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Preface to the Second Edition

We endorse all of the comments and observations made in the Preface
to the First Edition of this book. Over the last 8 years, considerable
progress has been made in opening soil processes up for scientific
inquiry, indeed, viewing soils “through a ped darkly” (Coleman, 1985)
and getting away from the simplistic approaches of the “black box” that
prevailed in much of the 20th century.

In the midst of the wonder and awe surrounding the pictures that
have been transmitted across 100 million miles to Earth during 2004
from the two Mars rovers, it is important to point out a basic fallacy in
the discussions over the findings on the surface of Mars. The engineers
and physical scientists in charge of the study persist in calling the Mars
surface material “soil.” As we note many times in our book, biology is the
leading characteristic of soil. Organisms are one of the five major soil-
forming factors, and life itself characterizes a true soil. Anything found
on the surface of Mars—barring totally unexpected news to the 
contrary—is no doubt complex and interesting, but it is essentially
weathered parent material, not soil. Arthur C. Clarke came closer with
the title of his science fiction novel Sands of Mars.

On the biological side of soil studies, much progress has been made
recently in elucidating not only biotic function, especially in the case of
bacteria and fungi, but also the identity of which species is performing
what process. We focus primarily on the biological aspects, and devote a
smaller proportion of our total coverage to soil physics and chemistry,
largely because they are discussed extensively in recent treatises by 
Hillel (1997) and Brady and Weil (2000).

As a reflection of these new developments, we have singled out Soil
Biodiversity and Linkages to Soil Processes for coverage in its own chap-
ter (Chapter 7) to identify and emphasize one of the areas of burgeoning
research and conservation interest. Also included is a final chapter
(Chapter 9) on laboratory and field exercises that have proven useful in
our course in Soil Ecology at the University of Georgia. We hope they
will be helpful to faculty and students who use this book. We invite our
readers to become “Earth rovers,” and participate in the wonder and
excitement of studying the ecology of soils, a marvelously complex
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milieu. We hope that this textbook, along with other recent ones, such as
the extensive compendium of Lavelle and Spain (2001), will provide the
interested scientist with some of the background necessary to work in
this often difficult but always fascinating field of research. Two col-
leagues who were instrumental in critiquing our first edition, Eugene P.
Odum and Edward T. Elliott, are now deceased, but their influence is
still felt by the soil ecology community and by us. A new generation of
students and postdoctoral fellows from the University of Georgia and
other universities have contributed ideas and inspiration to this effort,
including: Sina Adl, Mike Beare, Heleen Bossuyt, George Brown, 
Weixin Cheng, Charles Chiu, Greg Eckert, Christien Ettema, Shenglei
Fu, Jan Garrett, Randi Hansen, Liam Heneghan, Nat Holland, Coeli
Hoover, Shuijin Hu, John Johnston, Keith Kisselle, Sharon Lachnicht,
Karen Lamoncha, Stephanie Madson, Rob Parmelee, Mitchell Pavao-
Zuckerman, Kitti Reynolds, Chuck Rhoades, Breana Simmons, Guang-
long Tian, Petra van Vliet, Thaïs Winsome, Christina Wright, David
Wright, Qiangli Zhang, and our soil ecology colleagues at the University
of Georgia, Colorado State University, Oregon State University, Univer-
sity College Dublin, and at many LTER sites around the world. Any
errors are of course ours, and we would appreciate comments from 
readers pointing them out.

We thank our helpful secretary and colleague, Linda Lee Enos, for her
tireless efforts in compiling the tables and figures. Our spouses, Fran,
Dot, and Cathy, deserve credit for their tolerance of this further foray
into the arcane but now ever-more-relevant world of soil biology and
ecology.

David C. Coleman
D. A. Crossley, Jr.

Paul F. Hendrix
Athens, Georgia, February 2004
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Preface to the First Edition

One of the last great frontiers in biological and ecological research is
in the soil. Civilizations, so dependent on soils as a source of nutrients
for food—consumed directly as vegetables, fruit, and grain, or animals
that feed on plants—owe a considerable debt to soils.

Over the span of several millennia, there has been concern about the
use and misuse of soils. There is ample evidence that numerous civiliza-
tions, from ancient Sumeria and Babylonia to those that use modern
high-intensity, high-input agriculture, have suffered with problems of
long-term sustainability (Whitney, 1925; Pesek, 1989).

Indeed, one prominent soil physicist has been moved to comment that
“the plow has caused more destruction to civilizations than the sword”
(Hillel, 1991). Perhaps the adage of “beating swords into plowshares”
needs rethinking. As we will discover in the course of this book, it is truly
a time to be working with nature and to cease treating soils as a “black
box.”

Soil is a unique entity. It has its origins in physical, chemical, and bio-
logical interactions between the parent materials and the atmosphere.
The simplest definitions of soil follow the most common understanding,
such as “the upper layer of earth which can be dug or plowed and in
which plants grow.” (Webster’s New Universal Unabridged Dictionary,
1983). The soil scientist defines it as “a natural body, synthesized in pro-
file form from a variable mixture of broken and weathered minerals and
decaying organic matter, which covers the earth in a thin layer and
which supplies, when containing the proper amounts of air and water,
mechanical support and, in part, sustenance for plants” (Buckman and
Brady, 1970). This definition recognizes that soil has vertical structure,
is composed of a variety of materials, and has a biological nature as well;
it is derived in part from decaying organic matter. Nevertheless, uncer-
tainties emerge when more restrictive definitions are attempted. How
deep is soil or when is nonsoil encountered? Working definitions of soil
depth range from 1 meter to many meters, depending on the ecosystem
and the nature of the investigations. Are barren, rocky areas excluded if
they do not allow growth of higher plants? Lindeman (1942) considered
the substratum of a lake as a benthic soil (see also Jenny, 1980). When
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xvi Preface to the First Edition

do simple sediments become soil? When can they support plant growth?
Only after biological, physical, and chemical interactions convert sedi-
ments into an organized profile?

Soils are composed of a variable combination of four key constituents:
minerals, organic matter, water, and air. Of the Greco-Roman concepts
of fundamental constituents—earth, air, fire, and water—three of the
four are contained with the broad concept of soil. Indeed, if the energetic
process of life (“the fire of life”) (Kleiber, 1961) is included within the soil,
then all four of the ancient “elements” are present therein.

Are living organisms part of soil? We would include the phrase “with
its living organisms” in the general definition of soil. Thus, from our
viewpoint soil is alive and is composed of living and nonliving compo-
nents having many interactions.

It is as a part of that larger unit, the terrestrial ecosystem, that soil
must be studied and conserved. The interdependence of terrestrial 
vegetation and animals, soils, atmosphere, and hydrosphere is complex,
with many feedback mechanisms. When we view the soil system as an
environment for organisms, we must remember that the biota have been
involved in its creation, as well as adapting to life within it. The princi-
ples by which organisms in soils are distributed, interact, and carry on
their lives are far from completely known, and the importance of the
biota for soil processes is not often appreciated.

This book on soil ecology emphasizes the interdisciplinary nature 
of studies in ecology as well as soils. Considerable “niche overlap” 
(similarity in what they do, i.e., their “profession”) (Elton, 1927) exists
between the two disciplines of ecology and soil science. Ecology, which is
heavily organism-oriented, is concerned with all forms of life in relation
to their environment. Soil science, in contrast, contains several other
aspects in addition to soil biology, such as soil genesis and classification,
soil physics, and soil chemistry. A broader view of ecology asks: How do
systems work? From that perspective, ecology and soil science share
similar objectives.

The overlap between ecology and soil science is both extensive and
interesting. Aspects of soil physics, chemistry, and mineralogy have a
great impact on how many different kinds of organisms coexist in the
opaque, complex, semiaquatic milieu that we call soil. We first describe
what soils are and how they are formed, and then discuss some of the
current research being done in soil ecology.

With a rising tide of interest worldwide in soils, and in belowground
processes in general, numerous types of studies using tools in all ranges
of the size and electromagnetic energy spectra, and encompassing from
microsites to the biosphere, are now possible. Significant achievements
during the past 5 to 10 years make a book of this sort both timely and
useful. This book is intended primarily as a source of ideas and concepts



and thus is intended as a supplemental reference for courses in ecology,
soil science, and soil microbiology.

We hope that we will interest a new generation of ecologists and soil
scientists in the world of soil ecology: the interface between biology,
chemistry, and physics of soil systems.

David C. Coleman
D. A. Crossley, Jr.

Paul F. Hendrix
Athens, Georgia, February 2004

Preface to the First Edition xvii



1

Historical Overview 

of Soils and the Fitness 

of the Soil Environment

THE HISTORICAL BACKGROUND OF SOIL ECOLOGY

The “roots” of human understanding of soil biology and ecology can be
traced into antiquity and probably even beyond the written word. We
can only imagine hunter–gatherer societies attuned to life cycles of
plant roots, fungi, and soil animals important to their diets, their wel-
fare or their cultures, and particularly to environmental conditions
favorable to such organisms. Indeed, early agriculture must certainly
have developed, at least in part, from a practical knowledge of soils and
their physical and biological characteristics.

Soil is so fundamental to human life that it has been reflected for mil-
lennia in our languages. The Hebrew word for soil is adama, from which
comes the name Adam—the first man of the Semitic religions. The word
“human” itself has its roots in the Latin humus, the organic matter in
soil (Hillel, 1991). Early civilizations had obvious relationships with
soils. The Mesopotamian region encompasses present-day Iraq and
Kuwait, occupying the valley of the Euphrates and Tigris rivers from
their origin as they come out from the high tablelands and mountains of
present-day Armenia to their mouth at the Persian Gulf. It had one of
the earliest recorded civilizations, the Sumerian, dating from about
3300 years BCE (Hillel, 1991). An inventory taken in the time of the
early Caliphates showed 12,500,000 acres (nearly 5,100,000 hectares)
under cultivation in the southern half of Mesopotamia (Whitney, 1925).
With many centuries of irrigation, this so-called “hydraulic civilization”
was plagued with problems of siltation and salinization, which was
written about at the time of King Hammurabi (1760 BCE) (Hillel, 1991).
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An impressive sequence of civilizations waxed and waned over the mil-
lennia: Sumerian, Akkadian, Babylonian, and Assyrian, as cultivation
shifted from the lower to central and upper regions of Mesopotamia. 
Siltation and salinization continue to beset present-day civilizations
that practice extensive irrigation.

To the east of Mesopotamia, past the deserts of southern Iran and 
of Baluchistan, lies the Indus River Valley. Another irrigation-based 
civilization developed here, probably under the influence of the
Mesopotamian civilization. The Indus River civilization probably
encompassed a total land area far exceeding that of either Sumeria or
Egypt; little is known about it. No written records have been discovered,
but its fate, like that of the Sumerian, succumbed to environmental
degradation, exacerbated by the extensive deforestation which occurred
to provide fuel to bake the bricks used in construction (Hillel, 1991). The
bricks in Mesopotamian cities were sun-baked, similar to the adobe style
of construction used in the desert of the southwestern United States.

In contrast, the Egyptian civilization persisted more or less in place,
as a result of the annual floods of the Nile River, which renewed soil fer-
tility in vast areas along the river’s length as it flowed northward. Over
the millennia, from one to three million people lived along the Nile, and
produced enough grain to export wheat and barley to many countries
around the Mediterranean rim. Now that the population is some 30
times greater, it must import some foodstuffs and is economically in
questionable condition, in spite of the vast areas being irrigated with
water from the Aswan high dam.

The ancient Chinese concept of fundamental elements included
earth, air, fire, water, and moon. In the Yao dynasty from 2357 to 2261
BCE, the first attempt was made at soil classification surveying. The
Emperor established nine classes of soils in as many provinces of China,
with a taxation system based upon this system. These classes included
the yellow and mellow soils of Young Chow (Shensi and Kansu); the red,
clayey, and rich soils of Su Chow (Shantung, Kiangsu, and Anhwei); the
whitish, rich salty soils of Tsing Chow (Shantung); the mellow, rich,
dark and thin soils of Yu Chow (Honan); the whitish and mellow soils of
Ki Chow (Chili and Shansi); the black and rich soils of Yen Chow (Chili
and Shantung); the greenish and light soils of Liang Chow (Szechuan
and Shensi); and the miry soils of King Chow (Hunan and Hupeh) and
Yang Chow (Kiangsu) (Whitney, 1925). This system reflects a sophisti-
cated knowledge within early Chinese civilization of soils and their 
relationship with plant growth. Interestingly, in recognition of the
importance of biological activity in soils, the ancient Chinese termed
earthworms as “angels of the soil” (Blakemore, 2002).

The Greeks believed there were four basic elements: earth, air, fire,
and water; and Aristotle, understanding the role of earthworms 
in organic matter decomposition, considered earthworms to be the
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“intestines of the earth” (Edwards and Lofty, 1977). The Greeks and
Romans also had a clear differentiation of the productive capacities of
different types of soils. They referred to good soils as “fat,” and soils of
lower quality as “lean” (Whitney, 1925). For the Roman writers,
“humus” referred to soil or earth. Virgil (79–19 BC), in his Georgics,
named the loamy soil pinguis humus and used the words humus, solum,
or terra more or less interchangeably for the notions of soil and earth.
Columella in the first century AD noted, “wheat needs two feet of good
humus” (Feller, 1997; italics added).

The word humus seems to have entered the European scientific
vocabulary in the 18th century. Thus in Diderot and d’Alembert’s Ency-
clopaedia (vol. 8) in 1765: “Humus, natural history, this Latin word is
often borrowed by naturalists (even into French) and denotes the mould,
the earth of the garden, the earth formed by plant decomposition. It
refers to the brown or darkish earth on the surface of the ground. Refer
to the mould or vegetable mould” (translation in Feller, 1997).

By the beginning of the 19th century, the leading authorities with a
biological view of soils were Leeuwenhoek, Linnaeus, and other pre-
Darwinians, and then Darwin himself (1837, 1881), who “fathered” the
modern era. Müller (1879, 1887), cited in Feller (1997), laid the ground-
work for the present-day scientific bases of the different forms of humus,
and even included a general survey of soil genetic processes in cold and
temperate climates. Müller developed terms for the three humus
types—Mull, Mor, and Mullartiger Torf—the latter equivalent to Moder.
Mull is mould and Torf is peat in Danish. Thus Mullartiger Torf is 
mould peat in Danish, and it is viewed as an intermediate form between
the two extremes (see Feller, 1997, for more details on the history of
these fascinating substances).

The first scientific view of soils as natural bodies that develop under
the influence of climate and biological activity acting on geological sub-
strates arose in Russia with the work of Dokuchaev and his followers
(Zonn and Eroshkina, 1996; Feller, 1997) and in Europe with Müller’s
(1887) descriptions of soil horizon development (Tandarich et al., 2002).
The ecological basis of the Russian tradition is clear in the words of 
Glinka (1927; cited in Jenny, 1941), a disciple of Dokuchaev, whose view
of soil included “. . . not only a natural body with definite properties, 
but also its geographical position and surroundings, i.e., climate, vege-
tation, and animal life.” This Russian perspective predates the formal
statement of the ecosystem concept by several decades (Tansley, 1935).

During this early period of theoretical development across the
Atlantic, soil science in the United States was more concerned with
practical matters of agriculture, such as soil productivity and crop
growth (Tandarich et al., 2002) and, later, on restoration of soils badly
degraded from poor management (e.g., the “dust bowl” in the Great
Plains and the severely eroded croplands of the southeastern United
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States). It was not until the 1920s that ideas of pedogenesis gained wide
recognition in the United States. Within the next decade, Hans Jenny
(1941) published his classic work on soil formation, drawing heavily
from Dokuchaev’s ideas to synthesize pedological and ecological per-
spectives into the concept of a “. . . soil system [that] is only a part of a
much larger system . . . composed of the upper part of the lithosphere,
the lower part of the atmosphere, and a considerable part of the bio-
sphere.” He formulated this concept into the now famous “fundamental
equation of soil-forming factors”:

s = f (cl, o, r, p, t, . . .)

where s refers to the state of a body of soil at a point in time; f refers to
function; cl to climate; o to organisms; r to relief or topography; p to 
parent material; and t to time. Jenny, probably more than any North
American soil scientist of his era, emphasized the importance of the
biota in and upon soils. His last major work, The Soil Resource (1980), is
now a classic in the literature on ecosystem ecology.

Since Jenny’s work, research in soil ecology has experienced a
“renaissance” as the significance of biological activity in soil formation,
organic matter dynamics, and nutrient cycling have become widely 
recognized. The post–World War II scientific boom was an important
impetus for science generally, including soil science. In the United
States, the Atomic Energy Commission (later the Department of Ener-
gy), through the national laboratories, funded soil biology in relation to
nutrient and radioisotope recycling in soil systems (Auerbach, 1958);
more recently, the National Science Foundation’s Division of Environ-
mental Biology and the United States Department of Agriculture
(USDA) National Research Initiative in Soils and Soil Biology have sup-
ported a wide array of research in soil ecology. The International Biolog-
ical Program (IBP) on the international scene greatly expanded
methodologies in soil ecology and increased our knowledge of ecological
energetics and soil biological processes (Golley, 1993).

In sum, all of these developments and advances in knowledge, from
the ancient to the modern, have led to a vast literature upon which is
based our current understanding of the soil beneath our feet and the
vital role that this living milieu plays in sustaining life on a thin,
dynamic, fragile planetary crust.

WATER AS A CONSTITUENT OF SOIL

“The occurrence of water is, moreover, not less important and hardly less gener-
al upon the land. In addition to lakes and streams, water is almost everywhere
present in large quantities in the soil, retained there mainly by capillary action,
and often at greater depths.” (Henderson, 1913).
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Lawrence J. Henderson, a noted physical chemist and physiologist,
published a book (The Fitness of the Environment, 1913), which was a
landmark among books on biological topics. Henderson’s thesis is that
one substance, water, is responsible for the characteristics of life, and
the biosphere as we know it. The highly bipolar nature of water, with its
twin hydrogen bonds, leads to a number of intriguing characteristics
(e.g., high specific heat), which have enabled life in the thin diaphanous
veil of the biosphere (Lovelock, 1979, 1988) to extend and proliferate
almost endlessly through the air, water, soil, and several kilometers into
the earth’s mantle (Whitman et al., 1998).

A central fact of soil science is that certain physicochemical relation-
ships of matter in all areas of the biosphere are mediated by water. Thus
soil, which we normally think of as opaque and solid, from the wettest
organic muck soil to the parched environs of the Atacama, Kalahari,
Gobi, or Mojave deserts, is dominated by the amount and availability of
water.

Consider water in each of its phases—solid, liquid, and gaseous:

1. Solid: In aquatic ecosystems, water freezes from the top down,
because it has its greatest density at 4°C. This allows for organismal
activity to continue at lower depths and in sediments as well. In soil,
the well-insulated nature of the soil materials and water with its 
high specific heat means that there is less likelihood of rapid freezing.
Water expands when it freezes. In more polar climates (and in some
temperate ones), soil can be subjected to “frost heaving,” which can 
be quite disruptive, depending on the nature of the subsurface 
materials.

2. Liquid: Water’s high specific heat of 1 calorie per gram per
degree Celsius increase in temperature has a significant stabilizing
influence in bodies of water and soil (Table 1.1; Hadas, 1979). The
effect of the high specific heat is to reduce fluctuations in tempera-
ture. The location of the liquid, in various films, or in empty spaces,
has a marked influence on the soil biota.

3. Vapor: It is somewhat counterintuitive but true that the atmos-
phere within air-dry soil (gravimetric water content of 2% by weight)
has a relative humidity of 98%. The consequences of this humidity for
life in the soil are profound. Most soil organisms spend their lives in
an atmosphere saturated with water. Many soil animals absorb and
lose water through their integuments, and are entirely dependent
upon saturated atmospheres for their existence.

From the pragmatic viewpoint of the soil physicist, we can consider
aqueous and vapor phases of water conjointly. Following a moisture
release curve, one can trace the pattern of water, in volume and location
in the soil pore spaces, in the following manner (Vannier, 1987). Starting
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with freestanding, or gravitational, water at saturation, the system is
essentially subaquatic (Fig. 1.1). With subsequent evaporation and
plant transpirational water losses from the soil, the freestanding water
disappears, leaving some capillary-bound water (Fig. 1.2), which has
been termed the edaphic system. Further evaporation then occurs,
resulting in the virtual absence of any capillary water, leaving only the
adsorbed water at a very high negative water tension (Fig. 1.3).

The implications of this complex three-dimensional milieu are of 
fundamental importance for a very diverse biota. Vannier (1973) pro-
posed the term “porosphere” for this intricate arrangement of sand, silt,
clay, and organic matter. Primitive invertebrates first successfully
undertook the exploitation of aerial conditions at the beginning of the
Paleozoic era (Vannier, 1987). This transition probably took place via the
soil medium, which provided the necessary gradient between the fully
aquatic and aerial milieus. This water-saturated environment, so neces-
sary for such primitive, wingless (Apterygote) forms as the Collembola,
or springtails (Fig. 1.1), is equally important for the transient life-forms
such as the larval forms of many flying insects, including Diptera and
Coleoptera. In addition, many of the micro- and mesofauna, (described in
Chapter 4,) could be considered part of the “terrestrial nannoplankton”
(Stout, 1963). Stout included all of the water-film inhabitants, namely:
bacteria and yeasts, protozoa, rotifers, nematodes, copepods, and enchy-
traeids (the small oligochaetes also called potworms). Raoul Francé, a
German sociologist, made analogies between aquatic plankton and the
small and medium-sized organisms that inhabit the water films and
water-filled pores in soils, terming them: “Das Edaphon” (Francé, 1921).
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TABLE 1.1. Specific Heats of Various Substances

Substance Specific HeatA

Lead 0.03
Iron 0.10
Quartz 0.19
Sugar 0.30
Chloroform 0.24
Hexane 0.50
Water

Liquid 1.0
Solid 0.5
Gas 0.3–0.5

Ammonia, liquid 1.23

ACalories (= 4.18 Joule) to raise 1 gram by 1°C. Modified
from Hadas, 1979.
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2.5 > pF > 0

First phase of soil water evaporation; 
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Wet temperature = 10°C 
Relative humidity = 51%

Free water

Tsoil @ T0 = 10°C

R.H.Soil = 100%

Natural displacement 
of mites and 
springtails 

FIGURE 1.1. Diagram of gravitational moisture (the subaquatic system) in the soil
framework (from Vannier, 1987). pF = -log cm H2O suction; R.H. = relative humidity; 
2.5pF = field capacity.

Second phase of soil water evaporation; 
surrounding conditions 
Air temperature = 15°C 

Wet temperature = 10°C 
Relative humidity = 51% 

T0 < TSoil < TAir

Water vapor 

Capillary 
bound water

R.H.Soil @ 100%

Natural displacement 
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Migration and 
active fallout 
of springtails

4.7 > pF > 2.5

FIGURE 1.2. Diagram of capillary moisture (the edaphic system) in the soil framework
(from Vannier, 1987). 4.7pF = -5mPa; 2.5pF = -0.03mPa = field capacity.



As noted in Figures 1.1 to 1.3, there is a marked difference in mois-
ture requirements of some of the soil microarthropods. Thus another
major group, the Acari, or mites, are often able to tolerate considerably
more desiccation than the more sensitive Collembola. In both cases, the
microarthropods make a gradual exit from the soil matrix as the desic-
cation sequence described above continues.

Other organisms, more dependent on the existence of free water or
water films, include the protozoa and nematoda, the life histories and
feeding characteristics of which are covered in Chapter 4. In a sense, the
very small fauna, and the bacteria they feed upon, exist in a qualita-
tively different world from the other fauna, or from fungi. Both larger
fauna and fungi move into and out of various water films and through
various pores, which are less than 100% saturated with water vapor,
with comparative ease (Hattori, 1994).

In conclusion, this overview of soil physical characteristics and their
biological consequences notes the following: “For a physicist, porous
bodies are solids with an internal surface that endows them with a
remarkable set of hygroscopic properties. For example, a clay such as
bentonite has an internal surface in excess of 800m2g-l, and a clay soil
containing 72% montmorillonite possesses an internal surface equal to
579m2g-1. The capacity to condense gases on free walls of capillary
spaces (the phenomenon of adsorption) permits porous bodies to recon-
stitute water reserves from atmospheric water vapor” (Vannier, 1987).
Later, we will address the phenomenon of adsorption in other contexts,
ones that are equally important for soil function as we know it.
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Third phase of soil water evaporation; 
surrounding conditions 
Air temperature = 15°C 

Wet temperature = 10°C 
Relative humidity = 51%

R.H.Soil = R.H.Air = 51%

TSoil @ TAir = 15°C

R.H.Soil < 100%

Water vapor

Migration and 
active fallout 

of mites 

7 > pF > 4.7

FIGURE 1.3. Diagram of adsorptional moisture (the aerial system) in the soil frame-
work (from Vannier, 1987). 7pF = -1000mPa; 4.7pF = -5mPa; permanent wilting 
point = -1.5mPa = 4.18pF.



ELEMENTAL CONSTITUTION OF SOIL

Many elements are found within the earth’s crust, and most of them
are in soil as well. However, a few elements predominate. These are
hydrogen, carbon, oxygen, nitrogen, phosphorus, sulfur, aluminum, 
silicon, and alkali and alkaline earth metals. Various trace elements or
micronutrients are also biologically important as enzyme co-factors,
and include iron, cobalt, nickel, copper, magnesium, manganese, molyb-
denum, and zinc.

A more functional and esthetically pleasing approach is to define soil
as predominantly a sand–silt–clay matrix, containing living (biomass)
and dead (necromass) organic matter, with varying amounts of gases
and liquids within the matrix. In fact, the interactions of geological,
hydrological, and atmospheric (Fig. 1.4) facets overlap with those of the
biosphere, leading to the union of all, overlapping in part in the pedo-
sphere. Soils, in addition to the three geometric dimensions, are also
greatly influenced by the fourth dimension of time, over which the
physicochemical and biological processes occur.

HOW SOILS ARE FORMED

Soils are the resultant of the interactions of several factors—climate,
organisms, parent material, and topography (relief )—all acting
through time (Jenny, 1941, 1980) (Fig. 1.5). These factors affect major
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FIGURE 1.4. The pedosphere, showing interactions of abiotic and biotic entities in the soil
matrix (from FitzPatrick, 1984).



ecosystem processes (e.g., primary production, decomposition, and
nutrient cycling), which lead to the development of ecosystem properties
unique to that soil type, given its previous history. Thus such character-
istics as cation-exchange capacity, texture, structure, organic matter
status, etc., are the outcomes of the aforementioned processes operating
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as constrained by the controlling factors. Different arrays of processes
may predominate in various ecosystems (see Fig. 1.5).

PROFILE DEVELOPMENT

The abiotic and biotic factors noted above lead to certain chemical
changes down through the top few decimeters of soil [Fig. 1.6(a), 1.6(b)].
In many soils, particularly in more mesic or moist regions of the world,
there is leaching and redeposition of minerals and nutrients, often
accompanied by a distinct color change (profile development). Thus as
one descends through the profile from the air-litter surface, one passes
through the litter (L), fermentation (F), and humification (H) zones (Oi,
Oe, and Oa, respectively), then reaching the mineral soil surface, which
contains the preponderant amount of organic matter (A horizon). The
upper portion of the A horizon is termed the topsoil, and under condi-
tions of cultivation, the upper 12–25 centimeters (cm) is called the plow
layer or furrow slice. This is followed by the horizon of maximum leach-
ing, or eluviation, of silicate clays, Fe, and Al oxides, known as the E
horizon. The B horizon is next, with deeper-dwelling organisms and
somewhat weathered material. This is followed by the C horizon, the
unconsolidated mineral material above bedrock. The solum includes the
A, E, and B horizons plus some of the cemented layers of the C horizon.
All these horizons are part of the regolith, the material that overlies
bedrock. More details on soil classification and profile formation are
given in soil textbooks, such as Russell (1973) and Brady and Weil
(2000).

The work of the soil ecologist is made somewhat easier by the fact that
the top 10–15cm of the A horizon, and the L, F, and H horizons (Oi, Oe,
and Oa) of forested soils contain the majority of plant roots, microbes,
and fauna (Coleman et al., 1983; Paul and Clark, 1996). Hence a major-
ity of the biological and chemical activities occur in this layer. Indeed, a
majority of microbial and algal-feeding fauna, such as protozoa (Elliott
and Coleman, 1977; Kuikman et al., 1990) and rotifers and tardigrades
(Leetham et al., 1982), are within 1 or 2cm of the surface. Microarthro-
pods are most abundant usually in the top 5cm of forest soils (Schenker,
1984) or grassland soils (Seastedt, 1984a), but are occasionally more
abundant at 20–25cm and even 40–45cm at certain times of the year in
tallgrass prairie (O’Lear and Blair, 1999). This region may be “primed,”
in a sense, by the continual input of leaf, twig, and root materials, as well
as algal and cyanobacterial production and turnover in some ecosys-
tems, while soil mesofauna such as nematodes and microarthropods
may be concentrated in the top 5cm. Significant numbers of nematodes
may be found at several meters’ depth in xeric sites such as deserts in
the American Southwest (Freckman and Virginia, 1989).

Profile Development 11
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(a)

Litter, of
Dark brown partially decomposed 
    organic matter, O2
Black, well-decomposed amorphous organic
    matter, abundant roots, O3 
Dark gray mixture of organic and mineral
    material, abundant roots, Ah, ochric A horizon
Gray and leached, few roots, E, albic E horizon

Dark brown
    accumulation of sesquioxides and humus,
    few roots, Bs, spodic B horizon

Relatively unaltered acid material with high
content of quartz, C, As.

FIGURE 1.6. (a) Diagram of a Podzol (spodosol in North American soil taxonomy) profile
with minerals accumulating in subsurface horizons. This is the characteristic soil of conif-
erous forests (from FitzPatrick, 1984). (b) Diagram of a Cambisol profile, with the organic
matter well mixed in the Ahorizon; due to faunal mixing there is no mineral accumulation
in subsurface horizons. This is the characteristic soil of the temperate deciduous forests
(from FitzPatrick, 1984).



SOIL TEXTURE

Historically, texture was a term used to describe the workability of an
agricultural soil. A heavy, clay soil required more effort (horsepower) to
till than a lighter, sandy loam (Russell, 1973). A more quantifiable
approach is to characterize soils in terms of the sand, silt, and clay pre-
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Litter with earthworm casts and mole hills, O1

Grayish brown mixture of organic and
    mineral material with crumb or granular
    structure, earthworms present, many roots,
    Ah, umbric A horizon

Brown with granular or blocky structure,
    many roots, Bw, cambic B horizon

Unaltered basic material with low
    content of quartz, C

(b)

FIGURE 1.6. Continued.



sent, which are ranged on a spectrum of light–intermediate–heavy or
sandy–silt–clay. The array of textural classes (Fig. 1.7) shows percent-
ages of sand, silt, and clay, and the resulting soil types such as sandy,
loamy, or clayey soils.

The origin and mineralogical composition of mineral particles in soil
is a most interesting and complex one. The particles are in two major
categories: (1) crystalline minerals derived from primary rock, and (2)
those derived from weathering animal and plant residues. The micro-
crystalline forms are comprised of calcium carbonate, iron or aluminum
oxides, or silica.
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The clay fraction, so important in imparting specific physical proper-
ties to soils, to microbial life, and to plant activity via nutrient availabil-
ity, is comprised of particles less than 2 micrometers (mm) in diameter.
Unlike the sand–silt minerals, clays are weathered forms of primary
minerals, and hence they are referred to as secondary minerals. Coarse
clay particles (0.5mm) often are derived from quartz and mica; finer
clays (0.1mm) are clay minerals or weathered products of these (such as
hydrated ferric, aluminum, titanium, and manganese oxides).

No matter what size the particle is, microorganisms in unsaturated
soil exist in a world dominated by the presence of extensive surfaces.
There seems to be a general advantage to microbes living at these inter-
faces in terms of enhanced nutrient concentrations and the potential to
use many of the physical substrates themselves as energy or nutrient
sources. The thickness of water films in unsaturated conditions allows
the microbes little option except to adhere to the surfaces (Mills, 2003).
We discuss some of the microbial dynamics and interactions with soil
organic matter in Chapter 3.

The roles of coarse and fine clays in organic matter dynamics are
under intensive scrutiny in several laboratories around the world
(Oades and Waters, 1991; Six et al., 1999). It is possible that labile (i.e.,
easily metabolized) constituents of organic matter are preferentially
adsorbed onto fine clay particles and may be a significant source of ener-
gy for the soil microbes (Anderson and Coleman, 1985). For more infor-
mation on the environmental attributes of clays, see Hillel (1998).

CLAY MINERAL STRUCTURE

The clay minerals in soil are in the form of layer-lattice minerals, and
are made up of sheets of hydroxyl ions or oxygen. The clay minerals fall
into two groups: (1) those with three groups of ions lying in a plane (the
1 :1 group of minerals), and (2) those with four groups of ions lying in a
plane (the 2 :1 group of minerals). The type mineral of the 1 :1 group is
kaolinite, which typically has a very low charge on it. In contrast, the 
2 :1 type mineral, for example illite, carries an appreciably higher nega-
tive charge per unit weight than the kaolin group. More detailed infor-
mation on the clay particles, their composition, and charges upon them
is given in Theng (1979) and Oades et al. (1989).

A key concern to the soil ecologist is the extremely high surface area
found per gram of clay mineral. Surface areas can range from 50 to 100
square meters per gram for kaolinitic clays, from 300 to 500 square
meters per gram for vermiculites, and from 700 to 800 square meters per
gram for well-dispersed smectites (Russell, 1973). These impressively
large surface areas can play a pivotal role in adsorbing and desorbing
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inorganic and organic constituents in soils, and have only recently been
treated in an appropriately analytical fashion as an integral part of the
soil nutrient system (Tisdall and Oades, 1982; Oades et al., 1989).

SOIL STRUCTURE

Structure refers to the ways in which soil particles are arranged or
grouped spatially. The groupings may occur at any size level on a con-
tinuum from either extreme of what are nonstructural states: single
grained (such as loose sand grains) or massive aggregates of aggregates
(large, irregular solid).

An additional aspect of aggregates, their stabilization once they are
formed, is significant for soil ecology. Stabilization is the result of vari-
ous binding agents. Plant and microbial polysaccharides and gums
serve as binding agents (Harris et al., 1964; Cheshire, 1979; Cheshire et
al., 1984). A variety of other organic compounds act as binding agents
(Cheshire, 1979), and some biological agents such as roots and fungal
hyphae (Tisdall and Oades, 1979, 1982; Tisdall, 1991) play a similar
role.

The implications of soil structure refer not only to the particles but
also extend to the pore spaces within the structure, as noted earlier.
Indeed, it is the nature of the porosity that exists in a well-structured soil
that leads to the most viable communities within it. This in turn has
strong implications for ecosystem management, particularly for agroe-
cosystems (Elliott and Coleman, 1988). There is a very active area of
research in soil ecology related to dynamics of micro- and macroaggre-
gates, in relationship to drying–wetting cycles and tillage management.
Denef et al. (2001) measured marked differences in aggregate formation
and breakdown as a function of amount of bacterial and fungal activity 
in soils with 13C-labeled crop residues. They traced differences in fine
intra-aggregate Particulate Organic Matter (POM) to variations in 
wetting and drying regimes versus those soils not experiencing such
environmental fluctuations. We discuss the aggregate formation process
further in Chapter 3 on microbes and their effects on ecosystems.

Several types of structural forms are found in soils. The four major
types are platelike, prismlike, blocklike, and spheroidal (Fig. 1.8). All of
these are “variations on a theme,” as it were, of a fundamental unit of
soil aggregation: the ped. A ped is a unit of soil structure, such as an
aggregate, crumb, prism, block, or granule, formed by natural process-
es. This is distinguished from a clod, which is artificial or man-made
(Brady and Weil, 2000). Soils may have peds of differing shapes, in sur-
face and subsurface horizons. These are the result of differing tempera-
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ture, moisture, and chemical and biological conditions at various levels
in the soil profile.

Another concept is helpful in soil structure: the pedon. This is an
area, from 1 to 10 square meters, under which a soil may be fully char-
acterized. Later in the book, we will consider the arrangement of soil
units in a landscape, and in an entire region. Next, we will examine
some of the causes for the formation, or genesis, of soil structure.

Input of organic matter to soil is one of the major agents of soil struc-
ture. The organic matter comes from both living and dead sources (roots,
leaves, microbes, and fauna). Various physical processes, such as defor-
mation and compression by roots and soil fauna, and freezing–thawing
or wetting–drying, also have significant influences on soil structure. It
is generally recognized that plant roots and humus (resistant organic
breakdown products) play a major role in the formation of aggregates
(Elliott and Coleman, 1988; Paul and Clark, 1996). However, bacteria
and fungi and their metabolic products play an equally prominent role
in promoting granulation (Griffiths, 1965; Cheshire, 1979; Foster,
1985). We will explore organic matter dynamics in the sections on soil
biology.
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FIGURE 1.8. Various structural types found in mineral soils. Their location in the profile
is suggested. In arable topsoils, a stable granular structure is prized (from Brady, 1974).



The interaction of organic matter and mineral components of soils
has a profound influence on cation-adsorption capabilities. The inter-
change of cations in solution with cations on these surface-active 
materials is an important phenomenon for soil fertility. The capacity of
soils to adsorb ions (the cation-exchange capacity) is due to the sum of
exchange sites on both organic matter and minerals. However, in most
soils, organic matter has the higher exchange capacity (number of
exchange sites). For a more extensive account, see Paul and Clark
(1996).

There is a hierarchical nature to the ways in which soil structure is
achieved, and it reflects the biological interactions within the soil
matrix (Elliott and Coleman, 1988; Six et al., 2002). Several Australian
researchers (Tisdall and Oades, 1982, 1984; Waters and Oades, 1991)
have noted how the processes of structuring soils extend over many
orders of magnitude, from the level of the individual clay platelet to the
ped in a given soil. For most of the biologically significant interactions,
one can consider changes across a range of at least six orders of magni-
tude from <0.01mm to <1cm (Tisdall and Oades, 1982) (Fig. 1.9). Not all
soils are aggregated by biological agents; for heavily weathered Oxisols
with kaolinite-oxide clays, there seems to be no hierarchy of organiza-
tion below 20mm, because only physicochemical forces predominate
there (Oades and Waters, 1991). Studies in our Horseshoe Bend agroe-
cosystem project at the University of Georgia have uncovered signifi-
cant differences between tillage regimes (conventional, moldboard
plowing versus no-tillage, direct drilling of the seeds into the soil). The
aggregates in the 53–106mm and 106–250mm categories are most affect-
ed by fungal growth and proliferation, reflecting physical binding and
the increased amounts of acid-hydrolysable carbohydrates, which are
more prevalent in the no-tillage treatments as compared with the 
bacteria-dominated conventional tillage systems (Beare et al., 1994a,
1994b, 1997).

It is the interactions between physical, chemical, and biological
agents in soils that are so fascinating, complex, and important to con-
sider as we increase the intensity of management of terrestrial ecosys-
tems, or alter their usage in response to increased human concerns
about their use, and also strive for effective sustainability of them
worldwide (Coleman et al., 1992, 1998). Indeed, Lavelle (2000) observed
that soil ecology can be considered to have arisen from the convergence
of three major approaches: (1) the development of enormous databases
on communities of microorganisms and invertebrates and their energy
budgets via the International Biological Program (e.g., Petersen and
Luxton, 1982); (2) the placement of decomposition processes on center
stage, bridging soil chemistry with soil biology (Swift et al., 1979); and
(3) an appreciation of the effects of soil organisms on soil structure,
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including the influence of macrofauna as ecosystem engineers (Bal,
1982, Jones et al., 1994). We would add a fourth dimension, that of soils
and sediments as repositories or libraries of DNA. In Siberia, several
permafrost cores dating from 10,000 to 400,000 years old have yielded 
at least 19 different plant taxa, as well as megafauna sequences of 
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Tisdall and Oades, 1982).



mammoth, bison, and horse (Willerslev et al., 2003). Temperate cave
sediments from New Zealand yielded 29 taxa characteristic of the pre-
human environment, including two species of ratite moas. These genet-
ic records of paleoenvironments will add to our understanding of past
ecosystem structure and, possibly, function.

SOILS AS SUPPLIERS OF ECOSYSTEM SERVICES

Soils are large repositories of mineral and organic wealth, available
for both the use and misuse by civilizations on this planet (Hillel, 1991).
Levels of soil carbon have dropped by as much as 50% after 50 to 100
years of intensive farming in the North American Great Plains (Haas 
et al., 1957). Similar concerns were expressed about loss of organic 
matter and erosion of soils in the Mediterranean region at the time of
Plato in the third century BCE, as noted above (Whitney, 1925).

An example of the monetary value of what soils provide is given by the
costs of raising crops in intense nonsoil conditions using hydroponic cul-
ture. Construction of a modern hydroponics system in the United
States, including pumps and sophisticated computer control systems,
costs upward of $850,000 per hectare (FAO 1990, cited by Daily et al.,
1997). Soils also play significant roles in the regulation of global green-
house gases such as carbon dioxide, methane, and nitrous oxides
(Schimel and Gulledge, 1998). As we present in detail in later chapters,
the cleansing and recycling role that soils play in processing organic
wastes and recycling nutrients constitutes one of the major benefits pro-
vided “free” to humanity and all the biota (outside the market economy)
but worth literally trillions of dollars per year as one of the major ecosys-
tem services (Costanza et al., 1997) on Earth.

SUMMARY

The physical properties of the soil are the production of continued
interactions between soil biota and their abiotic milieu. Water, the “uni-
versal solvent,” exerts a strong influence on the biota because many of
the biota are adapted to life in a saturated atmosphere. The interplay
between liquid and gaseous phases of water, in turn, is largely deter-
mined by pore size. The arrangement of particles in soils (the poro-
sphere) is an important determinant for the ecology of the soil microbes
(Archaea, bacteria, fungi) and fauna.

Soil formation—the product of climate, organisms, parent material,
and topography, over time—leads to various soil types. Profile develop-
ment and soil texture are the product of interactions of these factors.
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The capabilities for nutrient retention, important for primary producers
in all soils, are affected by both mineral content and soil organic matter,
with organic matter usually having the higher number of exchange
sites. The aggregate structure of soils is biologically mediated in many
soil types. Soils play major roles in both recycling matter and nutrients,
as well as being important sources and sinks of global greenhouse gases.
It is apparent that soil ecology is being considered much more centrally
in ecological studies and in ecosystem management as well.
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2

Primary Production

Processes in Soils: Roots

and Rhizosphere Associates

INTRODUCTION

A. J. Lotka (1925), in his classic overview of ecological function, con-
sidered the system-level features of carbon gain, or anabolism, and the
system-level losses of carbon reduction, or catabolism. This chapter is
concerned with the primary sources of organic carbon inputs to soils, or
system anabolism. These inputs have a major impact on nutrient (nitro-
gen, phosphorus, and sulfur) dynamics and soil food web function, as
will be shown in Chapters 5 and 6.

How can we best address the problems of measurement of primary
production? Some ecological studies have declared that taking accurate
measurements of belowground inputs to ecosystems is virtually im-
possible, and assumed that belowground production equals that of pro-
duction aboveground for total net primary production (NPP) (Fogel,
1985). This rule-of-thumb is clearly inadequate and often very wrong
(Vogt et al., 1986). Our objectives in this chapter include addressing the
processes and principles underlying primary production, and indicating
where the “state of the art” is now, and is likely to be, over the next 
several years. A wide range of new techniques is now available. We
anticipate that information on and our understanding of belowground
NPP will continue to increase.

THE PRIMARY PRODUCTION PROCESS

In the process of carbon reduction, there is a net accumulation 
of sugars, or their equivalents, in the organism’s tissues. The costs of
photosynthesis are extensively treated by plant physiologists and are

23



out of the purview of this book. Other costs, related to movement of the
photosynthates within the plant and allocation to symbiotic associates,
are significant to the plant and to the ecosystem, and will be considered
further on.

Gross primary production minus plant respiration yields net primary
production. NPP is the resultant of two principal processes: (1) increas-
es in biomass and (2) losses due to organic detritus production, which
follows from or is dependent on the biomass production (Fogel, 1985).
The detritus production includes leaves, branches, bark, inflorescences,
seeds, and roots. Additional losses are traceable to exudation, volatiliza-
tion, leaching, and herbivory (Cheng et al., 1993, 1996).

Measurement of aboveground components is at times tedious, but
fairly complete in many studies (see reviews by Persson, 1980, and
Swank and Crossley, 1988). In contrast, measurement of belowground
production processes has been fraught with errors and many dif-
ficulties. However, the total allocation of NPP belowground is often 
50% or greater (Coleman, 1976; Harris et al., 1977; Fogel, 1985, 1991;
Kuzyakov and Domanski, 2000) (Table 2.1). Asizable portion of the total
production is contributed by fine roots, which often have a high turnover
rate of weeks to months (Table 2.2), which may be closely linked to nitro-
gen availability on a seasonal basis (Nadelhoffer et al., 1985, 1992; Pub-
licover and Vogt, 1993). In addition to production of fibrous root tissues,
there are accompanying inputs of soluble compounds, namely organic
acids, sugars, and other compounds. All of these have a considerable
impact on rhizosphere (the zone of soil immediately surrounding the
root and comprised of root secretions, exfoliations, and the microbial
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TABLE 2.1. Annual Production (Mg·ha-1) of Fine Roots (<2mm) and Root Production as
Percentage of Total NPP in Different Ecosystems

Ecosystem Age (years) % Contribution Production

Coniferous forest

Douglas fir 55 73 4.1–11.0
Loblolly pine ? ? 8.6
Scots pine 14 60 3.5

Deciduous forest

Liriodendron 80? 40 9.0
Oak—maple 80 ? 5.4

Herbaceous

Corn <1 25 1.2–4.2
Soybean <1 25 0.6
Tallgrass prairie ? 50 5.1

From Fogel, 1985; Coleman et al., 1976.



communities contained therein) (Hiltner, 1904; Curl and Truelove,
1986) processes. We cover these later in the chapter.

When comparing across ecosystems, one needs to be aware of marked
differences in root morphology and distribution, i.e., root architecture
(Fitter, 1985, 1991). Thus wheat roots in a Kansas field are not markedly
different in size, with primary and secondary laterals arising from root
initials. In contrast, coniferous tree roots are often comprised of long,
supporting lateral roots and short roots, which do the primary job of
water and nutrient absorption. Ecologists often use a rather simple,
pragmatic classification approach: roots with a diameter of less than 2
millimeters (mm) are classified as fine roots, and roots with a diameter
greater than 2mm are classified as structural roots (Fogel, 1991).

METHODS OF SAMPLING

There are several methods for sampling roots, many of which have
been reviewed by Böhm (1979). They may be generally classified into
two principal approaches (Upchurch and Taylor, 1990): (1) destructive
(sampling soil cores or monoliths), and (2) nondestructive, or obser-
vational, using rhizotrons or borescopes; termed minirhizotrons
(Upchurch and Taylor, 1990; Cheng et al., 1990; Pregitzer et al., 2002).

Destructive Techniques

The Harvest Method

This method involves taking samples, usually as soil cores, dry-
sorting the organic material or rinsing it free by use of water or other
flotation media, then sieving, sorting, and obtaining dry mass values.
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TABLE 2.2. Annual Losses (Due to Consumption
and Decomposition) of Fine Root Biomass in
Different Forests

Ecosystem Loss (% total)

Deciduous forest

European beech 80–92
Oak 52
Liriodendron 42
Walnut 90

Coniferous forest

Douglas fir 40–47
Scots pine 66

From Fogel, 1985.



For sorting and categorizing roots, three factors need to be considered:
root diameter, spatial distribution, and also temporal distribution
(Fogel, 1985). Much of the existing data have been derived from thou-
sands of cores that have been washed, sorted, and analyzed by legions of
weary researchers. Some of these data have been truly informative and
worth the effort. Other efforts, perhaps a majority of the published
papers, have limited value. In the course of measuring root production
by the harvest method, scientists often use what is known as the “peak-
trough” calculation, in which the peaks and valleys of root-standing
crops through the course of a growing season as represented on a graph
are successively added or subtracted about some general mean level.
Unfortunately, there can be a fairly frequent occurrence of no net
changes in root biomass, perhaps as often as 30% of the time in grass-
lands studies (Singh et al., 1984); these are known as zero-sum years,
which have no net production because the increases in production are
canceled out by those periods which show decreases. These problems
were reviewed by Singh et al. (1984) (Fig. 2.1). They extensively ana-
lyzed a grassland root production data set, looking for effects of sample
(replicate number) size and sampling frequency, and coming to the con-
clusion that fairly frequently (perhaps in 3 years out of 10) one could
expect to measure no significant increments to growth when using the
peak-trough harvest method. In addition, they compared the amount of
NPP that one would expect from the peak-trough harvest method with a
multiple-year–based computer simulation model of root production and
turnover. They found that the peak-trough method at times overesti-
mated either the “true” or the simulated root production by as much as
150% because of widely varying means; this led to spuriously high “pro-
duction” values. The simulated production was not more “real” than the
data, of course, but the researchers raised the question that perhaps the
peak-trough method, as applied usually, may often lead to some signifi-
cant overestimates of root production rates.

Considerable information is available on fine root production (FRP)
in forested ecosystems. Nadelhoffer and Raich (1992) compiled 59 
published estimates of annual net FRP from 43 forest sites worldwide.
They compared four techniques used by investigators: (1) sequential
core method (calculated as differences in means of fine root biomass
between sampling periods and measured across growing seasons); (2)
maximum–minimum method (simpler than the first method in that it
uses only the difference between annual minimum and maximum fine
root biomass to estimate FRP; (3) ingrowth core method (similar to the
method of Steen [1984, 1991], cited later in this chapter); and (4) the
nitrogen budget method (based on annual measures of net nitrogen 
mineralization in soil and net nitrogen flux into aboveground tissues.
Annual nitrogen allocation to fine roots is calculated from the difference
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FIGURE 2.1. Comparison of values for aboveground and belowground biomass (g/m2) pre-
dicted by a simulation model with data collected in the field. The curves represent output
of the model; vertical bars are means of field data plus and minus one standard error (from
Singh et al., 1984).

between net nitrogen mineralization and net nitrogen fluxes into above-
ground tissues. FRP is then calculated as the product of annual nitrogen
allocation to fine roots and the carbon–nitrogen ratio in fine roots
(Nadelhoffer et al., 1985). Interestingly, with this last method, total root



allocation (TRA), which equals root respiration plus root production,
was predicted from aboveground litterfall carbon with an r2 

= 0.36,
where p < 0.02. Whereas this method leaves almost 2/3 of the variability
in root production unaccounted for, the other methods are even less 
reliable in predicting FRP.

Isotope-Dilution Method

Another approach, using the 14C-dilution technique, has been used to
determine belowground biomass turnover in grasslands. Milchunas et
al. (1985) performed a pulse labeling of plants with 14C-CO2 for a few
hours, then followed the time-course of new 12C label incorporated into
both soluble and structural tissues of the root systems a few weeks to
months later. They then calculated the subsequent production, on the
assumption that any tissues lost would have a constant ratio of 14C to 12C
in the structural tissues. An additional step was to include 14C incorpo-
rated into plant cell walls between the first and second sampling times.
This greatly reduced the errors of the estimates (Table 2.3). Milchunas
et al. (1985) found that the grass roots were continuing to mobilize addi-
tional amounts of 14C from storage tissues in the grasses, but then made
further measurements of the labeled plants to adequately account 
for the translocated 14C. Other researchers, notably Caldwell and 
Camp (1974), have used the isotope-dilution technique with consider-
able success.

Root-Ingrowth Technique

The root-ingrowth technique (Steen, 1984, 1991) involves removing
long cores of soil, sieving the soil free of roots, and then replacing the
root-free soil into nylon tubular mesh bags with a mesh size of 5–7mm.
The mesh bags are inserted by drawing them over a plastic tube, and the
pipe plus mesh bag on the outside is inserted into the hole in the field
soil. The soil is tamped down in 5-centimeter (cm) increments as the
pipe is gradually withdrawn, leaving the mesh bag in position in the
hole. Care must be taken to have a bulk density similar to that in 
the surrounding matrix. After the soil mesh bags are placed in their
respective holes, roots are allowed to regrow into the bags. The bags are
then recovered at various intervals, and the living and recent dead root 
biomass measured (Hansson et al., 1991; Steen, 1991). The principal
assumptions are that growth into the root-free soil is the same as the
root production would have been in the normal, undisturbed soil. Some
concerns one might have about this technique are: Was the bulk density
of the soil in the mesh tubes identical to that in the surrounding soil?
Were any significant soil aggregates broken in the soil-sieving process,
which might alter rates of root growth in the bags? (Larger soil 
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TABLE 2.3. Comparison of Increments in the Belowground Biomass of Blue Grama and Wheat as Determined by Complete Harvest and
14C/12C Dilution Techniquesa

Belowground productionb

Cell-wall carbon Uncorrected Corrected for 14C incorporation

Time (days) 12C(g) 14C(g ¥ 10-4)c R(¥10-4)d RC(¥10-4)e Harvest (R1C1/R2C2-1)B1
f Error(%)g (R1C1/R2C2-1)B1

f Error(%)g

Blue grama

0.15 0.70 4.37 6.23
5 0.90 22.56 25.07 10.58 3.52 -0.65 -118 3.48 -1
8 0.95 33.48 35.26 15.70 3.64 1.22 -66 3.56 -2

11 1.19 34.57 28.99 16.21 2.70 0.53 -80 2.73 1
25 1.40 39.67 28.25 18.60 2.15 0.78 -64 2.14 0
40 2.13 48.04 22.52

Wheat

0.15 0.53 1.82 3.46
5 0.52 5.46 10.46 2.52 3.45 1.02 -70 3.53 2
8 0.72 6.91 9.60 3.19 2.96 1.25 -58 2.97 0

11 0.77 7.64 9.99 3.52 2.73 1.35 -50 2.68 -2
25 1.26 8.73 6.95 4.02 1.31 0.51 -56 1.33 2
40 2.02 9.83 4.87 4.53 -0.20 -0.35 75 -0.15 -25
62 2.17 10.19 4.70

aValues are expressed on an ash-free, dry-weight basis.
bIncrement is grams of total root (structural plus labile) between that sampling time and the last sampling time.
c14C = (DPM sample) (60s/min) [Ci(3.7 ¥ 1010 DPS)] (0.22442g/Ci).
dR = 14C/12C; R1 =

14C/12C for that sampling time; and R2 =
14C/12C for the last sampling time.

eRC = R2 corrected for the amount of 14C incorporated into structural material between that sampling time and the last sampling time.
fC = % cell wall at time 1 or 2; B1 = biomass (structural plus labile) at time 1.
g(Dilution–harvest)/harvest ¥ 100.
Modified from Milchunas et al., 1985.



aggregates might be left intact, if they do not contain any roots [Steen,
1991].) What effect is caused by higher water contents in soil volumes
without living roots? Advantages of the technique include being able to
get a clear, more accurate measure of production of roots over discrete
time intervals. Also, it is possible to obtain information on decomposi-
tion of dead roots by placing fine-mesh (<0.1mm) cloth bags into the soil
cylinders and determining the loss rates of dead roots simultaneously
with measurement of new root ingrowth over time (Titlyanova, 1987).
However, see papers by Reid and Goss (1982) and Cheng and Coleman
(1990) for comments about live root and organic matter interactions.
Some of these concerns will be addressed further in a discussion of
decomposition processes in soils later in this chapter.

Nondestructive Techniques

There has been a great resurgence recently of interest in observa-
tional, nondestructive techniques for studying root-related processes.
Several review volumes present detailed discussion of minirhizotron
and rhizotron usage, including Taylor (1987), Box and Hammond
(1990), and Fahey et al. (1999). In essence, the rhizotron approach
involves installing a large glass plate in an observation gallery and then
measuring the growth of roots against the glass over time (Fogel and
Lussenhop, 1991) (Fig. 2.2). Using this technique, one can follow a large
part of a given root population visible through the glass over various
time periods. The disadvantages are that the soil profile must be recre-
ated and re-tamped to an equivalent bulk density, or mass per unit vol-
ume of soil that closely approximates the density of the surrounding soil.
It is also only a small fraction of an entire field or forest.

Minirhizotrons, on the other hand, have a smaller amount of surface
area in one place, being tubular (5–7cm in diameter), and are placed, as
are the rhizotrons, at a 20–25° angle from the vertical (Fig. 2.3). How-
ever, being light and readily handled, they enable extensive replication
in any given plot, experimental treatment, or entire field site. Tubes
may be of either glass or a durable plastic such as polycarbonate. 
For example, Cheng et al., (1990) used 12 minirhizotron tubes in each
replicate and two replicates per treatment (conventional tillage and no-
tillage) in a study of sorghum root growth and turnover in a southeast-
ern United States agroecosystem. Other studies have followed the
dynamics of soil mesofauna, namely collembola, in fields under various
crops in Michigan agroecosystems (Snider et al., 1990). Anumber of pre-
cautions should be employed in the usage of minirhizotrons, so as to
avoid artifacts of placement. For example, total root biomasses can be
underestimated in the top 7–10cm if inadequate care is taken to shield
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the top of the minirhizotron tubes from transmitted light. Also, ade-
quate soil–tube contact needs to be ensured by careful drilling and
smoothing of the bored hole (preferably using a hydraulic coring appa-
ratus), as noted by Box and Johnson (1987). If there is some open space
between the outer tube surface and the soil, roots may respond as if this
is a major soil crack and preferentially grow along it (van Noordwijk 
et al., 1993). To handle the large amounts of data and images obtained
using minirhizotrons, it is necessary to use image analysis programs
such as those described by Smucker et al. (1987), Hendrick and Pregit-
zer (1992), and Pregitzer et al. (2002). With the advent of digital analy-
sis techniques and image storage on CD-ROM, the literally millions of
bits of information per soil–root image can be manipulated and ana-
lyzed reasonably promptly and efficiently. Caution must be taken, how-
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FIGURE 2.2. University of Michigan Soil Biotron. (a) View of tunnel and aboveground
laboratory from the south. (b) View from the west. Note white pine stump left after logging
and burning in about 1917. (c) Interior of tunnel showing window bays covered with 
insulated shutters. (d) Close-up of glass, wire-reinforced, 6-mm-thick windowpane. Note
fungal rhizomorphs. The wire grid is about 2cm by 2cm (from Fogel and Lussenhop, 1991).



ever, to ensure that the material used for the tube has a minimal effect
on the roots being observed. Withington et al. (2003) compared minirhi-
zotron data for glass, acrylic, and butyrate tubes in an apple orchard,
and acrylic and butyrate tubes in a study with six forest tree species.
Root phenology and morphology were generally similar among tubes.
Root survivorship varied markedly between hardwood and conifer
species, however, probably because of hydrolysis by fungi interacting
with the plastic tubes. Comparison of data from cores of root-standing
crops with data from cores of minirhizotron-standing crops showed a
closer match with the acrylic than the butyrate data. Glass was consid-
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FIGURE 2.3. An auger jig system used to install angled minirhizotron tubes (from 
Mackie-Dawson and Atkinson, 1991).



ered to be the most inert, but one-third of the glass tubes were lost as a
result of breakage during the winter in the Pennsylvania site.

Frank et al. (2002), using minirhizotrons, measured significant
increases in root growth in nine higher-elevation (1635–2370 meters)
mixed-grass grazing lands in Yellowstone National Park. They found
that large migratory herds of elk, bison, and pronghorn, by their graz-
ing, stimulated aboveground, belowground, and whole-grassland pro-
ductivity by 21%, 35%, and 32%, respectively. This feedback effect,
which was demonstrated earlier by Dyer and Bokhari (1976) and
McNaughton (1976), will be addressed further in system-level effects
considered in Chapter 5.

In a study of seven minirhizotron data sets, Crocker et al. (2003) sub-
stituted root numbers for root lengths using a regression technique. Lin-
ear regression models were fitted between root length and root number
for production and mortality of a wide range of tree species from sub-
tropical to boreal conditions. Treatments yielded r2 values ranging from
0.79 to 0.99, indicating that changes in root numbers can be used to pre-
dict root-length dynamics reliably. Slope values for mean root segment
length (MRSL) ranged from 2.34 to 8.38mm per root segment for both
production and mortality. Crocker et al. (2003) caution that the quanti-
tative relationship between root lengths and numbers must be estab-
lished for a particular species–treatment combination, but it will save
on time needed to quantify root dynamics.

Additional approaches to calculation of fine root production and
turnover continue to appear in the scientific literature. Gaudinski et al.
(2001) used one-time measurements of radiocarbon (14C) in fine roots 
(<2mm in diameter) from three temperate forests in the eastern United
States—a coniferous forest in Maine, a mixed hardwood forest in 
Massachusetts, and a loblolly pine plantation in South Carolina. Roots 
were sampled as either mixed (live and dead) or live. Using accelerator
mass spectrometry (AMS) to analyze very small samples, Gaudinski 
et al. (2001) found that root tissues are derived from recently fixed 
carbon, and the storage time prior to allocation to root growth is less
than 2 years and more likely less than 1 year. Live roots in the organic
horizons contain carbon fixed 3–8 years ago, versus roots in mineral B
horizons with carbon of 11–18 years mean age. This spatial component
to root age has not been measured before, and has important implica-
tions in calculating more realistic carbon budgets for terrestrial ecosys-
tems. This assessment of mean root ages in forest tree roots is in marked
contrast to the more rapid turnover times as noted above in the studies
using minirhizotrons and other direct means of observation. It does not
negate the findings of the observational studies, but emphasizes the
need to be aware of the wide range of age of fine roots in the entire soil
profile.

Methods of Sampling 33



ADDITIONAL SOURCES OF PRIMARY PRODUCTION

An additional contribution to net primary production comes from
algal populations in the surface few millimeters or on the soil surface
itself. By measuring CO2 fixation by cyanobacteria and algae on the sur-
face of intact cores taken from an agroecosystem, Shimmel and Darley
(1985) calculated that approximately 39 grams (g) of carbon were fixed
per square meter per year. This is a small proportion (5%) of total NPP
for the study site (the conventional-tillage agricultural system in 
Georgia), which averaged 800g per square meter per year aboveground
NPP. The type of organic matter and the amount that may feed directly
into detritivorous fauna could be of importance beyond the total produc-
tion figures on an annual basis. For example, cryptogamic crusts can be
significant agents of nitrogen fixation, providing inputs of nitrogen and
carbon in the ecosystems of nutrient-poor arid lands (Evans and Belnap,
1999; Belnap, 2002).

SYMBIOTIC ASSOCIATES OF ROOTS

From the earliest origins of a land flora, more than 400 million years
ago, there has been a structural–functional interaction between plant
roots and arbuscular mycorrhizae (AM) [Fig. 2.4(a)] as shown in the fos-
sil record (Pirozynski and Malloch, 1975; Malloch et al., 1980). Probably
the earliest land plants arose during the Ordovician period and were
similar to present-day hornworts and liverworts (Redeker, 2002).
Today’s hornworts and liverworts do form associations with AM fungi,
but because they do not have true roots, they do not meet all the criteria
of AM (Read et al., 2000). Most families of terrestrial plants have 
mycorrhizal symbionts; however, two families—the Cruciferae and 
the Chenopodiaceae are conspicuous exceptions (Allen, 1991). Indeed,
recent analyses have shown that zygomycetous fungi colonize a wide
range of lower land plants (hornworts, many hepatics, lycopods,
Ophioglossales, Psilotales [horsetails], and Gleicheniaceae) (Read et al.,
2000). These associations are structurally analogous to mycorrhizas,
but their functions remain to be determined (Read et al., 2000).

The ectomycorrhizae, or ECM [Fig. 2.4(b)], are prevalent in several
tree families such as the Fagaceae (including the beeches and oaks), and
also in the Pinaceae within the conifers. ECM arose relatively recently,
only 160 million years ago, in the Cretaceous period (St. John and 
Coleman, 1983).

After examining the structures of the principal types of mycorrhizae,
we will consider information on carbon costs to the plant as well.
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(a)

(b)

FIGURE 2.4. The internal structures of the different mycorrhizal types from ecto-
mycorrhizae of Quercus dumoa (b) and arbuscular mycorrhizae of Adenostoma sparsifolia
(a). Shown are arbuscules (a), vesicles (v), internal hyphae (h), mantle (m), and Hartig net
(hn) (from Allen, 1991).



MYCORRHIZAL STRUCTURE AND FUNCTION

Arbuscular mycorrhiza (AM), the so-called endomycorrhiza, are char-
acterized by structures within root cells; these structures are called
arbuscules because they grow and ramify, treelike, within the cell 
(see Fig. 2.4[a]). They are members of the Phycomycete fungi family.
Most, but not all AM (two exceptions are known in the Endogonaceae),
also have storage structures known as vesicles, which store oil-rich prod-
ucts. AM send out hyphae for several centimeters (a maximum of 6–10)
into the surrounding soil and are instrumental in facilitating nutrient
uptake, particularly phosphate ions (Allen, 1991). AM are known only as
obligate mutualists (i.e., the root provides carbon, and the mycorrhiza
tap an enhanced pool of mineral nutrients) and have not been cultured
yet apart from their host roots. Because AM hyphae will grow out from
the germinating chlamydospore toward root surfaces, responding to 
soluble compounds, possibly including flavonoids, they are considered 
to have slight saprophytic competence (Azcón-Aguilar and Barea, 1995).
Some rhizosphere microorganisms seem to stimulate AM germination
and mycelial growth, functioning either by detoxifying or removing
inhibitors from the growth medium or by utilizing self-inhibiting 
compounds from the AM fungus, enabling more growth than would be
possible under axenic conditions (Azcón-Aguilar and Barea, 1995).

Ectomycorrhiza (ECM) are significantly different in physiology and
ecology. These are principally Basidiomycetes and proliferate between
cells, not inside them as is the case for AM. An obvious morphological
alteration occurs with formation of the mantle and Hartig net (a combi-
nation of epidermal cells and ECM fungal tissues) on the exterior of the
root (see Fig. 2.4[b]). ECM send hyphae out several meters into the sur-
rounding soil. The hyphae aid in nutrient uptake, including inorganic
and some organic nitrogen–phosphorus compounds (Read, 1991). The
hyphae constitute a significant proportion of carbon allocated to below-
ground NPP in coniferous forests (Vogt et al., 1982). The reproductive
structures of ECM are the often-observed mushrooms in oak or pine
forests. ECM will form resting stages, or sclerotia—cordlike bundles of
hyphae that can persist for years. ECM, unlike AM, often can be cultured
apart from their host plants. Some ECM may have considerable decom-
posing capabilities and can obtain a portion of their reduced carbon from
decomposing substrates (i.e., leaf litter). An innovative study by Hobbie
et al. (2002) examined the flows of 13C and 14C to basidiomycete sporo-
carps, needles, and litter in a western Oregon forest soil, using accelera-
tor mass spectrometry of 1- to 2-milligram samples of soils and tissues.
Mycorrhizal associations were indicated by very young (0–2 years) age of
14C, whereas the saprotrophic genera averaged 10 years in radiocarbon
age (Hobbie et al., 2002). With analytical tools now at hand, Hobbie et al.
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(2002) suggest that needle and fungal carbohydrates should be analyzed
for 14C content separately from needle and fungal protein. They predict
that protein will be significantly older than carbohydrates when amino
acids are taken up directly from the soil, versus the faster flow of carbon
from photosynthates to the current crop of needles in litter.

ECOSYSTEM-LEVEL CONSEQUENCES OF ECM FUNCTION

ECM form fungal mats in the surface soils of Douglas fir 
(Pseudotsuga menziesii) forests and probably other coniferous forests.
The mats contain higher microbial biomass, with two to three times
more soil mesofauna (collembola, mites, and nematodes) feeding on
them (Cromack et al., 1988). The fungal mats play an important role in
buffering against iron and aluminum activity in the acidic soils on the
west slope of the Cascade Mountains in the Pacific Northwest of the
United States (Entry et al., 1992). As iron and aluminum activity in soil
increases, calcium oxalate crystals formed by the fungal mats dissoci-
ate, releasing calcium and chelating the iron and aluminum. Entry et al.
(1991) also measured greater litter decomposition rates and greater
mineralization of nitrogen and phosphorus in ECM mat soils.

Alternative methods for determining ECM fungal community make-
up have been developed using molecular techniques. Landeweert et al.
(2003) used a basidiomycete-specific primer pair (ITS1F–ITS4B) to
amplify fungal internal transcribed spacer (ITS) from total DNA
extracts of the soil horizons, followed by an amplified basidiomycete
DNA cloning and sequencing procedure, to identify the ECM fungi pre-
sent. The soil samples were from four distinct horizons of a spodosol 
profile, under coniferous (Norway spruce [Picea abies] and Scots pine
[Pinus sylvestris]) vegetation. By identifying basidiomycete mycelium
in the soil, the ECM fungal community was analyzed in a novel fashion
(ECM root tips were excluded from the analysis). Landeweert et al.
(2003) sampled from the O layer (0–2cm deep); the E horizon (3–18cm);
the enriched eluvial, or B horizon (18–35cm); and the parent material,
or C horizon (deeper than 40cm). They found 16 of the 25 total opera-
tional taxonomic units (OTUs) exclusively in the deeper mineral soil, or
B horizon. The authors suggested that these distributions might be the
result of somewhat higher amounts of carbon and a higher pH existing
deeper in the profile. This analysis demonstrates the need to consider
the full suite of ECM fungi present, and is a cautionary note that the
entire profile should be considered when determining species richness
in a given site.

There are other kinds of mycorrhiza—most notably Ericaceous 
mycorrhiza—which have some traits in common with ECM and AM. 
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Ericaceous mycorrhiza are symbiotic with many heathland plants;
Rhododendron and Kalmia spp. are often infected with Ericaceous 
mycorrhiza (Dighton and Coleman, 1992). The fungus normally involved
in forming the infections is the ascomycete Hymenoscyphus ericae or its
anamorphs, and significant amounts of chitin-N can be transferred to
the host plant (Kerley and Read, 1995). Ericaceous mycorrhiza are noted
for the ability to facilitate direct uptake of organic nitrogen in low pH
environments, and some of them produce proteases to enhance the nitro-
gen uptake without going through any external mineralization in the
soil solution (Bending and Read, 1996). As may often be the case with
residues derived from ericaceous sclerophylls, the essential elements
(nitrogen and phosphorus) will be masked by skeletal materials, namely
lignin or its breakdown products. In these circumstances, the ability of
the mycorrhizal fungus to produce lignase or phenol oxidase activities
and thus expose the nutrient-containing substrates would be just as
important as production of the enzymes (e.g., phosphatases and pro-
teases) that are directly involved in nutrient release. Also see comments
in the section on future directions in mycorrhizal research at the end of
this chapter. For information on these, and other less-common mycor-
rhiza, refer to Allen (1991, 1992), Read (1991), and Smith and Read
(1997).

ACTINORHIZA

Another symbiotic associate with roots plays an important role in
many forested ecosystems worldwide. It is the actinorhiza, an actino-
mycete (filamentous, branching, gram-positive bacteria) that forms
nodules and fixes dinitrogen in a fashion analogous to that used by 
rhizobia. A majority of actinorhizal species are pioneers on nitrogen-
poor, open sites (Baker and Schwintzer, 1990). The dominant acti-
norhizal genus is Frankia, occurring on roots of eight plant families,
encompassing 24 genera and some 230 species of dicotyledons. Promi-
nent actinorhizal plant families and genera include Betulaceae, on 47
Alnus species; Casuarinaceae, on 16 Casuarina species and 54 Alloca-
suarina species; Myricaceae, on 28 Myrica species; and Rhamnaceae, on
31 Ceanothus species. These genera are widespread in ecosystems on all
continents except Australia (Baker and Schwintzer, 1990).

CARBON ALLOCATION IN THE ROOT/RHIZOSPHERE

Looking at the root–soil system as a whole, what is the totality of the
resources involved, and how are these resources allocated under various
conditions of stress and soil type?
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Several reviewers (Coleman, 1976; Coleman et al., 1983; Fogel, 1985,
1991; Martin and Kemp, 1986; Cheng et al., 1993; Cheng, 1996;
Kuzyakov, 2002) have noted that from 20 to 50% more carbon enters the
rhizosphere from root exudates and exfoliates (sloughed cells and root
hairs) than actually is present as fibrous roots at the end of a growing
season. This was determined in a series of experiments using 14C as a
radiotracer of the particulate and soluble carbon (Shamoot et al., 1968;
Barber and Martin, 1976). In fact, the mere change from a hydroponic
medium to a sand medium was enough to double the amount of labile 
carbon as an input to the medium. This difference was attributed to 
the abrasion of roots against sand particles. In addition, the root–
rhizosphere microflora has the potential to act as a sizable carbon sink
(Wang et al., 1989; Helal and Sauerbeck, 1991), which can double the
losses to soil as well. This is convincing proof that the combined below-
ground system—roots, microbes, soil, and fauna—is governed by source-
sink relationships, just as are intact plants (i.e., roots and shoots).

Extensive amounts and complexities of carbon compounds are elabo-
rated in the rhizosphere (Rovira et al., 1979; Kilbertus, 1980; Foster et
al., 1983; Foster, 1988; Lee and Foster, 1991; Cheng et al., 1993). The
extent to which this exuded carbon is integral to root and rhizosphere
function is of great interest to ecologists. Nitrogen-fixing bacteria resid-
ing in the rhizosphere and the release of their nitrogen to the plant can
be stimulated by root exudates (Rao et al., 1998, cited in Jones et al.,
2003). There are numerous direct and indirect positive and negative
effects of carbon flows in the rhizosphere that encompass a wide array of
symbiotic associations and trophic and biochemical interactions (Jones
et al., 2003) (Figs. 2.5 and 2.6). Although the potential for rhizodeposi-
tion-driven N2 fixation in the soil is small in comparison to inorganic and
symbiotic fixation inputs, it may be of importance in nitrogen-limited
ecosystems (Jones et al., 2003). The boundary layer between roots 
and soil—the so-called “mucigel” (Jenny and Grossenbacher, 1963)—is 
jointly contributed by microbes and root surfaces. Studies of the root tip
and capsule components have been most informative about the roles of
signal molecules that are exuded at subnutritional rates in soil. One of
the key components involved is the border cells. These cells are lost from
the root tip at a rate regulated by the root and secrete compounds that
alter the environment of, and gene expression in, soil microorganisms
and fauna (Farrar et al., 2003) (Fig. 2.7). These root-tip capsule compo-
nents include high molecular weight (MW) mucilage secreted by the root
cap, as well as cell-wall breakdown products resulting from the separa-
tion of thousands of border cells from each other and the root cap (see
Fig. 2.7).

Much research has been conducted on ways to separate total CO2

efflux into that from microbial respiration from soil organic matter
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FIGURE 2.5. Schematic representation of the major carbon fluxes and pools in the 
rhizosphere (from Jones et al., 2003).

FIGURE 2.6. Schematic representation of the positive and negative direct and indirect
effects of root exudates on plant growth (from Jones et al., 2003).



(SOM) and that from roots and rhizosphere microbial populations.
Methods employed have been summarized into three broad categories
(Hanson et al., 2000): component integration, root exclusion, and iso-
topic approaches. Component integration entails separation of the con-
stituent soil components involved in respiring CO2 (i.e., roots, sieved
soil, and litter) followed by measurement of the specific rates of CO2 out-
puts from each component part (Coleman, 1973; Trumbore et al., 1995).
The root exclusion method estimates root respiration indirectly by sub-
tracting the soil respiration without roots from the soil respiration with
roots (Anderson, 1973; Edwards, 1991). Isotope methods refer to the use
of either radioisotopic 14C (Cheng et al., 1993; Horwath et al., 1994) or
stable 13C isotopes to trace the origin of soil respiration (Andrew et al.,
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1999; Robinson and Scrimgeour, 1995). Isotope methods have a signifi-
cant advantage over the component integration and root exclusion
methods because they permit researchers to partition carbon between
rhizosphere respiration and SOM decomposition in situ, thus avoiding
the effects of soil disturbance.

CARBON ALLOCATION COSTS OF DEVELOPMENT AND
MAINTENANCE OF SYMBIOTIC ASSOCIATIONS WITH ROOTS

It is difficult to measure apportioning of energy to roots because accu-
rate measurement of belowground NPP entails a number of precau-
tions, as previously noted. Over the last 2 decades, there have been only
a few estimates of the carbon costs that have been exacted by the fungal
or rhizobial symbiont upon its root partner. The following are two exam-
ples of the sorts of measurements that have proven informative.

Pate et al. (1979) compared partitioning and utilization of assimi-
lated carbon and nitrogen, using nonnodulated, nitrate-fed, and 
nodulated, dinitrogen-fixing plants of white lupine, Lupinus albus L.
Pate et al. (1979) calculated production and losses, and noted that not
only were the nodulated root microflora more active, but there was also
more new root growth under the stimulation of the nodule bacteria,
which were acting as a greater root sink for translocated carbon.

Kucey and Paul (1982) measured two symbionts, an AM mycorrhiza
and rhizobia in seedlings of fava beans, Vicia faba L. The bean seedlings
were arranged experimentally as either mycorrhizal- or nonmycor-
rhizal-infected, and also as nodulated or nonnodulated bean plants—
four treatments in all. After inoculating or infecting the plants of choice,
they then measured CO2 fixation rates, translocation of 14C–labeled 
photosynthate to roots, and nitrogen-15 fixed by the various plants.
Kucey and Paul found gradually increasing amounts of labeled 14C
translocated and/or evolved belowground, as a function of infection com-
plexity (Table 2.4). In addition, they obtained useful information on root
and shoot weight, and rates of respiration.

The nodules of fava beans utilized 6% of the carbon fixed by singly
infected (rhizobial) plants, but twice that amount, or 12%, of the carbon
used by the doubly infected plants, i.e., both mycorrhiza and rhizobia
symbionts (Table 2.5). Interestingly, rates of CO2 fixation increased sig-
nificantly with biotic complexity, but changes in root and shoot biomass,
while opposite to that of CO2, were statistically insignificant.

Other studies, using real-time monitoring of 11C under laboratory
conditions (Wang et al., 1989), found that mycorrhizal infection 
nearly doubled the “sink strength” of the roots, hence there was greater
carbon flow of translocated photosynthate in studies of African Panicum

42 Chapter 2 Roots and Rhizosphere Associates



grasses (the same species studied by McNaughton, 1976, and
McNaughton et al., 1998), when compared with noninoculated control
plants. Some elegant field studies in Scottish grassland soils near 
Edinburgh have demonstrated significant flows of carbon from roots to
mycorrhiza. Within 21 hours of pulse-labeling a grassland sward in the
field with 13CO2, between 3.9 and 6.2% of the 13CO2 passed through 
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TABLE 2.4. 14C Distribution in 5- to 6-Week-Olda Symbiotic and Nonsymbiotic Beans

Mycorr. Rhiz. Mycorr.-Rhiz.
Control (MI) (RI) (RMI)

Plant data

CO2 fixation rateb 6.79c 6.96b 7.32b 9.34a
Shoot weight (g) 4.31a 4.40a 3.64a 3.59a
Root weight (g) 2.03a 1.65a 1.75a 1.64a
Nodule weight (g) — — 0.11 0.15
Mycorrhizal infection (%) — 58.6 — 54.8

14C distribution (%)

Shoot biomass 54.6 52.20 46.8 42.0
Shoot respiration 1.7 1.0 2.0 1.1
Root biomass 20.7 20.2 25.0 16.8
Root respiration 23.0c 26.8c 24.6c 37.9c

Mycorrhizal biomass — ND — ND
Mycorrhizal respiration — ND — ND
Nodule biomass — — 1.61 2.24
Nodule respiration — — ND ND

a8-hour labeling duration.
b(mgCg-1 shoot Ch-1) calculated using shoot weights as measured at the end of the

experiment.
cRoot plus symbiont respiration.
a–c Means followed by the same letter do not differ (P < 0.5).
From Kucey and Paul, 1982.

TABLE 2.5. N2 Fixation by Mycorrhizal (RMI) and Nonmycorrhizal (RI) Nodulated
Beans (4- to 5-Week-Old)

Nodule N fixed per
wt/root wt % N in N unit nodule

(mg g-1) shoot fixed (mg) wt (mg g-1)

Rhizobial 87.7 3.81 0.78 16.2
Mycorrhizal-rhizobial 104.0b 4.34a 1.06a 15.8

aSignificantly different (P £ 0.1%) from rhizobial treatment.
bSignificantly different (P < 0.01%) from rhizobial treatment.
From Kucey and Paul, 1982.



the external mycelium of the AM fungal symbionts to the atmosphere
(Johnson et al., 2002). This is the first in-the-field verification of similar
results measured using pot experiments. Additional recent pot experi-
ments have exposed mycorrhizal plants to fossil (14C–depleted) carbon
dioxide and collected samples of extraradical mycelium (ERM) hyphae
over the following 29 days. Analyses of their 14C content by accelerator
mass spectrometry (AMS) revealed that most ERM hyphae of AM fungi
live, on average, 5 to 6 days (Staddon et al., 2003). This high turnover
rate indicates the existence of a large and rapid mycorrhizal pathway of
carbon in the soil carbon cycle.

Recent field research has demonstrated the significant effects of an
additional flow of carbon from plant roots to mycorrhiza and into 
the soil. The glycoprotein glomalin, which is produced by arbuscular
mycorrhizal fungi (AMF), has a marked effect on soil aggregate water
stability (Wright, et al., 1999). We discuss this further in the section on
microbial interactions in soil (in Chapter 3).

FUTURE DIRECTIONS FOR RESEARCH ON ROOTS AND
MYCORRHIZAL FUNCTION AND BIODIVERSITY

As researchers and government agencies become ever more inter-
ested in and concerned about “sustainability” and long-term manage-
ment of ecosystems, they will require much more information on
system-level carbon allocation and energetics of these ecosystems. A
recent example is related to concerns about carbon sequestration and
ecosystem carbon cycling. Root–mycorrhizal interactions have been
found to be diagnostic of significant differences in potential seedling 
relative growth rate (RGR) (Cornelissen et al., 2001). Plant species with
ericoid mycorrhiza showed consistently low RGR, low foliar nitrogen
and phosphorus concentrations, and poor litter decomposability.
Species with ectomycorrhiza had an intermediate RGR, higher foliar
nitrogen and phosphorus, and intermediate to poor litter decomposabil-
ity. Plant species with AM showed comparatively high RGR, high foliar
nitrogen and phosphorus, and fast litter decomposition. The incorpora-
tion of mycorrhizal associations into functional type classifications
should prove useful in assessing plant-mediated controls on carbon and
nutrient cycling.

Several recent studies of mycorrhizal function have noted the ways in
which mycorrhiza facilitate nutrient uptake from a wide range of
sources. For example, Perez-Moreno and Read (2001) measured an
enhanced recycling of nitrogen and phosphorus from the necromass of
nematodes in cultures with Betula pendula. In nonmycorrhizal treat-
ments, the uptake of nitrogen and phosphorus was slightly greater, but
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with mycorrhiza of Paxillus involutus (an ECM) present, the nutrient
uptake was significantly higher still. Ectomycorrhizal plants (e.g.,
lodgepole pine [Pinus contorta]) and mycorrhizal fungi such as Amanita
muscaria have been shown to utilize organic forms of nitrogen directly
(Abuzinadah and Read, 1989; Finlay et al., 1992). In addition, ericoid
mycorrhiza can produce extracellular enzymes that mineralize nitrogen
from protein–tannin complexes (Leake and Read, 1989; Bending and
Read, 1996). In a number of ecosystems worldwide that have ericaceous
or heath vegetation, this direct pathway, by “short circuiting” the micro-
bial mineralization pathway, would enable the ericaceous plants to sur-
vive, indeed thrive, in the absence of adequate nitrogen from usual
mineralization rates (Northup et al., 1995). Note that newly available
analytical techniques such as accelerator mass spectrometry (see 
Staddon et al., 2003, on previous page) have allowed detection of small
quantities of carbon other than those from atmospheric sources, such as
those from the direct uptake of amino acids, as noted above, and also
those from anaplerotic (dark fixation) pathways, the latter providing as
much as 3% of total carbon in ECM or saprophytic tissues (Hobbie et al.,
2002).

As noted above, the vast majority of plants have mycorrhizal as-
sociates. Little is known yet of the species richness of mycorrhiza, par-
ticularly of the arbuscular, or AM, type. Until recently, AM mycorrhiza
were assumed to have little host-specificity and to generally colonize a
wide range of possible host species. In an intensive study of the plant-
AM fungal interactions within a 1-hectare old field in North Carolina,
Bever et al. (2001) found that, rather than the initial estimate (in 1992)
of 11 AM species in this field, they now have isolated at least 37 species,
with one-third of them previously unrecorded. The ecological preference
ranges of each species are quite different, reflecting significantly differ-
ent optima for temperature, moisture content, host, and phenological
phases of the plants in the field. The implications of these varied inter-
actions for plant diversity are very large, and the subject is one of
increasing interest among plant community ecologists; the extent of
mycorrhizal growth and uptake of labile carbon may affect the overall
plant community makeup in interesting, hitherto unthought-of ways
(Bever, 1999).

The molecular identification of AM has increased greatly in the last
decade. By taking samples from within growing roots, amplifying, and
producing 18S rDNA sequences, Redeker et al. (2000) and Redeker
(2002) found a phylogenetically deep divergence of lineages within the
Glomales, one of the principal groups within the AM fungi. In addition,
two or more species were found to be co-occurring within the same root,
indicating the probable existence of complex interactions of the fungi
involved. The possibility for various species of AM fungi to become active
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at various times of the year is an intriguing one for future research on
root–mycorrhizal fungal ecology (Redeker, 2002).

In addition to plant–fungi interactions, there are additional inter-
actions with underground fauna to be considered. Klironomos and
Kendrick (1995) found that the hyphae of AM are generally less palat-
able to fungivorous fauna than the hyphae of soil-borne conidial fungi.
Such species-specific differences in palatability have been observed in
ectomycorrhizal fungi as well (Schultz, 1991). We consider feeding
behaviors in Chapter 4 and system-level impacts in Chapters 5 and 6.

The tools and analytical skills are at hand; it is now necessary to pro-
ceed with as much care in the assessment and measurement of below-
ground processes as has heretofore been given to aboveground
processes.

SUMMARY

Primary production processes constitute the principal biochemical
motive force for all subsequent activities of heterotrophs in soils. The
inputs come from two directions: (1) from aboveground onto the soil sur-
face, as litter, and (2) from belowground, as roots, which contribute exu-
dates and exfoliated cells while the roots are alive, and then as root litter
when the roots die.

A wide range of direct measurements of root production and turnover
are now in use. These include various nondestructive techniques includ-
ing rhizotrons and minirhizotrons, and destructive techniques includ-
ing soil coring and isotopic-labeling of roots followed by destructive
sampling at specified time intervals to determine dynamics (e.g., over
an entire growing season).

Of equal importance to roots themselves are their generally more effi-
cient physiological extensions—the root–fungus mutualistic asso-
ciation, mycorrhiza. At a cost of 5–30% of the total photosynthate
translocated belowground, mycorrhiza assist in obtaining inorganic
nutrients, water, and in some cases, organic nutrients over a much
wider range of the soil volume than roots alone. This symbiotic associa-
tion has a significant effect on other biota, namely microbes and fauna,
which inhabit all soil systems.

46 Chapter 2 Roots and Rhizosphere Associates



3

Secondary Production:

Activities of Heterotrophic

Organisms—Microbes

INTRODUCTION

We will now consider system-level catabolism, or dissipation and
transformation of energy (the roots of catabolism, cata bolos, mean
“breaking-down activity”). The transfer of energy from the primary pro-
ducers into organisms farther along the food chain supports a wide
range of heterotrophs. The production of new body tissues by het-
erotrophs from primary production is called secondary production. If the
plant food sources are living, the linkages are called a grazing food
chain. Conversely, if the contributions from net primary production
(NPP) are dead, the sequence is termed a detrital food chain.

This difference in food chains has some impact on system function, in
that grazing food chains have a direct feedback, whereas detrital food
webs have only indirect effects. Soil food chains and webs are discussed
further in Chapter 6.

The array of energy dissipators, or heterotrophs, in soil is incredibly
diverse. The size range goes from less than 1 micrometer (mm) in length
(bacteria) to the largest fossorial mammals, such as aardvarks or bad-
gers, and giant earthworms that reach 2 meters (m) in length (Lee,
1985). Larger entities include ant and termite colonies, considered by
some to be a “superorganism” (Emerson, 1956). Larger yet are super-
colonies of one organism of uniform genetic material such as the ex-
tended mycelium of a fungus in Michigan that extended over more than
7 hectares (Smith et al., 1992).

All heterotrophs, of whatever size or volume, are involved in ingest-
ing organic carbon and associated nutrients and assimilating them into
carbohydrates, lipids, and proteins. Using a portion for production of
new body tissue, an extensive amount (40% or more) of the chemical

47



bond energy is lost as metabolic heat and evolved carbon dioxide (CO2).
Assimilated NPP (e.g., plant carbohydrate) is catabolized according to
the general formula:

C6H12O6 + 6O2 Æ 6CO2 + 6H2O

The more general formulation thus becomes:

CnH2nOn + nO2 Æ nCO2 + nH2O

Stoichiometrically, this is the reverse of photosynthesis, which was dis-
cussed in Chapter 2.

COMPOUNDS BEING DECOMPOSED

There are literally thousands of chemical and biochemical com-
pounds involved in catabolism. Viewed in an ecological context, how-
ever, they can be classified into two functional categories: (1) Primary
compounds, those which are directly derived from plant, microbial, or
animal tissues, and (2) secondary compounds, those which are produced
as a result of organic matter–mineral interactions, usually result-
ing in small or large chemical changes in chemical bonds or degree of
aromaticity.

Both categories comprise a few major types (or groups) of compounds:
soluble, or labile, versus relatively insoluble (in water) nonlabile, 
or resistant, compounds. Compounds in the former category include
organic acids, amino acids, and simple sugars. Compounds in the latter
category include lignin, cellulose, cutins, and waxes. One should also
consider biochemical versus biological bond types as defined by McGill
and Cole (1981). These reflect the differences between ester linkages,
designated R–C–O–O–R, which yield energy when broken, and the car-
bonyl C–N, C–P, or C–S bonds, which require energy to be cleaved, yield-
ing nutrients to the microbes (Newman and Tate, 1980).

MICROBIAL ACTIVITIES IN RELATION TO CATABOLISM IN 
SOIL SYSTEMS

The principal “players” in the decomposition process are the micro-
bial populations, (i.e., the bacteria, fungi, and viruses). The bacteria and
fungi are as biochemically diverse as they are diverse in phylogeny. 
Bacteria, currently considered to encompass more than 35 phyla, are 
probably the most speciose array of organisms on earth (Tiedje et al.,
2001; Torsvik and Øvreås, 2002). In addition, bacteria are undoubtedly 
the most numerous organisms, and have been estimated to total from 4
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to 6 ·1030 cells on Earth. A sizable proportion (more than 90%) of bacte-
ria are in the subsurface, which includes the earth’s mantle to 4 kilome-
ters (km) in depth (Whitman et al., 1998). Numbers of bacteria in soils of
all biomes were estimated to be 2.5 ·1029 cells, with some of the larger
quantities in desert scrub and savanna lands. The foregoing counts
translate into 2 ·109 cells g-1 in the top meter, and 1 ·108 cells g-1 in the 1-
to 8-m soil depth, with numbers in forest soils being markedly lower
(Whitman et al., 1998).

In soils away from the rhizosphere, the environment for bacteria is
usually stressful. A majority of bacteria exist in this low-nutrient condi-
tion and may be starving (Morita, 1997). One should note that although
some bacteria can double every 20 minutes or less in growth media in
the laboratory, they may undergo only two to three divisions per year, on
average, in soil under field conditions because of the extreme limitations
of available reduced carbon substrates. This energetic limitation is con-
sidered in detail in Chapter 6. A pictorial representation of bacterial
carbon flow is given in Figure 3.1 (Scow, 1997). Note the aforementioned
flows to both biomass growth and maintenance respiration. The latter
requirement becomes limiting to many bacteria under conditions of
nutrient limitation. In anoxic or low-redox microsites within soil aggre-
gates and faunal guts, decomposition via microbial fermentation or
anaerobic respiration with nitrate or other electron acceptors can occur.
Decomposition linked to aerobic respiration would occur in regions with
higher levels of oxygen, such as on the exteriors of aggregates.

Many genera of prokaryotes, including both bacteria and archaea,
have evolved the highly important biochemical trait of “fixing” (ruptur-
ing the triple covalent bonds of) dinitrogen, making it available as
ammonium for plant or microbial uptake (Postgate, 1987). This has
important ramifications for nitrogen and phosphorus cycling and inter-
actions with soil organic matter (Stewart and Cole, 1983; Stewart et al.,
1990; Giller, 2001).

Knowledge of the prokaryotes has increased greatly in the past
decade, with numerous accounts of their phylogeny published (Bergey’s
manual at http://www.cme.msu.edu/bergeys; Torsvik and Øvreås,
2002). The principal concern of bacterial phylogeny is to trace both the
extent of species of bacteria, as well as the archaea. Until recently,
archaea were considered to be inhabitants of extreme environments,
including deep sea trenches and vents and hot springs, but they have
been found also in numerous other habitats, including fresh water lakes
and forest and agricultural soils (Bintrim et al., 1997; Jurgens et al.,
1997; Pace, 1997). For more information on soil prokaryote interactions
in soils and rhizospheres, see the review by Kent and Triplett (2002).

A method often used to analyze bacterial populations is to amplify
DNA extracted from environmental samples by polymerase chain 
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reaction (PCR), using primers universal to the 16S ribosomal RNA
(rRNA) genes of bacteria and archaea (Lane, 1991; Prosser, 2002). In
both tropical (Borneman and Triplett, 1997) and arid southwestern U.S.
soils (Kuske et al., 1997), more than 50% of the prokaryotic DNA
sequences of soil prokaryotes belonged to groups with no representatives
in laboratory culture. This has marked implications for identifying
prokaryotes involved in biogeochemical cycling and other environmen-
tal processes (see Chapter 7). Either DNA or RNA can be extracted from
soils, but a majority of the studies have been based on DNA extraction,
which is easier to accomplish efficiently because of the higher lability
and turnover of RNA. The rRNA content in active cells is higher than in
inactive ones, thus rRNA-based analyses are a better approach for char-
acterizing active microbial populations in soils (Ogram and Sharma,
2002). Techniques are now available to analyze microbial community
structure and function, by analyzing microbial rRNAand mRNA, respec-
tively. Both types of RNA can be extracted from soils and converted 
to complementary DNA (cDNA) by the enzyme reverse transcriptase 
for subsequent PCR amplification. Standard PCR analyses using “uni-
versal primers for rRNA genes” are not quantitative but do provide very
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useful qualitative information on dominant microbial populations. As
long as suitable primers are available, microbial rRNA copies or mRNA
copies can be quantified using quantitative, or “real-time,” PCR. These
latter approaches provide an important means for linking soil microbial
community structure and function.

Perhaps the greatest difference between bacteria and fungi is to be
found in their mode of growth. Fungi have long strands (hyphae) that
can grow into and explore many small microhabitats, secreting any of a
considerable array of enzymes, decomposing material there, imbibing
the decomposed monomers, and translocating the carbon and other
nutrients back into the hyphal network (Fig. 3.2). In contrast to bacte-
ria, fungi can remain active in soils at very low water potential (-7200
kPa) and are better suited than bacteria to exist in interpore spaces
(Shipton, 1986). Many genera of fungi are closely associated with plants
(see Chapter 2) and animals. Studies of coevolution of fungi with other
eukaryotes have been summarized by Pirozynski and Hawksworth
(1988). For an extensive overview of the roles that fungi play in terres-
trial ecosystems, see Dighton (2003).

Although not covered in detail in this book, there is a rapidly growing
area of interest in effects of plant pathogens in ecosystems. Because
plant pathogens play important roles in mediating plant competition
and succession, and in the maintenance of plant species diversity, they
can have important feedback effects on soil communities and ecosystem
processes as well. For a good review of these processes, see Gilbert
(2002). We discuss effects of microarthropod grazing on fungal plant
pathogens in Chapter 4.

In contrast to fungi, bacteria are usually unicellular, or in clustered
colonies, occupying discrete patches of soil measuring only a few cubic
micrometers (mm3) in volume. Bacteria depend on many episodic events,
such as rainfall and root growth or ingestion by various soil fauna, for
passive movement to enable them to move about. When flagella are pre-
sent, directed motility in the water-film is also possible.

Viruses may play significant roles in the microbial ecologies of soil
environments because they can be a source of mortality, particularly for
bacteria. Farrah and Bitton (1990) noted that lytic phages (viruses
attacking bacteria) could act so as to restrict the growth of susceptible
bacteria, and other phages could transmit genetic information between
bacteria. The information on viral numbers and activities in soil in gen-
eral is quite limited. Temperate phages (as distinct from virulent ones)
in desert systems were inactivated on soil particles at acid pH (4.5–6).
These phages had virtually no effect on populations of soil bacteria in
Arizona soils, but persisted at low densities in their hosts (Pantastico-
Caldas et al., 1992). This contrasts markedly with the often-cited dele-
terious impacts of virulent phages on Escherichia coli in liquid cultures
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(a)

(b)

FIGURE 3.2. Extensive growth of fungal mycelium (arrow) was observed when crushed
microaggregate (0.50-mm diameter) from native soil was stained with water-soluble 
aniline blue (a); smaller-sized (0.10-mm diameter) aggregates from a crushed macro-
aggregate (1.0-mm diameter) were held together by fungal hyphae (b) (from Gupta, 1989).



in the laboratory. For more information on bacteriophages and interac-
tions with bacteria under starvation conditions, see Schrader et al.
(1997).

Microbial Abundance and Distribution in Soil

Unfortunately for the soil ecologist, the distribution and abundance
of microorganisms is so patchy that it is very difficult to make an accu-
rate determination of their mean abundances without dealing with 
a very high variance about that mean, when viewed on a macro scale.
Part of this variation is due to the close “tracking” of organic matter
“patches” by the microbes. There are aggregations of microbes around
roots (the often-cited “rhizosphere”) (Lynch, 1990), around fecal pellets 
and other patches of organic matter (Foster, 1994), and in pore necks
(Fig. 3.3) (Foster and Dormaar, 1991). In addition, microorganisms con-
centrate in the mucus secretions that line the burrows of earthworms
(the “drilosphere,” as defined by Bouché [1975] and reviewed by Lee
[1985]). The phenomenon of “patches” is discussed more in Chapter 6.

A large proportion of soil ecology studies has focused on processes
occurring in the O and upper A horizons because so much of the short-
term dynamics occurs there. With tools of microbial community analy-
sis, Fierer et al. (2003) used phospholipid fatty acid (PLFA) analysis 
to examine the vertical distribution of specific microbial groups and
their diversity in two soil profiles down to a depth of 2m. The number of
individual PLFAs decreased by about one-third from the soil surface
down to 2m. Changes in certain ratios of fatty acid precursors and ratios
of total saturated to total monounsaturated fatty acids increased with
soil depth, indicating that microbes in the lower horizons were more car-
bon limited at greater depths. Interestingly, approximately 35% of the
total amount of microbial biomass was found in soil below a depth of 
25 centimeters (cm). Gram-positive bacteria and actinomycetes tended
to increase in proportional abundance with depth, whereas Gram-
negative bacteria, fungi, and protozoa were highest at the soil surface.

Soil is an impressively heterogeneous matrix of minerals and 
organic matter. Ways in which this heterogeneity in organic matter and
texture can influence microbial populations have been widely studied
for more than a century. A number of studies using transmission elec-
tron microscopy (TEM) and scanning electron microscopy (SEM) have
revealed the intimate associations of bacteria and fungi with soil aggre-
gates (Figs. 3.4 and 3.5) (V. V. S. R. Gupta, personal communication).

With the development of more sophisticated imaging tools and statis-
tical analyses of data, there have been several studies of microbial spa-
tial patterns at the field or plot scale. Unfortunately, these studies have
not spanned the range of spatial variability, which may exist at levels
well below the millimeter scale (Nunan et al., 2002). Taking a large vol-
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(a)

(c)

(d) (b)

FIGURE 3.3. (a) An amoeba probing a soil microaggregate containing cell wall remnants
(CWR) and a microcolony of bacteria (B); P, pseudopodium; R, root; S, soil minerals; bar, 
1mm (from Foster and Dormaar, 1991). (b) An amoeba with an elongated pseudopodium
reaching into a soil pore. The amoeba contains intact ingested bacteria in its food vacuoles
(from Foster and Dormaar, 1991). (c) An amoeba with partly digested bacteria in food vac-
uoles; note bacterium enclosed by a pseudopodium (P) (from Foster and Dormaar, 1991).
(d) A pseudopodium associated with a Gram-positive microorganism (from Foster and
Dormaar, 1991).
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FIGURE 3.4. Scanning electron microscopy (SEM) picture of a macroaggregate (250- to
500-mm diameter) with particulate organic matter and hyphae (V. V. S. R. Gupta, with 
permission).

FIGURE 3.5. Amoebae feeding on fungi (V. V. S. R. Gupta, with permission).

ume of soil, both topsoil and subsoil (3 ¥ 3 ¥ 0.9m) from an arable field,
Nunan et al. (2002) prepared subsampled cores and biological thin 
sections in which the in situ distribution of bacteria could be quantified.
They acquired spatially referenced RGB digital images using epifluo-
rescence microscopy at 630¥ magnification. Average bacterial numbers
per thin section were calculated using nine replicate images captured
from each thin section (Fig. 3.6). Analysis of spatial dependence or con-
tinuity of soil bacterial density was performed using geostatistical tools
at three scales: (1) centimeter to meter, (2) millimeter to centimeter, and
(3) micrometer to millimeter scale, using appropriate semivariogram
formulas (for more information on use of semivariograms, see Robertson
and Gross [1994]). Spatial structure was found only at the micrometer
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FIGURE 3.6. Spatial distribution of sampling points in topsoil (a). Solid circles form sys-
tematic random lattice and open circles form a biased random cluster. An undisturbed core
(b) was sampled at each point and a thin section (c) cut from the horizontal plane. Nine
spatially referenced images, in which bacteria were mapped, were acquired from each thin
section. Average bacterial density per thin section was calculated and the values used to
study large-scale variability. Bacterial maps were divided into 100 quadrats and bacterial
density in each quadrat calculated. There were 900 quadrats per thin section and these
bacterial density values were used to study microscale spatial variability (from Nunan 
et al., 2002).



scale in the topsoil, whereas evidence for nested scales of spatial 
structure was found in the subsoil at both the micrometer scale and at
the centimeter to meter scales. Evidence for spatial aggregation in bac-
teria was stronger in the topsoil and decreased with depth in the subsoil.
Nunan et al. (2002) suggest that factors that regulate the distribution of
bacteria in the subsoil operate at two scales, in contrast to one scale in
the topsoil, and that bacterial patches are larger and more prevalent in
the topsoil.

Textbooks such as those by Swift et al. (1979) and Paul and Clark
(1996) cover a number of methodological approaches for estimating
microbial numbers and turnover in considerable detail. In this book, we
present a few principal techniques for measuring numbers and identify-
ing members of the microbial communities. We then relate them to 
studies of nutrient immobilization and mineralization, covered later 
in Chapter 5 on decomposition processes.

TECHNIQUES FOR MEASURING MICROBIAL COMMUNITIES

Techniques for measuring populations and biomass of microorgan-
isms are either direct (by counting) or by inference (from chemical and
physical measurements). The following are a few of the more commonly
used techniques for studies of microbial standing crops (biomass at the
time of sampling) and activity in a community and ecosystem context.

Direct Measures of Numbers and Biomass

Total counts of microbes are made by preparation of soil (about 10 mil-
ligrams [mg]) suspensions spread in thin agar films on microscope slides
(Jones and Mollison, 1948). The films are then stained, often with fluo-
rescent dyes, and scanned. More recently, there have been improve-
ments to the direct count technique such as the membrane filtration
technique, which enables one to quickly count fungal hyphae against the
filter or a stained background. This approach is generally much faster
and easier than the more laborious agar film technique. Other more clas-
sical techniques such as viable counts on nutrient-containing agar
media are discussed by Parkinson et al. (1971) and Parkinson and Cole-
man (1991). The viable culture techniques usually recover only 1% or
less of the total viable cells, so they are useful only for comparative pur-
poses when one is focusing on a few readily culturable species of bacteria.

Other direct measures include sampling for extractable DNA
(Torsvik et al., 1990a, 1990b; Torsvik et al., 1994; Torsvik and Øvreås,
2002), and using the PCR to multiply specific genes (such as the 16S
rRNA) to determine the identities of the organisms of interest. Another
approach to microbial community analysis uses signature lipid bio-
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markers (SLB). This technique, pioneered by Dr. David White and col-
leagues at the University of Tennessee (Tunlid and White, 1992), mea-
sures ester-linked polar lipid fatty acids and steroids to determine
microbial biomass and community structure. Further comments on
these techniques are given in Paul and Clark (1989, 1996). For microbial
community characterizations, various biomarkers are used. Prominent
among these are the PLFAs. Phospholipids are found in the membranes
of all living cells but not in the storage products of microorganisms. They
may be extracted and characterized using GC/MS (gas chromatogra-
phy/mass spectrometry) (Zelles and Alef, 1995).

A variety of techniques has been developed for the isolation and iden-
tification of DNA from soil. Techniques include the cell extraction
method and the direct lysis method (Saano and Lindström, 1995, Zhou
et al., 1996). In recent studies of microbial community makeup in agroe-
cosystem field soils, Furlong et al. (2002) compared the microbial com-
munity composition of earthworm- and non-earthworm–influenced
soils at the Horseshoe Bend field site in Athens, GA. The objective was
to compare microbial communities from worm casts and open soil; this
was done by creating clone “libraries” of the 16S rRNA genes, which
were prepared from DNA isolated directly from the soil and earthworm
casts. In the cast soils, representatives of the genus Pseudomonas, as
well as the Actinobacteria and Firmicutes, increased in number (Fur-
long et al., 2002). The results were consistent with a model where a large
portion of the microbial population in soils passed through the gastroin-
testinal tract of the earthworm unchanged while representatives of
some bacterial phyla increased in abundance. In Chapter 4, we will con-
sider the various faunal groups in soil, and their life-history attributes
that have impact on microbial community makeup and turnover.

As noted in the introduction to prokaryotes above, we are only now
becoming aware of the phylogenetic richness of archaea in soil commu-
nities. PCR amplification using primers specific for archaeal 16S rRNA
genes allows detection of archaea in diverse habitats (Bomberg et al.,
2003). The abundance of crenarchaeal (one of the two kingdoms com-
prising the archaeal domain) 16S rRNA in both cultivated and native
field soils has been estimated to be from 1 to 2% of the total 16S rRNA in
these soils (Buckley et al., 1998).

The above procedures are primarily used in determining bacterial
community structure. For fungi, several recent studies have made use of
the fact that ergosterols are specific to fungi, and the amounts of ergos-
terols can be quantified to determine the amount of fungal tissues (bio-
mass) present in soils (Newell and Fallon, 1991; Eash et al., 1994, Zelles
and Alef, 1995). Molecular phylogeny has been an equally powerful tool
for describing fungal communities (see, for example, Husband et al.,
2002).
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Indirect Measures of Biomass

Chemical Methods

Jenkinson (1966) cited an earlier suggestion of Störmer (1908) that 
a flush of CO2, evolved after fumigation, was due to the decomposi-
tion of organisms killed during fumigation by the surviving microor-
ganisms remaining after fumigation. This relates to the extensive 
work done on “partial sterilization” of soils, in Great Britain and else-
where (Russell and Hutchinson, 1909; Powlson, 1975), under the mis-
guided assumption that most soil microorganisms were somehow
deleterious to subsequent plant growth, particularly in agricultural
fields. Many of the soil heterotrophs are now considered generally 
beneficial, particularly when viewed in a whole-system nutrient cycling
context.

The Chloroform Fumigation and Incubation (CFI) Technique

We now consider ways to use fumigants to measure microbial bio-
mass. Using a fumigant such as chloroform, and incubating the soil for
10 or 20 days, the size of the flush of CO2 output can be related to the size
of the microbial biomass by the expression B = F/kc; where B = soil bio-
mass C (in mg C · g-1 soil); F = carbon dioxide carbon (CO2—C) evolved by
fumigated soil minus CO2 evolved by unfumigated soil over the same
time period; and kc = fraction of biomass mineralized to CO2 during the
incubation (Jenkinson and Powlson, 1976). The kc value, calculated
from a range of microorganisms in controlled experiments, is assigned a
general value of 0.45 (Jenkinson, 1988).

Jenkinson and Powlson (1976) relied on laboratory measurements of
microbial cells added to soil. Voroney and Paul (1984) extended this
work to include labile nitrogen, and measured both kc and kn (fraction of
biomass nitrogen mineralized to inorganic nitrogen). A review of usage
of 14C to measure microbial biomass and turnover is given by Voroney 
et al. (1991), with step-by-step procedures for this research. They intro-
duced carbon by labeling plants via photosynthetic pathways, and then
followed the carbon into the microbial biomass via root exudates and
turnover, and in turn into the soil organic matter.

A wide range of soils has been compared for biomass carbon calcu-
lated from biovolume (the measured volume of the cell), using the CFI
method, and a ratio of biomass carbon from biovolume to biomass car-
bon, also from CFI, has been determined (Powlson, 1994) (Table 3.1).
These ratios range from 0.86 to 1.25 from soils in arable lands and up to
6.47 from soils in deciduous woodland. Forest soils, including those with
low pH, have proven more difficult to analyze for microbial biomass, and
are considered next.
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The Chloroform Fumigation and Extraction (CFE) Technique

Vance et al. (1987) noted that low pH soils, particularly those in the
range below pH 5.0, including many forest soils, were not well charac-
terized for microbial biomass using the CFI procedure. They modified
the CFI procedure (Jenkinson and Powlson, 1976) to the chloroform
fumigation and extraction (CFE) procedure as follows (Vance et al.,
1987): soil samples are fumigated with chloroform for 48 hours, the
fumigated and nonfumigated control samples are extracted with 0.5M
K2SO4, and the resulting organic extracts are measured for carbon,
nitrogen, and other elements. The difference between the total organic
carbon from the chloroform-fumigated soils minus the nonfumigated
controls, multiplied by the kec factor (see Chapter 9 for details) is the
microbial biomass carbon. For soils with pH values less than 4, the kec

values are usually lower, from 0.2 to 0.35kec (Jenkinson, 1988). The CFE
method has proven quite successful, and enables one to obtain microbial
biomass values for carbon, nitrogen, phosphorus (Hedley and Stewart,
1982), and sulfur (Gupta and Germida, 1988).

A few authors have expressed concern about the extent of faunal con-
tributions to the fumigation “flush.” Protozoan biomass may be a signifi-
cant contributor in some soils (Ingham and Horton, 1987), but usually
constitutes less than 2% of total microbial carbon.
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TABLE 3.1. Comparison of Biomass Carbon as Calculated from Direct Microscopy and
the Fumigation Incubation (FI) Method

Biomass Biomass
C C Ratio of

calculated calculated biomass C from
from from FI biovolume to

Organic biovolumea methodb (mg biomass C from
Soil C (%) pH (mg C/g soil) C/g soil) FI

Arablec 2.81 7.6 550 547 1.01
Arablec 0.93 8.0 190 220 0.86
Deciduous woodlandc 4.30 7.5 1540 1231 1.25
Arablec 2.73 6.4 390 360 1.08
Grasslandc 9.91 6.3 3200 3711 0.86
Deciduous woodlandc 2.95 3.9 330 51 6.47
Secondary rainforestd 1.46 7.1 430 540 0.80
Cleared forestd,e 1.23 6.2 260 282 0.92

aSee Jenkinson et al. (1976) for method of calculation.
bCalculated using Kc of 0.45, not 0.5 as in the original paper.
cTemperate soils from the United Kingdom.
dSubhumid tropics, Nigeria.
eArable cropping for 2 years after clearing secondary forest, Nigeria.
Source: From Powlson, 1994.
Adapted from Jenkinson et al., 1976.



Some general comments on the methodology of the microbial biomass
method are necessary. The CFI and CFE methods should be emp
loyed within the context or intent of the methods originally described.
Because they are bioassays, and not general chemical assays, they are
not as robust as the latter. They can be misused, particularly if a great
deal of organic matter substrate, waterlogging, or very low pH condi-
tions are encountered (Powlson, 1994). However, the microbial biomass
values are useful in the development and exercising of simulation mod-
els of labile carbon and nutrient turnover in a wide range of ecosystems
(e.g., Parton et al., 1987; Parton et al., 1989a, 1989b; Jenkinson and
Parry, 1989). Jenkinson et al. (2004) provide a helpful review of the chlo-
roform fumigation techniques. Interestingly, they consider the fumiga-
tion and incubation (FI) technique to be obsolete, and urge caution in the
usage of the k values, as had been noted by several investigators.

For reviews of biochemical methods to estimate microbial biomass,
see Sparling and Ross (1993) and Alef and Nannipieri (1995a). For more
specific details, see Chapter 9 (laboratory exercises) for comments on
details of the microbial biomass estimation procedure. The ultimate
“take home message” in studies of microbial biomass is the necessity to
use more than one method to have some confidence in the numbers and
hence biomass of the microorganisms measured. Although more time-
intensive, it is advisable to compare biomass of microorganisms to direct
counts made microscopically (Parkinson and Coleman, 1991).

Physiological Methods: SIR Technique

Additional methods for measuring microbial biomass include the
substrate-induced-respiration (SIR) technique, first developed by
Anderson and Domsch (1978). The SIR technique involves adding a sub-
strate such as glucose to soil, and measuring the respiration resulting
from the stimulated metabolic activity in the experimental soil sample,
versus control treatments that received no carbon substrate. It is possi-
ble to measure the relative contributions of bacteria and fungi by using
inhibitors (e.g., cycloheximide to inhibit fungal activity or streptomycin
to inhibit bacterial activity). The assumption is that one measures only
bacterial activity when fungi are inhibited, and vice versa. The tech-
nique requires some care, because soil texture may affect the apparent
“resistance” to biocides. Further details of the technique are given by
Beare et al. (1990, 1991), Insam (1990), Kjøller and Struwe (1994), and
Alphei et al. (1995).

Additional Physiological Methods of Measuring Microbial Activity

There is a large body of literature dealing with the indirectly mea-
sured signs of metabolic activity, namely CO2 output or oxygen uptake.
The ratio of the two gases, in terms of either uptake or output, is very
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informative about the principal sources of carbonaceous compounds
being metabolized. The ratio of CO2 evolved to O2 taken up, known as
RQ, is lowest for carbohydrates, intermediate for proteins, and highest
when lipids are the principal substrate being metabolized (Battley,
1987). In several studies, the microbial respiration per unit microbial
biomass (qCO2 = mg CO2-C/mgCmic/h) (Anderson and Domsch, 1978;
Insam and Domsch, 1988; Anderson and Domsch, 1993; Anderson,
1994) was measured and found useful as an indicator of the overall
metabolic status of a given microbial community. Additional metabolic
quotients have been used to study influences of climate and tempera-
ture, soil management, heavy metals, and soil animals in ecosystems,
notably the ratio of microbial carbon to organic carbon, expressed as a
percentage of microbial carbon to total organic carbon, or Cmic/Corg (Table
3.2) (Anderson, 1994; Joergensen et al., 1995). This follows from the
assumption that terrestrial ecosystems in a near-steady state are char-
acterized by a constant flow of nutrients and energy into and out of the
ecosystem on a yearly basis, and entering and leaving the microbial bio-
mass pool as well (Fig. 3.7) (Anderson, 1994). All of the foregoing is
based on aerobic conditions. The extent of anaerobicity can be important
at certain times, and needs to be carefully measured.

Enough data sets on microbial biomass carbon and nitrogen have
accumulated by now that an extensive synthesis of temporal and latitu-
dinal variation was carried out on data from more than 58 studies world-
wide. For the entire data set, temporal variability was best predicted by
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TABLE 3.2. Examples of Studies in Soil Microbiology in Which Metabolic Quotients
Have Been Applied

Field of study Metabolic quotienta

Maintenance carbon requirement m, qCO2

Carbon turnover qCO2, m, KmGLUCOSE, Y, m, qD, Cmic/Corg

Soil management qCO2, qD, Vmax, Cmic/Corg

Impact of climate and temperature qCO2, Cmic/Corg, qD
Impact of soil texture and soil compaction qCO2, qD
Impact of heavy metals qCO2

Ecosystems, ecosystem theory qCO2, qD, Cmic/Corg

Impact of soil animals qCO2

am = maintenance coefficient; qCO2 = metabolic quotient or specific respiration rate; 
m = specific growth rate; Km = Michaelis-Menten constant; Vmax = maximum specific
uptake rate; Y = growth yield; qD = specific death rate; Cmic/Corg = microbial carbon to
organic carbon ratio expressed as a percentage of microbial carbon to total organic
carbon.

See Anderson (1994) for specific references pertaining to usage of particular
metabolic quotients.

Modified from Anderson, 1994.



a three-component model incorporating pH, soil carbon, and latitude
(Wardle, 1998). The increasing latitude reflected higher interseasonal
variations in temperature, causing greater interseasonal flux of the bio-
mass. A majority of these studies provided data showing less than one
turnover of the entire microbial biomass per year, reflecting the extreme
scarcity of food for most of the microbial populations much of the time
(reasons for this are discussed earlier in this chapter).

Enzyme Assays and Measures of Biological Activities in Soils

Numerous soil biologists/ecologists have used enzyme assays to mea-
sure soil biological activity (Coleman and Sasson, 1980; Nannipieri,
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The prevailing assumption is that terrestrial ecosystems in a quasi–steady state are
characterised by a constant flow of nutrients and energy, entering and leaving the
system on a yearly basis, a well as entering and leaving the microbial biomass
compartment. Microbial biomass communities adapt to the flow rate specific to the
system.
Cmic/Corg ratio = percentage of microbial carbon to total soil carbon
Metabolic quotient for CO2 (qCO2) = mg CO2 – C/mg Cmic/h

FIGURE 3.7. Working hypothesis for the application of metabolic quotients in ecosystem
development at the synecological level (from Anderson, 1994).



1994; Alef and Nannipieri, 1995b). Oxidoreductases, transferases, and
hydrolases have been most studied. These assays have been considered
of questionable value, mostly because of misapplication of the tech-
niques and misinterpretation of the resulting data. The principal objec-
tion to soil enzyme assays is that the activities are substrate specific,
and hence related to specific reactions and do not necessarily reflect
organismal activities (Nannipieri et al., 1990; Nannipieri, 1994). This
concern is very well expressed by Nannipieri et al. (2002), who note that
enzymes in soils can be in six different locations: (1) active and present
intracellularly in living cells, (2) in resting or dead cells, (3) in cell
debris, (4) extracellularly free in the soil solution, (5) adsorbed by in-
organic colloids, or (6) associated in various ways with humic molecules.
The preferred situation is being able to assay enzymes that are active
and present intracellularly in living cells. The array of extracellular 
and intracellular distributions in the soil environment is expressed in
Figure 3.8 (Nannipieri et al., 2002), which depicts various aspects of
overall enzyme diversity related to microbial functional diversity in soil.

It should be noted that enzymes related to particular target sub-
strates, such as ligno-cellulases in leaf litter, may be relatively good pre-
dictors of mass loss. After early stages of mass loss caused by leaching
and mineralization, the “middle stage” is often strongly correlated with
enzyme activity. In the final stages, with less than about 25% of initial
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FIGURE 3.8. Various activities contributing to the overall enzyme activity measured in
soil compared with those affecting the microbial functional diversity in soil (Nannipieri et
al., 2002).
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mass remaining, the accumulation of humic condensates depresses
microbial activity, stabilizing the remaining material (Fig. 3.9) 
(Sinsabaugh et al., 1994).

Many models of soil organic matter (SOM) decomposition are based
on first order kinetics that assume that decomposition rate of a particu-
lar carbon pool is proportional to pool size and a simple decomposition
constant (dC/dt = kC). In reality, SOM decomposition is catalyzed by
extracellular enzymes that are produced by the microorganisms. A the-
oretical model to explore the behavior of a decomposition–microbial
growth system that operates by exoenzyme catalysis used the following
relationship: DC = K*d EnzC, where DC = decomposition of polymeric
material to produce available C; K*d is a single decomposition constant,
and EnzC = exoenzyme pool (Schimel and Weintraub, 2003). An enzyme
kinetics analysis showed there must be some mechanisms to produce 
a nonlinear response of decomposition rates to enzyme concentration.
This nonlinearity induces carbon limitation, regardless of the poten-
tial carbon supply. In a linked carbon and nitrogen version of the 
model, adding a pulse of carbon to a nitrogen-limited system increases
respiration, while adding nitrogen decreases respiration (with carbon 
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FIGURE 3.9. Idealized plot of lignocellulase activity (heavy dashed line) in relation to lit-
ter mass loss (solid line) through time. Lignocellulase activity traces a “bell-shaped” pat-
tern over the course of litter decomposition, peaking (in this example) when cumulative
mass loss reaches 45%. The dashed horizontal lines at 20% and 80% mass loss highlight
breakpoints in the mass loss curve. During the early stages of litter decomposition rapid
mass loss is often largely attributable to leaching and mineralization of soluble litter con-
stituents. In the middle stage, lignocellulose degradation predominates. Throughout the
late stages, the accumulation of humic condensates depresses microbial activity, stabiliz-
ing the remaining material (from Sinsabaugh et al., 1994).



redirected from waste respiration to microbial growth). Previous con-
clusions drawn in the literature have assumed that the lack of a respi-
ratory response by soil microbes to added nitrogen indicates that they
are not nitrogen limited. This model of Schimel and Weintraub (2003)
suggests that, while total carbon flow may be limited by the functioning
of the exoenzyme system, in fact microbial growth may be nitrogen lim-
ited. This important finding should be the subject of several laboratory
and field studies in the near future.

Direct Methods of Determining Soil Microbial Activity

Direct measurements of the activity of soil microorganisms have been
a goal of soil biologists for a long time (Newman and Norman, 1943).
This results from the basic thermodynamic fact that as organisms
undergo metabolic activity, they emit heat from the enthalpy of reac-
tions occurring in net catabolism (Battley, 1987). With the continuing
trend toward miniaturization of circuitry and much better, more sensi-
tive thermocouples, it is now possible to obtain direct measures of meta-
bolic activities of organisms in small samples of soils with only a few
milligrams of biomass (Sparling, 1981; Battley, 1987; Alef, 1995). Flow-
microcalorimeters are now available that allow for the simultaneous
measurements of CO2 and N2O production in soils (Albers et al., 1995).

Another approach to direct measurement of microbial metabolic
activity in a more fine-grained fashion is to measure microbial metabolic
processes and identify the microorganisms responsible for particular
biochemical reactions under field conditions. Radajewski et al. (2000)
pioneered stable isotope probing of community-extracted DNA as a 
laboratory-based means of identifying microbial populations involved in
13C-substrate metabolism. Padmanabhan et al. (2003) combined the
approach of Radajewski et al. (2000) with an assay of a range of labile
and recalcitrant organic compounds, linking the 13C field release assay
of respired 13CO2 to DNAextraction analyses of the active microbial pop-
ulations. Transient peaks of 13CO2 released in excess of background were
found in glucose- and phenol-treated soil within 8 hours of application.
Across the 30-hour time span of the experiment, neither naphthalene
nor caffeine additions stimulated 13CO2 release above background. A
total of 29 full sequences revealed that active populations included rela-
tives of Arthrobacter, Pseudomonas, Acinetobacter, Massilia, Flavobac-
terium, and Pedobacter spp. for glucose; Pseudomonas, Pantoea,
Acinetobacter, Enterobacter, Stenotrophomonas, and Alcaligenes spp.
for phenol; Pseudomonas, Acinetobacter and Variovorax spp. for 
naphthalene; and Acinetobacter, Enterobacter, Stenotrophomonas, and
Pantoea spp. for caffeine. All these genera belong to bacterial divisions
or subdivisions that were recovered from soils in more than 25% of the
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studies surveyed in the review. This approach is a useful first step 
in taking powerful analytical tools to the field. However, Padmanabhan
et al. (2003) note that the amendment-based approach used in this study
would not be likely to identify less responsive, slow-growing (K-selected)
members of the soil microbial community.

SOIL STERILIZATION AND PARTIAL 
STERILIZATION TECHNIQUES

A number of the techniques mentioned above involve drastic pertur-
bations to soils, such as fumigation, for the purpose of determining num-
bers or biomasses of organisms residing within them. Huhta et al. (1989)
examined the influence of microwave radiation on soil processes, noting
that it seems to have a less drastic impact compared to autoclaving,
gamma irradiation, or chloroform fumigation. Microwaving is particu-
larly useful for removing various mesofaunal groups, leaving the micro-
bial communities reasonably intact under moderate thermal energy
inputs of 380 watts (W) for 3 minutes (Huhta et al., 1989; Wright et al.,
1989). Unfortunately, some unwanted side effects were introduced with
microwaving, principally a decreased water-holding capacity. Monz 
et al. (1991) found that microwaving was of limited use in their agricul-
tural soils. We discuss methods to manipulate fauna, including group-
specific chemical inhibitors or repellents, in Chapter 4.

CONCEPTUAL MODELS OF MICROBES IN SOIL SYSTEMS

Root–Rhizosphere Microbe Models and Experiments 

As was noted in the discussion of primary production processes
(Chapter 2), there are “hot spots” of activity, particularly of microbes in
relationship to root surfaces and rhizospheres. When viewed as a tran-
sect through the rhizosphere, (e.g., 2mm from the root surface or less,)
there are arrays of rapidly growing bacteria and fungi, which have been
called “fast” flora (Trofymow and Coleman, 1982) (Fig. 3.10). Moving up
the root toward the shoot into older regions, one finds root hairs, then
root cortical cells, which may be sloughing off into the surrounding soil.
There are accompanying microbial and root grazers such as protozoa
and nematodes, which are discussed in detail in Chapter 4. Out in the
bulk soil, away from the rhizosphere (more than 4mm from the root sur-
face), occur some of the slower-growing, or “slow,” bacteria and fungi,
organic matter fragments, and some of the hyphae of either arbuscular
mycorrhizal (AM) or ectotrophic mycorrhiza.
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The field of mycorrhizosphere (Garbaye, 1991; Andrade et al., 1998)
research has taken a quantum leap forward with elegant microscopic
methods, in conjunction with molecular tools to pinpoint organisms that
are co-associates. Artursson and Jansson (2003) used bromodeoxyuri-
dine (BrdU), as a thymidine analog, to identify active bacteria asso-
ciated with AM hyphae. After adding BrdU to the soil and incubating for
2 days, DNA was extracted, and the newly synthesized DNA was isolat-
ed by immunocapture of the BrdU-containing DNA. The active bacteria
in the community were identified by 16S rRNA gene PCR amplification
and DNA sequence analysis. Based on gene sequence information, a
selective medium was used to isolate the corresponding active bacteria.
Bacillus cereus strain VA1, one of the bacteria identified by the BrdU
method, was isolated from the soil and tagged with green fluorescent
protein. By using confocal microscopy, this was shown to clearly attach
to AM hyphae. This study by Artursson and Jansson (2003) is a pioneer-
ing attempt, using molecular and traditional approaches, to isolate,
identify, and visualize (Fig. 3.11) a specific bacterium that is active in
fallow soil and associates with AM hyphae.

Soil Aggregation Models

Soil aggregates, as noted in the section on soil structure in Chapter 1,
play a central role in protecting pools of carbon and nitrogen, and are
derived from a variety of sources. Amechanism particularly prevalent in
many tropical soils is the physical aggregation process, which occurs
abiotically as a physicochemical process (Oades and Waters, 1991). In
both temperate and tropical soils, there are several biological processes

FIGURE 3.11. Bacillus cereus strain VA1 (pnf8) on a hyphal fragment from field soil (from
Artursson and Jansson, 2003).



that result in the formation of “biological macroaggregates” (Fig. 3.12)
(Six et al., 2002b). These include the following three processes: (1) Fresh
plant- and root-derived residues form the nucleation sites for the growth
of fungi and bacteria. Macroaggregate formation is initiated by fungal
hyphae enmeshing fine particles into macroaggregates. Exudates from
both bacteria and fungi, produced as a consequence of decomposition of
fresh residues, form binding agents that further stabilize macroaggre-
gates (tl,A). (2) Biological macroaggregates also form around growing
roots in soils, with roots and their exudates enmeshing soil particles,
thereby stimulating microbial activity (t0,B to t1,B). (3) A third principal
mechanism of biological macroaggregate formation in soils in all cli-
mates is via the action of soil fauna, particularly earthworms, termites,
and ants. For example, earthworms often produce casts that are rich in
organic matter (tl,C) and are not stable when freshly formed and wet.
During gut passage, the soil and organic materials are kneaded thor-
oughly and copious amounts of watery mucus are added as well. This
molding process breaks bonds between soil particles, but can lead to
casts that are quite stable upon drying. It is also worth noting that soil
mesofauna, for example collembola and mites, are important in the
SOM formation process through their production of copious amounts of
fecal pellets. Effects of meso- and macrofauna on soil structure are dis-
cussed further in Chapter 4 on soil fauna.

The subsequent fate of macroaggregates follows a fascinating process
over time, as noted by Six et al. (2002b) summarizing from several liter-
ature sources. At first (time t1), the young, freshly formed unstable
macroaggregates (UA) are only stable when treated in very gentle fash-
ion (that is, when the aggregates are taken from the field, brought 
to field capacity, subsequently immersed in water, and retained when
gently sieved). The formation of water-stable aggregates (WSA) that can
resist slaking (air drying and quick submersion in water before sieving)
occurs by three processes (t1 to t2):

1. Under moist conditions ageing may increase stability by bind-
ing through microbial activity. Microbial activity is stimulated inside
the biological macroaggregates, including worm casts because of
their high organic matter content. In this process, substantial
amounts of polysaccharides and other organics are deposited, serving
to further stabilize the macroaggregates.

2. Dry–wet cycles can result in closer arrangements of primary
particles, leading to stronger bonding and increased aggregate 
stability.

3. Biological and physicochemical macroaggregates, in the pres-
ence of active root growth, can become more stabilized by penetration
of the aggregates by roots. This includes the roles of root exudates as
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cementing agents, and the effects of the accompanying stimulated
microbial activity.

In addition, roots influence aggregation physically both by exerting
lateral pressures inducing compaction, and by continually removing
water during plant transpiration, leading to drying of the soil and cohe-
sion of soil particles around the roots. Note that this process is likely to
be enhanced or intensified by mycorrhizal hyphae associated with the
plant roots.

During macroaggregate stabilization (t1 to t2), the intra-aggregate
particulate organic matter (POM) is further decomposed by microor-
ganisms into finer POM (Six et al., 1998) (Fig. 3.13). This fine POM is
increasingly encapsulated with minerals and microbial products, form-
ing new microaggregates (53–250mm) within the macroaggregates (Six
et al., 1999). Similar processes may arise by stimulation from root exu-
dation and mycorrhizal products, causing further encrustation of micro-
bial products and mineral particles, forming microaggregates around
the root-derived POM. Note that this microaggregate formation within
macroaggregates is crucial for the long-term sequestration of carbon
because microaggregates have a greater protective capacity to shield
carbon against decomposition compared with macroaggregates.

The final phase of the aggregate turnover cycle (t2 to t3) occurs when
the macroaggregates break down, releasing microaggregates and
microbially processed soil organic matter (SOM) particles. The
macroaggregates are more liable to break up over time, as the labile
constituents of the coarse-sized SOM are consumed, microbial produc-
tion of binding agents decreases, and the degree of association between
the soil matrix and SOM decreases. Fortunately, microaggregates are
still stable enough and not as sensitive to disruptive forces as the
macroaggregates, and therefore survive (see Fig. 3.13). This is borne out
by a table of mean residence time (MRT) (in years) of macro- and
microaggregate–associated carbon (Table 3.3) (Six et al., 2002b). Note
the essentially fivefold greater MRT for microaggregates (m) compared
with macroaggregates (M).

The combined influences of physical, chemical, and biological factors
in soil aggregate formation reach a peak when one includes the effects of
arbuscular mycorrhizal fungi (AMF), both directly by physical binding,
and indirectly by the production of the glycoprotein glomalin, as noted
briefly in Chapter 2. In a controlled field plot study, five species (three
grasses, one forb, and one legume) were grown in monocultures. Soil
aggregate water stability (1–2mm size class) was correlated with plant
cover, root weight and length, AMF soil hyphal length, and glomalin
concentrations (Rillig et al., 2002). Root length, soil glomalin, and per-
cent cover contributed equally to water-stable aggregation using path
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analysis as the structural equation modeling approach. The direct effect
of the glomalin was much stronger than the direct effect of the AMF
hyphae alone, suggesting that this protein from the AMF is a very
important hyphae-mediated mechanism of soil aggregate stabilization,
at least for the larger macroaggregates of the 1–2mm diameter size
class.

For an extensive account of the many physical, chemical, and biologi-
cal interactions involved in the dynamics of creation and dissolution of
soil structure, refer to the masterful review by Baldock (2002).
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Models: Organism and Process-Oriented

A recurrent theme that resonates throughout the field of soil ecology
is the focus on organisms and population dynamics models used by com-
munity ecologists, and the use of process models at the ecosystem scale
(Moore et al., 1996; Smith et al., 1998). Many ecosystem level models
have included dynamics of the soil biota only implicitly, yet the intrasea-
son dynamics of microbes and fauna, as is demonstrated in Chapters 4
and 5, often have a significant effect on nutrient availability and
turnover. One of the more successful combinations of the organismal
and process modeling approaches was by Paustian et al. (1990), who
used four cropping systems (both annual and perennial crops) that var-
ied in inorganic inputs and organic production in the growing season: (1)
barley without fertilizer, (2) barley fertilized with 120kgNha-1 yr-1, (3) a
meadow fescue field with 200kgNha-1 yr-1, and (4) a lucerne field with
indigenous nitrogen fixation. The conceptual models of carbon and
nitrogen flows in the four fields are presented in Figures 3.14 and 3.15
(Paustian et al., 1990). Although there were no large differences 
in microbial biomass between treatments, the estimated microbial 
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TABLE 3.3. Mean Residence Time (MRT) (in years) of Macroaggregate– and
Microaggregate–associated Carbon.

Aggregate
Ecosystem Size classa (mm) MRT

Tropical pasture M >200 60
m <200 75

Temperate pasture grasses M 212–9500 140
m 35–212 412

Soybean M 250–2000 1.3
m 100–250 7

Corn M >250 14
m 50–250 61

Corn M >250 42
m 50–250 691

Wheat-fallow, no-tillage M 250–2000 27
m 53–250 137

Wheat-fallow, conventional tillage M 250–2000 8
m 53–250 79

Average ± stderb M 42 ± 18
m 209 ± 95

aM = macroaggregate; m = microaggregate.
bstder = standard error.
From Six et al, 2002b.



Barley 0 Barley 120

CO2 CO2

Harvest

CO2

NCCA

57

319115
151

16
1

56 Shoot

147

Root86
4

67

56
Fauna

Litter
and

SOM
D – 20

CO2 CO2
Harvest

CO2

NCCA

61

543298
151

17
3

68
Shoot

174

Root
108

5

67

56
Fauna

Litter
and

SOM
D + 16

Grass ley Lucerne ley

CO2 CO2

Harvest

CO2

NCCA

107

903351
262

31
2

114
Shoot
D + 29

407

Root
D + 148

13913

139

123
Fauna

Litter
and

SOM
D – 25

CO2 CO2

Harvest

CO2

NCCA

102

841357
222

24

2

64
Shoot
D + 31

387

Root 
D + 86

191
8

84

70
Fauna

Litter
and

SOM
D + 19

FIGURE 3.14. Budgets of annual carbon flows (gCm-2 yr-1) for barley receiving no nitrogen fertilizer (B0), barley receiving 120kgNha-1 (B120), a grass
ley receiving 200kgNha-1 (GL) and a N2-fixing lucerne ley (LL). Budgets are based on data from 1982–1983 for the topsoil (0–27cm). Compartment
changes on an annual basis are denoted by delta (D) symbols; for the aboveground plant compartment this includes biomass, standing dead litter, and
surface litter. Soil organic matter (SOM), including microbial biomass and soil litter, has been combined into a single compartment. NCCA is net canopy
carbon assimilation (from Paustian et al., 1990).



Barley 0

Harvest Fertilizer
+ deposition

Seed 
N

Gaseous
losses

Leaching

0.40.5

0.5

0.5

3.6

<0.1

1.3

4.9

7.6

5.8
2.2

3.10.1

8.7

6.6
Fauna

Shoot

Root

Mineral
N

Litter
and 

SOM
D – 3.5

Barley 120

Harvest
Fertilizer
+ deposition

Seed 
N

Gaseous
losses

Leaching

0.512.5

1.0

0.5

12.7

0.2

2.3

15.2

20.2

7.0
2.2

5.30.2

8.5

6.7
Fauna

Shoot

Root

Mineral
N

Grass ley

Harvest
Fertilizer
+ deposition

Gaseous
losses

1.020.5

0.1

24.1

0.1

4.0

30.1

40.8

1.8
3.4

7.20.3

11.2

8.2
Fauna

Shoot 
D + 1.9

Root 
D + 3.2

Mineral
N

Lucerne ley

Harvest
Fertilizer
+ deposition

N2- 
fixation

Gaseous
losses

2.00.5

0.1

38.0

24.6

0.1

10.3

37.1

13.1

11.1
3.6

6.50.6

16.4

13.5
Fauna

Mineral
N

Litter
and 

SOM
D – 1.2

Litter
and 

SOM
D – 9.8

Litter
and 

SOM
D + 2.8

Shoot 
D + 2.1

Root 
D + 6.9

FIGURE 3.15. Budgets of annual nitrogen flows (gNm-2 yr-1) in the four cropping systems. See Figure 3.14 for further explanation of symbols (from
Paustian et al., 1990).



Summary 77

production was 50% greater in the perennial ley fields than in the barley
treatments, with soil meso- and macrofauna biomass, consumption, and
respiration being significantly higher as well. The main conclusions
drawn from this impressive long-term (10-year) study is that microbial
and faunal (biotic) interactions do occur, and they have a significant
effect on nutrient turnover. As we note in Chapter 8, with current con-
siderable concerns about the impacts of land use change and global
change phenomena on key processes in soils, it is imperative to measure
explicit changes in numbers and taxa of soil organisms that carry out
these processes.

SUMMARY

The processes of consumption and decomposition are considered eco-
logically as system-level catabolism. The primary agents of decomposi-
tion are bacteria and fungi, often referred to as “microbial biomass.”

Microbial production and turnover is measured in a number of indi-
rect ways, both chemical and physiological, as well as in direct fashion,
using high-magnification microscopy, or via energetics approaches such
as calorimetry.

The microbial biomass, although relatively small (about 200–
400g · m-2 within 15cm of the surface) relative to the total soil organic
matter pool, has a rapid turnover time and serves as a principal food
source for microbivorous fauna. It is also the source of labile nutrients,
available for plant roots and other microbes. Hence the microbial com-
munity is indeed the “eye of the needle” through which virtually all of
the decomposition carbon and nutrients must pass. In the course of
microbial growth and turnover, there is a dynamic process of buildup of
macroaggregates, which age and decay into more extensively protected
microsites within microaggregates. Roles of fauna in the process 
of aggregate formation and alteration are also discussed further in
Chapter 4. 

Some very large strides forward in soil ecology have been taken by
investigators who are linking microbial community structure and func-
tion. We discuss several examples in Chapter 8, regarding the effects of
invasive plant species on microbial communities. It is apparent that a
combined or synthetic approach using aspects of functional measures
such as enzyme activities, when combined with the qualitative mea-
sures such as PLFA and the more quantitative measures of using 16S
rRNA gene probes and cDNA analyses, along with the immunofluores-
cent approaches presented by Artursson and Jansson (2003), will yield
considerable dividends in future studies.





4

Secondary Production:

Activities of Heterotrophic

Organisms—The Soil Fauna

INTRODUCTION

Animals, the other group of major heterotrophs in soil systems, exist
in elaborate food webs containing several trophic levels. Some soil ani-
mals are true herbivores, because they feed directly on roots of living
plants, but most subsist upon dead plant matter, microbes associated
with dead plant matter, or a combination of the two. Still others are car-
nivores, parasites, or top predators. Actual heterotrophic production by
the soil fauna is poorly known, because turnover of the faunal biomass,
feeding rates, and assimilation efficiencies are difficult to assess. Esti-
mates of biomass of soil animals are not common, and knowledge of the
rates of energy or material transfer in food webs is fragmentary (Moore
and de Ruiter, 1991; 2000). Analyses of food webs in the soil have empha-
sized numbers of the various organisms and their trophic resources.
Analysis of the structure of these food webs reveals complex structures
with many “missing links” poorly described (Walter et al., 1991; Scheu
and Setälä, 2002). Communities of soil fauna offer opportunities for
studies of phenomena such as species interactions, resource utilization,
or temporal and spatial distributions.

Animal members of the soil biota are numerous and diverse. The
array of species is very large, including representatives of all terrestrial
phyla. Many groups of species are poorly understood taxonomically, 
and details of their natural history and biology are unknown. For 
the microarthropods (discussed later in this chapter), only about 
10% of populations have been explored, and perhaps only 10% of 
species described (André et al., 2002). Protection of biodiversity in
ecosystems clearly must include the rich pool of soil species.

79



Soil ecologists cannot hope to become experts in all animal groups.
When research focuses at the level of the soil ecosystem, two things 
are required: the cooperation of zoologists and the lumping of animals
into functional groups. These groups are often taxonomic, but species
with similar biologies are grouped together for purposes of integration
(Coleman et al., 1983; 1993; Hendrix et al., 1986).

The soil fauna also may be characterized by the degree of presence in
the soil (Fig. 4.1) or microhabitat utilization by different life forms.
There are transient species exemplified by the ladybird beetle, which
hibernates in the soil but otherwise lives in the plant stratum of the gar-
den. Gnats (Diptera) represent temporary residents of the soil, because
the adult stages live aboveground. Their eggs are laid in the soil and
their larvae feed on decomposing organic debris. In some soil situations,
dipteran larvae are important scavengers. Cutworms also are tempo-
rary soil residents, whose larvae feed on seedlings by night and hide by
day. Periodic residents spend their lives belowground, with adults such
as the velvet mites emerging perhaps to reproduce. From this perspec-
tive, the soil food webs are linked to aboveground systems, making
trophic analyses much more complicated. Even permanent residents of
the soil may be adapted to life at various depths in the soil.

Among the microarthropods, collembolans are examples of perma-
nent soil residents (see Fig. 4.1). The morphology of collembolans
reveals their adaptations for life in different soil strata. Species that
dwell on the soil surface or in the litter layer may be large, pigmented,
and equipped with long antennae and a well-developed jumping appa-
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ratus (furcula). Within the mineral soil, collembolans tend to be smaller
with unpigmented, elongate bodies and much reduced furculae—there
is no place to jump to.

Numerous researchers have marveled at the many and varied body-
plans and size differences of the soil fauna. A generalized classification
by length (Fig. 4.2) illustrates a commonly used device for separating
the soil fauna into size classes: microfauna, mesofauna, macrofauna,
and megafauna. This classification encompasses the range from small-
est to largest (i.e., from about 1 to 2 micrometers [mm] of the microfla-
gellates to several meters for giant Australian earthworms).

Body width of the fauna is related to their microhabitats (Fig. 4.3).
The microfauna (protozoa, small nematodes) inhabit water films. The
mesofauna inhabit air-filled pore spaces and are largely restricted to

FIGURE 4.2. A generalized classification of soil fauna by body length (from Wallwork,
1970).



existing ones. The macrofauna, in contrast, have the ability to create
their own spaces, through their burrowing activities, and like the
megafauna, can have large influences on gross soil structure (Lee, 1985;
Lavelle and Spain, 2001; van Vliet and Hendrix, 2003). Methods for
studying these faunal groups are in large part size-dependent. Methods
for studying the microfauna rely mainly upon techniques used for micro-
biology. Mesofauna require microscopic techniques for study and spe-
cialized extraction procedures for collection. The macrofauna may be
sampled as field collections, often by hand sorting, and populations of
individuals are usually measured.

There is, of course, considerable gradation in the classification based
on body width. The smaller mesofauna exhibit characteristics of the
microfauna, and so forth. Nevertheless, the classification continues to
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have considerable utility. Finally, the vast range of body sizes among the
soil fauna suggests that their effects on soil processes take place at a
range of spatial scales. Three levels of participation have been suggest-
ed (Lavelle et al., 1995; Wardle, 2002). “Ecosystem engineers,” such as
earthworms, termites, or ants, alter the physical structure of the soil
itself, influencing rates of nutrient and energy flow. “Litter transform-
ers,” microarthropods, fragment decomposing litter and improve its
availability to microbes. “Micro-food webs” include the microbial groups
and their direct microfaunal predators (nematodes and protozoans).
These three levels operate on different size, spatial, and time scales
(Fig. 4.4) (Wardle, 2002).

THE MICROFAUNA

The free-living protozoa of litter and soils belong to two Phyla: the
Sarcomastigophora and the Ciliophora (Levine et al., 1980). For practi-
cal purposes, we consider them in four ecological groups: the flagellates,
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naked amoebae, testacea, and ciliates (Lousier and Bamforth, 1990). A
general comparison of body plans is given in Figure 4.5, showing repre-
sentatives of the four major types. After a brief overview of the groups,
we will consider aspects of their enumeration and identification.
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1. Flagellates. Named for their one or more flagella (whiplike
propulsive organs), these are among the more numerous and active of
the protozoa. They play a significant role in nutrient turnover by their
often-intensive feeding activities, with bacteria as their principal
prey items (Zwart and Darbyshire, 1991; Kuikman and Van Veen,
1989). Numbers have varied from 100 per gram in desert soils to more
than 105 per gram in forest soils (Bamforth, 1980).

2. Naked Amoebae. These are among the more voracious of the soil
protozoa, and are very numerous and active in a wide range of agri-
cultural, grassland, and forested soils (Elliott and Coleman, 1977;
Clarholm, 1981, 1985; Gupta and Germida, 1989). The dominant
mode of feeding for the amoebae, as for the larger forms such as 
Ciliates, is phagotrophic (engulfing), with bacteria, fungi, algae, and
other fine particulate organic matter being the majority of the ingest-
ed material (Bamforth, 1980; Bryant et al., 1982). The highly plastic
mode of existence of the naked amoebae is impressive; they have the
ability to explore very small cavities or pores in soil aggregates and
feed upon bacteria that would otherwise be considered inaccessible to
predators (Foster and Dormaar, 1991).

3. Testate Amoebae. When compared with the naked amoebae, 
testate amoebae are often less numerous, except in moist, forested
systems where they thrive. However, they are more easily censused
by a range of direct filtration and staining procedures (Lousier and
Parkinson, 1981). Detailed community production and biomass stud-
ies of testacea have been carried out in forested French sites by
Coûteaux (1972, 1985) and in Canadian aspen forest lands (Lousier
and Parkinson, 1984). For example, Lousier and Parkinson (1984)
noted a mean annual biomass of 0.07 gram (g) dry weight ·m-2 of
aspen woodland soil, much smaller than the average annual mass for
bacteria or fungi, of 23 and 40g, respectively. However, the testacean
annual secondary production (new tissue per year) was 21g dry
weight ·m-2, or essentially the entire average standing crop of the 
bacteria in that site.

Certain genera of testacea are also diagnostic of soil types. Foiss-
ner (1987a) notes that pioneer soil scientists, such as P. E. Mueller in
the 1880s, were able to differentiate between mull and mor forms of
humus by the kinds of testacea found (Table 4.1). They used ratios of
abundance of forms, rather than exclusivity of presence or absence.

4. Ciliates. These protozoa, which have their own unusual life
cycles and complex reproductive patterns, tend to be restricted to
very moist or seasonally moist habitats. Their numbers are lower
than other groups, with a general range of 10 to 500 per g of litter/soil.
Ciliates can be very active in entering soil cavities and pores and
exploiting bacterial food sources in them (Foissner, 1987a). In com-
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mon with other protozoa, ciliates have resistant or encysted forms
from which they can emerge when conditions become favorable for
growth and reproduction, with the presence of suitable food sources
(Foissner, 1987a). Ciliates, along with flagellates and naked and tes-
tate amoebae, can quickly reproduce asexually by fission. The flagel-
lates, naked amoebae, and testacea can reproduce by syngamy, or
fusion of two cells. For the ciliates, sexual reproduction occurs by con-
jugation, with the micronucleus undergoing meiosis in two individu-
als, and the two cells joining at the region of the cytostome and
exchanging haploid “gametic” nuclei. Each cell then undergoes fis-
sion to produce individuals, which are genetically different from the
preconjugant parents (Lousier and Bamforth, 1990).

As noted above for the testacea, some genera of ciliates are considered
indicative of acid humus, and others more typical of higher-pH or “mild”
humus. See Table 4.1 for species characteristic of mull and mor soils.

Methods for Extracting and Counting Protozoa

There is an extensive literature on approaches to extracting and
counting protozoa. For much of the 20th century, researchers have been
heavily influenced by the papers of Cutler (1920, 1923), Cutler et al.
(1923), and Singh (1946). These authors favored the culture technique,
in which small quantities of soil or soil suspensions from dilution series
are incubated in small wells that are inoculated with a single species of
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TABLE 4.1. Species Characteristic of the Testacean and Ciliate Communities in Mull
and Mor Soils

Testaceans Ciliophora

Type of Ratio of full and
humus Characteristic species empty shells Characteristic species

Mull Centropyxis plagiostoma <1:2–5 Urosomioda agilis
Centropyxis constricta Urosoma spp.
Centropyxis elongata Hemisincirra filiformis
Plagiopyxis minuta Engelmanniella mobilis
Geopyxella sylvicola Grossglockneria hyalina
Paraquadrula spp. Colpoda elliotti

Moder Trigonopyxis arcula >1:2–5 Frontonia depressa
and Mor Plagiopyxis labiata Bryometopus sphagni

Assulina spp. Dimacrocaryon
Corythion spp. amphileptoides
Nebela spp.

From Foissner, 1987a.



bacteria as a food source. Based on presence or absence in each well, one
can calculate the overall population density (“most probable number”).
Other scientists, notably Coûteaux (1972) and Foissner (1987a),
espouse the direct count approach, in which one examines soil samples,
in water, to see what organisms are present in the subsample. The
advantages of this approach are that it is possible to observe the organ-
isms, which are immediately present, and not have to rely on the palata-
bility of the bacterium used to inoculate the series of wells in the culture
technique. The disadvantage of the direct count method, as noted by
Foissner (1987b), is that one usually employs only 5–30 milligrams (mg)
of soil, so as not to be overwhelmed with total numbers. Unfortunately,
this discriminates against some of the more rare forms of testaceans or
ciliates, which occur only infrequently, but may have a significant
impact, if they happen to be very large. Given rather limited research
budgets, it is seldom possible to employ a small army of staff to scan lit-
erally hundreds of slides of soil from a single sample site.

An additional complication is the fact that the culture technique
attempts to differentiate between active (trophozoite forms) and inac-
tive (cystic) forms by the treatment of replicate samples with 2%
hydrochloric acid overnight. The acid kills off the trophic forms, and
then, after washing in dilute NaCl, the counting continues. This
assumes that all of the cysts will excyst after this drastic process; some-
times the assumption is met, but not always.

Distribution of Protozoa in Soil Profiles

Although protozoa are considered to be distributed principally in the
upper few centimeters of a soil profile, they are also found at depths of
more than 200 meters (m) in groundwater environments (Sinclair and
Ghiorse, 1989). Small (2–3mm cell size) microflagellates were found to
decrease 10-fold in numbers during movement through 1m in a sandy
matrix under a trickling-filter facility (in dilute sewage), as compared to
a 10-fold reduction in bacterial transport over a 10-m distance (Harvey
et al., 1995).

Impacts of Protozoa on Ecosystem Function

Several investigators have noted the obvious parallel between the
protozoan–microbe interaction in water films in soil, and on root sur-
faces, and in open-water aquatic systems (Stout, 1963; Coleman, 1976;
Clarholm, 1994; Coleman, 1994a). The so-called “microbial loop”
Pomeroy (1974) has proven to be a powerful conceptual tool; rapidly
feeding protozoa may consume several standing crops of bacteria in 
soil (see Chapter 6) every year (Clarholm, 1985; Coleman, 1994b). 
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Darbyshire and Greaves (1967) noted that this tendency is particularly
marked in the rhizosphere, which provides a ready food source for
microbial prey. This was demonstrated impressively for protozoa in
arable fields (Cutler et al., 1923), and more recently for bacteria, naked
amoebae, and flagellates in the humus layer of a pine forest in Sweden
after a rain (Clarholm, 1994). Bacteria and flagellates began increasing
immediately after a rainfall event and rose to a peak in 2–3 days; naked
amoebae rose more slowly and peaked at days 4–5, and then tracked 
the bacterial decrease downward, as did the flagellates (Fig. 4.6). 
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Further information on protozoan feeding activities and their impacts
on other organisms and ecosystem function are given in Griffiths (1994),
Zwart et al. (1994), Poussard et al. (1994), and Bamforth (1997).
Bonkowski et al. (2000) suggest that protozoa, and the bacteria they feed
upon in the rhizosphere, produce plant-growth–promoting compounds
that stimulate plant growth above and beyond the amounts of nitrogen
mineralized in the rhizosphere. This is an interesting area of new
process-oriented research, and we can expect further developments in
the near future.

Protozoa and other microfauna are quite sensitive to environmental
insults, and changes in the distribution and activities are diagnostic of
changes in soil health (Gupta and Yeates, 1997). We address the issue of
soil health more extensively in Chapter 8.

THE MESOFAUNA

Rotifera

Among the small fauna, rotifera are often found only when a signifi-
cant proportion of water films exists in soils. They are usually consid-
ered to be aquatic organisms and may not be listed in major compendia
of soil biota (Dindal, 1990); they are a genuine, albeit secondary, compo-
nent of the soil fauna (Wallwork, 1976). While sampling for nematodes
in the surface layers of agricultural fields near La Selva, in the Atlantic
coastal forest of Costa Rica, one of the authors (Coleman) found virtual-
ly no nematodes, but large numbers of rotifers (tens of thousands per
square meter), despite the soil being far from water saturation. The field
was being maintained in a “bare fallow” regime with frequent weeding
or denudation of vegetation, to deliberately reduce organic inputs. 
However, there seemed to be ample Cyanobacteria and perhaps other
unicellular primary producers, which would have provided food for the
rotifers. Some rotifers have been found in bagged leaf litter on forest
floors in the southern Appalachian Mountains.

Features of Body Plan and General Ecology

More than 90% of soil rotifers are in the order Bdelloidea, or wormlike
rotifers. In these creeping forms, the suctorial rostral cilia and the adhe-
sive disc are employed for locomotion (Donner, 1966). Rotifers also form
cysts to endure times of stress or lack of resources. Additional life histo-
ry features of interest include the construction of shells from a body
secretion, which may have particles of debris and/or fecal material
adhering to it. Some rotifers will use the empty shells of Testacea, the
thecate amoebae. The Bdelloidea are vortex feeders, creating currents
of water that conduct food particles to the mouth for ingestion 
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(Wallwork, 1970). The importance of these organisms is largely
unknown, although they may reach numbers exceeding 105 per square
meter in moist, organic soils (Wallwork, 1970).

Rotifers are extracted from soil samples and enumerated using 
methods similar to those used for nematodes (see next section).

Nematoda

Nematodes, or roundworms, are among the most numerous of the
multicellular organisms found in any ecosystem. As with the protozoa,
they are primarily inhabiters of water films, or water-filled pore spaces
in soils. Nematodes have a very early phylogenetic origin, but as with
many other invertebrate groups, the fossil record is fragmentary. They
are classified among the triploblastic pseudocoelomates (three body 
layers: ectoderm, mesoderm, and endoderm). In other words, nema-
todes have a body cavity for the gastrointestinal tract, but it is less well-
differentiated than that for the true coelomates, such as annelids and
arthropods.

The overall body shape is cylindrical, tapering at the ends (Fig. 4.7).
In general, nematode body plans are characterized by a “tube within a
tube” (alimentary tract/the body wall). The alimentary tract, beginning
at the anterior end, consists of a stoma or stylet, pharynx (or esophagus),
intestine, and rectum, which opens externally at the anus. The repro-
ductive structures are quite complex, as shown in Figure 4.7. Some
species are parthenogenetic, reproducing without sex. It is possible 
to view the internal structures of most nematodes because they have
virtually transparent cuticles. The nematodes can be keyed out 
fairly readily to family and/or genus under a moderate magnification
(about 100¥) binocular microscope or in a Sedgwick–Rafter chamber on 
an inverted microscope (Wright, 1988), but species-specific characteris-
tics must be determined under high magnification, using compound
microscopes.

Nematode Feeding Habits

Nematodes feed on a wide range of foods. General trophic groupings
include bacterial feeders, fungal feeders, plant feeders, and predators
and omnivores. For the purposes of our general overview, one can use
anterior (stomal or mouth) structures to differentiate general feeding,
or trophic, groups (Fig. 4.8) (Yeates and Coleman, 1982; Yeates et al.,
1993; Yeates, 1998). The feeding categories are a good introduction, but
the feeding habits of many genera are either complex or poorly known.
Thus immature forms of certain nematodes may be bacterial feeders,
then become predators on other fauna once they have matured (Allen-
Morley and Coleman, 1989). Some of the stylet-bearing nematodes (e.g.,
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the family Neotylenchidae), may feed on roots, root hairs, and fungal
hyphae (Yeates and Coleman, 1982). Some bacterial feeders (e.g.,
Alaimus) may ingest 10-mm width cyanobacterial cells (Oscillatoria)
despite the mouth of the nematode being 1-mm wide, indicating that the
cyanobacterial cells can be compressed markedly by the nematode
(Yeates, 1998). Recent laboratory studies (Venette and Ferris, 1998)
have confirmed that population growth of bacterial-feeding nematodes
is strongly dependent on the species of bacteria ingested. The six nema-
tode species used in the study of Venette and Ferris (1998) reached 
maximal population growth rates when ingesting from 104 to 105 colony-
forming units (CFUs) per nematode. Population growth rates (l) 
under these controlled conditions ranged from 1.1 to greater than 12d-1,
making these organisms ideal for detecting rapid changes in the soil
environment.

Although specialized in nature, the feeding habits and impacts 
of entomopathogenic nematodes are quite marked in several soil 
environments worldwide (Hominick, 2002). The nonfeeding “infective
juveniles,” or third instar dauer larvae of nematodes in the family 
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FIGURE 4.8. Head structures of a range of soil nematodes. (a) Rhabditis (bacterial feed-
ing); (b) Acrobeles (bacterial feeding); (c) Diplogaster (bacterial feeding, predator); (d)
tylenchid (plant feeding, fungal feeding, predator); (e) Dorylaimus (feeding poorly known,
omnivore); (f) Xiphinema (plant feeding); (g) Trichodorus (plant feeding); (h) Mononchus
(predator) (from Yeates and Coleman, 1982).



Heterorhabditidae, live in the soil and search for hosts and disperse. An
infective juvenile enters the insect host (which it senses along a CO2

gradient) (Strong et al., 1996) through a spiracle or other opening, 
punctures a membrane, then regurgitates the symbiotic bacterium 
Photorhabdus luminescens, which kills the host within 48 hours. A
rapidly growing bacterial population then digests the insect cadaver
and provides food for the exponentially growing adult nematode popu-
lation inside. The symbiotic bacteria produce antibiotics and other
antimicrobial substances that protect the host cadaver and adult nema-
todes inside from invasion by alien bacteria and fungi from the soil
(Strong et al., 1999). When the cadaver is exhausted of resources, repro-
duction shunts to infective juveniles, which break through the host
integument and disperse into the soil. For example, as many as 410,000
Heterorhabditis hepialus infective juveniles are produced in a large
ghost moth caterpillar (Strong et al., 1996). In pot experiments, Strong
et al. (1999) found that Lupinus arboreus seedlings, whose seedling sur-
vival decreased exponentially with increasing densities of root-feeding
caterpillars, had virtually the entire negative effect of the herbivore
cancelled upon the introduction of the entomopathogenic nematode into
the system. For more information on dynamics of entomopathogenic
nematodes in soil food webs, see Strong (2002).

For identifying fungal-based food chains, Ruess et al. (2002) have
shown that the measurement of fatty acids specific to fungi can be traced
to the body tissues of fungal-feeding nematodes. Although still in early
stages of development, this technique shows considerable promise for
more detailed biochemical delineation of food sources of specific feeding
groups of nematodes.

Because of the wide range of feeding types and the fact that they seem
to reflect ages of the systems in which they occur (i.e., annual versus
perennial crops [Neher et al., 1995], or old fields and pastures and more
mature forests), nematodes have been used as indicators of overall eco-
logical condition (Bongers, 1990; Ettema and Bongers, 1993; Yeates,
1999; Ferris et al., 2001). This is a growing area of research in soil ecolo-
gy; one in which the intersection between community analysis and
ecosystem function could prove to be quite fruitful. We discuss some of
these concepts further in Chapter 5 on decomposition and nutrient
cycling.

Nematode Zones of Activity in Soil

As noted in Chapter 2, the rhizosphere is a zone of considerable meta-
bolic activity for root-associated microbes. This extends also to the soil
fauna, which may be concentrated in the rhizosphere. For example, Ing-
ham et al. (1985) found up to 70% of the bacterial and fungal-feeding
nematodes in the 4–5% of the total soil that was rhizosphere, namely the
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amount of soil 1–2 millimeters (mm) from the root surface (the rhizo-
plane). In comparison, Griffiths and Caul (1993) found that nematodes
migrated to packets of decomposing grass residues, with considerable
amounts of labile substrates therein, in pot experiments. They conclud-
ed that nematodes are seeking out these “hot spots” of concentrated
organic matter, and that protozoa, also monitored in the experiment, do
not.

Nematodes are very sensitive to available soil water in the soil
matrix. Elliott et al. (1980) noted that the limiting factor for nematode
survival often hinges on the availability of soil pore necks, which enable
movement between soil pores. In recent studies, Yeates et al. (2002)
measured the movements, growth, and survival of three genera of bac-
terial-feeding soil nematodes in undisturbed soil cores maintained on
soil pressure plates. Interestingly, the nematodes showed significant
reproduction even when diameters of water-filled pores were approxi-
mately 1mm. This information should prove useful when determining
biological interactions under field conditions, and indicates that soil
nematodes may be more active over a wider range of soil moisture 
tensions than had been thought to be the case previously.

Nematode Extraction Techniques

Nematodes may be extracted by a variety of techniques, either active
or passive in nature. For more accuracy in determination of populations,
the passive or flotation techniques are generally preferred. The princi-
pal advantage of the oldest, active method, namely the Baermann fun-
nel method, is that it is simple, requiring no fancy equipment or
electricity. It is based on the fact that nematodes in soils will move about
in the wetted soil and fall into the funnel itself. Thus samples are placed
on coarse tissue paper, on a coarse mesh screen, and then placed in the
cone of a funnel and immersed in water. Once they crawl through the
moist soil and filter paper, the nematodes fall down into the neck of the
funnel. Because nematodes have only circular and not longitudinal
muscles, they do not stay in suspension in the water and fall to the bot-
tom of the funnel stem, which was closed off with a screw clamp on a rub-
ber hose. At the conclusion of the extraction (typically 48 hours), the
nematodes in solution are drawn off into a tube and kept preserved for
examination later. One drawback to the technique is that it allows dor-
mant nematodes to become active and be extracted, so it may give a
slightly inflated estimate of the true, “active” population at a given time.
Other methods include filtration, or decanting and sieving, and flota-
tion/centrifugation (Christie and Perry, 1951, Coleman et al., 1999) 
to remove the nematodes from the soil suspension. When handling 
larger quantities of soil (up to 500g) to recover large amounts of nema-
todes, various elutriation (extraction using streams of air bubbles in
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funnels) methods are employed. For details, see Gorny and Grüm (1993)
(Fig. 4.9).

Tardigrada

These interesting little micrometazoans (ranging from 50mm, the
smallest juvenile, to 1200mm, the largest adult) (Nelson and Higgins,
1990) are also called “water bears” because of their microursine appear-
ance. They were named “Il Tardigrado,” literally slow-stepper, because
their slow movements resembled those of a tortoise, by the famous 
Italian abbot and natural history professor Lazzaró Spallanzani in 1776
(Nelson and Higgins, 1990).

Tardigrades are members of the monophyletic group known as
Ecdysozoa, a clade of all molting animals that includes nematodes and
arthropods (Garey, 2001). Tardigrades are bilaterally symmetrical with
four pairs of legs, equipped with claws on the distal end, of various sizes
and forms (Fig. 4.10). The sizes and shapes of the claws are used in key-
ing genera and species. Perhaps their greatest notoriety in recent times
has come from the marked recuperative powers that they show after
having been kept dry in a state of “suspended animation” for many years
or even decades. These studies (Crowe, 1975; Crowe and Cooper, 1971;
Wright, 2001) have found that tardigrades recover well even after
extreme environmental insults such as being plunged into liquid nitro-
gen. More generally, a series of five types of latency or virtual cessation
of metabolism have been described: encystment, anoxybiosis, cryobio-
sis, osmobiosis, and anhydrobiosis (Crowe, 1975). All these are sub-
sumed under the more general term “cryptobiosis” (Keilin, 1959), or
hidden life, which was first described by Antonie van Leeuwenhoek in a
Royal Society lecture in 1702 (Wright, 2001). Being highly resistant, or
resilient, to various environmental insults, tardigrades exemplify a
recurrent thread throughout biology in general, and soil biology in par-
ticular: the selective advantages to “waiting out” a spell of bad microcli-
mate and being able to reactivate and become active in a given patch in
the soil, years or decades later.

Tardigrades occur predominantly in the surface 1–3cm of many
grassland soils, but certain genera (e.g., the Macrobiotus-group
species), are quite numerous at depths up to 10cm in subalpine conifer-
ous forest (Ito and Abe, 2001). They may serve as “early-warning
devices” for environmental stress. Tardigrades were found to be the
most sensitive organism measured in a several-year study of the effects
of dry-deposition of SO2 on litter and soil of a mixed-grass prairie eco-
system (Grodzinski and Yorks, 1981; Leetham et al., 1982). They are
thought to feed on algal cells and debris in the interstices of moss thalli
and probably have a rather broad diet of various microbial-rich bits of
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residue, 3 = outlet, 4 = final collecting sieve, 5 = water tank, 6 = water bath, 7 = glass for 
oil-water flotation (from Kaczmarek, 1993).
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soil organic matter. Tardigrades have also been observed to feed vora-
ciously on nematodes when in culture (G. W. Yeates, personal communi-
cation). Tardigrades have been found in large numbers (up to 2000 per
10 square meters of soil surface), and are particularly associated 
with lichens, mosses, liverworts, and rosette angiosperms (Nelson and 
Higgins, 1990; Nelson and Adkins, 2001). They are found also in very
cold, dry habitats, such as the Antarctic dry valleys, where they feed on
the particulate organic detritus brought in by windward movement 
of algal cells from lake ice at one end of the long valleys (D. H. Wall, 
personal communication).

Tardigrades may be extracted from soils and various substrates by
Baermann funnels (Petersen and Luxton, 1982), or flotation and sieving
through a 44-mm sieve, or by the sucrose flotation and centrifugation
technique used for extracting nematodes (Christie and Perry, 1951).

Microarthropods

Large numbers of the microarthropod group (mainly mites and
collembolans) are found in most types of soils. A square meter of forest
floor may contain hundreds of thousands of individuals representing
thousands of different species (Fig. 4.11). Microarthropods have a 
significant impact on the decomposition processes in the forest floor 
(see Chapter 5) and are important reservoirs of biodiversity in forest
ecosystems.

Microarthropods also form an important set of linkages in food webs.
Many microarthropods feed on fungi and nematodes, thereby linking
the microfauna and microbes with the mesofauna. Microarthropods in
turn are prey for macroarthropods such as spiders, beetles, ants, and
centipedes, thus bridging a connection to the macrofauna. Even some of
the smaller megafauna (toads, salamanders) feed upon microarthro-
pods. We emphasize, again, the need to study soil as an ecosystem.
Analysis of one part of the food web, the microarthropods for example,
falls short if other components are ignored.

In the size spectrum of soil fauna (see Figs. 4.2 and 4.3), the mites 
and collembolans are found among the mesofauna. Members of the
microarthropod group are unique, not so much by their body size as by
the methods used for sampling them. Microarthropods are too small 
and numerous to be sampled as individuals. Instead, small pieces of
habitat (soil, leaf litter, or similar materials) are collected and the
microarthropods extracted from them in the laboratory. In this manner
they resemble certain of the microfauna such as nematodes, rotifers, or
tardigrades. Most of the methods used for microarthropod extraction
are either variations of the Tullgren funnel (“Berlese funnel”), which
uses heat to desiccate the sample and force the arthropods into a collec-
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tion fluid, or flotation in solvents or saturated sugar solutions followed
by filtration (see Chapter 9). Edwards (1991) gives an extensive review
of these procedures. Both approaches to sampling microarthropods
have their proponents. Generally, flotation methods work well in low
organic, sandy soils whereas Tullgren funnels perform best in soils 
with high organic matter content. Flotation procedures are much more
laborious than is Tullgren extraction.
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FIGURE 4.11. An example of the thousands of species of soil microarthropods (D. A.
Crossley, Jr. photo).



Choice of method also depends upon the objectives of the sampling
program. If numbers of individuals are to be measured, a large set of
small samples may be needed. Estimations of species number may be
better served by fewer, larger samples. In any case, extraction methods
are never completely efficient and, indeed, efficiency of sampling is sel-
dom estimated (André et al., 2002). Consequently, Walter and Proctor
(1999) concluded that enumeration of microarthropods was an “intellec-
tually vacuous” exercise. However, valid comparisons of microarthropod
abundance in different habitats may be obtained even if extraction 
efficiencies, though unknown, are similar.

Microarthropod densities vary during seasons within and between
different ecosystems (Table 4.2). Generally, temperate forest floors with
large accumulations of organic matter support high numbers, whereas
tropical forests where the organic layer is thin contain lesser numbers of
microarthropods (Seastedt, 1984b). Disturbance or perturbation of soils
usually depresses microarthropod numbers. Tillage, fire, and pesticide
applications typically reduce populations but recovery may be rapid and
microarthropod groups respond differently.

Soil mites usually outnumber collembolans but these become more
abundant in some situations. In the springtime, forest leaf litter may
develop large populations of “snow fleas” (Hypogastrura nivicola and
related species). Among the mites themselves the oribatids usually dom-
inate but the delicate Prostigmata may develop large populations in cul-
tivated soils with a surface crust of algae. Immediately following
cultivation, numbers of astigmatic mites have been seen to increase 
dramatically (Perdue, 1987).
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TABLE 4.2. Abundance of Microarthropods in Soils from Various Ecosystems

Ecosystem Microarthropods Reference
(103 per m2)

Fallow crop fields, Nigeria 40–68 Adejuyigbe et al., 1999
Corn tillage plots, Guelph, Canada 16–17 Winter and Voroney, 1990
No-tillage plots, North Carolina 1–30 House and Worsham, 1987
Cedar plantation, Nagoya, Japan 48–149 Hijii, 1987
Deciduous forest, Tennessee 36.9 Reichle et al., 1975
Deciduous forest, North Carolina 88 Lamoncha and Crossley, 1998
Burned tallgrass prairie, Kansas 35–50 Seastedt, 1984
Unburned tallgrass prairie, 63–77 Seastedt, 1984

Kansas
Mediterranean desert, Negev 1–2 Steinberger and Wallwork, 1985
North American desert, 1–8 Steinberger and Wallwork, 1985

American Southwest
Phryganic ecosystem, Greece 20–60 Sgardelis et al., 1981



Soil microarthropods are significant reservoirs of biodiversity but it is
not clear exactly how diverse they may be. Estimation of species rich-
ness is a difficult problem for many types of soil organisms (fungi, bac-
teria and nematodes, for example, as well as microarthropods). In an
extensive review, André et al. (2002) report that at most 10% of soil
microarthropod populations have been explored and 10% of species
described. Thus, according to those authors, the contribution of soil
fauna to global biodiversity remains an enigma. Consequently, the
mechanisms underlying the large species diversity of the microarthro-
pods continue to elude us. The decline in numbers of taxonomic special-
ists for these groups has been noted (Behan-Pelletier and Bissett, 1993)
as a contributing factor to our inadequate information base for
microarthropods.

Unlike the macroarthropods, the mites and collembolans have little
or no effect on soil structure. Their dimensions allow them to use exist-
ing spaces in soil structure. Even the large, soft-bodied members of the
mite group Prostigmata do not seem to create their own passageways.
Some litter-feeding species do burrow into substrates such as petioles of
decaying leaves and create tunnels, but these have no direct effect on
soil structure per se. The microarthropods resemble the microfauna in
this characteristic.

Collembola

Among microarthropods, collembolans are often equal to soil mites in
numerical abundance. They are worldwide in distribution and occur in
all biomes, from tropic to arctic and from forest to grassland and desert
and throughout the soil profile. Collembolans (Fig. 4.12) have the com-
mon name of “springtails” from the fact that many of the species are able
to jump by means of a lever attached to the bottom of the abdomen. They
also have a unique ventral tube (collophore), which seems to function in
osmoregulation, and a springing apparatus (furcula and tenaculum)
ventrally on the abdomen (absent in some groups). Most species are
small, at most a few millimeters long, but may be brightly colored. They
are ubiquitous members of the soil fauna, often reaching abundances of
100,000 or more per square meter. They occur throughout the upper soil
profile, where their major diet appears to be fungi associated with
decaying vegetation. In the rhizosphere, they are often the most numer-
ous of the microarthropods. Surface-dwelling forms, inhabiting the 
litter layer, are usually well equipped with furculas (see Fig. 4.12). 
Residents of the deeper soil layers generally have no furcula, or only a
rudimentary one, and typically lack pigmentation and eyes (Petersen,
2002).

The position of the Collembola in the world of arthropods continues to
puzzle specialists. Classically these small, wingless arthropods have
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(a)

(b)

(c)

FIGURE 4.12. (a) A symphypleonid collembolan (Sminthurus burtcheri) (Snider, 1969).
(b) An arthropleonid collembolan (Isotomurus palustris) (Snider, 1967). (c) An onychiurid
collembolan (Onychiuridae: Protaphorura sp.). Note the absence of the furcula (jumping
apparatus) on the eyeless, soil-dwelling onychiurid, in contrast to the other litter-dwelling
forms.

been listed among the class Insecta (e.g., Boudreaux, 1979) but some
authors suggest that they deserve a class of their own (Manton, 1970).
Their mouthparts are held in a unique cone-shaped structure. Collem-
bolans lack such features as compound eyes or wings, but do resemble
insects by having three body regions. The head bears a pair of antennae.
The thorax is three-segmented and bears three pairs of legs. The collem-
bolan abdomen consists of only six segments, less than the insect model.
The collembolan ventral tube, the collophore, is not found in other
groups of arthropods.

The classification of the Collembola is relatively stable at the generic
level, although many species remain unnamed and taxonomy of the
group is based almost entirely on external morphology (Hopkin, 1997).



Resolution of the higher taxonomic categories will require a close exam-
ination of the fauna of the entire world (Christiansen and Bellinger,
1998). In North America, the taxonomic analysis by Christiansen and
Bellinger (1998) is the standard reference and provides keys to genera
and known species. On a worldwide basis, the literature is scattered
over a wide variety of journals and other publications. Hopkin (1997)
offers regional checklists of the collembolan fauna. The publications of
Gisin (1962, 1963, 1964, and others cited therein) are essential for the
study of European Collembola.

With the development of computerized access to the World Wide Web,
another large array of resources has recently become available. A good
search engine will locate several thousand Web sites referencing collem-
bolans and offering keys, check lists, lists of specialists, and other valu-
able information. These resources include such assets as a world list of
collembola, interactive keys to species in some of the genera, a list of ref-
erences to Collembola beginning in 1995, and a catalog of the neotropi-
cal species. We anticipate that the World Wide Web will become even
more valuable as a source of information about microarthropods. (We do
not offer specific Web addresses because they are often subject to
change.) A cautionary note: Web pages are seldom peer reviewed.

Identification of collembolans requires use of a microscope and mag-
nifications as high as 400¥. Preliminary sorting of samples to family lev-
els can be performed with a dissecting microscope, once some familiarity
with the group has been gained. Recognition of genera and species will
require slide mounts (see Chapter 9). Collembolans will float on the sur-
face of many collection fluids, due to their very hydrophobic cuticle, and
special collection fluids are recommended (see Chapter 9).

Families of Collembola

In the current system of classification, a dozen or so families of
collembolans are arranged in three major groups (Christiansen and
Bellinger, 1998). The suborder Arthropleona contains the so-called 
“linear” collembola, the great majority of species, in two sections: the
Poduromorpha and the Entomobryomorpha.

Poduromorph collembolans [Fig. 4.12(c)] include the important fami-
lies Hypogastruridae and Onychiuridae, whose species are dwellers in
mineral soil layers, and the family Poduridae with a single darkly pig-
mented species, Podura aquatica, whose natural habitat is standing
water.

Onychiurid collembolans [Fig. 4.12(c)] almost always have no furcu-
la; eyes are reduced or absent and, if present, are unpigmented. They
possess pseudocelli, cuticular organs which have nothing to do with
vision but which can extrude a defensive oil when disturbed, an alarm

The Mesofauna 103



pheromone (Usher and Balogun, 1966). Onychiurids feed in the rhizos-
phere. Curl and Truelove (1986) argue persuasively that these collem-
bolans are attracted to plant roots and are important in rhizosphere
dynamics. In experiments, collembolans protected cotton plants from
the root pathogen Rhizoctonia solani by selectively grazing that fungus
from the plant roots. These rhizosphere inhabitants may prove to be
effective biological control agents (Fig. 4.13, Curl and Truelove, 1986).
Onychiurids are not well sampled with Tullgren funnels; they do not
appear to respond to the heating and drying process in Tullgren extrac-
tions. Estimates of numbers of Onychiurids are best made with flotation
methods (see Chapter 9) (Edwards, 1991).

The family Hypogastruridae includes several common species whose
populations may build up to huge numbers. These include the “snow
flea,” Hypogastrura nivicola. That species multiplies under winter
snows and, on warm days, appears to boil out onto the surface (Chris-
tiansen, 1992). Another related species, H. armata, is common in the lit-
ter layer of hardwood forests during the winter months (Snider, 1967).
We have found H. armata (Fig. 4.14) to be the predominant winter
microarthropod in hardwood litterbags in the southern Appalachians
(Crossley and Coleman, unpublished data).

The Entomobryomorpha [Fig. 4.12(b)] includes the large family Ento-
mobryidae in which the furcula is well developed. The collembolans are
primarily dwellers of surficial soil layers, in forest canopies or on tree
trunks. Laboratory cultures of one species, Sinella curviseta, have found
a valuable role as prey for cultures of spiders (Draney, 1997). Species in
the family Tomoceridae (Fig. 4.15) include large forms with long anten-
nae, found in upper litter layers of forest floors throughout the Holarctic
region.

Members of the family Isotomidae are a highly variable set of species;
the group is in need of serious taxonomic revision (Christiansen and
Bellinger, 1998). This family includes Folsomia candida (Fig. 4.16), a
species widely used in laboratory experiments and in the assessment of
the effects of toxic substances. Its reproductive biology has been thor-
oughly explored and culture methods well developed (Snider, 1973). In
fact, the microbial gut flora of F. candida has been extensively explored
using DNA probing methods. It was found to be a frequently changeable
but selective habitat, possibly indicating that soil microarthropods
could modify the species makeup of soil microbial communities (Thimm
et al., 1998). The European “glacier flea,” Isotoma saltans, is active on ice
at temperatures below freezing and feeds on pollen grains trapped on
the glacier surface (Christiansen, 1992).

The third major group of Collembola, the suborder Symphypleona,
includes the spherical or globular collembolans. It is a smaller group
than the Arthropleona and much more uniform in habits (Christiansen
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FIGURE 4.13. Collembolan protection of roots from infection by Rhizoctonia solani. (Left)
Roots from pathogen-infested soil with mycophagous collembola; (right) diseased root
from pathogen-infested soil without collembola (from Curl and Truelove, 1986).

FIGURE 4.14. Drawing of Hypogastrura armata, common in wintertime in Coweeta for-
est floors, in western North Carolina in the United States (from K. Christiansen, with 
permission).
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FIGURE 4.15. Tomocerus dubius (from K. Christiansen, with permission).

FIGURE 4.16. Folsomia candida adults and juveniles. The largest individual is 2mm in
length (from Hopkin, 1997).

and Bellinger, 1998). The family Sminthuridae [Fig. 4.12(a)] is a large
and cosmopolitan one, being active jumpers, dwellers in surficial litter
layers, on vegetation, and in the canopies of tropical humid forests.
Often brightly colored, these collembolans are readily collected with
Tullgren funnels or pitfall traps (see Chapter 9), but may also be collect-
ed by sweeping through grassy vegetation with a white enamel pan. The



family Neelidae consists of tiny globular forms lacking eyes and with
short antennae. The family is cosmopolitan but poorly studied (Hopkin
1997).

Population Growth and Reproduction

Many collembolans are opportunistic species, capable of rapid popu-
lation growth under suitable conditions. They often respond to distur-
bances of the soil environment. In agricultural systems, spurts of
growth may follow plowing or cultivation (Hopkin, 1997). In forests, fire
may stimulate collembolan abundances, as may the broadscale applica-
tion of pesticides (Butcher et al., 1971). Collembolans occur in aggrega-
tions. In samples of soils, they are not found at random, but occur in
groups. Aside from the statistical problems of assessment of population
size, aggregations pose ecological questions as well. In laboratory in-
vestigations, Christiansen (1970) and Barra and Christiansen (1975)
analyzed collembolan responses to habitat variables (i.e., moisture and
substrate) and food resources. Although these were important, the
major variable seemed to be a behavioral one. Collembolans possess
aggregation pheromones (Krool and Bauer, 1987), which probably func-
tion in bringing the sexes together for reproductive purposes. Earlier,
reproductive pheromones were identified by Waldorf (1974). Many
collembolan species are capable of rapid, even explosive, population
growth under ideal conditions. Gist et al. (1974) analyzed life tables for
Sinella curviseta under laboratory conditions for 170 days; they found
an intrinsic rate of increase of 0.036 per day and a replacement rate (Ro)
of 515 per female.

Sperm transfer is by means of spermatophores, either actively passed
or deposited on pedicels and located by the females. Eggs are laid in
groups. Development is continuous; the number of instars ranges
between 2 and 50 or more (Christiansen and Bellinger, 1998). Collem-
bolans become sexually active with the fifth or sixth instar but continue
to molt throughout life, in contrast with the Insecta, which do not molt
after reproduction.

Parthenogenic reproduction is common in many collembolan species,
including the commonly cultured Folsomia candida. Many species are
bisexual, especially those in the Entomobryidae (e.g., Sinella curviseta).

Collembolan Feeding Habits

Collembolans are generally considered to be fungivores, with occa-
sional ingestion of other animals, decomposing plant or animal residue,
or fecal material. As noted previously, they are often considered to be
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nonspecific feeders but this conclusion is controversial (Petersen, 2002).
Gut content analysis of field-collected specimens or field observation in
rhizotrons (Gunn and Cherrett, 1993) often reveals a wide variety of
materials, including fungi, plant debris, and animal remains. Laborato-
ry choice studies, in contrast, have found that collembolans have speci-
fic food preferences, choosing one fungal species over others (similar
discrepancies in feeding analysis have been noted for oribatid mites; see
later section on mites). Bengtsson et al. (1994), in laboratory experi-
ments, reported that the collembolan Protaphorura armata showed an
increased dispersal rate if a favored fungus was present as far away as
40cm (cited in Petersen, 2002).

Models of soil food webs usually place collembolans as fungivores
(e.g., Coleman, 1985; Hunt et al., 1987; Moore and de Ruiter, 2000).
However, like many of the soil fauna, collembolans in general defy such
exact placement into trophic groups. Living plant tissue may be con-
sumed and even dead animal material or feces in cultures. Many collem-
bolan species will eat nematodes when those are abundant (Gilmore and
Potter, 1993). Some species may be significant in the biological control of
nematode populations (Gilmore, 1972). Feeding on nematodes does not
seem to be selective; collembolans do not distinguish between sapro-
phytic and plant parasitic nematodes. In the words of Hopkin (1997),
“Indeed the opportunistic nature of the feeding behaviour of many
species of Collembola may be one reason for their success.”

Collembolan Impacts on Soil Ecosystems

The direct effect of collembolans on ecosystem processes such as ener-
gy flow appears to be quite small. Their biomass is relatively tiny, their
respiration rates are but a small fraction of total soil CO2 efflux, and
their feeding rates account for only a small amount of microbial activity.
They share these characteristics with other soil microarthropods 
(Gjelstrup and Petersen, 1987). These conclusions have lead Andrén 
et al. (1999) to a sardonic statement, to wit: “Soil animals exist. I like soil
animals. They respire too little. Ergo, they must CONTROL some-
thing!” Those authors caution us to avoid an overly enthusiastic
appraisal of the importance of microarthropods in soil ecosystems. Nev-
ertheless, manipulation experiments have shown important impacts of
collembola on nitrogen mineralization, soil respiration, leaching of dis-
solved organic carbon, and plant growth (Filser, 2002). These system
responses may be viewed as indirect effects. Assessing the importance of
Collembola in soil ecosystems needs to be done in the context of the
intact system and may be expected to vary with temperature, moisture, 
season, and interactions with other biota.

108 Chapter 4 The Soil Fauna



Grazing upon fungal hyphae appears to be the major contribution of
Collembola in the decomposition process. Such grazing on fungal
hyphae may be selective, thus influencing the fungal community (Table
4.3). Indirectly, such direct effects on the fungal community may have
indirect effects on nutrient cycling (Moore et al., 1987). Selective grazing
by the collembolan Onychiurus latus changed the outcome of competi-
tion between two basidiomycete decomposer fungi (Newell, 1984a, b),
allowing an inferior competitor to prosper. Grazing upon fungi may
actually increase general fungal activity in soils and stimulate fungal
growth. The relationship between fungal and collembolan population
dynamics is not straightforward, however, because some collembolan
species may actually reproduce more successfully on least favored foods
(Walsh and Bolger, 1990). Collembola have been demonstrated to have
complex interactions with several fungal species simultaneously. Cot-
ton was grown in a greenhouse with four fungal species, the pathogen
Rhizoctonia solani and three known biocontrol fungi (including two
sporulating Hyphomycetes), and the rhizosphere-inhabiting collem-
bolan Proisotoma minuta. The collembolan preferentially fed on the
pathogenic fungus and avoided the biocontrol fungi (Lartey et al., 1994).

Acari (Mites)

The soil mites, Acari, chelicerate arthropods related to the spiders,
are the most abundant microarthropods in many types of soils. In rich
forest soil, a 100-g sample extracted on a Tullgren funnel may contain as
many as 500 mites representing almost 100 genera (Table 4.4). This
much diversity includes participants in three or more trophic levels and
varied strategies for feeding, reproduction, and dispersal. Often, ecolo-
gists analyze samples by a preliminary sorting of mites into suborders.
Identification of mites to the family level is a skill readily learned under
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TABLE 4.3. Compensatory Growth of Fungi in Response to Collembolan Grazing

Fungal species Collembolan species Growth relative to controls

Botrytis cinerea Folsomia fimetaria -a

Coriolus versicolor Folsomia candida -/+b

Mortierella isabellina Onychiurus armatus -a

Verticillium bulbillosum Onychiurus armatus +
Penicillium spinulosum Onychiurus armatus +
Field Soil Dilution Hypogastrura tullbergi +a

Folsomia regularis +a

aBacteria were present.
bIncrease with fungi grown on high nutrient medium, otherwise decrease.
After Lussenhop, 1992.



the tutelage of an acarologist. Expert assistance is necessary for identi-
fications of soil mites to genus or species. By combining slide mounts
with examination of specimens in alcohol, reasonably accurate sorting
of samples can be performed.

Four suborders of mites occur frequently in soils: the Oribatei, the
Prostigmata, the Mesostigmata, and the Astigmata. Specimens in alco-
hol can usually be assigned to one of these suborders. Slide mounts are
required for placement of dubious specimens. Techniques for slide
preparations are given in Chapter 9. Krantz (1978) provides keys to all
families of the Acari. Keys to families or superfamilies of soil mites
themselves may be found in Dindal (1990). As is the case for the collem-
bola, taxonomic aids may be found in sites on the World Wide Web. Inter-
active keys have also recently become available (Walter and Proctor,
2001).

The soil mites are a subset of the Acari. Occasionally, mites from other
habitats are extracted from soil samples. During autumnal leaf drop in
deciduous forests, foliage-inhabiting mites may enter the soil food webs
and may be found in Tullgren extractions. This group includes, for
example, plant-feeding mites (red spider and false spider mites) and
their predators. Occasionally mites parasitic upon vertebrates may be
seen in soils from the vicinity of mammal nests, or host-seeking larval
forms may occur in Tullgren samples. These stragglers doubtless enter
into the soil food webs. But the more numerous species are the true soil
mites.

Among the four mite groups, the oribatids are the characteristic
mites of the soil and are usually fungivorous, detritivorous, or both.
Mesostigmatid mites are nearly all predators on other small fauna,
although some few species are fungivores and these may become numer-
ous in some situations. Acarid mites are found associated with rich,
decomposing nitrogen sources and are seldom abundant except in agri-
cultural soils or stored products. The Prostigmata contains a broad
diversity of mites with a variety of feeding habits and strategies. Very
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TABLE 4.4. Densities (Number per m2) of Soil Microarthropods in Four Forest Types

Taxa Mixed hardwood Aspen woodland Spruce forest Scots pine forest

Oribatei 56,000 123,000 212,000 425,000
Prostigmataa 25,000 96,000 250,000
Mesostigmata 1500 7400 14,000 8600
Collembola 7500 71,000 46,000 60,000

aNot estimated.
Modified from Wallwork, 1983.



little is known of the niches or ecological requirements of most soil mite
species, but some tantalizing information is emerging from field
research (Walter et al., 1987; Hansen, 2000). As noted previously for
Collembola, some mites may play significant roles as consumers of plant
pathogenic fungi. In ecosystems where most primary productivity
occurs below ground (e.g., grasslands), where nematode biomass is high
in root rhizospheres, nematophagous arthropods (including mites)
could be significant predators of plant-feeding nematodes (Gerson et al.,
2003).

Oribatid Mites

Oribatids (Figs. 4.17–4.20) are an ancient group. They have the rich-
est fossil record of any mite group, dating back to the Devonian period,
or 350–400 million years ago (Labandeira et al., 1997). Specimens from
a Devonian site near Gilboa, NY, contain organic matter visible in their
guts, attesting to a long relationship between oribatid mites and decom-
posing vegetable matter (Norton et al., 1987). Some oribatid species are
Holarctic in distribution, being widely distributed in forest floors of
Europe and North America. A general catalog of oribatids of North
America was published by Marshall et al. (1987). Oribatid mites occur in
all terrestrial ecosystems, from arctic (Behan-Pelletier and Norton,
1983) to tropics (Balogh and Balogh, 1988, 1990; González et al., 2001)
and from deciduous forest (Hansen, 2000; Lamoncha and Crossley,
1988) to desert (Santos and Whitford, 1981).

A combination of three factors makes oribatid mites unique among
the soil fauna. First, their sheer numbers are impressive. They are the
most numerous of the microarthropods (Travé et al., 1996). Second, they
often possess juvenile polymorphism. Many immature stadia do not
resemble their adults. Unlike most other mites, the immatures of some
of the Oribatei (the “higher” oribatids) (Norton, 1984) are morphologi-
cally so dissimilar from the adult stadia that it is frequently impossible
to correlate the two based on morphology alone (compare Figs. 4.17 and
4.18). Despite the differences in morphology, immature stages and
adults can usually be cultured on the same resources. Third, oribatids
reproduce relatively slowly, in contrast to the other microarthropods.
One or two generations per year are usual, and females do not lay many
eggs. Indeed, some common species are parthenogenic. Oribatids are
sometimes considered to be “K” specialists, and, in contrast, collem-
bolans would be “r” specialists, or opportunistic species (MacArthur,
1972). However, orbatids’ K-style traits may be a constraint of low sec-
ondary production, not an adaptation or specialization.

Oribatids differ from other microarthropods by having a sclerotized,
often-calcareous exoskeleton. In this they resemble the millipedes,
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FIGURE 4.17. Eueremaeus columbianus (Berlese), tritonymph; (a) dorsal aspect; (b) 
ventral aspect (from Behan-Pelletier, 1993).

snails, and isopods. Most oribatids are brown to tan in color, although
some primitive species are nearly colorless. The exoskeleton contains
high calcium levels even in the primitive, lightly colored species (Fig.
4.19) (Todd et al., 1974). When present, the chemical form of the miner-
al deposits is principally calcium carbonate, calcium oxalate, or calcium
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Genitoanal plates
(ventral view)

FIGURE 4.18. A “box” mite of the oribatid family Phthiracaridae. For protection, the legs
can be withdrawn beneath the hinged prodorsum (after Baker et al., 1958).

(a) (b)

FIGURE 4.19. Oribatid scanning electron micrograph (SEM) with calcium in exoskele-
ton. (a) and (b) are micrographs of an oribatid mite (Hypochthonius sp.). A 100-mm marker
is indicated at lower right. (a) Image made by secondary electrons. (b) Map of calcium dis-
tribution made from X-ray image (from Todd et al., 1974).

phosphate. Presumably, oribatids are able to sequester calcium by feed-
ing on fungi. Senescent fungal hyphae contain crystals of calcium
oxalate, which may be metabolized by the mites (Norton and Behan-
Pelletier, 1991). Oribatids often possess a cerotegument, a secretion



layer of the integument that may be highly sculptured (Norton et al.,
1997).

Abundance and Diversity of Oribatid Mites

Oribatid densities in forest soils are in the range of 50,000–500,000
per square meter (Table 4.4). Coniferous forests typically support high
numbers of oribatid mites, followed by deciduous hardwood forest,
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FIGURE 4.20. Scanning electron micrographs of oribatid mites, showing modified setae
(a–f) (from Valerie Behan-Pelletier, personal communication).



grassland, desert, and tundra. In arctic tundra and in some grassland or
savanna habitats, oribatids may be outnumbered by prostigmatid mites
(see later section). Cultivation of agricultural fields reduces oribatid
populations to an average of about 25,000 per square meter. Population
cycles in agroecosystems are often initiated by harvest and cultivation
procedures, which change patterns of residue input into soils.

The diversity of oribatid mite species is large in soils from many dif-
ferent localities. In a southern Appalachian hardwood forest, Hansen
(1997) reported 170 species of adult oribatid mites from litter and soil,
with as many as 40 species in a single 20-cubic-centimeter sample core
through the soil profile. Many oribatid mite species are widely distrib-
uted across a variety of habitats in Europe and North America, includ-
ing such common species as Oppiella nova, Tectocepheus velatus, and
Scheloribates laevigatus. Tropical soils also contain a diverse commu-
nity of oribatid mites. Noti et al. (2003) examined three ecosystems in a
sere in the Democratic Republic of Congo and reported a total of 149
species of oribatids. They found that the number of species dropped reg-
ularly from forest to savanna, where sampling revealed 105 oribatid
species. This high species diversity has caused some authors (i.e.,
Anderson, 1975; André et al., 2001) to consider “the enigma of the orib-
atids” (as a comparison with “the paradox of the plankton”), in view of
the seeming uniformity of forest floor habitats. Indeed, explaining this
prodigious diversity of apparently similar species with similar require-
ments is a long-standing question (Hansen, 2000; Bolger, 2001).

Tropical and temperate forest canopies may support large numbers of
oribatid mites, in such abundance that canopy-inhabiting mites have
been dubbed “arboreal plankton” (Walter and Proctor, 1999). Tree
canopies have long been known to support phytophagous spider mites
and their mite predators (Phytoseiidae and relatives). Oribatid mites in
forest canopies have been ignored until recently (Winchester, 1997;
Behan-Pelletier and Walter, 2000). Forest canopies contain a variety of
microhabitats, most of which have been exploited by oribatids. As yet
there appears to be no standardization of collection methods such as
have been developed for forest floors, and density estimates are hard to
come by. Behan-Pelletier and Walter (2000) suggest that canopy orib-
atid species assemblages may be distinct from those of the adjacent for-
est floor, although some species occur in both types of habitat. Canopy
oribatids exhibit some behavioral and morphological modifications suit-
ing them to the peculiarities of that habitat. Individuals may tend to
form small clusters during daytime hours, and sexual dimorphism is
better developed than in forest soil species (Behan-Pelletier and Walter,
2000). Species generally have short, clubbed bothridial setae, perhaps
an adaptation to the stronger air currents in the forest canopy. Gut
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analyses of canopy oribatids suggests that they utilize a similar broad
spectrum of material as do forest floor oribatids; they appear to be pri-
marily mycophagous but their guts include a mixture of dead vascular
plant material, lichens, and fungal hyphae.

Population Growth

Populations of oribatid mites in forest floors show peaks of activity
beginning in spring and continuing through the summer months, and
again in mid-autumn (for those species producing two generations per
year). Peaks of abundances of immatures show a gradual progression
during the summer (Fig. 4.21) (Reeves, 1967). Population densities for
many species are markedly higher during these months. Is there a
sequence of oribatid species—a succession—in decomposing forest leaf
litter, corresponding to a succession of fungal species? Crossley and
Hoglund (1962) found such a general relationship. In a detailed study,
Anderson (1975) concluded that the dominant oribatid species rapidly
colonized litterbags containing beech and chestnut leaf disks. The mites
fed upon the succession of fungi, but no succession of the mites them-
selves was demonstrated.

Oribatid Feeding Habits

Information about feeding habits and nutrition of oribatid mites
remains elusive, despite numerous detailed studies (e.g., Luxton, 1972,
1975, 1979; Mueller et al., 1990; Walter and Proctor, 1999). Oribatids in
culture will eat a variety of substrates, but may feed differently under
field conditions. In the simplest classification, oribatids are separated
into feeders on fungi (microphytophages), on decomposing vegetable
matter (macrophytophages), or on both (panphytophages) (Schuster,
1956). This classification has some utility, but more specific feeding
habits can be identified. Some species, the phthiracarids or box-mites,
are largely macrophytophages. Many oribatids appear to be indiscrimi-
nate fungal feeders, ingesting fungal hyphae or fruiting bodies of a 
variety of species (Mitchell and Parkinson, 1976; Siepel and de Ruiter-
Dijkman, 1993). Others may be selective. Adults of Liacarus cidarus,
when offered a variety of foods, preferred the mold Cladosporium
(Arlian and Woolley, 1970) (Table 4.5). Anderson (1975) studied compe-
tition between two generalist feeders, Hermanniella granulata and
Nothrus sylvestris. When isolated, these two species used similar food-
stuffs (based on gut analyses). But when kept together in soil-litter
microcosms, the two species changed their feeding and their utilization
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FIGURE 4.21. Oribatid immatures and adult abundances by season (larvae, nymphs, and
adults of Oppia subpectinata [Oudemans]) (from Reeves, 1967).

TABLE 4.5. Feeding Behavior of Adult Liacarus cidarus When Offered Different
Resources in Laboratory Cultures

Heavy Light Intermittent
Resource feeding feeding feeding Failed to feed

Lichens — X — —
Yeast and sugar — — X —
Pine cone scales — X — —
Cladiosporium X — — —
Aspergillus — — — X
“Mushrooms” — — X —
Potato dextrose agar and X — — —

Cladiosporium
Potato dextrose agar — X — —
Pine litter — — X —
Yeast — — — X
Trichoderma — — — X

After Arlian and Woolley, 1970.



of habitat space. Hermanniella moved into the litter (Ao) layers while
the Nothrus population increased in the F (Ai) layer.

Several lines of evidence—gut analyses, feeding trials in cultures,
chemical considerations—suggest that oribatid mites, as a group, are
fungal feeders. Some exceptions exist, such as the phthiracarid group,
which may tunnel into coniferous needles or twigs and ingest the spongy
mesophyll. Others bore into the pedicels of oak leaves (Hansen, 1999).
These species may contain a gut flora of bacteria that allow them to
digest decomposing woody substrates. Possibly, their nutrition is
derived from bacteria or fungi embedded in the woody tissue. Examina-
tion of gut contents for most other oribatids shows that they feed pri-
marily on fungi. A survey of 25 species from the North American arctic
found that more than 50% were panphytophagous (feeding on microbes
and plant debris), but nearly all contained fungal hyphae or spores. 
Similarly, a study of Irish species found that 15 of 16 species were 
generalist feeders, having both fungi and plant remains in their guts
(Behan and Hill, 1978; Behan-Pelletier and Hill, 1983). Occasional 
fragments of collembolans were discovered in some of the guts. 
Morphology of the chelicerae seems related to feeding type (Kaneko,
1988). Xylophagous (wood-feeding) species have large, robust chelicer-
ae. Fragment feeders are generally smaller and have smaller chelae.

Further refinement of guild designations for oribatid mites has 
been made, based on their digestive capabilities as evidenced by their
cellulase, chitinase, and trehalase activity in field populations (Siepel
and de Ruiter-Dijkman, 1993). Using these three enzymes, it was possi-
ble to recognize five major feeding guilds: herbivorous grazers, fungivo-
rous grazers, herbo-fungivorous grazers, fungivorous browsers, and
opportunistic herbo-fungivores. In this classification, grazers are
species which can digest both cell walls and cell contents; browsers can
digest only cell contents. Siepel and de Ruiter-Dijkman (1993) also rec-
ognized two minor guilds: herbivorous browsers and omnivores. Fur-
ther work with other groups of gut enzymes may provide additional
information concerning resource utilization, and fungal feeding in par-
ticular, by guilds of oribatid mites. This is a most rewarding area for
research in biodiversity, considering the multitude of species and niche
dimensions for oribatids in forest floor habitats (Anderson, 1975;
Hansen, 2000).

The oribatids themselves are prey for some insects such as scyd-
maenid beetles (Molleman and Walter, 2000), pselaphid beetles (Park,
1947), or ants (Matsuko, 1994). Some vertebrates such as salamanders
have been found to contain oribatids in their guts. In general, the hard
exoskeleton of oribatid mites protects them from smaller predators such
as prostigmatic and mesostigmatic mites (see later section).
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Oribatid Impacts on Soil Ecosystems

Oribatid mites can affect organic litter decomposition and nutrient
dynamics in forest floors, but they appear to do so indirectly by grazing
on microbial populations or fragmenting plant detritus, and thus influ-
encing the decomposition process (Petersen and Luxton, 1982; Seastedt,
1984b). Calcium dynamics may be an exception, because oribatid mites
can store and process a significant portion of the calcium input in forest
litterfall (Gist and Crossley, 1975). Several mechanisms of microarthro-
pod–microfloral interaction have been proposed (Lussenhop, 1992),
including consequences of selected grazing, dispersal of fungal spores or
inocula, and stimulation of fungal growth or bacterial activity. The
importance of oribatid mites, as with other fauna, cannot be interpreted
outside the context of the entire suite of soil biota. The milieu of decom-
poser organisms, vegetable matter in various stages of decomposition,
and localized “hot spots” of activity requires careful analysis and is a
focus of important current research (Edwards, 2000; Hansen, 2000;
Moore and de Ruiter, 2000; Bolger et al., 2000).

Prostigmatic Mites

The Prostigmata contains a large array of soil species (Fig. 4.22).
Many of these species are predators, but some families contain fungal-
feeding mites and these may become numerous. Like the oribatids,
prostigmatic mites are an ancient group with fossil representatives
from the Devonian era. Keys to families of Prostigmata (also known as
Actinedida) are provided by Krantz (1978) and Kethley (1990).

Some families of prostigmatic mites include species which are preda-
tors, microbial feeders, plant feeders, or parasites (Kethley, 1990). The
fungal feeding species (such as members of the family Eupodidae) are
opportunistic, able to reproduce rapidly following a disturbance or a
sudden shift in resources. Small species of Prostigmata are the common
mites of Antarctic soil surfaces, of drained lake beds with algal blooms,
of plowed and fertilized agricultural fields, of tidal marshlands or
burned prairie soils, and so forth (Lussenhop, 1976; Luxton, 1967, 1981;
Perdue and Crossley, 1989; Seastedt, 1984; Strandtmann, 1967; Tevis
and Newell, 1962). Species in the families Eupodidae, Tarsonemidae,
Nanorchestidae, and some of their relatives feed on algae or fungi; their
populations may grow rapidly to large sizes. In these situations, the
Prostigmata may become more numerous than the oribatid mites. In
general they are more numerous in temperate than in tropical or
subtropical habitats (Luxton, 1981b).

Nematodes are an important part of the diet of the smaller Prostig-
mata. Whitford and Santos (1980) found that mites in the family Tydei-
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dae were important regulators of nematode populations in desert soils of
the southwestern United States. Some of the smaller predatory species
may utilize fungi on occasion. Walter (1988) observed predation on
nematodes by prostigmatic mites in the families Bimichaelidae and
Alicorhagiidae; members of the latter family also ingested fungal
hyphae but with lower reproductive success. Many types of fungal-
feeding Prostigmata have small, stylet chelicerae and may simply
pierce fungal hyphae (members of the Nanorchestidae and Nemataly-
chidae families) (Walter, 1988). That author also examined gut contents
in slide mounts of more than 500 small prostigmatic mites collected in
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FIGURE 4.22. Prostigmatid mite: family Tydeidae (Lorryia sp.) (after Krantz, 1978).



various localities in North America and elsewhere. Many of these speci-
mens contained a fungal food bolus (Table 4.6). Both fungal feeding 
and predation on nematodes appear to be widespread among the 
tiny Prostigmata. Kethley (1990) lists the known feeding habits of 
30 families or superfamilies of soil-inhabiting Prostigmata, and 
summarizes their biology, ecology, and type of habitat.

In general, the larger predaceous Prostigmata feed upon other
arthropods or their eggs; the smaller species are nematophagous. Some
Prostigmata have well-defined patterns of predation. The “grasshopper
mite,” Allothrombium trigonum, feeds exclusively upon grasshopper
eggs; the larval stages of the mite are parasitic on grasshoppers. The
large red “velvet mites” (Dolicothrombium species), which erupt in num-
bers following desert rains, are predaceous on termites. The pestiferous
“chiggers” are the larval stages of mites in the family Trombiculidae; the
adults are predaceous on collembolans and their eggs. Collembolans
may be an important diet item for the larger Prostigmata such as mem-
bers of the families Bdellidae, Cunaxidae, and the trombidioid families.
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TABLE 4.6. Percentages of Field-Collected Prostigmatid Mites with Boluses or a Central
Mass of Particulate Fungal Hyphae in Their Guts

Individuals With fungal
Taxon Examined (no.) bolus (no.) Other inclusions

Terpnacaridae 38 26 —
Alicorhagiidae
Alicorhagia 98 23 nematode stylets (3)

tardigrade claws (1)
Stigmalycus 32 10 nematode (1)
Grandjeanicidae 20 17 diatoms
Oehserchestidae 38 10 —
Lordalychidae 49 0 fungal mass
Bimichaelidae
Alycus 52 0 —
Bimichaelia 36 0 —
Pachygnathus 1 0 —
Petralycus 13 0 —
Nanorchestidae
Nanorchestes 24 0 spore like bodies (1)
Speleorchestes 25 0 caecal masses (11)
Nematalycidae
Cunliffia 24 0 crystals? (21)
Gordialycus 31 0 —
Psammolycus 13 0 —
Sphaeroluchidae 18 0 —

After Walter, 1988.



Eggs of collembola were used successfully to culture pest chiggers
(Eutrombicula alfreddugesi and relatives) (Crossley, 1960).

It is difficult to assess the importance of the soil-dwelling Prostigma-
ta, even in those cases when their numbers escalate. Those species
predaceous on nematodes may have an impact (Whitford and Santos,
1980), but it is seldom quantified. The biomass of prostigmatic mites is
generally small, only a fraction of the total acarine mass (Kethley, 1990),
and their total respiration is comparatively small (Luxton, 1981b).
When populations of fungal or algal feeders reach high population sizes,
we suspect that they may have some impact on their food base, but the
magnitude of the effect is unknown.

Mesostigmatic Mites

The Mesostigmata (Fig. 4.23) contains fewer soil inhabiting species
than do Oribatida or Prostigmata. Krantz and Ainscough (1990) include
keys to families and genera of the soil inhabiting species of Mesostigma-
ta. Many of the Mesostigmata are parasitic on vertebrates or inverte-
brates (Krantz 1978), and some of these may be captured in soil
samples. The true soil species are almost all predators. A few species (in
the Uropodidae, for example) are polyphagous, feeding on fungi, nema-
todes, and juvenile insects (Gerson et al., 2003), and may become some-
what numerous in agroecosystems (Mueller et al., 1990). Mesostigmatic
mites are not as numerous as oribatids or prostigmatid mites, but are
universally present in soils and may be important predators. As with the
Prostigmata, the larger species tend to feed on small arthropods or their
eggs; the smaller species are mainly nematophagous. Some of the
species in the family Laelapidae are voracious predators on red spider
mites and false spider mites feeding on aboveground vegetation. In the
soil itself, members of the genus Hypoaspis (Fig. 4.24) are important
predators of small insect larvae.

Walter and Ikonen (1989) found that mesostigmatic mites were the
most important predators of nematodes in grasslands of the western
United States. In contrast, they found that the larger Prostigmata were
predators on arthropods or their eggs. Of 63 species of mesostigmatic
mites tested, only 6 did not readily feed on nematode prey. The mites
each consumed 3 to 8 nematodes per day. Western grassland soils have
little surface plant litter.

Forest floors, with abundant surface litter, contain a larger spectrum
of mesostigmatic mites. The forest litter inhabitants (families Veigai-
idae and Macrochelidae, for example) are bigger species and are preda-
ceous on arthropods or their eggs. Mesostigmatic mites of the mineral
soil layers are the smaller, colorless Rhodacaridae and relatives, and are
nematophagous. The size of soil Mesostigmata diminishes with increas-
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ing depth in the soil (Coineau, 1974). In forest floor habitats, members of
the genus Veigaia (Fig. 4.25) are inhabitants of litter and humus layers;
smaller species (Dendrolaelaps) occurs in the humus–soil interface, and
the minute Rhodacarellus (Fig. 4.26) is found in mineral soil (Krantz
and Ainscough, 1990). Many species of Mesostigmata have a close rela-
tionship with various insect species, a relationship that often includes
the soil environment (Hunter and Rosario, 1988). Several genera in the
cohort Gamasina are also considered useful as bioindicators of habitat
and soil conditions (Karg, 1982).

Astigmatic Mites

The Astigmata (Fig. 4.27) are the least common of the soil mites,
although they may become abundant in some habitats (Luxton, 1981a).
The free-living Astigmata favor moist environments high in organic
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FIGURE 4.24. Hypoaspis marksi (from Strandtmann and Crossley, 1962).
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FIGURE 4.25. Veigaia uncata, ventral view of female (Krantz, 1978).

FIGURE 4.26. Rhodacarellus sp.



126 Chapter 4 The Soil Fauna

Tarsi elongate

FIGURE 4.27. Astigmatid mite (Glycyphagus domesticus [DeGeer]) (Oregon, United
States), venter of female with detail of pretarsus I (from Krantz, 1978).

matter. The Astigmata contain some important pests of stored grain.
They become abundant in some agroecosystems following harvest, or
after application of rich manures. In agroecosystems of the Piedmont
region of Georgia in the United States, Perdue (1987) found a marked
increase in Astigmata following autumnal harvest and tillage (Fig.
4.28). Incorporation of residues and winter rains produced moist, organ-
ic residues suitable for the mites. The springtime plowing, under drier
conditions, did not lead to increases of astigmatic mites. Tomlin (1977)
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described a buildup of astigmatic mites following pipeline construction
in Ontario, Canada. The mites were associated with accumulations of
residue under moist conditions. Philips (1990) provided keys to families
and genera of soil inhabiting Astigmata.

Most of the soil Astigmata are microbial feeders. Those with chelate
chelicerae are able to chew vegetable material, fungi, and algae (Philips,
1990). Members of the Anoetidae have reduced chelae; their palpi are
highly modified strainers for filter feeding on microbial colonies
(Philips, 1990).

Occasionally, species in the family Acaridae become pests in micro-
biology laboratories, where they reproduce rapidly on agar plates. They
are readily cultured on Baker’s yeast; a few grams of yeast left untend-
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following spring tillage (from Perdue and Crossley, 1990).
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ed in a collembolan culture will soon become infested with acarids. We
have found astigmatic mites as contaminants in some Tullgren extrac-
tions. When fresh agricultural products are stored in the laboratory,
large populations of Astigmata may develop, and may wander into Tull-
gren funnels during extractions. Similar population excursions of
prostigmatid mites (family Cheyletidae) have also yielded extensive
contamination of Tullgren samples. It is good practice to operate some
empty, “control” funnels to check for the possibility of wandering
microarthropods in the funnel room.

Other Microarthropods

In addition to mites and collembolans, Tullgren extractions contain a
diverse group of other small arthropods. Although not numerous in com-
parison to mites and collembolans, Tullgren extractions may have abun-
dances of several thousand per square meter. Collectively, the “other”
microarthropods have relatively small biomasses and probably have no
major impact on soil ecology. Such a judgment may be premature, in
view of the general lack of information about their ecology.

Small spiders and centipedes, occasional small millipedes, insect lar-
vae, and adult insects occur in soil cores extracted on Tullgren funnels.
Most of these are better sampled as macroarthropods using hand 
sorting or trapping methods. Some insects (small larvae of carabid 
and elaterid beetles, thrips, pselaphid beetles, tiny wasps) are 
sometimes numerous enough to be effectively sampled from soil cores.
Social insects, such as ants and termites, require special sampling 
considerations.

Protura

Proturans (Fig. 4.29) are small, wingless, primitive insects readily
recognized by their lack of antennae and eyes (Bernard, 1985). Seldom
as numerous as the other microarthropods, proturans occur in a variety
of soils worldwide, often associated with plant roots and litter. Keys to
families and genera of the Protura were published by Copeland and
Imadaté (1990) and by Nosek (1973).

Numbers reported in the literature range between 1000 and 7000 per
square meter at best (Petersen and Luxton, 1982). They penetrate the
soil to surprising depths (25cm), considering that they do not appear to
be adapted for burrowing (Price, 1975; Copeland and Imadaté, 1990).
Their feeding habits remain unknown. Observations that they feed on
mycorrhizae (Sturm, 1959) have not been verified, but their occurrence
in the rhizosphere of trees with mycorrhizae would support Sturm’s
observations.



Diplura

Diplurans are small, elongate, delicate, primitive insects. They have
long antennae and two abdominal cerci. Most diplurans are euedaphic,
but some are nocturnal cryptozoans, hiding under stones or under bark
during the day. They occur in tropical and temperate soils in low densi-
ties. In Georgia Piedmont agroecosystems, the authors have sampled
dipluran populations with Tullgren extractions, finding populations of
approximately 50 per square meter.

Two common families of diplurans are found in soils, readily separa-
ble by their abdominal cerci. Campodeidae (Fig. 4.30) have filiform cerci;
Japygidae (Fig. 4.31) have cerci modified as pinchers. Keys to families
and subfamilies were provided by Ferguson (1990a). The japygids are
predators on small arthropods (such as collembolans), nematodes, and
enchytraeids. The cerci are used in capturing prey. Campodeids are
predators on mites and other small arthropods, but also ingest fungal
mycelia and detritus (Ferguson, 1990a). These animals are adapted 
for life in the soil by their elongate narrow form, sensory antennae, and
sensory cerci.

The Mesofauna 129

Front leg

Pseudoculus

Prothorax

Metathorax

FIGURE 4.29. Proturan.



130 Chapter 4 The Soil Fauna

FIGURE 4.30. Campodeidae. FIGURE 4.31. Japygidae.

Microcoryphia

The jumping bristletails (family Machilidae) were formerly included
in the order Thysanura with silverfish and relatives, but now are placed
in the separate order Microcoryphia. They are closely related to one
another (Ferguson, 1990b). Machilids, when disturbed, can leap a dis-
tance of 10cm (Denis, 1949). They feed on a wide variety of primitive
plant materials such as lichens and algae. We have observed Machilids
(presumably Machilis sp.) on rocky cliff faces in Georgia. They emerge at
dusk from cracks in the rock surface on Stone Mountain and other 
granite domes on the Georgia Piedmont, and may reach densities of 
50 per square meter. They return to their crevices at dawn. They 
fall prey to spiders (Pardosa lapidocina) on these outcrops (Nabholz 
et al., 1977).

Pseudoscorpionida

Pseudoscorpions (Fig. 4.32) are minute copies of their more familiar
relatives, the scorpions, except that they lack tails and stingers. They
occur throughout the terrestrial world except for Arctic and Antarctic
regions. Pseudoscorpions are small cryptozoans, hiding under rocks and
bark of trees, but they are occasionally extracted from leaf litter samples
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in Tullgren funnels. They are predaceous on small arthropods, nema-
todes, and enchytraeids. Keys to families and genera were provided by
Muchmore (1990).

False scorpions are found in a number of habitats but not in large
numbers. They can move readily through small spaces and crevices.
Wallwork (1976) notes that two important habitat features for pseu-
doscorpions are high humidity and the availability of small crevices.
Forest leaf litter provides both of these features, as do bark of decom-
posing logs, caves, nests of small mammals, and similar habitats.

Hand collecting is successful but Tullgren extraction is the usual
means of sampling pseudoscorpions (Hoff, 1949; Muchmore, 1990).

Symphyla

Symphylids (Fig. 4.33) are small, white, eyeless, elongate, many-
legged invertebrates that resemble tiny centipedes. They differ from
centipedes in several characteristics, but superficially symphylids have
but 12 body segments and 12 pairs of legs, whereas centipedes have at
least 15 pairs of legs, the first pair modified as fangs. Edwards (1990)
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FIGURE 4.32. Pseudoscorpion.
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FIGURE 4.33. Symphylid (Dindal, 1990).

provides a partial key to genera, and notes that the North American
fauna of Symphylids is badly in need of further revision. Symphylids are
part of the true eudaphic fauna, occurring in forest, grassland, and cul-
tivated soils. They are omnivorous and can feed on the soft tissues of
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plants or animals (Edwards, 1959). Some species reach pest status in
greenhouse soils where they feed on roots of seedlings (Edwards, 1990).
Symphylids have silk glands near the end of the abdomen. The function
of silk strands for these soil dwellers is obscure.

Pauropoda

Pauropods (Fig. 4.34) are tiny (1.0–1.5mm long) terrestrial 
myriapods with 8–11 pairs of legs and a distinctive morphological 
feature—branched antennae (Scheller, 1988). They are white to color-
less and blind; these characteristics make them members of the true
eudaphic fauna. Pauropods occur in soils worldwide but are not well
known. They are commonly collected in Tullgren extractions but are sel-
dom numerous, usually fewer than 100 per square meter. In forests,
they inhabit the lower litter layers, F-layers, and mineral soil; they also
occur in agricultural soils. It is generally assumed that pauropods are
fungus feeders, but they may also be predaceous. Little information has
been accumulated about their biology or ecology (Scheller, 1990). The
taxonomy of the group is in need of revision. Although considered to be
poor in species, probably less than 20% of extant species have been
described. For example, Scheller (2002), working in the Great Smoky
Mountains National Park, has found more than 30 species of Pauropods
previously undescribed in that region, with seven or eight of them new
to science.

Enchytraeidae

In addition to earthworms (discussed in the next section), another
important family of terrestrial oligochaeta is the Enchytraeidae. This
group of small, unpigmented worms (Fig. 4.35), also known as “pot-
worms,” is classified within the “microdrile” oligochaetes and consists of
some 600 species in 28 genera. Species from 19 of these genera are found
in soil, the remainder occurring primarily in marine and freshwater

FIGURE 4.34. Pauropoda (Dindal, 1990).
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(a) 

(c) 

(b) 

FIGURE 4.35. Anterior end of Mesenchytraeus solifugus and Enchytraeus albidus. (a)
End view of M. solifugus displaying head pore (hp), and sensory structures (ss) at tip of
prostomium. The mouth (m) and one cluster of setae (s) are visible in the lower region of
the image. (b) Ventral view of M. solifugus displaying mouth, head pore, and sensory struc-
tures. (c) Ventral view of E. albidus displaying mouth, sensory structures, and four setal
clusters. Scale bar = 50 mm (from Shain et al., 2000).
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TABLE 4.7. Enchytraeid Genera and Their Occurrence in Various Environments

Genera occurring in soil Other genera Environment

Achaeta Aspidodrilus epizoic on earthworms
Bryodrilus Barbidrilus fresh water
Buchholzia Enchylea only found in Enchytraeid culture
Cernosvitoviella Enchytraeina marine
Cognettia Grania marine
Enchytraeus Pelmatodrilus epizoic on earthworms
Enchytronia Propappus fresh water
Fridericia Randidrilus marine
Guaranidrilus Stephensoniella marine
Hemienchytraeus
Hemifridericia
Henlea
Isosetosa
Lumbricillus
Marionina
Mesenchytraeus
Oconnorella
Stercutus
Tupidrilus

From van Vliet, 2000.

habitats (Table 4.7) (Brinkhurst and Cook, 1980; Dash, 1990; van Vliet,
2000). The Enchytraeidae are thought to have arisen in cool temperate
climates where they are commonly found in moist forest soils rich in
organic matter; interestingly, Tynen (1972) described the occurrence of
“ice worms,” which were enchytraeids that emerged onto snow- and ice-
covered ground in British Columbia. Various species of enchytraeids are
now distributed globally from subarctic to tropical regions.

Taxonomic organization of the European Enchytraeidae was defini-
tively treated by Nielsen and Christensen (1959, 1961, and 1963); much
less work has been done in other parts of the world. More recently, keys
to the common genera were presented by Dash (1990). Identification of
enchytraeid species is difficult, but genera may be identified by observ-
ing internal structures through the transparent body wall of specimens
mounted on slides (Fig. 4.36).

The Enchytraeidae are typically 10–20mm in length and they are
anatomically similar to the earthworms, except for the miniaturization
and rearrangement of features overall. They possess setae (with the
exception of one genus), and a clitellum in segments XII and XIII, which
contains both male and female pores. Sexual reproduction in enchy-
traeids is hermaphroditic and functions similarly to that in earth-
worms. Cocoons may contain one or more eggs and maturation of newly
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FIGURE 4.36. Morphological characters of an enchytraeid worm. amp., ampulla: an.
sept., ante-septal; br., brain; d.bv.o., dorsal blood vessel origin; ec.g., ectal gland; eff.dt.,
efferent duct; e.op., ental opening; es., esophagus; es.int.tr., esophageal intestinal transi-
tion; m.pha., muscular pharynx; neph., nephridia; oc., oocyte; pha., pharynx; p.b., penial
bulb; pepneph., peptonephridia; p.sept., postseptal; se., setae; sept.g., septal gland; sm.v.,
seminal vesicle; sp., spermatheca; sp.dt., sperm duct; sp.f., sperm funnel; t., testes (Soil
Biology Guide, Dindal, D. L., ©1990, John Wiley & Sons, New York. Reprinted by permis-
sion of John Wiley & Sons, Inc.).
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hatched individuals ranges from 65 to 120 days, depending on species
and environmental temperature (van Vliet, 2000). Enchytraeids also
display asexual strategies of parthenogenesis and fragmentation,
which enhance their probability of colonization of new habitats (Dósza-
Farkas, 1996).

Enchytraeids ingest both mineral and organic particles in the soil,
although typically of smaller size ranges than those ingested by earth-
worms. Numerous investigators have noted that finely divided plant
materials, often enriched with fungal hyphae and bacteria, are a princi-
pal portion of the diet of enchytraeids; microbial tissues are probably the
fraction most readily assimilated, because enchytraeids lack the gut
enzymes to digest more recalcitrant soil organic matter (Brockmeyer,
1990; van Vliet 2000). Didden (1990, 1993) suggested that enchytraeids
feed predominantly upon fungi, at least in arable soils, and classified a
community as 80% microbivorous and 20% saprovorous. As with sever-
al other members of the soil mesofauna, the mixed microbiota that occur
on decaying organic matter, either litter or roots, are probably an impor-
tant part of the diet of these creatures. The remaining portions of the soil
organic matter, after the processes of ingestion, digestion, and assimila-
tion, enter the slow-turnover pool of soil organic matter. Zachariae
(1963, 1964) studied the nature of enchytraeid feces and found that they
had no identifiable cellulose residues. In addition, Zachariae suggested
that so-called “collembolan soil,” said to be dominated by collembolan
feces (particularly low-pH mor soils) were really formed by Enchytraei-
dae. Mycorrhizal hyphae have been found in the fecal pellets of enchy-
traeids from pine litter (Fig. 4.37) (Ponge, 1991). There is also the strong
likelihood that enchytraeids consume and further process larger fecal
pellets and castings of soil fauna such as collembolans and earthworms
(Zachariae, 1964; Rusek, 1985).

Enchytraeid densities range from less than 1,000 to more than
140,000 individuals per square meter in intensively cultivated agricul-
tural soil in Japan and a peat moor in the United Kingdom, respectively
(Table 4.8). In a subtropical climate, Coleman et al. (1994a) reported
enchytraeid densities of 4,000 to 14,000 per square meter in agricultur-
al plots in the Piedmont of Georgia, whereas van Vliet et al. (1995) found
higher densities (20,000 to 30,000 individuals per square meter) in sur-
face layers of deciduous forest soils in the southern Appalachian Moun-
tains of North Carolina. Although enchytraeid densities are typically
highest in acid soils with high organic content, Didden (1995) found 
no statistical relationship between average density and annual precipi-
tation, annual temperature, or soil pH over a broad range of data; local
variability may be at least as great as variation on a wider scale. Enchy-
traeid densities show both spatial and seasonal variations. Vertical 
distributions of enchytraeids in soil are related to organic matter hori-



zonation; up to 90% of populations may occur in the upper layers in for-
est and no-tillage agricultural soils, but densities may be higher in the
Ah horizon of grasslands (Davidson et al., 2002). Seasonal trends in
enchytraeid population densities appear to be associated with moisture
and temperature regimes (van Vliet, 2000).

Enchytraeids have been shown to have significant effects on organic
matter dynamics in soil and on soil physical structure. Litter decompo-
sition and nutrient mineralization are influenced primarily by interac-
tions with soil microbial communities. Enchytraeid feeding on fungi and
bacteria can increase microbial metabolic activity and turnover, accel-
erate release of nutrients from microbial biomass, and change species
composition of the microbial community through selective grazing.
However, Wolters (1988) found that enchytraeids decreased mineraliza-
tion rates by reducing microbial populations and possibly by occluding
organic substrates in their feces. Thus the influence of enchytraeids on
soil organic matter dynamics is the net result of both enhancement and
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FIGURE 4.37. Two enchytraeid worms, indicated by arrows, tunneling through a pine
needle (fecal pellets have been deposited on the outside) in the F1 layer (modified from
Ponge, 1991).



inhibition of microbial activity, depending on soil texture and popula-
tion densities of the animals (Wolters, 1988; van Vliet, 2000).

Enchytraeids affect soil structure by producing fecal pellets which,
depending on the animal size distribution, may enhance aggregate sta-
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TABLE 4.8. Enchytraeid Abundances (annual average number/m2) in Different
Ecosystems and Locations

Ecosystem Location Density (no. m-2)

Forest

Douglas fir Wales 134,300
Pinus radiata 50 stems/ha New Zealand 64,002
Pacific silver fir, mature stand WA, United States 49,400
Pinus radiata 200 stems/ha New Zealand 39,270
Spruce Norway 34,700
Rhododendron-Oak 1160m altitude NC, United States 32,630
Rhododendron-Oak 750m altitude NC, United States 26,811
Pine Norway 22,900
Pinus radiata 100 stems/ha New Zealand 21,391
Scots pine forest Sweden 16,200
Deciduous forest United Kingdom 14,590
Spruce South Finland 13,400 
Pacific silver fir, young stand WA, United States 11,400
Pinus radiata 0 stems/ha New Zealand 10,647 
Spruce South Finland 8200
Spruce North Finland 4000

Arable land

Sugarbeet The Netherlands 30,000
Winterwheat The Netherlands 19,437
NT corn-clover GA, United States 16,830
CT corn-clover GA, United States 15,270
Potato field Poland 13,200
Barley, no N Sweden 10,000
Rye field Poland 9800
Barley, 120kgN Sweden 8100
Rice/wheat/barley (organic) Japan 4940
Rice/wheat/barley (conven.) Japan 525

Moor

Juncus peat United Kingdom 145,000
Nardus United Kingdom 71,000
Blanket bog United Kingdom 40,000
Fen Canada 5600

Grassland

Grassland soil Sweden 24,000
Lucerne ley Sweden 9900
Grassland 10 sheep/ha Australia (NSW) 6000
Grassland 30 sheep/ha Australia (NSW) 2300

Modified from van Vliet, 2000.
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(a) (b)

FIGURE 4.38. Thin section micrographs of fecal pellets in a grassland soil. (a) Derived
from enchytraeids (scale bar = 0.5mm); (b) Derived from earthworms (scale bar = 1.0mm)
(from Davidson et al., 2002).

bility in the 600–1000mm fraction (Didden, 1990). In forest floors, these
pellets are composed mainly of fine humus particles, but in mineral
soils, organic matter and mineral particles may be mixed into fecal pel-
lets with a loamy structure (Kasprzak, 1982). Davidson et al. (2002)
estimated that enchytraeid fecal pellets constituted nearly 30% of the
volume of the Ah horizon in a Scottish grassland soil (Fig. 4.38). Encap-
sulation or occlusion of organic matter into these structures may reduce
decomposition rates. Burrowing activities of enchytraeids have not been
well studied, but there is evidence that soil porosity and pore continuity
can increase in proportion to enchytraeid body size (50–200mm diame-
ter) (Rusek, 1985; Didden, 1990). Van Vliet et al. (1993, 1997) observed
that enchytraeids in small microcosms increased soil porosity and
hydraulic conductivity, depending on the distribution of organic matter
and enchytraeid population densities.

Enchytraeids are typically sampled in the field using cylindrical soil
cores of 5–7.5cm diameter; large numbers of replicates may be needed
for a sufficient sampling due to the clustered distribution of enchytraeid
populations (van Vliet, 2000). Extractions are often done with a wet-
funnel technique (O’Connor, 1955), similar to the Baerman funnel
extraction used for nematodes. In this case, soil cores are submerged in
water on the funnel and exposed for several hours to a heat and light
source from above; enchytraeids move downward and are collected in
the water below (see van Vliet, 2000, for a comparison of modifications
of this technique).
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Macroarthropods

Larger insects, spiders, myriapods, and others are considered togeth-
er under the appellation “macroarthropods.” Typical body lengths range
from about 10mm to as much as 15cm (Scolopendromorph centipedes)
(Shelley, 2002). The group includes an artificial mix of various arthro-
pod classes, orders, and families. Like the microarthropods, the
macroarthropods are defined more by the methods used to sample them
rather than by measurements of body size.

Large soil cores (10cm in diameter or greater) may be appropriate for
euedaphic species; arthropods can be recovered from them using flota-
tion techniques (Edwards, 1991). Mechanical or hand sorting of soils
and litter is more time-consuming but yields better estimates of popula-
tion size. In rare instances, capture–mark–recapture methods have
been used to estimate population sizes of selected macroarthropod
species, but the assumptions for this procedure are violated more often
than not (Southwood, 1978).

Pitfall traps have been widely used to sample litter- and surface-
dwelling macroarthropods (Banerjee, 1970; Greenslade, 1964; Michail,
1993) (see Chapter 9). This method catches arthropods that blunder into
cups filled with preservative. Absolute population estimates are difficult
to obtain with pitfall traps (Gist and Crossley, 1973) but the method
yields comparative estimates when used with caution.

Many of the macroarthropods are members of the group termed
“cryptozoa,” a group consisting of animals that dwell beneath stones,
logs, under bark, or in cracks and crevices (Cole, 1946). Cryptozoans typ-
ically emerge at night to forage; some are attracted to artificial lights.
The cryptozoa fauna is poorly defined and is not an ecological communi-
ty in the usual sense of the term. The concept remains useful, however,
for identifying a group of invertebrate species with similar patterns of
habitat utilization.

Importance of the Macroarthropods

However they are sampled, the macroarthropods are a significant
component of soil ecosystems and their food webs. Macroarthropods dif-
fer from their smaller relatives in that they may have direct effects on
soil structure. Termites and ants in particular are important movers 
of soil, depositing parts of lower strata on top of the litter layer (Fig.
4.39). Emerging nymphal stages of cicadas may be numerous enough to
disturb soil structure. Larval stages of soil-dwelling scarabaeid beetles
sometimes churn the soil in grasslands. These and other macroarthro-

The Macrofauna 141



pods are part of the complex that has been termed “ecological 
engineers.”

Some macroarthropods participate in both above- and belowground
parts of terrestrial ecosystems. Many macroarthropods are transient or
temporary soil residents (see Fig. 4.1), and thus form a connection
between food chains in the “green world” of foliage and the “brown
world” of the soil. Caterpillars descending to the soil to pupate or
migrating armyworm caterpillars are prey to ground-dwelling spiders
and beetles. A ground beetle species, Calosoma sycophanta (“the
searcher”), was imported from Europe for biological control of the gypsy
moth (Kulman, 1974).

Macroarthropods may have a major influence on the microarthropod
portion of belowground food webs. Collembola, among other micro-
arthropods, are important food items for spiders, especially immature
stadia, thus providing a macro-to-micro connection. Other macroarthro-
pods such as cicadas emerging from soil may serve as prey for some ver-
tebrate animals (Lloyd and Dybas, 1966), thus providing a link to the
larger megafauna.

Among the macroarthropods there are many litter feeding species,
such as the millipedes, that are important consumers of leaf, grass, and
wood litter. These arthropods have major influences on the decomposi-
tion process, thereby impacting rates of nutrient cycling in soil systems.
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FIGURE 4.39. Fire ants (Solenopsis invicta) as soil movers (D. A. Crossley, Jr. photo).
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And, the reduction of vertebrate carrion is largely accomplished through
the actions of soil-dwelling insects (Payne, 1964).

The vast array of macroarthropod species in soil systems constitutes
a major reservoir of biodiversity. As with the mites and collembolans,
the functional significance of this diversity is not evident. Intuitively, 
it would seem that the large number of species participating in 
belowground food webs should increase their stability and enhance 
the recovery following disturbance, but the concept has remained 
elusive.

Isopoda

Terrestrial isopods (Fig. 4.40) are crustaceans, but are typical crypto-
zoa, occurring under rocks and in similar habitats. Although they are
distributed in a variety of habitats, including deserts, they are suscepti-
ble to desiccation. Adaptations to resist desiccation include nocturnal
habits, the ability to roll up into a ball, low basal respiration rates, and
restriction of respiratory surfaces to specialized areas. Considered to be
general saprovores, isopods can feed upon roots or foliage of seedlings.
Isopods possess heavy, sclerotized mandibles and are capable of consid-
erable fragmentation of decaying vegetable matter. They display some
selectivity in preferences for different leaf species. Digestive processes
in the terrestrial isopods encompass a wide extent of biochemical com-
plexity, with detoxification of ingested phenolics in the foregut, diges-
tion by endogenous and bacterial enzymes in the anterior hindgut,
absorption of nutrients, and microbial proliferation in the posterior
hindgut (Fig. 4.41) (Zimmer, 2002). In the laboratory, terrestrial isopods
feed upon fecal pellets dropped by themselves or by any other isopod
(Zimmer, 2002). There is some doubt about how common this trait is

FIGURE 4.40. A terrestrial isopod, Armadillidium vulgare. Left, extended; right, rolled
into a ball (from Metcalf and Flint, 1939).



expressed in the field due to the difficulty of finding feces beneath the lit-
ter layer. However, microbially inoculated feces represent a microbial
“hot spot” generating microbial metabolites that might allow the isopod
to “home in” on a desirable food source (Zimmer et al., 1996).

The isopod Porcellio has an excretory system that exposes its prod-
ucts to the external environment. Urine from the nephridia is channeled
into a water-conducting system on the ventral surface. Ammonia is lost
to the atmosphere and oxygen is absorbed during this flow. The ammo-
nia-free water is then reabsorbed in the rectum (Eisenbeis and Wichard,
1987).
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FIGURE 4.41. Digestive processes in the hindgut of Porcellio scaber (Porcellionidae),
including the ingestion of leaf litter, detoxification of ingestion phenolics (Detoxif.) in the
foregut, digestion in the anterior hindgut through the activity of endogenous and bacteri-
al enzymes, adsorption of nutrients and copper, microbial proliferation (Microb. Prolif.) in
the posterior hindgut, and egestion of feces (from Zimmer, 2002).
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Diplopoda

Millipedes (Diplopoda) (Fig. 4.42) are a group of widely distributed
saprophages. They are major consumers of organic debris in temperate
and tropical hardwood forests, where they feed on dead vegetable mat-
ter. Millipedes are also inhabitants of arid and semiarid regions, despite
their dependence on moisture. Millipedes lack a waxy layer on their 
epicuticle and are subject to rapid desiccation in environments with low
relative humidity. Some are true soil forms, others seem restricted to
leaf litter or to cryptozoan habitats. They can be loosely grouped into 
(1) tubular, round-backed forms such as the familiar Narceus; (2) 
flat-backed forms (many Polydesmid millipedes); and (3) pillbug types,
which roll into a ball. Millipedes range widely in length. Typical North
American forms are 5–6cm in length; tropical ones may reach nearly 20
cm in length. Hoffman (1999) has published a checklist of millipedes 
of North and Middle America. Keys to North American families of milli-
pedes were published by Hoffman (1990). For an account of millipede
biology and ecology, see Hopkin and Read (1992).

(a) (b) (c)

FIGURE 4.42. Representatives of three families of millipedes: (a) Xylodesmidae; (b) Poly-
desmidae; (c) Spirobolidae (from Kevan and Scudder, 1989).



Millipedes become abundant in calcium-rich, high rainfall areas in
tropical and temperate zones. The southern Appalachian Mountains of
the eastern United States support a large millipede population. Milli-
pedes can be important in calcium cycling. They have a calcareous
exoskeleton, and because of their high densities they can be a significant
sink for calcium. Millipedes are major consumers of fallen leaf litter, and
may process some 15–25% of calcium input into hardwood forest floors.
In desert areas, millipedes are active following rains, especially 
in desert shrub communities. They avoid hot, dry conditions by conceal-
ment under vegetation or debris (Crawford, 1981). Millipedes are 
vulnerable to desiccation, because their cuticle generally lacks a water-
proof layer, their gas exchange system is not closed, and they lose a 
considerable amount of water through the mouth, in defecation, and
during reproduction (Wolters and Ekschmitt, 1997).

Millipedes appear to be selective feeders, avoiding leaf litter high 
in polyphenols and favoring litter with high calcium content (Neuhauser
and Hartenstein, 1978). Freshly fallen leaves are generally avoided,
even though assimilation efficiency is much higher from that source
(David and Gillon, 2002). Some millipedes are obligate coprophages.
When McBrayer (1973) cultured millipedes in containers, which exclud-
ed their feces, the millipedes lost weight. When a small tray containing
feces was added to the cultures, the millipedes consumed it and pros-
pered. Such obligate coprophagy indicates a close relationship with bac-
teria necessary for digestion of vegetable material. It is not known
whether millipedes possess a unique gut flora of microbes.

Chilopoda

Centipedes (Chilopoda) are common predators in soil, litter, and
cryptozoan habitats (Fig. 4.43). They are all elongate, flattened, active
forms. Centipedes occur in biomes ranging from forest to desert. The
large desert centipedes (Scolopendromorpha) are some 15-cm long;
tropical centipedes may exceed 30cm (Shelley, 2002). Lithobiids are the
common brown, flat centipedes of litter in hardwood forests. The elon-
gate, slim geophilomorph centipedes are euedaphic in forest habitats,
where they prey on earthworms, enchytraeids, and Diptera larvae (Lock
and Dekoninck, 2001). Like the millipedes, centipedes lose water
through their cuticles at low relative humidities. They avoid desiccation
by seeking moist habitats, and by adjusting their diurnal activities to
humid periods in desert and sand dune habitats.

Centipedes are distinguished from superficially similar organisms by
the presence of forcipules, the modified first segment upon which the
head rests (Mundel, 1990). This segment bears the pincerlike fangs,
which have poison ducts opening at their tips. Five orders of centipedes
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are recognized, and Mundel (1990) provides keys to orders and families
of centipedes of the world.

All centipedes are predators but may ingest some leaf litter on 
occasion—it can sometimes be seen in their guts. Centipedes are 
fast runners and actively pursue and capture small prey such as 
collembolans.

Scorpionida

The scorpion, the archetypal generalized arachnid with its long, seg-
mented, stinger-bearing abdomen and chelate palpi, needs no descrip-
tion. It was obvious to the ancients—the only zodiacal sign bearing the

(a) (b)

FIGURE 4.43. Representatives of two centipede families: (a) Geophilidae (Geophilus
proximus Koch); (b) Lithobiidae (Lithobius forficatus [L.]).
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FIGURE 4.44. A scorpion, shown magnified twice its actual size (from Borror et al., 1981).

name of a soil organism. Scorpions (Fig. 4.44) are inhabitants of warm,
dry, tropical, and temperate regions but reach their greatest diversity in
deserts. They are highly mobile predators of other arthropods and occa-
sionally even small vertebrates. The selection of prey items utilized is
large; for one species of scorpion more than 100 different prey were
recorded (Crawford, 1990). Relatively few individual scorpions forage 
at any one time. Different species demonstrate different patterns of
predation, some being “sit and wait” predators and others acting as
mobile hunters (Crawford, 1990). Scorpions are also cannibalistic to an
unusual extent (Williams, 1987).

Typical cryptozoans, scorpions hide under rocks or logs, or in crevices,
during the day and emerge at night to feed. In the southeastern United
States, scorpions may be trapped by placing wet cloth on the ground at
night; the dampness will attract them. The scorpion cuticle will fluo-
resce under black light, offering a nighttime survey procedure.

Scorpions’ stings are painful, about the same as a honeybee sting but
of shorter duration. In the southeastern United States, the tiny scorpi-
on Vejovis carolinus, commonly found under bark of pine stumps,
invades houses on occasion. A species with similar habits, Centruroides
vittatus, occurs from east Texas to the southwestern United States
(Shelley and Sisson, 1995). Only a few species of scorpions are deadly. Of



the 1500 species worldwide, only about 20–25 are dangerous, all in the
family Buthidae. Where dangerous species occur, antivenom is usually
available (Jackman, 1997).

The impact of scorpions on their ecosystems is unknown. They are not
numerous, but in desert ecosystems they may be dominant predators
(Polis, 1991).

Araneae

Spiders (Araneae) (Fig. 4.45) are another familiar group of carni-
vores. They are solitary hunters, exhibiting a range of strategies from
“sit and wait” with silken webs to active pursuit of prey. They are found
in all terrestrial environments except truly polar (Arctic/Antarctic)
regions. Many species are found in aboveground habitats, but some are
cryptozoans in litter and on the soil surface. Some small spiders are
euedaphic (Fig. 4.46). Some of the small litter-inhabiting spiders could
be considered microarthropods. Spiders may be active hunters or “sit
and wait” dwellers in retreats. Wolf spiders (Lycosidae) (Fig. 4.47) are
common wandering predators in leaf litter and on soil surfaces, and are
often captured in pitfall traps. They are conspicuous ground-dwelling
predators in agroecosystems (Draney, 1997).

Spider taxonomy is a dynamic discipline. There are about 100 fami-
lies in the order, arranged in several suborders (or infraorders). Kaston’s
(1978) guide, How To Know The Spiders, is an excellent introduction for
the novice arachnologist. And Roth’s (1993) Spider Genera of North
America is invaluable for workers in the United States. Regional works
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FIGURE 4.45. A typical wolf spider, Lycosa communis (Lycosidae) (from Wise, 1993).
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FIGURE 4.46. Small spiders (D. A. Crossley, Jr., photo).

FIGURE 4.47. Rabidosa rabida (Lycosidae).
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such as Jackman (1997) should not be overlooked, nor should informa-
tion currently available on the World Wide Web.

Sampling methods for spiders run the gamut from Tullgren extrac-
tion to hand collection, sorting of litter samples, and pitfall trapping.
Spiders have complex behavioral patterns including mating rituals and
defense of territories. Wolf spiders may wander some distance between
forest, meadow, and agroecosystem (Draney, 1997), so that assessment
of population size may become complicated.

Little is known about the ecology of the smaller soil- and litter-
dwelling spiders (Linyphiidae and relatives). Most information about
spiders comes from studies of web-spinning species or the jumping spi-
ders (Attidae) in vegetation (Foelix, 1996). There are large numbers of
small spiders in deciduous forest leaf litter (about 100 per square
meter). Their habitat usage and prey selection are not well known. 
Spiders in laboratory microcosms show some prey selectivity, but leaf
litter spiders doubtless feed more opportunistically.

A number of spider species are ant mimics (Foelix, 1996). These
species copy the body shapes and coloring of ants, and move in an antlike
manner. The spider’s front legs are elongated and thin, and mimic the
antennae of the ant. The significance of this mimicry is not known, but
it is suspected to confer some protection from predation by birds. 
Spiders that live together with ants seldom prey upon the ants (Jackson
and Willey, 1994).

The impact of spiders on their ecosystems is not well known. Their
effectiveness as biological control agents has been discounted because 
of their slow reproduction. As noted above, spiders are strongly territor-
ial, with complicated mating rituals—adaptations that tend to hold
down population sizes even when prey is abundant (Wise, 1993). In
woodland forest floors, the large number of spiders argues that they
must have an impact on the insect population there. In contrast, num-
bers of spiders in agricultural soils seem lower (Draney, 1997). In an
experimental study, Lawrence and Wise (2000) found a “top-down”
effect of spiders on litter decomposition rates. When spiders were
removed from experimental areas of a forest floor, collembolan popula-
tions increased. Subsequently, straw in litterbags decomposed more
rapidly in those areas. These results suggest that spider predation may
reduce collembola populations enough to lower rates of litter disappear-
ance on the forest floor.

Opiliones

Harvestmen (Opiliones) are delicate, shy forms that are among 
the largest arachnids in woodlands. Their bodies are small but their legs
may be unusually long, suggesting that their habitat is litter surface or



exposed areas. Smaller, shorter-legged forms inhabit loose leaf litter or
small spaces (Edgar, 1990). Others are inhabitants of caves, and have
reduced eyes and reduced pigmentation (Goodnight and Goodnight,
1960). Opilionids have no venom glands yet are considered to be largely
predaceous. Some species occur high in foliage, others in subcanopy,
some on soil surface, and some (smaller forms) in litter layers. Opilion-
ids are slow reproducers, usually with one generation per year. They are
active predators in the daylight but seem to be primarily crepuscular
(active dawn and dusk). They possess repugnatorial glands, the secre-
tion of which is offensive to predators (Blum and Edgar, 1971).

Opilionids (Opilio means “a shepherd” in Latin) resemble the mites in
that the cephalothorax (prosoma) and abdomen (opisthosoma) are
broadly fused, so that the body is oval. They differ superficially from the
mites in that opilionids have 6–10 segments in their abdomen; mites
have none. Of course, they are larger than mites as well. Edgar (1990)
provides a key to genera and species of North American Opiliones
(exclusive of Mexico).

Solifugae

Solifugae, or solpugids, are desert arachnids with large distinctive
curved chelicerae, often as long as the cephalothorax (Fig. 4.48). They
are ferocious predators capable of rapid movement. Common names
include sun-spiders, false-spiders, wind-spiders, or wind-scorpions (in
recognition of their rapid movement), or camel-spiders, among other
names. The term “camel spider” refers to a prominent arch-shaped 
plate on the prosoma (Punzo, 1998). (They do not run down camels 
and eat their stomachs, a rumor circulated among troops during the
recent war in Iraq.) Solifugae occur in tropical and temperate deserts
worldwide.

Most species of Solifugae are nocturnal predators, emerging from rel-
atively permanent burrows to feed upon a variety of arthropods. They do
not have poison glands. They are generalist predators and attack a wide
variety of arthropods, as well as small lizards, birds, and mammals
(Punzo, 1998). In North American deserts, immature stages of solpugids
feed extensively on termites (Muma, 1966).

Uropygi

This order of arachnids contains some of the largest species, up to 
10cm in length. The North American form, Mastigoproctus giganteus
(Fig. 4.49), occurs from Florida to Arizona (Jackman, 1999). The distinc-
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tive long, whiplike tail has no stinger. When disturbed, the arachnid
emits acetic acid from a gland at the base of the tail, giving rise to the
common name “vinegaroon.” Uropygids are nocturnal predators, utiliz-
ing natural retreats or burrowing into sand. They have poor vision and
depend upon vibrations to locate their prey.

The Pterygote Insects

Many of the higher, winged insects (Pterygota) are residents of soils
and participate in food webs there. Some are permanent soil inhabi-
tants, and all stages of the life history are found in soil or on the soil.
Immature stages of other species are true soil dwellers—white grubs,
wireworms, and cutworms, for example—whereas their flying adult
forms live in vegetation and feed in aboveground food chains. All of the

FIGURE 4.48. Solpugid, or camel spider (from Punzo, 1998).



major winged insect orders—the Coleoptera (beetles), Lepidoptera (but-
terflies and moths), Hymenoptera (bees, wasps and ants), and Diptera
(flies)—include soil-dwelling species. The Isoptera (termites) are essen-
tially soil insects and are saprophages. The Homoptera (aphids,
cicadas), Orthoptera (grasshoppers and crickets), and minor orders
such as the Dermaptera (earwigs) contain soil-dwelling species or life
history stages. Indeed, of the 26 pterygote insect orders, all but seven
contain at least some species that are involved in soil food webs in one
way or another (Greenslade, 1985). Space does not permit us to review
thoroughly these extensive and important groups, or to discuss all
species groups that impact soils or soil food webs. We refer the reader to
a textbook of entomology, such as Rosomer and Stoffolano (1994) or 
Borror et al. (1989), and to field guides such as that of White (1983) for
aids in identification and basic biology of these groups. We can offer only
a very superficial treatment of the higher insects. Nevertheless, this
group includes important species that are root feeders, predators, and
modifiers of soil structure—animals that the soil ecologist can hardly
ignore.

Coleoptera

Beetles, the largest order of insects, have soil species that are preda-
tory, phytophagous, or saprovores. Some are permanent residents, 
others are temporary, and many are transient members of soil food
webs. Beetles are particularly abundant in tropical ecosystems, where
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FIGURE 4.49. Uropygi—“Vinegaroon.”
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many species remain to be named. For identification of beetles to family
see White’s (1983) guide. Dillon and Dillon (1961) is an invaluable, well-
illustrated manual for eastern North America.

The Carabidae (Fig. 4.50), the ground beetles, are among the more
familiar insects caught in pitfall traps or active on the soil surface of
agroecosystems (Purvis and Fadl, 2002). Harpalus pennsylvanicus is
frequently caught in pitfall traps. Some members of the genus ingest
seeds but most are predators. Larval stages are euedaphic and may be
sampled with Tullgren extraction. Adults and larval stages of Calosoma
sycophonta, the searcher, climb trees in search of prey. Bell (1990) pro-
vides a taxonomic key to adults and larvae of Carabidae.

Darkling beetles, family Tenebrionidae (Fig. 4.51), are abundant in
desert ecosystems; their habits are similar to those of the carabid bee-
tles. Most of them are scavengers or saprophytic on decaying vegetation
(White, 1983). Adults are surface active whereas larvae are euedaphic.

Cychrus
elevatus

Carabus
vinctus

Harpalus
caliginosus

Pasimachus
depressus

Dicaelus
elongatus

Poecilus
lucublandus

FIGURE 4.50. Illustrations of ground beetle species in the family Carabidae (Lutz, 1948).



Pitfall traps catch large numbers of desert tenebrionids in the spring-
time, when adults emerge from the pupal stage. The larvae resemble
wireworms (larvae of elaterid beetles) and are called “false wireworms.”
They are considered to be saprovores (Crawford, 1990).

Rove beetles (Staphylinidae) are a large family of common, distinc-
tive species (Fig. 4.52), often caught in pitfall traps. Most species appear
to be predaceous (both larvae and adults) but a few are saprophagous.
The adults are agile runners on the soil surface. Frequently, the tip of
the abdomen is turned up as they scurry along the ground. They are
attracted to decaying vegetation or carrion (Dillon and Dillon, 1961).
Most species have well-developed wings and can fly, but wing reduction
is usual in euedaphic species. Keys to adults and larval stages of soil
inhabiting genera of Staphylinidae are provided by Newton (1990).

Scarab beetles (Scarabaeidae) (Fig. 4.53) are members of a large fam-
ily of beetles, some colorful or metallic green, sometimes multicolored,
often brown or black. Males may have horns on the head or pronotum.

Scarab beetles may be separated into two groups based on their feed-
ing habits (Dillon and Dillon, 1961). One contains species that feed upon
dung or carrion. Species in the other group feed upon leaves, flowers,
and pollen as adults and on plant roots or decaying wood as larvae. Some
species excavate burrows under pats of dung and provision these with
dung for their larvae; other species live on the surface of dung pats
(Curry, 1994). “Tumble bugs” chew off a piece of dung, work it into a ball,

156 Chapter 4 The Soil Fauna

FIGURE 4.51. Tenebrionidae dorsal view of Alobates sp. (false mealworm) 20–23mm
(from Arnett, 1993).



roll it to a burial site, and deposit an egg in it. The sacred scarab of
ancient Egypt is a member of this group (Tashiro, 1990). Some scarab
beetles are important due to their role in hastening the decay of dung of
large animals. In Australia, where there was no native coprophagous
fauna, dung from domestic animals accumulated, fouling pastures and
immobilizing nutrients (Gillard, 1967).

Tiger beetles (Cicindellidae) are predators whose larvae dig pits
where they sit and wait for prey (Fig. 4.54). Adults are rapid runners
and fliers, often pouncing suddenly on their prey. Conspicuous on the
soil surface in open, sunlit areas, adult tiger beetles are usually irides-
cent green or blue.

Wireworms (larvae of the family Elateridae) are significant root 
feeders in forests and agroecosystems, where they can be destructive to
certain crops. Tan to brown, wireworms are slender and have a hard cov-
ering on their bodies. Adult elaterids are called “click beetles” because of
their ability to snap the hinge between pro- and mesothorax. If the
insect is on its back, it can right itself by snapping and projecting itself
into the air, turning over repeatedly in the process (Dillon and Dillon,
1961). Adult elaterids are occasionally captured in pitfall traps.

Beetles, as a group, bridge the gap between mesofauna and macro-
fauna. They are of more economic importance for their phytophagous
activities above ground than for their participation in soil food webs.
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FIGURE 4.52. A predaceous staphylinid beetle (Staphylinus badipes) attacking a milli-
pede (Ophyiulus pilosus) (Snider, 1984).
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Canthon laevis Geotrupes 
blackburnii

Trox 
suberosus

Pinotus carolina

Pelidnota 
punctata

Macrodactylus 
subspinosus

Phyllophaga

FIGURE 4.53. Some scarabaeid beetles: Canthos laevis, a tumble-bug with a ball of dung
in which an egg is laid; Geotrupes blackburnii and Pinotus carolina, also dung beetles.
Trox suberosus lays eggs in carrion. Larvae of Pelidnota punctata live in decaying oak or
hickory stumps. The J-shaped larvae of Phyllophaga species feed upon roots of plants
(Lutz, 1948).
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The predatory activities of beetles are especially significant in agricul-
tural systems because they prey on pest species of insects. Beetles are
important agents in the reduction of dung and animal carcasses, and in
the early stages of wood decomposition on the forest floor (Wallwork,
1982; Hanula, 1995).

Hymenoptera

The order Hymenoptera is one of the largest orders of insects. It con-
tains two groups of soil insects of large importance: ants (Fig. 4.55) and
ground-dwelling wasps (Fig. 4.56). The Formicidae, the ants, are proba-
bly the most significant family of soil insects, due to the very large influ-
ence they have on soil structure. Bees and wasps, other hymenopteran
insects, also impact soils because they may nest there. The ants are in a
category by themselves.

Ants are widely distributed (from arctic to tropics), numerous, and
diverse. Ant communities contain many species, even in desert areas
(Whitford, 2000). Local species diversity is large, especially in tropical
areas (Kempf, 1964). Populations of ants are equally large. About one-

(a) (b) (c)
(d)

FIGURE 4.54. Larvae of tiger beetles, family Cicindelidae. (a) Amblychila cylindriformis;
(b) Omus californicus; (c) Tetracha carolina; (d) Cicindela limbalis. The predaceous larvae
lie in wait in vertical burrows with their heads flush with the soil surface, and held in place
by hooks on the hump protruding from the fifth abdominal segment (from Frost, 1942).
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third of the animal biomass of the Amazonian rain forest is composed
entirely of ants and termites, with each hectare containing in excess of 8
million ants and 1 million termites (Hölldobler and Wilson, 1990). Fur-
thermore, ants are social insects, living in colonies with several castes
(Fig. 4.55).

Ants have a large impact on their ecosystems. They are major preda-
tors of small invertebrates (including oribatid mites) (E. O. Wilson, per-
sonal communication). Their activities reduce the abundance of other
predators such as spiders and carabid beetles (Wilson, 1987). Ants are
“ecosystem engineers,” moving large volumes of soil as much as earth-
worms do (Hölldobler and Wilson, 1990). Ant influences on soil structure
are particularly important in deserts (Table 4.9) (Whitford, 2000),
where earthworm densities are low.

Given the large diversity of ants, identification to species is problem-
atic for any but the taxonomist skilled in the group. Wheeler and 
Wheeler (1990) offer keys to subfamilies and genera of the Nearctic 
ant fauna. Bolton’s (1994) identification guide to the ant genera of the
world is very well illustrated. For a review of the ants, their biology, ecol-

(a)

(c)

(b)

(d)

FIGURE 4.55. Carpenter ants and their galleries in deadwood. Shown are a large neuter
worker (a), a winged male (b), a wingless female (c), and a small neuter worker (d) (from
Henderson, 1952).
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TABLE 4.9. Estimated Quantities of Soila Brought to the Surface by Desert Ants and
Termites During the Construction of Feeding Galleries and Nest Chambers, and in 
Nest Repair.

Ant species Location Turnover rate

Ant community Atriplex vesicaria shrub steppe 350–420

Aphaenogaster barbigula Cailtris-Eucalyptus open woodland 3360
(funnel ants)

Ant community Heath, Western Australia 310
Ant community Wandoo woodland, Western Australia 200
Ant communities Variety of Chihuahuan Desert 21.3–85.8

shrublands and grasslands

Termite species

Heterotermes aureus Sonoran Desert, Arizona, USA 750
Gnathamitermes perplexus
Macrotermes subhyalinus Senegal 675–950
Gnathamitermes tubiformans Chihuahuan Desert, USA

Mixed grassland-shrubland 4095
Creosotebush shrubland 801
Black-grama grassland 981
Watershed 2600

akg ha-1 year-1.
From Whitford, 2000.

ogy, and social structure, the work by Hölldobler and Wilson (1990) is
unsurpassed.

Most of the solitary wasps in the superfamily Vespoidea construct
nests in the soil. (Fig. 4.56) The adult female wasp first constructs a
small nest cavity. Then a suitable prey item (another insect or a spider)
is located, which the wasp then stings to paralyze it and hauls it to the
nest. An egg is laid on the paralyzed victim, and it is then entombed.
Some of the social wasps, especially Vespula spp., nest in the ground.
Often natural cavities such as abandoned rodent burrows are used as
nesting sites. Vespids are carnivorous, feeding their larvae on captured
prey (insects or spiders), although adult wasps generally feed on nectar,
sap, or similar juices (Michener and Michener, 1951).

Diptera

Many of the true flies can be considered soil insects, at least in some
stage of their life histories. At least 75 of the 108 dipteran families in
North America have some contact with soil ecosystems (McAlpine,
1990). This listing excludes strictly aquatic families, aboveground her-
bivores, and some parasitic species. Many species that live in above-
ground habitats pupate in the soil, thus participating, involuntarily, 



in soil food webs. McAlpine (1990) provides a well-illustrated key to 
families of Diptera that have relations with soil systems.

Many species of fly larvae are important saprovores in soils. They are
restricted to moist situations rich in organic matter. Some larvae are
predatory and these have adaptations to reduce moisture loss; they
occur in drier situations (Teskey, 1990). Fly larvae have a major impact
on decomposition rates of carrion. Together with some beetle species,
maggots of various types hasten the decomposition rate significantly.
When Payne (1965) used window screen to exclude insects from decay-
ing corpses of baby pigs, the bodies became mummified and decomposed
slowly compared with corpses exposed to insect attack. Fly larvae are
also important in forensic entomology, where their identification has
been helpful in determining time of death of human corpses (Catts and
Haskell, 1990).

Isoptera

The Isoptera (Fig. 4.57), the termites, are among the most important
of soil fauna, in terms of their impact on soil structure and on decompo-
sition processes. Termites are social insects with a well-developed caste
system. Through their ability to digest wood they have become econom-
ic pests of major importance in some regions of the world (Lee and Wood,
1971; Bignell and Eggleton, 2000). Termites are highly successful, 
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FIGURE 4.56. A digger-wasp (family Sphecidae). These solitary wasps usually prepare
nests in the soil, which they provision with arthropod prey before depositing eggs (Pratt
and Stojanovich, 1967).
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constituting up to 75% of the insect biomass and 10% of all terrestrial
animal biomass in the tropics (Wilson, 1993; Bignell, 2000).

Termites in the primitive families, such as Kalotermitidae, possess a
gut flora of protozoans, which enables them to digest cellulose. Their
normal food is wood that has come into contact with soil. Most species of
termites construct runways of soil and some are builders of spectacular
mounds (Fig. 4.58). Members of the phylogenetically advanced family
Termitidae do not have protozoan symbionts, but possess a formidable
array of microbial symbionts (bacteria and fungi) that enable them to
process and digest the humified organic matter in tropical soils, and to
grow and thrive on such a diet (Breznak, 1984; Bignell, 1984; Pearce,
1997). Interestingly no one adaptive feature or mechanism appears to
distinguish the guts of soil-feeding termites. As a result, approximately
67% of the genera in the family Termitidae now consist of these forms. A

(a)

(b)

(c)

(d)

FIGURE 4.57. Isoptera (Castes of termites: (a) worker, (b) winged reproductive, (c) 
soldier, (d) queen (courtesy of Banks and Snyder and the U.S. National Museum) (from
Borror et al., 1981).
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FIGURE 4.58. Termite Mounds: Diagrammatic representation of different types of 
concentrated nest systems. (a) Hodotermes mossambicu. (b) Macrotermes subhyalinus. 
(c) Nasutitermes exitiosus (from Lee and Wood, 1971).
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speculative and generalized sequence of events in a typical Termitinae
soil-feeder gut is given in Fig. 4.59 (Brauman et al., 2000).

A number of inquilines (organisms existing in, and sharing, common
space) occur in termite nests—ants, collembolans, mites, centipedes,
and beetles that have become morphologically specialized for that 
habitat.

Although termites are mainly tropical in distribution, they occur in
temperate zones and deserts as well. Termites have been called the trop-
ical analogs of earthworms, because they reach a large abundance in the
tropics and process large amounts of litter. Three nutritional categories
include wood-feeding species, plant- and humus-feeding species, and
fungus growers. This latter group lacks intestinal symbionts and
depends upon cultured fungus for nutrition. Termites have an abun-
dance of unique microbes living in their guts. Using the criterion of 97%
sequence identity, one recent study of bacterial microbiota in the gut of
the wood-feeding termite Reticulitermes speratus found 268 phylotypes
of bacteria (16S rRNA genes, amplified by polymerase chain reaction
[PCR]), including 100 clostridial, 61 spirochaetal, and 31 Bacteroides-
related phylotypes (Hongoh et al., 2003). More than 90% of the phylo-

The EXTERNAL RUMEN: Incorporation of feces
into internal mound materials and fresh
constructions, with stimulation of microbial activity
and further processing of soil organic matter.
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FIGURE 4.59. Hypothesis of gut organization and sequential processing in soil-feeding
Cubitermes-clade termites. The model emphasizes the role of filamentous prokaryotes,
the extremely high pH reached in the P1, and the existence of both aerobic and anaerobic
zones within the hindgut. Major uncertainties have question marks. Not to scale (from
Brauman et al., 2000).



types were found for the first time. Others were monophyletic clusters
with sequences recovered from the gut of other termite species. It should
be noted that cellulose digestion in termites, which was once considered
to be solely due to the activities of fungi, protists, and occasionally 
bacteria, has now been convincingly demonstrated to be endogenous to
termites. Endogenous cellulose-degrading enzymes occur in the
midguts of two species of higher termites in the genus Nasutitermes,
and in the Macrotermitinae (which cultivate basidiomycete fungi in
elaborately constructed gardens) as well (Bignell, 2000).

In contrast to the carbon degradation situation, only prokaryotes are
capable of producing nitrogenase to “fix” N2, or dinitrogen. This process
occurs in the organic-matter–rich, microaerophilic milieu of termite
guts. Some genera have bacteria that fix relatively small amounts of
nitrogen, but others, including Mastotermes and Nasutitermes, have
from 0.7 to greater than 21 micrograms (mg) nitrogen fixed ·g fresh
weight. This equals 20–61mg of nitrogen per colony per day, which would
double the nitrogen content if N2 fixation was the sole source of nitrogen
and the rate per termite remained constant (and the nitrogen content of
termites is assumed to be 11% on a dry weight basis) (Breznak, 2000).

Termites are one of the three major earth-moving groups of inverte-
brates (the other two are earthworms and ants). Mound-building ter-
mite species have a major impact on the distribution and composition of
soil mineral and organic matter. Where there is rich, well-drained grass-
land (e.g., in the Ivory Coast), humivorous and fungus-growing termites
are common. In areas of poor drainage, these species are absent and
grass feeders such as Trinervitermes and some Macrotermes spp. are
common. In some cases, farmers grow crops on mounds. This is advan-
tageous in areas that are flooded, such as paddy fields in Southeast Asia
(e.g., Thailand) (Pearce, 1997). In desert regions of North America (e.g.,
the Chihuahuan desert of southern New Mexico), termites are consid-
ered “keystone arthropods,” removing and processing large amounts 
of dead and dying net primary production every year (see Table 4.9)
(Whitford, 2000). For a masterful exposition of the role of termites in
ecosystems worldwide, refer to Bignell and Eggleton (2000).

Other Pterygota

As we noted above, most terrestrial insect orders have members 
that participate in soil systems, either by burrowing, pupating, or even
feeding there. At times they may be present in some numbers, or exert
an unusual influence on food webs.

The Orthoptera, grasshoppers and crickets, lay eggs in soils and some
are active on the soil surface. Crickets, Gryllidae, may be abundant in
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pitfall traps set in meadows or agroecosystems (Blumberg and Crossley,
1983).

The Psocoptera, psocids, are a small order of insects that occasional-
ly become abundant in leaf litter. They feed on organic detritus, algae,
lichens, and fungus (Aldrete, 1990).

The order Homoptera, cicadas, aphids, and others, has members
important as belowground herbivores and as soil movers. Cicadas are
noisy, active flyers as adults. The immature stages feed upon the roots of
perennial plants until mature, a time period that may last 13–17 years
for periodical cicadas (Magnicicada spp.). In tallgrass prairie soils,
cicadas are abundant insects; their annual emergence can result in 
a significant flux of nutrients from belowground to aboveground 
(Callaham et al., 2000).

Gastropoda

Terrestrial gastropods (snails and slugs) (Fig. 4.60) (Burch and
Pearce, 1990) are major players among herbivores and detritivores in
many ecosystems, particularly agroecosystems (Byers et al., 1989).
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FIGURE 4.60. Terrestrial gastropods (snails and slugs): At top, a nonoperculated (pul-
monate) snail. It does not have a protective operculum to seal the shell aperture when the
animal has withdrawn into its shell. (a) Active snail; (b) Inactive snail withdrawn into its
shell, with only the surface of its foot showing. At bottom, slug body terminology (from
Burch and Pearce, 1990).



They have been studied much less than the arthropod fauna in forests.
They tend to require moist conditions and the presence of significant
amounts of calcium for their metabolic needs, but some gastropods exist
successfully in low pH and low calcium environments (Burch and
Pearce, 1990). The terrestrial gastropod faunas have become rich and
diversified as they have invaded many habitats. Nearly a thousand
species occur in North America north of Mexico, and similar rich faunas
occur throughout Europe (South, 1992). Land gastropods are quite 
speciose and ubiquitous in the eastern United States, with at least 500
species, including both snails and slugs, being described from the east-
ern United States (Hubricht, 1985, cited in Hotopp, 2002). Snails seem
to key in on structural attributes of their environment. In an extensive
study of community patterns of 108 snail species in the Great Lakes
region, Nekola (2003) found that soil surface architecture—deep organ-
ic horizon soils (deeper than 4cm, “duff”) versus thin horizon soils sub-
tended by live roots (less than 1cm deep, “turf”)—accounted for 43% of
the variability of snail distributions.

In Danish beech forests, Petersen and Luxton (1982) measured 
822mg · m-2 gastropod biomass, an amount that was exceeded by only
diplopods and earthworms in the fauna of that forest floor. Terrestrial
gastropods feed primarily on plants, but may prefer decaying or senes-
cent tissues. Numerous basidiomycetes are consumed as well, including
some that are highly toxic to mammals. Only a few gastropods feed on
animals, but several may feed on carrion. The feces of gastropods
retrieved from the wild include soil particles, which may be due to humic
acids as a required substrate in their diet (this is particularly true for
helicid snails grown in culture) (Speiser, 2001). Feeding rates on leaf lit-
ter range from 9.3 to 28.1mg · g-1 live weight of slugs in European forest
floors (Jennings, 1975). Assimilation rates of Agriolimax reticulatus
feeding on fresh Ranunculus repens (lotus) leaves were greater than
78%, and snails’ assimilation rates ranged between 40 and 70%, feeding
on either fresh leaf or leaf litter material (Mason, 1974). Pallant (1974)
estimated rates of assimilation for several slug species to average 161.3
Joules 100mg-1 dry weight in grasslands and 141.5J 100mg-1 dry
weight in woodland, in Europe.

For a review of extensive phylogenies of terrestrial gastropods, using
28S rDNA and morphological data, see Barker (2001).

Sampling Techniques for Gastropods

Two different sampling techniques were employed by Hotopp (2002),
working in the forests of the central Appalachian Mountains: (1) timed
searching, and (2) sieving litter. The former approach constitutes a 10-
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minute search of leaf litter surface, rocks, woody debris, and live plant
stems across a 200 square meter sample plot. It tends to be more effi-
cient in finding large snails and slugs. The latter method consists of
placing litter from Oi and Oe horizons on a 10-mm sieve placed to a
depth of about 10cm, shaking it 50 times, turning it over, and shaking it
50 more times. This method is more efficient in retrieving small speci-
mens including the ecological dominant, Punctum minutissimum,
which is about 1mm in width.

Oligochaeta—Earthworms

Earthworms are the most familiar and, with respect to soil processes,
often the most important of the soil fauna. As observed by many farmers
and gardeners and reported in the popular literature, the importance of
earthworms arises from their influence on soil structure (e.g., aggregate
or crumb formation, soil pore formation) and on the breakdown of organ-
ic matter applied to soil (e.g., fragmentation, burial, and mixing of plant
residues). These observations have led to numerous studies of the poten-
tial benefits of earthworms in agriculture, waste management, and land
remediation (Edwards, 2004).

While the scientific literature on earthworms officially began with
Linnaeus’s taxonomic description of Lumbricus terrestris more than 200
years ago, the modern era of earthworm research began with Darwin’s
(1881) last book, The Formation of Vegetable Mould Through the Actions
of Worms, with Observations of Their Habits, which called attention to
the beneficial effects of earthworms: “It may be doubted whether there
are many other animals which have played so important a part in the
history of the world, as have these lowly organized creatures.” Since then,
a vast literature has established the importance of earthworms as bio-
logical agents in soil formation, organic litter decomposition, and redis-
tribution of organic matter in the soil (see Lee, 1985; Hendrix, 1995;
Edwards and Bohlen, 1996; and Lavelle et al., 1999).

Despite the common reference in the popular literature to “the 
earthworm,” there is great diversity and a wide range of adaptations 
to environmental conditions among the earthworm fauna. More than
3500 earthworm species have been described and it is estimated that
considerably more await discovery and description (Fragoso et al.,
1999).

Earthworms are classified within the phylum Annelida, class
Oligochaeta, and order Opisthophora. Although there is not univer-
sal agreement on taxonomic classification, recent analyses suggest 
16 families, 6 comprising aquatic or semiaquatic worms (cohort
Aquamegadrili plus suborder Alluroidina), and the other 10 consisting

The Macrofauna 169



of the terrestrial forms commonly known as earthworms (cohort Ter-
rimegadrili) (Jamieson, 1988). Species within the families Lumbricidae
and Megascolecidae are ecologically the most important in North Amer-
ica, Europe, Australia, and Asia; some of these species have been intro-
duced worldwide by human activities and now dominate the earthworm
fauna in many temperate areas. Likewise, several tropical species in the
families Glossoscolecidae, Eudrilidae, and Megascolecidae have become
pantropical in distribution. Such “peregrine” or “anthropochorous”
species are highly successful in many agricultural or otherwise dis-
turbed areas, and often show significant effects on soil processes (Lee,
1985, Lavelle et al., 1999). Different localities may be inhabited by all
native species, all exotic species, a combination of native and exotic
species, or by no earthworms at all. Relative abundance and species
composition of local fauna depend greatly on soil, climate, vegetation,
topography, land use history, and especially on past invasions by exotic
species.

Whether introduced earthworms displace native species or occupy
areas devoid of native species as a result of disturbance is a subject of
debate (Kalisz and Wood, 1995; Hendrix and Bohlen, 2002). It is often
suggested that the establishment of exotic earthworm populations 
proceeds through the stages of habitat disturbance, extirpation or
reduction of native populations, introduction of exotic species, and colo-
nization of vacant niche space by exotic species. Even in the absence of
obvious habitat disturbance, some minimum habitat patch size may be
required to maintain native earthworm assemblages; increased edges
and potential vectors for invasion by exotic species into small ecosystem
remnants may lead to displacement of native populations (Kalisz and
Wood, 1995).

Earthworm Distribution and Abundance

As noted previously, earthworms occur worldwide in habitats where
soil water and temperature are favorable for at least part of the year;
they are most abundant in forests and grasslands of temperate and trop-
ical regions, and least so in arid and frigid environments (e.g., desert,
tundra, or polar conditions). Across this range of habitats, earthworms
display a wide array of morphological, physiological, and behavioral
adaptations to environmental conditions (Lee, 1985). Even in unsuit-
able regions, earthworms may inhabit local microsites where conditions
are favorable (e.g., urban gardens, desert oases), especially if well-
adapted species have been introduced (Gates, 1967). During unfavor-
able periods, many species are able to enter a temporary dormant 
state (aestivation or diapause) or produce resistant cocoons that hatch
when conditions improve (Edwards and Bohlen, 1996). Within habitats,
earthworms often show patchy spatial distributions corresponding 
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with such factors as vegetation, soil texture, or soil organic matter; 
feeding preferences dictate vertical distributions of species within the
soil profile.

Abundance and biomass of earthworms establish them as major fac-
tors in soil biology, leading Blakemore (2002) to remark: “And while
birdwatchers get excited about a few kilograms of birdlife, or the grazier
is concerned about a couple of 100’s kg per hectare of livestock in a pas-
ture, almost totally ignored is an underground biomass of earthworms
often far in excess of those above that may total 2 or 3 tonnes per hectare.”
Earthworm densities in a variety of habitats worldwide range from less
than 10 to more than 2000 individuals m-2, the highest values occurring
in fertilized pastures and the lowest in acid or arid soils (coniferous or
sclerophyll forests) (Table 4.10). Typical densities from temperate decid-
uous or tropical forests and certain arable systems range from less than
100 to more than 400 individuals m-2. Intensive land management
(especially soil tillage and application of toxic chemicals) often reduces
the density of earthworms or may completely eliminate them. Con-
versely, degraded soils converted to conservation management (e.g., no-
tillage) often show increased earthworm densities and associated soil
properties after a suitable period of time (Curry et al., 1995; Edwards
and Bohlen, 1996). Biomasses of lumbricid species in temperate regions
of the world, where they have been spread by human activities, often
exceed that of other animal groups. In the Piedmont region of Georgia in
the United States, for example, Hendrix et al. (1987) reported an earth-
worm dry-matter biomass of 10-g carbon m-2 in no-tillage agricultural
plots, a value larger than all other fauna combined.

Biology and Ecology

Earthworms are soft-bodied, segmented animals, ranging in length
from a few millimeters (e.g., the American log worm, Bimastos parvus),
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TABLE 4.10. Typical Ranges of Earthworm Density and Biomass in Various Habitats

Habitat Earthworms m-2 Fresh wt.gm-2

Temperate hardwood forest 100–200 20–100
Temperate coniferous forest 10–100 30–35
Temperate pastures 300–1000 50–100
Temperate grassland 50–200 10–50
Sclerophyll forest <10–50 <10–30
Taiga <10–25 £10
Tropical rainforest 50–200 <10–50
Arable soil <10–200 <10–50

Summarized from Lee, 1985, and Edwards and Bohlen, 1996.



to more than a meter (e.g., the giant Gippsland earthworm of Australia,
Megascolides australis) (Fig. 4.61). Morphological details differ greatly
among earthworm groups and many such details (e.g., position of repro-
ductive organs) are used in taxonomic distinctions among species 
(Dindal, 1990). Nonetheless, a number of features are common to most
earthworms (Fig. 4.62). In general, earthworms consist of a simple,
tube-within-a-tube body plan, the outer tube constituting the body prop-
er and the internal tube comprising the alimentary canal. Ingested
material (e.g., mineral soil, particulate organic matter) is drawn
through the mouth into a muscular buccal cavity and then through the
pharynx into the esophagus. Many species have a muscular esophageal
gizzard that grinds and mixes food material as it passes through. The
esophagus in many species also contains a calciferous gland that func-
tions in calcium metabolism and regulation of CO2 levels in the blood.
The remainder of the gut consists of the intestine that, in many endoge-
ic species, has an infolding of the gut wall known as the typhlosole,
which greatly increases the absorptive surface area of the intestine. The
overall length of the gut and configuration of the typhlosole vary with
species, probably as a function of diet.

Earthworms are hermaphroditic, each individual possessing male
and female reproductive organs (testes, ovaries, and associated struc-
tures) (Edwards and Bohlen, 1996). During sexual reproduction, sperm
is exchanged between two individuals and stored in sperm sacs or sper-
mathecae. This sperm is later released, along with eggs, into cocoons
secreted by the glandular clitellum, which is the characteristic thicken-
ing or saddle-shaped structure often seen around several anterior 

172 Chapter 4 The Soil Fauna

FIGURE 4.61. The Australian giant Gippsland earthworm, Megascolides australis, 
measuring up to 3m in length (from Blakemore, 2002). (Alan L. Yen, with permission.)



segments of sexually mature individuals (Fig. 4.63). One to several
embryos may form within each cocoon, depending on earthworm
species. Some earthworms reproduce parthenogenetically, whereby an
ovum develops without fertilization by sperm. Parthenogenesis pro-
vides an effective means by which certain species can establish popula-
tions in new habitats; such species often are the successful peregrines
and anthropochores discussed previously.

Earthworms are often grouped into functional categories based on
their morphology, their behavior and feeding ecology, and their micro-
habitats within the soil (Lee, 1959, 1985; Bouché, 1977, 1983; Lavelle,
1983). These categories describe the ways by which different earthworm
species utilize resources within a soil volume (Table 4.11) (Fig. 4.64).
Epigeic and epi-endogeic species are often polyhumic (prefer organical-
ly enriched substrates) and utilize plant litter on the soil surface and
carbon-rich upper layers of mineral soil; poly-, meso-, and oligohumic
endogeic species inhabit mineral soil with high (e.g., the rhizosphere),
moderate, and low organic matter content, respectively; and anecic
species exploit both the surface litter as a source of food and the miner-
al soil as a refuge in which they make permanent burrows. The familiar
Lumbricus terrestris is an example of an anecic species, constructing
burrows and pulling leaf litter down into them. In contrast, Bimastos
parvus (the American log worm) exploits leaf litter and decaying logs,
with little involvement in the soil—an epigeic species. The ubiquitous
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FIGURE 4.62. General external characteristics of representatives from three earthworm
families. (a) Acanthodrilidae. (b) Megascolecidae. (c) Lumbricidae (from Blakemore,
2002).



European lumbricid, Aporrectodea caliginosa, and several megascole-
cids (e.g., Diplocardia spp., native to eastern North America) are endo-
geic in life habits. Some earthworm species appear to be intermediate
between these categories; for example the epi-endogeic Lumbricus
rubellus, which can inhabit litter layers and form shallow horizontal
burrows. Even though some species may not exactly fit, these categories
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FIGURE 4.63. Copulation and subsequent cocoon formation during sexual reproduction
in lumbricid earthworms (from Edwards and Bohlen, 1996).
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TABLE 4.11. Ecological Categories, Habitat, Feeding, and Morphological
Characteristics of Earthworms

Size and
Category Subcategory Habitat Food pigmentation

Epigeic Epigeic Litter Leaf litter, <10cm, highly
microbes pigmented

Epi-endogeic Surface soil Leaf litter, 10–15cm,
/Epi-anecic microbes partially

pigmented

Endogeic Polyhumic Surface soil or Soil with high <15cm, filiform
root zone organic content unpigmented

Mesohumic Upper 0–20cm Soil from 0–10cm 10–20cm,
soil strata unpigmented

Endo-anecic 0–50cm soil, Soil from 0–10cm >20cm,
some make strata unpigmented
burrows

Oligohumic 15–80cm Soil from 20–40cm >20cm,
soil strata unpigmented

Anecic Anecic Lives in Litter and soil >15cm,
burrows anterodorsal
in soil pigmentation

Modified from Barois et al., 1999.

Polyhumic
endogeic
- Rich soil feeder
- Topsoil (A1) dweller
- No pigmentation
- Horizontal burrows
- Small size

Midden

- Litter feeder
- Litter dweller
- Pigmented
- No burrows
- Small size

- Litter + soil feeder
- Soil dweller
- Dorsally pigmented
- Extensive vertical burrows
  (permanent)
- Large size

- Deep (poor) soil feeder
- B & C horizon dweller
- No pigmentation
- Extensive horizontal burrows
- Very large

- Bulk A1 soil feeder
- A & B horizon dweller
- No pigmentation
- Extensive horizontal burrows
- Medium size

Epigeic

Anecic

Oligohumic 
endogeic

Mesohumic
endogeic

FIGURE 4.64. Pictorial representation of some of the characteristics of earthworm eco-
logical strategies (categories) as proposed by Bouché (1977), Lavelle (1981), and Lavelle 
et al. (1989) (from Brown et al., 1995).



have become a popular means for segregating earthworm communities
into functional groups of species.

Within a particular soil, less than a half-dozen earthworm species are
typically found, and the species within such an association often effec-
tively partition the soil volume according to their functional categories.
Further, the activities of earthworms influence soil processes in various
ways according to these functional categories. For example, epigeic
species promote the breakdown and mineralization of surface litter,
whereas anecic species incorporate organic matter deeper into the soil
profile and facilitate aeration and water infiltration through their 
formation of burrows.

Influence on Soil Processes

Earthworms, as ecosystem engineers (Lavelle et al., 1998), have pro-
nounced effects on soil structure as a consequence of their burrowing
activities as well as their ingestion of soil and production of castings
(Lavelle and Spain, 2001; van Vliet and Hendrix, 2003). Casts are pro-
duced after earthworms ingest mineral soil and/or particulate organic
matter, mix them together and enrich them with organic secretions in
the gut, and then egest the material as a slurry or as discrete fecal pel-
lets within or upon the soil, depending on earthworm species. Darwin
(1881) observed that surface casting by earthworms buried chalk to con-
siderable depths in soil over a 20-year period. Turnover rates of soil
through earthworm casting range from 40–70 t ·ha-1 · y-1 per hectare per
year in temperate grasslands (Bouché, 1983) to 500–1000  t ·ha-1 · y-1 per
hectare per year in tropical savannas (Lavelle, 1978).

During formation in the earthworm gut, casts are colonized by
microbes that begin to break down soil organic matter. As casts are
deposited into the soil, microbial colonization and activity continue until
readily decomposable compounds are depleted. Eventually, casts may
harden into stable soil aggregates. Mechanisms of cast stabilization
include organic bonding of particles by polymers secreted by earth-
worms and microbes, mechanical stabilization by plant fibers and fun-
gal hyphae, and stabilization due to wetting and drying cycles and
age-hardening effects (Tomlin et al., 1995). Earthworm casts are usual-
ly enriched with plant-available nutrients and thus may enhance soil
fertility; plant-growth–promoting substances have also been suggested
as constituents of earthworm casts. Castings from vermicomposting
operations are sold commercially as soil amendments that purportedly
enhance plant growth (Edwards, 1998).

Earthworm burrowing in soil creates macropores of various sizes,
depths, and orientations, depending on species and soil type. Burrows
tend to be similar in diameter to that of the earthworms that produced
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them, ranging from about 1mm to larger than 10mm in diameter and
constituting among the largest of soil pores (Edwards and Shipitalo,
1998). Burrows of epigeic earthworms (e.g., Dendrobaena octaedra) are
often small and limited to upper layers of soil; they may be horizontal to
vertical in orientation. Endogeic species (e.g., Diplocardia mississippi-
ensis or Pontoscolex corethrurus) may form networks of variously 
oriented burrows, as the earthworms ingest soil and cast behind them
as they burrow. These networks may form continuous pores over some
depth, but castings within the burrows may impede free water move-
ment. Anecic earthworms (e.g., Lumbricus terrestris) may create deep
vertical burrows that form continuous macropores to depths of 1m or
more (van Vliet and Hendrix, 2003). These burrows tend to be very sta-
ble because their walls are lined with organic matter drawn in or secret-
ed by earthworms, and they often have higher bulk density than that of
surrounding soil (Lee, 1985). Continuous macropores resulting from
earthworm burrowing may enhance water infiltration by functioning as
bypass flow pathways through saturated soils. These pores may or may
not be important in solute transport, depending on soil water content,
nature of the solute, and chemical exchange properties of the burrow 
linings (Edwards and Shipitalo, 1998).

The influence of earthworms on organic matter and nutrient cycling
in soils is closely related to the density and feeding ecology of resident
populations, as described previously (Lee, 1985; Barois et al., 1999).
Epigeic species typically inhabit the surface litter and the O and upper
A horizons of soil, where they mix mineral soil and plant residues, frag-
ment organic particles, inoculate them with microbes, and thus increase
organic matter decomposition rates. Anecic earthworms pull surface lit-
ter into their burrows, thus transporting organic material deeper into
the soil profile. They cast on the soil surface, mixing organic and miner-
al particles in the litter layer. The activities of both epigeic and anecic
earthworms produce “mull” soil horizons, in which organic matter is
intimately incorporated into the upper mineral soil of a well-developed
A horizon overlain with a recently deposited litter layer. The extreme
case is termed “vermimull,” in which the Ah horizon is granular and
characterized by organo-mineral complexes consisting of earthworm
casts (Green et al., 1994). Endogeic earthworms feed within the soil on
organic matter and microbes associated with plant roots or mineral soil.
As mentioned previously, they are termed oligo-, meso-, or polyhumic,
depending on the level of organic enrichment of their substrate. Casts
and burrows of endogeic earthworms are also sites of increased micro-
bial activity and organic matter decomposition (Brown, 1995). Mineral-
ization of organic matter in earthworm casts and burrow linings
produces zones of nutrient enrichment that are different from those in
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bulk soil. These zones are referred to as the “drilosphere” and are often
sites of enhanced activity of plant roots and other soil biota (Lavelle et
al., 1998).

Despite the many beneficial effects of earthworms on soil processes,
some aspects of earthworm activities may be undesirable (Edwards and
Bohlen, 1996; Lavelle, 1998; Parmelee et al., 1998). Detrimental effects
include removing and burying of surface residues that would otherwise
protect soil surfaces from erosion; producing fresh casts that increase
erosion and surface sealing; increasing compaction of surface soils;
depositing castings on the surface of lawns and golf greens where they
are a nuisance; dispersing weed seeds in gardens and agricultural fields;
transmitting plant or animal pathogens; riddling irrigation ditches,
making them less able to carry water; increasing losses of soil nitrogen
through leaching and denitrification; and increasing soil carbon loss
through enhanced microbial respiration. Furthermore, there have been
reports of earthworms transmitting pathogens, either as passive carri-
ers or as intermediate hosts, raising concerns that some earthworm
species could provide a mechanism for the spread of certain plant and
animal diseases.

Thus it is the net result of positive and negative effects of earth-
worms, or any other soil biota, that determines whether they have 
detrimental impacts on ecosystems (Lavelle et al., 1998). An effect, such
as mixing of O- and A-horizons, may be considered beneficial in one 
setting (e.g., urban gardens) and detrimental in another (e.g., native
forests).

Earthworm Management

There is interest in managing earthworms to utilize their beneficial
effects in organic waste reduction, in land reclamation, and in reduced-
intensity agriculture (Lee, 1995; Edwards and Bohlen, 1996). Because
of their effects on organic matter decay, earthworms are increasingly
being used to accelerate decomposition of organic waste materials. 
Vermicomposting involves culturing of earthworms outdoors in beds or
in confined chambers in the presence of waste materials, which are
reduced in volume and carbon–nitrogen ratio as they are processed by
earthworms and decomposed by enhanced microbial activity within the
earthworms and their castings (Edwards, 1998). A variety of approach-
es and designs has been developed for vermicomposting systems, but
the basic principle is the feeding of acceptable organic materials to
earthworms in continuous or batch culture, and the collecting of
processed wastes that ultimately consist of stabilized castings. Earth-
worm biomass is also harvested from vermicomposting systems for a
variety of uses, including further composting operations, animal pro-
tein, and fishing bait. Organic wastes that have been used successfully
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in vermicomposting include animal manures, sewage sludge, food pro-
duction wastes, and horticultural residues. Small-scale vermicompost-
ing is becoming popular for reduction of household wastes such as
kitchen scraps and yard trimmings. Earthworm species typically used
for vermicomposting included the European lumbricids, Eisenia fetida
and Lumbricus rubellus, often called “red worms”; the African “night-
crawler,” Eudrilus eugeniae; and the Asian “blue worm,” Perionyx exca-
vatus. The latter two species are tropical and best suited to composting
under warm conditions (Edwards, 1998). A number of vermicomposting
publications have appeared in the popular literature in the last decade,
including the periodical Worm Digest and the ever-popular Worms Eat
Our Garbage (Appelhoff et al., 1993).

The potential for earthworms to ameliorate soils during land recla-
mation or in degraded agricultural sites is also of increasing interest
(Lee, 1995; Baker, 1998). In many situations, it may be desirable to
introduce earthworms. Techniques have been developed for large-scale
inoculation of areas devoid of earthworms (e.g., reclaimed polders) and
for introduction of species that may perform desired functions (e.g., epi-
endogeic species for thatch removal from pastures). It is usually neces-
sary that favorable soil conditions (e.g., adequate water and organic
matter, appropriate temperatures) exist at the time of inoculation
and/or that refugia (e.g., blocks of native sod or containers of native soil)
are provided from which earthworms may disperse. Introductions of
earthworms into unfavorable environments often fail.

Mixed-species assemblages of earthworms may influence a wider
array of soil processes, such as organic matter turnover as well as soil
structural properties, than a single species can (Lee, 1995). Introduc-
tions of such assemblages might include one or more anecic species that
make deep vertical burrows and that cast on the surface and bury
residues, and one or more endogeic species that feed belowground on
dead roots and organic matter and that make horizontal burrows. Inclu-
sion of epigeic species might accelerate decomposition of plant residues
on the soil surface.

Earthworm Sampling and Identification

A variety of sampling methods have been used for collecting earth-
worms, both quantitatively and qualitatively (see Table 9.2). Hand dig-
ging and sorting of soil is the most commonly used method for
quantitative sampling of earthworms. Pits of known dimensions (e.g.,
25 by 25 by 25cm) are dug with a shovel, often in layers of defined thick-
ness, and the soil broken by hand. More elaborate modifications of this
method, which may improve collection of juveniles and cocoons, include
dry or wet sieving of soil through screens of known mesh size, and flota-
tion of sieved material in high-density solutions to separate earthworms
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and other soil fauna. Earthworms may be collected alive or immediate-
ly preserved in 70% ethanol or 5% formalin for later counting and 
identification.

Earthworms are also collected by applying solutions of chemical irri-
tants to the soil, which bring earthworms to the surface where they can
be hand collected. A number of chemicals have been used, including
HgCl2, KMnO4, formalin, and mustard powder slurry (Lee, 1985;
Zaborski, 2003). The latter has received much attention recently
because of its safety and availability. Chemical extraction techniques
may be effective on anecic earthworms such as Lumbricus terrestris but
may be less so on other species. Effectiveness varies with earthworm
species and activity, soil water content, porosity, and temperature. Com-
parisons with hand sorting should be done before adopting extraction
techniques for quantitative sampling.

Mechanical or electrical stimulation may also bring earthworms to
the soil surface. A technique known as “grunting” employs a wooden
stake driven into the soil, vibration of the stake with a bow or flat piece
of metal, and collection of earthworms that emerge. Some megascolecid
species have been sampled with this technique (Hendrix et al., 1994) but
it may not be effective on other earthworm groups.

Electrical extraction of earthworms uses metal rods connected to a
source of electrical current and inserted into the soil; the current brings
earthworms to the surface. Different voltages and amperages have been
used with varying degrees of success; effectiveness of the technique is
highly dependent on soil water content, electrolyte concentration, and
temperature. As with mechanical vibration, the soil volume sampled
with electrical current is not known and therefore these methods may be
best suited for qualitative or comparative sampling (Lee, 1985). Howev-
er, Schmidt (2001) used a commercially available “Octet” device to quan-
titatively sample earthworm communities in arable soils in Ireland; the
electrical method gave estimates of species composition and population
size comparable to those from hand digging, with the exception of one
very small species. The electrical technique is potentially very danger-
ous and should only be used with extreme caution.

Earthworm populations also may be sampled with trapping tech-
niques. Pitfall traps (described above) may give some idea of surface-
active earthworm species present in an area. Baited traps consist of
porous containers (e.g., clay flower pots) filled with bait such as animal
manure and buried in the soil for appropriate periods of time. Trapping
techniques are highly selective of certain earthworm species and thus
are best suited for qualitative or comparative sampling (Lee, 1985).

For earthworm species that cast on the soil surface (e.g., Lumbricus
terrestris), numbers and types of castings may give an indication of 
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population activity. Because casting is dependent on soil water content
and temperature, this technique is highly variable and not suitable for
quantitative estimates of population density.

Many earthworm species in the family Lumbricidae can be identified
from external body characteristics if the specimens are sexually mature.
Several taxonomic keys are useful for the common lumbricids found
worldwide (Reynolds, 1977; Sims and Gerard, 1985; Schwert, 1990).
Most other earthworms require dissection for accurate taxonomic iden-
tification; position and characteristics of sexual organs, the gut and
associated glands, and other structures are required. The procedures
must be done carefully and require a degree of skill and practice. Addi-
tional general taxonomic references include Jamieson (1988), Fender
and McKee-Fender (1990), James (1990), Edwards and Bohlen (1996),
and Fragoso et al. (1999).

GENERAL ATTRIBUTES OF FAUNA IN SOIL SYSTEMS

In recent years, interest has been shown by soil scientists and ecolo-
gists in measuring “soil quality.” This elusive concept has been the sub-
ject of entire symposia and volumes resulting from them (e.g., Doran 
et al., 1994). As defined by soil scientists, soil quality can be considered
as the degree or extent to which a soil can: (1) promote biological activi-
ty (plant, animal, and microbial); (2) mediate water flow through the
environment, and (3) maintain environmental quality by acting as a
buffer that assimilates organic wastes and ameliorates contaminants
(Linden et al., 1994). Many environmental scientists are attempting to
use the concept of indicator organisms or indicator communities as a
way to determine overall soil “health” (e.g., Bongers, 1990; Ettema and
Bongers, 1993; Foissner, 1994; Linden et al., 1994; Neher et al., 1995;
Ferris et al., 2001). Because of their large size and public awareness of
them, earthworms are often considered a sign of soil “health” (Linden 
et al., 1994; Hendrix, 1995). All of the biota play important roles in
affecting and influencing soil processes. As summarized in Table 4.12,
each of the biotic groups has significant impacts. Among the fauna,
microfauna have a principal role via interactions with the microflora.
The mesofauna and macrofauna create fecal pellets, and produce bio-
pores of various sizes, which affect water movement and storage as well
as root growth and proliferation. Perhaps more important, over the
longer term, they have marked effects on humification processes as well
(Wolters, 1991). Based on biological characteristics, there are three gen-
eral trophic systems: microtrophic (protozoa, nematodes, and some
enchytraeids), mesotrophic (the mesofauna), and macrotrophic (the
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TABLE 4.12. Influences of Soil Biota on Soil Processes in Ecosystems

Nutrient cycling Soil structure

Microflora Catabolize organic matter Produce organic compounds that bind
Mineralize and immobilize aggregates

nutrients Hyphae entangle particles onto
aggregates

Microfauna Regulate bacterial and fungal May affect aggregate structure through
populations interactions with microflora

Alter nutrient turnover

Mesofauna Regulate fungal and micro- Produce fecal pellets
faunal populations Create biopores

Alter nutrient turnover Promote humification
Fragment plant residues

Macrofauna Fragment plant residues Mix organic and mineral particles
Stimulate microbial activity Redistribute organic matter and

microorganisms
Create biopores
Promote humification
Produce fecal pellets

From Hendrix et al., 1990.

large fauna capable of breaking through physical barriers of soil) (Heal
and Dighton, 1985).

Further concerns about fauna as indicators of soil quality led Linden
et al. (1994) to erect a hierarchical array of three categories in which
fauna and soil quality interact, namely: (1) organisms and populations,
relating to behavior, physiology, and numbers; (2) communities, with
concerns about functional groups (i.e., guilds of burrowers and nonbur-
rowers, trophic groups, and biodiversity); and (3) biological processes,
relating to the several processes and properties listed in Table 4.13 (Lin-
den et al., 1994). These processes are considered in greater detail in later
chapters on decomposition and nutrient cycling processes.

FAUNAL FEEDBACKS ON MICROBIAL COMMUNITY
COMPOSITION AND DIVERSITY

Since the time of Darwin’s epochal book on soil biology (1881), there
has been considerable interest in the effects of fauna on microbial com-
munities. Satchell (1983), in a centenary celebration of Darwin’s book,
stated that, by the culture methods existing up until then, there was lit-
tle or no indication that earthworms have a qualitatively different flora
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in their guts or in their castings. Yet there are numerous studies that
have indicated an increase in microbial numbers or activity during or
after passage through the gut and in the drilosphere (Barois, 1992;
Daniel and Anderson, 1992; Kristufek et al., 1992; Schoenholzer et al.,
1999). Recent studies using both molecular and culture-based analyses
of agricultural soil and burrows and casts of the epigeic earthworm
Lumbricus rubellus have revealed interesting differences between
earthworm- and non-earthworm–influenced soils (Furlong et al., 2002).
Clone libraries of the 16S rRNAgenes were prepared from DNAisolated
directly from the soil and earthworm casts. Representatives of the
Pseudomonas genus as well as the Actinobacteria and Firmicutes
increased in number, and one group of unclassified organisms found in
the soil library was absent in that of the cast. In fact, Singleton et al.
(2002) isolated a new species of bacterium, Solirubrobacter paulii, from
the intestinal wall of Lumbricus rubellus. This was not found in the soil
library, and may represent the first known instance of a bacterium
unique to the gut wall of an earthworm.
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TABLE 4.13. Properties of Soil Fauna for Use as Indicators of Soil Quality

1. Organisms and populations
Individuals

Behavior, morphology, physiology
Populations

Numbers and biomass
Rates of growth, mortality, and reproduction
Age distribution

2. Communities
Functional groups

Guilds (e.g., burrowers vs. nonburrowers, litter vs. soil dwellers, etc.)
Trophic groups

Food chains and food webs (microbivores, predators, etc.)
Biodiversity

Species richness, dominance, evenness
Keystone species

3. Biological processes
Bioaccumulation

Heavy metals and organic pollutants
Decomposition

Fragmentation of organic matter
Mineralization of C and nutrients

Soil structure modification
Burrowing and biopore formation
Fecal deposition and soil aggregation
Mixing and redistribution of organic matter

From Curry and Good, 1992 and Linden et al., 1994.



Studies of microbial community similarity have been conducted com-
paring termite mounds and nearby tropical soils. Harry et al. (2001)
used RAPD (random amplified polymorphic DNA) molecular markers to
estimate the similarity of microbial communities in the mounds of 
several termite species and surrounding soils. They studied four species
of soil-feeding termites and one species of fungal-feeding termite in a
tropical rain forest area of the Nyong River basin in Southern
Cameroon. They found that microbial communities of the mounds of the
soil-feeding termite species were clustered in the same clade, whereas
those of the mounds of the fungus-growing species were distinct like
those of the control soils. The microbial changes were dependent upon
the species’ behavior, with the soil feeding species including feces in
their mound building and the fungal-feeding species using saliva as par-
ticle cement in its mounds.

SUMMARY

Animals in soils are a large, numerous, and diverse group of species,
organized into complex food webs. In addition to a formal taxonomic
classification, the soil fauna may be classified in several ways: persis-
tence in the soil, distribution through the soil profile, body shape, and
body size. The latter classification, body size, has the advantages of sep-
arating fauna into groups collected and quantified in similar manners.
Methods for study of the microfauna including the protozoa are essen-
tially the methods of microbiology. Among the mesofauna, the abundant
and ubiquitous nematodes have significant impacts on microbial popu-
lation and on roots. Another group, the microarthropods, contains mites
and collembolans that feed on plant debris rich in fungus, nematodes,
and other arthropods as well. The combination of microbes, nematodes,
and microarthropods provides complex food webs, whose connections
may vary opportunistically. The macrofauna contains a large group of
arthropods, including the familiar isopods and millipedes as detritus
feeders, and scorpions, spiders, and other predators. Pterygote (winged)
insects are numerous in soils. The termites and ants are important soil
movers (bioturbators) in many situations, as are earthworms. The
earthworms may be the single most important groups of soil animals, in
terms of their feeding upon detritus and their effects on soil structure.
But the entire fauna is involved in maintenance of soil health. The
microfauna and microfloral interactions, the feeding of the mesofauna
on microbial-rich detritus, and the creation of biopores and the biotur-
bation effects of the larger mesofauna all interact in creating soil 
quality (see Chapter 8).
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As noted in the summary to Chapter 3, the prospects of linking
microbes and fauna by meaningful qualitative (structural) and quanti-
tative (functional) techniques are growing rapidly, and the future is
bright for synthesis in soil ecology studies.
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5
Decomposition and

Nutrient Cycling

INTRODUCTION

The bulk of terrestrial net primary production (NPP), along with the
bodies and excretions of animals, is returned to the soil as dead organic
matter. Some 90% of NPP eventually enters the soil system through
dead plants in grasslands; through leaves, roots, and wood in forests;
and through organic residue in agricultural fields. Indeed, ecosystems
may be viewed as consisting of four functional subsystems: (1) the pro-
duction subsystem, (2) the consumption subsystem, (3) the decomposi-
tion subsystem, and (4) the abiotic subsystem. The decomposition
subsystem serves to reduce dead residues to carbon dioxide (CO2) and
soil organic matter, and to release nutrient elements for entry into soil
food webs, and ultimately for reaccumulation by plants. The decomposi-
tion process drives complex belowground food webs, in which chemical
forms of nutrient elements become modified. It is responsible for the cre-
ation of long- and short-lived organic compounds important in nutrient
dynamics, and it fuels the formation of soil structure.

Terrestrial plant growth is highly dependent on the decomposition
system, particularly in oligotrophic soils where nutrient stocks are held
in litter and soil organic matter, rather than in mineral soil. Het-
erotrophic organisms in the soil are ultimately responsible for ensuring
the availability of nutrients for primary production (Wardle, 2002).
Thus the two subsystems, primary production and decomposition, are
dependent upon each other. We emphasize, again, the necessity for eval-
uation of entire ecosystems when considering their respective parts.
The soil subsystem performs crucial functions within terrestrial eco-
systems, regardless of how modified the terrestrial ecosystems may be.
Decomposition processes in highly modified agricultural systems still
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involve a significant variety of heterotrophic organisms with character-
istic abilities (Wasylik, 1995).

Decomposition per se is the catabolism of organic compounds in plant
litter or other organic detritus. As such, decomposition is mainly the
result of microbial activities. Few soil animals have the enzymes that
would allow them to digest plant litter. Animal nutrition depends upon
the action of microbes, either free-living in the soil or specialized in the
rhizosphere or in animal guts. However, the term “decomposition” is
often used more generally to refer to the breakdown or disappearance of
organic litter. In that context, the decomposition of organic residue
involves the activities of a variety of soil biota, including both microbes
and fauna, which interact together. The term “litter breakdown” has
been applied to the interactive process, which results in the disappear-
ance of organic litter.

Continuing interest in decomposition is apparent from the large
number of studies of the process that have been published during the
past 25 years. More than 1000 such publications have appeared in peer-
reviewed journals, and the number would be much larger if symposia or
reports on heterotrophs themselves were to be included (Heal et al.,
1997). Improved understanding of the decomposition process has
accompanied the refinement of methods and conceptual models. The lit-
terbag technique (Bocock and Gilbert, 1957; Shanks and Olson, 1961;
Edwards and Heath, 1962; Crossley and Hoglund, 1962) has become a
major tool in these studies, despite its limitations (Heal et al., 1997).
Radioactive tracers (Olson and Crossley, 1962) have been replaced by
methods using stable isotopes of carbon and nitrogen (Nadelhoffer and
Raich, 1992; Boutton and Yamasaki, 1996). Early models of mass loss
(Jenny, 1941; Olson, 1963) defining a decomposition constant, k, are
being supplanted by more sophisticated models that consider different
constituents of litter (Jenkinson et al., 1987; Parton et al., 1994; 
Sinsabaugh and Moorhead, 1997).

INTEGRATING VARIABLES

In studies of soil systems, rates of litter breakdown have been used as
integrating variables. That is, because litter breakdown rates are the
result of the combined activities of the soil biota, breakdown rates may
be used to evaluate effects of disturbance on the entire system. For
example, conversion of agricultural systems into conservation tillage
regimes will affect soil biology, notably by shifting the composition of
microbial communities and increasing earthworm population densities,
but with changes in other soil biota as well (Doran, 1980, Parmelee et al.,
1990, Beare et al., 1992). We can evaluate the consequences of these
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changes in soil biota by measuring litter breakdown rates (Fig. 5.1)
(Crossley et al., 1992).

Other integrating variables include soil respiration, formation of 
soil structure, and nutrient dynamics. All of these variables are readily
measured, and all are important for ecosystem function. Soil respi-
ration estimates biological activity generally and is dominated by
microbes, with an important contribution by roots (Cheng et al., 1993;
Kuzyakov, 2002). Soil structure is the result of combined actions of 
biota and climate on mineral substrates. Nutrient dynamics are the
most valuable of the integrating variables for predicting primary 
productivity.

Although microbes are responsible for the biochemical degradation of
organic litter, fauna are important in conditioning the litter and aiding
in microbial actions. The soil scientist Hans Jenny characterized soil
fauna as mechanical blenders: “They break up1 plant material, expose
organic surface areas to microbes, move fragments and bacteria-rich
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FIGURE 5.1. Changes in species diversity of soil microarthropods as a function of 
agricultural practice (from Crossley et al., 1992).

1Although we are accustomed to the term litter breakdown, the term litter breakup
appears to be exactly equivalent.



excrement around, up, and down, and function as homogenizers of soil
strata” (Jenny, 1980). Breakdown rates for organic litter integrate the
effects of these various activities into a single set of variables. The com-
bination of microbial and faunal activities results in a set of positive
interactions of the type termed “facilitation” by Bruno et al. (2003).
Results of the interactions are likely to be more significant than that by
either component—animal or microbial—acting alone.

RESOURCE QUALITY, CLIMATE, AND LITTER BREAKDOWN

Litter breakdown rates vary between and among ecosystems on 
localized and broad geographic scales, as functions of soil biota, 
substrate quality, microclimate, and ecosystem condition. In general,
we view breakdown and decomposition as the result of biota acting on
substrates of varying quality within the constraints of climate and soil
properties.

Resource quality is defined principally by the chemical composition of
organic residues deposited on or in the soil. Sugars and starches (i.e.,
labile substrates) are easily digested by microbes and other soil biota,
whereas tannins, lignins, and other compounds rich in polyphenols (i.e.,
recalcitrant substrates) can be utilized directly only by certain special-
ized organisms (e.g., white-rot fungi). Cellulose and hemicelluloses are
intermediate in their degradability. Hence the relative proportions of
these classes of compounds in organic materials greatly influence the
overall rate of decomposition of those materials (Fig. 5.2) (Berg, 1986).
Organic litter in most terrestrial ecosystems is a mixture of relatively
labile and relatively recalcitrant substrates—thin, calcium-rich dog-
wood (Cornus florida) leaves versus thick, highly lignified, oak leaves
(Quercus spp.) or conifer needles (Pinus spp.), for example. Even in agri-
cultural systems, differences between leaves and stalks of corn (Zea
mays), for example, represent different substrate qualities with differ-
ent breakdown rates. Woody litter, high in tannins and lignins, may
have breakdown rates measured in decades or even centuries for large
logs in cool climates (Harmon and Chen, 1991). Fine root turnover may
be measured in days, but coarse roots, with highly suberized tissues,
turn over in years.

On a broad geographic basis, the change in breakdown rates as a
function of latitude is generally predictable (Fig. 5.3) (Meentemeyer,
1978). However, the effect of latitude is not strictly a direct effect of 
climate; the abundance of the various soil biotas also changes with lati-
tude (Fig. 5.4) (Swift et al., 1979). For example, adaptations of the soil
biota to desert conditions allow breakdown rates to proceed more rapid-
ly than predicted by temperature–moisture considerations. Members 
of the desert soil biota are active nocturnally, when temperatures 
moderate and light dew may accumulate. Litter breakdown in tropical
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systems may be strongly influenced by seasonality of litterfall as well 
as faunal abundance. González and Seastedt (2001) found that all 
three groups of factors (climate, substrate quality, and soil fauna) inde-
pendently influenced the decomposition rate of leaf litter in tropical dry
and subalpine forests. Soil fauna had a disproportionately larger effect
on litter decomposition in a tropical wet forest than in tropical dry or
subalpine forests.

Decomposition rates may vary along elevational gradients as well, but
not as predictably. In a study conducted in Arizona in the United States,
plant litter decomposition was measured along a gradient from desert to
pinyon–juniper woodland and up into a ponderosa pine forest (Murphy 
et al., 1998). Decomposition was more rapid at the upper, cooler elevation
that was also moister. In these systems, moisture—not temperature—
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FIGURE 5.2. Model for decomposition of some organic components in Scots pine (Pinus
silvestris) needle litter. In the early phase of decomposition, high concentrations of nutri-
ents such as nitrogen (N), phosphorus (P), and sulfer (S) exert a rate-enhancing influence
on mass-loss of the nonlignified parts of the litter. Also, high concentrations of easily
degraded solubles and celluloses influence a high mass-loss rate. In the late stage where
mainly lignified material remains, lignin mass-loss is governing, which in its turn is neg-
atively affected by high nitrogen concentrations and positively by high concentrations of
celluloses in the lignified material. The negative effect of lignin on cellulose degradation is
indicated by black arrows. A (+) indicates a rate-enhancing influence and (-) a negative
one. HLQ designates the quotient between holocellulose and lignin plus holocellulose
(from Berg, 1986).



was the overriding variable. Similarly, in a hardwood forested ecosystem
at Coweeta Hydrologic Laboratory, in North Carolina, decomposition did
not vary predictably along an elevation gradient (Hoover and Crossley,
1995). Decomposition was slowest at a low-elevation, very mesic, cove
hardwood site and was most rapid at intermediate elevation sites. Micro-
climate—temperature and moisture around decomposing substrates—
regulates activity rates of the biota. Disturbed ecosystems and
successional ones also may have litter breakdown rates that are slower
than predicted from broad regional temperature–moisture conditions.
Alteration of microclimates may reduce faunal activities, and substrate
quality of foliage may change during plant succession. Furthermore,
edaphic factors, particularly soil texture (i.e., relative proportions of
sand, silt, and clay), greatly influence local microclimatic conditions by
regulating the availability of surface water films for soil microbes and
microfauna, and water holding capacity of the bulk soil for meso- and
macrofauna. Thus soil–water relations exert indirect control on litter
decomposition through their influence on soil biological activity.

DYNAMICS OF LITTER BREAKDOWN

The disappearance of litter on forest floors follows approximately a
simple first-order equation:

dX/dt = -kX
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Y = 1.39499 – 0.02966X  r = –0.815
Y = 1.25130 – 0.02704X  r = –0.947
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FIGURE 5.3. Simple correlation-regression between initial lignin concentration (%) and
annual decomposition rate (k) for five locations ranging in climate from subpolar to warm
temperate. AET, actual evapotranspiration (from Meentemeyer, 1978, with permission).
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as a gradient together with the faunal contribution to soil community metabolism. The
favorability of the soil environment for microbial decomposition is represented by the cline
of soil organic matter accumulation from the poles to the equator; soluble, or soil, organic
matter (SOM) accumulation is promoted by low temperatures and waterlogging where
microbial activity is impeded (from Swift et al., 1979).

where X is the standing stock of litter and k is the annual fractional rate
of disappearance. Olson (1963) proposed that it was a characteristic of
mature forests that rates of litter production and disappearance were
equal, so that annual production (L) would be balanced by breakdown 
(-kX). Olson used the symbol Xss to designate the standing stock of 
litter on the ground at steady state (i.e., when litter production and 
disappearance are equal). Then, the ratio of input (L) to standing stock
(Xss) provides an estimate of breakdown rate k:

k = L/Xss



Olson (1963) estimated decomposition rates (k) for evergreen forests
in various parts of the world (Fig. 5.5). Values for k ranged from 4 for
rapid decomposition in tropical regions, through 0.25 for eastern United
States pine forests, to 0.02 for higher latitude pine forests. Recent analy-
ses using more sophisticated, mechanistic models have shown similar
trends in litter decomposition across climatic gradients (e.g., Parton 
et al., 1989a; Moore and de Ruiter, 2000).

What is estimated here is the rate of leaf or needle litter breakdown.
Olson’s (1963), as most other models, did not consider inputs of organic
litter belowground, although he did use the entire mass of carbon per
square meters in estimates of Xss. Current studies of root dynamics (see
Chapter 2) are providing estimates of root breakdown rates, but these
are more difficult to measure than leaf litter breakdown rates and con-
sequently are less well known. Root death and decay may account for as
much as one-half of the annual carbon addition to soils in forests or even
more in grasslands; but as is often the case, dynamics within the soil are
obscure.

The simple exponential model using a single constant, k, to represent
decomposition rate continues to be widely used. It is not difficult to esti-
mate k using litterbag techniques (see next section of this chapter). The
simple model loses its attractiveness when patterns of litter breakdown
are examined more closely. Leaf litter often is a combination of leaf
species, each with different breakdown rates. Furthermore, each
species contains both labile and recalcitrant fractions. Wieder and Lang
(1982) examined several different models, and concluded that the single
exponential model shown previously or double exponential models
(including fast and slow components) best describe breakdown rates
over time “with an element of biological realism.” Jenkinson et al. (1987)
and Paustian et al. (1997) considered single-pool, multiple litter pool,
and continuous spectrum models of litter decomposition, and provided
mathematical representations of decomposition rates. Their results
show that litter quality is a key factor for accurately modeling decompo-
sition dynamics.

DIRECT MEASUREMENT OF LITTER BREAKDOWN

In deciduous forests with annual pulses of leaf drop, it is possible to
measure litter breakdown directly from litter samples taken through
time. If combined with estimates of the mass of litterfall, these samples
provide a good measure of the dynamics of litter breakdown (Fig. 5.6)
(Witkamp and van der Drift, 1961). As the year progresses, the litter
layer mass, L, becomes transformed into F layer (see Chapter 1). 
Sampling over several years reveals year-to-year variation in masses of
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litter input and rates of breakdown (Table 5.1). It should be noted that
two systems of organic layer horizonation are used in the soils litera-
ture: L, F, and H refer to litter, fermentation (or fragmented), and
humus layers, respectively (see Green et al., 1993, for a complete
description of this biologically based system); these are equivalent to the
Oi, Oe, and Oa layers often used in forest soils literature.

Rates of litter breakdown are measured more easily by using confined
leaf litter. Mesh bags (litterbags) containing a known mass of leaf litter
are placed on the forest floor at the time of leaf drop. Litterbags are then
collected on a time schedule and the remaining mass is measured (Fig.
5.7). Litterbags have been a valuable tool for comparative studies of
rates of litter breakdown (Fig. 5.8). Such studies include mass loss rates
by different tree species, and have shown the importance of elemental
contents, lignin, carbon–nitrogen ratios, and other resource quality 
factors (Table 5.2) (Blair, 1988a; Melillo et al., 1982). Decomposition
rates also vary between habitats and forest types, and litterbags have
proved to be useful in delineating and analyzing differences (Table 5.3)
(Cromack, 1973; Heneghan et al., 1998, 1999).
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TABLE 5.1. Summary of Litter Decomposition Experiments Conducted on Clear-cut (WS 7) and Control (WS 2) Watersheds, at the Coweeta
Hydrologic Laboratorya

74–75 75–77 77–78
WS 7, pre-cut WS 2, pre-cut WS 7, post-cut WS 2, post-cut

% % % %
Species Rate Remaining Rate Remaining Rate Remaining Rate Remaining

Liriodendron tulipifera -0.682 49.4 -0.656 49.8 -0.545 60.0 -0.814 47.3

Acer rubrum -0.529 49.0 -0.477 57.9 -0.324 71.5 -0.368 67.9

Quercus prinus -0.336 69.3 -0.285 72.2 -0.242 79.3 -0.3000 76.0

Cornus florida -1.309 27.8 -0.711 47.8 -0.531 59.6 -0.825 43.4

Robinia pseudoacacia -0.250 72.4 -0.530 49.7 -0.330 69.1 -0.330 70.7

aData are summarized for a 1-year study on WS 2 and 7 (1974–75), a 2-year study on WS 2 (1975–77), and a 1-year study on WS 2 and 7
(1977–78). Values are shown for decay rate (per yr) and % remaining after 1 year. Only first-year decay results are presented here.

From D. A. Crossley, Jr., unpublished.
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FIGURE 5.7. View of leaf litterbag.

TABLE 5.2. Initial Litter Quality Variables as Predictors
of First-Year Decay Ratesa

Initial litter
quality variable r2 Slope Y-intercept

% Nitrogen 0.271 -0.978 -1.29
C:N ratio 0.138 0.007 -0.12
% Lignin 0.987 0.029 -0.96
Lignin :N ratio 0.967 0.027 -1.05
% Water soluble 0.322 -0.015 -0.06
% Ethanol soluble 0.426 -0.040 -0.32

aCoefficients of determination (r2), slopes, and Y-
intercepts of regressions relating first-year decay rate
constants (k) to initial litter quality variables for litter of
the three species examined.

From Blair, 1988.

Use of litterbags does have its problems. Fine-mesh bags, with 
openings of 1–2 millimeters (mm), will exclude most macrofauna and
thus underestimate decomposition rates. Larger meshes allow larger
fragments to escape the bags, thus overestimating decomposition. The
microclimate within litterbags tends to be moister than that 
of unbagged litter, and thus more favorable for microbial activity 
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FIGURE 5.8. Litterbags and masses remaining showing days elapsed (a) and degree days
(b) at one temperate (Coweeta) and two tropical (Puerto Rico and Costa Rica) sites (from
Crossley and Haines, unpublished, 1990).

(Vossbrinck et al., 1979). In most cases, litterbags probably underesti-
mate actual breakdown rates and do not account for the fate of the fine
particulate organic matter that falls from the bags and becomes part of
the F, H, and mineral soil organic matter pools (Heal et al., 1997). Their



usefulness for comparative studies and for nutrient measurements
makes them important tools, nevertheless.

Alternatives to litterbags and modifications of the standard approach
have been reported. For example, individual leaves tied together by
their petioles on a string (“trot-lines”) were used by Crossley (unpub-
lished data). Loss of weight (and area) by individual leaves measured
through time yields estimates of litter breakdown rates. When biologi-
cal activity increases in late spring and summer, rapid rates of loss 
are found. It is not clear whether these rapid losses are due to the sepa-
ration of large fragments from the leaf, or if the unbagged rates allow 
for larger fauna to attack the decomposing leaf, or both. The simultane-
ous use of both techniques yields estimates of breakdown rates 
that doubtless bracket the true values. Blair and Crossley (1991) used
“litter baskets,” which confine an entire block of mineral soil, along 
with the L, F, and H layers, within wire mesh to study litter decompo-
sition and nutrient transport down the soil profile. A further recent 
modification of the technique is that of “litter sandwiches” (Binkley,
2002), in which fiberglass mesh is placed each year on the annual 
accumulation of litterfall on a defined area of forest floor. Each sub-
sequent year of decomposition can then be measured over an extended
period of time. Binkley (2002) found that 80% of litter organic matter
decomposed over 10 years in a loblolly pine forest, yielding k = 0.1655;
the data predicted the steady state forest floor mass within 10% of the
actual value.
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TABLE 5.3. First-Year Litter Breakdown Rates for Single Speciesa

% Weight Exponential Loss Correlation
Species Year Remaining Rate (ka) Coefficient (r)

White pine 1969–70 59.5 -0.52(12) -0.888b

1970–71 65.4 -0.42(19) -0.480c

Chestnut oak 1969–70 57.8 -0.55(33) -0.866b

1970–71 51.4 -0.66(31) -0.890b

White oak 1969–70 47.6 -0.74(36) -0.887b

1970–71 49.6 -0.70(32) -0.906b

Red maple 1969–70 43.6 -0.83(36) -0.934b

1970–71 48.6 -0.72(30) -0.839b

Dogwood 1969–70 30.8 -1.18(37) -0.939b

1970–71 26.0 -1.35(33) -0.948b

aWhere the annual exponential loss rate (k) is estimated from a semilogarithmic
regression (base e) of monthly weight loss of litterbags.

bDenotes p < 0.01.
cDenotes p < 0.05.
From Cromack, 1973.



PATTERNS OF MASS LOSS DURING DECOMPOSITION

A graph of mass retained in litterbags during decomposition of 
leaf litter in a temperate deciduous forest reveals a three-phase curve
(Fig. 5.9). Initially, following autumnal leaf drop, there is a rapid
decrease in weight, caused by the loss of rapidly metabolizable com-
pounds or simply readily leachable substances. This initial phase is 
followed by a slow rate of loss during winter months. During late spring,
rates again become accelerated as microclimates become more favorable
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for biological activity. During winter some microbial and faunal attack
occurs, but the major abundance of fauna and microbes is found in 
litterbags during spring and summer.

Although rates do vary with season, the model using a single expo-
nential constant (k) provides a good fit to these data (Fig. 5.10). The 
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dogwood, red maple, and chestnut oak]. (Reprinted from Blair, J. M. [1988a], with 
permission).



coefficient of determination (r2) for these curves usually exceeds 85%. 
The constant k conceals seasonal dynamics but is a useful means 
for comparing leaf types or habitats, or geographical regions. More 
precision can be gained by calculating k from the spring–summer values
alone. Some typical breakdown rates for forest litter are shown in 
Table 5.3.

Breakdown rates in agricultural systems are generally more rapid
than in forested systems: crop residues, as a rule, tend to have fewer
recalcitrant components. Figure 5.11 shows mass loss rates for rye litter
from litterbags either placed on the soil surface (no-tillage) or buried 
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following plowing (conventional tillage) (Beare et al., 1992). Loss rates
were faster under conventional tillage (k = 0.03 per day) than in no-
tillage soils (k = 0.02 per day). Usually, buried residues decompose more
rapidly than surface residues because of more intimate contact with
mineral soil and microbes and because of more moderated microclimate
beneath the soil surface. In any case, rates for rye litter were much
faster than for forest tree leaf litter.

To establish the extent of impact of faunal-moderated decomposition
on plant residues, Tian et al. (1995) used gnotobiotic microcosms with
residues of five plants from tropical agroecosystems (Dactyladenia bar-
teri, Gliricidia sepium and Leucaena leucocephala prunings, maize
stover, and rice straw) placed on the surface of large pots filled with an
Oxic Paleustalf in Nigeria. The soil was defaunated by sun drying and
the larger fauna removed by hand. Eighteen mature earthworms
(Eudrilus eugeniae) and/or three millipedes (Spirostreptidae) were then
added to a subset of pots. The experiment was run for 10 weeks, with an
intermediate sampling of mass losses occurring after 4 weeks. Both
earthworms and millipedes contributed more to the breakdown of the
low-quality litter (Dactyladenia, maize stover, and rice straw) compared
to the decomposition of the higher-quality leguminous tree prunings
(Tian et al., 1995). This effect has been observed in a number of forest
ecosystems, as noted later in this chapter.

EFFECTS OF FAUNA ON LITTER BREAKDOWN RATES

The association of soil fauna with litter decomposition is an ancient
one. Labandeira et al. (1997) reviewed the evidence concerning associa-
tions of soil fauna in the geologic record. The incidence of oribatid mite
feeding in coal deposits from Illinois and Appalachian sedimentary
basins occurred in all major plant taxa in Pennsylvanian coal swamps.
Virtually every type of plant litter tissue was used by the mites. Evi-
dence for termites and holometabolous wood-boring insects dates to the
early Mesozoic. The illustrations published by Labandeira et al. (1997)
provide striking evidence of the importance of detritivores in these
primitive forests.

In more modern times, the Russian soil scientist Galina Kurcheva
(1960, 1964) found that naphthalene (an insecticide) applied to oak leaf
litter would drastically reduce the rate of breakdown. In the succeeding
decades, various biocides and other techniques have been used to sup-
press various components of the soil biota, which is a measure of their
importance in leaf litter breakdown (e.g., Parker et al., 1984; Beare et
al., 1992). The upshot of these experimental manipulations has been to
demonstrate that bacterial, fungal, and faunal members of the soil biota
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all have significant effects on litter breakdown (Fig. 5.11). Given that
actual breakdown and decomposition rates are a function of the interac-
tion among the various biota and with substrate quality and climate, the
rate estimates derived from manipulations must be accepted with cau-
tion. The main effects, however, seem clear.

Seastedt (1984b) suggested that the equation describing litter break-
down might be partitioned into components, so that the constant k could
be considered as the sum of several ks:

dX/dt = -kX = -(kbacteria + kfungi + kfauna)X

Seastedt reviewed studies in which microarthropods had been sup-
pressed and found that a variable percentage of breakdown rates could
be attributed to microarthropod activities. Table 5.4 shows the results of
the Seastedt equation applied to forest tree litter in a floodplain forest in
Athens, Georgia, in the United States. Litterbags with a 1-mm mesh
size were used so that macrofauna were excluded from the bags. Naph-
thalene applications were used to reduce microarthropod populations 
in some of the litterbags. The results show that the importance of
microarthropods varied with litter quality. Microarthropod activities
were least significant for the more rapidly decomposing litter species
(dogwood, tulip-poplar) and were most important for the slowest, most
recalcitrant litter type (water oak). In a carefully controlled experiment,
Couteaux et al. (1991) measured decomposition of litters of various qual-
ities, namely with carbon–nitrogen ratios of 75 (low quality) versus 40
(higher quality). The soil fauna contributed more to the decomposition
of the low-quality substrate, and the effect was significantly greater at
later stages of incubation in the 24-week experiment, with greater fau-
nal complexity accounting for greater amount of dry mass loss and total
CO2 evolution per unit time.
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TABLE 5.4. Percent of Leaf Litter Decomposition (Mass Loss) Attributable to 
Soil Faunaa

Leaf species kT kNA kF Percent due to fauna

Dogwood -0.00248 -0.00089 -0.00159 64.1
Sweetgum -0.00248 -0.00089 -0.00159 71.4
Tulip-poplar -0.00229 -0.00113 -0.00116 50.7
Red maple -0.00125 -0.00069 -0.00056 44.8
Water oak -0.00174 -0.00037 -0.00137 78.7
White oak -0.00216 -0.00076 -0.00140 64.8

aLoss rate due to faunal activities calculates as: total rate (kt) minus naphthalene
rate (kNA) equals rate due to fauna (kF). Percent difference calculated as (kF/kt) ¥ 100.

From D. A. Crossley, Jr., unpublished.



Experimental approaches such as these must be interpreted with
caution. Usually more than one component of the system is modified by
manipulations, be they chemical or physical ones (Crossley et al., 1990).
Other approaches, such as tracer methods and laboratory microcosms,
need to be used in conjunction with manipulative experiments. Biocides
such as naphthalene may alter other system components, sometimes 
to a large extent. Naphthalene, for example, may suppress microbes.
However, González et al. (2001) reported higher microbial biomass
when naphthalene was used to exclude soil fauna.

NUTRIENT MOVEMENT DURING DECOMPOSITION

Soils contain many of the same elements as found in their underlying
substrate of rock, but the proportions differ greatly. Elements such as
calcium (Ca), magnesium (Mg), potassium (K), and sodium (Na) are lost
as soluble cations during weathering, depending on climatic conditions
(especially precipitation). Some other elements, such as iron and alu-
minum, are resistant to leaching losses and their proportions may
increase compared to rocks. Movements of cations are governed by the
exchange properties of the soil, properties dependent upon the nature of
the clays and amount and type of organic matter. Exchangeable cations
in soils include Ca2+, Mg2+, K+, NH4

+ and Na+, affinities for exchange sites
(i.e., energy of adsorption) decreasing approximately in that order. Cer-
tain anions are not as tightly held in soils, again depending on the
nature of clay colloids and on soil pH. Phosphate ions, multiply charged,
are more tightly fixed by anion exchange properties than are singly
charged ions such as nitrate (Bowen, 1979; Foth, 1990).

During the decomposition process, elements are converted from
organic to inorganic forms (mineralized) and may enter the exchange-
able pools, from which they are available for plant uptake or microbial
use. Cellulose and hemicellulose account for more than 50% of carbon in
plant debris and help to fuel microbial processes such as transformations
of nitrogen (Fig. 5.12) and sulfur (Fig. 5.13), which gradually reduce the
carbon–nitrogen and carbon–sulfur ratios in decomposing materials.

As plant litter decomposes, the elemental mix changes because of dif-
ferential mobility and biological fixation. Carbon is lost through micro-
bial respiration, as cellulose and other labile organic compounds are
hydrolyzed and utilized in growth and maintenance. Potassium is high-
ly mobile until it encounters exchange sites, where it can become fixed.
Sodium ions, which are more mobile in soils, are not accumulated in
plants but are essential for animals. The “herbivore exclusion hypothe-
sis” (McNaughton, 1976; McNaughton et al., 1998) proposes that plants
discriminate against sodium and thereby limit herbivory. Sodium does
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FIGURE 5.12. Soil nitrogen (N) cycle showing active (1–1.5 years), slow (10–100 years),
and passive (100–1000 years) fractions. Flow diagram for the nitrogen submodel of the
Century model (from Parton et al., 1987, with permission).

accumulate in food chains, often increasing by a factor of 2–3 between
trophic transfers.

The nitrogen content of decomposing litter increases during the ini-
tial stages of decomposition and then declines (Fig. 5.14) (Berg and



Staaf, 1981). Nitrogen is mineralized during decomposition and is
simultaneously immobilized by microbes, resulting in an increase in the
concentration of nitrogen in the litter, and in the absolute amount of
nitrogen if it is transported into the litter from soil or by atmospheric
nitrogen-fixation. As decomposition proceeds, the carbon–nitrogen ratio
declines until the substrate becomes more suitable for microbial action.
In some forests, the period of nitrogen increase may extend for 2 years or
more (Fig. 5.15) (Blair and Crossley, 1988). Phosphorus and sulfur also
show increases in absolute amounts during decomposition of some
species of tree leaf litter (Fig. 5.16) (Blair, 1988a), even though mass is
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being lost. Calcium and magnesium concentrations in decomposing lit-
ter change only slightly through time. There may be an initial decrease
in concentration followed by a slight increase (Blair, 1988b). Thus the
absolute amounts of these elements during decomposition approxi-
mately track the loss of mass (Cromack, 1973). Potassium is not a struc-
tural element, and is lost via solubilization more rapidly than mass is
lost from decomposing leaf litter. Decomposing woody litter, in contrast,
accumulates calcium and phosphorus, evidently as a result of fungal
invasion and translocation from soil.

The nitrogen pool in decomposing litter is a dynamic one. Although
nitrogen is accumulating, there is evidently a large amount of turnover
taking place. When tracer amounts of 15N [as (NH4)2SO4] were added to
leaf litter, significant losses of tracer took place even as total nitrogen
accumulated (Fig. 5.17) (Blair et al., 1992). Nitrogen evidently became
incorporated from exogenous sources, in amounts greater than those
lost through biotic factors. Inputs of nitrogen via rainfall or canopy
throughfall are a potential source of added nitrogen. However, these
would appear to be inadequate to account for the amount of nitrogen
immobilized in litter. Fungal translocation from lower layers (F, H, or
mineral soil) is another possibility. Finally, lateral transport to and from
“hot spots” in the forest floor may contribute to the dilution of tracers.

As noted in Chapter 2, one of the main sources of particulate organic
matter to soils is that from decomposing roots. Researchers have often
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used root-litter bags, and followed dry matter and nutrient loss over 
several months to a few years. Unfortunately, preparation of the root 
tissues for decomposition studies represents a significant departure
from in situ conditions. Dornbush et al. (2002) developed an intact-core
technique that retains natural rhizosphere associations, maintaining 
in situ decay conditions. Cores (15cm long by 5.3cm in diameter) were
taken under monospecific stands of silver maple, maize, and winter
wheat, and covered at the top and bottom with 160-micrometer mesh
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polyethylene caps. The same mesh was used to make litterbags to hold
an amount of roots similar to that in the soil cores. After reinstallation
in the field sites, cores and bags were retrieved seasonally at time inter-
vals up to 1 year and the decay rates compared. After 1 year, mass loss
was 10–23% greater and nitrogen release was 21–29% higher within
intact cores than in litter bags (Fig. 5.18). Dornbush et al. (2002) attrib-
uted a majority of the differences to alterations in litterbag-induced
dynamics of decomposer organisms and unavoidable changes to fine-
root size-class composition (less than or equal to 1mm in diameter) in
the bags.

Nutrient movement through the L, F, and H layers and through min-
eral soil have been studied intensively by both biologists and organic
geochemists. Tracking nutrient movements in soil is difficult because of
nonlinearities of flow due to the existence of preferential flow paths com-
pared to the bulk soil. For example, in a carefully instrumented study 
in a mixed beech and spruce forest in Switzerland, Bundt et al. (2001)
measured organic carbon concentrations from 10–70% higher in the
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preferential flow paths than in the soil matrix. In addition, organic
nitrogen concentrations, effective cation exchange capacity, and the
base saturation were all increased in the preferential flow paths. DNA
concentrations and direct cell counts showed similar patterns, but there
were no changes in domain-specific organisms such as Eukarya or
Archaea. However, Pseudomonas showed increased abundances in the
preferential flow paths, indicating that it responds to increased organic
matter status in this “hot spot” similarly to that in other locations such
as the rhizosphere (Bundt et al., 2001).

Nutrients and organic matter also move through soils in soluble form,
for example as dissolved organic matter (DOM). In general, sorptive
interactions between DOM and mineral phases contribute to the preser-
vation of soluble, or soil, organic matter (SOM). However, the situation
is considerably more complex than this, due to the existence of several
structural events in the soil profile. In a comparison of movement in 
the profiles of seven forest soils, Guggenberger and Kaiser (2003) con-
sidered the location of organic matter (OM) within the soil profile. 
They contrasted the amount and concentrations of OM in soil water
with that on “fresh,” or exposed, mineral surfaces versus that on “natur-
al” soil surfaces that have a considerable amount of microbially derived
biofilms. Based on their study, they produced a conceptual model of 
entities in the soil profile that differ in their biological activity. In 
the soil solution, soil microorganism density is low, OM concentration is
low, and there is little biodegradation of DOM. On the “fresh” mineral
surfaces, there is OM sorption to minerals, including complexation 
of functional groups, changed conformation, incalation in small pores,
and sorptive stabilization. On the “natural” soil surfaces with high
microorganism density, there is OM sorption into biofilms; the sorption
concentrates OM, which appears to be a prerequisite for decomposition
(Fig. 5.19) (Guggenberger and Kaiser, 2003). Research is currently
underway to determine the dynamics of exchange phenomena between
DOM and biofilms. The OM input enhances the heterotrophic activity 
in the biofilm, converting the DOM into either organic compounds 
by resynthesis or inorganic mineralization products. Iron hydrous
oxides embedded within the biofilms may serve both as a sorbent and a
shuttle for dissolved organic compounds from the surrounding aqueous
media.

McDowell (2003) notes that our knowledge of the ecological signifi-
cance of dissolved organic nitrogen relative to that of dissolved organic
carbon is yet in its infancy. We also need more information on how 
fluxes of these dissolved substances are altered in human-dominated
environments. New analytical techniques are being developed to better
quantify dissolved organic compounds in soils and their effects on
microorganisms, particularly saprophytic fungi and mycorrhiza. These
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new approaches are giving us better insights into soil ecosystem 
function, as noted in Chapters 3 and 8.

NUTRIENT CYCLING LINKS IN SOIL SYSTEMS

In addition to the translocation abilities of saprophytic fungi men-
tioned previously, there is a rapidly growing literature on the roles of
ectomycorrhizal and other symbiotic fungi in mobilizing nitrogen and
phosphorus from organic pools (Chalot and Brun, 1998; Bending and
Read, 1996; Northup et al., 1995). This work has extended to the clearly
demonstrated roles of ectomycorrhizal fungi in mineral weathering,
that is, mobilizing inorganic nitrogen as ammonium from the interstices
of feldspar minerals and solubilizing P from volcanic rocks (Landeweert
et al., 2001). As noted in Chapter 4 about the nutrition of oribatid mites,
the fungal matlike structures formed by ectomycorrhizal fungi (e.g.,
Hysterangium, Hydnellum, and Gautieria spp.) at the interface of the
surface humus layer and upper A horizon may cover several square
meters of forest floor. The mineral soil within this concentrated mass of
mycorrhizal hyphae is more strongly weathered than the surrounding
soil as a result of the excretion of oxalic acid by the fungus. Within the
mat, calcium oxalate crystals are abundant and decomposition rates
and nutrient availability are increased relative to the nearby soil (Entry
et al., 1992). The calcium oxalate crystals are a readily available source
of calcium ions for the mites, as was demonstrated elegantly by 
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sorbed to soil surfaces differing in their biological activity (from Guggenberger and Kaiser,
2003).



Cromack et al. (1988). The fact that this inorganic “hot spot” serves as a
possible source of both inorganic and organic nutrients for the microbiv-
orous fauna is further proof of the impressive nutrient feedback loops
operating in soils. For more extensive coverage of nutrient dynamics in
soil profiles over centuries and millennia, see the extensive synthesis of
Richter and Markewitz (2001).

ROLE OF SOIL FAUNA IN ORGANIC MATTER DYNAMICS AND
NUTRIENT TURNOVER

For the last several decades, there has been interest in the role of soil
fauna in litter and organic matter turnover in ecosystems. The pioneer-
ing studies of Darwin (1881) and P. E. Müller (1887) emphasized the
prominent signs left in many temperate forest and grassland communi-
ties by earthworm, mesofauna, and biotic activities in general. A very
prescient account of the “biotic” structure of soils was given by Jacot
(1936). Signs of faunal activity include coating of mineral grains, which
has a significant effect on promoting the formation of aggregates (Kubië-
na, 1938). Termites in semitropical and tropical regions have similar
functions as well (e.g., Lee and Wood, 1971; Wood et al., 1983). Only a
few ecologists are aware, however, that often the soil meso- and micro-
fauna are vastly more numerous—and usually more active in terms of
respiratory activity—than the large soil fauna (Wolters, 1991; Coleman,
1994, 2001).

Our concerns as ecosystem researchers should include both an under-
standing of which organisms are present and the major processes that
they carry out in a wide range of terrestrial ecosystems. Following the
flow of energy and nutrients in the system (as noted by Volobuev, 1964)
will enable us to concentrate on key processes that occur, avoiding the
pitfall of what is obvious to the naked eye being singled out for study. We
must get to the appropriate level of resolution to ascertain the roles of
participants in soil processes (Macfadyen, 1969; Coleman, 1985). This
requires exploring the myriad of surfaces and volumes that occur in a
few cubic millimeters of soil and organic matter (Elliott, 1986; Elliott
and Coleman, 1988).

Fauna are members of the “organism” category in Jenny’s (1941) fac-
tors of soil formation (recall from Chapter 1 [Fig. 1.5]: soil = f (cl, o, r, p,
t), where cl = climate, o = organisms, r = relief, p = parent material, and
t = time). As noted by Crocker (1952), only a few of these factors are inde-
pendent variables, so we are dealing with a multicause, interdependent
subset of a terrestrial ecosystem. To simplify matters, let us consider
organisms alone, that is, vegetation, organic matter inputs therefrom,
andthe array of heterotrophic organisms feeding upon and decomposing
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organic detritus. The factors plus ecosystem processes acting over time
lead to ecosystem properties (Coleman et al., 1983; Elliott, 1994).

The immediate result of faunal feeding activity is the production 
of fecal pellets, some of which can be identified as species- or group-
specific (Kühnelt, 1958; Jongerius, 1964; Zachariae, 1965; Rusek, 1975;
FitzPatrick, 1984; Pawluk, 1987). For example, the fecal pellets of
collembola and oribatid mites are surrounded by a chitin-rich layer
called the “peritrophic membrane” (Krantz, 1978), which acts to retard
the rate at which a fecal pellet disappears (Fig. 5.20). A comprehensive
review (Bal, 1982) of soil fauna activities in soil refers to “zoological
ripening” as faunal movement of organic matter and mineral materials
in previously uncolonized soil. This soil maturation and development
process has been of great significance in Dutch polder regions, and has
been demonstrated in Canadian (Nielson and Hole, 1964) and New
Zealand (Stockdill, 1966) soils as well. These processes are reviewed
extensively in Brussaard and Kooistra (1993).

In addition to physical signs, there are chemical indicators of faunal
presence and activity. For example, in certain cool, moist New Zealand
tussock grassland soils, nearly 10% of the organic phosphorus is com-
prised of phosphonates (carbon–phosphorus [C–P] bonded) (Newman
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FIGURE 5.20. Fecal pellets in the soil profile from the Horseshoe Bend agroecosystem
site, Athens, Georgia, United States, at a depth of 5–10cm (from Larry T. West, personal
communication).



and Tate, 1980; Tate and Newman, 1982), as contrasted with the more
prevalent phosphate esters. Phosphonates are produced by ciliates, and
their subsequent rates of input and flow through the soil phosphorus
cycle remain unknown (Stewart and McKercher, 1982).

Several authors have reviewed work on experimental pedogenesis
(soil formation), examining roles of primary colonizing plants, including
dissolution of rock minerals by lichens and fungi, as well as faunal
impacts on mineral or soil movement, and organic matter transforma-
tion (Hallsworth and Crawford, 1965; Bal, 1982; Landeweert et al.,
2001). Webb (1977) studied the effects of particle size and decompos-
ability of macrofaunal and microfaunal fecal pellets. There are differing
effects of comminution (breaking up) of leaf litter by large and small
fauna and they play different roles in facilitating further leaf litter
decomposition. Webb (1977) noted that fecal pellets of Narceus annu-
laris (Diplopoda: Spirobolidae) had a lower surface-to-mass ratio,
whereas those of microarthropods such as oribatids had a greater sur-
face-to-volume ratio than the original leaf litter. This should lead to
greater decomposition per unit time (Fig. 5.21) (see previous comments
about the peritrophic membrane).

Physical interpretation of organic matter decomposition should be
tempered with careful observation of life-history details, such as likeli-
hood of localized aggregation of mite or collembolan fecal pellets that
may decompose locally at a much slower rate than hypothesized from 
in vitro laboratory studies. Substrate quality plays an important role
here. Dunger (1983) noted that macroarthropods ingest mineral soil
along with litter material. Kilbertus and Vannier (1981) and Touchot 
et al. (1983) demonstrated ingestion of argillic (clay) material by Tomo-
cerus and Folsomia sp. (collembola), a trait that was particularly 
evident when they ingested polyphenol-rich Quercus leaves. This 
detoxification process presumably led to greater decomposition of the
leaf material, with enhanced bacterial growth in the pellets with clay
particles versus those without the clay adsorbent material. The impact
of Collembola is greatest in mor soils, which may have entire layers in
the F or H horizon filled with collembolan fecal pellets (Pawluk, 1987).

Research over the last 8 to 10 years has shown a significant impact of
root-associated organisms on nutrient dynamics of phosphorus and
nitrogen in experimental microcosms. These studies are reviewed in
Coleman et al. (1983) and Anderson et al. (1981a, b). The use of both
microcosm and mesocosm (i.e., field enclosures larger than a square
meter) in soil ecological studies has proliferated in recent years and
greatly increased our understanding of biological effects on nutrient
cycling in soils (Ingham, 1985; Ingham, 1986a, b; Ingham et al., 1989;
Parmelee et al., 1990; Beare et al., 1992; Moore et al., 1996).

In the laboratory, groups of rhizosphere bacteria, fungi, and 
microbivorous nematodes were grown singly or in combination, all with
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FIGURE 5.21. Graphical representation of physical conglomerate feces differentiation
theory (from Webb, 1977). As particle size of litter (right to left) is reduced, surface area
and decomposition increase until constituent particles are small enough to aggregate into
more stable conglomerates (limit to free particle size reduction). Physical conglomerates
increase in size as constituent particle size decreases, but arthropod pellets decrease in
size because of the direct relationship of body size to degree of pulverization and pellet
(conglomerate) size. Micropellets are therefore able to maintain a much smaller conglom-
erate size and break the limit to free particle size reduction (from Webb, 1977).

growing seedlings of the shortgrass prairie grass, Bouteloua gracilis
(blue grama). In all treatments that had the root, microbe and microbial
grazer (Pelodera sp. as bacterial-feeder), and Aphelenchus avenae as
fungal-feeder, there was an enhanced shoot growth and dry-matter
yield, when compared to the plant-alone control (Ingham et al., 1985).

Other work using mesofauna (nematodes) (Ingham et al., 1986a, b)
and macrofauna (isopods) (Anderson et al., 1985) has shown significant
enhancement of nutrient cycling (nitrogenous compounds) in field
experimental situations. Thus an enhanced (20–50%) nutrient return
(mineralization) occurs in the presence of the fauna, compared with
experiments in which they are present in very low numbers, or com-
pletely absent (Anderson et al., 1983). This work was further amplified
by simulation models of detrital food webs, which showed a significant
(about 35%) contribution to mineralization of nitrogen by microfauna
(amoebae and flagellates) and bacterial-feeding nematodes (Hunt et al.,
1987; De Ruiter et al., 1993; Moore et al., 1996). More detailed studies
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using 13C and 15N tracers in microcosms with varying degrees of organic
matter accumulation (“hot spots”) and microbes alone, microbes 
and protozoa, or nematodes and microbes with both faunal groups in
combination (Bonkowski et al., 2000) have revealed similar patterns 
to earlier microcosm studies (e.g., Ingham et al., 1985). Rye grass
seedlings significantly increased in dry matter and nitrogen content,
with protozoa and nematodes and protozoa present (Bonkowski et al.,
2000). Interestingly, the pattern of decomposition of labeled litter close-
ly followed the nitrogen dynamics, with protozoa, and nematodes 
and protozoa, showing significantly more 13CO2-C respiration between
weeks 2 and 4 of the 6-week experiment. This study was conducted con-
comitantly with a detailed analysis of microbial community composi-
tion. Griffiths et al. (1999) found significant selectivity of protozoa for
species of soil bacteria, with a definite preference shown for several 
Gram-positive species.

FAUNAL IMPACTS IN APPLIED ECOLOGY—AGROECOSYSTEMS

There are several areas in the interface between theoretical and
applied ecology where our knowledge of soil physics, chemistry, and biol-
ogy can, and should, be put to good use. One of these is in the area of
agroecosystem studies. The essentials of decomposition and nutrient
dynamics in temperate agroecosystems were reviewed by Andren 
et al. (1990), Hendrix et al. (1992), Coleman et al. (1993), and in Africa by
Vanlauwe et al. (2002).

It is generally acknowledged that zero, or reduced, tillage has sever-
al effects on abiotic and biotic regimes in agroecosystems. Retention of
litter keeps the surface of the soil cooler and moister than in a conven-
tionally tilled plot (Fenster and Peterson, 1979; Phillips and Phillips,
1984), and also leaves more substrate available in the 0–7.5cm depths
for nitrifiers and denitrifiers (Doran, 1980a, b). This abiotic buffering
seems to promote a slower nitrogen cycle, one that continues over 
a longer time span but at a lower rate per unit time (House et al., 
1984; Elliott et al., 1984). Soil invertebrate populations, particularly
microarthropods (Stinner and Crossley, 1980; House et al., 1984), and
earthworms (Parmelee et al., 1990) are enhanced as well (Table 5.5)
(Coleman and Hendrix, 1986). The microarthropods are undoubtedly
responding to increased populations of litter-decomposing fungi, which
tend to concentrate nitrogen by hyphal translocation (Holland and Cole-
man, 1987). In fact, dominant families of fungivorous mites responded
by markedly decreasing in numbers in field mesocosm plots treated with
captan, which brought fungal populations down to about 40% of normal
levels (Mueller et al., 1990).
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A total of 22 agroecosystem components and processes were com-
pared in no-till and conventional tillage in Georgia. In many instances,
there was greater resilience in the no-till system, as shown by greater
invertebrate species richness, greater soil organic matter, and eco-
system nitrogen turnover time (Table 5.6) (House et al., 1984).

These findings were confirmed and extended by Elliott et al. (1984),
who examined dynamics in long-term stubble-mulch and no-till plots on
a silty-loam soil in eastern Colorado that underwent alternate crop and
fallow regimes. These plots had been under cultivation for more than 75
years, and no-till had been an experimental treatment for nearly 20
years. Nitrate accumulated to a greater extent in the fallow than in the
cropped rotation (Table 5.7). Ammonium-N was usually at very low 
levels (about 1.0mg NH4-N per g-1 soil), but on one date the concentration
reached 4.6mg NH4-N per g-1 soil in the top 2.5cm of the no-till plots just
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TABLE 5.5. Numbers and Estimated Biomass of Soil Fauna in Conventional Tillage
(CT) and No Tillage (NT) Agroecosystems at Horseshoe Bend

Numbers ·m-2 mg dry wt ·m-2

CT NT CT NT

Nematodesa

Bacterivores 1836e 909 237 117
Fungivores 227e 500 14 31
Herbivores 945e 1064 93 104

3008 2473 344 252
Microarthropodsb

Mites 41,081e 78,256 118 303
Collembola 6244e 14,684 17 40
Insects 2105 2548 — —

49,430 95,489 135 343
Macroarthropodsc

Ground beetles 7e 33 6 30
Spiders 1e 17 1 14
Others 6e 28 — —

14 78 7 44
Annelidsd

Earthworms 149e 967 3129 20,307
Enchytraeids 1867 520 592 17

2016 1487 3721 20,324

Total 54,468 99,526 4207 20,980

aMeans of samples from June–October 1983; numbers are ¥10-3.
bMeans of samples from May–December 1983.
cMeans of samples from April–June 1983.
dMeans of samples from April 1983.
eFor numbers of organisms, tillage treatments differ significantly at P = 0.05.
From Hendrix et al., 1986.



prior to the highest rate of NO3-N accumulation in the no-till than in the
stubble-mulch treatments. However, it is possible that there was more
mineralization in the stubble-mulch plots earlier in the year before the
first sample date, and this mineralized nitrogen was moved below the
sampling depth (20cm) as NO3-N during a rainfall event. Interactions
between modification of system structure and major nutrient processes
need more study. Certainly soil fauna are sensitive to increased nutrient
inputs from fertilizers and manures, and this needs to be considered in
experimental work (Marshall, 1977; Hendrix et al., 1992).

APPLIED ECOLOGY IN FORESTED ECOSYSTEMS

There are some interesting comparisons and analogies to be drawn
between no-till agriculture and forested ecosystems of the “mor” type,
which have a distinct stratification of L, F, and H layers (Oi, Oe, and Oa
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TABLE 5.6. Comparison of Agroecosystem Components and Associated Agroecosystem
Processes from Conventional Tillage (CT) and No-Tillage (NT) Systems

Component or process CT versus NT

Crop yields NT = CT (except during drought)
Crop biomass Decreasing in both CT and NT
Weed biomass NT > CT
Plant nitrogen dynamics CT > NT (nitrogen flux)
Shoot to root ratios CT > NT
Nitrogen fixation NT > CT (?)
Surface crop and weed residues NT >> CT
Litter decomposition rates CT > NT
Surface litter (%N) NT > CT
Soil total N NT > CT in upper soil layer
Nitrification activity NT > CT in upper soil layer

CT > NT in middle soil layer (?)
Soil organic matter NT > CT
Soil moisture NT > CT
Ground water leaching (nitrate-N) CT > NT (?)
Foliage arthropods CT = NT
Crop herbivory by insects CT > NT
Nitrogen content of crop foliage CT > NT
Arthropods species diversity NT > CT
Soil arthropods (no. of individuals) BT >> CT
Nitrogen contained in arthropods:

soil NT > CT
foliage CT > NT

Ecosystem N turnover time NT > CT
Ecosystem N efficiency NT > CT (?)

From House et al., 1984.
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TABLE 5.7. Faunal Carbon, Microbial Biomass, Mineralized Carbon and Nitrogen,
Nitrogen and Phosphorus Under Stubble Mulch, and No-Till Treatments of the Fallow
Phase of Dryland Wheat Plots

Date

Variable Treatment 8 June 6 Jul 2 Aug 23 Aug 13 Sept

Faunal carbona

Collembola Stubble mulch 6.69 1.03 2.18 0.61 1.49
¥100 No till 5.58 8.29 4.01 1.60 1.49

Acari Stubble mulch 3.77 0.47 0.91 0.40 0.92
¥10 No till 3.60 3.31 1.24 1.32 0.54

Holophagous Stubble mulch 0.88 0.46 1.12 0.51 0.56
nematodes
¥10 No till 0.48 1.69 0.96 0.57 0.32

Protozoa Stubble mulch 1.76 0.67 0.74 1.96 1.92
¥1 No till 2.20 0.96 0.93 2.29 1.92

Microbial biomassb

Carbon Stubble mulch 245 204 271 186 255
No till 329 273 299 194 256

Nitrogen Stubble mulch 81 57 53 60 56
No till 92 72 49 62 48

Phosphorus Stubble mulch 5.7 7.5 10.1 4.6 7.2
No till 5.5 6.8 10.1 4.9 7.1

Mineralized C and Nc

Respired C Stubble mulch 52 77 57 42 68
(0–10 days) No till 97 110 98 41 67

Respired C Stubble mulch 49 42 56 53 24
(10–20 days) No till 80 69 84 57 24

Mineralizable N Stubble mulch 10.63 6.39 5.79 2.62 1.95
(0–20 days) No till 12.68 5.79 8.90 -3.3 -1.38

N and Pd

NH+

4-N Stubble mulch 3.1 1.0 2.0 1.8 0.8
No till 4.0 1.8 4.6 1.2 1.4

NO-
3-N Stubble mulch 7.2 10.6 16.3 17.8 16.1

No till 7.8 23.8 21.6 45.1 46.2

aSoil fauna biomass C (kg C ha-1 to 10cm) for four categories. (Note differences in the
multiplier for each category.)

bMicrobial biomass C, N, and P (kg element ha-1 to 10cm).
cMineralizable C (CO2-C) and NO3-N as kg ha-1 to 10cm in unchloroformed 0–10 or

10–20 day incubations of soils sampled from the field.
dNH4-N, NO3-N and extractable inorganic and organic P amounts (kg ha-1) in the top

10cm of soil.
From Elliott et al., 1984.



in the U.S. terminology). It is generally recognized that abundance of
fungi and fungivorous arthropods is greater in these soils than in soils
with a less-pronounced litter layer (Kühnelt, 1976; Wallwork, 1976;
Pawluk, 1987; Blair et al., 1992). However, it is important to determine
the amount of activity occurring in these surface layers as well. Ingham
et al. (1989) and Coleman et al. (1990) have shown significantly greater
fungal biomass and microarthropod biomass in L, F, and H layers under
Pinus contorta (lodgepole pine), compared with mountain meadow.
There was also a greater amount of fungal activity, as demonstrated by
FDA-positive fungal hyphae (Söderström, 1977; Ingham and Klein,
1982). This forest experience is corroborated by Verhoef and De Goede
(1985), who noted greater activity of Collembola in pine forests in 
Holland, contrasted with habitats which had a thin or nonexistent 
litter layer.

Because energy flow is fundamental to the function of decomposer
organisms and ecosystems, energetics could provide some fundamental
constraints on soil carbon dynamics (Currie, 2003). Often, carbon is 
considered as a surrogate for energy in studies of detrital decay and 
carbon turnover in soils. By testing relationships between carbon 
and energy across samples of forest detritus above- and belowground,
across decay stages, and between a deciduous and coniferous forest 
at the Harvard Forest in the United States, Currie (2003) found that
energy and carbon concentrations were closely related (within 10%), as
were ratios of heterotrophic energy dissipation to carbon mineralization
across types of detritus (within 16%). These relationships should be
borne in mind when we explore the energetics of detrital food webs, in
Chapter 6.

Other areas of interest in applied soil ecology include revegetation 
of mine spoils. Extensive studies in the United Kingdom, Germany, 
and elsewhere have been made of decomposition ecology and of 
microbial parameters in strip-mined coal lands (Bentham et al., 
1992). Intentional manipulations (especially introductions) of earth-
worm populations have been used to enhance productivity of crop 
and pasture lands (Lee, 1995) and to speed organic waste decom-
position via vermicomposting (Edwards, 2004), as discussed in 
Chapter 4.

Several researchers (Tisdall and Oades, 1982; Rothwell, 1984; 
Jastrow and Miller, 1991; Jastrow et al., 1998) have investigated the
roles of saprophytic and VAM fungi in stabilizing macroaggregates.
Rothwell (1984) suggests that there is a biochemical coupling reaction
between glucosamines in the hyphal walls of the fungus with phenolic
compounds released during lignin degradation from leaf and root tis-
sues. An additional possibility, little investigated yet, is the apparently
widespread occurrence of interspecific physical linkages that enable
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transfers of nutrients via mycorrhizae of various annual and perennial
plants (Chiariello et al., 1982; Read et al., 1985; Read, 1991). Physical,
chemical, and biological contacts may be operating simultaneously in
mycorrhizal-mediated interactions. Recall the comments about the role
of glomalin in promoting aggregate stability in soils as noted by Wright
et al. (1999) in Chapter 2.

Some of the latter examples may seem a bit removed from the gener-
al theme: the role of soil fauna in soil processes. However, it is apparent
from studies by Warnock et al. (1982), Moore et al. (1985), and Curl and
Truelove (1986) that soil mesofauna, for example, Collembola, show con-
siderable preference for, and have an impact on AM fungal growth, just
as they do for saprophytic fungi (Newell, 1984a, b) and plant pathogen-
ic fungi (Lartey et al., 1994). This impact undoubtedly extends to nema-
todes (Ingham et al., 1985) and soil amoebae as well (Chakraborty and 
Warcup, 1983; Chakraborty et al., 1983; Gupta and Germida, 1988;
Gupta and Yeates, 1997).

SUMMARY

The major lesson to be learned for soil ecologists is one of paying
attention to details yet considering them in a holistic perspective. Cer-
tainly we are past the time when measurement of the “soil biomass”
(referring to the microbial biomass) alone, by whatever method, is 
considered adequate (Coleman, 1994a). Small groups of organisms, 
perhaps highly aggregated within the ecosystem, may be facilitating 
(or retarding) turnover of other organisms, or of major nutrients such as
nitrogen, phosphorus, and sulfur. In fact, as Darwin observed more than
a century ago, these seemingly small biological processes operating over
long time periods and large spatial scales can make profound changes in
the world around us, including the formation of soil.

Decomposition rates, along with nutrient dynamics, soil respiration,
and formation of soil structure, are integrating variables. They are gen-
eralized measurements of the functional properties of ecosystems, and
they summarize the combined actions of soil microflora, fauna, abiotic
variables, and resource quality factors. Litter breakdown rates can be
compared using simple first-order models, so that rate variations
between ecosystems or between different substrates may be compared.
Litter breakdown rates are easily measured using bagged leaf litter
(“litterbags”). Decomposition per se is due to microbial activities, but
experiments show that fauna have a strong influence on litter break-
down rates, especially for more resistant substrates. The interaction
between microflora and fauna is especially important for nutrient
cycling mechanisms. Organic matter dynamics are strongly influenced
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by soil fauna. Termites and earthworms are well known for their influ-
ences on nutrient dynamics, soil organic matter, and soil structure. 
But the entire soil fauna is involved in these processes and, through
their interactions with soil microbes, must be considered in a holistic
perspective.
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6

Soil Food Webs: 

Detritivory and

Microbivory in Soils

INTRODUCTION

The traditional studies of food webs and food chains began with pio-
neering efforts of Summerhayes and Elton (1923), in Spitsbergen, 
Norway. This early study explicitly linked detrital biotic interactions
with other parts of the terrestrial and aquatic food web (Fig. 6.1). Work
on detrital food webs progressed slowly for the next 20 years, although
Bornebusch (1930) carried out some pioneering studies of detrital food
webs and their energetics. Further insights were gained from the stud-
ies of Lindeman (1942), who developed the concept of trophic levels.

Building on the soil ecology studies funded by the U.S. Atomic Ener-
gy Commission in the late 1950s (Auerbach, 1958) and into the early
1960s, soil ecologists recognized a clear need for a more holistic study of
energetics and interactions of organisms in ecosystems. This led to the
ambitious effort known as the International Biological Program (IBP).
The overall intent was to bring working groups together, addressing
how carbon and energy flow in a wide range of terrestrial and aquatic
ecosystems, with the ultimate goal being a better understanding of how
ecosystems work and could be manipulated for the benefit of mankind
(Blair, 1977). The main findings of the IBP were that for a wide range of
grassland, desert, and forested ecosystems, the net flow into the above-
ground grazing (consumer) component is only 5% or less, with the
remainder entering the detrital-decomposer food web (Coleman et al.,
1976). This research led to several post-IBP studies in North America
and Europe to follow up on the initial results.

In the late 1970s and 1980s, a series of investigations of detrital food
webs were carried out in the semiarid and arid grasslands and desert
lands of Colorado and New Mexico (Coleman et al., 1977; Coleman et al.,
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1983; Parker et al., 1984; Whitford et al., 1983; Hunt et al., 1987; Moore
et al., 1988) (Fig. 6.2). These studies and several in the Netherlands
(Brussaard et al., 1990; De Ruiter et al., 1993; Moore and De Ruiter,
2000), Sweden (Persson, 1980; Bååth et al., 1981, Andrén et al., 1990),
and the United Kingdom (Anderson et al., 1985) found that
microbial–faunal interactions have significant impacts on nutrient
cycles of the major nutrients, namely nitrogen, phosphorus, and sulfur
(Gupta and Germida, 1989). Some of these studies used assemblages of a
few species in microcosms but were beginning to delineate the mecha-
nisms that are important in soil systems in general. Among the fauna,
the protozoa were often overlooked, despite the findings by Cutler et al.
(1923) that there are important predator–prey interactions between pro-
tozoa and bacteria in soils. Clarholm (1985) noted that soil protozoa are
avid microbivores and turn over an average of 10–12 times in a growing
season, in contrast to many other members of the soil biota, which may
turn over only once or twice in an approximately 120- to 140-day grow-
ing, or activity, season. These findings were further extended (Kuikman
et al., 1990) with the observation that nitrogen uptake by plants may
increase from 9 to 17% when large inocula of protozoa are present. The
demographics and microbial–faunal interactions provide much of the
driving force in the models of nitrogen turnover in semiarid grasslands
(Hunt et al., 1987) and arable lands (Moore and de Ruiter, 1991, 2000).

Recent studies have noted the more complex nature of food webs
when detrital components are included (Polis, 1991; Hall and Raffaelli,
1993; Scheu and Setälä, 2002). DeAngelis (1992), in his treatise on
nutrient cycling, devoted an entire chapter to nutrient interactions of
detritus and decomposers. His ideas have provided insights into decom-
position–nutrient cycling processes. This chapter addresses several
aspects of soil biota and nutrient cycling in soils, namely demography
and “hot spots” of activity, which are often overlooked in energetics 
studies of soil systems. These factors are crucial to understanding how
organisms and soils interact, and contribute to ecosystem function.

PHYSIOLOGICAL ECOLOGY OF SOIL ORGANISMS

Given the physiological ecology of the microbes and fauna involved,
are long food chains energetically possible? There are several theoreti-
cal reasons why long food chains could be expected. Let us take, as an
example, the energetically most dominant interactions between
microbes and fauna, which occur in many terrestrial ecosystems, sum-
marized by Hunt et al. (1987) (Fig. 6.2). The flow of organic carbon or
nitrogen moves from initial organic substrates (labile or resistant) to the
primary decomposer, either bacteria or fungi, and then on into micro-
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bivorous microfauna (flagellates and amoebae) or microbivorous meso-
fauna (feeding on fungi) and, in turn, to omnivorous or predaceous
nematodes, and on to nematode feeding mites and predaceous mites.
Further predation upon the mites by ants (E. O. Wilson, personal com-
munication) or lithobiomorph Chilopods (centipedes) is possible,
although not explicitly represented by Hunt et al. (1987). There are at
least eight links in the bacterial-based detrital food chain, with consid-
erable evidence of omnivory. For example, many fungivorous mites
require a nematode “supplement” to complete their life cycles (Walter 
et al., 1991). Note that Figure 6.2 is a rather ecosystem-specific diagram.
One could draw another for decomposition in a coniferous or oak/beech
forest, with a significant proportion of the total decomposition being
mediated by ectotrophic mycorrhizae, operating perhaps in competition
with the saprophytic fungi (Gadgil and Gadgil, 1975).

For desert and estuarine food webs, reviewed by Hall and Raffaelli
(1993), the detrital food chain length noted previously is comparable to
the average length of five to seven links (Polis, 1991), with maximal
recorded of eight. In contrast, Hairston and Hairston (1993) assert that
the usual food chain length in detrital systems seldom exceeds three. As
noted later in this chapter, these long chain-lengths of five to seven links
are not only feasible, but also thermodynamically possible at several
times and in several locations in the soil matrix, particularly the rhizo-
sphere and other “hot spots” of activity.

What levels of taxonomic resolution are both most useful and appro-
priate for detrital food web studies? Our inability to sort out the details
of microbial taxonomy in situ (see Furlong et al., 2002, and other refer-
ences in Chapter 3 for insight into molecular probing techniques in
agroecosystems) and limited knowledge of many of the soil inverte-
brates, particularly the immature stages (Behan-Pelletier and Bissett,
1993), requires use of rather coarse functional groups for taxonomy of
the soil biota. Interestingly, this sort of separation enabled Wardle and
Yeates (1993) to identify competition and predation forces operative in
an assemblage of detritus–microbial–nematode trophic groups in an
agricultural field. Using a correlation analysis, they noted that predato-
ry nematodes reflected most closely the changes in primary production,
and the microbivorous nematodes seemed to be more dependent on 
substrate quality in the microbial (bacterial and fungal) community.

ENERGY AVAILABLE FOR DETRITAL FOOD CHAINS AND WEBS

If one considers the variance (i.e., range around the mean values,), of
the assimilation and production efficiencies of the biota (Table 6.1), the
amount of energy that will move from primary decomposers all the way
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up the food chain can be calculated. There is indeed energy to spare for
such elaborate food chains. Using the maximal values for production
efficiency, such as that for bacteria of 70% (Payne, 1970) and 80% for 
soil amoebae and flagellates (Humphreys, 1979), and moving on to 
protozoan-consuming nematodes (Fig. 6.3) (which doubtless occurs in
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TABLE 6.1. Physiological Data on Major Biotic Groups in Soil

Fraction of food Production–
assimilated assimilation ratio

Trophic Group max X
—

min max X
—

min

Bacteria ? 1.0 <0.01? 0.7 0.4 <0.01?
Saprophytic Fungi 1.0 0.7 0.4

Arbuscular Mycorrhiza (AM) ? 0.8? 0.4

Amoebae 0.95 0.8 0.4

Flagellates 0.95 0.8 0.4

Nematodes Phytophagous 0.25 0.5? 0.37

Nematodes Fungivorous 0.38 0.5? 0.37

Nematodes Bacterivorous 0.6 0.5? 0.37

Nematodes Omnivorous/ 0.55 0.5? 0.37
Predaceous

Mites Fungivorous (r) 0.5 0.5? 0.35

Mites Fungivorous (k) 0.5 0.5? 0.35

Mites Nematophagous 0.9 0.5? 0.35

Mites Predaceous 0.6 0.5? 0.35

Collembola 0.5 0.5? 0.35

Enchytraeids 0.28 0.4

Earthworms 0.2 0.45

Termites 0.4? 0.15?

r = rapid growth strategy
k = slow growth strategy
Modified from Humphreys, 1979; Hunt et al., 1987; Payne, 1970; de Ruiter et al.,
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certain “hot spots,” e.g., at the zone of elongation of a growing root), then
there is an adequate amount of carbon available for passage through the
four- and five-membered detrital food chains of interest. Considerable
omnivory is prevalent in these soil systems (DeAngelis, 1992). The pro-
tozoa and nematode feeding pathway highlighted in Figure 6.3 (Hunt 
et al., 1987) accounted for 37% of the total nitrogen mineralization and
some 82% of the total mineralization resulting from soil fauna. Similar
percentages were obtained for a wide range of agroecosystems in the
United States and Europe (de Ruiter et al., 1993; Moore and de Ruiter,
2000).

The relative contributions of the soil fauna to microbial turnover and
nutrient mineralization are directly related to the demographics of the
soil biota (Coleman et al., 1983, 1993), as noted for average standing
crops and energetic parameters and turnover times per year for
microorganisms, micro-, meso-, and macro-fauna in a grassland and a
no-tillage agroecosystem (Coleman et al., 1993) (Table 6.2). Thus the
protozoa, and naked amoebae in particular, turn over 10 or more times
per season, and consume several times their mass of living microbial tis-
sues. The microbes and several other faunal groups have much lower
turnover rates, on average. Although the amoebae are considered to 
be primarily bacterial feeders, there are important instances when
other amoebal species will feed on protoplasm in fungal hyphae, or even
on the fungal spores themselves (Chakraborty and Warcup, 1983;
Chakraborty et al., 1983). When considered in combination with the
information in Table 6.1 on the range of assimilation and production effi-
ciencies, the impacts of these small organisms are very marked. It
should be noted that extensive studies in Sweden on arable lands
(Andrén et al., 1990) have reached similar conclusions. The increasing
miniaturization of sensors, so that one can carry out microcalorimetry
(Battley, 1987) at localized microsites, will enable us to measure direct
energetic transformations more readily in situ.

The practical implications of soil food webs in agroecosystems have
been of interest to researchers in several countries, notably the Nether-
lands, Sweden, and the United States. In a major synthesis of several
research papers (some of which are cited earlier in this chapter), Bloem
et al. (1997) calculated the impact of microbivorous invertebrate fauna
in agroecosystems. Using a combination of experimental results and
simulation modeling runs, they calculated that in fields that had
greater additions of organic matter, including manure, average nitrogen
mineralization was 30% higher than in fields that did not have such
organic matter additions. This reflected the activities of protozoa 
and nematodes, which were 64% and 22% higher numbers, respectively,
in the fields with organic additions. Nitrogen mineralization was 
performed mainly by the bacteria, which dominated in these fields, but
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TABLE 6.2. Average Standing Crop and Energetic Parameters for Microorganisms, Mesofauna, and Earthworms in a Lucerne Ley and Georgia
No-Tillage Agroecosystema

Naked Microbivorous
amoebae Flagellates Ciliates Bacteria Fungi nematodes Collembola Mites Enchytraeids Earthworms

Typical size 30mm 10mm 80mm 0.5–1¥ Ø 2.5mm Ø ~40mm Ø 5000mm Ø 1000mm Ø 1000mm Ø 5000mm
in soil 1–2mm 1.0–5.5mm

Mode of living In water Free–swimming On Free In water Free Free Free Free in soil
films on in water films surfaces and on films, free,
surfaces surfaces and on

surfaces

Biomass 95% 5% <1% 500–750c 700–2700d 1.5–4e 0.2–0.5e 2–8e 1–8e 25–50e

(kg dw ha-1)
50b

% active 0–100 15–30 2–10 0–100 80–100 80–100 ? 0–100

Estimated 10 2–3 0.75 2–4 2–3 2–3 ? 3
turnover times,
season-1

No. of bacteria 3–8 0.6–1 20–2000
division-1 ¥ 10-3

Minimum 2–4 0.5 4–8 120 720 720 170 720
generation
time in soil 
(hours)

aModified from Clarholm (1985), Hendrix et al. (1987), and Beare et al. (1992). Reprinted with permission from Coleman et al. (1993). Copyright Lewis
Publishers, an imprint of CRC Press, Boca Raton, Florida.

bMPN technique.
cDirect counts plus size class estimations.
dDirect estimation of total hyphal length and diameter.
eExtractions and sorting.

�
�

�



the nitrogen mineralization was increased by protozoa by 30%, on a
growing season average. Interestingly, the protozoa did not enhance
carbon mineralization, because their impacts, as were those of the
nematodes, were by direct grazing upon and lysing the bacterial cells
(Bloem et al., 1997).

ARENAS OF INTEREST

Soils are best considered as the extremely heterogeneous entities
they are. This requires that we “let the soil work for us” (Elliott and Cole-
man, 1988), and stratify, in a statistical sense, the regions of the soil that
are “hot spots” of activity. These zones include the rhizosphere, aggre-
gates, litter and organic detritus, and the “drilosphere,” which is that
portion of the soil volume influenced by secretions of earthworms
(Bouché, 1975) (Fig. 6.4). Each region is a relatively small subset of the
total soil volume, but may contain a preponderance of numbers, and
more importantly, activity of the soil biota (Beare et al., 1995). Examples
include: The 5–7% of the total soil that was root-influenced or rhizo-
sphere in extensive pot trials of Ingham et al. (1985) contained a major-
ity (greater than 70%) of the bacterial- and fungal-feeding nematodes.
Ingham et al. (1985) also measured higher biomasses of rhizosphere
bacteria in microcosms with large numbers of microbivorous nematodes
(greater than 4000 per gram of rhizosphere soil) than in microcosms
without these nematodes. Yet the extent of mineralization of nitrogen in
the microcosms with nematodes reflected that they were ingesting large
quantities of microbes as well. Thus there was a net enhancement of
microbial production, in a fashion similar to that measured by Porter
(1975), who found a net stimulation of phytoplankton growth after the
cells had undergone transit through the guts of Daphnia sp. in fresh-
water incubations. As an example of the dynamic nature of shifting “hot
spots,” Griffiths and Caul (1993) found that more nematodes were active
in the rhizosphere, and they moved readily to new concentrations of
fresh organic matter (leaf litter) in short-term trials. Other examples of
“hot spots” that have shown enhanced microbial activity include the
drilosphere and worm castings, which show enhanced carbon and nitro-
gen (Syers et al., 1979a; Daniel and Anderson, 1992) and phosphorus
mineralization (Syers et al., 1979b; Lavelle et al., 1992). Lumbricus ter-
restris “middens” (small patches of plant litter and casts gathered
around the burrow entrance) in experimental field sites in Ohio were
found to be functionally different, with enhanced acetate incorporation
and microbial cell synthesis, compared with surrounding non-earth-
worm–influenced soil (Bohlen et al., 2002). Another center of activity is
the aggregatusphere (Fig. 6.4), or region of micro- and macroaggregates
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(Elliott, 1986; Elliott and Coleman, 1988; Beare et al., 1995; Six et al.,
1999). This zone of influence is less well studied and is a major source of
some of the dynamic yet highly patchy behavior found in soils. Foster
(1985) and Foster and Dormaar (1991) have demonstrated, using elec-
tron microscopy (Fig. 3.3), amoebal pseudopodia extending into very
small pore-necks and pores (only a few tenths of micrometers in diame-
ter) in well-structured soil, attacking bacterial colonies which seemed to
be inaccessible to the smallest nematodes and amoebae or other proto-
zoa. A study using a combined approach to rhizosphere and soil cracks
for locations of “hot spots” of labile organic matter was used by van
Noordwijk et al. (1993) to good effect.

A HIERARCHICAL APPROACH TO ORGANISMS IN SOILS

Because of the need to deal with soil heterogeneity in space and time,
arenas of interest, noted in the previous section, are represented in 
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Figure 6.4 (Beare et al., 1995) showing the volumes and biotic groups of
concern. The aggregatusphere shows bacteria, amoebae, and some
nematodes, having varying degrees of success in gaining access to the
prey biota of interest (Vargas and Hattori, 1986). Moving up to a coarser
level of resolution, to the rhizosphere, a few millimeters or less in scale
one sees the microbes and fauna associated with them, and the consid-
erable feeding and activity which has been documented numerous
times. The activities are strongly influenced by abiotic, i.e., wetting and
drying events, and the intrusion of new organic substances from grow-
ing root tips (Cheng et al., 1993; Kuzyakov, 2002), or deposited feces
from microarthropods, enchytraeids, or other mesofauna. The next level
of resolution expands from many centimeters to several meters across
the landscape, when any of the macrofauna such as earthworms or bur-
rowing beetles come into play. There is then a qualitative shift, brought
about by the ingestion of soil, which includes considerable amounts of
micro- and mesobiota, that is, protozoa and nematodes (Yeates, 1981;
Piearce and Phillips, 1980) as food. Interestingly, even with earth-
worms, the drilosphere sensu stricto is only 2–3 millimeters in thickness
(Bouché, 1975) but the burrow extends laterally for many centimeters or
meters through the soil. As a consequence of this activity, there can be
major short-term decreases in viability of the existing biota, but possi-
bly longer-term stimulation by enhanced microbial activity, as noted
previously, and also from the considerable input of mucopolysaccharide-
containing mucus (Marinissen and Dexter, 1990).

An additional aspect of altered species makeup of bacteria in earth-
worm-influenced soils has been explored using molecular probing tech-
niques. Using 16S rRNA probes and “libraries” of soil bacteria at the
Horseshoe Bend site in Athens, GA, Furlong et al. (2002) and Singleton
et al. (2002) found enhanced percentage occurrences of Actinobacteria,
Firmicutes, and gamma-Proteobacteria in castings of Lumbricus rubel-
lus, an epigeic earthworm.

In addition, considerable amounts of ammonia and urea, as nitroge-
nous end-products of metabolism, may be voided either externally
through nephridiopores, or internally into the gut cavities of earthworm
genera that have that mode of nitrogen excretion (Lavelle et al., 1992).
In tropical regions, certain endogeic earthworms will process and as-
similate end-products of the breakdown (from 2 to 9%) of soil organic
matter in a wide range of ecosystems (Lavelle and Martin, 1992).

Similar sorts of activities may be catalyzed by certain termites, par-
ticularly those in the advanced family Termitidae, which are truly
geophagous. These geophages utilize soil organic matter, deriving sig-
nificant amounts of nutrition from this low-quality substrate by pro-
cessing the organic matter in a high-pH chemical milieu in the region
between the midgut and the first proctodaeal segment (see the Isoptera
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section in Chapter 4) (Bignell, 1984; Bignell et al., 2000). The additional
influence of microbial enzymes on insect digestive processes and,
indeed, enhancement of nitrogen fixation in downed branches and logs
(Martin, 1984) are well known. Finally, the impacts of ant and termite
nests are significant, and certainly have an influence at the landscape
scale. The impacts of the macrofauna, sometimes termed “ecosystem
engineers” (Jones et al., 1994), can extend for many meters beyond the
immediate zones that they occupy. It has been contrasted with the
impacts of smaller fauna, with smaller fauna more influential in energy
flow and immediate nutrient recycling, noted previously, versus the
longer-term effect of the “engineering” by the macrofauna (Scheu and
Setälä, 2002) (Fig. 6.5). Scheu and Setälä (2002) and Wardle (2002) note
that “trophic cascades,” the term denoting the effects of predation on the
biomass of organisms at least two trophic levels removed, occur in soil
systems. Although developed principally for systems with living net pri-
mary production as the energy base, there are numerous examples in
soil systems, particularly ones dominated by fungi. Scheu and Setälä
(2002) comment on the limited number of studies of trophic cascades in
soil systems to date, and that the fungal-based energy channel may be
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much more prone to trophic cascades than the bacterial-based channel.
This assertion is certainly a candidate for further experiments in the
future.

Conceptualizations of detrital food webs are undergoing a consider-
able shift early in the third millennium. Following up on earlier ideas of
Wardle (1995) and Lavelle et al. (1999), Pokarzhevskii et al. (2003) note
that a definite nested element exists such that different compartments
feed into others. For example, the bacteria–algae–protozoa compart-
ment is nested inside a fungi–microarthropod compartment, and this in
turn is contained within an earthworm–rhizosphere compartment. 
Animals at higher levels consume communities of the lower levels as a
whole (Pokarzhevskii et al., 2003) (Fig. 6.6). This arises from the depen-
dence of all animals on microorganisms for their supply of proteins and
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scarce minerals. The concept of “ecological stoichiometry,” which con-
cerns the roles of interactions between several major nutrients such as
nitrogen, phosphorus, and/or sulfur, has been discussed at length by
Sterner and Elser (2002). Much of Pokarzhevskii et al.’s (2003) paper
discusses the need to consider the effects of limiting nutrients, which
may be in shorter supply than the carbon or energy that characterize the
outlook of many of the previously developed detrital food webs.

FUTURE RESEARCH PROSPECTS

It is becoming more and more imperative to bring small working
groups, or teams of investigators, together to make further progress in
food web studies. The real breakthroughs are certain to come from
efforts that include the more transitional fauna between above- and
belowground such as ants, dipteran larvae, and ground beetles, or cryp-
tozoans such as the isopods, centipedes, and millipedes, linking them to
the truly belowground fauna and microbes.

Various techniques noted in several papers in this volume should be
extended as well. Stable isotopes, introduced in an initially enriched
substrate such as labeled glucose or acetate, will be useful in delineating
food webs. The effective use of carbon-13 and nitrogen-15 (15N) was
reviewed extensively by Scheu (2002). An innovative use of 15N tagging
in a microcosm study detected significant predation on springtails by 
an ectomycorrhizal fungus, Laccaria bicolor (Klironomos and Hart,
2001). The ectomycorrhizal fungus immobilized the animals before
infecting them. Springtails (Folsomia candida), alive or already dead
and labeled with 15N, were added to the microcosms containing mycor-
rhizal or nonmycorrhizal Pinus strobus plants. Only the fungus and not
the roots made contact with the animals. Amounts of nitrogen were
determined in plant tissues and extraradical fungal hyphae over a 2-
month period. Up to 25% of plant nitrogen was derived from springtails
when they were in the presence of L. bicolor. At the end of the experi-
ment, less than 10% of the number of animals were present compared to
at the start. Using the same system, growing Pinus strobus seedlings
with a different ectomycorrhizal fungus, Klironomos and Hart (2001)
measured less than 5% of plant nitrogen acquired from the springtails.
This experiment demonstrates a much greater range of possible 
interactions between mycorrhiza and fungal-grazing animals, and is 
yet another example of the tight linkages existing in forest nutrient
cycling.

Opportunities for use of radiotracer carbon-14 (14C) must also be kept
in mind. For example, Kisselle et al. (2001), Garrett et al. (2001), Fu et
al. (2001), and Coleman et al. (2002) described the detrital food web and
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its dynamics in an agroecosystem as a function of the impacts of above-
ground experimentally induced herbivory. They measured increased
microbial biomass production in no-tillage treatments that experienced
moderate levels of aboveground herbivory (grasshoppers grazing on
corn leaves). This was transmitted up the food chain to bacterial-feeding
nematodes, with significantly more 14C activity being taken up in the
low grazing-intensity treatments, similar to the findings of Holland and
Cheng (1996) (Fig. 6.7). Another notable finding was the higher 14C
activity in microarthropods extracted from rhizospheres of weed plants,
compared to that of corn (Fig. 6.8). Garrett et al. (2001) suggest that
weed rhizospheres may be more important than crop rhizospheres in
supporting soil food webs. This might be expected, because crop plants
are selected to maximize their aboveground net primary production
(NPP), unlike weeds. If this pattern is general, weeds may be a signifi-
cant factor for the protection of soil biodiversity, especially in conven-
tionally tilled agroecosystems. The linkages between above- and
belowground food webs is an exciting new topic for the first decade of the
21st century (Hooper et al., 2000; Wolters et al., 2000).

Hall and Raffaelli (1993) suggest two major areas of food web
research that would be most beneficial to follow: (1) focusing on commu-
nity assembly and (2) documenting the strength of trophic interactions
between elements in webs. Examining the latter objective, Neutel et al.
(2002) studied interaction strengths organized in trophic loops (defined
as the product of interaction strengths in a food web). Using seven docu-
mented soil food webs, Neutel et al. (2002) introduced the term “loop
weight,” which is the geometric mean of the absolute values of the inter-
action strengths in the loop (Fig. 6.9). This enables one to compare loops
of different lengths and to use the maximum of all loop weights as an
indicator for matrix stability. They used the conservative figure of 0.1 for
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trophic transfer efficiencies, from one trophic level to another. They
innovatively compared the community matrix, including the patterned
interaction strengths (“real matrices”) with several randomizations of
this matrix (“randomized matrices”). This was done by randomly
exchanging predator–prey pairs of interaction strengths, keeping these
pairs intact and preserving the sign structure of the matrix. Stability
was measured as the minimum degree of relative intraspecific inter-
action needed for matrix stability (s). Matrices with a smaller s value
were considered “more stable.”

Loop weights of the longer loops were low in the real matrix and tend-
ed to be heavier in the randomized matrices than the shorter loops [Fig.
6.9(a), 6.9(b)]. Interestingly—although absolute values of effects of
predators on their prey are generally two orders of magnitude larger
than effects of prey on their predators, as shown in the randomized
matrices—in the real matrices the long loops with many top-down
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effects had a relatively low weight. This revealed that not all top-down
effects were equal. With the maximum loop weight in the real matrix
being markedly lower, the real matrix was much more stable [Fig.
6.9(c)]. Neutel et al. (2002) explored the ramifications of omnivory. For a
three-species omnivorous interaction (Fig. 6.10), the omnivore feeds on
two prey types, which are at different trophic levels. Assuming that it
feeds according to prey abundance, and that the biomass of the prey on
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the lower trophic level is significantly larger than that of the prey on the
higher trophic level, then the omnivore feeds largely on the lowest
trophic level. Consequently, it exerts a relatively large top-down effect
on its lowest prey and relatively small top-down effect on its higher prey,
because the top-down effect is the feeding rate per unit of predator bio-
mass. This approach was extended further to a wide range of published
food webs, and their findings held true even for aboveground-oriented
food webs.

In a seminal review paper, Moore et al. (2003) noted that predators
within the rhizosphere alter the interactions between microbes and
plants in two contrasting but probably equally important ways. Preda-
tors regulate their prey in a traditional “top-down” fashion but in doing
so, they alter the release of nutrients that may limit plant productivity
and thereby affect plant growth in a “bottom-up” fashion as well. They
note that the interdependence between the aboveground and below-
ground realms can be explained in terms of the patterning of trophic
interactions within the rhizosphere and the influence of these interac-
tions on the supply of nutrients and rates of nutrient uptake by plants.

We suggest that a useful approach will include a melding of the two
objectives named earlier, in terms of documenting the extent of soil food
webs, the relative impacts of the trophic interactions at the various hier-
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archical levels of organization, and the location in the landscape (Cole-
man and Schoute, 1993; Hooper et al., 2000). For example, does the soil
system in the absence of earthworm or termite activity operate at more
or less of a background or maintenance level? When the macrofauna
move through the soil matrix, literally consuming and chaotically
reassembling it, does this represent a more intensive level of activity?
Certainly it is at a different level of resolution, but one dependent upon
the myriad interactions of the microbes and the micro- and mesofauna.

SUMMARY

There is an interesting convergence occurring in aboveground and
belowground portions of detrital food webs. In both locations, particu-
larly in arid habitats (i.e., in deserts), the food webs are long (7–8 mem-
bered) and show extensive amounts of omnivory. By including members
of the microfauna (protozoa) and mesofauna (microbivorous nematodes)
that have been overlooked often in the past, there are ample amounts of
food, because secondary production passes up the food chains. Produc-
tion efficiencies may reach or exceed 70%, and trophic transfer efficien-
cies may exceed 20% in various “hot spots” such as rhizospheres,
drilospheres, or in any other concentrations of reduced, labile, organic
matter. The diversity of nutrient retention and recycling strategies in
soil systems continues to increase as more innovative experiments are
carried out using a variety of isotopic tracer techniques.
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7
Soil Biodiversity and

Linkages to Soil Processes

INTRODUCTION

Interest in soils as reservoirs of biodiversity has increased in the last
several years. It is important to define biodiversity, which is an inclusive
concept. Biodiversity encompasses a wide range of functional attributes
in ecosystems in addition to being concerned with the numbers of
species present in a given ecosystem. Within terrestrial ecosystems,
soils may contain some of the last great “unknowns” of many of the biota.
This includes such relatively well-studied fauna as ants (Hölldobler and
Wilson, 1990), as well as the more numerous and less studied meso-
fauna, such as microarthropods (Behan-Pelletier and Newton, 1999)
and nematodes (Ettema and Yeates, 2003), that interact with elements
of the microbiota, such as mycorrhiza, in several ways, including mutu-
alistic ones (Wall and Moore, 1999). Much has been learned in the last
decade about prokaryotic genetic diversity in soils; see the review by
Hugenholtz et al. (1998).

BIODIVERSITY IN SOILS AND ITS IMPACTS ON TERRESTRIAL
ECOSYSTEM FUNCTION

There is increasing concern among biologists in the fates of the very
diverse array of organisms in all ecosystems of the world. What do we
know of the full species richness, particularly in soils, to make even edu-
cated guesses about the total extent of the organisms, or how many of
them may be in an endangered status (Hawksworth, 1991a, 2001; 
Coleman et al., 1994b; Coleman, 2001)? Soil biodiversity is best consid-
ered by focusing on the groups of soil organisms that play major roles 
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in ecosystem functioning. Spheres of influence of soil biota are recog-
nized; these include the root biota, the shredders of organic matter, and
the soil bioturbators. These organisms influence or control ecosystem
processes and have further influence via their interactions with key soil
biota (e.g., plants) (Coleman, 2001; Wardle, 2002). Some organisms,
such as the fungus and litter-consuming microarthropods, are very spe-
ciose. For example, there are up to 170 species in one Order of mites, the
Oribatida, in the forest floor of one watershed in western North Caroli-
na. Hansen (2000) measured increased species richness of Oribatids as
she experimentally increased litter species richness in experimental
enclosures from one to two, four, and finally seven species of deciduous
tree litter. This was attributed to the greater physical and chemical
diversity of available microhabitats, which is in accord with the mecha-
nisms suggested earlier by Anderson (1975).

Only 30–35% of the Oribatids in North America have been adequate-
ly described (Behan-Pelletier and Bissett, 1993), despite many studies
carried out over the last 20–30 years. The studies suggest that there
may be more than 100,000 undescribed species of oribatid mites yet 
to be discovered. Particularly in many tropical regions, Oribatids 
and other small arthropods are very little known in both soil and tree
canopy environments (Behan-Pelletier and Newton, 1999; Nadkarni 
et al., 2002). This difficulty is compounded by our very poor knowledge of
identities of the immature stages of soil fauna, particularly the Acari
and Diptera. Solution of this problem may require considerable applica-
tion of molecular techniques to more effectively work with all life stages
of the soil fauna (Behan-Pelletier and Newton, 1999; Coleman, 1994a;
Freckman, 1994). We concur with Behan-Pelletier and Bissett (1993):
“Advances in systematics and ecology must progress in tandem: sys-
tematics providing both the basis and predictions for ecological studies,
and ecology providing information on community structure and expla-
nations for recent evolution and adaptation.” Chapin et al. (2000) note
that 12% of birds and nearly 20% of mammals are considered threat-
ened with extinction, and that from 5 to 10% of fish and plants are simi-
larly threatened. With many of the soil invertebrates yet undescribed, 
it is impossible to affix a numerical value to losses of these members of
the biota.

There are currently 70,000 species of fungi described (Table 7.1). By
assuming that a constant ratio of species of fungi exists to those plant
species already known, Hawksworth (1991b, 2001) calculated that
there may be a total of 1.5 million species of fungi described when this
mammoth classification task is completed.

Indeed, it may be possible to gain insights into biotic functions below-
ground by considering a “universal” set of functions for soil and sedi-
ment biota that include the following: degradation of organic matter,
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cycling of nutrients, sequestration of carbon, production and consump-
tion of trace gases, and degradation of water, air, and soil pollutants
(Groffman and Bohlen, 1999).

What are the consequences of biodiversity? Does the massive array of
hundreds of thousands of fungi and probably millions of bacterial
species make sense in any ecological or evolutionary context? As was
noted in Chapter 3 on microbes, the numbers of bacterial species are
greatly underestimated because most investigations have relied on cul-
turing isolates and examining them microscopically. There have been
two key developments in studies of microbial diversity. First, the use of
signature DNA sequences has greatly increased the numbers of identi-
fied taxa, with hundreds of novel DNA sequences being identified year-
ly. Two bacterial divisions, which appear to be abundant and ubiquitous
in soils but have very few cultured representatives, are Acidobacterium
and Verrucomicrobium (Hugenholtz et al., 1998). Second, we have only
recently come to an appreciation of the incredibly wide distribution of
prokaryotes (both Archaea—methanogens, extreme halophiles living in
hypersaline environments, and hyperthermophiles living in volcanic
hot springs and mid-sea oceanic hot-water vents—and Bacteria) world-
wide. Prokaryotes constitute two of the three principal domains, or col-
lections of all organisms, with Eucarya consisting of protists, fungi,
plants, and animals (Fig. 7.1) (Pace, 1999; Coleman, 2001). The total
numbers of bacteria on earth in all habitats is truly mind-boggling: 
4–6 ·1030 cells, or 350–550 petagrams (1015 g) of carbon (Whitman et al.,
1998). The amount of the total bacteria calculated to exist in soils is
approximately 2.6 ·1029 cells, or about 5% of the total on earth. A major-
ity of bacteria exist in oceanic and terrestrial subsurfaces, especially in
the deep mantle regions, extending several kilometers below the earth’s
surface. Some of these organisms, which are the most substrate-starved
on earth, may have turnover times of centuries to millennia (Whitman
et al., 1998).
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TABLE 7.1. Comparison of the Numbers of Known and Estimated Total Species Globally
of Selected Groups or Organisms

Group Known species Estimated total species Percentage known

Vascular plants 220,000 270,000 81
Bryophyes 17,000 25,000 68
Algae 40,000 60,000 67
Fungi 69,000 1,500,000 5
Bacteria 3,000 30,000 10
Viruses 5,000 130,000 4

From Hawksworth, 1991.
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What is the implication of the apparent “excess” of species diversity of
soil microflora, where many species exist at a very low frequency and in
an inactive state? If considerable species richness and accompanying
large genetic pools are maintained in soils, what are the impacts on the



evolution of new taxa? What are the implications for ecosystem function
if this degree of redundancy exists; does it imply that some of the organ-
isms are somehow vestigial remnants or relics of bygone conditions
(Coleman et al., 1994b)? What are the functional roles of such hidden or
apparently cryptic organisms? Are they performing some essential but
unknown functions, perhaps at microsites that we don’t observe or work
with? One approach that may show promise is the use of reporter genes
linked to gene promoters; this technique is used to measure in situ the
activity of specific enzymes related to defined processes (Wilson et al.,
1994). We need to link specific methods such as those noted here 
with soil thin-section studies, such as those of Tippkoetter et al. (1986),
Postma and Altemueller (1990), and Foster (1994). Such means will
enable the inclusion of spatial dimensions to soil ecological studies;
addition of a temporal one provides the much-needed aspect of time as
well. Soils are rife with historical signs and legacies, as has been made
evident by studies using radiotracers, and stable isotope studies (Stout
et al., 1981; Nadelhoffer et al., 1985; Gaudinski et al., 2000).

What are the linkages between biodiversity and ecosystem function?
It should be possible to look for natural “experiments” such as regions
with low species richness, e.g., on an island, versus sites at similar lati-
tudes that are on continents, where one can measure key ecosystem
processes such as rates of decomposition or nutrient cycling. Under such
conditions, all of the major abiotic factors are held reasonably similar,
allowing study of the impacts of species richness of key indicator
microflora or fauna on ecosystem processes of interest. Such experi-
ments are certainly performable, and might yield some surprising
results.

Studies of the interactions of climate change and biological diversity
have been reviewed by Vitousek (1994) and, in a modeling context, by
Smith et al. (1998). By using species–area curves from island biogeogra-
phy it is possible to estimate the fraction of species whose loss is
entrained by loss of habitat (land use change), even without knowing
how many species exist (Wilson, 1992, cited in Vitousek, 1994). Unfor-
tunately, there is little information available on soil organisms to 
conduct such a comparative study.

More than 20 studies of the empirical evidence of relationships
between ecosystem processes and different components of plant diver-
sity (species richness, functional richness, and functional composition)
were followed in natural and synthetically assembled groups of grass-
land species worldwide (Diaz and Cabido, 2001). The linkage was 
found to be neither simple nor universal, but some significant trends
were noted. The range and more particularly the values of functional 
traits carried by plants (e.g., whether they are nitrogen-fixing, warm-
season grasses or rosette forbs) are generally strong drivers of eco-
system processes. These studies combined simplified microcosms and

Biodiversity in Soils and Its Impacts on Terrestrial Ecosystem Function 251



natural field sites, so extrapolation from them is limited (Table 7.2).
However, it is noteworthy that most of the studies showed that species
richness and functional composition had positive effects on above-
ground biomass.

Numbers of species aboveground and belowground may be correlated
when taxa in both habitats respond similarly to the same or correlated
environmental driving variables, in particular across large gradients of
disturbance, climate, soil conditions, or geographic area. Differentiat-
ing between simple correlation and causation may be problematic, how-
ever. High diversity in plant species can result in high diversity of litter
quality or types of litter entering the belowground system. This resource
heterogeneity can lead to a greater diversity of decomposers and detriti-
vores (Hooper et al., 2000). In contrast, a high diversity of resources and
species in soil could feed back to a high diversity aboveground, where
certain species or functional groups are closely linked to groups below-
ground. A useful example of this was noted by van der Heijden et al.
(1998), who found a positive correlation between the diversity of
endomycorrhizal species and plant diversity, perhaps because different
species of fungi infect different species of plants to different degrees,
although alternative explanations have been offered for these patterns
(Wardle et al., 1999). Interestingly, Hartnett and Wilson (1999) and
Smith et al. (1999), working in a Kansas tallgrass prairie, showed that
mycorrhiza promoted obligately mycorrhizal C4 grasses, resulting in
competitive exclusion of facultatively mycorrhizal C3 species, reducing
overall plant species diversity. A similar mechanism seems to operate in
tropical rainforests, in which ectomycorrhizal (ECM) tree species com-
petitively exclude arbuscular mycorrhizal (AM) species (Connell and
Lowman, 1989, cited in Wardle, 2002). It should be noted that at the
level of functional types of mycorrhiza, this pattern does not hold: low-
diversity AM can be associated with high diversity of plants, and high-
diversity ECM communities can be associated with low diversity of
plants (Allen et al., 1995).

In an extensive experiment carried out under field conditions,
Porazinska et al. (2003) tested aboveground–belowground diversity
relationships in a naturally developed tallgrass prairie ecosystem by
comparing soil biota and soil processes occurring in homogeneous and
heterogeneous plant combinations of C3 and C4 photosynthetic path-
ways. Some bacterial and nematode groups were affected by plant 
characteristics specific to a given plant species, but no uniform patterns
emerged. Interestingly, invasive and native plants were quite similar
with respect to the measured soil variables (e.g., phospholipid fatty
acids, protozoa, and nematode functional groups). Contrast these
results with those of Belnap and Evans (2001) given toward the end 
of Chapter 8.

Text continued on page 259
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TABLE 7.2. Empirical Evidence of Relations between Ecosystem Processes and Different Components of Plant Diversitya

Positive effects reportedc

Functional
Experimental Ecosystem Species Functional Functional types

Ecosystem setup processesb richness richness composition (sensu lato)

Synthetic assemblages

Serpentine Plant mixtures N retention in ecosystem NA No Yes Bunchgrasses N-fixers, 
grassland, planted in the Aboveground biomass NA No Yes early and late-season
United States field Inorganic N pools in soil NA Yes Yes annual forbs

Savannah grassland, Plant mixtures Aboveground biomass, No Yes Yes C3 grasses, C4 grasses,
United States planted in the light penetration, and legumes, forbs, and

field plant % and total N woody plants

Mesic grassland, Plant mixtures No. of invading species No NA Yes Perennial grasses and
United Kingdom planted in the and total biomass of forbs

field invasives

Grasslands, Plant mixtures Total aboveground Yes Yes Yes Grasses, legumes, herbs
Germany, planted in the biomass
Portugal, field
Switzerland,
Greece, Ireland,
Sweden, UK

Annual grassland, Plant mixtures No. of invasives from soil No No Yes Annual grasses, annual 
France planted in the seed bank and survival legumes, and annual

field of seedlings of the exotic Asteraceae
and annual forbs Coniza
bonariensis and C.
canadensis

Acid grassland, Plant mixtures Decomposition of Yes No No Grasses, legumes, and
United Kingdom planted in the standard material herbs

field Decomposition of litter No No Yes
mixtures



TABLE 7.2. Continued.

Positive effects reportedc

Functional
Experimental Ecosystem Species Functional Functional types

Ecosystem setup processesb richness richness composition (sensu lato)

Grassland on old Plant mixtures No. of leafhoppers No No Yes Grasses, legumes, land
fields, Switzerland planted in the (Cicadellidae) forbs
and Sweden field No. of wingless aphids No Yes Yes

(Aphididae)
No. of hymenopteran No No No

parasitoids
No. of grasshoppers No No No

(acrididae) and slugs
(Gastropoda)

No. of carabid beetles No No Yes
(Carabidae) and spiders
(Araneae)

Calcareous grassland Plant mixtures Preference by volesd Yes No Yes Grasses, legumes, and
on old field, planted in the Earthworm biomassd Yes Yes No forbs
Switzerland field Plant aboveground Yes Yes Yes

biomass, soil microbial
biomass, LAI, plant light
absorbance per unit
ground area

Mesofauna feeding activity No No No
Decomposition of No No Yes

standard material
Soil moisture No No Yes

Grassland, Greece Plant mixtures Total aboveground Yes NA Yese Annuals and perennial
planted in the biomass grasses, geophytes,
field and legumes



Serpentine Plant mixtures Aboveground biomass of No Yes Yes Annual grasses, 
grassland, United planted in the invasive forb Centaurea perennial grasses
States field solstitialis

Impact of invader on Yes Yes Yes Bunchgrasses, early-
aboveground biomass of season and late-
resident species and season annual forbs
whole-system
evapotranspiration

Grasslands on old Plant mixtures Total aboveground Yes NA Yes Grasses, forbs, and
fields, Czech planted in the biomass legumes
Republic, the field Suppression of natural Yes NA Yes
Netherlands, colonizers
United Kingdom,
Sweden, and Spain

Grassland, United Plant mixtures Aboveground biomass Yes NA Yes C3 grasses, C4 grasses,
States planted in N retention No NA Yes legumes, and forbs

greenhouse
microcosms

Annual grassland, Plant mixtures Invasibility (establishment No No Yes Grasses, legumes, and
France in greenhouse of the forb Echium rosette dicots

microcosms plantagineum)

Prairie grassland, Plant mixtures Above- and belowground Yes Yes Yes Grasses, legumes, and
United States in greenhouse biomass, light forbs

microcosms transmission, and water
retention in soil

Decomposition of No No Yes
standard material

Prairie grassland, Plant mixtures Resistance to invasion Yes NA Yes C3 grasses, C4 grasses, 
United States planted in the (total biomass of invasive) legumes, and forbs 

field and in
greenhouse
microcosms



TABLE 7.2. Continued.

Positive effects reportedc

Functional
Experimental Ecosystem Species Functional Functional types

Ecosystem setup processesb richness richness composition (sensu lato)

Grassland-crop site, Litterbags placed Decomposition rate of, rate No NA Yes Grasses, weedy forbs, 
New Zealand in the field of N release from, and forbs from grasslands,

active microbial biomass and trees
on litter

Grasslands, United Litterbags placed Soil microbial biomass Nof NA Yes Dominant species in
Kingdom in indoor soil intensively managed 

microcosms fertile grasslands, 
or traditionally 
managed unfertilized 
grasslands

Manipulation of natural communities

Grassland, Argentina Mostly perennial Aboveground net primary No No Yes Cool-season graminoids,
grassland in production warm-season grasses, 
neighboring cool-season and
paddocks under warm-season forbs
different 
grazing regimes

Boreal forest, Sweden Vegetation on Aboveground biomass, No NA Yes Early versus late
islands of litter decomposition, N successional species
different area, mineralization, and 
subjected to humus accumulation
different
frequencies of
wildfires



Savannah Vegetation along Resistance to compositional Nog NAg Yesg Not explicit, 
grasslands, India a productivity, change across communities

diversity, and communities dominated by the 
disturbance Resistance to species Yesg NA No grasses Cymbopogon
gradient, with turnover across flexuosus or
different communities Aristida setacea
burning and Resistance to compositional Nog NA No
grazing change and to species
experimental turnover within
treatments communities

Calcareous Contrasting Resistance of total No NA Yes Communities
grasslands, United grassland aboveground biomass and dominated by
Kingdom subjected to species compositions fast-growing early

temperature successional species or
and precipitation by slow-growing,
manipulations stress-tolerant
in the field perennial grasses 

and sedges

Mediterranean Sites naturally Aboveground biomass Yes NA Yes Cistus sp., other shrubs, 
shrublands, Greece differing in and herbs

species diversity
and growth-form
composition

Sand-prairie Experimental No. of individuals and NA Yes Yes C3 graminoids, C4

grassland, United removal from cover of invaders graminoids, and forbs
States natural Light transmittance NA Yes Yes

communities on through canopy
old fields Soil moisture, soil NA No Yes

extractable N, and
aboveground biomass



TABLE 7.2. Continued.

Positive effects reportedc

Functional
Experimental Ecosystem Species Functional Functional types

Ecosystem setup processesb richness richness composition (sensu lato)

Dairy  grasslands, Grasslands Stability of biomass No NA Yes C3 or C4 species
New Zealand differing in production after extreme

climate and events
seasonal
vegetation,
subjected to
experimental
extreme
temperature and
rainfall events

Sand-prairie Old-field Total aboveground biomass NA No Yes C3 graminoids, C4

grassland, United communities graminoids, and forbs
States subjected to Community drought NA No Yes

removal of resistance
different
functional types

From Diaz and Cabido, 2001.
aOnly studies assessing the impact of at least two components of plant diversity on ecosystem processes, and published in 1995 or later, were

considered. Comparisons are qualitative and should be taken with caution, because unless a study explicitly has a test for species richness,
functional richness, and functional composition in its design, it might lead to underestimation or misrepresentation of different components of
diversity. Field studies differ markedly among themselves and with synthetic assemblages studies in approach, design, and intervening factors
and thus strict comparison is not possible.

bAbbreviations: LAI, leaf area index; N, nitrogen.
cIn the case of species and functional richness, only positive effects were considered: No, either no effect or a negative effect. In the case of

functional composition: Yes, any significant (positive or negative) effect; NA, not assessed.
dSpecies: vole, Arvicola terrestris; earthworms, Octolasion synaeum, Nicodrilus longus, Allolobophora rosea, A. chloroitica, Lumbricus

terrestris, and L. castaneum.
eSpecies richness effect obvious only when annuals were included in analysis.
f Effect of increasing litter diversity on soil microbial biomass was not unidirectional: two- and four-species litter treatments decreased it,

whereas five- and six-species treatments increased it.
gShannon Diversity Index.



HETEROGENEITY OF CARBON SUBSTRATES AND EFFECTS ON
SOIL BIODIVERSITY

A step-by-step process for the ways in which increased heterogeneity
of carbon (C) substrates from aboveground will positively influence
belowground diversity is as follows (Fig. 7.2) (Hooper et al., 2000): (1)
diversity of primary producers leads to diversity of C inputs below-
ground, (2) C resource heterogeneity leads to diversity of herbivores and
detritivores, and (3) diversity of detritivores or belowground herbivores
leads to diversity of organisms at higher trophic levels in belowground
food webs. The critical point is the nature and extent of trophic interac-
tions (Hooper et al., 2000). There are three general categories of interac-
tions by which organisms in one compartment can affect biodiversity in
another one: (1) obligate, selective interactions (one-to-one linkage),
through mutualism for example; (2) one-to-many species linkages, via
keystones and dominants; and (3) causal richness, or many-to-many
linkages. The nature and extent of these interactions varies a great deal
depending on the systems studied and the spatial scales at which the
mechanisms are being considered.

There is a strong interaction between ecosystem function, organismal
abundance and diversity, and the nature of humus forms in soil. Ponge
(2003) compared more than 20 ecosystem attributes, and the nature of
the processes and organisms occurring in mull, moder, and mor soils
(Table 7.3) (Ponge, 2003). The table is a useful means of comparing
many soil attributes across a broad range of physical, chemical, and bio-
logical traits. It shows a marked gradient from high (mull) to low (mor)
biodiversity and rapid to slow and very slow rates of humification. Not
surprisingly, a key determinant of litter decomposability, phenolic con-
tent, varied inversely across the same sequence of three humus types.
Of course, we have yet to see how well these generalizations hold up
when including a detailed analysis of the microbial communities in 
all three humus types.

Studies of biodiversity should include assessments of the nature and
extent of anthropogenic disturbance. In a recent multistate and
provincewide study of snail distributions and diversity in 443 sites,
anthropogenic disturbance was found to be a major factor in decreases
in species richness in forested (“duff ”) versus grassland (“turf ”) sites.
This indicates that the conservation of faunas in the former will require
protection of the soil surface architecture (Nekola, 2003).

IMPACTS OF SPECIES RICHNESS ON ECOSYSTEM FUNCTION

Recent studies of Wall and colleagues in the McMurdo Dry Valleys of
Antarctica may offer some insights into the impacts of species richness.
The dry valley ecosystems contain only three species of nematode: one
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FIGURE 7.2. Steps in the hypothesis that increased heterogeneity of carbon (C) sub-
strates from aboveground organisms will positively influence belowground diversity. This
mechanism postulates strong bottom-up control of diversity in belowground communities;
it should be tested in the context of other potential (e.g., top-down) controls (Hunter and
Price, 1992). Step 1. Diversity of primary producers leads to diversity of C inputs below-
ground. Step 2. Carbon resource heterogeneity leads to diversity of herbivores and detri-
tivores. (Alternative Step 2. Carbon resource quality, rather than heterogeneity, leads 
to diversity of detritivores.) Step 3. Diversity of detritivores or belowground herbivores
leads to diversity of organisms at higher trophic levels in belowground food webs. (From
Hooper et al., 2000; see paper for more details of the complex interactions involved in
aboveground and belowground diversity.)

bacterial feeder, one microbial feeder, and one omnivore-predator that
are present in very low numbers (2–5per kg-1 soil) (Wall and Virginia,
1999). These systems have very low precipitation (the equivalent of
about 10 centimeters of rainfall per year), and make the usually harsh
climate of the Chihuahuan desert of New Mexico seem like an oasis,
with 7 plant parasites, 10 genera of microbivores, 2 omnivore genera,



TABLE 7.3. Main Biological Features of the Three Main Humus Forms

Mull Moder Mor

Ecosystems Grasslands, deciduous Deciduous and coniferous Heathlands, coniferous
woodlands with rich woodlands with poor woodlands, sphagnum
herb layer, Mediterranean herb-layer bogs, alpine meadows
scrublands

Biodiversity High Medium Low
Productivity High Medium Low
Litter horizons OL, OF OL, OF, OH OL, OM
Soil type Brown soils Grey-brown podzolic soils Podzols
Phenolic content of litter Poor medium High
Humification Rapid Slow Very slow
Humified organic matter Organo-mineral aggregates with Holorganic faecal pellets Slow oxidation of plant debris

clay-humus complexes
Exchange sites Mineral Organic (rich) Organic (Poor)
Mineral weathering High Medium Poor
Mineral buffer type Carbonate range Silicate range Iron/aluminum range
Impact of fire Low (except in Mediterranean Medium High

ecosystems)
Regeneration of trees Easy (Permanent) Poor (cyclic processes) None (fire needed)
Dominant mycorrhizal types VA-mycorrhizae Ectomycorrhizae Ericoid and arbutoid 

mycorrhizae
Mycorrhizal partners Zygomycetes Basidiomycetes Ascomycetes
Nitrogen forms Protein, ammonium, nitrate Protein, ammonium Protein
Nutrient availability to plants Direct (through absorbing hairs) Indirect (through extramatrical Poor

mycelium)
Nutrient use efficiency Low Medium High
Fauna Megafauna, macrofauna, Macrofauna (poor), mesofauna Mesofauna (poor), microfauna 

mesofauna, microfauna (rich), microfauna (poor)
Faunal group dominant in biomass Earthworms Enchytraeids None
Microbial group dominant in biomass Bacteria Fungi None
Affinites with polluted condition Low Medium High

From Ponge, 2003.
Abbreviations: OF, fermentation layer; OH, humifaction layer; OL, litter layer, OM, matted organic matter just above the mineral soil, VA,

vesicular-arbuscular (endo)mycorrhizae.



and 3 genera of predators (Fig. 7.3) (Wall and Virginia, 1999). The latter
system contains numerous vascular plants, with considerable organic
inputs both above- and belowground. In the McMurdo Dry Valleys, the
sources of organic matter are restricted to allochthonous inputs from
algae in nearby lakes or streams, or small amounts of indigenous soil
algae and cyanobacteria. Although depauperate in species, their dis-
tributions spatially are markedly different, and highly correlated with
differences in tolerances to desiccation and salinity, with the omnivore-
predator and bacterivore being more water-requiring, concentrating in
stream beds, and the microbivorous (bacteria and yeast spp.) endemic
species Scottnema lindsayae restricted to the drier uplands (Treonis 
et al., 1999). Although complicated in terms of life-history details, the
fact that the number of species is so small makes it seem likely that a
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FIGURE 7.3. Complexity of soil nematode food webs in a hot desert (Chihuahuan, 
Jornada Long-Term Ecological Research [LTER], New Mexico) with 22 nematode genera,
and a cold desert (Taylor Valley, McMurdo LTER in Antarctica) with three genera. For the
nematodes, the height of the boxes illustrates the number of genera. The Antarctic Dry
Valley has one species of a microbivore, Scottnema lindsayae, that feeds on bacteria and
yeast; one bacterivore, Plectus antarcticus, that feeds on bacteria; and an omnivore-
predator, Eudorylaimus antarcticus, that probably feeds on algal cells, bacteria, yeast,
fungi, nematodes, and other small fauna (from Wall and Virginia, 1999).



fuller understanding of microbial and faunal interactions related to
diversities is possible.

The role of redundant species and the functional roles played by them
are crucial to understanding the interplays between biodiversity and
ecosystem function. Without detailed knowledge of the biology of species
involved, it can be difficult to decide how many functional types are pre-
sent in a system or determine the functional roles of individual species
(Bolger, 2001). Pathogen protection benefits of arbuscular mycorrhizas
may be as significant as the nutritional benefits to many plants growing
in temperate ecosystems (Newsham et al., 1995, cited in Bolger, 2001).

MODELS, MICROCOSMS, AND SOIL BIODIVERSITY

Hunt and Wall (2002) modeled the effects of loss of soil biodiversity,
viewed from a functional group perspective, on ecosystem function.
They constructed a model for carbon and nitrogen transfers among
plants, functional groups of microbes, and fauna. They used 15 func-
tional groups of microbes and soil fauna: bacteria; saprophytic and 
mycorrhizal fungi; root-feeding, bacteria-feeding, fungal-feeding,
omnivorous, and predaceous nematodes; flagellates and amoebae;
collembola; r- and k-selected fungal-feeding mites; and nematophagous
and predaceous mites (see Fig. 6.2) (Hunt et al., 1987). The 15 function-
al groups were deleted one at a time and the model was run to steady
state. Only 6 of the 15 deletions led to as much as a 15% change in abun-
dance of a remaining group, and only deletions of bacteria and sapro-
phytic fungi led to extinctions of other groups. By this analysis, no single
faunal group had a significant effect on subsequent ecosystem behavior.
However, the authors caution that, despite numerous compensatory
mechanisms that occurred, it is premature to assume that the system is
inherently stable even with the loss of several faunal groups. In fact,
earlier analyses of similar food webs by Moore et al. (1993) and Moore
and De Ruiter (2000) showed that loss of top predators had much
greater impacts on lower trophic levels than their low biomasses might
indicate.

Another approach to biodiversity and its linkages to soil processes is
by use of experimental microcosms. Building on results of earlier 
studies of Setälä et al. (1997), Liiri et al. (2002) established microcosms
with litter, humus, and mineral layers, and controlled access from the
outside soil allowed by using either 45-micrometer or 1-millimeter mesh
screens on the side of the microcosms. The microcosms were then 
half-buried to the top of the mesh in the side of the funnel, and then the
upper portion left open to provide light for the pine seedling in the micro-
cosm (Fig. 7.4) (Liiri et al., 2002). Microcosms were watered at regular
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intervals, or alternatively run through drought cycles, and leachates
drawn off from the collecting bottle underneath to analyze for inorganic
nitrogen and organic carbon in them. The experiment was run for 152
weeks, or nearly 3 years. The authors followed microbial community
composition using phospholipid fatty acid analysis (PLFA) and BIOLOG
to differentiate between bacteria and fungi, and sampled periodically
for nematodes, enchytraeids, and microarthropods. They varied pH
regimes by applying wood ash to some microcosms and not to others.
They observed significant decreases in microarthropod numbers in the
first year, followed by gradual increases in numbers of organisms with
small body sizes. Enchytraeid numbers followed similar patterns.
Nematodes had ready access to all microcosms, and were quite numer-
ous, ranging from 67 to 191g soil-1 in the controls, and from 98 to 
545g-1 soil in the ash-treated microcosms. The ash had significant
effects on the microbial community makeup inside, but not in the soil
outside the microcosms. The main effects on pine seedling growth and
nutrient dynamics were governed by the abiotic factors of pH and avail-
ability of water. These seemed to govern the overall dynamics, in spite of
the functional complexity of the soil biota. It would be most instructive
to see this experimental design repeated in other habitats and biomes to
ascertain the generality of the findings. In addition, it would be useful to
compare the fauna at least to the family or genus level to see if finer-
grained responses to the experimental manipulations occurred during
this nearly 3-year-long experiment.

In an extensive comparison of seven food webs of native and agricul-
tural soils, de Ruiter et al. (1998) modeled energetics and stability, eval-
uating the roles of various groups of organisms and their interactions in
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energy flow and community stability. They measured feeding rates,
interaction strengths, and impacts of the interactions on food web 
stability arranged according to trophic position in seven belowground
food webs: one from Central Plains, Colorado, in the United States; two
tillage manipulations at Lovinkhoeve in the Netherlands; two tillage
manipulations at Horseshoe Bend, Athens, Georgia; and no fertilizer
and fertilizer additions at Kjettslinge in southern Sweden. De Ruiter 
et al. (1998) found that only a fraction of the species manipulations had
a strong effect on food web structure. Also there was an absence of cor-
relation between the impacts on stability and feeding rates, meaning
that interactions representing a relatively low rate of flow of materials
can have a large impact on stability, and interactions having a high rate
of material flow can have a small impact. Thus the higher-level predato-
ry mites and nematodes had an impact far out of proportion to their bio-
mass, and the contrary was true of the high biomass organisms, namely
bacteria and fungi. De Ruiter et al. (1998) urge that future research be
focused on the energetic properties of the organisms forming the basis of
the patterning of interaction strengths. This is a big order, and one that
will require innovative experiments under both laboratory and field
conditions. The stakes are high, however, because these studies should
help to provide further insights into the nature of biodiversity and
ecosystem function.

EXPERIMENTAL ADDITIONS AND DELETIONS IN SOIL
BIODIVERSITY STUDIES

Additional studies of biotic roles of soil fauna and bacteria and fungi
have been approached in two ways. One approach is by gamma irradiat-
ing sieved soils and inoculating them with suspensions of full-strength,
102, 104, and 106 dilutions of soil organisms (Griffiths et al., 2001). The
other approach subjects unsterile soils to chloroform fumigation and
incubation (Griffiths et al., 2000), and tracks the subsequent changes in
functional variables such as ammonium, nitrate, soil respiration, etc., in
relation to microbial biomass and diversity, as measured by DNA pat-
terns on denaturing gel electrophoresis (DGGE). Results were divergent
in the two studies, with the chloroform fumigation simplification of com-
munity biomass and species diversity having a direct impact on the
functional stability, as measured by the physiological response vari-
ables. In contrast, although there were progressive declines in biodiver-
sity of the soil microbial and protozoan populations, there were no
consistent changes in functional parameters. Some functions showed no
trend (thymidine and leucine incorporation, nitrate accumulation, 
respiratory growth response), some a gradual increase with increas-
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ing dilution (substrate induced respiration), some declined only at the
highest dilution treatment (short-term respiration from added grass,
potential nitrification rate, and community level physiological profile),
while others varied even more idiosyncratically. At no stage were any of
the physiological functions eliminated completely. The final commen-
tary on this by Griffiths et al. (2001) is that within any realistic sort of
range of changes in biodiversity to be experienced by soils, there will be
no direct effect on any soil functional parameters measured. Other
authors, for example, Wardle et al. (1999) suggested that it is possible to
overcome selective species effects by (1) measuring the effects of all
species in monoculture and (2) by species removal experiments. Neither
of these approaches is feasible with current technology, so this problem
awaits the attention of a future generation of soil ecologists.

Another approach to microcosm studies was taken by the large group
working in the Ecotron controlled-environment facility at Silwood Park
in the United Kingdom. Constructing analogs of a temperate, acid,
sheep-grazed grassland in northern Britain, Bradford et al. (2002)
established terrestrial microcosms of graded complexity, with soil,
plant, and microorganisms, and then assemblages of microfauna, micro-
and mesofauna, and then micro-, meso-, and macrofauna. This func-
tional group approach provided a range of metabolic rates, generation
times, population densities, and food size. The microcosms were main-
tained in the Ecotron for a period of 8.5 months. Bradford et al. (2002)
found significant increases in decomposition rate in the most complex
faunal treatment, but both mycorrhizal colonization and root biomass
were less abundant in the macrofauna treatments. Interestingly, plant
growth was not enhanced in these treatments, despite higher nutrient
(nitrogen and phosphorus) availability. Contrary to initial hypotheses,
neither aboveground net primary production (NPP) (plant biomass) nor
net ecosystem production (net CO2 uptake) were enhanced in the most
complex microcosms. Bradford et al. suggested that respiration was
most likely buffered by the combined stimulatory effect of both meso-
fauna and macrofauna on microbes (see Chapters 4 and 5), which served
to maintain microbial activity at a level equivalent to that in the micro-
fauna and mesofauna communities. This study has served as a bench-
mark in large-scale microcosm studies, but as Bradford et al. (2002)
note, it is not a substitute of longer-term in situ field studies, as difficult
to conduct and interpret as they may be.

PROBLEMS OF CONCERN IN SOIL BIODIVERSITY STUDIES

An alternative to the functional approaches just discussed is taken by
André et al. (2002), who note that most investigators use inadequate
sampling designs or sample too shallowly in the soil profile to get a 
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complete sample of microarthropods to provide the information used in
the models noted previously. In an extensive survey of the worldwide lit-
erature on microarthropods, they claim that, on average, at most 10% of
the soil microarthropod populations have been explored and 10% of the
species described, due to the use of inefficient extraction procedures.
This is supported by Walter and Proctor (2000), who suggest that per-
haps only 5% of the species of mites worldwide are described so far.
André et al. (2002) make the very valid point that ecologists need to be
aware of the numerous pitfalls and possible flaws inherent in many
extraction procedures; that is, none of them are 100% efficient. In the
section on field studies and laboratory analyses, we explore some of
these concerns more extensively.

There is an understandable concern that some quantifiable relation-
ship be given to the relationship between ecosystem function and diver-
sity. This is portrayed in Figure 7.5 (Bengtsson, 1998), which contrasts
two curves of ecosystem function as a function of increasing numbers of
species. Type 1, a continually ascending curve, represents the hypothe-
sis that all species are important for ecosystem function. Type 2, initial-
ly convex and then flat, represents the species redundancy hypothesis.
Bengtsson (1998) argues that it is more informative to consider specific
functions in ecosystems, namely decomposition, nutrient mineraliza-
tion, or primary production, thus focusing on phenomena that are more
amenable to scientific inquiry. Bengtsson (1998) argues strongly that
diversity does not play a role in ecosystem function. He goes so far as to
assert that: “correlations between diversity and ecosystem functions—
which may very well exist—will be mainly non-causal correlations only.”
As we are trying to show in this chapter, the truth may well lie in some
midpoint between these extremes. The fact that certain functions may
be linked to just a few genera or species, such as autotrophic and het-
erotrophic nitrifiers, for example, means that this might well be a “pres-
sure point” for concern about long-term ecosystem function. The
“natural insurance capital” concept of Folke et al. (1996), also discussed
in detail by Bolger (2001), suggests that it is essential to retain as much
species richness as possible to ensure that complete ecosystem services
exist as human needs or environmental changes occur.

As in all areas of ecology, there is a spatial dimension to the biodiver-
sity of soil organisms. It is essential to know not only which species are
present, but also where the counted species occur in relation to one
another. Do species occur together at every microsite, or do they occur
mostly individually in separate sites? This has an important bearing on
competition and other interactions, with functional consequences for
the ecosystem. Ettema and Yeates (2003) measured patterns of small
(centimeter) and intermediate (meter [m]) scales in nematode commu-
nities in a forest compared to a pasture system on a similar soil type in
New Zealand. Using geostatistical techniques and mathematical calcu-
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lations of species turnover, they compared nematode genera in forest-
land, then in pasture. The forestland was assumed to have greater vari-
ation in vegetation and hence belowground inputs, on small and
intermediate scales, than in the pasture. Thus they hypothesized that
nematode genera are more strongly aggregated (occurring in “hot
spots”) in the mixed forest than in the ryegrass/white clover pasture.
Applying an optimization method for sampling in geostatistical studies
called spatial simulated annealing (SSA) developed by Van Groenigen
and Stein (1998), Ettema and Yeates (2003) sampled along 40-m-long
transects for the meter scale, with distance classes of 3m, reflecting the
scale of tree spacing. The centimeter scale transect was one-tenth of the
large scale, or 4m. The total number of nematodes per soil core volume
was more than five times higher in the pasture (2800 ± 1234) than in the
forest (430 ± 252), but the average number of genera in the forest (23.7 ±
3.3) was higher in the forest than in the pasture (19.1 ± 2.5). Also, many
more nematode genera occurred in the forest (53) than in the pasture
(37). Dissimilarity analysis showed that generic turnover was signifi-
cantly greater in the forest than in the pasture, both at the small and
intermediate scales (Fig. 7.6) (Ettema and Yeates, 2003). Because
increasing distance in the forest led to increasing dissimilarity between
communities, and no plateau was reached, it is possible that there is
additional species turnover on scales larger than those explicitly sam-
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pled. The amount of work required for larger scale studies would be
much greater, and should be kept in mind when considering work on
spatial scales even with soil fauna of relatively small size.

WHY IS SOIL DIVERSITY SO HIGH?

We arrive at the end of this chapter with an understanding of the phe-
nomenon that high species equals functional diversity (e.g., Anderson,
1975, 2000), but its root causes are yet unknown. As noted by Wardle
(2002), the belowground environment provides numerous niche axes in
the Hutchinsonian (1957) hyperspace, concerning numerous microhab-
itats, microclimatic properties, soil chemical properties, and phenolo-
gies of the organisms themselves. When one adds in the fact that many
of the organisms may exist in quiescent or dormant stages (Coleman,
2001, and noted in Chapter 4), there is considerable niche space for the
impressive belowground species diversity.

BIOGEOGRAPHICAL TRENDS IN DIVERSITY OF 
SOIL ORGANISMS

Interestingly, with the exception of termites, whose diversity declines
significantly over a large geographical gradient, numerous taxa of soil
organisms, ranging from ciliate protozoa (Foissner 1987a, b) to earth-
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worms (Hendrix, 1995) do not decrease from 0 to 60° latitudinal range.
Wardle (2002) suggests two principal reasons: (1) With increasing lati-
tude there is a general trend for greater amounts of organic matter accu-
mulation, and higher amounts of carbon and nutrients are stored in the
soil relative to the amount of plant biomass present. Greater humus
depth may provide greater habitat heterogeneity and greater amounts
of nutrients present in the soil. (2) Diversity of soil organisms may be
governed by local factors rather than by regional pool size. If one adds in
the fact that numerous smaller soil organisms (soil microfauna and
microflora including both fungi and bacteria) can be transported by
wind currents and macrobiota over intercontinental distances, one
would expect to see pandemic distributions, and this is what is observed
(Wardle, 2002).
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8
Future Developments 

in Soil Ecology

INTRODUCTION

There are several areas of rapid change that are of interest to soil
ecologists in the 21st century. The effects of soil processes and soil biota
on global change, particularly with relation to global greenhouse gases,
are of concern to resource managers and globally oriented ecologists
(Coleman et al., 1992). More recently, as noted in Chapter 7, there has
been a rising current of interest in soils and biodiversity (Coleman,
2001). Within terrestrial ecosystems, soils may contain some of the last
great “unknowns” of many of the biota. This includes such relatively
well-studied fauna as ants (Hölldobler and Wilson, 1990), as well as the
more numerous and less studied mesofauna, such as microarthropods
and nematodes. The role of soils in the ecology of invasive species is an
area of rapidly increasing findings. We also consider the roles of soils
and the “Gaia” mechanism, and finally, ways to evaluate soil quality.

ROLES OF SOILS IN CARBON SEQUESTRATION

Soils are probably the last great frontier in the quest for knowledge
about the major sources and sinks of carbon (C) in the biosphere. The
direct effects of deforestation on global patterns of carbon cycles are rel-
atively minor; the effects of changed sink strengths, with deforestation
decreasing rates of carbon dioxide (CO2) uptake, may be much larger.
Another source of carbon input to the atmosphere has come from the oxi-
dation of soil organic matter during cultivation of native lands such as
the Great Plains region of North America and the Eurasian steppes of
eastern Russia (Wilson, 1978; Houghton et al., 1983). The standing
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stocks of soil carbon are twice as large as all of the standing crop biomass
of all of the terrestrial biomes combined (Fig. 8.1) (Post et al., 1990;
Anderson, 1992). However, the plant and soil systems are strongly cou-
pled, and the rates of inflows and outflows are significantly controlled by
rates of above- and belowground herbivory in forests (Pastor and Post,
1988) and in grasslands (Schimel, 1993). The feedback effects of the
principal greenhouse gases, namely CO2, methane, and nitrous oxide,
are very large (Mosier et al., 1991; Rogers and Whitman, 1991), with the
effects of CO2 being some 56% of the total impact (Anderson, 1992).
However, the rate of increase of methane is almost twice that of CO2

(Houghton et al., 1987, 1990) and is being closely observed by atmos-
pheric scientists. One of the major concerns of scientists interested in
global change is the extent of involvement by soils and soil processes in
the evolution of greenhouse gases, and roles of soil biota and organic
matter in the global carbon cycle.

We examine next the ways in which soils operate over ecological and
geological time spans, and how they may be influenced by, or have an
effect on, global change processes. Soil development and change may be
viewed as the result of the basic processes of additions, removals, trans-
formations, and translocations (Anderson, 1988). Agiven landscape will
experience runon, runoff, transformations, and transfers up and down
in the profile, and additions and losses either aerially or pedologically
(Fig. 8.2). These processes may be very dynamic for processes such as
movement of soluble salts, which vary within seasons, or be measured in
thousands of years, for example, for clay weathering processes. The
microbial portion of the organic matter cycle will have mean net
turnover times of 1–1.5 years, whereas humification processes such as
the interactions of clay–humic compounds may be considered interme-
diate (centuries) in time scale (Stewart et al., 1990) (Table 8.1). These
processes can be envisioned readily via the carbon, nitrogen, and phos-
phorus submodels of the Century model (Fig. 8.3). This model was devel-
oped to simulate the additions and losses in agricultural lands and
grasslands worldwide (Parton et al., 1987, 1989a), but has now been
extended to a wide range of ecosystems including tundra and taiga
(Smith et al., 1992) and tropical ones as well (Parton et al., 1989b;
Schimel et al., 1994; Smith et al., 1998).
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FIGURE 8.1. Pools and fluxes of carbon in major terrestrial ecosystem types: (a) distribu-
tion of net primary production, (b) biomass, and (c) soil carbon pools. The total area occu-
pied by each ecosystem type is represented by the horizontal axis with flux or density of the
vertical axis; the area is therefore proportional to the global production or storage in each
ecosystem type (from Anderson, 1992). Note: The numbers inside the boxed areas are mea-
sured in petagrams C (Pg C).
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FIGURE 8.2. Soil-forming factors based on the concepts of Simonson (1959) as described
by Anderson (1988) (from Stewart et al., 1990).

TABLE 8.1. Grouping of Soil Related Processes and Components Based on Time

Highly dynamic Dynamic More static, slow

Soluble nutrients Adsorbed nutrients Nutrient reserves in 
minerals

Active or soluble organic Labile organic matter Chemically stabilized
matter adsorbed to clay organic matter

Solution and movement of Weathering of carbonate Weathering of silicates
soluble components minerals and clay minerals

Microbial growth Microfauna and mesofauna Vegetation, i.e., forest
plant growth

From Stewart et al., 1990.



ROLES OF SOILS IN THE GLOBAL CARBON CYCLE

What patterns and processes of global change are most likely to affect
the global carbon cycle in soils? What are the effects of climate change on
vegetation? Are there possible changes in sink strengths (pools of 
organic matter, active roots, etc.) in various parts of the globe? Do we
know enough about the dynamics of carbon in the 13 or more major bio-
mes that comprise the terrestrial biosphere? For example, consider the
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size of the live biomass in broad-leaved humid forest, which amounts to
212 petagrams (Pg = 1015 grams) versus warm grasslands that have only
24Pg live biomass. When comparing the amounts of soil carbon stored
with carbon in live biomass, there is relatively less storage in the humid
broad-leaved forest (156Pg), giving a ratio of 212 :156, or 1.36, of live
biomass to soil organic matter (SOM) (Fig. 8.1) (Anderson, 1992). Warm
grasslands, with 213Pg in soil organic matter, have a ratio of 24 :213, or
0.11, in biomass versus that in the SOM. Tundra, with only 9Pg in live
biomass versus 200 in the SOM, has a ratio of only 0.05 in living biomass
versus SOM (Anderson, 1992). What are the climatological versus plant
physiological and microbiological implications of such differences in
these widely different biomes? Research in this area requires consider-
able effort in soil science and also microbial ecology, because we are
faced with problems of measuring substrate quality, covered earlier in
Chapter 5, and its feedback effects on future primary production and
nutrient dynamics. Of course the modes of growth of grasses versus
trees are also influential, because more of the total growth effort is
invested belowground in both grassland and tundra soils.

Recent reviews have addressed key aspects of the terrestrial carbon
cycle: carbon fixation by primary production, and then mechanisms for
either sequestering the carbon during organic matter decomposition
and transformation processes, or mechanisms for mineralization via
human-induced or natural processes (e.g., Lal, 2002; Houghton, 2003).
Acentral concern for ecologists and soil scientists is that soil organic car-
bon is the second largest pool in the terrestrial organic carbon cycle,
with about 1550Pg involved.

Concerns about imbalances in the global carbon cycle are not new;
rapidly increasing amounts of CO2 entering the atmosphere from
human activities, including burning of fossil fuels, were first noted a
century ago (Arrhenius, 1896). Since then, interest in the rates of flow of
carbon, and amounts sequestered in various pools in the biosphere, has
waxed and waned. For example, Plass (1956) expressed concern about
the amounts of CO2 being released by the burning of fossil fuels 
worldwide. An additional contribution to increased global CO2 is the rel-
atively large amounts of soil organic matter being “mined” by extensive
cultivation throughout the major “breadbaskets” of the world. In sever-
al regions, for example, the North American Great Plains, the former
Soviet Union, and Canada, the loss is quite large, perhaps up to 40% of
the surface layers (Haas et al., 1957; Wilson, 1978; Coleman et al., 1984).
Mann (1986) concluded in a survey of 625 soils studied pairwise, culti-
vated versus noncultivated on the same soil type, that 20% or more of
carbon was lost over decadal time spans from soils with high amounts of
carbon (ranging from 6 to 16 kilogram per square meter). Interestingly,
she noted that modest gains occur in soils that are initially very low 
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in soil organic carbon, such as very sandy-textured ones, if they are 
put into cultivation. A significant amount of carbon fixation, and 
subsequent movement into the SOM, in the surface-to-30-centimeter
(cm) depth, will occur over several years’ time span. If extensive 
application of fertilizers is required to achieve these gains, then overall
the global carbon balance is still toward the positive side, in terms of 
carbon costs for fossil fuel–derived nitrogen, for example (Vitousek 
et al., 2002).

In an extensive review of SOM models and global estimates of
changes in soil organic carbon under a 2 ¥ CO2 climate, Post et al. (1996)
ran simulations with the Rothamsted model over a 100-year time 
period. They found that global soil organic matter change was only
about one-third of the way toward an eventual equilibrium under the
enriched CO2 regime. The change predicted with the United Kingdom
Meteorological Office (UKMO) shows a small net sequestration of car-
bon in soil early in the climate transition period resulting from increas-
es in tropical ecosystem soil carbon. However, this is followed by large
carbon releases from arctic and boreal soils later in the century-long cli-
mate transition period. The largest net release of carbon from soil
occurred at the end of the 100-year climate transition, after which the
net releases decreased gradually as the soil carbon pools approached
equilibrium under the double CO2 regime (Post et al., 1996).

Houghton (2003) noted that the carbon balance of the world’s terres-
trial ecosystems is uncertain. Several top-down (atmospheric) and 
bottom-up (forest inventory and land-use change) approaches are in use
and difficult to compare, because they contain incomplete accounting
inherent in their methods. After a brief discussion of the methods and
their inherent limitations, we consider the possible resolution of the
uncertainties arising from use of these methods. Of the top-down esti-
mates, the first uses concentrations of oxygen (O2) and CO2 to partition
atmospheric sinks of carbon between land and ocean. Using this assess-
ment, terrestrial ecosystems were globally a net sink for carbon, aver-
aging 0.2 (±0.7)PgCyr-1 and 1.4 (±0.7)PgCyr-1 in the 1980s and 1990s,
respectively. The reason for the large increase between decades is
unknown. A second top-down method is inverse modeling, which uses
atmospheric transport models, together with spatial and temporal vari-
ations in atmospheric concentrations of CO2 obtained through a net-
work of flask air samples, to infer surface sources and sinks of carbon.
The budget will not reflect accurately any changes in the amount of car-
bon on land or in the sea if some of the carbon fixed by terrestrial plants
or used in weathering minerals is transported by rivers to the ocean and
respired or released to the atmosphere there. The two top-down meth-
ods based on atmospheric measurements yield similar global estimates
of a net terrestrial sink of about 0.7 (±0.8)PgCyr-1 for the 1990s
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(Houghton, 2003). Two bottom-up estimates have been used to estimate
terrestrial sources and sinks over large regions: analyses of forest inven-
tories and analyses of land-use change. One recent synthesis of forest
inventories, which included converting wood volumes to total biomass
and accounting for the fate of harvested products and changes in pools
of woody debris, forest floor, and soils, found a net northern midlatitude
terrestrial sink of from 0.6 to 0.7PgCyr-1 for the years around 1990
(Goodale et al., 2002, cited in Houghton, 2003). The estimate is only one-
third of that calculated from atmospheric data corrected for river trans-
port. Houghton (2003) noted that accumulation of carbon belowground,
not directly measured in forest inventories, was underestimated and
might account for the difference in estimates. Because the few studies
that have measured the accumulation of carbon in forest soils have con-
sistently found soils account for only a small proportion (5–15%) of mea-
sured ecosystem sinks, Houghton (2003) concluded that, despite the fact
that soils worldwide hold from two to three times more carbon than does
biomass, there is no evidence as yet that they account for a significant
terrestrial carbon sink. The second sort of bottom-up estimate, analyses
of land-use change, calculated that globally, all factors of land-use
change averaged 2.0 and 2.2PgCyr-1 respectively, in the 1980s and
1990s (Houghton, 2003). In contrast to the unknown biases of atmos-
pheric methods, analyses based on land-use change have deliberate
biases built into them. These latter analyses consider only the changes
in terrestrial carbon resulting directly from human activity. In other
words, there may be other sources and sinks of carbon not related to
land-use change, such as those caused by CO2 fertilization or changes in
climate, that are considered by other methods but ignored in analyses of
land-use change. The terrestrial sources and sinks of carbon in peta-
grams of carbon per year as estimated by different methods are given in
Table 8.2. (Houghton, 2003).

A major concern noted by Houghton (2003) was the unknown rate of
turnover of carbon belowground. One of the major sources of carbon
inputs in all terrestrial ecosystems has been attributed to fine roots.
Uncertainties in estimates of root longevity have markedly hampered
proper quantification of net primary production (NPP) and belowground
carbon allocation, particularly in forests. In a comparison of fine root
carbon inputs in two field sites, a hardwood forest (sweetgum 
Liquidambar styraciflua L.) in Tennessee and a loblolly pine (Pinus
taeda) forest in North Carolina, Matamala et al. (2003) measured the
carbon-13 (13C) isotopic signatures of live roots before and after carbon
enrichment was applied in Free Air Carbon Enrichment (FACE) experi-
ments. There was a marked difference in tree species, with mean resi-
dence time (MRT) in roots between 1 and 2 millimeters (mm) being 5.7
years for pine, and only 3 years for sweetgum roots of the same diame-
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ter. Matamala et al. (2003) note that any estimates of belowground car-
bon inputs need to pay careful attention to the species of vegetation
involved, and also to study root turnover rates by at least two different
methods, as we noted in Chapter 2 on studies of root turnover. The impli-
cations of these much longer mean residence times of forest tree fine
roots, if proven to be a general occurrence, are quite large and deserving
of further study by terrestrial ecologists.

PROBLEMS IN MODELING SOIL CARBON DYNAMICS

A more general problem yet faces soil ecologists. One of our current
needs is to “model the measurable,” rather than “measure the
modellable” (Elliott, 1994). There are pools in models such as Century,
mentioned earlier, that are more easily conceptualized than actually
measured. A more readily measurable entity is the labile pool, consist-
ing primarily of the microbial biomass. The intermediate and long-term
pools, existing from decades to millennia, are very difficult to measure
directly, and much work is under way to more effectively isolate and
characterize these pools by a variety of methods (Six et al., 2002a, b).
This problem requires integration across several levels of resolution,
dealing with numerous human activities in sociology and economics
that have a direct impact on soil management. These include the con-
cept of the effectiveness of management of carbon resources, which is
inversely related to the cost of subsidizing the lost functions of organic
matter (Fig. 8.4) (Woomer and Swift, 1995). The effectiveness of carbon
resource management decreases with sequential loss of constituents
and subsequent loss of function as land use intensifies without subsi-
dizing lost organic matter. Elliott (1994) and colleagues urged soil ecol-
ogists to isolate functional soil organic matter fractions and determine
their roles in soil processes in order to understand the mechanisms con-
trolling soil processes. This includes the mechanisms and processes
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TABLE 8.2. Terrestrial Sources (+) and Sinks (-) of Carbon (PgCyr-1) Estimated by
Different Methods

Inversions based on atmospheric Analysis of land-use
Region data and models change Forest inventories

Globe -1.4 (±0.8) 2.2 (±0.8)
North -2.4 (±0.8) -0.03 (±0.5) -0.65 (±0.05)
Tropics 1.2 (±1.2) 2.2 (±0.8)
South -0.2 (±0.6) 0.02 (±0.2)

From Houghton, 2003.



involved in the formation and turnover of macro- and microaggregates
in a wide range of soil types worldwide (see e.g., Beare et al., 1994a, b;
Six et al., 1999, 2002a). Indeed, as noted in Chapter 3, chemical, micro-
biological, and macrobiological characterization of physically isolated
fractions may provide the best opportunity for identifying functional
pools of soil organic matter. For example, each major category of soil
biota has a significant effect on one or more aspects of soil structure,
including production of organic compounds that bind aggregates, and
hyphal entanglement of soil particles (microflora), producing fecal pel-
lets and creating biopores (meso- and macrofauna) (Hendrix et al., 1990;
Linden et al., 1994). A complete list of influences of soil biota is given in
Table 4.12 (Hendrix et al., 1990).

Some recent developments have been made in conceptualizing SOM
dynamics, which should have a considerable impact on the ways in
which soils are viewed and managed for carbon sequestration. There are
three principal mechanisms by which SOM is stabilized: (1) it is physi-
cally stabilized, or protected from decomposition through microaggre-
gation; (2) SOM is closely associated with silt and clay particles; and (3)
it is biochemically stabilized through the formation of recalcitrant SOM
compounds. These stabilization mechanisms are strongly related to the
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ways in which SOM pools are protected (Six et al., 2002a). The protective
capacity of soil has been represented graphically, in an ascending series
(Fig. 8.5) (Six, 2002a) showing silt and clay at an asymptotic maximum
that is the maximum protection possible, because anything above that is
considered nonprotected. Aconceptual model of SOM dynamics with the
aforementioned measurable pools follows a sequence beginning with
above- and belowground inputs into unprotected soil carbon, moving
either into microaggregate-associated soil carbon by aggregate
turnover, or via adsorption/desorption into soil- and clay-associated soil
carbon. It then moves subsequently into nonhydrolyzable soil carbon via
condensation and complexation reactions, producing the biochemically
protected soil carbon (Fig. 8.6) (Six et al., 2002a). In contrast with earli-
er conceptual and simulation models, this scheme is indeed measurable,
hence meeting the criterion of Elliott (1994) of “modeling the measur-
able.” It also has the virtue of reflecting realities in lightly versus heav-
ily weathered soils. The former, with a greater proportion of 2 :1 clay
mineral dominated soils, have a greater silt- and clay-protected carbon
pool than the 1 :1 clay mineral dominated soils. The latter minerals, for
example, kaolinite and gibbsite, tend to dominate in the typically heav-
ily weathered tropical soils (Theng et al., 1989).

Six et al. (2002b) proceeded to test some of the assumptions in the con-
ceptual model given above by performing a major synthesis of SOM
dynamics in a wide range of temperate and tropical soils worldwide,
comprising more than 32 sites. Six et al. (2002b) found a 1.8 times longer
average MRT of carbon in the soil surface of temperate versus tropical
soils (63 ± 7 versus 35 ± 6 years). This indicates that there is generally a
faster carbon turnover in tropical than temperate soils. Interestingly,
the range of MRT values was similar for both temperate and tropical
soils, being 14–141 versus 13–108 years, respectively. The higher
turnover rate for tropical soils is due primarily to faster turnover rates
of the slow carbon pool in tropical soils (Feller and Beare, 1997, cited in
Six et al., 2002b).

BIOLOGICAL INTERACTIONS IN SOILS AND GLOBAL CHANGE

Perhaps the principal element of the global change scenario is the
steadily increasing annual temperature, which rises about 0.1°C annu-
ally. As this increase occurs, there should be a perceptible increase in
loss of soil carbon (Schimel et al., 1994; Scharpenseel et al., 1990; 
Jenkinson et al., 1991). A countervailing tendency will exist with effects
of CO2 fertilization, enhancing plant primary production. However, sev-
eral authors have noted the further constraints of other limiting
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2002a).

resources to growth, such as mineral nutrients (Pastor and Post, 1988;
Schimel, 1993; Hungate et al., 2003). More holistic modeling efforts of
changes in SOM, particularly ones that include soils, plants, herbivores,
and detritivores together, are more realistic in their outcomes than
those that model the plants, heterotrophs, and soil carbon pools sepa-
rately (Schimel, 1993; Tinker et al., 1996).

Global change effects on relationships to soil biota (aboveground to
belowground) can be modeled as a nested set of control variables. 



Morphological features of dominant life forms determine engineering
activities at the ecosystem level, physicochemical properties of plant
functional groups, modifying the provision of nutritional resources at
the community level, and biological properties of individual species con-
trolling direct interactions at the population level (Fig. 8.7) (Wolters et
al., 2000). Changes in ecosystem functions created by plant-induced
alterations in the disturbance regime, to and by resource consumption
rates of soil organisms, should be confined to situations where essential
traits of the vegetation are drastically changed. Such a change is most
likely when the strength of environmental change overrides all other
factors controlling plant assemblage structure, when plants with key
attributes or functions invade or become extinct, and when species-poor
environments are affected.

Much of the experimental research on ecosystem responses has
focused on individual species-level responses, and is seldom concerned
with multifactor system-level responses. An ongoing study of ecosys-
tem-scale manipulations in a California annual grassland has now pro-
gressed past 3 years’duration. Shaw et al. (2002) measured system-level
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responses in control and elevated CO2 plots using the Jasper Ridge
Global Change Experiment (JRGCE). The JRGCE imposed four global
change factors at two levels: (1) CO2 (ambient and 680 parts per million),
(2) temperature (ambient and ambient plus 80Watts (W) per square
meter of thermal radiation), (3) precipitation (ambient and 50% above
ambient plus 3-week-long growing season prolongation), and (4) N depo-
sition (ambient and ambient plus 7g of nitrate N per square meter per
year), in a complete factorial design. In the third year of manipulations
of the JRGCE, elevated CO2 stimulated the production of aboveground
biomass in the treatments with all of the other factors at ambient levels.
Aboveground biomass increased more than 32%, which is comparable to
that in other single-factor CO2 enrichment experiments (e.g., the
increase in North Carolina pine plantations was 25%, and the increase
in an Arizona free-air CO2 enrichment experiment [FACE] was 20–43%
[Kimball et al., 1995]). Interestingly, although each of the treatments
involving increased temperature, nitrogen, or precipitation increased
aboveground biomass and NPP, elevated CO2 consistently shrank these
increases. In fact, with the three other factors and ambient CO2

increased NPP by 84%, but increased CO2 more than halved this, down
to 40%. Belowground NPP was even more suppressed, with an average
effect across all treatments of minus 22%. This study by Shaw et al.
(2002) is an object lesson in the need to pursue multifactorial studies
over many years to ascertain the full effects of the manifold variables
involved in global change phenomena.
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Asimilar control hierarchy arises in the soil system as follows: attrib-
utes of burrowing macroinvertebrates and mammals establish different
dynamic equilibria for soil at the ecosystem level; physicochemical prop-
erties of trophic groups affect the vegetation at the community level; and
biological properties of individual species regulate direct interactions at
the population level (Fig. 8.7) (Wolters et al., 2000).

Land use change is probably one of the greatest agents of change in
soil biology and ecology, and given the fact that it is so pervasive on all
continents now, one can readily agree with Wolters et al. (2000) that
land use change rapidly and persistently alters all levels of above- and
belowground interactions and acts on a large scale.

Climate change, of the magnitude envisioned over the next century
(an average global temperature increase of 2.5°C), will lead to a major
shift in the boundaries of ecological systems. There will be climate-
induced alteration in the makeup of many plant communities and
changes in litter quality due to changes in species composition. For
example, as mixed spruce–hardwood forests in the southern boreal
region are replaced by hardwood due to global warming, the anticipated
higher-quality litter will provide increased availability of resources to
the soil organisms. Of course, in more northerly climes, as major climate
changes occur, there will be significant alterations in ecosystem func-
tions when it affects organisms that carry out functions performed by
few other organisms. Schimel and Gulledge (1998) predicted that in
areas where episodic drying and rewetting of soil associated with cli-
mate change becomes more severe, populations of cellulolytic and 
ligninolytic fungi may be reduced, resulting in a decrease in litter
decomposition greater than would be predicted by considering only the
changes in soil and litter moisture.

ECOLOGY OF INVASIVE SPECIES IN SOIL SYSTEMS: 
AN INCREASING PROBLEM IN SOIL ECOLOGY

One of the primary concerns of ecology in the 21st century has been
the increasing numbers of invasive species in ecosystems around the
world. The publicity concerning invasive species in aquatic systems has
been extensive. Case studies of lampreys invading the Great Lakes of
North America via the Welland Canal and later via the St. Lawrence
Seaway, and the rapid spread of the zebra mussel in lakes and streams
over much of the Western Hemisphere are noteworthy examples. There
is a less obvious but growing literature documenting the effects of intro-
duced plants and animals displacing or outcompeting native species in
soils in numerous ecosystems of the world. Some examples follow.
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Eastern deciduous forests in North America have been invaded by
two species of plants that are often dominant in the understory vegeta-
tion. Berberis thunbergii is a woody shrub that often forms dense thick-
ets. Microstegium vimineum, a C4 grass, forms dense carpets. The two
invasives co-occur often. In a series of laboratory and greenhouse exper-
iments in New Jersey, Ehrenfeld et al. (2001) found that the soil under
these plants was increased in available nitrate and had elevated pH as
well. The two invasive plants have different mechanisms to achieve a
similar end result. Berberis combines large biomasses of nitrogen-rich
roots with nitrogen-rich leaf litter, whereas Microstegium clumps com-
bine small biomasses of nitrogen-rich roots with small biomasses of
nitrogen-poor litter that leave much of the surface soil with few roots.
Changing key chemical characteristics of soil (e.g., changed nitrate and
pH) undoubtedly represent only two of numerous ways in which inva-
sive plant species alter the playing field in contesting for dominance of
patches of soil.

In the same research sites that were used by Ehrenfeld et al. (2001),
Kourtev et al. (2002) measured alteration of microbial community struc-
ture and function by exotic plant species (Japanese barberry [Berberis
thunbergii] and Japanese stilt grass [Microstegium vimineum], com-
pared to a co-occurring native species [blueberry—Vaccinium spp.]).
They found in both bulk and rhizosphere soils that phospholipid fatty
acid (PLFA) profiles, enzyme activities, and substrate-induced respira-
tion (SIR) profiles of microbial communities were significantly altered
under the two exotic species. The PLFA profiles provided only an index
of community structure rather than specific information about what
species were active. A correlation of structure (PLFA) and function,
namely enzymes, showed that a particular set of species is associated
with a particular pattern of enzyme activities but does not provide infor-
mation about which of the species were responsible. Kourtev et al.
(2002) found that profiles of enzymatic and catabolic capacity in the soil
definitely differed with different microbial communities.

One of the more noted plant invasions of the past century was that of
the annual grass Bromus tectorum L., which has a current range of
40,000,000 hectares, notably in wide regions of Washington, Oregon,
Idaho, and Utah. Evans et al. (2001) measured litter biomass and 
carbon–nitrogen and lignin–nitrogen ratios to determine the effects 
on litter dynamics in a site that had been invaded in 1994. Long-term
soil incubations (415d) were used to measure potential soil microbial
respiration and net nitrogen mineralization. Plant-available nitrogen
was measured for 2 years with ion-exchange bags, and potential
changes in rates of gaseous nitrogen losses were measured using deni-
trification enzyme activity. Bromus invasion significantly increased 
litter biomass, and its litter had significantly greater carbon–nitrogen
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and lignin–nitrogen ratios than did native species. The changes in 
litter quality and chemistry decreased potential rates of nitrogen min-
eralization in sites with Bromus by decreasing nitrogen available for
microbial activity. Evans et al. (2001) suggest that Bromus may cause a
short-term decrease in nitrogen loss by decreasing substrate availa-
bility and denitrification activity, but over the long term, nitrogen loss-
es are likely to be greater in invaded sites because of increased fire
frequency and greater nitrogen volatilization during fire. This mecha-
nism, in conjunction with land use change, will set into play a set of pos-
itive feedbacks that will decrease nitrogen availability and alter species 
composition.

In a companion study to that of Evans et al. (2001), Belnap and
Phillips (2001) studied the effects of invasion by Bromus tectorum in
three study sites in the Canyonlands of southwestern Utah. They 
measured litter and soil changes in sites that had been dominated pre-
viously by Hilaria jamesii, a fall-active C4 grass, and Stipa comata and
Stipa hymenoides, predominantly spring-active C3 species. Belnap and
Phillips (2001) measured the abundances of a wide range of microbes,
microarthropods, and macroarthropods under Hilaria and Stipa com-
munities, as well as in those that had been invaded by Bromus in 1994
(Fig. 8.8). There were significant changes in numbers and diversity, due
in part to changes in amounts and qualities of litter. In the Bromus
invaded plots, litter quantity was 2.2 times higher in Bromus and 
Hilaria together than in Hilaria alone, contrasted with Stipa and Bro-
mus, which was 2.8 times greater than in the Stipa alone. Soil biota
responded generally in opposite manners in the plots that combined two
perennials and an annual grass. Active bacteria decreased in Hilaria
versus Hilaria with Bromus, and increased in Stipa versus Stipa with
Bromus. Most higher trophic-level organisms increased in Hilaria plus
Bromus relative to Hilaria alone, while decreasing in Stipa plus Bromus
relative to Stipa alone. The soil and soil food web characteristics of the
newly invaded sites included the following: (1) lower species richness
and numbers of fungi and invertebrates; (2) greater numbers of active
bacteria; (3) similar species of bacteria and fungi as those invaded more
than 50 years previously; (4) higher levels of silt (hence greater water
holding capacity and soil fertility); and (5) a more continuous cover of
living and dead plant material. The authors note that food web archi-
tecture can vary widely from what had existed previously within the
same vegetation type, depending on the reactions to the invasive species
relative to the previous uninvaded condition. Addition of a common
resource can shift conditions significantly, and careful attention to the
effects of species by season by site is definitely warranted.

A much different example of a soil invasion is the movement of the
predatory New Zealand flatworm, Arthurdendyus triangulatus, into
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Western Europe, where it preys upon earthworms. It was established in
Great Britain by unknown means, but probably on soil associated with
nursery stock. Boag and Yeates (2001) suggest that the avenue of intro-
duction was rather circuitous: initially the flatworms spread from
botanic gardens to horticultural wholesalers, then to domestic gardens,
and finally invaded agricultural lands. They note that it is one of twelve
alien terrestrial planarians in Britain considered to be a pest, and hence
seems to obey the “rule of tens” (sensu Williamson, 1996), in which only
one in ten invasive species assumes an outbreak or pest status. The
indigenous flatworms, including Arthurdendyus, are not a problem in
New Zealand because New Zealand has a drier and warmer climate
than in the west of Scotland, where the outbreaks are the most severe.
Interestingly, under minimum tillage practice in New Zealand, where
crop residues provide refuges (Yeates et al., 1999), flatworms have the
potential to reduce lumbricid earthworm populations. Invasions by
exotic earthworm species are also becoming a problem in many temper-
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ate and tropical areas, as discussed further in Chapter 4 (Hendrix and
Bohlen, 2002).

In general, numerous theoretical studies have usually supported
Elton’s (1958) biotic resistance hypothesis, in which more diverse com-
munities better resist invading species (see Byers and Noonburg, 2003,
and references cited therein). In a mathematical overview of more gen-
eral aspects of biotic resistance to invasive species, Byers and Noonburg
(2003) demonstrate that invasibility is influenced not only by the num-
ber of native species present, but also by the number of resources pre-
sent in a given ecosystem. Building on a Lotka–Volterra competition
model, Byers and Noonburg’s model predicts that increasing invasi-
bility with native diversity across large scales is the result of decreasing
mean interaction strength as resources increase. The strength of the
positive relationship between native and exotic species diversity and
relative contribution of factors extrinsic to the community depend on
whether niche breadth increases with the number of available
resources. Interestingly, the same mechanism—the sum of interspecific
competitive effects (Saijnj)—drives the opposite pattern of decreasing
invasibility with native richness at small scales because resource num-
bers are held constant. As a consequence, Byers and Noonburg (2003)
conclude that Elton’s biotic resistance hypothesis, interpreted as a
small-scale phenomenon, is consistent with large-scale patterns in exot-
ic species diversity.

SOILS AND “GAIA”: POSSIBLE MECHANISMS FOR EVOLUTION
OF “THE FITNESS OF THE SOIL ENVIRONMENT?”

As was mentioned in Chapter 1, there are many positive feedback
mechanisms in soils, in which organisms have arisen and/or evolved
together. These include roots and arbuscular mycorrhiza (AM), and
many of the genera and families of soil fauna. The following discussion
is based on the very insightful and stimulating article by van Breemen
(1993) entitled “Soils as biotic constructs favouring net primary produc-
tivity.” Van Breemen asks the central question: Have soils merely been
influenced by biota, or have biota created soils as natural bodies with
properties favorable for terrestrial life? He presents five hypotheses or
postulates related to the overarching theme: (1) there are soil properties
“favorable” for terrestrial life in general; (2) biota, including plants and
the soil dwelling organisms, are able to affect those soil properties; (3) on
a scale of ecosystems and a global (“Gaian”) scale, biotic action makes
the outermost (1–100cm) layer of the earth’s crust more favorable for
terrestrial life in general than it would have been in their absence; (4) at
an ecosystem-level scale, biota tend to offset the effects of unfavorable
properties of the soil or soil parent material by modifying those soil prop-
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erties; and (5) modification of soil properties may play a role in species
competition.

Following from the ideas of Odum and Biever (1984), there should be
some positive or donor-recipient controls on interactions between pri-
mary producers and other biota, with the AM being a prominent exam-
ple. As we have noted earlier, feeding on detrital organic matter in the
soil is generally the principal energy flow in terrestrial ecosystems.
Therefore feedback loops arising in the soil community (such as detrital
food webs, see Chapter 6) should have a major effect on net primary pro-
ductivity. Thus soil-biota interactions may be a most fruitful area to
investigate and test hypotheses about positive effects of biota on the
environment.

As far as favorable soil properties are concerned, changes and 
general improvements in soil porosities and aggregation as well as soil
organic matter status are prime examples of general improvements in
soil characteristics; these changes occur through cumulative interac-
tions of the soil biota. This is not a simple linear progression however;
there are examples of surface-feeding earthworms, which remove
enough of the surface leaf litter material to cause a greater amount of
soil erosion in their presence than in their absence (Johnson, 1990).

In the areas of soil texture and structure, as well as soil chemical
properties, there are numerous examples of soil biotic interactions 
having a generally beneficial effect in the top meter of soil material. 
One example of this is provided by Gill and Abrol (1986), who described
how planting Eucalyptus teretocornis and Acacia nilotica on an alkali
soil (pH 10.5) markedly decreased pH and salinity within 3 to 6 years.
These changes were probably caused by a suite of factors including
increased water permeability, which followed the development of root
channels and the accumulation of organic matter in the upper 20–50cm
of the soil profile. Other biota, notably termites, can promote higher salt
content in soils, as detected by measurements in inhabited and aban-
doned termite hills compared to the surrounding soil (de Wit, 1978).
Many of these processes tend to increase the amounts of heterogeneity
within soil profiles, which has been well reviewed recently by Stark
(1994).

At both ecosystem and global scales, there are significant effects of
biota on rock and soil weathering. The early pioneering researches of
Vernadsky (1944, 1998) and Volobuev (1964) in particular originated
and made popular the concept of “organic weathering.” The able part-
nership of roots and microbes in mineral translocation is noteworthy, for
example, removing the interlayer K from phlogopite (vermiculitization)
within the first 2mm of the rhizosphere. For other references on biolog-
ical impacts on mineral weathering, see Schlesinger (1996). As noted in
Chapter 6, the soil physical effects of earthworms on soil structure, for-
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mation of heterogeneous pores, and high structural stability are hall-
marks of soil-by-biota interactions over long time-intervals.

There are several examples of transformations that counteract unfa-
vorable soil properties. These arise principally from the influence of the
biota on translocation and concentration of nutrients in the upper 1
meter of the earth’s mantle, the living soil. In general, biota tend 
to invest more in increasing nutrient supply under nutrient-poor 
than in nutrient-rich conditions. Root production and activity, as a frac-
tion of total net primary production, tends to be higher in the nutrient-
poor conditions (Odum, 1971). This should be considered against a
background of the generally slow growth rates and nutrient fluxes 
that occur in many wild plants on low-nutrient soils (Chapin, 1980).
There is also an intriguing nutrient conservation process that occurs 
in many low-nutrient ecosystems. Development of mor humus types,
characterized by thick organic horizons, is typical for “poor” (low 
productivity) sites, and may represent nutrient conservation brought
about as a result of the slow-to-decompose litter formed in the surface
layers (Vos and Stortelder, 1988). This in turn may lead to further 
inhibition of decomposition and net primary production, so is an exam-
ple of a positive feedback effect, which may require occasional fires or
other disturbances to act as a suitable “reset” over millennial time
spans. Soil phosphorus, in its various inorganic and organic forms, is
perhaps the most limiting element in terrestrial ecosystems (van
Breemen, 1993). Storage of phosphorus by secondary iron and alu-
minum phases is partly under biotic control and may be regarded as
part of tight biotic cycling of phosphorus for three reasons: (1) secondary
iron and aluminum oxides result from biologically mediated weathering
of primary minerals; (2) the oxides are often precipitated under the
influence of iron oxidizing bacteria; and (3) the oxides can be kept in a
mostly amorphous form by interaction with humic substances, from
which phosphorus can be extracted by plants more efficiently than from
crystalline oxides.

A further development in assessment of soil genesis and ecosystem
condition is a quantitative assessment of forest humus forms, on a scale
ranging from 1 (Eumull) to 7 (Dysmoder), which is called the humus
index (Ponge et al., 2002).

In the 72 sites studied, the humus forms were arranged as follows:

1. Eumull (crumby A horizon, Oi horizon absent, Oe horizon
absent, Oa horizon absent)

2. Mesomull (crumby A horizon, Oi horizon present, Oe and Oa
horizons absent)

3. Oligomull (crumby A horizon, Oi horizon present, Oe horizon
0.5cm thick, Oa horizon absent)
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4. Dysmull (crumby Ahorizon, Oi horizon present, Oe horizon 1cm
or more thick, Oa horizon absent)

5(a). Amphimull (crumby A horizon; Oi, Oe, and Oa horizons 
present)

5(b). Hemimoder (compact A horizon, Oi and Oe horizons present,
Oa horizon absent)

6. Eumoder (compact A horizon, Oi and Oe horizons present, Oa
horizon 0.5 or 1cm thick)

7. Dysmoder (compact A horizon, Oi and Oe horizons present, Oa
horizon more than 1cm thick)

This index is well correlated with several morphological and chemical
variables describing forest floors and topsoil profiles: thickness of the Oe
horizon, depth of the crumby mineral horizon, Munsell hue, pHKCl and
pHH2O, H and Al exchangeable acidity, percentage base saturation,
cation-exchange capacity, exchangeable bases, carbon and nitrogen con-
tent, and available phosphorus of the A horizon (Fig. 8.9) (Ponge et al.,
2002). Used in concert with the Ponge (2003) concept of humus forms as
a framework of soil biodiversity, this approach should provide a more
general comparative tool for assessing the chemical and biological con-
ditions of a wide range of soil systems worldwide.

All of the foregoing perhaps raises more questions than answers.
However, the general trend is for the number of species and individuals
with positive effects to increase, both in successional sequences and 
over evolutionary time. In essence, the property of an individual 
that improves the environment for that individual, or increases its
reproductive success, will benefit both it and its competitors as well. The
selective advantage for such a trait(s) is probably small, viewed in a clas-
sical Darwinian context. If viewed in more general contexts such as
enhancement of site qualities, then this can be considered a more 
general application of community and ecosystem development. Van
Breemen (1992) notes that development of a trait in an earthworm
allowing it to better control the moisture content and CO2/O2 balance of
its immediate surroundings would redound to the benefit of other organ-
isms and site properties. If requirements of plants or a plant species
happen to match those of the earthworm, then coevolution of the plant
and worm might be possible too. Wilson (1980) suggested that one might
envision further development and evolution of a community of microbes,
which could coevolve with the earthworm, to better enhance nutrient
cycling processes. This is an evolutionary example of significant
processes at “hot spots,” as noted in Chapter 6. The scenario is specula-
tive, but serves as an example of where we may be expecting to see addi-
tional breakthroughs occurring in the cryptic and fascinating world of
soil ecology.
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FIGURE 8.9. Correlation of the humus index with some variables measured in the topsoil
profiles (means of four replicates) (from Ponge et al., 2002).

SOIL ECOLOGY IN THE THIRD MILLENNIUM

We now come full circle to an issue that was raised in Chapter 1:
rapidly increasing human population growth providing ever-increasing
pressure on a finite base of natural resources. As noted by Daily (1997),
the direct substitution cost of a hydroponic plant production system for
one hectare of soil is the equivalent of $850,000, and still rising. When
one adds to that the cost of cleansing and recycling, this is a sizable frac-
tion of the more than $30 trillion dollar cost of annual goods and services
provided by ecosystems globally (Costanza et al., 1997).

In dealing with environmental remediation and environmental
assessment in general, what is a “healthy” soil? Is there a simple one-



sentence definition of “soil quality,” sensu Doran (2002)? Is there a clean
soil similar to either clean air or water? The short answer is no. 
The longer answer is quite complex, but informative, if one takes an
ecosystem-level approach (Coleman et al., 1998). A general definition of
soil quality is “the capacity of a soil to function within ecosystem bound-
aries to sustain biological productivity, maintain environmental quality,
and promote plant and animal health” (Doran and Parkin, 1994). This is
a beginning, but the healthy activity of all organisms, including
microorganisms, should be considered explicitly (Coleman et al., 1998).
As noted in Chapter 7, the state of our knowledge of microbial diversity,
indeed that of a majority of the organisms active in soil, is still at a
rudimentary stage. As a heuristic concept, soil quality has been useful
for both education and assessment. These education and assessment
tools encourage land managers to examine biological, chemical, and
physical properties and processes occurring within their soil resources
and to use that information as a framework for helping to make adaptive
soil management decisions (Karlen et al., 2001). Soil quality has not
been embraced universally, because some soil scientists have been con-
cerned that value-based decisions could supplant value-neutral science
and thus lead to premature interpretations and assertions of soil quali-
ty before the concept has been thoroughly and analytically challenged
(Sojka and Upchurch, 1999).

It is possible to examine the health of the litter-soil subsystem of ter-
restrial ecosystems by utilizing indicator indices. One example is the
use of the ratio of microbial biomass carbon to soil organic carbon
(Cmic/Corg). This index is related to soil carbon availability and the ten-
dency for a soil to accumulate or lose organic matter. It has been used
successfully in evaluating the status of restored ecosystems, for 
example, restored coal mine lands (Insam & Domsch, 1988).

A wide range of soil quality indices has been calculated, related to
specific groups of microbes and fauna (Coleman et al., 1998). These
include nitrogen mineralization, soil respiration, respiration to micro-
bial biomass ratios, faunal populations, and rates of litter decomposi-
tion (Knoepp et al., 2000). Considerably less attention has been paid to
ecosystem-level analyses. The following is an overview of several stud-
ies, undertaken in two agroecosystems in the Georgia Piedmont, in an
aggrading forested ecosystem in western North Carolina, and in an
agroecosystem in Nebraska.

In the agroecosystem study, a wide range of biological, chemical, and
physical factors were measured in two field sites, in which alternative
poultry-litter management practices were compared. Multivariate sta-
tistical techniques were used to determine the smallest set of chemical,
physical, and biological indicators that accounted for at least 85% of the
variability in the total data set at each site. This set was defined as 
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the minimum data set (MDS) for evaluating soil quality (Andrews and 
Carroll, 2001). The efficacy of the chosen MDS was evaluated by per-
forming multiple regressions of each MDS against numerical estimates
of environmental and agricultural management sustainability goals
(e.g., net revenues, phosphorus runoff potential, metal contamination,
and amount of litter disposed of). Coefficients of determination ranged
from 0.35 to 0.91, with an average R2 of 0.71. Each MDS was then 
transformed and combined into an additive soil quality index (SQI). SQ
indexes varied between the two sites, but Andrews and Carroll (2001)
noted that this “designed SQI” enabled the indices to be tailored to local
conditions.

In the forest ecosystem study, a combination of chemical and biologi-
cal indices was used to measure soil quality in five watersheds arranged
along an elevational gradient at the Coweeta Hydrologic Laboratory, 
in the southern Appalachian Mountains of western North Carolina. 
The selected characteristics of the elevation gradient stands are pre-
sented in Table 8.3 (Knoepp et al., 2000). The sites represented a gradi-
ent in vegetation and elevation and included xeric oak–pine (OP), cove
hardwood (CH), mesic mixed-oak at low and high elevations (MO-L,
MO-H), and mesic northern hardwood (NH) vegetation. The sites 
were then ranked on a range of soil chemical characteristics, nitrogen
availability, litter decomposition rates, forest floor mass, coarse woody
debris standing crop, soil oribatid mite populations as numbers 
and total species, and Shannon–Wiener biodiversity index (Table 8.4)
(Knoepp et al., 2000), and then several measures of soil carbon 
availability: CO2 flux, microbial carbon, qCO2 (mgCgsoil-1), and qCmic

(mgCmic gCtotal-1). Note that all sites had approximately equal diversity
of overstory tree species, with H values ranging between 1.93 for the
NH, and 2.25 for OP.

The five sites were compared for overall soil/site quality, ranked using
biological and chemical or physical quality and the aboveground indices
of wood production, net primary productivity, and biodiversity. Overall,
soil biological quality was highest for OP and MO-L, with the highest
scores in nitrogen and carbon availability and fauna population indica-
tors. Based on soil chemical and physical properties, NH ranked highest
with the greatest cation and carbon and nitrogen concentration, and
lowest bulk density. In sum, the highest-quality site is dependent on the
goal desired for that site. In terms of wood production, MO-H was the
highest-quality site. Both mixed-oak sites had the highest productivity
using the total litterfall index. If one desired to maximize biodiversity,
both aboveground and in the soil, all sites ranked highly (Knoepp et al.,
2000). The overall take-home message is important for land use man-
agers and ecologists in general: the site quality really depends on the
objectives of the users and the context in which the sites (in this case, sit-
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TABLE 8.3. Selected Characteristics of the Elevation Gradient Standsa

Site OP CH MO-L MO-H NH

Elevation (m) 782 795 865 1001 1347

Aspect (deg) 180 340 15 75 20

Slope (deg) 34 21 34 33 33

Vegetation type Oak–pine Cove hardwoods Mixed oak Mixed oak Northern hardwoods

Dominant species Kalmia latifolia, Liriodendron tulipifera, Rhododendron Rhododendron Betula allegheniensis,
Quercus prinus, Quercus rubra, Tsuga maximum, Quercus maximum, Quercus Liriodendron
Q. rubra, Carya spp. candensis, Carya spp. coccinea, Q.  prinus rubra, Q. prinus tulipifera, Quercus

rubra

Moisture regime xeric mesic mesic mesic mesic

Soil series and Evard/Cowee, Saunook, Tuckaseegee, Trimont, Humic Chandler, Typic Plott, Typic
subgroup (s) Chandler, Edneyville/ Humic Hapludults, Hapludults Dystrochrepts Haplumbrepts

Chestnut, Typic Typic Haplumbrepts
Hapludults, Typic 
Dystrochrepts

aData compiled from Coweeta Long-term Ecological Research Program records.
From Knoepp, 2000.



uated in two different watersheds) exist. There is ample room for fur-
ther investigation in this important area in which scientists and 
managers from a variety of disciplines will collaborate. This is 
especially true when comparisons are made across wide continental 
gradients, for example, across ecoregions.

The foregoing examples involved very extensive sampling and ana-
lytical regimes that might preclude their wide adoption in soil quality
studies. An innovative study in Nebraska employed the fact that differ-
ences in electromagnetic (EM) soil conductivity and available nitrogen
levels over a growing season can be linked to feedlot manure/compost
application and use of a green winter cover crop (Eigenberg et al., 2002).
A series of soil conductivity maps of a research cornfield were generated
using global positioning system (GPS) and EM induction methods. The
study was conducted over a 7-year period. Image processing techniques
were used to establish EC treatment means for each of the growing sea-
son surveys. Sequential measurement of profile weighted soil electrical
conductivity (ECa) was effective in identifying the dynamic changes in
available soil nitrogen as affected by animal manure and nitrogen fer-
tilizer treatments during the corn-growing season. This real-time mon-
itoring approach shows considerable promise in enabling farmers to
more efficiently use nitrogen sources in cropping management systems
and in minimizing nitrogen losses to the environment.

It is imperative to have a robust, quantitative, and universally
applicable metric for soil quality. Considering the 4.5 ¥ 109 hectares that
are tropical soils, use of an updated fertility capability soil classification
(FCC) system (Sanchez et al., 2003) should be helpful for soil ecologists.
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TABLE 8.4. Soil Oribatid Mite Populations in Five
Representative Sites in the Coweeta Hydrologic
Laboratory Basin

Site/ranka Nb # spp.c Jd He

OP/3 2237 78 0.752 3.28
MO-L/4 2234 96 0.746 3.41
MO-H/4 2192 92 0.761 3.44
CH/1 570 64 0.876 3.64
NH/2 1454 81 0.793 3.48

aSite rank for oribatid mite populations.
bAbundance of individuals collected.
cTotal number of oribatid mite species identified.
dPielou’s evenness index.
eShannon–Wiener biodiversity index.
After Lamoncha and Crossley, 1998; from Knoepp,

2000.



It employs quantitative topsoil attributes including percentage of total
organic carbon saturation (van Noordwijk et al., 1998) compared with
undisturbed or productive site and soil taxonomy. The top three soil con-
straints in the tropics include moisture limitations, low nutrient capital
reserves, and high erosion risk. Because many small farmers in tropical
regions depend on organic sources for nutrient inputs to their crops, this
becomes an ideal situation to practice sound organic agriculture. This
approach has been promoted ably by the Tropical Soil Biology and 
Fertility Programme, which has a network of research sites throughout
eastern and southern Africa, India, and southeast Asia (see van 
Noordwijk et al., 1998, and Swift, 1999, cited in Sanchez et al., 2003, and
Palm et al., 2001).

For those who are interested in pursuing practical, hands-on studies
in soil ecology, Chapter 9 contains some selected field and laboratory
exercises that should be of use in both research and teaching activities.
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9
Laboratory and Field

Exercises in Soil Ecology

INTRODUCTION

The following exercises are ones that we have found to be useful to
better acquaint our students with techniques used to conduct field
research in soil ecology. They provide a combination of process and 
taxonomic identification work, both of which are necessary to make
some headway in our field. Further details of sampling and analytical
methods can be found in Weaver et al. (1994) and Samner (2000).

MINIRHIZOTRON STUDIES

Principle

A video camera is used to record root densities at discrete time inter-
vals to determine the growth and turnover of roots in situ. (See Chapter
2 for details.)

Description of a Minirhizotron

A clear polycarbonate tube 5 centimeters (cm) in diameter and 1.8
meters (m) in length is used as a minirhizotron. Each tube is marked
with a groove and depths are stamped with reverse numbers externally
at 10-cm intervals. A single groove etched along the length of the tube is
used as a reference for orienting the video camera. The section of tube
exposed above the soil surface is wrapped with black plastic tape and 
the top is plugged with a rubber stopper to keep light from entering 
the minirhizotron. The bottom end of each tube is sealed with a poly-
carbonate stopper.
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Installation of the Minirhizotrons

This example is for an agroecasystem. Holes are drilled by an auger
mounted on a tractor in the field plot at an angle of 20° from the vertical
along the direction of the crop row. Holes are cleaned with a sharp-ended
stainless steel tube of the same diameter as the outside of the polycar-
bonate tube. A minirhizotron is then driven into the hole to obtain an
intimate tube–soil interface.

Enough minirhizotrons should be installed to enable one to obtain
standard error estimates that are less than 10% of the mean. This usu-
ally requires between six and eight tubes to be installed per treatment
(Cheng et al., 1990; Fahey et al., 1999; Pregitzer et al., 2002).

Observation and Recording

Observation of roots intersecting minirhizotrons is accomplished
using a video camera, a small monitor, and a videocassette recorder
(VCR) or writable compact disc (CD). The image produced by the camera
is observed in the monitor and recorded simultaneously. During record-
ing, the camera is moved from the bottom of the tube upward at a speed
of approximately 0.3cm per second or less, recording a 2-cm wide picture
strip. This allows observation and counting of roots and minimizes field
operation time.

Getting Data from the Videotape

The numbers of roots in the 2-cm wide strip observed are counted for
each 10-cm length of the tube. Counts are independent of the length or
the diameter of the root at the interface. If a root branches it receives 
one count for the main root and one for each branch. Whenever a root
crosses the depth indication groove it receives one count in each depth
interval.

Convert root counts to root length densities (RLD), as cm/cm3, using
the equation

RLD = (Nd) ∏ (Ad)

where N is the number of intersecting roots, d the outside diameter of
the tube, and A the area of tube observed. (Upchurch and Ritchie, 1983;
Upchurch and Taylor, 1990)

Tracing Technique

A high-quality, four- or five-head VCR is required. Frames of the root
picture strip are frozen and traced on a sheet of clear plastic in sequence.
Root length of each 10-cm interval is obtained by tracing roots on the
clear plastic using a map measurer.
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Root length can be converted to RLD using the equation

RLD = Lr ∏ CAD

where Lr is the root length, C the magnification factor, A the area of tube
observed, and D the distance from the outside surface of the tube that
can be observed in soil (usually assumed to be 0.2 or 0.3cm in the litera-
ture) (Fahey et al., 1999).

Automated Root Length Measures

More automated root length measures may be achieved using soft-
ware packages such as “Roots” and WinRhizo,” which are obtainable
from a number of vendors.

SOIL RESPIRATION STUDIES

Principle

Adilute solution of alkali (typically 1Molar [M] NaOH) is placed in an 
open glass jar above the soil surface. A metal cylinder (usually 10cm in
diameter, an irrigation pipe will do) is installed well into the A horizon,
carbon dioxide evolution is measured by absorption in the alkali solution
for 24 hours, and then the CO2 amount absorbed is measured by back-
titration of the excess alkali remaining. When expressed on a per unit
area basis, the soil respiration data are comparable with literally 
hundreds of values from the literature about many different ecosystems.

Soil respiration is one of the most commonly used methods of deter-
mining metabolic activities of organisms in soil. As noted in Chapter 3,
there is interest in determining the relative contributions of carbon
dioxide evolved by the secondary consumers (microbes and fauna) as 
differentiated from that originating from respiring roots. For the pur-
poses of this laboratory exercise, we will rely on comparisons of respira-
tion from different ecosystems such as an arable field, forest, or
grassland. Soil respiration, reflecting all of the biotic activity, is often
measured to compare and contrast the side effects of chemicals such 
as pesticides and heavy metals. Soil respiration can be determined
directly in the field. By measuring soil temperature and percentage of
water in the soil, the relative contributions of these key abiotic variables
can be calculated, which is useful in comparative ecosystem studies
(e.g., Coleman, 1973). For more background on this method, consult also
Alef and Nannipieri (1995).

Materials and Supplies Needed

Metal or plastic cylinders (30cm long, 15cm diameter) with one
end beveled for ease in insertion into soil

Plastic lids to seal the cylinders, available from Sinclair & Rush,
Inc., St. Louis, MO
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Aluminum foil, to cover cylinders and lids, to minimize any heat
loading

Screw-capped glass jars (4–6cm diameter, 7–8cm high)
Tripods made of metal or plastic
NaOH solution (0.5 or 1.0M)
Barium chloride solution (1.0M)
HCl solution, or definitive (determined) molarity, ideally 1.0M
Thymolphthalein indicator: 1 gram (g) thymolphthalein is

dissolved in 100 milliliters (mL) 95% ethanol. (Other
references [e.g., Alef and Nannipieri, 1995] describe the more
often used phenolphthalein, but it has a less-definitive end
point, changing from dark to light pink at the end point. In
contrast, the thymolphthalein changes from blue to colorless at
the end point very rapidly, which gives the definitive end point
so desired in this titration.)

Procedure

About a week after the respiration chambers are installed (pushed 
15cm into soil), the CO2 flush from the soil disturbance caused by the
installation should have diminished. It is now possible to measure the
amount of CO2 respired from a known surface area by trapping it into
jars of 1M NaOH during 24 hours.

Pipette 20mL of NaOH solution into the glass jar, and place it on 
the tripod in the center of the selected cylinder. Immediately cover the
cylinder with the plastic snug-fitting lid, and cover the entire setup with
aluminum foil. Note time zero.

After 24-hour incubation, retrieve the jar, pipetting 20mL BaCl2 into
it before covering with screw-on lid. Take the jars to the laboratory for
titration, using the color indicator noted previously and the standard 
1M HCl.

Note that control treatments are performed by incubating sealed jars
of NaOH solution in the field.

Calculations

CO2 evolution rates are calculated as follows:

CO2 - C (mg) = (B- X)ME

where B is the HCl needed to titrate the NaOH solution from the blank;
X is the HCl (mL) needed to titrate the NaOH solution in the experi-
mental jars, exposed to the soil atmosphere; M = 1.0 (HCl molarity); and
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E is the equivalent weight (22 for CO2, and 6 for C). The data are thus
expressed as milligrams of CO2 or CO2 - C per square meter per day.

LITTER DECOMPOSITION STUDIES

Principle

Weight loss by bagged leaf litter has been a useful method for mea-
suring leaf litter breakdown for nearly 50 years (Bocock and Gilbert,
1957). Known masses of litter enclosed in mesh bags or envelopes may
be exposed in field sites and then retrieved at later times for remeasure-
ment of mass. Disappearance or breakdown of bagged litter is a valuable
means of comparing substrates such as leaf litter, twigs, or roots. Differ-
ent habitats or geographic regions may also be compared. Litterbags
have been successfully used in hardwood and conifer forests, deserts,
agroecosystems, and arctic soil situations. In prairies, ingrowth of grass
may present a problem. Litterbags have been used to sample a subset 
of soil microarthropods, in order to discover which species are active 
in a given stage of decomposition or to follow the development of
microarthropod communities. Litterbags retrieved from field experi-
ments are extracted with Berlese funnels before estimation of mass loss.
Fractions of litterbag material may be removed also for nematode
extraction. In this experimental context, different mesh sizes may be
used to exclude macroarthropods, microarthropods, or microfauna.
Breakdown rates are more rapid in bags with larger mesh and slowest
in fine-mesh bags that admit only microfauna. Litterbags may be 
treated with insecticides or fungicides to manipulate specific groups of
soil biota for studies of their effects on decomposition.

Litterbags consistently underestimate decomposition rates; thus
they are properly used in a comparative context. Such underestimation
is most extreme for rapidly decomposing substrates—leaves of Cornus
florida or (in agricultural systems) leguminous foliage. For more recal-
citrant litter types—Rhododendron or some Quercus species—mass loss
from bagged litter more closely approximates that of unconfined leaves.

As an alternative method, a group of leaves secured by a nylon string
attached to their petioles may be used in conjunction with litterbags.
Loss of leaf area as well as mass loss may be measured (Hargrove and
Crossley, 1988). Because entire fragments may be broken off and lost,
this string method overestimates decomposition rates and is viewed as
a comparative method. Decomposition of rapidly decaying substrates is
characteristically overestimated. Some leaf litter species, such as
sweetgum, tend to become detached from their petioles early in litter
breakdown.
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Another method of measuring leaf area loss was employed by
Edwards and Heath (1963), who buried leaf disks of known area in lit-
terbags. When they were retrieved the leaf area loss was estimated
using a grid, and soil animals were enumerated. See Chapter 5 for a dis-
cussion of litter decomposition.

Litterbag Construction

Various types of netting have been used for litterbags. Mosquito net-
ting, nylon drapery mesh, and plastic window screen are suitable mate-
rials. Cloth bags must be sewed together. Plastic screen bags may be
constructed by using a soldering iron to melt and seal the edges of the
bag. Cloth bags are more flexible, conform to the shape of the forest floor,
and admit more fauna because the mesh openings are more flexible.
Window screen bags are more rigid and openings are fixed, but they are
much easier to construct. Size of bags has ranged from 0.25 square
meter (m2) down to 10 millimeters (mm); 10cm by 10cm (one decimeter)
is a frequently used dimension. Actual dimensions of 12-by-12cm yield
an effective area of about 100cm2. A flap on the open end of the bag
allows it to be closed with a safety pin.

Leaf litter substrates should be air dried if possible before insertion
into the litterbags. We use contrasting litters with different palatabili-
ties, carbon–nitrogen ratios, etc., such as dogwood, chestnut oak, 
or rhododendron. Decimeter litterbags will contain about 1.5g of dry 
deciduous leaf material before breakage becomes a problem. After mass
determination, an identifying label may be placed inside the litterbag.
(Aluminum tags attached outside the bags tend to attract large 
mammals.)

Place the bags out in field sites such as old fields, forest floor, or agri-
cultural fields. On each sample date, randomly select four replicate lit-
ter bags from each of several treatments. Upon retrieval, litterbags
should be placed in plastic bags and returned to the laboratory as soon
as possible. The bag may be opened and a small increment removed for
nematode extraction (with suitable estimation of litter mass). The
intact litterbag may then be extracted on a Tullgren funnel. Finally, the
litter substrate is removed from the bag for mass determination.

Process the litter using the following steps:

1. Clean the outside of the litterbag (brush off any sand and litter
particles).

2. Remove the metal label; record its number, the pick-up date,
treatment code, and your initials on a new label.

3. Weigh a beaker (with tape label on it) and record on weighing
sheet.
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4. Above a piece of waxed paper, carefully take all the litter mate-
rial out of the litterbag and put it into the beaker. If there was any soil
intrusion into the litterbag, make sure you remove the soil before you
put the litter in the beaker. Put the beaker in the 60°C oven and dry
the litter for a minimum of 2 days.

5. After at least 2 days, record the dry weight (beaker + litter dry
weight) and transfer the litter to a labeled paper bag.

Calculations

Express results as percentage of dry mass remaining:

where

M0 = initial dry mass at time zero
Mt = final dry mass at time t

Plot logarithm percentage mass remaining (y-axis) versus time (x-axis)
to derive exponential decay curves and calculate decay constants (-K)
for statistical comparisons among treatments.

ANALYSES FOR SOIL MICROBIAL BIOMASS

The Chloroform-Fumigation K2SO4-Extraction Method

Principle

This procedure compares the amount of total organic carbon (TOC) in
a chloroform-fumigated soil sample to that in a nonfumigated soil sam-
ple to determine soil microbial biomass. In the chloroform-fumigated
sample, TOC will be higher because the sample contains the cell con-
tents of lysed microbial cells. Hence the difference in extracted TOC
between fumigated and nonfumigated samples will provide a measure
of microbial biomass (Vance et al., 1987). Note that you can only assume
that this TOC is of microbial origin if the soil samples have been picked
free of roots, litter, earthworms, etc. (the microfaunal contribution to
TOC is less than 5%).

Fumigations are carried out for a period of 2 days in vacuum-
desiccators with alcohol-free chloroform. Soil samples are extracted
with 0.5M K2SO4 and the filtrate is analyzed for TOC. Analysis results
need to be adjusted to a TOC/g dry soil value. It is important to refriger-
ate soil samples until the fumigation and K2SO4 extractions are per-
formed.
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0
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-

¥
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Preparation and Handling of Potassium Sulfate

Make 0.5M K2SO4 by adding 87.13g K2SO4 to a 1000-ml volumetric
flask and bring to about 2/3 volume with deionized water. Place on a stir
plate until K2SO4 is in solution and bring up to volume with deionized
water. K2SO4 powder has a health rating of 1 (may cause irritation); gog-
gles and gloves should be used when handling this chemical.

Sample Preparation

1. Remove all visible roots and leaf litter from freshly collected soil
samples with a forceps. Roots may be dried and weighed to get a mea-
sure of root density of the soil sample.

2. Mix the soil sample thoroughly to make it “homogeneous.”
Label two 125-mL Erlenmeyer flasks (one NF—nonfumigated—and
one F—fumigated); include, of course, the sample site and number on
the label. Note: Labels must be in pencil on special white tape,
because marker ink and often glue dissolve in chloroform fumes.

3. Weigh about 25g soil (fresh weight; or 20g dry weight) into each
flask (water content should be in the 20–30% range for best fumiga-
tion results). Record weights for later correction to dry weight.

4. Include at least four blanks (2F, 2NF) (empty Erlenmeyer
flasks).

Potassium Sulfate Extractions

1. Use a 50mL dispenser to add 50mL of 0.5M K2SO4 to each NF
flask. Cover flasks with parafilm and place them in a rotary shaker
for 30 minutes (at about 200 rotations per minute [rpm]).

2. While samples are shaking, prepare your funnel and filter
paper setup. Wearing powder-free gloves, fold Whatman 42 filter
paper, (15-cm diameter), so that it forms a cone, and place it into a
plastic funnel. Fill each funnel with deionized water to rinse out any
traces of soluable carbon in the paper.

3. After 30 minutes, take flasks out of the shaker. For each flask:
transfer white tape label to a 60-mL plastic bottle; place vial under
funnel; gently shake extract to suspend the soil and pour it immedi-
ately onto filter paper. Do not try to get all the soil onto the filter. Store
the extracts in a freezer until analysis on the TOC analyzer.

Chloroform Fumigation

1. Clean vacuum-desiccators and cover the bottom with water
(about 1cm). Place the ‘F’ flasks inside the desiccator. As many flasks
as will fit without spilling the soil or blocking the opening of another
flask may be placed in each desiccator (about 13 flasks). Include one
blank (empty Erlenmeyer flask) in each desiccator.
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2. Place a 100-mL beaker in each desiccator. Add a few glass beads
and 40 of alcohol-free chloroform. Use gloves and work in the fume
hood at all times when working with chloroform. Close the desiccator
with the lid (use some Lubriseal or Vaseline for good sealing).

3. Start the water aspirator, check the vacuum suction, then
attach the hose to the desiccator. This will create a vacuum in the 
desiccator, causing the chloroform to boil and evaporate, and saturate
the desiccator atmosphere. Allow the chloroform to boil vigorously for
5 minutes. Then (first) close the vacuum route by sealing the desicca-
tor (by turning the top), and then stop the water aspirator. The vacu-
um will suck water into the desiccator if you turn off the water before
sealing the desiccator. Reapply the vacuum 3 times over the next
hour. The chloroform may not boil after the first time. Allow the fumi-
gation to proceed for 2 days.

Chloroform Removal

1. After 2 days, release the pressure in the vacuum-desiccators.
Remove the beaker of chloroform, and store it in the back of the hood
to let the remaining chloroform evaporate.

2. Because it is important that all residual chloroform is removed
from the soil samples before proceeding with K2SO4 extractions, reap-
ply the vacuum to the desiccator. However, do not seal it: simply
detach the vacuum hose (while the tap is running) and allow the air
to get back in and circulate. Repeat this procedure a few times to clear
the chloroform from the flasks. Then place the flasks near the open-
ing of the fume hood, and lower the window to increase the velocity of
wind flowing over the flasks (the removal of chloroform will take
about an hour).

3. Do the potassium sulfate extractions (see earlier section) for the
F flasks.

Calculations

Microbial biomass carbon is calculated as:

(TOC [F] - TOC [NF]) ∏ KC where KC = 0.38 (Vance et al., 1987).

NOTES:

Sample blanks should be run with all preparations and the
results should be used to correct values above.

All glassware (volumetric flasks, Erlenmeyer flasks) and
plasticware (Nalgene sample bottles) must be acid-
washed (10% HCl) and dried before and after use.
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The K2SO4 soil extracts can be used for several analyses
other than TOC, for example, microbial nitrogen (NO3

and NH4) (see Cabrera and Beare, 1993; and Jenkinson,
1988) or microbial phosphorus and sulfur (see Page et al.
1982).

SAMPLING AND ENUMERATION OF NEMATODES

Principle

Using a procedure to determine the numbers of free-living nematodes
in litter and soil samples, the abundances of these important mesofau-
nal organisms in terrestrial ecosystems can be estimated.

Sampling Considerations

When designing a sampling plan for nematodes, there are practical
and theoretical considerations to be made, which are balanced with the
amount of time and money available for the study.

• Goal of the study and required accuracy: The goal of the 
study will greatly determine the degree of accuracy required. For
qualitative studies such as diagnosis of a plant disease or taxonomic
work, the requirement is relatively low. In an ecological study of
nematode communities more accuracy is needed, because rare
species should be included in the sampling. Even more effort is need-
ed in sampling for disease control, for example, to certify that a cer-
tain field is disease-free. In general, a higher accuracy costs more
time and money.

• Variation in space (horizontal and vertical distribution): One of
the biggest problems in sampling is that nematodes have a patchy 
distribution, that is, they are not randomly distributed in the soil.
This has biological reasons (concentration around roots or in islands
of organic debris), agronomic reasons (cropping history; planting dis-
eased material creating “hot spots” of disease), as well as physical
reasons (e.g., texture gradients). If any of these factors are known,
sampling variability can be decreased by sampling and analyzing
such areas separately (called stratified sampling). In terms of vertical
variation, most nematodes (and other soil organisms) can be found in
the topsoil (0–10cm). In agricultural fields, when sampling roots,
sample depth is often as deep as the plow depth (typically 15cm) or
deeper. Again, it depends on the purpose of the study.
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• Variation in time: Seasonal cycles and life cycles will influence 
the results of the sampling. Seasonal fluctuations in moisture, 
temperature, and food availability will influence abundances of 
different species in different ways. For sampling plant parasitic
nematodes, knowledge of the life cycle is most relevant. For popula-
tion studies of an endoparasite, sampling soil when the crop is on the
land does not make sense, because most nematodes will be inside 
the roots.

• Statistical considerations: The purpose of sampling is to esti-
mate, as accurately as possible, nematode abundance in a site. The
“sampling error” (expressed as variance or standard deviation) is the
sum of systematic and random errors, introduced at any stage in 
the sampling process (taking cores, mixing soil, extracting soil, count-
ing subsamples, etc.). Systematic errors can be reduced by improving
methods and working as carefully as possible. Random errors can be
reduced by taking more and bigger samples, as much as time and
money allows. A rule of thumb is that variability within a sample (or
plot) is usually smaller than between samples (or plots). Thus, it
makes more sense to take many samples than to analyze many sub-
samples (likewise, it is more efficient to sample many different plots
than to take many samples within the same plot). Random sampling
is best but not always most practical. Systematic sampling (e.g., tak-
ing samples along a transect, every few meters) is more often used. In
that case, the starting point should be randomly chosen.

Sampling Tools and Precautions

Soil (and roots) can be sampled with any simple container such as a
food can, a shovel, or special corers. Notes: When sampling to advise
farmers on the presence/absence of plant parasitic nematodes, make
sure the sampling tools are cleaned and disinfected after every soil sam-
ple. Always store the soil samples in plastic bags (in paper bags the soil
will dry out), and keep them away from the sun (heat kills nematodes!).
Handle the samples carefully: throwing them around, or any other
mechanical violence (soil sieving, mixing), will kill nematodes as well.
The sooner the samples are extracted, the better. For reliable results,
the maximum storage time, at 4°C, is 1 week only.

Nematode Extraction: Baermann Funnel Method

Principle

The principle is very simple: nematodes move out of the substrate
toward the water, and sink to the bottom of the funnel stem due to 
gravity forces. The method is suitable for extraction of mobile nematode
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from substrates like soils and sediments, plant material,a and litter.a

Advantages and disadvantages of the method: it is cheap and simple;
extraction efficiency is quite good if your sample is small relative to the
funnel diameter (with only a thin layer of substrate on the sieve), but
decreases very rapidly when your sample gets bigger than that. For
alternatives, see Southey (1986).

Materials and Supplies Needed

Funnel with a piece of rubber tubing attached to the stem, closed
with a pinch clamp

Funnel rack
Kimwipes
Clean tap water (not deionized water), centrifuge tube for sample

collection
Small screen to support soil in funnel (e.g., aluminum window

screen [avoid copper])

Procedure

1. Put the funnel in the rack. Make sure it is level. Fill it with clean
water. Remove air bubbles by squeezing the rubber tube, or by drain-
ing water by opening the clamp.

2. Carefully mix the soil sample (excessive mixing will kill 
nematodes). Take a 10-g subsample, spread it out on a double layer of
Kimwipe tissue. Record sample weight. Place the sample on the
screen in the funnel. Do this carefully, so that small soil particles do
not get through the tissues and obscure nematode samples.

3. The soil should be moist enough, but not totally submerged.
Adjust the water level in the funnel using a spray bottle (don’t spray
on the sample, for same reasons as discussed in step two), or drain by
opening the clamp. Cover the funnel with a petri dish or wax paper to
avoid dust and evaporation.

4. The extraction time is 2 to 4 days. The longer the time, the more
nematodes are harvested, but the question arises whether this
increase is because of catching slow-moving nematodes, or due to
hatchlings from eggs in the soil or larvae from fast-reproducing
species—some have a life cycle of 2 days (especially at lab tempera-
ture). For that reason, 48 hours is an optimal time. Check after the
first 24 hours if the soil is still moist enough.
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5. Harvest: By opening the clamp, get approximately 10mL in a
centrifuge tube (e.g., plastic Corning, 15mL with screw cap). Store
immediately under refrigeration, for maximum of 1 week. To kill and
preserve (using 5% formaldehyde) the nematodes, see article about
identification of nematode feeding groups by Yeates et al. (1993).

Killing and Fixing Nematodes with Hot and Cold Formalin (5%)

(Precautionary note: Conduct this work in a fume hood.)
Using hot formalin, the nematodes are instantly killed and fixed.

Immediately cooling down with cold formalin prevents overheating that
could cause deformations. With this hot–cold formalin method, nema-
todes will be fixed in taxonomic groups according to characteristic body
curvatures, which makes routine identification easier. Another advan-
tage is that most species keep their body transparency. This is in con-
trast to the method of fixing nematodes with cold formalin only, where
nematodes die slowly instead of instantly, which causes deformations
and loss of transparency.

Materials and Supplies Needed

Water aspirator (vacuum pump) with fine pipette tip attached to
the hose

Nematode suspension in plastic 15-mL centrifuge tube with
formalin 5% (10.8mL formaldehyde 37%, in 89.2mL DI water)
in a squeeze bottle

Procedure

1. Let the nematodes in the centrifuge tube settle to the bottom for
at least 24 hours. Do this close to the water aspirator (vacuum pump)
to avoid sample disturbance.

2. Carefully aspirate the “supernatant” water until 2mL (the
amount in the conical tip of the tube) is left.

3. Add (approximately) 4mL of 90°C dilute formalin and immedi-
ately cool down with (approximately) 4mL cold formalin from the
squeeze bottle.

4. Make sure the cap is tightened so formalin can’t evaporate.

SAMPLING AND ENUMERATION OF MICROARTHROPODS

Principle

Using heat and dryness, microarthropods are “induced” to move out 
of litter and soil samples, into a collecting fluid, for enumeration and

Sampling and Enumeration of Microarthropods 311



identification. With flotation, differential buoyancy of the microarthro-
pods is used to advantage with a flotation medium.

Methods for the Study of Microarthropods

Sampling

Mites and collembolans are collected by extracting them from a sam-
ple of their soil habitat. Extraction procedures may be either Berlese
funnel extraction of soil cores or litterbags, or alternatively, flotation
(Bater, 1996). Total microarthropod populations are then estimated by
extrapolating from the size of the sample (weight or area) to field dimen-
sions. For sampling protocols and considerations of sampling design,
consult Hall (1996), Schinner et al. (1996), Coleman et al. (1999), and
Larink (1997).

Soils vary greatly in structure, composition, pore size, moisture
regime, and so forth; sampling methods need to be suited to the ecosys-
tem under investigation. Most quantitative samples of microarthropods
are taken from soil cores 5–10cm in diameter by 5–10cm deep. The
smaller cores yield satisfactory results; a 5-by-5-cm core will contain
several hundred mites and collembolans. A split core tool with a sharp
beveled tip, designed to hold a sleeve for the soil sample, is preferable for
most soils (Fig. 9.1). For many soils the great majority of microarthro-
pods are found within 5cm of the surface. In grassland soils and dis-
turbed soils they may be distributed more deeply, and additional 5-cm
increments may need to be extracted, to a depth of 15cm or more. Sam-
ple cores should be extracted in a high-efficiency extractor (Fig. 9.2) as
soon as possible; storage for any significant period of time will result in
lower numbers of microarthropods extracted.
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(a) (b)

FIGURE 9.1. Soil coring device: (a) outer tube; (b) inner sleeve, typically made of alu-
minum. Effective core diameter: 5cm (modified from Gorny and Grüm, 1993).



Extraction of Microarthropods from Samples

There are many modifications of the basic Berlese funnel (Edwards,
1991) and most will yield satisfactory results. Heat is used to desiccate
the sample, driving arthropods out and down into a collection fluid.
Many designs are called Tullgren funnels, after the originator of the use
of electric lights as heat sources. (The original Berlese funnels used
steam as a heat source). Larger funnels (Fig. 9.3), used for extracting big
samples of litter, can work effectively with small cores as well. Arrays 
of smaller funnels can handle more samples in a smaller space, and 
have become the most widely used piece of extraction equipment (Bater,
1996). Soil cores contained in their sleeves are extracted in an inverted
position, surface layer down, so that arthropods can escape using 
natural channels in the soil. The upper portion (bottom) of the core
should be moistened with water to improve extraction efficiency (T. R.
Seastedt, personal communication). Seventy-percent ethyl alcohol is
the usual collection fluid for the extracted arthropods. A ten-percent
picric acid solution is preferred by some authors (e.g., Meyer, 1996).
Care must be taken to keep mineral soil from falling into the sample (the
berleseate), because samples contaminated with soil are hard to sort. To
this end, a single layer of cheesecloth may be inserted between sample
and funnel.

Litterbags are an alternative method to soil cores for sampling
microarthropods. They offer several advantages: Microarthropods
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FIGURE 9.2. Design and assembly of the high-efficiency microarthropod extractor (from
Crossley and Blair, 1991).



using different substrates, such as different litter species, may be
detected (Hansen, 2000). Different stages of litter decomposition may 
be compared, and time sequences described. Litterbags are readily
extracted, intact, on large Tullgren funnels.

Flotation is another alternative method for extracting microarthro-
pods from soil samples. Using organic solvents or saturated sugar solu-
tions, arthropods may be separated from the soils, washed through a
fine mesh screen, and thus recovered (see Fig. 4.9). In comparison with 
Tullgren extraction, flotation usually yields higher numbers of
microarthropods. Some collembolans, such as members of the family
Onychiuridae, respond poorly to Tullgren extraction; flotation is the
method of choice for sampling these arthropods. The disadvantages of
flotation are (1) the method is extremely laborious in comparison to Tull-
gren extraction and (2) it is not effective for samples with large amounts
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FIGURE 9.3. Schematic diagram of an extractor for soil macrofauna: (a) sample cover, 
(b) soil sample, (c) sample screen, (d) aluminum funnel, (e) collection container with 70%
alcohol or similar collection fluid (from Gorny and Grüm, 1993).



of organic matter. Finally, the use of organic solvents probably violates
most laboratory health and safety considerations (Griffiths, 1996).

Amore attractive procedure uses saturated sugar solutions instead of
organic solvents (Snider and Snider, 1997). The method (Table 9.1)
yielded much higher captures of microarthropods than did Tullgren
extraction alone, in samples from two hardwood forest sites in upper
Michigan. The method was extremely laborious; the authors report that
10 to 12 hours were required to sort a single sample. They note that
financial constraints usually preclude labor-intensive procedures such
as flotation, even though much more accurate population estimates
were obtained.

Sample Sorting and Identification

A good dissecting microscope with magnification in the range of
10–40¥ is essential. A preliminary sorting will separate collembola,
mites, and other microarthropods. The latter category includes the few
tiny spiders, small beetles, and other insects (adults and larvae) that
can usually be identified with the dissecting scope. Some may require
slide mounts (see later discussion). Collembolan and mite specimens
can be transferred to sorting dishes with a fine-tipped pipette (such as a
Pasteur pipette), a camel’s hair brush trimmed to 3–4 lashes, or a flat-
tened, curved dissecting needle.

Collembolans: Identification of springtails almost always requires
high magnification (400¥ or greater) of cleared specimens, using a good
phase contrast microscope. Christiansen (1990) recommends clearing
specimens and observing them in temporary mounts; heavily pig-
mented forms may require more clearing than the mounting medium
provides. He suggests the following reagents:
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TABLE 9.1. Procedure for Flotation Extraction of Microarthropods from Soil Samples,
Using Saturated Sugar Solutions

Step one Place the soil core in a plastic bag; crumble it gently.
Step two Transfer the crumbled core into a 1-liter wide-mouth jar. Wet it with 

distilled water.
Step three Add saturated sugar solution, leaving approximately 3cm of headspace.
Step four Cover the jar with a lid, shake it gently, and let it stand for 2 hours to 

allow organic matter to float to the surface.
Step five Decant the solution through a number 200-mesh sleeve into a large bowl 

to trap the organic matter (do not include silt from the bottom of the jar).
Step six Rinse the organic matter with distilled water, then wash it from the sieve 

into a sample jar containing 95% ethyl alcohol.
Step seven Return the sugar solution to the bowl; return to step four.
Step eight Repeat steps four to seven for three iterations, then combine all organic 

matter into one jar.

After Snider and Snider, 1997.



1. Potassium hydroxide, a 5% solution, for brief periods only.
2. Lactic acid, an excellent clearing agent; collembolans tolerate

long exposure to it. May be mixed with an equal portion of glycerine.
3. André’s fluid (40cc chloral hydrate, 30cc glacial acetic acid, 

30cc distilled water). Clears rapidly but may cause damage to 
specimens.

4. Bleach. A5.35% solution of sodium hypochlorite will clear heav-
ily pigmented specimens, but is destructive to cuticles.

Christiansen (1990) further recommends the use of depression slides
for study of cleared specimens, because weight of the cover glass 
may crush the arthropod. Slide-mounted specimens are convenient for
reexamination and for reference specimens (see later discussion about
preparation of temporary and permanent mounts of microarthropods).

Mites: Preliminary sorting of mites into subgroups (Prostigmata,
Mesostigmata, adult Oribatei, immature Oribatei, and Acaridida) can
be accomplished successfully with experience. Even so, slide mounts
will be necessary for confirmation of these identifications. In the sorting
dish, the mites are separated into morphospecies and representatives
are mounted on microscope slides, depending upon the group. Mesostig-
mata, Acaridida, and Prostigmata are usually mounted in Hoyer’s 
medium (see description below), with preliminary clearing for large or
heavily pigmented specimens. Oribatids require special consideration
because their heavily pigmented and brittle exoskeleton is easily
crushed by a coverslip.

Clearing agents for mites are similar to those used for collembolans.
A popular one is lactophenol (Krantz, 1978):

Lactic acid 50 parts
Phenol crystals 25 parts
Distilled water 25 parts

Specimens may be left in lactophenol at room temperature for several
days, or heated for more rapid action. Larger specimens may need to be
punctured. After soaking, large mites such as trombidiids may be
pressed with a flattened dissecting needle before mounting them.
André’s fluid (described previously) is also recommended for mites as
well as collembolans. Nesbitt’s fluid (40g chloral hydrate, 25mL dis-
tilled water, and 2.5mL concentrated acetic acid) is useful for specimens
that do not respond to milder clearing agents. Oribatids stored in lactic
acid for a few weeks are usually satisfactorily cleared for study.

Most permanent or semipermanent mounting media used for mites
(and collembolans as well) are aqueous, in that they contain, or are 
soluble in, water (Krantz, 1978). Gum arabic and chloral hydrate are 
the principal ingredients. Hoyer’s medium is one of the most popular:
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Distilled water 50ml
Gum Arabic 30g
Chloral hydrate 200g
Glycerine 20ml

Clear crystals of gum arabic are preferred. Powdered gum arabic is dif-
ficult to wet but may be dissolved in alcohol, which is then allowed to
evaporate (R. A. Norton, personal communication). If slide mounted
specimens are given gentle heat (40°C) for a few days, considerable
clearing of the specimen will take place. Slide mounts using Hoyer’s
medium, if ringed, will last for some years but eventually deteriorate.
Canada Balsam is not satisfactory for mites or collembolans because 
the refractive index of the medium is so similar to that of the cuticle
(Christiansen, 1990). Permount is suitable but requires that specimens
be dehydrated and mounted from xylene (Adl, 2003). Generally speak-
ing, mite and collembolan specimens should be archived in 70% alcohol,
although “constant vigilance” is necessary to guard against evaporation
of the preservative (Christiansen, 1990).

As noted above, many specimens of oribatid mites cannot be mounted
on slides in the usual manner without crushing them and thus obscur-
ing their features. Following clearing, specimens may be examined in
depression slides, partially covered with a cover slip, in lactic acid or
glycerin and manipulated with a fine needle. R. A. Norton (personal
communication) recommends slide mounts using a procedure with a
small cavity drilled into a microscope slide. Asmall drop of fluid is placed
next to the tiny hole and allowed to flow into it. The mite is positioned
and allowed to partially dry; then mounting medium and coverslip may
be added. Norton further recommends a 50–50 mixture of Hoyer’s medi-
um and Nesbitt’s fluid for preliminary clearing of oribatids.

SAMPLING AND ENUMERATION OF MACROARTHROPODS

Principle

See comments about sampling in Chapter 4.

Methods for Sampling Macroarthropods

Sampling

Macroarthropods are a diverse group, with representatives in 
several classes and orders of the Arthropoda. Most are visible to the
unaided eye and hand collecting and sorting is a reasonable procedure
for some of them. Many, such as the cryptozoa, are crepuscular or noc-
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turnal, and even hand collecting may require special procedures such as
flashlights, black lights, or baits.

Berlese or Tullgren Extraction

Large Tullgren funnels will extract microarthropods from samples of
forest floor, but sample size is necessarily limited to 0.1–2.5m2 collec-
tions. Larger samples will be necessary for those taxa whose densities
are smaller than 1–2 per m2, and careful examination and hand sorting
may be the preferable means of processing them. Forest floor materials
can be removed from a measured area and then crumbled over a coarse
screen atop a white enameled pan. Arthropods are captured as they are
released from the sample. An alternate procedure involves crumbling
the sample gently into a container of water and collecting arthropods
that float to the surface (Bater, 1996).

Flotation

In most terrestrial ecosystems, macroarthropods are inhabitants of
the mineral soil layers, and sampling them requires the use of coring
tools. Soil cores of 5–25mm diameter and 10–25mm deep will recover
the majority of macroarthropods in most systems. These monoliths may
be crumbled and hand sorted, or washed through a set of sieves with
running water (Edwards, 1991). The flotation procedure of Behre (1987)
involves washing the soil through such a set of sieves of decreasing mesh
sizes, with collecting bowls arranged in steps and connected to an over-
flow. The magnesium sulfate solution used for washing is thus collected
and reused.

Emergence Traps

Transient soil inhabitants emerge and may be trapped to estimate
their densities. Emergence traps made from screen wire and covering a
known area can be fitted against the soil to collect adult macroarthro-
pods when they appear (Callaham et al., 2003).

Pitfall Trapping

Can traps are a useful, inexpensive, and rapid method for assessing
communities of macroarthropods. Pitfall traps (Fig. 9.4) have limited
usefulness for assessing population sizes (Coleman et al., 1999), because
catches reflect both density and mobility of arthropods. Still, pitfall
traps are a valuable method for comparing habitats, assessing seasonal
shifts in macroarthropod communities, and evaluating species richness.
Species-area curves constructed from a series of trappings (Fig. 9.5)
revealed the difference in species richness of a ground beetle community
in Iowa (Larsen et al., 2003).
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Pitfall traps consist of cans or jars, 5–25mm in diameter, set 
flush with the soil surface. Arthropods blundering into the traps are
directed by a funnel into a vial with preservative (Fig. 9.4). Alcohol and
propylene glycol have been used as preservatives (Larsen et al., 2003).
Propylene glycol is not subject to evaporative loss, but is poisonous to
vertebrates and thus not recommended. If specimens are to be used for
chemical analyses, a dry killing agent such as naphthalene or para-
dichlorobenzene may be substituted. Pitfall traps should be emptied
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FIGURE 9.4. Double cylinder for the capture of epigeic fauna: (a) outer cylinder, perma-
nently set in the soil, (b) funnel, (c) removable inner jar with collection/preserving fluid
(from Gorny and Grüm, 1993).

FIGURE 9.5. Species accumulation curves for ground beetles in tallgrass prairie, agricul-
tural, and woodland habitats in northeastern Iowa based on annual pitfall trap samples
collected over 5 years from each site and habitat (from Larsen et al., 2003).



daily. Heavy rain may ruin the samples. Raised covers may be used 
to protect the pitfall traps and offer some protection from flooding by
rainfall.

SAMPLING AND ENUMERATION OF EARTHWORMS

Principle

Earthworms may be sampled in a variety of ways, depending on
behavioral traits and habitat preferences. Different groups of earth-
worms inhabit different portions of a soil volume and may be sampled
accordingly. For example, some epigeic species (e.g., Bimastos spp.,
Amynthas spp.) may be collected by hand in the litter layer or in and
under logs. Deep burrowing, anecic species such as Lumbricus terrestris
may be best sampled with chemical irritants that cause the worms to
emerge to the soil surface where they may be hand collected. Many endo-
geic and epigeic species can be quantitatively collected by digging and
hand sorting a known volume of soil. In general, the appropriate meth-
ods depend on the purpose of sampling (e.g., quantitative sampling ver-
sus qualitative biodiversity surveys). Collection and enumeration
methods are reviewed in detail by Lee (1985), Edwards and Bohlen
(1996), and Hendrix (2000).

Collection of Earthworms

Collection techniques can be classified as passive, behavioral, and
indirect (Table 9.2).

Passive Techniques

Hand digging and sorting, which is the most commonly used method
for quantitative sampling of earthworms, involves digging pits of known
volume (e.g., 25 by 25 by 25cm), breaking the soil by hand, and collect-
ing all earthworms and cocoons found. Collected specimens are immedi-
ately preserved in 70% ethanol or 5% formalin for later counting and
identification, or they may be kept alive in cool, moist media for use in
experiments. Washing and sieving is an elaboration of hand sorting: the
soil is dispersed in water, poured through a sieve, and the earthworms
and cocoons hand picked from the sieve contents. Bouché and Beugnot
(1972) describe mechanical approaches to washing and sieving. Flota-
tion of sieve contents in a high-density solution, such as 1.16–1.20 spe-
cific gravity MgSO4, is another means of separating earthworms and
other soil fauna.

Behavioral Techniques

Several approaches have been taken to extracting earthworms from
soil based on their behavioral response to certain stimuli. A number of
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TABLE 9.2. Descriptions of Methods for Collecting Earthworms

Method Description Advantages Disadvantages

Passive

Hand sorting Known volume of soil cut with spade or corer, Simple, reliable in the field; low Laborious; may not collect deep-
broken apart and worms removed by hand cost burrowing species, small

earthworms, and cocoons
Washing and sieving Known volume of soil cut with spade or corer, Higher recovery of cocoons and Laborious; may not collect deep-

soaked in dispersant/preservative, and small individuals burrowing species
washed through sieve(s) by hand or 
mechanical device

Flotation Material from hand sorting or washing/ Separates earthworms from soil Laborious; may not collect deep-
sieving floated in high-density solution and plant debris; cocoons and burrowing species
(e.g., MgSO4) small individuals collected

Behavioral

Chemical extraction Soil saturated with chemical irritant (e.g., Simple; effective on deep- Not effective on all species, in all 
0.2% formalin) causing earthworms to burrowing anecic species soils or under all conditions
emerge onto soil surface

Heat extraction Soil blocks or cores suspended under heat Effective on dense root mats Not effective on all species;
lamps in water into which earthworms inconvenient for field use
migrate

Electrical extraction Metal rods inserted into soil and connected to Useful for selective or Highly variable; not convenient
AC electrical source comparative sampling in the field; dangerous

Mechanical vibration Stake or rod inserted into soil and vibrated Simple; useful for selective or Not effective on all species
with bow or flat iron comparative sampling

Trapping Pitfall or baited traps placed in soil and Simple; useful for selective or Not effective on all species
sampled at desired intervals comparative sampling

Mark–recapture Individuals tagged, released, and population Useful for estimating population Laborious
sampled at intervals density, dispersal, and mortality

Indirect

Cast counting Surface castings enumerated and identified Simple Not a quantitative estimate of
population density

Summarized from Lee (1985) and Edwards and Bohlen (1996); reproduced from Hendrix (2000).



chemical irritants have been used, including HgCl2, KMnO4, mustard,
and formalin. Aqueous solutions of 0.165–0.550% formalin are most
commonly used and have been shown to be effective on L. terrestris when
applied in three sequential doses totaling 18L·m-2 ; but formalin may be
less effective on other species (Satchell, 1969; Callaham and Hendrix,
1997). Chemical extraction with aqueous mustard powder solution has
been shown to be as effective as formalin in some cases; this method
avoids the use of toxic formaldehyde. Effectiveness varies with earth-
worm species and activity, soil water content, porosity, and tempera-
ture. Comparisons with hand sorting should be done before adopting
extraction techniques for quantitative sampling.

Heat extraction is a modification of that used for enchytraeids (dis-
cussed in next section). Soil cores or blocks are placed in pans of water
and exposed to heat from overhead light bulbs; earthworms are collected
from the water after several hours. This technique was more effective
than hand sorting or formalin extraction on small earthworms in dense
root mats (Satchell, 1969). As with hand sorting, it is not effective on
deep-burrowing, anecic species such as L. terrestris.

Mechanical vibration employs a rod or stake driven into the soil,
vibration for a few minutes with a bow or flat piece of metal such as an
automobile leaf spring, and collection of earthworms that emerge onto
the soil surface. Some megascolecid species have been sampled with this
technique (Reynolds, 1973; Hendrix et al., 1994), but it is not effective on
lumbricids and probably only useful for selective or comparative sam-
pling of certain populations.

Electrical extraction of earthworms involves inserting metal rods
into the soil, connecting them to a source of alternating current, and col-
lecting earthworms that come to the soil surface. Different voltages and
amperages have been used with varying degrees of success; effective-
ness of the technique is highly dependent on soil water content, elec-
trolyte concentration, and temperature. As with mechanical vibration,
the soil volume sampled is not known and therefore this method is 
best suited for qualitative or comparative sampling. However, a com-
mercially available electrical sampler (“octet” device developed by
Thielemann [1986]) was evaluated by Schmidt (2001) and found to be
highly effective for quantitative sampling of lumbricid species in pas-
tures. Electrical extraction methods are potentially very dangerous and
should only be used with extreme caution.

Two earthworm-trapping techniques have been described. Pitfall
traps (open-top containers buried level with the soil surface and con-
taining a fixative solution such as picric acid) may be useful for sampling
surface-active species in diurnal or seasonal studies. Arrays of traps are
installed and sampled at 12-hour, 24-hour, or longer intervals. Baited
traps, such as perforated clay pots containing manure or other attrac-
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tants and inserted into the soil, may also be useful for collecting certain
species. As with other behavioral methods, trapping is probably highly
selective and best suited for qualitative or comparative sampling.

Mark, release, and recapture techniques have been widely used to
study population dynamics of animals including earthworms. Large
numbers of individuals of desired species are collected, marked (e.g.,
with brands or nontoxic dyes), and released into the population of 
interest. Sampling over time and distance from the target site, and enu-
meration of tagged relative to untagged individuals, yields information
on dispersal, mortality, and population density. Radioisotope and, more
recently, immunofluorescent antibody techniques have been employed
in earthworm mark–recapture studies.

Indirect Techniques

For earthworm species that cast on the soil surface, such as Aporrec-
todea longa, numbers and identity of castings may be a useful index of
population activity. Because casting is dependent on soil temperature
and moisture, this technique is highly variable and not a quantitative
estimate of population density.

In summary, digging and hand sorting or washing are probably the
most reliable means of sampling earthworms. However, no single
method will be adequate to sample earthworm populations in all situa-
tions. Combinations of methods will probably achieve reasonable
results. For example, formalin or mustard solution can be applied to the
bottom of pits previously excavated for hand sorting, to extract 
deep burrowing anecic forms not sampled by digging (Edwards and
Bohlen, 1996). Combinations of various methods may be useful in other 
situations.

Identification of Earthworms

A useful taxonomic key to lumbricid species is found in Schwert
(1990). More detailed keys to non-lumbricids (based on interval 
anatomy) are Fender (1990), James (1990), and Sims and Gerard 
(1985).

SAMPLING AND ENUMERATION OF ENCHYTRAEIDS

Principle

Because of their much smaller size than earthworms, enchytraeids
are not effectively sampled by hand sorting from soil. Instead, behav-
ioral methods such as heat extraction are often employed. Van Vliet
(2000) reviews methods for sampling and extracting enchytraeids.
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Collection of Enchytraeids

Quantitative sampling of enchytraeids is often done with cylindrical
core samplers that keep the soil intact. Optimum sampler size is 5–
7.5cm in diameter (van Vliet, 2000). Because enchytraeids show
clumped distributions, sufficient replicates need to be taken to estimate
population density and composition. However, the size and number of
the sampling units is mostly chosen as a compromise between accuracy
of the abundance estimates and the amount of work involved (Didden,
1993).

The most commonly used method to extract enchytraeids from soil is
the wet funnel method (similar to the Baermann funnel used for nema-
todes, described previously), using an extractor such as that shown in
Figure 9.6 (O’Connor, 1955). In this method, a thin soil sample is placed
on a sieve in a funnel filled with water and exposed to light and heat.
After about 3 hours, the light intensity is increased gradually until the
soil surface has reached a temperature of 45°C. Enchytraeids respond
by moving downward away from the heat and pass through the sieve
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FIGURE 9.6. Modified Baermann funnel to extract enchytraeids: (a) soil sample, (b) wire-
gauze sieve, (c) funnel, (d) rubber tube, (e) funnel outlet with spring clip, (f) 25-watt light
bulb (from Gorny and Grüm, 1993).



into the water below. A modified extraction method was described by
Graefe (1973) and Schauermann (1983) in which enchytraeids are
extracted from soil without heat. Extraction time is extended to several
days for soils rich in organic matter and up to 2 weeks for mineral soils.
The time of extraction is limited by the possibility of an oxygen deficit in
the water, which may kill larger organisms.

Didden et al. (1995) compared the two methods and found more effi-
cient extraction without heat. The length of the cold extraction period
and the total extraction time had a significant positive influence on the
extraction efficiency. The Graefe (1973) method is less expensive and
easier to set up, but the long extraction time makes it more difficult to
handle large numbers of samples. The O’Connor (1955) method is faster
and can be modified with a longer initialization period before heat is
applied.

Identification of Enchytraeids

Taxonomic identification of enchytraeids is difficult. The key by Dash
(1990) is useful and more detailed monographs can be found in Nielsen
and Christensen (1959, 1961, 1963).
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Abiotic subsystem, 187
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241–242, 245
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classification, 110
food chain, 116–118, 120–122, 

123
litter breakdown, 204–206
Mesostigmata, 122–124
moisture requirements, 126
Oribatei, 111
Oribatids, 111–119
Prostigmata, 119–122

Acaridae, 127
Accelerator mass spectrometry, 45
Actinorhiza, 38
Adsorptional moisture, 8
Aerial system, 8
Aggregates, 16

Degradation, 71–74
Formation, 71–74, 216
Stabilization, 16, 224, 225
Unstable, 71

Water–stable, 71
Aggregatusphere, 237–238
Agroecosystems, 18, 234, 264–265

Soil faunal impacts, 220–222
Litter breakdown in, 188, 190, 

203
A horizon, 11
Algae, 85, 100, 119, 127, 130, 167
Alicorhagiidae, 121
AM, see Arbuscular mycorrhiza
Amoebae, 84–85

fungi, relationship with, 54–55
morphology, 84–85
soil aggregates, 54, 55

Anabolism, see Primary production
processes

Acanthodrilidae, 173

Anoetidae, 127
Ants, 159–161

Applied ecology, forested ecosystems,
222–225

Apterygota, 7
Classification, 81, 82
Collembola, 6, 101–109

fecal pellets, 181
feeding habits, 101, 104, 107–109,

128–130
fungi, relationship with, 101, 104,

107–109
moisture requirements, 8–9
morphology, 80–81, 101–104

Diplura, 129, 130

Microcoryphia, 130
Protura, 128, 129

Thysanura, 130
Araneae, 149–153
Arbuscular mycorrhiza, 67–69

Molecular identification of, 45
Vesicles, 35–36

Arbuscules, 35

Archaea, 49, 58
Crenarchaea, 58

Arctic food web, 228
Arthropods, see Macroarthropods;

Microarthropods
Astigmata, 124–128, 126

Atmosphere, global change, 275–279
Atomic Energy Commission, 4

Soil biology, 4

Bacteria
biomass determination, 49–51
biomass on Earth, 49
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Bacteria (continued)
flow of carbon, 50
food chain, 233
“libraries,” 238
microbial loop, 87–89
nutrient cycling, 74–77
rhizosphere, 67–69

Baermann funnel method, 94, 
309–311

Basidiomycetes, see Ectomycorrhiza
Bdellidae, 121
Bdelloidea, 89
Beetles, see Coleoptera
Berlese funnel, see Tullgren funnel
B horizon, 11
Bimichaelidae, 120
Binding agents, soils, 72
Biodiversity, 247–270

Acari, 248
Archaea, 249–250
Bacteria, 249–250
Biogeographical trends, 269–270
Fungi, 248–249
Mycorrhiza, 252
Prokaryotes, 249–250
Spatial dimensions, 267–269

Biofilms, on soil mineral surfaces, 214
Biological activity, determination, 

61–67
Biomass

applied ecology studies, 59–61
bacteria, 57–61
fungi, 57–61
global change, 284
microbial, 57–61
roots, 25–33
soil animals, 308–325

Bioturbation, 11–13
Block-like soil, 18–19
Borescope, see minirhizotrons
Box mites, 111

13C tagged litter, 66, 220
14C dilution technique, 28–30
Calcium

nutrient cycle in litter breakdown,
206–209

oxylate in fungal mats, 215–216
Cambisol profile, 12–13

Campodeidae, 129, 130

Cannibalism, 147–148
Capillary moisture, 7
Carabidae, 155

Carbon allocation
in root/rhizosphere, 28–34
root symbionts, 34–38

Carbon cycle
13C tracer studies of organic matter, 220
global, 271–279

role of soil, 281–282
modeling, 74–75

Carbon dioxide
evolution and litter breakdown, 205
global carbon cycle, 281–282
plots, control and elevated, 283–284
soil respiration, 220

Carbon-nitrogen ratio
litter breakdown, 205, 208

Carbon storage, 272
Carpenter ants, 160

Catabolism, 47, 188, see also Secondary
production processes

Cation-exchange capacity, soils, 18
Cellulose

and decomposition, 190, 206
Centipedes, 146, 147

Century model, 275–277
Chelonethi, 131
Chemical elements

nutrient cycle, 187–216
in soil, 187–214

Cheyletidae, 127
Chiggers, 121–122
Chilopoda, 146, 147

Chloroform fumigation, 59–61
C horizon, 11
Cicindelidae, 156, 157

Ciliates, 84, 85–86
Ciliophora, 83
Civilizations, 2–3

Chinese, 2
Egyptian, 2
Greek, 2–3
“hydraulic,” 1
Roman, 3
Mesopotamian, 1
Sumerian, 1

Clays, 14, 15
Mineral structure, 15

Climate, litter breakdown, 285
Clod, 16
Clone “libraries,” 58, 183
Coleoptera (beetles), 6, 154–159
Collembola (springtails), 6, 101–109

classification, 101–103
fecal pellets, 137
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feeding habits, 101
food chain, 108
fungi, relationship with, 101, 104,

107–109
moisture requirements, 8, 107, 109
morphology, 80–81, 101–104
reproduction, 107

Collembolan soil, 137
Comminution, 218
Competition, 118–119
Coniferous forest

net primary production, 24
soil mites in, 114–115

Conjugation, 86
Consumption subsystem, 187
Cryptobiosis, 95
Cryptogamic crusts, 34
Cryptozoans, 129–131, 141–149
Cunaxidae, 121
Cutworms, 80, 153
Cyanobacteria, 34, 89

Decay; see also Decomposition; Litter
breakdown

Constant, k, 193, 202–203
Exponential model in decomposition,

192–194, 202–203
Deciduous forest

litter breakdown, 194–206
net primary production, 24

Decomposition; see also Litter breakdown;
Nutrient cycling

agroecosystems, 187
decay constant, k, 188, 202–203
decomposition subsystem, 187
forested ecosystems, 187
mass loss during, 187–203
microbial activity, 189–203

Deforestation, global change, 271
Denaturing Gradient Gel Electrophoresis

(DGGE), 265
Dermaptera, 154
Desert

soil biota, 190
Destructive sampling

roots, 25–30
harvest method, 25–28
isotope dilution method, 28–29
root ingrowth technique, 28–30

Detoxification of polyphenols during
decomposition, 218

Detrital food chain, 227–229, 231–233
Detrital food web, 227–229, 241–242

Detritus, 24
Organic, 24

Detritusphere, 236–237
Digger wasp, 162

Diplopoda, 145, 146
Diplura, 129, 130

Diptera, 6, 80, 162
Direct count method, 57
Dissolved organic matter, 214
DNA extraction and sampling, 49,

183–184, 214
Drilosphere, 53, 175, 236–238

Earthworms, 2, 188, 204 see Oligochaeta
Earwigs, 154
ECM, see Ectomycorrhizae
Ecosystem concept, 3
Ecosystem function and

Biodiversity, 267–268
“natural insurance capital,” 267
Species richness, 259–263

Ecosystem processes, see also Soil ecology;
Soil fauna

decomposition
agroecosystems, 74–77
fecal pellets, 181
forested ecosystems, 201–206
litter breakdown, 188–206
mass loss during, 201–208
microbial activity, 74–77
nutrient cycling, 74–77

detritivory and microbivory, 229–242
food webs and chains, 47, 240, 241
global change, 275–279

biodiversity, 275–278
biological interactions, 274–276
carbon cycle, 277–278
feedback mechanisms, 281–285
modeling soil carbon dynamics,

272–275
soils, 275–281

“hot spots” of activity, 236–238
microbial loop, 87
primary production processes

carbon allocation, 23–25
mycorrhiza, 34–38
root biomass, 25–32
root symbionts, 34–39

secondary production processes
biological activity, 47–180
microbial activity, 66–67
microbial biomass, 57–67

Ectomycorrhizae, 36–37
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Edaphic system, 7
“Edaphon,” 6
E horizon, 37
Elateridae, 157
Enchytraeidae, 133–140

classification, 135
extraction techniques, 140
nutrient cycling, 138
sampling and enumeration, 

323–325
Endomycorrhiza, see Arbuscular

mycorrhiza
Energy flow, in decomposer systems,

227–246
Entomobryidae, 104
Environmental degradation, 2
Enzyme assay, biological activity, 63–66
Ergosterols, fungus biomass

determination, 58–59
Ericaceous mycorrhiza, 37–38
Estuarine food web, 227–228
Euedaphic fauna, 132
Eupodidae, 119
Exchange capacity, 214
Exchangeable cations, 206
Exponential decay

and litter breakdown, 193–194
Exudation

Roots, 38–42

“Fast” flora, 67
Fauna, see Soil fauna
Fecal pellets, 217
Feedback mechanisms, global change,

275–279
Fermentation zone, 11
Fine roots

turnover, 190
Fission, 86
Flagellates, 84

food chain, 85
microbial loop, 87–88
morphology, 84–85
nutrient cycling, 85

F-layer, 194, 196, 199, 200, 213, 224
Flora

algae, 34
cyanobacteria, 34
mycorrhiza

arbuscular, 34–36
carbon allocation, 38–44
ectomycorrhiza, 37–38
endomycorrhiza, 34–36

ericaceous, 37–38
food chain, 47
structure and function, 34–44

plant roots, 24–46
biomass, 24–44
in soil profile, 32–33

Flotation, extraction of soil invertebrates,
318

Foliar nutrients
Nitrogen, 44
Phosphorus, 44

Food chains, 227
Bacteriophagic, 233
Detrital, 47
Energetic constraints, 229, 231–234
Grazing, 47, 118

Food webs, 83, 227
arctic, 228
desert, 231
detrital, 229–231
estuarine, 231
interaction strengths, 242–244
models, 263–265
trophic loops, 87–88, 242–245

Forested ecosystems
applied ecology, 135–139, 222–225
biota

earthworms, 104
mycorrhiza, 26–28, 29, 31
Pauropoda, 84
soil mites, 75, 80, 111, 114–115
testate amoebae, 56

decomposition, 135–139
litter breakdown, 114, 116
mor type, 56, 57, 135–136, 169
net primary production, 18, 19
soil profile, 8, 10

Formicidae, 159–161
Free-Air CO2 enrichment (FACE), 284
Fumigation techniques, 59–61
Fundamental elements, 2
Fungal mycelium, 52

Soil aggregates, 52
Fungi

applied ecology studies, 61–63
biodiversity, 286–287
biomass measurement, 59–62
coevolution, 51
Collembola relationship with, 101, 104,

107–109
ecotmycorrhiza and mineral

weathering, 215–216
food chain, 230
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nutrient cycling, 230–231
translocation of N, 209, 220
white-rot, 190

Gaia, 289–291
Gastropoda, 167–169
Genes, 50

16S rRNA, 50
Geophilidae, 147

Geostatistics, 55, 268
Global change, 20

atmosphere, 20, 272
biodiversity, 293–295
biological interactions, 293–294
biomass, 271–273
carbon cycle, 275–279
deforestation, 271
feedback mechanisms, 275–279
greenhouse gases, 271, 272
soils, 20

Glomalin, 44, 72–73, 225
Gnats, 80
Gradients

elevational and decomposition, 191, 192
Granulation, 17
Grasshopper mites, 121
Grasshoppers, 154
Gravitational moisture, 7
Grazing food chain, 227
Greenhouse gases, 20, 276–279
Gross primary production, 24
Ground beetles, 155

Ground-dwelling wasps, 159

H-layer, 196, 199, 200, 209, 213, 224
Hartig net, 35

Harvestmen, 151–152
Harvest method, 25–28
Hemicellulose

and decomposition, 190, 206
Herbivore exclusion hypothesis, 206–207
Heterotrophs, 79
Historical Background, 1–4
“Hot spots” of activity, 67, 209, 214, 216,

229, 231, 268
Humification process, 11–13
Humification zone, 11
Humus, 1, 3

Mull, Mor, Mullartiger Torf, 3
Types, 291–293

Hymenoptera, 154, 159–162
Hyphae, 36–37
Hypogastruridae, 104

Illite, 15
Image analysis, roots, 31
Inquilines, 165
Insecta, 101–109, 128–130, 153–167

Apterygota, 7
Collembola, 101–109
Diplura, 129, 130

Protura, 128, 129

Thysanura, 130
Coleoptera, 154–159
Diptera, 162
Homoptera, 154, 167
Hymenoptera, 154, 159–162
Isoptera, 162–166
Lepidoptera, 154
Orthoptera, 154, 166–167
Psocoptera, 167
Pterygota, 153–167

Integrating variables, 188–190, 225; see
also litter breakdown, soil respiration,
soil structure, nutrient dynamics

International Biological Program, 4, 
227

Invasive
Animals, 170
Plants, 252, 286–287, 288

Species, 271, 285–289
Isopoda, 143–144

Isoptera (termites), 154, 162–166
litter breakdown, 204
soil dynamics, 164, 166, 216

Isotomidae, 104
Isotope dilution method, 28, 41–42

Japygidae, 129, 130

Jenny, Hans, 189–190, 216

k, decay constant, 192–194, 202
Kalotermitidae, 163
Kaolinite, 15, 18

L–layer, 194, 196, 200, 213, 224
Labile substrates, 190, 194
Laelapidae, 122
Latency, Tardigrada, 95
Latitude

effects on decomposition, 190
Lepidoptera, 154
Lignin

degradation by fungi, 224
as recalcitrant substrate, 190

Lignocellulases, 64
Lithobiidae, 146, 147
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Litterbag technique, 188, 194, 196–200,
205, 213, 302–304

alternatives to, 200
Litter baskets, 200
Litter breakdown, 188–206; see also

Decomposition; Nutrient cycling
biocide effects on, 204
climate, 190–192
direct measurement, 194–200; see also

Litterbag technique
dynamics, 65, 192–194
fauna and, 204–206
integrating variables, 188–190, 665
mass loss, 196, 201

Litterfall, 191
Litter “sandwich” technique, 200
Litter zone, 11
Lumbricidae, 170, 173, 181
Lycosidae, 149–150

Lysimeter, 264

Machilidae, 130
Macroaggregates, 70–74

“Biological,” 70
Macroarthropods, 141–167

Apterygota, 7
Araneae, 149–153
Chilopoda, 146, 147

Coleoptera, 154–159
Diplopoda, 145, 146
Diptera, 162
fecal pellets, 143
Homoptera, 154, 167
Hymenoptera, 154, 159–162
Isopoda, 143–144

Isoptera, 154, 162–166
Lepidoptera, 154
Opiliones, 151–152
Orthoptera, 154, 166–167
Psocoptera, 167
Sampling and enumeration, 

317–320
Scorpionida, 147, 148, 149
Solifugae, 152, 153

Uropygi, 152–153, 154

Macrochelidae, 122, 123

Macrofauna, 19
Apterygota, 7
Araneae, 149–153
Chilopoda, 146, 147

Coleoptera, 154–159
Dermaptera, 154
Diplopoda, 145, 146

Diptera, 162
Ecosystem engineers, 19, 142, 239
Habitat, 82, 141
Homoptera, 154, 167
Hymenoptera, 154, 159–162
Isopoda, 143–144

Isoptera, 154, 162–166
Lepidoptera, 154
nutrient cycling,
Oligochaeta, 169–181
Opiliones, 151–152
Orthoptera, 154, 167
Psocoptera, 167
Scorpionida, 147, 148, 149
soil dynamics, 164–165
soil quality and, 181–183
and soil structure, 142, 246
Solifugae, 152, 153

Uropygi, 152–153, 154

Magnesium
nutrient cycle in litter breakdown,

206–209
Mantle, 35, 167
Mass loss

and litter breakdown, 196, 205
phases of, 191, 201–203

Mean residence time, 74

Soil aggregates, 74
Measuring techniques

Faunal biomass, 310–325
microbial biomass, 59–61
root biomass, 24–25

Megascolecidae, 170, 172

Mesofauna, 3, 89–140, 238
Acari, 109–128, 238
Collembola, 101–109, 238
Diplura, 129, 130

Enchytraeidae, 133–140
food chain, 98, 230
habitat, 81–82
Mycrocoryphia, 130
Nematoda, 11, 90–95, 238
nutrient cycling, 230–234
Pauropoda, 133
Protura, 128, 129

Pseudoscorpions, 130, 131

Rotifera, 89
soil quality and, 181–183
soil structure, 181
Symphylids, 131, 132

Tardigrada, 95
Mesostigmata, 122–124
Metabolic Quotient, 63
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Microarthropods, 98–133
abundance, 100
agriculture, 107, 119
in agroecosystems, 220–222
classification, 98
Collembola, 101–109
Diplura, 129, 130

extraction techniques, 98–99, 313–315
fecal pellets, 181
litter breakdown, 204–206
mites, 109–128

Astigmata, 124–128
Mesostigmata, 122–124
Oribatei, 111–119, 204
Prostigmata, 119–122

moisture requirement, 7–8
Mycrocoryphia, 130
Pauropoda, 133
Protura, 128, 129

Pseudoscorpions, 130, 131

sampling, 311–312
in soil profile, 11, 101
soil quality and, 295–297
sorting and identification, 315–317
species diversity, 295–297
Symphylids, 131, 132

Microbes
biomass, 53, 304–307

direct measurement, 57–59
chemical methods, 59–63
chloroform fumigation techniques,

59–61, 304–307
distribution in soil profile, 53
indirect measures, 59–63

physiological measures, 61
substrate-induced respiration (SIR)

technique, 61
spatial variability, 53–57

food chain, 79
litter breakdown
populations, 48

bacteria, 48
fungi, 48
viruses, 48

total count, 57–66
Microbial, 50

Agar film technique, 57
Community, 77, 188
Direct measures, 57–59
Ergosterols, 58

Stable isotope probing, 66
Numbers and biomass, 57
rRNA and mRNA, 50

Signature lipid biomarkers, 58
universal primers, 50

Microbial-faunal interactions, 74–77, 229
Microbial loop, 88
Microbial respiration, 62–63

Metabolic Quotient, 63
Respiratory Quotient (RQ), 62

Microcalorimeters, 66, 234
Microclimate

within litterbags, 198
and litter breakdown, 190, 192

Microcoryphia, 130
Microcosms, 204, 218, 263–266
Microfauna (protozoa), 8, 81

Amoebae, 233
biomass, 83
ciliates, 84–86
classification, 85
counting, 86
flagellates, 84–88, 233
food chain, 229
food web, 229
habitat, 81
moisture requirements, 11
morphology, 84–86
naked amoebae, 84–85, 88, 233
nutrient cycling, 4, 10
in soil profile, 11, 81
soil quality and, 89
testate amoebae, 84–86, 233

Microorganisms, see Microbes
Microwave radiation, microbial

determination, 67
Millipedes, 145, 146, 204
Minerals, in soil, 15

1 : 1 group, 15
2 : 1 group, 15

Mineral weathering, 15–16
Minirhizotrons, 30–33, 299–300
Mites, see Acari
Mode of growth, 51

Bacterial, 51
Fungal, 51

Modeling, soil carbon dynamics, 65
Models

Detrital food webs, 219
Litter breakdown, 192–194
Soil organic matter, 275–280

Moisture
Effects on decomposition, 190, 191

Mor soil, 3, 86, 222
Mucigel, 39
Mull soil, 3, 86
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Mycelia, 52

Mycorrhiza
arbuscular, 34–36, 35, 42–46
carbon allocation, 42–44
ectomycorrhiza, 34–38, 35

endomycorrhiza, 34–36, 42–46
ericaceous, 37–38
food chain, 230

origins, 34
structure and function, 34–38

Mycorrhizosphere, 69

Naked amoebae, 54, 84

food chain, 85
microbial loop, 88
morphology, 54, 85
reproduction, 54–55

Nanorchestidae, 119
Neelidae, 107
Nematalychidae, 120
Nematoda (roundworms), 90–95

classification, 90, 92
extraction techniques, 94–95, 

310–311
feeding habits, 92–94
food chain, 243–245
fungi, relationship with, 231–234
moisture requirements, 6
morphology, 90, 91

nutrient cycling, 229–231
in soil profile, 93–94

Neotylenchidae, 92
Net primary production

aboveground, 24–25
algae, 34
belowground, 24–33, 284
and decomposition, 187
feedback loops, 242–246
forested ecosystems, 24–25
roots, 24–33
sampling root biomass, 24–33

Nitrogen
dynamics during litter breakdown,

206–214
food web, 230–236
immobilization, 208, 209
mineralization, 208, 234–238
15N tracer in litter breakdown studies,

209,212,220
nutrient cycle, 207

Nitrogen fixation, 208
Nondestructive sampling, roots, 30–33

Normalized stability index, 73

NPP, see Net primary production
Nutrient cycling

carbon, 74–77
chemical elements, 74–77
field experiments, 74–77
food web, 230, 233–236
links in soil systems, 215–216
litter breakdown, 206–220
models, 74–77
soil fauna, 74–77

O-layer, see L, F and H layers
Oligochaeta (earthworms), 169–181

in agroecosystems, 220–221
distribution, 170
food chain, 173, 175
litter breakdown, 204
management, 178–179
nutrient cycling, 177
sampling and enumeration, 

320–323
soil dynamics, 176–178
soil properties, 176–179

Omnivory, 230, 233, 244–245
Onychiuridae, 104
Onychiurus, 109
Opiliones, 151–152
Organic layer horizonation, 196, see also

L, F, and H layers
Organic matter, 17, 276–281

Patches, 53
Oribatei, 111
Oribatids, 111–119
Oxalic acid, excretion by fungi, 215
Oxisols, 18

Partial sterilization, 59, 67
Particulate Organic Matter (POM), 16,

209
Patches, 236–239
Pauropoda, 84
Peak-trough calculation, 26–27
Ped, 16
Pedogenesis, 4, 218
Pedon, 17
Pedosphere, 9
Peritrophic membrane, 217
Phages, 51–53
Phospholipid fatty acids (PLFA), 58, 264,

286
Phosphonates, 217–218
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Phosphorus
dynamics during litter breakdown,

206–209, 211
Phthiracarids, 113

Phycomycetes, 34–36
Pillbug, 145
Plant diversity, 253–258
Plant mites, 119–120
Plate–like soil, 17

Poduridae, 104
Podzol, see Spodosol
Polydesmidae, 145

Polymerase chain reaction, 49–50
Polyphenols

as recalcitrant substrates, 190
Porosity, 16
Porosphere, 6–8, 237
Potassium

nutrient cycle in litter breakdown,
206–209

Potworms, 133
Predator-prey interactions, 146–151,

229–241
Preferential flow

nutrient movement in soil, 213–214
Primary production processes, 23

belowground, 23
carbon allocation

root/rhizosphere, 38–44
carbon allocation, 38–44

root symbionts, 38–39, 42–44
mycorrhiza, 38–44
photosynthesis, 23
production subsystem, 187
rhizosphere, 38–44
root sampling

destructive, 25–30
nondestructive, 30–33

root symbiotic associates, see
Mycorrhiza, Actinorhiza

Prism-like soil, 17

Production efficiencies, 232–234
Profile development, soils, 11–13

Prokaryotes
Archaea, 49
Bacteria, 48

Prostigmata, 119–122
Protozoa, see Microfauna
Protura, 128, 129

Pseudoscorpions, 130, 131

Psocoptera, 167
Pterygota, 153–167

Resource quality 190–192
and litter breakdown, 190, 196, 218

Respiratory Quotient (RQ), 62
Rhizobia, 42–44
Rhizosphere, see also Roots, 236–237

carbon allocation, 39–44
carbon fluxes and pools, 40
Collembola in, 104, 109
decomposition, 212–213
diagram, 68
microbial loop, 53
nematodes in, 93–94
primary production processes, 

40–42
respiration, 39–42

Rhizotron, 30–31

Rhodacaridae, 122
Root ingrowth technique, 28–30
Roots, see also Rhizosphere

Annual production, 24
biomass sampling, 25–33
border cells, 39–41
capsule components, 39–42, 41

carbon allocation, 278
exfoliation, 24
exudation, 24
herbivory, 24
leaching, 24
litterbags, 212–213

net primary production, 24–25
respiration, 41–42
root/rhizosphere system, diagram,

67–68, 236–237
models of, 67–68

secretions, 24
soil profile, 11–13

standing crops, 25–30, 32–33
symbiotic associates, 34–38
volatilization, 24

Rotifera, 11, 89–90
classification, 89–90
extraction and counting, 90
in soil profile, 11

Roundworms, see Nematoda
Rove beetles, 156, 157

RQ, 61–62

Sampling, see Measuring techniques
Sand, 14
Sarcomastigophora, 83
Scarabaeidae, 156, 158

Scorpions, 147, 148, 149
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Secondary production processes, 
see also Decomposition Litter
breakdown

biological activity, 61–67
catabolism, 23, 47
microbial activity, 61–66
microbial biomass, 57–61
soil fauna, see Soil fauna
soil sterilization, 59–60
SEM

Macroaggregate, 55

Signature lipid biomarkers, 58
Silt, 14
Siltation and salinization, 1
“Slow” flora, 67
Slugs, see Gastropoda
Sminthuridae, 107
Snails, see Gastropoda
Sodium

herbivore exclusion hypothesis, 
206–207

nutrient cycle in litterbreakdown,
206–209

Soil aggregates, 52–53, 280–281
Amoebae, 54

Models, 69–72
Soil biodiversity and

Additions and deletions, 265–266
Carbon substrate heterogeneity, 259

Soil biota, plant effects on, 284–285
Soil conductivity, 297
Soil ecology, see also Ecosystem processes;

Soil fauna; Soils
agroecosystems, 16
biodiversity, 79, 81–82
biological activity, 181
biological interactions, 83
biomass

bacterial, 57–61
fungal, 57–61
microbial, 57–61
roots, 25–33
soil animals, 79, 309–325

decomposition, see also Litter
breakdown; Nutrient cycling

agroecosystems, 74–77
compounds being decomposed,

190–216
forested ecosystems, 204–206
mass loss during, 201–206
microbial activity, 47–70

detritivory and microbivory, 227–246
fauna and soil quality, 181–182

food chains and food webs, 261–265
future developments, 271–292
global carbon cycle, 275–279
global change, 275–279

biodiversity, 295–297
biological interactions, 275–279
carbon cycle, 275–283
feedback mechanisms, 275–283
soils, 271–275

“hot spots” of activity, 119
litter breakdown, see Litter 

breakdown modeling soil 
carbon dynamics

nutrient cycling, see Nutrient cycling
primary production processes

carbon allocation, 23–25
mycorrhiza, 34–38
root sampling, 25–30
root symbionts, 34–39

secondary production processes
biological activity, 47–180
microbial activity, 47–77
microbial biomass, 304–306
soil fauna, 79
soil sterilization,

soil profile, 11–13, 17
soil structure, 16–19
soil texture, 13–15

Soil fauna, 8, 11, 79
agroecosystem studies, 115, 122, 

126, 127, 129, 149, 151, 155, 157,
167

biodiversity, 81–82
biological interactions, 83

biomass, see Biomass classification
demographics, 234
detritivory and microbivory, 227–246
litter breakdown, see Litter 

breakdown
macroarthropods, see Macroarthropods
macrofauna, see Macrofauna
mesofauna, see Mesofauna
microarthropods, see Microarthropods
microbes, see Microbes
microfauna, see Microfauna
nutrient cycling, see Nutrient cycling
organic matter dynamics and nutrient

turnover, 216–220
soil formation, 216–220
soil profile, 11–12, 80
soil quality, 181–182
water, 7–8

Soil fertility, 18
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Soil forming factors, 274
Soil horizons, 11
Soil microaggregates, 19, 282–283
Soil mites, see Acari (mites)
Soil organic matter, 17

Conceptual model, 283
Decomposition, 65, 275
Mean Residence Times (MRT), 281
Models, 65, 275
Oxidation, 271
Protective Capacity, 282

Soil organisms
hierarchical approach, 237–239
size–dependent interactions, 

239–240
Soil physical properties, 20
Soil profile, 11–12

soil fauna, 11
nematodes, 11, 93
protozoa, 11, 87

Soil quality, 181–182, 294–297
Indices of, 294–298

Soil respiration, methods of studying,
41–42, 301–302

Root respiration as fraction, 41–42
Soil sink strengths, 275–277
Soil solution, 18

Cations in, 18
Soil sterilization, 67
Soil structure, 17

Blocklike, 17

Platelike, 17

Prismlike, 17

Spheroidal, 17

Soil surface, 11
L, F, and H horizons, 11
Oi, Oe, and Oa horizons, 11

Soils, see also Soil ecology
binding agents, 16–18
biodiversity, 81–83
biological activity, 79–83
biological interactions, 83
biomass

bacterial, 57–61
fungal, 57–61
microbial, 57–61
roots, 25–33

carbon dynamics, modeling, 
279–281

cation–exchange capacity, 18
clay mineral structure, 15–16
Collembola, 80–81, 101–109
decomposition, see Decomposition

degradation, 3
detritivory and microbivory, 227–246
dimensions of study, 18
ecology, see Soil ecology
ecosystem services, 20

monetary value of, 20
elemental constitution, 15–18
factors of formation, 9–10
fauna, see Soil fauna
fauna and soil quality, 294–297
formation, 274
and “Gaia” 289–291
global carbon cycle, 272, 275–279
global change, 272
libraries of DNA, 19–20, 183
moisture, 7–8
natural bodies, 3
oligotrophic, 187
organic matter, 15

Century model, 272, 275

partial sterilization, 59–61
profile development, 11–13
quality, 181
regolith, 11
sterilization, 59–61
texture, 13–15
water as constituent of, 4–8

Soil structure, 16–19, 187
Clay fraction, 8, 13–15
Horizons, 11
soil fauna, 79

earthworms, 176–179
Soil texture, 13–15
Soil transfers, 272
Solifugae, 152, 153

Solpugid, see Solifugae
Specific heats, 6
Sphecidae, 160

Spiders, 149–153
Spirobolidae, 145

Spodosol, 12

Springtails, see Collembola
Staphylinidae, 156, 157

Sterilization, soil, 67
Sub-aquatic system, 7
Substrate-induced respiration, 61
Substrate quality, see Resource 

quality
Sulfur

dynamics during litter breakdown,
206–208, 211

Symphylids, 131, 132

Syngamy, 85–86
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Tanninss
as recalcitrant substrates, 190

Tardigrada, 95–98
anatomy, 97

classification, 95
extraction techniques, 96

in soil profile, 98
Tarsonemidae, 119
Temperate phages, 51–52
Temperature

effects on decomposition, 190, 191
Tenebrionidae, 155, 156

Termites, see Isoptera
Termitidae, 163
Terrestrial ecosystems

Carbon balance, 277–279
“Terrestrial nannoplankton,” 6
Testate amoebae, 84, 85–86, 89
Textural triangle, 14

Thysanura, 130
Tiger beetles, 157, 159

Tillage regimes, 18
conservation tillage, 188
and litter breakdown, 203–204
and soil fauna, 220–222

Tracers
radioactive, 188
stable isotopic, 188 see also 15N, 13C

Trombiculidae, 121
Trophic cascades, 239–240
Trophic levels, 79, 227
Trophic transfer efficiencies, 242–243
Tropical forest

and decompostion, 191

Tullgren funnel, 68, 98
Tydeidae, 119–120

Uropodidae, 79, 122
Uropygi, 152–153, 154

USDA, National Research Initiative, 4

Veigaiidae, 122
Velvet mites, 80, 121
Vinegaroon, see Uropygi
Virgil’s Georgics, 3
Viruses, 51

Lytic, 51
Temperate, 51
Virulent, 51

Water, 4–8
Biosphere characteristics, 5
Capillary, 6
Films, 15, 192
Gravitational, 6
High specific heat, 5
Holding capacity and decomposition,

192
Water bears, 95
Water-stable aggregates, 71–72
Wireworms, 153, 156, 157
Wolf spiders, 151
Wood ants, 160

Xylodesmidae, 145

Zero-sum year, 26
Zoological ripening of soil, 217


