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INTRODUCTION
BIOSAPIENS: A European Network
of Excellence to develop genome
annotation resources

BioSapiens is a Network of Excellence, funded by the European Union�s 6th Frame-
work Programme, and made up of bioinformatics researchers from 26 institutions
based in 15 countries throughout Europe. The objective of this network is to stimulate
the development of bioinformatics resources to provide automated, validated and
distributed annotation of genome data, with particular emphasis on the human
genome.

The genome projects have revealed for the first time the �blue-print� of life. The first
genome of a free-standing organism – the bacterium Haemophilus influenzae – was
sequenced in 1995, rapidly followed by another bacterium, Escherichia coli and baker�s
yeast. The first draft of the human sequence was published in 2001, and several other
genomes of vertebrate species, including the mouse and rat, followed recently. In total
there are now over 700 completed and 3000 draft genome sequences in the public
domain and many more are planned. In addition there are many other complete and
partial genome sequences in the private sector. This explosion in genomic information
has been achieved in a remarkably short period of time, especially whenwe consider that
the three-dimensional structure of DNA was discovered only 50 years ago. It is now
possible to sequence a whole bacterium in a few days and the flood of new sequence data
with the emergence of the new generation of sequencing technologies will certainly
continue for the next decade. However, DNA sequences must be interpreted in terms of
the RNA and proteins that they encode and the promoter and regulatory regions that
control transcription and translation. Genomic sequences also provide a convenient
�coordinate� reference frame onto which functional information can be mapped.

Annotation can be described as the process of �defining the biological role of a
molecule in all its complexity� and mapping this knowledge onto the relevant gene
products encoded by genomes. This involves both experimental and computational
approaches and, indeed, absolutely requires their integration. As such, in one sense, this
effort will occupy the majority of biologists (experimental and theoretical) for most of
this century. The mission of the BioSapiens Network is to provide the necessary
expertise and European infrastructure to allow distributed annotation, from both
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computational and experimental laboratories. These expert annotations are beingmade
available for everyone over the web using a specific technology for the integration of
distributed annotations, towards which the network has made a substantial contribu-
tion. BioSapiens has also made a concerted effort to form a new generation of biologists
capable of using these tools with the development of a series of courses as part of the
Permanent European School of Bioinformatics.

The structure of this book logically follows the work packages of the BioSapiens
project. Genome annotation starts by defining the positions of genes along the sequence,
and by identifying their coding regions, regulatory sequences and promoters (Chapters
1.1, 1.2, 2.1, 2.2, 2.3). Once the proteins (and RNAs) and their localisation have been
defined, secondary annotation to provide identification of biochemical and biological
function is needed (Chapter 4.1, 4.2, 4.6). Errors in genome annotation can be identified
using data mining algorithms (Chapter 4.3).

Protein families provide a powerful route to improved protein annotation (Chapter
4.4). The three-dimensional structures of proteins provide detailed knowledge of
residue locations and probable functional sites. Indeed during the course of BioSapiens
the emergence of new structures solved by the structural genomics consortia havemade
very clear the demand for programs able to predict function based on structural
characteristics (Chapter 4.5). Predicting the structure of both globular (Chapter 5.1) and
membrane (Chapter 5.2) proteins still remains a largely unsolved problem. Predictions
about the functions of gene products can bemade through sequence analysis combined,
where possible, with analysis of where and when a gene product is produced
and through its interactions with other proteins. The identification of relevant
protein–protein interactions provides further clues for functional characterisation
(Chapter 6.2), as well as the knowledge of the pathways and networks in which they
participate (Chapter 6.1). Tools for comparative genomics, to map interactions and
networks from one organism to another, are of critical importance. In addition, for
humans, sequence variation among individuals is particularly important, especially in
the context of disease and inherited disorders (Chapter 3). On the more technical side,
BioSapiens has concentrated on laying the methodological foundations for systematic
annotation with the development of a complete infrastructure based on the DAS
(Distributed Annotation System) technology and a number of interfaces and web
servers to make the information accessible to the final users (Chapter 7).

In parallel BioSapiens have intensively worked on applying annotation methods
to relevant biological problems. Chapter 8.1 discusses recent advances in viral bio-
informatics and describes computational approaches to analyzing host-pathogen
interactions. The final chapter (8.2) presents the analysis of the splice variants
identified in the genes experimentally studied by the pilot phase of the ENCODE
project.

We do not want to close this introduction without acknowledging the stimulating
criticisms of the BioSapiens Scientific Advisory Committee, as well as the continuous
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support of Dr. Fred Marcus, Scientific officer of the BioSapiens project. This book
and the work it describes would have not been possible without the scientific guidance
of Prof. Janet Thornton, the BioSapiens coordinator. Finally, we would like to
thank Kerstin Nyberg, BioSapiens project manager, and Stephen Soehnlen from
SpringerWienNewYork for help in creating this book.

Dmitrij Frishman and Alfonso Valencia
Editors
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CHAPTER 1.1
State of the art in eukaryotic gene prediction

T. Alioto and R. Guigó

Center for Genomic Regulation, Barcelona, Spain

1 Introduction

Computational gene prediction is the cornerstone upon which a genome annotation is
built, as gene prediction is usually the first step taken to ward the annotation of a newly
sequenced genome. This is largely due to the fact that computational identification of
the entire repertoire of genes in a genome is vastly more economical than the
experimental identification of each and every gene, or for that matter, even a single
gene. Apart from the economic driving force behind the development of the gene
prediction field, there also exists a fundamental scientific or intellectual driving force: in
order to precisely delineate the gene structures within anonymous genomic sequences,
we must be able to accurately model, and therefore understand, individually and
collectively the mechanisms of transcription, splicing, mRNA maturation, nonsense-
mediated decay, translation and even non-coding RNA regulatory circuits.

The interplay between prediction and experimentation should be seen as hypothesis
driven, not data driven, biological research. Each gene prediction is a hypothesis waiting
to be tested and the results of testing then inform our next set of hypotheses. It is really
no different than the early days of gene-finding. Ever since genes were defined as the
hereditary units that confer traits or phenoty pesto organisms, their study has been
essential to the study of biology. The discoveries that genes reside in deoxyribonucleic
acid (DNA), are transcribed into ribonucleic acid (RNA) and (in many cases) then
translated into polypeptides spurred the rapid development ofmolecular biology, which
revolves around trying to understand the function of genes at the molecular level. Thus
it has become requisite that their coding sequences and, by necessity their physical
locations within the genome and intron-exon structures, be determined.

Methods for finding genes have evolved since the early days of genetics. In the pre-
genomic age, genetic maps were constructed by analysis of phenotypic segregation
(either natural traits or mutant phenotypes) in large pedigrees or through series of

Corresponding author: Tyler Alioto, Center for Genomic Regulation, calle Dr. Aiguader, 88,
08003 Barcelona, Spain (e-mail: tyler.alioto@crg.es)
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genetic crosses. In the post-genomic age, the gene finding problem has largely turned
into a computational one. The task can now be stated as follows: given aDNA sequence,
perhaps a chromosome or entire genome, what are the precise boundaries and exonic
structures of all of the genes?

In prokaryotes and some simple eukaryotes, the computational solution is a
relatively simple task: to identify long open reading frames (ORFs) that, due to their
length, are likely to code for proteins. The precise start codon can often be identified
using simple rules such as choosing the ATG that maximizes the length of the ORF. The
presence of other signals such as a Pribnow box (TATAAT consensus), the �35

Fig. 1 Typical eukaryotic gene structure. Protein-coding genes are typically interrupted by non-coding
sequences called introns, which are spliced out of the primary transcript (sometimes alternatively) to
produce one ormorematuremessenger RNA products, which are then translated starting at the start codon
and ending at the first in-frame stop codon

8
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sequence or ribosomal binding sites can be used to refine the prediction of the
transcriptional and translational start sites. Furthermore, codon bias is often used to
deduce the correct frame for overlapping ORFs. The accuracy of prokaryotic gene
finders is upwards of 90% for both sensitivity and specificity. GLIMMER (Salzberg et al.
1998) is perhaps one of the most accurate prokaryotic ab initio gene finders. It uses
an interpolated Markov model (IMM), discussed later in this chapter. GeneMark
(Borodovsky and McIninch 1993) is another successful prokaryotic (and now also
eukaryotic) gene finder which pioneered the use of the 3-periodic Markov model
for exon recognition that forms the basis of almost all modern gene predictors.

Eukaryotes, on the other hand, are more complex and pose a much greater
challenge. First of all, their genomes can be orders of magnitude larger, and much
of their DNA sequence does not code for proteins. For instance, only 3% of the human
genome codes for proteins. Second, genes are almost always split into smaller coding
sequences (exons) by intervening non-coding sequences (introns) which are spliced out
of pre-messenger RNAby a ribonucleoprotein complex called the spliceosome to form a
mature mRNA (see Fig. 1). Introns can sometimes be very large (>100 kb), making the
search for exons like trying to find a needle in a haystack. Not to mention the fact that
due to alternative splicing, multiple mature transcripts can be derived from one pre-
mRNA. Alternative transcription start sites are also quite common. Genes can also be
interleaved, overlapping, or nested, adding to the complexity.

Thus, for simplicity�s sake, gene finding efforts to date have mainly focused
on finding the genomic coordinates corresponding to a single protein-coding sequence
per non-overlapping genomic locus. UTRs have largely been ignored as well as non-
canonical splice sites (including U12 introns). That said, we must take note that this
operational definition of a gene may have to be modified as our understanding of the
transcriptional activity of the genome increases. A large proportion of the transcrip-
tional activity in eukaryotic genomes, according to the results of new experimental
techniques, appears not to code for proteins. These transcripts of unknown function,
polyadenylated and non-polyadenylated, sense and antisense, overlapping and inter-
leaved with protein coding genes, are distorting what once seemed to be a clear concept
of a “gene” (Gingeras 2007).

For clarity, we will assume the operational definition but, where possible, highlight
cases in which some of the complexities of transcription, RNA processing and
translation are starting to be addressed. Even with these simplifying assumptions, gene
finding programs exhibit far from perfect performance, thus we will refer to computa-
tional gene finding as “gene prediction” reflecting the still-necessary step of validating
the gene models predicted by these programs.

In the next section we will introduce the basic principles of gene prediction, namely
signal and content detection, and in the following section, we will illustrate how they are
incorporated into modern eukaryotic gene finders. We will also discuss the develop-
ment of more sophisticated frameworks for combining signal and content sensors with

9
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diverse sources of information such as phylogenetic conservation and genomic align-
ments of expressed sequences.

2 Classes of information

We will begin by introducing the main sources of information that have been
traditionally used to find genes. Then in Sect. 3 we will outline how this information
can be captured and incorporated into gene model predictions. Information can be
divided logically into two main categories, extrinsic and intrinsic, based on whether or
not the information can be derived solely from the target genome sequence.

2.1 Extrinsic information

Extrinsic information includes any source of evidence that is not itself a genome
sequence. In general, we refer to expressed sequence such as cDNAs, expressed sequence
tags (ESTs) or the sequence of their protein products as extrinsic information. Gene
prediction methods which do not use this information are referred to as de novo
methods.

Homology information can be used in several ways according to quality and
completeness. If the homologous sequence is derived from the same species and
locus as the target sequence, then a spliced alignment approach often suffices to
accurately map the region of homology. If the homologous sequence is full-length,
such as a full-length cDNA sequence, and the boundaries of the transcript coincide
with canonical splice sites, the coordinates of the genomic alignment represent
the gold standard of gene annotation to which all other methods are compared.
Determination of the start and stop codons then usually entails finding the longest
open reading frame, although on occasion the true start codon is not the first
methionine codon encountered. The presence of a Kozak consensus sequence ([A/G]
XXAUGG) (Kozak 1981) can help distinguish true start codons from other potential
start codons nearby.

AlthoughBLAST (Altschul et al. 1990) is often used to roughly locate a genewithin a
genomic sequence using a homologous sequence, precise mapping of homologous se-
quences to the genome is ideally performed by programs specifically designed to
perform spliced alignments. Procrustes (Gelfand et al. 1996), EST GENOME (Mott
1997), sim4 (Florea et al. 1998), BLAT (Kent 2002), GM�AP (Wu and Watanabe 2005),
and Exonerate (Slater and Birney 2005) are a few such examples. Genewise (Birney and
Durbin 2000; Birney et al. 2004) is another program that aligns proteins to the genome.
All such spliced aligners use either a basic model (terminal dinucleotide consensi) or
more sophisticatedmodels (such as position weight matrices/arrays) of splice junctions
and introns.

10
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If the region of homology is incomplete or of lower quality, then the preferred
approach is to extend the spliced alignment with ab initio gene prediction. This
approach is generally implemented as a stepwise pipeline such as in ENSEMBL
(Hubbard et al. 2002) or UCSC genes (Hsu et al. 2006). However, EST and cDNA
alignments may also be incorporated directly into gene predictions through ex-
tensions to gene predictors like Twinscan (Wei and Brent 2006), or, as is becoming
more common, by “combiner” programs. At low levels of identity, BLAST high-
scoring-pairs (HSPs) can either be used to weight predicted exons in a non-prob-
abilistic way or may be incorporated into gene prediction probabilistically using pair
hidden Markov models (see below).

2.2 Intrinsic information

De novo gene predictors are programs that predict the exon-intron structures of genes
using the sequences of one or more genomes as their only input. The term ab initio is
used strictly for de novo gene predictors that do not use informant genomes, and more
or less means “from first principles”. The most “ab initio” of gene prediction programs
would be a program that simulates the transcription, splicing and postprocessing of a
transcript using only the information available to the cell. Such a simulator, if successful,
would truly demonstrate our understanding of the molecular mechanisms and dy-
namics of gene expression. However, our understanding at this point is at best
rudimentary and we must rely on metrics derived from many examples of genes with
known exonic structures. These informative metrics can be categorized as either signal
sensors or content sensors.

2.2.1 Signals

The signals in which we are interested are nucleic acid sequence motifs that are
recognized by the cellular machinery responsible for transcribing, processing and
translating messenger RNA molecules. The minimal set of signals that describes the
structure of a coding sequence (CDS) include the start and stop codons and, if there is
more than one exon in the coding part of the transcript, the donor and acceptor splice
sites for each intron present. The acceptor site may be sometimes be defined as a
composite of branch site, poly-pyrimidine tract and the acceptor junction signals.
Additional signals that may be taken into consideration are splicing enhancer and
silencer elements, transcription start and termination sites, polyadenylation signals, and
even proximal and distal promoter sequences.

Many of these signals can bemodeled as simple position weight matrices, or PWMs
(alternatively known as position specific scoring matrices or position specific prob-
ability matrices). PWMs attempts to capture the intrinsic variability characteristic of
sequence patterns and are usually derived from a set of aligned sequences which are

11

Tyler Alioto and Roderic Guigó



functionally related. PWMs simply tabulate the frequencywith which each nucleotide is
observed at each position. Formally, from a set S of n aligned sequences of length l,
s1; . . . ; sn, where sk ¼ sk1; . . . ; skl (the skj being one of A, C, G, T in the case of DNA
sequences) a Position Weight Matrix, M4xl is derived as

Mij ¼ 1
n

Xn
k¼1

IiðSkjÞ

i 2 ½A;C;G;T�
j ¼ 1 � � � n

where IiðqÞ ¼
�
1 if i ¼ q;

0 otherwise:

This matrix is usually converted to a frequency or probability matrix with the
sum of each column equal to one. A novel sequence can now be searched for this
motif by moving a window the size of the motif across the sequence and for each
position of the matrix summing the frequencies corresponding to each nucleotide
observed. A score is obtained where the higher the score the better the match.
However, scores from different matrices are difficult to compare and selecting a
proper threshold becomes rather empirical. The solution to this problem is to use a
“back-ground” model. Background frequencies could be equiprobable nucleo-
tide frequencies with 0.25 for each A, C, G and T, or the frequencies may be
derived from the true genome-wide nucleotide frequencies or perhaps from the
local context of the true sites. The likelihood of a sequence belonging to the
category of the motif becomes the product of the probabilities of the observed
nucleotides occurring in each position of the motif divided by the product of the
probabilities of the background nucleotides in each position of the motif. If we then
take the log of this ratio, called the log-likelihood ratio, then sequences with scores
above zero can be interpreted as being more likely to be an instance of the motif,
while those that score below zero are not likely to be. If we store the log likelihood
ratio for each position of the motif in the matrix, then we may simply take the sum
of these ratios at each position to be the score of the entire motif. This method is
illustrated in Fig. 2 using the U12 branch point PWM as an example (U12 introns,
which comprise only a fraction of a percent of all human introns, are spliced by the
minor U12 snRNP-containing spliceosome).

Dependencies between adjacent positions can be captured in a weight array matrix
(WAM) model. The probabilities in the matrix are now calculated as conditional
probabilities, where the probability of a sequence S ¼ s1 � � � sn being an instance of a
particular motif is

PðSÞ ¼ Pðs1ÞPðs2js1ÞPðs3js2ÞPðs4js3ÞPðs5js4Þ � � � Pðsnjsn�1Þ
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wherePðsijsjÞ is the probability of nucleotide sj in position k given that nucleotides si is at
position k� 1. Log-likelihood ratio scores can also be computed, by calculating the
probability of the sequence S under some background model.

This type of dependency, where the state at one position is conditioned only on the
state immediately preceding it (in space or time) fulfills the Markov assumption. Thus,
these models can also be thought of as 0-order and 1st-order Markov Chains,

Fig. 2 Searching for signals. A position weight matrix (PWM) was calculated from known U12 branch
point sequences. (a) The sequence logo shows the information content of the U12 branch point for
human U12-dependent introns. (b) The PWM contains the log likelihood ratios (signal/background) for
each base at each position of the 12 bp profile. (c) A 12 bp window is advanced one base pair at a time
over the genomic sequence and the log ratios are summed over each position to give the branch point
score. The result of scoring the positions immediately before, exactly over and immediately after the
branch point are shown. The branch adenosine is shown in bold and the profile-matching bases are
highlighted in yellow
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respectively, where the order refers to the number of immediately preceding nucleotides
on which the probability of observing a particular base is conditioned.

Donor splice sites, for example, are often modeled as 1st or 2nd order Markov
chains. In fact, so are acceptor splice sites, branch points, polypyrimidine tracts, and
start sites, among other signals.

Sometimes, however, non-adjacent positions exhibit dependencies, for example in
the donor site motif. Several methods have been developed to capture these depen-
dencies.Maximal dependence decomposition (MDD), which is used byGenscan (Burge
and Karlin 1997), uses a decision tree to select one of several WAMs for scoring the site.
Inclusion-driven learned Bayesian Networks (idlBNs) have also been tried (Castelo and
Guigó 2004). These methods outper form PWMs and first-order Markov models when
predicting individual sites, but the improvements tend to vanishwhen considered in the
overall framework of a gene finding program. Support vector machines (SVMs) trained
with sequence features local to the splice site have also shown promise (Sun et al. 2003;
Zhang et al. 2003; Degroeve et al. 2005; Baten et al. 2006; R€atsch et al. 2006), however, it
is unclear to what extent other features such as codon usage (usually detected separately
from the splice site) influence their success. When used alone (not in a gene prediction
context), they perform substantially better than the PWM or first-order Markov model
(WAM).

2.2.2 Content

In theory, the signals on their own should completely specify the intron-exon structure
of a transcript. However, proper classification of all potential start codons and splice
sites in a genomic sequence is still a challenge. Properly detecting the start and end of
transcription is also a major challenge. This suggests that either our models of these
signals are inadequate, or we have yet to identify additional signals involved (such as cis-
acting enhancer or silencer elements affecting splice site choice), or our models of the
mechanisms of transcription and/or splicing are deficient or a combination of all of the
above. Therefore, most gene prediction strategies also take advantage of the statistical
properties of coding sequences. We call such content-based coding versus non-coding
measures “coding statistics”.

Indeed, protein coding regions exhibit characteristic DNA sequence composition
bias, which is absent from non-coding regions (see Fig. 3). The bias is a consequence of
(1) the uneven usage of the amino acids in real proteins, and (2) of the uneven usage of
synonymous codons. To discriminate protein coding fromnon-coding regions, a number
of content measures can be computed to detect this bias (Fickett and Tung 1992; Gelfand
1995; Guigó et al. 2000). Such coding statistics can be defined as functions that compute a
real number related to the likelihood that a given DNA sequence codes for a protein (or a
fragment of a protein). Most coding statistics measure directly or indirectly either codon
or di-codon usage bias, base compositional bias between codon positions, or periodicity
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in base occurrence (or a mixture of them all). Since the early eighties, a great number of
coding statistics have been published in the literature. Hexamer frequencies usually in the
form of codon position dependent 5th-orderMarkovmodels (Borodovsky andMcIninch
1993) appear to offer the maximum discriminative power, and are at the core of most
popular gene finders today. In practice it is implemented as a three-periodic inhomo-
geneous Markov model, with one Markov chain corresponding to each position of a
codon. GRAIL (Uberbacher and Mural 1991; Xu et al. 1994), an earlier gene finding
method, popular in the early nineties, used a neural networks to determine the optimal
combination of a variety of coding statistics for predicting coding regions.

2.3 Conservation

When one or more informant genomes are available, it is possible to detect the
characteristic conservation pattern of coding sequence and use it as an orthogonal
measure of coding potential. Over the past few years, several programs have been
developed that exploit sequence conservation between two genomes to predict genes. A
wide variety of strategies have been explored. In one such strategy (Alexandersson et al.
2003) (further discussed below), alignment of the genomic sequence and gene predic-
tion are performed simultaneously. In the “informant genome” approach (e.g. SGP2
(Parra et al. 2003) and TWINSCAN (Korf et al. 2001) alignments are performed first
using standard tools such as TBLASTX or BLASTN and these alignments are used to
inform prediction. More recently methods that use multiple alignments among several
genomes have been developed.

Fig. 3 Coding potential calculated using a fifth-order Markov model over the human beta globin gene
locus. Annotated exons are shown in blue

Tyler Alioto and Roderic Guigó

15



Fi
g
.4

Co
di
ng

se
qu

en
ce
s
ar
e
m
or
e
co
ns
er
ve
d
th
an

no
n-
co
di
ng

se
qu

en
ce
s.
Co

ns
er
va
tio

n
w
ith

in
m
am

m
al
s
at

th
e
hu

m
an

be
ta

gl
ob

in
ge
ne

lo
cu
s
is
sh
ow

n.
G
en
e

pr
ed
ic
tio

n
pr
og

ra
m
s
th
at

ut
ili
ze

co
ns
er
va
tio

n
(C
O
N
TR
AS

T
an
d
SG

P2
)
pe
rf
or
m

be
tt
er

th
an

th
os
e
th
at

do
no

t
(G
en
eI
D
)

Chapter 1.1: State of the art in eukaryotic gene prediction

16



To illustrate this point, in Fig. 4 we display the human beta globin gene locus on the
UCSC genome browser. The definitive annotation is represented by the aligned RefSeq
sequence at the top, while the conservation track at the bottom shows the evolutionary
conservation as determined by a phylo-HMM. In between are various gene predictions
which use 0 (GeneID), 1 (SGP2) or 27 (CONTRAST) aligned genomes.

3 Frameworks for integration of information

As we have seen, genomic and extra-genomic information of many different forms
(sequence motifs, coding nucleotide composition, evolutionary conservation) can con-
tribute to the prediction of the intron-exon structure of protein-coding transcripts.
Successful gene prediction, however, depends onmore than the sum of its parts; accurate
and efficient integration of this information is critical. In this section we will look at gene
prediction from theperspective of integration, outlining the various frameworks that have
been developed and elaborated over the years.

3.1 Exon-chaining

Once exons are predicted, explicitly or implicitly, along a genomic sequence, exons need
to be chained into gene predictions. Exon-chaining, therefore, is actually something that
every gene predictor does, at least conceptually. The main difficulty in exon assembly is
the combinatorial explosion problem: the number of ways N candidate exons may be
combined grows exponentially with N. The key idea of computational feasibility comes
from dynamic programming (DP), which allows finding the “optimal assembly” quickly
without having to enumerate all possibilities (Gelfand andRoytberg 1993). Exon chaining
DP (Guigó 1998) is implicit to several currently available gene predictors such as Fgeneh
(Solovyev et al. 1995) and GeneID (Guigó et al. 1992; Parra et al. 2000). In GeneID, gene
prediction is donehierarchically. First, splice sites, start and stop codons are predicted and
scored on the query sequence. From these sites, all potential protein coding exons are
built. The exons are scored as a function of the scores of the exon defining sites, and the
score of a fifth-orderMarkovmodel which evaluates the coding bias of the predicted exon
sequence. Because in GeneID all scores are log-likelihood ratios, the score of the exons is
simply the sum of individual scores. Finally, exons are assembled into gene structures,
so that the final assembly is the one maximizing the sum of the assembled exons.

The advantages of the hierarchical approach is that the gene finding problem can be
tackled in discrete steps and analyzed at intermediate stages. It is also very fast and can
analyze large mammalian genomes in only a few hours. It also allows for a quite flexible
scoring approach, since exons can be re-scored, using ad-hoc procedures, depending on
their conservation in other genome(s) or their similarity to known protein or cDNA
sequences. However, a number of shortcomings are apparent, especially when com-

Tyler Alioto and Roderic Guigó

17



pared to the more recent crop of HMM and CRF-based gene predictors (see below):
exon and intron length distributions are not very well modeled (only minimum and
maximum lengths can be specified), and scores are not truly probabilistic.

3.2 Generative models: Hidden Markov models

A novel advance in eukaryotic gene prediction methodologies was the application of
generalized Hidden Markov Models (HMMs), initially implemented in the Genie algo-
rithm (Kulp et al. 1996). (HMMswere first used in a bacteriumgenefinder byKrogh et al.
(1994)after its success inproteinmodeling.)Soonafter, itwas implemented intheGenscan
algorithm (Burge and Karlin 1997) to predict multiple genes. Several other HMM-based
gene prediction programs were developed later: Veil (Henderson et al. 1997), HMMgene
(Krogh 1997) and Fgenesh (Salamov and Solovyev 2000).

In the HMM approach, different types of structure components (such as exons or
introns) are characterized by a state, and the gene model is thought to be generated by
a state machine: starting from 50 to 30, each base-pair is generated by an “emission
probability” conditioned on the current state (and if using a higher order Markov
model, a limited number of preceding bases), and the transition from one state to
another is governed by a “transition probability” which obeys a number of constraints
(e.g. an intron can only follow an exon, reading frames of two adjacent exons must be
compatible, etc.). All of the parameters of the emission probabilities and the (Markov)
transition probabilities are learned (pre-computed) from some training data. Since the
states are unknown (“hidden”), an efficient algorithm (called the Viterbi algorithm,
similar to DP) may be used to select the best set of consecutive states (called a “parse”),
which has the highest overall probability of any possible parse for the given genomic
sequence without actually having to enumerate all possible parses (see (Rabiner 1989)
for a tutorial on HMMs).

The reason these fully probabilistic state models have become preferable is that all
scores are probabilities themselves and the weighting problem becomes only amatter of
counting relative observed state frequencies. It is easy to introduce more states (such as
intergenic regions, promoters, UTRs, etc.) and transitions into HMM-based models to
accommodate partial genes, intronless genes, even multiple genes or genes on different
strands. These features are essential when annotating genomes or large contigs in an
automated fashion.

In the following sections, we will outline the various “flavors” of HMMs that have
been applied to the problem of gene prediction, starting with the basic HMM.

3.2.1 Basic hidden Markov models

The first HMM-based gene predictors such as Genie were designed around a basic
hidden Markov model, which is described by a set of possible states (e.g. start, exon,
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donor, intron, acceptor, stop, intergenic, etc.), a set of possible observations (e.g. the set
of nucleotides A, C, G and T), a transition probability matrix, an emission probability
matrix, and the initial state probabilities. Transition probabilities govern the chance of

Fig. 5 A simple HMM for detecting regions of high GC content. (a) The state diagram exhibits two states
which “emit” sequence according to different nucleotide probabilities. The begin (“B”) and end (“E”) states
are silent, i.e. they do not emit sequence. Transition probabilities are shown with arrows. Transitions from
one state to all others always sum to one. Emission probabilities are shown as tables in each of the two
states. (b) The calculation of the joint probability Pr(x, y) of a sequence x and a particular state path or
“parse” y is shown, and is simply the product of the transition and emission probabilities that were visited
while traversing the path. The “true” sequence of states is “hidden”
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moving from one state to any of the other states (or even back to the same state), for
example from an exon to a donor site, from a donor site to an intron, etc. Emission
probabilities correspond to the frequencies of nucleotides occurring in particular states
(similar to a PWM model).

For an example of a simple hiddenMarkovmodel that illustrates the concept of states,
transition probabilities and emission probabilities, please refer to Fig. 5, inwhichwe show
how one might design an HMM for detecting regions of high GC content. With this
model, one can solve the following problems associated with an HMM:

1. Evaluation. Find the probability of the sequence given themodel and its parameters.
This would be the sum of all possible state paths through the sequence. The
probability of one such path is shown in Fig. 5b. To enumerate all possible paths and
sum their probabilities is generally an intractable problem, however fortunately
there exists a dynamic programming algorithm, the “forward” algorithm, that can
solve it efficiently.

2. Decoding. Find the most likely state path (i.e. sequence of AT-rich and GC-rich
regions) given the model and a particular sequence. This is solved by the Viterbi
algorithm.

3. Learning. Adjust the parameters (initial, transition and emission probabilities) to
maximize the likelihood of the sequence given themodel. In the example in Fig. 5, this
would correspond to learning the probabilities of emitting the nucleotidesA,C,G and
T in each of the two states, AT-rich and GC-rich, and learning the probabilities of
switching between the two states given a set of training sequences. If, however, the
trainingsequencesarealreadyannotatedwithAT-richregions, the learningstepcanbe
bypassed and the transition and emission probabilities set to the frequencies and base
composition corresponding to the annotation.

Hidden Markov models for gene prediction, on the other hand, are necessarily
more complex than the example in Fig. 5 due to the larger number of states and
possible transitions needed to model gene structures. The first step in gene finding
using an HMM is to learn the parameters from either labeled data (i.e. known genes)
or unlabeled data. If the annotation is trusted, the transition and emission prob-
abilities can simply be set to the frequencies observed in the annotated genes. Likewise,
the weight array matrices for the various signals and content sensor sub-models that
we described above are simply set by obtaining count frequencies. This procedure is
called maximum likelihood estimation. In some cases, however, the optimal states are
unknown, for example the ancestral evolutionary states in a phylo-HMM (described
below). In these cases, the probabilistic basis of HMMs allows the parameters to be
systematically learned from the data by maximum likelihood using the Baum-Welch
algorithm (Baum et al. 1970), which is a special case of the Expectation Maximization
algorithm (Dempster et al. 1977).
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Once the model is trained, the software can be run on genomic sequences. Given
the DNA sequence and the HMM model, a dynamic programming algorithm called
the Viterbi algorithm can be used to find the optimal parse (i.e. the most likely
sequence of exons and introns), or in other words annotate the sequence.

For gene finding, the probability of a sequence given an HMM is rarely solved for
explicitly, although once an optimal path (in this case, a sequence of exons and
introns) is predicted, its probability can give tell us something about howwell it fits the
model. The “Forward” and “Backward” algorithms are used to make this calculation.

3.2.2 Generalized hidden Markov models

One problemwith the basicHMM is that the duration of a state can only bemodeled as a
transition back to itself with transition probability p. This in effect limits the duration of
state to a geometric length distribution E½lX � ¼ 1=ð1� pÞ:

In a generalizedHMM(GHMM), length distributions can be explicitlymodeled, for
example with a Poisson point process, which is a counting process that represents the
total number of occurrences of discrete events during a temporal/spatial interval. An
additional variable d is introduced into the HMM. Upon entering a state, a duration is
chosen according to a particular probability distribution and then d number of
characters are emitted according to the emission probabilities. The transition to the
next state is made according to the transition probabilities. The advantage of this is that
exon lengths and intron lengths can be explicitly modeled according to their estimated
length distributions obtained from training. The disadvantage is an increase in
computational complexity, thus often compromises are made. The program Augustus
(Stanke et al. 2006), for example, reduces this computational cost by explicitlymodeling
short introns and using a geometric distribution for longer introns.

Another advantage of GHMMs is that they are modular. The states, in fact, can be
represented by any suitable model and can be trained separately from themainmodel.
For example, in Genscan, one of the first programs to utilize a GHMM, the donor site
is modeled using maximal dependence decomposition (MDD) while the acceptor site
is modeled by a standard Markov chain. Such modularity facilitates the design of the
overall gene model, allowing one to easily incorporate additional states. A basic state
diagram for gene prediction is shown in Fig. 6. There are usually separate models for
each intron phase and exon frame, thus enabling proper frame consistency.

3.2.3 Generalized pair HMMs

As described above in Sect. 2.3, the availability of multiple fully sequenced genomes
heralded the advent ofmulti-genome de novo gene predictors. SGP2 directly uses BLAST
scores to modify the log odds that a particular candidate exon is coding. Twinscan
modified theGenscanmodel to use an extended alphabet (8 characters) corresponding to
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Fig. 6 A typical state diagram for a generalized hidden Markov model used for eukaryotic gene-finding.
The three intron phases/exon frames are modeled by the separate intron and exon states 0, 1 and 2. Signal
states donor (D), acceptor (A), start codon and stop codon (diamonds) mark the transitions between the
variable-length content states introns, exons and intergenic regions (circles). Only the states for plus strand
prediction are shown; simultaneous minus strand prediction are handled by a mirror image of the states
linked through the intergenic state (not shown)
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aligned and unaligned versions of the four bases, A, C, G and T. This represented a
precursor to the next class of HMMs called generalized pair HMMs, pioneered by the
program SLAM (Alexandersson et al. 2003) and also utilized by the program TWAIN
(Majoros et al. 2005). Generalized pair HMMs (GPHMMs) represent a fully probabilistic
comparative genomic approach that simultaneously produces both an alignment and
annotation of two syntenic regions. Pair HMMs have traditionally been used in pairwise
alignmentalgorithmsand includematch, insert andgap states.AgeneralizedpairHMMis
similar in that it emits gene features as aligned pairs (exon pairs or intron pairs, for
example, one in each species). In addition to the set of parameters required by GHMMs,
theGPHMMisadditionally specifiedbya joint distributionofpaireddurations anda joint
distribution of pair emission probabilities. A parse then becomes a series of states with
paired durations. In general, exon insertion/deletions are not allowed, although Dou-
blescan (Meyer and Durbin 2002), which uses a non-generalized pair HMM, does allow
for indels.

The advantages of usingGPHMMs are first of all, increased accuracy comparedwith
methods that utilize only a single genome, and second you get two predictions for the
price of one – gene predictions are made simultaneously in both genomic sequences.
However variability in exon number is not tolerated, there are more parameters to
estimate and the requirement for lengthy stretches of syntenic sequence is often difficult
to meet, making there use in practice somew hat limited.

3.2.4 Phylo-HMMs or evolutionary HMMs

If a whole genome alignment of more than one genome is available, it is possible to
integrate this information into a gene-finding HMM by explicitly modeling the
evolutionary history of the DNA sequence. Phylo-HMMs (Siepel and Haussler
2004) (also called evolutionary HMMs (Pedersen and Hein 2003)) model a com-
bination of twoMarkov processes operating in two different dimensions: space (along a
genome, like in traditional GHMM gene finding) and time (along the branches of a
phylogenetic tree). Basically, the columns of amultiple alignment are emitted according
to a complex phylogenetic model such as the nucleotide substitution model of
Hasegawa, Kishino and Yano (HKY) (Hasegawa et al. 1985), which is modeled using
a continuous time Markov chain. The probability of mutation at a particular site is
allowed to depend on the pattern of mutation at the previous few sites (obeying the
Markov assumption) and the evolutionary rate in general differs according to biological
function (coding versus non-coding, for example) and can also be allowed to vary from
one region of the genome to another.

The UCSC conservation track is probably the best known example of a phylo-
HMM. This model has also been successfully implemented in the gene prediction
programs Shadower (McAuliffe et al. 2004) and N-SCAN (Gross and Brent 2006), a
multi-genome version of Twinscan.
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Phylo-HMMs represent a true advancement in the integration of multi-genome
conservation and performance gains are seen over single- and dual-genome predictors.
However, their use is restricted to cases where well-aligned genome sequences exist, and
their computational cost is quite high.

3.3 Discriminative learning

Hidden Markov model based gene prediction has represented the state of the art of
eukaryotic gene prediction for many years. More recently, however, we are beginning
to see the application of new theoretical frameworks which may be best classified as
discriminative in nature, as opposed to the generative nature of HMMs. In dis-
criminative learning, the posterior probability PrðyjxÞ of hidden states (gene struc-
ture) given the observations (DNA sequence) is modeled directly. In generative
learning (HMMs), amore general problem, estimation of the joint probability Prðx; yÞ
of the states and observations from training data (as in Fig. 5b), is solved before
calculating the posterior probability PrðyjxÞ according to Bayes rule (Ng and Jordan
2001), where x corresponds to the observations and y corresponds to the labels or state
path.

The direct modelling of the probability of a gene annotaion (a sequence of
labeled segments, i.e. state path) given a sequence (the observations) lends itself
to discriminative training, a training paradigm in which all parameters of the model
are tuned or weighted in order to directly maximize the discriminatory power
of the model. In the case of gene prediction, this means determining the weights
of various model parameters in order to acheive maximum annotation accuracy
according to defined measures of gene prediciton accuracy (see Sect. 5). This type of
training, in which the model is trained to maximize a conditional probability PrðxjyÞ
versus a joint probability Prðx; yÞ, is also called “conditional training”. Semi-Markov
(or generalized) versions of support vector machines (SVMs) and conditional
random fields (CRFs), both discriminative in nature, are promising newcomers to
the field of gene prediction.

3.3.1 Support vector machines

Support vector machines (SVMs), a particular set of supervised learning methods,
have rapidly become popular in biological research to solve classification problems.
SVMs are designed to discriminate two classes, for example true splice sites from
decoy sites, by separating themwith a large margin. SVMs are trained by learning this
margin, or boundary, from positively and negatively labeled training examples.

SVMs for gene prediction have been independently applied to the problems
of splice site detection and exon content (coding versus non-coding) classification;
however, more recently, the SVM framework has been generalized and applied to the

Chapter 1.1: State of the art in eukaryotic gene prediction

24



exon assembly problem, resulting in the programs mSplicer and mGene (R€atsch et al.
2007). Briefly the scores of the signal and content submodels (themselves learned by
SVMs) are combined with segment length contributions and then given to piecewise
linear weighting functions which have been trained to maximize the margin between
the score of the best gene model and that of all false models.

3.3.2 Semi-Markov conditional random fields

Most recent on the scene of eukaryotic gene prediction are a set of programs based on
semi-Markov conditional random fields (SM-CRFs). A SM-CRF on a sequence x outputs
a segmentation of x in which labels are assigned to segments of the sequence (e.g. exon,
intron, etc.) They are essentially “conditionally trained” semi-Markov chains, that is, they
are designed to find themost likely set of labels (states) that themodel has been trained to
traverse given a set of observations (input sequence). SM-CRFs are analogous toGHMMs
(or semi-HMMs) except that the probability of label-value pairs, the labels being
conditioned on the values, is learned directly. The values or observations are examined
and not “emitted” as they are in HMMs, which in many respects is more intuitive and
more accurately reflects the problem that is trying to be solved. Some advantages of this
framework are that (1) any discriminative feature corresponding to an arbitrary-length
segment may be used, (2) it need not be probabilistic and (3) features may overlap –
discriminative training will assign appropriate weights.

Recent examples of semi-Markov CRF implementations for gene prediction
include:

* CRAIG (Bernal et al. 2007), which is trained globally on all input feature vectors
using an online large-margin algorithm related to multiclass SVMs.

* CONRAD (DeCaprio et al. 2007), which is provided as a generic gene calling engine
that promises to be highly customizable, although it has only been trained so far on
fungal species.

* CONTRAST (Gross et al. 2007), a multi-genome predictor that is “phylogeny free”
working directly with features extracting from whole genome multiple alignments.

The semi-Markov CRF framework would appear to hold much promise for the
integration of multiple sources of information and may become the de factomodel for
such purpose.

3.4 Combiners

Programs that specifically aim to integrate the results of other gene callers have been
dubbed “combiners”. Previous work has producedmany such programs: GAZE (Howe
et al. 2002), Jigsaw (Allen and Salzberg 2005), GLEAN (Elsik et al. 2007), Genomix
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(Coghlan and Durbin 2007), and EuG�ene (Foissac and Schiex 2005) to name a few. The
goal of such programs is to automate the task that faces human an notators: to produce
an annotation when presented with the results of many different and potentially
conflicting gene predictions.

While the combining functions differ among programs, the general principle on
which they operate is that predictions should make uncorrelated errors which should
tend to cancel each other out and increase the signal to noise ratio. This principle relies
on the assumption that the input predictions are independent. However, this is often
not the case due the use of similar methods, training data or extrinsic evidence. This
can be circumvented by careful choice of input methods or can be explicitly corrected
for by the combining algorithm, as is done by the combiner GenePC, which we are
developing.

In general, combiners perform better than any individual input, often dramatically
improving on specificity measures at all levels. For this reason, they are becoming
popular for the automated annotation of new genomes.

4 Training

In most gene prediction programs, there is a clear separation between the gene model
itself and the parameters of the model. While the model is general, the parameters
often need to be specifically estimated for different species, or taxonomic groups.
Using the wrong parameters may lead to mispredictions. Typically, the parameters of
the gene model define the characteristic of the sequence signals involved in gene
specification (i.e. weight matrices for splice sites), the codon bias characteristic of
coding exons (i.e. hexamer counts or Markov models for coding regions), and the
relation between the exons when assembled into gene models (i.e. intron and exon
lengths distributions, number of exons, etc.). These parameters are estimated from a
set of annotated genomic sequences from the species of interest. If not enough
annotated sequences are available, some programs, such as GLIMMER (Salzberg
et al. 1998), allow for the use of Markov models of smaller order.

Depending on the framework, the exact training algorithms differ from program to
program. However, almost all gene predictors end up being trained discriminatively as
some point tofine tune themodel parameters (both submodel and global parameters) in
order to achieve maximum discrimination – and it seems that all programs are
characterized by the presence of “fudge” factors that get manually tuned regardless
of the training procedure used. For example, we have mentioned above that HMM-
based predictors can be trained using the Baum-Welch EM algorithm; however, such
maximum likelihood training is usually performed on each submodel separately and
then the global model tuned afterwards, usually manually. It has been shown that
further improvements are realized when formal discriminative training methods such

Chapter 1.1: State of the art in eukaryotic gene prediction

26



as generalized gradient ascent are used so as tomaximizemutual information (MMI) on
all the model parameters at once (Majoros and Salzberg 2004).

Because of all these and other reasons, training a gene prediction program for a new
species or taxonomic group is not always a trivial exercise; it requires a lot of manual
intervention, and very few applications, if any, offer automatic training protocols.
Recently, however, methods have been developed to train gene-finding software even in
the total absence of annotated genomic sequences of the organism under consideration
(an increasingly common problem, when the sequencing of the genome of an organism
is not followed by the sequencing of cDNAs from that organism) (Lomsadze et al. 2005;
Korf 2004).

A limiting amount of training sequence available can also impinge on evaluation
procedures (described in the next section). Of course it is desirable to train on as many
known genes as possible to avoid overfitting; however, evaluation of the performance of
a program should always be carried out on a clean set of genes on which the program�s
parameters were not estimated, in order not to bias the results. This is especially true
when the model is trained to acheive maximum discriminative power. In this case one
can perform an N-fold cross-validation or jackknife procedure, in which successive
rounds of training and evaluation are performed with some of the data for training
withheld and used for evaluation purposes. The results of all the rounds are then
combined to give the final performance values.

5 Evaluation of gene prediction methods

5.1 The basic tools

Whether running gene prediction pipelines, or just running gene prediction programs on
a locus of interest, it is important to compare the outputs of multiple runs of a predictor
with different settings or to compare multiple predictions from different programs. The
comparison should be able to tell you something about the quality of each prediction by
graphically reflecting the confidence in each exon, and should be of sufficient resolution
to compare alternative splice sites. Several solutions to this problem have emerged.

The programGFF2PS (Abril andGuigó 2000) is a highly customizable UNIX-based
script for generating postscript figures frommultiple prediction outputs or annotations
in GFF format. GBROWSE is a database-driven application that performs a similar but
web-based function. Perhaps themost easy to use online system, provided your genome
is represented and you know the genomic coordinates of your annotations, is UCSC
Genome Browser�s custom track option. If you are an annotation group and provide
annotation to the scientific community on a regular basis then the Distributed
Annotation System (DAS) is the preferred approach. The most used DAS client for
gene prediction annotations is ENSEMBL.
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5.2 Systematic evaluation

In addition of having some clue on the accuracy of the predictions on particular cases,
one would like to have an overall measure of the accuracy of the “ab initio” gene
prediction programs. The accuracy of gene prediction programs is usually measured
in controlled data sets. To evaluate the accuracy of a gene prediction program on a
test sequence, the gene structure predicted by the program is compared with the
actual gene structure of the sequence. The accuracy can be evaluated at different
levels of resolution. Typically, these are the nucleotide, exon, and gene levels. These
three levels offer complementary views of the accuracy of the program. At each level,
there are two basic measures: Sensitivity (Sn) and Specificity (Sp), which essentially
measure prediction errors of the first and second kind. Briefly, Sensitivity is the
proportion of real elements (coding nucleotides, exons or genes) that have been
correctly predicted, while Specificity is the proportion of predicted elements that are
correct. More specifically, if TP are the total number of coding elements correctly
predicted, TN, the number of correctly predicted non-coding elements, FP the
number of non-coding elements predicted coding, and FN the number of coding
elements predicted non-coding, then, in the gene finding literature, Sensitivity is
defined as Sn ¼ TP=ðTP þ FNÞ and Specificity as Sp ¼ TP=ðTP þ FPÞ. Both, Sensi-
tivity and Specificity, take values from 0 to 1, with perfect prediction when both
measures are equal to 1. Neither Sn nor Sp alone constitute good measures of global
accuracy, since high sensitivity can be reached with little specificity and vice versa. It
is desirable to use a single scalar value to summarize both of them. In the gene finding
literature, the preferred such measure on the nucleotide level is the Correlation
Coefficient defined as

ðTP � TNÞ � ðFN � FPÞCC ¼ P
ðTP þ FNÞ � ðTN � FPÞ � ðTP þ FTÞ � ðTN þ FNÞ

CC ranges from �1 to 1, with 1 corresponding to a perfect prediction, and �1
to a prediction in which each coding nucleotide is predicted as non-coding and
vice versa.

At the exon level, an exon is considered correctly predicted only if the predicted exon
is identical to the true one, in particular both 50 and 30 exon boundaries have to be
correct. A predicted exon is considered wrong (WE), if it has no overlap with any real
exon, and a real exon is considered missed (ME) if it has no overlap with a predicted
exon. A summary measure on the exon level is simply the average of sensitivity and
specificity. At the gene level, a gene is correctly predicted if all of the coding exons are
identified, every intron-exon boundary is correct, and all of the exons are included in the
proper gene.

One of the first systematic evaluations of gene finders was produced by Burset
and Guig (Burset and Guigó 1996). These authors evaluated seven programs in a
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set of 570 vertebrate single gene genomic sequences. At that time, average exon
prediction accuracy ððSnþ SpÞ=2Þ ranged from 0.37 to 0.64. A few years latter,
Rogic et al. (2001) updated the analysis; the average exon accuracy of the tested
programs increased to values between 0.43 to 0.76, illustrating the significant
advances in computational gene finding that occurred during the nineties. (See
Guigó and Wiehe (2003) for a review on the accuracy of gene prediction programs
in the late nineties.)

The evaluations by Burset and Guigó, Rogic et al. and others suffered, however,
from the same limitation: gene finders were tested in control led data sets made of
short genomic sequences encoding a single gene with a simple gene structure. These
data sets are not representative of the complete genome sequences being currently
produced. To address this limitation, and in the context of large genome and
annotation projects, more complex community evaluation experiments have been
carried out to obtain a more realistic estimation of the actual accuracy of gene finding
programs.

5.3 The community experiments

Community experiments – experiments on which many groups all over the world
participate simultaneously – are becoming popular in Bioinformatics to comparatively
benchmark the status of the prediction tools in a given area.One of themostwell-known
is CASP, which stands for Critical Assessment of Techniques for Protein Structure
Prediction, and which takes place every two years since 1994. CASP provides the
research community with an assessment of the state of the art in the field of protein
structure prediction. Protein structures that are either expected to be solved shortly or
that have been recently solved, but not yet discussed in public, are used as targets for the
prediction. Predictions submitted by groups worldwide are then evaluated and
compared.

5.3.1 GASP

GASP, the Genome Assessment Project, was inspired by CASP, and took place
in 1999 in the context of the Drosophila Genome Project. In short, at GASP, a
genomic region in Drosophila melanogaster, including auxiliary training data, was
provided to the community and gene finding experts were invited to send the
annotation files they had generated to the organizers before a fixed deadline. Then,
a set of standards were developed to evaluate submissions against the later
published annotations (Ashburner et al. 1999), which had been withheld until
after the submission stage. Next, the evaluation results were assessed by an
independent advisory team and publicly presented at a workshop at the Intelligent
Systems in Molecular Biology (ISMB) 1999 meeting. This community experiment
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was then published as a collection of methods and evaluation papers in Genome
Research (Reese et al. 2000).

5.3.2 EGASP

Within the context of the pilot phase of the ENCODE project, the second GASP, the so-
called ENCODE GASP (EGASP) took place. The 44 regions selected within the
ENCODE project had been subjected to a detailed computational, experimental and
manual inspection and a high quality gene annotation of the ENCODE regions had been
produced – the so-called GENCODE annotation (Harrow et al. 2006). On January 15,
2005 the complete gene map for 13 of the 44 regions was released, and gene prediction
groups worldwide were asked to submit predictions for the remaining 31 regions.
Eighteen groups participated, submitting 30 prediction sets by the April 15. The
annotation of the entire set of the ENCODE regions was then released, and on May
6 and 7, participants, organizers and a committee of external assessors met at the Sanger
Institute to compare the GENCODE gene map with the gene maps predicted by the
participating groups. As with GASP, results were published as a collection of papers in
the journal Genome Biology (Guigó et al. 2006). Accuracy at the exon level for
participating programs is shown in Fig. 7. At EGASP some programs reached average
exon accuracies close to 0.85.

5.3.3 NGASP

Very recently, NGASP, the nematode genome annotation assessment project, has taken
place. Since five Caenorhabditis nematode genomes are currently available, those of
C. remanei, C. japonica andC. brenneri, C. elegans andC. briggsae, nGASPwas launched
with the implicit goal of promoting the usage of the comparative information across
these five genomes. The explicit goal was to objectively assess the accuracy of the current
state of the art for protein-encoding gene prediction algorithms in C. elegans, and to
apply this knowledge to the annotation of the other Caenorhabditis genomes. A set of
regions representing �10% (10Mb) of the C. elegans genome was selected to evaluate
the performance of the participating gene predictors. As with previous genome
annotation assesment projects, participation was open to all academic, private sector,
and government researchers. A summary of the results will be submitted for
publication.

These community experiments are an excellent exercise to focus a whole commu-
nity on a certain problem task and motivate groups and individuals to participate and
submit their best possible solutions. External assessment of the results is critical and
standards and rules have to be laid out clearly at the beginning of the experiment. They
have been received with enthusiasm within the gene prediction community and they
have had a great impact in tool development.
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Fig. 7 Performance at the exon-level of various gene predictions submitted to the EGASP work-shop in
2005. (a) Sensitivity versus specificity on the 31 test regions for each program. (b) Boxplots of average
sensitivity and specificity where each data point corresponds to the average in each of the test sequences for
which a GENCODE annotation existed. Reproduced with permission from (Guigó et al. 2006) Fig. 6
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6 Discussion

6.1 Genome datasets

There has been an effort to centralize all the information around the assembled sequences,
and associated annotations, producedby thewhole-genome sequencing projects. Thebest
example are the three fully established whole-genome browsers: the NCBI Map Viewer
(Wheeler et al. 2001), the UCSC Genome Browser (Karolchik et al. 2003) and the
ENSEMBL browser at the Sanger Center (Hubbard et al. 2002), each of which present
by default a set of contributed gene-finding predictions fromdifferent programs obtained
for each new released assemblies. In addition, each site develops its own “in-house” gene
set. These sets are based on mRNA evidence obtained from cDNA and EST sequences,
augmented with computational predictions.

ENSEMBL human genes are generated automatically by the ENSEMBL gene
builder. They are of three basic types: those having full-length cDNA or proteins,
those having high homology to proteins in other organisms and those Genscan-
predicted genes matching to proteins/vertebrate mRNA and UniGene clusters. The
basic gene-annotator engine (using protein homology to construct gene structure) is
Genewise (Birney and Durbin 2000). The “ENSEMBL genes” are regarded as being
fairly conservative (with a low false positive rate), since they are all supported by
experimental evidence of at least one form via sequence homology. Recently, ENSEMBL
project has added spliced EST information for identification of alternative transcripts
and to incorporate comparative genomics for getting orthologs and synteny relations.
The basic annotator engine at the UCSC browser is BLAT (Kent 2002) which allows
rapid alignment of primate DNAs/RNAs or land vertebrate proteins onto the human
genome reliably, hence annotating the genome by similarities. Finally, NCBI LocusLink
has a rule-based genome an-notation pipeline. Known genes are identified by aligning
RefSeq genes (http://www.ncbi.nlm.nih.gov/RefSeq/) and GenBank mRNAs to the
genome usingMegaBLAST (Zhang et al. 2000). Transcript models are reconstructed by
attempting to settle disagreements between individual sequence alignments without
using an a priori model (such as codon usage, initiation, or polyA signals). Genes (and
corresponding transcript and protein features) are annotated on the contig if the
defining transcript alignment is¼ 95% identity and the aligned region covers¼ 50% of
the length, or at least 1000 bases. Finally, genes predicted by GenomeScan (Yeh et al.
2001), an extension ofGenscan to include protein homology information, are annotated
only if they do not overlap any model based on a mRNA alignment.

6.2 Atypical genes

Gene prediction efforts have been traditionally focused on predicting the “typical”
gene. Genes with uncharacteristic features that do not appear with great frequency
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tend to be ignored such as, for example, genes possessing U12-type introns, seleno-
protein genes with in-frameUGA codons which code for selenocysteine, fast-evolving
genes or genes with atypical codon usage. Progress has been made in a couple of
these cases.

U12 introns, which comprise only a fraction of a percent of all introns, are spliced
by theminor spliceosome, a low-abundance spliceosomewith a different composition
of snRNPs than the major U2-dependent spliceosome. It binds to donor and branch
point sequences which are highly conserved across all species in which they are found,
which includes most animals, plants and even a few fungi and protists. However, the
splice sites do not conform to the regular U2 consensus – they are quite divergent and
many of them have AT-AC terminal dinucleotides, making them invisible to most
gene prediction software. By incorporating WAMs for the U12 splicing signals
into the GeneID parameter file and making a few modifications to the dynamic
programming routine, we havemade the latest version of GeneID able to predict genes
with U12 splice sites without a significant decrease in specificity. To aid in future
genome annotation efforts, introns from awide range of eukaryotic genomes that have
been classified as U12-type are now stored in a specialized database called U12DB
(Alioto 2007).

Selenoproteins pose an even greater challenge due to the presence of in-frame
UGA codon(s) which are recognized by the selenocysteine tRNA in the presence of
a SECIS element downstream, usually located in the 30 UTR. Yet these have also been
systematically hunted down using a combination of ab initio gene prediction, RNA
structure predictions and homology search (Kryukov et al. 2003). The selenopro-
teome is now catalogued in the SelenoDB (Castellano et al. 2008).

6.3 Outstanding challenges to gene annotation

Community assessment experiments have revealed that computationalmethods are not
able to reproduce the accuracy in the annotation that a dedicated team of annotators,
evaluating the individual evidence that exist for the transcripts mapping to a given
genomic locus, can produce. For instance, EGASP revealed that themost accurate of the
gene finding programs are able to predict correctly only about 40% of the full length
transcripts in the GENCODE annotation. The GENCODE annotation heavily relies on
human supervision (by theHAVANA team at the Sanger Institute (Harrow et al. 2006))
to solve the uncertainties arising from cDNAmapping onto the genome sequence, and it
also includes computational predictions verified experimentally by RT-PCR andRACE.
It is a much richer catalogue of the human transcriptome in the ENCODE regions than
other existing gene sets. Indeed, the first release of the GENCODE annotation consisted
of 2608 transcripts assigned to 487 loci, more than doubling the number of alternative
transcripts per locus in ENSEMBL. It looks like, therefore, there is still room for
improving genefinding software that can automatically reproduce the task being carried
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out by human annotators when confronted with the complexity of transcription in the
human genome.

This complexity, however, appears to be of a magnitude much higher than
that implied by the GENCODE annotation. While extensive verification studies –
including the EGASP community experiment (Guigó et al. 2006) – have demonstrated
that the GENCODE is essentially complete with respect to existing cDNA sequences
and computational predictions, recent research by a number of groups using a variety of
technologies shows that many transcripts exist that are not annotated in GENCODE.
Indeed, data from high-throughput tag sequencing of cDNA ends (Shiraki et al. 2003;
Ng et al. 2005; Peters et al. 2007), from gene trapping in mouse embryonic stem cells
(Roma et al. 2007) and from hybridization of RNA samples into high density tiling
arrays (Kapranov et al. 2007; The ENCODEConsortium 2007) reveals many additional
sites of transcription. Particularly relevant are the results of the so-called RACEarray
experiments in which the products of RACE reactions originating from primers
anchored in exons from GENCODE genes are hybridized onto genome tiling arrays.
More than half of the sites of transcription detected in this way (the so-called
RACEfrags), which are by construction specifically linked to annotated protein coding
genes, do not correspond to GENCODE annotated exons (Denoeud et al. 2007). These
results, therefore, are strongly indicative of the existence of a wealth of transcripts –
including many alter-native transcript forms of protein coding genes, and other
transcriptionally complex events – which had so far escaped detection through
systematic sequencing of cDNA libraries. Computational gene prediction methods
are generally based on computationalmodels that capture our understanding of the way
proteins are encoded in genomes. Modeling these other types of transcripts may be far
more challenging thanmodeling the standard protein-coding ones, as theymay lack the
strong signatures characterizing the latter.

6.4 What is the right gene prediction strategy?

The answer to the question ofwhich gene prediction program touse is “all”. As of yet, no
one program is even close to perfect, so the best advice is to run a handful of the best and
combine their results using a gene prediction combiner. And even then, the genemodels
produced should be regarded as hypotheses about the gene structures embedded within
the chromosome. These models can and should be validated by RT-PCR and/or direct
sequencing.

While the state of theart in eukaryotic gene finding has improved steadily over the
last decade, there is still a long way to go before we can automatically produce high-
quality gene models for an entire genome, even one as well studied as the human
genome.Moreover, the plethora of eukaryotic genomes being sequenced now and in the
future, and for which there is little transcriptional data, only increases the demand for
better computational gene annotation methods.
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CHAPTER 1.2
Quality control of gene predictions

A. Nagy, H. Hegyi, K. Farkas, H. Tordai, E. Kozma, L. Bányai and L. Patthy

Biological Research Center, Hungarian Academy of Sciences, Institute of Enzymology, Budapest, Hungary

1 Introduction

A recent study has systematically compared the performance of various computational
methods to predict human protein-coding genes (Guigó et al. 2006). In this study a set of
well annotated ENCODE sequences were blind-analyzed with different gene finding
programs and the predictions obtained were compared with the annotations. Predictions
were analyzed at the nucleotide, exon, transcript and gene levels to evaluate howwell they
were able to reproduce the annotation. These studies have revealed that none of the
strategies produced perfect predictions but prediction methods that rely on mRNA and
protein sequences and those that used combined information (including expressed
sequence information) were generally the most accurate. The dual- or multiple genome
methods were less accurate, although performing better than the single genome ab initio
prediction methods. Importantly, at the nucleotide level no prediction method correctly
identified greater than�90% of nucleotides and at the transcript level (themost stringent
criterion) no prediction method correctly identified greater than 45% of the coding
transcripts.

Computational gene prediction pipelines, such as EnsEMBL (Hubbard et al. 2007)
andNCBI�sGNOMON(Gnomondescription 2003) are automated techniques for large
datasets, which means that the resultant sequences are not individually analyzed for
possible errors. Mispredicted gene and protein sequences may accumulate within such
resources, without any accompanying annotation to state that the predicted gene or
protein sequencemight be erroneous. This problem is likely to bemost severe in the case
of genomes where gene prediction is only weakly supported by expressed sequence
information or information obtained by comparative genomics.

The key question is: are there signs that may indicate that the predicted structure of
a protein-coding gene might be erroneous? The rationale of the MisPred project (Nagy
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et al. 2007) is that a protein-coding gene is likely to bemispredicted if some of its features
(or features of the protein it encodes) conflict with our current knowledge about
protein-coding genes and proteins. As will be illustrated below, the MisPred pipeline
can detect such conflicts, thereby providing valuable tools for the quality control of gene
predictions.

2 Quality control of gene predictions

2.1 Principles of quality control

Each MisPred tool is based upon generally accepted rules about the properties of
protein-coding genes and correctly folded, functionally competent protein mole-
cules. Each tool combines reliable bioinformatic methodologies, as well as in-house
programs, to analyze protein sequences. Any sequence, which is considered to be
in conflict with one of these rules, is deemed to be erroneous (i.e. abnormal or
mispredicted). By identifying erroneous protein sequences, theMisPred pipeline serves
to inform both the creators of the predictive algorithms as well as experimentalists of
the reliability of predictions, to thereby assist in the improvement of the quality of the
available datasets. The principles of quality control are illustrated below with five of
the MisPred tools. For each of these five tools, the MisPred pipeline contains specific
routines, each focusing on a special type of conflict with one of the dogmas.

2.1.1 Violation of some generally valid rules about proteins

The first three Conflicts are based on the concept that since some protein domains occur
exclusively in the extracytoplasmic space, some occur only in the cytoplasm and others
are found only in the nucleus, the domain composition of proteins may be used to
predict their subcellular localization (Mott et al. 2002; Tordai et al. 2005). The sub-
cellular localization of proteins, however, is determined primarily by appropriate se-
quence signals therefore the presence (or absence) of such signals must be in harmony
with the domain composition of the protein. Proteins that violate these rules are
considered to be erroneous.

For the domain-based prediction of subcellular localization of proteins only those
Pfam-A domain families (Finn et al. 2006) have been incorporated into the MisPred
pipeline that are exclusively extracellular, cytoplasmic or nuclear, respectively. Pfam-A
domains that are known not to be restricted to a particular cellular compartment, such
as immunoglobulin domains and fibronectin type III domains (i.e., domains that are
“multilocale”), were not utilized in these analyses. Our domain co-occurrence analyses
(Tordai et al. 2005) have identified 166 obligatory extracellular, 115 obligatory
cytoplasmic and 126 obligatory nuclear Pfam-A domain families as being restricted
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to the respective subcellular compartment, the majority of which are also identified as
such in the SMART database (Letunic et al. 2004).

2.1.1.1 Conflict between the presence of extracellular Pfam-A domain(s) in a protein
and the absence of appropriate sequence signals

This MisPred tool (hereafter referred to as Conflict 1) identifies proteins containing
extracellular Pfam-A domains which occur exclusively in extracellular proteins or
extracytoplasmic parts of type I, type II, and type III single pass or multispanning
transmembrane proteins and examines whether the proteins also have secretory signal
peptide, signal anchor or transmembrane segments that could target these domains to
the extracellular space. Proteins that contain obligatory extracellular domains but lack
secretory signal peptide, signal anchor and transmembrane segment(s) are considered
erroneous since in the absence of these signals their extracellular domain (usually rich
in disulfide-bonds) will not be delivered to the extracytoplasmic space where it is
properly folded, stable and functional. Mislocalized extracellular domains are likely to
be misfolded in the reductive milieu of the cytoplasm and such proteins are likely to be
rapidly degraded by the protein quality control system of the cell.

2.1.1.2 Conflict between the presence of extracellular and cytoplasmic Pfam-A
domains in a protein and the absence of transmembrane segments

This Mispred tool (hereafter referred to as Conflict 2) is based on the principle that
multidomain proteins that contain both obligatory extracellular and obligatory cyto-
plasmic domains must have at least one transmembrane segment to pass through the
cell membrane. TheMisPred tool associated with Conflict 2 identifies proteins contain-
ing both extracellular and cytoplasmic Pfam-A domains and examines whether they
also contain transmembrane helices. If a protein contains both obligatory extracellular
and cytoplasmic domains but lacks transmembrane segment(s) it is considered to be
erroneous.

2.1.1.3 Co-occurrence of nuclear and extracellular domains in a predicted
multidomain protein

This MisPred tool (hereafter referred to as Conflict 3) is based upon the rule that
protein domains that occur exclusively in the extracellular space and those that occur
exclusively in the nucleus do not co-occur in a single multidomain protein (Tordai et al.
2005). The explanation for this rule is that a protein that contains both extracellular
and nuclear domains would not be delivered to a compartment where both types of
domains would be correctly folded and fully functional. Accordingly, proteins that
contain both extracellular and nuclear domains are deemed erroneous.
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2.1.1.4 Domain size deviation

This MisPred tool (hereafter referred to as Conflict 4) is based on the observation that
the number of residues in closely related members of a globular domain family usually
fall into a relatively narrow range (Wheelan et al. 2000). This phenomenon is due to the
fact that insertion (or deletion) of longer segments into (or from) structural domains
may yield proteins that are unable to fold efficiently into a correctly folded, viable and
stable protein (Wolf et al. 2007). The MisPred tool for Conflict 4 used Pfam-A domain
families that have a well-defined and conserved sequence length range and well-
characterized members of the family (in the UniProtKB/Swiss-Prot database) did not
deviate from the average domain size by more than 2 SD values. Approximately 85% of
all Pfam-A families present in Metazoa turned out to be suitable for this task. Predicted
proteins containing domains that deviate bymore than 2 SD from the average length for
that domain family were deemed erroneous.

2.1.2 Violation of some generally valid rules of protein-coding genes

2.1.2.1 Chimeric proteins parts of which are encoded by exons located
on different chromosomes

ThisMisPred tool (hereafter referred to asConflict 5) is based on the rule that a protein
is encoded by exons located on a single chromosome. If a predicted protein sequence is
identified as chimeric by this MisPred tool it is deemed erroneous.

3 Results

3.1 Validation of the MisPred pipeline

The Swiss-Prot section of UniProtKB is the gold standard of protein databases. The
information available therein is integrated with other databases and each entry is
manually annotated and curated by experts in the field. We have used Swiss-Prot as the
benchmark with which to validate the concepts behind the MisPred pipeline, based

2
Fig. 1 Error detected by MisPred routine for Conflict 1: the case of the Swiss-Prot entry YL15_CAEEL
(Q11101). The hypothetical homeobox protein C02F12.5 predicted for chromosome X contains an
extracellular Kunitz_BPTI domain but was found to lack both a signal peptide and transmembrane helices.
This protein, that also contains a nuclear Homeobox domain, arose through the in silico fusion of a gene
related to the homeobox protein HM07_CAEEL (P20270) and the Kunitz_BPTI containing protein
CBG14258, Q619J1_CAEBR. (A) Alignment of YL15_CAEEL and Q619JI_CAEBR shows close homology only
in the C-terminal region. (B) Alignment of the YL15_CAEEL_corr1 (the corrected version of the N-terminal
constituent of YL15_CAEEL) and HM07_CAEEL. (C) Alignment of YL15_CAEEL_corr2 (the corrected version
of the C-terminal constituent of YL15_CAEEL) and Q619J1_CAEBR
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on the expectation that very few, if any, of the Swiss-Prot sequences would be truly
erroneous. Examination of human, mouse, rat, chick, zebrafish, worm and fly Swiss-
Prot entries has indeed revealed that none of the entries violate the rules underlying
Conflicts 2 and 3. Themajority of truly erroneous sequences were returned for Conflicts
1 and 4, however, these accounted for only 0.05% (human), 0.04% (mouse), 0.31%
(rat), 1.16% (chicken), 0.08% (zebrafish), 0.33% (worm) and 0.08% (fly) of the entries.

An example of a Swiss-Prot entry identified as erroneous by Conflict 1 is YL15_
CAEEL (Q11101) from Caenorhabditis elegans, which has an obligatory extracellular
Kunitz_BPTI domain but no secretory signal peptide or transmembrane segment(s).
This protein is also in conflict with another rule: in addition to the obligatory ex-
tracellular Kunitz_BPTI domain it also contains a predominantly nuclear Homeobox
domain. Analysis of this Swiss-Prot entry revealed that the nuclear and extracellular
domains of this protein are encoded by distinct, tandem genes whose exons have been
erroneously joined in silico. The correct structures of the constituent genes could be
predicted using the sequences of �correct� homologs (Fig. 1).

In summary, the fact that the number of Swiss-Prot entries identified byMisPred as
erroneous is very low, attests to both the high quality of this database and the reliability
of the MisPred approach.

3.2 Errors detected by the MisPred tools in public databases

3.2.1 Analysis of the TrEMBL section of UniProtKB

The TrEMBL section of UniProtKB was included in the MisPred analyses since
the entries found in this database are employed by various extrinsic gene prediction
methodologies and therefore greatly influence the quality of the resultant datasets.

Analysis of the human protein sequences in the TrEMBL database has revealed
that the error rate for Conflict 1 (7.49%), Conflict 4 (4.92%) and Conflict 5 (0.33%) are
orders of magnitude higher than those for the Swiss-Prot dataset. The large number of
erroneous sequences detectable by Conflict 1 and 4 come primarily from protein
fragments translated from non-full length cDNAs: the incomplete proteins lack sig-
nal peptides, parts of domains etc. Another major source of error is that some of the
transcripts arose through aberrant splicing and parts of domains may be missing from
the hypothetical proteins they encode.

An example of a TrEMBL entry identified as erroneous by Conflict 4 is
Q5T951_HUMAN which is encoded by an alternative transcript of the gene for
human carnitine O-acetyltransferase. Figure 2 shows the three dimensional
structure of full length human carnitine O-acetyltransferase (CACP_HUMAN,
P43155), the region missing from Q5T951_HUMAN is highlighted in yellow. Since
Q5T951_HUMANviolates the integrity of Pfam-A domain Carn_acyltransf (PF00755)
it is predicted to be a non-viable protein.
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The relatively high rate of erroneous human proteins detected by the tool for
Conflict 5 reflects the abundance of chimeric proteins generated by chromosomal
translocation in cancer cell lines. However, a surprisingly large proportion (37%) of
chimeric human TrEMBL entries are not annotated as such and are derived from
cDNAs cloned from apparently normal tissues.

No erroneous sequences were returned for either Conflicts 2 or 3. Since the TrEMBL
entries are translated from experimentally determined cDNAs, it appears that neither
the omission of internal transmembrane helices separating extracellular and cyto-
plasmic domains (Conflict 2), nor the forbidden co-occurrence of extracellular and
nuclear domains (Conflict 3) affects the quality of this database.

3.2.2 Analysis of sequences predicted by the EnsEMBL
and GNOMON gene prediction pipelines

MisPred analyses of sequences predicted by the two pipelines have revealed that in the
case of both pipelines themajority of erroneous entries are returned for Conflicts 1 and 4
(Table 1).

The relatively high number of erroneous proteins detectable with the tool for
Conflict 1 is due to the fact that detection of exons encoding signal peptides is one of the
most difficult tasks in gene prediction. In vertebrates, secretory signal peptides are
frequently encoded by distinct, short, poorly conserved exons that may be easily missed

Fig. 2 Error detected byMisPred routine for Conflict 4: the case of TrEMBL entry Q5T951_HUMAN. The figure
shows the three dimensional structure (1NM8.pdb) of human carnitine O-acetyltransferase (CACP_HUMAN,
P43155). An alternative transcript of human carnitine O-acetyltransferase gene encodes a protein
(Q5T951_HUMAN) that lacks several key structural elements (highlighted in yellow) of this domain
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by the gene finding programs, particularly since few cDNAs and ESTs may be available
that cover the 50 parts of vertebrate protein-coding genes. This type of error was
particularly evident in chordate speciesmore distantly related to human,mouse and rat.
For example, in the case of the EnsEMBL predictions for frog, pufferfish and zebrafish
�40% of proteins containing extracellular domains were identified by Conflict 1 as
erroneous. The Caenorhabditis elegans and Drosophila melanogaster entries returned
significantly lower rates of erroneous sequences (�10%) than the non-mammalian
chordates analyzed. This is probably due to the fact these invertebrates have com-
pact (intron-poor) genomes and these features significantly increase the accuracy of
gene-prediction.

A significant proportion (>1%) of sequences were returned for Conflict 4 for all
vertebrates analyzed, suggesting that erroneous omission or insertion of exons (causing
deviation of domain size) is a major source of error in gene prediction. This problem
appeared to be less serious in the case of Caenorhabditis elegans and Drosophila
melanogaster (error rate is �0.3%), probably due to the fact these invertebrates have
intron-poor genomes and this significantly increases the reliability of gene-prediction.
Conflict 2 identified very few erroneous sequences (i.e. proteins containing extra-
cellular and cytoplasmic domains but lacking transmembrane helices) among those
predicted by the EnsEMBL and GNOMON pipelines. This is probably due to the fact
transmembrane helices (unlike secretory signal peptides) are found in the middle or at
the 30 parts of genes – regions which are better represented in cDNA and EST libraries.
Analysis of the few erroneous sequences returned for Conflict 2 by both methodologies
revealed that they usually resulted from in silico fusion of tandem genes encoding
extracellular and cytoplasmic proteins. The same type of error, i.e. the in silico fusion of

Table 1 Results of MisPred analyses of human, opossum, chicken and zebrafish protein sequences
predicted by the EnsEMBL- and NCBI/GNOMON-pipelines

Percent of protein sequences identified as erroneous by MisPred

Conflict 1 Conflict 2 Conflict 3 Conflict 4 Conflict 5

EnsEMBL
Homo sapiens 0.57% 0.00% 0.002% 1.76% 0.00%
Monodelphis domestica 2.02% 0.05% 0.00% 1.17% 0.00%
Gallus gallus 1.71% 0.004% 0.004% 1.58% 0.00%
Danio rerio 3.39% 0.002% 0.00% 1.64% 0.01%

NCBI/GNOMON
Homo sapiens 0.92% 0.00% 0.00% 2.52% 0.00%
Monodelphis domestica 1.26% 0.01% 0.01% 0.55% 0.00%
Gallus gallus 1.66% 0.01% 0.01% 2.50% 0.00%
Danio rerio 2.22% 0.02% 0.02% 1.52% 0.004%
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distinct, tandem genes encoding extracellular and nuclear proteins, respectively, also
accounts for the relatively few sequences returned for Conflict 3 by both prediction
pipelines. It is noteworthy in this respect that such mispredicted sequences were
principally encountered in the case of Fugu rubripes proteins, which may be due to
the fact that intergenic distance is shorter in the compact genome of the pufferfish.

The MisPred tool for Conflict 5 identified no human EnsEMBL or GNOMON-
predicted entries as being chimeric. This result is not unexpected in view of the high
quality of contig assembly and chromosomal assignment in the case of the human
genome. The Danio rerio sequences analyzed, however, returned a few mispredicted
entries for Conflict 5 by both prediction pipelines, whichmay be attributed to inaccurate
contig assembly and/or chromosomal assignment in the case of the zebrafish genome.

Although the proportion of erroneous human sequences generated by the NCBI/
GNOMONpipeline is slightly greater for bothConflict 1 andConflict 4 than in the cases
of EnsEMBL-predicted sequences (see Table 1), this does not necessarily reflect a
difference in the reliability of the two methodologies. Note for example, that in the case
of opossum the error rate seems to be lower for GNOMON-predicted sequences. A
major difference between the two datasets is that the EnsEMBL database is a com-
prehensive source of both known genes, well characterized experimentally, as well as
predicted genes, whereas NCBI�s GNOMON-predicted sequences (distinguished by
unique identifiers) are devoid of well-characterized genes. Accordingly, the differences
we observed may be a consequence of the difference in gene populations covered by the
two datasets. In order to directly compare the performance of the two pipelinesMisPred
analyses were performed on only those protein-coding genes for which both EnsEMBL
and GNOMON have made at least one prediction. Analysis of these datasets revealed

Table 2 Results of MisPred analyses of human, opossum, chicken and zebrafish protein sequences
predicted by the EnsEMBL- andNCBI/GNOMON-pipelines in the case of genes for which both pipelines have
at least one prediction

Percent of protein sequences identified as erroneous by MisPred

Conflict 1 Conflict 2 Conflict 3 Conflict 4 Conflict 5

EnsEMBL
Homo sapiens 0.83% 0.00% 0.00% 1.73% 0.00%
Monodelphis domestica 1.30% 0.00% 0.00% 1.13% 0.00%
Gallus gallus 1.84% 0.00% 0.00% 2.59% 0.00%
Danio rerio 3.08% 0.01% 0.00% 1.91% 0.00%

NCBI/GNOMON
Homo sapiens 1.06% 0.00% 0.00% 1.36% 0.00%
Monodelphis domestica 1.15% 0.02% 0.01% 0.40% 0.00%
Gallus gallus 1.57% 0.00% 0.00% 3.71% 0.00%
Danio rerio 1.77% 0.02% 0.01% 3.37% 0.00%
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that the differences were significantly diminished, suggesting that there are no major
differences in the reliability of the two pipelines (Table 2).

4 Alternative interpretations of the results ofMisPred analyses

4.1 MisPred has a low false positive rate

The MisPred pipeline is dependent upon the reliability of bioinformatic programs
incorporated into each of theMisPred tools (programs used for the detection of Pfam-A
domains, secretory signal peptides, transmembrane helices, chromosomal localization,
etc.). However, each tool remains a predictive methodology, with specific parameters
and pre-defined sets of heuristics for sequences analysis. Thismeans that sequencesmay
be incorrectly identified as erroneous if, for example, the bioinformatic tools fail to
recognize secretory signal peptide sequences or transmembrane helices (Conflicts 1
and 2) or full-length Pfam-A domains (Conflicts 1, 2, 3 and 4). Analyses of the
benchmark Swiss-Prot proteins, however, have revealed that the false positive rate
generated by the MisPred pipeline is lower than 0.1%.

4.2 MisPred detects errors in gene prediction

The conclusion that a predicted protein is erroneous (i.e. the gene is mispredicted) is
reinforced if it is shown that alternative transcripts of the same gene or orthologs/
paralogs of the gene encode protein(s) that do not violate the given rule. It is important
to point out that the same information that is used to reinforce the conclusion that the
protein/gene is mispredicted is also suitable for the correction of that error (see Fig. 1).
In this way, the MisPred pipeline provides not only tools for the identification of
possible errors but (the associated FixPred pipeline) also aids in the correction of these
errors. The final validation of the conclusion that a protein/gene ismispredicted is when
we actually correct it (e.g. by targeted search for exons that correct the error).

Although MisPred may help correct major errors in gene prediction, it must be
emphasized that the tools for Conflicts 1, 2, 3 and 4 tend to underestimate the number
of mispredictions. For example, a limitation of Conflict 4 is that only a fraction of
predicted proteins may comprise members of well-characterized Pfam-A domain
families suitable for the detection of domain size deviation and only major deviations
from normal domain size can be used to detect erroneous proteins. In the case of
Conflicts 1, 2 and 3 a serious limitation is that only a relatively small fraction of Pfam-A
domain families (�11%) can be used as unambiguous markers of extracellular/sub-
cellular localization.

Since in the case of human genes it is estimated that at the transcript level about 55%
of the genesmay bemispredicted (Guigó et al. 2006), the fact thatMisPred detects about
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2–3% indicates how far away we still are from identifying all transcript-level errors.
Additional tools are being developed to close the gap between the number of mis-
predicted proteins identified by the current tools and those that remain unidentified.

4.3 MisPred detects ““errors”” of biological processes

The Mispred tools identified erroneous proteins not only in databases containing
sequences predicted by gene prediction pipelines but also among proteins translated
from experimentally validated cDNAs and ESTs (Tress et al. 2007). The majority of the
erroneous proteins detected by the MisPred tool for Conflict 1 (e.g. lacking signal
peptides) in such experimental databases (e.g. TrEMBL) are likely to be mislocalized
and rapidly degraded by the quality control system of the cell, therefore such abnormal
proteins are unlikely to fulfill a meaningful biological function. Similarly, the erroneous
proteins detected by MisPred tool for Conflict 4 (e.g. proteins with truncated domains,
see Fig. 2) are likely to bemisfolded and rapidly degraded. The transcripts encoding such
non-viable versions of �normal� proteins usually arise by aberrant splicing of the
primary transcript. Recent studies have indeed shown that although some 40–80% of
human multiexon genes produce splice variants, there is little evidence that these iso-
forms have a role as functional proteins (Tress et al. 2007).

The majority of chimeric transcripts identified by Conflict 5 are formed from
chimeric genes resulting from chromosomal translocation principally in tumor cell
lines. An alternative explanation for the origin of interchromosomal transcripts is that
chimeric proteins might be formed through transchromosomal transcription, i.e.
if genes located on different chromosomes are expressed in the same “transcription
factory” they may give rise to chimeric transcripts (Unneberg and Claverie 2007).

4.4 MisPred discovers exceptions to generally valid rules

Analysis of all of the datasets has revealed that there exist genuine exceptions to some of
the rules upon which the MisPred tools are based. For example, some of the proteins
identified as erroneous by Conflict 1 turned out to be false positives: they are secreted to
the extracellular space via non-classical means through leaderless secretion (Bendtsen
et al. 2004).

Similarly, analyses of the sequences returned for Conflicts 1, 2, and 3 have identified
cases where members of a domain family previously considered to be restricted to a
particular cellular compartment, turned out to be multilocale.

The observation that many of the chimeric proteins identified in the TrEMBL
database by the tool for Conflict 5 originated from apparently normal tissues raises the
possibility that formation of chimeric proteins may be more common in normal cells
than previously thought, suggesting that transchromosomal transcription may be quite
significant (Unneberg and Claverie 2007).
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5 Conclusions

Since the MisPred pipeline is able to detect erroneous protein sequences it is useful in
the quality control of the prediction of protein-coding genes. First, by identifying mis-
predicted entries inpublic databases, itmay informusers about possible errors. Second, by
pinpointing the actual errors in predictions, it may guide the correction of these errors.
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SECTION 2
Gene regulation and expression



CHAPTER 2.1
Evaluating the prediction of cis-acting
regulatory elements in genome sequences

O. Sand, J.-V. Turatsinze and J. van Helden

Laboratoire de Bioinformatique des G�enomes et des R�eseaux (BiGRe). Universit�e Libre de Bruxelles, Campus Plaine,
Boulevard du Triomphe, Bruxelles, Belgium

1 Introduction

Transcriptional regulation plays an essential role in all steps of morphogenesis, by
controlling the specific subsets of genes that will be expressed in different cell types, and
at different times during embryonic development. The control of gene expression is also
crucial to maintain the basic cellular functions (e.g. cell divisions) and the response of
the organism to its environment (e.g. metabolic regulation). The spatio-temporal con-
trol of gene expression is ensured by interactions between transcription factors and
specific loci, called cis-acting regulatory elements.

Since a decade, a large number of computer tools have been developed to predict cis-
regulatory elements in genome sequences (see Table 1 for a partial list of existing tools).
A first type of approach, called pattern matching, consists in predicting the putative
binding sites for a given transcription factor, based on some prior knowledge about its
specificity for DNA binding. In a second type of approach, called pattern discovery, one
starts from a set of co-regulated genes to infer motifs that are likely to reflect the binding
specificity of some as yet unknown transcription factors.

Pattern matching and pattern discovery tools rely on various biological and sta-
tistical assumptions, which determine the choices of a series of parameters. The proper
tuning of these parameters has a determinant impact on the quality of the predictions.
It is thus necessary to establish criteria for estimating the reliability of the predicted
cis-acting elements. The assessment of pattern detection methods (pattern discov-
eryþ pattern matching) involves several important choices regarding the testing sets,
the testing protocol, and the evaluation statistics. Table 2 summarizes the main
parameters for establishing the testing sets.

Corresponding author: Olivier Sand, Laboratoire de Bioinformatique des G�enomes et des R�eseaux
(BiGRe), Universit�e Libre de Bruxelles, Campus Plaine, CP 263, Bld du Triomphe, 1050 Bruxelles,
Belgium (e-mail: oly@bigre.ulb.ac.be)
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Table 2 Typology of data sets used to evaluate cis-regulatory element predictions

Usage Context Sites Advantages Limitations

Positive
control:
evaluation of
sensitivity,
specificity,
accuracy.

Artificial sequences
(e.g. generated
with a Markov
model)

Artificial sites
(e.g. generated
from a PSSM)

Control on all the
parameters
(number of sites,
motif variations,
sequence
composition,
sequence length).

Performances might
differ between
artificial sets and
real conditions

Useful to check
theoretical models

Artificial
sequences

Implanted
biological
sites

All the “positive”
sites (implanted)
are known

Performances mainly
reflect the fit between
random model of sequence
generator and that of the
motif detector

Biological
sequences

Biological
sites in their

All the true sites are
available for the

Answer can be obtained
from databases.

context predictor, even if
they are not
annotated yet

Programs can be over-
fitted because parameters
were estimated with the
same DB.
Some real sites can be
absent from the annotation
(“false false positives” FFP)

Biological
sequences

Implanted
biological
sites

All the “positive”
sites (implanted)
are supposedly

The number of implanted
sites might differ from
natural conditions.

known Annotation-based:
under-estimation (many
sites are not annotated)

Negative
control:
estimation
of the rates
of false

Artificial
sequences

None Control on the
sequence
composition
(background
model)

Performances mainly
reflect the fit between
random models of
predictor and of sequence
generator, respectively

positives. Random selection
of biological
sequences

Not specific
to the
considered
factor

Indicates the rate
of false positive
in real conditions

For pattern matching, one
may occasionally include
some regulated gene in the
random selection.
For pattern discovery, this
should not make a problem,
since regulatory signals
will be “diluted” among
promoters regulated
differently
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In this chapter, we will present methods for evaluating the quality of the predictions
of cis-acting regulatory elements. We will start from some concrete study cases, which
will serve us to introduce basic concepts. We will then generalize the concepts and
present some protocols for a large-scale evaluation of cis-regulatory element prediction.
In the conclusion, we will propose a few general good practices for the assessment of
predictive tools.

2 Transcription factor binding sites and motifs

The binding specificity of a transcription factor relies on its preferential affinity for short
DNA sequences, the transcription factor binding sites. We distinguish the concept of
transcription factor binding site (TFBS) from that of motif.

A binding site is a location where a transcription factor binds on DNA sequence. It
corresponds to a precise fragment of DNA, which can be described by its position (start,

2

1

0 1 2 3 4 5 6 7 8 9 10
5′ 3′

b
it

s

A

B

D Sequence logo

C Count matrix

E Structure

Aligned sites

Consensus

Fig. 1 From binding sites to binding motif. A: collection of annotated binding sites for the human
transcription factor CREB. B: degenerate consensus representing the specificity of the transcription factor.
C: position-specific scoring matrix (PSSM) describing the binding motif derived from the aligned annotated
binding sites. D: sequence logo. E: Structure of the interface between the CREB protein and DNA
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end), and its sequence. A binding motif is an abstract representation of the binding
specificity of a transcription factor. It does not correspond to any particular genomic
position, but rather to a collection of sites.

This is exemplified in Fig. 1A, which shows a list of binding sites for the cAMP-
response element binding protein (CREB). The sites have been aligned to highlight the
conservation of some residues at different positions. This position-specific conservation
is represented by amotif, which summarizes, in some abstract way, the specificity of the
interactions between the CREB transcription factor and DNA interactions. Binding
motifs can be described in different ways (Fig. 1B–D). The simplest representation of a
bindingmotif is the consensus (Fig. 1B), which summarizes the residue conservation on
the basis of somewhat arbitrary rules (Cavener 1987)

A more expressive way to summarize the residue conservation is the position-
specific scoring matrix (PSSM, Fig. 1C), where each row represents a residue, each
column a position in the alignment of the binding sites, and numbers indicate the
counts of residues at each position. The advantage of this representation is that it
takes into account all the variations observed at each position of the aligned binding
sites.

A sequence logo can be derived from the count matrix to provide a visual
and intuitive representation of the position-specific residue specificity (Fig. 1D).
This representation has been proposed by Schneider and Stephens (1990), as an
application of Shannon�s information theory to DNA sequences (Schneider et al.
1986).

3 Scanning a sequence with a position-specific
scoring matrix

In this section, we explain how PSSM can be used to detect putative binding sites in
a given DNA sequence. Various scoring schemes have been implemented, and we
will use here the terminology and statistics proposed by Hertz et al. (1990) and Hertz
and Stormo (1999).

In order to detect putative binding sites in a DNA sequence, each segment of this
sequence is compared with the PSSM, and assigned a score (called weight score), which
indicates the likelihood for this segment to be an instance of the motif.

In short, the weight score is the log-likelihood between two probabilities.

WS ¼ ln

�
PðSjMÞ
PðSjBÞ

�

In this formula, PðSjMÞ is the probability for the sequence segment (S) to be an
instance of the motif (M), and PðSjBÞ the probability of the same sequence segment to
appear by chance, according to the background model (B).
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Figure 2 summarizes the steps leading from the countmatrix to the weight score. Let
us assume that we want to identify putative binding sites in the promoter sequence of
Cholecystokinin (Cck), which is a target gene of the transcription factor CREB. This
sequence is reproduced below.

>RNOj25298jCck
CCAGGATCTTAAAATTCTGTAAGACTAGAATCCAGGAGGCCAACTGTGATTGAGTTCTGAAAAAT

CTCCCAGAGAACATGCCAGAATTACATTTGCTGACACCTAGTCTGTGAGGGTCCCCCGGTTTCCT

AGACAAACTCCTGCTTCTCTCCGGGAGTAGGGGTGGCACCCTCCCTGAAGAGGACTCAGCAGAGG

GTACCCCGCCTGGGAGGGGCTATCCTCATTCACTGGGCCGTTTCCCTTCTCCCCGGGGGGCCACT

TCGATCGGTGGTCTCTCCAGTGGCTGCCTCTGAGCACGTGTCCTGCCGGACTGC

We will assign a score to each position of this sequence. Since the CREB matrix
contains 10 columns, we take a sequence segment of 10 nucleotides, starting from the
first position: S ¼ CCAGGATCTT., and compute its score.We will then score the segment
of 10 bp starting at the second position ðCAGGATCTTAÞ, and so on until the last 10 bp
segment of the sequence ðGATGACTGGCÞ. Let us see the detail of this computation for the
first segment.

3.1 Background probability

The first step is to estimate PðSjBÞ, which is the background probability of the sequence
S ¼ CCAGGATCTT, i.e. its probability to be generated by chance according to some
background model B. Figure 2A shows an example of a simple background model,
where each residue has a constant probability. This is called a Bernoulli model, and it
assumes that in a genome sequence, residues generally follow each other in an in-
dependent way.

Note that Bernoulli models are an over-simplification of biological sequences,
because the assumption of independence generally does not hold. For instance, it is
well known that genome sequences contain a higher frequency of poly-A or poly-T
fragments than what would be expected by the product of residue probabilities.
Another clear case of dependency is the avoidance of the CpG dinucleotides in
mammalian genomes: the frequency of CG dinucleotide is much lower than the
product of frequencies of C and G. In addition, mammalian promoters contain some

1
Fig. 2 Utilisation of position-specific scoring matrices to predict binding sites. Example of sequence
scanning result with the CREB PSSM. (A) background model. (B) background probability of a sequence
segment. (C) Count matrix. (D) frequency matrix. (E) Frequency matrix corrected with a pseudo-count. (F)
probability for a sequence segment to be an instance of a motif: P(SjM). (G) Weight of the sequence
segment, computed as the log-ratio between motif and background probabilities. (H) Weight matrix. (I)
weight score of a sequence segment, directly computed from the weight matrix. (J) probability profiles of a
sequence. (K) weight profile of a sequence
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regions, called CpG island, where CpG dinucleotides are more frequent than in the
rest of the genome. The backgroundmodel should thus vary according to the genomic
region. More elaborate backgroundmodels can be conceived withMarkov chains, but
these are out of scope for this introductory chapter. A didactic description of Markov
models and their applications to biological sequences can be found in Robin et al.
(2005).

Coming back to our example, and if we temporarily accept the Bernoulli
simplification (Fig. 2A), the probability of a sequence fragment is simply the product
of the prior probabilities of its residues. This leads us to estimate that the probabil-
ity of the sequence S ¼ CCAGGATCTT given the background B is PðSjBÞ ¼ 9:39E-7
(Fig. 2B).

3.2 Probability of a sequence segment given the motif

We now need to estimate the second element of the weight score, the probability
of the sequence fragment given the motif: PðSjMÞ. For this, we first convert the
count matrix (Fig. 2C) into a frequency matrix (Fig. 2D) where each cell indicates
the relative frequency of a residue at a given position of the aligned binding sites
(Fig. 1A).

These frequencies can be used to estimate the probability to observe a given residue
at a given position of a binding site (i.e. an instance of the motif). However, if we do so,
we will have a problem with the null values. For example, the 4th position of the
alignment does not contain any occurrence of the residue A. There is thus a 0 value in the
corresponding cell of the PSSM frequency matrix (1st row, 4th column). We should
however keep inmind that our PSSMwas built on the basis of a relatively small number
of annotated binding sites (n¼ 19). The fact that none of the 19 sites annotated in
TRANSFAC contains an A at this position might be casual, and we could imagine that,
in the future, some experiment will reveal new CREB binding sites with an A at the
fourth position. In order to leave some probability for events unobserved so far, we can
use a pseudo-count (k) that will be “shared” between all the residues of each column of
the matrix in order to obtain corrected frequencies ðf 0ijÞ.

f 0i;j ¼
ni;j þ k=4PA
i¼1 ni;j þ k

There is no golden rule for deciding about the most appropriate value for the
pseudo-count. In this example, we will arbitrarily set it to k¼ 1. The corrected fre-
quencies (Fig. 2E) can now be used to estimate the probability of the sequence fragment
given the motif. For this, we align each letter of our sequence TGTAATAATA with one
column of the matrix (Fig. 2F), and we take its probability in the corresponding row.
The probability of the sequence is the product of these position-specific residue
probabilities, which gives PðSjMÞ ¼ 3:62E-9 for the sequence CCAGGATCTT.
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The score weight (WS) can now be computed as the natural logarithm of the ratio
between the two probabilities (Fig. 2G):

WS ¼ ln

�
PðSjMÞ
PðSjBÞ

�
¼ ln

�
9:39E � 7
3:82E � 9

�
¼ �5:558

Since wemodeled the sequence according to a Bernoulli model, an equivalent result
would have been obtained by pre-computing a weight matrix (Fig. 2H), where each cell
already contains the log-ratio of the estimated residue probabilities.

wi;j ¼ ln

�
f 0i;j
pi

�

The weight matrix nicely indicates the impact of each residue on the final score,
as highlighted by the shading of the negative values in the weightmatrix: negative scores
(shaded cells) indicate residues that are not favorable to the binding. Under the
Bernoulli assumption, the weight score of a sequence segment is simply the sum of
scores of its residues at the corresponding positions of the weight matrix. It is easy
to demonstrate that the two ways to compute the weight score (Fig. 2G and I) give
identical results. Consistently, this is what we observe for our example.

WS ¼
Xw
j¼1

wrjj ¼ �7:714

The negative value we obtained suggests that the 10 bp segment at the first position
of the Cck promoter has a rather low affinity for the transcription factor CREB, and is
thus not a good binding site for it.

3.3 Scanning profiles

We can now apply the same procedure to the 10 bp segments starting at each successive
position of the sequence.

CCAGGATCTT

CAGGATCTTA

AGGATCTTAA

� � �
Figure 2J shows the resulting profiles of probabilities for the promoter sequence of

Cck. The red profile indicates the background probability PðSjBÞ, ands shows erratic
variations along the sequence. The motif probability PðSjMÞ (blue curve) is generally
much lower than the background probability, but we observe some very acute peaks.
The rightmost of these peaks (highlighted with green background) corresponds to a
previously characterized CREB binding site (Haun and Dixon 1990). The other peaks
might either be effective binding sites that have not been characterized yet, or false
predictions of our scanning program.
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4 Evaluating pattern matching results

4.1 Evaluation statistics

If we consider high scoring positions as predicted TF binding sites, how can we evaluate
the correctness of such predictions?

The classical procedure relies on a testing set, where the binding sites have been
characterized by “wet lab” experiments (DNAse footprinting, gel shift, . . .). These
annotated sites are compared with those predicted (Fig. 3A). This comparison can
be done either at the level of the nucleotides (Fig. 3B), or at the level of the sites
(Fig. 3C).

The comparison at the level of the nucleotides (Fig. 3B) is conceptually simple: each
nucleotide of the testing sequences is considered as an individual case, which will take
one among four possible statuses (Fig. 3D).

1. True Positive (TP) if it belongs to both an annotated site and a predicted site;
2. True Negative (TN) if is included neither in a predicted nor in An annotated site;

Fig. 3 Schematic illustration of the comparison between annotated and predicted sites. (A) Annotated
(dark green) and predicted (blue) binding sites. (B) comparison at the level of nucleotides. (C) comparison at
the level of sites. (D) Computation of the sensitivity (Sn) and positive predictive value (PPV) from a
contingency table
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3. False Positive (FP) if it belongs to a predicted site, but no annotated site;
4. False Negative (FN) if it belongs to an annotated site, but is not included in any

predicted site.

The prediction at the level of the sites (Fig. 3C) is based on the same four categories,
but generalized to the level of the whole site.

1. A predicted site is considered as TP if it has a sufficient overlap with an annotated
site, and as FP otherwise.

2. An annotated site is considered as FN if it is notmatched with a sufficient overlap by
any predicted site.

The concept of TN seems less intuitive at the level of site, since a true negative would
be a non-annotated and non-predicted site. But how would we define the boundaries of
a site that is neither annotated, nor predicted? Should we consider the whole region
between two annotated sites as a “negative site”? In practice, this is not very important,
because, as we will see below, the main statistics derived to estimate the quality of the
predictions rely only on TP, FP, and FN, and we have good reasons to carefully avoid
using the number of TN.

The four categories defined above can serve as basis for deriving various evaluation
statistics (Fig. 3D). The Sensitivity (Sn) is the fraction of annotations that is covered by
the predictions.

Sn ¼ predicted annotated
annotated

¼ TP
TPþ FN

ThePositive Predictive Value (PPV) is the fraction of predictions that is also found in the
annotations.

PPV ¼ predicted annotated
predicted

¼ TP
TPþ FP

The Sn and PPV provide us with complementary information about the quality
of the predictions. There is generally a tradeoff between Sn and PPV, which can be
determined by turning up or down some thresholds on the predictive score, as
illustrated on Fig. 4 for the CREBmatrix. The dataset used for this evaluation comprises
23 promoter sequences of 500 nucleotides upstream of the transcriptional start site, and
containing 25 annotated CREB binding sites. When the lower threshold is set to a
trivially low value ðWS � 25Þ, all the positions of the sequence are predicted as bind-
ing sites (Fig. 4A). The sensitivity is thus 100%, but the predictive value of the
predictions is almost null (leftmost side of the curves on Fig. 4B). When the score
increases, sensitivity shows a step-wise decrease (blue curve), reflecting the progressive
“loss” of annotated site (those having a weight score lower than the threshold). In
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parallel, the positive predictive value (purple curve) increases with the score, because we
discard more and more non-annotated sites from our predictions (the number of FP
progressively decreases). The curve is however not monotonous, because the FP is
occasionally affected by the loss of an annotated site.

4.2 Accuracy profiles

The tradeoff between sensitivity and PPV is usually measured by computing an
accuracy, defined as their arithmetic mean: Acca ¼ ðSnþ PPVÞ=2. This statistics can
however be misleading in some extreme cases. For example, if we set the score to �25,
we will reach a maximal sensitivity (Sn¼ 1) since all possible positions are predicted as
sites (this is of course a trivial choice that should never be done in practice). Of course,
this sensitivity is at the cost of the PPV, since the fraction of correct predictions is almost
null. However, we obtain an accuracy Acca > 0.5, since it is the arithmetic average
between a value of 1 and an almost null value. This accuracy of 0.5 will give us the
artificial impression that our matrix is doing a half good job. We will not be able to
distinguish this trivial case from a situation where wewould predict half of the sites with
a reasonably restricted number of predicted sites.

Fig. 4 Impact of the score threshold on the correctness of pattern matching. (A) Examples of Sn, PPV, Accg
for selected values of weight scores. (B) Sn, PPV and accuracy profiles (internal validation). (C) The same
profiles with a Leave-One-Out validation
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A simple and efficient way to avoid this trap is to compute the accuracy as the
geometric mean Accg.

Accg ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Sn � PPV

p

If we select conditions giving either a very low Sn or a very low PPV, the geometric
accuracy will be very low. A high geometricmeanwill be obtained only if we have a good
score for both Sn and PPV.

Figure 4A shows the values of Sn, PPV and Accg derived from the contingency tables
for four threshold values. Figure 4B shows the profiles of Sn, the PPV and Accg as a func-
tion of the weight scoreWS. The accuracy curve shows that the optimal tradeoff between
Sn and PPV gives an accuracy of 63.2%. This optimal accuracy is obtained by predicting
as binding sites all the positions having a score WS> 4.119 with the CREB matrix.

4.3 Avoiding circularity in the evaluation

An important point which is often overlooked, is that the evaluation should rely on set of
binding sites that were not used for building the position-specific scoring matrix.
However, in the previous section, we tested the Sn, PPV and Accuracy on the same
binding sites that had been used to build the PSSM. This procedure is called internal
validation, and it leads to an obvious bias, since each site used to build a matrix
contributes in a positive way to its own scoring.

In theory, wewould thus need two sets of annotated sites: a training set, used to build
the PSSM (as in Fig. 1), and a testing set for measuring the accuracy of the predictions.
Unfortunately, this is not always feasible in practice, because the collections of
annotated binding sites are generally too sparse (there are many factors for which we
have less than 10 binding sites).

A solution to this problem is to apply a Leave-One-Out (LOO) procedure, which
consists in discarding one site (the left out element), and building a position-specific
scoring matrix with the n� 1 remaining sites. This PSSM is used to score the left out site.
The procedure is then iterated for each binding site of the collection. We thus obtain n
scores, each being computedwith a slightly different PSSM, built from n� 1 binding sites.

The LOO evaluation is more stringent than the internal evaluation, but it is
necessary to obtain an unbiased estimation of the predictive capability of a matrix.

The LOO validation of PSSM has been applied to a collection of PSSM describing
transcription factors from drosophila, and this analysis clearly showed that the internal
validation clearly over-estimates the predictive qualities of PSSMs (Aerts et al. 2007).

4.4 Why the statistics involving TN should be avoided

The Sn, PPV and Accg statistics only use three of the four values of the contingency table:
TP, TN and FP. Other statistics have been defined that rely on the number of true
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negatives (TN), but these should carefully be avoided when analyzing patternmatching
results.

Before explaining the reason for this, we ought to introduce a semantic remark: the
statistics that we call here PPV is alternatively called “specificity” (Sp) in some articles.
However, the word “specificity” is ambiguous, because it has another widely accepted
definition.

Sp ¼ neither annotated nor predicted
not annotated

¼ TN
FPþ TN

According to the latter definition, the specificitymeasures the capability of amethod
to “reject” the non-annotated features. However, in typical conditions, this score is
strongly affected by the overwhelming predominance of negative elements. Indeed, cis-
acting elements typically cover a very small fraction of the sequences, so that a program
that predicts a reasonably small number of sites will always have a very high Sp score,
even if its predictions are wrong.

For the sake of illustration, let us consider a simple numeric example: a sequence of
10,000 nucleotides is annotated with 8 binding sites, each of length 10. Some pattern
matching programpredicts 20 wrong sites (also of length 10), and does not detect any of
the annotated sites. This result is obviously very poor, but the specificity will fail to
indicate how bad the situation is.We can compute the specificity for this example in the
following way.

* All the predictions are false, so that the number of false positives (in terms of
nucleotides) is FP¼ 20�10¼ 200.

* The true negative nucleotides are those that are neither predicted, nor annotated:
TN ¼ 10; 000� 20 � 10� 8 � 10 ¼ 9720.

* The FP and TN values can now be entered in the formula:

Sp ¼ TN
FPþ TN

¼ 9720
200þ 9720

¼ 0:98

The specificity is 98%, despite the fact that our predictions are completely incorrect!
This simple example shows that the specificity (as defined here) is generally misleading,
and should never be used to assess the correctness of predicted genomic features. More
generally, all the scores that involve the TN should be avoided for the evaluation of
pattern matching results.

4.5 Difficulties for the evaluation of pattern matching

In summary, the evaluation of pattern matching relies on a set of sequences where the
binding sites for a given transcription factor are annotated. The correctness of the
predictions is estimated with three statistics: Sn, PPV, and Accg.
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Although this protocol seems fairly simple to apply, a recurrent problem is the
incompleteness of the annotations. Furthermore, although several databases contain
annotations of transcription factor binding sites, none of them can claim to contain fully
annotated sequences. Databases depend on a human annotation effort, and there is
always a lag between the publication of binding sites and their encoding in the database.
Butmore importantly, the experimental characterization of binding sites requires heavy
experiments, and many actual binding sites are likely to have escaped experimental
detection so far.

As a direct consequence of the incompleteness of annotations, the predictions that
we label as “false positives”might include some active binding sites, which have still not
been characterized experimentally. The estimated rate of false positives is thus likely to
be an over-estimate (and, accordingly, the PPV is under-estimated).

Amore general problem is that the interactions between a transcription factor and
DNA are not all-or-none. For thermodynamical reasons, it is energetically more
favorable for a transcription factor to be bound to DNA than to float in the
nucleoplasm. Transcription factors generally have “some” affinity for any piece of
DNA, and their specificity results from their higher affinity for some particular
successions of nucleotides. The concept of “binding site” is a convenient simplifica-
tion to denote some positions that are bound by the factor with a sufficiently high
affinity to be detected by methods such as gel shift assays or DNAse footprinting. It
would however be more correct to consider DNA as a “landscape” displaying zones of
more or less intense affinity for the factor. Some recent methods explicitly formulate
models that take into account this affinity landscape, as described by Manke et al. in
the next chapter.

5 Discovering motifs in promoter sequences

In the second part of this chapter, we will discuss the evaluation of pattern discovery
results. A typical situation is to analyze a set of genes showing similar expression profiles
in some microarray experiment, as can be retrieved from the ArrayExpress microarray
database (see the chapter by Brazma et al. in the same volume). We suppose that the
similarity between these expression profiles is due to some transcription factor that
regulates them in a coordinated fashion. However, we ignore the identity of this
hypothetical transcription factor, and we have no idea about its bindingmotif. Thus, we
cannot use any predefinedmotif to apply patternmatching, as we did above. Instead, we
will try to discover motifs (patterns), without any other information than the promoter
sequences of the co-regulated genes.

Since 1997, this problem of pattern discovery has attracted a particular at-
tention from bioinformaticians and biologists, due to the advent of the micro-
array technologies (DeRisi et al. 1997). Repositories of microarray data such as
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ArrayExpress (Brazma et al. 2003) and Gene Omnibus (Barrett et al. 2007) contain
hundreds of expression profiles for several model organisms, and the quantity of
available data increases every day.

Many approaches have been developed for discovering cis-regulatory motifs in
promoters of co-regulated genes (Hertz et al. 1990; Lawrence et al. 1993; Bailey and
Elkan 1994; Neuwald et al. 1995; Brazma et al. 1998a, b; Roth et al. 1998; van Helden
et al. 1998; Sinha and Tompa 2000; van Helden et al. 2000b; Liu et al. 2001; Thijs et al.
2001). In this chapter, we will focus on a single method, oligo-analysis (van Helden et
al. 1998). A first reason is that this method was developed by one of us, and we are thus
in a better position to evaluate it than other methods. Another reason is that the
algorithm is fairly simple: the program oligo-analysis counts the occurrences of each
possible oligomer in the promoters of the co-regulated genes, and applies a sig-
nificance test to evaluate its level of over-representation, relative to some background
model.

We will present one example of pattern discovery, and show how to evaluate the
results, in terms of sensitivity and predictive value. We will then apply the evaluation to
whole collections of regulons annotated for human and yeast, respectively. We will
present a method for choosing optimal parameters on the basis of some global
evaluation statistics. The concepts presented below can be extended to perform similar
evaluations for other pattern discovery algorithm.

5.1 Example of pattern discovery result

Figure 5 shows a typical example of pattern discovery result in promoters of 12
human genes regulated by the transcription factor HNF-4. Promoter sequences were
retrieved over 1.5 kb upstream from transcription start sites, in the repeat-masked
version of the genome. Each set of promoters were further purged with the program
REPuter (Kurtz et al. 2001), in order to mask redundant fragments. Such redundancy
can occur when the data set contains recently duplicated genes, or pairs of neighbour
genes transcribed in divergent directions (and thus having their promoter in the
intergenic region).

The program oligo-analysis (van Helden et al. 1998) was used to detect over-
represented hexanucleotides. Each hexanucleotide was regrouped with its reverse
complement, in order to reflect the strand-insensitive activity of human cis-regulatory

Fig. 5 Examples of pattern discovery result. (A) Significant patterns detected with oligo-analysis in
promoter sequences of 12 human genes regulated by the transcription factor HNF-4. (B) Assembly of these
patterns using the program pattern-assembly. (C) Comparison between discovered patterns (columns) and
HNF-4 binding sites annotated in TRANSFAC (rows). Perfect matches (6 residues) are highlighted in bold,
with a green background. Single-mismatches (5 matching residues) are displayed with cyan background.
Only the perfect matches are considered as valid for the evaluation

"
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elements. The number of occurrences of each hexanucleotide was counted, and
compared to the expected number of occurrences, estimated on the basis of a back-
ground model built from the whole set of human promoters.

The primary result of oligo-analysis is a set of 20 hexanucleotides that passed the
binomial significance test with an E-value( 1 (Fig. 5A). These 20 hexanucleotides can
be assembled to form larger motifs (Fig. 5B), suggesting that they reveal different
fragments of the binding motif recognized by some transcription factor.

5.2 Evaluation statistics

How canwe evaluate a pattern discovery result consisting in a set of partly overlapping
oligonucleotides? A simple way to treat this question is to compare each significant
oligonucleotide with each annotated binding site. The result of such a comparison is
shown in Fig. 5C, where each row corresponds to one HNF-4 binding site annotated
in the TRANSFAC database (Wingender 2004; Wingender et al. 1996), and each
column represents one hexanucleotides detected by oligo-analysis. The values indicate
the number of matching residues between a site and a discovered oligomer (the
comparison was made on both strands, and the hexanucleotides were slided along
the sites to test all possible alignments). For the evaluation, we will only take into
consideration the perfect matches, i.e. the correspondences over 6 base pairs (high-
lighted in bold in Fig. 5C).

We define the following types of correspondences.

* An annotated site is considered as a True Positive Site (TPS) if it is matched by at
least one discovered motif, and as False Negative Site (FNS) otherwise.

* A discovered oligonucleotide is considered as a True Positive Motif (TPM) if it
matches at least one annotated site, and as False PositiveMotif (FPM) otherwise. For
the same reasons as discussed above, it makes not much sense to think about true
negative sites (this would be the whole genome except the annotated site) or true
negative motifs (all the hexanucleotides that were not reported as significant),
because these TN numbers are so high, compared to the TP, FN and FP, that all the
derived statistics would become un-informative.

From these correspondence values, we derive the following statistics.
The site sensitivity (Sn) is the fraction of sites matched by at least one discovered

motif.

Sn ¼ discovered sites
annotated sites

¼ TPS
TPSþ FNS

In our study case (Fig. 5C), 12 of the 14 annotated sites are matched by at least one
hexanucleotides, the sensitivity is thus Sn¼ 12/14¼ 0.86.
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Themotif predictive positive value (PPV) is the fraction ofmotifs thatmatch at least
one site.

PPV ¼ discovered motis
correct motifs

¼ TPM
TPMþ FPM

For the HNF-4 example, we detected 20 significant oligonucleotides, among which
11 match at least one annotated site. We thus have a PPV¼ 11/20¼ 0.55.

The geometric accuracy is the geometric mean between Sn and PPV, as defined
above.

Accg ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Sn � PPV

p

With the HNF-4 example, we obtain Accg ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:86 � 0:55

p ¼ 0:69. The HNF-4
example thus gives a very good result: almost all the annotated sites are covered by the
discovered motifs, and more than half of the significant hexanucleotides correspond to
at least one site. This example is obviously not representative for all the human regulons.
In order to gain an idea about the general performances of the program, we will now
apply the same analysis for all the annotated regulons, in yeast and in human.

5.3 Correctness of predicted motifs for a collection
of annotated regulons

In order to assess the general performances of the algorithm, we selected two model
organisms: yeast (Saccharomyces cerevisiae) and human (Homo sapiens). The yeast
Saccharomyces cerevisiae is currently the pet organism of many bioinformaticians,
because its genome is relatively compact (12Mb), its regulatory regions are restricted to a
relatively short region (�500 bp) upstream of the genes, and there are several large-scale
data sets available (genome, transcriptome, proteome, interactome, . . .). On the
contrary, Homo sapiens is probably the most challenging organism for the study of
regulation, because of the huge size of its genome (3Gb), the large distances between
regulatory elements and their target genes (sometimes several Mb), and the fact that
those signals are drawn in an ocean of non-coding sequences. In addition, 40% of the
genome is covered by repetitive elements, which causes specific problems for the
definition of background models.

We applied oligo-analysis to discover over-represented motifs in promoters of
co-regulated genes obtained from the TRANSFAC database (Wingender 2004;
Wingender et al. 1996). The yeast regulons obtained fromTRANSFACand complement-
ed with annotations were taken for one of our previous publication (Simonis et al. 2004).

For each regulon, we detected over-represented hexanucleotides, compared dis-
coveredmotifs with annotated sites, and computed Sn, PPV andAccg as described in the
previous section. In addition, for the yeast promoters, we also tested another algorithm,
called dyad-analysis, which detects spaced pairs of trinucleotides (van Helden et al.
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Table 3 Evaluation of the correctness of motifs discovered with oligo-analysis in all the yeast regulons
having at least 5 annotated target genes

Regulon Genes Sites Max. Sig. Matched
sites

Significant
patterns

Matching
patterns

PPV Sn Accg Rank

GLN3 31 1 24.32 1 11 1 0.09 1.00 0.30 1
GCN4 40 18 22.47 11 8 6 0.75 0.61 0.68 2
DAL80 19 2 20.79 2 15 4 0.27 1.00 0.52 3
BAS1 17 2 15.95 2 7 3 0.43 1.00 0.65 4
MSN2 56 1 14.7 1 28 8 0.29 1.00 0.53 5
PHO2 21 5 14.43 1 6 1 0.17 0.20 0.18 6
PDR1 16 9 14.24 9 17 11 0.65 1.00 0.80 7
MSN4 58 3 13.33 1 24 8 0.33 0.33 0.33 8
CBF1 16 1 9.56 1 6 1 0.17 1.00 0.41 9
PDR3 10 8 9.2 7 10 9 0.90 0.88 0.89 10
INO2 19 3 8.39 2 7 3 0.43 0.67 0.53 11
INO4 19 1 8.39 0 7 0 0.00 0.00 0.00 12
MET4 10 1 8.17 1 8 2 0.25 1.00 0.50 13
SWI6 10 3 8.09 3 10 2 0.20 1.00 0.45 14
HSF1 21 4 7.27 2 6 2 0.33 0.50 0.41 15
MIG1 26 15 6.26 12 22 7 0.32 0.80 0.50 16
DAL81 10 2 5.98 0 4 0 0.00 0.00 0.00 17
DAL82 6 2 5.61 0 2 0 0.00 0.00 0.00 18
RPN4 11 2 4.92 1 9 4 0.44 0.50 0.47 19
UPC2 9 1 4.24 1 8 1 0.13 1.00 0.35 20
LEU3 8 5 4.2 4 4 3 0.75 0.80 0.77 21
STE12 13 5 3.88 5 3 2 0.67 1.00 0.82 22
SWI4 8 3 3.76 3 9 4 0.44 1.00 0.67 23
ADR1 11 4 3.75 3 7 2 0.29 0.75 0.46 24
RCS1 9 8 2.95 8 3 3 1.00 1.00 1.00 25
REB1 19 10 2.7 7 4 3 0.75 0.70 0.72 26
ACE2 5 2 2.6 2 6 4 0.67 1.00 0.82 27
SWI5 8 4 2.57 4 8 4 0.50 1.00 0.71 28
NDT80 11 1 2.53 1 5 2 0.40 1.00 0.63 29
PHO4 8 6 2.52 6 6 5 0.83 1.00 0.91 30
UME6 26 4 2.47 2 5 5 1.00 0.50 0.71 31
MET31 5 2 2.41 2 4 3 0.75 1.00 0.87 32
MOT3 15 2 2.09 0 8 0 0.00 0.00 0.00 33
RAP1 32 20 1.92 7 3 2 0.67 0.35 0.48 34
CAT8 10 18 1.66 5 4 2 0.50 0.28 0.37 35
ZAP1 52 8 1.51 5 5 5 1.00 0.63 0.79 36
RFX1 5 9 1.42 0 6 0 0.00 0.00 0.00 37
YAP1 31 2 1.35 0 3 0 0.00 0.00 0.00 38
HAC1 7 6 1.11 2 6 2 0.33 0.33 0.33 39
XBP1 5 13 1.02 2 3 1 0.33 0.15 0.23 40
ROX1 15 25 0.89 20 2 2 1.00 0.80 0.89 41
MAC1 9 5 0.82 0 1 0 0.00 0.00 0.00 42

(continued)
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2000b). The results are summarized in Table 3 (oligo-analysis in yeast promoters),
Table 4 (dyad-analysis in yeast promoters) and Table 5 (oligo-analysis in human
promoters), respectively. For the yeast, oligo-analysis gives generally good perfor-
mances, with a relatively good sensitivity (mean over all yeast regulons¼ 52%), a lower
PPV (mean¼ 35%), and a geometric accuracy of 41%.

The analysis of failures further reveals interesting cases:

1. For the MOT3 regulon, the annotated binding sites are CAGGCA and AGGCAA.
The most significant motif, CAGGAAAA, matches these two sites with a single
mismatch. In addition, a second motif is detected, AGGCACG, which matches the
first site but misses its first residue. The predictions are thus likely to be correct, but
to reveal a different variant (CAGGAAA) or a shifted fragment (AGGCACG) of the
annotated motif. This highlights the difficulty to evaluate regulons for which only
two sites are available.

2. For the regulons DAL81 and DAL82, the program fails to report the annotated
motifs, but detects, with a strong significance, the GATA-box (GATAAG), which is
bound by the other factors involved in nitrogen regulation (DAL80, GLN3). These
factors interact with DAL81 and DAL82 for the regulation of its target genes. The
detected motifs are thus not properly speaking “false positives”, even though they
are considered as such for the evaluation.

3. For the regulons GAL4 and ABF1, the motifs are spaced dyads. These motifs are
missed by the program oligo-analysis, but detected with a high significance by dyad-
analysis (Table 4) However, some other motifs, which were detected with a weak
significancebyoligo-analysis, are lost bydyad-analysis, so that themeanperformances
over all the yeast regulons are almost identical (Sn¼ 55%, PPV¼ 38%, Accg¼ 43%).

Table 3 (Continued)

Regulon Genes Sites Max. Sig. Matched
sites

Significant
patterns

Matching
patterns

PPV Sn Accg Rank

GCR1 18 11 0.76 0 2 0 0.00 0.00 0.00 43
HAP3 15 2 0.65 1 4 1 0.25 0.50 0.35 44
HAP2 14 2 0.45 1 2 1 0.50 0.50 0.50 45
HAP4 14 1 0.28 0 3 0 0.00 0.00 0.00 46
PIP2 19 1 0.17 0 1 0 0.00 0.00 0.00 47
GAL4 9 16 0.12 0 1 0 0.00 0.00 0.00 48
ABF1 37 25 0 0 0 0 0.00 0.00 0.00 49
HAP1 7 6 0 0 0 0 0.00 0.00 0.00 50
MCM1 14 24 0 0 0 0 0.00 0.00 0.00 51
NRG1 5 2 0 0 0 0 0.00 0.00 0.00 52
SKO1 11 3 0 0 0 0 0.00 0.00 0.00 53

Average 16.98 6.40 5.26 2.79 6.28 2.43 0.35 0.52 0.41
Median 14.00 4.00 2.60 1.00 5.00 2.00 0.32 0.50 0.45

75

Olivier Sand et al.



Table 4 Evaluation of the correctness of motifs discovered with dyad-analysis (van Helden et al. 2000b)
in all the yeast regulons having at least 5 annotated target genes

# Fam Members Sites Sig. Max. TPsites nb_pat TP_pat PPV Sn Accg Rank

GLN3 31 1 22.74 1 12 1 0.08 1.00 0.29 1
GCN4 40 18 21.12 8 9 6 0.67 0.44 0.54 2
DAL80 19 2 19.26 2 12 3 0.25 1.00 0.50 3
PDR1 16 9 17.24 9 24 20 0.83 1.00 0.91 4
ZAP1 52 8 15.28 8 14 12 0.86 1.00 0.93 5
BAS1 17 2 14.62 2 5 2 0.40 1.00 0.63 6
MSN2 56 1 13.27 1 67 7 0.10 1.00 0.32 7
PHO2 21 5 13.1 1 5 1 0.20 0.20 0.20 8
PDR3 10 8 12.44 8 22 19 0.86 1.00 0.93 9
MSN4 58 3 11.91 1 61 7 0.11 0.33 0.20 10
CBF1 16 1 8.25 1 7 1 0.14 1.00 0.38 11
CAT8 10 18 7.18 16 11 7 0.64 0.89 0.75 12
MET4 10 1 6.85 1 6 3 0.50 1.00 0.71 13
GAL4 9 16 6.84 8 7 5 0.71 0.50 0.60 14
INO2 19 3 6.83 3 7 6 0.86 1.00 0.93 15
INO4 19 1 6.83 1 7 3 0.43 1.00 0.65 16
SWI6 10 3 6.3 3 7 1 0.14 1.00 0.38 17
HSF1 21 4 5.94 3 8 6 0.75 0.75 0.75 18
PIP2 19 1 5.79 1 5 3 0.60 1.00 0.77 19
LEU3 8 5 5.36 5 12 11 0.92 1.00 0.96 20
MIG1 26 15 4.85 14 33 10 0.30 0.93 0.53 21
DAL81 10 2 4.56 0 3 0 0.00 0.00 0.00 22
DAL82 6 2 4.23 2 6 2 0.33 1.00 0.58 23
MOT3 15 2 3.63 0 8 0 0.00 0.00 0.00 24
RPN4 11 2 3.58 1 8 4 0.50 0.50 0.50 25
SWI4 8 3 3.14 3 6 4 0.67 1.00 0.82 26
ABF1 37 25 3.1 18 2 2 1.00 0.72 0.85 27
UPC2 9 1 2.91 1 6 1 0.17 1.00 0.41 28
STE12 13 5 2.56 5 3 2 0.67 1.00 0.82 29
ADR1 11 4 2.44 2 4 2 0.50 0.50 0.50 30
HAP1 7 6 2.1 1 4 2 0.50 0.17 0.29 31
GCR1 18 11 1.83 0 3 0 0.00 0.00 0.00 32
RCS1 9 8 1.63 7 4 3 0.75 0.88 0.81 33
SWI5 8 4 1.45 4 6 5 0.83 1.00 0.91 34
REB1 19 10 1.35 5 1 1 1.00 0.50 0.71 35
ACE2 5 2 1.33 2 7 5 0.71 1.00 0.85 36
PHO4 8 6 1.19 0 2 0 0.00 0.00 0.00 37
NDT80 11 1 1.14 1 3 1 0.33 1.00 0.58 38
UME6 26 4 1.14 2 7 4 0.57 0.50 0.53 39
MET31 5 2 1.09 1 1 1 1.00 0.50 0.71 40
YAP1 31 2 1.07 0 2 0 0.00 0.00 0.00 41
XBP1 5 13 0.96 0 2 0 0.00 0.00 0.00 42
RFX1 5 9 0.53 0 4 0 0.00 0.00 0.00 43

(continued)
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Not surprisingly, the results obtained with human regulons are much worse
(Table 5): the mean performances are quite poor (Sn¼ 15%, PPV¼ 24%, Accg¼ 18%).
For about half of the regulons, oligo-analysis fails to detect the correct motif (this
explainswhy themedian values are almost null, in contrast with themean values). These
poor performances are not specific of this program, but to come from the intrinsic
difficulty of extracting motifs from promoters in vertebrate. The main problem comes
from the fact that our analysis is restricted to proximal promoters, whereas many
vertebrate factors regulate their target genes at distance, via binding sites located further
away upstream, or within introns, or even downstream of the target genes. Multi-
genome approacheswhere the analysis is restricted to conserved genomic fragments, are
likely to improve the predictions, but will not be discussed in the scope of this chapter.
To our knowledge, such approaches have been tested on a restricted number of study
cases, but a systematic evaluation is still missing.

5.4 Distributions of motif scores in positive and negative
testing sets

Pattern discovery programs return one or several scores associated with each predicted
motif. A good scoring scheme should in principle help us to discriminate relevant from
spurious motifs. In this section, we propose a protocol to assess the capability of a
program to distinguish between relevant and spurious motifs, by comparing score
distributions obtained with a positive and a negative control set, respectively. For this
part of the evaluation, we do not attempt to evaluate whether the discovered motifs
match or not the annotated ones (as has been treated in the previous section). An
advantage of this protocol is thus that we deliberately avoid all the problems related to
incomplete or inaccurate annotations.

Table 4 (Continued)

# Fam Members Sites Sig. Max. TPsites nb_pat TP_pat PPV Sn Accg Rank

HAC1 7 6 0.49 0 1 0 0.00 0.00 0.00 44
MAC1 9 5 0.48 0 1 0 0.00 0.00 0.00 45
RAP1 32 20 0.48 0 2 0 0.00 0.00 0.00 46
MCM1 14 24 0.29 0 1 0 0.00 0.00 0.00 47
ROX1 15 25 0.27 0 3 0 0.00 0.00 0.00 48
HAP2 14 2 0 0 0 0 0.00 0.00 0.00 49
HAP3 15 2 0 0 0 0 0.00 0.00 0.00 50
HAP4 14 1 0 0 0 0 0.00 0.00 0.00 51
NRG1 5 2 0 0 0 0 0.00 0.00 0.00 52
SKO1 11 3 0 0 0 0 0.00 0.00 0.00 53

Average 16.98 6.40 5.30 2.87 8.32 3.26 0.38 0.55 0.43
Median 14.00 4.00 3.10 1.00 5.00 2.00 0.33 0.50 0.50
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Table 5 Evaluation of the correctness of motifs discovered with oligo-analysis in all the human regulons
having at least 5 annotated target genes

Regulon Genes Sites Max. Sig. Matched
sites

Significant
patterns

Matching
patterns

PPV Sn Accg Rank

T00671_p53 28 35 8.08 10 24 14 0.58 0.29 0.41 1
T00764_SRF 7 13 5.06 3 46 3 0.07 0.23 0.12 2
T00759_Sp1 74 177 4.34 152 35 34 0.97 0.86 0.91 3
T01609_HIF-1 12 18 4.26 16 36 12 0.33 0.89 0.54 4
T00915_YY1 6 11 3.71 2 4 2 0.50 0.18 0.30 5
T00149_COUP-TF1 7 12 3.08 5 10 4 0.40 0.42 0.41 6
T00250_Elk-1 5 10 2.81 0 22 0 0.00 0.00 0.00 7
T00423_IRF-1 10 21 2.67 1 5 1 0.20 0.05 0.10 8
T02758_HNF-4 12 14 2.62 12 20 11 0.55 0.86 0.69 9
T00590_NF-kappaB 17 25 2.55 2 14 5 0.36 0.08 0.17 10
T00874_USF1 12 15 2.43 1 9 1 0.11 0.07 0.09 11
T00140_c-Myc 10 17 2.39 0 2 0 0.00 0.00 0.00 12
T00035_AP-2alphaA 17 27 2.15 7 10 7 0.70 0.26 0.43 13
T00045_COUP-TF2 6 8 1.82 3 18 3 0.17 0.38 0.25 14
T01542_E2F-1 6 12 1.68 2 6 4 0.67 0.17 0.33 15
T00593_NF-kappaB1 11 18 1.61 0 6 0 0.00 0.00 0.00 16
T00261_ER-alpha 13 21 1.39 3 2 2 1.00 0.14 0.38 17
T04096_Smad3 5 7 1.39 1 7 1 0.14 0.14 0.14 18
T00167_ATF-2 16 18 1.39 0 7 0 0.00 0.00 0.00 19
T06124_NRSF 5 6 1.36 0 3 0 0.00 0.00 0.00 20
T01950_HNF-1B 7 9 1.3 0 3 0 0.00 0.00 0.00 21
T00029_AP-1 35 53 1.27 25 3 2 0.67 0.47 0.56 22
T02068_PU.1 5 8 1.26 4 3 2 0.67 0.50 0.58 23
T00163_CREB 16 26 1.13 1 6 1 0.17 0.04 0.08 24
T01948_NF-AT1 5 11 1.02 3 6 2 0.33 0.27 0.30 25
T00221_E2F 8 17 1 9 3 2 0.67 0.53 0.59 26
T00308_GATA-2 5 5 0.98 0 2 0 0.00 0.00 0.00 27
T02338_Sp3 6 10 0.96 1 5 1 0.20 0.10 0.14 28
T01945_NF-AT2 6 7 0.94 0 1 0 0.00 0.00 0.00 29
T00112_c-Ets-1 8 16 0.88 0 2 0 0.00 0.00 0.00 30
T01580_STAT6 5 7 0.87 0 4 0 0.00 0.00 0.00 31
T01951_HNF-1C 6 7 0.86 0 2 0 0.00 0.00 0.00 32
T00721_RAR-beta 5 6 0.8 1 2 1 0.50 0.17 0.29 33
T03828_HNF-4alpha 7 11 0.73 3 2 1 0.50 0.27 0.37 34
T01616_RBP-Jkappa 5 5 0.7 0 3 0 0.00 0.00 0.00 35
T00133_c-Jun 24 32 0.59 0 4 0 0.00 0.00 0.00 36
T00539_NF-1 5 8 0.52 0 2 0 0.00 0.00 0.00 37
T00306_GATA-1 6 50 0.48 0 2 0 0.00 0.00 0.00 38
T00641_POU2F1 9 23 0.38 0 1 0 0.00 0.00 0.00 39
T01345_RXR-alpha 9 10 0.37 1 1 1 1.00 0.10 0.32 40
T00241_Egr-1 5 9 0.29 0 1 0 0.00 0.00 0.00 41
T00878_USF2 5 5 0.26 0 3 0 0.00 0.00 0.00 42

(continued)
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One difficulty of the score-based assessment is that existing programs return various
scores to qualify the discoveredmotifs.Matrix-based pattern discovery programs return
one or several among the following scores : MAP (gibbs, AlignACE), Log-likelihood
(MEME, MotifSampler), Information Content (consensus, MotifSampler), Consensus
Score (MotifSampler), P-value (consensus), E-value (consensus, MEME). String-based
pattern discovery tools also assign various scores to oligomers (words, dyads, or
degenerate motifs): expected/observed ratio, z-score (YMF, oligo-analysis, dyad-anal-
ysis, Trawler), binomial significance (oligo-analysis, dyad-analysis, SPATT), compound
Poisson significance (Hermes). We will show that the analysis of score distributions
permits us to select the most discriminating score, in order to obtain the best of each
program.

The score-based assessment relies on two complementary datasets:

1. The positive set is made of a collection of annotated regulons. We selected all
regulons having at least 5 genes in our collection (80 regulons for yeast, 50 regulons
for the human).

2. The negative set consists in sets of genes randomly selected in the genome of interest
(yeast or human, respectively). These genes are probably regulated individually, but
since they are regrouped on a random basis, we do not expect to find over-
represented motifs in the sets of promoters analyzed for this negative test.

The distribution of scores obtained in the negative and positive sets are displayed
on Fig. 6, for yeast (A–C) and human (D–F), respectively. Figure 6A shows the number
of patterns returned per gene set (regulon or random selection), as a function of the
significance score (abscissa). This significance score is a minus-log transform of the
E-value: sig¼�log 10 (E-value). The random selections (dotted line) perfectly follow

Table 5 (Continued)

Regulon Genes Sites Max. Sig. Matched
sites

Significant
patterns

Matching
patterns

PPV Sn Accg Rank

T00368_HNF-1A 15 20 0.22 3 4 2 0.50 0.15 0.27 43
T00040_AR 5 15 0.21 0 1 0 0.00 0.00 0.00 44
T00594_RelA 12 16 0.19 4 2 1 0.50 0.25 0.35 45
T00113_c-Ets-2 7 9 0 0 0 0 0.00 0.00 0.00 46
T00123_c-Fos 10 13 0 0 0 0 0.00 0.00 0.00 47
T01462_Fra-1 5 6 0 0 0 0 0.00 0.00 0.00 48
T01553_MITF 7 11 0 0 0 0 0.00 0.00 0.00 49
T01977_JunB 5 6 0 0 0 0 0.00 0.00 0.00 50
T01978_JunD 6 7 0 0 0 0 0.00 0.00 0.00 51
T04759_STAT1 7 8 0 0 0 0 0.00 0.00 0.00 52
Mean 10.6 17.9 1.4 5.3 6.8 2.3 0.24 0.15 0.18
Median 7.0 11.5 1.0 0.5 3.0 0.5 0.03 0.02 0.04
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the theoretical curve estimated from the binomial distribution. This means that the E-
value returned by oligo-analysis provides a reliable estimation of the rate of false
positives. In the positive control (green curve), the program returns a significantly larger
number of patterns than expected by chance. The most significant patterns indeed
generally correspond to annotated motifs (Table 3).

Figure 6B gives a complementary information on the same result set: instead of
plotting the number of hexanucleotides returned per sequence set, we show the number
of sequence sets (regulons or random selections) for which at least one hexanucleotide is
returned (ordinate), as a function of the significance score (abscissa). Here as well, the
negative set (random gene selections) perfectly follows the theoretical curve (blue),
whereas motifs are found in a much higher fraction of the positive set (regulons).

In human promoters, the distribution curves show a very bad behaviour: the
number of motifs is as high in random gene selections as in regulons (Fig. 6D, E). This
reflects a problemwith the backgroundmodel: the E-value estimated from the binomial
statistics (blue curve) strongly under-estimates the empirical rate of false positives
(dotted lines). This explains the poor PPV obtained for human regulons in the analysis
of motif correctness (Table 5).

5.5 The Receiver Operating Characteristics (ROC) curve

Another very expressive way to display the results is to directly compare the two
distributions (regulons and random selections) on a ROC curve (Fig. 6C, F). ROC
(Receiver Operating Characteristics) curves were defined in the field of signal detection
theory, as a plot where the X axis shows the false positive rate, and the Y axis the
sensitivity. The false positive rate measures the fraction of negative elements that are
erroneously considered as positive: FPR¼ FP/(FPþTN). In our case, this is the fraction
of random gene selections for which at least one pattern is returned above a given
significance score. The sensitivity (Sn, also called True Positive Rate) is defined as above,
as the fraction of positive elements that are correctly detected: Sn¼TP/(TPþ FN). In
our case, this is the fraction of regulons for which at least one pattern is returned above a
given significance score. Note that the sensitivity reported here differs from that defined
for the correctness analysis in Table 3, because we are not testing whether the motifs do
or not correspond to the annotations. In this part of the analysis, sensitivity and FPR are
defined in terms of the number of motifs reported in two data sets: genes that are co-
regulated (regulons), and genes that are supposedly not (random selections). Our only

1
Fig. 6 Score distribution of discovered motifs in positive and negative control sets. Pattern discovery in
yeast promoters (A–C) or human promoters (D–F). (A, D) number of over-represented oligonucleotides per
sequence set. Green curves : number ofmotifs per regulon; Blue curves: expected rate of false positives; Red
curve: empirical rate of false positive, estimated bymeasuring the number of motifs in random selections of
genes (B, E) top-raking motif for each sequence set (C, F) ROC-like curves
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purpose is to assess whether a given score (the significance score for the time being)
allows us to discriminate between these two data sets.

A ROC curve represents the evolution of Sn and FPR when the score varies: when
the significance score increases, the total number of motif decreases which affects both
sensitivity and FPR. An ideal predictor would reach 100% of sensitivity for a FPR of 0%.
A random predictor would return as many motifs in the negative as in the positive set,
and would thus follow the diagonal. Real-life predictors are usually located in the upper
left triangle, between the random and the perfect predictors.

Let us analyze the ROC curve obtained with the detection of over-represented
hexanucleotides in yeast promoters (Fig. 6C). We observe that, with a significance of
0.03, motifs are detected in 93% of the regulons, but also in 50% of the random gene
selections. When the threshold on significance increases, both sensitivity and FPR
decrease, but the FPR decreases faster. For example, if we accept a rate of 10% of false
positive, the sensitivity is 74%, andwith a restrictive threshold (sig� 2:1), we can reduce
the FPR to 1%, but still detect motifs in 55% of the regulons.

A classical way to estimate the global performance of a ROC curve is to measure the
Area Under the Curve (AUC). A perfect predictor has an area of 1, whereas a random
predictor has an area of 0.5 (the lower right triangle of the plot). With the yeast
promoters (Fig. 6D), we obtain an AUC of 0.9, which is pretty good. This is far from
being the case for human promoters: the ROC curve follows the diagonal and the AUC
is 0.47, suggesting that, for human sequences, oligo-analysis performs as badly as a
random predictor.

Fig. 7 Utilization of ROC curves to estimate optimal parameters for pattern discovery. (A) comparison
between different scores returned by oligo-analysis, with yeast promoters: binomial significance (occ_sig),
z-score, expected/observed ratio. (B) Performances of oligo-analysis on yeast promoters, with different
oligonucleotide sizes (from 5 to 8)
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5.6 Using ROC curves to find optimal parameters

It is very convenient to draw several ROC curves on the same plot, in order to compare
the performances of a program under different parameter conditions, or to compare
several programs (Fig. 7).

For instance, on Fig. 7A, we compare the ROC curves obtained with 3 alternative
scores returned by oligo-analysis). The binomial significance (occ_sig) clearly out-
performs the z-score, and the observed/expected ratio gives very poor results. We also
compared the performances of oligo-analysis with different oligonucleotide sizes (Fig.
7B). Apparently, the global performances (with 80 regulons and 1002 random gene
selections) are similar for pentanucleotides (5 nt), hexanucleotides (6 nt) and hepta-
nucleotides (7 nt). Octanucleotides (8 nt) give slightly weaker results , as estimated from
the AUC.

It is important to realize that the AUC reflects the behaviour of the curve over the
whole range of FPR. In practice, we generally do not even want to consider a program
that would return 50% of FPR or more. Thus, beyond the simple optimization of the
AUC, we should also focus on the left side of the curve, which generally corresponds to
the conditions wished for our predictions (low FPR values). In the range from 0 to 20%
FPR, Fig. 7B clearly shows that octanucleotides give a lower sensitivity than shorter
oligonucleotides.

6 Methodological issues for evaluating pattern discovery

In 2005, Tompa et al. (2005) organized a comparative assessment of 12 pattern
discovery methods, based on sequence sets from 4 model organisms (yeast, drosophila,
mouse and human). This assessment was organized as a community experiment, where
each developer was invited to test his/her own program on some test sets. Developers
also participated to the discussions about the evaluation statistics. Despite the huge
effort put in this community-based experiment, the results of this first evaluation were
rather deceiving: all the programs, without exception, had an average accuracy below
15%. This poor result contrastedwith our experience, since we usually obtained higher
ratings in our published and unpublished tests, at least for the yeast Saccharomyces
cerevisiae. After this first evaluation, the organizers and some participants had the
opportunity to discuss further about the strengths and weaknesses of this first
assessment, and we could identify several reasons why the results were apparently
so poor.

1. Most datasets only contained very few genes (less than 5 in most cases), although
pattern discovery requires a sufficient number of genes in order to distinguish the
signal (cis-regulatory sites) from the noise (the surrounding sequences).
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2. A good part of the test sequences were artificially built by implanting binding sites
extracted from a transcription factor database in some foreign sequences. The
foreign sequences were either selected at random in the whole collection of
promoters, or generated randomly following a Markov model. The advantage of
this approach is that the positions of the correct sites are perfectly known. However,
it is well know that, even in the best available databases, annotated sites only
represent a fraction of those present in promoters. Thus, sequences with implanted
sites contain much less instances of the regulatory motifs than native promoter
sequences, so that the signal-to-noise ratio was weaker than in real conditions.

3. The results had to be submitted in the form of a set of predicted sites, which were
then compared to the positions of the annotated/implanted sites. The results were
thus analyzed with the same statistics as defined above for pattern matching (at the
level of nucleotides and at the level of sites). However, this implied that the
assessment only considered the final result of two consecutive processes: pattern
discovery and pattern matching. We would like to consider those two steps
separately, and to evaluate on the one hand the motifs returned by some motif
discovery results, and on the other hand the binding sites predicted by scanning
sequences with those motifs.

7 Good practices for evaluating predictive tools

In this section, we proposed an alternative protocol that addresses the problems
mentioned above and permits to assess the results of any pattern discovery algorithms.

1. We use as testing set a complete collection of all the regulons stored in the
TRANSFAC database (Wingender 2004; Wingender et al. 1996).

2. We restrict the analysis to those factors for which the database contains at least 5
target genes, in order to have a reasonable signal-to-noise ratio.

3. All sequences used in this protocol are promoter sequences retrieved from the
genome, and the TFBS are in their native location.

4. The evaluation is based on the motifs returned by the pattern discovery algo-
rithms, without requiring a further step of patternmatching. There is thus no need
to scan the sequences in order to predict the binding sites. Of course, this protocol
might be combined with a subsequent assessment of the sites predicted by
scanning the sequences with the discovered motifs, as described in the first part
of the chapter.

Thesemethodological choices are probably not perfect, rather, we propose them as a
tradeoff between the ideal situation and the constraints imposed by the available data.
There are certainly alternative ways to perform such evaluations, and other statistics can
be used for the same purpose. We would however like to insist on some aspects that go
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beyond the choice of a precise statistics, and belong to what could be called “good
practices for evaluation”.

7.1 Use comprehensive data sets

In too many cases, the performances of a new published method are illustrated on the
basis of a few selected examples. Such selections can be justified by didactic purposes,
but should never be considered as an evaluation. A quantitative evaluation should rely
on an exhaustive data set, whichwas selected before the evaluation. The regulons should
never be selected a posteriori. Thismeans that we also have to report negative results and
the cases for which our program fails, because they are an essential part of the
evaluation. Besides, a detailed analysis of the resisting cases is often the key to an
improvement of the methods.

7.2 Think about your negative control

Think about your negative control. An essential quality of a predictive method is its
capability to return a negative answer when there is nothing to be predicted. Some
programs have been conceived to optimize sensitivity, but this is generally at the cost of
specificity. A simple negative test is to generate random sequences and submit them to
the program for pattern detection (matching or discovery). A well-tuned program
should report no motif (pattern discovery) or no site (for pattern matching). Such a
simple test is however too optimistic, because generating random sequences relies on
some theoretical background model (Bernoulli, Markov), which might be too simple to
reflect the complexity of biological sequences (especially for vertebrate genomic
regions). A more stringent test is to select random fragments in the genome of interest,
and to submit those biological sequences to the program.Of course, these sequences will
contain instances of some transcription factor bindingmotifs. However, since they were
selected at random, they should not contain any enrichment for a particular transcrip-
tion factor. The number of sites or motifs reported should thus be much lower than in
promoters of co-regulated genes.

7.3 Ensure neutrality

In this chapter, we only evaluated two methods developed by our group (matrix-scan
and oligo-analysis). An obvious question is “how do these methods compare with those
developed by other people” ? A comparison with other programs is often requested by
referees when we submit a paper describing a newmethod. Some journals consider it as
an editorial requirement for accepting amethods paper. However, it seems obvious to us
that we are not in the best position to answer this question, for two reasons: (1) our
judgment may be flawed by our motivation (we generally want to show that our
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programworks better than its competitors); (2) even if we adopt an attitude as neutral as
possible, we generally know much better how to fine-tune the parameters for our own
program than for those developed by third-parties.

We envisage two types of evaluations that can ensure neutrality: user-based and
community-based assessment. In a community-based assessment, a series of testing sets
are published, and each developer is allowed to test his/her methods, and send the results
to the evaluation committee. This method ensures that each tool is fine-tuned in the best
way, with the expertise of its own developer. On the contrary, in a user-based assessment,
the assessor hasnot contributed todevelopanyof theprograms tested.Of course, this kind
of assessment does not guarantee the best utilization of each program, since a na€ıve user is
likely to be more familiar with some programs than with other ones. Such user-based
evaluations integrate several inter-dependent aspects such as the performances of the
program itself, its ease of use, the complexity of its parameters, and the quality of the
documentation. Somehow, the user-based assessment is more realistic, since it estimates
the level of performances that other na€ıve users can hope to obtain from the programs.

8 What has not been covered in this chapter

In the scope of this book chapter, it is not possible to entirely cover all the aspects of the
evaluation of cis-regulatory element prediction. We restricted the presentation to the
evaluation of two approaches: a pattern matching method relying on position-specific
scoring matrices, and a pattern discovery method based on the detection of over-
represented oligomers.

We did not attempt to cover matrix-based methods for pattern discovery, such as
consensus (Hertz et al. 1990), MEME (Bailey and Elkan 1994) or the Gibbs sampler
(Lawrence et al. 1993; Neuwald et al. 1995; Roth et al. 1998; Thijs et al. 2001). For such
programs, the analysis of score distributions can be performed exactly in the same way
as we did for oligo-analysis. Such an evaluation is already very informative regarding the
discriminative power of the various scores returned by these motif discovery programs:
information content, consensus score, log-likelihood, MAD, . . . (results not shown).

Another important aspect that is not covered here is the application of comparative
genomics to detect conserved elements in the promoter sequences (phylogenetic
footprints). Our group recently published a systematic evaluation of footprint discovery
in Bacteria (Janky and van Helden 2008), using the same concepts as described here.

We did not either treat the evaluation of programs that predict cis-regulatory
modules (CRM), i.e. genomic regions enriched in binding sites for one transcription
factor (homotypic models) or several transcription factors (heterotypic models). An
evaluation of CRM predictions was recently performed in the fruit fly Drosophila
melanogaster, using either a single genome, or a combination of 12 genomes of the same
genus (Aerts et al. 2007).
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9 Materials

To analyze the data and draw thefigures of this chapter, we used various programs of the
Regulatory Sequence Analysis Tools (RSAT), a specialized software suite for the
detection of cis-acting elements in genome sequences (van Helden 2003; van Helden
et al. 2000a). These tools can be accessed via a web interface (http://rsat.bigre.ulb.a.be/
rsat/), or used as Web services (the latter requires some programming skills).

The RSAT project started in 1997 in the Centro de Investigacion de la Fijacion de
Nitrogeno (Cuernavaca, Mexico), and has been pursued since 1998 at the Universit�e
Libre de Bruxelles (Belgium). Since 2004, the BioSapiens project contributed to its
funding, in particular for the assessment of pattern discovery in various model
organisms, and for the development of Web services.
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Accg Geometric accuracy
AUC Area Under the Curve (under the ROC curve)
FN False Negative
FP False Positive
FPR False Positive Rate
PPV Positive Predictive Value
PSSM Position-specific scoring matrix
ROC Receiver Operating Characteristics
Sn Sensitivity
TF Transcription factor
TFBS Transcription factor binding site
TN True Negative
TP True Positive
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CHAPTER 2.2
A biophysical approach to large-scale
protein-DNA binding data

T. Manke, H. Roider and M. Vingron

Max Planck Institute for Molecular Biology, Berlin, Germany

A keymechanism of gene regulation involves the binding of transcription factors to the
promoter regions of their respective target genes. Thismechanismhas long been studied
for individual promoters and specific transcription factors using a number of experi-
mental techniques, such as DNAse footprinting (Galas and Schmitz 1978), gel-shift
assays (Fried and Crothers 1981) and SELEX (Tuerk and Gold 1990).

Recent experimental advances have added a genome-wide perspective to this re-
search. Molecular biologists can now determine the relative binding strength of a
transcription factor to thousands of different promoter regions with a method called
chromatin immunoprecipitation followed by microarray analysis (ChIP-chip {X7E
“ChIP-chip”}). In such experiments transcription factors are extracted from the cell,
along with various DNA-fragments to which they are bound. The nucleotide sequence
of these fragments can then be determined by hybridization of the DNA to a specially
designed microarray (Lee et al. 2002). Here the key idea is to quantify the different
amounts of bound fragments corresponding to different sites in the genome through the
intensity of the hybridization signal. In principle, this provides a quantitativemeasure for
differences in binding strength, but one still needs to normalize against sequence-specific
background signals. Therefore two channels of intensities are considered: the red channel
(R) for the signal intensity, and the green channel (G) for a factor-independent back-
ground signal. The binding ratio (R/G) provides a relative measure of binding strength.

The emergence of such data has highlighted the fact that transcription factors can
bind to DNA with a range of different affinities, and it has triggered also a more
quantitative approach to theoretical binding models. Prior to large-scale binding data,
computational models had focused almost exclusively on the prediction of new binding
sites from a limited number of observed sites. In other words, the models aimed to
generalize sparse observations. In contrast, binding data is now abundant and the

Corresponding author: Thomas Manke, Max Planck Institute for Molecular Biology, Ihnestr. 73,
14195 Berlin, Germany (e-mail: manke@molgen.mpg.de)
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challenge is to rationalize these observations in terms of some underlying model. Here
we review recent efforts to characterize protein-DNA interactions starting from a
biophysical framework.

1 Binding site predictions

The results from individual binding experiments or de-novo motif discovery can be
represented as alignments of real or putative binding sites, as illustrated in Fig. 1 for the
serum response factor (SRF). Such an alignment can also be represented by a motif
matrix {XE “motif matrix”} which contains the observed nucleotide counts or
frequencies at each position of the alignment. For ease of visualization, the information
content at each position is often used to represent the nucleotide preferences of a
transcription factor.

Such representations basically model nucleotide occurrences at different positions
within the binding site as independent from each other, an assumption which is hard to
falsify with limited data (Stormo 1990). One may therefore generate random instances
of “binding sites” by picking nucleotides according to their position-specific distribu-
tion in the matrix. In the example above one would choose the letter G at the first
position with high probability (39/46� 0.85). Many years of detailed binding site
studies in various species and for different factors have produced hundreds of such

Fig. 1 Binding site preferences of SRF. A) shows part of an alignment of 46 sequences which were found
to bind SRF. The motif matrix in B) counts the observed nucleotides at each of the 12 positions in
the alignment. From this matrix one can determine the frequency distribution of nucleotides at each
position, which is conveniently characterized by its information content. The sequence logo in C) uses this
information content to determine the height at each position (	2 bit) and scales each nucleotide according
to their relative frequency

92

Chapter 2.2:A biophysical approach to large-scale protein-DNA binding data



matrixmodels, which are stored indatabases such asTRANSFAC(Wingender et al. 1996)
or JASPAR (Sandelin et al. 2004). In a similar spirit, one can also define a probabilistic
model for the sequence background which does not contain any sites. For example, one
can define a random background sequence model, in which all nucleotides occur with
some specified frequency and independent of their positions. If both the binding site
model (provided by the motif nucleotide frequency matrix) and the background model
are specified, one can assign a likelihood ratio to any arbitrary sequence site. This
likelihood score quantifies whether the site is more likely to be generated by the sequence
model, or by the background. This approach has frequently been reviewed inmore detail
(Stormo2000; Bulyk 2005;D�haeseleer 2006). By choosing an appropriate score threshold
{XE “score threshold for hit based methods”}, one defines putative binding sites which
exceed the score threshold. To distinguish such predictions from biological sites, they are
also referred to asmotif hits. Importantly, any score threshold also determines an expected
false positive rate (motif hits which are generated by the backgroundmodel), as well as an
expected rate of false negatives (sites which are generated from the motif matrix, but
which score below the threshold).While thehit-based approach is statistically sound it has
certain disadvantages which one would like to overcome.

First, the traditional hit-based methods discard all quantitative information and do
not discriminate between strong andweakbinding signals after the thresholdhas beenput
in place, see Fig. 2. This makes any follow-up analysis sensitive to the threshold. For
example, such analyses often aim to quantify a degreeof correlation between experimental
results and computational predictions, or the correlation of binding patterns for different
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Fig. 2 Given two score distributions of background (red) and signal (blue) one can chose a particular
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transcription factors. If the binding profiles merely encodes (in a Boolean manner)
whether a promoter region contains a motif hit or not, such correlation measures are not
very robust against changes in the threshold. Second, it is not immediately clear how hit-
based predictions can help to model quantitative binding data and how binding site
predictions could be improved systematically. Third, rather than obtaining individual
binding sites, current binding data frequently assigns a binding strength to longer
sequence regions, and the hit-based approaches must be extended to obtain “regional
scores”. Fortunately, there is a simple biophysical interpretation of binding scores, which
permits calculation of a regional binding affinity. Fourth, the binary assignment of “motif
hits” cements the conceptual prejudice that predicted sites correspond to functional links.
In fact, the same approach is often applied to experimental data, where interactions that
are stronger than some threshold are interpreted as regulatory interactions. Finally, the
hit-based approach does not usually help to identify potential regulators for a given
sequence region. Given the large number of knownmotifs, there is still a large number of
statistically significant motif occurrences in any stretch of sequence. This problem can be
alleviated somewhat, if one focuses on specific transcription factors of interest or invokes
functional data, such as evolutionary sequence conservation or gene expression. The
approach of phylogenetic footprinting {XE “phylogenetic footprinting”} is illustrated in
Fig. 3 for the SRF promoter region, which shows several conserved motif occurrences for
SRF, which is a known transcription factors with auto-regulatory capacity (Schratt et al.
2002; Dieterich et al. 2003).

While phylogenetic footprinting may reduce the number of false positive predic-
tions, the restriction of search space may also miss functionally important sites (false
negatives). Moreover, even conserved sequence regions tend to harbor an over-
abundance of possible motif occurrences for known transcription factors, and one
would still like to rank them according to some rationale; their relative binding strength,
for example. In the following we will focus on a new methodology to predict and
compare more accurately the strength of transcription factors to sequence regions.

2 Affinity model {XE ““affinity model, TRAP””}

As was pointed out before, with the emergence of large-scale binding data, the
experimental situation has shifted from sparse knowledge of individual binding sites
to genome-wide measurements of binding strength. Here we will review a simple
biophysical model, with the help of which one can quantify the binding affinity of a
transcription factor to individual sequence sites and longer sequence regions (Roider
et al. 2007). First consider many copies of some DNA site, Sl, which extends from
sequence position l to lþW�1. The equilibrium constant for protein-DNA complex
formation at this site is given by the ratio of concentrations of the complex [T � Sl], with
respect to the concentrations of the free transcription factor [T], and the unoccupied
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sequence site [Sl]. According to the Boltzmann formalism, this ratio is determined by
the difference in free energy, bDG (Zumdahl 1998)

Keq ¼ ½T � Sl�½T�½Tl� ¼ e�bDGl ð1Þ

This is illustrated in Fig. 4, where the energy difference between the unbound educts and
the complex is plotted in thermal units of b¼ kT. The correlation being the lower the
binding energyof the bound state, thehigher the concentration of complex at equilibrium.

The energy difference depends on the nucleotide composition of the site, and in
the following we measure all energy differences with respect to the lowest possible
energy, i.e. the consensus site to which we assign E0¼ 0.

al ¼ ½T � Sl�
½Sl�½T � Sl� ¼

R0e�bEl

1þ R0e�bEl
ð2Þ

We call this fraction the local affinity, which can be assigned to any sequence site Sl. Here
R0 ¼ ½T�e�bDG0 is a positive, sequence-independent parameter, and El � 0 is a site-
dependentmismatch energy.Following the classicalmodel of Berg and vonHippel (1987),
the mismatch energy for many transcription factors can be calculated as independent
contributions from each basepair within a sequence site of width W.

bEl ¼
XW
w¼1

�wðM; lÞ ð3Þ

Here the individual contributions, �w depend on a known motif matrix, M, and a
dimensionless scale-parameter (Roider et al. 2007). This formalism is similar to the

Fig. 4 This figure illustrates the energetics of protein-DNA interactions for one hypothetical site. Generally
the free energy of the complex is lower than that of the unbound state, indicating that most TF will bind
DNA. The difference in free energy determines the fraction of bound sequences according to Boltzmann
equilibrium distribution
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score calculation, but the physical framework has the advantage that the energymodel
also makes prediction on the site-specific affinity as in Eq. (2). Moreover, this
approach also allows to determine the affinity to longer DNA sequence regions of
length L, by summing up all contributions from both strand, al, and anti-strand
sequences, a�l

AðR0; lÞ ¼
XL
l¼1

al þ a�l ð4Þ

For a more detailed exposition we refer the reader to our original work (Roider et al.
2007), where we have also included a correction term for palindromicmotifs. The above
model depends on two parameters, R0 and l, which can be tuned for a given set of
binding data. In our work we utilized the large-scale ChIP-chip experiments from the
laboratory of Richard Young (Harbison et al. 2004). This group provides binding data
for the relative binding affinities of more than 200 yeast transcription factors to
intergenic sequences under various cellular conditions. We use the experimental ratio,
R/G, of intensities for bound vs. unbound fragments and compared it to the prediction
for the affinityA. In this case the analyzed sequence regions correspond to the intergenic
regions in yeast (L� 1000 bp). Figure 5 provides an example for such comparison
between our prediction and the experimental binding ratios for transcription factor
Leu3 and some 6000 intergenic regions, which were measured in rich media condition.
In this case we achieve a highly significant correlation coefficient of 0.31, when the two
parameters, R0 and l are optimized.

Remarkably, most transcription factors gave a similar value of l� 0.7, and a closer
inspection of the optimalR0 revealed that this value depends strongly on the widthW of

Fig. 5 The correlation of predicted affinity, A, and experimental binding ratio (R/G) for the factor Leu3. The
Pearson correlation coefficient is � 0.31 for the optimal choice of parameters. The sequences considered
to be bound the TF according to ChIP-chip data are indicated by red crosses
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themotif, which in turn is a good predictor ofR0. This defines a generalmodel, whichwe
termed TRAP{ XE “TRAP” } for transcription factor affinity prediction. Unlike hit-
based sequence annotation, TRAP assigns a certain affinity of a given transcription
factor to any sequence fragment. It avoids an arbitrary distinction between bound and
unbound sequences, but it still permits a comparison and ranking of different sequences
according to their predicted binding affinity to a factor of interest. Figure 6 demon-
strates that for a number of transcription factors, TRAP can account for a large fraction
of binding data, but not necessarily for all tested environments. For example, the heat-
shock factor shows good correlation (�0.5) in heat-shock condition, but poor correla-
tion (<0.1) in rich media. This is an example where the binding ability of the factor is
known to change in response to post-translational modification, and where the known
motif is an appropriate model only for a specific cellular condition. Notice that the
correlations obtained with the affinity-based model are almost always better than those
obtained with a hit-based method. For the latter, one may simply count the numbers of
hits in a given sequence region. As mentioned before, such a measure does not properly
take into consideration differences in binding strength above or below the threshold.

Fig. 6 Illustrates that, for the majority of cases, the affinity model (blue bars) can predict the experimental
binding ratio better than the traditionalmethod (red bars). Notice that in several cases, the binding ratios for
a given factor were obtained in different cellular conditions, while the affinity predictions only rely on
sequence information. They do not take into account any condition specific parameter (such as changes in
the binding model, chromatin modifications, or competition with other factors). Therefore we cannot
expect to observe correlations for all condition. This is exemplified by HSF1, which was measured in rich
media (YPD) and under stress conditions
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Therefore a threshold is not necessary to model large-scale binding data, and it may
even hinder a quantitative comparison between experimental data and model predic-
tion. In contrast, the physical approach provides a quantitative framework for compar-
ison and systematic improvement. It shifts the focus from the prediction of binding sites
to the prediction of affinities, which may be weak or strong.

3 Affinity statistics {XE ““affinity statistics””}

While the affinity-based model provides a ranking of sequence regions according to
their different affinities for a given transcription factor, one cannot always directly
compare affinities from different factors for a given sequence. This is because different
transcription factors can have very different affinity distributions, as illustrated in Fig. 7.
In general, transcription factors can have different binding specificities, a fact which is
reflected in a shifted affinity distribution.Moreover, the affinity distributions are neither
normal nor easily parameterized. This is a remnant of the discretemotifmatrices, which
entail discrete binding energies and therefore discrete affinities.

Therefore the theoretical challenge is to provide a proper normalization of the
distribution, such that the binding affinities of different factors can be directly compared
with each other. The cumulative distribution function provides such normalization, as it
assigns a p-value (0	 p	 1) to any affinity. Using an iid background model and
simplifying assumptions about the independence of nucleotide positions, one can
actually derive this distribution exactly and for anymatrix. This is illustrated in Fig. 8 for

Fig. 7 Different transcription factors have different affinity distribution. In this example the affinities of
two well-known transcription factors, E2F and SRF, are compared for a background of random sequences
with length L¼ 1000 bp. For the background we assumed a constant GC-content (50%), but the results are
very similar for human promoter regions. The latter have a similar average GC-content, but vary
considerably around this average
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the transcription factor E2F and a sequence region of L¼ 1000 bp with GC-con-
tent¼ 50%. One notices a perfect agreement between the predictions and an actual
simulation with 100000 measurements. Again it is apparent that the tails cannot
generally be described by any standard parameterization. In particular, the log-normal
approximation seems to fail completely in the tails. Unfortunately this is the region of
high affinities which are of most interest. One should recall here again, that the goal is
not to set some significance threshold, but rather to normalize an observed affinity, and
to give a statisticalmeaning to the statement that one factor binds stronger than another.

The precise determination of the cumulative distribution is theoretically rewarding,
but not very useful for practical applications as it would have to be repeated for all
possible region sizes. Also the background model is overly simplistic and does not
capture the heterogeneity observed inmost real promoter regions. Therefore it is highly
desirable to obtain an efficient parameterization which captures the cumulative
distribution at least at some level of accuracy. For the purpose of ranking different
transcription factors, it will be quite sufficient to calculate an approximate p-value using
a small number of parameters, rather than working with the precise p-values of Fig. 8.

For the following application we used the General Extreme Value distribution {XE
“General Extreme Value distribution”}

Pðxja; b; cÞ ¼ exp

�
�
�
1þ a

x � c
b

��1
a
�

ð5Þ

which provides an estimates for the probability that a certain affinity exceed the value x.
The three parameters (a, b, c), have been determined for eachmotif matrix by fitting the
empirical affinity distribution to the parameterized form of Eq. (5). Here we also took
the biologically motivated background set of < 34,000 human promoter sequences.

Fig. 8 The empirical distribution of affinities in a random sequence background with GC-content of 50%
(blue curve) can be accurately predicted from theoretical considerations (red curve) for any given
transcription factor. This illustration is for E2F and a region of length L¼ 1000 bp

100

Chapter 2.2:A biophysical approach to large-scale protein-DNA binding data



4 Applications

Now we show how the statistical analysis can be applied in a realistic setting. Consider
again the promoter region of SRF, which we take to be a 2000 bp region centered at the
transcription start site. The biologically relevant question is to decide which transcrip-
tion factors are most likely to regulate the activity of SRF. The transcription factors with
the highest predicted affinity include many unspecific factors which have high affinities
throughout the human genome, but which are not specific to the SRF promoter.
Therefore one needs the statistical approach to determine those factors, which have a
high affinity specifically for the SRF promoter, but not the background. In Fig. 9 we show
the top-ranking matrices, after the affinity has been converted into a p-value, as
described above. The top-ranking matrices include many representatives of the SRF
transcription factor itself, which indicates that our statistical approach to binding
strength is able to rank known regulators top.

Notice that in this setting we assumed maximal ignorance and included all known
transcription factor matrices and the whole sequence region. In particular we did not
reduce the search space to conserved sequence regions, and we did not remove
uninformative or non-vertebrate matrices. Clearly, the motif matrices are also not
independent of each other, but this redundancy could be resolved in a post-processing
step of this analysis. While the regulatory mechanisms acting on the SRF-promoter are
likely to involve additional sequence elements and other transcription factors, it is
encouraging that a key player is correctly identified by the rankingmethod. The ranking
scheme provides a robust approach to quantify the binding strength and to discriminate
transcription factors from each other. It should be stressed though, that within the
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Fig. 9 Top-ranking TRANSFAC matrices according to their normalized affinity with respect to the 2000 bp
promoter region of SRF
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biophysical framework one does not aim to detect transcription factors with low affinity,
which may be important for certain aspects of regulatory control.

5 Summary

Here we reviewed the traditional approach to transcription factor DNA binding and
contrasted it with a new method that retains the quantitative information about the
affinity of a transcription factor binding to DNA regions. The underlying biophysical
model is still simple, but it can be easily tuned, given large-scale binding data andmatrix
motifs. In contrast to the traditional approach, the affinity model does not introduce
thresholds, and does not predict “hits” of transcription factors, but rather their relative
binding strength to a given sequence region.

More importantly the model provides a quantitative benchmark, which can be
systematically improved. This illustrates that the Berg–vonHippelmodel (Berg and von
Hippel 1987), which was developed in the context of bacterial transcription factors, still
has its applicability and successes in eukaryotes.

Moreover, given a certain sequence region and a list of motif matrices, one can now
meaningfully rank the corresponding transcription factors according to their specific
binding strength to the selected sequence region. This is possible because a simple
background model suffices to capture most of the affinity distribution in various
sequence backgrounds.

While the physical model and its statistical interpretation have certain successes,
there is clearly room for improvement. On the model side one should account for more
complicated regulatory mechanisms, such as co-operation among transcription factors
and competition with nucleosomes. Further improvements of the statistical model will
likely come from a better description of the tails of the distribution, for which certain
limit theorems ensure a universal behaviour, which may be parameterised more
accurately.
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CHAPTER 2.3
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1 Introduction

Transcription factors, by binding to particular DNA sequences termed transcription
factor-binding sites, play an important role in regulating gene expression in both
prokaryotic and eukaryotic organisms. These binding sites lie within promoters (which
are located just upstream of a gene and promote transcription of that gene) and
enhancers (short DNA elements enhancing transcription levels of genes in a gene
cluster, and which need not be particularly close to the genes they act on, or even located
on the same chromosome). Binding of transcription factors in these genomic regulatory
regions can influence gene transcription rates either positively or negatively. The
binding may also be dependant on the interaction with co-activators and co-repressors,
in addition to context (e.g. particular histone modifications in the vicinity of the
regulatory element). Identifying all transcription factors and their respective binding
sites would be an important step towards a more thorough understanding of gene
regulation. Regular expression type patterns, as well as nucleotide distributionmatrices,
have both been used for describing transcription factor-binding sites, e.g. (Bucher 1990;
Ghosh 1990; Chen et al. 1995; Wingender et al. 1996). Here we will discuss some of the
computational approaches that are used in binding site identification.

The basis of this approach is an assumption that a set of genes tightly co-expressed
under a range of conditions are likely to be co-regulated, i.e. the same transcription
factor may be binding to the promoters of these genes. This means that if we can find
(i) a set of tightly co expressed genes and (ii) the promoter (or enhancer) regions for

Corresponding author: Alvis Brazma, Microarray Group, EMBL-EBI, Wellcome Trust Genome
Campus, Hinxton, Cambridge CB10 1SD, UK (e-mail: brazma@ebi.ac.uk)
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these genes, the statistical analysis of the specific sequence features of these regions can
reveal the binding sites. The former has been facilitated by the availability of genome-
wide expression data (notably microarrays), and the latter can be achieved by looking
for sequences resembling known binding sites of known transcription factors in these
regions, or by looking for statistically overrepresented sequence elements in the set of
co-expressed promoters (or enhancers).

Algorithms have been proposed for inferring descriptions of binding sites from sets of
relatively small number of sequences (about 20) inwhich all or almost all of the sequences
are known to contain the site for the respective transcription factor e.g. (Stormo and
Hartzell 1989; Wolfertstetter et al. 1996). With the ability to extract sets of co-expressed
genes from transcriptomics experiments, it has been possible to identify novel putative
binding sites for yeast transcription factors (Brazma et al. 1998b; van Helden et al. 1998).
However, this approach has turned out to be much more elusive for higher eukaryotes;
a reason for this is yeast promoter regions are usually located in the direct vicinity of
the gene (Mellor 1993) they are regulating (up to 600 bp upstream from the translation
start site was used in the papers above), contrasting with mammals where the regulatory
regions can be located many thousands of base-pairs either upstream or downstream
of their target gene(s). Comparative genomics offers some help – it is assumed that
functional genomic regions, including regulatory regions, are conserved between evolu-
tionary related species. Nevertheless identifying novel binding sites by sequence analysis
in a similar manner that has been successful in Fungi, has turned out to be difficult in
animals. Instead, researchers have concentrated on identifying the presence of transcrip-
tion factor binding sites utilising a priori knowledge (e.g. position weight matrices).

Recently this avenue of research has gained new impetus with the availability ofmany
different genome-wide gene expression sets in the public domain, most importantly in
public databases such as ArrayExpress (Parkinson et al. 2007) and Gene Expression
Omnibus (Wheeler et al. 2005). In this chapter we will describe a combination of ap-
proaches that takes advantage of the availability of these datasets. Initially, we will discuss
how tofindsets of tightly co expressedgenes (Sect. 2)– if such a set includes a transcription
factor, it is possible that this transcription factor is one of the regulators of the set. We
will discuss how to use a comparative genomics approach to narrow down the putative
regulatory regions (Sect. 3), map known transcription factor binding sites onto these re-
gions (Sect. 4) and combine information about several binding sites to predict themmore
reliably (Sect. 5). Finally, the feasibility of predicting the presence of novel binding sites
by statistical analysis of promoter regions of co-expressed genes will be assessed (Sect. 6).

2 Generating sets of co-expressed genes

The ArrayExpress Warehouse is a database of gene expression profiles, and allows for
queries based on a range of gene annotations including gene symbols, Gene Ontology
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terms and disease associations. The probesets present on the metazoan Affymetrix
microarrays stored in the warehouse have beenmapped to ENSEMBL gene entries, and
this facilitates the linking of results from protein sequence searches to the expression
data containedwithin the warehouse. An application of thismapping information is the
identification of transcription factor expression profiles; human and mouse genes are
queried with statistical descriptions of DNA-binding domains (DBDs), and the genes
encodingDBD-containing polypeptides (transcription factors) are associated with their
corresponding probesets.

The identification of transcription factors differentially expressed between the
various experimental factors in the transcriptomics experiments, is initiated by calcu-
lating the average expression level in each experimental factor group, and then
comparing it with all the other group average expression levels. More specifically, the
R software-package “LIMMA” (Linear Models for Microarray Data) – which performs
an one-way ANOVA – is employed, and after adjusting the probabilities for multiple
testing using the Benjamini–Hochberg False Discovery Rate correction, any DBD-gene
with p < 0.05 is considered to be differentially expressed between the various experi-
mental factors in the experiments. Hence, if the average expression levels are sig-
nificantly different between the groups, then the transcription factor is considered to be
differentially expressed. In Fig. 1, the average (displayed as a dotted line) is significantly
different between groups 1, 2, 3 and 4, but not between groups 5 and 6. Therefore, this
transcription factor exhibits differential expression between organism parts i.e. its
expression level differs in the colon, hypothalamus, liver and skeletal muscle.

To create sets of co-expressed genes containing transcription factors i.e. a potential
regulator of these genes, the genes displaying correlated and significant differential
expression for the same experimental factors as the transcription factor are pooled. The
co-expression set is then generated by including the differentially regulated genes whose
expression profiles are significantly correlated with that of the transcription factor.
Figure 2 shows a set of co-expressed genes: the expression profile of a liver-specific
transcription factor (ATF5), along with the ten closest expression patterns, is plotted:

The determination of the presence of conserved DNA-motifs in regions both
upstream and downstream of the transcription start sites of the genes present in these
co-expressed clusters, is discussed below. Furthermore, the co-expressed gene sets can
be utilised to ascertain if orthologous transcription factors control the expression of
orthologous genes, and if the set members exhibit enriched GO term content.

3 Finding putative regulatory regions using
comparative genomics

Chemically active and biologically significant transcription regulatory regions are often
assumed to be evolutionarily conserved. This assumption holds for many currently
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characterized enhancer elements but there are important counterexamples for this
property (Prabhakar et al. 2006). Deletion of large gene deserts including highly
conserved DNA segments can yield viable mice and, even more amazingly, deletion
of ultraconserved segments of DNA, that work as expression enhancers in transgenic
marker assays during development, have almost no noticeable effect on the mouse
phenotype (Nobrega et al. 2004; Ahituv et al. 2007). These limiting results are
augmented by the recent laboratory results that many of the chemically active DNA
locations are not evolutionarily conserved (Birney et al. 2007; Margulies et al. 2007).
Keeping these constraints in mind we can proceed to finding conserved non-coding
sequences that putatively work as expression enhancers.

The simplest way of finding conserved non-coding sequences is to locally align two
evolutionarily related DNA sequences and concentrate on the best conserved elements.
This can be done quite efficiently with e.g. the two sequence variant of the BLAST
program (Tatusova and Madden 1999). The significance of the local conservation
cannot be estimated with the BLAST provided E-values that are based on the false null
hypothesis of unrelated sequences (Palin and Ukkonen 2008).

Multiple sequence alignment can improve the power of detecting the evolutionarily
conserved regions. The multiple sequence comparison benefits from the long total time
of independent but parallel evolution among the sequences while the sequences still
share a common and a reasonably resent ancestor. This way the biologically significant
regions should be well conserved while the insignificant regions have accumulated a
large number of mutations such that the sequence conservation should be more
pronounced indicator of biological significance as in pair wise alignments.

Currently there are a multitude of whole genome sequences available for a wide
range of species. The NCBI is aware of 188 eukaryotic genome sequencing projects
in at least assembly stage and 238 projects in more preliminary stage. The comparison
of several of these genomes is probably the most efficient method for discovery of
evolutionarily conserved sequences. The most interesting genomes are the ones
reasonably close to human e.g. the primates or mammals. Larger sequence divergence
is likely to lead to loss of sensitivity in the discovery of the regulatory elements that can
evolve with reasonably light sequence constraint (Prabhakar et al. 2006). The trans-
cription factor binding sites on the regulatory element can move, allow mutations on
the binding DNA and the sites can even be replaced with other similar binding sites
nearby.

Evolutionary and sequence pattern extraction through reduced representation
(ESPERR) is a recent method for finding the elements conserved for a particular
purpose, for example transcriptional enhancer activity, in multiple species (Taylor et al.
2006). The system evaluates the so-called Regulatory Potential Score which discrimi-
nates the regulatory regions from neutral sites. ESPERR is a supervised classification
system that classifies a multiple DNA alignment to one of two classes. The class can be
regulatory/non-regulatory elements or some other DNA sequence annotation.
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To avoid handling the discrete alphabet of alignment columns, which is of size 5k for
k species allowing gaps, the ESPERR reduces the representation of the alignment columns
to small, in the range of 15–30, set of symbols, each standing for a set of alignment
columns. The symbol sets are learned heuristically to maximize the discrimination be-
tween the two classes. The initial symbol set is generated by clustering the alignment
columns with similar ancestral nucleotide distribution. The initial symbol set is further
truncated by joining/extracting initial symbols such that the final classifier improves in
accuracy. The accuracy of the classifier is estimated with cross-validation. The search for
the best symbol set is stochastic hill climbing with few methods to escape local optima.

The actual classification of the multiple alignments is done according to the log
likelihood ratio between two variable order Markov models (VOMMs). Both Markov
models use the symbol set obtained above. One of the VOMMs models the multiple
alignments of the sequences belonging to the class of interest and the other one models
the multiple alignments of the sequences not belonging to the class.

Using discriminative system for the classification has the advantage that one can
distinguish between conservation due to different reasons. For example ESPERR is able
to classify highly conserved non-coding sequences as developmental enhancers/not
enhancers with leave-one-out (LOO) cross-validation accuracy of �83%. The data
consisted of transgenic reporter results at embryonic day 9.5 with 108 positive and 138
negative samples (Pennacchio et al. 2006). The classification results are very good
considering that all of the training data, including the negative data points, is extremely
well conserved over all used species (human, mouse, opossum, chicken, frog, zebrafish,
and pufferfish). ESPERR finds the less well-conserved putative regulatory regions,
however there is not a good �gold standard� for these less well conserved enhancers.

4 Detecting common transcription factors
for co-expressed gene sets

Given a set of co-expressed genes as obtained from ArrayExpress a first question to be
addressed is whether there exists a transcription factor(s) regulating the expression of
some or all the genes in the set thus causing co-expression. If such a factor exists one
would expect to find a common DNA sequence motif corresponding to the binding
motif of the factor in the promoter region of some or perhaps all genes in the set.

For a large number of transcription factors, binding motifs derived primarily from
small scale experiments such as footprinting have been collected over the last two
decades and are now available from public databases such as JASPAR (Sandelin et al.
2004) and TRANSFAC (Matys et al. 2006). As described in more detail in Sect. 2.2 such
binding motifs of transcription factors are stored in the form of position-specific
frequencymatrices, where each column in thematrix shows the preference of the factor
for a given base at the corresponding position in the binding site. An example of such a
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frequency matrix is shown in Fig. 3 for the liver-specific transcription factor HNF1. For
visual purposes the matrix can be converted into a binding site LOGO (Schneider and
Stephens 1990), which indicates the importance of a given base at a given position.
Alternatively the binding preference can be reduced to the consensus site for the
transcription factor as is shown at the bottom of Fig. 3 for HNF1. The consensus site is
usually considered as the site to which the factor binds most strongly.

Given the frequency matrix of a transcription factor one can now scan for potential
binding sites of the factor in theDNA sequence corresponding to the promoter region of
a gene. Every site in the promoter is thereby compared to the consensus sequence of the
factor and a distance measure between the consensus and the given DNA site is
computed. Sites exceeding a certain similarity score are considered possible binding
sites for the transcription factor. As explained in a previous chapter, various schemes

Fig. 3 Frequency matrix of the transcription factor HNF1
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exist for computing similarity scores and subsequently applying thresholds to distin-
guish between binding andnon-binding sites. Alternatively similarity scores can be used
to calculate the binding probability of a transcription factor to a given site in the DNA
sequence. The expected number of transcription factors associated with a promoter is
then given by the sum over all individual binding probabilities in the sequence (Roider
et al. 2007). These expectation values can be seen as measure of the affinity between a
transcription factor and a promoter and can be used to rank all genes in a genome. As
illustrative example Table 1 shows the top ranking 20 genes (out of all 26,000 mouse
genes) for the factor HNF1.

Such a ranking allows in the following to investigate whether the transcription factor
might play a role in the regulation of a gene set obtained fromArrayExpress. In the case
of the factor HNF1 one can see a strong accumulation of genes belonging to the set of
liver specific genes among HNF1�s top targets. The significance of such an enrichment
can be evaluated by applying various statistical test. For instance, the association be-
tween HNF1 and the liver specific genes has a p < 1.0E–15, which confirms the
important role that HNF1 plays in the regulation of gene expression in liver. Following
such schemes many important interactions between sets of co-expressed genes and
individual transcription factors have been discovered.

Alternative representations for the binding preference of the transcription factor
HNF1 (obtained from the JASPAR database). The frequency of a given base at a given

Table 1 Top target genes for HNF1

Rank Gene Expectation score Belongs to liver set

1 Hgfac 4.12
2 F13b 1.53
3 AI182371 1.40
4 Igfbp1 1.38
5 Gc 1.02 Yes
6 N/A 0.97
7 Hc 0.81
8 Fga 0.78 Yes
9 Mvk 0.75
10 Mmab 0.52
11 Afm 0.49 Yes
12 Kif12 0.42
13 Crp 0.40 Yes
14 Kifc3 0.34
15 Anpep 0.31
16 Hoxa9 0.31
17 Ranbp3l 0.30
18 Otub1 0.29
19 Slc26a3 0.28
20 Fgb 0.28 Yes
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position in experimentally verified binding sites is first stored in the form of a position
frequency matrix (indicated on the top). From this matrix a sequence LOGO or the
consensus binding site for the transcription factor can be derived. In the latter, positions
in the binding site where the transcription factor has no apparent preference for a
particular base are indicated by an N, indicating there exists a clear enrichment of liver
specific genes among the top ranking targets for this factor.

5 Combining transcription factor information

Over the recent years, several methods have been published that locate clusters of
transcription factor binding sites from the non-coding DNA. These so called cis-
regulatory modules (CRMs) are assumed to combine the regulatory inputs from the
transcription factors binding them and to provide condition- and tissue-specific
regulatory output to the basal transcription machinery. The grammar of these cis-
regulatory modules is still elusive and the tools for finding new modules vary a lot in
their modeling assumptions.

The Enhancer Element Locator (EEL) is a cis-regulatorymodule prediction tool that
makes a lot of biochemically motivated assumptions about the CRM structure and
evolution (Hallikas et al. 2006). These assumptions allow efficient analysis of long
sequences with large number of transcription factor binding site motifs. EEL finds
locally conserved sequences of transcription factor binding sites in two orthologous
DNA sequences. The structure of these modules is dictated by the underlying
biochemical model and by the mutations occurred after the latest common ancestor
of the two compared sequences. A typical module consists of x-binding sites spanning a
DNA sequence of length y–z.

The reasonably recent common ancestor is a vital assumption for the EEL method
because it requires conservation of the exact sequence of binding sites. Because most
genes within species have evolved (almost) independently for a long time it is unlikely to
find common enhancer elements of two genes by comparing their surrounding DNA
regions directly with EEL. More appropriate, and more general, way of finding a
putative common regulating transcription factor for a set of genes is to first find CRMs
for all genes in the genome and afterwards detect the factors with most overrepresented
binding sites in the CRMs of the set of genes.

A simple method for detecting the overrepresented transcription factors is to use
apply the Fisher�s test on a contingency table. Now assume that we have G genes, of
which T have a CRM containing a binding site of the transcription factor of interest. If
we are provided a set of C presumedly co-regulated genes, x of which have the binding
site, we can evaluate the probability of obtaining x, or more, genes with the binding
sites, given that we sampled the C genes independently. This situation is depicted in
Table 2.
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Fisher�s test, also known as the hypergeometric test, provides the probability
P(X� x) which is easily computed with all statistical software packages. Great care
should be given to theway of choosing the number of genesG.One has tomake sure that
on one hand, the genes with/without factor, and on the other hand the co-regulated/not
co-regulated genes are really chosen from the set of G genes. It is easy to overlook
missing data in one or both of the datasets, which could result in false p-value estimates.

6 ““De novo”” prediction of transcription factor binding motifs

The last problem treated in this chapter will be the “de novo” identification of cis-
regulatorymotifs from a set of regulatory sequences. Starting from a set of sequences, we
want to discover motifs that are found with a higher frequency in a set of promoters of
interest than expected by chance. These motifs will be considered as potentially bound
by some transcription factor, supposedly responsible for the co-regulation of the genes
of interest. Several pattern discovery methods have been developed to tackle this
problem (Hertz et al. 1990; Lawrence et al. 1993; Bailey and Elkan 1994; Neuwald et al.
1995; Brazma et al. 1998a; van Helden et al. 1998, 2000; Roth et al. 1998; Hughes et al.
2000; Thijs et al. 2001). In this section, we will present a method based on the detection
of over-represented oligonucleotides (van Helden et al. 1998).

Typical applications are the discovery of transcription factor binding motifs from
sets of co-expressed genes (expression microarrays), or from sets of genomic fragments
where a factor has been shown to bind (chromatin immuno-precipitation experiments).
Chromatin immuno-precipitation (ChIP) is a method that permits to fish fragments of
DNA bound by a given transcription factor. The “pulled-down” fragments can then be
characterized either by sequencing them, or by hybridizing themonto amicroarray chip
that contains several thousands of genomic fragments. The combination of chromatin
immuno-precipitation and microarray hybridization is called ChIP-chip. Odom and
co-workers (2004) used the ChIP-chip technology to detect genes whose proximal
promoters are bound by three transcription factors (HNF1a, HNF4a andHNF6), in two
different cell types (hepatocytes and pancreatic islets).

To illustrate the pattern discovery approach, we report the patterns discovered in
135 promoters bound by HNF6 in hepatocytes (Fig. 4). Promoter sequences were

Table 2 Contingency table for TFBS over representation

With factor Without factor

Co-regulated X C–X C
Not co-regulated T – X G � C�Tþ X G – C

T G – T
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retrieved from �700 to þ 200 from the transcription start site (this is the size of the
fragments spotted on Odom�s chip), and submitted to the program oligo-analysis (van
Helden et al. 1998). The primary result of oligo-analysis (Fig. 4A) is a list of oligomers
that show a significant level of over-representation in the sequences analyzed. In the
promoters bound by HNF6, the most significant heptamer is the oligonucleotide
AATCAAT (regrouped with its reverse complement ATTGATT), which is found in
27 occurrences. The reason for regrouping motifs with their reverse complement is that
most transcription factors can recognize their sites irrespective of their orientation
(DNA strand). For a random selection of promoters of the same size, we would expect
an average of 7.92 occurrences. The P-value (8.5E-08) indicates the probability to
observe at least 27 occurrences when expecting 7.92. Since the same test is applied to a
large number of heptamers, we apply a multi-testing correction, by multiplying the
P-value by the number of patterns tested. The resulting E-value (6.90E-04) indicates the
number of patterns that would be expected with such a level of over-representation by
chance, i.e. the expected number of false positives. Since this E-value is very low, the 27
occurrences of AATCAAT are very unlikely to result from chance, and we have thus

Fig. 4 Oligonucleotides significantly over-represented in a set of 135 promoters bound by HNF1a. (A)
significant oligonucleotides detected with oligo-analysis. (B) motifs resulting from the assembly of the 6
significant oligonucleotides. When alternative residues are found at a given position, we highlight the least
significant variants (according to the significance score in the third column). (C) sequence logo of the
annotated HNF6 binding motif.
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good reason to think that they reflect some biological effect (and, of course, our first
hypothesis will be that they reflect the enrichment of these promoters in HNF6 binding
sites).

The program oligo-analysis compared in the same way the observed and expected
number of occurrences for each heptanucleotide found in the input sequences (8090
distinct pairs of heptanucleotides were found with at least one occurrences). Among
those, no more than 6 passed the restrictive threshold of E	 1 (Fig. 4A).

Some of those 6 significant oligomers are strongly mutually overlapping, and can be
assembled to form larger motifs, with substitutions at some positions (Fig. 4B). The first
assembly is formed by 3 heptanucleotides, that altogether form a partly degenerated
8-mer. The strict consensus (obtained by taking the most significant letter at each
position) is AATCAATA, which perfectly fits the motif annotated in TRANSFAC
(Fig. 4C). The variant AATCGAT is not part of the annotated motif (which however
includes a variant AATCCAT at the same position), and might either be an artifact, or
reveal some variant of HNF6 motif that was not present in the 13 known binding sites
that were used by TRANSFAC annotators to build the HNF6 matrix (M00639). The
second assembly (GATCGATC, Fig. 4A) suggests one further variation at the first
position, which might contain either an A or a G.

It should be stated that Fig. 4 shows the typical result of an analysis that worked
reasonably well. Unfortunately, this is far from being always the case, especially for
human sequences. As mentioned in the introduction, human cis-acting elements are
often found at very distant locations from the transcription start site, so that a collection
of proximal promoters (as analyzed for this study case)might fail to containmany of the
sites actually bound by the factor. In our study cases, we were able to use a collection of
relatively short sequences (from�700 to þ 200 around the transcription start site) that
corresponds to the fragments hybridized on the ChIP-chip experiment. However, when
working with expression microarrays, the only information at hand is the list of up- or
down-regulated genes, without any information about the region where the actual
transcription factor binds. Another problem is that vertebrate genomes vary a lot in
their nucleotide composition, depending on various factors (distance to the TSS, CpG
islands, . . .). Consequently, the background models used for estimating the expected
frequencies might be insufficient to reflect these heterogeneities, which sometimes
results in a large number of false positives. From our experience, de novo prediction of
regulatory motifs works pretty well in microbial organisms (yeast, bacteria), reasonably
well in some insects (Drosophila) and plants (Arabidopsis), but gives results of variable
quality in vertebrates. Systematic evaluations are important to better understand the
factors that affect the rate of success of pattern discovery, and to provide clues for
selecting optimal parameters and for improving the methods. The evaluation of pattern
prediction will be treated separately (see chapter by Sand et al. in this book).

In summary, understanding gene regulation is one of the most challenging targets
for genome annotation, since genetic regulation is the key of development, interaction
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with the environment, and evolution. The field of regulatory genomics is relatively new,
and there is good hope that the methods presented in this chapter will progressively
improve in the near future, with the help of high-throughput technologies and the
multiplication of sequenced genomes that can be used in comparative genomics.
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CHAPTER 3
Annotation, genetics and transcriptomics

R. Mott

Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, UK

1 Introduction

This chapter discusses how to combine genome annotations of the type described
elsewhere in this book with genetic and functional genomics data to find the genes
associatedwith a phenotype, and in particularwith a complex disease. This problem is of
fundamental importance; the promise that understanding the molecular basis of
common diseases would lead to effective treatments helped motivate and fund the
human genome project.

Complex diseases such as cancer, diabetes, cardiovascular disease and depression
are defined as conditions with multiple causes, both genetic (due to mutations in the
genome) and environmental (everything else). By contrast, a Mendelian disease is
caused bymutations in a single gene, withminimal environmental contribution.With a
few exceptions such as cystic fibrosis in Caucasians and sickle-cell anaemia in parts of
equatorial Africa, most Mendelian diseases are rare and do not impose a major health
care burden on society. Most common diseases are complex, the exceptions being
caused by infectious agents such asHIV and tuberculosis, and even in these cases there is
a genetic contribution to resistance to infection.

In general, most complex diseases have a significant genetic component which we
can estimate by examining the co-prevalence of a disease in genetically identical
(monozygotic) twins compared to non-identical (dizygotic) twins, who only share
50% of their DNA by descent. Because the average effect due to shared environment
should be the same in the two groups, any excess in co-prevalence is likely to be genetic.
Thus it is possible to estimate the extent of the genetic contribution to a disease without
identifying the causative genes and polymorphisms (Mather and Jinks 1982).

The ultimate aim of gene annotation is to describe the function of every segment of
the genome, including protein coding genes aswell asmicro-RNAs, transcription-factor
binding sites and other cryptic functional elements. In addition we want to annotate the
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functional consequence of every polymorphism observed in a population. If we had a
perfectly annotated genome then we could predict which genes are relevant to each
disease, and there would be no need for further work. However, in fact we have only
begun to scratch the surface of the annotation problem, and we will need to be able to
integrate data from multiple sources in order to make progress.

Before going further it is important to clarify what is meant by the phrase “gene
function”. This turns out to be a surprisingly difficult concept, depending on the context
inwhich the question is being asked.Gene functionmay be defined at a number of levels.
For example, for protein-coding genes, it is important to know in which tissues and at
which developmental stages the protein is expressed, and in which splice variants or
isoforms.Next, the interactants of the protein are important, as they define the pathways
in which the protein functions. Finally we wish to understand the consequences of
perturbations to the gene�s DNA sequence; as these may give rise to genetic disease. For
somewell-studied systems the answers to these questions form a coherent synthesis: For
example, we find that for the genes for a and b haemoglobin:

tissuemRNAexpression:a andb globinsmRNAs are expressed in adult bonemarrow,
the site of red blood cell production.
interaction: a globin and b globin bind to form haemoglobin.
biological process: haemoglobin is involved in the transport of oxygen.
genetic disease:mutations in the DNA sequences of the globin genes can cause sickle-
cell anaemia, thallasaemias and other blood-related diseases.

But in other cases the available data are incomplete or misleading. Even in the well-
understood case of the globin genes, non-trivial levels of gene expression are found in
other tissues, such as the spleen and in foetal liver, which is the initial organ of red blood
cell production. Thus unless one understands the biology of red blood cells these
observations could mislead.

Gene function may be defined either in terms of some property of the gene that is
common to all individuals, or as the consequences of a genetic variation within the gene
which is present in a subpopulation. One might naively assume that the two are
necessarily related, but this need not be so. For example a tubulin is a structural protein
that is a component of the microtubules found inside cells. Surprisingly, it has recently
been shown that mutations to a tubulin cause abnormal neuronal migration in mice
and lissencephaly (a lack of normal folds in the brain) in humans (Keays et al. 2007)).
The causative mutation prevents tubulin heterodimer formation and a prioriwould not
be expected to have this specific effect.

Thus the first, biological, difficulty in annotating genes is that most genes can be
pleiotropic with several functions, depending on the context. The second, socio-
logical, problem is that direct experimental evidence linking a gene to a particular
function is incomplete, and we cannot interpret absence of evidence as evidence of
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absence. This is a particular problem when mining the literature for information
relating to a gene. A gene that is apparently linked to a disease may well attract
further investigation and accumulate more references, possibly spuriously inflating
the link. For example there is a vast and mostly inconclusive literature investigating
the link between the DRD2 gene and alcoholism (Munafo et al. 2007). At the other
extreme a significant fraction of human genes are barely annotated, arising either as
computational predictions or as database matches with mRNA sequences. Conse-
quently, when given a list of candidate genes to prioritise for further exploration,
there is a natural reluctance to invest expensive resources (such as making and
testing a mouse knockout) in a gene about which little is known and which might
prove to be a false positive prediction.

The third difficulty is that most quantitative experimental data from high-through-
put experiments such as gene expression microarrays (to measure levels of gene
expression) or yeast two hybrid studies (to find protein–protein interactions) are
indirect and noisy, yet this is the only way to screen large numbers of genes in an
unbiasedmanner. There are now very large databases of high-throughput data available
but we are only beginning to understand how to analyse and link it with other resources,
and how to resolve apparent contradictions that arise.

We need to make progress in three strategic areas. First, we seek the commonly
occurring genetic variants in human populations that are associated with complex
disease by looking directly for genotype-phenotype correlations in case-control asso-
ciation studies. Second, we develop appropriate animal models of complex disease; the
most commonmodels usemice or rats. Third, in order to integrate these approaches we
need accurate comparative functional annotation of the human and other genomes. The
remainder of this chapter discusses these issues in greater detail and illustrates the
successes and pitfalls that can occur along the way.

2 Genetics and gene function

2.1 Genetic association studies in humans

Whole GenomeAssociation studies (WGA) seek to identify DNA variants that produce
phenotypic variation, often in the context of disease. The basic idea is simple: survey a
large population of unrelated individuals for disease status (phenotype), and for
differences in their DNA (genotypes). Then search for statistically significant correla-
tions between phenotype and genotype (Fig. 1).

Until recently this has proved very difficult, for two reasons. First, overoptimistic
assumptions were made about the likely contribution a single genetic variant would
make to the likelihood of disease, leading to sample size estimates in the low hundreds
that were far too small to detect the very weak signals that actually occur; it is now clear
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that sample sizes in the thousands are necessary, and in some cases in the tens of
thousands. Second, the technology for genotyping around onemillion single nucleotide
polymorphisms (SNPs) at high accuracy and low cost that is necessary to perform an
association study has only just recently-become a reality. The result has been that during
2005/2006 there has been a flood of publications of association studies reporting genes
associated with many common human diseases (for example see (Nejentsev et al. 2007;
Todd et al. 2007; WTCCC 2007; Zeggini et al. 2007)).

Fig. 1 The principle of genetic association. In the figure, the genomes of 10 unrelated individuals are
represented as 10 horizontal bars. Positions of genotyped polymorphisms are labelled a–h, and the
genotype of each individual is represented as either light blue or by a black rectangle. The disease status of
each individual is represented by the column of blue and orange rectangles on the right. The polymorphism
that correspondsmost closely to the disease status is taken as being closest to the disease-causing variant. In
this example polymorphism dmatches the pattern of disease incidence almost perfectly and is therefore the
most likely location of a disease gene. The degree of statistical association is represented quantitatively by
the graph at the foot of the figure, the choice of units depending on the test of association being used. The
horizontal dotted line indicates a threshold for genome-wide statistical significance; the significance of the
test of association for each polymorphism is indicated by a black or orange dot at the corresponding
position along the genome. In a real whole genome association study involving human subjects, the
situation is more complicated because thousands of individuals are genotyped at hundreds of thousands of
polymorphisms, and moreover each individual has two copies of each chromosome, which can carry
different alleles, but the basic principle is the same
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It is interesting to survey the newly discovered disease genes and ask which would
have been predicted a priori based on pre-existing genome annotations: in some cases
the genes confirmwhat had previously been suspected, or at least are not surprising (for
example the Insulin gene INS in type I diabetes (Todd et al. 2007)), but in many cases,
the genes arewholly unexpected (for example the association between the gene FTO and
obesity (Frayling et al. 2007)), and many previously suspected candidate genes that had
been expected to be found did not show association.

One explanation for these negative results is that WGA seeks DNA variants, not
genes. A genemay be in a pathway that is vital for a disease, but if it does not contain any
functional DNA variants (ie polymorphisms that affect the expression of the gene
product in some way, either by altering the amino acid sequence or altering splicing or
the level of transcription) then it will not be detected by WGA.

To complicate matters further, the functional DNA variant need not be in or near
the gene on which it acts: For example, in the polydactylous mouse mutant Sasquatch,
the gene Shh is expressed at an ectopic site. Characterization of the mutant led to the
identification of an Shh enhancer element that lies within intron 5 of a novel gene Lmbr1
that is also involved in limb development (Clark et al. 2000), but is situated 1Mb from
Shh (Lettice et al. 2003). Considerwhat could happen if an association had been found at
this regulatory region: the obvious, but erroneous, conclusion would be that Lmbr1was
the responsible gene.

The advantage of the genetic approach to identifying disease genes is that it is an
unbiased black box that simply finds SNPs that are associated with the phenotype; it
does notmake any hypotheses about themechanism linking theDNA to the phenotype.
Viewed another way, it is also a weakness because in order to turn the genes into
therapies it is necessary to understand these mechanisms. A further caveat is thatWGA
cannot distinguish between SNPs that cause the phenotypic variation and nearby SNPs
that are in tight linkage disequilibrium (LD). This is a particular problemwhen a tightly
linked cluster of genes is identified by thismethod – it cannot distinguish between them.

LD is a statistical measure of the correlation observed across individuals between
pairs of SNPs (Zondervan and Cardon 2004). It is a function of the population size and
structure and of the pattern of recombination in the genome, which is distributed non-
randomly with recombination being concentrated in hotspots. LD decreases with
physical separation between SNPs, and the rate of decrease determines the density of
SNPs at which it is necessary to genotype, and the mapping resolution that will be
obtained. For example in most Caucasian populations LD decay takes place over about
50 kb on average (although it varies across the genome) which gives single-gene
resolution (the average distance between genes being about 100 kb). In some African
populations the decay rate ismuch faster, while in isolated populations (such as Iceland)
it is slower (Frazer et al. 2007). In order to detect a functional variant byWGA, it is not
necessary to genotype the variant itself, but only a SNP that is in strong LD with the
variant; these are called tagging SNPs. Thus there is a trade-off between the number of
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tagging SNPs required to cover the genome and hence detect themapping resolution. At
the time of writing, the number of SNPs currently genotyped on a single array is about
500,000, but should reach 1,000,000 during 2008, increasing power to detect associa-
tions as a consequence.

3 Use of animal models

Despite the success of humanWGA studies, it is clear that only a fraction of the genetic
component of complex disease (for example as estimated by twin studies) has been
found (Todd et al. 2007). The most likely explanation is that there aremanymore genes
involved, each of very small effect, which are undetectable using the current samples
sizes. In order to identify these genes it is therefore helpful to understand the genetic
pathways involved in disease rather than taking a simple-minded one-gene-at-a time
approach.

The strategy of looking for gene networks rather than genes is sometimes called
systems biology. The approach is more tractable in animal models of complex disease
rather than directly in humans: it is generally not possible to collect the necessary data
from human subjects for ethical and practical reasons.

The mouse and rat are by far the most common models of human disease because
they are relatively inexpensive to breed and have a short generation time. In addition, a
large number of disease models and other resources are now available. Examples of
disease models include specific gene knockouts (e.g. the mouse knockout of the Hdn
gene exhibits phenotypes similar to those of humans with Huntington�s disease (Cha
et al. 1998)), inbred strains selected to exhibit a disease-related phenotype (such as the
NOD (Non-Obese Diabetic) strain of mice, a model for diabetes (Makino et al. 1980)),
or an environmental stimulus that induces the phenotype (such as many behavioural
tests (Solberg et al. 2006)).

Knockouts and other transgenic animals are nowused routinely to test thephenotypic
effects of removing or modifying the expression of a single gene. It is possible to make
conditional knockouts in which a gene is only switched off in a particular tissue and
developmental stage, which is applicable where an ordinary knockout would be lethal
(Ray et al. 2000). There is nowan international programmeunderway tomake a knockout
of every mouse gene (Austin et al. 2004).

Furthermore, the phenotypic consequences of naturally-occurring variation in the
mouse and rat genomes can also be studied to understand the genetic basis of complex
disease in a similar way to aWGA in humans.Many inbred strains ofmice and rats have
been developed inwhich the genomes of animals within a strain are virtually identical by
descent. By making experimental crosses between these inbred strains it is possible to
identify quantitative trait loci (QTL) associated with the phenotype. Although the basic
principle is the same as in a humanWGA, the details and outcomes are different. First,
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most of the inbred strains of laboratory mice are descended from a limited pool of
founders, so the extent of linkage disequilibrium found among inbred strains is much
greater than in human populations. The practical consequence is that while it is much
easier to detect QTLs in crosses between inbred strains using small sample sizes of only a
few hundred individuals, the resolution is poor compared to a humanWGA: in a typical
F2 intercross (Fig. 2) the QTLmay encompass over 100 genes. There are several ways of
tacking this problem. One is to use gene annotation to narrow the search for candidate
genes, although our remarks above indicate that at present annotation is too incomplete
for this purpose.

The second approach is to test the effect of knocking out each gene, which is time
consuming and expensive, and not feasible for many candidate genes. The third
approach is to use special populations of mice whose LD structure is closer to humans,
resulting in finer-grained mapping resolution.

One successful example has been the use of a heterogeneous stock (HS). This is a
population of mice descended from eight known founder inbred strains that have been

Fig. 2 A schematic illustration of the F2 intercross and heterogeneous stock (HS), two experimental
designs used for mapping QTLs in rodents. The genome of each inbred founder is represented by a pair of
coloured vertical bars. In the F2 intercross two lines (coloured mauve and purple) are crossed, first to make
an F1 generation, in which each pair of chromosomes contains one chromosome descended from each
parent, and then again to make an F2 generation, where each chromosome becomes a coarse-grained
mosaic of the founder genomes, and where the average distance between recombinants is about
30 centiMorgans (cM). In an HS, eight inbred founder genomes are crossed for many generations until
their genomes are much finer-grained mosaics, with a distance between recombinants of about 2.5 cM
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intercrossed for many generations (at least 20) until the genome of each individual is a
fine-grained mosaic of the founder chromosomes (Fig. 2). The build-up of historical
recombinants gives a comparatively high mapping resolution of about 2Mb, or about
20 genes. This is still not as precise as in humans, where close to single gene resolution is
usually achieved. However, the power to detect associations ismuch greater, so the yield
of QTLs ismuch better. For example, our laboratory extensively phenotyped a cohort of
2000HS mice, measuring over 100 phenotypes covering behaviour, asthma and type II
diabetes disease models and many physiological measures (Solberg et al. 2006), and
identified 843 QTLs each containing 20–30 genes on average (Valdar et al. 2006).

Recombinant Inbred Lines (RIL) are another very important resource. Like anHS, a
panel of RILs is descended from a known set of founders which have been crossed for a
number of generations. However, they have then been inbred by repeated brother sister
matings over about 20 generations until the genome are fixed mosaics of the founders.
The advantage of working with RILs is the genomes are fixed so that for example
experiments may be replicated under different environmental conditions. Furthermore
it is possible to perform a series of experiments on different animals from the same line
and treat them as if they were performed on a single individual. This is particularly
useful for gene-expression time-course experiments, where the animal must be
sacrificed in order to obtain mRNA to assay gene expression. The Collaborative Cross
(CC) is an international programme to generate a resource of about 1000 RILs for
general use (Churchill et al. 2004). The CC lines are descended from a carefully chosen
set of inbred lines which maximises the diversity in the cross.

4 Transcriptomics: gene expression microarrays

Microarrays are used to assay the comparative levels of mRNA expression. By com-
paring samples collected under different experimental conditions (for example rats
fed of high-fat diet compared with normal chow) or different genetic backgrounds, it
is possible to identify sets of genes whose expression covaries accordingly. Thus the
information delivered is gene-centric and need not relate directly to DNA variation.

In an experiment comparing different conditions, some of the variation in levels of
some of the genes identified will be a direct consequence of the difference in experi-
mental conditions, whilst variation in the levels of other genes will be a downstream
consequence. The direction of causality usually cannot be inferred from this experiment
alone; it delivers a cluster of co-expressed genes. But where these can be superimposed
on pathway or genetic mapping data it may be possible to make such inferences.

In an experiment comparing different genetic backgrounds but keeping experi-
mental conditions constant, for example an analysis of gene expression in a panel of
recombinant inbred lines it is possible to infer the direction of causality, because we
know that variation in DNA causes variation in expression and not vice-versa. The
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expression levels of each mRNA probe can be thought of as a quantitative trait and
mapped accordingly. The result is a genome scan for each gene, indicating expression
QTL (eQTL) which are loci harbouring a DNA variant that influences the expression of
the gene. Inmany cases there is an eQTL near to the gene�s location; these are called cis-
eQTL. The other trans-eQTLs indicate long-range interactions. In some cases many
trans-eQTL coincide. These are called “hubs” or “trans-bands” and may correspond to
transcription factors; one would then expect all the genes under the control of the same
hub to share a common mechanism of transcriptional control, such as a common
transcription-factor binding site (Chesler et al. 2005; Li et al. 2006). Thus by identifying
clusters of co-expressed genes and then looking for eQTLs for these genes, one can begin
to infer the direction of causality.

The main challenge with the analysis of expression data is how to relate it to the
identification of the genes responsible for a disease phenotype. The simplest method is
to first identify QTLs for the disease, and then look for eQTLs within the QTL interval.
Assuming that the right tissue has been assayed for gene expression and that changes in
gene expression are indeed responsible for the phenotype, it follows that we should
restrict attention to the eQTLs (Wang et al. 2007).

Gene-expression profiling, when combined with genetic mapping data can help to
identify candidates (Aherrahrou et al. 2007; Meng et al. 2007). For example, the fatty-
acid translocase gene CD36 was identified as a QTL that affects insulin fatty-acid
metabolism (Eaves et al. 2002), and complement factor 5 has been suggested as a gene at
a QTL that influences susceptibility in a model of asthma (Karp et al. 2000).

Unfortunately, differential gene expression is not always a marker of a QTL.
Variants that alter protein structure might not alter expression levels, or there could
be compensatory mechanisms that obscure the effect of a QTL on expression. For
example amicroarray analysis of amodel of type I diabetes showed that gene-regulatory
systems seemed to be remarkably robust to genetic variation (Eaves et al. 2002).

Second, expression differences might be restricted to certain tissues or develop-
mental stages. For example, expression of 5HT1a receptors (Htr1a) in the forebrain is
required to modulate anxiety during embryonic and fetal life, but it is not required for
the same task in adult animals (Gross et al. 2002). Therefore, expression differences for
genes that encode the serotonin receptor that are relevant to anxiety would not be
detected in the adult brain, although the phenotype is assessed in the adult animal.
Gene-expression analyses will have to be carried out across a large number of tissues at
different developmental times to determine whether the gene is differentially expressed.

While in some cases this strategy may work it is important to recognise that the
assumptions mean that further verification is needed, usually by knocking out the gene,
or by a quantitative complementation test (Yalcin et al. 2004). Furthermore, a technical
problem that has only recently been appreciated is that polymorphisms segregating
within the microarray probes can cause hybridisation artefacts that appear as differ-
ences in mRNA intensity (Walter et al. 2007). This problem is potentially serious, and
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consequently any cis eQTL identified from a microarray study should be verified by
resequencing the probe to determine any polymorphisms.

For some purposes it is possible to use tissue cultures, either human or animal, in
place of animals. The advantage of working with live animals is that organ-specific and
developmental-specific gene expression studies can be performed. In contrast, most
human tissue cultures are blastocysts, which clearly limit the range of applicability to
hypotheses that do not depend on the tissue inwhich the question is answered. However
for some systems such as epidermal development, it is possible to make good tissue
culture models.

5 Gene annotation

It is now straightforward to extract the gene structure of every annotated gene from a
genome browser such as Ensembl (http://www.ensembl.org), and to overlay the
positions of annotated SNPs and other variants, and to predict any gross phenotypic
consequences, such as a missense mutation or a premature stop codon. Other DNA
features such as conserved non-coding sequence or predicted transcription factor
binding sites are also annotated. The protein domain composition of each translated
gene has also been pre-computed and is accessible via databases such as Interpro (http://
www.ebi.ac.uk/interpro/) (Mulder et al. 2007). These features can be thought of as
defining the “syntax” of the genome, as they are analogous the task of parsing and spell-
checking a natural language. The “semantics” of genome annotation can be thought of
as determining the genes� functions, and at present relatively little can be predicted
purely by sequence composition. We can sometimes predict a protein�s subcellular
localisation (ie whether it is nuclear, cytoplasmic or signalling) based on sequence
characteristics such as domain composition (Mott et al. 2002), and we can predict the
3D fold of the protein if it is similar to a protein whose structure has been solved and in
some cases even when it is unique (http://predictioncenter.org/ (Moult et al. 2005)).
Knowledge of the protein fold is sometimes helpful in defining function, but in general
we cannot yet compute the organism from the genome ab initio.

The other source of information derives from the scientific literature. The simplest
approach is to search abstracts for references to a particular gene, and this process has
been largely automated with a several public databases offering quite sophisticated
summaries of published gene functions. For example the NCBI Gene database provides
a simple mechanism to allow scientists to add to the functional annotation of genes
(geneRIFs http://www.ncbi.nlm.nih.gov/projects/GeneRIF/GeneRIFhelp.html) described
inEntrezGene.OMIMprovides a carefully annotated resource but is generally limited to
Mendelian disease. IHOP (Information hyperlinked over proteins) provides an auto-
mated text-mining database based on Pubmed abstracts. The Mouse Genome Infor-
matics database curates public information about each mouse gene.
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It has been clear for some time that the descriptions of gene function must be
codified using an ontology, or controlled vocabulary. This simplifies the task of
computerised search because the problem of semantic mapping is shifted from the
search to the construction of the ontology, which therefore requires considerable
manual curation. The best known ontology is GO, the gene ontology, in which function
terms arranged hierarchically (http://www.geneontology.org/). However, it should be
pointed out that even this database is incomplete and at best can only represent the
current state of knowledge – it cannot make deductions about gene function.

Knowledge about gene networks, as deduced from pairs of interacting genes, is also
integrated into public gene annotations. The problem here is that the quality of
interaction data is highly variable: some enzyme pathways are known accurately (eg
the KEGG database http://www.genome.ad.jp/kegg/pathway.html), whilst data derived
from high-throughput assays such as yeast two-hybrid experiments has a high error
rate. Gene co-expression data from mRNA microaray experiments also define net-
works, but cannot readily distinguish between genuine interaction (where the proteins
bind) and co-expression (where protein expression is correlated because it is under
common control). Nevertheless it seems clear that progressmust come from the systems
analysis of genes. An example of the approach needed is provided by WebQTL (http://
www.genenetwork.org/).

In the future we need to develop statistical analyses and databases to handle gene
networks and to deal with the noisiness inherent in the data, and to combine this
information with other genome annotations.
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CHAPTER 4.1
Resources for functional annotation
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1 Introduction

The continued success of genome sequencing projects has led to an explosion in the
availability of sequence data. The Genomes On Line Database (GOLD) currently lists
more than 2000 ongoing and completed genome projects, and this number is con-
tinuously increasing (Liolios et al. 2008). In order for this sequence information to be
useful in the formulation and testing of biological hypotheses, these genome sequences
must be adequately annotated.

The process of genome annotation begins with the identification of all predicted
gene sequences, promoters and regulatory regions within the genome using a variety of
computational techniques, which are discussed in greater detail in Chap. 2 of this
book. Following the identification of putative genes, the next step is the definition of
the proteome, which is the complement of all possible protein sequences encoded by the
genome in question. The complexity of the proteome is enhanced by the possibility of
alternative splicing and other modifications to the predicted protein sequences such as
proteolytic processing. Once the genome has been annotated and the proteome defined,
the next step is to provide functional annotations for the protein sequences. Due to
the sheer volume of protein sequence data involved, it is unlikely that most predicted
protein sequences will be experimentally characterized in the near future. Therefore
most functional annotation of new protein sequences proceeds by the identification of
related proteins, or modular protein domains or motifs within the protein sequence,
followed by the transfer of their associated annotations to the protein sequence of interest.
The accuracy of the final annotations obtained therefore depends on the methods
employed for sequence classification and the sources of functional annotations used.

Complete functional annotation of a protein requires a precise description of the
biochemical or biological function of the individual protein itself. It also requires a
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description of how individual proteins and other biological entities interact with each
other to form macromolecular assemblies, and how proteins and macromolecular
assemblies interact to form biological pathways. Information about the precise 3-
dimensional (3D) structure of a protein can help elucidate protein function, its mode of
regulation and interactions, while proteins can be regulated by post-translational
modifications, which must also be described. For proteins implicated in disease
susceptibility, complete annotation must include a precise description of the disease
and of disease-associated mutations in the protein concerned. In the next section of
this chapter, a selection of the available resources providing such annotations will be
described.We will then discuss some of the available resources for protein classification
and the identification of protein domains and motifs.

2 Resources for functional annotation – protein sequence
databases

The first and absolute prerequisite for accurate functional annotation is a correct
protein sequence. This may seem obvious but in fact many available protein sequences
contain inaccuracies due to technical errors in sequencing or due to difficulties in
sequence interpretation (such as failing to accurately determine the boundaries of
predicted exons or genes). Without correct protein sequence information, it is
impossible to precisely locate sequence features such as individual domains, function-
ally important residues, modifications, or sites of interaction with other biological
macromolecules, nor can related proteins or protein domains be identified with
confidence. Correct sequences are therefore of primary importance.

A number of databases provide access to protein sequence information. These can
be broadly divided into two categories: simple repositories of protein sequences and
annotated protein sequence databases. Sequence repositories provide users with rapid
access to newly obtained sequence data, but do not perform correction of erroneous
sequences and add little or no annotation to the protein sequences. They may also
exhibit high levels of redundancy, where multiple records describe the same protein
sequence. One example of a sequence repository is the GenBank Gene Products
Databank (GenPept), produced by the National Centre of Biotechnology Information
(NCBI) (Benson et al. 2003). The entries in GenPept are derived from translations of
sequences contained in the International Nucleotide SequenceDatabase which is jointly
maintained by theDNADatabank of Japan (DDBJ) (Miyazaki et al. 2003), the European
Molecular Biology Laboratory (EMBL) (Stoesser et al. 2003), and GeneBank (Benson
et al. 2003). Another sequence repository is the NCBI Entrez Protein database, which
also contains sequences translated from the International Nucleotide Sequence Data-
base as well as sequences from other sources including the manually annotated
UniProtKB/Swiss-Prot database (described below) and the Protein Data Bank (Berman
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et al. 2007). Entrez Protein records may contain annotations extracted from annotated
databases, although manual curation of the records themselves is not performed.

Annotated protein sequence databases enhance the basic content of sequence
repositories by the addition of relevant information from the literature and other sources,
including external databases and computational sequence analysis. They may also
enhance the quality of the sequences themselves by manual sequence correction and
reduce redundancy by merging related sequences into single records. Individual anno-
tated protein sequence databases vary in their scope and coverage; many focus on
particular protein types and families or on particular species or taxonomic groupings,
while some aim for universal coverage of all protein space. One such universal annotated
protein database is the Universal Protein Knowledgebase, or UniProtKB, which is
produced by the Universal Protein Resource (UniProt) consortium. The activities of
the UniProt consortium, and of UniProtKB, are described in the following sections.

3 UniProt – The Universal Protein Resource

The Universal Protein Resource (UniProt) provides a freely available central resource
on protein sequences and functional annotation (UniProt Consortium 2007). UniProt
is produced by the UniProt consortium, which was formed in 2002 by the European
Bioinformatics Institute (EBI), the Protein Information Resource (PIR) and the Swiss
Institute for Bioinformatics (SIB).

UniProt is composed of four major components, each of which is optimized for a
different use. The first component is the UniProt Knowledgebase (UniProtKB), which
is the most comprehensively annotated protein sequence database in existence.
UniProtKB provides protein sequence entries with extensive annotation and cross-
references, andwill be described inmore detail below. The second component ofUniProt
is the UniProt Archive (UniParc), which is the most exhaustive publicly available non-
redundant protein sequence database (Leinonen et al. 2004). UniParc obtains sequence
data from a number of sources including UniProtKB, EMBL (Stoesser et al. 2003), the
partially annotated sequence database RefSeq (Pruitt et al. 2007), Ensembl (Hubbard
et al. 2007), and the International Protein Index, or IPI (Kersey et al. 2004). Searching
UniParc is therefore equivalent to performing a search against all the source databases
simultaneously. The third component of UniProt is the UniProt Reference Clusters
(UniRef), which cluster protein sequences fromUniProtKB andUniParc at three levels of
sequence identity – 50%, 90% and 100% (Suzek et al. 2007). The UniRef clusters are
designed to facilitate sequence searches and analysis of the results. For example, by
searching the UniRef90 clusters rather than a redundant protein sequence database, one
may avoid long lists of very similar high-scoring matches, which would group within a
single UniRef90 cluster. The fourth component of UniProt is the UniProt Metagenomic
and Environmental Sequences, or UniMES, which was set up to accommodate sequences
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derived from environmental samples of unknown taxonomic origin (Suzek et al. 2007).
The rate of production and availability of such sequences is likely to grow rapidly in the
future, as more andmore groups aim to extend our knowledge of sequence space beyond
that of laboratory-cultivated organisms.

In the following section, we will describe in more detail the major features of
UniProtKB, which many consider to be the central component of UniProt.

4 The UniProt Knowledgebase (UniProtKB)

The UniProt Knowledgebase, or UniProtKB, provides an integrated and uniform
presentation of data on protein sequence and function (UniProt Consortium 2007).
UniProtKB consists of two separate and quite distinct components; UniProtKB/Swiss-
Prot, which contains manually annotated protein sequence records, and UniProtKB/
TrEMBL, which contains automatically annotated protein sequence records. Uni-
ProtKB/TrEMBL serves as the source of entries for UniProtKB/Swiss-Prot; when
entries from UniProtKB/TrEMBL are manually annotated, they are subsequently
incorporated into UniProtKB/Swiss-Prot.

The information in UniProtKB/Swiss-Prot and UniProtKB/TrEMBL records is
supplemented by the provision of links to over one hundred external specialist
databases. These include databases storing sequence and gene model information or
providing links to such information, such as EMBL (Stoesser et al. 2003) and RefSeq
(Pruitt et al. 2007), databases storing genome annotation such as Ensembl (Hubbard
et al. 2007) and Genome Reviews (Kersey et al. 2005), species-specific databases such as
WormBase (Bieri et al. 2007), FlyBase (Crosby et al. 2007), and the Saccharomyces
cerevisiae Genome Database (SGD) (Christie et al. 2004), and protein domain and
family databases grouped by InterPro (Mulder et al. 2007). Some of these resources will
be described in more detail later. Integration of UniProtKB with other data resources is
further enhanced by the extensive annotation of UniProtKB entries with terms from the
standardized vocabulary of the Gene Ontology, commonly known as GO (Camon et al.
2004). Biological ontologies such as GO provide controlled terminologies for the
assignment of consistent functional annotations to gene products. This facilitates
complex database queries and allows the identification of related items in distinct
databases with different formats.

4.1 UniProtKB/Swiss-Prot

UniProtKB/Swiss-Prot is the manually annotated component of the UniProt Knowl-
edgebase. UniProtKB/Swiss-Prot is the most extensive manually annotated universal
protein database in existence; at the time of writing it contains 356,194 records
describing proteins from 11,290 species (release 55.0 of 26th February 2008).
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Each UniProtKB/Swiss-Prot entry contains several compulsory elements (see
Fig. 1). The “Entry information” and “Names and origin” sections of the entry contain
an entry identifier, an accession number, the protein name, taxonomic data, and a
precise summary of the level of experimental evidence supporting the existence of the
protein. Accession numbers are stable and provide a unique means of identifying an
entry. Bibliographical reference(s) are displayed in the “References” section, while the
protein sequence itself is shown in the “Sequences” section.

This minimum level of annotation is enhanced with information extracted from the
literature and external databases, from related UniProtKB entries, and from manually
evaluated computational analysis of the protein sequence (see Fig. 2). A precise
summary of available biological knowledge is provided in the “General annotation
(comments)” section, while annotations pertaining to defined positions within the
protein sequence are provided in the “Sequence annotation (Features)” section. Figure 2
shows an extract from a sample entry from UniProtKB/Swiss-Prot, including both
“General annotations” and “Sequence annotations”. Specific keywords are used to
summarize various aspects of protein biology including function, location, domain
content, sequence modifications, ligands, and involvement in disease processes, where
appropriate. Keywords provide a convenient means of retrieving lists of related entries;
they are stored in the “Ontologies” section, along with terms from the Gene Ontology.

For those annotations which do not derive directly from experimental analysis of the
protein concerned, three non-experimental qualifiers are used to indicate their source or
the level of confidence associatedwith them.The qualifier “By similarity” indicates that the
particular annotation has been transferred from a homologous protein, where it has been
experimentally demonstrated. The qualifier “Probable” indicates that a particular annota-
tion has been inferred based on common biological knowledge or on experimental
evidence that is extremely suggestive but not absolutely conclusive. The qualifier
“Potential” indicates that a particular feature or annotation is derived solely from
computational analysis, such as the presence of predicted transmembrane domains or
secretory signals. The use of non-experimental qualifiers allows users to filter entries
containing annotations which are not experimentally proven for the protein concerned.
As a general rule, annotations derived fromexperimental analysis are greatly outnumbered
by those which are predicted, transferred by homology, or inferred by annotators. For
example the current release of UniProtKB/Swiss-Prot contains 83,674 annotated glyco-
sylation sites, of which 76,888 sites were annotated as “Potential”, while 586 sites were
annotated as “Probable” and 1887 sites were annotated “By similarity” to a proven site.

Many bioinformatics resources have taken advantage of the high-quality annota-
tions provided by UniProtKB/Swiss-Prot. The manually curated sequences have been
used for functional annotation of a number of genomes (see Chaps. 4.2 and 4.3 for
examples), and in protein clustering and family classification systems (see Chaps. 4.4
and 4.5). UniProtKB/Swiss-Prot has also supplied datasets for the training and
evaluation of sequence feature prediction tools based on statistical and machine
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learning techniques (Chap. 5.2). Within the framework of the BioSapiens project,
several manually curated datasets of sequences with experimentally verified features
have beenmade available to the bioinformatics community (at http://biosapiens.isb-sib.
ch). These include sets of over 15,000 proteins located in defined subcellular compart-
ments and sorted according to their taxonomic origin. Other datasets include sequences
or sub-sequences carrying various types of post-translational modifications. These data
can be used to benchmark existing prediction methods and to develop ever more
efficient and reliable tools for sequence analysis.

4.1.1 Sequence curation in UniProtKB/Swiss-Prot

We have previously emphasized the absolute importance of correct sequence informa-
tion for accurate functional annotation. UniProtKB/Swiss-Prot performs extensive
manual curation of protein sequences to provide users with the most correct protein
sequence possible. During the creation of a single UniProtKB/Swiss-Prot entry, all
availableUniProtKB/TrEMBLentries pertaining to the same protein in the same species
are identified by sequence similarity searches and merged into a single entry. Uni-
ProtKB/Swiss-Prot is therefore essentially a non-redundant protein knowledgebase,
although it may contain identical sequences when they are derived from homologous
genes in related species.

During the merge process, all sequence discrepancies are identified and analyzed.
Individual sequences may differ due to biological events such as alternative splicing,
alternative promoter usage or alternative translation initiation site usage. The identi-
fication and annotation of alternatively spliced protein isoforms is an essential pre-
requisite for the definition of a complete proteome set. Sequence discrepanciesmay also
arise due to technical problems such as the presence of frameshifts in the underlying
nucleotide sequence, the presence of contaminating vector sequence, or simple sequenc-
ing errors. Many protein sequences are derived from computational gene model
predictions in genomic DNA, and these predictions are not always correct (as discussed
in Chap. 2).

1
Fig. 1 The compulsory elements of a UniProtKB/Swiss-Prot entry. (a) The “Entry information” section
contains theentry identifier (ASF1_CAEEL) and theunique stable accession number of theentry (Q19326), plus
history, status, and version information. It also includes the name of the annotation project responsible for
maintenance of the entry (the Caenorhabditis annotation project in this case). (b) The “Names and origin”
section contains the protein name and synonyms, gene name and synonyms (when available), taxonomic
data, and a precise summary of the level of experimental evidence supporting the existence of the protein.
Here the existence of the protein is inferred from homology to other existing protein sequences. (c) The
“References” section stores bibliographical reference(s). The information extracted from each reference is
listed under “Cited for:”. This entry contains only two references, which describe the original sequence and a
subsequent sequence revision. (d) The “Sequences” section shows the actual protein sequence and related
information such as the sequence version and protein length andmass. This section also contains amenu that
displays tools for sequence analysis, such as BLAST
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Each of these possibilities is investigated using multiple alignments of all candidate
protein sequences and by examination of the proposed coding sequence CDS in the
context of comprehensive assemblies of cDNA- and EST-genome alignments using
tools such as the BLAST-LikeAlignmentTool BLAT (Kuhn et al. 2007). Annotators also
make extensive use of Ensembl, which provides predicted gene sets (including alter-
natively spliced forms) based on mRNA and protein sequences for the genomes of a
range of vertebrate species and model organisms (Hubbard et al. 2007). Following
manual sequence analysis, all erroneous gene model predictions, incorrect CDS assign-
ments, and errors such as frameshifts are corrected, and all splice variants are explicitly
described (Fig. 3). Most of the sequence analysis and proteomic analysis tools available
at the ExPASy (Expert Protein Analysis System) proteomics server of the Swiss Institute
of Bioinformatics (SIB) will automatically incorporate all possible annotated splice
isoforms in UniProtKB/Swiss-Prot in their searches (Gasteiger et al. 2003). Thus, the
extensive manual curation of sequences performed by UniProtKB/Swiss-Prot results in
a comprehensive resource of high quality protein sequences, including alternative
protein isoform sequences where available.

4.1.2 Computational sequence annotation in UniProtKB/Swiss-Prot

Following sequence analysis and correction, a variety of computational tools are used to
analyse the corrected protein sequence and predict potential features of interest.
Computational tools facilitate protein classification and may provide information
about the putative function of uncharacterized proteins or those that have no similarity
to existing characterized protein sequences. The presence of specific modular domains
or familymembership is determined using InterPro resources (which are discussed later
in this chapter) available through InterProScan (Zdobnov and Apweiler 2001). Other
features such as transmembrane domains, secretory signals and organellar targeting
signals are also predicted. All predicted features, except for specific domains and repeats,
are flagged as “Potential”, to indicate their origin from computational analysis.

4.1.3 Functional annotation in UniProtKB/Swiss-Prot

Following sequence curation and analysis, each protein is annotated using information
manually extracted from the literature and from specialist databases. We previously

1
Fig. 2 Annotation of a UniProtKB/Swiss-Prot entry. Selected annotations from the UniProtKB/Swiss-Prot
entry Q9NII1 (ADAR_DROME). (a) An extract from the “General annotation (Comments)” section showing
information on protein function and expression patterns. (b) An extract from the “Sequence annotation
(Features)” showing specific domains, active sites, and ligand-binding residues. (c) An extract from the
“Ontologies” section showing UniProtKB keywords (displayed under specific category headings according to
their keyword type) and terms from the controlled vocabularies of the Gene Ontology (GO) (displayed under
specific category headings corresponding to the GO sub-ontologies)
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defined functional annotation as a synthesis of information on individual protein
function (including pathological functions associated with disease states), structure,
modifications, interactions with other proteins, and participation in higher order

Fig. 3 Sequence curation in UniProtKB/Swiss-Prot. (a) A “Sequence caution” describing a CDS that differs
from the sequence displayed due to a frameshift in the underlying EMBL/GenBank/DDBJ entry. The precise
position of the frameshift is given. The cross-reference to the original EMBL entry is flagged to indicate the
error type. (b) An extract from an “Alternative products” subsection describing seven protein isoforms
produced by a mixture of alternative splicing and alternative initiation. Each description lists all differences
between the isoform sequence and that displayed. Due to space limitations, only two descriptions are
shown. An extract from the corresponding “Sequences” section, which contains all isoform sequences, is
also shown. Each individual sequence can be displayed or hidden according to the wishes of the user
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biological pathways. UniProtKB/Swiss-Prot aims to capture information on all these
aspects of protein biology from a variety of sources. These are detailed in the following
sections.

4.1.4 Annotation of protein structure in UniProtKB/Swiss-Prot

The three dimensional (3D) structure of a protein can reveal an enormous amount of
mechanistic and functional information about the protein concerned. 3D structures
shed light on the architecture of individual proteins and protein assemblies. They
provide detailed information about the interactions of proteins and their ligands
(substrates, ions, cofactors or regulatory molecules), and contribute to the elucidation
of mechanisms of enzyme catalysis and the identification of active site residues. They
also show post-translational modifications and can serve to demonstrate the precise
effects of disease causing mutations.

UniProtKB/Swiss-Prot records contain manually annotated information from
protein structure databases such as the Molecular Structure Database (e-MSD)
(Tagari et al. 2006), one of the three partners of the world wide Protein Data Bank
(wwPDB), which includes protein structures determined by X-ray crystallography,
NMR and 3D electron microscopy (Berman et al. 2007). UniProtKB/Swiss-Prot
extracts a variety of information from wwPDB records including the positions of
sites of interaction with cofactors, metal ions, and other ligands or interacting
proteins. UniProtKB maintains explicit links to all source wwPDB records and to
other resources for protein 3D-structures, such as the Swiss Model Repository (SMR)
(Kopp and Schwede 2006). The SMR provides access to over one million homology-
based models of 3D-structure for proteins that share significant sequence similarity
to at least one experimentally determined 3D protein structure (Kopp and Schwede
2006). This allows users easy access to protein models when experimentally
determined structures are not available.

4.1.5 Annotation of post-translational modifications
in UniProtKB/Swiss-Prot

Post-translational modifications (PTMs) regulate a variety of aspects of protein biology
including cellular location (e.g. protein lipidation), protein–protein interactions (e.g.
N-glycosylation) or the activation state of the protein (e.g. phosphorylation).
Over 300 types of protein modification are currently known, and new types are
reported each year. UniProtKB/Swiss-Prot annotates PTMs described in the literature,
including small-scale experiments and high-throughput mass spectrometry studies
that permit the identification of PTMs on hundreds or thousands of proteins
(Olsen et al. 2006). Data is also extracted from the 3D-structure database wwPDB
(Berman et al. 2007), and from specialist PTM databases such as GlycoSuiteDB
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(Cooper et al. 2003). Specific predictors are used to identify potential sites for several
PTMs, which are tagged as “Potential”. Individual PTMs are annotated using a strict
controlled vocabulary with mappings to that of the RESID Database of Protein
Modifications (Garavelli 2004). RESID is a comprehensive resource of annotations
and structures for protein modifications, including systematic nomenclature, atomic
formulas and masses, structural models and source annotations for UniProtKB
(Garavelli 2004).

4.1.6 Annotation of protein interactions and pathways
in UniProtKB/Swiss-Prot

UniProtKB/Swiss-Prot stores information on protein interactions from the literature
and from structural databases such as wwPDB (Berman et al. 2007). Protein interaction
data is also imported directly from the IntAct database, a central repository for storing
and accessing information on protein interactions (Kerrien et al. 2007). IntAct and
UniProtKB maintain reciprocal links between records describing proteins and the
interactions in which they participate.

Individual proteins and assemblies of proteins form higher order biological path-
ways, such as metabolic and signal transduction pathways. UniProtKB/Swiss-Prot
curators annotate biological pathways using the specific data model and controlled
vocabularies of the UniPathway database (http://www.grenoble.prabi.fr/obiwarehouse/
unipathway). UniPathway stores information on metabolic pathways, reactions, and
the chemical entities involved in them. UniProtKB records precise information about
the biological pathway and particular step(s) at which each protein participates.
UniProtKB also maintains links to Reactome, a knowledgebase of pathways authored
by expert biological researchers (Vastrik et al. 2007) and to BioCyc, a collection of
pathway/genome databases (PGDBs) plus the BioCyc Open Chemical Database
(Karp et al. 2005). Reactome focuses on human proteins but also projects human
pathways onto orthologs in other organisms.

4.1.7 Annotation of human sequence variants and diseases
in UniProtKB/Swiss-Prot

UniProtKB/Swiss-Prot places a special emphasis on the annotation of human sequence
variants. Genetic variation plays a crucial role in determining phenotypic variation and
disease susceptibility. The human genome has around 10 million “polymorphisms”,
which are genetic variants in which the minor gene forms occur at least once in at least
1%of the population. Cataloguing these variants, their associations and effects, provides
a means of identifying common risk factors for human diseases and may ultimately
improve human health.
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UniProtKB/Swiss-Prot imports data on human variants from the NIEHS Environ-
mental Genome Project (EGP) (http://egp.gs.washington.edu/), the Seattle SNP program
(http://pga.gs.washington.edu/), and from dbSNP, the Single Nucleotide Polymorphism
database maintained by the NCBI (http://www.ncbi.nlm.nih.gov/SNP/). dbSNP incor-
porates data from a large number of sources including individual researchers and large
consortia such as HAPMAP (The International HapMap Consortium 2005). Every SNP
imported into UniProtKB/Swiss-Prot is assigned a unique identifier, which facilitates the
implementation of reciprocal links to these and other resources. All human variants from
UniProtKB/Swiss-Prot are automatically mapped onto the 3D structures of similar
sequences (where these are available), allowing the likely effect of a given variant on
the 3D structure of a protein to be determined (Yip et al. 2004).

All human sequence entries are cross-linked to the online version of MIM, the
Mendelian Inheritance in Man database (McKusick 2007). MIM is an extensive
catalogue of human genes and genetic disorders, and is considered to be one of the
most comprehensive resources in the field of human genetics. Cross-links are also
provided to GeneCards, a database of human genes, their products and their involve-
ment in diseases (Safran et al. 2002) and to GeneLynx (Lenhard et al. 2001). Both
resources are meta-databases providing extensive hyperlinks to human gene-specific
information in diverse resources.

4.2 UniProtKB/TrEMBL

Due to the labor-intensive nature of manual curation, UniProtKB/Swiss-Prot cannot
hope to keep pace with the current rate of production of protein sequences. UniProt
therefore provides UniProtKB/TrEMBL, a computer annotated supplement to Uni-
ProtKB/Swiss-Prot.

UniProtKB/TrEMBL accommodates all protein sequence entries that are awaiting
manual annotation and entry into UniProtKB/Swiss-Prot. It contains translations of all
coding sequences present in the EMBL/GenBank/DDBJ nucleotide sequence databases,
the sequences of PDB structures and data derived from amino acid sequences directly
submitted to UniProtKB or extracted from the literature (UniProt Consortium 2007).
Small fragments, synthetic sequences, non-germline immunoglobulins and T-cell
receptors and most patent sequences are excluded from UniProtKB/TrEMBL. Se-
quences that are derived from the same organism and that are 100% identical over their
entire length are merged. The current release of UniProtKB/TrEMBL (release 38.0 of
26th February 2008) contains 5,395,414 entries from 155,282 species. UniProtKB/
TrEMBL is therefore currently around fifteen times larger than it�s manually annotated
counterpart, UniProtKB/Swiss-Prot.

Each UniProtKB/TrEMBL record is enriched with high-quality annotation and
classification that is performed using automatic annotation systems. These utilize
manually annotated UniProtKB/Swiss-Prot entries as a source of annotations which
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can be propagated to similar sequences in UniProtKB/TrEMBL (Fleischmann et al.
1999; Kretschmann et al. 2001; Wu et al. 2004). Together these processes raise the
level of annotation of UniProtKB/TrEMBL above that of a simple sequence reposi-
tory, and close to that of the manually annotated gold standard UniProtKB/Swiss-
Prot.

5 Protein family classification for functional annotation

While many biologists work on single genes or proteins at a time, with the increase in
genome sequence data available, it is now possible to study multiple proteins or even
whole genomes as well as protein families across different genomes. Grouping related
proteins into families has, for a long time, provided ameans for not onlymaking sense of
large sequence datasets, but also for using these groupings for inferring function. If the
biological function of one or more family members has been studied, this function can
be inferred for other closely related protein sequences. Therefore the process of protein
family classification is important in functional annotation. In this section we describe
the methods of protein family classification, some example databases, and how these
can be used for functional annotation.

5.1 Protein signature methods and databases

Traditionally, protein familymemberswere derived through sequence similarity searches,
however, though powerful, these have their limitations. They are not ideal for finding
distantly related sequences, are influenced by database size and bias, and may provide
inaccurate results formultifunctional proteins. Sequence similarity searches are nowused
as the starting point for more sophisticated methods of sequence classification, such as
protein signatures. Protein signatures are mathematical descriptions of protein families
that arederived frommultiple sequencealignmentsofknownmembersofaprotein family.
When related sequences are aligned, areas of conservation can be highlighted and
emphasized in the creation of the signatures. Protein signatures may be generated using
different methods, e.g. regular expressions, profiles or hidden Markov models.

5.1.1 Regular expressions and PROSITE

Regular expressions are computational tools for searching and retrieving data that can
be defined very specifically. In protein signatures, regular expressions are used to
describe small, highly conserved regions. The expression provides information on
which amino acids should be present at the different positions of the conserved motif
based on a given alignment. PROSITE (Hulo et al. 2006) is a database of both regular
expressions (also known as patterns) and profiles and has a primary focus on signatures
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for the annotation of UniProtKB/Swiss-Prot proteins. The regular expressions cover a
number of important and well-characterized active sites and binding sites, and many
have a corresponding profile covering a larger region of the protein family or domains.
Regular expressions, while useful for identifying highly conserved sites, have limitations
arising from their lack of adequate flexibility. A match is either positive or negative and
thus how much of the region was changed is not reflected in the results. This is the
reason that PROSITE develop profiles to provide additional confirmation of pattern
matches (Hulo et al. 2006).

5.1.2 Profiles and the PRINTS database

Profiles overcome the limitations of regular expressions by covering a larger region of
the sequence alignment, and enabling flexibility in conservation across that region.
A profile is a table of position-specific amino acid weights and gap costs. The table
describes the probability of finding an amino acid at a given position in the sequence
(Gribskov et al. 1990), and these probabilities are used to calculate similarity scores
between a profile and a sequence for a given alignment. For each profile, a threshold
score is calculated and used to determine a positive match. The flexibility of profiles
enables sequences with low scores in some amino acids to still be matched when the
scores are high enough across the remaining sequence.

As mentioned above, profiles are used by the PROSITE database, but a variation on
this method is also used by the PRINTS database (Attwood et al. 2003). PRINTS
generates “fingerprints”, or sets of position-specific scoring matrices covering the most
conserved regions diagnostic of each protein family. The PRINTS database has a strong
focus on developing methods for classifying proteins on different levels of the protein
family hierarchy, and provides some family hierarchies with several levels of depth. The
database has good coverage of G-protein coupled receptors, ion channels and other
families of pharmaceutical interest.

5.1.3 Hidden Markov Models (HMM) and HMM databases

A Hidden Markov Model (HMM), is a statistical model based on probabilities.
It describes a set of states, which each have a probability distribution associated with
it. HMMs are generated from multiple sequence alignments, and, like profiles, have
threshold scores associated with them to discriminate between positive and negative
matches (Krogh et al. 1994; Durbin et al. 1998). HMMs are the most common method
for generating protein signatures due to their accuracy and ability to identify distantly
related members of a protein family. They can cover conserved domains or the entire
protein sequence. Examples of protein signature databases using HMMs include Pfam
(Finn et al. 2006), SMART (Letunic et al. 2006), TIGRFAMs (Selengut et al. 2007),
PIRSF (Wu et al. 2004) and PANTHER (Mi et al. 2007).
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Pfam and SMART focus on generating signatures for protein domains. The latter
has a specific focus on cell signaling, extracellular and chromatin-associated domains,
while Pfam covers all areas of biology, including proteins of unknown function. PIRSF
and PANTHER develop HMMs to describe protein families and try to cover the full
sequence. A requirement of PIRSF HMMs is that they cover the full sequence and
group proteins with identical domain compositions. TIGRFAMs generate both family
and domain HMMs, although focus more on the former, and are tailored for use in
the annotation of microbial genomes.

5.1.4 Structure-based protein signature databases

The protein signature databases described above use sequence-based families for
developing their protein signatures. There are also, however, two protein signature
databases that derive their families or domains from protein structural families. The
SCOP (Andreeva et al. 2004) and CATH (Greene et al. 2007) databases generate protein
structural family hierarchies from solved structures deposited in the Protein Data Bank
(PDB) (Berman et al. 2007). Corresponding protein sequences from members of these
structural families are then used as the basis for generating protein signatures. The
SUPERFAMILYdatabase (Wilson et al. 2007) createsHMMs fromSCOP superfamilies,
while Gene3D (Yeats et al. 2006) HMMs are based on CATH superfamilies. SUPER-
FAMILY and Gene3D HMMs often correlate well with some of the sequence-based
HMM databases, such as Pfam, but some families differ due to the wider variation in
sequence conservation for structural compared to sequence-based families.

5.1.5 ProDom sequence clustering method

In addition to the protein signature databases and methods described above, an
alternative method of protein family classification is through sequence clustering. This
is achieved through pairwise sequence similarity calculation and subsequent clustering
using one of a variety of clustering algorithms. ProDom (Bru et al. 2005) is an example of
a database that provides protein families and domains via sequence clustering. Although
databases such as ProDom achieve very high coverage, the resulting clusters usually
have little or no biological annotation and no manual intervention.

5.2 InterPro – integration of protein signature databases

To overcome some of the limitations of individual protein signature methods
and databases, the groups described here (Pfam, PRINTS, PROSITE, ProDom,
SMART, TIGRFAMs, PIRSF, SUPERFAMILY, Gene3D and PANTHER) have collab-
orated to integrate their data into a single resource, InterPro (Mulder et al. 2007).
InterPro (http://www.ebi.ac.uk/interpro), an integrated resource for protein families,
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domains and functional sites, tries to rationalize where protein signatures from the
different databases are describing the same family, domain or functional site, and
merges these into single InterPro entries. Where the overlap in proteins matched is not
exact, relationships are created between InterPro entries to provide family hierarchies
(parent-child relationship) and to describe domain composition (contains-found in
relationship). InterPro entries are annotated with a name, short name, and abstract
describing the protein family/domain. Cross-references are provided to the original
protein signatures, GO terms (Gene Ontology Consortium 2006), protein–protein
interaction data, protein structural information, and specialized protein function
databases.

All protein sequences in UniProtKB are run through the protein signatures in
InterPro to provide protein match lists for each InterPro entry. The set of protein se-
quences matched can be viewed from the entry in a number of different formats. In the
detailed graphical view, each protein signature hit is displayed, colored by originating
database, and showing the positions of the matches along the sequence. The graphical
overview shows the condensed matches to each InterPro entry, and the table view
provides a tabular display of thematches to the signatureswithin a single InterPro entry.
An InterPro Domain Architectures view provides a summary of the different archi-
tectures present in each entry. The graphical views also display structural matches,
showing the positions on the sequence of solved and modeled structures and structural
families from SCOP and CATH.

5.3 Using InterProScan for sequence classification
and functional annotation

5.3.1 InterProScan

The classification of proteins into families begins by identifying which protein
signatures match a sequence or set of sequences, and this is achieved using the
InterProScan package (Quevillon et al. 2005). InterProScan integrates the algorithms
from the member databases into a single package and provides the results in a single
format with additional information derived from the InterPro entries matched. There
are different versions of InterProScan, depending on the user requirements. The
package is available for searching single sequences at a time through a web interface
at http://www.ebi.ac.uk/InterProScan/. The default output display is a graphical view of
thematches showing the signatures and corresponding entries hit and providing links to
these entries (see Fig. 4a). The results are also available in raw and XML format and as a
tabular view. The latter includes additional information such as InterPro relationships
and GO terms (Fig. 4b).

For users requiring bulk searches there are two additional options. If confidentiality
is required, the user can download and install InterProScan to run locally. Alternatively,
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bulk InterProScan runs can be submitted programmatically via SOAP-based web
services at the EBI. For more information see: http://www.ebi.ac.uk/Tools/webservices/
services/interproscan.

5.3.2 Interpreting InterProScan results

A basic knowledge of InterPro is required to enable easy interpretation of InterProScan
results. In the example shown in Fig. 4, it is clear that the query protein is a kind of DNA
helicase, and one can follow the links to the InterPro entries to find out more about the
protein family or domain hit (Example entry shown in Fig. 5). There are three InterPro
entries matches by the query sequence as well as two unintegrated SUPERFAMILY
signatures. These unintegrated signatures are awaiting manual integration into Inter-
Pro, but are still available in InterProScan. Of the three entries matched, IPR007692

Fig. 4 Example output of the InterProScan package. Results are shown in (a) graphical and (b) table views.
A query sequencewas run through all the protein signatures in InterPro;matcheswere identified to InterPro
entries relating to DNA helicases
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Fig. 4 (continued)
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describes the DnaB-type DNA helicase family, which contains the DnaB-like DNA
helicase N- and C-terminal domains. These relationships are displayed in the entries
and in the table view of the InterProScan output. These sources also provide potential
GO annotations through the InterPro to GO links (Fig. 4b). In this way, InterProScan
provides an automatic means of GO annotation.

By following the links to the InterPro entries matched by the query sequence, one
can identify other proteins matching the same entry, other proteins with the same
domain architecture, and proteins within the family/domain that have a solved
structure. The entry also provides the taxonomic range of its members and has links,
in this example, to the Enzyme database and relevant publications. In this way,
InterProScan and its links can provide a host of functional information on the query
sequence and its family members.

5.3.3 Large-scale automatic annotation

The use of InterPro for automatic annotation of UniProtKB/TrEMBL is mentioned in
Sect. 2.5 above. In summary, InterPro entries/matches are used as a means of grouping
proteins with related functions. For all UniProtKB/Swiss-Prot proteins matching an
entry or set of entries, the common annotation is determined. Annotation rules are
generated, in which the criteria that must be met are the InterPro entries (or their
signatures) matched, and the rule applied is the addition of the common annotation to
the query proteins. This kind of automatic annotation is also used by groups outside the
EBI such as the genome annotation projects. In these projects, InterProScan results are
used for automatic annotation to supplement and confirm sequence similarity methods
and to provide annotation where no relevant annotated matches were found in the
similarity searches.

In addition to functional annotation based on UniProtKB/Swiss-Prot information,
InterPro and InterProScan are used for large-scale GO annotation. Manual GO
annotation, though of very high quality, is slow and time-consuming. The annotation
requires curators to read all literature on the protein in question and assign the most
appropriate GO terms, togetherwith evidence codes, which indicate the evidence for the
annotation. Examples of manually curated evidence codes include “Traceable author
statement”, Inferred from direct assay”, etc. Manual GO annotation is done by some of
the UniProt curators, by curators in the Gene Ontology Annotation group at the EBI
(specific focus on human proteins), and by curators at the model organism databases,
however, the total number of proteins with manual GO annotation is still very low.
In order to overcome the problem of low coverage of manual GO annotation and

1
Fig. 5 Example of an InterPro entry. This entry, IPR007692, describes the DnaB-type DNA helicase family.
Only the top of the entry is shown, the rest of the entry includes example proteins and a list of publications
cited in the abstract
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provide a high-throughput prediction of GO annotations, automatic methods use GO
mapping files. InterPro2GO links are an example of GO mappings and other examples
include mappings between Swiss-Prot keywords and GO terms, EC numbers and GO
terms, etc. Any GO terms assigned using these mapping files are given the GO evidence
code “Inferred from Electronic Annotation”, to indicate that the inference was via
electronic means. InterPro2GO and other electronic GO mapping account for the
largest number of GO annotations world-wide. The integration of GO mapping in the
widely-used InterProScan tool facilitates automatic functional annotation of large
sets of new protein sequences.

The value ofGOannotation is enormous, as it enables not only additional functional
annotation of proteins (the user can see at a glance the protein�s function, the biological
process it is involved in and the cellular component in which it performs the function),
but also the easy retrieval and comparison of annotated data.

6 From genes and proteins to genomes and proteomes

Annotated protein-centric databases such as UniProtKB provide a detailed summary of
protein function for individual proteins, while InterPro covers protein families
and domains. Numerous annotation pipelines draw on resources such as UniProtKB
and InterPro to extend the functional annotation of individual protein sequences and
domains to the level of whole genomes or proteomes. Two such annotation pipelines are
GenomeReviews, which provides an integrated view of complete genome and proteome
data from archaea, bacteria, bacteriophage, and selected eukaryota (Kersey et al. 2005),
and Restauro-G, which performs a similar function for bacteria (Tamaki et al. 2007).
Both resources are founded on the premise that the quality of annotations associated
with original genome sequence submissions to the International Nucleotide Sequence
Database can be enhanced by supplementary annotations drawn from external
databases such as UniProtKB.

Genome Reviews supplements completed genome sequences from EMBL with
standardized annotations from UniProtKB and GO terms and removes sequences
identified as erroneous by UniProtKB/Swiss-Prot (Kersey et al. 2005). Restauro-G
employs both UniProtKB/Swiss-Prot and UniProtKB/TrEMBL entries as annotation
sources, drawing supplementary information from other resources such as Pfam (Finn
et al. 2006). Data from Genome Reviews can be interrogated using the Integr8 portal,
which offers a variety of statistical analyses of individual complete proteomes as well
as numerous pre-computed proteome comparisons (Kersey et al. 2005). For each
proteome users can obtain lists of the most common InterPro families, domains or
repeats, and a list of high level GO annotations from GO-Slim (Kersey et al. 2005).
In addition to Genome Reviews, Integr8 uses data from non-redundant sets of
UniProtKB entries representing each complete proteome. For some eukaryotic organ-
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isms, appropriate proteome sets may be obtained by filtering UniProtKB using
information from model organism databases such as Flybase (Crosby et al. 2007). For
higher eukaryotes, proteome sets are derived from the International Protein Index
(IPI), which combines data from UniProtKB (UniProt Consortium 2007), Ensembl
(Hubbard et al. 2007) and RefSeq (Pruitt et al. 2007) to form non-redundant sets of
protein sequences (Kersey et al. 2004). For each individual proteome set additional
information is added from a host of resources including HAMAP (Gattiker et al. 2003),
InterPro (Mulder et al. 2007), and the Gene Ontology Annotation database (Camon
et al. 2004). By combining these resources, Integr8 provides easy access to integrated
information about complete genomes and their corresponding proteomes.

7 Summary

Most functional annotation of new protein sequences proceeds by the identification of
related proteins, or modular protein domains or motifs within the protein sequence,
followed by the transfer of their associated annotations to the protein sequence of
interest. In order for this approach to be successful, annotation pipelines require
comprehensive sources of functional annotation and accurate means of protein
classification. Universal manually annotated protein sequence databases such as
UniProtKB/Swiss-Prot provide a comprehensive source of functional annotations for
newly identified protein sequences, while InterPro integrates the major protein
signature resources to create a powerful tool for protein and domain classification.
Together these resources are integrated into a variety of methods for automatic
functional annotation that allow the ever-growing avalanche of genome sequence data
to be usefully exploited by biologists.
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1 Background

Since the mid-eighties, laboratories world-wide have endeavoured to determine the
complete sequence of genomes from all kinds of living organisms. The first complete
sequence of DNA bacteriophage FX174 appeared in 1978 (5386 nt (Sanger et al.
1978)), followed by that of bacteriophage lambda, using a shotgun technology,
published in 1982 (48,502 bp) (Sanger et al. 1982) and that of a short bacterial genome
(Haemophilus influenzae 1,830,138 bp, using a scaling up of the same shotgun tech-
nique) was published in 1995 (Smith et al. 1995). Curiously, while enormous amounts
of funding were involved in sequencing, only comparatively small effort and support
has been devoted to the creation of high-quality genome annotations, in particular in
the creation of the very important link between experimental validation of in silico
(Danchin et al. 1991) predictions and annotations. Indeed, explicit reference to
experimental validation of annotation has only been recently introduced at the
International Nucleotide Sequence Database Collaboration (INSDC http://www.
insdc.org/).

In silico studies can be broadly divided into four branches, all pertaining to some
feature of the annotation procedure:

* Data acquisition: this includes signal treatment and image analysis (for sequencing,
and in 2D electrophoresis proteins studies, for example). Reference to processes
involved at this early step may have to be annotated;
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* Data analysis: this is the most important part, in terms of scientific goals, if not in
terms of personnel needed to achieve the goals. This is where annotation is of prime
importance, reflecting the outcome of analyses produced by an ever increasing
number of approaches;

* Data management: this is a domain that is often overlooked. However it is easy to
understand that as we are flooded by data, data management is essential. It is utterly
impossible to explore the data without a deep understanding of the way to manage
andmine them. This domain is usually not a domain of interest for biologists (it can
hardly lead to a biological question), although used to create resources that are
heavily used, but this is a domain of importance for computer scientists and
annotation is deeply rooted in the variety of databases, for example, that collect
sequence related data;

* Man-machine interaction: presentation of the data, and of the results of analyses
performed by computers has to be adapted to the human mind. This is not a trivial
process. As for the preceding point, this is not a common domain of interest for
biologists (except for those interested in the central nervous system and in
psychology) but this is of major importance, and usually neglected. The best
annotation platforms have this step in mind.

While much emphasis has been placed on the Human Genome Project, the
development of genome programmes owed very much initially to the study of
microbes. Indeed, the very first discovery of genomics, that contrary to expectation a
considerable proportion of genes are of unknown function, was a contribution of
the European Union (Elounda, Greece, EU meeting 1991) devoted to the study of
two microbes, Saccharomyces cerevisiae and Bacillus subtilis. This immediately
demonstrated that a considerable effort would be needed to try and annotate genes
as new genome sequences would be produced (for a brief history, see (Danchin
2003)). At the time of writing, there are 680 publicly listed complete bacterial
and archaeal genomes in the GOLD database (http://www.genomesonline.org/). In
parallel, novel sequencing technologies (454 http://www.454.com/, Solexa-Illumina
http://www.illumina.com/, SOLiD http://solid.appliedbiosystems.com/, Helicos
http://www.helicosbio.com/, etc. . .) deliver a huge number of new sequences, both
finished and draft genomes asking for continuous improvement of genome annota-
tion procedures.

Beyond additional species, multiple strains of some bacteria are being sequenced,
opening up the opportunity for detailed studies of genome evolution over the
smallest time scales. Due to the public perception of the importance of infectious
diseases and the desire to maximize benefits for human health and wealth, genome
sequencing is considerably biased towards pathogens and organisms of economic
consequence (ca. 80% according to the GOLD database). This bias is now
being steadily balanced by interest in isolates from the environment, as well as
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projects that aim at covering the tree of life more extensively and discovering new
biological functions. The effort in collecting a large sample of genome sequences from a
particular niche – metagenomics (Handelsman et al. 1998) – no longer aims at
identifying the complete sequence of a given genome, but rather samples from
many genomes simultaneously. This trend is now taken into account in annotation
platforms.

In the present context “annotation” refers to the creation of explicit comments
(organized along a data schema that needs to be specified: gene name, gene function,
enzyme identifier, bibliographic reference, experimentally identified feature, etc.)
locally associated to the name, or label of genomic objects (genes in particular).

Genome annotation first requires identification of genomic objects (which are
defined by specific biological properties: e.g. promoters, genes, terminators, or
structural properties: e.g. nucleotide repeats, curved regions, etc.). Furthermore, to be
useful to investigators, annotation needs to create and collect indications about
the intimate nature of biological systems, relationships between objects (Danchin
2003). In its most efficient form, annotation is meant to provide a help for inductive
reasoning (making inferences), permitting investigators to make connections
between objects and concepts, and to create experiments meant to validate them.
“Making connections” is effective at a background level when one exploits to its
most extended consequences the idea of “neighbourhood”. A first example of this

Fig. 1 Genome annotation workflow
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fruitful idea was developed in the Entrez software at the NCBI (Benson et al. 1994),
followed by many types of approaches combining phylogeny (sequence kinship,
syntenies), with all kinds of proximities (local nucleotide or amino acid composition,
isoelectric points, common metabolic pathways, co-occurrence in scientific articles
etc) (Moszer et al. 1995; Nitschk�e et al. 1998; Marcotte et al. 1999; Huynen et al. 2000;
Overbeek et al. 1999).

Annotation proceeds in several steps (Fig. 1). A good practice is to begin with
analysis of the global properties of the sequence under investigation. This allows the
annotator to place the collection of sequences, usually a genome sequence, in a
particular context where it is possible to get a general idea of the biological features
of the organisms in relation with their sequence. A second step will identify genomic
objects, in particular Coding DNA sequences (CDSs) which encode proteins. Sub-
sequently, functions will be associated to these objects via a variety of methods
(M�edigue and Moszer 2007). As their number is usually very large, it is convenient to
proceed via the use of automatic procedures. In-depth annotation will follow, often
combined with manual analysis of the most important objects, in a recursive way
(Fig. 1 and Table 1). This is at this stage that functions are associated to relevant
objects, which permit investigators to explain the behaviour of the organism (or
collection of organisms) or to predict properties that can be submitted to experi-
mental validation.

2 Global sequence properties

A first general analytical study of the global genome features needs to be implemented
when annotating a new genome. This preliminary overview is useful to identify possible
biases in the overall features of the genome, and it allows the annotator to locate loci that
would be interesting for further in-depth studies. This step, which also permits one to
have some insight about the quality of the sequence under annotation (remember that
no biological experiment is error-free), is essential to place the genome in proper
biological context, an important feature to construct internally consistent annotations.

A common first step in the study of the genomic context analyzes the GC content of
the sequences as well as the distribution ofwords andmotifs (Necsulea and Lobry 2007).
It is essential here to proceed in a recursive way, comparing the real sequence with a
realistic model constructed from previous knowledge. This allows identification of new
signals, that are incorporated into a second level realistic model, and to progressively
improve on the overall description of the sequence, permitting the annotator to get
access to the identification of relevant genomic objects (see for example (H�enaut et al.
1996, 1998)). This analysis being recursive it progressively benefits from finer grain
exploration of the sequence. In particular, as discussed below, CDSs do not constitute
a homogeneous class in terms of codon usage biases (M�edigue et al. 1991; Bailly-B�echet
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et al. 2006), and this particular feature needs to be included when constructing
progressively more realistic models of what a genome sequence is.

In this first exploration, the number of chromosomes and plasmids is determined as
well as their origins and termini. This permits investigators to have an idea of replication
biases and gives a first hint about the existence of recombination events or hot spots.
Local variation in average properties can be the signature of the presence of genomic
islands (GIs) and mobile elements (phages, integrons, insertion sequences, transpo-
sons) that have important biological roles. A number ofmethods to detect GIs have been
developed (Hsiao et al. 2005). They relymostly on the presence of atypical features of the
sequence composition (GC-content, codon usage biases, repeats, etc.) or associated
annotation features (for example tRNA and integrase genes). More recently, a new
method based on compositional biases using variable ordermotif distributions has been
published (Vernikos andParkhill 2006). Comparative genomics can also be used: two or
more sequences are aligned to identify unique genomic regions that are putative GIs.
Once identified, the nature of the GIs (pathogenicity islands, prophages, symbiosis
islands,metabolic islands, or other), and the nature of the exchanged genome, need to be
characterised. A strategy calculates the local signature of identified GIs and look for
similar signatures in a database of genomic signatures (Dufraigne et al. 2005); another
makes use of phylogenetic tools to date the transfer event during evolution and to
identify the origin of the suspected alien DNA fragments (Poptsova and Gogarten
2007). However, the identification of GIs� origin remains a difficult task and few
examples have been validated.

An important discovery of the genomic era is that the gene pool of several strains of a
given microbial species is far larger than the number of genes present in any single
genome. General analysis of genomes, together with the ever-growing flow of new genes
as one sequences new genomes has led to introduce the term of “pan-genome” to refer
to all genes that may be found in a group of genomes, species, genus or clade (Tettelin
et al. 2005). This general definition asks for a further in-depth analysis of the structure
of genomes, taking into account their role in the life style of the organism. This can be
summarized as follows. A genome separates persistent functions coded by genes that
allow life to proceed from a large number of genes that permit life to develop in a
particular environment. It is important to note that the class of persistent function
comprises functions that are ubiquitous, but can be fulfilled by a variety of different
objects recruited during the course of evolution either by de novo creation or by
horizontal gene transfer, precluding extraction of their catalogue as the intersect of
orthologs that would be present in all free living bacterial species (Fang et al. 2005b).
These genes are connected in such a way that they could be seen as depicting a scenario
of the origin of life, for which reason they have been named the paleome (palaios,
ancient, in Greek). The corresponding functions permit the cell to express life, as well as
fightweathering (aging processes). A second category of genes, apparently not limited in
number, distributes amongmany genomes of the species. These genes, which permit life
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in context, form the cenome (coenos, common, in Greek, used by ecologists in
“biocenose”) (Danchin 2007) (Fig. 2). It is convenient to have an idea of these categories
at the onset of the annotation procedure in order to proceed with an efficient functional
annotation of the genes. The BioSapiens effort produced lists of genes in the paleome for
at least two large classes of organisms, the Firmicutes and the Gamma-proteobacteria
(Danchin et al. 2007).

3 Identifying genomic objects

Annotation, broadly speaking, is the extraction of biological knowledge from raw
nucleotide sequences. Sequencing DNA samples produces long stretches of nucleotide
sequences where the investigator needs to uncover a variety of genomic objects: regions
coding for proteins, RNA genes, promoters, transcriptional terminators and miscella-
neous features such as insertion sequences, repeated regions, etc. The process of
sequencing and annotating bacterial genomes has become highly automated in the
past few years and many genome sequences are deposited in databases associated to
purely automatic annotation with no further manual check.

Fig. 2 Organization of bacterial genomes. The genome is split into two major components. The paleome
drives all functions required to sustain life, while the cenomepermits life in context. The paleome is split into
two parts. The first part, comprising a constructor and a replicator, is made of genes that are essential even
under laboratory growth conditions. The second part permits aged cells to synthesize young cells, therefore
perpetuating life
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In the initial step of automatic annotation, several in silico analytical methods are
linked up to predict the location of genes and to describe the cellular function of gene
products (Table 1 and Fig. 1). First, gene prediction programs are executed to find
regions that are likely to encode proteins or functional RNA products. Contrary to the
general opinion, it is still somewhat difficult to properly identify CDSs. This is reflected
in the ubiquitous, but unfortunate mixing up between terms describing Open Reading
Frames (an ORF is a sequence of multiple of three nucleotides between two translation
termination codons) and CDSs. Identification of the translation initiation codon is
still difficult. Typically in Bacteria, it is preceded by a particular genomic object, a
ribosome binding site, which often comprises a GGAGG sequence (Laursen et al.
2005). Several software tools have been created to help in identifying CDSs (Suzek et al.
2001; Yada et al. 2001; Besemer and Borodovsky 2005; Makita et al. 2007). It must be
stressed that gene calling programs are still liable tomiss small genes or genes of atypical
nucleotide composition. To overcome this limit, statistical analysis of intra-genomic
variations (see above), can be used to derive multiple gene models which take into
account the compositional diversity of genes within a genome (Bocs et al. 2002;
Cruveiller et al. 2005). Finally, an increasing number of genomes are being released
in “draft” form (i.e. before the finishing stage of a sequencing project) or using
techniques that are error-prone in some regions (e.g. typically the 454 sequencing
technique is awkward with “homopolymers”, runs of identical nucleotides) with a high
sequencing error rates, thus leading to errors in gene predictions. It is indeed important
at this point to remind annotators that even the best sequences may contain errors, as
any outcome of experimental set ups: we tend to be “nominalists” and are quick to think
that what is named and written is right (Eco 1983). The consequence is that automatic
annotation will result in a significant number of spurious genes or gene starts, and miss
many small genes. In turn, for example, wrong gene start identification often results in
by-passing identification of signal peptide signatures such as those identified in PSort
(Nakai and Horton 2007) or SignalP (Emanuelsson et al. 2007), and lead to wrong
functional assignment of a gene product. Thismust be borne inmindwhen reaching the
further step of manual annotation (see below).

Transfer RNA molecules can be identified fairly easily using software such as
tRNAScan (Schattner et al. 2005). Many other types of small untranslated RNAs are
now uncovered as highly relevant to regulatory properties of metabolic networks in
bacteria. Furthermore some small RNAs have a catalytic function (ribozymes, such as
the RNA moiety of RNAse P, which maturates tRNAs). The nomenclature describing
these molecules is still quite variable, as one finds current acronyms such as sRNA,
ncRNA, sncRNA, “Non-coding” is ambiguous, and it would probably be better to stress
simply the fact that they are real gene products (hence, coding) that are not translated
(small untranslated RNAs, suRNAs or small regulatory RNAs, srRNAs). Because the
rules permitting RNA folding are not well understood, these suRNA genes are difficult
to predict. Several programs can be run to identify the corresponding objects (Vogel and
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Sharma 2005). Their targets can also be identified using software such as TargetRNA
(Tjaden et al. 2006) ormore evolved approaches such as the one described byVergassola
and co-workers (Mandin et al. 2007) (see http://www.ncRNA.org).

Miscellaneous features, such as transcription promoters and terminators
(d�Aubenton Carafa et al. 1990; de Hoon et al. 2005), insertion sequences (Siguier
et al. 2006), repeats (Achaz et al. 2007) etc., can be annotated using a variety of software.
There is no general procedure of annotation for those features, and the annotator has to
write scripts to chain relevant procedures when needed. The most important feature in
this respect would be identification of promoters, as this would permit better identifica-
tion and annotation of genes (transcription is needed to express RNAs and precedes
translation). Unfortunately however, this remains, till the present time, an impossible
task. Prediction of operons can be performed using a combination of criteria (Yan and
Moult 2006) and a database such as RegulonDB may help in identifying some
promoters, via connection to experimentally validated examples (Salgado et al. 2006).

4 Functional annotation

Once the global features of the genome have been analyzed, it becomes important to
proceed to annotation of CDSs, associating functional properties to the corresponding
sequence (Table 1 and Fig. 1). In many cases, as just stated, investigators rely on
automatic annotation platforms and combine scripts with relevant data input and data
consistency analyses to release an “annotated” sequence to one of the entry points of
the INSDC, with the corresponding format (which differs between DDBJ, EMBL-EBI
and GenBank). The accuracy of this step depends not only on the software used for the
automatic annotation (i.e, on inferences produced by running comparison algorithms
(usually BLAST, sometimes FASTA)), on the quality of the sequence itself but above all,
on the quality of the primary resources i.e. the annotation already stored in the INSDC
databases. This standard approach is therefore a fairly inaccurate way of annotating
genomes as the simple fact that a common annotation is associated to a genewill make it
seem relevant, resulting in the percolation of annotation errors (Gilks et al. 2002, 2005).
Writing parsers implementing simple biological consistency checks driven by knowl-
edge of constraints associated to the ecological niche of the organism may improve
annotation by flagging obvious inconsistencies. For example prediction of a lactose
permease in a member of the Cyanobacteria should raise questions, or prediction of an
outer membrane protein in a member of the Firmicutes should generate an error
message.

To increase the value of functional annotation, some automatic procedures give a
priority to the similarity results obtained with reference annotations of model organ-
isms. This is important to remember as this places model organisms at the root of
propagation of inferences. It is therefore of the utmost importance to verify that the
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annotation pipeline is geared to extract the most recent annotations coming from the
models. As a good practice the annotation pipelines should incorporate some kind of
quality factor to annotations used for inferences, with the highest values corresponding
to experimentally validated data, often associated to model genomes.

Whenever possible the annotator should use comparison with data that have been
validated either via in-depth in silico analysis or experimentally. The SwissProt protein
database, now extended as the UniProt knowledge base is the best reference that should
be used for general annotation (The-Uniprot-consortium 2008). This database is
constantly improved but it cannot match the extraordinary speed of data production,
so that it has extended to a parallel database TrEMBL, that extends annotation
automatically to all regions annotated as CDSs (often simple ORFs, unfortunately) in
published sequences. The accuracy and depth of annotation in UniProt depends on the
protein, on the organism and on its domain of action. The detail of annotation and
degree of validation is highly variable. The HAMAP project, or �High-quality Auto-
mated and Manual Annotation of microbial Proteomes�, aims to integrate manual and
automatic annotation methods in order to enhance the speed of the curation process
while preserving the quality of the database annotation (Gattiker et al. 2003) and it is an
indispensable reference to annotate bacterial protein genes.

The core of functional annotation deals with protein coding genes. It is essential, at
this step, to have some consistent view of what a “function” is. Unfortunately, this
concept is very fuzzy, and not consistently used by biologists (Allen et al. 1998). This led
groups of investigators to create dictionaries of terms and so-called “ontologies”. The
word “ontology”, which has a very specific meaning in philosophy, has curiously been
diverted in health care sciences from its original meaning (Herbert 1995) to refer to a
particular structured vocabulary describing knowledge associated to a patchwork of
biological data, objects, sequences, biological functions and functionalities and other
general features of biological processes. It refers to different ways of considering living
organisms and several ontologies are used to characterize the life of a particular set of
organisms. In the context of genome annotation, an ontology will rest on a particular
data model that can be used to organize specialized databases. The step of definition of
the exactmeaning of a particular vocabulary to describe features of genomic objects is an
essential prerequisite for annotation. Several ontologies are used in this respect, in
particular the GO ontology (Gene-ontology-consortium 2001, 2008). This classifica-
tion, although not originally defined for bacterial genome annotation, is useful for the
consideration of individual proteins in the context of the cell: what they do, i.e. the
molecular function that describes the biochemical role of the protein (transporter,
regulator, enzyme, structural protein, etc.); where they are found in the cell, i.e. their
subcellular localisation (cytoplasm, periplasm, cytoplasmic membrane, etc.); and what
larger processes they participate in, i.e. the biological function that describes the role of
the protein in the cell (metabolic pathway, signalling cascade, etc.). Even when one
creates her or his own data schema, it is useful to have a correspondence, whenever
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possible, with that particular ontology. In practice the features of genomic objects
considered in GeneOntology should be systematically annotated (when possible, if not,
a qualifier “unknown” should be used).

Proteins are often enzymes. An important feature, which will permit metabolic
reconstruction, is the assignment of an EC number to enzymes (or predicted enzymes).
The Nomenclature Committee of the International Union of Biochemistry and
Molecular Biology on the nomenclature and classification of enzymes by the reactions
they catalyse ascribes a reference number (EC number) made of four digital numbers
separated by a dot, corresponding to a hierarchical classification of enzyme activities
(e g. EC 1.1.1.1 refers to alcohol dehydrogenase). This nomenclature was initiated in
1956 to normalize naming of enzymes as the uncontrolled naming by biochemists
resulted in a jungle of names almost impossible to explore, with the consequence that it
was not possible to know whether a given activity had already been identified.
Unfortunately, while this endeavour is extremely important for the future of annotation,
it stumbled onmany difficulties as new structures of enzymes and intricacies in catalytic
reactions were uncovered (typically, a given protein can catalyze quite different
functions, a given reaction can require several different proteins, some shared with
different enzymes, for example). Today, the largest publicly available enzyme informa-
tion system is certainly the Brenda database (Barthelmes et al. 2007). Among the tools
that are useful for annotation there exists prediction systems that use the sequence of a
protein and compares it to a database profile of identified proteins of known activity and
predicts its EC number (PRIAM, Claudel-Renard et al. 2003).

Finally, in addition to the general prediction of gene functions, annotation pipelines
can provide other types of information about the encoded products, in general proteins:
chemical and structural properties (e.g. isoelectric point and molecular mass are
important information for proteomic studies), subcellular localisation (which has
implications for both the function of the protein and its interactions with other
proteins), and modular organisation (formation of complexes). It is indeed important
for the different domains of a protein to be characterised so as to avoid a well-known
annotation error: a function is transferred to another protein that only shares one single
module. Consequently, sequence similarity search tools for thematic databases, such as
motif/pattern or enzyme family databases, are also used.

5 A recursive view of genome annotation

Once a first round of annotation has been produced, the annotator has a much better
view of the global knowledge they are associating to the sequence. Inferences can be
madeusing the existing roundof annotation to create newknowledge (Fig. 1 andTable 1).

At this stage, annotation will therefore be modified recursively. Analysis of
neighbourhoods is being employed to improve the accuracy of genome annotation
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(co-occurrence, gene order, gene fusion, but also results ofmultivariate analyses, such as
those found in the “R” package (http://www.r-project.org/). They provide information
for functional characterisation of genes from their genome environment, e.g. by
allowing a more confident identification of orthologues when sequence similarities
are low. In addition, the analysis of co-localised genes provides clues about the
functional interactions between the corresponding proteins, which is afirst step towards
the description of protein interaction networks. This dynamic view of genome
annotation is useful to correct or to increase the specificity of the assigned functional
annotations (Fig. 1 and Table 1).

As a case in point, metabolic-network reconstruction is an active field of research,
and some annotation platforms include automatic prediction of this kind of network
(see Annex). The annotated proteins that are characterised by an EC number and/or
an enzyme name, are used to identify steps that ought to be present (or should be
missing, knowing the biological properties of the organism), permitting investiga-
tors to explore functions of tentatively annotated genes as fulfilling the missing
reactions. These predictions are performed by comparing the enzymes within a given
genome against the known set of reference pathways stored in metabolic database
such as KEGG annotation, the (Aoki-Kinoshita and Kanehisa 2007) and BioCyc
(Caspi et al. 2008).The value of this similarity-based reconstruction is highly
dependent on the quality of completeness of the metabolic database, and the criteria
used for assessing the presence of a pathway. While the very large KEGG metabolic
maps are mosaics that combine pathways and reactions from many organisms,
MetaCyc pathways describe single metabolic routes that have been experimentally
elucidated in specific organisms. This latter metabolic resource is obviously more
accurate than the KEGG database. However, in terms of completeness, the KEGG
maps are sometimes useful to propose hypotheses on existing alternative metabolic
pathways. Although the automated reconstructions provide an overview of the
metabolic capabilities of the studied microorganisms, detailed assessment of the
validity of these networks remains essential. Indeed, issues potentially leading to
error include incorrect substrate specificity, multifunctional enzymes, reaction
reversibility, association to coenzymes or prosthetic groups, and missing known
reactions that have no assigned gene.

Proceeding to the reconstruction of as much as possible of the metabolic capacities
of the organismwill monitor the consistency of the annotation. Proximity of genes with
functions belonging to the same pathway will help in making relevant inferences
(Table 1).While this can be partially automated, it is clear that the annotator expertise is
required at this step. Furthermore, the risk of annotation errors percolation advocates
for an annotation process that combines automatic with manual annotation. Once a
first round of annotation has been performed the team of investigators involved in
curating the process will look for global properties of the genes, then go down to more
and more specific features.
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A first analysis will try to find inconsistencies in the CDS start point, by comparing
predictions with what is known of cognate proteins from related organisms. After this
step, analysis of the addressing of proteins will substantiate a significant fraction of the
predictions by predicting signal peptides, which should display fairly consistent features
and split into at least two classes, cleaved signal peptides, and lipoprotein signal peptides.
A further analysis of gene product compartmentalization will use prediction of integral
inner membrane proteins, based on the discrepancy in the way amino acid residues are
distributed in this class as compared to the bulk of proteins (Pascal et al. 2006).

All these steps need to be integrated in a common platform to permit efficient
curation/correction of annotations. This gives an important role to the user-friendliness
of the platform and requires deep reflection on the human/machine interaction, where
the end user is perceived as a biologist, often an experimental biologist. Much work
needs to be devoted to improve the existing platforms. One way forward might be to go
for the use of Widgets, as advocated by Valencia and colleagues in this book.

Contributing to the dispute about automatic vs. expert annotation, Raes and
collaborators recently published a surprising observation: they estimated that, in
completely sequenced genomes, the fraction of proteins to which at least some
functional features can be automatically assigned is close to 75% using similarity
searches alone, and 85% if genomic context methods are also used (Raes et al. 2007b).
However, for genes which do not belong to the paleome (often referred to as “house-
keeping” genes), these automatic annotations might often be erroneous and of limited
use for biologists (e.g. unknown enzyme/transporter substrate, very short domain, etc.):
manual curation undoubtedly remains necessary.

6 Improving annotation: parallel analysis
and comparison of multiple bacterial genomes

In parallel with improvement of annotation procedures, annotations of specific
genomes need to be reprocessed on a regular basis to take into account the identification
of newly characterized functions. Furthermore, large-scale functional analyses produce
additional data that contribute to the interpretation of genomic data. Every annotation
project should monitor re-annotation of related projects: although a number of
annotation sources are very accurate, continual updating of genome annotations for
a large number of species is not straightforward. Indeed, databases and computational
methods are constantly evolving and processing again automatic functional annota-
tions should be performed on a regular basis. In addition, new experimentally-derived
functional information is being continually generated, and can prove useful, for
example, for modifying the annotation of genes of “putative” or unknown function.
This requires systematic exploration of bibliographic references (http://www.pubmed.
gov/), an element of paramount importance for collecting sound fundamental knowl-
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edge about model organisms. While we had mostly convenient access to the content of
the title an abstract of articles inMedline at PubMed, the new PubMedCentral database
allows the annotator to explore using a combination of keywords the whole content of
articles in Open Acess (Walport and Kiley 2006). This needs to be used as much as
possible in manual annotation (Table 1).

The transfer of the reliable up-to-date reference annotation to validated orthologues
in the newly sequenced genomes is essential. Annotation platforms already exist that
include procedures which rely on the ability to cluster proteins from related genomes
into orthologous groups (a first attempt was provided by the Cluster of Orthologs,
COGs (Tatusov et al. 2003)), and new interfaces allowing annotators to view evidence
associated with each protein in the group and make annotation decisions about the
group as a whole. Care must be taken to investigate the fine details of the clusters of
orthologs, as structure and function are often not related in the expected way.

Comparative genomics is based on the development of novel methods, databases
and graphical interfaces for organizing and extracting biological information from the
comparison of a large collection of complete and unfinished genome sequences.

Techniques based on the knowledge of the genomic context use the co-localisation
of genes in several genomes at various levels of proximity (chromosomal, metabolic, co-
citation, etc.) and do not require sequence similarity for the genes to be annotated.
Especially, genes co-localized in the chromosome tend to be functional neighbours,
either in terms of expression patterns or network neighbourhood. Combined with
similarity-based predictions, such information can be used to elucidate protein func-
tion. This technique has been exploited recently and proved valuable for the accurate
identification of candidates for the missing genes of the lysine fermentation pathway in
anaerobic organisms (Kreimeyer et al. 2007). Combined with experimental validation,
as in the case of lysine fermentation, it has also been used in the complete identification
of the methionine salvage pathway in a variety of organisms, where misannotation of
several proteins precluded construction of a consistent chemical pathway for the
recycling of themethylthioadenosine produced in the course of polyamine biosynthesis
(Sekowska et al. 2004). Furthermore, inference from annotation can help identification
of unexpected objects where it can be surmised that a function must exist, while no
object that would permit it has been yet found (Danchin 1999). This was illustratedwith
the identification of a new preotein for oligoribonuclease, which had no common
structural counterpart in Firmicutes (Mechold et al. 2007).

Analysis of genomes from closely related species can help in the identification of
novel genes and other features such as gene fusion/fission and pseudogenes that only
become apparent in a comparative genomics context. These phenomena also include
lineage-specific genes which can be characterised efficiently if many related sequences
are exploited. Identification of genetic differences between entire genomes allows
correlation of the differences with biological function, providing insight into selective
evolutionary pressures and patterns of gene transfer or loss. This has proven to be
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particularly relevant for virulence analysis of pathogenic strains. For example, a
comparative analysis of several extraintestinal pathogenic Escherichia coli (ExPEC)
strains has shown that the ability to accumulate and express a variety of virulence-
associated genes distinguishes ExPEC from many commensals and that different way
exist among ExPEC to cause disease (Brzuszkiewicz et al. 2006).

A multi-strain annotation project might also involve Single Nucleotide Polymorphi-
sm (SNPs) analyses to address evolutionary issues. SNPs are very short sequence
differences between closely homologous sequences; they may affect either coding or
non-coding sequences. SNPs are important features of a genomic sequence: for
example, they may reveal genes that contribute to the adaptation of the bacteria to
different environmental stimuli, allowing them to shift from commensalism to patho-
genicity (Wei et al. 2006). SNP analysis, however, needs to be aware of the possibility of
sequencing errors in the data of interest.

There is finally the interesting issue of handling projects related to the annotation of
bacterial genomes that are evolutionarily distant, and very different, from theminuscule
fraction ofmicrobial species we know today. Examples are studies of prokaryotic species
belonging to a novel bacterial genus (e.g.Herminiimonas arsenicoxydans, which is able
to metabolize arsenic and to efficiently colonise toxic environments (Muller et al.
2007)), and some metagenomics projects enabling the reconstruction of complete
genomes. The case of an anaerobic ammonium oxidation (anammox) community
dominated by Kuenenia stuttgartiensis is interesting and illustrative: genome annota-
tion has led to novel candidate genes for hydrazine and ladderane metabolism (Strous
et al. 2006). Obviously, it is impossible to implement in a computer the rules that a
manual annotator would follow because the biology of such organisms presents
numerous exceptions or novel features. The meticulous work of expert annotation is
thus very often the only way to discover novelties.

7 Perspectives: new developments for the construction
of genome databases, metagenome analyses
and user-friendly platforms

Reference databases, computational methods and knowledge that form the basis of
annotation pipelines keep being developed at many places in the world, making the
process difficult to update. In addition, the rapid increase of new sequence data has
necessitated the evolution of software resources from functional annotation of a single
genome towards simultaneous analysis of information frommultiple genomes. There is
now a natural shift towards the creation of tools for viewing and manipulating data in a
comparative genomics context.

Novel methods are emerging for the annotation of sets of functionally-related genes
across a set of genomes, rather than the usual “gene-by-gene” annotation of one genome
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at a time. Indeed, exploration of biological processes ismore effective when developed at
a global scale, and gathering biological knowledge about several organisms simulta-
neously allows biologists to detect discrepancies and identify exceptions (e.g., the lack of
a key enzymatic reaction in a pathway in several organismsmay suggest the existence of
an alternative route). Tools such as SEED (Overbeek et al. 2005), and “Genome
Properties” (Haft et al. 2005) define a set of biological processes (e.g. metabolic
pathways, secretion systems) and a set of functional roles that are essential in the
completion of a biological process. For each process, a two-dimensional matrix is
obtained in which columns describe roles and rows describe organisms. The status of a
cell in the table defineswhich gene(s) encode(s) a particular step in the process in a given
organism. This matrix can be used as a starting point to identify variants concerning a
process by gathering organisms sharing the same profile (i.e. the same functional roles).
In addition, Genome Properties proposes rules, mainly based on role essentiality, to
determine automatically whether or not a process exists in a given organism. The
integration of these approaches into annotation platforms is not yet implemented. This
should improve annotations such that automatic analysis of functional variants is
possible, including mapping missing genes and locating gene candidates for experi-
mental validation.

New advances in sequencing technologies have given rise to the field of metage-
nomics (Riesenfeld et al. 2004). A metagenome (environmental genome, community
genome) is a sample of an aggregate genome collection of all community members
obtained directly from the natural environment, without a preliminary cultivation step.
Since most (>98%) naturally occurring bacteria cannot be cultured, metagenomic
studies provide us with a mechanism for analyzing previously unknown organisms.
Various sampling and sequencing strategies can help in answering different questions
about the diversity and abundance of community members, their metabolic potential,
and the complex interactions between members of a specific environment.

Many novel computation tools have recently been developed to analyze this
metagenomics data, starting with new algorithms for sequence assembly to increase
fragment contig length and assembly quality. The development of metagenome gene
prediction software is still an ongoing endeavour: new tools are necessary to deal with
fragmented genes, phylogenetic diversity and lower end-quality of sequences, system-
atically resulting in frameshifts (Raes et al. 2007a). The use of BLASTX-derived
annotation of reads avoids gene prediction problems, but limits the analysis to what
is known in the metagenome. Then, starting from this large amount set of genes and
gene fragments, other methods and tools are used to establish the taxonomic identity of
community members (i.e, diversity and abundance of microbial communities).

In parallel with the unfolding of this new era of genomics, software tools are
continuously being developed to analyze the functional and metabolic potential of
microbial communities to exame differences between their collective genome sequence
datasets in terms of functional categories and/or metabolic pathways. Such differential
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functional analysis is based on comparing the frequency of genes that may code for
specific functions across metagenome or isolated genome datasets (Raes et al. 2007a).
The future of genomics will considerably owe to novel developments of automatic
annotation platforms allowing investigators to cope with the flood of sequence data
which is now following the considerable decrease in DNA sequencing costs.

8 Annex: databases and platforms for annotating
bacterial genomes

Genome annotation relies on inferences stemming from awealth of data collections that
gather knowledge on nucleotide and protein sequences, metabolites and pathways,
interactions etc. The International Nucleotide Sequence Databases Collaboration
(INSDC: DDBJ/EMBL-EBI/GenBank http://www.insdc.org/) is the reference archive
for the construction of derived repositories containing a subset of sequences, or for
computational analysis based upon DNA information. This reference library, estab-
lished almost 30 years ago, is now facing new challenges in parallel with the exponential
increase of sequences as well as of the associated knowledge. In particular, the huge
number of associated features can hardly be efficiently queried, and updating annota-
tion is not straightforward. Parallel resources have therefore been developed with the
aim of collecting and retrieving information from a subset of the global database.
Genome Reviews at the EBI presents an up-to-date, standardized and comprehensively
annotated version of complete genomes (Kersey et al. 2005; Sterk et al. 2006). RefSeq at
the NCBI provides an integrated and non-redundant set of nucleotide and protein
sequences for organisms widely used in research (Pruitt et al. 2007). These major
databases are mostly driven by automatic procedures and do not tackle specialized
requests. Hence, organism-specific databases have been constructed as an important
data resource for the annotation of new bacterial genomes and the re-annotation of
“old” genomes. These specialized databases are sometimes carefully curated, with an
emphasis on the most relevant features of the organism of interest (the ecological niche,
with its corresponding cenome, in particular). They include support from manual
investigation of the relevant literature. In this context, model organisms are prominent
references for investigation of related species: this is especially true for Escherichia coli
and Bacillus subtilis, the most extensively studied Gram-negative and Gram-positive
bacteria, respectively. Several microbial genome web resources provide consistent and
comprehensive sets of annotations, together with a series of tools for genome querying,
analysis, and comparative studies. Features range from simple selection of organisms
and genes to complex multi-genome queries, e.g. queries allowing the user to identify
specific or shared proteins among a set of selected genomes. Examples of such
specialised software environments include the Integrated Microbial Genomes (IMG)
(Markowitz et al. 2006) and the Comprehensive Microbial Resource (CMR) databases
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(Peterson et al. 2001). Recently, the Colibri and SubtiList specialized databases were
extended to a collection formodel organisms, GenoChore, using a novel datamodel and
MySQL as the database management system (http://bioinfo.hku.hk/genochore.html)
(Fang et al. 2005a) and the GenoList genome browser (http://genolist.pasteur.fr/
GenoList) was upgraded to provide an intuitive yet powerful multi-genome user
interface, primarily designed to address biologists� requirements, and including original
functionalities such as subtractive proteome analysis (Lechat et al. 2008).

A large collection of databases is available for proteins. The most widely accepted
reference is UniProtKB, which originated from a merger between the Swiss-Prot and
PIR protein databases (The-Uniprot-consortium 2008). The quality targets of this
knowledgebase are numerous: expertly curated annotations, access to the relevant
literature, numerous cross-references, etc. However, the exponential increase of se-
quence data has made the curation of all that information an impossible task. Two
separate sections have therefore been defined in the knowledgebase: UniProtKB/Swiss-
Prot contains protein entries that are still manually validated, andUniProtKB/TrEMBL
provides access to computationally annotated records. In parallel, the Swiss Institute of
Bioinformatics has initiated the High-quality Automated and Manual Annotation of
Microbial Proteomes (HAMAP) project meant to create rules allowing semi-automatic
annotation of orthologous proteins in the Swiss-Prot database that are part of well-
conserved families in prokaryotes (Gattiker et al. 2003).

Protein are further annotated via identification of motifs and domains using a
variety of approaches, creating specialized databases. Most of these organize proteins
into families sharing motifs or domains. The InterPro resource brings together many of
these databases, providing a unified resource to search for protein signatures (Mulder
et al. 2007). Other levels of classification are defined using clustering procedures that
lead to groups of proteins: for instance, the COG (Clusters of Orthologous Groups of
proteins) resource was built upon systematic BLASTP comparison of all proteins
against all (from selected genomes), and subsequent construction of clusters containing
at least three proteins from distant species (Tatusov et al. 2003).

Many proteins are enzymes, hence the annotation of enzymatic information
provided by databases such as BRENDA is of particular interest (Barthelmes et al.
2007). In the same way, the explicit abstract description of metabolic pathways – either
computationally predicted or experimentally described – is also of considerable
importance. It is best maintained in the KEGG (Kanehisa et al. 2008) and BioCyc/
MetaCyc databases (Caspi et al. 2008). Interaction data are also of major importance,
and despite the high level of noise in the techniques permitting their identification, they
can be useful in annotation when used with care (e.g., the STRINGonline resource gives
access to protein interaction data, by integrating known and predicted interactions from
a large variety of organisms (Huynen et al. 2000)). Finally, recent large-scale endeavours
in structural genomics are enhancing data collections such as the Protein Data Bank
(PDB), used to store protein three-dimensional structures of individual proteins or
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complexes (Berman et al. 2007). PDB is now automatically referred to in UniProt
(Martin 2005).

As described, the genome annotation process requires complex bioinformatics
support. This includes at least three main elements: a pipeline for fully automated
sequence annotation, using a large spectrum of bioinformatics tools, a consistent data
management system (i.e. advanced biological data models and integrated databases),
and several interactive graphical interfaces to organize and present the results in a user-
friendly manner. These features are rarely present together in the most common
annotation platforms.

The first automated pipelines, MAGPIE (Gaasterland and Sensen 1996) and
GeneQuiz (Scharf et al. 1994) were developed more than ten years ago. They provided
entirely automatic annotation, based on artificial intelligence approaches that provided
“reasoning” capabilities to the software, thereby permitting the combination of analyzes
produced by the different tools, and the assignment of a specific biological function.
They also provided a quality factor for assessment of the annotation accuracy (Andrade
et al. 1999). However, resulting from the chaining of extraction of automatic analyzes,
percolation of annotation errors was pervasive (Gilks et al. 2002, 2005).

Since this early time, automatic software with new functionalities continued to be
developed world-wide. As examples, the AutoFACT pipeline takes a single FASTA
formatted genomic sequence file as input and proceeds to assign each individual
sequence to one among six annotation functional protein classes, combining multiple
BLAST reports from several user-selected databases (Koski et al. 2005). BASys, a web
server performs completely automated annotation of bacterial chromosomes, combin-
ing more than 30 programs to determine approximately 60 annotation subfields for
each gene, including gene/protein name, GO function, COG function, possible para-
logues and orthologues, molecular mass, isoelectric point, operon structure, subcellular
localization, signal peptides, transmembrane regions, secondary structure, 3D struc-
ture, reactions and pathways (Van Domselaar et al. 2005).

Web services clearly provide themost convenient tools for research groups who lack
the computing resources and expertise required to install or implement the software
necessary for bacterial genome annotation. However, in most of these systems, user-
friendly interfaces, which are essential for allowing manual input of expertise super-
imposed on automatic predictions to ensure high-quality annotation, are not available.
This observation led to the development of annotation browsers and editors such as
Artemis (Rutherford et al. 2000). This system is a useful tool for reviewing and editing
annotation, based on annotations collected using other programs.

Most of the existing systems offer two complementary functionalities: they generate
automatic annotations, and provide graphical facilities for subsequentmanual review of
the predictions (see the general features described in Table 1). Examples of compre-
hensive annotation platforms include commercial or private systems, such as ERGO
(Overbeek et al. 2003), Pedant-Pro (http://www.biomax.com/products/pedantpro.php,
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successor of PEDANT (Frishman et al. 2001; Riley et al. 2007)), GNARE (Sulakhe et al.
2005), SMIGA (Lu et al. 2006), and open-source systems, such as GenDB (Meyer et al.
2003), Manatee (TIGR, unpublished), SABIA (Almeida et al. 2004), and AGMIAL
(Bryson et al. 2006). However, installing these systems on a local computer is not
straightforward because they make use of many bioinformatics tools that must be
installed independently. Finally, the availability of a large collection of genomes led
more recently to the development of comparative annotation and analysis environ-
ments, such as MaGe (Vallenet et al. 2006), which enables the annotation of microbial
genomes using genomic context and synteny results obtained using known bacterial
genome sequences. Indeed, the predictive power of chromosomal clustering has proven
to be very effective for assigning putative functions to genomic objects.
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CHAPTER 4.3
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1 Introduction

Systematic annotation of protein sequences was initiatedmore than two decades ago by
two groups of enthusiasts at the Swiss-Prot (Bairoch and Boeckmann 1991) and PIR
(George et al. 1986) databases and is actively continuing today as a centralized UniProt
effort (seeChap. 10 in this volume).Until themiddle of nineties human experts carefully
annotated essentially every protein sequence that became known at the highest quality
standards. The advent of high-throughput genome sequencing and the unprecedented
growth of sequence databanks radically changed the picture. Over the last decade the
percentage of manually annotated proteins fell to probably less then 5% (Frishman
2007), and is rapidly continuing to decrease. Instead, the overwhelming majority of
amino acid sequences gets annotated by automated software pipelines that system-
atically apply similarity basedmethods and various prediction techniques for functional
and structural characterization of proteins. While efficient and cheap, electronic
annotation suffers from the notoriously high level of errors made by unsupervised
algorithms. Available computational methods are unable to reproduce the complex
decision process of a human curator, who, while making a decision on a particular
assignment, will survey literature, carefully analyze available alignments, and heavily
rely on his specific experience and intuition. Typical sources of annotation errors have
been reviewed before (Bork and Bairoch 1996; Galperin and Koonin 1998). In addition
to fundamental difficulties in annotation transfer by homology (Devos and Valencia
2000), dubious assignments may be caused by spurious similarity hits stemming
from compositionally biased protein sequences and failure to take into consideration

Corresponding author: Dmitrij Frishman, Department of Genome Oriented Bioinformatics,
Technische Universit€at Munchen, Wissenschaftzentrum Weihenstephan, 85350 Freising,
Germany (e-mail: d.frishman@wzw.tum.de)
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multidomain organization of proteins. Further complications include wrong gene
models and unrecognized pseudogenes. Annotation errors systematically pollute
sequence databases, leading to the gradual deterioration of the total corpus of available
information and undermining further analysis efforts.

The detection of annotation errors has thus become a necessity due to the intrinsic
limitations of automatic annotation procedures and the rapidly increasing gap between
the number of available sequences and the number of experimentally studied proteins.
Given a certain error probability and the independent assignment of annotation items,
unlikely and rare combinations of items will arise in practice. As methods from data
mining typically aim for regularities and patterns in data, they naturally lend themselves
to finding deviations from those patterns, in our case, uncommon combinations of
annotation items. The purpose of this chapter is to review data mining methods for the
detection of erroneous annotations in molecular biological databases.

Biological databases today present huge collections of measured, derived, and in
many cases interlinked data items and so can serve as proper subjects for a wide range of
data mining techniques. A generic set of tasks can be found in almost all life science
applications of data mining: detecting patterns, regularities, and deviations from regu-
larities in biological data (pattern mining and deviation/anomaly detection), finding
groups of objects belonging together (clustering), finding statistically interesting sub-
groups (subgroup discovery), classifying biological objects into discrete classes (classi-
fication), predicting numeric quantities (regression), discovering links among objects
(link discovery), and predicting the time course of biological events (time series analysis
and process modeling). In the context of protein annotation, typical problems include
(a) the discovery of new biological knowledge based on unexpected patterns in sequence
and other confirmed (non-derived) data, (b) the generation of new biological annota-
tions by supervised learning methods trained on already annotated entries, and (c)
annotation error correction based on the inconsistencies in feature combinations.
While problems (a) and (b) have attracted a lot of attention in the past, we are just
beginning to understand the third problem (c), the detection of annotation errors in
large protein databases.

A high-level overview of the general process is shown in Fig. 1. The first step in the
process is the computation of sequence features and functional annotations for a set of
protein sequences. In the next step, data mining techniques extract patterns, regula-
rities, and deviations from those patterns for the correction of inconsistencies in
annotation items. Following the correction of annotation inconsistencies, the next
cycle of the process can be started. In the overall process, each update of the annotation
database has to be recorded, to be able to explain and revise previous annotation
decisions if necessary.

This chapter is organized as follows: In the second sectionwe give a general overview
of large annotation databases. As an example for a manually curated database, we will
discuss Swiss-Prot in more detail. As an example for an automatic database, the
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PEDANTdatabase systemwill be presented. In the third section, we review datamining
in genome annotation from a technical perspective. Following general remarks on the
task, we discuss both supervised and unsupervised learning methods applicable to the
problem. Parallel to the presentation in the second section, the following two sections
explain the application of association rule mining to Swiss-Prot and PEDANT. The
sixth and final section summarizes the main points and lessons learned from applying
data mining methods in this area.

2 An overview of large biological databases

2.1 Manually curated vs. automatic databases

Databases contain information on a large set of objects of the same type in form of
structured records, or entries. Each record presents information on an individual object
via a limited number of pre-defined data fields. The latter may hold one or several terms
(attributes), or be empty. The majority of molecular biology databases focus on the

Fig. 1 General overview of the data mining process in genome annotation
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annotation of genes and proteins. In such databases each record typically corresponds to
one gene or protein, and data fields contain attributes pertaining to different aspects of
gene function and structure.

How does gene annotation come about? With respect to the information sources,
sequence annotation databases may be either automatically generated, or manually
curated, or sometimes both. In the automatic databases annotation attributes are
generated by computer algorithms in an unsupervised fashion, while curated databases
chiefly result from systematic manual collation of experimentally verified facts from
literature. Manually curated databases tend to contain fewer entries than automatically
produced datasets, but the annotation is more reliable and often serves as the gold
standard for benchmarking automatic procedures. By contrast,machine-generated data
collections may contain millions of records, but the probability to encounter false
information in them is much higher.

There exists an enormous variety of biological databanks, from central depositaries
of primary information such as GenBank (Benson et al. 2007) to highly specialized
resources covering specific biological aspects. The latest database issue of Nucleic Acids
Research (Galperin 2007) alone lists 968 databases, including datasets as specialized as
“a database of orthologous U12-type spliceosomal introns” (Alioto 2007). In Table 1 we
give an overview of some of the typical data resources, indicating their size (number of
records) and the number of data fields in each record. These databases differ both in
their thematic area and the degree of curation. Some of them get thoroughly curated by
human experts (BRENDA, Siwss-Prot), others are generated in a completely automatic
fashion (PEDANT), others are depositaries of experimental information equipped with
powerful retrieval and visualization tools (PDB). Many databases are initially produced
by automatic software pipelines, and then subsequently get manually curated, verified,
and enriched by experimental data (Ensemble, FlyBase). Finally, databases such as
MEDLINE are official providers of a give type of data, such as bibliographic references.

2.2 Manually curated databases: the Swiss-Prot example

For a closer look we selected the Swiss-Prot database (The UniProt consortium 2007)
which is considered to be the gold standard of protein annotation owing to its high level
of manual curation and resulting good data quality. As of the time of writing it contains
289473 protein entries (Release 54.5). As seen in Table 1, Swiss-Prot entriesmay contain
up to 18 types of data fields. Some of them, such as entry identifier, description, and the
date of the last modification are obligatory. Other fields may or may not be present
dependent on whether the information is available. The most biologically interesting
fields – those directly pertaining to the protein function – can contain positional in-
formation (e.g. sequence motifs), numerical parameters describing the protein as a
whole (e.g., protein length), annotation using controlled vocabulary (e.g. Gene
Ontology labels, see below), as well as free-text annotation (Fig. 2).
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Positional annotation describing a defined part of the object is stored in the datafield
called “Feature table”. This section contains information onup to 30 different positional
features of protein sequences as described in biological literature, such as posttransla-
tionalmodifications or binding sites. Each term of this type consists of a termname (e.g.,
TRANSMEM), start and stop positions of the given feature, and a brief description line.
Some of these features, while being local in nature, describe general characteristics of the
associated amino acid chain. For example, the feature VARSPLIC not only points to the
alternative part of the protein but also serves as an indication that the protein is subject
to alternative splicing. Although Swiss-Prot is amanually curated database, not all fields
are necessarily confirmed by experimental evidence. In some entries the Feature table
section describes predicted features, in which case they are marked as “hypothetical”.

Numerical parameters often describe physicochemical properties of genes and gene
products, theoretically calculated based on their primary structure or measured in
experiments. Examples of numerical features areGC-content, protein length, isoelectric
point, and biochemical constants.

The annotation relying on a controlled vocabulary is the most suitable part of
database annotation for data mining. A given feature of an object can be described by
one or several terms from the specially designed list of terms. Usually, every term of the
used vocabulary is precisely defined in order to avoid ambiguity. A very interesting and
information rich field of this type is Keyword which is Swiss-Prot specific. There are
almost a thousand individual keywords in Swiss-Prot, such as “Galactose metabolism”
or “Kelch repeat”. Database entries may contain more that 20 different keywords, with
average being three-four keywords.

Swiss-Prot annotation also includes other general purpose controlled vocabularies,
such as Enzyme Nomenclature and Gene Ontology (The Gene Ontology Consortuim
2007) assignments. Biological ontologies provide an extremely efficient framework for

Fig. 2 A breakdown of the Swiss-Prot annotation according to different types of data fields
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structuring and organizing functional information about proteins. They constitute a
common language for formalizing knowledge about cellular roles of gene products
based on a controlled vocabulary and play a crucial role in streamlining and standar-
dizing annotation work. The Gene Ontology (GO) has become a community standard
for annotating genomes of multicellular organisms. GO describes biological roles of
genes and gene groups in terms of attributes defined by threemajor branches:molecular
function, biological process, and cellular component. The hierarchical classification of
enzymatic reactions known as EC (Enzyme Commission) system is one of the most
widely used bio-ontologies. Each EC number is a unique code that describes enzyme
activity at four progressively finer levels of detalization. GO terms are available in the
Cross-references section of any Swiss-Prot entry while the EC numbers are part of the
Description line in the Synonyms subsection.

The free-text annotation can describe a variety of aspects of protein function and
structure. Even though it contains concise sentences describing a limited range of object
features in a possibly precise fashion, free text annotation is hardly suitable for the
majority of data-mining techniques because of the abundance of auxiliary words.
The only possibility to extract machine-parseable information from such fields is by
sophisticated natural language processing algorithms. In Swiss-Prot the most inter-
esting free-text field is Comments where all substantial protein annotation that can not
be formalized in other fields is kept. The information is arranged based on 28 topics.

2.3 Automatically generated databases: the PEDANT example

Automatically annotated databases typically contain no free-text information, and the
number of computed numerical parameters is higher. It seems more appropriate to
distinguish different data fields in automatic annotation by the particular mechanism
used to extract or calculate information rather that by their representation. There are
three distinct field categories from this point of view.

* Type 1. Features that are definitely known. This group includes either inherent
properties of genes and their products, such as their taxonomic origin, or features
that can be unambiguously calculated from primary sequences, such as GC content,
length, pI value, percentage of low complexity regions, and so on.

* Type 2. Structural and functional properties of proteins predicted directly from their
amino acid sequences by ab initio computational algorithms (secondary structure,
disordered regions, coiled coils, transmembrane segments, signal peptides, cellular
localization).

* Type 3. Structural and functional properties of proteins derived by similarity
searches against previously characterized gene products. These features include
sequence domains, keywords, functional categories, enzyme classes, and functional
and structural superfamilies.
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As an example of automatic annotation databases let us consider the PEDANT
Genome Database (Riley et al. 2007) which contains pre-computed information
resulting from bioinformatics analyses of publicly available genomes. The main vehicle
for similarity searches is the PSI-BLAST algorithm (Altschul et al. 1997). Thismethod is
used for searches against the full non-redundant protein sequence databank as well as
against a number of special datasets including the MIPS functional categories (see
below) and the COG database (Tatusov et al. 2003). The detection of InterPro domains
(Mulder et al. 2007) is performed by profile searches. For those sequences that have
significantmatches in theUniProt/Swiss-Prot database, the annotation of the respective
entries is analyzed and keywords and enzyme classification are extracted. Structural
categorization of gene products involves secondary structure prediction as well as PSI-
BLAST searches against the sequenceswith known 3D structure as deposited in the PDB
databank (Deshpande et al. 2005) and SCOP database of known structural domains
(Andreeva et al. 2004). Other calculated or predicted structural features include
molecular weight, pI, low complexity regions (Wootton 1994), membrane regions
(Krogh et al. 2001), coiled coils (Lupas 1997), and signal peptides (Bendtsen et al. 2004).

Functional roles of gene products are described in terms of the manually curated
hierarchical functional catalog (FUNCAT) (Ruepp et al. 2004). Each of the 16 main
classes (e.g., metabolism, energy) may contain up to six subclasses. Correspondingly,
the numeric designator of a functional class can include up to six numbers. For ex-
ample, the yeast gene product YGL237c is attributed to the functional category
04.05.01.04, where the numbers, from left to right, mean transcription, mRNA
transcription, mRNA synthesis, and transcriptional control. An essential feature of
FUNCAT is its multidimensionality, meaning that any protein can be assigned to
multiple categories.

In the current release of the PEDANT database 67% of annotation is of type 3.
Information of this type is constituted by the MIPS functional categories, InterPro and
SCOP domain assignments, COG families, PIR superfamilies, as well as by keywords
and EC numbers transferred by homology to the Swiss-Prot protein entries.

The three categories of automatic annotation outlined above differ in their intrinsic
susceptibility to errors. It is obvious that the features of type 1 are unfaultable and cannot
generally contain errors (except for incorrectly predicted gene models, typographical
errors, or errors caused by software bugs or human error). Features of type 2 are
typically predicted with the accuracy in the order of 70% by machine learning
techniques, such as neural networks or support vector machines. If no experimental
data for a given feature type is available (e.g., known three dimensional structure,
experimentally determined cellular localization), such predictions can only rarely be
further improved by human curation. Finally, features of type 3 are transferred fromone
or several previously annotated gene products to the query protein based on a
sufficiently significant degree of similarity. These features constitute the main bulk of
protein-associated information available in the databases, and it is precisely this part of
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protein annotation that is especially prone to errors due to intrinsic limitations of
annotation transfer by homology.

3 Data mining in genome annotation

3.1 General remarks

Technically speaking, the automatic assignment of annotation items to a given protein
sequence can be done independently for each item, or coupled, in a concerted fashion. In
the latter case, unlikely combinations could, in principle, be avoided in the first place.
Machine learning algorithms, e.g., for multi-label classification andmulti-task learning,
could be applied to achieve this goal. Unfortunately, the situation ismore complicated in
practice, where annotations may originate from manual or automated efforts (e.g.,
transferred via analogy), and inconsistencies may occur due to independently assigned
annotation items. Therefore, we have to assume that annotation errors do occur, and
methods for their correction (in hindsight) are required.

In the following, we give an overview of data mining techniques for the detection
of erroneous genome annotations. Finding errors or unusual events in data is both
one of themost useful and least spectacular applications of data miningmethods.Work
in this area has a long tradition and is typically published under the heading of
deviation detection or anomaly detection (see, e.g., the early systems such as KEFIR
(Matheus et al. 1996) and WSAR (Wong et al. 2002), many of which focused on
temporal trends).

Dependent on the availability of a labeled training set (i.e., a set of sequences with
reliably assigned annotation items), three different types of techniques are applicable. In
a supervised learning approach (such as the one proposed by (Wieser et al. 2004), see
below), reliable annotations from a smaller dataset are transferred to a larger unlabeled
set. In semi-supervised learning, both labeled and unlabeled data are used. However, to
the best of our knowledge, semi-supervised learning has not been applied to the problem
of mining erroneous genome annotations so far. Finally, unsupervised learning ap-
proaches detect annotation errors without the help of labeled training sets. The overall
goal is to discover unusual combinations of annotation items. Strictly speaking, the
problem could be framed as the one of finding all annotation items A1 to Ak of gene
products such that their joint probability PðA1; . . . ;AkÞ is smaller than a user-defined
threshold. To solve this problem, graphical models like Bayes nets could in principle be
used and queried. However, as annotation databases are sometimes quite sparse, it is
questionable whether this could be done successfully. Therefore, methods for clustering
and association rules have been applied to annotation databases. All of the solutions
presented below, however, are just work-arounds, circumventing the problem of
determining how likely a given set of annotation items is.
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An important aspect of mining annotation databases is the duality of possible
annotation errors. Over-annotation causes false positive annotation features, under-
annotation causes false negatives. It is important to note that different methods may be
necessary to deal with each of the two cases.

The performance requirements on methods applied to databases of genome
annotations are in a medium range. As seen in Table 1, molecular biological databases
may have millions of entries, making algorithms quadratic in the number of examples
impractical. In the followingwe present a brief overview of supervised and unsupervised
learning approaches, recalling the basic notions and presenting selected applications in
the context of mining genome annotation.

3.2 Supervised learning

The task in supervised machine learning is to find useful generalizations from
observational data in order to make accurate predictions for unseen cases. It is called
supervised because the learning setting assumes a teacher who assigns class labels for the
learner. Supervised learning is related to the notion of predictive data mining, which
mostly involves the search for classification or regression models. Traditional machine
learning techniques have been devised to find predictive models, that are, at least in
principle, comprehensible and human-readable.

In our context supervised learning methods transfer reliable annotations from a
smaller dataset to a larger unlabeled set. For example, rules can be learned from a
highly curated and reliable database, such as Swiss-Prot, and then used either to
further improve annotation in the same database, or in another, automatically
generated database, such as TrEMBL. (Kretschmann et al. 2001) applied the C4.5
data mining algorithm to derive decision trees representing the knowledge on Swiss-
Prot keywords. Rules obtained in this fashion combined with information on
sequence groups gleaned by sequence analysis can be applied both for consistency
checks within Swiss-Prot and for generating keywords for new TrEMBL entries with
high accuracy. Conversely, exclusion rules for a specific protein group (e.g. sharing the
same sequence motif) can be generated by the C4.5 algorithm to detect contradicting
annotation items, as implemented in the Xanthippe post-processing system (Wieser
et al. 2004).

3.3 Unsupervised learning

In unsupervised learning there is no teacher and no class labels to guide the induction
process. It is related to the notion of descriptive datamining, where the task is to describe
and characterize the data in some way, e.g., by finding frequently occurring patterns in
the data. Please note that clustering should be categorized as descriptive data mining,
although, viewed as density estimation, it could be used for predictive purposes as well.
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Asno class labels are available, the task is basicallymuchharder, but alsomuch harder to
evaluate objectively.

3.4 Clustering

Generally, the task of clustering is to find groups of observations, such that the intra-
group similarity is maximized and the inter-group similarity is minimized. There are
countless papers and books on clustering, and it is hard to tell the advantages and
disadvantages of the respective methods. Part of the problem is that the evaluation and
validation of clustering results is to some degree subjective. Clustering belongs to the
family of unsupervised learning schemes in the sense that there is no target value to be
predicted.

Clustering algorithms can be categorized along several dimensions:

* Categorical vs. probabilistic: Are the observations assigned to clusters categorically
or with some probability?

* Exclusive vs. overlapping: Does the algorithm allow for overlapping clusters, or is
each instance assigned to exactly one cluster?

* Hierarchical vs. flat: Are the clusters ordered hierarchically (nested), or does the
algorithm return a flat list of clusters?

According to this classification, the method by Kaplan and Linial (2005) is a
hierarchical agglomerative clustering method which utilizes a measure of similarity
between the annotation combinations of each pair of proteins and produces categorical
and non-overlapping clusters. Another method, by Kunin and Ouzounis (2005),
essentially is a graph-based clustering method producing categorical, non-overlapping,
flat clusters. Following the generation of clusters of proteins sharing some degree of
annotation similarity, subclusters based on sequence similarity are created.

In the context of our application, annotationmining, clusteringmethods first group
proteins that are thought to be related, e.g., on the basis of sequence information.
Subsequently, annotations that are completely distinct or untypical in one of the clusters
are inspected, as they indicate possible errors.

More precisely, the basic procedure is to form clusters of proteins based on sequence
similarity and/or commonality in annotation items. Errors are then identified and
corrected by detecting inconsistencies in the annotation of related proteins forming a
sequence cluster. Based on the observation that more than 95% of proteins have more
that two annotation attributes, with 10 being the average number (Kaplan et al. 2003)
implemented a system that represents protein-keyword relationships in biological
databases in the form of a hierarchical graph, each node of which symbolizes proteins
sharing unique combinations of keywords. While analyzing protein sets attributed to
the same functional category by automated annotation methods, observing certain
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proteins occupying areas on the graph that are distinct from the main bulk of the
collection clearly points to potential false annotations. More generally, one can define a
score that indicates how similar the sets of annotations for any given pair of proteins are.
Functionally related proteins are naturally expected to have more similar annotation
than unrelated ones. Based on the defined similaritymeasure, proteins are clustered into
groups with homogeneous annotation, the so-called property clusters. Thismethod can
be used to detect false positive annotation by any given automatic method aimed, for
example, at detection of conserved sequence motifs. The idea is to find those proteins
that share the same annotation, e.g., a sequence motif, from the test method, and at the
same time form disjoined subsets as a result of clustering in the space of other annotated
features. Alternatively, annotation errors can be identified by comparing protein
groupings obtained by sequence and annotation clustering. Again, the underlying
assumption is that the more sequence-similar proteins are, the higher chance they have
to share functional annotation.

3.5 Association rule mining

Finally, methods for association rule mining (Zhang and Zhang 2002) detect certain
types of variable dependencies. They return rules of the formX ) Y , whereX andY are
sets of items, in our case annotation items. Consider the set of all possible annotation
items I from a database of protein annotations. Then every protein is annotated by a
subset X
 I of possible items. Sets of items X are usually called itemsets in the literature.
From a formal point of view, a database D is then defined as a multi-set of itemsets.

Positive association rules have the form ðA1& � � �&AnÞ ) Z, where A1; . . . ;An are
the items on the left-hand side (LHS), andZ is a single itemon the right-hand side (RHS)
of the rule. This rule should be interpreted as: �Database entries that possess all features
A1; . . . ;An are likely to possess feature Z�. Association rules are usually constructed from
frequent itemsets, i.e., itemsets that occur with a frequency greater than or equal to a
user-specified threshold (a parameter known as support) in database D. For the
computation of frequent itemsets, a vast number of effective methods is known and
available today.

A non-standard variant of association rules allows for a limited form of negation in
the left-hand side and the right-hand side of rules: Negative association rules (Antonie
and Zaiane 2004; Wu et al. 2004) are rules of the form not X ) not Y, not X ) Y , or,
X ) not Y, where X and Y are again item sets. For the remainder of the chapter, we
restrict ourselves to negative association rules with a single negated item on the right-
hand side, ðA1 & � � �& AnÞ ) not Z, meaning �database entries that possess all features
A1; . . . ;An are unlikely to possess feature Z�, Only the third variant of negative
association rules is actually needed for our application of mining annotation databases.

To evaluate positive and negative association rules, we can use several scoring
functions. Each rule is characterized by its coverage, the number of entries in the
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database that satisfy the LHS (possess all features A1; . . . ;An), and its strength (also
known as confidence), the fraction of entries that satisfy LHS andRHS among the entries
satisfying the LHS. In other words, strength is the probability that an entry will satisfy
the RHS given that it satisfies the LHS. An additional very important parameter used to
characterize negative rules is leverage which is defined as the difference of the rule
support and the product of supports of its LHS and RHS. Leverage measures the
unexpectedness of a rule as the difference of the actual rule frequency and the
probability of finding it by chance with the given frequencies of its RHS and LHS.

When applied to large annotation databases (Artamonova et al. 2005, 2007),
methods for association rule mining often detect simple, yet biologically meaningful
implications. For instance, in a database of annotated proteins, such as Swiss-Prot, one
positive rule is the implication “Nuclear localization) Origin: eukaryota”, i.e., every
protein annotated as localized in nucleus has a eukaryotic origin. The rules are not
necessarily absolutely strict. For instance, the rule “Alternative splicing ) Origin:
eukaryota” has exceptions, because viral genes also may be spliced (and alternatively
spliced as well). However, this is still a valid rule, because the exceptions comprise a
small fraction of the database. Thus, this rule is naturally interpreted as “the majority of
proteins with evidence of alternative splicing originate from eukaryotic organisms”.
“Many-to-one” rules can also be considered. For instance, “Alternative splicing and
Kinase)Origin: eukaryota”. In this example, alternatively spliced proteins are specific
to eukaryotic organisms or viruses and kinases belong to either eukaryota or prokaryota.
If a protein kinase is annotated as resulting from alternative splicing, then it is an
eukaryotic protein.

An example of a trivial biologically relevant negative association rule is “Nuclear
localization ) not bacterial origin”, i.e., every protein annotated as localized in the
nucleus cannot have a bacterial origin. As with positive rules, negative rules are not
necessarily absolutely strict. For instance, the rule “Operon structure) not eukaryotic
origin” has a number of exceptions because bacterial-like operons were described in
Ceanorhabditis elegans (Blumenthal et al. 2002). Since these exceptions comprise only a
small fraction of the annotated genes, this rule may naturally be interpreted as “the
majority of genes constituting an operon structure do not originate from eukaryotic
organisms”.

On amore abstract level, positive and negative association rulesmay indicate under-
annotation aswell as over-annotation in protein databases. Themain assumption is that
if the database annotations satisfy a rule “A & B) (not) C” with a high support and a
very high strength, then such a rule reflects some biological regularity or maybe a
peculiarity of the annotation process. If the strength is very close, but not equal, to one,
then the rule has a minor number of exceptions. While in some cases such exceptions
may reflect biological reality, it is plausible that a significant fraction of them are actual
errors in annotation. Hence the strategy of the method developed by Artamonova et al.
(2005, 2007) is to find rules of high strength, e.g. in the range (0.95–1), filter them,
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identify proteins that are exceptions to such rules, mark the features from the left side of
positive rules or from both sides of negative rules and add the right side feature of
positive rules to the annotation of such exception proteins.

4 Applying association rule mining to the Swiss-Prot database

The approach of positive rule mining was evaluated on the high-quality Swiss-Prot
database, focusing on the most formalized non-overlapping fields of a standard Swiss-
Prot entry such as protein length, the highest-level taxon of the protein origin,
assignment of InterPro domains, keywords and features from the feature table. The
calculation of positive association rules for the annotation set extracted from Swiss-Prot
resulted in roughly 3 hundred thousand rules with the strength greater than 0.1 and the
minimal coverage count 50. These rules vary greatly in terms of their coverage and
strength. For example, the rule “Alternative Splicing & Transmembrane) Eukaryota”
extracted from Swiss-Prot has coverage count 1433, support count 1417, and strength
0.989 (�1417/1433), indicating that there are 1433 proteins in Swiss-Prot with
simultaneously assigned keywords “Alternative splicing” and “Transmembrane”
and 1417 of them are of eukaryotic origin. The remaining 16 proteins originate from
viruses. On the other hand, the rule “Alternative splicing & Nuclear protein )
Repressor” has 129 confirmations from 1288 covered proteins (support count¼ 129,

Fig. 3 Distribution of association rules strength for (a) positive rules in the Swiss-Prot and PEDANT
annotations and (b) negative rules in the PEDANT annotation. Association rule strength is defined as the
probability that a given database entry will satisfy the right side of the rule given that it satisfies the left side
of the rule
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coverage count¼ 1288, strength 129/1288� 0.1), implying that only a small fraction of
all nuclear proteins subjected to alternative splicing are repressors, whereas these three
keywords taken separately occur frequently among Swiss-Prot protein entries.

A prominent feature of strength distribution of Swiss-Prot rules is the presence of
two distinct peaks in the regions of very weak and very strong rules, with rules in the
medium strength range being relatively infrequent. Strength distributions of association
rules for both databases are shown in Fig. 3a. A large number of weak rules (strength
below 0.2) originate from diverse combinations of frequent items, such as the majority
of the Swiss-Prot keywords or features. These combinations are typically not wrong, but
they do not represent typical associations between items. For example, the Swiss-Prot
entry Q6W2J9 (BCoR protein from Homo sapiens functioning as transcriptional co-
repressor) contains the keywords “Alternative splicing”, “Nuclear protein” and
“Repressor” and conforms to the rule “Alternative splicing & Nuclear protein )
Repressor”. It has repressor function, localizes in the nucleus, as in the case of the
majority of transcription factors, and is subject to alternative splicing. But only a certain
fraction of all repressors have multiple alternatively spliced isoforms, and thus this rule
is not classified here as a biological regularity.

The other extreme (in Fig. 3a) is constituted by very strong rules with strength values
in the range roughly between 0.95 and 1.0. For example, all 1554 proteins annotated with
the keyword “G-protein coupled receptor” also have the keyword “Transmembrane”
while all 1904 proteins having the feature “MITOCHONDRION” in the FT line also
contain the keyword “Transit peptide”.

The approach specifically focuses on the strong rules with the strength over a certain
threshold (e.g., 0.95), but below 1.0. These rules are nearly always fulfilled, but
exceptions from them do occur in the database. As argued above, such exceptions
may constitute annotation errors that can be detected and corrected, or at least flagged,
automatically.

Approximately every half year, a new release of the Swiss-Prot database is made
available with novel protein entries added as well as some pre-existing entries revised.
As one progresses from one release to another, many exceptions to association rules get
corrected. One possible way to reveal the corrections introduced by the Swiss-Prot staff
is to examine the protein entries that constituted rule exceptions and classify these
entries as corrected if in a subsequent database release, either one of the items forming
the LHS of the associated rule was deleted from the annotation or the item from RHS
was newly introduced or altered.

Figure 4 displays the strength distribution of such corrected rules. In line with the
main assumption, the exceptions to the strongest rules get corrected more often. 23.5%
of protein entries constituted exceptions to the rules with strength in the range (0.97–1)
found in the Swiss-Prot release 44.0 were corrected until the release 47.0, while the
average percentage of corrected exceptions to the rules of any strength was 3.47. As an
additional test, all 350 exceptions from randomly selected 149 rules in the strength
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range (0.97–1) not corrected by Swiss-Prot staff were subjected to careful manual
evaluation by an experienced protein annotator. The exceptionwas classified as an error
if one of the items of the LHS of the rulewas assignedwrongly to a given protein entry, or
the required item on the RHS of the rule was missing. It was found that 24.7% of these
exceptions indeed constituted annotation errors. The overall error rate was calculated as
(the number of exceptions corrected in subsequent releasesþmanually verified error
rate *number of uncorrected exceptions)/overall number of exceptions. We thus
estimate that about 41% of exceptions from strong rules are actually associated with
erroneous annotation.

Unfortunately the approach of the negative rule mining cannot be satisfactorily
evaluated on the Swiss-Prot data. By design, exceptions from negative association rules
can only reveal over-annotation, i.e., erroneous assignment of attributes to protein
entries, while under-annotation (missing attributes) cannot be detected. Manually
curated databases are typically under-annotated and this approach is not efficient for
them. The performance of the method was very low when tested on the Swiss-Prot
database.

5 Applying association rule mining to the PEDANT database

The application of the positive association rule mining to the automatically generated
PEDANT annotation revealed that statistical properties of the association rules gleaned
from the PEDANT database are similar to that of Swiss-Prot whereas the absolute
number of positive association rules wasmuch higher for PEDANT than for Swiss-Prot.
Overall, almost one and a half million rules where calculated for the strength range

Fig. 4 Fraction of corrected annotations as a function of rule strength ranges in the Swiss-Prot releases
44.0–47.0
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(0.1–1.0). Here, too, strong enrichment of veryweak and very strong rules was observed,
with rules in the intermediate strength range being relatively rare (Fig. 3a).

Calculation of negative rules for the annotation set extracted from PEDANT
resulted in 9591 rules. For example, one of the most trivial rules found was “Bacteria
) not Eukaryota”. This rule is satisfied in all possible cases and thus its strength is 1.0
with no exceptions. Much more interesting rules in the context of this approach are
those of strength very close, but not equal to 1.0. These rules have a small number of
exceptions that may constitute annotation errors. An example of such rules is “Nuclear
protein) not Bacteria”. This statement which is obvious from the biological point of
view nevertheless does not make an absolute rule; in fact out of all 1808 protein entries
annotated by the keyword “Nuclear protein” in the PEDANT database only 1798
actually have eukaryotic origin. The ten proteins constituting exceptions from this rule
simply inherit this keyword from their eukaryotic homologs.

Some aspects of negative rule statistics differ significantly from positive association
rules due to vastly different item frequencies. Because annotation items themselves are
rare, and most items are in fact extremely rare (e.g., the PFAM domain PF01029 is only
found in 12 (0.02%) of proteins analyzed), their negations used in negative association
rule mining are unavoidably very frequent. This simple circumstance makes the
calculation of negative rules computationally much more challenging compared to
positive rules and necessitates the application ofmuch stricter thresholds on the rules of
interest. While analyzing rule strength distribution only the rules exhibiting strength
higher than 0.1 were considered. The number of weaker rules (strength below 0.1) is too
high due to the combinatorial explosion caused by random feature combinations,
making their analysis computationally prohibitive. However, even in the strength
interval 0.1–1.0 the number of negative rules is several orders of magnitude higher that
the number of positive rules. To make the task computationally tractable we imposed a
threshold on minimal leverage which effectively helps to select only the most �non-
random� rules and eliminates all rules with the strength below 0.97. The distribution of
negative rule strength is also plotted in Fig. 3b.

Since PEDANT annotation typically never gets corrected manually, and there is
thus no release dynamics as in the case of Swiss-Prot, the only way to estimate the
amount of errors in the strong rules with exceptions is by manual verification. A
randomly selected sample of 144 positive rules in the strength range (0.97–1) was
analyzed. About a half of the sample was selected at random, whereas the second half
was selected among rules showing at least one exception associated with a protein
contained in Swiss-Prot to ensure that this protein is reasonably well documented. The
overall number of curated exceptions was 330. The total fraction of exceptions classified
as errors in PEDANT was close to 68%.

In contrast to Swiss-Prot only 30% of all errors revealed in PEDANT by manual
curation were due to omission of an RHS item. Other errors resulted from false
assignment of the items in LHS of the rules, or over-annotation.
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In the application of the negative rule mining approach it is interesting to identify
errors in the annotation attributes of type 3 transferred by similarity from other
proteins. In the PEDANT annotation dataset about 67% of all features were similarity-
derived features, more than a half of which were constituted by functional category
assignments.

A considerable and arguably the most valuable part of PEDANT annotation
involves assignments of functional categories based on the FunCat (Ruepp et al.
2004), a hierarchical catalog of protein functions developed at MIPS. Among all 184
different FunCat labels (2 upper levels of the hierarchy) used in this study 71were taxon-
specific (e.g., fc75.03 – “animal tissue”). It turned out that a very large number of
negative rules combined FunCat labels on one side of the rule with the taxon of the
protein origin on the other side (here only the highest-level taxons, namely Eukaryota,
Bacteria, Archae, and Viruses were used). Thirty three percent of all negative rules had
such structure. Homology-based transfer of taxonomic information is highly prone to
error.Where a taxonomically specific FunCat label is incompatible with the known gene
taxon, it is the FunCat assignment that is guaranteed to be erroneous, since the protein
origin is doubtlessly known.We classify such cases as annotation errors according to the
general procedure. This simple test resulted in automatic correction of almost 50% of all
exceptions of strong negative rules.

To estimate the prevalence of errors among exceptions not corrected by the
taxonomy procedure described above we selected randomly a sample of 100 rules and
analyzed their exceptions manually. Annotation features of these proteins occurring
either in the LHS or in the RHS of the rules were subjected to careful manual analysis by
an experienced protein annotator according to the established procedures routinely
used atMIPS for genome annotation. An exceptionwas classified as an error if one of the
features in the LHS or RHS of the rule was found to be assigned wrongly to the given
protein entry. In 96%of examined exceptions at least one of the features constituting the
rule was assigned wrongly to the given protein.

The overall specificity of the approach was estimated according to the formula:
(percentage of exceptions classified as annotation errors among all manually verified
exceptions �number of exceptions in rules not involving �taxon specificity�þ number of
exceptions from �taxon specific� rules)/overall number of exceptions.

For negative rule approach it was as high as 98%: practically all feature combinations
associated with exceptions included at least one annotation error.

The specificity of the negative rules is thus much higher than that in the case of
positive rules (68% for the PEDANT database). Over-annotation is a typical problem of
many automatic software pipelines, including PEDANT, and the ability to correct this
type of errors using negative rule mining is valuable. At the same time, the approach
based on exceptions from strong negative rules yields much smaller coverage than
positive rule mining. As seen in Fig. 5, negative rule mining allows identifying 11 times
fewer annotation features (0.6% for negative rules vs. 6.7% for positive rules) that
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participate in incompatible feature combinations.More than two thirds of these features
do not get detected by positive rule mining.

Both of these approaches are designed to flag incompatible feature combinations for
subsequentmanual inspection rather than to automatically correct annotation errors in
an unsupervised fashion.With the exception of taxon-specific ruleswhere FunCat labels
incompatible with the taxonomic origin of a protein are guaranteed to be errors, we do
not know exactly which feature of a flagged feature combination is wrong. Besides, there
always exists a chance that all features constituting an exception from a strong negative
rule are nevertheless correctly assigned and that the exception is in fact biologically
motivated.

6 Conclusion

Applying a combination of positive and negative rule mining creates an opportunity to
enhance the fidelity of genome annotation in two alternative ways. First, insights about
the sources of annotation errors gained in this investigation can be used to adjust the
automatic annotation pipeline in order to minimize generation of these errors in the
future. Examples of such possiblemodifications include taxon-specific homology-based
transfer of functional categories and utilization of individualized similarity thresholds
for various features. Second, suspicious features can be visually marked for subsequent
inspection by the user. While this approach is better suited for manually curated
databases where errors actually get corrected by human experts, it is also useful for

Fig. 5 Coverage of the negative and positive rule mining approaches. The numbers represent the
percentage of all annotation features identified as potentially erroneous by each individual method and by
both of them
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automatic systems such as PEDANT where users get alerted to specific less trusted
annotation items that should be used with caution.
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1 Homologous and non-homologous sequence
methods for assigning protein functions

1.1 Introduction

In order tomaximise our understanding of biology and evolution, gained from the large
scale sequencing projects of the current era, it is necessary to be able to assign detailed
biochemical, cellular and developmental functions to as many protein sequences as
possible. More than five million distinct proteins can be found in the major public
repositories, i.e., UniProt & RefSeq (Pruitt et al. 2007; UniProt Consortium 2007), but
detailed laboratory investigations have only been carried out for a tiny fraction. For
instance, only �25; 000 proteins have solved structures in the international protein
structure repository, the worldwide Protein Data Bank (wwPDB, Berman et al. 2003).

A variety of complementary approaches are being developed to increase the
functional annotations of proteins. There are large-scale projects, often on multiple
genomes and with bioinformatics researchers working in tandem with laboratory
groups, to maximise the amount of functional annotation that can be transferred
between proteins. Examples of this include some of the structural genomics initiatives,
which aim to provide multiple structures for protein families predicted to have diverse
functions. On a more theoretical level bioinformatics researchers are attempting

Corresponding author: Lars Juhl Jensen, Structural and Computational Biology Unit, EMBL,
Meyerhofstrasse 1, 69117 Heidelberg, Germany (e-mail: lars.juhl.jensen@gmail.com)
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to build a theoretical understanding of molecular and functional evolution which
encompasses genome content togetherwith sequence and structure variation andwhich
will allow the identification of individual functions for proteins as well as predictions of
functional associations between proteins.

In the BioSapiens network there is a particular focus on analysing protein sequence
and structure data to predict biochemical functions, and on combining the functional
annotations provided by different groups participating in the network to improve the
coverage and confidence in the assignments. Analysis of a query protein to detect
functional sites often involves integrating biochemical data with knowledge of the
proteins structure and/or sequence. That is, proteinswhich have beenwell characterised
experimentally and forwhich one ormore structures are known, can be studied to detect
those highly conserved residues likely to be important for function, for instance catalytic
residues involved in active sites. Subsequently any insights derived from these analyses
can be extended to related sequences.

By comparing protein sequences, using alignment tools like BLAST (Altschul et al.
1990), it is possible to gain a measure of the likelihood that two sequences are
evolutionarily related. If two sequences are closely related then it is highly likely that
theywill exhibit functional and structural similarity. Furthermore, orthologous relatives
are much more likely to share similar functions than paralogues (see Sect. 1.2). Several
groups have studied the relationship between conservation of enzyme function and
sequence similarity and demonstrated a high likelihood of functional conservation for
two homologues sharing more than 50% sequence identity (Skolnick 2003).

A more accurate approach than using simple sequence similarity, is to group
sequences into homologous families and then subgroup them into functional sub-
families (Fig. 1). For each family and subfamily the degree of functional conservation
can be estimated and used to generate individual thresholds for transferring functions.
As a result many of the current functional inference methods are based around one or
more of the various family resources available.

Amongst all the protein family resources that have become publicly available over
the last two decades or more, the first immediate distinction is whether they group the
whole proteins (i.e. the HAMAP (Gattiker et al. 2003) and eggNOG (Jensen et al. 2007)
databases described below) or the domains from which proteins are assembled (i.e. the
CATH (Greene et al. 2007) and SMART (Schultz et al. 2007) databases). The existence
of distinct domains was initially discovered by studies on three-dimensional structures,
and other studies have since confirmed that most proteins aremade from combinations
of discrete, globular domain units, often with a particular function (ion chelation) or
range of functions (kinases). In eukaryotes at least 70% of proteins are thought to
comprise multiple domains.

Another distinction between the various protein family resources is whether the
families are presented as a hierarchy, with subfamilies representing different levels of
similarity and structural and/or functional conservation (i.e. CATH or ProtoNet
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(Kaplan et al. 2005)) or whether they are �flat� (i.e. SMART or HAMAP). Hierarchical
classifications are typically designed to capture different aspects of protein family
evolution and hence aid their study. They can also provide a means of choosing
alternative similarity levels for safe functional inheritance in different families. How-
ever, hierarchical families are often more difficult to create and maintain, and their
analysis can sometimes bemore problematic, hence the use of single layer classifications
by some resources. Where families in these resources are clearly associated with a single
function they can be more easily used to provide confident functional assignments.

The third main distinction in protein family resources is in their �coverage� – i.e. the
percentage of known proteins that they classify. High coverage largely correlates with a
high level of computer automation in the assignment of proteins to the classification and
vice versa. For instance, Gene3D (Yeats et al. 2007) essentially uses an all-against-all
similarity search and an automated clusteringmethod (Frey andDueck 2007) to classify
most known proteins. In contrast, curators at HAMAPmanually construct prokaroytic
protein families and assign membership based on detailed analysis and study of the
literature.

Fig. 1 An idealised view of a protein family is presented. The individual coloured circles are the member
proteins and the distances between them reflect their respective sequence similarities. The proteins are
coloured according to their enzymatic function, while the uncoloured dots are non-enzymatic homologues.
They group according to their function into functional subfamilies (A), (B) and (C)
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Somewhere in between these approaches is another common protocol that involves
creating manually validated sequence profiles for families, and then applying these
profiles automatically together with reliable statistical measures to recruit further
sequence relatives into the family (i.e. SMART). Therefore, it is also likely that there
is an inverse relationship between coverage and accuracy. It is also worth noting that
development of the various types of resource are synergistic, since the automated
approaches can use manually curated resources for benchmarking their methods to
maximise accuracy, whilst the automatically-produced clusters can help in guiding
manual assignments.

This chapter will largely focus on the family-based function prediction resources of
the BioSapiens network; however, this is not the onlyway of exploiting protein sequence
similarity information for function prediction and somemethods will also be described
that use neural networks to infer function from non-homologous proteins, for instance
ProtFun (Jensen et al. 2002). The various family resources of the BioSapiens network
and their similarities are depicted in Table 1.

1.2 Homologs, orthologs, paralogs. . .

The genomes of species that diverged only recently are highly similar. Chimpanzee and
human, for instance, share approximately 98% sequence identity at the nucleotide level.
Most human genes have a corresponding gene in chimpanzee and vice versa. These

Table 1 Frequently used terms for homologous genes

Term Definition

Homologs Genes of common origin
Orthologs 1. Genes resulting from a speciation event

2. Genes originating from an ancestral gene in the last common ancestor of the
compared genomes

Co-orthologs Orthologs that have undergone lineage-specific gene duplications subsequent to a
particular speciation event

Paralogs Genes resulting from gene duplication
Inparalogs Paralogs resulting from lineage-specific duplication(s) subsequent to a particular

speciation event
Outparalogs Paralogs resulting from gene duplication(s) preceding a particular speciation event
1:1 orthologs Orthologswith no (known) lineage-specific gene duplications subsequent to a particular
(one-to-one) speciation event
1:n orthologs
(one-to-many)

Orthologs of which at least one – and at most all but one – has undergone lineage-
specific gene duplication subsequent to a particular speciation event

n:n orthologs Orthologs which have undergone lineage-specific gene duplications subsequent to a
(many-to-many) particular speciation event
Xenologs Orthologs derived by horizontal gene transfer from another lineage
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commongenesmust have already existed in the last common ancestor shared by the two
species, and were subsequently retained after speciation. Genes derived by speciation
events are called orthologs, and are said to be orthologous to each other. Orthologs of less
related species have a lower sequence identity, due to a longer period of separate
evolution, although the protein structure and the biologically relevant positions
generally remain conserved. The function of orthologous proteins is not expected to
change over time, unless the original function becomes obsolete or the function is taken
over by another gene product.

In contrast to orthologs, paralogs are derived by gene duplication. In some cases, the
two initially redundant gene copies are subsequently retained in the genome, whichmay
be explained in two ways (summarized in: 1) neofunctionalization, where the product
of one gene copy performs the original function of the ancestral gene, while the product
of the other gene copy acquires a new function beneficial to the organism;
2) subfunctionalization, where deleterious mutations in both gene copies enforce the
retention of the now complementary functional gene products. However more com-
monly, one of the genes accumulates deleterious mutations (nonfunctionalization),
degrades to a pseudogene (pseudogenization), or is completely lost. More complex
models have been developed to explain the ongoing evolutionary process of gene birth
and gene death, including the duplication-degeneration-complementation (DDC)
model, synfunctionalization, and subneofunctionalization. It is difficult to predict what
functional changes may occur after a gene duplication event without a detailed
experimental characterization of the duplicates, although paralogs often share a related
general biochemical activity. Enzymes and receptors, for instance, can change their
substrate specificity and thus contribute to new functional innovations.

Genes originating from a common ancestral gene are called homologs, they are
homologous to each other (see Fig. 2a). According to this definition, homologous groups
can include both, orthologs and paralogs. Therefore if you do not know precisely how
proteins are related to each other – whether they are orthologs or paralogs – then the
term homolog will always be correct – provided of course that they do share a common
ancestor. Genes predicted to be homologous are generally grouped into gene families.

In the context of comparative genomics corresponding genes are clustered into 1:1
(one-to-one) orthologs, 1: n (one-to-many) orthologs and n:n (many-to-many) or-
thologs, according to the number of copies detected in the complete genomes of the
given species. Xenopus tropicalis and X. laevis, for instance, share many 1:2 orthologs
due to a whole genome duplication (WGD) in X. laevis that occurred about 30–40 mya.
A number of species from distinct taxonomic branches have experienced a WGD,
including the yeast Saccharomyces cerevisiae and there is evidence that ancestral
vertebrates have undergone as many as 2 rounds of WGDs. Taking into account the
abovementionedWGDs, an ortholog of the last common ancestor of fungi andmetazoa
theoretically gives rise to a 1:2:4:8 orthologous relationship in e.g. Schizosaccharo-
myces pombe, S. cerevisiae, X. tropicalis and X. laevis. Indeed, it is unlikely to detect
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such cases in the relevant genomes, as many gene copies resulting from WGD are lost
over time and further lineage-specific gene duplications are added.

Critical for the development of evolutionary genomics was the development of
terms to describe relationships between orthologs and paralogs. Three of these terms
became especially popular and are described in Table 1: Inparalogs originate from
lineage-specific duplications subsequent to a given speciation event – they are thus
paralogs within a group of orthologs; inparalogs of a particular orthologous group are
co-orthologous to all other members of this group; gene duplications prior to the
radiation of the species under consideration give rise to outparalogs. Such relationships
are visualized in Fig. 2b: the paralogous vertebrate genes A and B are co-orthologs of the
Drosophila gene AB; the paralogous vertebrate genes A and B are inparalogs of the

Fig. 2 Schematic illustration of relationships between homologous genes. a) Orthologues and paralogues;
b) relationships between orthologues and paralogues. The ancestral gene presents the homologue of the
last common ancestor of the compared species
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larger orthologous group 2, while the vertebrate genes B are outparalogs of the smaller
orthologous group 1 (genes A), etc. Although such relations might occur confusing at
first glance, the terms are of great convenience when analyzing large gene families with
manifold gene duplications in distinct taxonomic branches.

It remains to be mentioned that there exist 2 different understandings of or-
thologous protein groups in the scientific community: some scientists do not accept
inparalogs in orthologous groups and thus split homologs at each known gene
duplication event, resulting in many small orthologous groups (as indicated in
Fig. 2a), while others accept inparalogs and form larger groups at the level of
interest (Fig. 2b). The latter definition seems to have become widely accepted by many
researchers in the field.

In addition to gene duplications, there are many other evolutionary processes
leading to the creation of new genes including gene fusion and gene fission. The
appropriate presentation of such events is a phylogenetic network, which takes into
account multiple parents and the linkage of branches. No specific terms exist that refer
to relations between original genes and novel genes.

Genes that are transferred between species via horizontal gene transfer (HGT) are
called xenologs. Horizontal gene transfer events are most commonly found to occur
between species that share a commonhabitat or betweenhosts andparasites. Evidence of
HGT can be detected in a phylogenetic tree, when genes of a given species seem to arise
fromanancestral specieswhich is known tobeunrelated; for example, itmaybeobserved
that a gene from a eukaryotic genome occurs in the branch of an alpha-proteobacterial
clade. In this case, it is likely that the gene was derived from the mitochondria, which –
according to the endosymbiotic hypothesis – originates from bacteria.

The concept of orthology and paralogy has been developed to define the relation-
ships between genes, but today the same terms are often used for proteins in the context
of protein function prediction, where the term �ortholog� generally implies that a group
of proteins share the same or a similar function. But is this correct? Regarding proteins, a
tree-based classification does not always coincide with a function-based classification,
nor does it reflect the fact that most genes produce multiple products and/or bio-
chemically altered forms with distinct functions, such as protein isoforms derived by
alternative splicing, post-translational modifications, protein complexes. A hierarchical
ortholog classification provides a valuable framework for function prediction, but it is
likely to require further graduation for an accurate function assignment of the
individual gene products.

1.3 The HAMAP resource for the annotation of prokaryotic
protein sequences and their orthologues

Since the publication of the first completely sequenced bacterial genome in 1995, new
and cheaper methods to sequence prokaryotic genomes have been developed. It is now
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possible to sequence and assemble the whole genome of a bacterium in one day. At the
end of 2007, more than 620 bacterial and archaeal genomes had been sequenced and
these sequencing projects are the main contributors to the exponential growth of
protein databases. Prokaryotic sequences represent themajority of these new sequences,
and the quality of both the sequences themselves and the prediction of coding regions is
very high. However, the quality of the functional annotation derived from these
sequences is very variable.

This influx of sequences from genome projects has drastically changed databases:
fifteenyears agomostof the available sequences hadbeen submittedbywet labs thatwere
intensively studying a particular protein or a particular region of a gene or operon, and
most of these sequences were accompanied by at least some information regarding
function, expression, localization in the cell, etc. Most of the sequences available today
come from large-scale sequencing projects and will never be experimentally charac-
terised. Nevertheless, with the advent of all the “omics” of the post-genomic era
(Proteomics,Metabolomics, etc.) and thedevelopmentof the conceptof systemsbiology,
the demand for corrected and annotated complete proteome sets is greater than ever.

Within UniProt, this large influx of new sequences without experimental char-
acterization has challenged the way proteins have been annotated for at least ten years.
Manual curation of protein sequences is a time-consuming, laborious effort and the fast
pace of sequencing of prokaryotic genomes was causing a tremendous increase in the
backlog of sequences waiting to be manually annotated. In order to try to increase the
number of annotated prokaryotic sequences, UniProt implemented HAMAP (High-
qualityAutomated andManualAnnotation ofmicrobialProteomes) in 2000, which has
greatly changed theway protein sequences are annotated in the Swiss-Prot section of the
UniProt Knowledgebase (UniProtKB) (Gattiker et al. 2003).

HAMAP comprises a manual procedure and an automated pipeline. The aim is to
automatically transfer annotation based on manually built family rules so that there is
no decrease in the quality of annotation. In this way, for each protein family, annotators
perform a thorough analysis of the existing literature in order to assess conservation of
function and other features and gather the important experimental information that is
available for this protein family. They also correct frameshifts, start sites and other
problems in the submitted sequences, look for missing proteins in the submitted
genome. Finally, they manually define protein families based on similarity searches and
the available literature. The automated pipeline is responsible for finding the new
members of these manually defined protein families, and for propagating the annota-
tion to them. This set-up allows for greater speed in the annotation of newly submitted
sequences without decrease in quality, since the bulk of the annotation work is still
performed manually.

Rules are manually created to annotate proteins belonging to well defined protein
families or sub-families. These rules contain the information that can be propagated to
all orthologues, or to a subset of them (Fig. 3). The use of conditions (for example:
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restriction on the propagation of the annotation to a taxonomic group, dependence on
the presence of a conserved active-site amino acid residue at a certain position, etc.)
helps to limit the extension of the propagationwhen it is not safe to assume that the same
function, subunit, cofactor, etc. apply to all members of a protein family. If more
information becomes available, the rules are updated and the propagation of the
annotation is calibrated accordingly.

Each family rule is composed of several sections:

1. Annotations regarding protein name, the name of the gene that encodes for this
protein, function, catalytic activity, cofactor, pathway, quaternary structure (i.e.,
subunit), localization of the protein in the bacterium, etc., and keywords.

Fig. 3 An example of the family rule used for automatic annotation. The first section contains annotation
propagated to new family members. The features (FT lines) are computed based on their position in the
template sequence, and the presence of the specific residues that are crucial to the activity
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2. Position of sequence features, i.e., regions of interest in the sequence, such as active
sites, metal-binding sites, domains, post-translational modifications, etc.

3. Cross-references to other databases, and other miscellaneous information, such as
size range, presence of multiple genes encoding the protein in a certain organism,
whether the protein is encoded on a plasmid in certain bacteria, etc.

4. A manually curated alignment of the representative members of the family. This
“seed alignment” is used to automatically generate a profile that detects other
possible family members by scanning the UniProtKB (Swiss-Prot and TrEMBL).
The alignment is also used to propagate sequence features to newly annotated
entries.

The structure of the pipeline is outlined in Fig. 5. After a complete genome is
submitted to DDBJ/EMBL/GenBank, its translated CDSs enter TrEMBL, the unre-
viewed section of UniProtKB. The HAMAP automatic pipeline is then used to annotate
additional members, in the following way: protein sequences from UniProtKB/Swiss-
Prot and UniProtKB/TrEMBL are scanned against the HAMAP profile collection on a
daily basis. True matches are annotated using the corresponding family rule. Many
checks are performed in order to prevent the propagation of wrong annotation and to
spot problematic cases, which are channeled to manual curation. The results of this
annotation are integrated into UniProtKB/Swiss-Prot.

At the end of 2007, 1450 family rules were available on theHAMAPweb site (http://
www.expasy.org/sprot/hamap/); these rules were used to annotate approximately 40%
of all UniProtKB/Swiss-Prot entries, and this number shows the efficiency of the
approach. The HAMAP pipeline is being used to annotate proteins from Bacteria,
Archaea and from plastids (i.e. chloroplasts, cyanelles, apicoplasts, non-photosynthetic
plastids), and a similar pipeline is being developed to annotate eukaryotic proteins.

The essential point thatmust be emphasized is that the vast flow of data arising from
complete genome projects does not have to cause a decrease in the quality standards of
curated databases in order to hastily incorporate the sequence information. On the
contrary,meaningful classifications and interpretation of the data require a reliable core
of verified and structured knowledge. Still, databases are under pressure to keep up the
pace and provide their services to the community without delay. The HAMAP pipeline
stands as an example that high quality standards and high sequencing throughput are
not incompatible.

1.4 CATH, Gene3D & GeMMA

The CATH database (Greene et al. 2007; http://cathwww.biochem.ucl.ac.uk/latest/
index.html) was one of the first protein domain structure classifications to become
publicly available, with all the domains identified from three-dimensional data de-
posited in the Protein Databank (PDB). CATH curators systematically �chop� the
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protein structures into their constituent domains using various automatic and manual
protocols. This includes applying the CATHEDRAL domain structure comparison
method (Redfern et al. 2007) to recognise structural similarity between domains.
CATH is an acronym for the four major levels of the classification hierarchy (C)lass,
(A)rchitecture, (T)opology and (H)omology.

The top half of the hierarchy is essentially based on structural considerations, for
example describing the alpha helical or beta strand composition of proteins and the
arrangement of these secondary structure elements in 3D space (the �Class-Architec-
ture-Topology�) whilst the lower half is determined through sequence similarity

Fig. 4 The HAMAP pipeline. Complete microbial proteomes in TrEMBL are searched against the family
profile collection, and confident matches are automatically annotated based on the corresponding family
rule. Only in the case where no warning is produced may the entry enter UniProtKB/Swiss-Prot directly
without manual verification. The remaining entries, which are still the vast majority of entries in any given
proteome, are subject to classical manual annotation, but may also serve to �seed� new family rules
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amongst homologous relatives. See Fig. 5. for a detailed description. The intermediate
H-level is the family level, since this is the layer in the classification that indicates
that the members are evolutionarily related. Relationships at this level are usually
recognised using both structural and sequence data. Each domain is assigned a
position in the hierarchy, again using a combination of computational tools and expert
analysis.

Fig. 5 The CATH structural hierarchy. Domain structures are extracted from the PDB and grouped
according to structural features. The first three levels of the hierarchy are displayed: (C) – CLASS. The
secondary structure composition of the domain (i.e. mostly helices). (A) – ARCHITECTURE. The three
dimensional arrangement of the secondary structures irrespective of their order in the chain. (T) –
TOPOLOGY. Assigned according to the overall shape and connectivity of the secondary strctures. The final
curated level is the H-level. When there is evidence that strongly supports two domains being evolutionarily
related then they are put in the same homology group
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Since structural data is more reliable for identifying domain boundaries than purely
sequence based data, theCATHdomain sequences are used to seed profiles for detecting
relatives in genome sequences. Representative sequences from each CATH family and
subfamily are used to automatically create sets of representative multiple sequence
alignments, for each Homology (H) family. From these, Hidden Markov Models
(HMM) are generated, which can then be used to scan large public sequence libraries,
or those of individual researchers, and assign regions of proteins to CATH domain
families. The assignments of CATH domains to UniProt sequences are displayed in the
Gene3D website and are available for download.

Gene3D (http:/gene3d.biochem.ucl.ac.uk/) also integrates functional annotation
from resources like the Gene Ontology (GO Consortium 2007), FunCat function
descriptions (Ruepp et al. 2004), protein–protein interaction data from MPact
(Guldener et al. 2005) and IntAct (Kerrien et al. 2007) and other domain and protein
family resources, including Pfam (Finn et al. 2007). Pfam contains a collection of
manually curated sequence alignments, which are used to generate profile HMMs, as
with CATH. Since Pfam is not restricted to domains that have been structurally
defined it is able to cover a larger proportion of proteins than structure-based
approaches; however, structure-based resources are able to identify more distant
homologues. By integrating the two resources it is possible to significantly increase
overall domain family coverage in genome sequences (see Fig. 6).

Fig. 6 Combining different resources to maximise coverage. Since it is possible to identify more distantly
diverged homologues from structure data than sequence data (in general), the CATH database is able to
identify a larger number of homologues per family than Pfam. However, since there is far more sequence
data, Pfam is able to identify a greater number families. By combining the two resources, 10% extra
sequences per genome are given at least one domain family assignment compared to Pfam alone, and 20%
compared to CATH/Gene3D alone
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The merging of functional resources in Gene3D with the mapping of structural
domains allows the assignment of functions to particular combinations of domains. For
newly identified proteins with that particular combination of domains the annotation
can be directly transferred providing there is sufficient sequence similarity. Several
groups have shown that pair-wise sequence identity thresholds of 50% (60%) can be
used to inherit biochemical functions (e.g. enzyme annotations) between homologues
with a reasonable error rate of 10% (5%). However, recent research using Gene3D has
shown thatwithinCATHenzyme families, 90%of domain pairs sharing the samemulti-
domain architecture have the same function (to 3 Enzyme Classification (EC) levels) at
30% sequence identity (see Fig. 7). Higher levels of sequence similarity improve the
accuracy and specificity of functional annotation that is transferred. However, most
analyses suggest that family specific thresholds aremore reliable than generic thresholds
for inheriting function and future releases of Gene3D will provide family specific
thresholds for all well populated CATH-Gene3D enzyme domain families.

Although, as mentioned already, the safest method for transferring function
between relatives is to identify orthologues (see Sect. 5.5.1 and 5.6.5) this can often
prove problematic for eukaryotes and an alternative approach is being developed in the
GEMMAprotocol for Gene3D. GEMMAdivides Gene3D sequences assigned toCATH

Fig. 7 Increase in enzyme annotation of 240 genomes in Gene3D. Increase in the number of
uncharacterised sequences receiving an EC annotation using the optimum average sequence identity
thresholds (i.e. above which a 95% conservation is observed across all enzyme families) (red) and family-
specific derived sequence identity thresholds (blue) derived from the same comparison. The EC code is only
transferred if the two sequences share the same domain composition. If this is the case then a lower
sequence identity threshold can be used and more sequences annotated – although those with a unique
domain architecture can�t
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H-level families into functionally coherent subfamilies. The method uses a simple
iterative process to generate clusters of similar proteins. Individual sequences are used as
seeds at the beginning of the protocol and searched against each other using the
Compass profile-profile comparison tool. An optimal E-value threshold of sequence
similarity was identified (normally < 1�10�50) to merge sequences into clusters. Once
clustered, sequences are automatically realigned and the representative subfamily
profiles rebuilt. The profiles are searched against each other again and merged using
the inclusion threshold, and the process repeated until no more clusters merge.
Benchmarking using a manually curated dataset has shown that improved levels of
functional annotation of genomes are possible using the GEMMA functional families
compared to the use of simple generic pair-wise sequence identity thresholds.

GeMMA will be used to provide more sophisticated function-based subfamilies for
both the Gene3D protein families (described below) and the extended CATH domain
families. The method was developed in collaboration with groups involved in the
Protein Structure Initiative (PSI) structural genomics initiatives in the States and is
being used to identify functional subfamilies which currently have no close structural
relatives (� 30% sequence identity) to target for structure determination. Hopefully, as
more structures are determined it will be possible to understand how structures and
functions diverge within superfamilies families and use these insights to improve the
function prediction methods.

In order to provide information onwhole protein families as well as domain families
and increase functional annotation through inheritance across protein families,
Gene3D also carries out a large-scale protein clustering of the RefSeq and UniProt.
Since these are very large resources, the data are first reduced by removing very similar
sequences (> 85% identity) using a fast clustering method. Affinity propagation
clustering is then used to group the reduced set of representative sequences into
families of similar domain architecture. To complete the coverage of proteins the very
similar sequences are then added back into the families.

This results in a final set of �200,000 protein family clusters of more than 3
sequences each, with 1500 families having more than 100 members. Around 16% of
proteins are left as �singletons� – i.e. no clear, confident homology relationships can be
defined by sequence comparison. Each family has been sub-clustered into subfamilies at
10 different sequence identity levels to provide a finer grain view of it and to enable
function inheritance with varying degrees of confidence.

Therefore, functional assignment between relatives in Gene3D can be made by
using information from whole protein families generated by the APC clustering or by
using the domain based families identified by mapping CATH and Pfam domains onto
genome sequences. A higher coverage of functional annotation can be obtained by
applying both protein anddomain based family inference. Figure 7 shows the increase in
functional annotations that could be obtained by using superfamily specific thresholds
for protein and domains sequences in Gene3D.
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As well as predicting individual protein functions, family information in Gene3D
can be exploited to predict functional associations between proteins. This is exemplified
by the Gene3D based PhyloTuner phylogenetic profiling method (Ranea et al. 2007).
For this approach, predicted CATH domain sequences in Gene3D were sub-clustered
within each superfamily at 10 levels of sequence identity between 30 and 100%. At each
level the number of representatives in a given family is counted in each genome to create
a domain occurrence profile for that family. Occurrence profiles for all the families can
then be searched against each other to identify profiles that show correlated patterns in
domain number. From this, it is possible to identify protein families and subfamilies that
are likely to be co-evolving and hence, likely to be functionally associated.

A suite of bioinformatics tools, based on Gene3D families, are being developed for
predicting functional associations between families. The Gene3D-Biominer predictive
system integrates a set of inferred protein–protein functional associations derived from
multiple resources. The current components include: CODA, inferring interacting
proteins by detecting homologues that have fused into a single protein in other species;
hiPPI, inheriting protein-protein interactions through the Gene3D protein families;
GEC, gene expression clustering for identifying co-expressed groups of genes; and
PhyloTuner, already described above.

On their own all thesemethods have their own problems and biases. However, since
two independent methods shouldmake different errors (i.e. incorrect predictions) then
merging the predictions will remove likely false positives whilst retaining correct
predictions that are only weakly supported by each individual method. A statistical
approach is being developed for Gene3D-Biominer to merge these results in a way to
will maximise sensitivity and specificity.

1.5 From SMART to STRING and STITCH: diverse tools for deducing
function from sequence

One of the oldest sequence profile-based domain identification tools is SMART (Simple
Modular Architecture Research Tool) that started off with mobile signalling domains
(Schultz et al. 1998) and has then been gradually extended to include a variety of domain
signatures (see Letunic et al. 2006 and references therein). With more than 2500
citations distributed over six papers describing different aspects of the resource, it seems
to be widely used, mostly by biologists who appreciate the intuitive interface. SMART
not only reports the domain architecture, but also identifies other features in a sequence
such as signal peptides, GPI anchors, coiled coil and transmembrane regions as well as
compositionally biased segments and repeats.

Furthermore, SMART imports functional and structural signals from a number of
other resources, most importantly Pfam, to increase coverage and annotation. One of
the resources used to identify repeats is theREP program (Andrade et al., 2000) that can
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also be used separately on the service site (http://www.embl.de/�andrade/papers/rep/
search.html); it extrapolates from known repeats thus allowing more sensitivity in
regions next to known repeats.

While domain annotation is very sensitive in the evolutionary sense as it reveals very
distant homologies, one has to be cautious with function transfer and this often needs to
be manually supervised. As discussed already above, much more fine-grained function
annotation for a given gene can be carried out when an ortholog with known functional
features can be assigned to a query gene. For this purpose we have developed eggNOG
(an evolutionary genealogy of genes and Non-supervised Orthologous Groups; Jensen
et al. 2008). It contains a hierarchy of orthologous groups that were derived by a
similarity-based triangulation procedure, either based on seeds from the COG database
(Tatusov 2003) or constructed de novo and amended by an automatic function
assignment step using keyword mining (Jensen et al. 2008; http://eggnog.embl.de).

Orthologous groups are required for a variety of different function transfer
strategies. They are also at the core of STRING (Search Tool for the Retrieval of
Interacting Genes and Proteins; von Mering et al. 2007) a resource that allows users to
assign protein interactions and network context to a gene for which, amongst other
inputs, a sequence is sufficient for a quick lookup (often via orthologous groups). There
are several visualization modules around STRING,MEDUSA (Hooper and Bork 2005)
being perhaps the most advanced one. STRING is explained in more detail in chapter X
and allows users to annotate higher-order functions to genes in contrast to homology-
based methods such as SMART that assign mostly molecular functions.

The interaction between proteins and chemicals is another type of functional
annotation, which is not obviously obtained using current homology or network-based
approaches. We have therefore recently launched a sister resource of STRING called
STITCH (Search Tool for Interactions of Chemicals, http://stitch.embl.de), which
offers a network perspective based on chemical protein interactions). It integrates data
from several automatically and manually derived resources of protein-chemical inter-
actions, including MATADOR (Manually Annotated Target and Drug Online Re-
source, http://matador.embl.de]), which contains a high quality reference set of human
protein-drug relationships. Starting from one or more protein sequences, STITCH can
construct a network of proteins, drugs and other small molecules that both enriches the
functional annotation and gives the context of pharmacology and diseases.

There are also more direct routes to link sequences to related diseases. One is the
popular toolPolyPhen (Ramensky 2002) that predicts functional consequences of point
mutations in a protein sequence using reference structures and evolutionary constraints
on each amino acid position (Sunyaev et al. 2001). This way, it can predict the likely
involvement of mutations in disease. Another strategy to predict disease-related
proteins based on sequence is to explore their context in the human genome. As
numerous linkage analysis studies have been published, these can be integrated with
other information resources as done by G2D (Genes to Diseases; Perez-Iratxeta et al.
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2007), a server that specifically exploits literature information to associate phenotypic
and genotypic information [http://www.ogic.ca/projects/g2d_2/].

Table 2 provides concise descriptions of these approaches. Although they all make
use of sequence data, they utilize different strategies and combine the sequences with a
wide range of other indictors to annotate biological function at different scales.

1.6 General approaches for inheriting functions between
homologous proteins

The function of certain types of proteins is carried out by a small number of residues
localized in a specific region of the protein structure. In enzymes, for instance, the
catalytic reaction depends on a small number of residues located in the active site. That
is the case, for example, of serine proteases where a Ser-His-Asp triad performs the key
steps in catalysis. Specific functional sites are part of larger binding sites, e.g. substrate-
effector binding sites. More generally, functional sites form part of protein-protein
interacting regions, small ligand binding sites, nucleic acid binding sites, etc. Functional
residues can be thought of as those required for the protein to carry out its molecular
function or biological role. A change of the amino acid type in these positions have a
potential effect on the protein function and the fitness of the organisms, as is the case of
some diseases associated with point mutations. In the same way, this potential effect
could also be directed to provide a modified protein function, which has a benefit for
biotechnology. Therefore, the determination of the set of residues in a protein that is

Table 2 The SMART-STRING-STITCH list of function prediction resources

Program Description

SMART Database for domain analysis [Schultz et al. PNAS 1998; Letunic et al. NAR 2006; http://smart.embl.
de]

REP A resource for repeats analysis [Andrade et al. JMB, 2000; http://www.embl.de/�andrade/papers/
rep/search.html]

eggNOG Database of orthologous groups of genes [Jensen et al. NAR 2008; http://eggnog.embl.de]
STRING Database of knownand predicted protein-protein interactions in all knowngenomes [Snel et al. NAR,

2000; von Mering et al. NAR 2007; http://string.embl.de]
Medusa A general graph visualization tool [Hooper and Bork Bioinformatics 2005; http://www.bork.embl.de/

medusa]
STITCH Database of known and predicted interactions of chemicals and proteins [Kuhn et al. NAR 2008;

http://stitch.embl.de]
MATADOR A resource for protein-chemical interactions [G€unther et al. NAR 2008; http://matador.embl.de]
PolyPhen Prediction of functional effect of human nsSNPs [Ramensky, NAR 2002; http://www.bork.embl.de/

PolyPhen]
G2D Analysis of candidate genes for mapped inherited human diseases [Perez-Iratxeta et al. Nat Genet

2002; Perez-Iratxeta et al. NAR 2007; http://www.ogic.ca/projects/g2d_2/]
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responsible for its function is crucial to understand its molecular mechanism of action
and, eventually, carry out a useful modification.

Amajor repository of functional residues is the database Catalytic Site Atlas (Porter
et al. 2004; http://www.ebi.ac.uk/thornton-srv/databases/CSA)which provides catalytic
residue annotation for enzymes in the ProteinData Bank (PDB). It contains two types of
sites: a hand-annotated set of residues extracted from the original literature and an
additional homologous set containing annotations inferred by sequence similarity
searches and sequence alignment to the original set. The recently developed FireDB
resource (López et al. 2007; http://firedb.bioinfo.cnio.es/), brings together both ligand
binding and catalytic residues in one database for functionally important residues.
FireDB integrates data from the close atomic contacts in PDB crystal structures and
reliably annotated catalytic residues from the Catalytic Site Atlas. Clusters of PDB
structures with 97% of sequence identity are then used to derive a sequence consensus
where functional residues are filtered and mapped together. Additionally, FireDB is
linked to FireStar (López et al. 2007b), a server for predicting ligand-binding residues in
protein sequences, that uses the sequence templates provided by FireDB. Further
information about FireDB and FireStar is given in Chap. 4.6.

A number of computational methods predict functional residues based on multiple
sequence or structure alignments (MSAs) of homologous proteins (those sharing a
common ancestor). These alignments are biologically relevant sources of information
since they allow the comparison of equivalent residues between proteins within a family
and hence the detection of amino acid changes allowed or precluded by evolution at
each position due to structural or functional requirements. The first indicators of
functionality extracted from sequence alignments were associated with fully conserved
positions (Zuckerkandl and Pauling 1965): these positions are interpreted as important
residues for the function of the protein, since they have been preserved during the
evolutionary process. Fully conserved positions are associated with all types of func-
tional sites: active/catalytic sites, protein–protein interacting regions, etc. However,
conservation is not always related to function and can also be due to structural
constraints, for example for positions constituting the structural core or driving the
folding of the protein.

Interestingly, the concept of conservation can be extended to the subfamily level,
that is: positions that are conserved within subfamilies, with the amino acid type being
different between subfamilies. In awell-establishedmanner, these subfamily-dependent
conserved positions are related to functional specificity. That is, they are associated with
the functional features that distinguish the subfamilies from each other, in contrast to
fully conserved positions that are associated with the function common to the whole
family. A general model for illustrating the relationship between fully conserved and
subfamily-specific positions is shown in Fig. 8. In this case, subfamilies derived from the
three main branches of the phylogenetic tree fit the three main functional specificities
within the family.
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A considerable number of methods that use evolutionary information to predict
functional specificityresidueshavebeendeveloped.Theyhavebeentested independently
foranumberofdifferentbiological systemsandthepredictionshavebeenexperimentally
validated in a number of cases, and these approaches are a growing area of interest in
computational biology. An illustrative case is shown in Hern�andez-Falcón et al. (2004)
and de Juan et al. (2005) where some of these methods were used to identify crucial
residues in an important biological problem: the dimerization of chemokine receptors.
Chemokines coordinate leukocyte trafficking by promoting oligomerization and signal-
ing by G protein-coupled receptors. Using evolutionary based sequence analysis in
combination with structural predictions, two residues were selected as important for
dimerization of chemokine receptor CCR5 and further experimentally validated.

Following del SolMesa et al. (2003), thesemethods can be classified into threemajor
categories: i)methods based on the comparison of sequences using phylogenetic trees as
a guide (Lichtarge et al. 1996; del Sol Mesa et al. 2003; Reva et al. 2007); ii) methods that
exploit the correlation between the variation at the residue level with the global family
variability (del Sol Mesa et al. 2003; La et al. 2005); and iii) methods based on the
decomposition of multiple sequence alignments using variants of principle component
analysis (Casari et al. 1995; del Sol Mesa et al. 2003). Conservation and family-
dependent conservation are sometimes combined with structural information to

Fig. 8 Information extracted from multiple sequence alignments (MSAs) related with protein structure
and function. A) Fully conserved and family-dependant conserved positions (taken from Pazos and Bang,
2006a) showing the relationships between these positions and functional and structural features.
Conserved positions (red) are present in structural cores (due to structural reasons) and active sites.
Subfamily specific positions (blue) are also present in sites close to conserved positions (e.g. determining
specificity for substrates with slightly different characteristics) and in other parts of the protein related with
specificity, like protein–protein interaction sites (reflecting the interaction with different partners)
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restrict the predictions to the positions with the structural characteristics expected for a
functional site (Aloy et al. 2001; Armon et al. 2001; Landgraf et al. 2001; Pupko et al.
2002; Kinoshita and Ota 2005; Yu et al. 2005; Glaser et al. 2006).

Interestingly, theTreeDet Server (ACarro et al. 2006; http://treedet.bioinfo.cnio.es/)
has the strength of combining the results of three separate methods for the prediction
of functional specificity residues, corresponding to each of the three former major
categories, respectively: theEntropybasedmethod(SSmethod), theMutationalBehavior
method (MB), and the Fully Automated Sequence Space method (FASS). In addition,
the server provides a tool (SQUARE; Tress et al. 2004) for evaluating the reliability of
the multiple alignments that are used to extract the evolutionary information. These
three methods, plus SQUARE, provide a unified view of the possible residues of
functional interest and allow a systematic exploration of the sequence space.

It is interesting to think that it is also possible to define subgroups within a family
according to criteria different from standard phylogenetic separation, for example
functionally, phenotypically, by its cellular localization, etc. The interpretation of
subfamily-dependent conserved positions will depend on the feature used to define
them. A new generation of methods takes an external functional classification as input
instead of the usual sequence-based divergent evolution to function scenario. In other
interesting scenarios, certain specific situations can lead to a disagreement between the
alignment-based classification and the functional classification of the proteins: i) Many
functional and structural requirements drive the evolution of a protein family together,
but only one phylogeny can be observed, which arises from a combination of all the
different constraints. Hence, the specific divergence owing to a function of interest can
bemasked within this composite phylogeny. ii)When the alignment does not reflect the
true phylogeny, e.g. in structural alignments linking distant proteins for which much of
the sequence information relating the proteins has been lost (e.g. SH3 domains). iii)
Finally, there may be convergent evolution in some specific parts of the protein.

To deal with these situations, Pazos et al. (2006b) presented two supervisedmethods
for detecting functional sites from multiple protein alignments that can incorporate an
external functional classification. One of the methods (Xdet) detects positions in the
alignment for which the amino acid type composition better correlates with one
predefined functional distance between proteins. The other method (MCdet) is based
on a vectorial representation of the alignment for which Multiple Correspondence
Analysis (MCA) is used to locate the residues that better fit the pattern of presence/
absence of a given function. Bothmethodswere successfully tested in different scenarios
where the functional/phylogenetic disagreement arises from different causes.

Importantly, the sets of predicted residues provided by the existing unsupervised
and supervised approaches can be used to assign proteins to functional classes, as done
in e.g. Hannenhalli and Russell (2000) or Krishnamurthy et al. (2007). This possibility is
particularly interesting in cases where function and phylogeny do not correlate, since
the functional assignment cannot be done by the standard sequence similarity based
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methods. Taken together, methods that predict functional residues can aid the func-
tional classification of the ever increasing amount of new sequences and structures.

1.7 Non-homologous methods for predicting protein
function from sequence

The biological function of a protein is ultimately defined by its three-dimensional
structure and its native environment. Unfortunately, deducing function from structure
alone is a non-trivial task and proteins with known 3D structure are still relatively rare.
Sequence information, on the other hand, is widely available and the function of a
protein can often be inferred from sequence homology to other proteins with known
functions. Obviously, this approach relies on the availability of annotated homologues.
An alternative strategy is based on the observation that proteins contain signals and
properties determining their cellular processing and biological role. This means that
proteins with the same function tend to exhibit similar feature patterns and functional
similarity can be deduced from biochemical and biophysical properties. Examples of
these are global properties such as average hydrophobicity, charge, and amino acid
composition as well as local features like protein glycosylation, phosphorylation, and
other post-translationalmodifications. Additionally, secondary structure content or the
presence of transmembrane regions and targeting signals may constitute important
features.

Non-homologous function prediction was first implemented in the ProtFun
method for human proteins (Jensen et al. 2002, 2003; http://www.cbs.dtu.dk/services/
ProtFun). A schematic ProtFun work-flow is shown in Fig. 9. The input features are

Figure 9
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calculated from the amino acid sequence and used by ensembles of artificial neural
networks (NN) trained to predict each of the individual function types. These predic-
tions are then combined and ranked within four major groups: enzyme/non-enzyme,
enzyme class, biological function, and a subset of Gene Ontology. The latter is
represented by the categories signal transduction, receptor, hormone, structural
protein, transporter, ion channel, voltage-gated ion channel, cation channel, transcrip-
tion, transcription regulation, stress response, immune response, growth factor and
metal ion transport. Prediction of each distinct function relies on a characteristic
combination of protein features, which has been established by a feature selection
process during training of the predictor.

By design, the strength of the ProtFun method lies in classification of unannotated
and orphan proteins. More recent methods have adopted a ProtFun-like approach in
combination with homology or structural input and report improved performances,
particularly in prediction of the Gene Ontology categories (Pal and Eisenberg 2005;
Lobley et al. 2007). Newer methods presumably benefit from the increasing quality
and quantity of functional annotation of proteins. Furthermore, the combination of
non-homologous prediction methods with homologous or structural methods is likely
to overcome limitations inherent to each individual method.

Non-homologous approaches are not limited to prediction of human protein
function and have been successfully tailored to tackle other problems such as predic-
tion of archaeal protein function (http://www.cbs.dtu.dk/services/ArchaeaFun) and
non-classical and leaderless secretion of proteins (http://www.cbs.dtu.dk/services/
SecretomeP).
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CHAPTER 4.5
Structure to function
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1 Introduction to protein structure and function

Protein structural models are usually obtained by two experimental methods, X-ray
crystallography and nuclear magnetic resonance spectroscopy (NMR). These models
play a central role in the investigation of the molecular basis of protein structure and
function. Based on these models it is possible to identify the secondary structure
elements (secondary structure) and the spatial arrangement of the polypeptide chain
(fold or tertiary structure). They also reveal which atoms or amino-acid residues are
buried and which are at the protein surface. The local spatial arrangement of atoms and
residues can be analysed in these models, and their chemical environments charac-
terised. Many of these models are especially informative regarding the molecular
function of the respective proteins. A typical example is when they include several
interacting polypeptide chains, or when they include small molecules bound at the
protein surface which act as natural ligand, substrates or as inhibitors. In particular, the
determinants for interaction affinity and specificity can be investigated and molecular
mechanisms of binding and catalysis can be inferred using these models. Structural
models can also be predicted using computational approaches as described in the
“Protein Structure Prediction” chapter. In general predicted models are less reliable
than experimental models, but there has been considerable improvement in the quality
of predicted models over the last years.

The current section describes computational methods for predicting function based
on structural models. Obviously, each of these models is very informative, but there are
additional factors encouraging the development of computational tools for structure

Corresponding author: Francisco S. Domingues, Max-Planck-Institut Informatik, Campus E1 4,
66123 Saarbr€ucken, Germany (e-mail: doming@mpi-sb.mpg.de)
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based functional characterisation. Experimental structural models are becoming avail-
able for an increasing number of proteins. In this respect, structural genomics projects
have played an important role in determining the structures of large numbers of
proteins (Blundell and Mizuguchi 2000). These large scale projects have also generated
many structural models for proteins with uncharacterised function, which are the main
application targets for the methods described in this section. In addition, with the
availability of large amounts of structural data it is now possible to train and test
automated prediction methods. These methods are not only applicable to unchar-
acterised proteins, so when applied to the structures of annotated proteins they can
provide additional insights on protein function, such as identifying new functions in
multitasking proteins.

Traditionally, functional annotation has relied on the identification of evolutionary
relationships (homology) based on sequence similarity (see “Sequence to Function”
section). The identification of a homologous relationship between two proteins
indicates a possible functional relationship. The increased availability of structural
models provides new opportunities for functional annotation based on homology. As
protein structure tends to be more conserved in evolution than sequence, backbone
structure comparison methods have been applied in detecting homology between
proteins when their sequence similarity is not significant. Backbone structure compar-
ison methods are now routinely used in the comparison between newly determined
structures and the models available in the Protein Data Bank (PDB), the archive of
structural models determined experimentally (Berman et al. 2000).

Protein functional sites share certain characteristic properties. These common
properties have been taken into account in the development of the different function
prediction strategies. Proteins tend to bind other proteins, or other types of molecules
when performing their function. They tend to bind other macromolecules (other
proteins or nucleic acids), small organic compounds or metal ions at specific regions on
the protein surface (binding sites). Enzyme active sites tend to locate in the neighbour-
hood of the substrate binding sites. Interacting binding sites tend to be complementary,
both in terms of chemistry and shape, which results in specific binding. Small ligand
binding sites are usually located at the largest surface clefts, which provide both high
accessibility and complementarity. Residues in functional sites are usually less tolerant
to mutations than other residues at the molecular surface, as the structural/chemical
integrity of functional sites needs to be preserved in order for proteins to remain
functional. Therefore functional sites usually correspond to clusters of highly conserved
residues at the protein surface. Finally, it has been observed that in some cases of pro-
teins with similar function there is considerable local structure conservation at their
functional sites.

There are three main challenges to take into account in the investigation of
structure/function relationships: localization, characterisation and classification. Given
the structure of an uncharacterised protein, the first natural question is where the
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functional site is. Several methods have been proposed to address this challenge, many
of them taking into account that functional residues tend to be conserved and that they
tend to cluster at the protein surface. A more difficult challenge is then to characterize
the type of molecular function associated with the functional sites that have been
identified. In this respect some approaches based on local structural comparison have
been proposed. Finally, developing functional site classification databases is a con-
siderable challenge, which requires reliable classification approaches that are able to
process increasing amounts of structural information. These classification databases are
becoming increasingly valuable to structural biologists, as functional sites are char-
acterized for an increasing number of proteins. These classification databases play a
fundamental role in the development and testing of new function prediction methods,
and they are powerful tools for the investigation of the structural basis for protein
function.

The current section describes four complementary resources for structure-based
function prediction. First we describe FireDB (Lopez et al. 2007b), a functional site
database, and firestar (Lopez et al. 2007c), a method that relies on FireDB for predic-
ting functional residues. Two approaches for characterising the protein function based
on statistical learning are then described. GOdot (Weinhold et al. 2008) is based on
sequence and backbone structure similarity, while FLORA relies on local structure
similarity. Finally, a combined approach for function prediction, ProFunc (Laskowski
et al. 2005a) is described.

2 FireDB and firestar – the prediction of functionally
important residues

2.1 Introduction

Genome sequencing projects are generating an almost unimaginable quantity of
sequences. Very few of these sequences have been studied experimentally and as
a result the vast majority of the sequences in the databases have poorly characterised
function. One of the biggest challenges facing bioinformatics is to provide functional
annotations for these proteins.

The predominant approach to function annotation is to search for homologous
protein sequences for which function is known and simply transfer the functional
annotation. However, the homology-based transfer of functional annotation based
solely on the similarity of two sequences is not always reliable (Devos and Valencia
2000; Todd et al. 2001). While two homologous enzymes that have less than 30%
sequence identity are almost certainly going to be structurally similar, there is likely to
be significant functional differences. At higher identities small differences in residue
composition can easily lead to changes in substrate specificity and there are even
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recorded cases of single residue mutations leading to functional differences (Wilks
et al. 1988). There is clearly a need for more sophisticated functional assignment
techniques.

Protein function can be defined at many levels. A protein�s function may be
defined by its role in the cell, the metabolic pathway or regulatory network that it
forms part of or by the physico-chemical effects that it brings about. It is perhaps at the
level of individual residues where it is possible to bemore specific about the function of
a protein. Most function depend on physico-chemical processes that are mediated by
amino acids, so amino acids that have catalytic activity or bind substrates are directly
implicated in molecular function. Pinpointing residues of functional interest is
especially important for studying function at biochemical and cellular levels and
designing experiments.

Transferring residue-level functional information requires alignments between the
target sequences and the functionally characterised sequences. While alignments are
not critical in the transference of general protein function, they are important when
residue level function is being transferred. It is important to assess the reliability of the
alignment when transferring information from functional residues. We have addressed
these problems by integrating databases of experimentally validated functional residues
with sequence analysis tools. The goal is to establish an automatic system to annotate,
validate and predict protein functional sites.

2.2 FireDB

FireDB (Lopez et al. 2007b) is a data bank of functional information relating to proteins
of known structure. It contains the most comprehensive and detailed repository of
known functionally important residues, bringing together both ligand binding and
catalytic residues in one site. The sources of functional residues are the reliably
annotated catalytic residues from the Catalytic Site Atlas (Porter et al. 2004) and
biologically relevant protein-ligand atom contacts that are filtered from the close atomic
contacts in PDB structures. Known solvents and other artefacts in the PDB are removed
at this stage. The PDB is highly redundant, so proteins sharing at least 97% sequence
identity have been clustered and each cluster in the database is represented by a unique
“consensus” sequences. The functional information associated to each member of a
cluster is collapsed onto the cluster consensus sequences.

Collapsing means that functional residues spanning equivalent positions are
considered to belong to the same site. This process has the advantage of allowing
functional sites to be compared within a cluster of sequences and gives an idea of
the flexibility of binding sites and their capacity for binding different ligand analogs.
The information that can be retrieved includes the type of site, a chemical description
of the ligand, the list of chains that bind the ligand and the residues involved in binding.
A sample of the FireDB output is shown in Fig. 1.
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The database is updated monthly. As of October 4, 2007, FireDB contained a total
of 93,559 chains in 18,711 clusters, of which 11,358 had associated bound ligands or
catalytic sites.

2.3 Firestar

Firestar (Lopez et al. 2007c) is an expert system for predicting functionally important
residues. The server provides a method for extrapolating from the large inventory of
functionally important residues in FireDB and using them to predict likely functional
residues. For firestar to work it must be possible to generate an alignment between the
user-defined query sequence and a sequence of known structure that has functional
information. Alignments in firestar are generated with PSI-BLAST (Altschul et al.
1997).

Firestar automatically generates alignments against the consensus sequences of the
FireDB database and maps the FireDB functional residues onto the user�s query
sequence. The server uses a version of SQUARE (Tress et al. 2004), a method developed
to predict regions of reliably aligned residues in sequence alignments, to determine
which residues are reliably aligned. SQUARE is particularly effective at predicting
the conservation of ligand binding residues (Tress et al. 2003). A multiple alignment
interface allows the user to align the consensus sequences found by firestar, and to
dynamically highlight functional residues. Binding site residue variations can also be
viewed via LGA structural alignments (Zemla 2003) and the molecular visualisation
tool, Jmol (http://www.jmol.org/).

The method is highly sensitive and we have been able to show that even if the only
sequences with functional information found by PSI-BLAST are highly distant homo-
logues, firestar can still locate functionally important residues. One disadvantage is that
the results depend to a large extent on the quality of the alignment. For that reason
firestar also allows the user to input their own alignments and structural alignments
where possible.

The results are presented in a series of easy to read displays (Fig. 1b) that allow users
to select the functionally important residues they are interested in and a multi-
ple alignment option to allow comparison of functional residue conservation across
homologous proteins.

One of the advantages of firestar is that it has allowed us to validate the biological
relevance of small ligands in FireDB. A bound small ligand is considered to be
biologically relevant (and not an artefact of the crystallisation conditions) if the residues
that bind it can be found in a homologous protein in FireDB. The conservation of ligand
binding residues is a strong sign of biological importance. A new interface has been
added to browse this information and to compare with other information such as ligand
nature and the size and residue composition of related sites. With the server it is easy to
discern whether small molecule binding is conserved in homologous structures.
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This facility was particularly useful during the function prediction assessment of
the recent CASP7 experiment (Lopez et al. 2007a). This section of the CASP blind
structure prediction experiment concentrated on the prediction of protein function and
22 groups from around the world predicted function for 104 “target” sequences. One of
the tasks set by the organisers was the prediction of small ligand binding residues and as
assessors we had to evaluate the ligand binding residues predicted by the participants.
The assessors have access to the recently solved structures of the target sequences with
bound ligands and one crucial part of the assessment was to determine whether the
bound ligands in the target structures were biologically relevant or just a consequence of
their crystallisation process. Here firestar was invaluable (Fig. 2). With firestar we were
able to draw two conclusions from the CASP experiment – firstly that biological

Fig. 2 Firestar prediction of a conserved zinc finger in CASP target T0348. A zinc atom was found in the
structure of target T0348 in CASP7. As assessors we had to determine whether this zinc was biologically
relevant or not. (a) Poor scoring BLAST alignment between the target and the template 1pft from the FireDB
data bank. 1pft also binds zinc and the cysteines that bind zinc in 1pft are conserved in T0348 (the darker the
blue, the more conserved the local environment of each residue). (b) The structural superposition of both
the target and the template showing that the three cysteines conserved in sequence are also conserved in
structure, although much of the rest of the two structures are not conserved
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information was often important (and almost always overlooked) in the prediction of
protein structure, and secondly that it was possible to predict ligand binding residues
from 3D models of protein structure. There were few groups that were able to capture
the correct ligand binding residues in CASP7, but the prediction of ligand binding
residues will form an integral part of the CASP8 experiment to be held in 2008.

3 Modelling local function conservation in sequence
and structure space for predicting molecular function

3.1 Introduction

Inference of the molecular function of a given protein according to the function of
proteins related in sequence and structure is a powerful annotation approach but is also
prone to errors. Function is not uniformly conserved in the space of protein sequence
and structure relationships. The analysis of the extent of function conservation relative
to the sequence and structure similarity between proteins provides valuable informa-
tion for establishing whether an annotation can be transferred reliably. In addition,
combining different sequence and structure similarity measures yields a potentially
better coverage in function prediction.

GOdot (Weinhold et al. 2008), is a method that assesses local function conservation
in protein sequence and structure space in order to predict molecular function. GOdot
generates a list of functional terms ranked by function conservation scores, is based on
different measures of sequence and structure similarity, and is extensible to other
similarity measures.

The GOdot method employs a two-stage protocol. In a training stage, sequence and
structural similarities of known proteins are established and regions of local function
conservation in protein space are determined. In the prediction stage this pre-calculated
information is employed to derive estimates of the molecular function of unknown
proteins. The training stage is compute-intensive and is performed only once, the
prediction stage is repeated for every query protein to obtain a function prediction.

3.2 Method

In the training stage we establish a sequence and structure space bymeasuring sequence
and structure similarity on a representative set of protein domains provided by the
ASTRAL Compendium (Chandonia et al. 2004). The protein domains in this set are
compared against each other with different measures for protein similarity. Two
sequence-based methods are used to compute sequence similarity: local profile align-
ment and global profile alignment (von Öhsen et al. 2003). In addition, two structure-
based programs are used to compute structure similarity, namely Combinatorial
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Extension (CE) (Shindyalov and Bourne 1998) and TM-Align (Zhang and Skolnick
2005). The neighbours of each protein in protein sequence and structure space have
high similarity scores and are then identified.

To describe function, we use the GO molecular function terms (Ashburner et al.
2000) annotated to every protein domain in the dataset according to Gene Ontology
Annotation. More precisely, ASTRAL domains were assigned to their respective PDB
structures. The PDB structures were then mapped to UniProt (Apweiler et al. 2004)
sequences using PDBSWS (Martin 2005). The UniProt sequences were annotated
with GO terms using the Gene Ontology Annotation (GOA) (Camon et al. 2004). We
finally removed all domains having no GO annotation or those which are part of
multidomain proteins according to SCOP(Murzin et al. 1995).

The extent of local function conservation is analysed for each protein domain and
molecular function GO term. Given a protein domain, we determine for each GO term
how often it is annotated to 200 other domains in the neighbourhood of the domain
under investigation, according to a given similaritymeasure.This information ismodelled
with a logistic curve capturing how strongly the function is conserved in the local
environment. The logistic curve is calculated separately for each similarity measure.

In the prediction phase, an uncharacterised query protein is compared to all known
protein domains of the training set, thus determining the protein�s location and neigh-
bourhood in protein sequence and structure space. The GO terms on the nearest neigh-
bours are candidates for the functionpredicted for thequeryprotein.Given the similarities
to the nearest neighbours according to each similarity measure, the logistic curves
provide estimates for the probability of a certainGO term occurring within this similarity
range. These estimates provide raw function conservation scores. The raw function
conservation scores are cumulated for each GO term into a combined function conser-
vation score. The score combination also ensures compliance with the GO true path
rule, such that GO terms obtain scores that are at least as high as those of their GO de-
scendants. The combined scores provide reliability estimates for the predicted GO terms.

3.3 Application

A web-server is available for the GOdot method (http://godot.bioinf.mpi-inf.mpg.de),
where a typical query is an uncharacterised PDB structure. The method performs
sequence and structure comparisons of the query protein to each of the protein domains
used in the training stage. The extent of sequence and structure similarity between
the query and characterised proteins is determined and used to compute reliability
estimates for the functional GO terms. The output from the web-server provides a
ranked list of predicted GO terms.

Figure 3 displays a screen-shot from the web-server with the results for a query
protein with known structure and unknown function according to PDB. The results
combine information on the neighbourhood of the protein and the predictedGO terms.
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4 Structural templates for functional characterization

4.1 Introduction

If two proteins exhibit high sequence and structural similarity, they are most likely to
perform the samemolecular function. However, there are notable exceptions where the
substitution of a few key functional residues can inactivate an enzymatic site or interrupt
protein interactions (Whisstock and Lesk 2003). Conversely, sequence profile (e.g. PSI-
BLAST (Altschul et al. 1997), Hidden Markov models (Eddy 1996)) and structure
comparison methods (e.g. DALI (Holm and Sander 1993), SSAP (Taylor and Orengo
1989), CE (Shindyalov and Bourne 1998), MSDfold (Krissinel and Henrick 2004) can
detect proteins that are far more distantly related by evolution (homolgues) yet retain
the same function. But how do we distinguish between homologues where protein
function has been conserved (for example, orthologous genes in different organisms)
and where a gene has duplicated and been allowed to evolve a different function (e.g.
paralogues)?

More distant homologous relationships are often far more evident at the level
of protein structure than in the primary sequence (Chothia and Lesk 1986). However,
although a large number of protein folds are associated with a specific molecular
function, a small number of “superfolds” (e.g. the TIM barrel fold) have been ex-
tensively duplicated in the genomes and are associated with a vast number of different
functions. As a consequence, global structural similarity cannot be applied universally
to transfer function, especially between distant homologues.

4.2 Predicting protein function using structural templates

To address this problem, many groups have attempted to define local structural motifs
(or templates) associated with specific functions, in the hope that it is the conformation
of residues around functional sites that provide a clear relationship between structure
and function. For example, the Catalytic Site Atlas (CSA) (Porter et al. 2004) con-
centrates on building 3D motifs of residues that are directly involved in ligand binding
or the catalytic mechanism in an enzyme.

1
Fig. 3 GOdot results for query protein PH0226 from Pyrococcus horikoshii (PDB entry: 1ve3). The four green
checkmarks in the top line indicate that all four similarity measures have finished computation successfully.
The GO subgraph on the left displays the relation of the GO terms predicted for this query; the greener the
colour, the more likely the prediction. The colour scheme is the same in the list on the right, displaying the
predicted GO sorted by combined function conservation score. The bottom line indicates according to each
similarity measure the closest identified domain along with its SCOP classification. When holding the mouse
over the domains, information is displayed for which GO terms they point to, similarly holding themouse over
the GO terms on the right displays information from which domains they were inferred
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In contrast to exploiting information on known functional residues, the DRESPAT
method (Wangikar et al. 2003) uses graph theory to extract recurring structural patterns
across superfamilies in the SCOP database (Murzin et al. 1995). DRESPAT makes no
assumptions about the location or nature of the motif positions, except by excluding
hydrophobic residues. A statistical model is built to assess the significance of each
recurring pattern and the authors were able to identify different metal binding sites in
distantly related proteins. However, as with many methods which seek small structural
motifs, distinguishing between genuine similarities and background is hampered by
high false positive rates.

The PINTS methods (Stark and Russell 2003) also shows promise for automatically
detecting structural motifs in protein families, although is not able to annotate novel
proteins with high accuracy. Again recurring side chain patterns are identified through
a pair-wise comparison of diverse members within a protein family. These motifs can
then be used to scan against a novel structure.

4.3 FLORA method

The principle aim of FLORA is to discover structural motifs associated with specific
molecular functions (e.g. a given enzymatic reaction) and distinguish between ho-
mologous proteins that have evolved different functions. Indeed, one of the specific
motivations for developing this approach was to provide a means of separating large,
divergent domain families within the CATH database (Orengo et al. 1997) into func-
tional families (FunFams). See Fig. 4 for an overview of FLORA.

Thefirst step in the FLORAalgorithm is to construct amultiple structural alignment
of protein domains with similar functions. This is achieved using the CORA algorithm
(Orengo et al. 1999) which applies a double-dynamic programming approach to
structural alignment to perform an iterative multiple alignment. As each domain is
aligned, a consensus structure is calculated from the equivalent positions determined
through dynamic programming and this consensus is then aligned to the next structure.
In this way, CORA is able to gradually align more distant structures by focussing on the
structurally conserved positions in the functional family. Once a multiple structural
alignment of all domains in the functional family has been constructed, FLORA then
selects residues to include in a template.

The next challenge for the algorithm is to decide which residues in all the enzyme
structures must be present for the proteins to perform a given function. Where other
template methods (e.g. CSA (Porter et al. 2004), DRESPAT (Wangikar et al. 2003))
focus on residues that are likely to play a direct role in catalysis or ligand binding,
FLORA instead looks for patterns of structurally conserved residues. The rational
behind this approach is that structures in the PDB are solved with a variety of cognate
and non-cognate ligands, in addition to enzymes with no ligands. Given that substan-
tial structural changes are often observed on substrate binding (e.g. in fructose 1,6-
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bisphosphatase (Torrance et al. 2005)), the structural environment of key residues
could change depending on the binding state of each protein in the functional family.
As a consequence, FLORA instead looks for a more static structural framework from
which to build a template. This is similar to how the GASP (Polacco and Babbitt 2006)

Fig. 4 Overview of the FLORA algorithm. Amultiple structure alignment is created (using CORA) of a given
functional family. Patterns of structural and sequence conservation are then analysed to select residues for a
template, which can then be used to discriminate between homologous proteins of different function
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algorithm generates templates based on their predictive power. Residues are then
further selected based on patterns of sequence conservation and solvent accessibility.

Once a template has been generated by the FLORA algorithm, the next step is to
use it to predict the function of novel proteins and group functionally-similar domains
in each superfamily. In general, function predictionmethods encode selected residues
into templates by storing the expected inter-atomic distances and/or residue types.
The search algorithm (e.g. using graph theory, geometric hashing etc.) then seeks to
match the residues in the expected conformation, within a given tolerance value.
FLORA takes an alternative approach by producing an average co-ordinate set for
template residues and then applying a double-dynamic programming algorithm to
find the best alignment of the template to a given the query domain. Taking this
approach allows the structural similarity between the template and a domain to be
calculated on a continuous scale.

In order to develop and fairly assess the performance of any method of function
prediction, it is essential to create a test data set of structures where the correct answer is
known. One approach is to focus on enzymes which have been functionally classified by
the Enzyme Commission (E.C.) (Webb 1992). This takes the form of a 4 digit code (e.g.
2.7.7.1) that describes the catalysed reaction at various levels of specificity. Where the
first digit denotes the overall enzyme class (e.g. Transferase), proteins sharing the first
three E.C. codes generally perform similar reactions, albeit on different substrates. To
benchmark FLORA, a data set of diverse superfamilies in CATH was created, which
contained more than 3 enzyme families (i.e. domains sharing at least their first 3 E.C.
numbers). The final data set comprised: 36 enzyme families from 14 different CATH
superfamilies, covering all 3 major protein classes.

Comparison to standard structural alignment using the SSAP algorithm and other
structure-based function predictions methods showed that FLORA was able to detect
more functionally similar proteins at low error rates.

5 An integrated pipeline for functional prediction

5.1 Introduction

Structural templates are but one of many protein function prediction tools. Due to the
wide variety of proteins and their functions, at this moment in time no single method is
100% successful at function prediction. Amore prudent approach therefore, is to utilise
as many different methods as possible in the hope that at least one method will find
the correct solution. Using a variety of methods also allows a consensus opinion to be
drawn, the general assumption being that the greater the number ofmethods pointing to
thesamesolution, themore likely it is for that solution tobe true.Oneproblemwithsucha
wide ranging approach is that the manual submission, retrieval and interpretation of
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results from the various servers across the globe is a time consuming process and the
results are often returned in a number of formats. It would therefore be of enormous
benefit to researchers for a single service toaccess asmanyof these services aspossible.To
this end a number of protein function prediction servers have been developed such
as ProKnow (Pal and Eisenberg 2005) and ConFunc (Wass and Sternberg 2008),
combining multiple methods in a single site, with an aim to attain the best possible
predictions.Herewediscuss theProFunc server and lookat somecase studies to examine
the effectiveness of such an approach.

5.2 The ProFunc server

ProFunc (Laskowski et al. 2005a) (http://www.ebi.ac.uk/thornton-srv/databases/
profunc/) was developed to respond to the demands of the various structural
genomics projects in operation across the globe, in particular to address the problem
of functional prediction of hypothetical proteins of unknown function. It combines a
number of sequence-based and structure-based methods (Fig. 5), utilising in-house
software as well as external services (often through the use of webservices) to analyse
an uploaded PDB structure. The results are presented to the user in an easy to navigate
set of html pages with an additional summary of the most likely functions provided as

Fig. 5 ProFunc outline. Figure illustrating the types of analyses found in the ProFunc server. Sequence-
based methods are found on the left hand side of the image, structure-based methods on the right
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a list of gene ontology (GO) terms (Ashburner et al. 2000). It should be pointed out at
this stage that this “executive summary” should only be taken as an approximate
guide, since the primary aim of the server is to provide results from a number of
analyses in an easily accessible format. This is to enable researchers to interpret the
results themselves, bringing their own expertise to the problem, rather than a service
designed to state “the function is. . .”.

5.2.1 Sequence-based searches

The first port of call when attempting to determine the function of a protein is to identify
any sequence homologues with known function (see “Sequence to Function” section).
Significant sequence similarity is often an indicator of similarity in function and it has
been shown (Todd et al. 2001) that above 40% sequence identity, homologous proteins
tend to have the same function, but conservation of function falls away rapidly below
this threshold. There are always exceptions to this rule (Whisstock and Lesk 2003) and if
the domain composition of a protein is retained, the function can be inferred at even
lower sequence identities.

Simultaneously, two sequence searches are initiated: a FASTA (Pearson 1991)
searchagainst theProteinDataBank(PDB) (Bermanet al. 2000)anda standardBLAST
(Altschul et al. 1997) search of the UniProt (Apweiler et al. 2004) sequence database.
The search against the PDB is performed in order to quickly identify any obvious
matches to proteins of known structure which could give structural insights into any
putative function. The BLAST search against UniProt aims to identify closely related
sequences, which are subsequently aligned using a simple pile-up procedure. This is
used togenerate amultiple sequencealignment fromwhichresidueconservationscores
can be calculated using the method of Valdar and Thornton (Valdar and Thornton
2001). These scores are essential formanyof the subsequent structural analyses and are
mapped onto the structure for visualisation using Rasmol (Sayle and Milner-White
1995). This allows the user to identify patches of highly conserved residues on the
protein surface which are often a strong indicator of important functional sites.

For every UniProt sequence match found by BLAST, the protein�s location on the
source organism�s genome is identified and the 10 genes on either side are extracted,
tabulated and illustrated in diagrammatic form. Inmany organisms neighbouring genes
are often functionally related (e.g. bacterial operons) so the identification of any proteins
of known function in close proximity can provide a clue to the function.

Finally, the query protein sequence is analysed for matches to any of the myriad
of motifs, domains, patterns, fingerprints and Hidden Markov Models (HMMs) in
InterPro (Mulder et al. 2007) using the InterProScan (Quevillon et al. 2005) webservice.
InterPro contains amassive number of sequence patterns from the Pfam (Sonnhammer
et al. 1998), PROSITE (Sigrist et al. 2002), SMART (Schultz et al. 1998), PRINTS
(Attwood 2002), BLOCKS (Henikoff et al. 1999), TIGRFAMS (Haft et al. 2001),
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ProDom (Servant et al. 2002) and Gene3D (Yeats et al. 2006) resources. Many of these
patterns are specific to functional families and are excellent indicators of puta-
tive function. In addition to this, a separate scan is performed against the Superfamily
(Gough and Chothia 2002) library of SCOP (Murzin et al. 1995) structural superfamily
HMMs to identify possible matches to the PDB and individual domains.

5.2.2 Structure-based searches

When the sequence-based methods fail or provide few clues, investigation of the
protein�s three-dimensional structure can identify similarities and distant homologies
that may help elude the biochemical function. These range from the large-scale global
fold comparisons, down to highly specific template based approaches that pinpoint
constellations of individual residues.

The first step in assigning function from structure is to compare the global fold of the
protein with those already known. Proteins with a similar structure are usually evolu-
tionarily related and therefore likely to share a similar function, but once again caution
must be taken when interpreting these results as structural similarities might be the re-
sult of convergent evolution and therefore the functionmay be quite different. There are a
number of different fold comparison methods available (for a review see Novotney et al.
2004) but within ProFunc two searches are made. The first uses a secondary structure
matching algorithm developed at the EBI called MSDfold (Krissinel and Henrick 2004)
(http://www.ebi.ac.uk/msd-srv/ssm/) and this is supplemented by a standard DALI
(Holm and Sander 1993) search. Any significant matches are ranked and listed with
the top hits illustrated in a figure of secondary structures aligned. A structural super-
position of any number of the top hits can be viewed to allow the user to assess the level of
similarity or to identify core regions of importance (e.g. when a particular structural
domain is conserved across all homologues). In some cases a particular combination of
secondary structure elements is strongly associated with a particular function. The most
obvious example of this is theHelix-Turn-Helix (HTH)motif found in a number ofDNA
binding proteins (Aravind et al. 2005). As these are highly significant functional
indicators, any structure submitted to ProFunc is scanned against a database of known
HTH templates extracted from PDB structures known to bind DNA (Ferrer-Costa et al.
2005). To reduce the number of false positive matches the hits are filtered and scored by
solvent accessibility and electrostatic potential. High ranking significant matches can be
viewed on the structure using Rasmol.

Where the global fold or sub-domains are of limited use, the next stage is to
investigate any pockets or clefts on the protein surface. It has been shown that a protein-
ligand binding site (or “active site”) is more often found to be the largest cleft in the
protein and this cleft is significantly larger than any other one in the protein (Laskowski
et al. 1996). In ProFunc the SURFNET (Laskowski 1995) algorithm is used to identify all
the clefts in the protein structure ranked by size. The pockets can then be viewed using
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Rasmol scripts and these can be coloured by residue type, nearest atom type, or by
residue conservation. The most highly conserved pockets are those most likely to have
some functional relevance andmay even be ligand binding or cofactor binding sites. The
identification of putative ligands or co-factors can help narrow down any putative
functions and allow for experimental testing through ligand-binding assays. As always,
care should be taken when attempting to infer function from binding sites as similarity
in clefts is not always a strong indicator of ligand similarity, as seen in an analysis of
human cytosolic sulfotransferases (Allali-Hassani et al. 2007). Another type of pocket
searched for using ProFunc is much smaller than a cleft and is known as a “Nest”
(Watson and Milner-White 2002). These are formed when the dihedral angles of the
protein backbone alternate between right and left handed forms as defined in the
Ramachandron plot. The consequence of this conformation is the creation of small
slightly positive concavities which are able to bind anionic groups such as phosphates
and sulphates. On their own they may not provide too many functional clues however,
when multiple Nests are found in series they form larger functional motifs such as the
ATP-binding P-loop or Iron-sulphur binding sites.

The final set of structure-based analyses involves the highly specific n-residue
templates. As the three dimensional arrangement of enzyme active site residues is often
more conserved than the overall fold, this can be used to identify functionally important
local similarities in proteins with very different folds. As discussed in the previous
subsection, there are a number of approaches available to identify geometric patterns of
residues or atoms in protein structures. The ProFunc server runs four template-based
scans using JESS (Barker and Thornton 2003) which uses a KD-tree data structure for
rapidmatching of templates and queries. Three of the searches scan the submitted protein
structure for the presence of structural templates held in databases of known enzyme
active sites, ligand binding sites andDNA-binding sites. The enzyme active sites are based
onmanually curated templates that were the foundation of theCatalytic Site Atlas (Porter
et al. 2004), whereas the ligand-binding and DNA-binding templates are automatically
generated from the PDB and updated on a weekly basis. The final run involves a “reverse
template” search (Laskowski et al. 2005b) which turns the template idea on its head,
generating templates from the submitted structure and scanning each generated template
in turn against a representative sample of the PDB.

In each case, the probability of matching the orientation of any three residues by
chance alone is very high; therefore identifying significantmatches by rootmean square
deviation (rmsd) alone is not sufficient. To narrow down the hits to those most
significant a 10A

�
sphere is drawn around the centroid of the template and the match.

Within this sphere any overlapping identical residues, chemically similar residues and
empty space is identified and used to score the significance of the hit. The underlying
idea here is that if a site is performing the same function, then the surrounding local
environment is likely to be similar. Therefore themore similar the surrounding residues,
the higher the significance of the template match.
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5.3 Case studies

The ProFunc server was developed to respond to the problem of an increasing number
of structures of unknown function being deposited by the various Structural Genomics
initiatives across the globe. There are a number of goals for these high-throughput
projects but one of the main aims was to determine as many structures as possible with
novel folds in an attempt to cover the “fold space” of protein structure, whilst increasing
automation to reduce the cost of structure determination. In collaboration with the
NIH-funded Midwest Center for Structural Genomics (MCSG), a fully automated
procedure has been set up to automatically submit each new structure to ProFunc as
part of their high-throughput protocol. The results are then manually assessed and
reports sent back to the depositors indicating any interesting findings. This process has
provided a very useful dataset to test the ProFunc server and determine the most
successful methods.

A large scale analysis (Watson et al. 2007) conducted at the end of the first stage
of the NIH-funded Protein Structure Initiative (PSI), looked at the structure-based
function predictions for MCSG proteins using the ProFunc server. The aim of the
study was to determine, using structures subsequently functionally characterised,
whether the ProFunc server could have identified this function at the time of release
and which methods within the server show the greatest level of success. The results
showed that, of the 92 proteins with known function taken from the 282 non-
redundant deposits at that point, 70%would have had their functions assigned had the
server been fully operational at the time of deposition. Of this 70% over three quarters
had the correct function predicted bymore than onemethod. The twomost successful
structure based methods were subsequently identified as the “reverse template” and
the fold comparison (MSDfold) approaches, both of which showed between 50% and
60% success rates. In the majority of cases the two methods are complementary,
finding the same protein for their top matches, but there are also examples where one
method finds a correct match that the other does not. In general this relates to the
differences in the focus of the methods, with the fold matches identifying common
global features whereas the reverse templates identify more local similarities.

The usefulness of the ProFunc approach and the difficulties faced in function
prediction are illustrated by two individual case studies below. The first case illustrates
how the server can easily be used to identify function, whereas the second shows that
some structures do not provide easy solutions.

5.3.1 Case study 1: published function identified

Tm0936 (PDB deposit 2plm) is annotated in the PDB as an uncharacterised pro-
tein from Thermotoga maritima and contains a Pfam amidohydrolase domain,
yet the associated reference for this PDB entry indicates that the actual function
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of the protein has been identified (Hermann et al. 2007). In this paper the authors
describe a method involving the targeted docking of high-energy metabolic inter-
mediates into an earlier structure of Tm0936 solved by the New York Structural
Genomix Consortium (PDB entry 1p1m). Their results suggested that Tm0936 is
an adenosine deaminase (E.C.3.5.4.4) and led them to determine the structure of
Tm0936 with S-inosylhomocysteine bound (a product of S-adenosylhomocysteine
deamination).

The structure of Tm0936was submitted to the ProFunc server for analysis. All of the
sequence-based methods indicated it to be a putative amidohydrolase, as would be
expected for any member of the Pfam amidohydrolase domain, but could not provide
specific details on the substrate. Moving to the structure-based methods, a number of
very strong fold matches also confirmed a general amidohydrolase function but still no
specificity. Only on examination of the template-based approaches was a more detailed
function identified. A highly significant match was found to an enzyme active site
template for adenine amidohydrolase (derived from amouse enzyme, PDB entry 1a4l).
Further examination of the match shows that the sequence similarity between Tm0936
and the template enzyme is only 17.5% thereby making it difficult to identify with
sequence-based searches. The overall structural similarity is however 95% and the local
sequence similarity (i.e. the residues surrounding the template match) is almost 30%.
The importance of this local similarity is seen in the superposition of the two active sites
(Fig. 6), both of which contain bound cofactors in almost identical conformations. This
suggests that had the structure been submitted to the ProFunc server, the specific
adenosine deaminase function would have been identified. It is also interesting to note

Fig. 6 Adenosine deaminase enzyme active site template superposition on Tm0936. Overall folds of
Tm0936 (blue cartoon, green cofactor) and 1a4l – adenosine deaminase (red cartoon, orange cofactor)
show remarkable similarity for only 17.5% sequence identity. The magnified region shows the almost
identical active site residue conformations and the superposed cofactors in both structures
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that a ProFunc run of the protein used in the docking experiment also has a significant
match to the adenine amidohydrolase template, and that the bound methionine
molecule is located exactly where the methionine-like substructure of S-adenosylho-
mocysteine would be expected.

5.3.2 Case study 2: function unclear

Yjcs is a hypothetical protein from Bacillus subtilis solved as part of the MCSG and is
deposited as PDB entry 1q8b. Sequence analysis indicates similarity to a number of
proteins of unknown function and a few putative antibiotic biosynthesis monoox-
ygenases. There are no Pfam domains or functional motifs present but it is a member of
the CATH (Orengo et al. 1997) homologous superfamily 3.30.70.900 (annotated as
oxidoreductases). There are only a few conserved residues in the core of the protein and
no genome locations can be found for any homologues. Looking at the structure does
not provide any more detail, with a number of fold and reverse-template matches to
various proteins including putative monooxygenases, sugar-binding proteins as well as
other hypothetical proteins of unknown function. In this case themost likely function is
some kind of putative monooxygenase but little more can be said about possible
substrates or pathways it could be involved in. Additional analyses with new computa-
tional techniques and further experimental study will be required to provide detailed
functional predictions in this case.

5.4 Conclusion

There are a wide variety ofmethods utilising protein sequence and structure with the aim
to predict protein function. No onemethod provides 100% success, so only by combining
as many methods as possible can one maximise the probability of identifying the correct
function. There are severalmeta-servers currently available which integrate a wide variety
of resources, such as the ProFunc server. We have seen that, although the ProFunc server
has shown a great deal of success, cases abound where every method currently available
provides no hits or functionally uninformative hits to hypothetical proteins of unknown
function. It is therefore vital thatnewmethods continue tobedevelopedandare integrated
into pipelines like theProFunc server, providing researcherswith “one-stop-shop” sites to
submit their data for analysis. Ultimately though, the predictions are meaningless
without any experimental validation, and therefore further improvements to high-
throughput functional assays (such as those described in Kuznetsova et al. 2005) will
greatly assist biochemical validation of predictions in the future.
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CHAPTER 4.6
Harvesting the information from a family
of proteins

B. Vroling and G. Vriend

CMBI, NCMLS, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands

1 Introduction

The need for information about the functional roles of the elements comprising the
human genome became larger than ever with the completion of its sequencing in 2003
(Lander et al. 2001; Venter et al. 2001; Consortium 2004b). BioSapiens (Excellence
2005) is contributing to the ENCODE (Consortium2004a) program,which is providing
a biologically informative representation of the human genome using high-throughput
methods to identify and catalogue all functional elements. The ENCODE pilot project
consisted of annotating 1% of the genome (Consortium et al. 2007). The presently
ongoing functional annotation of the other 99% will be a crucial next step for many,
diverse fields of science.

Previous chapters have illustrated many good databases and good tools for the
prediction of function from sequence. The best, and most often used, tool for functional
annotation is a direct sequence comparison between the homo sapiens sequence with
unknown function and homologous sequences in other species for which the function is
known. Most often this is done with BLAST or PSI-BLAST, but threading methods and
profile–profile comparisonmethods are also oftenused.This transfer of information from
one protein to the other does not stop with the protein�s function. Types of information
that can be transferred when a sequence alignment with a well-studied protein can be
made include; dimer interface residues, active site residues, post-translational modifica-
tion sites, metal-binding sites, etc. The latter is important for research areas like drug
design or quantitative systems biology forwhich it is not only importantwhat proteins do,
but also how they do it. Answering that question requires that knowledge is obtained
about the roles of individual amino acids in the various aspects of protein function.

Corresponding author: G. Vriend, CMBI, NCMLS, Radboud University Nijmegen Medical
Centre, Geert Grooteplein 26-28, 6525 GA Nijmegen, The Netherlands (e-mail: vriend@cmbi.
ru.nl)
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The use of multiple sequence alignments is not limited to just the transfer of
experimental information. The footprints that evolution left behind in these sequences
can be reconstructed from conservation and variability patterns, and a number of
computational techniques exists that can harvest this information. Some of those will be
discussed in this chapter.

The final goal of most bioinformatics studies is answering biological questions that
can widely vary in detail and complexity. Often it is needed to use all available
information (3D structures, multiple sequence alignments, expression and distribution
patterns, interaction information, etc.) to answer such questions. The G protein-
coupled receptor (GPCR) family will be used to illustrate this because the GPCRDB
(Horn et al. 1998b, 2001, 2003) provides a molecular class specific information system
(MCSIS) that holds much, heterogeneous data in a well organized and easily accessible
form. With their 16,000 sequences, the GPCRs are one of the largest sequence families
known to date. The additional availability of 10,000 well annotated mutations (Beukers
et al. 1999; Edvardsen et al. 2002), more than 12,000 binding constants for ligands (Lutje
Hulsik 2002), a large number of well described disease phenotypes (Hamosh et al. 2005),
genome locations and organizations, and an up-to-date annotated SNP database
(Kazius et al. 2007)make the GPCR family a great subject for inferring new information
using a wide spectrum of bioinformatics techniques.

1.1 Information transfer

Chothia and Lesk (1986) studied the relation between sequence similarity and structure
similarity, and they concluded that structures stay conserved in evolution much longer
than sequences. Sander and Schneider (Sander and Schneider 1991) later quantified this
relation (see Fig. 1).

A basic assumption in bioinformatics is that residues at equivalent positions in
homologous proteins have similar functions. That implies that the function of a residue
is determined by its location, while the residue type determines how that function is
performed. A residue known to be in contact with the endogenous agonist in the mouse
muscarinic type-3 receptor, for example, is most likely also involved in contacting the
endogenous ligand in the human muscarinic type-1 receptor. Figure 5 shows an
important aspartic acid that is conserved in all amine binding GPCRs in which it is
always the counter ion for the positive amine group in the ligand. In the hormone
receptor family, on the other hand, we always find a serine or threonine at this position
that interacts with the ligand, while in the chemokine receptor family we find nearly
invariably a tyrosine that interacts with the ligand at this same position.

Carrying over information is the most elementary use of homology, and many
chapters in this book use this concept one way or another. In the remainder of this
chapter we will concentrate on a different use of this principle. Namely, what can we
learn from the patterns of variability and conservation that evolution has left in a
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multiple sequence alignment. For example, if we hadn�t known yet that the aspartic acid
in the amine receptors, the serine/threonine in the hormone receptors, and the tyrosines
in the chemokine receptors all were involved in ligand binding, could we then have
derived that knowledge from the multiple sequence alignment?

But first wewill discuss a system to generatemultiple sequence alignments in awider
context, the so-called molecular class specific information system. Such a system is not
strictly needed to produce and analyze multiple sequence alignments, but as you will
read in many chapters in this book, it often is very beneficial to have all available
information easily available.

2 Molecular class-specific information systems

Studies that involve carrying over information from one protein to the other seem simple
at a first glance. However, the amount of data that needs to be collected from hetero-
geneous sources, converted to syntactic and semantic homogeneity, validated, stored, and
indexed, is enormous. And the data sources from which relevant data can be collected
grow continuously, both in volume and in number. The enormous amount of data that is
entered each day into databases and the literature is outstripping the ability of experi-
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Fig. 1 The Sander and Schneider plot. If the percentage sequence identity at a given alignment length is
above the curve, it is safe to transfer information and, for example, to build a 3Dmodel by homology. In this
example a user requested information about a protein that can be alignedwith 60% sequence identity (over
100 amino acids) to a well-studied protein with known structure. The blue dot is above the �safe threshold
curve� so modelling is possible, and thus, all kinds of information transfer regarding the roles of individual
amino acid is also possible.
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mental scientists to keep pace. Large monolithic databases like SwissProt, EMBL, PDB,
etc., are invaluable for biomedical scientists. Most scientists, though, tend to use many
databaseswhile concentrating ononemolecule, or one family ofmolecules. Themain aim
of molecular class-specific information systems is to gather heterogeneous data from
across a variety of electronic sources in order to draw new inferences about the target
protein families. The number of experimental data types (primary data), is limited, but
there are hardly any limits to the number of data types that can be derived computa-
tionally (secondary data). It is therefore important to consider the questions that the
system should help answering when adding more and more computational data.

2.1 G-protein-coupled receptors

Over 1000 human genes encode G protein-coupled receptors. The ligands that bind and
activate these receptors are heterogeneous and include photons, odours, pheromones,
hormones, ions, neurotransmitters, and proteases. GPCRs transmit signals from outside
the cell to amplification cascades controlling sight, taste, smell, slow neurotransmission,
cell division, etc. All GPCRs form a seven transmembrane (TM) a-helical bundle,
connected by three intracellular and three extra-cellular loops. Within some GPCR
families the overall sequence identity between family members can be lower than 25%.

GPCRs are a major target for the pharmaceutical industry as is reflected by the fact
that nearly 50% of all known drugs act on a GPCR (Howard et al. 2001). Some of the

Fig. 2 Cartoon representation of the recently resolved human b2-adrenoceptor structure.
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major questions relevant to GPCR pharmacology include the following: What residues
are critical for ligand binding and for the activation of G-proteins or other proteins?
What do different receptor families have in common with regard to their activation
mechanism? And which residues are responsible for the differences and should thus
especially, or especially not be influenced by potential drug molecules? The GPCRDB is
designed to be a data storage medium, as well as a tool to aid biomedical scientists with
answer questions like these by offering a single point of access tomany types of data that
are integrated and visualized in a user-friendly way.

The primary data in the GPCRDB are sequences, structures, and mutation and
ligand binding data. Sequences are automatically imported from the SWISS-PROT and
UNIProt databases (Bairoch and Apweiler 2000). cDNA sequences are imported form
the EMBL (Kanz et al. 2005) databank. Structure data is retrieved from the PDB
(Berman et al. 2000). Mutation data is obtained from the manually curated tinyGRAP
(Beukers et al. 1999; Edvardsen et al. 2002) database, as well as mutation data extracted
fromonline literature using an automated procedure (Horn et al. 2004). SNPdata comes
from the NAVA system (Kazius et al. 2007).

The data organization in the GPCRDB is based on the pharmacological classifica-
tion of GPCRs and the main way to access the data is via a hierarchical list of known
families in agreement with this classification. For a specific family, users can access
individual sequences, multiple sequence alignments, the profiles used to perform the
latter, snake-like diagrams and phylogenetic trees. Two-dimensional snake-like dia-
grams are used to represent and combine GPCR sequence, 2D structure and mutation
information (Campagne et al. 1999). Furthermore, entries can be retrieved using a query
system, and data can be saved either using the WWW-pages or via ftp access. One
important dissemination and inference facility in the GPCRDB is a large series of
Multiple Sequence Alignment (MSA) analysis tools.

3 Extracting information from sequences

During evolution certain residues can mutate almost without restrictions while
other residues are so important for the function of the protein that they have never
mutated. There are also residue positions that tend to be conserved in subfamilies
but different between subfamilies. Different parts of the molecule are under different
types of evolutionary pressure, leading to different patterns of conservation and
variation that can be analyzed to learn more about the role of the individual residue
positions.

Residue conservation has been evaluated inmultiple sequence alignments bymeans
of variability (number of different amino acids found), Shannon entropy, and variance-
based and score-matrix indices (Mirny and Shakhnovich 2001; Pei and Grishin 2001;
Shenkin et al. 1991). The patterns of conservation in proteins have been described as the
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fingerprints left by evolution in the structure (Zuckerkandl and Pauling 1965), and they
have been used for quality assessment and refinement of multiple-sequence alignments
(Pei and Grishin 2001). Conserved residues are often clustered in certain regions of
protein structures, sometimes at universally conserved positions (Mirny and Shakh-
novich 1999), so called because they can form a motif characteristic of the fold.
Sometimes, these positions are also found in the corresponding sequence segments
of analogs, and their location often coincides with that of supersites (Russell et al. 1998).
Many groups have used the identification of conservation patterns in proteins as a
method to search for function. Some of these methods are based on energy calculations
on proteins of known structure looking for charge and shape complementarities in
protein and ligand surfaces that are thought to interact (Kuntz et al. 1982; DesJarlais
et al. 1988; Miranker and Karplus 1991; Honig and Nicholls 1995; Lamb and Jorgensen
1997; Wang et al. 2001; Glaser et al. 2006). Kufareva et al. (2007) predicted binding
interfaces from single proteins with a known 3D structure. Other groups have predicted
functional motifs using principal component analysis (Casari et al. 1995), analysis of
physicochemical descriptors to score protein-protein interactions (Jones and Thornton
1997; Fernandez-Recio et al. 2005), search for motifs in Blocks databases (Pietrokovski
et al. 1996), or alignment of hinge regions (Shatsky et al. 2002). Somemethods combine
evolutionary information extracted from multiple sequence alignments with three
dimensional structure information (Lichtarge et al. 1996a; Aloy et al. 2001; Armon et al.
2001; Glaser et al. 2003).

3.1 Correlated mutation analysis

It seems obvious that a residue conserved in a sequence family must be involved in a
function common to the family, while a residue conserved only in subfamilies is likely to
have a functional role in only those subfamilies. This concept can work in two
directions: deductive and inductive. In both directions correlations of conservation
and variability patterns in aMSA are being analyzed. Most studies where these patterns
are correlated with known facts tend to be deductive, while most studies that correlate
these patterns against each other tend to be inductive, but scientific creativity can easily
blur this division.

The term correlated mutation refers to the tendency of pairs of residue positions to
either mutate in tandem or stay conserved together, and correlated mutation analysis
(CMA) is a technique for the identification of these patterns in a MSA. It has been
originally described (G€obel et al. 1994; Singer et al. 2002) to predict physical contacts
within proteins that could be used for structure prediction (see Fig. 3), but that is beyond
the scope of this chapter. CMA was proven to be a powerful technique for predicting
amino acid contacts at protein–protein interfaces, since correlated mutations tend to
accumulate at the protein surface (Oliveira et al. 1993; Pazos et al. 1997; Horn et al.
1998a). Kuipers et al. (1997a, b) and Oliveira et al. (2003b) determined correlations
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between residue positions and ligand binding characteristics of receptors to determine
which residues were involved in that ligand binding.

4 Correlation studies on GPCRs

Kuipers et al. (1997a, b) and Oliveira et al. (2003b) determined the correlation be-
tween the absence and presence of residues and the binding or not binding of pindolol
to GPCRs from the Class-A amine sub-family. In this example of deductive use of
CMA they observed one asparagine in helix VII that correlated perfectly. This
asparagine was mutated in the serotonin 1a receptor to a valine which resulted in

Fig. 3 Illustration of correlated mutation analysis. Several residues are shown in their structure context, in
this example, two nearby a-helices. For these residues, six sequences (a–f) are shown as a multiple
alignment. Positions 1 and 2 show correlated substitutions (connected by arrows), as do positions 5 and n.

a b

Fig. 4 (a) The original bindingmode of the ligand. (b) Themutation Asn386Val resulted in a loss of binding
affinity, but when a methyl group was added to the ligand, binding affinity was restored.
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abolishing the binding. When an extra methyl group was introduced in the pindolol
molecule, at the positionwhere the interactionwith the asparaginewas predicted to take
place, the binding was regained. This experiment is illustrated in Fig. 4.

The recently solved b2-adrenoreceptor structure contains an inverse agonist that is
highly similar to pindolol, and that has exactly the same active group between the ring
system and the nitrogen as pindolol. The b2-adrenoceptor sequence is very similar to
the sequence of the serotonin 1a receptor, and the b2-adrenoceptor also binds pindolol
well, and it has an asparagine at the same position as the onemutated in the serotonin 1a
receptor. Figure 5 shows the location of the inverse agonist and this asparagine in the
b2-adrenoceptor structure. This prediction was made more than 13 years before its first
experimental confirmation, and it was based on a deductive correlation study of
heterogeneous data: an MSA and ligand binding studies. This example beautifully
illustrates the deductive power of the CMA method.

Oliveira et al. (1993) used CMA in an inductive way to predict residue relations
in GPRCs. Their reasoning was simple: if the mutation patterns of residue positions
are strongly correlated, i.e. give a strong signal in a CMA analysis, then those residue
positions must be involved in a common function. Other information like the posi-
tion in the structure, ligand binding information, or mutation studies can then re-
veal which function was detected. When it was observed that correlated mutations
accumulate at protein surfaces, the technique was used as a new approach to

Fig. 5 The bindingmode of the pindolol analogue in theb2-adrenergic receptor. The asparagine indicated
by Kuipers et al. as responsible for pindolol selectivity is shown, as well as an aspartate that is absolutely
conserved and essential for ligand binding
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protein–protein docking and the prediction of protein–protein interfaces (Pazos et al.
1997). The rationale behind this is that mutations at one of the interfaces must
be compensated by a mutation in its counterpart. Gouldson et al. (2001) used such
intermolecular CMA studies to predict that many GPCRs form dimers. This idea was
also used to identify homo- and hetero-dimerisation interfaces for GPCRs (Gouldson
et al. 1998, 2000, 2001; Filizola and Weinstein 2002; Filizola et al. 2002; Valencia and
Pazos 2002; Hernanz-Falcón et al. 2004) as well as for G-protein – GPCR interfaces
(Oliveira et al. 1999, 2002, 2003b; Horn et al. 2000; Gouldson et al. 2001; M€oller et al.
2001).

4.1 Evolutionary trace method

The evolutionary trace method (ET) by Lichtarge et al. (1996a, b, 1997) is a special
case of CMA. It can be used deductively and inductively. It predicts functionally
important residues in a protein family given a three dimensional protein structure
and a MSA. The starting point of the ET method is a MSA, which must contain
sequences of a protein family with divergently related members. The tree is then
partitioned into sub-groups corresponding to functional classes. A consensus se-
quence is then generated for each sub-group, and these sequences are compared.
Residue positions that are conserved within sub-groups, but vary among them are
called class-specific- or trace-residues. The rank of a specific residue is determined as
the number of tree divisions needed for a residue to become a trace-residue. The trace
residues are mapped on a 3D structure, and functional sites are indicated by the
clustering of these trace-residues. The ET method is illustrated in Fig. 6. Despite
rather different approaches, CMA and ET are highly similar in what they can detect
from an MSA. The ET method is restricted by the need to use a phylogenetic tree,
and consequently cannot detect correlations that do not perfectly follow the tree
branching pattern.

Evolutionary trace analyses have been successfully applied in a number of studies
(Lichtarge et al. 1996a, b, 1997; Dean et al. 2001; Madabushi et al. 2004). Dean et al.
(2001), for example, used the ET method to confirm that GPCRs might actually be
domain swapped dimers. Sowa et al. (2001) performed an ET analysis of 42 members
of the RGS (regulators of G-protein signalling) family that revealed a novel functional
surface, located next to the interface between the RGS and Ga. It was predicted that
the G-protein effector subunit PDEg would bind the RGS-Ga complex by straddling
both Ga and the newly discovered functional site. Indeed, mutagenesis of RGS based
on the ET prediction revealed that three residues out of the six selected for muta-
genesis had profound effects on the regulation of activity by PDEg . After the ET-based
mutagenesis was completed, the crystal structure of RGS9Gi/taPDEg was solved by
Slep et al. (2001) and confirmed the predicted position of the PDEg interaction site on
the RGS domain.
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These studies suggest that ET can be used for understanding protein func-
tions if it can be applied at a large scale. Madabushi et al. (2002, 2004) streamlined
the input preparation for an automated ET implementation. They also developed
formal statistics to assess the significance of trace clusters, and tested its performance
on proteins with diverse folds, structures, and evolutionary history.

The ET method is by no means the only method available that performs this kind
of analyses; we simply took ET as it is representative for a large class of methods. A
number of other good tools and methods have been published that use positional
comparison of amino acid types (e.g. TreeDet (Carro et al. 2006); SDPpred (Kalinina
et al. 2004); etc.).

a

b

c

Fig. 6 The ET method. (a) The sequences in a protein family are aligned and a tree is generated. (b) For
each class, a consensus sequence is created. The consensus sequences are compared, and trace residues are
selected. (c) The three dimensional protein structure is used to map the trace residues. A functional site is
indicated by the clustering of these trace residues.
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4.2 Entropy-variability analysis

Conservation and variability patterns can be correlated with external information or
with each other. Oliveira et al. (2003a) have developed a sequence analysis technique
that harvests the information that is implicitly present in the variability and conserva-
tion at one single position in a MSA. This method is based on the combination of two
sequence variability measures. The first is a Shannon-type entropy, while the second,
variability, is simply the number of different amino acid types observed at one position
in a multiple sequence alignment. They showed that there is a relation between the
function of a residue and its location in a plot of entropy versus variability.

The method was tested on four protein families for which very many sequences are
available and for which the function of nearly all residues have been well-established
experimentally: globin chains, GPCRs, ras-like proteins, and serine-proteases (Oliveira
et al. 2003a). Positions related to the main function, related to co-factor or regulator
binding, positions in the core of the protein, and positions not associated with any
known function all tend to cluster in separate areas in the entropy-variability plots

Fig. 7 Entropy-variability plot indicating the relation between variability patterns and residue function.
Residues in area 11 perform themain function of the proteins (G-protein binding in GPCRs). Residues in area
12 provide support to the residues in area 11. Residues in area 23 are involved in modulator binding (ligand
binding in GPCRs). Residues in area 22 tend to be located between residues in the areas 23 and 12 and tend
to be responsible for communication between these two sites. Finally, residues in box 33 are seldom found
involved in any function.
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(see Fig. 7). This entropy-variability method is inductive; it can, for example, predict
that a residue is involved in signal transduction, but additional information is needed to
determine which signal that is, and how the signalling is done; or it can determine that a
residue is involved in ligand/modulator binding but not what ligand or modulator is
bound or how this binding takes place.

Folkertsma et al. (2004) used entropy-variability analysis together with structure
and mutation data to find the functions of residues in the ligand-binding domain of
nuclear receptors. Shulman et al. (2004) obtained similar results using statistical
coupling analysis, a powerful but much more complicated method that produces
results that are highly similar to the entropy-variability analysis method.

4.3 Sequence harmony

Members of theGPCR family can be activated by awide variety of ligands. These ligands
range from a few atoms to large molecules. Certain residue positions in the ligand
binding area therefore tend to be involved in ligand binding in just a fewGPCR families.
To find such positions, a method is needed that searches for residue positions that are
conserved in certain families, but not in others. The sequence harmony (SH) method
was developed by Pirovano and Feenstra (2006, 2007). In contrast to CMA methods
mentioned above, which focus on sites that are conserved in one or both groups and
subsequently select those sites that are different between these groups, the sequence
harmony method can also detect sites that are not highly conserved within each of the
groups. The input of the SHmethod is amultiple sequence alignment, which is split into
two groups. For each group, as well as for the combined groups, entropies are calculated.
The SH score is calculated using these entropies. Ye et al. (2008) used the sequence
harmony method to find GPCR residues that seem important for the function of just a
few of the many GPCR families while being functionally unimportant in all other
classes.

5 Discussion

The main topic of this book is determining the function of proteins, and clearly, if we
want to fully harvest the wealth of information available in the human genome, that is
the first and most important thing to do. After all, how can we make progress in system
biology if we don�t knowwhat to dowith large numbers of important proteins? But after
we have determined what a protein does, the natural next question is how it does it.
Several other chapters also allude to this topic. We listed a small, but representative,
series of commonly used techniques that have in common that a multiple sequence
alignment is at their hearth, and we showed what these techniques could do in the field
of GPCR research. Correlation studies and entropy/variabilitymeasures often provide a
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lot of information. This might not always be the exact and correct answer to the
questions asked, but thesemethodsmost certainly do steer experimental work very well.
The strength of these methods was perhaps best illustrated by a study that revealed
individual atomic contacts between a ligand and a GPCR many years before the first
structural information became available.
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CHAPTER 5.1
Structure prediction of globular proteins
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1Department of Biochemical Sciences, Sapienza University, Rome, Italy
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4Department of Biology, Alma Mater University, Bologna, Italy

1 The folding problem

The previous chapters should have convinced the reader that understanding protein
function is an essential problem in biomedical and biotechnological sciences while, at
the same time, a rather elusive one. Protein function is, by and large, determined by the
protein three-dimensional structure with some exceptions that we will not discuss here.

One possible route to annotate a genome is to try and assign a structure to the
protein products of the genes. In principle one could follow two routes: a physico-
chemical approach whereby one tries to calculate the protein structure, or a heuristic
approach where rules relating sequence to structure are derived from the analysis of
known protein structures that have been experimentally determined.

The first route is clearly much more intellectually appealing. After all, given a
protein sequence we know exactly its chemical composition, if we do not consider post-
translational modifications, and all we need to know are the forces acting on each of the
atoms so that we can compute their optimal relative position.

In order to follow this route we need to make sure that the functional protein
structure is the conformation corresponding to the free energy minimum and, if
this is the case, that we are able to calculate the energy of all possible protein
conformation accurately enough to distinguish between the correct structure and all
the others.

If one takes a folded protein, i.e. a protein in its functional conformation, places it in
chemical conditions where all the forces are weakened and therefore where the protein
unfolds, it is sufficient to remove the chemical agents used for denaturing the protein to
recover the folded functional protein. This is the result of a very elegant experiment

Corresponding author. Anna Tramontano, Department of Biochemical Sciences, Sapienza
University, Rome, Italy (e-mail: anna.tramontano@gmail.com)
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Fig. 1 Scheme of the Anfinsen experiment. The protein used for the experiment is Ribonuclease A, an
extracellular enzyme of 124 residues with four disulfide bonds. In the experiment schematized in panel a,
the S–S bonds were first reduced to –SH groups using mercaptoethanol (HS–CH2–CH2–OH). Next, the
protein was denatured with 8 M urea. Anfinsen verified that, in these conditions, the protein is inactive.
Next he removed urea by dyalisis and oxidized the –SH groups back to S–S bonds. The protein regained its
activity. However, the experiment would not be complete without its associated control, because wewould
have no proof that the protein was really completely unfolded in step 2. In the control experiment, shown in
panel b, the protein was first reduced and denatured as in a, but in step 3, the enzyme was first oxidized to
form S–S bonds, and then the urea was removed. The final protein was only 1–2% active. This implies that,
in step 2 of the experiment the protein behaved as a flexible randompolymer, so that disulfide bondswould
form between different pairs of cysteines in eachmolecule at random. The number of possible pairs that can
be formed is 105, therefore only one protein out of 105 will, on average, have the correct pairing and will
therefore be able, once the urea has been removed, to form the native functional structure
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performed by Christian Anfinsen in 1973 (Anfinsen 1973) (Fig. 1). The obvious
interpretation of the experiment is that a protein sequence contains all the information
needed to achieve its functional structure (the experiment is carried out in a test tube
where there is nothing else but the protein) and that the functional or native structure is
the one corresponding to the free energy minimum among those that the protein can
explore (no matter how many times you repeat the experiment you always end up with
the same final structure). Therefore we can assume that the native protein structure is
the one corresponding to the free energy minimum (the limits of validity of this
assumption are discussed later in this chapter).

All we need to do is to compute the energy of all possible conformations of a protein
and select the one with minimum free energy. However there are at least two hurdles in
this strategy, the first is that proteins are onlymarginally stable, i.e. the energy needed to
unfold them is of the order of a fewkcal/mol and is brought about by a very large number
of weak interactions, and therefore we would need to compute the energy of each
interaction very accurately to distinguish between the native protein structure and all
the others. The second is that the number of possible conformations of proteins is
simply enormous. There aremany interesting attempt to try and simulate the folding of
a protein in a computer using various tricks, approximations and strategies, as it will be
discussed later in this chapter, but in practice we do not have at themoment anymethod
that can fold any protein only on the basis of the physico-chemical properties of its
sequence and we have to recur to heuristic methods by exploiting the fact that we have
access to several solved instances of our problem: all proteins of known sequence whose
structure has been solved experimentally.

The enormous number of conformations available to a protein not only makes the
task of computing them impossible, but implies that the protein itself cannot be
randomly searching its conformational space.

The case against proteins searching conformational space for the global minimum
of free energy was argued by Cyrus Levinthal in 1968 (Levinthal 1968). The Levinthal
paradox, as it is commonly known, can be demonstrated fairly easily. If we consider a
protein chain of N residues, we can estimate the size of its conformational space as
roughly 10N states. This assumes that the main chain conformation of a protein may be
adequately represented by a suitable choice from just 10 different local conformations
per residue. More technically, the assumption is that there are just 10 different common
combinations of phi, psi and omega torsion angles for each residue type. This of course
neglects the additional conformational space provided by the side chain torsion angles,
but is a reasonable rough estimate, albeit an underestimate. The so-called paradox
comes from estimating the time required for a protein chain to search its conforma-
tional space for the global energy minimum. Let�s think about a typical protein chain of
length 100 residues and let�s assume that the atoms can move very fast – the speed of
light even. Even at these physically impossible atom velocities, it would take the chain
around 1082 seconds to search the entire conformational space, which compares rather
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unfavourably to the estimated age of the Universe (1017 seconds). Clearly proteins do
not fold by searching their entire conformational space.

2 The evolution of protein structures and its implications
for protein structure prediction

By and large, proteins evolve by accumulating mutations (amino acid replacements,
insertions and deletions) which can be transmitted to the progeny and fixed in the
population if they do not alter the functionality of the protein. At some stage of the
evolution of a species, some individuals might diverge sufficiently to give raise to a
different species, i.e. become unable to interbreed in the wild producing fertile offspring
with the other members of the originating species.

As we mentioned, proteins have limited stability brought about by a multitude of
rather weak interactions among their atoms. This suggests that the delicate balance
between destabilizing and stabilizing forcesmight be easily destroyed by amutation and
the mutated protein might not be able to fold. However, during evolution, function has
to be preserved, therefore all the proteins that we observe can only contain non
destabilizing mutations with respect to their immediate ancestor sequence. Can a small
change destabilize the original protein structure and stabilize a completely different one,
preserving stability, function, folding ability, etc.? This is rather unlikely, and indeed
never observed. It follows that evolutionarily related proteins, that is proteins derived by
a common ancestor via the accumulation of small changes, cannot but have similar
structure, where mutations have been accommodated only causing small local re-
arrangements. If the number of changes, that is the evolutionary distance, is high these
local rearrangements can cumulatively affect the protein structure and produce rel-
evant distortions, but the general architecture, that is the fold, of the protein has to be
conserved. On the other hand, if two proteins have evolved from a common ancestor it is
likely that a sufficient proportion of their sequences has remained unchanged so that an
evolutionary relationship can be deduced by their comparative analysis. Therefore if we
can infer that two proteins are homologous, that is evolutionary related, the structure of
one can be used as a first approximation of the structure of the other. This forms the basis
of the technique known as comparative or homology modelling (Tramontano 2006).

How well is a protein structure preserved during evolution? In a seminal work,
Chothia and Lesk (Chothia and Lesk 1986) analyzed 32 pairs of homologous proteins of
known structure and asked the question of howmuch the core of the structures diverged
as a function of the sequence identity (a rough measure of the evolutionary distance).
There are several definitions of the core of a protein structure. In their work, Chothia
and Lesk used an almost tautological definition of core as the part of the protein
structures that is more conserved between the two homologous proteins under study.
Regardless the specific definition, we can intuitively understand what the core of a
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protein is: the part of the structure that is not peripheral to the folded nucleus of the
protein, i.e. the protein without external “decorations” such as loops and small domains
that are usually not very well conserved in evolution. In the same paper, Chothia and
Lesk also analyzed the extent to which the core is conserved as a function of sequence
identity. Their conclusion, supported by many subsequent analysis, is that there is a
clear relationship between the divergence of the structures of homologous proteins and
that it can be expressed as a function of their sequence identity (Fig. 2).

3 Template based modelling

Given a protein of unknown structure, the target, the first step of a comparative
modelling experiment is the detection of proteins evolutionarily related to it whose
structure is known (templates). The next question we need to ask ourselves is: which
amino acid of the target protein corresponds to which amino acid of the templates? In
other words we need a sequence alignment between the target sequence and the
sequence(s) of the template protein(s). This is, without doubts, themost crucial aspect of
a modelling procedure and one of the most difficult ones. There are several methods for
aligning protein sequences, but here is the catch. All thesemethods try to reconstruct the
evolutionary history of the protein. In other words, they tell us which amino acids are
likely to be derived from the same amino acid of the ancestral protein that gave origin to
the present sequences. However, this is not necessarily the alignment we need for
homology modelling. Let us try and explain this with an example. Suppose that there is

Fig. 2 Aplot showing the result of the Chothia and Lesk experiment. They selected 32 pairs of homologous
proteins plotted their structural similarity, measured as rmsd deviation in the core as a function of their
sequence identity
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an insertion of one amino acid in a given position in our target sequence with respect to
its template(s). Not only the inserted amino acid of the target does not have any
equivalent amino acid in the template(s), but also the amino acids surrounding it are
likely to have changed their position relative to the rest of the structure in order to
accommodate the insertion and using their evolutionary counterparts as structural
templates for their position is incorrect.

3.1 Homology-based selection of the template

The other question that we have to discuss is the selection of the best protein(s) to be
used as template(s). If more than one protein of known structure evolutionarily related
to the target is available we have several possible choices. We can:

* use the one evolutionarily closer to the target, i.e. the one with the highest sequence
similarity,

* “average” the coordinates of the templates and build a “theoretical template”,
* take the structure of different regions from the different proteins selecting the

regions where the local similarity is higher,
* build a model on the basis of each of the available templates and select the best one

according to some criteria,
* derive constraints from the templates and subsequently build a structure that

satisfies as many of them as possible.

Essentially, all these strategies are used in practice by different tools available to users
(Sali andBlundell 1993; Kopp and Schwede 2006). It is difficult to saywhich is the best in
general, although it is becoming clearer that usingmultiple templates has to be preferred
and probably the constraint based strategy is more effective in many cases.

3.2 Fold recognition

Evolutionary related proteins share similarities in sequence and structure. It is however
possible, and observed, that the two proteins have diverged so much that the sequence
signal falls below the detection level. It is equally possible, and observed, that some
topologies or folds are used by proteins presumably not sharing any evolutionary
relationship.

Both observations allow us to reformulate the protein prediction problem in a
different way. Rather than asking which is the structure of our protein, we can ask
whether any of the known structures can represent a reasonable model for it,
independently on our ability to detect an evolutionary relationship. This is equivalent
to ask whether the sequence of our target protein fits any of the structures present in our
database. Even if we detect such a fit, the structuresmight not be very similar, but still the

288

Chapter 5.1: Structure prediction of globular proteins



template protein can represent a sufficient approximation of our protein structure
useful for many applications.

In this case, we have to face the problem of evaluating sequence structure fitness.
The available methods can be roughly divided into two categories, although several

hybrid combinations are possible.
In one approach (Eisenberg et al. 1992), we can analyse the sequence and replace

each amino acid with its propensity to be observed in a given structural environment,
usually we take into account the propensity of an amino acid for being in one of the
secondary structure types, of being in a hydrophobic or an hydrophilic environment
and of being more or less exposed to a polar solvent. This will recast our sequence in a
new sequence in a different alphabet.Whenever possible, we use amultiple alignment of
all available proteins homologous to our target sequence, as we known that they will
share the same (albeit unknown) structure. Next, we can analyse each of the proteins of
known structure. For every position, we will not take into account which amino acid
happens to be present, but rather examine the property of the position, i.e. its secondary
structure, its environment and its exposition to the solvent and will assign a symbol
describing the observed combination of properties. In this way our database of protein
structures will be represented by a set of strings.

The string representing the query sequence or its multiple alignment can now be
compared, with techniques similar to those described for the detection of evolutionary
relationships, with each of the strings representing the structures. Once again we will
need a background distribution with which we compare the obtained score. This can be
obtained by reshuffling our sequence, or by creating reasonable “decoy” structures.

The other approach, known under the name of threading (Sippl 1995; Jones and
Thornton 1996), builds as many models of the target proteins as there are structures in
the database (or some reasonably selected subset of it) using each structure as a template,
optimising a fitness parameter depending upon the interactions between the amino
acids in the model. The optimisation can be achieved by a technique called double
dynamic programming, or using some approximations that will not be discussed here.

The fitness function is usually a pair-wise potential between amino acid side chains
reflecting the likelihood of the observed set of interactions. This is discussed later in this
chapter.

The fold recognition methods expand significantly the set of proteins that we can
model and often allow unexpected evolutionary relationships to be high-lighted, but it is
much more difficult to evaluate their reliability a priori and they cannot guarantee that
functional regions are more reliably predicted than the rest of the structure.

3.3 Using sequence based tools for selecting the template

The selection of the appropriate template in a template based prediction can be
supported to some extent by tools able to predict local structural features starting
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from the amino acid sequence. Secondary structure and presence of disulfide bonds are
among the features that can be successfully predicted. Generally speaking, prediction
tools rely on the fact that, even if the overall structure is determined by the whole
sequence, specific structure features can be strongly influenced by local features of the
sequence. For example, alpha-helices and beta-sheets have different amino acid
composition, and the same is true for the neighboring residues of disulfide-bonded
and free cysteines. If we are able to understand these differences, we can use them to
evaluate the probability for a residue to be in a secondary structure or for a cysteine to be
disulfide bonded.

The basic idea is to analyze the set of proteins known at atomic resolution and adopt
methods suited to extract correlations between structural features and local sequence
features. Simplestmethods are based on classical statistics and evaluate, for example, the
propensity of alanine residues to be in a alpha-helical structure simply by computing
the ratio between the alanine composition of alpha-helices and the overall alanine
composition in proteins. Statistical methods can take into consideration more
elaborate sequence features, but they often fail in extracting useful correlations when
the complexity of the problem increases. For that reason, more versatile and flexible
methods have been designed and implemented on the basis of the so called “machine-
learning” theory. Among them, Neural Networks, Support Vector Machines and
Hidden Markov Models are the most widely adopted. With different strategies, they
are able to extract information from a set of known examples in an automatic way, on
the basis of a rigorous mathematical framework. Owing to their architectures, they are
able to deduce more complex rules of association between input (sequence) and output
(structural feature) than classical statisticmethods do. These rules are encoded in a set of
numerical parameters whose values are fixed during the training phase and then used
for predicting new sequences.

Versatility of machine learning methods allows different input encodings, more
informative than the sole sequence, to be considered. In particular a general improvement
of the performance can be obtained using sequence profiles upon multiple sequence
alignments. In practice, given a sequence, similar sequences are searched in the data base
and then aligned so as to obtain a representation of a whole family instead of a simple
sequence. This representation highlights, for example, the conserved and mutated
residues and this supplements the predictor input with evolutionary information.

The classical application of predictive methods to protein structure is the determi-
nation of secondary structure starting from sequence. Best methods for this task are
based onNeural Network and Support VectorMachines and take as input the sequence
profile of a 15/25-residue long window, centered around the residue to be predicted.
When validated on proteins with known structure not used during the training phase,
these methods predict the correct secondary structure for about 78% of residues
(Jacoboni et al. 2000; Ward et al. 2003). Better results can be obtained implementing
a consensus of different methods (Cuff et al. 1998; Ward et al. 2003).
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Another important structural feature that can be predicted is the presence of
disulfide bonds, that is the bond between the sulfur atoms of two cysteine side chains.
This is the only covalent bond that non adjacent residue can form in the native state
and a correct prediction of the topology of disulfide connection strongly constrains
the prediction of the overall structure. This task can be easily split into two steps.
First of all, since only about 1/3 of cysteine residues are involved in disulfide
bonding, it is necessary to discriminate them. Then the topology of the connections
can be predicted. Concerning the first step, very efficient methods have been
implemented that are able to predict the correct bonding state for 88% of cysteine
residues and to give an overall correct prediction for 84% of proteins (Martelli et al.
2002).They are currently based on systems that integrate a Neural Network and a
Hidden Markov Model. The former analyzes the composition of the profile in
windows centered around each cysteine residue while the latter correlates the out-
puts that the neural networks computes for all the cysteine residue in the sequence
(Martelli et al. 2004).

The prediction of the topology of the disulfide bridges, i.e. of which cysteine pairs
with which, is more difficult due to the combinatorial number of possible connection
patterns for a given number of bonded cysteine residues. Important achievements have
been reached, although a reliable prediction of the disulfide connectivity pattern can be
performed only when two or three disulfide bonds are present in the protein (Fariselli
and Casadio 2001; Tsai et al. 2007).

In conclusion, the prediction of structural features starting from the sequence is not
able to completely reconstruct the protein conformation. Nevertheless these procedures
can greatly help this task since the predict constraints limit the number of possible
conformations. Moreover the output of these tools can supply information useful in
the implementation of fold recognition methods.

3.4 Completing and refining the model

Whatever the strategy for selecting the template and predicting the part of the target
protein that is conservedwith respect to the template, the next steps are themodelling of
insertions and deletions and of the conformation of the side chains. For insertion and
deletions, methods are usually based on either an energy driven search for the possible
conformations of the region of interest or on a database search of regions of protein of
known structure that can provide a local template (Tramontano et al. 1989; Bruccoleri
and Karplus 1990; Holm and Sander 1992; Chinea et al. 1995; Tramontano 1995;
Fiser et al. 2000). The latter are usually selected on the basis of either a good fit of the
regions flanking the region between target and local template, or on local sequence
similarity. Side chainmodellingoften takes advantage of the preference of side chains for
specific conformations, as deduced by the analysis of known protein structures (Fig. 3).
These preferences, tabulated in so called rotamer libraries (Godzik and Skolnick 1992;
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HolmandSander1992;Chinea et al. 1995;Keller et al. 1995), areusuallyusedas a starting
point for subsequent refinement of the overall structure.

Once we have built our initial model, we need to “refine” it.What this simplymeans
is that we now need to model the effect of the specific sequence changes that have
occurred in our protein with respect to its template(s).

3.5 Current state of the art in template based methods

How well current modeling methods, combined with sequence based methods such as
those described above, are able to predict the overall structure of a protein, the
conformation of regions where insertions and deletions have occurred and to refine
themodel are some of the questions that the international community tries to answer by
carrying out large scale blind tests, the CASP (Critical Assessment of Methods for
Protein Structure Prediction) experiments (Moult 1996).

Every two years crystallographers andNMR spectroscopists who are about to solve a
protein structure are asked tomake the sequence of the protein available together with a
tentative date for the release of the final coordinates. Predictors produce and deposit
models for these proteins before the structures aremade available and, finally, a panel of
assessors compares themodels with the structures as soon as they are available and tries
to evaluate the quality of themodels and to draw some conclusions about the state of the
art of the different methods. The results are discussed in a meeting where assessors and

Fig. 3 Each amino acid has different preferred conformations of its side chain, called rotamers. In the
figure the most frequently observed rotamers of the amino acid tyrosine are shown
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predictors convene and the conclusions are made available to the whole scientific
community via theWorldWideWeb and the publication of a special issue of the journal
Proteins: Structure, Function, and Genetics. The collected data, amounting to tens of
thousands of models for hundreds of targets is an invaluable resource for assessing the
quality of protein models.

Although embarrassing, we have to admit that, so far, no available method, is able to
consistently produce the correct structure for regions where insertions and deletions are
located or to improve the initial model and make it “better”, i.e. closer to the real
structure, while the accuracy of side chain modeling methods seems to be only limited
by the quality of the prediction of the rest of the structure.

Notwithstanding the limitations of comparativemodeling, this method remains the
method of choice whenever possible for at least two reasons. First of all, the relative
quality of a comparative model depends on the evolutionary distance between two
proteins. In fact, both the probability of inferring the correct alignment between two
proteins and the structural divergence between their structures are correlated with their
evolutionary distance which can be estimated a priori. This implies both that it is
possible to estimate the expected quality of a comparative model and its possible range
of application beforehand and hence decide whether it is reasonable to embark in the
task and also, perhaps most importantly, that one can attach an approximate reliability
to any of the conclusions derived from the analysis of the model. The second, equally
important aspect, is that the methodology will be especially effective in modeling
regions of a protein that are more conserved during evolution. This implies that
functionally important regions will be more correctly modeled than other, often of
lower interest, regions.

4 Template-free protein structure prediction

As we have seen, where a template structure can be found, it is relatively easy to build a
realistic protein model that is reasonably close to the native structure. The closer related
the template is to the target protein, generally the more accurate the final model will be.
But what can be done if no template structure can be found? This can happen either
because there is a suitable template available but from comparing the sequences it is
impossible to find the correct template, or because the template simply is not present in
the database i.e. the target protein in fact has a novel fold.

Intheabsenceofa template structure it ispossible tobuildamodel,but this isa farmore
difficult process, with a much greater chance of producing a completely incorrect model.

Perhaps the most ambitious approach to predicting protein structure is to simulate
the protein folding process itself using basic physics. Much research effort is expended
in developing such simulation techniques, but as yet simulation is only useful for short
peptides and small molecules. Simulation techniques are, however, very useful for

293

Anna Tramontano et al.



predicting unknown loop conformations as part of comparative modeling. The basic
principle of simulation-based protein structure prediction is that the native fold of a
protein can be found by finding the conformation of the protein which has the lowest
energy as defined by a suitable potential energy function.

Unfortunately, the exact form of this energy function is as yet unknown, but it is
reasonable to assume that it would incorporate terms pertaining to the types of
interactions observed in protein structures, such as hydrogen bonding and van der
Waals effects. The conceptual simplicity of this model for protein folding stimulated
much early research into ab initio tertiary structure prediction. A successful ab initio
approach necessitates the solution of two problems. Thefirst problem to solve is tofind a
potential function for which the energy of the native conformation of the protein is the
conformation of lowest energy. The second problem is to construct an algorithm
capable of finding the global minimum of this function.

We briefly mentioned Levinthal�s paradox before. There are many ways of
explaining it away, but there is one quite simple explanation and that is that a protein
folds by following a folding pathway. Imagine a very poor golfer playing golf on a flat golf
course. The golfer hits the ball and it lands somewhere on the course. He keeps hitting
the ball randomly until eventually he gets a hole in one. Clearly our unfortunate golfer
will take a long time to reach his target of getting the ball into the hole. Now imagine a
similarly unskilled golfer, but one who has the good fortune of playing on a hilly golf
course. He hits the ball and it rolls down a slope until it reaches the bottom of the slope.
He hits the ball again and it rolls down another slope. Now imagine that on this golf
course, the hole has been placed at the very lowest point on the course (in energy terms
we would call this the global energy minimum). It doesn�t require much thinking to
realize that the second golfer will find the hole long before the first one. Every time the
second golfer hits the ball it has a good chance of getting closer to the target – because
most paths the ball will take will be downhill and therefore most likely closer to the
target. This is a goodmentalmodel of how a protein can find its global energyminimum
without testing all possible conformations. Despite the fact that a long protein chain
(like our unlucky first golfer) cannot find its global energy minimum by a blind global
search, small pieces of the chain (say 5–10 residues) can quite easily locate their own
global energy minimum within the average lifetime of a protein. These folding
fragments can be thought of as the equivalents of the downhill moves made by our
lucky second golfer. It is generally thought that the location of the native fold for a
protein is located by the folding of such short fragments (Moult andUnger 1991). Thus,
Levinthal�s paradox is only a paradox if the free energy function forms a highly
convoluted energy surface, with no obvious downhill paths leading to the global
minimum. The folding of short fragment can be envisaged as the traversal of a small
downhill segment of the free energy surface (the golf ball rolling down a small slope),
and if these paths eventually converge on the global energy minimum, then the protein
is provided with a simple means of rapidly locating its native fold.
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One subtle point to make in passing about the relationship between the minimiza-
tion of a protein�s free energy and protein folding is that the native conformation need
not necessarily correspond to the global minimum of free energy. One possibility is that
the folding pathway initially locates a local minimum, but a local minimum which
provides stability for the average lifetime of the protein. In this case, the protein in
question would always be observed with a free energy slightly higher than the global
minimum in vivo, until it is degraded by cellular proteases, but would eventually locate
its global minimum if extracted from the cell, purified, and left long enough in vitro -
though the location of the global minimum could take many years. Thus, a biologically
active protein could in fact be in a metastable state, rather than a stable one.

For template free protein modeling, the most successful approaches take some (but
not all) of the ideas from experimental protein folding studies and apply them tomaking
a computationally efficient search for the most likely protein fold for any given target
sequence. There is no guarantee that methods which allow computers to predict correct
folds are related to the actual protein folding.

A typical de novo prediction method can be described along the following lines:

1. Define a (possibly simplified) representation of a polypeptide chain and the
surrounding solvent. In fact, usually the surrounding solvent is left out of the
calculation entirely to save computational effort.

2. Define some kind of scoring function which attempts to identify native-like struc-
tures for the givenprotein.This canbeanenergy functionmodeledonwhatwebelieve
to be the physicochemical forces found to stabilize real proteins or it can be a
completely arbitrary scoring function based on our knowledge of protein structures.

3. Search for the protein chain conformation which has the lowest energy – generally
by some kind of restricted random search, or by perhaps assembling pieced of
existing protein structures in order to build plausible new structures.

This general approach to de novo protein structure prediction has a long history,
startingwith the pioneeringwork by Scheraga and co-workers in the 1970s (Burgess and
Scheraga 1975), Warshel and Levitt�s work in 1975 (Levitt andWarshel 1975), Kolinski
and Skolnick�s work with simplified lattice models in the 1990s (Kolinski and Skolnick
1994a; Kolinski and Skolnick 1994b) and many others. The reason for there remaining
such an interest in these methods for folding proteins is that there is a general feeling
that this kind of approach may help to answer some of the questions pertaining to how
proteins fold in vivo. The basic idea is that by keeping as close to real physics as possible,
even simplified models of protein folding will provide useful insights into protein
folding processes. In recent years, the term ab initio has been reserved for methods
which attempt tomimic real protein folding asmuch as possible. However, despite a few
recent successes on small proteins, such ab initio methods are still not able to predict
protein structure with much success.
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All of the recent success in template-freemodeling has really come fromknowledge-
based methods. Knowledge-based prediction methods attempt to predict structure by
applying rules. These rules are based on observations made on known protein
structures. A trivial example of such a rule might be, for example, that proline residues
are uncommon in alpha-helices or than hydrophobic residues are commonly found
buried in the core of a stable protein.

4.1 Energy functions for protein structure prediction

There are many different energy functions described in the literature, all of which have
been applied at some time or another to protein modeling in some form or other. So-
called classical potentials attempt to model the basic physicochemical effects that are
known to stabilize protein folds e.g. electrostatic effects, covalent bonding, van der
Waals effects and so on. These potentials are not very useful for de novo protein
modeling as they generally do not take into consideration the entropic effects of solvent
that surrounds the protein. Although potentials based on such physical principles could
be used for protein structure prediction if the solvent is explicitly built into the
simulation in some way, and are frequently used for refining protein models, it has
generally been the case that the best results in de novomodeling have been obtained by
using knowledge-based potentials i.e. potentials that are based on the observed statistics
of atoms in real protein structures. Such potentials are called potentials of mean force.

One very basic principle in statistical physics is that the difference in energy between
two states of a system is related to the transition probability between the states. In the case
of protein folding, the two states we typically consider are the folded (i.e. native state) and
the unfolded states. Suppose we wish to estimate how much a close contact between two
alanine residues helps to stabilize the native folded state of proteins. Let us suppose
that we count the number of times we see this particular “event” across many different
folded proteins (i.e. all the proteins found in the ProteinData Bank). Let us take this count
of alanine-alanine contacts and calculate the fractionof all alanine-alanine pairs that are in
fact in close contact. Let�s call this valuePfolded(Ala�Ala). Let us also suppose thatwe have
access to the structures of many different unfolded proteins and we calculate a similar
value Punfolded(Ala�Ala). By comparing these two probabilities we can make an estimate
of the free energy change contributed by two contacting alanine residueswhen going from
the unfolded to the folded state. This free energy change upon folding for an Ala–Ala
interaction is obtained using the inverse Boltzmann equation as follows:

DEðAla� AlaÞ ¼ �kT ln
PfoldedðAla� AlaÞ
PunfoldedðAla� AlaÞ
� �

where k is the Boltzmann constant and T is the temperature (typically room tempera-
ture). It should be noted that for protein structure prediction we can ignore kT as it is
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simply a multiplicative constant that gives the energy in particular units (kcal per mole
usually).

Of course, in practice we have no knowledge of the structures of unfolded proteins,
and so we have to estimate this probability based on the assumption that unfolded
proteins adopt completely random conformations.

For most practical protein structure prediction potentials, the interactions between
residue pairs are usually sub-classified according to their sequence separation (i.e. how
far apart they are in the amino acid sequence) and their spatial separation (i.e. how far
apart they are in 3-D space). The reason for this is that the folding properties of a
short chain are different from those of a long chain, because of the differing number of
bonds (the ends of a long chain can obviously move further apart than the ends of a
short chain). As a result of this, the interactions between two amino acids close together
in the sequence need to be treated differently from those which are far apart in the
sequence.

Although many groups use such knowledge-based potentials, there is, not surpris-
ingly, little agreement on exactly how they should be calculated or even which atoms
should be included in the calculations. Some groups (e.g. some of the current authors)
restrict their calculations to just the beta-carbons of each amino acid. Other groups
calculate their potentials for all of the atoms in the protein side chains. Some groups
attempt tomodel the effects of solvent on each amino acid by calculating their solvation
free energy i.e. the free energy change when a single amino acid is moved from being in
solvent to being buried in the core of a protein. How these different terms should best be
combined is another source of debate. Nevertheless, despite all these variations the aim
is the same each time i.e. to compute a number which produces a lower value for the
native structure than for any alternative structures. No energy functions manage to
achieve this in the majority of cases, but even quite inaccurate energy functions can still
help identify useful protein models from a small set of alternatives.

4.2 Lattice methods

Before describing the most widely use approach to template-free modeling (fragment
assembly) it is worthmentioning an earlier approach to the problem, namely the use of a
lattice approach to protein folding. The idea of lattice-based methods is to limit the
number of protein conformations searched by restricting the coordinates of each atom
to lie on a set of regular points in space (the lattice). The simplest type of lattice is a cubic
lattice where for example, atoms can only be placed at the vertices of cubes with sides of
length 3.8 A

�
(the normal distance between alpha carbons in a polypeptide chain), say.

However, other lattice arrangements have been proposed e.g. tetrahedral lattices.
Because the positions of the atoms are restricted, the total number of possible
conformations is restricted and so a deep search of available conformations can be
carried out reasonably efficiently.
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The main problem with lattice approaches is that it is difficult to accurately model
the geometry of a protein chain when the atomic coordinates are restricted to lattice
coordinates. To get around this problem, modern lattice methods such as those
developed by Skolnick and colleagues (2001) combine lattice simulations with off-
lattice procedures. Once a low-energy conformation of the protein has been identified
by a lattice search, the lattice is removed and the protein refined by normal energy
minimization techniques to produce proper bonds lengths and angles.

4.3 Fragment assembly methods

By far the most successful methods for predicting protein structure in the absence of a
template structure are those which attempt to assemble plausible protein folds from
fragments of other proteins. The idea of fragment assemblywas first used in comparative
modeling (e.g. (Greer 1991)) where fragments of known structures were used to build
missing loops after a framework of the protein had been built according to a template
structure. The extension of fragment assembly from loop building to the accurate
prediction of a complete novel protein fold without a template first demonstrated by
David Jones in the 2nd CASP experiment held in 1996 (Jones 1997). At around the same
time, David Baker and colleagues independently developedRosetta (Simons et al. 1997),
which employed a similar approach to protein structure prediction and went on to
demonstrate great success in the 3rd CASP experiment and has performed consistently
well in all subsequent CASP experiments. Now there are many published fragment
assembly methods for predicting protein structure, though Rosetta still arguably
remains the most successful.

A generic fragment assembly method (see Fig. 5) comprises 4 steps:

1. Identification of fragments. The target protein sequence is matched against frag-
ments of known protein structures and at each position in the sequence a list of
possible fragments is compiled.

2. Random recombination of fragments. Fragments are picked at random from the
lists made in step 1 and joined together. Some combinations of fragments can be
rejected immediately as theymight produce a chain conformation that overlaps itself.

3. Evaluation. Assuming the chain does not have any serious clashes, it can be
evaluated using an energy function to decide how well the generated structure
matches the target protein.

4. Return to Step 2until no lower energy structures can be found.Generally speaking this
is carried out with a simulated annealing strategy. In simulated annealing, conforma-
tional changes which produce an increase in energy are not immediately rejected.
Such changes are only rejected according to a rule based on a notional system
temperature, which is reduced as the algorithm proceeds. So, in the early stages of the
simulation, every combination of fragments is considered acceptable, but towards the
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end of the simulation only fragment swaps which reduce the energy are permitted. In
between, fragment swaps are accepted according to a probability derived from the
current temperature. A sequence of random numbers is used both to select the
fragments and to decide whether or not to accept the generated conformation.

5. Repeat from Step 1 and collect a large number of different final models. This is not
really part of the algorithm itself, but it has proven to be very useful to rerun
fragment assembly methods (with different random numbers of course) many
times. InRosetta (Simons et al. 1997), for example, the algorithm is run thousands of
times and the thousands of different final structures are clustered to identify folds
which frequently recur across the independent simulations. This clustering step
probably serves to reduce the sampling error that comes from having an inaccurate
energy function, but Baker has suggested that this might in fact serve as a crude
model of the molten globule state in natural protein folding.

Different labs of course implement these steps in different ways. The main difference
between programs is in the fragment selection step. In the FRAGFOLDmethod of Jones
and colleagues (2001), the fragment selection focuses on fragments which correspond
to super-secondary structural motifs e.g. beta-alpha-beta units or beta-hairpins. In
Rosetta, Baker and colleagues mostly use short fragments (9 residues typically) of
proteins. There are also differences in how each fragment is actuallymatched against the
target protein. In FRAGFOLD, the selection ismostly bymeans of a threading approach
i.e. an energy function is used to assess the compatibility of the fragment structure with
that part of the target sequence (essentially fold recognition on a small scale). In Rosetta,
the selection is mostly made on the basis of sequence similarity between the fragment
and the corresponding part of the target sequence.

4.4 Practical considerations

Aswe have said, fragment assemblymethods are now commonly used tomodel proteins
of unknown structure. Less commonly, lattice-based methods are also employed, but
fragment-based approaches represent the current state-of-the-art. Popular as they may
be, what are the practical considerations of using fragment assembly? What are their
limitations? Is the protein folding problem finally solved?

The answers to all these questions can be obtained by looking at recent results from
CASP experiments and evaluating both the quality of the best models obtained and the
fraction of cases where a good answer is obtained. Since CASP2, there has been a lot of
progress. The fragment assembly prediction of the structure of NK-Lysin by David
Jones in CASP2 (Jones 1997) was a watershed event because it was the first time a novel
protein structure was correctly predicted in CASP. However, this was just a single
correct prediction of a relatively small protein (78 residues). Since CASP2 in 1996 , there
have beenmany other examples of excellent novel fold predictions, particularly from the
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Baker group�s Rosetta method, but nonetheless the failures still outnumber the suc-
cesses. If we look at the successes and compare them to the failures we can start to
see what it takes for a template-free prediction to have a good chance of success:

1. Size. Successfulpredictionshavetypicallybeensmallproteins(<120residues).Thebest
prediction ever seenwas for targetT0281 inCASP6,where theRosettamodelwas very
close to the native structure (1.6 A RMSD), but this protein was only 70 residues long
(Bradley et al. 2005). There has been much less success in predicting larger proteins.

2. Simple fold. Looking at the most successful predictions, the predicted folds have
been mostly simple in terms of topology. NK-Lysin in CASP2 was only a simple
helix bundle, and even though T0281 in CASP6 did include a small beta sheet, it was
still of very simple topology.

3. Clear secondary structure. Generally speaking, the most successful predictions have
been made where the secondary structure of the target protein is very accurately
predicted or even known from, say, NMR chemical shifts. Secondary structure
prediction methods, for example the PSIPRED method (Jones 1999) are now very
accurate (77–80% accurate in terms of predicting helix/strand/coil) if there any
many homologous sequences available for the target protein. Targets which are
sequence orphans (have no known homologues) or very few homologues are often
predicted very poorly by secondary structure prediction methods and consequent-
ly badly by fragment assembly methods. Evdently the best fragment assembly
methods are highly dependent on good secondary structure predictions.

5 Automated structure prediction

Objective community-wide structure prediction benchmarking experiments such as
CASP are the main driving force for the latest development of prediction protocols.
These experiments taught us that experts utilizing diverse sources of information are
more successful than groups relying on a single structure prediction method. Hints
influencing the selection of templates for modeling may come from biological insights
(recognition of active site residues, or characteristic secondary structure patters) or from
literature searches, which point to particular fold families hypothesized for homologs of
the target. Unfortunately, such procedures are difficult to implement in an automated
and reproducible fashion and remain restricted to a group of highly skilled structural
biologists. As an alternative, scientists can increase the diversity of putative structure
predictions by utilizing the growing number of prediction algorithms. In contrast to
tailored literature scanning this approach can be easily automated. A framework to
profit from the diversity of prediction methods was created by meta-servers, which
collect and analyze models frommany prediction services spread around the globe and
present the results in a standardized, comparable fashion.
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A na€ıve selection of the most reliable model, based on the highest confidence score
reported by employed methods, is hampered by the uniqueness of the different scoring
functions. Such attempts did not result in more accurate prediction protocols than the
best employed algorithm. The first successful attempt to benefit from the diversity of
models was based on the selection of the most abundant fold in the set of high-scoring
models, a procedure reminiscent of the clustering ofmodels obtained in fragment based
methods. First automated meta predictors selected from the presented set the model
with the highest similarity to other models (see Fig. 4). Initial benchmarking results
obtained in the first years confirmed that meta predictors are more accurate than
independent methods (Bujnicki et al. 2001). Their strength is mainly attributed to the
structural clustering of collected models. Even if many of them are wrong, it can be
expected that structures of incorrectly predicted fragments of the models have random
conformations. Only structures of fragments corresponding to preferred, native con-
formations occur with higher than expected frequency. The presence of clusters of
similar models built using evolutionary distant templates provides additional support
for the reliability of the fold assignment based on these clusters.

The promising evaluation results boosted further development of meta predictors.
Currently available versions differ in several aspects: the way the models are compared,

Fig. 4 A hypothetical set of four schematic protein structure models is shown. Structural elements, which
our found in more than 1 model, are colored in red, yellow and blue. The model in the circle represents the
consensus model because it consists of most abundant elements, i.e. each of its three structural elements is
found in two other models (6 similarities). No other model has such a large number of similarities (5, 5 and 3
respectively)
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the way the final model is generated and in the use of the initial scores assigned to the
models by individual servers.Whenmodels do not exhibit high structural similarity, the
initial scores assigned to eachmodel by the original predictionmethod can be consulted
to improve the selection procedure. However, this is not that simple, because different
fold libraries and scoring schemes are employed by different prediction servers. Some
meta predictors develop server-specific neural networks to translate the initial values
into uniform scores. Others ignore the scores altogether and base their consensus
evaluation only on the abundance of folds or structural motifs. The final consensus
model is either identical to one of the original models or additional modifications are
performed using one or multiple models as templates. Some meta predictors compile
the final model by concatenating fragments taken from several initial models. Others
use the selected consensus model as a starting point for a more complex and time
consuming ab initio simulation.

5.1 Practical lessons from benchmarking experiments

Years of experience with benchmarking prediction methods (Fischer et al.
1999,2001,2003; Fischer and Rychlewski 2003; Koh et al. 2003; Eyrich et al. 2005;

Fig. 5 A simple example of fragment assembly is shown. (a) Three small protein fragments are combined to
form a complete small protein fold. (b) The samemiddle fragment is combined with two different fragments
to form a different chain fold
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Rychlewski and Fischer 2005) taught the community to treat the results with appro-
priate caution. The tests are affected by many technical problems, such as missing
predictions due to server downtime or outdated template libraries. Despite these
difficulties, practical conclusions for automated and manual structure prediction
projects can be drawn from the experiments and include:

1. The differences in accuracy between popular prediction services are relatively
small. The completeness of the template database remains an important aspect of
the quality of the service. Some sophisticated algorithms require substantial effort
to update the database thus simple but frequently updated services should always
be consulted.

2. Individual threadingmethodsandhybridmethods,utilizing structural information
in the scoring function, are probably not more accurate than well-tuned sequence
profile comparison methods that ignore structural information. The combination
ofprofile alignmentmethodswithmetapredictionapproaches thatbuildconsensus
models (for example as implemented in hhpred) have proven very powerful lately.

3. Meta predictors are clearly superior to simple individual methods. For quite some
time, meta predictors are heading the ranking in sensitivity (number of correct
prediction) and specificity (reliability of the confidence score).

4. In contrast to popular sequence alignment methods (Blast (Altschul et al. 1990)),
structure prediction servers are generally not prepared to deal with multi-domain
targets. Division of the sequence into domains and iterative submission of
corresponding domain sequences to prediction servers is strongly advised. This
is especially important for eukaryotic proteins, since many of them contain
multiple structural domains and disordered regions. The disordered regions in
proteins can be predicted with dedicated methods and should be removed before
submitting the sequence to fold prediction services.

5. The score for hits reported by some meta predictors (for example 3D-Jury
(Ginalski et al. 2003)) is sometimes artificially increased if one of the component
servers generates many almost identical models. A high score is only significant if
several independent servers confirm the fold assignment.

6. For themajority of difficult prediction cases, the confidence scores reported by the
servers are below the reliability threshold and the correctmodels are not always the
top ranking ones. Expert users are sometimes able to select the correct predic-
tions using additional knowledge, such as the similarity of function between
target and template or the conservation of essential amino acids, short sequence
patterns or typical secondary structure motifs. In many cases, the experts have to
conduct extensive literature analysis and consider predictions for homologs
to guess the right fold. This time-consuming but frequently very fruitful exercise
is advised to all predictors, provided that there is enough time to analyze the
target of interest.

Anna Tramontano et al.
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7. In very difficult cases results of ab initio methods or servers using ab initio
components can be consulted. Difficult targets can be distinguished from others
based on low scores of meta predictions. In general, such models have very low
quality independent of the applied algorithm, but some biological hints can be
gained from fold assignment and subsequent comparison.

8. Models can be improved manually by experts. Detailed structural analysis of the
target and the template families to identify core regions and key residues is
mandatory in such cases. A model can be improved significantly, if the expert
detects a substantial error in the alignment resulting, for instance, from the
insertion of an entire domain. In many cases, however, expert improvement
remains marginal.

9. It is possible to estimatewhich parts of themodels are likely to be correct andwhich
parts aremost likely wrong. Themost reliable (consensus) approach is the analysis
of alignments obtained from different servers and selection for regions with
structurally consistent predictions. Regions where different methods report
different alignment to similar templates are likely to be misaligned, or structurally
diverged. The quality of models can also be evaluated with quality assessment
programs, such as Verify3D (Eisenberg et al. 1997). Unfortunately, the quality of
difficult fold recognition models is below the standards of the training sets used to
tune the majority of quality assessment methods. Such methods perform better in
simple homology modeling experiments.

10. Most on-line protein structure meta predictors are too slow to be used in high
throughput annotation projects. For such purpose, it is better to construct in-
housemeta predictors using several simple, but diverse, independent components.
A simple function, which tells by how many components the prediction was
confirmed, can be used as reliability score. This is a general suggestion not only for
structural annotation, but also for functional annotation, which is routinely
conducted with only one method.

6 Conclusions and future outlook

Hopefully, this short survey of the methods currently used for protein structure
prediction has left the reader with at least two take-homemessages. First, the possibility
of obtaining reasonably accurate models of proteins, although not deriving from an
understanding of the protein folding process, is within our reach. Second, accurate
benchmarking and testing the methods is a key step in proceeding further.

There is one aspect of the problem that has been touched only in passing in this
chapter, and this is the ability to evaluate a priori the expected quality of amodel. This is
not an irrelevant aspect of the field, in fact it might be themost relevant for the end users
of the models. A three-dimensional model of a protein structure should come with an
attached reliability score, so that a user can extract the information at the correct level of
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detail without over interpreting the features of the model. We have seen that some
methods are likely to be more reliable than others, for example comparative modeling in
the presence of a closely related template, and that some regions, essentially the “core”, are
expected to be predicted better than the rest of the structure, but these are still rules of
thumb, and, as of today, there is no tool that, given a single model of a protein, can
evaluate its accuracy reliably. As we saw in the discussion of the meta server technologies,
consensus methods can be rather successful in ranking a set of models for the same
protein according to their expected quality, but this does not completely solve our
problem. In principle wewould like to estimate whether a givenmodel is accurate enough
to be used as a guide, say, in drug design or docking experiments, or to assess whether a
given residue is involved in substrate recognition or which are the precise boundaries of
the protein�s structural domains.Unfortunately, only in the case of comparativemodelwe
can try and provide accuracy estimates, essentially relying on the evolutionary distance
between the target and template protein(s) (Cozzetto et al. 2007).

It is almost trivial to predict that the ability of linking a model to its expected
accuracy and therefore to its possible applications will be the decisive factor in making
the methods described in this chapter a useful component of the toolset that computa-
tional biology has made available to the life scientists.

The other aspect representing a serious and important challenge in the field is the
ability of using the models to predict the molecular function of the target protein. Once
again, many efforts for developing methods are ongoing as discussed later in this book.
Although the results of the Function Prediction category in CASP have not been very
promising (Soro and Tramontano 2005; Pellegrini-Calace et al. 2006; Lopez et al. 2007),
we like to think that this mostly due to the fact that the protein structure and protein
function prediction communities do not overlap sufficiently and to the obvious
difficulty of evaluating a function prediction in a context such as CASP. Nevertheless,
the fact stays that protein structure prediction cannot just provide structural models
anymore: the genomic and post-genomic challenges aremuchmore demanding and the
field needs to take the task of providing added values to the three-dimensional models
very seriously and this will, undoubtedly, be the case in the near future.
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CHAPTER 5.2
The stateof the art ofmembraneprotein structure
prediction: from sequence to 3D structure

R. Casadio1, P. Fariselli1, P. L. Martelli1, A. Pierleoni1, I. Rossi1 and G. von Heijne2

1 Biocomputing Group, Department of Biology, University of Bologna, Bologna, Italy
2 Center for Biomembrane Research, Dept of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden

1 Why membrane proteins?

Membrane proteins constitute a very large set of yet-to-be characterized proteins
mediating all the relevant life-related functions both in prokaryotes and eukaryotes.
Estimates are suggesting that in whole genomes the content of this protein type may
vary from 10 to 40% of the whole proteome, depending on the organism.

As to present (and this may change on time) wemay browse data bases and find out
that the number of protein sequences is �6,000,000 (in the Non Redundant data base
[http://www.ncbi.nlm.nih.gov/]); that sequences annotated as “membrane protein” are
45,281 in Swiss-Prot (http://expasy.org/sprot/ where the annotation is manually
curated), and that atomic structures of membrane proteins are 281 in the Protein
Data Bank (http://www.rcsb.org/pdb/, PDB). And then the question is how many
membrane proteins are out there, to be still annotated and characterized among the
many millions of putative protein sequences in the genomes that are in the process of
being/will be sequenced? Indeed we do not yet know how many species are presently
present in our planet.

We may consider a rough average of 30% of membrane proteins per genome
(as derived from sequence similarity search) and end up with an approximate number
of about 2,000,000 membrane proteins in the data bases. We can then easily evaluate
that less that �0.6% of membrane proteins are annotated and that �0.001% of all the
membrane protein sequences are known with atomic resolution.

Why is this the case, when so many globular proteins are known with atomic
resolution? Membrane proteins are difficult to study. They are inserted into lipid
bilayers surrounding the cell and its sub-compartments, and expose to the polar outer

Corresponding author: Rita Casadio, Biocomputing Group, Department of Biology, University of
Bologna, Bologna, Italy (e-mail: casadio@biocomp.unibo.it)
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and inner environments portions of different sizes. When isolated from membranes,
membrane proteins are generally less stable than globular ones. It is therefore difficult
to purify them in the native, functional form, and more difficult to crystallize them.
Historically it is worth mentioning that Deisenhofer, Huber and Michel were awarded
with the Nobel Prize in Chemistry in 1988 for having solved the X-ray structure of the
photosynthetic reaction center from Rhodopseudomonas viridis (www.nobel.se), the
first membrane protein to be solved with atomic resolution (Deisenhofer et al. 1984).
Crystallization of this type of proteins is yet a very difficult process, given the fact that
they expose two different chemico-physical surfaces to the environment: water- and
lipid-like. However the lipid environment constraints the membrane protein stable
folding: it is indeed evident from the structures that have been deposited so far that only
two structural organizations are present in nature: all-alpha and beta-barrel membrane
proteins (Fig. 1). Indeed most of membrane proteins in the PDB (67%) consist of
bundles of transmembrane helices with different tilting with respect to the membrane
plane, when known with enough details to be realistic, and to each other. The relative
structural organization of the transmembrane helices is also very much dependent on
the protein function. The all-alpha membrane proteins can be classified in relation to
the number of membrane spanning helices, and a major grouping discriminates
monotopic versus polytopic membrane proteins (Fig. 1).

Some of themembrane proteins are located in the outermembrane ofmitochondria
and chloroplasts, or in the outer membrane of gram-negative bacteria; in this case they

Fig. 1 Structural types of membrane proteins. A: Phosphorylated Pilin from Neisseria meningitidis (PDB
code: 2pil); B: Putative metal-chelate type ABC transporter from Haemophilus influenzae (PDB code:2nq2);
C: Colicin I receptor Cir from Escherichia coli in complex with receptor binding domain of Colicin Ia
(PDB code:2hdi)
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are endowed with a very well conserved architecture known as transmembrane beta
barrel, where the only variables are the even number of beta strands in the barrel (from 8
to 22) and its plane of shear (when known) with respect to the membrane plane (Fig. 1).

Thanks to several experimental efforts, we also know that in all-beta outer mem-
brane proteins in Gram-negative bacteria a signal peptide is present in the protein
precursor, and that this signal peptidemay ormay not be present inmembrane proteins
of other organisms. The location of the N- and C-termini as well as of the internal loops
of a membrane protein relative to the lipid bilayer (cytoplasmic or extra-cytoplasmic)
can also be experimentally determined, either by using so-called reporter fusions or by
various kinds of covalent modifications targeting residues introduced into the protein
by site-directed mutagenesis. Detailed topology models have been produced for many
membrane proteins by such techniques (http://expasy.org/sprot/). Recently, the cyto-
plasmic/extra-cytopasmic location of the C termini of the entire all-alpha membrane
proteomes in Saccharomyces cerevisiae and Escherichia coli were mapped experimen-
tally using reporter fusions (Daley et al. 2004; Kim et al. 2005); this data has been used in
the benchmarking study reported below.

2 Many functions

Membrane proteins constitute an important part of the cell proteome. They perform
basic functions, fundamental for the cell life, including cell signaling, energy conserva-
tion and transformation, ion exchange and many others. It is well established that
membrane proteins take part into many different cell functions, in that they mediate/
regulate most of the cell-environment interactions as well as trafficking among different
subcellular compartments. Their functions are related to their structural architecture.
All-alpha membrane proteins are typically: G Protein-Coupled Receptors, Channels,
Proteases, Trasporters, Antiporters, ATP-ases of different types, Respiratory proteins,
and Oxidases. In turn all-beta membrane proteins may act as enzymes and/or porins,
kind of molecular sieves that are involved in transmembrane transport (http://blanco.
biomol.uci.edu). Interestingly enough, in pathogenic bacteria all-beta membrane
proteins are involved in pathogenicity, and can therefore be quite useful drug targets
(Casadio et al. 2003a).

3 Bioinformatics and membrane proteins: is it feasible
to predict the 3D structure of a membrane protein?

In the “omic” era hundreds of genomes are available for protein sequence analysis, and
we may estimate that some 30% of all the sequences are of membrane proteins.
Differently from globular proteins, a three-dimensional model for membrane proteins
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can hardly be computed starting from the sequence. Why is this? What can we really
compute and with what reliability? Can we build models of membrane proteins based
on threading techniques?

These issues are addressed with approaches that may be different by those generally
adopted when globular proteins are predicted, and their solution often requires an
expert-driven methodology. The question is then how many methods do we have that
may be integrated for getting a successful prediction of a membrane protein?

Another major problem in large-sequence projects is the annotation of those genes
which have no counterpart in the database of presently known sequences with a given
function. Can we then contribute to the annotation process with predictive methods?
And again: how many membrane proteins are present in the human genome?

These and other questions may be answered in the post-genomic era by taking
advantage of all the theoretical efforts aiming at developing tools based on our present
knowledge that are capable of extracting selected structural/functional features from
known sequences/structures and of computing the likelihood of their presence in never-
seen before sequences/structures. In the following we will highlight when and how it is
possible to recognize a membrane protein sequence and when it is possible from the
sequence to compute its folded 3D structure (Casadio et al. 2003b; Elofsson and von
Heijne 2007; Punta et al. 2007).

4 Predicting the topology of membrane proteins

Most of the computational methods presently available allow predicting two basic
features of membrane proteins: topography (the location of transmembrane domains
along the protein chain) and topology (the location of theN- andC-termini with respect
to lipid membrane). Topological models are sufficient in many instances to design
experiments in order to prove to a certain extent (or correct) the location of the inner
and outer loops with respect to the membrane, and concomitantly the number of
transmembrane segments.

Methods presently available are mainly based on machine learning (Fig. 2). All
the machine learning methods described so far for the prediction of transmembrane
topology are based on neural networks (NNs), hidden Markov models (HMMs),
support vector machines (SVM) or their ensemble. Their implementation requires:
i) the selection of a training set with little homology to the testing set; ii) a training phase
where the variable parameters of the algorithms are adjusted to fixed values, according
to a learning procedure; iii) a testing phase, when the system is scored according to
statistical indexes (and for comparison among the different methods, when they are
described in the literature). Either a jackknife or a cross validation procedure are
adopted in order to perform the training and testing simultaneously; also, in some cases,
a blind test is adopted to further validate the method. It is very important to neatly
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separate the training and the testing sets in order to evaluate the prediction perfor-
mances on examples that are not similar to data used for setting the trainable
parameters. It should be emphasized that feed-forward neural networks are able to
capture the information contained in local contexts of the sequence, whereas hidden
Markov models are able to cast the global features of proteins. With a neural network-
based approach, each residue in the sequence is predicted to be or not be in
transmembrane state considering a window (usually 17–25 residues long) centered
on the residue to be predicted. The contribution of each residue in the window is
weighted by a specific trainable parameter and the contributions are then combined in a
non linear way. HMMs are able to describe the basic features of membrane proteins.
These features can be stated as: i) there are transmembrane segments that are connected
by loops; ii) the loops face alternatively the inner and the outer side of themembrane; iii)
transmembrane segments and loops are endowed with minimum and/or maximum
lengths. These features are described by a set of trainable parameters known as
transition probabilities. Moreover HMMs, by means of the trainable emission prob-
abilities are able to cast the different residue compositions in the different portions of the
proteins. SVMs are known to behave very similar to NNs; however their discrimination
capabilities are routinely superior (Jones 2007).

Topological models can be computed after predicting the protein membrane
topography, with specific rules. The most popular for the all-alpha membrane proteins
is the positive-inside rule (Nilsson et al. 2004). For beta-barrel outer membrane

Fig. 2 Tools out of machine learning approaches: Artificial Neural Networks (ANNs), Hidden Markov
Models (HMMs), Support Vector Machines (SVMs). During the training phase known examples are
presented and the general rules of the association between the input and the output are stored in the
training parameters. During the testing phase, new sequences are predicted. The statistical evaluation
consists in the comparison between the predicted and expected features
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proteins, in Gram negative bacteria, longer loops are generally exposed to the external
phase (Martelli et al. 2005). Neural network based methods can predict the topography;
the topology is then obtained with specifically implemented rules and dynamic
programming (Fariselli et al. 2003a). In the case of HMM the topological model is
derived from the prediction, according to an optimization algorithm or again after
dynamic programming (Fariselli et al. 2005). All the machine learning based methods
improve the predictive performance when evolutionary information in the form of
sequence profile, computed from multiple sequence alignment, is used as input. Also a
dynamic programming filter for locating the transmembrane segments can increase
the scoring of all the methods (Punta et al. 2007).

5 Howmanymethods to predict membrane protein topology?

Recently we revisited the problem of membrane protein prediction by implementing,
testing and comparing results from the top scoring predictors of membrane protein
topology. These methods are essentially based on statistical propensity scales, neural
networks and hidden Markov models. How well do they perform? This question is
particularly relevant when we consider genome filtering. For finding a solution to this
problem the rate of false positives and false negative is an important issue. Furthermore
the long-standing-around propensity scale of Kyte and Doolittle (KD) was revisited
by us including a version taking as input sequence profile and it was adopted as a
baseline predictor in our experiments (with these methods only topography can be
predicted; see Table 1). For beta-barrel membrane proteins we have shown that HMM
based predictors are superior to neural network-based ones, being endowedwith amore
stringent selectivity (Bagos et al. 2005).

5.1 From theory to practice

A new integrated and browseable server that contains also precomputed predictions of
sequences contained in the UNIPROT dataset (22 Sept. 2004) is now available. The new
environment/web-server/DAS-server is called PONGO (Amico et al. 2006). It is based
on a relational database and it can be queried through the web interface available at
http://pongo.biocomp.unibo.it (or following a link from www.biocomp.unibo.it), or
through the DAS client at EBI. Due to this implementation, any protein chain can be
filtered by different predictors. The predicted features highlight whether the protein is
or is not endowed with a signal peptide, whether the sequence is or is not a membrane
protein, and in this case its putative topology as computed by six different predictors.
The predictive methods that have been selected and implemented have been previously
described in literature and are considered top scoring for their performance. This
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procedure allows the user to make also comparison among different predictors at the
same time and at the same web site, and to assess whether the expected results are or are
not in agreement with its own experimental finding. Alternatively different predictions,
especially when in agreement, may enforce the expectation that a given chain is a
membrane protein and in this case the putative topology may help in designing
experiments in order to validate (or not) the number of transmembrane helices and
the location of the N and C termini of the protein with respect to the plane of the
membrane. This may be particularly useful when the chain has no homologous
counterpart in the data base of sequences andmay help in highlighting also its function.
We then use the six state of the art predictors in order to identify the most probable
integral trasmembrane proteins. In this way the intersection of the prediction would be
the most reliable set, while the union furnishes a very high level of integral membrane
protein coverage when proteomes are filtered for detecting integral membrane proteins.

The list of the programs that have been wrapped and run locally for the transmem-
brane annotations comprises:

1. TMHMM2.0 which is the predictor of transmembrane helices in proteins based on
hiddenMarkovmodels developed byKrogh et al. (2001). TMHMM2.0 has the great
advantage of being very fast, being based on only single sequence information.

2. MEMSAT is the new version of the predictor of transmembrane helices in proteins
developed by Jones et al. (1994). This version takes advantage of the evolutionary
information derived by multiple sequence alignment.

Table 1 Performance on 121 high-resolved membrane protein chains from PDB

Qtopography Qtopology

Based on single-sequence
Kyte-Doolittle 82/121 (68%) –
TMHMM 88/121 (73%) 67/121 (55%)
TMHMMdomfix 87/121 (72%) 74/121 (61%)
PHOBIUS 96/121 (79%) 75/121 (62%)

Based on multiple sequence alignments
PSI-Kyte-Doolittle 97/121 (80%) –
ENSEMBLE 1.0 105/121 (87%) 92/121 (76%)
ENSEMBLE 2.0 105/121 (87%) 95/121 (79%)
MEMSAT 93/121 (77%) 90/121 (74%)
PRODIV 99/121 (82%) 93/121 (77%)

Qtopography: Number of proteins predicted with the correct number of transmembrane helices and
correct position of transmembrane helices along the sequence (allowing that predicted and
expected position of the helix are at least 50% overlapping). Qtopology: Number of proteins
predicted with correct Topography and correct orientation with respect to the membrane plane
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3. ENSEMBLE is the predictor of transmembrane helices in proteins developed by
Martelli et al. (2003). It is an ensemble of two hiddenMarkovmodels and one neural
network. ENSEMBLE takes advantage of the evolutionary information derived by
multiple sequence alignment.

4. PRODIV_TMHMM_0.91 is a predictor of transmembrane helices in proteins
developed by Viklund and Elofsson (2004) which uses a hidden Markov model
similar to TMHMM, but exploits the evolutionary information derived by multiple
sequence alignment.

5. TMHMM DOMFIX is a predictor of transmembrane helices where according to
the authors, topology predictions was substantially improved by constraining part
of the protein to a given in/out location relative to the membrane using experi-
mental data or other information (Bernsel and vonHeijne, 2005). The predictor was
trained with 367 SMART domains and it is represented by a profile HMM.

6. ENSEMBLE2.0, which is similar to ENSEMBLE, but it is endowed with a new direct
method to assign topology (unpublished) that overcomes the prediction of topog-
raphy by our consensus method, previously described (Martelli et al. 2003). The
algorithm used to assign the topology is the Posterior-Viterbi (Fariselli et al. 2005a).
The models are the amphipatic and hydrophilic HMMs described in Martelli et al.
(2003).

Since it is quite common that signal peptides are mispredicted as trasmembrane
helices due to their hydrophobicity, before running any of the predictors described
above, we test the presence of the signal peptide using SPEP, a signal peptide predictor
(Fariselli et al. 2003b). In case of a positive answer, we cut the corresponding predicted
segment and we process the remainder of the sequence using the six transmembrane
predictors (Fig. 3). Furthermore in Bologna we embedded, in a TRAMPLE environ-
ment, a version of the Kyte-Doolittle predictor supplemented with a sequence profile
input and both a neural network, and a HMM based predictor of all-beta membrane
proteins (Fariselli et al. 2005b; www.biocomp.unibo.it).

6 Benchmarking the predictors of transmembrane topology

6.1 Testing on membrane proteins of known structure
and topology

The predictors are tested by predicting the topography and topology of membrane
proteins known with atomic resolution. As a matter of fact while performing the test,
only the in-house implemented/trained predictors are predicting never-seen before
proteins. This is obtained by adopting a leave-one-out procedure, in which the training
test does not contain the sequence that is predicted. We also compared the overall
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predictions to those obtained on the same test set with Phobius (K€all et al. 2007), a well
performing method specifically suited to discriminate signal peptides from N-terminal
located membrane spanning helixes. The results are shown in Table 1, and listed
depending on the input (single sequence versus sequence profile). We may conclude
that inputs based on sequence profile are scoring higher than methods based on single
sequence.

6.2 Topological experimental data

Even if the three dimensional structure of membrane proteins is very difficult to be
experimentally resolved as the paucity of structural data testifies, techniques based on
fusion with a reporter protein allow to determine the location of the C-terminus with
respect to themembrane plane. Twomodel organismswere taken into consideration for
large scale topology determination in the vonHeijne�s lab: E. coli and S. cerevisiae. In the
case of the first organism, alkaline phosphatase (PhoA) and green fluorescent protein
(GFP) were fused in parallel to the C-terminus of candidate inner membrane proteins.

Fig. 3 Prediction of Human adenovirus receptor precursor with PONGO (Amico et al. 2006)
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Since GFP is fluorescent only in the cytoplasm and PhoA is active only in the periplasm,
measurements on the activity of the two proteins lead to the determination of the
location of the C-terminal region (Daley et al. 2005). In the case of Yeast the reporter
genes are the histidinol dehydrogenase (His4C), which is active only in the cytoplasm,
and the invertase 2 (Suc2), which contains eight N-glycosilation sites that are glyco-
sylated only if the reporter is translocated to the lumen of the endoplasmic reticulum
and then to the extracytoplasmic space. Activity and glycosilation assays on the fused
membrane proteins are then able to determine the location of the C-terminus with
respect to the membrane plane (Kim et al. 2006).

6.3 Validation towards experimental data

In the following test procedure predictions are compared to experimental data,
concerning the location of the C terminus in the whole proteome of E. coli and
S. cerevisiae.

As a general comment, one has to keep in mind that this test is not focused on
correctly predicting the topological model of the protein sequence, but only the location
of the C-terminus with respect to the membrane plane, and that the expected results
have been produced experimentally as described in the previous section. We have
therefore 613 chains from E. coli, and 505 chains from S. cerevisiae. For each organism,
chains are divided in relation to their C-terminus being IN (inner) or OUT (outer) with
respect to the plane of the membrane. For each predictor, identified from its official
name, as explained above, all the correct and wrong predictions are listed, so the results
for the different tables are to be considered as confusion matrices. The results of this
experiment indicate that the performances of the predictors implemented in the
Bologna DAS server for the annotation of membrane proteins can provide reliable
predictions, when scored in a blind way, against sets of membrane proteins whose
C-terminus position was experimentally detected.

From this set of data it appears that for the specific task at hand (the prediction of the
location of C-terminus with respect to the membrane plane) the best performing
predictors are ENSEMBLE2.0 (HMMM2 and HMM1) and PRODIV, with scores as
high as 86.9%, 85.5%, 84.5% for the E. coli protein membrane set, and 83.4%, 82.4% and
83% for the one from S. cerevisiae, respectively.

Furthermore for each predictor the overall accuracy (Q), accuracy for the class
(Q(IN); Q(OUT)), probability of correct predictions for the class (P(IN); P(OUT)) and
Matthew�s correlation coefficient are listed. The first set of data indicates predictions
for 613 membrane proteins from E. coli with 480 sequences experimentally detected
with C-terminus in, and 133 experimentally detected with C-terminus out. The second
set of data indicates predictions for 505 membrane proteins from S. cerevisiae with 419
sequences experimentally detected with C-terminus in, and 86 experimentally detected
with C-terminus out (Tables 2 and 3).
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7 How many membrane proteins in the Human genome?

Methods for the prediction of membrane proteins can be used to find membrane
proteins encoded by a genome. To this aim, the evaluation of the false positive and false
negative rates is crucial. Due to their parametrization, different methods estimate
different contents of membrane proteins.

We annotated with three methods the 33,860 proteins of the human genome, as
reported in version 35 of Ensembl. Signal peptides were predicted with SPEP and
cleaved before the prediction of transmembrane topology. The estimates range from
19.6% of TMHMM, corresponding to 6639 proteins, to 32.3% of MEM-SAT, corre-
sponding to 10,945 proteins. ENSEMBLE predicts 7044 membrane proteins (20.8%).
Considering the false positive and the false negative rates that for ENSEMBLE are both

Table 3 Performance in predicting the C-terminal location in the Saccaromyces cerevisiae membrane
protein set

Method C-ter IN C-ter OUT Global indexes

Pred
IN

Pred
OUT

Pred
GLOB

Pred
IN

Pred
OUT

Pred
GLOB

Overall
accuracy

Correlation

TMHMM 2.0 286 125 8 33 51 2 66.7% 0.22
TMHMMdomfix 275 136 8 34 50 2 64.4% 0.18
MEMSAT 328 84 7 30 52 4 75.2% 0.32
PRODIV 363 36 20 26 56 4 83.0% 0.47
ENSEMBLE 1.0 343 73 3 37 48 1 77.4% 0.33
ENSEMBLE 2.0 374 42 3 33 48 5 83.4% 0.43

Performances are computed on 505 chains whose topology has been experimentally determined
by means of reporter fusions (Kim et al. 2006). The set contains 419 sequences with cytoplasmic C-
terminal (IN) and 86 with extracytoplasmic C-terminal (OUT)

Table 2 Performance in predicting the C-terminal location in the E. coli membrane protein set

Method C-ter IN C-ter OUT Global indexes

Pred
IN

Pred
OUT

Pred
GLOB

Pred
IN

Pred
OUT

Pred
GLOB

Overall
accuracy

Correlation

TMHMM 2.0 360 119 1 36 97 0 74.6% 0.41
TMHMMdomfix 375 100 5 34 99 0 77.3% 0.46
MEMSAT 411 64 5 38 94 1 82.4% 0.53
PRODIV 418 52 10 33 100 0 84.5% 0.58
ENSEMBLE 1.0 391 88 1 40 93 0 78.8% 0.46
ENSEMBLE 2.0 434 45 1 34 99 0 86.9% 0.63

Performances are computed on 613 chains from E. coli whose topology has been experimentally
determined by means of reporter fusions (Daley et al. 2005). The set contains 480 sequences with
cytoplasmic C-terminal (IN) and 133 with extracytoplasmic C-terminal (OUT)
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lower than to 4%, a reliable estimate of the content ofmembrane proteins in the Human
genome ranges from 20 to 24%.

The comparison of the predictions shows an agreement of the three methods for
5752 proteins (17%). These figures highlight a set of chains predicted as membrane
proteins by all the methods and a smaller portion of proteins with more blurred
predictions (Fig. 4).

8 Membrane proteins and genetic diseases: PhD-SNP at work

Single Nucleotide Polymorphisms (SNPs) are the most frequent type of genetic
variation in human population (Collins et al. 1998). Great interest is focused on
non-synonymous coding SNPs (nsSNPs) that are responsible of protein single point
mutations; these mutations occurring in coding regions may have a large effect on gene
functionality. nsSNPs can be neutral or disease associated (Ng and Henikoff 2002;
Capriotti et al. 2006). The question is therefore whether we know enough SNPs in
membrane proteins to make it interesting to model topology in relation to the position
of the mutation along the sequence.

A recent statistics of ours indicates that out of 1308 well annotated human proteins
listed in Swiss Prot with disease-related variants, 393 aremembrane proteins with some
5358 documented mutations. Noteworthy the most frequent disease-related mutations
in membrane proteins are the G/R, L/P, R/W, Q, C, and P/L substitutions.

As an example of a relevant outcome of our analysis, we show the 3D/topological
model of the Erythrocyte Band-3 anion transport protein (Fig. 5). This protein has a

Fig. 4 Distribution of predicted TMproteins among the chromosomes. Human protein sequences are from
release 35 of Ensembl
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known 3D structure of the soluble portion and a large transmembrane portion that
was modeled with PONGO. The snake-viewer of the membrane embedded portion of
the protein shows 12 transmembrane alpha helices where all the disease-related and
neutral mutations are also highlighted. The model is consistent with the location of
the anion transport channel as deduced from experiments, to which both helix V, VI
and VII are contributing.

The present possibility of retrieving a large dataset of annotated SNPs from the
Swiss-Prot Database prompted the application of machine learning techniques to
predict the insurgence of human diseases due to single point protein mutation starting
from the protein sequence (Ramensky et al. 2002). We developed a method based on
support vector machines (SVMs) that starting from the protein sequence information
and evolutionary information, when available, can predict whether a new phenotype
derived from a nsSNP can be related to a genetic disease in humans. The system is based
on two different SVMs: one is a SVM-sequence that performs predictions relying on
sequence information alone; the other is a SVM-profile performing predictions on
profile features when evolutionary information is available. Merging in a unique
framework the two SVMs we got a hybrid predictive method.

On a recent dataset (June 2006) of 23,597 single point mutations, 58% of which are
disease related, out of 4275 proteins, we show that our hybrid predictor can reach more

Fig. 5 Localization of SNPs in the Erythrocyte Band-3 anion transport protein (Genemap locus 17q21-q22).
The atomic structure of the protein N-terminal domain is available (PDB code 1HYN). The transmembrane
portion is predicted with ENSEMBLE (Martelli et al. 2003). SNPs are listed in the SwissProt entry
(B3AT_HUMAN) and their correlation to diseases derives from OMIM (www.ncbi.nlm.nih.gov/omim/).
19 SNPs are related to diseases (familial distal renal tubular acidosis and hereditary spherocytosis), while the
number of neutral polymorphisms is equal to 10. The green ellipse highlights putative helices involved in
the anion transport, as experimentally derived (www.ncbi.nlm.nih.gov/omim/; references in the protein
file)
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than 74% accuracy (with a correlation coefficient of 48%) in the specific task of
predicting whether a single point mutation can be disease related or not. Our
method, although based on less information, reaches the same accuracy, with a higher
correlation coefficient, of the other web-available predictors implementing different
approaches (Ng and Henikoff 2002; Ramensky et al. 2002). Moreover, differently from
other methods, ours always gives a prediction (Capriotti et al. 2006).

We design a web server integrating our SVM predicting methods, called Predictor
of human Deleterious Single Nucleotide Polymorphisms (PhD-SNP). The server is a
user friendly resource that gives the possibility of retrieving predictions via e-mail.
The submission form is very simple and the user has to paste the query sequence, to
select the mutation position and the mutated residue in relative input boxes; further-
more he can choose the predictive method. Best results are obtained when evolutionary
information is available and when it is possible to perform predictions using the hybrid
predictive method (Capriotti et al. 2006).

The results on how well the system is performing when predicting disease-related
SNPs on a set of membrane proteins are shown in Table 4, and compared to the same
results on a set of globular proteins.

9 Last but not least: 3D MODELLING of membrane proteins

In principle all the strategies used for predicting the 3D conformation of globular
proteins can be adopted to predict the structure of membrane ones. Given a target
sequence, when a protein with similar sequence and known structure is available in the
PDB, comparative modeling procedures can be successfully used. However, due to the
scarcity of membrane proteins solved at atomic resolution, the search for homologous
templates can be very unfortunate. For this reason the quest for a suitable template
needs to includemore information, such as functional features and strategies for remote
homology search.

Table 4 Performances of PhD-SNP2.0 on neutral and disease-related SNPs in human proteins

Accuracy Correlation Spec (D) Sens (D) Spec (N) Sens (N)

All proteins 78% 0.58 80% 80% 78% 78%
Membrane proteins 80% 0.57 84% 83% 73% 73%

The “All proteins” set consists of 15,266 disease related SNPs (D) and14,226 neutral polymorphisms
(N) derived from 5976 sequences annotated in Swiss Prot (release 54.0). The “Membrane proteins”
subset consists of 9094 disease-related SNPs (D) and 5556 neutral polymorphisms (N) out of 1992
membrane proteins annotated in the same release of Swiss Prot. Spec: Specificity is computed as
the number of correct predictions over the total number of predictions in the class. Sens: Sensitivity
is computed as the number of correct predictions over the total number of proteins belonging to
the class
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Tools for the prediction of membrane topology can support this task, by con-
straining the number of transmembrane segments of the suitable templates. This is
particularly true in the case of beta-barrel fold, whose architecture is quite well defined
when the number of transmembrane beta-strands is known. On the contrary, the
conformations of different all-alpha membrane proteins having the same number of
transmembrane segments can be largely different and functional features have to be
carefully taken into consideration in choosing the templates (Casadio et al. 2006).

When suitable templates have been found, the overlap between the predicted
topology of the target and the real transmembrane segments of the template guides the
pairwise alignment procedure. A model is then built using standard comparative
techniques and on the basis of the structural quality check the alignment can be
iteratively refined, taking into consideration more features, such as the hydrophobicity
of residues, or the location of functional sites.

Our group has successfully addressed the modeling of 3D structure of some
membrane proteins starting from the sequence and validated them with ad hoc wet
experiments, including site directed mutagenesis, fluorescence spectroscopy or gene
expression. In particular the conformation of mithocondrial Voltage Dependent
Anion Channels from different eukaryotic organisms was modeled on the basis of
a 16-stranded bacterial porin (Casadio et al. 2002; Aiello et al. 2004). The topography
of the target sequence was predicted and then a template with the same number of
strands in the barrel was selected from the database of prokaryotic porins known at
atomic resolution (Fig. 6). Alignment was done overlapping the predicted topography
and a comparative modelling strategy was adopted. The resulting model was able to
cast all the known functional features available in the literature. A similar strategy
was also adopted for the all-alpha mitochondrial oxoglutarate carrier (Morozzo della
Rocca et al. 2005).

For small all-alpha membrane proteins, when no suitable template can be found, a
knowledge-based method can be applied to the structure prediction. This method
searches for supersecondary structural fragments in a library of atomic-solved trans-
membrane alpha helices. In a second step the fragments are assembled with a simulated
annealing algorithm taking into consideration classical energy terms and a statistical
potential derived from an analysis of membrane proteins known at atomic resolution.
The membrane potential is added to classical energy terms, and derived from a
statistical analysis of a selected database of membrane proteins (Hurwitz et al. 2006).

10 What can currently be done in practice?

Presently we can take advantage of the available information in the data bases and in
literature for annotating membrane proteins. We may recognize with a certain like-
lihood of success if a chain is or is not amembrane protein of either type.We can predict
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and discover (after experimental validation) new membrane proteins (Marani et al.
2006). We can model the membrane protein topology, taking advantage of the
constraints imposed by the membrane bilayer: we can predict the transmembrane
regions of either type of structural architecture and then organize the transmebrane
regions with respect to the plane of the membrane. Eventually we can also model them
up to their 3D structure, depending on their structural type and we can also investigate
in humans how their folding/misfolding is related to diseases.

11 Can we improve?

Always, provided that we are very careful in selecting our training/testing set, in
avoiding redundancy and by keeping in mind that most of the problems that we
discussed throughout the chapter have not yet been resolved. It is a matter of fact
that experiments can always tell us how to improve our tools, and in turn, computations
can tell us whether we do the most appropriate experiment.

Fig. 6 Prediction of the topology of the OMP32 anion-selective porin from Delftia acidovorans (PDB
code: 2FGQ). The topology was predicted with HMM-B2TMR (Martelli et al. 2002), using the TRAMPLE
environment (http://gpcr.biocomp.unibo.it/biodec/) (Fariselli et al. 2005b). The protein was not contained
in the training data set. The accuracy of the prediction, after the comparison with the known structure
(shown), scores as high as 80%
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CHAPTER 6.1
Computational analysis of metabolic networks
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1 Introduction

The metabolism of a species results from the joint operation of a large network of
biochemical reactions, almost all of which are catalyzed by enzymes encoded in the
genome of that species. Metabolic databases such as KEGG (Ogata et al. 1998; Kanehisa
et al. 2006) or MetaCyc (Karp et al. 1996; Caspi et al. 2007) contain information about
thousands of such reactions togetherwith the compounds they involve. For instance, the
KEGG database (as of January 2007) contains 6,580 reactions, and 5355 compounds,
linked together by 13,490 substrate-to-reaction and 13,956 reaction-to-product rela-
tionships. In total, the KEGG database thus contains 18,515 entities (the metabolites
and reactions), and 27,446 links (the substrate-to-reation and reaction-to-product-
relationships). Furthermore, genes whose products are known to encode enzymes are
linked to the corresponding reactions.

These thousands of reactions are not independent from each other, but they rather
form routes between metabolites called metabolic pathways. Along a pathway, some
substrates are converted by a first reaction into a set of productmetabolites, which are in
turn converted into other compounds by the next reactions in the pathway. An example
of a metabolic pathway (composed of two sub-pathways, methionine biosynthesis and
sulfur reduction) is depicted on Fig. 1, and the aforementioned metabolic databases
contain hundreds of such pathways.

Successive reactions along a pathway are adjacent in the sense that one product
of the first reaction is a substrate of the second, just as successive compounds are
adjacent when some reaction uses the first as a substrate to produce the second.
Metabolic pathways like the one depicted on Fig. 1, however, are partial repre-
sentations of the metabolism focused on a specific biochemical process, from which
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links have been deleted for the sake of clarity. As some compounds are involved as
substrate or product in as many as hundreds of reactions, it is indeed impractical to
represent every possible production or consumption link in a diagram focused on a
given process. A far more comprehensive view of the interplay between metabolites
and reactions is provided by metabolic networks, in which most (but not necessary
all) adjacency relationships are kept. In these comprehensive networks, compounds
and reactions are linked by a very large number of possible paths. Computational
approaches are thus required to address the complexity of such networks, and
understand the relationship between their organization and the biological proper-
ties it supports.

Thanks to the availability of comprehensive databases on metabolic pathways,
metabolic networks are now amenable to computer analyses. After an introduction to
themost popular ressources onmetabolism, thefirst section of this chapter describes the
typical procedure used to reconstruct the metabolic network of a given organism from
the annotation of its genome. The second section introduces classical analyses of the
topological properties of metabolic networks, and discusses the biological relevance of
the corresponding results. Finally, the last section introduces genome-scale metabolic
models as a means of assessing the completeness and quality of a reconstructed
metabolic network against functional information, including the organism�s known
physiological properties.

Fig. 1 Example of a metabolic pathway: methionine biosynthesis in the yeast Saccharomyces scerevisiae
(A) and in the bacterium Escherichia coli (B)
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2 Computational ressources on metabolism

A prerequisite for computational analyses of large datasets relies on their availability as
well-structured and easily accessible databases. In the case of metabolic networks, a key
requirement is for those databases to describe reactions by their chemical equations
using a non-redundant set of metabolites, in order to avoid node duplications with its
corresponding loss of adjacency relationships. Two databases have acquired reference
status within the scientific community: Kyoto Encyclopedia of Genes and Genomes
(KEGG, http://www.genome.jp/kegg) (Kanehisa 1996), and BioCyc (SRI, http://biocyc.
org) (Karp et al. 2005). In addition to the web interfaces browsing and querying the data
offered by these systems, a variety of software tools dedicated to specific biological
analyses have been developed. We provide below an overview of these resources.

2.1 Databases

2.1.1 KEGG

TheKEGGdatabasewas first released in 1996. Its datamodel is quite complex, as KEGG
is composed of several interconnected databases, each of them being dedicated to a
specific realm of molecular biology.

The KEGG Genes database collects gene catalogs of all publicly available complete
(and also some partial) genomes. Beyond the storage of raw sequence data, orthology
relationships between genes are also computed (and stored in a dedicated database,
KEGG SSDB) and made available to the scientific community. The resulting sets of
orthologous genes (named KO) are named after the biological functions implemented
by the corresponding genes, using a controlled vocabulary.

The controlled vocabulary for describing biological functions is structured in a
hierarchical manner, and stored in a dedicated database called KEGG Brite. Brite is not
limited to metabolism, but rather aims at providing a comprehensive classification
system for biological functions.

Chemical details are provided by the Ligand database, which is actually a set of
related databases, each of them describing a biochemical entity (Compounds, Drug,
Glycan, Reaction, Rpair, and Enzyme). Reactions are linked to their substrates and
products from the Compounds database, and enzymes are identified according to their
EC numbers (a standard defined by the IUBMB/IUPAC nomenclature committee), but
also linked to the reaction they catalyse. Sets of orthologous genes (KO) encoding an
enzyme are referenced by the corresponding Enzyme entry. Considering these data-
bases together allows the computation of direct associations between metabolic genes
and the reaction catalysed by their products.

KEGG includes a Pathway database, which gathers manually drawn pathway maps
of metabolism, but also of genetic information processing, environemental information
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processing, cellular processes and human diseases.Metabolic pathwaymaps are focused
on specific regions of the metabolism (for instance TCA cycle, carbon fixation, . . .) and
hierarchically organized according to the corresponding BRITE classification.

In addition to its web interface, KEGG provides a two-level entry-point on its data:
an advanced programmer interface (API), theKEGGAPI, which permits programmatic
access to the data using the now standard SOAP technology; and desktop applications
that provide advanced graphical representations of various analysis results using the
KEGG maps. This suite comprises three software tools, dedicated to browsing and
searching hierarchies, analyzing transcriptome and metabolome data in conjunction
with KEGG pathways, and drawing of chemical compounds structures.

2.1.2 BioCyc

The BioCyc database collection originated from a database named EcoCyc (Karp et al.
2002), aimed at providing a comprehensive, highly curated ressource on themetabolism
of Escherichia coli. EcoCyc is structured as a Pathway-Genome Database (PGDB),
relating information on the E. coli genome (chromosome, genes, and gene sequences) to
its known metabolic network and set of transporters. This relationship is structured, so
that complexes of gene products catalyzing reactions can be represented. The EcoCyc
PGDB also contains information about the genetic network (operons, transcription
factors and their interactions with DNA binding sites), imported from the RegulonDB
database (Salgado et al. 2006). One of its key features is the high level ofmanual curation.
For instance, links to the articles in which the experimental evidence used as a primary
source for annotation was published are systematically provided.

PGDB for other species have been built since the release of EcoCyc, forming the
BioCyc resource. The PGDBs of 20 species (so-called tier 2 PGDBs) have beenmanually
curated, albeit less systematically than EcoCyc. For 349 other organisms, computa-
tionally-derived PGDB without any manual curation have been generated, and are
known as tier 3.

An interesting feature of BioCyc is a cross-species pathway database, MetaCyc,
which gathers pathways from around 900 organisms. MetaCyc thus includes pathways
found in organisms for which no organism-specific PGDB exist. All pathways in
MetaCyc have been manually curated, so that MetaCyc and EcoCyc together form the
tier 1 of BioCyc,meaning that they reached the highest curation level.MetaCyc can thus
be used reliably as a reference pathways database for the reconstruction of themetabolic
networks of newly sequenced organisms (see below).

2.1.3 Reactome

Reactome is a distributed infrastructure for curating biological pathways, built upon a
knowledge base and rich clients dedicated to pathway authoring and curation. Its focus
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is not limited to metabolism, but includes signaling and regulation. For the time being,
Reactome is mainly focusing on the description of biological processes in humans
(Joshi-Tope et al. 2005), even though other eucaryotic organisms are represented, as
well as the bacterium Escherichia coli. The data model underlying Reactome integrates
several reference databases as primary sources (likeGeneOntology) or cross-references.
The Reactome curation model has been quite successful in eliciting collaboration from
community experts.

An appealing feature of Reactome resides in its cross-species approach, which is
critical since most biological processes happening in humans are actually studied in
model organisms, rather than in human cells directly. Pathways are curated by experts
in the context of the model organism, and then projected on the human biology using a
notion of inferred orthologous events. This mechanism prevents erroneous transfers of
knowledge by keeping inferrential links in the database. It is noteworthy that even
though such transfers of knowledge are often performed across procaryotes for
annotation and metabolic networks reconstruction purposes, this feature is absent
from all resources on procaryotic metabolism to date.

2.1.4 Querying and exporting data

In order to apply the steadily growing family of software tools dedicated to metabolic
network analysis, pathways data must bemade accessible in computer-readable format.
A first solution is to use database connectors such as those provided for BioCyc
(Krummenacker et al. 2005), or software connectors providing the user with a higher-
level querying solution on the databases (such as Cyclone for BioCyc (Le Fevr�e et al.
2007)).

A second solution is to export metabolic networks and pathway description
information using a standard exchange format. Two such formats have gained sig-
nificant recognition, together with import/export tools from and to the main pathways
databases: the Systems Biology Markup Language (SBML) (Hucka et al. 2003), and the
BioPAX format (Luciano and Stevens 2007). Both are based on XML technology, and
result from open collaborative efforts. Even though both languages can encode
biological networks, their foci differ. BioPAX aims at providing a robust format for
describing biochemical compounds and processes. SBML is more oriented towards the
exchange of models in systems biology, and is widely supported by modelling and
simulation software tools.

2.2 Reconstruction of metabolic networks

A prerequisite for performing any computational study of the metabolic network of an
organism is the reconstruction of that network, from the annotation of its genome
together with additional information on its physiology and metabolism. This task may
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seem trivial, as it consists in retrieving the set of reactions associated to annotated
enzymatic genes. It is unfortunately not, since the initial annotation effort fails at
assigning precise functions to around 50% of the enzymes in a typical genome.
Reconstructed networks often involve reactions, the catalysers of which seem to be
missing from the genome. As a consequence, metabolic networks often exhibit gaps, i.e.
some reactions are totally disconnected, or paths that are known or thought to exist
between metabolites are interrupted.

2.2.1 From annotated genomes to metabolic networks

One possible approach to enhancing the completeness of networks reconstructed from
functional annotations is to retrieve entire pathways from metabolic databases instead
of single reactions. But as soon as missing annotations are present, some criteria are
necessary to decide which specific form of a pathway should be inferred among those
harboring the annotated reactions. More generally, any well-defined notion of meta-
bolic modules may facilitate the reconstruction of coherent networks. Modules should
be small enough to occur in several species (so that their identification in one species
benefits to newly annotated genomes), but large enough to help retrieve reactions that
cannot be directly identified from the annotation.

The best known implementation of this strategy is the Pathologic program, available
as part of the Pathway Tools software suite dedicated to querying and computing with
BioCyc data (Paley and Karp 2002). Pathologic identifies pathways that are most likely
to occur in a given species using theMetaCyc reference pathways database together with
the annotation of the species. Networks reconstructed using Pathologic are thus
assemblies of metabolic pathways identified and curated in different organisms.

2.2.2 Filling gaps

A corollary of the incorporation of reactions that were not annotated in the genome is
the presence of gene gaps in pathways. Searching for these missing genes is one way of
completing the annotation. A variety of approaches have been proposed, based on
sequence analysis, but also on gene expression ormutant phenotype data analysis. Most
methods rely on a combination of different types of evidence supporting the presence of
reactions in the metabolic network, together with genome sequence or expression
profile analysis. For instance, the Pathway Tools software suite includes Pathway Hole
Filler (Green and Karp 2004), which generate gene candidates for filling holes in
pathways. One can also exploit the fact that genes involved in a linear pathway are
usually overexpressed in similar proportions when the pathway is activated, so that
searching for genes, whose expression profiles are similar expression to those of the
genes known to be involved in the remainder of the pathway, can shed light on candidate
genes to fill the holes (Kharchenko et al. 2004).
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Applying this procedure to a newly sequenced organism unavoidably results in an
incomplete metabolic network. In the case of reconstructions performed using Path-
ologic, novel pathways that are absent from the reference pathways database used would
obviously bemissing from the reconstructed network. In other words, procedures such as
the one performed by Pathologic are limited by the current knowledge onmetabolism, as
well as by our ability to predict genes enzymatic functions based on their sequence.

3 Basic notions of graph theory

In mathematical terms, a metabolic network is a graph: the entities among which
adjacency is defined (metabolites and reactions) are represented by nodes, and edges
connect adjacent nodes1.Graph theoryhas developed awealth of concepts and algorithms
for studying graph topology: degrees of the nodes, shortest-path lengths distance between
nodes, or graph diameters are only a sample of the most classical topological properties
that can be computed in a graph, and distributions thereof over specific ensembles of
graphs have been investigated. In 2000, in an influential paper, Jeong et al. (2000) applied
this type of analysis to a metabolic network representing all the reactions catalyzed in
40 organisms, as well as their substrates and products. This article provoked a strong
enthusiasm in the bioinformatics community, and gave rise to a fertile field of publica-
tions, where the same concepts were transposed to different types of biological networks:
metabolism (Fell and Wagner 2000; Jeong et al. 2000; Ravasz et al. 2002; Ravasz and
Barabasi 2003), protein interactions (Jeong et al. 2001), transcriptional regulation
(Potapov et al. 2005). Some interesting topological properties seemed recurrent in
biological networks, among which the three most popular are probably the power-law
distribution of degree, the small world property, and the scale-freeness. Sometimes
perceived as intrinsic properties of biological networks, their interpretations can be
questioned. Thismotivates the following discussion of both pitfalls and strengths of some
widespread ideas about network topology.

3.1 Metabolic networks as bipartite graphs

When metabolic networks represent both metabolites and reactions, only entities of
different types (metabolites and reactions) may be connected. This feature defines a
class of graphs known as bipartite graphs; furthermore, ametabolitemimay be related to
a reaction rj as a substrate or as a product, so that metabolic networks are directed
bipartite graphs. Reversible reactions are formally encoded as two irreversible reactions
in the graph, corresponding to both possible directions.

1 The graph structure of metabolic networks is actually slightly richer than that, as we shall
see later.
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A bipartite graph can be projected into component subgraphs, where only one type
of entities is represented. In the projected subgraphs, two nodes (for instance two
reactions) are connected by a directed edge if they can be connected by two consecutive
edges in the bipartite subgraph (for instance if the product of a reaction is the substrate
of the other). Metabolic networks can thus be projected into metabolite–metabolite or
reaction-reaction graphs.

In either of these graphical representations of metabolic networks, some basic
questions may be asked: how many neighbours has a node? How far apart are two
metabolites? Or two reactions? In the rest of this section, the graph theoretical notions
underlying these questions will be introduced.

3.2 Node degree

In a graph, the number of edges having a given node n as their target (respectively
source) is called the incoming degree (respectively outgoing degree) of node n, and
written di(n) (respectively do(n)). The sum of the incoming and outgoing degrees of a
node is called its total degree, and written d(n)¼ di(n)þ do(n).

3.3 Paths and distances

A path in a graph is a sequence of edges e1, . . . , en such that the target of any edge is the
source of the following one. The source s(e1) of the first edge is called the origin of the
path, while the target of the last one is called the destination of the path. If some path has
a node m as origin and a node n as destination, then m is connected to n.

The length of a path is defined as its number of edges. In general, a node m is
connected to another node n by several paths of different lengths, but there is always at
least one shortest path among them. Its length defines the shortest-path length distance
D(m, n) from m to n, which can be extended to the case where m is not connected to n
with the convention that D(m, n)¼¥ in this case.

Note that in a directed graph, the shortest-path length distance is not symmetric,
since a path connecting m to n may not connect n to m.

A notion of size of a graph can be derived from this distance, as the largest distance
separating two nodes. This quantity is called the diameter of the graph, and holds mainly
for graphshavingall nodes connected to eachother.Note that someauthors use adifferent
definition of diameter, as the average distance separating any two nodes in the graph.

4 Topological analysis of metabolic networks

Wewould like now to challenge some of the properties that were attributed tometabolic
networks, or, at least to question some biological interpretations about these mathe-
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matical properties. Our purpose is to stimulate a constructive debate, even though some
of the statements below might seem provocative at first sight. In each case, we will
discuss both pitfalls and strengths of some widespread ideas about network topology.
Before entering in the debate, we briefly summarize hereafter themain concepts that will
be treated. We will then treat them with more details in the forthcoming sections.

Power-law distribution of the degree. In a random network generated under the Erdo€s-
Reny�ı model, the number of connections per node is expected to follow a Poisson
distribution, whose right tail shows a very rapid decrease of the probability for
increasing number of connections. However, in many biological networks, the degree
distribution seems to follow a power law, whose right tail decreases much slower than
for the Poisson distributions. Power-law networks contain many nodes with a very
small number of connections, and a few very highly connected nodes, called hubs (Jeong
et al. 2000).

Small world property. Due to the presence of these hubs, it is generally possible to
connect any pair of node through relatively short paths. This small-world property can
be characterized by computing the network diameter, here defined as the average length
of the shortest pathbetween any twonodesof thenetwork.Thediameter of themetabolic
network has been estimated to correspond to 3 reactions (Fell and Wagner 2000;
Jeong et al. 2000), suggesting that molecules can be inter-converted into other ones in
a very few metabolic steps.

Scale-free property of the network diameter. Jeong and co-workers analyzed separately
themetabolic networks from 40 bacteria, whose genome contained variable numbers of
enzymes. Surprisingly, they observed that the diameter of the metabolic network does
not vary with the number of enzymes. The network diameter appeared thus as a scale-
free property of metabolic networks. The fact for a metabolic network to have a small
diameter irrespective of its number of enzymes has been interpreted as an evolutive
advantage, since all organisms would be able to efficiently respond to some change in
their environment by metabolizing compounds in a few steps.

4.1 Node degree distribution

Aglobal view of the topology of the graph is reflected by the distribution of node degrees
across the network, which can be compared to the one observed in randomly generated
graphs. A classical model of random graph is the so-called Erdo€s-Reny�ı (ER), where one
starts from a set of q nodes, and progressively adds n edges that link two randomly
selected nodes. All nodes have the same probability to be selected as source or target. In
such networks, each node has a given probability to “catch” a given number of edges by
chance: somenodeswill end upwith no edge, some otherswith 1, 2, 3, . . . edges. It can be
shown that the probability for a node to obtain a given number of edges follows a
Poisson law.
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Figure 2 shows some typical degree distributions exhibited by an ER network and a
metabolic network, respectively. The rightmost plot depicts the degree distribution (in
log-log scale) observed for all the compounds of a metabolic network derived from the
KEGG/LIGAND database. The degree distribution of the metabolic compounds is
clearly distinct from the Poisson distribution followed by the degree in an ER network
(central plot). In particular, some nodes have an extremely high degree (more than 2000
for the most connected), which would be extremely unlikely in a Poisson distribution.
When smoothened, this distribution broadly follows a straight line, which led Jeong and
co-workers (2000) to the conclusion that the degree distribution of metabolic com-
pounds follows a power-law distribution, for which the probability of degree k is P(k) kg.
Such degree distributions are typical of randomly generated networks where nodes and
edges are progressively added, so that the more ancient nodes of the graph are likely to
be connected to a larger number of nodes than the most recent nodes.

The power law distribution is characterized by the fact that most nodes have a very
few connections, but a few nodes have a very high degree. Such a power-law property
had been previously observed for the Internet network, and was subsequently found in
basically any other type of network that could be extracted from biological database
(protein interactions, transcriptional regulation). Paradoxically, all these reports were
based on a visual inspection of the broad shape of the distribution. Recently, Khanin and
Wit (2006) tested the goodness-of-fit of a power-law distribution onto 10 biological
networks, and showed that not a single one of these networks passed the test!Would the
power-law distribution of biological network be a myth, rather than a scientific theory?
Actually, the power law property is not so obvious, even by simple visual inspection
(Fig. 2C): the left tail of the distribution shows a plateau, whereas a linear decreasewould
be expected for a power law. This is significant, because each point of this left tail
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Fig. 2 Degree distributions. Left: Random graph generated according to an ER model, with mean degree
m¼ 4:6. center: degree distribution of the same graph, with logarithmic scales. Right: Total degrees
distribution of the compounds in the metabolic network derived from KEGG (p¼ 11;935; n¼ 27;4446;
m¼ 4:6), in log–log scale. The blue curves represent the probability functions P(k), i.e. the probabilities for a
node to be connected to exactly k edges. The green curve shows the inverse cumulative distributions
P(K�k), i.e. the probabilities for a node to be connected by at least k edges

338

Chapter 6.1: Computational analysis of metabolic networks



represents several thousands of compounds (its relative importance is somewhat
masked by the logarithmic Y scale).

Interestingly, such deviations have sometimes been attributed to the incompleteness
of databases rather than to the relevance of the statistical model. This is hopefully not the
most frequent attitude, but the reader�s attention is drawn on the dangers of turning some
exciting hypothesis into a dogma, that can even not be questioned in the light of data!

Beyond this argument, it is important towonderwhat these properties reveal us about
the underlying biochemistry. If molecules are named instead of being qualified according
to their topological properties (Fig. 3), one immediatly notices that the most connected
compounds are actually those ensuring some basic chemical operations such as redox
(NADþ , NADH,NADPþ , NADPH,H2O,Hþ , O2) or energy transfer (ATP,ADP, Pi,
PPi). Thepresence of “hubs” in themetabolic network simply reflects thewell-known fact
that these basic operations are applied on several hundreds of different molecules.

4.1.1 Robustness to random deletions and targeted attacks

By computer-based simulations, it has been shown that power-law networks are robust
to random deletions, but sensitive to targeted attacks (i.e. deleting hubs). Indeed,
deletion of a randomly selected subset of nodes barely affects their smallworld property
as far as the hubs are there to ensure short distances between any pair of nodes. On the
contrary, if these hubs are dismantled by targeted attack, the network diameter rapidly
increases. Such computer simulations offer a practical tool to estimate the impact of
progressive hub removal on the behaviour of a network, and have some important
consequences on the design of human-built networks such as Internet.

Some authors transposed these properties to metabolic networks, and inferred that
hubs would play an important role in ensuring robustness to random deletions.
However, the concept of hub removal simply does not apply to metabolic networks,
for the simple reason that the “hubs” of these networks represent molecules, that can

Fig. 3 Compounds with the highest degree in the KEGG/LIGAND metabolic network. Most are cofactors
(NADPþ ¼NADPH, NADþ ¼NADH, AT P), but the highest degrees are attained by universal metabolites
(water, CO2)
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simply not be removed from the network. For example, even a bacteria with a very small
genome already contains several hundreds of enzymes that catalyze H2O-producing
reactions. Thus, removing a single hub (theH2Omolecule) from themetabolic network
of such an organism would require the deletion of several hundreds of enzymes. For a
geneticist, it is clear that the deletion of a few tens of enzyme-coding geneswould already
be lethal, and this would happenmuch before the last H2O-producing enzyme has been
deleted. Thus, targeted removal of “hub” compounds can thus neither be achieved
naturally, nor by human intervention.

What about random deletions then? The “deletion” of poorly connected com-
pounds seems practically feasible: if a specific compound is produced by one or a few
enzymes only, these enzymes could be inactivated by spontaneousmutation or directed
mutagenesis. Actually, this is exactly the procedure that has been followed by bioche-
mists during the last 50 years, in order to isolate enzymes and decipher pathways: their
preferred model organism (e.g. the bacteria Escherichia coli K12, or the yeast Sacchar-
omyces cerevisiae) were submitted to a mutagenesis, followed by a screening to select
colonies which had lost the capacity to grow in the absence of a given metabolite (e.g.
methionine, lysine). Those mutants were called auxotrophic, to denote their depen-
dency towards this metabolite. The simple fact that most of the enzymes that we
currently knowwere isolated by their auxotrophy phenotype shows that themutation of
a single enzyme often suffices to block a whole metabolic pathway, which cannot be
compensated by the other enzymes of the genome. It seems thus obvious that the high
degree of connectivity of “hubs” such as H2O, NADP, O2 can by no means compensate
for the absence of an enzyme like aspartate kinase, which catalyses a single reaction,
essential to the biosynthesis of three amino acids (methionine, lysine and threonine) in
bacteria. In summary, in the particular case of metabolic networks, the power-law
property neither confers resistance to random deletions, nor sensitivity to targeted
attacks. This illustrates the importance to be careful when transposing concepts from
mathematical models and biological system.

4.1.2 Generative models for power-law networks

Another danger comes from the transposition of generative models to metabolic
networks. As said before, it is possible to generate a random graph with power-law
distribution of degree, by progressively adding nodes and edges to the existing graph,
but with an increased probability for the ancient node to catch a new edge. By extension,
some bioinformaticians proposed that the ?hubs? of the metabolic network correspond
to compounds that appeared earlier during the evolution of metabolism. This attractive
hypothesis unfortunately does not hold when analyzing the structure of the most
connected molecules of the metabolic network (Table 3). For example, ATP, which is
involved in 466 reactions, is a quite complex molecule, comprising a sugar group þ a
heterocyclic baseþ 3 phosphate groups. It is obvious that thus molecule may not have
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been present before the smaller molecules that are part of it, irrespective of the fact that
these sub-components are involved much less reactions than the “hubs”. Another
illustrative example is S-Adenosyl-L-methionine, which is made from methionine and
ATP. The same observation holds formany other “metabolic hubs”. As discussed above,
that there is a perfectly understandable reason for the high connectivity of these
molecules, and which has nothing to do with their supposed chronology of appearance:
ATP is involved in energy transfer, and S-Adenosyl-L-in methyl transfer. This example
again emphasizes the importance of including as much biological knowledge for the
interpretation of system properties.

4.2 Paths and distances in metabolic networks

The small-world and scale-freeness properties rely on a computation of the shortest path
between all pairs of nodes. It would be tempting to interpret a shortest path as ametabolic
pathways, in its common biochemical acceptation, i.e. a set of connected reactions that
transform a set of input metabolites (substrates) into a set of output metabolites
(products). This would however be erroneous, because the shortest paths in metabolic
graph generally contain irrelevant inter-connections between reactions, as discussed in
detail in previous publications (vanHelden et al. 2002; Arita 2004, 2005; Croes et al. 2005,
2006). Metabolic hubs should generally not be used as intermediates between two
reactions. As shown in Fig. 1, in the yeast Saccharomyces cerevisiae methionine is
synthesized fromL-aspartate in 6 reactions. The bacteria Escherichia coli also synthesizes
methionine fromL-aspartate, but the twopathwaysdiffer by a few intermediate steps.As a
matter of test, we applied a k-shortest pathfinding algorithm to obtain the 5 shortest paths
from L-aspartate to L-methionine in 3 metabolic networks.

1. A raw graph containing all compounds and reactions, including the “hubs” (Fig. 4A).
In each on of the 5 shortest paths, L-aspartate is converted into L-methionine in no
more than 2 steps. However, the returned paths are completely invalid on the
biochemical point of view, because “hubs” are used as intermediate metabolites
between two compounds, without sharing anything in common with their structure.

2. The filtered graph (Fig. 4B) contains the samemolecules and reactions, except for 36
highly connectedmolecules that were discarded from the network (vanHelden et al.
2002). The most trivial connections via H2O or AMP are avoided, but the paths
remain very short, and have nothing in common with the known methionine
biosynthetic pathways (Fig. 1).

3. The weighted graph (Fig. 4C) contains all the molecules (including the hubs), but a
weight is assigned to each compound, proportional to its degree (Croes et al. 2006).
The program searches the k lightest paths, i.e. those having the lowest weight. The 4
top-raking paths partly correspond to the bacterial pathway (Fig. 1B), whereas the
5th path corresponds to the yeast pathway (Fig. 1A).
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A systematic evaluation based on 148 annotated pathways revealed that the
correspondence between these pathways and those inferred by shortest path finding
in the raw graph is only 30% and, in addition, these correspond to very short pathways
(3–4 reactions including the seed nodes), where one or two reactions had to be inferred,
nomore. The removal of a selected subset of compounds increases the accuracy to 65%.
The most convincing results were obtained with the weighted graph, where the average
accuracy for the shortest reaches 85% (Croes et al. 2006; Broh�ee et al. 2008; Broh�ee
submitted).

5 Assessing reconstructed metabolic networks
against physiological data

Given its enzymatic arsenal, an organism may be able to grow on various media, but
unable to grow on some others, depending on its capacity to catalyze a set of reactions
that together can produce all biomass precursors from the available nutrients. Since at
least some of the media on which an organism of interest is able to grow are usually
known, checking whether the reconstructed metabolic network of an organism indeed
permits the conversion of the nutrients into biomass can be used as a mean of assessing
its completeness and correctness. Since a reaction can occur only when all of its
substrates are present, topological analyses are not able to answer such questions. The

Fig. 4 The 5 shortest paths found between L-aspartate and L-methionine in the metabolic network
derived fromKEGG/LIGAND, in the rawgraph containing all compounds (A), in a “filtered” graph fromwhich
36 compounds had been excluded (B), and in a weighted graph containing all compounds (C). Inferred
reactions and compounds that correspond to the annotated pathways are in bold. Incorrect reactions and
compounds are underlined
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constraints based modelling framework introduced below is precisely aimed at tackling
these questions.

The Flux balance analysis approach considers steady-state distributions of the
reaction fluxes across the metabolic network for which the net production rate of all the
intermediate metabolites is zero: fluxes must be balanced around each metabolite
(Schilling and Palsson 2000). Instantaneous reaction rates should be interpreted as
averages over some long time period of growth, and the flux balance assumption as their
material possibility without lacking (or, conversely, accumulating continuously) any
intermediate metabolite.

Constraints-based models of metabolism do not involve further knowledge of the
metabolism of an organism than the stoichiometric coefficients of all the reactions.
Thank to this simplicity, the flux balance analysis can perform growth phenotype
predictions by integrating the biochemical knowledge on a species at the genome scale,
which makes it an efficient procedure for assessing a reconstructed metabolic network
against growth phenotypes on various media, and/or gene essentiality data. Further-
more, any inconsistency between data and predictions can be solved by only one type of
modifications of the network (addition or deletion of a reaction, or, in the case of
essentiality data, increase or decrease of the impact of the deletion of one gene on a
reaction).

5.1 Constraints-based models of metabolism

5.1.1 The flux balance hypothesis

We consider the metabolic network of an organism with pmetabolitesm1, . . . ,mp and
q reactions r1, . . . , rq. The stoichiometric matrix S has entry S(i, j) equal to the
stoichiometric coefficient of the metabolite mi in the reaction rj. S(i, j) is set to zero
ifmi is neither a substrate or a product of reaction rj, and is by convention negative (resp.
positive) if mi is a substrate (resp. a product) of rj.

Denote by n the flux distribution, which is a vector formed by all reaction rates nj,
j¼ 1, . . . , q. The net production rate of anymetabolitemi is then given by the i

th entry of
the vector S � n. The flux-balance hypothesis imposes the nullity of all entries of S � n
associated to internalmetabolites.Writing Sint for the stoichiometricmatrix fromwhich
all rows associated to non-internal metabolites were removed, this property can be
written:

Sint �n ¼ 0 ð1Þ
Inmathematical terms, the setC formed by all vectorsn such that (1) holds is a linear

subspace of Rq, called the kernel of the matrix Sint.
At this point, we did not account for irreversible reactions. But setting the additional

constraint that nj¼ 0 whenever rj is irreversible discards from C all flux distributions
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having at least one reaction rate incompatible with the known direction of an
irreversible reaction, which solves this issue. After this operation, C ceases being
invariant under any linear combination of its elements, but only under linear combina-
tion with positive coefficients: it is a cone. The magnitude of a flux distribution thus has
no intrinsic meaning, and when flux optimizations are performed, its explosion is
prevented by imposing upper bounds on the uptake rates. The set C has then the
structure of a polyhedral cone.

An important point to be made here is that turning a metabolic network into a
stoichiometric model is not straightforward at the time of writing. Major hurdles in this
process include the presence of generic metabolites and reactions in the databases, e.g.
“an alcohol and an acetyl-CoA are converted into an acetic ester, releasing a coenzyme
A”. Since the metabolism of a species usually involves several different alcohols,
including such reactions would prevent from balancing each of them. A similar issue
results from the polymerisation processes, which are also frequently represented in
databases by single reactions corresponding to one step of extension of the polymer.
Another shortcoming of metabolic models reconstruction is related to the inference of
the transporters, which are usually poorly predicted compared to enzymes. This is
crucial for metabolic models since many transport systems are coupled to a reverse
transport of other molecules. The TransportDB database gathers descriptions of several
transport systems (Ren et al. 2004), and is a key ressource for reconstructing metabolic
models. Last but not least, even bacterial metabolism is best described if the different
compartments of the cell are modelled. In the case of constraints-based models,
compartments are represented by the addition of trasport reactions across membranes,
and by duplicating metabolites appearing in several compartments so that they can be
balanced in each of them.

5.1.2 Modelling the growth medium

The non-internal metabolites evoked earlier are metabolites that the organism can take
from the environment, or that it can secrete to. These exchanges are represented in the
metabolic model using transport reactions, that merely convert external metabolites
into their internal equivalent. Even though these processes are most often omitted in
metabolic networks, they may involve cofactors and thus interfere with the balance of
internal metabolites.

Formally, it requires to duplicate each transportable metabolite mi into its external
mi

ext and internal forms mi
int, and to augment the reaction set with the corresponding

transport reactions:

ri
exch : mi

ext ! mi
int

Their reaction ratesmay be subjected to irreversibility constraints, but other constraints
on themare induced by the composition of themedium. Indeed,metabolites that are not
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provided in the growth medium may not be used by the cell to feed its metabolism.
Writing M for the set of metabolites available from the medium, the following con-
straints are added:

8i 2 M; ni
exch 	 0

The constraints defining an attainable metabolic flux distribution can thus be encoded
in the model using only linear equality and inequality constraints.

5.1.3 Biomass function

In addition to the exchangeablemetabolites provided in themedium, the components of
the cell itself (nucleotides, amino-acids, and lipids), which are known to accumulate
when the cell grows and divides, should not be subjected to the flux balance constraint.

Based on biochemical analyses of dried cells, the proportion of those components
in the biomass can be determined. This composition can be reproduced in the model
by adding a virtual irreversible reaction, the biomass assembly reaction, that assem-
bles all precursors into a virtual metabolite, the biomass. The stoichiometry of this
reaction is chosen to reflect the known composition of the biomass, and includes an
energetic cost through the degradation of a certain amount of energy carriers (like
ATP).

When a biomass reaction is defined, biomass precursors are considered as normal
internal metabolites, of which the net production rate should be zero. But since the
biomass reaction collects the end products of all biosynthesis pathways, it is responsible
for strongly constraining the flux distribution.

5.2 Predicting metabolic capabilities

5.2.1 Predicting growth on a defined medium

Returning to the original question that motivated this section, we can now ask whether
an organism is able to produce biomass when it is fed with a given medium. The
composition of themedium being translated into additional constraints, the question to
ask is now: which biomass production rate is attainable by the organism? Of course, the
absolute value of this rate has to be normalized against the uptake rate of one of the
nutrients (usually the carbon source) in order to have any meaning.

The simplest way to answer this question is to perform a flux balance analysis
(Schilling et al. 2001), i.e. to search for the maximal achievable growth rate, the
normalizing uptake rate being forced to 1. If this maximal rate is too close from zero,
then the organism is predicted not to be able to grow on the medium. Otherwise, its
growth is considered possible, although other phenomena (for instance transcriptional
or metabolic regulation) may prevent it.
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An alternative approach, known as themetabolite producibility check, does not take
into account the stoichiometry of the biomass reaction, but rather checks whether the
maximal production rate attainable is far from zero for all of its substrates. Since the
removal of the biomass reaction from the model releases constraints, an organism is
more easily predicted to be able to grow by this method than by FBA.

All of thesemethods rely on an optimisation of some flux in the flux cone, and can be
easily implemented using linear programming algorithms. They have been performed
on several organisms, and yielded satisfactory results (Edwards et al. 2001; Schilling and
Palsson 2000; Jamshidi et al. 2001). Actually, this method is not only able to predict
whether growth is achievable on some medium. It has also been shown that the
predicted flux distribution (i.e. the one achieving the optimal growth rate) across the
network is coherent with experimental measurements (such as the ratio of oxygen to
carbon consumptions) (Edwards et al. 2001).

5.2.2 Predicting gene essentiality

When constrained to a null flux, some reactions completely prevent the optimal
biomass production rate from being significantly different from zero. These reactions
are called essential, since the organism cannot grow if they cannot proceed. Thus, gene
deletion mutants lacking a gene (or several genes) encoding the enzyme (or enzymes)
required for an essential reaction to take place are not expected to be viable.

Precisely defining the sets of genes whose deletion would inhibit a reaction is thus a
key element for predicting the growth capacities of gene-deletion mutants, which is
formalized using gene-product-reaction (GPR) relationships (Joyce et al. 2006). A GPR
is a boolean predicate involving the genes presence or absence defined for each catalyzed
reaction in the model, which evaluates to true if the gene presence profile indeed allows
the reaction to be catalyzed. It encodes the complexation of proteins using and
operations, while isozymes are encoded using the or operator.

For instance, the GPR of a reaction ri catalyzed by the complex formed by the
products of gene A and gene B, and a third protein among the products of the genes C
and D would be : A and B and (C or D). Predicting all the enzymatic complexes in an
organism remains a difficult task, and constitutes an additional obstacle on the path
from a metabolic network to a metabolic model.

When the GPR relations are known, the impact of gene deletions on the capacity to
grow on some medium can be assessed as follows. For each reaction whose GPR
evaluates to false, an additional constraint imposes the nullity of its flux. Then the FBA
analysis is performed, and the theoretically maximal attainable biomass yield on a given
growth medium can be derived in exactly the same manner as previously.

It is noteworthy that as the deletion of a gene coding an enzyme (or the blocking of a
reaction) is translated into an additional constraint on the flux distribution, it may only
result in a decreased biomass yield. This is a consequence of the approach, that considers
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only the metabolic capacities confered by the enzymatic arsenal an organism disposes of,
without regards to regulatory effects (even though extensions of this modelling frame-
work to include regulatory constraints have been proposed (Covert and Palsson 2002)).

This approach has been applied to several organisms, such as Escherichia coli using
gene essentiality data from the Keio collection (Bara et al. 2006; Joyce et al. 2006), or
Acinetobacter baylyi (Durot et al. 2007; de Berardinis et al. 2008).

5.3 Assessing and correcting models using experimental data

When experimental growth phenotypes are available, their comparison to the corre-
sponding predictions of the models may reveal two types of discrepancies: a false
viability prediction (the organism or mutant is predicted to grow on the medium, but
does not experimentally), or a false non-viability prediction. In the first case, the absence
of growth may be due to two types of causes: a regulatory limitation, or the absence of a
reaction that is in themodel. In the second case, an essential reaction for the organism to
grow on the medium is necessarily missing from the model.

When compared to gene essentiality data, mispredictions may also be due to
erroneous GPR relationships. A false viability prediction of a mutant may indeed
also reveal an under-estimated impact of the gene deletion on some reaction, while the
opposite occurs when a gene-deletion is erroneously predicted to inhibit a reaction.

Since the predicted phenotypes are changed in such a monotonic manner when
reactions are added or removed (and when the impact of a gene deletion is increased or
decreased), discrepancies between predictions and growth phenotypes or gene essenti-
ality data indicate directions for correcting themodel. This fact has been leveraged in the
course of the work on Acinetobacter baylyi mentioned above, for which a novel method
for enumerating GPR relationships compatible with both the metabolic network and
the essentiality data has been developed, yielding candidate GPR and/or network
corrections (Sch€achter and Durot, in preparation).

5.4 Structural properties of the flux cone

The set of attainable flux distributions features much richer properties than just an
optimal growth rate. Several approaches have indeed been proposed to investigate the
structure of the flux cone, typically by characterizing correlated behaviors among sets of
reactions.

An example of such a structural property is provided by the flux coupling analysis
(Burgard et al. 2004), which searches for couple of reactions whose fluxes are linked all
across the flux cone. Fully coupled reactions pairs have proportional fluxes, while di-
rectionally coupled reaction pairs are linked by inequality relationships. Since the full
coupling relationship is symmetric and transitive, it defines fully coupled sets of reactions,
whose fluxes can be described using a single number without loss of generality.
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The same idea applied to the characterization of larger sets of reactions yielded the
notion of elementarymodes (Pfeiffer et al. 1999; Schuster et al. 1999), which areminimal
sets of reactions through which a non-null flux is attainable, the remainder of the
metabolic network being inactive.

Such properties are said structural because they hold for any attainable flux
distribution, and thus reveal sets of reactions that coherently participate in the
metabolic processes. The rather subjective definition of pathway mentioned in the
introduction is indeed absent from the constraints-based formalism, but elementary
modes as well as fully coupled sets provide model-derived alternatives. Furthermore,
these structures not only simplify the biological interpretation of flux distributions, but
also reveal strong constraints the organism has to cope with.

5.5 Working with constraints-based models

Computing with constraints-based metabolic models at genome-scale requires ade-
quate software tools. Thefirst such tool to bewidely adopted is actually a set of scripts for
theMatlab environment called FluxAnalyzer (Klamt et al. 2003), which recently evolved
into CellNetAnalyzer (Klamt et al. 2007). One appealing feature of this tool is the
possibility it offers of displaying flux distributions on metabolic maps.

Several other environments dedicated to stoichiometric modeling have been
developed, most of them consisting in sets of scripts performing a variety of con-
straints-based related analyses (such as ScrummPy (Poolman 2006), or the cobra
toolbox (Becker et al. 2007)). The Sympheny software platform, developed by the
Genomatica company, advertises a large-set of reconstruction and analyses function-
alities, but is not freely available.

A software platform dedicated to constraints-based modelling of metabolism based
on a robust data model, called NemoStudio (Combe et al. in preparation), aims at
providing the user with a complete in silico workbench supporting extensions and
scripting languages. It also features a web interface allowing to perform online
simulations of the models.

Conclusion

With the dramatic increase of the number of microbial genomes sequenced each year,
it is now critical to speed-up the reconstruction process of a metabolic network
from a genome annotation. It is expected that adequate definitions of metabolic
modules, subnetworks defined as performing a given metabolic function with possible
species- or taxon-specific variations in the precise set of reactions implementing that
function, would (a) facilitate automated network reconstruction by reducing the search
space and (b) permit “transversal” curation of partial metabolic networks across species
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(Overbeek et al. 2005). The SEED database pioneered this vision by introducing the
notions of subsystems and variants, with the latter goal of transversal curation as its
main focus. Following the same path, the KEGG database recently released the KEGG
modules (Kanehisa et al. 2008), while SwissProt is progressively adopting the data
model of its UniPathway database as its ontology for metabolic gene annotations.

Downstream analyses of metabolic networks using constraints-based models are
also expected to be facilitated by these evolutions of pathways databases. Conversely,
metabolic models are also expected to be increasingly used as framework for assessing
reconstructed metabolic networks against experimental data. Especially promising in
that respect are gene essentiality datasets, growth phenotypes acquired on several
media, and measurements of intra-cellular concentrations of metabolites (metabolo-
mics). Deducing additional constraints on fluxes, and in some cases on metabolite
concentration ranges via the use of additional thermodynamics constraints, is a very
active research topic (Yang et al. 2005; Kummel et al. 2006).
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1 Introduction

Proteins represent the tools and appliances of the cell – they assemble into larger
structural elements, catalyze the biochemical reactions of metabolism, transmit signals,
move cargo across membrane boundaries and carry out many other tasks. For most of
these functions proteins cannot act in isolation but require close cooperation with other
proteins to accomplish their task. Often, this collaborative action implies physical
interaction of the proteins involved. Accordingly, experimental detection, in silico
prediction and computational analysis of protein–protein interactions (PPI) have
attracted great attention in the quest for discovering functional links among proteins
and deciphering the complex networks of the cell.

Proteins do not simply clump together – binding between proteins is a highly
specific event involving well defined binding sites. Several criteria can be used to further
classify interactions (Nooren and Thornton 2003). Protein interactions are not
mediated by covalent bonds and, from a chemical perspective, they are always
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reversible. Nevertheless, some PPI are so persistent to be considered irreversible
(obligatory) for all practical purposes. Other interactions are subject to tight regulation
and only occur under characteristic conditions. Depending on their functional role,
some protein interactions remain stable for a long time (e.g. between proteins of the
cytoskeleton) while others last only fractions of a second (e.g. binding of kinases to their
targets). Protein complexes formed by physical binding are not restricted to so called
binary interactions which involve exactly two proteins (dimer) but are often found to
contain three (trimer), four (tetramer), ormore peptide chains. Another distinction can
be made based on the number of distinct proteins in a complex: homo-oligomers
contain multiple copies of the same protein while hetero-oligomers consist of different
protein species. Sophisticated “molecular machines” like the bacterial flagellum consist
of a large number of different proteins linked by protein interactions.

2 Experimental methods

The focus of this chapter is on the computational methods for analyzing and predicting
protein–protein interactions. Nevertheless, some basic knowledge about experimental
techniques for detecting these interactions is highly useful for interpreting results,
estimating potential biases, and judging the quality of the data we use in our work.

Many different types of methods have been developed but the vast majority of
interactions in the literature and public databases come from only two classes of
approaches: co-purification and two-hybridmethods. Co-purificationmethods (Rigaut
et al. 1999) are carried out in vitro and involve three basic steps. First, the protein of
interest is “captured” from a cell lysate – e.g. by attaching it to an immobilematrix. This
may be done with specific antibodies, affinity tags, epitope tags along with a matching
antibody, or by other means. Second, all other proteins in the solution are removed in a
washing step in order to purify the captured protein. Under suitable conditions,
protein–protein interactions are preserved. In the third step, any proteins still attached
to the purified protein are detected by suitable methods (e.g. Western-blot or mass
spectrometry). Hence, the interaction partners are co-purified, as the name of the
method implies.

The two-hybrid technique (Fields and Song 1989) uses a very different approach – it
exploits the fact that transcription factors such as Gal4 consist of two distinct functional
domains. The DNA-binding domain (BD) recognizes the transcription factor (TF)
binding site in the DNA and attaches the protein to it while the activation domain (AD)
triggers transcription of the gene under the control of the factor. When expressed as
separate protein chains, both domains remain fully functional: the BD still binds the
DNA but lacks a way of triggering transcription. The AD could trigger transcription but
has no means of binding to the DNA. For a two-hybrid test, two proteins X and Y are
fused to these domains resulting in two hybrids: X-BD and Y-AD. If X binds to Y, the

354

Chapter 6.2: Protein–protein interactions: analysis and prediction



resulting protein complex turns out to be a fully functional transcription factor.
Accordingly, an interaction is revealed by detecting transcription of the reporter gene
under the control of the TF. In contrast to co-purifications, the interaction is tested
in vivo in the two-hybrid system (usually in yeast, but other systems exist).

The above description refers to small-scale experiments testing one pair of proteins
at a time, but both approaches have successfully been extended to large-scale experi-
ments testing thousands of pairs in very short time.While such high-throughput data is
very valuable, especially for computational biologywhich often requires comprehensive
input data, a word of caution is necessary. Evenwith the greatest care and amaximumof
thoughtful controls, high-throughput data usually suffer from a certain degree of
false-positive results as well as false-negatives compared to carefully performed and
highly optimized individual experiments.

The ultimate source of information about protein interactions is provided by
high-resolution three-dimensional structures of interaction complexes, such as the
one shown in Fig. 1. Spatial architectures obtained by X-ray crystallography or NMR
spectroscopy provide atomic-level detail of interaction interfaces and allow for
mechanistic understanding of interaction processes and their functional implications.
Additional kinetic, dynamic and structural aspects of protein interactions can be
elucidated by electron and atomic forcemicroscopy as well as by fluorescence resonance
energy transfer.

Fig. 1 Structural complex between RhoA, a small GTP protein belonging to the Ras superfamily, and the
catalytic GTPase activating domain of RhoGAP (Graham et al. 2002)
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3 Protein interaction databases

A huge number of protein–protein interactions has been experimentally determined
and described in numerous scientific publications. Public protein interaction databases
that provide interaction data in form of structured, machine-readable datasets orga-
nized according to well documented standards have become invaluable resources for
bioinformatics, systems biology and researchers in experimental laboratories. The data
in these databases generally originate from two major sources: large-scale datasets and
manually curated information extracted from the scientific literature. As pointed out
above, the latter is considered substantially more reliable and large bodies of manually
curated PPI data are often used as the gold standard against which predictions and
large-scale experiments are benchmarked. Of course, these reference data are far from
complete and strongly biased.Many factors, including experimental bias, preferences of
the scientific community, and perceived biomedical relevance influence the chance of an
interaction to be studied, discovered and published. In the manual annotation process
it is not enough to simply record the interaction as such. Additional information such as
the type of experimental evidence, citations of the source, experimental conditions,
and more need to be stored in order to convey a faithful picture of the data. Annotation
is a highly labor intensive task carried out by specially trained database curators.

PPI databases can be roughly divided in two classes: specialized databases focusing
on a single organism or a small set of species and general repositories which aim for a
comprehensive representation of current knowledge. While the former are often well
integrated with other information resources for the same organism, the latter strive for
collecting all available interaction data including datasets from specialized resources.
The size of these databases is growing constantly as more andmore protein interactions
are identified. As of writing (November 2007), global repositories are approaching
200,000 pieces of evidence for protein interactions in various species.

All of these databases offer convenient web interfaces that allow for interactively
searching the database. In addition, the full datasets are usually provided for download
in order to enable researchers to use the data in their own computational analyses.
Table 1 gives an overview of some important PPI databases.

4 Data standards for molecular interactions

Until relatively recently, molecular interaction databases like the ones listed in Table 1
acted largely independently from each other.While they provided an extremely valuable
service to the community in collecting and curating availablemolecular interaction data
from the literature, they did so largely in an uncoordinated manner. Each database had
its own curation policy, feature set, and data formats. In 2002, the Proteomics Standards
Initiative (PSI), a work group of theHuman ProteomeOrganization (HUPO), set out to
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improve this situation, with contributions from a broad range of academic and
commercial organizations, among them BIND, Cellzome, DIP, GlaxoSmithKline,
Hybrigenics SA, IntAct, MINT, MIPS, Serono, and the Universities of Bielefeld,
Bordeaux, and Cambridge. In a first step, a community standard for the representation
of protein–protein interactions was developed, the PSI MI format 1.0 (Hermjakob et al.
2004). Recently, version 2.5 of the PSI MI format has been published (Kerrien et al.
2007b), extending the scope of the format from protein–protein interactions to
molecular interactions in general, allowing to model for example protein-RNA
complexes.

The PSI MI format is a flexible XML format representing the interaction data to
a high level of detail. N-ary interactions (complexes) can be represented as well as
experimental conditions and technologies, quantitative parameters and interacting
domains. The XML format is accompanied by detailed controlled vocabularies in OBO
format (Harris et al. 2004). These vocabularies are essential for standardizing not only
the syntax, but also the semantics of the molecular interaction representation. As an
example, the “yeast two-hybrid technology” described above is referred to in the
literature using many different synonyms, for example Y2H, 2H, “yeast-two-hybrid”,
etc. While all of these terms refer to the same technology, filtering interaction data from
multiple different databases based on this set of terms is not trivial. Thus, the PSI MI
standard provides a set of nowmore than 1000well-defined terms relevant tomolecular
interactions. Figure 2 shows the IntAct advanced search tool with a branch of the
hierarchical PSI MI controlled vocabulary. Figure 3 provides a partial graphical
representation of the annotated XML schema, combined with an example dataset in
PSI MI XML format, reprinted from Kerrien et al. (2007b).

For user-friendly distribution of simplified PSI data to end users, the PSI MI 2.5
standard also defines a simple tabular representation (MITAB), derived from the
BioGrid format (Breitkreutz et al. 2003). While this format necessarily excludes details

Table 1 A selection of protein–protein interaction databases

Name Focus URL Reference

BioGrid global www.thebiogrid.org (Stark et al. 2006)
BIND/BOND global bond.unleashedinformatics.com (Bader et al. 2003)
DIP global dip.doe-mbi.ucla.edu (Salwinski et al. 2004)
IntAct global www.ebi.ac.uk/intact/ (Kerrien et al. 2007a)
MINT global mint.bio.uniroma2.it (Chatr-aryamontri et al.

2007)
HPRD Human www.hprd.org (Mishra et al. 2006)
IM D. melanogaster,

C. jejunii
proteome.wayne.edu/PIMdb.html (Pacifico et al. 2006)

MPact/MIPS S. cerevisiae mips.gsf.de/genre/proj/mpact/ (Guldener et al. 2006)
MPPI Mammals mips.gsf.de/proj/ppi/ (Pagel et al. 2005)
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of interaction data like interacting domains, it provides a means to efficiently access
large numbers of basic binary interaction records.

The PSI MI format is now widely implemented, with data available from BioGrid,
DIP,HPRD, IntAct,MINT, andMIPS, among others. Visualization tools likeCytoscape
(Shannon et al. 2003) can directly read and visualize PSI MI formatted data. Com-
parative and integrative analysis of interaction data from multiple sources has become
easier, as has the development of analysis tools which do not need to provide a plethora
of input parsers any more. The annotated PSI MI XML schema, a list of tools and

Fig. 2 IntAct advanced search
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databases implementing it, as well as further information, are available from http://
www.psidev.info/.

However, the development and implementation of a common data format is only
one step towards the provision of consistent molecular interaction data to the scientific
community. Another key step is the coordination of the data curation process itself
between different molecular interaction databases. Without such synchronization,
independent databases will often work on the same publications and insert the data
into their systems, according to different curation rules, thus doing redundant work on
some publications, while neglecting others. Recognizing this issue, the DIP, IntAct, and
MINT molecular interaction databases are currently synchronizing their curation
efforts in the context of the IMEx consortium (http://imex.sf.net). These databases
are now applying the same curation rules to provide a consistent high level of curation
quality, and are synchronizing their fields of activity, each focusing on literature
curation from a non-overlapping set of scientific journals. For these journals, the
databases aim to insert all published interactions into the database shortly after
publication. Regular data exchange of all newly curated data between IMEs databases
is currently in the implementation phase.

To support the systematic representation and capture of relevant molecular
interaction data supporting scientific publications, the HUPO Proteomics Standards
Initiative has recently published “The minimum information required for reporting a
molecular interaction experiment (MIMIx)” (Orchard et al. 2007b), detailing data items
considered essential for the authors to provide, as well as a practical guide to efficient
deposition of molecular interaction data in IMEx databases (Orchard et al. 2007a).

The IMEx databases are also collaborating with scientific journals and funding
agencies, to increasingly recommend data producers to deposit their data in an IMEx
partner database prior to publication. Database deposition prior to publication not only
ensures public availability of the data at the time of publication, but also provides
important quality control, as database curators often assess the data inmuchmore detail
than reviewers. The PSI journal collaboration efforts are starting to show first results.
Nature Biotechnology, Nature Genetics, and Proteomics are now recommending that
authors deposit molecular interaction data in a relevant public domain database prior
to publication, a key step to a better capture of published molecular interaction data in
public databases, and to overcome the current fragmentation of molecular interaction
data.

5 The IntAct molecular interaction database

As an example of a molecular interaction database implementing the PSI MI 2.5
standard, we will provide a more detailed description of the IntAct molecular inter-
action database (Kerrien et al. 2007a), accessible at http://www.ebi.ac.uk/intact. IntAct
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is a curated molecular interaction database active since 2002. IntAct follows a full text
curation policy, publications are read in full by the curation team, and all molecular
interactions contained in the publication are inserted into the database, containing basic
facts like the database accession numbers of the proteins participating in an interaction,
but also details like experimental protein modifications, which can have an impact on
assessments of confidence in the presence or absence of interactions. Each database
record is cross-checked by a senior curator for quality control. On release of the record,
the corresponding author of the publication is automatically notified (where an email
address is available), and requested to check the data provided. Any corrections are
usually inserted into the next weekly release. While such a detailed, high quality
approach is slow and limits coverage, the provision of high quality reference datasets
is an essential service both for biological analysis, and for the training and validation of
automatic methods for computational prediction of molecular interactions.

As it is impossible for any single database, or even the collaborating IMEx databases,
to fully cover all published interactions, curation priorities have to be set. Any direct
data depositions supporting manuscripts approaching peer review have highest prior-
ity. Next, for some journals (currently Cell, Cancer Cell, and Proteomics) IntAct curates
all molecular interactions published in the journal. Finally, several special curation
topics are determined in collaboration with external communities or collaborators,
where IntAct provides specialized literature curation and collaborates in the analysis
of experimental datasets, for example around a specific protein of interest (Camargo
et al. 2006).

As of November 2007, IntAct contains 158.000 binary interactions supported by ca.
3,000 publications. The IntAct interface implements a standard “simple search” box,
ideal for search byUniProt protein accession numbers, gene names, species, or PubMed
identifiers. The advanced search tool (Fig. 2) provides field-specific searches as well a
specialized search taking into account the hierarchical structure of controlled vocab-
ularies. A default search for the interaction detection method “2 hybrid” returns
30,251 interactions, while a search for “2 hybrid” with the tickbox “include children”
activated returns more than twice that number, 64,589 interactions. The hierarchical
search automatically includes similarly named methods like “two hybrid pooling
approach”, but also “gal4 vp16 complement”. Search results are initially shown in a
tabular form based on theMITAB format, which can also be directly downloaded. Each
pairwise interaction is only listed once, with all experimental evidence listed in the
appropriate columns. The final column provides access to a detailed description of each
interaction as well as a graphical representation of the interaction in is interaction
neighborhood graph. For interactive, detailed analysis, interaction data can be loaded
into tools like Cytoscape (see below) via the PSI 2.5 XML format.

All IntAct data is freely available via the web interface, for download in PSI MI
tabular or XML format, and computationally accessible via web services. IntAct
software is open source, implemented in Java, with Hibernate (www.hibernate.org/)
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for the object-relationalmapping toOracleTMor Postgres, and freely available under the
Apache License, version 2 from http://www.ebi.ac.uk/intact.

6 Interaction networks

On a global scale, protein–protein interactions participate in the formation of complex
biological networks which, to a large extent, represent the paths of communication and
metabolism of an organism. These networks can be modeled as graphs making them
amenable to a large number of well established techniques of graph theory and social
network analysis. Even though interaction networks do not directly encode cellular
processes nor provide information on dynamics, they do represent a first step towards a
description of cellular processes, which is ultimately dynamic in nature. For instance,
protein-interaction networks may provide useful information on the dynamics of
complex assembly or signaling. In general, investigating the topology of protein
interaction, metabolic, signaling, and transcriptional networks allows researchers to
reveal the fundamental principles of molecular organization of the cell and to interpret
genome data in the context of large-scale experiments. Such analyses have become an
integral part of the genome annotation process: annotating genomes today increasingly
means annotating networks.

A protein–protein interaction network summarizes the existence of both stable and
transient associations between proteins as an (undirected) graph: each protein is
represented as a node (or vertex), an edge between two proteins denotes the existence
of an interaction. Interactions known to occur in the actual cell (Fig. 4a) can thus be
represented as an abstract graph of interaction capabilities (Fig. 4b). As such a graph
is limited by definition to binary interactions, its construction from a database of
molecular interactionsmay involve arbitrary choices. For instance, an n-ary interaction
measured by co-purification can be represented using either the clique (all binary
interactions between the n proteins are retained) or the spoke model (only edges
connecting the “captured” protein to co-purified proteins are retained).

Once a network has been reconstructed from protein interaction data, a variety of
statistics on network topology can be computed, such as the distribution of vertex
degrees, the distribution of the clustering coefficient and other notions of density, the
distribution of shortest path length between vertex pairs, or the distribution of network
motifs occurrences (see (Barabasi andOltvai 2004) for a review). Thesemeasures can be
used to describe networks in a concise manner, to compare, group or contrast different
networks, and to identify properties characteristic of a network or a class of network
under study. Some topological properties may be interpreted as �traces� of underlying
biological mechanisms, shedding light on their dynamics, their evolution, or both and
helping connect structure to function (see the “Network Modules” section below). For
instance, most interaction networks seem to exhibit scale-free topology (Jeong et al.
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2001; Yook et al. 2004), i.e. their degree distribution (the probability that a node has
exactly k links) approximates a power law P(k)� k-g , meaning that most proteins have
few interaction partners but some, the so-called “hubs”, have many.

As an example of derived evolutionary insight, it is easy to show that networks
evolving by growth (addition of new nodes) and preferential attachment (new nodes are
more likely to be connected to nodes with more connections) will exhibit scale-free
topology (degree distribution approximates a power-law) and hubs (highly connected
nodes). A simple model of interaction network evolution by gene duplication, where a
duplicate initially keeps the same interaction partners as the original, generates
preferential attachment, thus providing a candidate explanation for the scale-free
nature and the existence of hubs in these networks (Barabasi and Oltvai 2004).

Fig. 4 Graph representation of interaction networks. (a)Hypothetical protein interactions in the living cell.
Interacting proteins are denoted as P1, P2, etc. (b) A graph representation of the protein interactions shown
in a. Each node represents a protein, and each edge connects proteins that interact. (c) Information on
protein interactions obtained by different methods. (d) Protein interaction network derived from experi-
mental evidence shown in c. As in a, each node is a protein, and edges connect interactors. Edges a colored
according to the source of evidence: red – 3D, green – APMS, brown – Y2H, magenta – PROF, yellow – LIT,
blue – LOC
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A corresponding functional interpretation of hubs and scale-free topology has been
proposed in terms of robustness. Scale-free networks are robust to component failure,
as random failures are likely to affect low degree nodes and only failures affecting hub
nodes will significantly change the number of connected components and the length of
shortest paths between node pairs. Deletion analyses have, perhaps unsurprisingly,
confirmed that highly connected proteins are more likely to be essential (Winzeler et al.
1999; Giaever et al. 2002; Gerdes et al. 2003).

Most biological interpretations that have been proposed for purely topological
properties of interaction networks have been the subject of heated controversies, some
of which remain unsolved to this day (e.g. (He and Zhang 2006; Yu et al. 2007) on hubs).
One often cited objection to any strong interpretation is the fact that networks
reconstructed fromhigh-throughput interaction data constitute very rough approxima-
tions of the “real” network of interactions taking place within the cell. As illustrated in
Fig. 4c, interaction data used in a reconstruction typically result from several experi-
mental methods, often complemented with prediction schemes. Each specific method
can miss real interactions (false negatives) and incorrectly identify other interactions
(false positives), resulting in biases that are clearly technology-dependent (Gavin et al.
2006; Legrain and Selig 2000). Assessing false-negative and false-positive rates is difficult
since there is no �gold standard� for positive interactions (protein pairs that are known to
interact)or,more importantly, fornegative interactions (proteinpairs thatareknownnot
to interact). Using less-than-ideal benchmark interaction sets, estimates of 30-60% false
positives and 40-80% false negatives have been proposed for yeast-two-hybrid and co-
purification based techniques (Aloy and Russell 2004). In particular, a comparison of
several high-throughput interaction datasets on yeast, showing low overlap, has con-
firmed that each study covers only a small percentage of the underlying interaction
network (von Mering et al. 2002) (see also “Estimates of the number of protein
interactions” below).

Integration of interaction data from heterogeneous sources towards interaction
network reconstruction can help compensate for these limitations. The basic principle is
fairly simple and rests implicitly on a multigraph representation: several interaction
networks to be integrated, each resulting from a specific experimental or predictive
method, are defined over the same set of proteins. Integration is achieved by merging
them into a single network with several types of links – or edge colors– each drawn from
one of the component networks. Some edges in the multigraph may be incorrect, while
some existing interactions may be missing from the multigraph, but interactions
confirmed independently by several methods can be considered reliable. Figure 4d
shows the multigraph that corresponds to the evidence from Fig. 4c and can be used to
reconstruct the actual graph in Fig. 4b.

In practice, integration is not always straightforward: networks are usually
defined over subsets of the entire gene or protein complement of a species, and
meaningful integration requires that the overlap of these subsets be sufficiently large.
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In addition, if differences of reliability between network types are to be taken into
account, an integrated reliability scoring scheme needs to be designed (Jansen et al.
2003; von Mering et al. 2007) with the corresponding pitfalls and level of arbitrari-
ness involved in comparing apples and oranges. Existing methods can significantly
reduce false positive rates on a subset of the network, yielding a subnetwork of high-
reliability interactions.

7 Visualization software for molecular networks

The tremendous amounts of available molecular interaction data raise the important
issue of how to visualize them in a biologically meaningful way. A variety of tools have
been developed to address this problem; two prominent examples are VisANT (Hu et al.
2005) and Cytoscape (Shannon et al. 2003). A recent review of further network
visualization tools is provided by Suderman and Hallett (2007). In this section, we
focus on Cytoscape (http://www.cytoscape.org) and demonstrate its use for the
investigation of protein–protein interaction networks. For a more extensive protocol
on the usage of Cytoscape, see (Cline et al. 2007).

Cytoscape is a stand-alone Java application that is available for all major computer
platforms. This software provides functionalities for (i) generating biological networks,
either manually or by importing interaction data from various sources, (ii) filtering
interactions, (iii) displaying networks using graph layout algorithms, (iv) integrating
and displaying additional information like gene expression data, and (v) performing
analyses on networks, for instance, by calculating topological network properties or by
identifying functional modules.

One advantage of Cytoscape over alternative visualization software applications is
that Cytoscape is released under the open-source Lesser General Public License (LGPL).
This license basically permits all forms of software usage and thus helps to build a large
user and developer community. Third-party Java developers can easily enhance the
functionality of Cytoscape by implementing own plug-ins, which are additional soft-
ware modules that can be readily integrated into the Cytoscape platform. Currently,
there are more than forty plug-ins publicly available, with functionalities ranging from
interaction retrieval and integration across topological network analysis, detection of
network motifs, protein complexes, and domain interactions, to visualization of
subcellular protein localization and bipartite networks. A selection of popular Cytos-
cape plug-ins is listed in Table 2. In the following, we will describe the functionalities of
Cytoscape in greater detail.

The initial step of generating a network can be accomplished in different ways. First,
the user can import interaction data that are stored in various flat file or XML formats
such as BioPax, SBML, or PSI-MI, as described above. Second, the user can directly
retrieve interactions from several public repositories from within Cytoscape. A number
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Table 2 Brief descriptions of popular Cytoscape plug-ins with web links to their project sites

Plug-in Description Project web site

Agilent Literature
Search

Network generation based on text-mining
of scientific publications

http://cytoscape.org/plugins/

APID2NET Network generation and analysis based
on the Agile Protein Interaction
DataAnalyzer (APID)

http://bioinfow.dep.usal.es/apid/
apid2net.html

BiLayout Generation of bipartite network layouts http://bilayout.bioinf.mpi-inf.mpg.de/
BiNGO Determination of overrepresented Gene

Ontology (GO) terms
http://www.psb.ugent.be/cbd/papers/
bingo/

BiNoM Manipulation of networks represented
in standardized formats like SBML
and BioPAX

http://bioinfo-out.curie.fr/projects/
binom/

BubbleRouter Incremental layout generation based on
various attributes

http://www.genmapp.org/
BubbleRouter/manual.htm

CABIN Exploratory analysis and integration of
multiple interaction networks

http://www.sysbio.org/capabilities/
compbio/cabin.stm

Cerebral Layout generation based on subcellular
protein localizations

http://www.pathogenomics.ca/
cerebral/

DomainGraph Decomposition of protein networks into
domain-domain interaction networks

http://domaingraph.bioinf.mpi-inf.
mpg.de

Enhanced Search Sophisticated search functionality within
a network

http://conklinwolf.ucsf.edu/
genmappwiki/Google_Summer_of_
Code_2007/Maital

GenePro Analysis of functional modules and
clusters

http://genepro.ccb.sickkids.ca/

GOlorize Network visualization based on Gene
Ontology (GO) categories (only in
combination with BiNGO plug-in)

http://www.pasteur.fr/recherche/
unites/Biolsys/GOlorize/

GroupTool Combination of nodes and edges into
groups

http://www.rbvi.ucsf.edu/Research/
cytoscape/

jActiveModules Determination of expression activated
subnetworks and modules

http://cytoscape.org/plugins/

MCODE Determination of highly connected
clusters and putative complexes

http://baderlab.org/Software/mcode

MetaNode-Plugin2 Abstraction of nodes into meta nodes
that can be expanded or collapsed

http://www.rbvi.ucsf.edu/Research/
cytoscape/

MiMIplugin Network generation based on the Michigan
Molecular Interaction Database (MiMI)

http://mimi.ncibi.org/cytoscape/

MiSink Network generation based on the
Database of Interacting Proteins (DIP)

http://dip.doe-mbi.ucla.edu/dip/
Software.cgi

NamedSelection Temporary storage of node and edge
selections

http://www.rbvi.ucsf.edu/Research/
cytoscape/

NetworkAnalyzer Computation of topological network
parameters

http://med.bioinf.mpi-inf.mpg.de/
networkanalyzer/

StructureViz Linkage to macromolecular structures
and sequences provided by UCSF
Chimera

http://www.cgi.ucsf.edu/Research/
cytoscape/structureViz/
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of plug-ins exists that facilitate querying certain databases for interactions related to
specific genes/proteins or species (APID2NET, MiMIplugin, MiSink; Table 2). Third,
the user can utilize a text-mining plug-in that builds networks based on associations
found in publication abstracts (Agilent Literature Search; Table 2). While these
associations are not as reliable as experimentally derived interactions, they can be
helpful when the user is investigating species that are not well covered yet in the current
data repositories. Fourth, the user can directly create or manipulate a network by
manually adding or removing nodes (genes, proteins, domains, etc.) and edges
(interactions or relationships). In this way, expert knowledge that is not captured in
the available data sets can be incorporated into the loaded network.

Generated networks can be further refined by applying selections and filters in
Cytoscape. The user can select nodes or edges by simply clicking on them or framing a
selection area. In addition, starting with at least one selected node, the user can
incrementally enlarge the selection to include all direct neighbor nodes. Cytoscape
also provides even sophisticated search and filter functionality for selecting particular
nodes and edges in a network based on different properties; in particular, the Enhanced
Search plug-in (Table 2) improves the built-in search functionality of Cytoscape. Filters
select all network parts thatmatch certain criteria, for instance, all human proteins or all
interactions that have been detected using the yeast two-hybrid system.Once a selection
has been made, all selected parts can be removed from the network or added to another
network.

The main purpose of visualization tools like Cytoscape is the presentation of
biological networks in an appropriate manner. This can usually be accomplished by
applying graph layout algorithms. Sophisticated layouts can assist the user in revealing
specific network characteristics such as hub proteins or functionally related protein
clusters. Cytoscape offers various layout algorithms, which can be categorized as
circular, hierarchical, spring-embedded (or force-directed), and attribute-based layouts
(Fig. 5). Further layouts can be included using the Cytoscape plug-in architecture,
for example, to arrange protein nodes according to their subcellular localization or
to their pathways assignments (BubbleRouter, Cerebral; Table 2).

Some layouts may be more effective than others for representing molecular net-
works of a certain type. The spring-embedded layout, for instance, has the effect of
exposing the inherent network structure, thus identifying hub proteins and clusters of
tightly connected nodes. It is noteworthy that current network visualization techniques
have limitations, for example, when displaying extremely large or dense networks. In
such cases, a simple graphical network representation with one node for each inter-
action partner, as it is initially created by Cytoscape, can obfuscate the actual network
organization due to the sheer number of nodes and edges. One potential solution to this
problem is the introduction of meta-nodes (MetaNode plug-in; Table 2). A meta-node
combines and replaces a group of other nodes. Meta-nodes can be collapsed to increase
clarity of the visualization and expanded to increase the level of detail (Fig. 6).
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An overview of established and novel visualization techniques for biological networks
on different scales is presented in (Hu et al. 2007).

All layouts generated by Cytoscape are zoomable, enabling the user to increase or
decrease the magnification, and they can be further customized by aligning, scaling, or
rotating selected network parts. Additionally, the user can define the graphical network
representation through visual styles. These styles define the colors, sizes, and shapes of
all network parts.

A powerful feature of Cytoscape is its ability of visuallymapping additional attribute
values onto network representations. Both nodes and edges can have arbitrary
attributes, for example, protein function names, the number of interactions (node
degree), expression values, the strength and type of an interaction, or confidence values
for interaction reliability. These attributes can be used to adapt the network illustration
by dynamically changing the visual styles of individual network parts (Fig. 7). For
example, this feature enables highlighting trustworthy interactions by assigning

1
Fig. 5 The Cytoscape desktop. Theworkspace (middle) shows six identical networkswith different layouts.
The toolbar (top) contains basic control buttons for zooming and filtering/searching. The Control Panel (left)
displays the VizMapper that defines the graphical network representation. The Data Panel (bottom) lists
node attributes of the four selected nodes (yellow) in network (b). The different network layouts are: (a) grid,
(b) circular with several circles, (c) spring-embedded or force-directed, (d) circular with one circle, (e)
attribute-based, (f) hierarchical

Fig. 6 Combination of nodes intometa-nodes using the Cytoscape plug-inMetaNode (Table 2). All protein
nodeswith subcellular localizations different fromplasmamembrane are combined intometa-nodes. These
meta-nodes can be collapsed or expanded to increase clarity or detailedness, respectively
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different line styles or sizes to different experiment types (discrete mapping of an edge
attribute), to spot network hubs by changing the size of a node according to its degree
(discrete or continuous mapping of a node attribute), or to identify functional network
patterns by coloring protein nodes with a color gradient according to their expression
level (continuous mapping of a node attribute). Hence, it is possible to simultaneously
visualize different data types by overlaying them with a network model.

In order to generate new biological hypotheses and to gain insights into molecular
mechanisms, it is important to identify relevant network characteristics and patterns.
For this purpose, the straightforward approach is the visual exploration of the network.
Table 2 lists a selection of Cytoscape plug-ins that assist the user in this analysis task, for
instance, by identifying putative complexes (MCODE), by grouping proteins that show
a similar expression profile (jActiveModules), or by identifying overrepresented GO
terms (BiNGO, GOlorize). However, the inclusion of complex data such as time-series
results or diverse Gene Ontology (GO) terms into the network visualization might not
be feasible without further software support. Particularly in case of huge, highly
connected, or dynamic networks, more advanced visualization techniques will be
required in the future.

Gene expression level

lowest missing value highest

Interaction type

Protein-protein interaction

Protein-DNA interaction
1 18

Node degree

Fig. 7 Visual representation of a subset of the GAL4 network in yeast. The protein nodes are colored with a
red-to-green gradient according to their expression value; green represents the lowest, red the highest
value, and blue amissing value. The node size indicates the number of interactions (node degree); the larger
a node, the higher is its degree. The colors and styles of the edges represent different interaction types; solid
black lines represent protein-protein, dashed red lines protein-DNA interactions
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In addition to the visual presentation of interaction networks, Cytoscape can also be
used to perform statistical analyses. For instance, the NetworkAnalyzer plug-in
(Assenov et al. 2008) computes a large variety of topology parameters for all types
of networks. The computed simple and complex topology parameters are represented
as single values and distributions, respectively. Examples of simple parameters are the
number of nodes and edges, the average number of neighbors, the network diameter and
radius, the clustering coefficient, and the characteristic path length. Complex param-
eters are distributions of node degrees, neighborhood connectivities, average cluster-
ing coefficients, and shortest path lengths. These computed statistical results can be
exported in textual or graphical form and are additionally stored as node attributes.
The user can then apply the calculated attributes to select certain network parts or to
map them onto the visual representation of the analyzed network as described above
(Fig. 7). It is also possible to fit a power law to the node degree distribution, which can
frequently indicate a so-called scale-free network with few highly connected nodes
(hubs) and many other nodes with a small number of interactions. Scale-free networks
are especially robust against failures of randomly selected nodes, but quite vulnerable to
defects of hubs (Albert 2005).

8 Estimates of the number of protein interactions

How many PPIs exist in a living cell? The yeast genome encodes approximately 6300
gene products which means that the maximal possible number of interacting protein
pairs in this organism is close to 40million, but what part of these potential interactions
are actually realized in nature? For a given experimentalmethod, such as the two-hybrid
essay, the estimate of the total number of interactions in the cell is given by

Nint¼Nmeasured�Rfp�Rfn
�1

where Nmeasured is the number of interactions identified in the experiment, and Rfp and
Rfn are false positive and false negative rates of themethod. Rfn can be roughly estimated
based on the number of interactions known with confidence (e.g., those confirmed by
three-dimensional structures) that are being recovered by the method. Assessing Rfp is
much more difficult because no experimental information on proteins that do not
interact is currently available. Since it is known that proteins belonging to the same
functional class often interact, one very indirect way of calculating Rfn is as the fraction
of functionally related proteins not found to be interacting.

An evenmoremonumental problem is the estimation of the total number of unique
structurally equivalent interaction types existing in nature. An interaction type is
defined as a particular mutual orientation of two specific interacting domains. In some
cases homologous proteins interact in a significantly different fashion while in other
cases proteins lacking sequence similarity engage in interactions of the same type.

371

Dmitrij Frishman et al.



In general, however, interacting protein pairs sharing a high degree of sequence
similarity (30–40% or higher) between their respective components almost always
form structurally similar complexes (Aloy et al. 2003). This observation allows
utilization of available atomic resolution structures of complexes for building useful
models of closely related binary complexes.

The total number of interaction types can then be estimated as follows:

Ntypes ¼Nmeasured�Rfp�Rfn
�1�C�EAll-species

where the interaction similarity multiplier C reflects the clustering of all interactions
of the same type, and EAll-species extrapolates from one biological species to all
organisms. Aloy and Russel (2004) derived an estimate for C by grouping interactions
between proteins that share high sequence similarity, as discussed above. C depends on
the number of paralogous sequences encoded in a given genome. For small prokaryotic
organisms it is close to 1 while for larger and more redundant genomes it adopts
smaller values, typically in the range of 0.75–0.85. The multiplier for all species EAll-
species can be derived by assessing what fraction of known protein families is encoded in a
given genome. Based on the currently available data this factor is close to 10 for bacteria,
which means that a medium size prokaryotic organism contains around one tenth
of all protein families. For eukaryotic organisms EAll-species lies between 2 and 4.
For the comprehensive two-hybrid screen of yeast by (Uetz 2000) in which 936
interactions between 987 proteins were identified, Aloy and Russell (2004) estimated
C, Rfp, andRfn

�1, and EAll-species to be 0.85, 3.92, 0.55, and 3.35 respectively, leading to an
estimated 1715 different interaction types in yeast alone, and 5741 over all species. Based
on the two-hybrid interaction map of the fly (Giot 2003) the number of all interaction
types in nature is estimated to be 9962. It is thus reasonable to expect the total number
of interaction types to be around 10,000, and only 2000 are currently known.

9 Multi-protein complexes

Beyond binary interactions, proteins often form large molecular complexes involving
multiple subunits (Fig. 8). These complexes are much more than a random snapshot of
a group of interacting proteins – they represent large functional entities which remain
stable for long periods of time. Many such protein complexes have been elucidated step
by step over time and recent advances in high-throughput technology have led to large-
scale studies revealing numerous new protein complexes. The preferred technology
for this kind of experiment is initial co-purification of the complexes followed by the
identification of the member proteins by mass spectrometry.

As the bakers yeast S. cerevisiae is one of themost versatile model organisms used in
molecular biology, it is not surprising that the first large-scale complex datasets were
obtained in this species (Gavin et al. 2002; Ho et al. 2002; Gavin et al. 2006; Krogan et al.
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2006). The yeast protein interaction database MPact (Guldener et al. 2006) provides
access to 268 protein complexes based on careful literature annotation composed of
1237 different proteins plus over 1000 complexes from large-scale experiments which
contain more than 2000 distinct proteins. These numbers contain some redundancy
with respect to complexes, due to slightly different complex composition found by
different groups or experiments. Nevertheless, the dataset covers about 40% of the
S.cerevisiae proteome. While many complexes comprise only a small number of
different proteins, the largest of them features an impressive 88 different protein species.

A novel manually annotated database, CORUM (Ruepp et al. 2008) contains
literature-derived information about 1750 mammalian multi-protein complexes. Over
75%of all complexes contain between three and six subunits, while the largestmolecular
structure, the spliceosome, consists of 145 components (Fig. 9).

10 Network modules

Modularity has emerged as one of the major organizational principles of cellular
processes. Functional modules are defined asmolecular ensembles with an autonomous
function (Hartwell et al. 1999). Proteins or genes can be partitioned into modules based
on shared patterns of regulation or expression, involvement in a common metabolic or
regulatory pathway, or membership in the same protein complex or subcellular
structure. Modular representation and analysis of cellular processes allows for inter-

Fig. 8 Ternary complex between the Cand1 protein (green) and the catalytic core of the ubiquitin ligase
consisting of cullin (red) and Roc1 (blue) (Goldenberg et al. 2004)
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pretation of genome data beyond single gene behavior. In particular, analysis of
modules provides a convenient framework for studying the evolution of living systems
(Snel and Huynen 2004). Multiprotein complexes represent one particular type of
functional modules in which individual components engage in physical interactions to
execute a specific cellular function.

Algorithmically, modular architectures can be defined as densely interconnected
groups of nodes on biological networks (for an excellent review of availablemethods see
(Sharan et al. 2007). Statistically significant functional subnetworks are characterized by
a high degree of local clustering. The density of a cluster can be represented as a function
Q(m,n) = 2m/(n(n� 1)), wherem is the number of interactions between the n nodes of
the cluster (Spirin and Mirny 2003). Q thus takes values between 0 for a set of un-
connected nodes and 1 for a fully connected cluster (clique). The statistical significance
of Q strongly depends on the size of the graph. It is obvious that random clusters with
Q¼ 1 involving just three proteins are very likely while large clusters withQ¼ 1 or even
with values below 0.5 are extremely unlikely. In order to compute the statistical sig-
nificance of a cluster with n nodes and m connections Spirin and Mirny calculate the
expected number of such clusters in a comparable random graph and then estimate the
likelihood of having m or more interactions within a given set of n proteins given
the number of interactions that each of these proteins has. Significant dense clusters
identified by this procedure on a graph of protein interactionswere found to correspond
to functionalmodulesmost of which are involved in transcription regulation, cell-cycle/
cell-fate control, RNA processing, and protein transport. However, not all of them
constitute physical protein complexes and, in general, it is not possible to predict
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whether a given module corresponds to a multiprotein complex or just to a group of
functionally coupled proteins involved in the same cellular process.

The search for significant subgraphs can be further enhanced by considering
evolutionary conservation of protein interactions. With this approach protein com-
plexes are predicted from binary interaction data by network alignment which involves
comparing interaction graphs between several species (Sharan et al. 2005). First,
proteins are grouped by sequence similarity such that each group contains one protein
from each species, and each protein is similar to at least one other protein in the group.
Then a composite interaction network is created by joining with edges those pairs of
groups that are linked by at least one conserved interaction. Again, dense clusters on
such network alignment graph are often indicative of multiprotein complexes.

An alternative computationalmethod for deriving complexes fromnoisy large-scale
interaction data relies on a “socio-affinity” indexwhich essentially reflects the frequency
with which proteins form partnerships detected by co-purification (Gavin et al. 2006).
This index was shown to correlate well with available three-dimensional structure data,
dissociation constants of protein–protein interactions, and binary interactions identi-
fied by the two-hybrid techniques. By applying a clustering procedure to a matrix
containing the values of the socio-affinity index for all yeast protein pairs found to
associate by affinity purification, 491 complexes were predicted, with over a half of them
being novel and previously unknown. However, dependent on the analysis parameters
distinct complex variants (isoforms) are found that differ from in terms of their subunit
composition. Those proteins present in most of the isoforms of a given complex
constitute its core while variable components present only in a small number of
isoforms can be considered “attachments” (Fig. 10). Furthermore, some stable, typically
smaller protein groups can be found in multiple attachments in which case they are

Fig. 10 Definitions of complex cores, attachments, and modules. Redrawn and modified with permission
from (Gavin et al. 2006)
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called “modules”. Stable functional modules can thus be flexibly used in the cell in a
variety of functional contexts. Proteins frequently associatedwith each other in complex
cores and modules are likely to be co-expressed and co-localized.

11 Diseases and protein interaction networks

In this section, we offer a computational perspective on utilizing protein network data
for molecular medical research. The identification of novel therapeutic targets for
diseases and the development of drugs has always been a difficult, time-consuming and
expensive venture (Ruffner et al. 2007). Recent work has charted the current pharma-
cological space using different networks of drugs and their protein targets (Paolini et al.
2006; Keiser et al. 2007; Kuhn et al. 2008; Yildirim et al. 2007) based on biochemical
relationships like ligand binding energy and molecular similarity or on shared disease
association. Above all, sincemany diseases are due to themalfunctioning of proteins, the
systematic determination and exploration of the human interactome and homologous
protein networks of model organisms can provide considerable new insight into
pathophysiological processes (Giallourakis et al. 2005).

Knowledge of protein interactions can frequently improve the understanding of
relevant molecular pathways and the interplay of various proteins in complex diseases
(Fishman and Porter 2005). This approachmay result in the discovery of a considerable
number of novel drug targets for the biopharmaceutical industry, possibly affording
the development of multi-target combination therapeutics. Observed perturbations of
protein networks may also offer a refined molecular description of the etiology and
progression of disease in contrast to phenotypic categorization of patients (Loscalzo
et al. 2007). Molecular network data may help to improve the ability of cataloging
disease unequivocally and to further individualize diagnosis, prognosis, prevention, and
therapy. This will require a network-based approach that does not only include protein
interactions to differentiate pathophenotypes, but also other types of molecular
interactions as found in signaling cascades and metabolic pathways. Furthermore,
environmental factors like pathogens interacting with the human host or the effects of
nutrition need to be taken into account.

After large-scale screens identified enormous amounts of protein interactions in
organisms like yeast, fly, and worm (Goll and Uetz 2007), which also serve as model
systems for studying many human disease mechanisms (Giallourakis et al. 2005),
experimental techniques and computational prediction methods have recently been
applied to generate sizable networks of human proteins (Cusick et al. 2005; Stelzl and
Wanker 2006; Assenov et al. 2008; Ram�ırez et al. 2007). In addition, comprehensive
maps of protein interactions inside pathogens and between pathogens and the human
host have been compiled for bacteria like E. coli, H. pylori, C. jejuni, and other species
(Noirot and Noirot-Gros 2004), for many viruses such as herpes viruses, the Epstein-
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Barr virus, the SARS coronavirus, HIV-1, the hepatitis C virus, and others (Uetz et al.
2004), and for the malaria parasite P. falciparum (Table 3). Those extensive network
maps can now be explored to identify potential drug targets and to block or manipulate
important protein–protein interactions.

Furthermore, different experimental methods are also used to expand the known
interaction networks around pathway-centric proteins like epidermal growth factor
receptors (EGFRs) (Tewari et al. 2004; Oda et al. 2005; Jones et al. 2006), Smad and
transforming growth factor–b (TGFb) (Colland and Daviet 2004; Tewari et al. 2004;
Barrios-Rodiles et al. 2005), and tumor necrosis factor-a (TNFa) and the transcription
factor NF-kB (Bouwmeester et al. 2004). All of these proteins are involved in
sophisticated signal transduction cascades implicated in various important disease
indications ranging from cancer to inflammation. The immune system and Toll-like
receptor (TLR) pathways were the subject of other detailed studies (Oda and Kitano
2006). Apart from that, protein networks for longevity were assembled to research
ageing-related effects (Xue et al. 2007).

High-throughput screens are also conducted for specific disease proteins causative
of closely related clinical and pathological phenotypes to unveil molecular interconnec-
tions between the diseases. For example, similar neurodegenerative disease phenotypes
are caused by polyglutamine proteins like huntingtin and over twenty ataxins. Although
they that are not evolutionarily related and their expression is not restricted to the brain,
they are responsible for inherited neurotoxicity and age-dependent dementia only in
specific neuron populations (Ralser et al. 2005). Yeast two-hybrid screens revealed an
unexpectedly dense interaction network of those disease proteins forming intercon-
nected subnetworks (Fig. 11), which suggests common pathways affected in disease
(Goehler et al. 2004; Lim et al. 2006). Some of the protein–protein interactions may be

Table 3 Selection of pathogenic organisms for which comprehensive protein interactionmaps are available

Organism References

Bacteria
Escherichia coli (Butland et al. 2005)
Helicobacter pylori (Colland et al. 2001)
Campylobacter jejuni (Parrish et al. 2007)

Viruses
Herpesvirus family (Uetz et al. 2006)
Epstein-Barr virus (Calderwood et al. 2007)
SARS coronavirus (von Brunn et al. 2007)
HIV-1 (Wheeler et al. 2007)
Hepatitis C virus (Flajolet et al. 2000)

Parasite
Plasmodium falciparum (LaCount et al. 2005)
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involved inmediating neurodegeneration and thusmay be tractable for drug inhibition,
and several interaction partners of ataxins could additionally be shown to be potential
disease modifiers in a fly model (Kaltenbach et al. 2007).

A number of methodological approaches concentrate on deriving correlations
between common topological properties and biological function from subnetworks
around proteins that are associated with a particular disease phenotype like cancer.
Recent studies report that human disease-associated proteins with similar clinical and
pathological features tend to bemore highly connected among each other thanwith other
proteins and to have more similar transcription profiles (Gandhi et al. 2006; Xu and
Li 2006; Goh et al. 2007). This observation points to the existence of disease-associated
functional modules. Interestingly, in contrast to disease genes, essential genes whose
defect may be lethal early on in life are frequently found to be hubs central to the network.

Further work focused on specific disease-relevant networks. For instance, to analyze
experimental asthma, differentially expressed genes were mapped onto a protein

Fig. 11 Part of the protein interaction network around the four yellow-colored ataxins causative of
neurodegenerative diseases
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interaction network (Lu et al. 2007). Here, highly connected nodes tended to have
smaller expression changes than peripheral nodes. This agrees with the general notion
that disease-causing genes are typically not central in the network. Similarly, a
comprehensive protein network analysis of systemic inflammation in human subjects
investigated blood leukocyte gene expression patterns when receiving an inflammatory
stimulus, a bacterial endotoxin, to identify functional modules perturbed in response to
this stimulus (Calvano et al. 2005). Topological criteria and gene expression data were
also used to search protein networks for functional modules that are relevant to type 2
diabetes mellitus (Liu et al. 2007) or to different types of cancer (Jonsson and Bates
2006; Cui et al. 2007; Lin et al. 2007; Pujana et al. 2007). Moreover, it was recently
demonstrated that the integration of gene expression profiles with subnetworks of
interacting proteins can lead to improved prognosticmarkers for breast cancer outcome
that are more reproducible between patient cohorts than sets of individual genes
selected without network information (Chuang et al. 2007).

In drug discovery, protein networks can help to design selective inhibitors of
protein–protein interactions which target specific interactions of a protein, but do not
affect others (Wells andMcClendon2007). For example, a highly connectedprotein (hub)
may be a suitable target for an antibiotic whereas a more peripheral protein with few
interaction partners may be more appropriate for a highly specific drug that needs to
avoid side effects. Thus, topological network criteria are not only useful for characterizing
diseaseproteins, but also forfindingdrug targets.Thediversity of interactionsof a targeted
protein could also help in predicting potential side effects of a drug. Apart from that, it
is remarkable that some potential drugs have been found to be less effective than expected
due to the intrinsic robustness of living systems against perturbations of molecular
interactions (Kitano2007). Furthermore,mutations inproteins cause genetic diseases, but
it is not always easy to distinguish protein interactions impaired bymutated binding sites
from other disease causes like structural instability induced by amino acid mutations.

Nowadays many genome-wide association and linkage studies for human diseases
suggest genomic loci and linkage intervals that contain candidate genes encoding SNPs
and mutations of potential disease proteins (Kann 2007). Since the resultant list of
candidates frequently contain dozens or even hundreds of genes, computational
approaches have been developed to prioritize them for further analyses and experi-
ments. In the following, we will demonstrate the variety of available prioritization
approaches by explicating three recent methods that utilize protein interaction data in
addition to the inclusion of other sequence and function information. All methods
capitalize on the above described observation that closely interacting gene products
often underlie polygenic diseases and similar pathophenotypes (Oti and Brunner 2007).

Using protein–protein interaction data annotated with reliability values, Lage et al.
(2007) first predict human protein complexes for each candidate protein. They then
score the pairwise phenotypic similarity of the candidate disease with all proteins within
each complex that are associated with any disease. The scoring function basically
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measures the overlap of the respective disease phenotypes as recorded in text entries of
OMIM (Online Mendelian Inheritance in Man) (Hamosh et al. 2005) based on the
vocabulary ofUMLS (UnifiedMedical Language System) (Bodenreider 2004). Lastly, all
candidates are prioritized by the probability returned by a Bayesian predictor trained on
the interaction data and phenotypic similarity. Therefore, this method depends on the
premise that the phenotypic effects caused by any disease-affected member in a
predicted protein complex are very similar to each other.

Another prioritization approach by Franke et al. (2006) does not make use of
overlapping disease phenotypes and primarily aims at connecting physically disjoint
genomic loci associated with the same disease using molecular networks. At the
beginning, their method Prioritizer performs a Bayesian integration of three different
network types of gene/protein relationships. The latter are derived from functional
similarity using Gene Ontology annotation, microarray coexpression, and protein–
protein interaction. This results in a probabilistic human network of general functional
links betweengenes. Prioritizer then assesseswhich candidate genes contained indifferent
disease loci are closely connected in this gene-gene network. To this end, the score of each
candidate is initially set to zero, but it is increased iteratively during network exploration
by a scoring function that depends on the network distance of the respective candidate
gene to candidates inside another genomic loci. This procedure finally yields separate
prioritization lists of ranked candidate genes for each genomic loci.

In contrast to the integrated gene-gene network used by Prioritizer, the Endeavour
system (Aerts et al. 2006) directly compares candidate genes with known disease genes
and creates different ranking lists of all candidates using various sources of evidence
for annotated relationships between genes or proteins. The evidence can be derived
from literature mining, functional associations based on Gene Ontology annotations,
co-occurrence of transcriptional motifs, correlation of expression data, sequence
similarity, common protein domains, shared metabolic pathway membership, and
protein–protein interactions. At the end, Endeavour merges the resultant ranking lists
using order statistics and computes an overall prioritization list of all candidate genes.

Finally, it is important to keep in mind that current datasets of human protein
interactions may still contain a significant number of false interactions and thus
biological and medical conclusions derived from them should always be taken with
a note of caution, in particular, if no good confidence measures are available.

12 Sequence-based prediction of protein interactions

A comprehensive atlas of protein interactions is fundamental for a better understanding
of the overall dynamic functioning of the living organisms. These insights arise from the
integration of functional information, dynamic data and protein interaction networks.
In order to fulfill the goal of enlarging our view of the protein interaction network,
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several approaches must be combined and a crosstalk must be established among
experimental and computational methods. This has become clear from comparative
evaluations which show similar performances for both types of methodologies. In fact,
over the recent years this field has grown into one of the most appealing fields in
bioinformatics. Evolutionary signals result from restrictions imposed by the need to
optimize the features that affect a given interaction and the nature of these features can
differ from interaction to interaction. Consequently, a number of different methods
have been developed based a range of different evolutionary signals. This section is
devoted to a brief review of some of these methods.

12.1 Phylogenetic profiling

These techniques are based on the similarity of absence/presence profiles of interacting
proteins. In its original formulation (Gaasterland and Ragan 1998; Huynen and Bork
1998; Pellegrini et al. 1999;Marcotte et al. 1999a) thephylogenetic profileswere codified as
0/1 vectors for each reference protein according to the absence/presence of proteins of the
studied family in a set of fully sequenced organisms (see Fig. 12a). The vectors for different
reference sequences are compared by using the Hamming distance (Pellegrini et al. 1999)
between vectors. This measure counts the number of differences between two binary
vectors. The rationale for this method is that both interacting proteins must be present in
an organism and that reductive evolution will remove unpaired proteins in the rest of the
organisms. Proposed improvements include the inclusion of quantitative measures of
sequence divergence (Marcotte et al. 1999b; Date and Marcotte 2003) and the ability to
deal with biases in the taxonomic distribution of the organisms used (Date andMarcotte
2003; Barker and Pagel 2005). These biases are due to the intuitive fact that evolutionarily
similar organismswill share a higher number of protein and genomic features (in this case
presence/absence of an orthologue).

To reduce this problem, Date et al. used Mutual Information from sequence
divergent profiles for measuring the amount of information shared by both vectors.
Mutual Information is calculated as:

MIðP1; P2Þ ¼ HðP1Þ þ HðP2Þ � HðP1; P2Þ;
where HðP1Þ ¼P pðP1Þ ln pðP1Þ is the marginal entropy of the probability distribu-
tion of protein P1 sequence distances and HðP1; P2Þ ¼ �PP pðP1; P2Þ ln pðP1; P2Þ
is the joint entropy of the probability distributions of both protein P1 and P2 sequence
distances. The corresponding probabilities are calculated from the whole distribution of
orthologue distances for the organisms. In this way, the most likely evolutionary
distances between orthologues from a pair of organisms will produce smaller entropies
and consequently smaller values of Mutual Information. This formulation should
implicitly reduce the effect of taxonomic biases. In an interesting work, published
recently by Barker et al. (2007), the authors showed that detection of correlated gene-
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gain/gene-loss events improves the predictions by reducing the number of false posi-
tives due to taxonomic biases.

The phylogenetic profiling approach has been shown to be quite powerful, because
its simple formulation has allowed the exploration of a number of alternative inter-
dependencies between proteins. This is the case for enzyme “displacement” in meta-
bolic pathways detected as anti-correlated profiles (Morett et al. 2003), and for complex
dependence relations among triplets of proteins (Bowers et al. 2004). Phylogenetic
profiles have also been correlated with bacterial traits to predict the genes related to
particular phenotypes (Korbel et al. 2005). The main drawbacks of these methods are
the difficulty of dealing with essential proteins (where there is no absence information)
and the requirement for the genomes under study to be complete (to establish the
absence of a family member).

Fig. 12 Prediction of protein interactions based on genomic and sequence features. Information coming
from the set of close homologs of the proteins P1 and P2 from the Organism 1 in other organisms can be
used to predict an interaction between these proteins. (a) Phylogenetic profiling. Presence/absence of a
homolog of both proteins in different organisms is coded as the corresponding two �1/0� profiles (most
simple approach) and an interaction is predicted for very similar profiles. (b) Similarity of phylogenetic trees.
Multiple sequence alignments are built for both sets of proteins and phylogenetic trees are derived from
the proteins with a possible partner present in its organism. Proteins with highly similar trees are predicted
to interact. (c) Gene neighbourhood conservation. Genome closeness is checked for those genes coding for
both sets of homologous proteins. Interaction is predicted if gene pairs are recurrently close to each other in
a number of organisms. (d) Gene fusion. Finding the proteins containing different sequence regions
homologous to each of the two proteins is used to predict an interaction between them
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12.2 Similarity of phylogenetic trees

Similarity in the topology of phylogenetic trees of interacting proteins has been
qualitatively observed in a number of cases (Fryxell 1996; Pages et al. 1997; Goh
et al. 2000). The extension of this observation to a quantitativemethod for the prediction
of protein interactions requires measuring the correlation between the similarity
matrices of the explored pairs of protein families (Goh et al. 2000). This formulation
allows systematic evaluation of the validity of using the original observation as a signal of
protein interaction (Pazos and Valencia 2001).

The general protocol for these methods is illustrated in Fig. 12b. It includes the
building of the multiple sequence alignment for the set of orthologues (one per
organism) related to every query sequence, the calculation of all protein pair evolu-
tionary distances (derived from the corresponding phylogenetic trees) and finally the
comparison of evolutionary distancematrices of pairs of query proteins using Pearson�s
correlation coefficient. Protein pairs with highly correlated distance matrices are
predicted to be more likely to interact.

Although this signal has been shown to be significant, the underlying process
responsible for this similarity is still controversial (Chen and Dokholyan 2006). There
are twomain hypotheses for explaining this phenomenon. The first hypothesis suggests
that this evolutionary similarity comes from the mutual adaptation (co-evolution) of
interacting proteins and the need to retain interaction features while sequences diverge.
The second hypothesis implicates external factors. In this scenario, the restrictions
imposed by evolution on the functional process implicating both proteins would be
responsible for the parallelism of their phylogenetic trees.

Although the relative importance of both factors is still not clear, the predictive
power of similarities in phylogenetic trees is not affected. Indeed, a number of
developments have improved the original formulation (Pazos et al. 2005; Sato et al.
2005). The first advance involved managing the intrinsic similarity of the trees because
of the common underlying taxonomic distribution (due to the speciation processes).
This effect is analogous to the taxonomic biases discussed above. In these cases, the
approach followed was to correct both trees by removing this common trend. For
example, Pazos et al. subtracted the distances of the 16S rRNA phylogenetic tree to the
corresponding distances for each protein tree. The correlations for the resulting distance
matrices were used to predict protein interactions.

Additionally some analyses have focused on the selection of the sequence regions
used for the tree building (Jothi et al. 2006; Kann et al. 2007). For example, it has been
shown that interacting regions, both defined as interacting residues (using structural
data) and as the sequence domain involved in the interaction, show more clear tree
similarities than the whole proteins (Mintseris andWeng 2005; Jothi et al. 2006). Other
interesting work showed that prediction performance can be improved by removing
poorly conserved sequence regions (Kann et al. 2007).
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Finally, in a very recent work (Juan et al. 2008) the authors have suggested a new
method for removing noise in the detection of tree similarity signals and detecting
different levels of evolutionary parallelism specificity. This method introduces the new
strategy of using the global network of protein evolutionary similarity for a better
calibration of the evolutionary parallelism between two proteins. For this purpose, they
define a protein �co-evolutionary� profile as the vector containing the evolutionary
correlations between a given protein tree and all the rest of the protein trees derived from
sequences in the same organism. This co-evolutionary profile is a more robust and
comparable representation of the evolution of a given protein (it involves hundreds of
distances) andcanbeused todeploy anew level of evolutionary comparison.The authors
compare these co-evolutionary profiles by calculating Pearson�s correlation coefficient
foreachpair. In thisway, themethoddetectspairsofproteins forwhichhighevolutionary
similarities are supported by their similarities with the rest of proteins of the organism.
This approach significantly improves the predictive performance of the tree similarity-
based methods so that different degrees of co-evolutionary specificity are obtained
according to the number of proteins that might be influencing the co-evolution of the
studied pair. This is done by extending the approach of Sato et al. (2006), that uses par-
tial correlations and a reduced set of proteins for determining specific evolutionary
similarities. Juan et al. calculated the partial correlation for each significant evolutionary
similarity with respect to the remaining proteins in the organism and defined levels of
co-evolutionary specificity according to the number of proteins that are considered to be
co-evolving with each studied protein pair. With this strategy, it�s possible to detect a
rangeofevolutionaryparallelisms fromtheproteinpairs (forvery specific similarities)up
to subsets ofproteins (formore relaxed specificities) that arehighly evolutiondependent.
Interestingly, if specificity requirements are relaxed, protein relationships among
componentsofmacro-molecular complexesandproteins involved in the samemetabolic
process canbe recovered.This canbe consideredas afirst step in the applicationofhigher
orders of evolutionary parallelisms to decode the evolutionary impositions over the
protein interaction network.

12.3 Gene neighbourhood conservation

This method exploits the well-known tendency of bacterial organisms to organize
proteins involved in the same biochemical process by clustering them in the genome.
This observation is obviously related to the operon concept and the mechanisms for the
coordination of transcription regulation of the genes present in these modules. These
mechanisms are widespread among bacterial genomes. Therefore the significance of a
given gene proximity can be established by its conservation in evolutionary distant
species (Dandekar et al. 1998; Overbeek et al. 1999).

The availability of fully sequenced organisms makes computing the intergenic
distances between each pair of genes easy. Genes with the same direction of transcrip-
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tion and closer than 300 bases are typically considered to be in the same genomic
context (see Fig. 12c). The conservation of this closeness must be found in more than
two highly divergent organisms to be considered significant because of the taxonomic
biases.

While this signal is strong in bacterial genomes, its relevance is unclear in eukaryotic
genomes. This is themain drawback of thesemethodologies. In fact, this signal only can
be exploited for eukaryotic organisms by extrapolating genomic closeness of bacterial
genes to their homologues in eukaryotes. Obviously, this extrapolation leads to a
considerable reduction in the confidence and number of obtained predictions for this
evolutionary lineage. However, conserved gene pairs that are transcribed from a shared
bidirectional promoter can be detected by similar methods and can found in eukaryotes
as well as prokaryotes (Korbel et al. 2004)

12.4 Gene fusion

A further use of evolutionary signals in protein function and physical interaction
prediction has been the tendency of interacting proteins to be involved in gene fusion
events. Sequences that appear as independently expressed ORFs in one organism
become �fused� as part of the same polypeptide sequence in another organism. These
fusions are strong indicators of functional and structural interaction that have been
suggested to increase the effective concentration of interacting functional domains
(Enright et al. 1999; Marcotte et al. 1999b). This hypothesis proposes that gene fusion
could remove the effect of diffusion and relative correct orientation of the proteins
forming the original complex.

These fusion events are typically detected when sequence searches for two non-
homologous proteins obtain a significant hit in the same sequence. Cases matching to
the same region of the hit sequence are removed (these cases are schematically
represented in Fig. 12d).

In spite of the strength of this signal, gene fusion seems to not be a habitual event in
bacterial organisms. The difficulty of distinguishing protein interactions belonging to
large evolutionary families is the main drawback of the automatic application of these
methodologies.

13 Integration of experimentally determined
and predicted interactions

As described above, there are many both experimental techniques and computational
methods for determining and predicting interactions. To obtain the most comprehen-
sive interaction networks possible, as many as possible of these sources of interactions
should be integrated. The integration of these resources is complicated by the fact that
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the different sources are not all equally reliable, and it is thus important to quantify the
accuracy of the different evidence supporting an interaction.

In addition to the quality issues, comparison of different interaction sets is further
complicated by the different nature of the datasets: yeast two-hybrid experiments are
inherently binary, whereas pull-down experiments tend to report larger complexes.
To allow for comparisons, complexes are typically represented by binary interaction
networks; however, it is important to realize that there is not a single, clear definition of a
“binary interaction”. For complex pull-down experiments, two different representa-
tions have been proposed: the matrix representation, in which each complex is
represented by the set of binary interactions corresponding to all pairs of proteins
from the complex, and the spoke representation, in which only bait-prey interactions
are included (von Mering et al. 2002). The binary interactions obtained using either of
these representations are somewhat artificial as some interacting proteins might in
reality never touch each other and others might have too low an affinity to interact
except in the context of the entire complex bringing them together. Even in the case of
yeast two-hybrid assays, which inherently report binary interactions, not all interactions
correspond to direct physical interactions.

The database STRING (“Search Tool for the Retrieval of Interacting Genes/
Proteins”) (vonMering et al. 2007) represents an effort to provide many of the different
types of evidence for functional interactions under one common framework with an
integrated scoring scheme. Such an integrated approach offers several unique advan-
tages: 1) various types of evidence are mapped onto a single, stable set of proteins,
thereby facilitating comparative analysis; 2) known and predicted interactions often
partially complement each other, leading to increased coverage; and 3) an integrated
scoring scheme can provide higher confidence when independent evidence types agree.

In addition to the many associations imported from the protein interaction
databases mentioned above (Bader et al. 2003; Salwinski et al. 2004; Guldener et al.
2006; Mishra et al. 2006; Stark et al. 2006; Chatr-aryamontri et al. 2007), STRING also
includes interactions from curated pathway databases (Vastrik et al. 2007; Kanehisa et
al. 2008) and a large body of predicted associations that are produced de novo using
many of the methods described in this chapter (Dandekar et al. 1998; Gaasterland and
Ragan 1998; Pellegrini et al. 1999; Marcotte et al. 1999c). These different types of
evidence are obviously not directly comparable, and even for the individual types of
evidence the reliability may vary. To address these two issues, STRING uses a two-stage
approach. First, a separate scoring scheme is used for each evidence type to rank the
interactions according to their reliability; these raw quality scores cannot be compared
between different evidence types. Second, the ranked interaction lists are benchmarked
against a common reference to obtain probabilistic scores, which can subsequently be
combined across evidence types.

To exemplify how raw quality scores work, we will here explain the scoring scheme
used for physical protein interactions from high-throughput screens. The two funda-
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mentally different types of experimental interaction data sets, complex pull-downs and
binary interactions are evaluated using separate scoring schemes. For the binary
interaction experiments, e.g. yeast two-hybrid, the reliability of an interaction correlates
well with the number of non-shared interaction partners for each interactor. STRING
summarizes this in the following raw quality score:

S1 ¼ logððN1þ1Þ � ðN2þ1ÞÞ;
where N1 and N2 are the numbers of non-shared interaction partners. This score is
similar to the IG1 measure suggested by Saito et al. (2002). In the case of complex pull-
down experiments, the reliability of the inferred binary interactions correlates better
with the number of times the interactors were co-purified compared to what would be
expected at random:

S2 ¼ logððN12 � NÞ=ððN1þ1Þ � ðN2þ1ÞÞÞ;
where N12 is the number of purifications containing both proteins, N1 and N2 are
the numbers of purifications containing either protein 1 or 2, and N is the total number
of purifications. For this purpose, the bait protein was counted twice to account for
bait–prey interactions being more reliable than prey–prey interactions. These raw
quality scores are calculated for each individual high-throughput screen. Scores vary
within one dataset, because they include additional, intrinsic information from the data
itself, such as the frequency with which an interaction is detected. For medium sized
data sets that are not large enough to apply the topology based scoring schemes, the
same raw score is assigned to all interactions within a dataset. Finally, very small data
sets are pooled and considered jointly as a single interaction set.

We similarly havedifferent scoring schemes forpredicted interactionsbasedon co-
expression in microarray expression studies, conserved gene neighborhood, gene
fusion events andphylogenetic profiles. Based on these rawquality scores, a confidence
score is assigned to eachpredicted associationbybenchmarking theperformanceof the
predictions against a common reference set of trusted, true associations. STRINGuses
as reference the functional grouping of proteins maintained at KEGG (Kyoto
Encyclopedia ofGenes andGenomes (Kanehisa et al. 2008). Any predicted association
for which both proteins are assigned to the same “KEGGpathway” is counted as a true
positive. KEGGpathways are particularly suitable as a reference because they are based
on manual curation, are available for a number of organisms, and cover several
functional areas. Other benchmark sets could also be used, for example “Biological
Process” terms from Gene Ontology (Ashburner et al. 2000) or Reactome pathways
(Vastrik et al. 2007). The benchmarked confidence scores in STRING generally
correspond to the probability of finding the linked proteins within the same pathway
or biological process.

The assignment of probabilistic scores for all evidence types solves many of the
issues of data integration. First, incomparable evidence types are made comparable by
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assigning a score that represents howwell the evidence type can predict a certain type of
interactions (the type being specified by the reference set used). Second, the separate
benchmarking of interactions from, for example, different high-throughput protein
interaction screens accounts for any differences in reliability between different studies.
Third, use of raw quality scores allows us to separatemore reliable interactions from less
reliable interactions even within a single dataset. The probabilistic nature of the scores
also makes it easy to calculate the combined reliability of an interaction given multiple
lines of evidence. It is computed under the assumption of independence for the various
sources, in a na€ıve Bayesian fashion.

In addition to having a good scoring scheme, it is crucial tomake the evidence for an
interaction transparent to the end users. To achieve this, the STRING interaction
network is made available via a user-friendly web interface (http://string.embl.de).
When performing a query, the user will first be presented with a network view, which
provides a first, simplified overview (Fig. 13). From here the user has full control over
parameters such as the number of proteins shown in the network (nodes) and the
minimal reliability required for an interaction (edge) to be displayed. From the network,
the user also has the ability to drill down on the evidence that underlies any given
interaction using the dedicated viewer for each evidence type. For example, it is possible
to inspect the publications that support a given interaction, the set of protein that were

Fig. 13 Protein interaction network of the core cell-cycle regulation in human. The network was
constructed by querying the STRING database (vonMering et al. 2007) for very high confidence interactions
(conf. score > 0.99) between four cyclin-dependent kinases, their associated cyclins, the WEE1 kinase and
the CDC25 phosphatases. The network correctly recapitulates CDC2 interacts with cyclin-A/B, CDK2 with
cyclin-A/E, and CDK4/6 with cyclin-D. It also shows that the WEE1 and CDC25 phosphatases regulate CDC2
and CDK2 but not CDK4 and CDK6. Moreover, the network suggests that CDC25A phosphatase regulates
CDC2 and CDK2, whereas CDC25B and CDC25C specifically regulate CDC2
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co-purified in a particular experiment and the phylogenetic profiles or genomic context
based on which an interaction was predicted.

14 Domain–domain interactions

Protein binding is commonly characterized by specific interactions of evolutionarily
conserved domains (Pawson and Nash 2003). Domains are fundamental units of
protein structure and function (Aloy and Russell 2006), which are incorporated into
different proteins by genetic duplications and rearrangements (Vogel et al. 2004).
Globular domains are defined as structural units of fifty and more amino acids that
usually fold independently of the remaining polypeptide chain to form stable, compact
structures (Orengo and Thornton 2005). They often carry important functional sites
and determine the specificity of protein interactions (Fig. 14). Essential information on

Fig. 14 Exemplary interaction between the two human proteins HHR23B and ataxin-3. Each protein
domain commonly adopts a particular 3D structure and may fulfill a specific molecular function. Generally,
the domains responsible for an observed protein-protein interaction need to be determined before further
functional characterizations are possible. In the depicted protein-protein interaction, it is known from
experiments that the ubiquitin-like domain UBL of HHR23B (yellow) forms a complex with de-ubiquitinat-
ing Josephin domain of ataxin-3 (blue) (Nicastro et al. 2005)

389

Dmitrij Frishman et al.



the cellular function of specific protein interactions and complexes can often be gained
from the known functions of the interacting protein domains. Domains may contain
binding sites for proteins and ligands such as metabolites, DNA/RNA, and drug-like
molecules (Xia et al. 2004).Widely spread domains that mediate molecular interactions
can be found alone or combined in conjunction with other domains and intrinsically
disordered, mainly unstructured, protein regions connecting globular domains
(Dunker et al. 2005). According to Apic et al. (2001) multi-domain proteins constitute
two thirds of unicellular and 80% of metazoan proteomes. One and the same domain
can occur in different proteins, and many domains of different types are frequently
found in the same amino acid chain.

Much effort is being invested in discovering, annotating, and classifying protein
domains both from the functional (Pfam (Finn et al. 2006), SMART (Letunic et al.
2006), CDD (Marchler-Bauer et al. 2007), InterPro (Mulder et al. 2007) and structural
(SCOP (Andreeva et al. 2004), CATH (Greene et al. 2007)) perspective. Notably, it
may be confusing that the term �domain� is commonly used in two slightly different
meanings. In the context of domain databases such as Pfam and SMART, a domain is
basically defined by a set of homologous sequence regions, which constitute a domain
family. In contrast, a specific protein may contain one or more domains, which are
concrete sequence regions within its amino acid sequence corresponding to autono-
mously folding units. Domain families are commonly represented by Hidden Markov
Models (HMMs), and highly sensitive search tools like HMMER (Eddy 1998) are used
to identify domains in protein sequences.

Different sources of information about interacting domains with experimental
evidence are available. Experimentally determined interactions of single-domain
proteins indicate domain–domain interactions. Similarly, experiments using protein
fragments help identifying interaction domains, but this knowledge is frequently hidden
in the text of publications and not contained in any database. However, domain
databases like Pfam, SMART, and InterPro may contain some annotation obtained by
manual literature curation. In the near future, high-throughput screening techniques
will result in even larger amounts of protein fragment interaction data to delineate
domain borders and interacting protein regions (Colland and Daviet 2004).

Above all, three-dimensional structures of protein domain complexes are experi-
mentally solved by X-ray crystallography or NMR and are deposited in the PDB
database (Berman et al. 2007). Structural contacts between two interacting proteins can
be derived by mapping sequence positions of domains onto PDB structures. Extensive
investigations of domain combinations in proteins of known structures (Apic et al.
2001) as well as of structurally resolved homo- or heterotypic domain interactions (Park
et al. 2001) revealed that the overlap between intra- and intermolecular domain
interactions is rather limited. Two databases, iPfam (Finn et al. 2005) and 3did (Stein
et al. 2005), provide pre-computed structural information about protein interactions
at the level of Pfam domains.
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Analysis of structural complexes suggests that interactions between a given pair of
proteins may be mediated by different domain pairs in different situations and in
different organisms. Nevertheless, many domain interactions, especially those involved
in basic cellular processes such as DNAmetabolism and nucleotide binding, tend to be
evolutionarily conserved within a wide range of species from prokaryotes to eukaryotes
(Itzhaki et al. 2006). In yeast, Pfam domain pairs are associated with over 60% of
experimentally known protein interactions, but only 4.5% of them are covered by iPfam
(Schuster-Bockler and Bateman 2007).

Domain interactions can be inferred from experimental data on protein interactions
by identifying those domain pairs that are significantly overrepresented in interacting
proteins compared to random protein pairs (Deng et al. 2002; Ng et al. 2003a; Riley et al.
2005; Sprinzak and Margalit 2001) (Fig. 15). However, the predictive power of such
an approach is strongly dependent on the quality of the data used as the source of
information for protein interactions, and the coverage of protein sequences in terms of
domain assignments. Basically, the likelihood of two domains, Di and Dj, to interact

Fig. 15 Deriving the likelihood of domain interactions from experimental data of protein interactions. Six
different proteins are shown containing domains D1., D2., . . . , D6 in different combinations. Known
interactions between these proteins are shown as black arrows. The matrix in the bottom part of the figure
shows the likelihood for each pair of domains to interact – from low (white) to high (dark)
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can be estimated as the fraction of protein pairs known to interact among all proteins
in the dataset containing this domain pair.

This basic idea has been improved upon by using a maximum-likelihood (ML)
approach based on the expectation-maximization (EM) algorithm. This method finds
the maximum likelihood estimator of the observed protein–protein interactions by
an iterative cycle of computing the expected likelihood (E-step) and maximizing
the unobserved parameters (domain interaction propensities) in the M-step. When
the algorithm converges (i.e. the total likelihood cannot be further improved by the
algorithm), theML estimate for the likelihood of the unobserved domain interactions is
found (Deng et al. 2002; Riley et al. 2005). Riley and colleagues further improved this
method by excluding each potentially interacting domain pair from the dataset and re-
computing the ML-estimate to obtain an additional confidence value for the respective
domain–domain interaction. This domain pair exclusion (DPEA)methodmeasures the
contribution of each domain pair to the overall likelihood of the protein interaction
network based on domain–domain interactions. In particular, this approach enables the
prediction of specific domain–domain interactions between selected proteins which
would have beenmissed by the basicMLmethod. AnotherML-based algorithm is InSite
which takes differences in the reliability of the protein–protein interaction data into
account (Wang et al. 2007a). It also integrates external evidence such as functional
annotation or domain fusion events.

An alternative method for deriving domain interactions is through co-evolutionary
analysis that exploits the notion that mutations of residue pairs at the interaction
interfaces are correlated to preserve favorable physico-chemical properties of the
binding surface (Jothi et al. 2006). The pair of domains mediating interactions between
two proteins P1 and P2 may therefore be expected to display a higher similarity of
their phylogenetic trees than other, non-interacting domains (Fig. 16). The degree of
agreement between the evolutionary history of two domains, Di and Dj, can be
computed by the Pearson�s correlation coefficient rij between the similarity matrices
of the domain sequences in different organisms:

rij ¼
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are themean values of thematrices, respectively. In Figure 16 the

evolutionary tree of the domainD2 ismost similar to those of D5 andD6, corroborating
the actual binding region.

Awell-known limitation of the correlatedmutation analysis is that it is very difficult
to decide whether residue co-variation happens as a result of functional co-evolution
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directed at preserving interaction sites, or because of sequence divergence due to
speciation. To address this problem, (Kann et al. 2007) suggested to distinguish the
relative contribution of conserved andmore variable regions in aligned sequences to the
co-evolution signal based on the hypothesis that functional co-evolution is more
prominent in conserved regions.

Finally, interacting domains can be identified by phylogenetic profiling, as described
above for full-chain proteins. As in the case of complete protein chains, the similarity of
evolutionary patterns shared by two domains may indicate that they interact with each
other directly or at least share a common functional role (Pagel et al. 2004). As illustrated
in Fig. 17, clustering protein domains with similar phylogenetic profiles allows
researchers to build domain interaction networks which provide clues for describing
molecular complexes. Similarly, the DomainTeammethod (Pasek et al. 2005) considers
chromosomal neighborhoods at the level of conserved domain groups.

A number of resources provide and combine experimentally derived and predicted
domain interaction data. InterDom (http://interdom.i2r.a-star.edu.sg/) integrates do-
main-interaction predictions based on known protein interactions and complexes with
domain fusion events (Ng et al. 2003b). DIMA (http://mips.gsf.de/genre/proj/dima2) is
another database of domain interactions, which integrates experimentally demon-

Fig. 16 Co-evolutionary analysis of domain interactions. Two orthologous proteins from different
organisms known to interact with each other are shown. The first protein consists of two domains, D1
and D2, while the second protein includes the domains D3, D4, D5, and D6. Evolutionary trees for each
domain are shown, their similarity serves as an indication of interaction likelihood that is encoded in the
interaction matrix
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strated domain interactions from iPfam and 3did with predictions based on the DPEA
algorithm and phylogenetic domain profiling (Pagel et al. 2007). Recently, two new
comprehensive resources, DOMINE (http://domine.utdallas.edu) (Raghavachari et al.
2008) and DASMI (http://www.dasmi.de) (Blankenburg et al. 2008, submitted), were
introduced and are available online. These resources contain iPfam and 3did data and
predicted domain interactions taken from several other publications. Predictions are
based on several methods for deriving domain interactions from protein interaction
data, phylogenetic domain profiling data and domain coevolution.With the availability
of an increasing number of predictions the task of method weighting and quality
assessment becomes crucial. A thorough analysis of the quality of domain interaction
data can be found in Schlicker et al. (2007).

Beyond domain–domain contacts, an alternative mechanism of mediating molec-
ular recognition is through binding of protein domains to short sequence regions
(Santonico et al. 2005), typically from three to eight residues in length (Zarrinpar et al.
2003; Neduva et al. 2005). Such linear recognition motifs can be discovered from pro-
tein interaction data by identifying amino acid sequence patterns overrepresented in
proteins that do not possess significant sequence similarity, but share the same in-
teracting partner (Yaffe 2006). Web services like EML (http://elm.eu.org (Puntervoll
et al. 2003)), support the identification of linear motifs in protein sequences.

As described above, specific adapter domains can mediate protein–protein inter-
actions.While some of these interaction domains recognize small target peptides, others

Fig. 17 Similarity of domain phylogenetic profiles can be used to build a domain interaction network
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are involved in domain–domain interactions. As short bindingmotifs have a rather high
probability of being found by chance and the exact mechanisms of binding specificity
for this mode of interaction are not understood completely, predictions of protein–
protein interactions based on binding domains is currently limited to domain–domain
interactions for which reliable data is available.

Predicting PPIs from domain interactions may simply be achieved by reversing the
ideas discussed above, that is, by using the domain composition of proteins to evaluate
the interaction likelihood of proteins (Bock and Gough 2001; Sprinzak and Margalit
2001;Wojcik and Schachter 2001). In a naive approach, domain interactions are treated
as independent, and all protein pairs with a matching pair of interacting domains are
predicted to engage in an interaction. Given that protein interactions may also be
mediated by several domain interactions simultaneously, more advanced statistical
methods take into account dependencies between domains and exploit domain
combinations (Han et al. 2004) and multiple interacting domain pairs (Chen and Liu
2005).

Exercising and validating these prediction approaches revealed that the most
influential factor for PPI prediction is the quality of the underlying data. This suggests
that, as for most biological predictions in other fields, the future of prediction methods
for protein and domain interactions may lie in the integration of different sources of
evidence and weighting the individual contributions based on calibration to gold-
standard data. Further methodological improvements may include the explicit con-
sideration of cooperative domains, that is, domain pairs that jointly interact with other
domains (Wang et al. 2007b).

15 Biomolecular docking

Basic interactions between two or up to a few biomolecules are the basic elements of the
complex molecular interaction networks that enable the processes of life and, when
thrown out of their intended equilibrium,manifest themolecular basis of diseases. Such
interactions are at the basis of the formation of metabolic, regulatory or signal
transduction pathways. Furthermore the search for drugs boils down to analyzing the
interactions between the drug molecule and the molecular target to which it binds,
which is often a protein.

For the analysis of a singlemolecular interaction, we do not need complex biological
screening data. Thus it is not surprising that the analysis of the interactions between two
molecules, one of them being a protein, has the longest tradition in computational
biology of all problems involving molecular interactions, dating back over three
decades. The basis for such analysis is the knowledge of the three-dimensional structure
of the involved molecules. To date, such knowledge is based almost exclusively on
experimental measurements, such as X-ray diffraction data or NMR spectra. There are
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also a few reported cases in which the analysis of molecular interactions based on
structural models of protein has led to successes.

The analysis of the interaction of two molecules based on their three-dimensional
structure is called molecular docking. The input is composed of the three-dimensional
structures of the participating molecules. (If the involved molecule is very flexible one
admissible structure is provided.) The output consists of the three-dimensional
structure of the molecular complex formed by the two molecules binding to each
other. Furthermore, usually an estimate of the differential free energy of binding is
given, that is, the energy difference DG between the bound and the unbound con-
formation. For the binding event to be favorable that difference has to be negative.

15.1 Protein-ligand docking

This slight misnomer describes the binding between a protein molecule and a small
molecule. The small molecule can be a natural substrate such as a metabolite or a
molecule to be designed to bind tightly to the protein such as a drug molecule. Protein-
ligand docking is the most relevant version of the docking problem because it is a useful
help in searching for new drugs. Also, the problem lends itself especially well
to computational analysis, because in pharmaceutical applications one is looking for
small molecules that are binding very tightly to the target protein, and that do so in a
conformation that is also a low-energy conformation in the unbound state. Thus, subtle
energy differences between competing ligands or binding modes are not of prime
interest. For these reasons there is a developed commercial market for protein-ligand
docking software.

Usually the small molecule has amolecular weight of up to several hundred Daltons
and can be quite flexible. Typically, the small molecule is given by its 2D structure
formula, e.g., in the form of a SMILES string (Weininger 1988). If a starting 3D
conformation is needed there is special software for generating such a conformation
(see, e.g. (Pearlman 1987; Sadowski et al. 1994)).

Challenges of the protein ligand problem are (i) finding the correct conformation of
the usually highly flexible ligand in the binding site of the protein, (ii) determining
the subtle conformational changes in the binding site of the protein upon binding of
the ligand, which are termed induced fit, (iii) producing an accurate estimate of the
differential energy of binding or at least ranking different conformations of the same
ligand and conformations of different ligands correctly by their differential energy of
binding. Methods tackling problem (ii) can also be used to rectify smaller errors in
structuralmodels of proteinswhose structure has not been resolved experimentally. The
solution of problem (iii) provides the essential selection criterion for preferred ligands
and binding modes, namely those with lowest differential energy of binding.

Challenge (i) has basically been conquered in the last decade as a number of docking
programs have been developed that can efficiently sample the conformational space of
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the ligand and produce correct binding modes of the ligand within the protein,
assuming that the protein is given in the correct structure for binding the ligand.
Several methods are applied here. The most brute-force method is to just try different
(rigid) conformations of the ligand one after the other. If the program is fast enough one
can run through a sizeable number of conformations per ligand (McGann et al. 2003).
A more algorithmic and quite successful method is to build up the ligand from its
molecular fragments inside the binding pocket of the protein (Rarey et al. 1996). Yet
another class of methods sample ligand conformations inside the protein binding
pocket by methods such as local search heuristics, Monte Carlo sampling or genetic
algorithms (Abagyan et al. 1994; Jones et al. 1997; Morris et al. 1998). There are also
programs exercising combinations of different methods (Friesner et al. 2004). The
reported methods usually can compute the binding mode of a ligand inside a protein
within fractions of a minute to several minutes. The resulting programs can be applied
to screening through large databases of ligands involving hundreds of thousands to
millions of compounds and are routinely used in pharmaceutical industry in the early
stages of drug design and selection. They are also repeatedly compared on benchmark
datasets (Kellenberger et al. 2004; Chen et al. 2006; Englebienne et al. 2007). More
complex methods from computational biophysics, such as molecular dynamics (MD)
simulations that compute a trajectory of the molecular movement based on the forces
exerted on the molecules take hours on a single problem instance and can only be used
for final refinement of the complex.

Challenges (ii) and (iii) have not been solved yet. Concerning problem (ii),
structural changes in the protein can involve redirections of side chains in or close
to the binding pocket and more substantial changes involving backbone movement.
While recently methods have been developed to optimize side-chain placement upon
ligand binding (Claußen et al. 2001; Sherman et al. 2006), the problem of finding the
correct structural change upon binding involving backbone and side-chain movement
is open (Carlson 2002). Concerning problem (iii), there are no scoring functions to date
that are able to sufficiently accurately estimate the differential energy of binding on a
diverse set of protein-ligand complexes (Wang et al. 2003;Huang and Zou 2006). This is
especially unfortunate as an inaccurate estimate of the binding energy causes the
docking program to disregard correct complex structures even though they have been
sampled by the docking program because they are labeled with incorrect energies. This
is the major problem in docking which limits the accuracy of the predictions. Recent
reviews on protein-ligand docking have been published in Sousa et al. (2006) and Rarey
et al. (2007).

One restriction with protein-ligand docking as it applies to drug design and
selection is that the three-dimensional structure of the target protein needs to be
known.Many pharmaceutical targets aremembrane-standing proteins for which we do
not have the three-dimensional structure. For such proteins there is a version of drug
screening that can be viewed as the negative imprint of docking: Instead of docking the
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drug candidate into the binding site of the protein – which is not available – we
superpose the drug candidate (which is here called the testmolecule) onto another small
molecule which is known to bind to the binding site of the protein. Such amolecule can
be the natural substrate for the target protein or another drug targeting that protein. Let
us call this small molecule the reference molecule. The suitability of the new drug
candidate is then assessed on the basis of its structural and chemical similarity with the
reference molecule. One problem is that now both the test molecule and the reference
molecule can be highly flexible. But in many cases largely rigid reference molecules
can be found, and in other cases it suffices to superpose the test moelcule onto any
low-energy conformation of the reference molecule. There are several classes of drug
screening programs based on this molecular comparison, ranging from (i) programs
that perform a detailed analysis of the three-dimensional structures of the molecules to
be compared (e.g. (Lemmen et al. 1998; Kr€amer et al. 2003)) across (ii) programs that
perform a topological analysis of the two molecules (Rarey and Dixon 1998; Gillet et al.
2003) to (iii) programs that represent both molecules by binary or numerical property
vectors which are compared with string methods (McGregor and Muskal 1999; Xue
et al. 2000). The first class of programs require fractions of seconds to fractions of a
minute for a single comparison, the second can perform hundreds comparisons per
second, the third up to several ten thousand comparisons per second. Reviews of
methods for drug screening based on ligand comparison are given in (Lengauer et al.
2004; K€amper et al. 2007).

15.2 Protein–protein docking

Here both binding partners are proteins. Since drugs tend to be small molecules this
version of the docking problem is not of prime interest in drug design. Also, the energy
balance of protein–protein binding is much more involved that for protein-ligand
binding. Optimal binding modes tend not to form troughs in the energy landscape that
are as pronounced as for protein-ligand docking. The binding mode is determined by
subtle side-chain rearrangements of both binding partners that implement the induced
fit along typically quite large binding interfaces. The energy balance is dominated by
difficult to analyze entropic terms involving the desolvation of water within the binding
interface. For these reasons, the software landscape for protein–protein docking is not as
well developed as for protein-ligand docking and there is no commercial market for
protein–protein docking software.

Protein–protein docking approaches are based either on conformational sampling
and MD – which can naturally incorporated molecular flexibility but suffers from very
high computing demands – or on combinatorial sampling with both proteins con-
sidered rigid in which case handling of protein flexibility has to be incorporated with
methodical extensions. For space reasons we do not detail methods for protein–protein
docking. A recent review on the subject can be found in Hildebrandt et al. (2007).
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A variant of protein–protein docking is protein-DNA docking. This problem
shares with protein–protein docking the character that both binding partners are
macromolecules. However, entropic aspects of the energy balance are even more
dominant in protein-DNA docking than in protein–protein docking. Furthermore
DNA can assume nonstandard shapes when binding to proteins which deviate much
more from the known double helix than we are used to when considering induced
fit phenomena.
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3Bioinformatics and Genomics Department, Centro de Investigacion Principe Felipe (CIPF), Valencia, Spain

1 Introduction

Understanding human variation and disease often requires knowledge of a broad array
of biomolecular data items, down to the role of an individual amino acid in a protein,
and how mutations or alternative splicing events can change function and phenotype.
There are a number of key databases that collect biomolecular information; the EMBL
DNA database (Cochrane et al. 2006) and Ensembl (Flicek et al. 2007) collect
annotations on genomic sequence features, the UniProt knowledge base (Bairoch
et al. 2005) provides detailed annotation on protein sequences, and the Worldwide
PDB member databases (Berman et al. 2007) provide protein structural information.
Whilst these databases house a great deal of information on sequences and structures,
the advent of high throughput methods in genome sequencing and structural
genomics initiatives has produced an explosion in the quantity of uncharacterised
data. As a result, the development of tools which annotate these sequences and
structures by prediction or transfer of information fromhomologous relatives has also
increased in number and diversity. These methods are crucial in order to fill in the
functional space between characterised and uncharacterised protein sequences and
structures.

Many computational biology laboratories specialise in different aspects of proteome
annotation for a range of features and processes (Table 1). However, these tools are
numerous, ever changing and located all over the world, often with more than one
method annotating a similar feature. It has become important to provide ways in which

�These authors contributed equally.
Corresponding author: Henning Hermjakob, European Molecular Biology Laboratory
Outstation, The European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton,
Cambridgeshire, UK (e-mail: hhe@ebi.ac.uk)
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these annotations can be collated into a single view, providing as much information as
we know about a particular sequence or structure from all disparate methods in one
location. In the BioSapiens consortium, 19 groups from Europe and Israel provide
annotation of protein features as part of their activities, ranging from highly
specialised prediction methods for a specific kind of protein annotation to dozens
of automatic methods providing millions of annotations for a large part of the known
proteins. Due to continuous updates in methodology, these annotations are also
frequently updated. The quality control, integration and continuous maintenance of
such a broad array of annotations in a central resource like UniProt is almost
impossible.

Table 1 Selection of tools and resources which display their feature annotations using DAS

Method Description

Protein Function
FunCut (Abascal and Valencia 2003) Automatic annotation of protein function based

on family identification
Catalytic Site Atlas (Torrance et al. 2005) A database documenting enzyme active sites and

catalytic residues in enzymes with known 3D structure
Domain Annotations
CATH (Pearl et al. 2005) A database of protein domains in a hierarchical

classification: Class, Architecture, Topology and Homology
InterPro (Mulder et al. 2005) A database of protein families, domains and functional sites
Pfam (Finn et al. 2006) Multiple sequence alignments and hidden Markov models

covering many common protein domains and families
SMART (Letunic et al. 2006) Simple Modular Architecture Research Tool
Prosite (Hulo et al. 2006) A database of protein families and domains
Prints (Attwood et al. 2003) A compendium of protein fingerprints

Protein Structure Prediction and Comparison
Threader (Jones et al. 2005a) Fold recognition
PSIpred (Bryson et al. 2005) Protein structure prediction server

Post-translational Modifications of Proteins
NetPhos (Blom et al. 1999) Neural network predictions for serine, threonine and

tyrosine phosphorylation sites in eukaryotic proteins
NetOGlyc (Julenius et al. 2005) Neural network predictions for mucin type GalNAc

O-glycosylation sites in mammalian glycoproteins
Protein Sorting
SignalP (Bendtsen et al. 2004) Prediction of the presence and location of signal peptide

cleavage sites in amino acid sequences
TargetP (Emanuelsson et al. 2000) Predicts the subcellular location of eukaryotic proteins

Transmembrane Predictions
TMHMM Predicition of transmembrane helices in proteins
Memsat (Jones et al. 1994) Predicts the secondary structure and topology

of all-helix integral membrane proteins
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2 The Distributed Annotation System (DAS)

The Distributed Annotation System (DAS) (Dowell et al. 2001) provides a practical
solution to this problem. Originally developed by Lincoln Stein for the collaborative
annotation of genome sequences, the DAS protocol has been adapted for protein
annotation by the BioSapiens consortium. A central reference server provides the
reference set of protein sequences, based on the UniProt knowledge base. Each protein
is uniquely identified by its UniProtKB accession number. Each participating labora-
tory, independent of geographical location, provides protein annotation relative to the
UniProt reference set, through one or more locally installed annotation servers. The
reference server and all annotation servers are listed in theDAS registry (Prlic et al. 2007,
www.dasregistry.org). A DAS client, once activated by a user, connects to the DAS
registry and retrieves the internet address of the reference server and all known an-
notation servers. Now, the user enters a specific protein accession number, and the DAS
client retrieves the protein sequence from the reference server, and potentially hundreds
of annotations for this particular protein from dozens of annotation servers distributed
across the internet. Annotation items can be positional, for example a functional domain
extending from amino acids 52 to 184 of the query protein, as well as non-positional, for
example a literature reference pertinent to the entire protein. DAS annotations can
contain a link, usually back to the original source, leading tomore detailed information.
The DAS client displays the retrieved annotations relative to the protein sequence,
usually in a graphically attractive manner.

Using the Distributed Annotation System, information from dozens of different,
geographically disparate sources can be centrally displayed using a technically simple
protocol andminimal central infrastructure. Centralised databases do not need to invest
time and resources to resolve contradictions between different third-party annotations
as all information are reported, allowing the user to interpret the results independently.
DAS allows annotations to be viewed in a central locationwhile the control remainswith
the data provider. The DAS protocol has been chosen as the central data integration
strategy by the BioSapiens Network of Excellence. Within the BioSapiens project, the
scope of the DAS protocol has been extended from the original genomic sequence
annotation to protein sequence and structure annotation as well as alignments. As of
December 2007, annotation servers from 19 partner sites provide 69 different dis-
tributed annotation sources. This comprises information for genomic sequences and
protein sequences as well as for protein structures.

3 DAS infrastructure

The independence of DAS servers and clients, only linked through a well defined
protocol, allows the development of independent, specialised server and client software
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packages, often distributed as open source software. In this section, we will briefly
present key elements of the DAS infrastructure, with a focus on DAS clients as the end
user interface of DAS.

3.1 DASTY2 – a protein sequence-oriented DAS client

DASTY2 (http://www.ebi.ac.uk/dasty) is a highly interactive protein DAS client. For a
given protein sequence accession number, it retrieves the reference sequence and
annotations provided by servers listed in theDAS registry. In contrast to its predecessor,
DASTY1 (Jones et al. 2005b), DASTY2 displays features dynamically, as soon as the first
annotation servers provide data, the features are displayed, rather than waiting until
all servers have provided data. Figure 1 shows DASTY2 in the process of loading data
from annotation servers. All positional features are aligned to the reference sequence,
thus allowing to visually compare annotations. Annotations can be reordered, either
in alphanumeric order for the different columns, ormanually through drag-and-drop.
Figure 2 shows the same sequence as the previous figure, but with the second signal
feature annotation moved directly below the first signal annotation. In addition, the
popup window for the detailed description of the second signal feature has been
activated.

3.2 SPICE – a protein structure-oriented DAS client

SPICE (Prlic et al. 2005) (http://www.efamily.org.uk/software/dasclients/spice/) is a
DAS client that can visualize protein sequence and structure information. It provides a
3D viewer that allows investigating annotations mapped onto the 3D protein structure,
as well as several sequence panels that display the sequences and annotations for
UniProt, matching Ensembl proteins and the sequence of the currently displayed chain
of the PDB protein structure. The data is integrated, so whenever a sequence region is
selected, it is projected onto the other sequences and can also be viewed in the 3D
structure. In Fig. 3 two non-synonymous Single Nucleotide Polymorphisms (SNPs)
have been selected on the Ensembl protein sequence. The position is projected through
UniProt onto the PDB.

Besides this single-object display, SPICE can also be used to display 3D protein
structure alignments. This feature has been used to display the results from the
Critical Assessment of Techniques for Protein Structure Prediction (CASP-7) ex-
periment (Moult et al. 2007). In this experiment the protein structure prediction
community attempts to predict the three dimensional conformation of experimen-
tally obtained protein structures, without knowing the structure at that point in time.
SPICE can show the results of these predictions and allows to compare them with the
solved protein structure. In Fig. 4 the experimentally obtained structure is shown in
white and 2 predictions from different groups are shown in yellow and green. SPICE
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supports switching between 3 different alignment algorithms, which have been used
to evaluate the predictions. This data is made available in a precalculated way via
DAS from http://www.predictioncenter.org and SPICE obtains all the data from
there.

Another application of SPICE is to visualize the 3D protein structure alignments as
they are provided by the SISYPHUS database (Andreeva et al. 2007). SISYPHUS
provides a set of manually curated alignments of proteins that have non-trivial
relationships and that pose problems for most of the current standard alignment
algorithms. SPICE can visualize these manually curated alignments, with the alignment
data being obtained from http://sisyphus.mrc-cpe.cam.ac.uk.

Fig. 3 SPICE projection of protein sequence features onto the three-dimensional protein structure. Two
non-synonymous Single Nucleotide Polymorphisms (SNPs) have been selected on the Ensembl protein
sequence. The position is projected through UniProt onto PDB
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3.3 Ensembl

Ensembl (Flicek et al. 2007) (http://www.ensembl.org) is a comprehensive genome
information system that is an example of a web server that itself is a DAS client and a
DAS server. While Ensembl provides a very large database at its core, this data can be
enrichedwith data obtained viaDAS from external sources. Inmany Ensembl views it is
possible to integrate the external data together with data obtained from the Ensembl
database thus enabling the analysis of user provided data in context of the Ensembl
genome information as well as information from other laboratories.

In addition to a list of predefined DAS data sources, the user can also add custom
DAS data sources, based on the well-defined DAS reference coordinate systems, for

2
Fig. 5 Using the DAS STYLESHEET command it is possible to configure how a track will be displayed in a
DAS client. Here several examples are shown how this can be used in Ensembl to display color gradients,
histograms and line-plots

Fig. 4 SPICE as a viewer for results of the CASP contest. The experimentally obtained structure is shown in
white and 2 predictions from different groups are shown in yellow and green
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example Ensembl gene ID or UniProt accession number. It is even possible to upload
user-provided data to the site and display this in the appropriate context on the Ensembl
web page.

Also a growing number of datasets from the Ensembl database are being presented
as DAS sources, which makes Ensembl also a DAS server. It makes it possible for other
developers to create their ownDAS clients displaying Ensembl data without the need to
install the full Ensembl dataset.

One of the DAS extensions that was introduced as part of the BioSapiens project
was a convention for how to deal with big quantitative data sets via DAS. DAS
provides a STYLESHEET command that can configure how the data from a DAS
server should be displayed in a DAS client. This can be used to display data as
histograms, data plots, color gradient and any function both in the Ensembl and
SPICE DAS clients (Fig. 5).

3.4 DAS servers

Providing biological sequence annotation to the scientific community throughDAS can
be a surprisingly easy task. As described above, the Ensembl web site allows direct
upload of user data. In addition, a number of DAS servers are available as open source
software, and installing them is often easier than installing a standard web server.
Examples of freely available, well-tested servers are:

* ProServer (http://www.sanger.ac.uk/Software/analysis/proserver/) (Finn et al.
2007) (Perl-based)

* Dazzle (http://www.derkholm.net/thomas/dazzle/) (Java-based)
* myDAS (http://code.google.com/p/mydas/) (Java-based)

Once installed, these servers can be configured to serve local data either through
database connectors from local databases, or even from tab-delimited files. Tomake the
data widely available, new servers should be registered with the DAS registry at http://
www.dasregistry.org.

4 The protein feature ontology

Whilst the independence of each annotation server is a major strength of the DAS
protocol, it has also resulted in a major weakness. Each annotation type provided by a
server is characterised by a feature type, defining the kind of information described in
the feature, for example a glycosylation site. However, the DAS protocol does not define
the possible feature types. Thus, a specific type of glycosylation might be predicted by
two independent servers, once named “N-glycosylation”, once named “Glycosylation
(N)”. While it is desirable to be able to compare annotation of the same functional
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property from independent sources, it would be technically difficult even to display the
two features next to each other, due to the different naming. With the advent of dozens
of annotation servers, such differences became a major obstacle to the efficient analysis
of DAS data. Efficient DAS data analysis, combining and comparing annotations from
many different sources, inherently relies on the consistent organisation and presenta-
tion of the data displayed.

To address this challenge, the BioSapiens consortium has developed a hierarchical
controlled vocabulary or ontology1 of terms to clearly designate protein annotation
types. The protein feature ontology is a composite ontology comprising selected terms
from the Sequence Ontology (Eilbeck et al. 2005), the MOD protein modification
ontology and some BioSapiens specific terms. The terms describe the features which
make up protein function and form, from chemical modifications of amino acids via
structuralmotifs such as helix-turn-helix to overall tertiary structuremarking a globular
domain. It is divided into two parts: Positional terms which refer to a specific residue or
range of residues in the protein and non-positional terms which refer to the whole
protein sequence or structure. The positional terms are features that are located on the
sequence. These terms can also be found in the SequenceOntology. Themain categories
of this section are:

* polypeptide_region describing a continuous sequence or single residue in a refer-
ence/mature protein sequence. Within this category lies the term polypeptide_do-
main, describing a structurally or functionally defined protein region which has
been shown to recur throughout evolution.

* biochemical_region including post_translational_modifications (linking to the
MOD ontology), catalytic_residues which are involved in the catalytic mechanism
of enzymes andmolecular_contact_regions indicating those residues which help to
bind ligands or metal ions.

* mature_protein_product and immature_peptide_region categories distinguish the
final folded peptide from regions which are cleaved during the mature protein
folding process.

* structural_regionwhich describes the backbone conformation of the polypeptide and
includes child terms to describe both secondary structure and membrane structure.

* polypeptide_variation_site indicates alternative sequence due to naturally occurring
events such as polymorphisms and alternative splicing or experimental methods
such as site directed mutagenesis.

1 The protein feature ontology has been developed to clearly designate annotation types
and facilitate display and analysis of protein features. It is not an ontology as used in
computer science, allowing automated reasoning. As often practised in molecular biology,
we are using the term “ontology” as a synonym for “hierarchical controlled vocabulary”.
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* polypeptide_sequencing_information clusters annotations which report differing
results in experimental sequence determination.

Non-positional terms are not located to a particular region of the sequence, instead
these annotations provide a description of the properties of the whole protein such as
publication or provide links to other sources of non positional information such as
GO_term_annotation or EC_annotation. The protein feature ontology currently com-
prises approximately 140 terms: 100 positional and 40 non positional terms.

Through the introduction of systematic naming of feature types according to the
protein feature ontology, the annotations provided by participating annotation servers
can be systematically compared and displayed, and analyzed in a user-friendly way,
grouping related features provided bymany servers close to each other in the display on
the client, as shown in Fig. 6.
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Fig. 6 Illustrating the BioSapiens protein feature ontology. The diagram depicts selected features for the
human epidermal growth factor receptor (UniProtKB/SwissProt accession P00533) annotated by members
of the BioSapiens Consortium and displayed using Dasty2. The top level terms in the ontology are shown
using OBO edit (Day-Richter et al. 2007) in the bottom right hand of the diagram
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5 Conclusion

DAS is a powerful system for data exchange between remote sites over the internet. It
separates visualization from the actual data, thus making it much easier to show data
distributed overmultiple sites. It can be used to access the latest versions of data, without
the need for local installations. It can also be used to integrate local data into popular
bioinformatics resources.
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Viral bioinformatics

B. Adams1, A. Carolyn McHardy1, C. Lundegaard2 and T. Lengauer1
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1 Introduction

Pathogens have presented a major challenge to individuals and populations of living
organisms, probably as long as there has been life on earth. They are a prime object of
study for at least three reasons: (1)Understanding theway of pathogens affords the basis
for preventing and treating the diseases they cause. (2) The interactions of pathogens
with their hosts afford valuable insights into the working of the hosts� cells, in general,
and of the host�s immune system, in particular. (3) The co-evolution of pathogens and
their hosts allows for transferring knowledge across the two interacting species and
affords valuable insights into how evolution works, in general. In the past decade
computational biology has started to contribute to the understanding of host-pathogen
interaction in at least three ways which are summarized in the subsequent sections of
this chapter.

Taking influenza as an example the computational analysis of viral evolution within
the humanpopulation is discussed in Sect. 2. This evolutionary process takes place in the
time frame of years to decades as the virus is continuously changing to evade the human
immune system. Understanding the mechanisms of this evolutionary process is key to
predicting the risk of emergence of new highly pathogenic viral variants and can aid the
design of effective vaccines for variants currently in circulation.

Section 3 addresses the molecular basis of how such vaccines can be developed.
Vaccines present the human immune system molecular with determinants of viral
strains that elicit an immune response against the virus and activate the buildup of
molecular immune memory without being pathogenic. That section also gives a
succinct introduction to the workings of the human immune system.

Section 4 addresses the issue of highly dynamic viral evolution inside a single
patient. Some viruses have the capability of this kind of evolution in order to evade the
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immune response of the host or the effects of a drug therapy. HIV is the example
discussed here. Drug therapies against HIV become ineffective due to the virus evolving
to a variant that evades the therapy. If this happens the therapy has to be replaced with
another therapy that effectively targets the viral variant now present inside the patient.

2 Viral evolution in the human population

Influenza is a classic example of a pathogen that evades immunity at the population
level. Due to a strong immune response in the host, which clears the virus within a few
days, the virus can only survive by moving on quickly. Following an infection, hosts
retain strong immunity to a particular antigenic type. As immunity accumulates in the
population, there is increasing selection for pathogens with altered antigenic types that
are less effectively recognized and thus have a higher probability of finding a susceptible
host. By rapid evolution influenza is able to persist at relatively high prevalence in the
human population. Consequently, vaccines must be frequently updated to ensure a
good match with the circulating strain. However, even with current vaccination
programs, endemic influenza remains a significant burden and is associated with an
estimated 37,000 deaths in the U.S. alone.

In addition to the endemic activity, influenza pandemics occasionally occur when
avian forms of the virus adapt to humans or provide genetic material that is incorpo-
rated into existing human forms. The antigenic novelty of these variants allows them to
sweep though the global population, often causing severe disease. There were three such
pandemics in the twentieth century. The most severe of them, the �Spanish Flu� of 1918,
resulted in 30 to 50 million deaths.

Thus, two key goals of influenza research are predicting viral evolution in the human
population to determine optimum vaccine configurations and the early recognition of
potential pandemic strains circulating in, or emerging from, the avian population.
Large-scale genome sequencing and high-throughput experimental studies of influenza
isolates from various sources have a central role in both of these endeavors.

2.1 Biology and genetics

Influenza viruses are single-stranded, negative sense RNA viruses of the family
Orthomyxoviridae (Webster et al. 1992). Three phylogenetically and antigenically
distinct types currently circulate, referred to as influenza A, B and C. All types infect
humans and some othermammals. InfluenzaA also infects birds. This sectionwill focus
on influenza A, because of its high prevalence and increased virulence in humans,
compared to types B and C.

The influenza A genome is composed of eight RNA segments totaling approxi-
mately 14 kb of sequence. The segments encode eleven proteins that are required for the
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replication and infection cycle of the virus. The two major determinants recognized by
the human immune system are the surface glycoproteins hemagglutinin (HA) and
neuraminidase (NA). Hemagglutinin is responsible for binding to sugar structures on
the ephithelial cells lining the respiratory tract and entry into the cell during the first
stage of infection. Neuraminidase plays a part in releasing assembled viral particles from
an infected cell by cleaving terminal sugar structures from neighboring glycoproteins
and glycolipids on the cell surface. Several subtypes of influenza A are distinguished on
the basis of the antigenic properties of the HA and NA proteins. There are 16 known
subtypes for HA and 9 for NA, all of which occur in birds. In humans, subtypes H2N2
and H3N8 have circulated in the past but currently only H3N2 and H1N1 are endemic.
Of these H3N2 is more virulent and evolves more rapidly.

There are two distinctmechanisms bywhich the influenza genome evolves. One is the
acquisition of mutations, deletions or insertions during the replication process. This
occurs at a higher rate than for DNA-based viruses, as RNA polymerases do not possess a
proof-reading mechanism. Some of these changes subsequently become fixed in the viral
sequence, either through the random fixation process of genetic drift or because they
confer a selective advantage. This gradual change and its impact on the phenotype level
is referred to as antigenic drift. The second mechanism of evolution is reassortment
(see Fig. 1). If two different strains simultaneously infect the same host, a novel strainmay
arise with a combination of segments from the two. The phenotypic change associated
with the emergence of such a viral variant is referred to as antigenic shift.

2.2 Vaccine strain selection for endemic influenza

The human immune system primarily targets the hemagglutinin surface protein of the
influenza virus. Whether primed by infection or vaccination, antibodies provide long
lasting immunity to that particular HA configuration. However, due to antigenic drift

Fig. 1 Schematic representation of influenza evolution by reassortment (left) and mutation (right). Each
viral genome is composed of 8 RNA segments. Reassortment of the 8 segments from twodistinct viruses can
result a new viable form of the virus. Drift occurs when errors during viral replication produce novel variants
with small changes, i.e. insertions, deletions or mutations in the sequence segments
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within just a few years those antibodies do not efficiently recognize the circulating HA.
Influenza vaccines must thus be regularly updated and re-administered. The WHO
makes vaccine recommendations based on the prevalence of recently circulating strains.
If a new genotype, based on the HA segment, appears to be increasing in prevalence,
then hemagglutination-inhibition (HI) assays using post infection ferret sera are carried
out to determine whether this is associated with phenotypic change in terms of the
antigenicity. If there is significant phenotypic change, the current vaccine is unlikely to
be effective against the proposed emergent strain and must be updated. The genotype-
phenotype map for influenza virus is unclear and genotyping is only used to choose
candidate strains forHI assays. However, recent advances have indicated several ways in
which genome-based methods may improve vaccine selection.

Fig. 2 Phylogenetic tree for the influenza HA coding sequences constructed by maximum parsimony
using the software PAUP (http://paup.csit.fsu.edu/) from the sequences of 507 viruses isolated between
1983 and 2007. Dates to the right of the tree indicate the year that themajority of sequences contributing to
that section were isolated. The tree has a distinctive cactus like shape characterized by constant turnover
and limited diversity at any point in time
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Bioinformatic analyses of the hemagglutinin encoding sequences have revealed
characteristics of the evolutionary process and also determined relevant properties with
respect to viral fitness. Phylogenetic trees of these sequences have a cactus-like topology
(see Fig. 2). A diverse strain repertoire is periodically replaced by just a single strain,
which constitutes the progenitor for all future lineages (Fitch et al. 1997). Population
genetic theory states that such trees can be derived by random genetic drift if population
size becomes very small or by selection if fitter variants emerge and periodically replace
all others.

Further analyses of such trees led to the identification of a set of rapidly evolving
codons in the antibody-binding and receptor-binding sites of the protein (Bush et al.
1999). These codons show a significantly higher ratio of synonymous to nonsynon-
ymous substitutions than expected by chance, indicating that the driving force in the
evolution of the HA gene is selection for variants that are fitter in terms of the evasion of
host immunity acquired from previous infections. These positively selected for codons
also possess predictive value with respect to the future fitness of a set of viral strains.

The relationship between the influenza genotype and phenotype has been eluci-
dated by the application of multidimensional scaling to create a low dimensional
representation of antigen-antibody distances measured with hemagglutinin inhibition
assays (Smith et al. 2004). This showed that genotypes isolated over the same 2–5 year
period cluster in phenotype space. Significant differences between clusters mostly
localize to antibody-binding sites, the receptor-binding site and positively selected
codons of the HA sequence. As more data become available, the combined analysis of
genotypes and their relationship to the antigenic phenotype will enhance our capability
to predict dominant circulating strains and estimate the efficacy of proposed vaccines.

2.3 Pandemic influenza

Antigenic drift allows partial immune evasion, but the host population, on average,
always has some degree of immunity. Occasionally however, novel strains with no
antigenic history cause global pandemics. In the twentieth century this happened in
1918, 1957 and 1968. Further pandemics are considered inevitable unless their origin
can be rapidly detected or, better still, predicted (Taubenberger et al. 2007). Whole
genome analysis has shown that the 1968 and 1957 pandemic strains were reassortants
that introduced avian HA, PB1 and, in 1957 NA, segments into viruses already
circulating in, and adapted to, the human population. The antigenic novelty of the
1918 pandemic strain also stems from its introduction from an avian source.Whether it
crossed to humans directly from birds, circulated in swine first, or was a reassortment of
existing avian and human strains remains a matter of debate.

Since 1997, the avian H5N1 subtype has been considered a serious candidate for a
novel pandemic, due to a small but increasing number of human cases. This requires the
avian HA protein to undergo adaptation to bind to human receptors. Analysis of the
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viral genotypes responsible for the human H5N1 cases has identified several common
amino acids changes in and around the binding region. It has also shown that the virus is
repeatedly crossing directly from birds, without reassortment or sustained human to
human transmission (2005). So far, an H5N1 strain with pandemic potential has not
emerged, but continual surveillance is vital. Early detection of the accumulation of
mutations that may facilitate a host switch, the mixing of genetic material from human
and avian forms or evidence of human to human transmission will be critical for
containment strategies

The efficiency of such surveillance measures may also be improved by targeting
particular geographic regions. Based on a phylogenetic tree of avian H5N1 sequences, a
phylogeography of significant migratory trajectories has been constructed for Eurasia
by minimizing the number of migration events necessary to keep the phylogeny
geographically consistent (Wallace et al. 2007). These data indicated that Indochina
is a largely isolated subsystem in terms of H5N1 evolution and Guangdong in China is
the main source of diversity and diffusion throughout Eurasia. It may therefore be
practical to invest more of the surveillance effort into this region.

2.4 Conclusion

Even withmodernmedicine the burden of annual influenza is significant and the threat
of a pandemic constantly hangs over the world. Vaccines, chemo prophylactics,
detection and containment strategies are all in use. But the influenza virus, like malaria
and HIV, is a constantly moving target and optimizing pharmaceutical design and
public health policy is a complex problem requiring an integrated knowledge of, among
other things, epidemiology, immunology and molecular biology. Bioinformatics has
provided, and will continue to provide, vital insights in all of these areas.

3 Interaction between the virus and the human
immune system

3.1 Introduction to the human immune system

The human immune system rests basically on two pillars. One pillar is solely genetically
determined and remains unchanged throughout the life of an individual. This so-called
innate immune system basically provides physical protection barriers and registers if
generally recognizable foreign substances are entering the organism. If such substances
are detected a fast and general protection mechanism sets in whose nature is
determined by the type of substance registered. The innate protection mechanisms
also include an activation of the other pillar of the immune system, the adaptive
immune system. This part evolves during the life, and its present state is highly
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dependent of the infection history of the individual. The adaptive immune system is
itself basically split up in two parts. First the humoral immunity, which happens
outside cells within the body liquids and is antibody-driven. Special immunoglobulin
molecules (antibodies) mediate the humoral response. Antibodies are produced by B
lymphocytes that bind to antigens by their immunoglobulin receptors, which is a
membrane bound form of the antibodies. When the B lymphocytes become activated,
they start to secrete the soluble form of the receptor in large amounts. Antibodies are
Y-shaped, and each of the two branches functions independently and can be recom-
binantly produced and is then known as fragments of antibodies (Fab). The antibody
can coat the surface of an antigen such as a virus and generally this will inactivate
whatever undesired function the respective objectmay have, and facilitate the uptake of
the antibody-bound object via phagocytosis bymacrophages, whichwill then digest the
object. Macrophages, B cells, and dendritic cells are all so-called professional antigen
presenting cells (APC). They carry a special receptor named the major histocompat-
ibility complex (MHC) class II. This receptor is able to present peptides derived from
degraded phagocytosed proteins. Other cells (T cells) carries a receptor, the T cell
receptor (TCR), which, if the T cell also carries a so called CD4þ receptor, is able to
bind to MHC class II molecules presenting a foreign peptide, e.g. one not originating
from the human proteome. Such an interaction will stimulate B cells to divide and
further progress to produce more antibodies as well as survive for a long time as
memory B cells. The presence of memory B cells enables the immune system to react
faster in a subsequent infection by the same pathogen. The CD4þ T cells actually also
belong to the second part of the adaptive immune system, which is the cellular immune
system. Another important feature of cellular immunity regards T cells with the CD8
coreceptor (CD8þT cells). The TCR of CD8þT cells can recognize foreign peptides in
complex with membrane bound MHC class I molecules on the outer side of nucleated
cells. Such an interaction will activate the T cells to signal and induce cell death of the
cell presenting the foreign peptide.

Both antibodies and TCRs are composed of a light and a heavy chain. These chains
are translated fromgenes resulting from a genetic recombination of two and three genes,
respectively, during the B-cell development in the bone marrow. These genes exist in
several nonidentical duplicates on the chromosome and can be combined into a large
number of different rearrangements. However, the molecular processes linking the
genes are imprecise and involve generation of P (palindromic) nucleotides, addition of
N (non-templated) nucleotides by terminal deoxynucleotidyl transferase (TdT) and
trimming of the gene ends and therefore also play a major role in the generation of the
huge diversity needed to be able to respond to any given pathogen. The T cells having a
mature TCR are being validated in the thymus. The host will eliminate T cells having a
TCR that is either unable to bind to an MHC:peptide complex or that will recognize an
MHCwith a peptide originating from the hosts proteome (self peptides). All the above is
highly simplified text book immunology (Janeway 2005).
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3.2 Epitopes

To be able to combat an infection the immune system must first recognize the intruder
as foreign. The specific parts of the pathogen that is recognized and induces an immune
response are called epitopes. Epitopes are often parts of larger macromolecules, which
most often happen to be polypeptides and proteins. B-cell epitopes are normally
classified into two groups: continuous and discontinuous epitopes. A continuous
epitope, (also called a sequential or linear epitope) is a short peptide fragment in an
antigen that is recognized by antibodies specific for the given antigen. A discontinuous
epitope is composed of residues that are not adjacent in the amino acid sequence, but are
brought into proximity by the folding of the polypeptide.

The cellular arm of the immune system consists as desribed of two parts; the CD8þ
cytotoxic T lymphocytes (CTLs), and the CD4þ helper T lymphocytes (HTLs). CTLs
destroy cells that present non-self peptides (epitopes). HTLs are needed for B cells
activation and proliferation to produce antibodies against a given antigen. CTLs on the
other hand perform surveillance of the host cells, and recognize and kill infected cells.
BothCTLs andHTLs are raised against peptides that are presented to the immune cells by
major histocompatibility complex (MHC) molecules, which are encoded in the most
polymorphic mammalian genes. The human versions of MHCs are referred to as the
human leucocyte antigens (HLA). The cells of an individual are constantly screened for
presentedpeptides by the cellular armof the immune system. In theMHCclass I pathway,
class IMHCspresents endogenous peptides toT cells carrying theCD8 receptor (CD8þT
cells). To be presented, a precursor peptide is normally first generated by cutting
endogenous produced proteins inside the proteasome, a cytosolic protease complex.
Generally, resulting peptides should bind to the TAP complex for translocation into the
endoplasmic reticulum(ER).Duringor after the transport into theER thepeptidemust be
able to bind to theMHCclass Imolecule to invoke foldingof theMHCbefore the complex
can be transported to the cell surface. When the peptide:MHC complex is presented on
the surface of the cell, it might bind to a CD8þ T cell with a fitting TCR. If such a TCR
clone exists a CTL response will be induced and the peptide is considered an epitope. The
most selective step in this pathway is binding of a peptide to theMHC class Imolecule. As
mentioned above, the MHC is the most polymorphic gene system known. The huge
variety of protein variants brought forth by this polymorphism is a big challenge forT-cell
epitope discoveries, enhancing the need for bioinformatical analysis and resources. It also
highly complicates immunological bioinformatics, as predictive methods for peptide
MHC binding have to deal with the diverse genetic background of different populations
and individuals. On a population basis, hundreds of alleles (gene variants) have been
found for most of the HLA encoding loci (1839 in release 2.17.0 of the IMGT/HLA
Database, http://www.ebi.ac.uk/imgt/hla/). In a given individual either one or two
different alleles are expressed per locus depending on whether the same (in homozygous
individuals) or two different (in heterozygous individuals) alleles are present on the two
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different chromosomes. Each MHC allele binds a very restricted set of peptides and the
polymorphism affects the peptide binding specificity of the MHC; one MHC will
recognize one part of the peptide space, whereas another MHC will recognize a different
part of this space. The very large number of different MHC alleles makes reliable
identification of potential epitope candidates an immense task if all alleles are to be
included in the search.ManyMHCalleles, however, share a large fractionof their peptide-
binding repertoire and it is often possible to find promiscuous peptides, which bind to a
number of different HLA alleles. The problem can thus be largely reduced by grouping all
the different alleles into supertypes in a manner were all the alleles within a given
supertype have roughly the same peptide specificity. This grouping generally requires
some knowledge regarding the binding repertoire of either the specific allele or an allele
with a very similar amino acid sequence.

The peptides recognized by the CD4þ T cells are called helper epitopes. These are
presented by theMHC class IImolecule, and peptide presentation on thisMHC follow a
different path than the MHC class I presentation pathway: MHC class II molecules
associate with a nonpolymorphic polypeptide referred to as the invariant chain (Ii) in
the ER. The Ii chain is a type II membrane protein, and unlike MHC molecules the
C-terminal part of themolecule extends into the lumen of the ER. TheMHC:Ii complex
accumulates in endosomal compartments and here, Ii is degraded, while another
MHC-like molecule, called HLA–DM in humans, loads the MHC class II molecules
with the best available ligands originating from endocytosed antigens. The peptide:
MHC class II complexes are subsequently transported to the cell surface for presenta-
tion to the CD4þ T helper cells. The helper T cells will bind the complex and be
activated if they have an appropriate TCR.

3.3 Prediction of epitopes

Amajor task in vaccine design is to select and design proteins containing epitopes able
to induce an efficient immune response. The selection can be aided by epitope
prediction in whole genomes, relevant proteins, or regions of proteins. In addition,
prediction of epitopes may help to identify the individual epitopes in proteins that have
been analyzed and proven to be antigens using experimental techniques based on, e.g.,
Western blotting, immunohistochemistry, radioimmunoassay (RIA), or enzyme-linked
immunosorbent assays (ELISA).

Today, the state-of-the-art class I T-cell epitope prediction methods are of a quality
that makes these highly useful as an initial filtering technique in epitope discovery.
Studies have demonstrated that it is possible to rapidly identify and verifyMHC binders
from upcoming possible threats with high reliability, and take such predictions a step
further and validate the immunogenicity of peptides with limited efforts, as has been
shown with the influenza A virus (see next subsection). It is also possible to identify the
vast majority of the relevant epitopes in rather complex organisms using class I MHC
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binding predictions and only have to test a very minor fraction of the possible peptides
in the virus proteome itself. MHC class II predictions can be made fairly reliably for
certain alleles. B-cell epitopes are still the most complicated task. However, some
consistency between predicted and verified epitopes is starting to emerge using the
newest prediction methods (Lundegaard et al. 2007).

B-cell epitope prediction is a highly challenging field due to the fact that the vast
majority of antibodies raised against a specific protein interact with parts of the antigen
that are discontinuous in the polypeptide sequence. The prediction of continuous, or
linear, epitopes, however, is a somewhat simpler problem, and may be still useful for
synthetic vaccines or as diagnostic tools. Moreover, the determination of continuous
epitopes can be integrated into determination of discontinuous epitopes, as these often
contain linear stretches. More successful methods combine scores from the Parker
hydrophilicity scale and a position specific scoring matrix (PSSM) trained on linear
epitopes. Different experimental techniques can be used to define conformational
epitopes. Probably the most accurate and easily defined is using the solved structures of
antibody–antigen complexes. Unfortunately, the amount of this kind of data is still
scarce, compared to linear epitopes. Furthermore, for very few antigens all possible
epitopes have been identified. The simplest way to predict the possible epitopes in a
protein of known 3D structure is to use the knowledge of surface accessibility and newer
methods using protein structure and surface exposure for prediction of B-cell epitopes
have been developed. The CEP method calculates the relative accessible surface area
(RSA) for each residue in the structure. The RSA is defined as the fraction of solvent
exposed surface of a given amino acid in the native structure relative to the exposed
surface the same amino acid placed centrally in a tri-peptide, usually flanked by glycines
or alanines. It is then determined which areas of the protein are exposed enough to be
antigenic determinants. Regions that are distant in the primary sequence, but close
in three-dimensional space will be considered as a single epitope. DiscoTope (www.cbs.
dtu.dk/services/DiscoTope) uses a combination of amino acid statistics, spatial in-
formation and surface exposure. The system is trained on a compiled dataset of
discontinuous epitopes from 76 X-ray structures of antibody–antigen protein com-
plexes. (Haste Andersen et al. 2006). B-cell epitope mapping can be performed
experimentally by other methods than structure determination, e.g., by phage display.
The low sequence similarity between the mimotope (i.e. a macromolecule, often a
peptide, whichmimics the structure of an epitope) identified through phage display and
the antigen complicates the mapping back onto the native structure of the antigen,
however, a number of methods have been developed that facilitate this.

A number of methods for predicting the binding of peptides to MHC molecules
have been developed. Themajority of peptides binding toMHC class I molecules have a
length of 8–10 amino acids. Position 2 and the C-terminal position have turned out
generally to be very important for the binding to most class I MHCs and these positions
are referred to as anchor positions (Fig. 3). For some alleles, the binding motifs
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have additional anchor positions. E.g., eptides binding to the humanHLA-A
�
0101 allele

have positions 2, 3 and 9 as anchors (Rammensee et al. 1999) (Fig. 1A). The discovery of
such allele-specific motifs led to the development of the first reasonably accurate
algorithms. In these prediction tools, it is assumed that the amino acids at each position
along the peptide sequence contribute a given binding energy, which can be added up to
yield the overall binding energy of the peptide. Several of these matrix methods are
trained on exclusively positive examples like peptides eluted fromMHCs on living cells,
peptides that have been shown to induce significant interferon gamma responses inCTL
assays, or peptides that bind the MHC more strongly than a certain binding affinity
value (usually below 500 nM). Other matrix methods, like the SMM method, aim at
predicting an actual affinity and thus use exclusively affinity data. However, matrix-
based methods cannot take correlated effects into account (when the binding affinity of
peptide with a given amino acid at one position depends on amino acids that are present
at other positions in the peptide). Higher-order methods like ANNs and SVMs are
ideally suited for taking such correlations into account and can be trained with data
either in the format of binder/non-binder classification, or with real affinity data. Some
of the recent methods combine the two types of data and prediction methods. The
different types of predictors are reviewed in (Lundegaard et al. 2007) and an extensive
benchmark of the performances of the different algorithms have been published by
(Peters et al. 2006).

Representing a supertype by a well-studied allele risks the confinement to selecting
epitopes that are restricted to this allele, exclusing other alleles within the supertype.
Thus another, and potentiallymore rational approach, would be to select a limited set of
peptides restricted to as many alleles as possible. This should be within reach with new
methods that directly predict epitopes that can bind to different alleles (Brusic et al.
2002), or pan-specific approaches that can make predictions for all alleles, even those
whose sequences are not yet known (Heckerman et al. 2007; Nielsen et al. 2007a).
Finally, even though MHC binding is the most limiting step in the class I pathway the
cleavage and transporting events are not insignificant. Several tools have been developed
that integrate predictions of the different steps, and this has been shown to improve the
predictions of actual CTL epitopes (Larsen et al. 2007).

Unlike the MHC class I molecules, the binding cleft of MHC class II molecules is
open at both ends, which allows for the bound peptide to have significant overhangs in
both ends. As a result MHC class II binding peptides have a broader length distribution
even though the part of the binding peptide that interacts with the MHC molecule
(the binding core) still includes only 9 amino acid residues. This complicate binding
predictions as the identification of the correct alignment of the binding core is a crucial
part of identifying the MHC class II binding motif. The MHC class II binding motifs
have relatively weak and often degenerate sequence signals. While some alleles like
HLA-DRB1

�
0405 show a strong preference for certain amino acids at the anchor

positions, other alleles like HLA-DRB1
�
0401 allow basically all amino acids at all
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positions. In addition, there are other issues affecting the predictive performance of
mostMHC class II binding predictionmethods. Themajority of thesemethods take as a
fundamental assumption that the peptide:MHC binding affinity is determined solely by
the nine amino acids in binding core motif. This is clearly a large oversimplification
since it is known that peptide flanking residues (PFR) on both sides of the binding core
may contribute to the binding affinity and stability. Some methods for MHC class II
binding have attempted to include PFRs indirectly, in terms of the peptide length, in the
prediction of binding affinities. It has been demonstrated that these PFRs indeed
improve the prediction accuracy (Nielsen et al. 2007b).

3.4 Epitope prediction in viral pathogens in a vaccine
perspective

As described in Sect. 2 some of the important B cell antigens vary significantly between
different influenza A viral strains. Current influenza vaccines are based on inactivated
influenza virus and thus mimic only the B cell response obtained by a fully infection
competent strain. This has the drawback that only closely related strains will be covered
by this response and new vaccines have to be produced annually as a result of the
antigenic drift (see Sect. 2). Thus the ideal influenza vaccine will raise an immune
response against parts of the pathogen that are conserved between as many strains as
possible. To identify these parts the described prediction tools will be an invaluable help.
Initial in silico scans of the viral genome for potential immunogenic parts will reduce the
potential epitope space, and thusmake experimental validations feasible. In a published
example all genomic sequenced strains of H1N1 were scanned for CTL epitopes. Only
9-mer peptides in the influenza proteome that were at least 70% conserved in all strains
were considered. The top 15 predicted epitopes for each of the 12 supertypes were
subsequently selected to be synthesized for further validation. Because of the limited size
of the influenza genome and the high variability of some of the proteins the conservation
criteria resulted in relatively low prediction scores of some of the chosen peptides. 180
peptideswere selected and 167were synthesized and further validated forMHCbinding
and CTL response. The fraction of validated MHC binding peptides (with a binding
affinity of below 500 nM) was relatively low (about 50%) compared to some other
studies (60–75%) (Sundar et al. 2007; Sylvester-Hvid et al. 2004), but 13 of the 89
binding peptides, or 15%, gave a positive output in a CTL recall assay. Obviously, the
conserved epitopes were found in the less variable proteins, but the large majority of the
validated epitopes (85%) turned out to be 100% conserved not only in H1N1 strains but
also in the H5N1 avian strains that in the last few years have infected humans resulting
in severe symptoms and high mortality (Wang et al. 2007). Such epitopes can be highly
valuable starting points for vaccine development. Even though cellular immunity does
not protect against infections it might protect against a fatal outcome of an infection
with a new aggressive strain.
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To find conserved B cell and helper epitopes a similar approach could be used even
though conserved conformational epitopes might be hard to find and even harder to
direct a response to. Figure 2 displays a three-dimensional protein structure model of
the variable surface protein hemagglutinin fromaH5N1 strain. Predicted B cell epitopes
are mapped on the structure, as well as helper epitopes restricted to the relatively
common HLA-DRB

�
0101 allele.

4 Viral evolution in the human host

4.1 Introduction

The previous section has discussed the evolution which a pathogen population under-
goes within the human population over a time span of years or longer. Some pathogens
but not all, by any means, play a more dynamic evolutionary game inside the host by
which they try to evade the host�s immune system or the drug therapy that is applied to
combat the disease.We observe this kind of process bothwith unicellular pathogens and

Fig. 4 3D structure of hemagglutinin with highlighted epitope predictions using chain A from the pdb
entry 2IBX. White cartoon: Other chains in multimer not used for predictions. Green cartoon: Part of chain
where no class II or B cell epitopes are predicted. Yellow sticks: Predicted helper epitopes (NetMHCII
predictions) considering the DRB

�
0101 allele. Blue spheres: Predicted B cell epitopes (DiscoTope). Orange

spheres: Residues predicted to be in both B cell and helper epitopes. The tools FeatureMap3D (www.cbs.
dtu.dk/services/FeatureMap3D/) and PyMol (pymol.sourceforge.net/) were used to generate the drawing
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viruses. An example of the former is Plasmodium falciparum which causes Malaria.
Here the pathogen evolves new suites of surface epitopes repeatedly to evade the
adaptive immune response of the host, and the immune system of the host responds to
the new populations of modified pathogens with recurrent fever bouts that manifest the
periodic amplifications of the immune system activity.

This section will present a viral example, namely the case of Human Immunode-
ficiency Virus (HIV), which causes AIDS.

4.2 Replication cycle of HIV

HIV is a single-stranded RNA virus with two copies of the genome per virus particle.
The replication cycle of the virus is schematically illustrated in Fig. 5.

The virus enters the human cell by attaching with its surface protein gp120 to the
cellular receptor CD4. It needs one of the two cellular coreceptors CCR5 or CXCR4 to
facilitate cell entry. After fusion with the cell membrane it releases its content and uses
one of the viral enzymes, namely theReverse Transcriptase (RT) to transcribe its genome
back to DNA. Another viral enzyme, the Integrase (IN) splices the DNA version of the
viral genome, the so-called provirus, into the genome of the infected host cell. This cell is
often a T-helper cell of the host�s immune system. Once this cell starts dividing, i.e., as
part of the immune response to the HIV infection, the cell starts producing the building
blocks of the virus. New virus particles assemble at the cell surface and segregate. During
a final virus maturation phase, a third viral enzyme, the Protease (PR) cleaves the viral
polyproteins into their active constituents. The dynamic evolution of HIV ismanifested
by the fact that RT lacks a proof-reading mechanism and introduces genomic variants
during the copying process. The high turnover of over a billion virus particles per host
and day during periods of high-activity immune response affords a sufficient genomic
diversity for a selective evolutionary process that lends an advantage to forms of the
virus that are resistant to the immune system and drug therapy with which they are
confronted.

Fig. 5 Replication cycle of HIV (from (Markel 2005))
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4.3 Targets for antiviral drug therapy

Antiviral drugs target one of several of the proteins involved in the viral replication
cycle. The historically earliest drugs target RT and block it by providing “fake”
nucleotides for the DNA assembly that act as terminators for the chain elongation
process. These drugs are called nucleoside analog RT inhibitors (NRTIs). Another class
of drugs targeting RT, the non-nucleoside analogs (NNRTIs), facilitate inhibition of the
enzyme by binding to a specific part of its binding pocket. Since the mid 90s, inhibitors
of PR (PIs) that substitute for the peptides to be cleaved by the enzyme have entered the
market place. Inhibitors of integrase are just about to come to market. Finally, in recent
years, several drugs have been developed that target the blockage of the process of viral
cell entry, by blocking one of the involved proteins, either the viral surface protein gp41,
or one of the cellular proteins, CD4, CCR5 or CXCR4.Within the older classes of drugs
there are up to about a dozen different compounds in each class. The justification for so
many compounds is that there are many different variants of HIV that have different
resistance profiles. This is also the reason why, for over ten years, the so-called highly
antiretroviral therapy (HAART) approach administers several drugs from several drug
classes to the patient simultaneously, in order to present a high barrier for the virus on its
evolutionary path to resistance. Still, after a time of several weeks up to about a year or
two, the virus succeeds in evolving a variant that is resistant against the given therapy
regimen. At this point, a new drug combination has to be selected to combat the new
viral variant.

4.4 Manual selection of antiretroviral combination
drug therapies

Even before the use of computers, doctors have selected drug therapies based on the
genome of the viral variant prevalent inside the patient which, in developed countries, is
routinely determined from virus in the patient�s blood serum via sequencing methods.
The basis for the selection is a set of mutation tables. There is one such table for each
molecular target. The table lists, for each drug, the observed and acknowledged set of
mutations (on the protein level) that have been observed to confer resistance against
that drug. The offered tables are updated regularly by international societies such as the
International AIDS Society (Johnson et al. 2007).

There are two problems with the mutation tables. (1) They regard different
mutations as independent from each other. Any one of the mutations listed in the
table is considered to confer resistance on its own. However, in some cases,
mutations at different positions have been observed to interact in complex ways.
For instance, a mutation can resensitize a virus to a drug to which an earlier
mutation has rendered it resistant. (2) Mutations are selected to enter the mutation
table by a consensus process among experts that cannot claim to be objective and
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reproducible. Problem 1 has been countered by the introduction of rule-based
expert systems that can implement complex resistance rules involving several
mutations (Schmidt et al. 2002). Problem 2 has been approached by introducing
bioinformatics methods for predicting resistance from the viral genotype. Such
methods derive statistical models directly from clinical data that comprise experi-
ence on viral resistance development. We now survey the methods by which such
statistical models are derived and applied.

4.5 Data sets for learning viral resistance

First we need data sets for deriving the statistical models. The availability of data in
sufficient volume and quality is a major hurdle for bioinformatical approaches to
resistance analysis. Data have been collected in several parts of the world, e.g., in the
USA (Stanford HIV Database (Rhee et al. 2003)), over Germany (Arevir Database
(Roomp et al. 2006)) and, more recently, over Europe (Euresist Database1). These
databases contain two types of data.

1. Genotypic data list viral variants sampled from patients together with clinical
information about the patient, including their viral load (the amount of free virus)
and counts of immune cells in the blood serum. This allows for correlating the viral
genotype with the virologic and immunological status of the patient.

2. Phenotypic data report results from laboratory experiments, in which virus
containing the resistance mutations observed in the patient is subjected to
different concentrations of single antiretroviral drugs and the replication fitness
of the virus is measured. This results in a quantitative measure of viral resistance,
the so-called resistance factor. Briefly, a virus with a resistance factor of 10 against
some drug requires ten times the concentration of that drug in comparison to the
wild-type virus in order to reduce the replication fitness of both viruses to the same
extent.

In developed countries, genotypic data are collected routinely in clinical practice.
Thus they are available in high volume (tens of thousands of data points). The viral
genotypes are usually restricted to the genes of the target molecules (here RT and PR).
Phenotypic data require high-effort laboratory procedures and cannot be collected
routinely. Thus they are available in lower quantities (thousands of data points). While
phenotypic data represent viral resistance in an artificial environment, they provide a
highly informative quantitative value for resistance. Thus can are of substantial value for
learning statistical models with high predictive power.

1 http://www.euresist.org
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4.6 Computational procedures for predicting resistance

We will survey approaches to solving three problems in resistance prediction:

1. Quantifying the information that a mutation carries with respect to the resistance of
any viral variant with that mutation against a given drug. Any method solving this
problem can be used to generate mutation tables such as the one derived by hand
through expert panels.

2. Predicting the resistance of a given genotypic variant against a given drug. Any
method solving this problem can also take complex interactions between different
mutations into account and thus competes with the rule-based expert systems
mentioned before.

3. Assessing the effectiveness of a combination drug regimen against a given genotypic
variant. Methods solving this problem can take the future viral evolution into
account. Thus, in effect, they can attempt to answer the question how effective the
virus will be in evading the present combination drug therapy. Thus they go further
methodically than any competing method.

We will now summarize the methods that are used to solve the above problems.
Several methods are available for solving Problem 1. Computing the mutual

information content of a viral mutation with respect to the wild type is one alternative
(Beerenwinkel et al. 2001). Another is to generate a support-vector machine model for
predicting resistance against the drug and deriving the desired information from it (Sing
et al. 2005). The resulting methods yield suggestions for new resistance mutations that
are highly desired by the medical community.

Problem 2 can be solved with classical supervised learning techniques such as
decision trees or support vector machines (Beerenwinkel et al. 2002). These methods
provide classification of viral variants into resistant or susceptible, or regression of
the measured resistance factor or the viral load observed in a clinical setting. The
models incur error rates of about 10–15% against measured phenotypic data and the
resulting web-based prediction servers2 are very popular with practicing physicians
and laboratories evaluating patient data. Figure 6 shows an excerpt of a respective
patient report that presents an intuitive display of the level of the virus against each
drug.

The solution of Problem 3 is somewhat more complicated. We need several
ingredients for a respective method. First, we need a notion of success and failure,
respectively, of a combination drug therapy that incurs more than a moment�s
observation of the patient. One way is to assess the effectiveness of a therapy after

2 E.g. http://www.geno2pheno.org
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some time since onset, say eight weeks. The second is a model of viral evolution under
drug therapy. We have developed a statistical model that represents the paths of the
virus to resistance by a set of trees ((Beerenwinkel et al. 2005b), see Fig. 7)
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Fig. 6 Patient report by the geno2pheno resistance prediction server. There is one line for each drug. The
level of resistance of the virus against the drug is represented by the length of the black bar. The colored bar
above indicates the region of resistance (green – susceptible, yellow – intermediate, red- resistant)

Fig. 7 Tree model of the evolutionary development of viral resistance against the NRTI zidovudine. The
model consists of two trees. Tree (a) displays two clinically observed nontrivial paths to resistance, indicated
bymutations that accumulate from thewild type from left to right. Tree (b) represents unstructured noise in
the data. Themethod also return quantitative estimates for howmuch of the data is explained bywhat tree.
In this case the left tree explains about 78% of the data
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Given such a tree model, we can derive a quantitative value for the probability of a
virus to become resistant against a certain drug after a given amount of time, given a
specific combination drug therapy. This value is called the genetic barrier to drug
resistance (Beerenwinkel et al. 2005a). Finally we use multivariate statistical learning

Fig. 8 Results of prediction of therapy effectiveness on the same sample as used for generating Fig. 2.
At the top, the user can preselect, here, by excluding the use of the protease inhibitor NFV. In the middle a
list of ranked therapies is given. The two top-ranking therapies involve two protease inhibitors, which is
not surprising since, by inspection of Fig. 2 the viral variant displays few resistances against protease
inhibitors. The distribution of therapy effectiveness with (red) and without (black) preselection is displayed
at the bottom
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techniques to generate models that classify the therapies into successes and failures
based on input comprising the viral variant, the applied therapy, phenotypic resis-
tance prediction (Problem 2), and the predicted genetic barrier to resistance. The
results of the implementation of this method called THEO are displayed as illustrated
in Fig. 8.

The resulting method reduces the error of therapy classification from about 24%
(without any use of software) to under 15% (Altmann et al. 2007). While this is a
substantial improvement in accuracy, doctors are still hesitant to use the method in
clinical practice, for two reasons: (1) They would like more information on why the
method arrives at its results, i.e., the ask for the results to bemore interpretable. (2) They
question the “objectiveness” of the data. In some sense the subjectivity of the expert
decision is replacedwith the arbitrariness of how the dataset is collected, fromwhich the
model are built.

Addressing both issues is possible but requires additional research which is
currently under way.

4.7 Clinical impact of bioinformatical resistance testing

The methods described here are applied within clinical practice in the context of
research projects and clinical studies. They improve the rate of selection of adequate
drug combination therapies significantly. Besides the statistical evaluation by cross
validation, there has been a retrospective study, in which previously applied therapies
have been rechecked with the geno2pheno software (Problem 2 above) among other
prediction systems, and the software has proven to pick successful therapies statistically
significantly more often than therapies that turned out not to be successful. Among the
single cases that can be reported is a patientwho had been receivingHAART for 16 years
within several therapy changes but without ever having virus cleared from his blood
serum. After themutation tables offered nomore option for therapy, the bioinformatics
software made a suggestion that was amended by the doctor. The resulting therapy was
the first to clear the patient�s blood of virus and held for at least 2.5 years. Thus, while the
software does not make flawless suggestions it advances the state of therapy selection
significantly.

Bioinformatics solutions to Problem 3 have yet to win acceptance with the
practicing physicians.

The methods described here can be transferred to other diseases for which viral
evolution to resistance inside the patient can be observed and for which the relevant
genotypic and phenotypic data are available. Transferring the methods to Hepatitis B
and C is in preparation.

A recent review on bioinformatical resistance testing is provided in (Lengauer and
Sing 2006).
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4.8 Bioinformatical support for applying coreceptor inhibitors

As the new coreceptor inhibitors are entering the marketplace and affording a
completely new approach to AIDS therapy, there are also new problems that have to
be dealt with and that can be supported with bioinformatics methods. We mentioned
above that CCR5 and CXCR4 are the two coreceptors that are used alternatively byHIV
to enter the infected cell. The clinical picture manifests that, almost exclusively, CCR5 is
required for primary infection (R5 virus). As the disease progresses, the virus often
switches to using CXCR4 (X4 virus). Some viral variants can use both coreceptors
(R5X4 virus). The use of CXCR4 is often associated with enhanced disease symptoms
and accelerated disease progression. Thus, preventing the virus from evolving to an X4
variant is a therapy goal. CCR5 seems to be inessential, as humans with an ineffective
CCR5 gene shows no disease phenotype, but are highly resistant to developing AIDS.
Thus CCR5 is an attractive target for inhibiting drugs. The first CCR5 blocker
Maraviroc (Pfizer) has just entered the marketplace. Regulatory agencies, as they were
admitting the drug for clinical use, prescribed accompanying tests of the virus for
coreceptor usage, as it is ineffective to treat X4 viruses with CCR5 blockers.

For testing of coreceptor usage we have a similar picture as for resistance testing.
Coreceptor usage is determined based on the viral genotype. There are laboratory assays
for measuring coreceptor usage. They are a little bit closer to clinical routine than
phenotypic resistance tests, but they still suffer from limited accessibility, long times
(weeks) to receive the results and high cost.

Using genotypic and phenotypic data, one can develop statistical models for viral
coreceptor usage based on the viral genotype. Supervised learningmodels such as support
vector machines or position-specific scoring matrices are used for this purpose. The
methods are basedmainly on the viral genotype (this time restricted to the hypervariable
V3 loop of the viral gp120 gene that binds to the coreceptor). Prediction accuracy can
be enhanced by including clinical parameters, such aspatient immune status, in themodel
or by specifically offering 3D-structural information on the V3 loop in the form of a
structural descriptor that is based on mapping the viral variant under investigation onto
the x-ray model of a reference V3 loop. Reviews on bioinformatical prediction of
coreceptor usage can be found in (Jensen and van �t Wout 2003; Lengauer et al. 2007).

5 Perspectives

In the last decade, computational biology has embarked on the analysis of host-
pathogen interactions. However, the field is still in an early stage. The analysis of viral
evolution inside the human population is currently targeting genetic drift but does not
yet have a handle on analyzing and predicting genetic shift. The analysis of interactions
between viral epitopes and molecules of the human immune system has brought forth
effectivemethods for analyzing and predicting the strength ofMHC-binding but has yet
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to develop models that adequately represent the many stages of molecular interactions
and molecular transport that lead to eliciting an immune response. And the support of
the selection of new antiviral therapies in the face of emerging resistant strains inside a
patient is still mainly based on statistical analysis of previously applied therapies (to
many different patients) rather than on a mechanistic understanding of the molecular
interaction networks manifesting the disease. In all fields we would greatly benefit from
dynamic simulatable models of the molecular processes manifesting the disease and of
the way in which molecular determinants of the virus, the immune system of the host
and the applied drugs influence them. Basic research in the field of computational
modeling of virus-host interactions will be directed towards generating this network-
based understanding of the involved processes. Towards this end we need not only
develop new computational models but also generate the relevant experimental data for
calibrating the models and for identifying the molecular determinants involved.
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1 Introduction

In eukaryotic cells transcribed precursormessenger RNA (mRNA) contains introns and
exons. Precursor mRNA is converted intomature mRNA by removal of introns and the
splicing together of the remaining exons by the spliceosome. Alternative splicing is the
process whereby the splicing process can generate a diverse range of mature RNA
transcripts from different combinations of exons and allows the cell to generate a series
of distinct protein isoforms. Alternative splicing events that occur within exons that are
protein coding are likely to alter the structure and biological function of the expressed
protein isoform andmay even create new protein functions. This has lead to suggestions
that alternative splicing has the potential to expand the cellular protein repertoire
(Lopez 1998; Black 2000; Modrek and Lee 2002).

Recent studies have estimated that at least 60% of multi-exon human genes can
produce differently spliced mRNAs (Harrow et al. 2006; Scherer et al. 2006) and that
alternative splicing has the potential to more than double the number of different
proteins in the cell.

Alternative splicing has long been linked to processes such as development
(Wojtowicz et al. 2004) and has been implicated in a number of cellular pathways

Corresponding author: Michael L. Tress and Alfonso Valencia, Computational and Structural
Biology Group, Spanish National Cancer Research Centre (CNIO): Madrid, Spain (e-mails:
mtress@cnio.es, valencia@cnio.es)
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(Ermak et al. 1995; Matsushita et al. 2006; Wells et al. 2006). It has been suggested that
the purpose of alternative splicing is to expand the range of functions in the cell
(Graveley 2001; Hui and Bindereif 2005) and the extent of alternative splicing in
eukaryotic genomes has even lead to suggestions that alternative splicing is key to
explaining the discrepancy between the number of human genes and functional
complexity (Pennisi 2005). In order to generate proteins with new functions at different
stages of development and in different tissues some external regulation is required and it
has been suggested that the splicing process is controlled by a sophisticated regulation
system (Smith and Valcarcel 2000; Florea 2006).

A highly curated reference set of human spliced variants has been annotated as part
of the pilot project of the Encyclopedia of DNA Elements (ENCODE) project (The
ENCODE Project Consortium 2004, 2007). The ENCODE project seeks to identify all
the functional elements in the human genome sequence; the pilot project concentrated
on 44 selected regions that added up to 1% of the human genome.

The reference set of splice variants was annotated by the HAVANA team as part of
GENCODE consortium (Harrow et al. 2006) and served as the starting point for the
detailed study of alternatively spliced gene products that was carried out by members
of the BioSapiens Network of Excellence. The study was carried out on the October
2005 freeze of the HAVANA/GENCODE set that contained a total of 434 protein-
coding genes. There were a total of 1097 annotated splice variants for these 434 genes,
with on average 2.53 protein coding variants per locus; 182 loci were annotated with
just one variant while one locus, RP1-309K20.2 (CPNE1) had 17 coding variants.

A total of 57.8% of the loci were annotated with alternatively spliced transcripts,
although this is probably an underestimate of the true number of splice variants –
several of the ENCODE regions were selected for biological interest (The ENCODE
Project Consortium 2004) and alternative splicing was less frequent in these regions, in
part because of gene clusters such as the cluster of 31 olfactory receptor genes from
chromosome 11 (Taylor et al. 2006). These olfactory receptors are recent in evolutionary
origin, have a single large coding exon and code for a single isoform. In the 0.5% of the
human genome that was selected by the stratified random-sampling process (The
ENCODE Project Consortium 2004), 68.7% of the loci had multiple variants. This
number is towards the higher end of previous estimates, but in line with themost recent
reports (Nusbaum et al. 2005).

While a full understanding of the functional implications of alternative splicing is
still a long way off, the HAVANA set provided us with the material to make the first
assessment of a systematically collected reference set of splice variants. The BioSapiens
study looked at the distinct protein isoforms generated by alternative splicing and
attempted to predict differences between splice isoforms at the level of protein structure,
location and function. As a result of the study we were able to highlight a number of
interesting splice isoforms and we have begun experimental work to investigate the
expression as proteins of many of these splice variants.

Chapter 8.2: Alternative splicing in the ENCODE protein complement
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In Sects. 2–5 we look in detail at the results of the BioSapiens study. As a result of
this pilot study we are in the process of developing a pipeline for the automatic
annotation of the structure, function and location of splice variants at a genomic level.
The pipeline has been developed in the context of the ENCODE scale up and will work
in collaboration with the HAVANA annotation team in the Sanger Centre. Aspects
of the pipeline are described in Sect. 6 and the pipeline itself is described in Sect. 7.

2 Prediction of variant location

Machine learning tools have had to be adapted in order to annotate of the structure
and function of the 1097 transcripts selected by the GENCODE consortium (Harrow
et al. 2006), in particular when investigating differences between variants of the same
gene. Not all transcripts can be annotated by searches for homologous proteins. In fact
in many cases differences are masked by the similarity between splice isoforms so
methods that annotate by homology can be easily fooled.

As a first characterisation of the transcripts we discriminated between membrane-
bound and globular proteins. Various state-of-art tools were used for predicting the
presence of trans-membrane domains: ENSEMBLE (Martelli et al. 2003), PRODIV
(Viklund and Elofsson 2004) and PHOBIUS (Kall et al. 2004). The first two methods
need tobecoupledwithapredictor for thepresenceofN-terminal signalpeptides (SignalP,
Bendtsen et al. 2004) because signal peptides are easily confused with transmembrane
alpha helices owing to their hydrophobic composition. PHOBIUS integrates the predic-
tion of signal peptides andmembrane-bound domains in a single hiddenMarkovModel.

Three prediction methods means there will be three different sets of predictions
since the tools are based on different methodologies and were trained on distinct
datasets. For this reason a CONSENSUS prediction was also computed. The CON-
SENSUS method required at least two out of the three methods to agree. PRODIV,
ENSEMBLE and PHOBIUS predicted transmembrane helices (TMH) for 271 (24.7%),
331 (30.2%) and 324 (29.5%) out of the 1097 proteins. ACONSENSUS prediction could
be made for 1026 variants; 225 of them were predicted as membrane proteins. A signal
peptide was predicted for 180 sequences with PHOBIUS and for 229 sequences with
both PRODIV and ENSEMBLE (using SignalP). The CONSENSUSmethod predicted a
signal peptide in 204 transcripts.

Figure 1 shows the distribution of the proteins with respect to the number of pre-
dicted TMH for all methods. Evidently, the two most abundant classes are the proteins
predicted with one and seven transmembrane segments. Almost all the proteins
endowed with seven transmembrane helices derive from the single olfactory receptor
cluster in chromosome 11. Nevertheless, based on our prediction we were able to
annotate a transcript from RHBDF1, previously annotated as hypothetical protein, as
a new 7-helix transmembrane receptor.

Michael L. Tress et al.

455



In order to understand the functional implications of alternative splicing we
compared predictions for the variants within the same locus (Table 1). When the
CONSENSUS prediction is considered, 185 loci encode only for globular isoforms, 28
loci encode for transmembrane variants with the same structure (signal peptide,
number of TMH and orientation with respect to the membrane plane), and 31 loci
encode for variants with different transmembrane structure.

It is notable that 16 of the genes have both globular and transmembrane variants.
Some of these are detailed below:
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Fig. 1 The predictions made by three different transmembrane helix prediction methods for the 1097
protein sequences in the GENCODE annotated set. Themethods used are PRODIV, ENSEMBLE and PHOBIUS.
The CONSENSUS prediction requires 2 of the 3 methods to agree. This figure is copyright of the National
Academy of Sciences, USA

Table 1 Predictions for transmembrane helices made for the 548 complete sequences from loci with
multiple variants. This table is copyright of the National Academy of Sciences, USA

Genes encode: SP-PRO1 SP-ENS2 PHOBIUS CONSENSUS

Globular variants only 184 163 166 185
Variants with identical TM structure 26 26 34 28
Both globular and TM variants 19 37 26 16
Variants with varying no. of TMH 17 22 18 13
TM variants with inverted orientation 6 4 8 2

1 SP-PRO: SignalP coupled with PRODIV; 2 SP-ENS: SignalP coupled with ENSEMBLE
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* UGT1A10 encodes for 2 variants of UDP-glucuronosyltransferase 1A10. One lacks
an 89-residue long C-terminal segment that contains a predicted transmembrane
helix. If expressed, this would be the first soluble UDP-glucuronosyltransferase
naturally encoded.However, an engineeredwater-soluble form is reported (Kurkela
et al. 2004).

* KIR2DL4 encodes six different variants of a killer cell immunoglobulin-like re-
ceptor. All but one share the same 217 residue long N-terminal domain but they all
differ in theC-terminal domain.A transmembrane alpha helix is predicted in this C-
terminal portion for just three variants. Genetic polymorphism of KIR2DL4 results
in alleles with either 9 or 10 consecutive adenines in exon 6, which encodes the
transmembrane domain. The loss of a single adenine leads to a frame shift and the
expressed protein is truncated at the C-terminal and soluble (Goodridge et al. 2007).

* IFNAR2 encodes five isoforms of the beta chain of the interferon alpha/beta
receptor. Four isoforms share a segment predicted as transmembrane that ismissing
in the two remaining variants. Evidence for both soluble and transmembrane forms
of the interferon receptor have previously been reported (Novick et al. 1995).

Thirteen other loci code for variants that are predicted to contain differing numbers
of transmembrane regions. Some examples of loci encoding for variation in numbers
of TMH are detailed below:

* AVPR2 encodes two variants of the type two vasopressin receptor. One isoform is
predicted to span the membrane with 7 helices, as with other well-known G protein
coupled receptors. The other variant lacks a 67-residue long C-terminal segment
and is endowed with only 6 helices. Recently another case of a six transmembrane
splice variant of a G-protein coupled receptor has been reported, although its
function, if any, is still unknown (Vielhauer et al. 2004).

* TTYH1 encodes four variants of a protein similar to TWEETY, a putative cation
transporter in Drosophila. Three of the variants are predicted to contain five
transmembrane segments. The remaining variant lacks a 210-residue long N-
terminal domain that contains the two first helices and its loss is predicted to
convert the third transmembrane helix into a signal peptide. In short, this variant
is predicted as a monotopic transmembrane protein and, if that is confirmed, the
function of this variant would be dramatically altered.

The localisation of globular proteins can be predicted using specific tools such as
BaCelLo (Pierleoni et al. 2006), which predicts the localisation to one of four compart-
ments in the eukaryotic cell (nucleus, cytoplasm,mitochondria and secretory pathway).
Out of 830 transcripts for which the CONSENSUS method predicted no transmem-
brane helix, 313 were predicted as nuclear, 281 as cytoplasmic, 95 as mitochondrial and
141 as secreted.
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Also in this case, the comparison between the variants coded by the same locus
reveals differences that are likely to be important from a functional point of view in 12
cases. Among them one locus (LILRA3) codes for two secreted and one cytoplasmic
variant. A single variant is predicted as cytoplasmic because it has a 17-residue N-
terminal insertion ahead of a predicted signal peptide. If the cytoplasmic variant is
expressed, there is some evidence that it might be related to leukaemia.

3 Prediction of variant function – analysis of the role
of alternative splicing in changing function
by modulation of functional residues

3.1 Functions associated with alternative splicing

Alternative splicing events have been associated with a variety of functional variations,
the biomedical literature includes examples in growth factor receptor ligand binding,
cell adhesion, cytoskeletal differences, cell growth, cell death, differentiation and de-
velopment, neuronal connectivity, cell excitation and cell contraction. Splicing events
have also been shown to effect sub-cellular localisation, phosphorylation by protein
kinases and the binding of an enzyme by its allosteric effector. They have even been
shown to alter the activation of transcription factor domains. However, functional
explanation for alternative splicing is not well understood.

3.2 Functional adaptation through alternative splicing

The most documented case of alternative splicing and function is that of the Drosophila
Dscamgene.Dscam codes for an axon guidance receptor that is involved in the formation
of complex branching patterns of synaptic connections crucial for the formation of
distinct neural circuits and that is responsible for directing growth cones to their proper
target in Bolwig�s nerve of the fly (Schmucker et al. 2000). The protein comprises 10
immunoglobulin-like domains, 6 fibronectin type III domains, one transmembrane and
one cytoplasmic domain. Dscam has four sets of interchangeable alternative exons that
may be spliced in a mutually exclusive manner. Alternative splicing allows permutations
of 3 of the immunoglobulin-like domains and the trans-membrane domain. Exons 4, 6, 9,
and 17 are each encodedby an array of potential alternative exons (the four exons have 12,
48, 33 and 2 alternative exons respectively) that would theoretically allow the gene to
express 38,016different proteins. It has been shown that the expressionof differentDscam
isoforms has an effect on neuron-target recognition of mechanosensory neurons that
connect via multiple axonal branches (Chen et al. 2006). Two of the different isoforms
have recently been crystallised showing that the 2nd and 3rd immunoglobulin domains
undergo homo-dimerisation (Meijers et al. 2007). The mutually exclusive splicing of
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whole immunoglobulin-like domains by Dscam has an interesting corollary in the
insertion/deletion of whole immunoglobulin domains seen in the immunoglobulin-
based receptor clusters in the HAVANA set.

Other examples, such as the potential functional mediation of the potassium ion
channels in the inner of lower vertebrates seem less clear. Cells within the inner ear of
chicks and turtles were shown to have differentially expressed transcripts in different
cells within the inner ear (Navaratnam et al. 1997; Rosenblatt et al. 1997). This lead to
suggestions that these isoforms might be expressed in a gradient along the 10,000
sensory-receptor cells present in the inner ear and that this might enable the perception
of different sound frequencies (Ramanathan et al. 1999). However, no such gradient was
found in a study of the rat inner ear (Langer et al. 2003), suggesting that if alternative
splicing is crucial in lower vertebrate sound perception, higher vertebrates must have
developed a different system.

There are a great many papers relating splice variants to functional roles, which
gives the impression that alternative splicing has a direct functional relevance in the cell.
However, there are also a great many examples of splice variants that appear not to have
an obvious function and the role of these variants is not yet understood. The reference
set of splice variants from the ENCODE regions (The ENCODE Project Consortium
2004) manually annotated by the HAVANA team at the Sanger Institute (Harrow et al.
2006) provides an excellent dataset from which we can draw general conclusions about
the proportion of splicing events that appear to have functional roles. Two particularly
interesting examples from the reference set and are detailed below:

3.2.1 Tafazzin

Six splice variants were present in the HAVANA dataset. Although there are 10
isoforms reported in SwissProt (Bairoch et al. 2004), only a subset of thesewas expressed
in a range of mouse and human tissues (Lu et al. 2004). The highest levels of the protein
are found in cardiac and skeletal muscle cells, which have large numbers of mitochon-
dria. The precise biochemical function of tafazzin in humans remains unknown, but it
shows a distant sequence homology to the glycerolipid acyltransferase family of en-
zymes and is thought to function as an acyltransferase in the remodelling of cardiolipin
in the inner mitochondrial membrane (Vaz et al. 2003). In Drosophila tafazzin has
been shown to function as a CoA-independent, acylspecific phospholipid transacylase,
converting cardiolipin to phosphatidylcholine and vice versa (Xu et al. 2006).

In order to assess the functional importance of the alternative splicing, we located
the structural positions of the variable exons. No structure of tafazzin exists therefore
models were obtained from theModBase server (http://modbase. compbio.ucsf.edu), in
order to map the splice variants onto the structure of the protein. Structures were based
on the PDB (Berman et al. 2000) entry 1k30 (plant glycerol-3-phosphate acyltransfer-
ase, GPAT), which is also a member of the glycerolipid acyltransferase family. The
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catalytic residues for GPAT are annotated in the Catalytic Site Atlas (CSA, Porter et al.
2004) as Asp144 and His139. There was a high level of similarity between the GPAT and
tafazzin sequences over these and neighbouring residues. Splice variant 006 is missing
the exon that codes for the two catalytic residues and without an intact active site this
isoform is unlikely to function as an enzyme. Variations In the other splice variants are
mostly located at the entrance of the binding site andmight be responsible for conferring
specificity for different substrates to the different isoforms (Fig. 2). As splice variants
are often expressed differentially in different tissues, these different loops are perhaps
required for the recognition of different substrates in these various environments.

It has been shown that only isoform 002 has full cardiolipinmetabolism activity and
that the variant regarded as the main isoform by SwissProt (isoform 001) can only

Fig. 2 A superposition of the 3D models of the 6 ENCODE splice variants of tafazzin. The models are
represented by a backbone trace running along the chain of the polypeptide. Exon 2, which appears to be
the crucial functional exon and is present in all but one variant, is coloured yellow in all structures. The parts
of the protein encoded by exons unique to one or two of the variants are shown by the thicker backbone
trace. The view represents the view into the active site from outside. Thus it can be seen that some of the
unique exons are located at the entrance of the binding site and might be responsible for the specificity of
the different isoforms for different substrates. The inferred catalytic residues (His69 and Asp74) are
indicated by the stick bonds at the centre of the picture
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partiallymetabolise cardiolipin (Bione et al. 1996). Isoform002 has a 31 residue deletion
that is the result of skipping the fifth exon. We were also able to show that the exonic
structure of isoform 002 was conserved between human andmouse, but that the exonic
structure of the main isoform was not conserved. The fact that there was a difference of
opinion between experimentalists and SwissProt annotators over this and other genes
lead us to propose a pipeline for the detection of principal isoforms (see Sect. 6, this
chapter).

3.2.2 Phosphoribosylglycinamide formyltransferase (GARS-AIRS-GART)

Although there are many examples of short indels (less than 20 residues) both in this
dataset and in the literature, indels can potentially also correspond to the removal or
insertion of awhole domain or domains. The best example of this in theHAVANA set is
the immunoglobulin domains in the clusters immunoglobulin-based receptors on
chromosome 19 (Tress et al. 2007).

Another example is phosphoribosylglycinamide formyltransferase, orGARS-AIRS-
GART protein, is a trifunctional polypeptide, highly conserved in vertebrates, which is
involved in de novo purine biosynthesis. It has phosphoribosylglycinamide formyl-
transferase (E.C.2.1.2.2), phosphoribosylglycinamide synthetase (E.C.6.3.4.13) and
phosphoribosylaminoimidazole synthetase (E.C.6.3.3.1) activity, which are required
for steps 2, 3 and 5 of the purine biosynthesis pathway (Henikoff et al. 1986). The
HAVANA dataset and the literature (Brodsky et al. 1997) show that alternative splicing
of this gene results in two variant transcripts encoding two different isoforms. These are
differentially expressed during human brain development and temporally over-ex-
pressed in the cerebellum of individuals with Down�s syndrome (Brodsky et al. 1997).
These two splice variants are shown in Fig. 3, a schematic diagram of their Pfam

Fig. 3 A schematic diagram showing the Pfam domains, CSA catalytic residues and PROSITE patterns
identified in the HAVANA variants of the trifunctional GARS-AIRS-GART protein. The scale indicates the
residue positions along the sequence. The three Pfam domains, GARS, AIRS and GART, are shown in grey,
blue and yellow. The PROSITE patterns for CPSASE, GARS and GART are indicated in red, green and dark
blue. The letters on the bars identify catalytic residues suggested by homology to CSA-annotated
proteins
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(Finn et al. 2006) domains, CSA catalytic residues and PROSITE (Hulo et al. 2008)
patterns identified in the annotated variants. The first variant is complete, with all three
functional regions present. The second is missing the AIRS and GART regions. This
splice isoform could serve to up-regulate the phosphoribosylglycinamide formyltrans-
ferase (GARS) function of this trifunctional peptide by providing more copies.

3.3 Analysis across the ENCODE dataset

Whilst there are examples inwhich function has been altered by alternative splicing, is it
a mechanism that is commonly used for function modulation or a just phenomenon
that occurs in a limited number of cases in nature? We carried out a global analysis
aimed to provide information on the types of changes occurring to the functionally
important residues. How often are exons containing such residues retained and how
often are they spliced out or replaced?

We mapped the variants onto homologous structures to allow the transfer of
functional information: catalytic residues from the CSA, contact to ligands, metal and
DNA from PDBsum (Laskowski 2007), PDB �site� records from the PDB files and
PROSITE patterns from the PROSITE database. Residues annotated with functional
information were labelled as functionally important. Each functionally important
residue was analysed within all splice variants. Was the residue part of an exon
conserved in all variants? How often was the residue left out of splice variants? Were
the exons with functional residues substituted for other exons and was the substituted
residue the same, similar or completely different? The results can be seen in Fig. 4. It can
be seen that the majority of functionally important residues are conserved, suggesting a
mechanism in which changes involving the substitution or removal of conserved
functionally important residues are more the exception than the rule.

Splicing events occur within Pfam-A hand-curated functional domains in 46.5%
of sequence-distinct isoforms. The definition of Pfam-A functional domains is based
on expert knowledge and sensitive alignment tools. Therefore if a Pfam-A domain is
broken by a splicing event we would expect to see an effect on the function of the
domain. Although 46.5% is a surprisingly high figure, it is less thanwould be expected: if
the same number of splicing events were to happen randomly at exon boundaries,
splicing events would be expected to fall inside Pfam-A domains in 59.8% of isoforms.
Since Pfam-A domains are broken less often than would be anticipated from a purely
random process, it seems that there is some (weak) selection against splicing events that
affect functional domains.

A similar study carried out by Talavera et al. (manuscript in preparation) on a data
set from SwissProt showed that there were no examples in which alternative splicing
occurred exclusively in conjunction with domain boundaries. These findings suggest
that alternative splicing is rarely a precise functional mechanism for the removal of a
particular domain or domains. In addition to this, the data shows that alternative
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splicing events often leave behind a fragment of a domain. Examples of this can be seen
throughout the dataset. Is the purpose of this splicing mechanism to knock out the core
of the domain and prevent it from folding (thus removing its function) or is it possible
that some of these domains refold?

4 Prediction of variant structure

Before one can ask questions about the effects of alternative splicing on protein structure
it must first be possible to match the putative coding sequences to a structural fold or

a

b

Fig. 4 Histogram showing how often a residue annotated by one of the six functional categories listed at
the bottom of the graph is preserved, substituted or lost in the other variants of the same protein. The bars
are coloured according to the key on the right and show numbers of residues. This figure is copyright of the
National Academy of Sciences, USA
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folds. Identifying template with known structures is a crucial initial step in the protein
structure prediction process. In the case of the splice variants from the HAVANA set
we were particularly interested in identifying multidomain proteins with known
structural domains. One important issue is whether alternative splicing acts at the
level of structural domains and whether splice isoforms of multidomain proteins dif-
fer from each other by the addition, deletion or substitution of complete domains or
sub-domains.

Because of the plasticity of protein structure, the precise assignment of structural
domains is somewhat subjective and the assignments from different methods and
databases can differ, sometimes even substantially. Our strategy was to combine several
methodologies and analyse their results. Without entering into technical details, we
used Hidden Markov Models (HMMs, Karplus et al. 1997), statistical models that
describe protein family alignments, that were derived from the structural classification
databases CATH (Pearl et al. 2005) and scop (Murzin et al. 1995), and from Pfam
domain families (Finn et al. 2006), and also the mGenThreader (McGuffin and Jones
2003) fold recognition method. The assignments from mGenThreader are compared
with those derived from the CATH-HMM method (Lee et al. 2005) and with the
combination of both in Fig. 5.

The conclusions from this partially automatic and partially manual analysis dem-
onstrated that complete domain splicing is not very frequent in the HAVANA dataset
(30 out of the 688 sequences for which a match with a CATH-HMM could be found).
All types of expected variations (truncations, insertions and substitutions) can be
observed within the splice variants in the ENCODE regions, but they are fairly in-
frequent. If the ENCODEpilot project loci are, as expected, representative of the human
genome, only a small percentage of the alternative splicing events affect complete
structural domains of multidomain proteins.

Fig. 5 Residue coverage of ENCODE dataset at five confidence levels. Upper bounds on residue
coverage for the mGenTHREADER predictions, CATH HMM domain matches and combined predictions
are shown. The confidence levels correspond to expectation (E) values as follows: CERT: E < 0.0001, HIGH:
E < 0.001, MEDIUM: E < 0.01, LOW: E < 0.1, GUESS: E > 0.1. This figure is copyright of the National Academy
of Sciences, USA
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It follows that most of the alternative splicing events must affect the three-
dimensional structure within a domain and we decided to analyse the structure of
each of the domains that undergo alternative splicing events. Clearly this analysis had to
be limited to domains of known structure and to those for which a reliable comparative
model (Tramontano and Morea 2003) can be built.

Perhaps surprisingly, structures had been experimentally solved for a high propor-
tion of the genes in the ENCODE region. As of June 2006 it was possible to find
experimentally resolved structures in the Protein Data Bank (Berman et al. 2000) for all
or part of 53 genes, 39 of whichwere annotated as having the potential to generate a total
of 98 protein sequence distinct splice variants. The entire structure or practically the
entire structure was solved for 21 loci, of which 10 could generate splice variants.

The remaining genes were analysed to assess whether a reliable model could be built
using the steps described in the comparative modelling chapter. Namely, we used
BLAST (Altschul et al. 1997) to search for proteins sufficiently similar (E-value of less
than 10�5) to a protein of known structure, discarding cases where the sequence
alignmentmissedmore than forty amino acids in a continuous region. This was the case
for one hundred isoforms, and twenty of these had an alternatively spliced isoform.

Comparative models of the isoforms for which there was the highest template
coverage (that we will call, perhaps improperly, the “main” isoform) were then built
using the HHpred server (Soeding et al. 2005). This is an interactive server for protein
homology detection and structure prediction based on the pairwise comparison of
profile HMMs.

Themain isoformmodels were checked by visual inspection of several features. From
thismanual inspectionwewere able to estimate the effect of each alternative splicing event
on the structure of themain isoforms. If a splice isoform had a deleted regionwith respect
to the main isoform we tried to assess whether the deletion would affect the packed
hydrophobic core of the protein and whether the residues flanking the deletion were so
distant in the structure that major rearrangements would be required in the spliced
isoform to preserve chain connectivity. If the alternative isoform contained an insertion
with respect to themain isoform,we inspected themain isoformmodel to seewhether the
location of the insertionwas on the surface or the core of the protein andwhether or not it
would interrupt any of themain secondary structural elements. The effect of substitutions
by alternative splicing events was more difficult to assess. If the difference in length
between the two alternative exons was sufficiently large, they could be thought of as in-
sertions or deletions. A few examples of alternatively spliced proteins are shown in Fig. 6.

More than 70% (19 out of 26) of the splicing events we looked at in detail would give
rise to a “problematic” protein structure, i.e. a protein that could not be thought of as the
main isoform plus or minus a peripheral part of the structure. Are these putative
alternative splicing products functional? It is very hard to say. It is possible that other
proteins could interact with the “problematic” isoform and stabilise its structure, or that
the splice variant could assume a structure completely different from that of the main
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one. There are examples in the PDB of proteins with identical sequences that undergo
large structural conformational changes on the addition or deletion of residues. For
example the tonB transport protein from Escherichia coli that undergoes significant

Fig. 6 Results of homology modelling, for clarity, only a few loci are shown. The letter after the ID of the
transcript indicates the extent to which a reliable model could be built. We found cases where the different
exonic structure of some of the transcripts could not be built by comparative modelling (labelled as D in the
figure) as well as cases where some more (C) or less (B) substantial local rearrangement would be required
to build the models. Coloured boxes correspond to exons, white boxes to introns (not in scale). Dark gray
boxes indicate that the two (or more) transcripts share the same exon; light gray ones are used when the
corresponding exons are of different size, but encoded by the same region; untranslated regions are in
black. The primary sequences in all of the loci are included in the comparison
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conformational changes when 15 residues are inserted at the N-terminal (Koedding
et al. 2005).

These hypotheses are difficult to test not only computationally, but also ex-
perimentally. We think, nevertheless, that these phenomena are unlikely to be the
explanation in all the caseswehave observe. It follows that probably a sizeable fraction of
these alternative spliced products are either never translated, translated and degraded
immediately after translation because of their inability to form a properly folded stable
structure, or translated and somehow tolerated by the cell. Any of these outcomeswould
be yet another surprise coming from genomic analysis.

5 Summary of effects of alternative splicing

While alternative splicing can produce a range of differently spliced protein isoforms,
there is conflicting evidence about their biological relevance. It has been suggested that
the purpose of alternative splicing is to expand functional complexity and that the
multiple variants are likely to encode functional proteins (Graveley 2001; Hui and
Bindereif 2005). In this way several proteins can be encoded in the sameDNA sequence,
leading to greater efficiency. If alternative splicing can give rise to a range of proteins
with functional importance at different stages of development or in different tissues,
some external regulation of the pre-mRNA would be needed to decide which protein
is produced at which stage and in which location. A sophisticated regulation of the
splicing process has been proposed (Smith and Valcarcel 2000; Florea 2006). In many
cases these alternative splice variants are hypothesised to function as dominant negative
isoforms that can regulate the pathways in which the main functional form is involved
(Arinobu et al. 1999; Stojic et al. 2007).

However, evidence for this hypothesis at the protein level is far from clear. The study
of the variants in the ENCODE pilot project regions shows that alternative splicing is
commonplace and likely to be more frequent than has commonly been suggested
(The ENCODE Project Consortium 2004, 2007; Harrow et al. 2006; Tress et al. 2007).
The cross-section of alternative splicing events that we have seen at many different loci
does point to the possible versatility of alternative splicing in the creation of new
functions. However, while alternative splicing has the potential to increase the variety of
protein functions, this still has to be demonstrated at the protein level. The BioSapiens
project (Tress et al. 2007) was able to show that there is little to indicate this is translated
into an increase in the repertoire of protein functions, despite the widespread evidence
for the expression of alternative transcripts.

Many of the proteins that result from alternative exon use would almost certain-
ly have substantially rearranged structures with respect to their constitutively spliced
counterparts (Talavera et al. 2007; Tress et al. 2007) and these changes are likely to have
profound effects on the location and function of the alternative gene products (see
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Figs. 7–9). Although these alternative isoforms must have markedly different structure
and function from their constitutively spliced counterparts, exhaustive literature
searches on the genes in this data set unearthed very little evidence to suggest they
have a role as functional proteins. The effect of splicing on function in vitro is known for
a few of the alternative isoforms in this set, but even in these cases we are still some way
short of knowing their precise role in the cell.

It seems unlikely that the spectrum of conventional enzymatic or structural func-
tions can be substantially extended through alternative splicing, but demonstrating
the function of an alternative isoform would require detailed and technically complex

Fig. 7 The effect of splicing on protein structure I – CACP The structure of carnitineO-acetyltransferase has
been resolved and is deposited in the PDB as structure 1nm8. Here we have mapped the sequence of
putative splice isoform 001 onto the structure. The structure is coloured purple where the sequence of the
splice isoform is missing. The deletion suggests that the structure isoform 001 would have to undergo
substantial reorganisation to fold. The biologically relevant heteroatoms are shown in stick format and the
catalytic residue that would be lost on account of the deletion is shown in blue
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experimental approaches. At present most researchers can do little more than hy-
pothesise as to the functional importance of splicing events.

So, if alternative splicing does not meaningfully extend the repertoire of conven-
tional protein functions, what advantage is there to be gained in the cell from alternative
splicing? Cells can encode a great many alternative transcripts; even the conservative
estimate from this set suggests that alternative splicing can more than double the
number of proteins in the cell. So why are there somany transcripts that appear likely to
encode proteins that are non-functional, at least in the classical sense?

We cannot rule out the possibility that the expression of alternative transcripts
might have implications for the control of gene expression, and indeed there are many
transcripts with splicing events in the 30 and 50 untranslated regions. Some alternative
splice isoforms may play important roles in development and tissue-specific processes.
It seems possible that a number of alternative isoforms may have developed a use-
ful cellular function such as the regulatory role suggested for the isoforms of IRAK1
(Rao et al. 2005) and IL-4 (Arinobu et al. 1999) from theHAVANAset. In addition there
are a number of alternative variants with only minor sequence differences with respect
to the principal isoform thatmay have aminor effect on the structure and function of the
alternative variant. A small proportion of variants can be formed from homologous,
mutually exclusive exons in the same way as in the Dscam gene and a few variants
are formed by the addition or deletion of whole functional domains (the immunoglo-

Fig. 8 The effect of splicing on protein structure II – ITGB4BP Splice isoform 005 of eukaryotic initiation
factor 6 mapped onto the nearest structural template, yeast ITGB4BP, 1g62A. In this case the residues in
purple indicate 89 residues that aremissing from the structure. Themissing residues remove almost exactly
two of the repeats of the propeller structure. The missing residues are replaced by 69 non-homologous
amino acids that are predicted to be without secondary structure. Again the protein would require drastic
reorganisation in order to fold and will almost certainly lose all or most of its function
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bulin-based receptors are a clear example of this) and here it is easier to imagine that
alternative splicing can be a source of functional modulation. However, there seems to
be little to suggest that splicing events are directly related to protein domain boundaries
(Kriventseva et al. 2003; Tress et al. 2007) as ought to be expected if splicing were
directed by functional constraints.

The standard path of protein evolution is usually conceived as stepwise single base
pair mutations. In contrast alternative splicing typically involves large insertions, del-
etions or substitutions of segments that may or may not correspond to functional
domains, sub-cellular sorting signals or trans-membrane regions. The deletion and sub-
stitution of multiple exons seen in many of these transcripts suggests that splicing
is not always amechanism for delicate and subtle changes, and as a processmay be rather
more revolution than evolution. Unless external forces guide alternative splicing, splicing
will lead to as many, if not more, evolutionary dead ends as standard evolutionary paths.

a b c

d e f

Fig. 9 The effect of splicing on protein structure III – B serpins Serpins are protease inhibitors that
inactivate their targets after undergoing an irreversible conformational change. Serpins exist in an
inactivated form (a) that is regarded as being “stressed”. Cleavage of the 20-residue RSL region, missing
in the structure but with the terminal ends shown in red, causes the RSL region to flip over and fit itself into
one of the beta sheets (b, inserted RSL strand in red). This exposes the inhibitory region that inactivates the
protease. c–f Show four splice isoforms from different serpin loci mapped onto the structure of serpinB2
(1by7). The sections deleted/substituted in the isoforms are shown in purple. In each case it appears that
splicing is likely to cause the structure to fold in a substantially different fashion. Given that the complex
structure of the inhibitor is vital to its unique function, it is not clear why so many apparently deleterious
isoforms would be necessary. This figure is copyright of the National Academy of Sciences, USA
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In fact alternative splicing can lead to a wide range of outcomes, many of whichmay
be undesirable. The are a large number of splice variants that are likely to code for splice
isoforms with dramatic changes in structure and function at the protein level. Changes
of this magnitude would not normally be tolerated because of the heavy selection
pressure that must oppose such large transformations (Xing and Lee 2006), which
suggests that some expressed splice isoformsmay have potentially deleterious functions
and might only be highly expressed as a result of some disease event. Many of the
variants in this set are supported by evidence that comes from diseased cells (Roy et al.
2005) and there is much evidence implicating splice variants in disease (Kishore and
Stamm 2006; Ottenheijm et al. 2006) and in particular as a secondary symptom inmany
types of cancer (Brinkman 2004; Pajares et al. 2007).

Despite the implication of splice variants in functional differentiation and diseased
states it seems that many variants may have no clear effect on the cell. One possibility is
that the cell can tolerate these variants to some extent; alternative isoforms expressed in
low numbers may not adversely affect the cell. If this is the case, the selection pressure
against exon loss or substitution will be reduced, making large evolutionary changes
possible.

It is now important to extend the observations made for the small set of ENCODE
pilot project genes to the full genome. The ENCODE scale up project seeks to accurately
annotate the rest of the genome. This effort will be accompanied by automated
annotation pipelines (see descriptions below) and will provide sufficient evidence to
make our observations statistically significant.

The conclusions from this study and the extension to the complete genome have
opened up a great opportunity for experimental work to validate the BioSapiens
predictions. The following lines of work are already in progress for some of the most
interesting variations from the HAVANA set:

* Confirmation of the expression in tissues by RT-PCR
* Confirmation of the expression of the corresponding proteins by raising antibodies

against regions specific of splice variants. This obviously requires a substantial
amount of work and takes time but can provide critical in vitro and in vivo evidence
about the role of the proteins.

* Reverse proteomics studies looking for evidence of the expression of variants in
databases ofmass spectrometry (MS) spectra.Whilemany of the proteins have been
successfully identified, it has so far been difficult to confirm the presence of pairs of
splice variants because the coverage of theMS databases is fairly low and to confirm
variants the peptides must cover the splice boundaries for both variants. One
alternative would be to carry out specific experiments in the search for peptides
characteristic of splicing. This will also be important for addressing issues of
quantification, since it is important to know not only if the protein isoforms are
expressed but also in what quantities they are expressed.
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6 Prediction of principal isoforms

Alternative splicing has the potential to generate a wide range of protein isoforms from
the same gene. While many genes have been studied in depth, for others it is far from
clear which of the variants retains the core biological function. For those genes where
there is little experimental evidence it is important to know which is the principal
variant in order to design experiments to determine structure and function. Labelling
one of the splice variants as the principal isoform will allow research groups to con-
centrate their efforts on the main functional isoform. In addition, for many computa-
tional applications it is important to know which is the isoform that is likely to have
the principal functional activity. Identifying a principal splice isoform for a gene would
allow bioinformatics groups to make more reliable predictions of function and struc-
ture and would be a vital first step for large-scale studies, such as the ENCODE project
(The ENCODE Project Consortium 2004, 2007). Automatic prediction pipelines in
particular need reliable input data.

At present the SwissProt database (Bairoch et al. 2004), part of UniProtKB (The
UniProt Consortium 2008), provides the best organisation of the complicated web of
alternative protein variants. Even if the SwissProt database is only a small part of
UniProt, it is the de facto gold standard of protein databases because all entries are
manually curated. As part of this manual curation, all UniProt variants from the same
gene aremerged into a single SwissProt entry. One of themerged sequences is selected as
the “display” sequence for the entry; the display sequence is selected after careful
inspection and remaining merged sequences are tagged as alternative splice variants
for the entry. The display sequence is often the longest variant, because this allows
annotators to map more features to the sequence.

At present the selection of the SwissProt display sequence is of huge importance and
has implications beyond SwissProt. SwissProt entries brings together experimental and
predicted information, including domain definitions, functional annotation, cellular
location, post-translational modifications and disease associations. All this information
is associated to a single display isoform. The entries are also extensively cross-referenced
to a range of external sources and all the functional and structural information is also
associated to the display sequence. Those isoforms designated as alternative variants by
SwissProt when entries are merged are left out of many versions of UniProt and these
alternative isoforms also disappear from external databases.

For example the display sequence of PTPA HUMAN is the only isoform included
in the Pfam domain database (Finn et al. 2006) and the ModBase (Pieper et al. 2006)
model database. The display sequence is also built into the Pfam seed alignment
generated for the PTPA domain. Pfam seed alignments are regarded as the gold
standard for alignments and used in turn by many other groups. A structure has
already been solved for this gene (by three separate groups), but unfortunately the
variant that has been crystallised is missing the fourth protein coding exon of
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the display sequence. This crystallised variant is almost certainly the principal iso-
form for the gene PPP2R4 (it has been shown to fold independently), but it has been
left out of SwissProt and therefore also ModBase, Pfam and all related servers and
databases.

6.1 A series of automatic methods for predicting
the principal isoform

In order to define the principal coding variant for each gene, we had to make two
assumptions. The first was that each gene has just a single variant that gives rise to a
principal functional isoform. The remaining annotated variants would then be alter-
natively spliced. This is a general assumption and comparative studies usually suggest
that one isoform has the principal function or is expressed in most tissues or in most
stages of development. However, while thismay be true formost genes, it will not be true
for those genes where two (or more) variants might be regarded as equally important.

The second assumption is that this principal variant is evolutionarily conserved
between species. Alternative exons tend to be recent evolutionary developments
(Alekseyenko et al. 2007), so this is a reasonable assumption. Again this may not
always be true for all genes – the principal variant may have evolved (possibly through
alternative splicing) towards a function distinct from those performed by the ortho-
logous gene products in neighbouring species. This means that for the purposes of this
study we have defined the principal functional isoform as the isoform that performs an
orthologous functional role across a wide range of related organisms.

We used the manually curated set of annotated splice variants produced by the
HAVANAgroup (Harrow et al. 2006) for the 44 regions of the human genome analysed
in the pilot project of the ENCODE project (The ENCODE Project Consortium 2004,
2007). The set contained 434 protein coding genes, but 181 genes in the set were
annotated as having just a single splice variant and a further 38 genes had alternatively
spliced transcripts that were protein sequence identical, differing only in the 50 and 30

untranslated regions. We concentrated our analysis on the 215 loci in the set that coded
for at least two protein sequence distinct splice isoforms. There were 804 variants in this
set, a mean of 3.74 variants per locus.

We used five separate methods to help determine the constitutive isoforms for the
genes in the ENCODE project. The methods used in this study were complementary.
The majority of methods were conservation-based, requiring evolutionary information
in the form of genomic and protein sequences. Two methods (structure mapping
and functional residue mapping) also required structural information in the form of
homologous proteins with known structure.

As a working hypothesis all of the HAVANA annotated variants in a locus had an
equal chance to be the principal variant. Most of our methods were used as a means of
rejecting the hypothesis that a given variant could be the principal variant.

Michael L. Tress et al.

473



6.1.1 Methods

1. Conservation of Exonic Structure
Transcripts that do not have conserved exonic structure between species are not
likely to code for the principal isoform. Transcripts with exonic structure that was
not conserved were rejected as candidates for the principal variant.

2. Non-neutral Evolution
Exons with unusual substitution patterns might indicate biological phenomena,
such as the generation of a new function in a subset of a species, but transcripts that
contain one of these exons are unlikely to be the principal isoform. When one of the
transcripts contained an exon with obvious non-standard conservation we did not
consider the variant transcript as a candidate for the principal isoform.Non-standard
evolution was evaluated using two methods, Prank (Loeytynoja and Goldman 2005)
and SLR (Massingham and Goldman 2005). See Fig. 10.

3. Protein Structure
Mapping Variants were also discounted as being principal functional variants if it
was not possible to map their amino acid sequence onto a highly similar structural
domain without introducing a deletion or insertion event caused by an alternatively
spliced exon. Variants that can be mapped to structure without these gaps have
more chance of being the functional variant because we know that they are likely to
fold properly. As of 2006 there were only five examples of alternative isoforms with
resolved protein structures (Romero et al. 2006). See Fig. 11.

4. Functional Residue Conservation
Exons that contain conserved functionally important residues are more likely to be
part of the principal functional isoform of the protein.We used firestar (Lopez et al.
2007), a method that predicts functionally important residues in protein sequences.

5. Vertebrate Alignments
Here we were looking for numbers of species, the more species that had a variant
that aligned correctly to each transcript, the better. A good alignment was an
alignment without insertions or deletions caused by alternative exons. Good
alignments with more distant relatives (Danio, Xenopus, chicken) were regarded
as more valuable than alignments with chimpanzee or dog. If the transcript is
conserved over a greater evolutionary distance it is more likely to be the constitutive
variant. BLAST (Altschul et al. 1997) was used to search a non-redundant database
of vertebrate sequences.

6.1.2 Evaluation of pipeline definitions

Wewere able to determine a principal isoform for 179 genes (83% of the set). While we
were able to detect the principal variant for a high proportion of genes, it was impossible
to determine a principal isoform for 36 genes. In part this was due to the clusters of
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immunoglobulin-based receptors in the ENCODE regions. These receptors are evolving
very rapidly, which means that it is difficult to use conservation-based measures. For
some genes our methods rejected all the alternative variants. Genes flagged in this way
would clearly require further intervention.

A total of 153 of the 179 genes for which we could define the principal isoform
had a Swiss-Prot display sequence. Here it was possible to compare our definition of
the principal functional splice isoform with the display sequence assigned by Swiss-
Prot. The Swiss-Prot display sequence differed from the principal isoform in 37 of
the 153 genes.

Fig. 11 Sequence to structure mapping. The crystal structure of human protein phosphatase 2A has been
solved by three separate groups (for example, Magnusdottir et al. 2006) We were able to map the protein
sequence of the 5 variants of the PPP2R4 gene (RP11-247A12.4) onto the protein phosphatase 2A structure
(2g62). The SwissProt display sequence (from variant 012) has an insertion of 35 residues relative to the
structure of the structure of protein phosphatase 2A. These 35 residues would need to be squeezed in
between the residues marked in silver and yellow on the structure, breaking an alpha helix. The SwissProt
display sequence is therefore unlikely to be the primary variant
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We analysed the pipeline and SwissProt definitions by inspecting aligned genomic
sequences from a wide range of vertebrate species. We also assessed transcription
evidence from multiple sources. All the data, including the genomic sequence align-
ments, are available from theUCSCGenomeBrowser (http://genome.ucsc.edu/cgi-bin/
hgGateway). Where possible we also carried out PubMed searches to look for experi-
mental confirmation for the either variant.

For the majority of genes where the principal isoform differed from the SwissProt
display sequence, the transcript and experimental evidence backed our selection as the
principal isoform. For example the principal isoform we defined for the gene SNX27 has
been shown to be present in lysates from HEK293T cells (Rincon et al. 2007) while the
SwissProt display sequence (SNX27 HUMAN) was not. For the gene HYPK the only
transcript that supports the SwissProt display sequence is chimeric, links theHYPK locus
to the SERF2 locus upstream of HYPK and contains the SERF2 start codon! Published
support for this variant comes from just a single mass-sequencing paper. The start codon
for the principal isoform selected by ourmethods is conserved inprimates, rat andmouse.

The methods used to select the principal isoform can easily be automated and
together with reliable annotations of splice variants, such as those from the HAVANA
group, could form the basis of a pipeline to define principal functional variants for any
genome.

7 The ENCODE pipeline – an automated workflow
for analysis of human splice isoforms

The BioSapiens network focuses on protein annotation, and in relation to the ENCODE
project (The ENCODEProject Consortium 2004, 2007) special attention has been given
to alternative splicing and its putative effects on function. In the pilot phase of the
BioSapiens project, the properties of the coding sequences within the 44 selected regions
of the human genomewere analysed separately by the network collaborators (Tress et al.
2007). The next step in the BioSapiens ENCODE project is to establish a scaled-up
version of the annotation approach applied to the pilot sequences to cover the 100% of
the human genome, including all isoforms. For the scale-up, the ENCODE Pipeline
(EPipe) was constructed to allow researchers to compare functional annotations for all
the splice variants of a given gene in an automatic way. The pipeline takes a set of protein
isoforms as input, sends the sequences to a number of different annotation tools and
compiles the predicted features into a graphical representation.

7.1 Behind EPipe

EPipe is currently implemented as a traditional interactive WWW service at: http://
www.cbs.dtu.dk/services/EPipe. The input sequences are provided in FASTA format
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and it is assumed that these sequences represent different splice variants of the same
gene. The workflow of EPipe is divided into three major modules: alignment, analysis
and presentation. A schematic overview is shown in Fig. 12. The alignment module

Fig. 12 Overview of the EPipe workflow
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provides a multiple alignment of the input amino acid sequences. Four alignment
programs are currently implemented: T-Coffee (Notredame et al. 2000), ClustalW
(Thompson et al. 1994), Dialign (Morgenstern 2004), andHmm3align (unpublished).
Alternatively, a custom alignment can be provided by the user. The purpose of
the analysis module is to create annotation predictions for each of the isoform
sequences. In the current version of EPipe, four commonly used analysis methods
are implemented; these include signal peptide prediction by SignalP (Bendtsen et al.
2004), transmembrane helix prediction by TMHMM (Krogh et al. 2001), domain
identification by PFAM (Finn et al. 2006) and phosphorylation site prediction by
NetPhos (Blom et al. 1999, 2004). In addition to these four methods, FeatureMap3D
has been implemented (Wernersson et al. 2006). FeatureMap3D finds the best
matching structure from the Protein Data Bank (Berman et al. 2000) for each se-
quence and generates images showing a subset of the predicted features in a structural
context. When the results of the alignment and analysis modules are obtained by
the parent EPipe process, they are passed on to the presentation module. Here, three
output formats are generated: a condensed table providing a summary of predicted
features, a graphical 2D alignment representation and 3D plots where the predicted
features are mapped onto.

7.2 Example workflow: IFN alpha/beta receptor protein

Let us now take a look at an example workflow for EPipe (see Fig. 12). The input to
EPipe is a FASTA file with isoform sequences and EPipe itself consists of three
independent modules: alignment, analysis and presentation. As an input example we
have used four variants of the human IFN alpha/beta receptor protein (variant 001,
003, 007 and 008) extracted from ENCODE gene AP000295.6 (Tress et al. 2007). The
proteins were submitted using T-COFFEE as alignment procedure with standard
parameters and the modules SignalP, TMHMM, NetPhos and PFAM were included.
The output from EPipe contains three parts, a feature summary table where rows
correspond to isoforms and columns to features, and where the functional differences
between isoforms are summarised, a 2D feature alignment plot where the predicted
features are projected onto the alignment (in the figure the alignment is shown at the
top and single features are highlighted with different colours) and 3D structural
annotation plots where predictions for each selected feature are projected onto
3D structures by colouring the relevant residues. The output can help identify pu-
tative functional changes resulting from alternative splicing events. From the sum-
mary table and the feature alignment we can see that isoforms 001, 003 and 008 have
putative signal peptides, while isoform 007 does not. The result indicates probable
different subcellular localisation for the isoforms. The structural annotation shows the
location of a predicted feature, in this case phosphorylation sites, on the 3D structures
from PDB.
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7.3 Future perspectives

EPipe is currently based on in-housemodules for predicting the various features. Due to
themodular workflow design, EPipe can readily be extended to includemore alignment
methods and protein annotation tools. It is envisioned that EPipe and relatedworkflows
in the near future will support connections to remoteWeb Services defined by the users.
Such functionality does, however, require stringent standardisation and interoperability
such as are currently in development under collaborations such as the EMBRACE
Grid1. To facilitate post-processing, the entire EPipe output can be obtained as a single
XML file allowing researchers to systematically scan multiple isoform sets and set up
custom criteria for extracting the desired information. For the scanning of several
thousands splice variants, EPipe demands human intervention to draw conclusions –
both in terms of structural consequences of alternative splicing as well as for the general
properties of the different isoforms. As a natural extension, EPipe can be used as a tool
for investigating functional differences within any set of related protein sequences such
as homologues or polymorphic protein sequences.
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