAKE
IT WORK: THE
RIBOSOME.

MOW PROTESTIB ARE MADE

THE FINAL INGREDIENT IN THE PROTEIN-MAKING APPARATUS IS AN OBJECT THAT HOLDS EVERYTHING IN PLACE,

THIS IS THE RIBOSOME, A DOUBLE BALL OF ABOUT 50 PROTEINS WRAPPED UP WITH R N A. THIS RNA IS CALLED RIBOSOMAL RNA, TRNA FOR SHORT.

THE RIBOSOME HAS TWO SLOTS IN WHICH MOLECULES OF ERNA CAN FIT SNUGLY.

THE AMINO ACIDS ARE LINKED; THE "EMPTY" tRNA IS DISCARDED; AND SO THE RIBOSOME MOVES ALONG THE MESSAGE, PILING UP AMINO ACIOS, WHICH FOLD THEMSELVES INTO A PROTEIN.

... AND THE NEW MACROMOLECULE GOES OFF TO DO ITS JOB: STRUCTURE, ENZYME, OR WHATEVER ...

WE BEGAN BY ASKING ABOUT GORILLAS AND BANANAS, AND ENDED UP INSIDE SOME INSIGNIFICANT LITTLE BUG, E. COLI... NOW WHAT CAN WE SAY ABOUT OTHER LIFE FORMS?

FIRST, SOME MORE JARGON: THE CELLS OF PLANTS, ANMALS, AND OTHER ADVANCED CREATURES—IN FACT, ANY CELL WITH A NUCLEUS—IS CALLED A EUCARYOTE ("YOU-CARRY-DAT"), MEANING "GOOD NUCLEUS" IN GREEK.

EUCARYOTES CONTAIN ALL SORTS OF BODIES, BUT THE KEY IS THE NUCLEUS, WHICH CONTAINS THE CHROMOSOMES.

THE TIMY BACTERIA, WITH THEIR SIMPLER STRUCTURE, ARE CALLED PROCARYOTES ("PRO-CARRY-OATS"), MEANING "BEFORE NUCLEUS" IN GREEK.

THE IDEA 15
THAT PROCARYOTES
MUST HAVE EVOLUED
BEFORE THE
MORE COMPLICATED
EVERYOTES.

STRONGLY SUGGESTS THAT WE ALL COME FROM A COMMON ANCESTOR.

A FAMILY REUNION SOMETIME! ANY TIME ... I'LL BRING MY GORILLA

WITH, EUCARYOTES HAVE ALL THEIR RIBOSOMES OUTSIDE THE NUCLEUS, SEPARATED PROM THE GENES BY A MEMBRANE.

PROTEIPS?

THROUGH PLASTIC..

WITHIN THE NUCLEUS, MRNA IS MADE AS IN BACTERIA—BUT THEN COME CERTAIN MODIFICATIONS...

THE NEXT MOVE CAME AS A GREAT SURPRISE TO GENETICISTS: A COMPLEX OF PROTEIN AND RNA GRABS THE MRNA, FORMING LOOPS, LIKE THIS —

THE COMPLEX — CALLED A SPLICEOSOME—
THEN SHEARS OFF THE LOOP, DISCARDS IT, SPLICES THE REMAINING PIECES TOGETHER, AND DEPARTS.

THIS IS BIZARRE! EUCARYOTIC GENES CONTAIN "JUNK DNA" - NON-CODING MESSAGE SEQUENCES THAT HAVE TO BE CUT OUT BEFORE THE GENE CAN BE EXPRESSED!!

DIFFERENCE BETWEEN EU AND A BACTERIUM IS IN THE SHEER NUMBER OF GENES: 200,000 IN A HUMAN, 4000 IN E. COLI.

WHILE REPLICATION IS

STILL IN PROGRESS,

THE TWO NEW STRANDS ARE

ALREADY WINDING ONTO NUCLEOSOME

CORES. ONE STRAND INHERITS THE

OLD CORES, AND THE OTHER GETS A

NEW SET.

ONE POSSIBILITY IS THAT THEY COME FROM

VIRUSES ARE THE SIMPLEST LIVING THINGS KNOWN— IF THEY'RE TRULY ALIVE AT ALL... THEY'RE SORT OF ALIVE AND NOT ALIVE...

EVEN SIMPLER AND SMALLER
THAN A BACTERIUM, A
VIRUS HAS ONLY TWO PARTS:
A BIT OF NUCLEIC ACID
WRAPPED UP IN A PROTEIN
COAT;

CUT-NWMY VIEW

THE NUCLEIC ACID, WHICH MAY BE D HA OF R N A, ENCODES THE PROTEIN COAT AND A FEW ENZYMES NEEDED FOR REPLICATION:

ONCE IT GETS ITS DNA OR RUA INTO THE HOST, THE VIRUS BEGINS TO REPRODUCE WILDLY, STRAINING THE CELL TO THE BURSTING POINT!

THAT'S A TYPICAL LIFE-STYLE (OR NON-LIFE-STYLE) FOR A VIRUS, BUT SOME VIRUSES ARE EVEN SNEAKIER: THEY ACTUALLY INSERT THEIR GENES INTO THE HOST CELL'S DNA.

NT'S CALLED "REPRESSIVE TOLERANCE."

> THE BATTLE AGAINST VIRUSES IS NEVER-ENDING...

MUZETION ENDOMINANCE

WHAT GENES
REALLY ARE,
WE CAN GET A
MUCH BETTER
GRASP OF
MUTATION AND
DOMINANCE.

A MUTATION IN
A GENE IS JUST
A CHANGE IN THE
D N A 'S SEQUENCE
OF NUCLEOTIDES.
EVEN A MISTAKE
AT JUST ONE
POSITION CAN
HAVE A PROFOUND
EFFECT.

HERE IS A SMALL
BUT DEVASTATING
MUTATION IN THE
GENE FOR HEMOGLOBIN,
THE PROTEIN WHICH
CARRIES OXYGEN
IN THE BLOOD.

GOOD GENE

MUTANT GENE

THE REASON, OF COURSE, IS
THAT THE CHANGE IS REFLECTED
IN THE **PROTEIN** WHICH THE
GENE ENCODES... FIRST THE MRNA
COMES OUT: WRONG, AND THEN THE
PROTEIN...

THIS ESPECIALLY DISASTROUS MUTATION, WHICH INTERRUPTS THE PROTEIN IN THE MIDDLE, CAUSES A SERIOUS CONDITION CALLED *THALASSEMIA*, AN INABILITY TO MAKE HEMOGLOBIN. THE VICTIM SUFFERS FROM A PAINFUL LACK OF OXYGEN.

SOMETIMES A CHANGE MAY MAKE NO DIFFERENCE AT ALL. IF YOU REFER BACK TO THE CODE TABLE, YOU'LL RECALL THAT IT'S SOMEWHAT REDUNDANT — MEANING THAT ONE AMINO ACID MAY BE ENCODED BY SEVERAL DIFFERENT CODONS.

OCCASIONALLY, THE "MISTAKEN" AMINO ACID MAY FIT IN FAIRLY WELL (THOUGH USUALLY LESS THAN PERPECTLY).

SOMETIMES - ONCE IN A BLUE MOON - THE PROTEIN MAY EVEN WORK BETTER THAN BEFORE.

WE HOTED THAT MOST MUTATIONS ARE RECESSIVE. NOW WE CAN SEE WHY:
A MUTATION USUALLY CAUSES AN INABILITY TO MAKE AN ENZYME. IN THE EXAMPLE MOVE, THE MUTANT GENE FAILED TO MAKE HEMOGLOBIN.

HOWEVER, WE
HAVE TWO SETS
OF CHROMOSOMES.
EVEN IF A MUTATION
AFFECTS ONE OF THEM,
THE "INSURANCE" GENE
WILL STILL PRODUCE ITS
ENZYME.

GOOD GEVE Ly

HEMOGLOBIN

BAD GEVE

NO HEMOGLOBIN

WE DIDN'T MENTION IT EARLIER, BUT SOME ALLELES CAN BE

DOMINANT

MEANING THAT A HETEROZYGOTE MAKES BOTH PHENOTYPES, AN EXAMPLE IS **BLOOD** GROUPS.

THERE IS A SEPETICALLY DETERMINED SEQUENCE OF SUGARS LYING ON THE SURFACE OF RED BLOOD CEUS. ONE ALLELE, IA, MAKES SEQUENCE A. ANOTHER ALLELE, IB, MAKES SEQUENCE B.

A RED BLOOD CELL BEGINS
ITS EXISTENCE AS A BONE
MARROW CELL,
A PERFECTLY
GOOD
EUCARYOTE,
BUT
LACKING IN
HEMOGLOBIN.

AT SOME POINT,
A MARROW CELL'
BEOINS TO
CHANGE...
AMONG
OTHER
THINGS, IT
BEGINS TO
MAKE HEMOGLOBIN.

EVENTUALLY, IT EMERGES AS A

*AS USUAL, THERE ARE EXCEPTIONS!!

OTHERWISE, ONE DREADS THE RESULTS!

EVEN THE LOWLY BACTERIUM NEEDS TO REGULATE ITS GENES. WHEN FOOD IS AVAILABLE, IT NEEDS TO MAKE ENZYMES TO DIGEST IT; WHEN IT RUNS LOW ON AN AMINO ACID, IT HAS TO SYNTHESIZE MORE; ETC ETC ETC...

AS USUAL,
THE QUESTION
HAS BEEN
MOST THOROUGHY
STUDIED IN
E. COLI.

WITHOUT GOING INTO THE DETAILS OF THEIR EXPERIMENTS, WHICH WERE QUITE INVOLVED, HERE ARE SOME OF MONOD AND JACOB'S MAIN RESULTS:

This experiment was more Difficult than a cheese Soufflé!

FIRST, THEY FOUND THAT THE GENES FOR Y AND Z, CALLED "lac Y" AND "lac Z;" LAY TOGETHER, SIDE BY SIDE, ON THE CHROMOSOME. SUCH A CLUSTER OF GENES, ENCODING RELATED ENZYMES, AND REGULATED TOGETHER, IS CALLED AN

THIS IS THE "lac OPEROP":

AH LAC TH' GRAPD OLE OPEROP!

- lac P-lac O-lac Z

WE'RE ABOUT TO EXPLANT THIS PART!

AT THE START OF THIS
(AND EVERY) OPERON IS A
PROMOTER REGION, HERE
CALLED IAC P. THIS IS
THE SITE WHERE THE ENZYME
RNA POLYMERASE BINDS
ONTO THE DNA TO BEGIN
TRANSCRIBING THE MESSAGE
INTO MRNA. (SEE p. 133.)

REPRESSORS TURN OUT TO BE A COMMON WAY TO REGULATE "INDUCIBLE" ENZYMES-I.E., ENZYMES WHICH ARE MADE IN RESPONSE TO A CHEMICAL-LIKE LACTOSE ... BUT DESPITE THIS BRILLIANT IDEA, MONOD AND JACOB COULD NEVER ACTUALLY FIND A REPRESSOR. IT REMAINED A TAEORETICAL POSSIBILITY...

ANOTHER METHOD OF GENE REGULATION GOES BY THE NAME OF:

THIS GOVERN'S AN E. COLI OPERON RESPONSIBLE FOR CONSTRUCTING THE AMINO ACID HISTIDINE.

IF, ON THE OTHER HAND, HISTIDINE
15 IN SHORT SUPPLY, THE
RIBOSOME FALLS BEHIND THE
POLYMERASE.

IN THIS CASE, A **DIFFERENT**LOOP FORMS, WHICH, BY PREVENTING
THE FIRST LOOP, ENABLES THE
POLYMERASE TO GO ON, AND THE
OPERON IS EXPRESSED!

PESULT?

A SHORTAGE OF HISTIDINE TURNS THE GENE ON, WHILE A HISTIDINE GLUT TURNS IT OFF.

THE MOST SPECTACULAR EXAMPLES OF JUMPING GENES ARE THE OPES EXCODING ANTIBODIES.

ANTIBODIES ARE PROTEINS WHICH SERVE AS THE BODY'S DEFENSIVE WEAPONS. THEY ATTACK BACTERIA, VIRUSES, AND OTHER HARMFUL INVADERS. THERE ARE LITERALLY BILLIONS OF POTENTIAL ANTIBODIES, EACH KEYED TO THE EXACT SHAPE OF ITS "EVEMY." HOW CAU SO MANY BE ENCODED IN GENES?

HOW THE ORGANISM REGULATES THIS PROCESS IS STILL A RIDDLE, AS ARE MOST MATTERS OF EUCARYOTIC GENE REGULATION: THE QUESTION OF HEMOGLOBIN (P. 163), FOR EXAMPLE, REMAINS WITHOUT AN ANSWER.

IT'S CLEAR THAT
THE FLEXIBLE GENES
OF EUCARYOTES
WILL BE AN ACTIVE
AREA OF RESEARCH
IN YEARS TO
COME.

GENETIC ENGINEERING

LIVING CELLS ARE
NOT THE ONLY ONES
CAPABLE OF REARRANGING
GENES!! NOW SCIENTISTS
TOO HAVE THE POWER...

... A GREATER POWER THAN BIOLOGISTS HAVE EVER KNOWN...

THE COMBINATIONS CAN BE PRETTY BIZARRE: MOST COMMONLY, HUMAN GENES ARE ATTACHED TO THOSE OF A BACTERIUM, LIKE E. COLI...

GENE SPLICIPG DEPENDS ON A SPECIAL TYPE OF CUTTING ENZYME CALLED A **RESTRICTION ENDONUCLEASE**, OR RESTRICTION ENZYME FOR SHORT,

THE ENZYME ECO. R1, POR EXAMPLE, RECOGNIZES ONLY THE SEQUENCE

-6-A-A-T-T-C-

THIS CREATES TWO PIECES
OF DNA WITH IDENTICAL
T-T-A-A "TAILS." (BECAUSE
C-T-T-A-A-G IS THE SAME AS
ITS COMPLEMENT READ
BACKWARDS!)

THE TECHNIQUE IS CALLED

GENE CLONING,

AND IT WORKS LIKE THIS:

FIRST, CHOOSE A HUMAN GENE ENCODING SOME USEFUL PROTEIN.

FOR YOUR BACTERIAL D N A, YOU NEED SOMETHING THAT WILL BE REPLICATED ONCE IT'S RETURNED TO THE CELL — A "VECTOR", SO-CALLED.

LUCKILY, E. COLI HAS SMALL RINGS OF DNA CALLED PLASMIDS, SEPARATE FROM THE CHROMOSOME. YOU CHOOSE (OR ENGINEER!) A PLASMID CONTAINING THE SEQUENCE G.A.A.T.T.C., AND REMOVE IT FROM THE BACTERIUM.

JUST AS ABOVE, YOU SPLICE
THE HUMAN GENE INTO THE
PLASMID—

AND PUT IT BACK INTO E. COLI.

THE PROCEDURE SOUNDS SIMPLE—AND, IN PRINCIPLE, IT IS. IN PRACTICE IT CAN BE MOST COMPLICATED, BUT THE FOLKS IN THE LABS HAVE SOLVED MOST OF THOSE PRACTICAL PROBLEMS. WE CAN NOW CLONE JUST ABOUT ANY GENE WE WANT... USUALLY IN E. COLI, BUT OTHER FAST-GROWING ORGANISMS WORK, AS WELL, EVEN EUCARYOTES LIKE YEAST—

IT'S EVEN POSSIBLE TO CLONE GENES INTO HUMAN COLLS, BUT SO FAR IT ONLY WORKS IN A DISH, NOT IN A REAL PERSON...

DWARFISM. PEOPLE WHOSE GENETIC MAKE-UP WOULD OTHERWISE LEAVE THEM A BIT "SHORT," CAN GROW NORMALLY IF GIVEN ADEQUATE DOSES. SO FAR DEMAND STILL EXCERDS SUPPLY, BUT NOT

FOR "LONG"!

WSULIN, WHICH
BREAKS DOWN SUGAR
IN THE BLOOD, HAS
LONG BEEN MADE BY
OTHER MEANS... BUT
SHOULD NOW BECOME
MORE PLENTIFUL, AND
ROSSIBLY CHEAPER,
MAKING LIFE EASIER
FOR DIABETICS—

1 0.D. P!

INTERFERON, THE VIRUS-FIGHTER, USED TO BE SO SCARCE IT COST A TRILLION DOLLARS AN OUNCE—BUT NOW IT'S MADE BY THE VATFUL BY TRILLIONS OF E. COLI. UNFORTUNATELY, NO ONE KNOWS EXACTLY WHAT TO DO WITH IT, THOUGH CLIPICAL TRIALS CONTINUE AMOD HIGH HOPES...

IT MAY CURE CANCER OR THE COMMON COLD!

BACK IN THE UNIVERSITY, THIS IS THE CAUSE OF SOME CONCERN...

IS FREE HOURY
POSSIBLE IF OUR
DISCOVERIES
BECOME TRADE
SECRETS?

CAN OPEN
RESEARCH BE
GUIDED BY THE
PROFIT MOTIVE ?

DO WE WANT TO DIRTY OUR HANDS WITH MERE MONEY?

THIS QUESTION HAS ALREADY GONE TO THE SUPREME COURT, WHICH RULED THAT NEWLY INVENTED LIFE FORMS MAY BE PATENTED!

SOMEBODY
OWES ME THREE
BILLION YEARS'
WORTH OF BACK
ROYALTIES!

SO THE PRESSURE IS ON...
PROFESSORS ACCUSE EACH OTHER OF USING THE CAMPUS LABS FOR COMPANY BUSINESS... GRAD STUDENTS FIND THER PROJECTS CHANGED FOR NO APPARENT REASON... AND OF COURSE THERES THE JE ALOUSY...

WHY SHOULD
THOSE BENE
SPLICERS GET
RICH, WHILE
I, PISCOVERER
OF THE SNAIL
DARTER'S
MATING CYCLE,
REMAIN
POOR?

BUT FORGET ABOUT MONEY... WHAT ABOUT OUR HEALTH ?? FROM THE FIRST DAYS OF GENETIC ENGINEERING, PEOPLE HAVE WORRIED ABOUT BREEDING MONSTERS IN THE LAB!!

THE FEAR WAS THAT TAMPERING WITH E. COLI'S DNA MIGHT CREATE A SUPER-DEADLY GERM BY ACCIDENT.

REMEMBER, E. COLI
LIVES IN THE HUMAN
INTESTINE — IF A
VIRULENT STRAIN SHOULD
ESCAPE PROM THE
LAB, THERE MIGHT
BE NO STOPPING
IT!! WHO'D
HAVE THOUGHT
PRANKENSTEIN'S MONSTER
WOULD LOOK
LIKE THIS?

ACCORDINGLY, SCIENTISTS VOLUNTARILY ADOPTED GUIDELINES TO LIMIT POTENTIAL HAZARDS...

THE MOST ENCOURAGING THING IS THIS: THE STRAID OF E. COLI USUALLY USED FOR CLOWNG GENES HAS GROWN SO "DOMESTICATED" DURING ITS YEARS IN THE LAB, THAT IT CAN NO LONGER SURVINE IN THE HUMAN GUT!!

THOUGH IT'S TRUE THAT THE SAFEGUARDS

ADOPTED BY UNIVERSITIES DON'T GENERALLY APPLY
TO PRIVATE COMPANIES!!!

WE CAN TAKE SOME COMPORT FROM THE FACT THAT BIOLOGICAL WARFARE IS BANNED BY INTERNATIONAL TREATY, BUT YOU NEVER KNOW...

LET ME TELL YOU ABOUT SOME BROKEN TREATIES!

IT'S A POLITICAL QUESTION RAISED BY A SCIENTIFIC ADVANCE—A FAMILIAR FACT OF 20" CENTURY LIFE. DOES THIS POTENTIAL FOR HARM MEAN THAT GENE SPLICING SHOULD BE STOPPED??
ALMOST WITHOUT EXCEPTION, THE BIOLOGISTS SAY "NO."
WHY REJECT THE MEDICAL ADVANCES ALONG WITH THE MILITARY USES??

BESIDES, THE POISONS THAT COULD BE MADE THIS WAY ARE PROBABLY NO WORSE THAN THE ONES THAT ALREADY EXIST, WHILE MEDICAL ADVANCES PROMISE TO BE TRULY REVOLUTIONARY.

SO FAR, THE SUCCESSES IN THIS FIELD HAVE COME IN VIRUSES, BACTERIA, YEAST, AND PLANTS, BUT WE'RE GETTING MUCH CLOSER TO WORKING DIRECTLY WITH HUMAN BEINGS.

WHEN MAKING TESTS ON HUMANS, SCIENTISTS MUST APPLY A DIFFERENT STANDARD FROM THAT GOVERNING EXPERIMENTS ON ANIMALS OR BACTERIA.

THAT'S WHY WE KNOW SO WELL WHAT CAUSES CANCER IN *RATS*... HOW COULD YOU DO AN EXPERIMENT ASK

TO FIND THE CAUSES OF CANCER IN HUMANS??

WHICH IS TO SAY, EXPERIMENTS ON HUMANS STIR UP CONTROVERSY, A GOOD EXAMPLE BEING RECENT ATTEMPTS TO TREAT THALASSEMIA.

AS YOU RECALL,
THIS CONDITION IS
AN INABILITY TO
MAKE HEMOGLOBIN,
CAUSED BY A
MISTAKEN "STOP"
CODON IN THE MIDDLE
OF THE GENE FOR
ONE OF ITS CHAINS.

THALASSEMIA VICTIMS
CAN SUFFER FROM
ANEMIA, BONE DEFORMITIES, AND
HEART PROBLEMS.
THOS REQUIRE PREQUENT
BLOOD TRANSPUSIONS
TO SURVIVE, AND
EVEN THEN THEY DON'T
LIVE LONG.

SOUNDS GOOD, EXCEPT THAT THE SAME APPROACH HAD ALREADY FAILED REPEATEDLY IN MICE. STILL, A TEAM OF DOCTORS FROM U.C.L.A. DECIDED TO TRY IT ON HUMANS ANYWAY..!

THEY REMOVED BONE
MARROW CELLS FROM
TWO PATIENTS' THIGH
BONES. (REMEMBER,
THESE DEVELOP INTO
HEMOGLOBIN PRODUCING RED
BLOOD CELLS.)

THE THIGH
WAS
IRRADIATED
TO SLOW
DOWN THE
OLD MARROW
(AND GIVE
THE NEW
CEUS THE
EDGE).

THE DOCTORS TOOK A LOT OF FLAK FOR THIS EXPERIMENT.

SEVERAL OBJECTIONS WERE RAISED.

NOT EVEN A PART OF THE PROCEDURE HAD EVER WORKED IN ANIMALS. IT'S STILL NOT AT ALL CLEAR HOW TO INSERT A HUMAN HEMOGLOBIN GENE INTO A MAMMAL CELL IN SUCH A WAY THAT IT'S EXPRESSED IN ANY QUANTITY.

THE EXPERIMENT WAS DISAPPROVED BY U.C.L.A.'S COMMITTEE ON HUMAN SUBJECTS USE. HOWEVER, IT HAD BEEN APPROVED BY THE TWO HOSPITALS WHERE IT WAS CARRIED OUT (IN ITALY AND ISRAEL).

THE RADIATION CERTAINLY DIDN'T HELP THE PATIENTS. ON THE OTHER HAND, THEY BOTH FULLY UNDERSTOOD WHAT WAS BEING DONE, AND THEY GAVE THER CONSENT.

AFTERWARDS, THE DOCTORS
WERE DISCIPLINED, ONE OFTHEM
LOSING HIS POSITION AS
DEPARTMENT CHAIRMAN...
SO YOU SEE—HUMAN
EXPERIMENTS CAN BE
DANGEROUS!

NEVERTHELESS, THIS IS PROBABLY THE WAY THE FIRST GENETIC THERAPIES WILL BE DONE, BECAUSE BONE MARROW IS THE EASIEST TISSUE TO TRANSPLANT.

THERE ARE SEVERAL DISEASES THAT MIGHT BE TREATED THIS WAY:

THALASSEMIA, OF COURSE, ALTHOUGH THE UCLA EXPERIENCE SHOWS IT WON'T BE EASY.

HEMOPHILIA, DUE TO THE LACK OF A BLOOD PROTEIN, MIGHT BE THE EASIEST

SICKLE-CELL ANEMIA 15 A
HEMOGLOBIN ABNORMALITY AFFECTING
MAINLY BLACK PEOPLE. THIS WILL BE
EVEN HARDER BECAUSE THE MUTANT
GENE 14 CODOMINANT, NOT RECESSIVE.

AND THERE ARE **IMMUNO**. **DEFICIENCY** DISEASES CAUSED BY RECESSIVE. GENES IN BONE MARROW. AT PRESENT, PEOPLE WITH THESE DISEASES HAVE TO LIVE IN GERM-FREE ISOLATION CHAMBERS.

OF COURSE, THERE
ARE FEWER RESTRICTIONS
ON PLANT AND ANIMAL
EXPERIMENTS THAN ON
HUMANS. (THIS BOTHERS
SOME PEOPLE, BY THE
WAY.)

SO PROGRESS HAS BEEN MORE RAPID AMONG PLANTS AND ANIMALS. ALREADY THERE ARE BREEDS OF COTTON, TOMATO, AND TOBACCO WITH AN ADDED BACTERIAL GENE THAT MAKES THEM POISONOUS TO INSECTS.

ONE EXAMPLE ARE PIGS WITH BOVINE GROWTH HORMONE. THEY GROW FASTER AND LEANER, BUT ALSO HAVE OTHER PROBLEMS, LIKE ULCERS AND ARTHRITIS—SO YOU'LL HAVE TO WAIT FOR THAT "BORK" CHOP.

TRANGENIC PLANTS AND ANIMALS CAN PASS ON THEIR NEW GENES TO THEIR OFFSPRING, BECAUSE THE GENES ARE INSERTED AT A VERY EARLY STAGE OF DEVELOPMENT, ALLOWING THEM TO GET INTO SPERM AND EGG CELLS. PERFORMING THESE EXPERIMENTS ON HUMANS WOULD THEREFORE RAISE SOME HARD ETHICAL 1550ES.

BUT WE'RE GETTING CLOSER. THERE ARE ALREADY LIVING "TEST TUBE BABIES" — FERTILIZED IN A TEST TUBE AND THEN, AFTER A FEW DIVISIONS, IMPLANTED IN THE MOTHER'S WOMB, WHERE THEY DEVELOPED NATURALLY.

WHAT WOULD THE MONK MENDEL HAVE TO SAY ABOUT THIS?

THE OBVIOUS HERT STEP WOULD BE TO ENGINEER THE EMBRYO IN THE TEST TUBE...

THIS COULD RANGE FROM GENE THERAPY —
FIXING SPECIFIC DEFECTS —
TO... WHO KNOWS WHAT ??

AT THE EXTREME, IT MAY BECOME POSSIBLE TO CLONE PEOPLE. THE EGG'S NUCLEUS WOULD BE REMOVED ALTOGETHER AND REPLACED WITH A NUCLEUS FROM ANOTHER PERSON.

THIS EGG WOULD BE IMPLANTED IN A "MOTHER," TO WHOM IT WOULD BE GENETICALLY UNRELATED.

INSTEAD,
THE LITTLE
TYKE
WOULD BE
GENETICALLY
IDENTICAL
TO WHOEVEROR WHATEVERDONATED
THE NUCLEUS.

SOUND FAR PETCHED? WELL, SCIENTISTS HAVE ALREADY SUCCEEDED IN CLOPING MICE AND FROGS...

THE TECHNIQUE MAKES IT POSSIBLE TO MAKE MULTIPLE COPIES OF LIVING INDIVIDUALS! IS THIS WHAT WE WANT TO BECOME, A WORLD OF CLONES?

WE. SEE. NOTHING. WRONG. WITH. IT!

YOU MIGHT WELL ASK:
WHO WILL BE CLONED?
WHO WILL DECIDE? WILL
IT BE BASED PURELY ON
MONEY? WILL IT BE LEGAL?
WILL THERE BE PEOPLE.
BREEDERS SELECTING THE
MOST "FIT" FOR REPRODUCTION?

STAND ASIDE, WEAKUNGS!

OR MAYBE WE'RE BEING TOO GLOOMY... MAYBE THE FUTURE WILL BE A GLORIOUS TIME WHEN PEOPLE WILL BE ENGINEERED TO FIT CLOTHES INSTEAD OF VICE VERSA!!

BUBLE GRAPHS

STUBBB, H., HISTORY OF GENETICS PROM PRE-HISTORIC TIMES TO THE REDISCOVERY OF MENDEL'S LAWS, M.I.T PRESS, 1972. HARD TO FIND, BUT A FINE SCHOLARLY HISTORY OF OBNISTICS TO 1900.

Pupp, L.C., A SHORT HISTORY OF GENETICS, MCGRAW-HILL, 1965. MORE PRE-1989 GENETICS. GOOD PIX.

Judson, H.F., **The Eighth Day of Creation.** Simon & Schuster, 1979. Readable History of Molecular Biology.

watson, J.D., **The Double Helix,**Athaneum, 1948. One of the
Discoverers of DNA'S STRUCTURE
TELLS HIS STORY. FLIPPANT AND
SEXIST, BUT FASCINATING.

SAYRE, A., ROSALIND FRANKLIN AND DNA, HORTON, 1978. AN ANTIDOTE TO WATSON'S BLAS.

М = М - H ... М = М - H ...

CUPTIS, H., BIOLOGY, 2" EDITION,
WORTH, 1975. A GOOD GENERAL
BIO TEXT, FOR MORE ON MOLECULES
AND CELLS.

Ayala, f.j., + keiger, J.a., **Modern Genetics,** Benjamin cummings,
1980. One of Many up-to-date texts.

Stent, G. & Calendar, R. Molecular Genetics, 2^{mg} Edition, Preeman, 1978. All the Details. (The First Edition, by Stent Alons, 13 a Classic, Though Dated.)

WATSON, J.D., MOLECULAR BIOLOGY OF THE GENE, 3RD EDITION, W.A. BENJAMIN, 1976. MORE DETAILS.

CAVALIERI, L.F., THE DOUBLE-EDGED HELIX, COLUMBIA U. PRESS, 1981; SUBTITLED "SCIENCE IN THE REAL WORLD".

CHARGAPY, 5. HERACLITEAN FIRE, ROCKEPELLER U. PRESS, 1978. A CRANKY MEMOIR, BUT MAYBE WE SHOULD LISTEN TO HIM:

WADE, N., THE ULTIMATE EXPERIMENT: MAN-MADE EVOLUTION, WALKER & CO, 1977. RECOMBINANT DHA, BY ONE OF OUR BEST SCIENCE WRITERS.

ALSO: SCIENTIFIC AMERICAN MAGAZINE REGULARLY PRINTS ARTICLES ON RECENT DEVELOPMENTS, AND SO DOES YOUR DAILY NEWSPAPER!

DNOE

Chargaff, Erwin, 121

Adenine, 120, 122 Chromosome mapping, 69-78 AIDS virus, 156 Chromosome number, 60 Alleles, 42-50, 54 Chromosomes, 58-70, 102 genes on, 67, 69-71 "recombinant," 76 co-dominant, 162 combinations of, 54 recessive, 81 in sperm and egg, 61-62 Amino acids, 108-111 X and Y, 85-89, 91-93 Anthers, 31 "Clipping" enzyme, 127 Antibodies, 177-178 Cloning genes, 185-188, 193 Anticodon, 136-137 Cloning people, 203 Aristotle, 14-15 Co-dominant alleles, 162 Asparagine, 109 Codons, 133-137 Assortment, independent, principle of, 48, complementary, 136-137 Color-blindness, 91-92 Attenuation, 172-174 Complement, 124 Avery, Oswald, 118-119 Complementarity, principle of, 124, 128 Complementary codon, 136-137 Correns, Carl, 65-66 Bacteria, 25 Crick, Francis, 122-125 Baldness, hereditary, 91-93 Crops, productive, 7 Base pairs, 122-123 Crossing over, gene, 71, 76-77 sequence of, 130 Crossing square, 44-45, 48, 73-74, 93 Bases, 106, 107 Cysteine, 109 Beadle, George, 114 Cytosine, 120, 122 Bibliography, 210 Biological warfare, 194-195 Darwin, Charles, 55 Blood groups, 162 Deoxyribonucleic acid, see DNA entries Body cells, 83 Deoxyribose, 106 Bone marrow cell, 163 DeVries, Hugo, 65-66 Bonellia marine worm, 90 Digestive enzymes, 112 Bovine growth hormone, 201 Diploid organisms, 68, 89 Breeding, selective, 6 Diversity, genetic, 206-208 Division, cell, 57 Camerarius, 30 DNA (deoxyribonucleic acid), 107, 119, Cancer, 83 181 Carbon, 104 "junk," 147 Cell division, 57 recombinant, 180, 184, 188 Cells, 56-64, 97-101 repetitive, 152-153 turning into other kinds of cells, 163 "selfish," 153 types of, 98-99, 164 sequence of, 129-130 Cellulose, 105 DNA replication, 125-128 Centromere, 59 Dominant trait, 40-48 "Chaperone" protein, 129 examples of, 53

Double helix, 123-125

E. coli, see Escherichia coli partial, 178 sex-linked, 91-95 Eco-Ri enzyme, 182-183 Genetic code, 134-137, 145 Egg, 29 chromosomes in, 61-62 Genetic code table, 135 mammalian, 27-29 Genetic diversity, 206-208 Empedocles, 16 Genetic engineering, 179-195, 206-209 Endonuclease, restriction, 182 Genetic engineering company, 189 Engineering, genetic, 179-195, 206-209 Genetic research, peas in, 38-49 Environment, 206, 208 Geneticists, 32 Enzyme Eco-Ri, 182-183 Genetics, practical, 6 Enzymes, 112-116, 129, 181 Genotype, 49 "clipping," 127 Gilbert, Walter, 171 digestive, 112 Glucose, 104 genes and, 114-116 Glycine, 109 "inducible," 171 "snipping," 126–127 Gonick, Larry, 215 Griffith, Fred, 116-117 Escherichia coli (E. coli), 100-102, Growth hormone, human, 188 185-186, 192-193 Guanine, 120, 122 histidine and, 172-174 Guanine "cap," 146 lactose and, 166-171 replication, 126 Haploid organisms, 68, 89 Eucaryotes, 144-148 Harvey, William, 27-28 Experiments on humans, 196-199, Helix, double, 123-125 202-205 Hemoglobin, 108, 158-159, 197-199 Extinction, species, 206-208 Hemophilia, 91, 94-95, 200 Hereditary baldness, 91-93 Hereditary traits, 54 Fertility magic, 9 Heredity, theories of, 12 Fertilization, 29 Hertwig, Oscar, 29 plant, 31 Heterozygote, 49-52 Flippase gene, 176 Hippocrates, 13 Flowers, 30-31 Histidine, 172-174 Franklin, Rosalind, 121 Homolog, 64 Homologous pairs, 62-64, 67 Homozygote, 49, 51 Gametes, 61 Hooke, Robert, 56 Gene cloning, 185-188, 193 Human growth hormone, 188 Gene expression, 174 Humans, experiments on, 196-199, Gene mapmaking, 69-78 202-205 Gene mutation, 79-83, 158-161 Hybrids, 33-34 Gene regulation, 164-178 Mendel and, 39 Gene splicing, 180-184 Hydrogen, 104 Gene suppression, 174 Hydrogen bonding, 122 Gene swapping, 71, 76-77 Gene therapy, 203 Immunodeficiency diseases, 200 Generation, spontaneous, 20-23 Genes, 42, 54, 96 Independent assortment, principle of, 48, bacterial, 201 "Inducible" enzymes, 171 on chromosomes, 67, 69-71 dominant and recessive, 40-48, 53 Inheritance, 11 enzymes and, 114-116 Insulin, 188 Interferon, 188 flippase, 176 jumping, 175-178 Introns, 148

ABOUT THE AUTHORS:

LAPRY GONICK IS
THE AUTHOR OR CO-AUTHOR
OF MANY BOOKS OF GRAPHIC
NON-FICTION ON SCIENTIFIC
AND HISTORICAL SUBJECTS.
A GRADUATE OF HARVARD
IN MATH, HE DROPPED ONT
OF GRADUATE SCHOOL TO
PURSUE SOMETHING REALLY
DIFFICULT: RENDERING
INFORMATION IN LITTLE
PICTURES. HE LIVES WITH
HIS FAMILY IN SAN
FRANCISCO.

MARK WHEELIS. WHEN NOT CLIMBING ROCKS OR RAFTING RIVERS, IS SENIOR LECTURER IN MICROBIOLOGY AT THE UNIVERSITY OF CALIFORNIA AT DAVIG. BESIDES TEACHING NUMEROUS BIOLOGY COURSES, HE HAS WRITTEN MANY RESEARCH PAPERS AND IS CO-AUTHOR OF THE STANDARD TEXTBOOK THE MICROBIAL WORLD. HE LIVES IN DAVIS WITH HIS WIFE, CHILDREN, DOG, AND MICROBES.

THE CARTOON GUIDE TO GENETICS LARRY GONICK AND MARK WHELLIS

Have you ever asked yourself:

Are spliced genes the same as mended Levis?
Watson and Crick? Aren't they a team of British detectives?
Plant sex? Can they do that?

Is Genetic Mutation the name of one of those heavy metal bands?

Asparagine? Which of the four food groups is that in?

Then you need The Cartoon Guide to Genetics to explain the important concepts of classical and modern genetics—it's not only educational, it's funny too!

"If you can't learn Mendelian genetics from this text,

I guess you never will."

—NEW SCIENTIST

"It puts textbooks to shame."

— MATTHEW MESELSON,
PROFESSOR OF BIOLOGY, HARVARD UNIVERSITY

HarperPerennial

A Division of HarperCollinsPublishers http://www.harpercollins.com

Cover design and illustration ® by Larry Gonick

USA \$15.00 CANADA \$21.50

