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PREFACE

The availability of whole-genome sequencing data for large numbers and

types of organisms including humans holds exciting promise for advancing

both research and healthcare. A major challenge has been understanding and

using genomic data through targeted manipulation of cellular DNA. Ever

since the discovery of DNA structure in the 1950s, researchers and clinicians

have been contemplating the possibility of making site-specific changes to

the genomes of cells and organisms. Many of the earliest approaches to what

has become known as genome editing relied on the principle of site-specific

recognition of DNA sequences. The study of natural DNA repair pathways

in bacteria and yeast, as well as the mechanisms of DNA recombination,

showed that cells have endogenous machinery to repair DNA double-strand

breaks that would otherwise be lethal. Thus, methods for introducing pre-

cise breaks in the DNA at desired editing sites were recognized as a valuable

strategy for targeted genomic engineering.

Although some isolated successeswere achievedusingoligonucleotides or

small molecules to localize DNA-cleaving activities to specific sequences,

proteins that could be programmed to bind and cleave particular DNA sites

proved more broadly useful. Modular DNA recognition proteins, when

coupled to the sequence-independent nuclease domain of the restriction

enzymeFokI, could function as site-specificnucleases.Whendesigned to rec-

ognize a chromosomal sequence, such zinc-finger nucleases andTALeffector

nucleases can be effective at inducing genomic sequence changes in both ani-

mal and plant cells. Difficulties of protein design, synthesis, and validation

have limited widespread adoption of these engineered nucleases for routine

use, paving the way for the CRISPR/Cas9 system in which a natural protein

with double-stranded DNA-cleaving activity can be programmed with a

short RNA sequence to recognize and cut DNA sites of interest. The ease

of use, efficiency, and multiplexing capabilities of this technology have

enabled rapid adoption for many different genome engineering applications.

In this volume, we provide readers with a collection of protocols for the

major protein-based genome editing techniques, with a particular emphasis

xix



on the more recently developed CRISPR/Cas9 approaches. As these sys-

tems are used more widely and for ever-increasing types of projects, we

anticipate that the facility of genome manipulation for application in human

health and biotechnology will continue to expand.

JENNIFER A. DOUDNA

ERIK J. SONTHEIMER

xx Preface



CHAPTER ONE

In Vitro Enzymology of Cas9
Carolin Anders, Martin Jinek1
Department of Biochemistry, University of Zurich, Zurich, Switzerland
1Corresponding author: e-mail address: jinek@bioc.uzh.ch
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Abstract

Cas9 is a bacterial RNA-guided endonuclease that uses base pairing to recognize and
cleave target DNAs with complementarity to the guide RNA. The programmable
sequence specificity of Cas9 has been harnessed for genome editing and gene expres-
sion control in many organisms. Here, we describe protocols for the heterologous
expression and purification of recombinant Cas9 protein and for in vitro transcription
of guide RNAs. We describe in vitro reconstitution of the Cas9–guide RNA ribonucleo-
protein complex and its use in endonuclease activity assays. The methods outlined here
enable mechanistic characterization of the RNA-guided DNA cleavage activity of Cas9
and may assist in further development of the enzyme for genetic engineering
applications.

1. INTRODUCTION

The clusters of regularly interspaced short palindromic repeat

(CRISPR)-associated protein Cas9 is an RNA-guided endonuclease that

generates double-strand DNA breaks (DSBs) (reviewed in Hsu, Lander, &

Zhang, 2014; Mali, Esvelt, & Church, 2013). Found in type II CRISPR sys-

tems, Cas9 functions in conjunction with CRISPR RNAs (crRNAs) and a

transactivating crRNA (tracrRNA) to mediate sequence-specific immunity

against bacteriophages and other mobile genetic elements (Barrangou et al.,

2007; Deltcheva et al., 2011; Garneau et al., 2010). Cas9 associates with

Methods in Enzymology, Volume 546 # 2014 Elsevier Inc.
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a partially base-paired crRNA–tracrRNA guide structure and the resulting

ribonucleoprotein complex recognizes and cleaves DNA molecules con-

taining sequences complementary to a 20-nucleotide guide segment in the

crRNA (Gasiunas, Barrangou, Horvath, & Siksnys, 2012; Jinek et al.,

2012; Karvelis et al., 2013).

Due to its programmability, Cas9 has been developed into a versatile

molecular tool for genome editing in numerous organisms and cell types

(reviewed extensively in Hsu et al., 2014; Mali, Esvelt, et al., 2013;

Sander & Joung, 2014), including human cells (Cong et al., 2013; Jinek

et al., 2013; Mali, Yang, et al., 2013), mice (Wang et al., 2013; Yang

et al., 2013), zebrafish (Hwang et al., 2013), Drosophila melanogaster

(Bassett & Liu, 2014; Gratz et al., 2013), Caenorhabditis elegans (Cho, Lee,

Carroll, Kim, & Lee, 2013; Friedland et al., 2013; Katic & Grosshans,

2013; Lo et al., 2013), and plants (Li et al., 2013; Nekrasov, Staskawicz,

Weigel, Jones, & Kamoun, 2013; Shan et al., 2013; Xie & Yang, 2013).

The sequence specificity of Cas9 permits the targeting of unique loci in a

typical eukaryotic genome and can be readily altered in vitro and in vivo

by supplying artificially designed guide RNAs either in the naturally occur-

ring dual-RNA form or as single-molecule guide RNAs (sgRNAs) (Cong

et al., 2013; Jinek et al., 2012, 2013; Mali, Yang, et al., 2013). Cas9 thus

provides a superior alternative to existing protein-based approaches such

as zinc finger nucleases and transcription activator-like effector nucleases.

In eukaryotic cells, Cas9-generated DSBs are repaired by nonhomologous

end joining or homologous recombination, which can be exploited to engi-

neer insertions, deletions, and substitutions in the vicinity of the DSB. Fur-

thermore, a catalytically inactive variant of Cas9 (the D10A/H840A mutant

of Streptococcus pyogenes Cas9, referred to as dCas9) has been employed as an

RNA-programmable DNA-binding protein for transcriptional regulation

(Gilbert et al., 2013; Mali, Aach, et al., 2013; Qi et al., 2013). Variants of

the basic targeting approach, including paired nickases (Mali, Aach, et al.,

2013; Ran et al., 2013), dCas9-FokI fusion nucleases (Guilinger,

Thompson, & Liu, 2014; Tsai et al., 2014), and 50-truncated sgRNAs

(Fu, Sander, Reyon, Cascio, & Joung, 2014) have emerged recently to

address the issue of off-targeting and to further improve Cas9 specificity.

Extensive biochemical and structural studies have illuminated many

aspects of the molecular mechanism of Cas9. The two nuclease domains

found in Cas9, HNH and RuvC domains, catalyze the cleavage of the com-

plementary and noncomplementary DNA strands, respectively (Chen,

Choi, & Bailey, 2014; Gasiunas et al., 2012; Jinek et al., 2012). Target

2 Carolin Anders and Martin Jinek



DNA recognition is strictly dependent on the presence of a short protospacer

adjacent motif (PAM) immediately downstream of the DNA region base-

paired to the guide RNA (Gasiunas et al., 2012; Jinek et al., 2012). An

8–12 nt PAM-proximal “seed” region in the guide RNA–target DNA het-

eroduplex is critical for target binding by Cas9 ( Jinek et al., 2012; Nishimasu

et al., 2014). While seed region interactions are sufficient for target binding,

DNA cleavage requires more extensive guide–target interactions (Wu et al.,

2014). Nevertheless, Cas9 tolerates mismatches within the guide–target het-

eroduplex, which is the principal cause of off-target activity (Fu et al., 2013;

Hsu et al., 2013; Mali, Aach, et al., 2013; Pattanayak et al., 2013). Recent

crystal structures and electron microscopic reconstructions of Cas9 in its free

and nucleic-acid-bound states have revealed that Cas9 undergoes a striking

RNA-driven conformational rearrangement that results in the formation of

the DNA-binding site (Anders, Niewoehner, Duerst, & Jinek, 2014; Jinek

et al., 2014;Nishimasu et al., 2014). Additionally, single-molecule and ensem-

ble biophysical studies of target recognition by theCas9–guideRNA complex

have indicated that target DNA binding is dependent on an initial recognition

of the PAM, followed by local unwinding of the adjacent DNA duplex and

directional formation of the guide RNA–target DNA heteroduplex

(Sternberg, Redding, Jinek, Greene, & Doudna, 2014).

In this Chapter, we provide detailed protocols for the heterologous

expression and purification of S. pyogenes Cas9, preparation of guide RNAs

by in vitro transcription, and for the use of these reagents in endonuclease

cleavage assays in vitro. The assays described here can be used to validate

guide RNAs and target sites for in vivo gene targeting applications or to test

the in vitro efficacy of new guide RNA structures and designs. Moreover, the

described procedures can be implemented to utilize Cas9 as a programmable

restriction enzyme for DNA manipulations in vitro. Although S. pyogenes

Cas9 has been the mainstay of genome editing applications so far, the pro-

tocols are readily adaptable for Cas9 proteins and guide RNAs from other

bacterial species and may aid in the rational design of novel Cas9 variants

with altered specificity or PAM requirements.

2. EXPRESSION AND PURIFICATION OF Cas9

Cas9 from S. pyogenes (hereafter referred to as SpyCas9) is expressed

from a pET-based T7 promoter-containing plasmid (pMJ806, available

from Addgene, www.addgene.org) in the E. coli strain Rosetta 2 DE3.

The expressed fusion protein construct contains an N-terminal His6-tag,

3Cas9 Biochemistry
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followed by maltose-binding protein (MBP) polypeptide sequence, a

tobacco etch virus (TEV) protease cleavage site, and the SpyCas9 sequence

spanning residues 1–1368. We found that expression in the Rosetta 2 strain

was necessary to overcome the unfavorable codon bias in the S. pyogenes

genomic DNA sequence, while inclusion of the MBP tag further boosted

expression levels. The purification protocol includes three chromatography

steps: immobilized metal ion affinity chromatography (IMAC), followed by

cation exchange chromatography (IEX), and a final purification by size

exclusion chromatography (SEC). The protocol is generally based on pre-

viously published procedures, with minor modifications ( Jinek et al., 2012,

2014; Sternberg et al., 2014). The procedure can be used for the expression

and purification of mutant SpyCas9 proteins and can be adapted for the

expression of Cas9 orthologs from other bacterial species.

Day 1: Cell transformation

1. Transform chemically competent Rosetta 2 DE3 cells (Novagen, Merck

Millipore) according to the protocol supplied with the cells. Briefly, add

�200 ng of plasmid DNA (pMJ806) to 50 μl of freshly thawed compe-

tent cells and incubate on ice for 15 min. Heat-shock cells by incubation

at 42 �C for 45 s, then place cells on ice for further 3 min. Add 500 μl of
LB (Luria Broth) medium to the cells and incubate the culture at 37 �C
for 1 h in a shaking incubator. Plate 100 μl of culture out on LB agar

containing 50 μg ml�1 kanamycin and 33 μg ml�1 chloramphenicol.

Incubate plates overnight at 37 �C.
Day 2: Culture growth and induction

2. Pick one colony from the agar plate to inoculate 50 ml LB medium con-

taining 50 μg ml�1 kanamycin and 33 μg ml�1 chloramphenicol. Incu-

bate the preculture at 37 �C in a shaking incubator (250 rpm) for a

minimum of 4–5 h or overnight.

3. Use 7.5 ml of the preculture to inoculate 750 ml prewarmed LB

medium supplemented with 50 μg ml�1 kanamycin and 33 μg ml�1

chloramphenicol in a 2 l baffled flask. We typically express 6� 750 ml

total culture volume at a time. Incubate the cultures at 37 �C in a shaking

incubator (90 rpm) while monitoring the cell growth by measuring opti-

cal density at 600 nm (OD600). Reduce the temperature to 18 �C at

an OD of �0.8 and continue shaking for additional 30 min. Induce

protein expression by the addition of 150 μl 1 M isopropyl-β-D-
1-thiogalactopyranoside to each flask (200 μM final concentration).

Continue shaking at 18 �C overnight for another 12–16 h.

4 Carolin Anders and Martin Jinek



Day 3: Cas9 purification by IMAC

4. Harvest cells by centrifugation for 15 min at 3500 rpm (�2700� g) in a

swing-bucket rotor in 1 l bottles. Decant the supernatant and resuspend

the cell pellets using �15 ml ice-chilled lysis buffer (20 mM Tris–Cl,

pH 8.0, 250 mM NaCl, 5 mM imidazole, pH 8.0, 1 mM

phenylmethylsulfonyl fluoride) per cell pellet from 1 l culture. The

resuspended cell pellets can either be used directly for further purification

or flash frozen in liquid nitrogen and stored at�80 �C for several months

without loss of Cas9 enzymatic activity.

5. Lyse the resuspended cell pellets using a cell homogenizer (Avestin

Emulsiflex). Pass the cell suspension through the homogenizer three

times at�1000 bar to ensure complete lysis. The lysate should be cooled

on ice between passes.

6. Clarify the lysate by centrifugation in 50 ml Nalgene Oak Ridge tubes at

18,000 rpm (�30,000� g) in an SS-34 rotor (or equivalent) for 30 min

at 4 �C. Collect the supernatant.
7. All chromatographic steps should be performed at 4 �C. Equilibrate 10 ml

of His-Select Ni resin (Sigma–Aldrich) packed in a XK 16/20 column

housing (GE Healthcare) with 20 ml lysis buffer. Load the cleared

lysate on the column using a peristaltic pump at �1.5 ml min�1. Attach

the column with bound protein to an FPLC system equilibrated in wash

buffer (20 mM Tris–Cl, pH 8.0, 250 mM NaCl, 10 mM imidazole,

pH 8.0).

8. Wash with �50 ml wash buffer at 1.5 ml min�1 until the absorbance

nearly reaches the baseline again. Elute with �50 ml elution

buffer (20 mM Tris–Cl, pH 8.0, 250 mM NaCl, 250 mM imidazole,

pH 8.0) and collect in 2 ml fractions. Analyze the peak fractions

using SDS-PAGE and pool those containing Cas9 protein.

9. Estimate protein concentration by measuring the absorbance at

280 nm (use elution buffer as blank). Add 0.5 mg TEV protease

per 50 mg of protein. Dilute the Cas9 sample to �1 mg ml�1 with

dialysis buffer (20 mM HEPES–KOH, pH 7.5, 150 mM KCl, 10%

(v/v) glycerol, 1 mM dithiothreitol (DTT), 1 mM EDTA) and

dialyze the sample in dialysis tubing with a molecular weight cut

off (MWCO) of 12–14 kDa against 2 l dialysis buffer at 4 �C
overnight. Dialysis buffer (without DTT and glycerol) can be

prepared as a 10� stock, but DTT should only be added immediately

prior to use.

5Cas9 Biochemistry



Day 4: IEX and SEC chromatographic steps

10. Recover the dialyzed sample from the dialysis tubing. Typically, slight

precipitation occurs after successful TEV protease cleavage. Centrifuge

the sample at 3900 rpm (�3200� g) for 5 min at 4 �C to remove the

precipitate. Check the extent of TEV protease cleavage using SDS-

PAGE.

11. Equilibrate a 5-ml HiTrap SP FF column (GE Healthcare) with IEX

buffer A (20 mM HEPES–KOH, pH 7.5, 100 mM KCl) and load

the cleaved protein onto the column using a peristaltic pump or a

sample loading superloop at a flow rate of �2 ml min�1. Attach the

column to the FPLC system. Set the flow rate to 2 ml min�1 and

the pressure limit to 0.3 MPa for further steps using the HiTrap col-

umn. Collect 2 ml fractions throughout. Wash the column with

10 ml IEX buffer A and elute bound protein by applying a gradient

from 0% to 50% IEX buffer B (20 mM HEPES–KOH, pH 7.5, 1 M

KCl) over 60 ml. Cas9 typically elutes in two peaks with different ratios

of the absorbances at 260 and 280 nm (A260/A280). The first peak starts

eluting at �15% IEX buffer B with its maximum at �20%, the second

peak elutes at �25–40%, with a maximum at �30%. Analyze all peak

fractions for the presence of Cas9 using SDS-PAGE. Pool Cas9-

containing fractions that have an A260/A280 of less than �0.6. The

pooled sample can be stored at 4 �C overnight or can be flash frozen

in liquid nitrogen and stored at �80 �C.
12. Exchange the buffer to SEC buffer (20 mM HEPES–KOH, pH 7.5,

500 mM KCl, 1 mM DTT) while concentrating the protein to

<1.5 ml volume using a 30,000 MWCO centrifugal concentrator

(Amicon) at 3900 rpm. The buffer exchange helps circumvent precip-

itation in the centrifugal concentrator. Recover concentrate in a 1.5 ml

Eppendorf tube and centrifuge for 10 min at 14,000 rpm (16,900� g)

at 4 �C to remove any precipitated material.

13. In the meantime, equilibrate a HiLoad 16/600 Superdex 200 PG gel

filtration column (GE Healthcare) with the SEC buffer. Inject concen-

trated Cas9 onto column using a 2 ml sample loop. Elute with 120 ml

SEC buffer at a flow rate of 1 ml min�1, collecting 2 ml fractions. Cas9

typically elutes at a volume of �66 ml. Analyze the peak fractions

using SDS-PAGE and pool those containing Cas9 protein.

Day 5: Concentration and storage

14. Concentrate eluted Cas9 using a 30,000 MWCO centrifugal concen-

trator to a concentration required for further experiments. In the
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described SEC Buffer, Cas9 can be concentrated up to �30 mg ml�1

(189.3 μM) without precipitation. The concentration is determined

based on the assumption that 1 mg ml�1 has an absorbance at

280 nm of 0.76 (based on a calculated extinction coefficient of

120,450 M�1 cm�1).

15. Divide concentrated protein sample into 50 μl aliquots and flash freeze

in liquid nitrogen. Frozen Cas9 can be stored at �80 �C for several

months without loss of activity. Prior to use, thaw an aliquot and dilute

to the required concentration with SEC buffer. We typically dilute

Cas9 to 15 μM for endonuclease activity assays. To avoid unnecessary

freeze–thaw cycles that can result in loss of enzymatic activity, Cas9 can

be stored on ice or at 4 �C for at least 2 days without loss of activity if

used for several experiments. However, it is recommended to check the

stored sample periodically for the absence of any precipitated material

and to monitor protein integrity by SDS-PAGE.

3. PREPARATION OF GUIDE RNAs

For sequence-specific DNA cleavage, Cas9 can be programmed either

with a custom crRNA that is partially base-paired to an invariant tracrRNA

molecule (i.e., the dual-RNA guide) or with chimeric sgRNAs that com-

bine the essential parts of the crRNA and tracrRNA molecules in a single

oligonucleotide chain ( Jinek et al., 2012). When using dual-RNA guides,

the crRNA guide is composed of a 50-terminal 20-nt guide sequence,

followed by an invariant 22-nt repeat-derived sequence at the 30 end (50-
XXXXXXXXXXXXXXXXXXXX-GUUUUAGAGCUAUGCUGUU

UUG-30) that will ensure base pairing to the tracrRNA (Fig. 1.1A). The

tracrRNA sequence remains identical for all guide crRNAs and corresponds

to the sequence of the mature processed S. pyogenes tracrRNA (50-
AAACAGCAUAGCAAGUUAAAAUAAGGCUAGUCCGUUAUCAA

CUUGAAAAAGUGGCACCGAGUCGGUGCUU-30) (Fig. 1.1A).

Alternatively, a sgRNA can be used for Cas9 programming. The chimeric

RNA is essentially composed of the desired 20-nt guide sequence at its 50

end, followed by a segment corresponding to the 30-terminal invariant

sequence of the crRNA, and fused to a tracrRNA fragment with a GAAA

tetraloop. The tracrRNA-derived part of the sgRNA consists of a region

complementary to the repeat-derived part of the crRNA and three addi-

tional stem–loops (SL1–3) at the 30 end (Fig. 1.1B). Although 30-terminally
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truncated sgRNAs containing just SL1 are functional in vitro ( Jinek et al.,

2012), inclusion of SL2 and SL3 increases the stability of the Cas9-

crRNA–tracrRNA complex and enhances cleavage activity (Hsu et al.,

2013; Nishimasu et al., 2014).
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Figure 1.1 (A) Schematic representation of the dual-RNA guide structure for program-
ming SpyCas9. Blue: crRNA containing a 20-nt guide sequence and a 22-nt invariant
sequence. The GG dinucleotide at the 50 end is appended during in vitro transcription.
Red: tracrRNA base-pairing with the invariant sequence of the crRNA. tracrRNA contains
three stem-loops (SL1, SL2, and SL3) at its 30 end. Although SL1 is sufficient for Cas9-
mediated cleavage in vitro (Jinek et al., 2012), inclusion of both SL2 and SL3 increases
cleavage efficiency by increasing the stability of the Cas9–crRNA–tracrRNA complex
(Hsu et al., 2013; Nishimasu et al., 2014). (B) Schematic representation of chimeric
single-guide RNA (sgRNA). crRNA- and tracrRNA-derived sequences are connected by
a 50-GAAA-30 tetraloop linker. (C) Outline of the procedure for sgRNA guide design
and preparation by in vitro transcription.
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Custom 42-nt crRNAs can be obtained as synthetic oligonucleotides,

whereas tracrRNA and sgRNAs need to be prepared by in vitro transcription

using T7 RNA polymerase and subsequently purified by denaturing poly-

acrylamide gel electrophoresis. The RNAs are sufficiently short to be tran-

scribed using synthetic DNA oligonucleotides as transcription templates

(Milligan & Uhlenbeck, 1989), without the need to clone the transcribed

sequence into a DNA plasmid (Fig. 1.1C). The RNAs are transcribed as

run-off products, so that no transcriptional terminator is required. Note that

an optimal T7 promoter contains twoGnucleotides that are required for effi-

cient transcription and that will be appended to the 50 end of the transcribed
RNAupstream of the 20-nt guide sequence. Addition of the 50-terminal GG

dinucleotide to the guide RNA has little effect on Cas9 loading and enzy-

matic activity ( Jinek et al., 2012; Sternberg et al., 2014). T7 polymerase

can transcribe a single-stranded DNA template but requires a double-

stranded promoter region for efficient template binding (Milligan, Groebe,

Witherell, &Uhlenbeck, 1987). Such partially duplexed template can be pre-

pared by annealing a T7 promoter oligonucleotide to a synthetic oligonucle-

otide consisting of the antisense sequence of the desired RNA followed by

the reverse complement of the T7 promoter sequence (Fig. 1.1C).While this

method is generally efficient and produces hundreds of micrograms of RNA

from a 1 ml transcription reaction, the RNA yield can be low in some cases.

Transcription efficiency can be improved by converting the template to fully

double-stranded DNA by PCR amplification (Fig. 1.1C).

The following protocol is used to prepare the sgRNA used in the endo-

nuclease activity assays described in Section 4. The protocol describes prep-

aration of a fully double-stranded transcription templates in step 1; to prepare

partially duplexed templates by annealing synthetic oligonucleotides, start at

step 2. We recommend PAGE-purification of DNA oligonucleotides prior

to annealing (Lopez-Gomollon & Nicolas, 2013). We typically perform

in vitro transcription in a 5 ml reaction to obtain �0.5–1 mg of pure

RNA, but the reaction can be scaled down accordingly. A control transcrip-

tion reaction in a total volume of 100 μl should be carried out first and ana-
lyzed by denaturing PAGE before scaling up to large volumes. T7 RNA

polymerase is available from a number of commercial sources. Alternatively,

several published protocols describe the expression and purification of

recombinant T7 RNA polymerase (Ellinger & Ehricht, 1998; He et al.,

1997; Li, Wang, & Wang, 1999; Rio, 2013).

Note: Working with RNA requires an RNase-free environment. Wear

gloves and use RNase-free plasticware and filter pipette tips. Prepare all

9Cas9 Biochemistry



reagents using nuclease-free or DEPC-treated water (DEPC–H2O). Tran-

scription reactions can be supplemented with RNase inhibitors if necessary.

Day 1: Preparation of transcription template

1. A double-stranded transcription template is prepared by amplifying a

single-stranded oligonucleotide by PCR amplification of the antisense

template oligonucleotide with the T7 promoter sequence as forward

primer and the 30 end of the antisense template as reverse primer

(Fig. 1.1C). Mix reagents for PCR according to Table 1.1 and split into

50 μl aliquots into a 96-well plate suitable for PCR.PerformPCRcycling

according toTable 1.2.After PCR, combine all reactions into 500 μl frac-
tions in 2 ml tubes. Precipitate the PCR product by adding 50 μl 3 M
sodium acetate, pH 5.2 and 1.45 ml ice-chilled 100% ethanol to each

500 μl fraction and incubate for 1 h at �20 �C. Centrifuge the

Table 1.1 PCR reaction for preparing double-stranded template for in vitro transcription
Stock concentration Final concentration Volume (μl)a

DEPC–H2O – – 3810

Phusion buffer 5� 1� 1000

dNTP mix 10 mM each 200 μM each 100

Primer forward 100 μM 0.5 μM 25

Primer reverse 100 μM 0.5 μM 25

Template 1 μM 4 nM 20

Phusion polymerase 2 U μl�1 0.02 U μl�1 20

Total volume 5000

aMaster mix for a 96-well PCR plate. Aliquot 50 μl into each well. Scale down as appropriate.

Table 1.2 PCR cycling program

98 �C 30 s

98 �C 5 s Repeat 34�
42 �C 20 s

72 �C 10 s

72 �C 1 min

4 �C 1
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precipitated PCR product at 14,000 rpm (16,900� g) for 40 min at 4 �C.
Remove supernatant and wash the DNA pellet with 200 μl ice-chilled
70% ethanol. Centrifuge for 5 min, remove supernatant and air-dry the

DNA pellet for 30 min. Dissolve the DNA pellet in 100 μl water.

Measure the absorbance at 260 nm and calculate the concentration of

the double-stranded DNA template. Extinction coefficients can be

calculated using the OligoCalc server (Kibbe, 2007). Dilute the double-

stranded template with 5� transcription buffer (150 mM Tris–Cl,

pH 8.1, 125 mM MgCl2, 0.05% Triton X-100, 10 mM spermidine) and

water to a final concentration of 10 μM in a total volume of 1 ml. Incubate

mixture at 75 �C for 5 min and allow it to cool down slowly to room

temperature. Proceed with the transcription reaction described in step 3.

2. To prepare a partially single-stranded DNA template, mix 100 μl of
100 μM template oligonucleotide stock with 150 μl 100 μM (1.5-fold

molar excess) complementary T7 promoter oligonucleotide (50-
TAATACGACTCACTATAGG-30) and 200 μl 5� transcription

buffer. Add water to bring the total volume to 1 ml. Anneal the oligo-

nucleotides at 75 �C for 5 min and let the mixture slowly cool down to

room temperature.

Day 2: In vitro transcription and gel purification

3. Transcription reaction: Set up a transcription reaction by mixing the reagents

according to Table 1.3. A 5 ml reaction is usually sufficient for�0.5–1 mg

of pure sgRNA. The reaction can be scaled down as needed.

Table 1.3 In vitro transcription reaction
Stock concentration Final concentration Volume (ml)

DEPC–H2O – – 1.95

Transcription buffer 5� 1� 1.00

ATP 100 mM 5 mM 0.25

UTP 100 mM 5 mM 0.25

GTP 100 mM 5 mM 0.25

CTP 100 mM 5 mM 0.25

DTT 1 M 10 mM 0.05

Hybridized template 10 μM 1 μM 0.50

T7 RNA polymerase 1 mg ml�1 0.1 mg ml�1 0.50

Total volume 5.00
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Incubate the reaction at 37 �C for 1.5 h. During transcription,

magnesium pyrophosphate precipitates from the reaction due to

production of inorganic pyrophosphate upon NTP incorporation into

nascent transcripts. To restore magnesium ion levels, add 25 μl 1 M
MgCl2 after 1.5 h and continue with incubation at 37 �C for another

1.5 h. The optimal reaction times may vary as a function of length

and RNA sequence of the transcribed RNA and should be determined

empirically.

4. Add 25 μl (25 U) of RNase-free RQ1 DNase (Promega) to the tran-

scription reaction and incubate 15 min at 37 �C in order to remove

the template DNA. Centrifuge the mixture for 5 min at 3900 rpm

(�3200� g) and 4 �C to pellet magnesium pyrophosphate and remove

the supernatant containing transcribed RNA. The supernatant can be

stored at �20 �C at this point.

5. Add 5 ml 2� RNA loading dye (5% glycerol, 2.5 mM EDTA, pH 8.0,

90% formamide, trace bromophenol blue) to the sample. Separate the

RNA by electrophoresis on a prewarmed 8% polyacrylamide, 7 M urea

denaturing gel in 0.5� TBE (44.5 mM Tris, 44.5 mM boric acid, 1 mM

EDTA, pH 8.0) until the bromophenol blue dye reaches the lower quar-

ter of the gel. We typically use gels with the dimensions of

400 mm�360 mm�4 mm (h�w�d) and run them at 50 W for

�4–6 h. Visualize RNA by UV-shadowing over a silica glass TLC plate

and excise the band corresponding to the correct RNA product using a

disposable scalpel. Crush the gel slices in a 50-ml tube using a clean spat-

ula or a plastic serological pipette and add water to 50 ml total volume.

Incubate overnight at 4 �C while rocking.

Day 3: Gel purification—continued

6. Centrifuge the crushed gel suspension for 5 min at 3900 rpm

(�3200� g) and 4 �C and collect the supernatant. Filter supernatant

through a 0.22-μm disposable filter (Steriflip, Millipore). Concentrate

the eluted RNA in 3000 Da MWCO centrifugal concentrator to a final

volume of �2 ml. Aliquot the concentrate into 500 μl fractions in 2-ml

tubes. Add 50 μl 3 M sodium acetate, pH 5.2 and 1.5 ml ice-chilled

100% ethanol to each 500 μl fraction and incubate for 1 h at �20 �C.
Centrifuge the precipitated PCR product at 14,000 rpm (16,900� g)

for 40 min at 4 �C. Remove supernatant and wash the DNA pellet with

200 μl ice-chilled 70% ethanol. Air-dry the pellet and dissolve in 100 μl
water. Determine RNA concentration by measuring absorbance at

260 nm.
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4. ENDONUCLEASE CLEAVAGE ASSAYS

Endonuclease cleavage assays can be used to characterize the activity of

purified Cas9 or test the in vitro efficacy of a particular guide RNA or a target

DNA site. In these assays, the target DNA site, including its PAM motif, is

either inserted into a plasmid or provided in the form of an oligonucleotide

duplex. Cleavage of plasmid substrates is monitored by agarose gel electro-

phoresis and staining with an intercalating dye, whereas oligonucleotide

substrates typically require labeling (with a radioisotope or a fluorophore)

of one or both target DNA strands. Although we previously used 50-
radiolabeling with 32P phosphate, we recently switched to ATTO532-

labeled oligonucleotides, choosing the fluorophore for its superior quantum

yield and photostability. Custom 50-ATTO532-labeled oligonucleotides are

readily available from commercial sources.

In both plasmid and oligonucleotide cleavage assays, Cas9 and guide

RNA are preincubated in a 1:1 molar ratio in the cleavage buffer to recon-

stitute the Cas9–guide RNA complex prior to the addition of target DNA.

Preincubation is not strictly required for cleavage ( Jinek et al., 2012). The

cleavage reaction is started by the addition of DNA to the binary complex.

As Cas9 is a single turnover enzyme (Sternberg et al., 2014), it is important to

maintain the protein–RNA complex in excess over the DNA substrate. We

recommend a molar ratio of 5:1 or higher to ensure complete cleavage. The

reaction mixture is sampled at different time points and analyzed by gel elec-

trophoresis. Since the reaction rate can strongly vary as a function of DNA

source and length (oligonucleotide vs. plasmid, supercoiled circular vs. lin-

ear), optimal enzyme and substrate concentrations, and also reaction time

points need to be determined empirically. In both assay types, product for-

mation can be quantified by densitometry using a fluorescence scanner and

curve fitting to extract pseudo-first-order rate constants.

For endonuclease cleavage assays shown in Fig. 1.2, SpyCas9 was

programmed with chimeric sgRNA guides to cleave either linearized plas-

mid DNA or a short oligonucleotide duplex substrate. The sgRNA guide

included stem loops SL1 and SL2 in its 30-terminal region (Fig. 1.2A), which

were sufficient for Cas9 loading and robust DNA cleavage activity. Plasmid

cleavage was carried out with a pUC19-derived plasmid in which the target

site (including a 50-NGG-30 PAM) was inserted between the EcoRI and

BamHI sites (Fig. 1.2B). The oligonucleotide duplex substrate contained

a 50-ATTO532-labeled target strand containing an 8-nt linker at the 50
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end, followed by the complementary PAM sequence (50-CCN-30) and the

20-nt target sequence. The target strand was annealed to a complementary

unlabeled nontarget strand containing the 50-NGG03-PAM (Fig. 1.2C).

A 250-fold excess of Cas9–guide RNA complex over DNA substrate was

used. The following protocol describes the technical details of the two assays.

Substrate preparation

1. For plasmid substrates, linearize the circular DNA by a restriction digest.

Choose a restriction enzyme that cuts at a unique site away from the

Cas9 target site so that Cas9-mediate cleavage of the linear DNA pro-

duces two well-separated fragments. For pUC19-based plasmids, use

50 units of SspI-HF (New England Biolabs) and 5 μg plasmid in 1�
CutSmart™ buffer in a total volume of 50 μl. Incubate the reaction

Figure 1.2 (A) sgRNA used in endonuclease activity assays in panels B and C. The sgRNA
contains stem-loops SL1 and SL2 but lacks SL3 (total length of sgRNA is 83 nt).
(B) Endonuclease activity assay of SpyCas9 using SspI-linearized plasmid (2702 bp).
Samples were taken at indicated time points. Cleavage products (2104 and 598 bp)
were resolved on a 1% agarose gel and stained with GelRed. The sequence of the target
site in the plasmid substrate is shown above the gel image. (C) Endonuclease activity
assay of SpyCas9 using a double-stranded oligonucleotide target. The oligonucleotide
duplex substrate is shown above the gel image. The cleavage reaction was sampled the
indicated time points and analyzed by electrophoresis on a denaturing (7 M urea) poly-
acrylamide gel. ATTO532 fluorescence was detected using a FLA9500 laser scanner.
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for 1 h at 37 �C. Heat-inactivate SspI-HF by incubating for 20 min at

65 �C. Analyze plasmid cleavage by electrophoresis on a 1% agarose

gel in 1� TAE buffer (40 mM Tris, pH 8.0, 20 mM glacial acetic acid,

1 mM EDTA, pH 8.0) stained with GelRed (Biotium) or similar nucleic

acid stain. Complete digestion of pUC19-derived vectors yields a single

band of �2700 bp.

2. For oligonucleotide duplex substrate, the 50-ATTO532-labeled target

strand oligonucleotide should be PAGE-purified. To generate the oligo-

nucleotide duplex, anneal target and nontarget strand by mixing the oli-

gonucleotides in a molar ratio of 1:1.5. Prepare 100 μM stock solutions

of the target and nontarget strand oligonucleotides. Mix 1.0 μl of the tar-
get strand with 1.5 μl of the nontarget strand and add water to a total

volume of 25 μl. Heat the mixture to 75 �C for 5 min and cool slowly

to room temperature (Table 1.5). Dilute the mixture with 225 μl
DEPC–H2O to obtain 400 nM stock solution of the oligonucleotide

duplex substrate.

Cleavage assay

3. Prepare 5� cleavage buffer (100 mM HEPES, pH 7.5, 500 mM KCl,

25% glycerol, 5 mM DTT, 2.5 mM EDTA, pH 8.0, 10 mM MgCl2).

4. Dilute Cas9 to 15 μM with SEC Buffer (see Section 2). Dilute in vitro

transcribed sgRNA to 15 μM with water.

5. Anneal the guide RNA by heating to 90 �C for 5 min and slowly

cooling to room temperature.

6. Set up reaction mixes according to Table 1.4 (plasmid DNA substrates)

or Table 1.5 (oligonucleotide DNA substrates). Add equimolar

Table 1.4 Endonuclease activity assay using linearized plasmid DNA substrate
Stock concentration Final concentration Volume (μl)

DEPC–H2O – – 22.0

Cleavage buffer 5� 1� 11.0

SpyCas9 15 μM 1.5 μM 5.5

Guide RNA 15 μM 1.5 μM 5.5

Incubate for 10–15 min at room temperature. Then add the DNA.

Plasmid DNA 100 ng μl�1 10 ng μl�1 5.5

Total volume 55.0
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amounts of Cas9 protein and guide RNA in the reaction mix without

DNA. Incubate for 10–15 min at room temperature.

7. Start the cleavage reaction by adding the DNA target to the reaction

mix and incubate at 37 �C immediately.

8. Remove 10 μl aliquots at different time points and quench by adding to

1.0 μl of 500 mM EDTA, pH 8.0 (final concentration 50 nM) in a sep-

arate 1.5 ml tube. Mix by pipetting up and down and store at �80 �C
until all time points are collected.

9. Thaw the samples and add 1.0 μl Proteinase K (20 mg ml�1) to digest

DNA-bound Cas9. Incubate for 20 min at room temperature. Add 6�
plasmid DNA-loading buffer (10 mM Tris, pH 7.6, 60 mM EDTA,

60% glycerol, 0.03% bromophenol blue, 0.03% xylene cyanol FF) or

2� oligonucleotide-loading buffer (90% formamide, 10% glycerol)

to each sample.

10. Plasmid cleavage assay: Analyze each plasmid sample on a 1% agarose gel

in 1� TAE stained with GelRed (Biotium) or compatible nucleic acid

stains. For visualization with a Typhoon FLA 9500 scanner, loading

2 μl of sample was sufficient.

11. Oligonucleotide cleavage assay: Resolve oligonucleotide duplex samples on a

16%polyacrylamide, 7Murea denaturing gel (300mm� 180mm; 1mm

thick) in 0.5� TBE buffer. Load 12.5 μl of each sample and run at 25 W

for �2 h until the bromophenol blue dye front has reached the bottom

half of the gel. Scan the gel using a laser gel scanner (e.g., Typhoon

FLA9500, GE Healthcare) with the appropriate excitation and emission

wavelength settings (532 and 553 nm for ATTO532, respectively).

Table 1.5 Endonuclease activity assay using oligonucleotide duplex substrate
Stock Final concentration Volume (μl)

DEPC–H2O – – 1.5

Cleavage buffer 5� 1� 21.0

SpyCas9 15 μM 5 μM 35.0

Guide RNA 15 μM 5 μM 35.0

Incubate for 10–15 min at room temperature. Then add annealed DNA duplex.

Duplex substratea 400 nM 20 nM 12.5

Total volume 105.0

aThe target and nontarget DNA are annealed prior addition to the reaction. See step 2 for the annealing
procedure.
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Interpretation of cleavage assays

12. Plasmid-based assays: In the absence of Cas9-mediated cleavage, linear-

ized plasmid yields a single band at 2702 bp. Cleavage by Cas9 leads to

gradual emergence of two cleavage products at 2104 and 598 bp.

13. Oligonucleotide-based assays: Cleavage of the oligonucleotide substrate by

Cas9 leads to a mobility shift of the fluorescent signal. The 50-labeled
target strand of the substrate has a length of 31 nt, while the cleaved

product runs as a 14-nt band.

5. CONCLUDING REMARKS

Thanks to its specificity and easy programmability, Cas9 represents a

revolutionary advance in genetic engineering technologies for basic

research, biomedicine, and biotechnology. In this chapter, we have outlined

procedures for generating recombinant Cas9 and guide RNAs and for per-

forming endonuclease cleavage assays with the reconstituted Cas9–guide

ribonucleoprotein complex. These protocols provide the experimental

framework for further in vitro mechanistic studies of Cas9 that will facilitate

ongoing development of Cas9-based genetic engineering technologies.

A number of questions pertaining to the molecular mechanism of Cas9

remain unanswered, in particular the nature of the conformational

rearrangements that activate the Cas9 nuclease domains prior to target cleav-

age. In the context of genome editing and regulation in eukaryotic cells,

major outstanding questions concern the off-target activity of Cas9 and

the effect of chromatin structure on Cas9 targeting and DNA cleavage.

Therefore, further in vitro studies will be required to define the functional

constraints of Cas9. Finally, although SpyCas9 has been extensively

characterized, relatively little is known about the biochemical properties

of other Cas9 orthologs. The protocols provided here can be readily applied

to Cas9 proteins from other bacterial species or novel rationally designed

Cas9 variants in order to expand the molecular toolbox for genome

engineering.
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Abstract

CRISPR RNA-guided nucleases have recently emerged as a robust genome-editing plat-
form that functions in a wide range of organisms. To reduce off-target effects of these
nucleases, we developed and validated a modified system that uses truncated guide
RNAs (tru-gRNAs). The use of tru-gRNAs leads to decreases in off-target effects and does
not generally compromise the on-target efficiencies of these genome-editing nucle-
ases. In this chapter, we describe guidelines for identifying potential tru-gRNA target
sites and protocols for measuring the on-target efficiencies of CRISPR RNA-guided
nucleases in human cells.

1. INTRODUCTION

Methods to edit genome sequence in living cells provide a powerful

and versatile approach for elucidating gene function and could also poten-

tially be useful for therapy of inherited diseases. Over the past few decades,
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successful genome modification has relied on various technologies including

transposons, lentiviral vectors, and recombinases. However, each of these

platforms has certain limitations. For example, transposable elements and

lentiviral vectors integrate in a semi-random fashion, and recombinases are

limited by their lack of programmability. In the last decade, highly efficient

and programmable genome-editing nucleases such as zinc finger nucleases

(ZFNs), transcription activator-like effector nucleases (TALENs), and clus-

tered regularly interspaced short palindromic repeat (CRISPR) RNA-

guided nucleases have rapidly emerged and been shown to work in a wide

range of model organisms. These customizable nucleases mediate genome

editing by introducing a double-stranded break (DSB) in a target DNA

sequence, which in turn can lead to the efficient generation of insertions

or deletion mutations (indels) by nonhomologous end-joining repair. Alter-

natively, in the presence of an appropriately designed, homologous donor

DNA template (which can be either single- or double-stranded), precise

alterations can be created by homology-directed repair of the DSB.

ZFNs and TALENs are each composed of a customizable DNA-binding

domain fused to the nonspecific cleavage domain of the FokI endonuclease.

Both types of nucleases have been used successfully to modify genome

sequences in a large number of different cell types and organisms

( Joung & Sander, 2013; Urnov, Rebar, Holmes, Zhang, & Gregory,

2010). Engineered zinc finger arrays with novel DNA-binding specificities

can be challenging to construct if one accounts for the context-dependent

activities of individual zinc finger domains within an array (Wolfe,

Nekludova, & Pabo, 2000). By contrast, the activities of individual tran-

scription activator-like effector (TALE) repeat domains are quite modular

in their activities (Reyon, Tsai, et al., 2012). As a result, a very high percent-

age of TALE repeat arrays can bind to their intended target sites in human

and other cell types (Reyon, Tsai, et al., 2012). Although TALEN-encoding

constructs can be very rapidly assembled, the highly repetitive nature of

TALE repeat arrays has required the use of nonstandard molecular biology

methods to speed up the process of assembling DNA constructs encoding

these proteins ( Joung & Sander, 2013). In addition, the highly repetitive

nature of these TALE repeat-encoding sequences has led to challenges in

packaging them into certain virus-based delivery systems (Holkers

et al., 2012).

CRISPR RNA (crRNA)-guided nucleases provide a simpler genome-

editing alternative to ZFNs and TALENs. The initial version of this plat-

form was based on components derived from the Streptococcus pyogenes type
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II CRISPR immune system ( Jinek et al., 2012), which forms an adaptive

system responsible for silencing of invading plasmids and viral DNA in many

bacteria (Wiedenheft, Sternberg, & Doudna, 2012). The double-stranded

DNA cleavage activity of Cas9 can be programmed by a RNA duplex of

crRNAs and trans-activating crRNAs (tracrRNAs) to cleave 20 bp target

sites that lie next to a protospacer adjacent motif (PAM) sequence of the

form NGG. Charpentier, Doudna, and colleagues first showed that a chi-

meric “guide RNA” (sgRNA) consisting of parts of the crRNA and

tracrRNA can also direct Cas9 to cleave specific target DNA sites by altering

the first 20 nts of this chimeric sgRNA ( Jinek et al., 2012) (Fig. 2.1A). The

results of this study opened the door to use of the CRISPR/Cas9 system as a

programmable genome-editing tool with initial studies showing its use in

bacteria ( Jiang, Bikard, Cox, Zhang, & Marraffini, 2013), zebrafish

(Hwang et al., 2013), and human cells (Cho, Kim, Kim, & Kim, 2013;

Cong et al., 2013; Jinek et al., 2013; Mali, Yang, et al., 2013). Subsequently,

a large number of studies have shown the successful use of the CRISPR/

Cas9 system for genome editing in a variety of organisms (Sander &

Joung, 2014).

A number of groups have studied the specificities of crRNA-guided

nucleases and demonstrated that off-target effects can be observed in plants,

zebrafish, mouse, rat, and cultured human cells. A study from our group first

showed that RNA-guided Cas9 could induce high-frequency off-target

mutations in human cells (Fu et al., 2013). In this work, we screened

�60 computationally identified candidate off-target sites for six sgRNAs

targeted to four endogenous genes using a T7 Endonuclease I (T7EI)

genotyping assay that can detect indels at frequencies of 2–5% or higher.

Surprisingly, we found that it was relatively easy to identify off-target sites

for four of the six sgRNAs and that the rates of mutagenesis observed at these

off-target sites were comparable to (or, in some cases, higher than) those

observed at the on-target site. Importantly, some of the off-target sites we

identified differed from the off-target sites by as many as five mismatches

and many of these off-target mutations could be identified in three different

human cell lines. At least four subsequent studies have observed similar find-

ings in human cells (Cradick, Fine, Antico, & Bao, 2013; Hsu et al., 2013;

Pattanayak et al., 2013), in rice (Xie & Yang, 2013), and in model organisms

such as zebrafish (Auer, Duroure, De Cian, Concordet, & Del Bene, 2014;

Jao, Wente, & Chen, 2013), mouse (Yang et al., 2013), and rat (Ma, Shen,

et al., 2014; Ma, Zhang, et al., 2014). The results of various studies that have

identified off-target mutations are summarized in Table 2.1.
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Given the limitations of specificity observed with first-generation

CRISPR/Cas nucleases, the development of newer, next-generation plat-

forms to reduce off-target effects is of utmost importance, particularly if

these reagents are to be used for therapeutic applications. Improvements

to the first-generation CRISPR/Cas platform have thus far focused on

two general approaches: (1) altering the length of the sgRNA and (2)

increasing the recognition sequence by making genome-editing events

dependent on two, rather than one, sgRNAs.

The first approach—changing the length of the targeting region of the

sgRNA (i.e., the sequences on the 50-end of the sgRNA)—provides a sim-

ple (and, therefore, appealing) strategy to reduce off-target effects. Kim and

colleagues have shown that adding two additional guanines to the 50-end of a
sgRNA can reduce off-target effects of Cas9 in human K562 cells

(Fig. 2.1B). However, for two of the four target sites tested with this strategy,

the rates of genome editing at the intended on-target site also showed reduc-

tions in efficiency (Cho, Kim, Kim, Kweon, et al., 2013). By contrast, we

found that shortening (rather than lengthening) the 50-targeting region of a

sgRNA to 17 or 18 nucleotides can substantially reduce off-target effects by

5000-fold or more without generally compromising on-target efficiencies of

modification (Fu, Sander, Reyon, Cascio, & Joung, 2014) (Fig. 2.1C). We

hypothesize that our approach works because there may be excess binding

energy when using full-length sgRNAs and that using truncated gRNAs

decreases that binding energy to a level just sufficient for full on-target

Figure 2.1—Cont'd Schematic overview of all the published methods on specificity
improvement to CRISPR/Cas9 nucleases. (A) A first-generation CRISPR/Cas9 nuclease
is directed to a target DNA site (green letters) by complementarity with the first 20 nucle-
otides of the guide RNA (gRNA) and the presence of a protospacer adjacent motif (PAM)
sequence (red letters). Mismatches between the target DNA site and the sgRNA com-
plementarity region (red Xs) can be tolerated, thereby leading to mutations at off-target
sites. (B) Elongated guide RNAs bearing two additional nucleotides at their 50-end may
lead to recognition of longer target DNA sites, in some cases with improved specificity.
(C) Truncated gRNAs (tru-gRNAs) are shortened on their 50-end by two to three nucle-
otides. (D) A paired nickase strategy in which two sgRNAs direct a D10A Cas9 nickases to
adjacent target sequences on opposite DNA strands. (E) CRISPR RNA-guided nucleases.
Fusion proteins consisting of the FokI nuclease domain fused to a catalytically inactive
Cas9 (dCas9) can be directed to two appropriately spaced and oriented adjacent sites
on opposite strands of DNA by two sgRNAs, resulting in cleavage of the “spacer”
sequence in between by the dimerization-dependent FokI nuclease domains.

26 Yanfang Fu et al.



Table 2.1 Published examples of off-target mutations induced by RGNs in human cells and model organisms

Reference
Target
locus Sequences

Indel mutation
frequencies (%) % GC content of

on-target
sequences

Number of
mismatches

Cell type or
organism

Detection
methods
usedU2OS�EGFP K562 HEK293

Fu et al. (2013) VEGFA

site 1

GGGTGGGGGGAGTTTGCTCCtGG 26 10.5 3.3 70 0 Human

cells

T7EI and

Sanger

sequencing
GGATGGAGGGAGTTTGCTCCtGG 25.7 18.9 2.9 2

GGGAGGGTGGAGTTTGCTCCtGG 9.2 8.3 N.D. 2

CGGGGGAGGGAGTTTGCTCCtGG 5.3 3.7 N.D. 3

GGGGAGGGGAAGTTTGCTCCtGG 17.1 8.5 N.D. 3

VEGFA

site 2

GACCCCCTCCACCCCGCCTCcGG 50.2 38.6 15 80 0

GACCCCCCCCACCCCGCCCCcGG 14.4 33.6 4.1 2

GGGCCCCTCCACCCCGCCTCtGG 20 15.6 3 2

CTACCCCTCCACCCCGCCTCcGG 8.2 15 5.2 3

GCCCCCACCCACCCCGCCTCtGG 50.7 30.7 7.1 3

TACCCCCCACACCCCGCCTCtGG 9.7 6.97 1.3 3

ACACCCCCCCACCCCGCCTCaGG 14 12.3 1.8 4

ATTCCCCCCCACCCCGCCTCaGG 17 19.4 N.D. 4

CCCCACCCCCACCCCGCCTCaGG 6.1 N.D. N.D. 4

CGCCCTCCCCACCCCGCCTCcGG 44.4 28.7 4.2 4

CTCCCCACCCACCCCGCCTCaGG 62.8 29.8 21.1 4

TGCCCCTCCCACCCCGCCTCtGG 13.8 N.D. N.D. 4

AGGCCCCCACACCCCGCCTCaGG 2.8 N.D. N.D. 5

Continued



Table 2.1 Published examples of off-target mutations induced by RGNs in human cells and model organisms—cont'd

Reference
Target
locus Sequences

Indel mutation
frequencies (%) % GC content of

on-target
sequences

Number of
mismatches

Cell type or
organism

Detection
methods
usedU2OS�EGFP K562 HEK293

VEGFA

site 3

GGTGAGTGAGTGTGTGCGTGtGG 49.4 35.7 28 60 0

GGTGAGTGAGTGTGTGTGTGaGG 7.4 8.97 N.D. 1

AGTGAGTGAGTGTGTGTGTGgGG 24.3 23.9 8.9 2

GCTGAGTGAGTGTATGCGTGtGG 20.9 11.2 N.D. 2

GGTGAGTGAGTGCGTGCGGGtGG 3.2 2.34 N.D. 2

GTTGAGTGAATGTGTGCGTGaGG 2.9 1.27 N.D. 2

TGTGGGTGAGTGTGTGCGTGaGG 13.4 12.1 2.4 2

AGAGAGTGAGTGTGTGCATGaGG 16.7 7.64 1.2 3

EMX1 GAGTCCGAGCAGAAGAAGAAgGG 42.1 26 10.7 50 0

GAGTTAGAGCAGAAGAAGAAaGG 16.8 8.43 2.5 2

Hsu et al. (2013) EMX1

target 1

GTCACCTCCAATGACTAGGGtGG �22 55 0 Human

293FT cells

Deep

sequencing
GCTACCTCCAGTGACTAGGGtGG �4 3

EMX1

target 3

GAGTCCGAGCAGAAGAAGAAgGG �48 50 0

GAGGCCGAGCAGAAGAAAGAgGG �1 3

GAGTCCTAGCAGAGGAAGAAgAG �8 2

GAGTCTAAGCAGAAGAAGAAgAG �18 2



Pattanayak et al.

(2013)

CLTA GCAGATGTAGTGTTTCCACAgGG 76 45 0 Human

HEK293T

cells

Deep

sequencing
ACATATGTAGTATTTCCACAgGG 24 3

CCAGATGTAGTATTCCCACAgGG 0.46 3

CTAGATGAAGTGCTTCCACAtGG 0.73 4

Cradick et al.

(2013)

HBB

R01

GTGAACGTGGATGAAGTTGGtGG 54 50 0 Human

HEK-

293T cells

T7EI

GTGAACGTGGATGCAGTTGGtGG 27 1

HBB

R02

CTTGCCCCACAGGGCAGTAAcGG 66 1

TCAGCCCCACAGGGCAGTAAcGG 33 3

HBB

R03

CACGTTCACCTTGCCCCACAgGG 55 1

CACGTTCACTTTGCCCCACAgGG 58 2

HBB

R04

CCACGTTCACCTTGCCCCACaGG 53 1

CCACGTTCACtTTGCCCCACaGG 12 1

HBB

R05

AGTCTGCCGTTACTGCCCTGtGG 51 1

HBB

R06

CGTTACTGCCCTGTGGGGCAaGG 59 1

HBB

R07

AAGGTGAACGTGGATGAAGTtGG 61 1

AAGGTGAACGTGGATGCAGTtGG 7 2

HBB

R08

CCTGTGGGGCAAGGTGAACGtGG 36 1

CCTGTGGGGCAAAGTGAACGtGG 48 2

HBB

R30

GTAGAGCGGAGGCAGGAGGCgGG 21 70 0

GTAGAGCGGAGGCAGGAGTTgGG 5 2

Continued



Table 2.1 Published examples of off-target mutations induced by RGNs in human cells and model organisms—cont'd

Reference
Target
locus Sequences

Indel mutation
frequencies (%) % GC content of

on-target
sequences

Number of
mismatches

Cell type or
organism

Detection
methods
usedU2OS�EGFP K562 HEK293

Wang, Wei,

Sabatini, &

Lander (2014)

AAVS1 GGGGCCACTAGGGACAGGATtGG 96.9 65 0 Mouse

Cas9-

KBM7

cells

Deep

sequencing
GGGGCTTCTAAGGACAGGATtGG 29.5 3

GGGGCAACTAGAGACAGGAAtGG 2.46 3

GGGGCCCCTGGGGACAGAATtGG 1.36 3

GGTGCCACCAGGGAGAGGATtGG 0.1 3

Shalem et al.

(2014)

MED12-

sg1

GTTGTGCTCAGTACTGACTTtGG 100 45 0 A375 cells Deep

sequencing
ATCCTGCTCTGTACTGACTTgAG �3 4

NF2-sg2 ATTCCACGGGAAGGAGATCTtGG 100 50 0

GTTGCACAGAAAGGAGATCTtGG �15 4

NF2-sg4 GTACTGCAGTCCAAAGAACCaGG 100 50 0

TAACTACAGTCCAAAGAACCaGG �50 3

MED12-

sg2

CGTCAGCTTCAATCCTGCCAaGG 100 55 0

AGTCAGCTTCAGTCCTGCCAcGG �30 2

CAGCAGCTTCAATCCTGCCAgGG �95 3

CAGCAGCTTCAATCCTGCCAgGG �50 3

Xie and Yang

(2013)

Tet1 GTCTACATCGCCACGGAGCTCAtGG 8.2 55 0 Rice Sanger

sequencing
GTCTA-ACCGC-ACGGAGCTCAtGG 1.6 3



Auer et al.

(2014)

GFP GGCGAGGGCGATGCCACCTAcGG 66 70 0 Zebrafish T7EI and

Sanger

sequencing
GGTGAGGGCAATGCAATATAcGG <3% but T7E1 detectable 5

GGCCAGGGCGAGGGCACCGCcGG <3% but T7E1 detectable 5

Jao et al. (2013) GFP GGGCACGGGCAGCTTGCCGGtGG �80 80 0 Zebrafish T7EI

GGGCATGGACAGCTTGCCGGtGG �80 2

Yang et al.

(2013)

Nanog CGTAAGTCTCATATTTCACCtGG Unknown 40 0 Mouse Sanger

sequencing
TGTAAGTCTCATATTTCACCtGG 10 1

Oct4 GCTCAGTGATGCTGTTGATCaGG Unknown 50 0

GTTCAGTGATGCTGTTGATCaGG 67 1

Mecp2 AGGAGTGAGGTCTAGTACTTGGG Unknown 45 0

TGGAGTGAGGTCTTGTACTTGGG 10 1

Ma, Shen, et al.

(2014)

Dnmt1 GGCGAGGGGCGGGACCGATGcGG Unknown 80 0 Rat T7EI and

Sanger

sequencing
GGGGAGGGGCAGGACCAATGcGG 58.3 3

Dnmt3b GGTAGCTGGGGCACATGGTGaGG Unknown 65 0

GGTACCTGGGGCACATGGTGtGG 30 1

Ma, Zhang,

et al. (2014)

Prkdc CGAGCTGTTCAGAAACACCAaGG 100 50 0 Rat T7EI

AAAGCTGTACAGAAACACCAaGG 57.5 3



activity but poised to be more sensitive to mismatches at the sgRNA/target

DNA site interface.

The second approach of making the genome-editing activities of

CRISPR/Cas systems dependent on pairs of sgRNAs targeted adjacent

sequences has been implemented in two different ways. With the paired

Cas9 nickase approach, two sgRNAs localize a Cas9 nuclease variant that

nicks DNA to opposite strands of DNA at a target site of interest

(Fig. 2.1D) (Mali, Aach, et al., 2013). This approach has been shown to

reduce off-target effects associated with single sgRNAs (Ran et al., 2013).

However, one potential limitation of this approach is that it is not a truly

dimeric system: the two Cas9 nickase molecules recruited to target sites

are enzymatically active as monomers and therefore capable of inducing

mutations at monomeric binding sites elsewhere in the genome. An alter-

native approach is to create fusions of the dimerization-dependent FokI

nuclease domain (used in ZFNs and TALENs) to catalytically inactive ver-

sions of Cas9 (so-called “dead Cas9” or dCas9) that can still be recruited to

specific target sites by associated sgRNAs. In this configuration, two FokI–

dCas9 fusion proteins are recruited to adjacent sites by two sgRNAs with

resulting cleavage by the FokI domains in the sequence between the two

sgRNA target sites (Fig. 2.1E). FokI–dCas9 fusions function robustly in

human cells for genome editing, and direct comparisons show that these

proteins are generally less active for mutagenic activities as monomers than

Cas9 nickases (Guilinger, Thompson, & Liu, 2014; Tsai et al., 2014).

A significant advantage of the truncated gRNA platform is that it pro-

vides a simple strategy for improving the specificities of CRISPR/Cas

nucleases that does not require the expression of multiple sgRNAs or larger

fusion proteins. Here we describe how to identify potential target sites for

Cas9 directed by truncated gRNAs. We also detail how to introduce these

components into cultured human cells and how to quantify their activities

using a simple T7EI-based genotyping assay.

2. METHODS

2.1. Identification of target sites using ZiFiT
The latest version of our publicly availableWeb-based server ZiFiTTargeter

has been upgraded to include functionality that enables users to pick target

sites for both standard full-length and tru-gRNAs. Users can query ZiFiT

Targeter with either in single-sequence or in batchmode (up to 96 sequences

in FASTA format). When used in batch mode, ZiFiT Targeter will identify
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one target site per query sequence; whereas when used in single-sequence

mode, it will identify all potential target sites within the query sequence.

ZiFiT Targeter will first attempt to identify target sites that span a user-

specified bracketed single nucleotide of interest, but if no sites are identified,

the brackets are ignored, and the search is attempted again. ZiFiT Targeter

allows users to change several design constraints including length of the tar-

get site and choice of promoter used to express the potential sgRNAs iden-

tified (for example, use of a U6 promoter requires a 50-G on the sgRNA

whereas use of a T7 RNA polymerase promoter requires two Gs at the

50-end of the sgRNA).

ZiFiT Targeter returns the list of target sites along with additional infor-

mation regarding oligonucleotides required for construction of the sgRNA

expression vectors. Users can save these outputs into a comma-separated

value (CSV) file for subsequent use. In addition to the simple identification

of target sites, ZiFiT Targeter can also identify potential off-target sites pre-

sent in genomes of interest. Users can query ZiFiT Targeter to determine

the orthogonality of a given target site against the genomes of several model

organisms including, human, rat, mouse, zebrafish,C. elegans, mosquito, and

E. coli.

Required materials

1. ZiFiT available at http://zifit.partners.org.

2. Repeat Masker available at http://www.repeatmasker.org

3. Genomic sequence of the locus to be targeted

4. Computer with Internet connection

Ensure query sequence is valid

1. Ensure the query sequence entered is the genomic sequence and not

cDNA sequence. This distinction is important because target sites that

span intron–exon junctions will not work on genomic DNA. Users

are also encouraged to sequence the region of interest in the actual cells

to be modified to ensure that there are no any unexpected

polymorphisms.

2. Use Repeat Masker (http://www.repeatmasker.org) to determine if the

query sequence contains any repeat elements. Load the Website and

input your sequence of interest into the text box labeled “sequence”

and click “submit.” Repeat Masker will scan the sequence and change

all repeat sequences to “N”s. Download this masked sequence and

use it as the input for ZiFiT Targeter. This is a critically important step

because the user should not target highly repetitive regions of the

genome.
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Design target sites

1. Using anyWeb browser, open ZiFiT Targeter by entering the following

URL: http://ZiFiT.partners.org.

2. Click on “ZiFiT” on the menu along the top of the Web page, this will

direct users to a disclaimer. Clicking on “Proceed to ZiFiT” will open

the main menu. Note that ZiFiT Targeter also provides functionality to

design target sites for ZFNs and TALENs as previously described

(Reyon, Khayter, Regan, Joung, & Sander, 2012; Reyon et al., 2013;

Sander, Maeder, & Joung, 2011).

3. From the main menu, click the appropriate link under “Design Genome

Editing Nucleases/Nickases”: For Tru-gRNAs: click “CRISPR/Cas

Nucleases.”

4. Paste up to 96 sequences in FASTA format in the text box.

Note: While querying in batch mode, only one target site will be ret-

urned per sequence.

Note: If a nucleotide of interest is marked by surrounding it with

brackets, ZiFiT Targeter will attempt to identify target sites that span it.

Note: All characters other than A, C, G, T, and N will be ignored.

5. Set the promoter type.

5.1. Choose the U6 promoter if expression will be from a plasmid-

based vector using this promoter.

Note: The U6 promoter will include a guanine at the 50-end of
the transcribed RNA, so the target sites returned by ZiFiT

Targeter will all start with a G.

5.2. Choose the T7 promoter if the sgRNA will be transcribed in vitro

using this promoter.

Note: The T7 promoter will include two guanines at the 50-end
of the sgRNA being transcribed, so ZiFiT Targeter will identify

sites that start with a pair G’s. RNA yield after in vitro transcription

will be lower if a single G is present and extremely low in the

absence of any G at the 50-end.
5.3. Choose the “None” option if you would like to relax the 50 “G”

constraint.

Note: If no appropriate standard tru-gRNA site can be identi-

fied in your target gene of interest, there are two potential

solutions:

1. Relax the 50-G constraint in your target sites but then use a G at

the 50-position of your sgRNA (this will cause a mismatch at

this position). If using tru-gRNAs, we have found that this
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strategy will work for 18 nt target sites but not with 17 nt

target sites.

2. Relax the 50-G constraint in your target sites and use a non-G

nucleotide at the 50-position. Although the U6 promoter has

optimal activity with a 50-G, we have found that use of a

non-G at the 50-end can in some cases still lead to functional

tru-gRNAs (data not shown).

3. Relax the 50-G constraint in your target sites and express your

sgRNAs using a recently described multiplex expression system

that does not require a G to be present at the 50-end of sgRNAs

(Tsai et al., 2014).

6. Set the desired length of the sgRNA complementarity region to

17 or 18 nt.

Note: If there is no available 17 nt tru-gRNA site in the DNA

sequence of interest, then we suggest the use of 18 nt sites.

7. Click “Identify target sites” and ZiFiT Targeter will return the list of tar-

get sites identified in a table that can be saved as a CSVs file.

The table contains four columns: (i) sequence name, (ii) target site,

(iii) first oligonucleotide required for cloning, and (iv) second oligonu-

cleotide required for cloning.

8. Identify potential off-target sites based on similarity to the on-target site.

Enable the option to check the orthogonality of on-target sites relative to

a genome of choice.

8.1. Attest that the query sequence has been repeat masked.

Note: This is extremely important because ZiFiT Targeter will

return all potential off-target sites that have up to three mismatches

relative to the on-target site. If any of the identified on-target sites

contain repeat elements, typically a 1000 or more sites will be ret-

urned causing the system to slow down or crash.

8.2. Choose the organism against which the orthogonality will be

checked. Users can choose from several model organisms includ-

ing, including, human, rat, mouse, zebrafish, C. elegans, mosquito,

and E. coli.

8.3. Click “Identify potential off-targets.” ZiFiT Targeter will scan all

the previously identified target sites against the selected genome

and return potential off-target sites in a table that users can save

in a CSV format.

9. Analyze orthogonality data. For each potential, off-target site identified

the following information is displayed:
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I. A unique identifier

II. Chromosomal location

III. DNA strand

IV. Genomic coordinate

V. Number of times that a potential off-target site occurs within the

genome of interest

VI. Position and nature of the mismatches (up to three mismatches)

Note: For sgRNAs with 17 nt complementarity regions, potential

off-target sites with only up to two mismatches are identified because

our previous work has shown that a single mismatch tends to disrupt

the activity of these tru-gRNAs.

Note: Mismatches are labeled from 50 to 30, with the first nt of the

target site is designated position ‘N’ (where N¼ length of the comple-

mentarity region in the sgRNA) and the last nt of the target site, which is

closest to PAM is designated as position “1.”

Note: In considering which sgRNAs to use for experiments, one

needs to consider multiple factors including the observation that off-

target sites bearing more mismatches are less likely to show off-target

effects, that not all potential off-target sites will actually show evidence

of mutation, and the concept that off-target sites in coding sequences are

more likely to be problematic than those that fall within introns. At pre-

sent there are no perfect guidelines for choosing sgRNAs so each user

must ultimately make their own choices.

2.2. Construction of tru-gRNA expression plasmids
Construction of a plasmid that expresses a specific sgRNA from a U6 pro-

moter is simple and rapid. It involves the cloning of a pair of annealed oli-

gonucleotides (sequences provided by the ZiFiT Targeter program) into

BsmBI-digested plasmid pMLM3636 (Fig. 2.2).

2.2.1 Reagents
Plasmid pMLM3636 (Addgene: http://www.addgene.org/43860/)

Oligonucleotides encoding the sgRNA complementarity region (order

from any standard vendor, sequences of oligonucleotides provided by

ZiFiT Targeter as described earlier)

BsmBI restriction enzyme (New England Biolabs, cat. no. R0580S)

T4 DNA ligase (New England Biolabs, cat. no. M0202S)

10� Restriction enzyme buffer 3.1 (New England Biolabs)

2� Quick Ligase Buffer (New England Biolabs, cat. no. M2200S)
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LB medium (Difco, cat. no. 244620)

LB agar medium (Difco, cat. no. 244520)

LB/Carb plates (LB agar supplemented with 100 μg/ml carbenicillin)

QIAquick Gel Extraction Kit (Qiagen, cat. no. 28704)

QIAprep Spin Miniprep Kit (Qiagen, cat. no. 27106)

Chemically competent recA-E. coli cells (e.g., Top10 cells or equivalent)

10� Annealing buffer: 0.4 M Tris (pH 8), 0.2 M MgCl2, 0.5 M NaCl,

0.01M EDTA (pH 8).

2.2.2 Protocol
Day 1

1. To digest pMLM3636, set up the following 50 μl reaction in a

microcentrifuge tube: 1.0 μg pMLM3636 plasmid, 5.0 μl NEB

buffer 3.1, 5.0 μl BsmBI, and ddH2O up to 50 μl. Digest at 55 �C
for 2 h, run the digested products on a 2% agarose gel, and then

purify the digested vector backbone from the gel using a QIAquick

Gel Extraction Kit according to the manufacturer’s instructions.

5�-ACACCGAGTGAGTGTGTGCGTGG-3�

5�-AAAACCACGCACACACTCACTCG-3�

Top oligo
Bottom  oligo

MLM3636

Digest with BsmBI

Agarose gel purification

Annealing

5�-ACACCGAGTGAGTGTGTGCGTGG-3�

3�-GCTCACTCACACACGCACCAAAA-5�

ACGAAACACCGAGACGATTAATGCGTCTCGTTTTAGAGC
TGCTTTGTGGCTCTGCTAATTACGCAGAGCAAAATCTCG

BsmBI BsmBI

ACGAA                         TTTTAGAGC
TGCTTTGTG                         TCTCG

MLM3636 backbone

ACACCGAGTGAGTGTGTGCGTGGTTTTAGAGCACGAA
TGCTTTGTGGCTCACTCACACACGCACCAAAATCTCG

Figure 2.2 Schematic overview of tru-gRNA expression vector construction. The left
panel shows how to digest pMLM3636 with BsmBI restriction enzyme to generate a lin-
earized pMLM3636 vector backbone. The right panel shows annealing of two oligos.
Ligation of pMLM3636 backbone and annealed oligos results in the desired tru-gRNA
Expression vector. “ACACC” is part of U6 promoter and “GTTT” is the beginning of
tracrRNA sequence.

37Targeted Genome Editing in Human Cells



2. To anneal the oligonucleotides encoding the sgRNA complemen-

tarity region, set up a 50 μl annealing reaction as follows: 5.0 μl
1 μM top oligonucleotide, 5.0 μl of 1 μM bottom oligonucleotide,

5.0 μl of 10� annealing buffer and 35 μl ddH2O. Heat and cool

the annealing reaction with a thermocycler using following program:

incubate the mixture at 95 �C for 2 min, slowly cool down at

1 �C/min to 25 �C and then immediately cool to 4 �C.
3. Ligate the digested pMLM3636 backbone and annealed sgRNA

oligos in a 10 μl reaction as follows: 10 ng BsmBI-digested

pMLM3636 backbone, 1.0 μl annealed oligonucleotides, 5.0 μl of
2� Quick Ligase Buffer, 1.0 μl T4 DNA ligase and ddH2O to

10 μl. Also set up a control ligation reaction with ddH2O in place

of the annealed oligonucleotides. Incubate the ligations at room tem-

perature for 15 min.

4. To transform the ligations into competent E. coli cells: thaw frozen

competent cells on ice, then add 5 μl of ligation reaction to 50 μl
chemically competent Top10 cells, incubate on ice for 5–10 min,

heat shock at 42 �C for 1 min, then return to ice for 2 min, add

350 μl LB medium and recover the cells at 37 �C for 1 h. Plate half

the volume of each transformation on a LB/Carb plate. Incubate the

plates for 12–16 h at 37 �C.
Day 2

Ensure that there are at least 10-fold more colonies on the actual liga-

tion transformation plate than the control transformation plate. Pick to

two to four colonies for each construct and inoculate each into 5 ml of

LB/Carb medium. Incubate with shaking overnight at 37 �C.
Day 3

Isolate plasmids DNA using a QIAprep Spin Miniprep Kit following

the manufacturer’s instructions and verify the sequences of the inserted

oligonucleotides by Sanger sequencing using the following primer:

50-AGGGAATAAGGGCGACACGGAAAT-30.

2.3. Transfection of sgRNA and Cas9 expression plasmids into
human cells

Here, we describe transfection of plasmids encoding sgRNA and Cas9 into

human U2OS cells using Nucleofection. Performing similar experiments in

other cell lines may require optimization and the use of different methods of

transfection.
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2.3.1 Reagents
U2OS cell culture medium: advanced DMEM (Life Technologies, cat.

no. 12491–023) supplemented with 10% FBS (Life Technologies,

cat. no. 16140–071), 2 mM GlutaMax (Life Technologies, cat. no.

35050–061), penicillin/streptomycin (Life Technologies, 15070–063),

and 400 μg/ml G418 (Life Technologies, cat. no. 35050–061)

U2OS cell transfection medium: advanced DMEM (Life Technologies, cat.

no. 12491–023) supplemented with 10% FBS (Life Technologies,

16140–071), 2 mM GlutaMax (Life Technologies, cat. no. 35050–061)

SE Cell Line 4D-Nucleofector® X Kit S (Lonza, cat. no. V4XC-1032)

4D-Nucleofector machine (Lonza)

Sterile 50-ml conical tube (Corning, cat. no. 430290)

Agencourt DNAdvance kit (Beckman, cat. no. A48705)

2.3.2 Protocol
2.3.2.1 Prior to Day 1
Maintain human U2OS cells in U2OS cell culture medium, passaging cells

every 2–3 days, never allowing the cells reach a confluence of >90%. Per-

form testing for mycoplasma contamination every 4 weeks.

Day 1

1. Add 0.5 ml U2OS�EGFP cell transfection medium to each well of

24-well plate and prewarm the plate at 37 �C incubator for �1 h.

2. Trypsinize U2OS�EGFP cells from a confluent plate and resuspend

the cells in cell transfection medium.

3. Count the number of cells using a hemocytometer. 20,000 cells will

be used for each 4D nucleofection. Calculate the cell density and

then spin down appropriate number of cells in a sterile 50-ml

conical tube.

4. Resuspend the cells in SE solution with supplementary reagent at a

density of 20,000 cells/20 μl. Co-transfect 250 ng sequence-verified
sgRNA expression plasmid, 750 ng of a Cas9 expression plasmid

(e.g., plasmid pJDS246; Fu et al., 2014), and 5 ng Td-tomato plas-

mids (used as a transfection control) into 20,000 cells using the

program DN100.

Note: It is important to perform a transfection optimization

experiment whenever working on a new cell type using Cell Line

Optimization Nucleofector™ Kit for the 4D-Nucleofector™ Sys-

tem (Lonza, cat. no. V4XC-9064). Most of the cell lines we have

tested show a better transfection efficiency and lower toxicity using
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an optimized protocol rather than the protocol recommended by the

manufacturer.

5. Allow the transfected cells to sit at room temperature for 10–15 min,

then add 100 μl cell transfection medium into each sample and trans-

fer into a single well of a 24-well plate.

Note: The 10–15 min incubation is critical for 4DNucleofection.

Also, using transfection medium after Nucleofection without antibi-

otics is much less toxic than using cell culture medium.

Day 2

Check cell viability and Td-tomato expression with a fluorescent

microscope to make sure all the samples have been successfully trans-

fected (as judged by Td-tomato fluorescence) and that the cells do not

show gross evidence of toxicity.

Day 3

Isolate genomic DNA from transfected cells using the Agencourt

DNAdvance kit following manufacturer’s instructions.

2.4. Quantitative T7EI assays to assess frequencies of targeted
genome editing

The T7EI assay is a simple and reproducible assay that can be routinely used

to quantify mutation frequencies in a population of cells. In this assay, target

loci are amplified from genomic DNA. The resulting amplicons are then

denatured and then re-annealed allowing the formation of heteroduplexes

betweenmutant andwild-type alleles. Heteroduplex fragments are then spe-

cifically cleaved at the site of mismatch by T7EI enzyme. Digested and

undigested PCR fragments can then be analyzed using either a capillary

electrophoresis system (e.g., the QIAxcel) or gel-based electrophoresis.

The relative amounts of digested and undigested PCR fragments can then

be used to calculate the original frequency of mutated alleles from the cell

population (Fig. 2.3).

2.4.1 Reagents
Phusion® High-Fidelity DNA Polymerase (New England Biolabs, cat.

no. M0530L)

5� Phusion HF buffer (New England Biolabs, included with Phusion®

High-Fidelity DNA Polymerase)

T7 Endonuclease I (New England Biolabs, cat. no. M0302L)

10� NEB buffer 2.1 (New England Biolabs, included with T7

Endonuclease I)
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Figure 2.3 Representative capillary electrophoresis traces from a T7EI experiment. Top
panel: electrophoretic trace from negative control cells. Middle panel: trace from cells
transfected with gRNA and Cas9 expression plasmids. Bottom panel: overlay of traces
from the top (blue-colored line; dark gray in print version) and middle panels (red-
colored line; light gray in print version). T7EI cleavage fragments of the expected sizes
are indicated with red-colored arrows (dark gray in print version).



Agencourt AMPure XP (Beckman, cat. no. A63880)

QIAquick PCR Purification Kit (QIAGEN, 28106)

QIAxcel DNA high resolution kit (QIAGEN, 929002)

QIAxcel dilution buffer (QIAGEN, included with QIAxcel DNA high

resolution kit) (optional)

PCR thermocycler

Nanodrop DNA analyzer (Thermo Scientific)

QIAxcel system (QIAGEN (optional)

2.4.2 Protocol
Before Day 1

1. Design primers to amplify nuclease target site of interest. Always design

primers that are located at least 50 bps away from the 50 and 30-ends of
the sgRNA target site (this ensures that digestion products of the T7EI

assay will always be at least 50 bps in length). Also, if the cleavage site is

too close to the primer binding region, it will be difficult to distinguish

the cleaved fragments from the undigested full-length PCR product.

2. Establish PCR conditions. Set up a 50 μl PCR reaction as follows: 2.5 μl
of 10 μM forward primer, 2.5 μl of 10 μM reverse primer, 5.0 μl of 5�
Phusion HF buffer, 1.0 μl of 10 mM dNTPs, 1.5 μl DMSO, 0.5 μl
Phusion DNA Polymerase, 100 ng genomic DNA, and ddH2O to

50 μl. Run a touchdown PCR reaction with the following reaction

conditions: 98 �C, 3 min, (98 �C, 10 s; 72–62 �C, �1 �C/cycle, 15 s;
72 �C, 30 s)10 cycles, (98 �C, 10 s; 62 �C, 15 s; 72 �C, 30 s)25 cycles,

62 �C, 5 min, 4 �C, and hold. Run 5.0 μl of this PCR product on

1.5% agarose gel to verify the size of amplicon and that a single

sharp band.

Note: If optimization is needed to achieve a single sharp PCR product

band, one can optimize the PCR by trying various constant extension

temperatures (62–68 �C) with or without 1M Betaine. We have typi-

cally been able to identify optimized conditions by varying these param-

eters but if none of these variable conditions yields a single sharp PCR

product band then one can consider designing and testing another set of

primers.

3. Sequence verification of PCR amplicon: Following verification of a single

sharp band on an agarose gel, purify the PCR product using QIAquick

PCR Purification Kit and then sequence-verify the product using either

the forward primer or reverse primer.

Note: If a polymorphism exists in the target amplicon, it will be inter-

fere with the T7E1 assay.
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Day 1

1. Set up PCR reactions with genomic DNA from cells in which nucleases

have been expressed using the conditions established above. Also set up the

following control PCR reactions: (1) a reaction containing genomicDNA

from unmodified cells and (2) a negative control lacking any genomic

DNA. Run 5 μl of PCR products on 1.5% agarose gel to verify successful

amplification.

2. Purify PCR products using the Agencourt AMPure XP kit following

manufacturer’s instructions.

3. Quantify the purified PCR products using a Nanodrop or other equiv-

alent DNA analyzer.

4. Denaturation and re-annealing of PCR products. Set up a 19-μl dena-
turation/re-annealing reaction as follows: 200 ng purified PCR product,

2.0 μl of 10� NEB buffer 2.1, add ddH2O up to 19 μl. Denature and

re-anneal the purified PCR product to form heteroduplexes in a

thermocycler using the program: 95 �C, 5 min; 95–85 �C at �2 �C/s;
85–25 �C at �0.1 �C/s; hold at 4 �C.

5. T7EI reaction: Following denaturation/re-annealing, briefly spin down

reactions and add 1 μl T7E1 enzyme to make a 20 μl reaction, mix by

pipetting up and down several times, incubate at 37 �C for 15 min,

and then add 0.25 μM EDTA to stop the T7E1 digestion. Purify the

digested PCR product using Agencourt AMPure XP.

6. Quantify T7E1 digested product on a QIAxcel machine as follows: Mix

10 μl QIAxcel dilution buffer with 10 μl of purified T7EI-digested frag-
ment and run with program OM500.

7. Data analysis: To estimate gene modification frequency, analyze data

using QIAxcel BioCalculator Software following the vendor’s instruc-

tions. Check for the following two parameters: (a) verify that the sizes

of the T7EI-digested products are correct and present only in the

experimental sample and not in the negative control and (b) quantify

the relative amounts of the digested and the undigested PCR fragments.

Mutation frequencies can then be calculated using the following formula

as previously described (Guschin et al., 2010):

% gene modification¼ 100� 1� 1� fraction cleavedð Þ1=2ð Þ

Note: T7EI reactions can also be analyzed by agarose gel electropho-

resis or polyacrylamide gel electrophoresis. Digital gel images can be

generated using a gel documentation station and the cleavage products

can be analyzed using image quantification software.
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Abstract

The rapiddevelopmentof programmable site-specific endonucleases has led toadramatic
increase in genome engineering activities for research and therapeutic purposes. Specific
loci of interest in the genomes of a wide range of organisms includingmammals can now
bemodified using zinc-finger nucleases, transcription activator-like effectornucleases, and
CRISPR-associated Cas9 endonucleases in a site-specific manner, in some cases requiring
relatively modest effort for endonuclease design, construction, and application. While
these technologies have made genome engineering widely accessible, the ability of pro-
grammable nucleases to cleave off-target sequences can limit their applicability and raise
concerns about therapeutic safety. In this chapter, we review methods to evaluate and
improve the DNA cleavage activity of programmable site-specific endonucleases and
describe a procedure for a comprehensive off-target profiling method based on the
in vitro selection of very large (�1012-membered) libraries of potential nuclease substrates.
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1. INTRODUCTION

1.1. Introduction to programmable nucleases for genome
editing

Programmable site-specific nucleases such as zinc-finger nucleases (ZFNs),

transcription activator-like effectornucleases (TALENs), and CRISPR-

associated Cas9 nucleases can be designed to target any gene of interest

and therefore are powerful research tools with significant therapeutic impli-

cations. In cells, a targeted double-strand break can lead to gene modifica-

tion or insertion through homology-directed repair (HDR)with exogenous

DNA or to gene knockout via nonhomologous end-joining (NHEJ). In the

HDR pathway, the creation of a double-strand break at a chromosomal

DNA locus by a sequence-specific endonuclease can increase the efficiency

of insertion of an exogenous donor DNA template by several orders of mag-

nitude (Choulika, Perrin, Dujon, & Nicolas, 1995). If no donor template is

provided, endogenousNHEJ pathways that repair the break will often intro-

duce missense mutations that abrogate production of functional protein

product (Lukacsovich, Yang, & Waldman, 1994; Rouet, Smih, & Jasin,

1994). Programmable nucleases have been used to modify the genomes

of a variety of organisms and human cell lines, as has been reviewed exten-

sively (Carroll, 2011; Joung & Sander, 2013; Sander & Joung, 2014). In

addition to engineering the genomes of cells or organisms for direct biolog-

ical interrogation, genetic screens have recently been performed with these

enzymes in human tissue culture to uncover genetic factors underlying spe-

cific cellular processes in an unbiased manner (Koike-Yusa, Li, Tan,

Velasco-Herrera Mdel, & Yusa, 2014; Shalem et al., 2014; Wang, Wei,

Sabatini, & Lander, 2014; Zhou et al., 2014).

These nucleases also serve as the promising basis of a new generation

of human therapeutics. Clinical trials of two site-specific nucleases are cur-

rently underway as potential treatments for HIV and glioblastoma.

Researchers have completed and are conducting clinical trials using a

ZFN, developed by Sangamo BioSciences, that targets a sequence in the

CCR5 gene (Tebas et al., 2014). CCR5 is a co-receptor used by HIV in

early-stage infection (Scarlatti et al., 1997), and mutation of CCR5

(CCR5Δ32) is known to confer resistance to HIV infection (Huang

et al., 1996; Liu et al., 1996; Samson et al., 1996).

The second ZFN in clinical trials, also developed by Sangamo BioSci-

ences, disrupts the gene for the glucocorticoid receptor (Reik et al.,
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2008) as part of a potential treatment for glioblastoma. The target cells for

the ZFN are T cells modified by other methods to express a cell-surface

receptor that specifically recognizes malignant glioblastoma cells (Kahlon

et al., 2004). The therapeutic cells, however, are rendered inactive by glu-

cocorticoids, which are often also a component of therapy. ZFN-mediated

modification of the glucocorticoid receptor in the therapeutic cells confers

resistance to glucocorticoid treatment, while maintaining anti-glioblastoma

activity, allowing the cells to recognize their malignant targets. These and

other examples demonstrate that, in addition to serving as powerful research

tools, programmable nucleases are promising platforms for clinically relevant

genetic manipulation.

1.2. Overview of methods to study specificity
of genome-editing agents

Specificity is a crucial feature of programmable endonucleases, and a high

(though currently undefined) level of specificity is desired for the vast majority

of therapeutic applications. Until recently, however, few methods existed to

study the DNA cleavage specificity of active, site-specific nucleases. An ideal

study of off-target activities of site-specific endonucleases would measure

nuclease activity against each of the >109 potential off-target sites for every

target site in the human genome. While whole-exome sequencing has been

used in studies of site-specific endonuclease specificity (Cho et al., 2014; Ding

et al., 2013; Li et al., 2011b), sequencing offers limited sensitivity in detecting

rare off-target events, and exomes represent only a small fraction of genomic

DNA containing potential off-target sites. Therefore, the general study of

off-target activities of site-specific endonucleases has relied on the experimen-

tal identification of likely off-target sites. Off-target studies have taken one of

three general forms: discrete off-target site testing, genome-wide selections,

and minimally biased in vitro selections (Fig. 3.1).

1.2.1 Discrete off-target site testing
Perhaps, the most obvious approach to evaluating the sequence specificity of

nucleases is by assaying discrete potential off-target substrates, either in a

low- or high-throughput format. While the methods summarized below

are not a comprehensive list of such efforts, they are representative examples

of this strategy.

Homing endonucleases such as I-SceI were the subjects of some of the

earliest studies of the specificity of nucleases that recognize sites sufficiently

long to be unique in the human genome, even though the presence of
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integrated binding and cleavage domains complicates engineering homing

endonucleases with tailor-made specificities (Chen, Wen, Sun, & Zhao,

2009; Chen & Zhao, 2005; Doyon, Pattanayak, Meyer, & Liu, 2006;

Gimble, Moure, & Posey, 2003). In early studies of I-SceI homing endonu-

clease specificity, Dujon and coworkers interrogated a subset of the

54 potential single-mutant individual off-target sequences of the 18 base pair

target site (Colleaux, D’Auriol, Galibert, & Dujon, 1988).

The throughput of this approach was increased in the multi-target ELISA

method, initially applied to zinc-fingers, developed by Barbas and coworkers

(Segal, Dreier, Beerli, & Barbas, 1999), in which 96 biotinylated oligonucleo-

tides or oligonucleotide pools are plated individually in the streptavidin-coated

wells of a 96-well plate. Fusions tomaltose-binding protein of aDNA-binding

domain of interest are incubatedwith the oligonucleotides in thewells. After a

wash step to remove unbound protein, the wells are incubated with a primary

antibody that recognizes maltose-binding protein, followed by a secondary

antibody that allows visualization of wells containing bound protein.

Church and coworkers (Bulyk, Huang, Choo, & Church, 2001) have

used a microarray approach to study zinc-finger DNA-binding specificity.

They prepared DNA microarrays containing all 64 possible three-base pair

Discrete off-target site assays 

Throughput of ~10 to 104 sites
individually assayed for cleavage 

Genome-wide selections  

Limited to sites in genome that support 
viral integration at cleaved sites 

+

In vitro selections

Throughput of 1012 to 1014 sites
bound or cleaved by nuclease in vitro

Nuclease
and 
virus

+ Nuclease  + Immobilized 
DNA-binding domain 

+ Nuclease 

Figure 3.1 Overview of methods to study the specificity of nucleases. Potential sub-
strate sequences of interest (colored strands) are subjected to nuclease cleavage to
identify cleaved sequences (broken red and orange strands). In discrete off-target site
assays, sequences are individually subjected to nuclease cleavage in a low- or high-
throughput manner. In genome-wide selections, a few potential off-target sites are
cleaved within predominantly uncleaved genomic DNA (black strands) and detected
by viral integration. Using in vitro selection, many potential off-target sites in a vast
DNA library are selected for their ability to be bound or cleaved by site-specific nucle-
ases in vitro.
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subsequences within a longer target site. The microarrays were incubated

with M13 phage displaying the DNA-binding domain of interest, washed,

and visualized with primary and secondary antibody staining to reveal

DNA-binding specificities. A variant of this method, developed by Bulyk

and coworkers (Philippakis, Qureshi, Berger, & Bulyk, 2008), has been

extended to profiling 10-base pair subsequences of transcription factor bind-

ing sites. Another microarray-based method (Carlson et al., 2010) has also

been used to profile the DNA-binding specificity of engineered zinc fingers.

More recently, discrete testing of potential single- and double-mutant

off-target sequences has been used in human cells to study the sequence pref-

erences of Cas9. In these methods, a single target site in human cells is

assayed for its ability to be modified through NHEJ by a set of endonucleases

that are targeted to cleave either the target site or discrete single- or multiple-

mutant variants of the target site. At least two separate studies have used this

strategy. In one study by Joung and coworkers, an eGFP reporter is the

target of a collection of Cas9:guide RNA complexes containing mutant

(mismatched) guide RNAs (Fu et al., 2013). In this approach, off-target

endonuclease activity leads to the loss of cellular GFP expression.

A second study, developed by Zhang and coworkers (Hsu et al., 2013),

assayed the ability of a set of Cas9:guide RNA complexes to cleave the

EMX1 gene. Cleavage activity was detected as NHEJ events at the

EMX1 locus using high-throughput sequencing. Although if Cas9 cleaved

with perfect specificity the site would not be modified by Cas9:guide RNA

complexes containing mutated guide RNAs, many of the mutated guide

RNAs resulted in NHEJ, thereby demonstrating off-target activity. In both

methods, other potential genomic off-target sites are extrapolated from the

small set of off-target sites directly screened. The results of this approach

applied to Cas9 are summarized in Section 1.5 and further demonstrate

the utility of simple, discrete-off-target site testing to identify genomic

off-target sites.

1.2.2 Genome-wide selections
In contrast to discrete screening assays of potential off-target sequences to be

cleaved by a nuclease of interest, genome-wide selections have also been

used to identify those sequences in a population of human cells that can bind

to or are cleaved by a nuclease of interest. In assessments of genome-wide

binding of Cas9, Adli, Sharp, Zhang, and their respective colleagues

(Kuscu, Arslan, Singh, Thorpe, & Adli, 2014; Wu et al., 2014) used chro-

matin immunoprecipitation followed by sequencing (ChIP-seq) to study the
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ability of inactive Cas9 to bind off-target sequences in the genome. In this

method, hemagglutinin-tagged, catalytically inactive Cas9 is expressed in

human cells. A crosslinking step covalently attaches the tagged Cas9 to

any DNA target sites it is bound to in the cell. The bound DNA is then frac-

tionated, the crosslinks are reversed, and high-throughput sequencing of the

resulting DNA reveals the genomic sequences bound by Cas9. While these

studies show that Cas9 is capable of extensively binding off-target sites, they

also suggest that most of the off-target sites bound are not modified.

Genome-wide selections for DNA cleavage, rather than binding alone,

have been achieved by exploiting the tendency of certain viruses to prefer-

entially integrate at sites of double-strand breaks. The endonuclease of inter-

est is expressed in cultured human cells, creating double-strand breaks at

cleaved genomic sites. Cells are then exposed to a virus that preferentially

integrates at double-strand breaks. Genomic DNA sequences containing

integrated virus are then identified through selection or direct DNA

sequencing. In a selection method developed by Miller and coworkers,

adeno-associated virus packaged with antibiotic resistance markers and an

E. coli plasmid origin is used as an integration marker (Petek, Russell, &

Miller, 2010). Any on-target and off-target substrates in the genome con-

taining the integration marker would therefore contain a plasmid origin

and antibiotic resistance markers. Genomic DNA is then isolated from

infected cells, fragmented with a cocktail of restriction enzymes, circular-

ized, and transformed into E. coli. Only fragments containing integrated

adeno-associated virus have an E. coli origin of replication and the appropriate

antibiotic resistant markers, and therefore only fragments containing inte-

grated virus survive. Sequencing of the plasmid reveals the viral-chromosomal

junctions, which contain the off-target sites of the endonuclease. Subsequent

studies by von Kalle, Tolar, and their respective coworkers to study the

specificities of ZFNs and TALENs have extended this approach, using

instead integrase-deficient lentiviral vectors (IDLVs) and read-out of inte-

gration sites using high-throughput sequencing (Gabriel et al., 2011;

Osborn et al., 2013).

Advantages of viral integration methods include their abilities to study

specificity directly in the context of the target genome and the unbiased

nature of the selection, allowing for identification of off-target sites that

are not highly similar in sequence to the on-target site. Results from these

methods should be interpreted carefully, however, as integration can occur

at double-strand breaks that arise naturally, independent of nuclease activity.

As with whole-genome sequencing, viral integration methods may not be
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sufficiently sensitive to detect low-level off-target modification. In addition,

abstraction of general properties of endonuclease specificity could be com-

plicated by cellular factors such as DNA accessibility, which varies from site

to site and between cell types (Maeder et al., 2008; Wu et al., 2014).

1.2.3 Minimally biased selections in vitro and in cells
Themost general method to determine site-specific endonuclease specificity

would test the activity of a given endonuclease against each potential off-

target sequence. Since therapeutic endonucleases target long sequences

(��20 base pairs) to ensure uniqueness in the genome, a truly comprehen-

sive specificity study would require an assay with at least 420(�1�1012) dif-

ferent substrates. Since libraries of this size are challenging to generate and

process even using in vitro methods, selections to determine site-specific

endonuclease specificity either rely on the use of “minimally biased” libraries

or focus on smaller subsets of the DNA substrate to be studied. Minimally

biased libraries are randomized across the nucleotide positions being studied,

but the composition of nucleotides at each position is biased toward the tar-

get sequence rather than fully randomized. For example, if a particular target

site of a three-base pair specific endonuclease is ATG, a fully randomized

library would contain equal proportions of all sequences (NNN).

A minimally biased library contains higher proportions of sequences that

are similar to the target site. In this example, the most common sequence

in the library would be ATG, followed by the single-mutant sequences

(cTG, gTG, tTG, AaG, AcG, AgG, ATa, ATc, ATt), the double-mutant

sequences, and then triple-mutant sequences, which are the rarest in the

library. Biasing is accomplished through the incorporation of mixtures of

nucleoside phosphoramidites at each position during DNA synthesis, such

that the on-target base is incorporated at a higher frequency than the other

off-target bases (Fig. 3.2A). In other variants of this approach, portions of the

sequence are fixed, while subsets are fully randomized (for example, nTG,

AnG, or ATn).

Using minimally biased libraries, several methods have studied the bind-

ing specificities of monomeric zinc-finger domains, in the absence of cleav-

age domains and dimeric binding partners. In the bacterial one-hybrid

system developed by Wolfe and coworkers (Meng, Brodsky, & Wolfe,

2005), a DNA target site library is placed upstream of a selectable marker

on a plasmid. The DNA-binding domain of interest is expressed in E. coli

as a fusion to the α-subunit of RNA polymerase. In each individual bacte-

rium, which each contains only one member of the target site library, RNA
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Figure 3.2 (See figure legend on next page.)
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polymerase is recruited to the promoter of the selectable marker if the

DNA-binding domain is able to bind to the library DNA sequence present.

Only cells that have target sites that can be bound by the DNA-binding

domain will express the selectable marker and survive.Wolfe and coworkers

have used this approach to assay libraries of up to 108 molecules for DNA

binding (Meng, Thibodeau-Beganny, Jiang, Joung, & Wolfe, 2007).

A computational structure-based approach developed by Bradley and col-

leagues (Yanover & Bradley, 2011) using the Rosetta algorithm has also

been used to study monomeric zinc-finger domain specificity and has

accurately predicted DNA-binding profiles that were obtained by the bac-

terial one-hybrid system.

Church and coworkers recently used a variant of the bacterial one-

hybrid approach to study the specificity of Cas9 in human cells (Mali

et al., 2013). In this method, a library of target sites was placed upstream

of a reporter gene in a plasmid. Instead of using active Cas9 as an endonu-

clease in the selection, an inactive variant was expressed as a DNA-binding

domain alone, fused to the VP64 activation domain. Therefore, any inactive

Cas9 that could bind to a library member caused expression of the reporter

gene. The results of this study are summarized in Section 1.5.

Larger libraries, covering more potential off-target sites, have been

used to evaluate DNA-binding domain specificity in vitro. Applying an

in vitro SELEX approach (Oliphant, Brandl, & Struhl, 1989) to large

(�1014-membered) libraries of randomized target site DNA (Miller et al.,

2011), Struhl and coworkers, and later several other groups, enriched

DNA sequences that can bind a given DNA-binding domain of interest

Figure 3.2 In vitro selection scheme for profiling the specificity of site-specific nucle-
ases. (A) Example sequences biased toward a target sequence for both the left- and
right-half sites of TALEN targeting the human CCR5 gene. The on-target sequences
are in bold and below are examples of variant sequences from minimally biased librar-
ies. (B) A single-stranded library of DNA oligonucleotides containing partially random-
ized target sites (gray box) and constant region (thick black line) is circularized, then
transformed into concatemeric repeats by rolling-circle amplification. The concatemeric
repeats of double-stranded DNA (double arrows) target site variants are incubated
in vitro with a site-specific nuclease of interest. The resulting cleaved ends are blunted
and then are ligated to adapter #1. The ligation products are amplified by PCR using
one primer consisting of adapter #1 and the other primer consisting of adapter
#2—constant sequence, which anneals to the constant regions of the library. From
the resulting ladder of amplicons containing 0.5, 1.5, 2.5, . . . repeats of a target site,
amplicons corresponding to 1.5 target-sites in length are isolated by gel purification
and subjected to high-throughput DNA sequencing and computational analysis.
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(Thiesen & Bach, 1990; Zykovich, Korf, & Segal, 2009). In this approach,

the DNA-binding domain is immobilized and incubated with a randomized

target site library. After washing steps to remove unbound DNA, the bound

DNA is eluted, amplified, and cycled through the procedure several times

before being sequenced.

The bacterial one-hybrid and SELEX methods described above study

DNA-binding domains alone, outside of the context of catalysis. Since

site-specific endonucleases involve DNA cleavage in addition to DNA

binding, and since DNA-binding specificities may not exactly predict

DNA cleavage specificities, methods to study the specificity of DNA cleav-

age reactions are desirable. Monnat and coworkers developed a gel

electrophoresis-based method (Argast, Stephens, Emond, & Monnat, 1998)

in which an active endonuclease is incubated in vitro with a target site library

that was cloned into a circular plasmid. Cleavage of library members results in

linearization of the plasmid, and the pool of cleavable, linearized DNA

sequences is separated from uncleaved, circular DNA through agarose gel

electrophoresis and gel purification. The linear DNAs containing bona fide

substrate sequences are ligated back into circles and amplified in E. coli. After

several rounds of enrichment of a pre-selection library with a theoretical com-

plexity of 108 to 109 members (constrained by the need to introduce library

members into E. coli), the post-selection library is sequenced and analyzed.

To combine the benefits of both large library sizes and the context of

cleavage selection, Liu and coworkers developed a fully in vitro selection

strategy to profile the DNA cleavage specificity of ZFNs, TALENs, and

Cas9 using libraries of 1011 to 1012 potential off-target sites (Guilinger

et al., 2014; Pattanayak et al., 2013; Pattanayak, Ramirez, Joung, & Liu,

2011). In this strategy, library construction is performed entirely in vitro

and therefore is not bottlenecked by cell transformation efficiency. This

method, which is described in detail in Section 2, uses the generation of

50 phosphates upon DNA cleavage to selectively tag and amplify library

members that are cleaved by nucleases. These cleaved library members

are then revealed by high-throughput DNA sequencing (Fig. 3.2B).

When applied to ZFNs, this in vitro DNA cleavage specificity profiling

strategy demonstrated that a SELEX study on the specificity of individual

DNA-binding domains, in the absence of dimerization and cleavage, did

not detect some genomic off-target sites. Analysis of hundreds of thousands

of off-target sites cleaved in vitro suggested that interactions between

ZFN monomers affect DNA cleavage specificity and explain differences

with the SELEX study (Pattanayak et al., 2011). For the CCR5-targeting
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ZFN described above, the in vitro cleavage selection also identified more

genomic off-target sites than a genome-wide selection method on the same

ZFN using IDLVs reported by von Kalle and coworkers (Gabriel et al.,

2011). However, each method identified off-target sites that were missed

by the other method. As was also demonstrated for SELEX results (Perez

et al., 2008), additional computational analysis of in vitro selection results

improves the sensitivity of the in vitro cleavage selection method to deter-

mine off-target sites. Joung and coworkers (Sander et al., 2013) applied a

machine-learning classifier algorithm to in vitro cleavage selection results

for the CCR5-targeting ZFN, and identified 26 more off-target sites than

had previously been identified, including all of the previously determined

off-target sites. These studies collectively demonstrate how in vitro selection

methods and genome-wide selection methods can serve as complementary

tools in the determination of gene-editing nuclease specificities.

1.3. Insights and improvements from ZFN specificity studies
ZFNs (Kim, Cha, & Chandrasegaran, 1996) are dimeric fusions of the non-

specific FokI restriction endonuclease cleavage domain (Hirsch, Wah,

Dorner, Schildkraut, & Aggarwal, 1997) with zinc-finger DNA-binding

domains (Fig. 3.3A). The FokI cleavage domain must dimerize to be active;

therefore, ZFNs can cleave DNA only after dimerizing and bridging two

half-sites (Vanamee, Santagata, & Aggarwal, 2001) that are separated by

an unspecified DNA spacer sequence. Target site specificity is therefore

determined by two zinc-finger DNA-binding domains, each of which con-

sists of three or more tandem repeats of individual zinc fingers. Each indi-

vidual zinc finger recognizes three base pairs (Beerli, Segal, Dreier, & Barbas,

1998), and a zinc-finger DNA-binding domain in total recognizes at least

nine base pairs. Therefore, in total, ZFNs recognize sites that are at least

18 bp long (not including the spacer).

The DNA-binding specificity of ZFNs is programmed by the composite

individual zinc fingers. Each individual zinc finger consists of a compact ββα
fold with a hydrophobic core stabilized by a zinc ion coordinated by two

cysteines and two histidines.While a great deal of progress has been reported

in the design of zinc fingers that can target any DNA triplet, primarily by

Barbas, Joung, Klug, Pabo, and their respective coworkers (Beerli et al.,

1998; Choo, Sanchez-Garcia, & Klug, 1994; Dreier, Beerli, Segal,

Flippin, & Barbas, 2001; Dreier, Segal, & Barbas, 2000; Dreier et al.,

2005; Maeder et al., 2008; Rebar & Pabo, 1994; Sander et al., 2011;
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FokI

nuclease domain  

5� GATGAGGATGAC      N4-7      CTTTTGCAGTTT
3� CTACTCCTACTG     N4-7      GAAAACGTCAAA
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C

TALE repeats 

LTPEQVVAIASNNGGKQALETVQRLLPVLCQAHG

RVD RVD code 
NI = A
HD = C
NN = G
NG = T

5� TTCATTACACCTGCAGCT     N12-24     AGTATCAATTCTGGAAGA
3� AAGTAATGTGGACGTCGA     N12-24     TCATAGTTAAGACCTTCT

Cas9 
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gRNA 
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nuclease domain  

Figure 3.3 Architecture of ZFN, TALEN, and Cas9 programmable nucleases. (A) A ZFN
monomer is a fusion of a FokI nuclease cleavage domain (purple; dark gray in print ver-
sion) to a set of adjoined zinc fingers (four, in this example) each targeting three base
pairs (for a total of 12 base pairs recognized, in this example). Two different ZFN mono-
mers bind their corresponding half-sites, allowing FokI dimerization and DNA cleavage
between the half-sites. (B) A TALEN monomer contains an N-terminal domain followed
by an array of TALE repeats (filled boxes), a C-terminal domain, and a FokI nuclease
cleavage domain (purple; dark gray in print version). The 12th and 13th amino acids
(the RVD, red; dark gray in print version) of each TALE repeat recognize a specific
DNA base pair. Two different TALEN monomers bind their corresponding half-sites,
allowing FokI dimerization and DNA cleavage between the half-sites. (C) Cas9 protein
(yellow; light gray in print version) binds to target DNA in complex with a single guide
RNA (sgRNA, green; light gray in print version). The S. pyogenes Cas9 protein and sgRNA
complex recognizes the PAM sequence NGG (blue; light gray in print version). Black tri-
angles indicate the cleavage points in the target DNA three bases from the PAM on both
DNA strands.
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Wu, Yang, & Barbas, 1995), designing the multi-finger domains of a ZFN

often requires selection (Greisman & Pabo, 1997; Isalan, Klug, & Choo,

2001; Maeder et al., 2008) or computational approaches (Sander et al.,

2011) such as those described by Joung and coworkers.

Initial studies of ZFN specificity using SELEX on zinc-finger binding

domains alone (Perez et al., 2008) suggested that ZFNs are highly specific,

especially when heterodimeric versions, first developed by Rebar and

Cathomen, are used (Miller et al., 2007; Szczepek et al., 2007). The

heterodimeric ZFNs have mutations in the FokI cleavage domain that only

allow dimerization between different ZFN monomers (Doyon et al., 2011;

Miller et al., 2007; Szczepek et al., 2007). While many CCR5 ZFN off-

target sites have been identified (Gabriel et al., 2011; Pattanayak et al.,

2011, Sander et al., 2013), to date, no toxicity has been reported in clinical

trials (Tebas et al., 2014).

In addition to identifying genomic off-target sites, in vitro selections on

two different ZFNs by Liu and coworkers also illuminated several general

properties of ZFN specificity (Pattanayak et al., 2011). Like other enzymes,

ZFNs exhibit concentration-dependent specificity, such that a larger set of

off-target sites can be cut when the ZFN is at higher concentration. In gen-

eral, ZFN off-target sites with a small number of mutations (for example, for

the CCR5 ZFN, three or fewer mutations out of 24 target base pairs) can be

recognized and cleaved. Although no sequence preference in the spacer

region between half-sites was observed, sites with disfavored four- and

seven-base pair spacers were generally recognized with greater specificity

than sites with the more favored five- and six-base pair spacers. Finally,

off-target sites with several mutations in one half-site likely contain few

to no mutations in the other half-site. All of these observations are consistent

with a model in which ZFN:DNA-binding energy must meet a minimum

threshold for cleavage to take place, and that off-target cleavage activity

arises from excess binding energy between a ZFN andDNA that can tolerate

the energetic penalty incurred by protein–DNA mismatches.

1.4. Insights and improvements from TALEN specificity studies
Like ZFNs, TALENs are engineered fusions of DNA-binding domains with

FokI nuclease domains (Fig. 3.1B). In the case of TALENs, the DNA-

binding domains consist of TALE repeat arrays (Christian et al., 2010; Li

et al., 2011a, 2011b; Miller et al., 2011). TALE repeats are naturally found

in the plant pathogen Xanthomonas and are part of transcriptional activator
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proteins that lead to gene expression upon binding to specific promoter ele-

ments in the plant host cell (Gu et al., 2005; Kay, Hahn, Marois, Hause, &

Bonas, 2007; Yang, Sugio, & White, 2006). Canonical TALE repeats are

34-amino acid sequences that each recognize one base pair of DNA. The

DNA-binding specificity of each repeat is determined by two amino acids

referred to as the repeat-variable di-residue (RVD) (Boch et al., 2009;

Moscou & Bogdanove, 2009). Examples of RVDs that recognize each of

the four DNA base pairs are known. The only known sequence constraint

on TALE repeat domains is a requirement for the 50 end of the target site to
contain deoxythymidine (T). Beyond this requirement, TALEs can be

designed to target virtually any DNA sequence, and have been successfully

used to manipulate genomes in a variety of organisms (Cermak et al., 2011;

Moore et al., 2012; Tesson et al., 2011; Wood et al., 2011) and cell lines

(Hockemeyer et al., 2011; Mussolino et al., 2011; Reyon et al., 2012).

Multiple studies, using genome-wide studies and minimally biased selec-

tions, have demonstrated that TALEN-mediated genome modification can

be accompanied by very rare off-target effects. Whole-genome sequencing

of TALEN-treated yeast strains (Li et al., 2011b) and whole-exome

sequencing of human cell lines derived from TALEN-treated cells (Ding

et al., 2013) revealed no evidence of TALEN-induced genomic off-target

mutations. However, whole-genome sequencing may not be sensitive to

detecting rare mutations in the absence of sequencing the genomic DNA

from an impractically large number of treated cells.

Discrete DNA cleavage studies using homology to on-target sequences

to predict potential off-target sites found no TALEN-induced modification

of potential off-target sites in Xenopus (Lei et al., 2012) and human cell lines

(Kim et al., 2013). Several groups have studied the specificity of the TALE

repeat DNA-binding domains in isolation, in the absence of cleavage

domains. Initial minimally biased selection experiments using SELEX and

TALE activator binding (Hockemeyer et al., 2011; Mali et al., 2013;

Miller et al., 2011; Tesson et al., 2011) on monomeric TALE repeat array

domains demonstrated strong preferences for the intended target base pair at

each position in the binding site, and a study by Duchateau and coworkers

using a cellular GFP reporter assay found that relatively few mismatches can

be accommodated ( Juillerat et al., 2014).

Several studies, in human cell lines (Mussolino et al., 2011), zebrafish

(Dahlem et al., 2012), and rats (Tesson et al., 2011) have demonstrated

TALEN-mediated off-target modification of multiple genomic sites that dif-

fer from the on-target site at two to six base pairs. The detection of these sites
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is not thought to be a general problem of TALEN specificity, since for many

applications a TALEN on-target site (up to 36 bp long) can be chosen to be

at least seven mutations from any other site in the human genome. How-

ever, at least three studies have uncovered off-target sites modified in cells

with more than seven mutations from the target site. In one study, Jaenisch

and coworkers used DNA-binding SELEX results on TALE repeat domains

in isolation to computationally predict potential genomic off-target sites of a

fully active heterodimeric TALEN. Of the 19 predicted sites assayed, two

off-target sites containing 9 or 10 mutations relative to the on-target site,

were modified in cultured human cells (Hockemeyer et al., 2011). Tolar

and coworkers used genome-wide selection with IDLVs (Gabriel et al.,

2011; Osborn et al., 2013) to capture off-target double-strand break sites

in cells, resulting in the identification of three off-target sites in the genome

with up to 12 mutations from the target sequence.

Finally, Liu and colleagues applied the in vitro cleavage selection method

described above to reveal 16 sites confirmed to be off-target sites in human

cells with modification efficiencies ranging from 0.03% to 2.3% (Guilinger

et al., 2014). The 16 off-target sites contained 8 to 12 mutations compared to

the on-target site, demonstrating that TALENs can have appreciable off-

target activities in human cells even at loci that are quite distant from the

on-target sequence. Similar to the model developed to describe ZFN spec-

ificity, the in vitro cleavage results of Liu and coworkers suggested that reduc-

ing the cationic charge of the canonical 63-aa TALE C-terminal domain or

the canonical N-terminal TALE domain could improve specificity by

reducing nonspecific DNA-binding energy. Consistent with this hypothe-

sis, the ability of off-target sites to survive the in vitro selection decreased as

these cationic residues were mutated to neutral amino acids. Many of these

charge-engineered TALENs demonstrated improved specificity across all

positions in the target site. Specificity profiles generated using the in vitro

selection method applied to charge-engineered TALENs indeed showed

�10 to �100-fold improved specificity from assays of on-target and off-

target activity both in vitro and in cells.

1.5. Insights and improvements from Cas9 specificity studies
In contrast to ZFNs and TALENs, RNA-guided Cas9 nucleases (referred to

below as Cas9) do not require the design of separate DNA-binding domains

for each new target site (Fig. 3.3C). Cas9 is a member of the CRISPR/Cas

family of proteins that naturally defend bacterial genomes through
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endonuclease activity against foreign DNA sequences. In contrast to ZFNs

and TALENs, the target DNA specificity of Cas9 is programmed by hybrid-

ization of the target DNA to a Cas9-bound guide RNA sequence (sgRNA)

( Jinek et al., 2012). Similar to TALENs, Cas9 target sequences are con-

strained at one end. All Cas9-targeted sequences require a sequence motif

called a protospacer adjacent motif (PAM), the identity of which depends

on the species of the Cas9 protein. For example, the most commonly used

Cas9, from S. pyogenes, cleaves most efficiently target sequences containing

an NGG PAM. Unlike ZFNs and TALENs, Cas9 target sites described to

date consist of at most 20 base pairs, not including the PAM sequence.

Early studies of Cas9 specificity in nature by Siksyns, Severinov,Maraffini,

and their respective coworkers (Cong et al., 2013; Jiang, Bikard, Cox,

Zhang, & Marraffini, 2013; Jinek et al., 2012; Sapranauskas et al., 2011;

Semenova et al., 2011) suggested that specific recognition of target DNA

by Cas9 was limited to a 7–12 base pair subsequence adjacent to the PAM

end of the target site. Further in vitro study using discrete off-target site testing

byDoudna, Charpentier, and colleagues ( Jinek et al., 2012) also supported the

model. In this model of Cas9 specificity, mismatches were thought to be tol-

erated at the non-PAM end of the molecule. This model would suggest that

Cas9 could not be used for specific genome modification, since a 12-base pair

sequence plus two base pair PAM is not long enough to specify a unique

sequence in the human genome. Several studies had shown, however, that

Cas9 could be used for genome modification in several organisms without

adverse effects; for example, Joung and coworkers reported that Cas9-

mediated gene modification in zebrafish embryos exhibited a similar rate of

off-target toxicity as ZFNs and TALENs (Hwang et al., 2013).

Four subsequent studies, two using discrete off-target testing in human

cell culture by Joung (Fu et al., 2013), Zhang (Hsu et al., 2013), and their

respective coworkers, one using a minimally biased selection in cells by

Church and coworkers (Mali et al., 2013), and one using a minimally biased

selection in vitro by Liu and coworkers (Pattanayak et al., 2013), investigated

Cas9 specificity and showed that while Cas9 specificity is sufficient for at

least some genome-editing applications, several off-target cleavage sites

could be detected for most Cas9 target sites tested. While the magnitude

of off-target activity varied in the four studies, Joung and coworkers

observed that some off-target sites could be modified at similar frequencies

to the on-target site.

All four studies showed that Cas9 specificity extended past the 7–12 base

pair subsequence near the PAM, and that specificity is decreased at the end of

the target site farthest from the PAM. The subsequence near the PAM, while
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highly specified, tolerates certain single-base pair mismatches in an

unpredictable fashion depending on the target site. These functional obser-

vations of cleavage specificity have been supported both by a molecular

dynamics study of Cas9 by Doudna and colleagues (Sternberg, Redding,

Jinek, Greene, & Doudna, 2014), as well as crystallographic models of

Cas9 elucidated by Doudna, Nureki, and their respective colleagues

( Jinek et al., 2014; Nishimasu et al., 2014). Genomic binding site profiling

of inactive Cas9 by Adli, Sharp, Zhang, and their respective colleagues, in

addition to confirming that the entire Cas9 target site is necessary for cleav-

age, suggests that Cas9 can bind many more sites in the genome than it actu-

ally cleaves (Kuscu et al., 2014; Wu et al., 2014).

Within the PAM itself, certainmismatches can also be tolerated.While the

S. pyogenesCas9 specifies an NGG PAM, studies in bacteria byMarraffini and

coworkers (Jiang et al., 2013) using a fully randomized PAM library demon-

strated a tolerance of NAG and NNGGN PAM sequences. Further observa-

tions by Church, Liu, Zhang, and their respective coworkers in the specificity

studies described above showed that an NAG PAM can also be recognized,

and in vitro, an NNG or an NGN PAM can be recognized with weak activity

when the rest of the target sequence is fully complementary to the sgRNA

(Pattanayak et al., 2013). The observation that anNAG PAM can be tolerated

has also been supported by crystallographic studies by Jinek and coworkers

(Anders, Niewoehner, Duerst, & Jinek, 2014).A more recent study on

Cas9 specificity by Bao and colleagues (Lin et al., 2014) also suggests that

Cas9 can tolerate single-base pair insertions or deletions in the target sequence

relative to the sgRNA, though with reduced activity. In addition, several

studies have established that specificity is dependent on Cas9 concentration

(Fu et al., 2013; Hsu et al., 2013; Pattanayak et al., 2013) and guide RNA

architecture (Fu, Sander, Reyon, Cascio, & Joung, 2014; Hsu et al., 2013;

Pattanayak et al., 2013).

Given the significant off-target activity of Cas9 endonucleases, numer-

ous groups have engineered Cas9 or guide RNA variants with enhanced

specificity. Joung and coworkers improved the specificity of the Cas9:

sgRNA complex by truncating the sgRNA to target less than the canonical

20-bp target sites (Fig. 3.4A) (Fu et al., 2014). By analogy to a study by Kim

and colleagues on dimeric zinc-finger nickases (Kim et al., 2012), Church,

Zhang, and their respective coworkers demonstrated that mutant Cas9 pro-

teins that cleave only a single strand of dsDNA can be used to nick opposite

strands of two nearby target sites, generating what is effectively a double-

strand break with reduced off-target activity (Fig. 3.4B) (Ran et al., 2013;

Cho et al., 2014; Mali et al., 2013).
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Nickases even when bound to off-target loci as monomers retain their

ability to nick DNA, which can result in a low level of undesired genome

modification (Cho et al., 2014; Fu et al., 2014; Ran et al., 2013), as has pre-

viously been described for single zinc-finger nickases (Ramirez et al., 2012;

Wang et al., 2012). Therefore, Liu, Joung, and their respective coworkers

developed engineered Cas9 variants that are only able to cleave DNA when

two monomers are adjacently bound to a target locus by fusing a FokI

nCas9
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PAM
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Figure 3.4 Engineered Cas9 components with improved DNA cleavage specificity.
(A) A truncated guide RNA (tru-gRNA, right), contains 17–18 base pairs of complemen-
tarity to its DNA target site, rather than 20 base pairs in a canonical sgRNA (left). The base
pairs in the sgRNA that are not present in the tru-gRNA are colored black. (B) Mutant
Cas9 proteins that cleave only a single strand of dsDNA (nCas9) can be targeted to
opposite strands of adjacent sites as pairs to cause double-strand breaks.
(C) Monomers of FokI nuclease (red) fused to catalytically inactive Cas9 bind to separate
sites within a target locus. Only adjacently bound FokI–dCas9monomers can assemble a
catalytically active FokI nuclease dimer, triggering dsDNA cleavage.
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restriction endonuclease cleavage domain to a catalytically inactive Cas9

(dCas9) (Fig. 3.4C) (Guilinger, Thompson, & Liu, 2014; Tsai et al., 2014),

analogous to dimeric ZFNs and TALENs. In discrete off-target studies, the

FokI–dCas9 fusions maintain substantial on-target DNA modification with

a large reduction in off-target modification at known Cas9 off-target sites.

Collectively, studies that reveal in detail the DNA cleavage specificity of

Cas9, together with the engineering of improved Cas9 variants, demonstrate

the potential of Cas9 as an accessible and specific genome engineering tool.

2. METHODS

2.1. Overview of in vitro selection-based nuclease
specificity profiling

The in vitro selection method developed by our group to profile the DNA

cleavage specificity of a nuclease comprises three major steps: pre-selection

library construction, in vitro selection, and high-throughput sequencing and

analysis. Briefly, synthetic 50-phosphorylated oligonucleotides are converted
into concatemeric repeats of a library of potential off-target sites through

intramolecular circularization followed by rolling-circle amplification.

The resulting pre-selection libraries are then incubated in vitro with the

appropriate nuclease, either in purified form or used directly from in vitro

translation systems. Cleaved library members, which contain free 50 phos-
phates, are captured by adapter ligation enabling their separation from unc-

leaved pre-selection library members, which do not contain 50 phosphates.
Cleaved post-selection library members are then amplified by PCR prior to

high-throughput DNA sequencing.

2.2. Pre-selection library design
While it would be ideal to use a pre-selection library that consists of all pos-

sible off-target sequences of a given length (for example, an N22 library for

Cas9, including PAM), the in vitro selection method has an upper limit of

approximately 1012 sequences in the pre-selection library. Since an N22

library would contain 422 (�1013 sequences), a library biased in favor of

sequences resembling the on-target recognition site is used instead. Library

biasing is accomplished through the use of randomized nucleotide mixtures

at all target-site base pairs during library construction. We and others (Argast

et al., 1998; Doyon et al., 2006; Guilinger et al., 2014; Mali et al., 2013;

Pattanayak et al., 2013, 2011) have had success using mixtures that contain

79% on-target base pair at each targeted position, with the remaining 21% of

the mixture comprising of the three off-target base pairs. For Cas9, this
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approach results in a pre-selection library that in theory contains at least ten

copies of each potential off-target sequence containing eight or fewer muta-

tions relative to the on-target site. For a 36-base pair TALEN on-target site,

the pre-selection library provides at least 10-fold coverage of all sequences

with six or fewer mutations. The partially randomized on-target site is also

flanked by fully randomized base pairs on each side to test for patterns of

specificity beyond the canonical target site.

The concentration of nuclease used to digest the pre-selection library

should be enough to produce sufficient cleaved sequences for robust detec-

tion but not enough to completely digest highly cleaved sequences. The use

of high nuclease concentrations will augment the detection of rare off-target

cleavage events and could result in lower apparent nuclease specificity.

Therefore, careful consideration of the nuclease concentrations used, or

at least reporting the percentage of on-target sequences cleaved under the

assay conditions, is required when studying and describing specificity.

2.3. In vitro selection protocol
2.3.1 Before Day 1: Design and synthesize pre-selection library

oligonucleotides
For a selection using a guide RNA (CLTA4) targeted to the human clathrin

gene (CLTA) (Pattanayak et al., 2013), the library oligonucleotide was

ordered from Integrated DNA Technologies and was of the form:

/5Phos/TTGTGTNNNNC*C*NT*G*T*G*G*A*A*A*C*A*C*
T*A*C* A*T*C* T*G*C*NNNNAC CTG CCG AGT TGT GT

“/5Phos/” refers to a 50 phosphate modification. The underlined

sequence refers to the target site library, where each asterisk denotes a posi-

tion that was ordered as a mixture of bases with 79% of the mixture

corresponding to the base preceding the asterisk and 7% each corresponding

to the other three bases. For Cas9, we found that this target site orientation

(with the reverse complement of the PAM at the 50 end of the oligonucle-

otide) yielded higher quality data than the reverse complement of this ori-

entation. The italicized sequences denote a repeated six-base pair barcode

that can be used to identify the target site used in the selection, if multiple

selections are assayed at once. Other barcodes that we have used include

AAC ACA, TCT TCT, and AGA GAA. Any barcodes can be used,

although we recommend a minimum of two base pairs differing between

each barcode. The sequence in bold denotes a constant region that remains

the same for all selections. The constant sequence includes a BspMI restric-

tion site that is used for pre-selection library preparation for high-

throughput sequencing.
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2.3.2 Day 1: Circularize library oligonucleotides
Dilute library oligonucleotides to 10 μM in 1 mM Tris, pH 8.0. In PCR

tubes, add 1 μL of library oligo (10 pmol), 2 μL of 10� CircLigase II

10� Reaction Buffer, 1 μL of 50 mM MnCl2, 15 μL water, and 1 μL Cir-

cLigase II ssDNA Ligase (100 U) (Epicentre #CL9021K). Incubate 16 h at

60 �C, followed by a 10 min inactivation step at 85 �C.

2.3.3 Day 2: Confirm circularization of library oligonucleotides
and perform rolling-circle amplification

On a 15% TBE-Urea polyacrylamide gel, load 2.5 pmol of uncircularized

library oligo and 2.5 μL (1.25 pmol) of the CircLigase mixture without puri-

fication. Run for 75 min at 200 V. Stain the gel in 100 mL of 0.5� TBE

containing 10 μL SYBR Gold (Invitrogen #11494) for 2 h. Rinse with

water before imaging the gel. Under these conditions, the circularized oli-

gonucleotides should migrate more slowly than the linear oligonucleotide

control.

We use the Illustra TempliPhi Amplification Kit (GE Healthcare #25-

6400-10) for the rolling-circle amplification reaction. Combine 5 μL
(2.5 pmol) of each unpurified CircLigase reaction and 50 μL of TempliPhi

sample buffer. Incubate 3 min at 95 �C. Cool at 0.5 �C/s to 4 �C. Add 50 μL
TempliPhi reaction buffer and 1 μL TempliPhi enzyme mix. Incubate 16 h

at 30 �C. Heat-inactivate for 10 min at 65 �C. The rolling-circle amplifica-

tion step can be halved or doubled in scale, with the final pre-selection

library size determined by the amount of CircLigase reaction that is used.

2.3.4 Day 3: Quantify and digest pre-selection library
Since the pre-selection library is used in the selection without purification,

a double-stranded DNA quantification reagent (Quant-it PicoGreen

dsDNA Assay Kit, Invitrogen) is used to quantify the amplified double-

stranded DNA. To quantify, add 1 μL rolling-circle amplified DNA or

10–200 ng of lambda DNA standard to 200 μL of 1 mM Tris, pH 8.0.

Incubate 10 min at room temperature in the dark, before reading fluores-

cence in a plate reader (excitation wavelength�480 nm, emission

wavelength�520 nm). Create a standard curve relating DNA concentra-

tion to fluorescence using, for example, pre-quantitated phage lambda

DNA and calculate the concentration of the rolling-circle amplified pre-

selection library.

To perform the in vitro selection, digest the pre-selection library with

purified or in vitro translated site-specific endonuclease. For Cas9, 200 nM

amplified pre-selection library was incubated with 100 nM Cas9 and

67Specificity of TALENs, Cas9, and Other Genome-Editing Enzymes



100 nM sgRNA or 1000 nM Cas9 and 1000 nM sgRNA in Cas9 cleavage

buffer (20 mM HEPES, pH 7.5, 150 mM potassium chloride, 10 mM mag-

nesium chloride, 0.1 mM EDTA, 0.5 mM dithiothreitol) for 10 min at

37 �C. Separately, the pre-selection library is also incubated with 2 U of

BspMI restriction endonuclease (NEB) in NEBuffer 3 (100 mM NaCl,

50 mM Tris–HCl, 10 mM MgCl2, 1 mM dithiothreitol, pH 7.9) for 1 h

at 37 �C. Both nuclease-digested and restriction-digested libraries are puri-

fied with the QIAQuick PCR Purification Kit (Qiagen).

For site-specific nucleases that leave overhangs, such as ZFNs and

TALENs, an additional step to convert the cut overhangs into blunt ends

is performed before adapter ligation. In this step, 50 μL of purified, digested

DNA is incubated with 3 μL of 10 mM dNTP mix (10 mM dATP, 10 mM

dCTP, 10 mM dGTP, 10 mM dTTP) (NEB), 6 μL of 10�NEBuffer 2, and

1 μL of 5 U/μL Klenow Fragment DNA Polymerase (NEB) for 30 min at

room temperature. The blunt-ended mixture is purified with the

QIAQuick PCR Purification Kit (Qiagen).

Once the cut ends have beenmade blunt, either by Cas9, or for TALENs

by Klenow polymerase, sequencing adapters are ligated. For post-selection

blunt libraries, adapter 1 (50 AAT GAT ACG GCG ACC ACC GAG ATC

TACACTCTTTCCCTACACGACGCTCTTCCGATCTAACA)

and adapter 2 (50 TGTTAGATCGGAAGAGCGTCGTGTAGGGAA

AGAGTGTAGATCTCGGTGG) are used to incorporate sequences for

Illumina sequencing. The reverse complementary sequences in italics can be

varied to barcode multiple reaction conditions. The rest of the adapter

sequences can also be appropriately varied to be used with other high-

throughput sequencing platforms. In the ligation step, 10 pmol each of

adapter 1 and adapter 2 are incubated with the blunt-ended post-selection

library and 1000 U T4 DNA Ligase (NEB) in NEB T4 DNA Ligase

Reaction Buffer (50 mM Tris–HCl, pH 7.5, 10 mM magnesium chloride,

1 mM ATP, 10 mM dithiothreitol) overnight at room temperature. For

the restriction-digested pre-selection library, the ligation protocol is

the same, with the exception of the use of lib adapter 1 (50 GAC

GGC ATA CGA GAT) and lib adapter 2 (50 TTG TAT CTC GTA

TGC CGT CTT CTG CTT G). Of note, the first four bases of lib

adapter 2 (in italics) must match the first four bases of the library oligo-

nucleotide barcode (see Section 2.3.1), since BspMI digestion will leave

an overhang that is specific to the barcode used. Therefore, if multiple

target sites are tested in the same selection run, multiple lib adapter 2’s

must be used.
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2.3.5 Day 4: PCR of pre- and post-selection libraries
The PCR amplification step prior to high-throughput sequencing must be

well controlled to minimize the potential effects of PCR bias on the final

sequencing results. Prior to PCR, the adapter ligation mixtures from Day

3 are purified with theQIAQuick PCRPurification Kit (Qiagen) and eluted

with 50 μL 1 mM Tris, pH 8.0. We use Phusion Hot Start Flex DNA Poly-

merase (NEB) in Buffer HF with an annealing temperature of 60 �C and an

extension temperature of 72 �C for 1 min per cycle. For the nuclease-

digested post-selection PCR, primers sel PCR (50 CAA GCA GAA

GAC GGC ATA CGA GAT ACA CAA CTC GGC AGG T) and PE2

short (50 AAT GAT ACG GCG ACC ACC GA) are used. For the

restriction-digested pre-selection library PCR, use the same PCR cycling

conditions with primers lib fwd PCR (50 CAA GCA GAA GAC GGC

ATA CGA GAT) and lib seq PCR (50 AAT GAT ACG GCG ACC

ACC GAG ATC TAC ACT CTT TCC CTA CAC GAC GCT CTT

CCG ATC TNN NNA CCT ACC TGC CGA GTT GTG T). Four

Ns are included in the lib seq PCR to provide a randomized initiation

sequence to maintain compatibility with Illumina sequencing requirements.

Of note, if multiple target sites are used in the same selection run, multiple sel

PCR primers must be used, with the four base sequence in sel PCR and the

six base sequence in lib seq PCR listed in italics should be modified to main-

tain complementarity to the original library oligonucleotide backbone (see

Section 2.3.1).

Before PCR of the full volume of post-selection library, we suggest per-

forming a test PCR or test qPCRwith 1 μL of purified post-selection library
under the PCR conditions listed above to determine the number of cycles

required to reach saturation. If doing a test PCR, remove aliquots every 5

cycles for 35 cycles and visualize the reaction products. Determine the point

at which the PCR amplification saturates and subtract an appropriate num-

ber of cycles when the PCR is scaled up. For example, if scaling from 1 to

32 μL of purified post-selection library, subtract five cycles (25¼32).

After PCR, there may be a ladder of products, corresponding to ampli-

fied post-selection library members that contain 0.5, 1.5, 2.5, etc., repeats of

a given library member (Fig. 3.5). The variation in PCR product size results

from the concatemeric nature of the pre-selection library. During PCR, the

sel PCR primer can also anneal to one of multiple repeats, also leading a dis-

tribution of PCR product sizes. To standardize the analysis, only those PCR

products that contain 1.5 repeats are analyzed. Therefore, before high-

throughput sequencing, a final gel purification step is used to enrich the
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amplified post-selection library members that contain exactly 1.5 repeats and

to remove any remaining free adapters and primers.

2.3.6 Day 5: High-throughput sequencing and analysis
The gel-purified post-selection and pre-selection libraries can be quantified

using the KAPA Library Quantification Kit-Illumina (KAPA Biosystems)

before high-throughput sequencing. We used single-read sequencing on

an Illumina HiSeq or Illumina MiSeq, though the selection should be com-

patible with any high-throughput sequencing platform as long as the adapter

Digestion with site-specific nuclease 

Concatemeric substrates 

4.5 repeats (and higher) 

3.5 repeats 

2.5 repeats 

1.5 repeats 

0.5 repeats 

PCR with blue (and red) primers 

Mixture of digested products  

4.5 repeats (and higher) 

3.5 repeats 

2.5 repeats 

1.5 repeats (purify these) 

0.5 repeats 

B

A

Figure 3.5 Sample processing during in vitro selection-based nuclease specificity pro-
filing. (A) Pre-selection DNA consisting of many repeats of a library member (gray boxes)
becomes smaller in size due to nuclease digestion, depending on which target site
along the pre-selection DNA is cleaved. (B) During post-selection library amplification,
the PCR primer (blue arrows; dark gray in print version) can anneal to any one of the
repeats, leading to a set of smaller PCR products. To simplify analysis, only PCR products
with 1.5 repeats are purified and analyzed.
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sequences and PCR primers are modified appropriately. For Cas9, a mini-

mum of 66 bases must be sequenced to capture the entire library member. If

using a selection condition barcode (for example, AACA below), we rec-

ommend spiking in a PhiX library control at 25% with the sequencing

run to provide appropriate initial base-calling diversity if using Illumina

sequencing.

The sequencing output can be binned using a simple scripting language,

such as C++ or Python. The components of the sequencing read are illus-

trated below:

AACAcatgggtcgACACAAACACAACTCGGCAGGTACTTGCAG

ATGTAGTCTTTCCACATGGGTCGACACAAACACAACTCGG

CAGGTATCTCGTATGCC

AACA is the four-base pair barcode for selection conditions. catgggtcg

is the cut “half” of the library target site. ACACAAACACAA is the

Cas9 target barcode. CTCGGCAGGT is the constant sequence (the

reverse complement of the bold sequence in the Library Design section).

ACTTGCAGATGTAGTCTTTCCACATGGGTCG is the full

sequence of the post-selection library member. This sequence can be rec-

ognized and cut in the selection. The nonunderlined portion of the

sequence consists of the eight random base pairs (four on each side) that

flanked the target site library. Once sequences are binned, standard analyses

can be performed on the set of target sites (bold and underlined). For

example, specificity profiles can be represented as heat maps of specificity

scores calculated as the enrichment level of each possible base pair at every

position in the post-selection sequences relative to the pre-selection

sequences, normalized to the maximum possible enrichment of that base

pair (Fig. 3.6).

2.4. Confirmation of in vitro-identified genomic off-target sites
To identify genomic off-target sites, the set of target sites identified in vitro by

selection and high-throughput sequencing can be searched for sequences

that appear in the human genome. In addition to this simple comparison,

a machine-learning algorithm can be trained on the in vitro dataset to assist

the identification of potential genomic off-target sequences (Sander et al.,

2013). The tested site-specific nuclease is then expressed in cultured human

cells, along with a parallel experiment with a control, inactive form of the

same site-specific nuclease. Genomic DNA is isolated, followed by PCR

with primers specific to each potential off-target site. A primer design tool,
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such as NCBI Primer-BLAST (http://www.ncbi.nlm.nih.gov/tools/

primer-blast/), can be useful in the design of primers that lead to specific

amplification of the target site of interest. Portions of the high-throughput

adapter sequences can be incorporated into the primers (for example, for

Illumina, 50 ACA CTC TTT CCC TAC ACG ACG CTC TTC CGA

TCT at the 50 end of one primer and 50 GTG ACT GGA GTT CAG

ACG TGT GCT CTT CCG ATCT on the other) for the initial PCR.

When assayingmultiple off-target sites at once, PCRs can be pooled in equi-

molar ratios, purified, and then reamplified using primers PE1-barcode

(50 CAA GCA GAA GAC GGC ATA CGA GAT ATA TCA GTG

TGA CTG GAG TTC AGA CGT GTG CT) and PE2-barcode (50 AAT
GAT ACG GCG ACC ACC GAG ATC TAC ACA TTA CTC GAC

ACT CTT TCC CTA CAC GAC). The number of cycles of the

re-amplification PCR should be minimized to avoid introducing significant

PCR bias. The italicized bases in PE1-barcode and PE2-barcode correspond

to barcodes that can be used in Illumina sequencing. Different barcodes

should be used for PCR products derived from active-nuclease-treated

DNA compared to inactive-nuclease-treated DNA.

Following high-throughput sequencing, nuclease-modified off-target

sequences can be identified through sequence alignment or through com-

putational methods. One algorithm for identifying modified-sequences

involves searching for the 20 base pairs flanking each off-target site for each

high-throughput sequencing read. For example:

+1.0 to +0.9

+0.9 to +0.7

−0.7 to +0.5

+0.5 to +0.3

+0.3 to +0.1

+0.1 to −0.1

−0.1 to −0.3

−0.3 to −0.5

−0.5 to −0.7

−0.7 to −0.9

−0.9 to −1.0

Specificity 
score 

200 nM DNA, 100 nM Cas9:CLTA1 sgRNA v2.1

A G T C C T C A T C T C C C T C A A G C

A

C

G

T

PAM
NGG

Figure 3.6 An in vitro selection-derived specificity profile. The heat map shows the
specificity profile resulting from a selection performed on Cas9:sgRNA targeting the
human CLTA gene. Specificity scores of 1.0 (dark blue) and �1.0 (dark red) corresponds
to 100% enrichment for and against, respectively, a particular base pair at a particular
position. Black boxes denote the intended target nucleotides.
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50 CAATCTCCCGCATGCGCTCAGTCCTCATCTCCCTCAAG

CAGGCCCCGCTGGTGCACTGAAGAGCCACCCTGTGAAACAC

TACATCTGCAATATCTTAATCCTACTCAGTGAAGCTCTTCAC

AGTCATTGGATTAATTATGTTGAGTTCTTTTGGACCAAACC

The flanking sequences (underlined) can be used to identify the off-target

site being assayed (in bold). In the reference genome sequence, the sequence

between the underlined flanking regions is 50 CCCTGTGGAAACACTA
CATCTGC. In this example, the sequence between the underlined flanking

regions is 50 CCCTGT-GAAACACTACATCTGC, where the dash indi-

cates a one base pair deletion. For each potential off-target site tested, the frac-

tion of sequenceswith insertions and deletions can be calculated and compared

between active-nuclease and inactive-nuclease experiments. For target sites

with high modification efficiencies, it may be necessary to use flanking

sequences (the underlined sequences above) that are more distal to the target

site, in case NHEJ leads to deletion of a region that is larger than the off-target

site (the bold sequence).

3. CONCLUSION

Genome engineering in the last few years has become more facile

through the use of programmable site-specific nucleases such as TALENs

and Cas9, which can be designed to target nearly any DNA sequence. As

the use of ZFNs, TALENs, and Cas9 in research and clinical settings con-

tinues to grow, efforts to reveal in depth the DNA cleavage specificity of

programmable nucleases will become increasingly important. Efforts to

characterize programmable nuclease specificity have ranged from discrete

target-site assays to in vitro selections to genome-wide selections, all of which

have been applied recently to study TALEN and Cas9 specificity. The find-

ings from these methods will continue to deepen our understanding of the

basis of the DNA cleavage specificity of these important proteins, inform the

development of programmable nucleases with improved specificity, and

perhaps eventually enable the broad application of these or other program-

mable nucleases to treat human genetic diseases.
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Abstract

Site-specific recombinases are valuable tools formyriadbasic research andgenomeengi-
neering applications. In particular, hybrid recombinases consisting of catalytic domains
from the resolvase/invertase family of serine recombinases fused to Cys2–His2 zinc-finger
or TAL effector DNA-binding domains are capable of introducing targetedmodifications
into mammalian cells. Due to their inherent modularity, new recombinases with distinct
targeting specificities can readily be generated and utilized in a “plug-and-play”manner.
In this protocol, we provide detailed, step-by-step instructions for generating newhybrid
recombinases with user-defined specificity, as well asmethods for achieving site-specific
integration into targeted genomic loci using these systems.

1. INTRODUCTION

Hybrid recombinases composed of catalytic domains derived from the

resolvase/invertase family of serine recombinases fused to engineered
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Cys2–His2 zinc-finger (Akopian, He, Boocock, & Stark, 2003; Gordley,

Smith, Graslund, & Barbas, 2007) or TAL effector DNA-binding domains

(Mercer, Gaj, Fuller, & Barbas, 2012) are powerful tools for targeted

genome engineering (Fig. 4.1A). Unlike classical site-specific recombina-

tion systems, such as Cre-loxP, Flp-FRT, and phiC31-att, hybrid

recombinases are modular chimeric proteins that are capable of introducing

genomic modifications at user-defined sites in human cells (Gaj, Sirk, &

Barbas, 2014). Depending on the length of the custom DNA-binding

domain, these enzymes can recognize target sites between 44- and 62-bp

in length. In general, each target site consists of a central 20-bp core sequence

recognized by the recombinase catalytic domain, flanked by two inverted

Figure 4.1 Structure of the zinc-finger recombinase (ZFR) dimer bound to DNA. (A) Each
ZFR monomer (blue or orange) consists of an activated serine recombinase catalytic
domain fused to a custom-designed Cys2-His2 zinc-finger DNA-binding domain.
(B) Cartoon of the ZFR dimer bound to DNA. ZFR target sites consist of two
inverted zinc-finger binding sites flanking a central 20-bp core sequence recognized
by the serine recombinase catalytic domain. Abbreviations are as follows: N¼A, T, C,
or G; R¼G or A; and Y¼C or T. Adapted from Gaj, Mercer, et al. (2013).
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zinc-finger or TAL effector binding sites (Fig. 4.1B). These enzymes catalyze

recombinationvia a concertedmechanism inwhich the recombinase catalytic

domain cleaves all four DNA strands before ultimately promoting strand

exchange and religation (Grindley, Whiteson, & Rice, 2006). For both

zinc-finger and TAL effector recombinase platforms, enzyme specificity is

the cooperative product of modular, site-specific DNA recognition, and

sequence-dependent catalysis (Gordley, Gersbach, & Barbas, 2009). As such,

advances in the design and synthesis ofmodular zinc-finger (Gersbach,Gaj, &

Barbas, 2014) and TAL effector DNA-binding proteins ( Joung & Sander,

2013) have enabled the possibility of generating new custom recombinases

capable of recognizing awide range ofDNA sequences. In addition, new rec-

ombinase variants with distinct catalytic specificities can readily be generated

via a “plug-and-play” manner using a collection of preselected recombinase

catalytic domains derived from an activatedmutant of theDNA invertaseGin

from bacteriophage Mu (Gaj, Mercer, Gersbach, Gordley, & Barbas, 2011;

Gaj, Mercer, Sirk, Smith, & Barbas, 2013; Gersbach, Gaj, Gordley, &

Barbas, 2010; Klippel, Cloppenborg, & Kahmann, 1988; Proudfoot,

McPherson, Kolb, & Stark, 2011). These catalytic domain variants, referred

to here as Gin α, β, γ, δ, ε, and ζ, were generated by targeted saturationmuta-

genesis of the Gin recombinase C-terminal arm, a region of the enzyme that

connects the catalytic andDNA-binding domains, and also contacts substrate

DNA. These redesigned catalytic domains demonstrate high specificity for

their intended DNA targets and can be used in a “mix and match” approach

to recognize highly diverse DNA sequences. Indeed, our laboratory and

others have demonstrated that hybrid recombinases composed of these

reengineered catalytic domains are capable of targeted integration of thera-

peutic factors into endogenous genomic loci at specificities of >80% (Gaj,

Sirk, Tingle, et al., 2014) and excision of transgenes with efficiencies of

>15% in human cells (Gordley et al., 2007).

Here, we provide a step-by-step protocol for the design and validation of

hybrid recombinases based on zinc-finger protein technology. We include

assays for evaluating zinc-finger recombinase (ZFR) activity in mammalian

cells and describe how to achieve site-specific integration into endogenous

genomic loci using this technology.

2. TARGET IDENTIFICATION

Putative ZFR target sites can be identified using the consensus

sequences provided in Fig. 4.2. Engineered ZFRs are fully modular enzymes
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composed of an N-terminal recombinase catalytic domain fused to a

C-terminal zinc-finger DNA-binding protein. Using the collection of

preselected recombinase catalytic domains described in Fig. 4.3 and

Table 4.1, we estimate that one potential ZFR target site can be identified

for every �160,000 bp of random sequence. The specificity profile of each

reengineered Gin catalytic domain is presented in Fig. 4.3B. Currently, the

presence of adenine at core positions 6, 5, and 4 is the only major targeting

requirement for ZFRs containing the Gin recombinase catalytic domain. In

cases that require recognition of nonadenine bases at these positions, ZFRs

derived from the Sin and β recombinase catalytic domains (Sirk, Gaj,

Jonsson, Mercer, & Barbas, 2014), which recognize both guanine and thy-

mine at these sites, can be used. In general, 20-bp core sequences that display

>50% sequence identity to the native recombinase target site typically show

the highest level of activity. Following the identification of a specific target

site, ZFRs with the intended complementary specificity can be generated

from a preselected library of modular parts.

3. RECOMBINASE CONSTRUCTION

We have designed vectors to facilitate ZFR assembly and expression:

ZFR construction requires the assembly of two zinc-finger protein assays

that recognize the DNA sequences flanking the central 20-bp core

sequence. We note that our laboratory (Gonzalez et al., 2010) and others

(Carroll, Morton, Beumer, & Segal, 2006; Maeder, Thibodeau-Beganny,

Sander, Voytas, & Joung, 2009; Wright et al., 2006) have described a num-

ber of protocols for zinc-finger assembly, which are described in detail

elsewhere.

Gin catalytic domains engineered to recognize �107 distinct core

sequences can be obtained from the SuperZiF-compatible subcloning plas-

mids pBH-Gin-α, β, γ, δ, ε, and ζ (Gaj, Mercer, et al., 2013). These vectors

are easily modified for compatibility with zinc-finger proteins constructed

by OPEN (Maeder et al., 2008), CoDA (Sander et al., 2011), and the other

Figure 4.2 The consensus 44-bp target sequence used to identify potential ZFR target
sites. Underlined bases indicate zinc-finger DNA-binding sites and core positions 3 and
2. Abbreviations are as follows: N¼A, T, C, or G; R¼A or G; Y¼T or C; B¼T, C, or G; V¼A,
C, or G; and W¼A or T.
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open-source assembly methods (Bhakta et al., 2013), as well as alternative

serine recombinase catalytic domains. The following is a protocol for con-

structing ZFR heterodimers that recognize the user-defined target site iden-

tified in Section 2, using SuperZiF-assembled zinc-finger proteins.

Importantly, ZFR targeting of asymmetric DNA sequences requires both

the presence of “left”- and “right”-ZFR monomers. We note that the

following protocol describes the generation of a single ZFR monomer.

Figure 4.3 Gin catalytic domain specificities. (A, top) The native 20-bp core sequence
recognized by the Gin catalytic domain. All base positions within the core site are num-
bered. Positions 3 and 2 are boxed. (A, bottom) Structure of a serine recombinase cat-
alytic domain in complex with DNA. Residues subject to reprogramming are shown as
magenta (black color in the print version) sticks. (B) Recombination specificity of the Gin
α, β, γ, δ, ε, and ζ catalytic domains for each possible two-base combination at positions
3 and 2. Intended DNA targets are underlined. Adapted from Gaj, Mercer, et al. (2013).
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Note: Carbenicillin (i.e., Carb) is a more stable analog of ampicillin and is

recommended, but not required, for this protocol.

1. Digest the appropriate subcloning vector (pBH-Gin-α, β, γ, δ, ε, or ζ)
with the restriction enzymes AgeI and SpeI in recommended buffer for

3 h using 10 Units (U) of enzyme per 1 μg of vector DNA. Visualize

DNA by agarose gel electrophoresis using a fluorescent intercalating

dye, such as ethidium bromide.

2. Purify the digested vector by gel extraction using the QIAquick Gel

Extraction Kit, according to the manufacturer’s instructions.

3. Release SuperZiF-assembled zinc-finger proteins from pSCV with the

restriction enzymes XmaI and SpeI in appropriate buffer for 3 h using

10 U of enzyme per 1 μg of DNA and isolate via gel electrophoresis

using the QIAquick Gel Extraction Kit.

4. Ligate the purified zinc-finger protein DNA into 25–50 ng of purified

pBH-Gin-α, β, γ, δ, ε, or ζ vector using 1 U T4 DNA ligase for 1 h at

room temperature. For best results, perform the ligation reaction using

a 6:1 insert-to-vector ratio.

5. Transform 10–20 ng of ligated pBH-Gin-α, β, γ, δ, ε, or ζ into any

competent laboratory strain of Escherichia coli, such as TOP10 or XL1

Blue, by electroporation and recover in 2 mL SOC for 1 h at 37 �C
with shaking at 250 rpm.

6. Spread 100 μL of recovery culture on an LB agar plate with 100 μg/mL

carbenicillin to determine ligation/transformation efficiency, and for

possible use in Step 8. Inoculate remaining �2 mL recovery culture

Table 4.1 Reengineered Gin catalytic domain substitutions
Catalytic domain Target Positions

120 123 127 136 137

α CCa Ile Thr Leu Ile Gly

β GC Ile Thr Leu Arg Phe

γ GT Leu Val Ile Arg Trp

δ CA Ile Val Leu Arg Phe

εb AC Leu Pro His Arg Phe

ζc TT Ile Thr Arg Ile Phe

aIndicates wild-type DNA target.
bThe ε catalytic domain also contains the substitutions E117L and L118S.
cThe ζ catalytic domain also contains the substitutions M124S, R131I, and P141R.
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for overnight growth by adding 4 mL SB medium and 100 μg/mL

carbenicillin. Incubate cultures for 16–24 h at 37 �C with shaking

at 250 rpm.

7. The following day, purify plasmid from overnight culture with any

commercially available Miniprep kit, according to the manufacturer’s

instructions.

8. Release ZFR from miniprepped pBH by restriction digestion with SfiI

for 3 h using 10 U of enzyme per 1 μg of DNA and visualize DNA by

agarose gel electrophoresis. If unable to recover ZFRs, we recommend

performing colony PCR using the plated recovery culture from Step 6

to screen for individual clones containing full-length ZFR gene inserts.

9. Purify the ZFR insert by gel extraction using the QIAquick Gel

Extraction Kit.

10. Ligate the purified full-length ZFR insert into 25–50 ng of SfiI-

digested pcDNA 3.1 (Invitrogen). Transform 10–20 ng of the ligation

reaction into any competent laboratory strain of E. coli and recover in

1–2 mL of SOC. After 1 h, spread 100 μL of cells on LB agar plates

containing 100 μg/mL of carbenicillin and incubate overnight at 37 �C.
11. The following day, inoculate 6 mL of SB medium containing

100 μg/mL of carbenicillin with one colony from the LB agar carb

plate and culture overnight at 37 �C with shaking at 250 rpm.

12. The next day, harvest the overnight culture and purify pcDNA-ZFR

plasmid by Miniprep. Confirm ZFR identity by standard DNA

sequencing using the primer T7 Universal (50-
TAATACGACTCACTATAGGG-30).

4. MEASUREMENTS OF RECOMBINASE ACTIVITY

Our laboratory has developed a transient reporter assay for use in

mammalian cells that links ZFR-mediated recombination to reduced lucif-

erase expression (Gaj, Mercer, et al., 2013; Gaj, Sirk, Tingle, et al., 2014).

To achieve this, recombinase target sites are introduced both up- and down-

stream a Simian vacuolating virus 40 (SV40) promoter that drives expression

of a luciferase reporter gene. Active recombinases excise the promoter,

resulting in reduced luciferase expression. The following protocol describes

the generation and application of luciferase-based reporter vectors, but is also

broadly adaptable to other types of reporter genes, including EGFP and

β-galactosidase.
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4.1. Reporter plasmid construction
1. TheSV40promotersequencecanbeamplifiedfrommanydifferent sources.

In our studies, we used the primers SV40-ZFR-BglII-Fwd and SV40-

ZFR-HindIII-Rev to PCR amplify the SV40 promoter from pGL3-Prm

(Promega). These primers also encode flanking ZFR target sites.

SV40-ZFR-BglII-Fwd:

50-TTAATTAAGAGAGATCTGCTGATGCAGATACAG

AAACCAAGGTTTTCTTACTTGCTG CTGCGCGATCTGC

ATCTCAATTAGTCAGC-30

SV40-ZFR-HindIII-Rev:

50-ACTGACCTAGAGAAGCTTGCAGCAGCAAGTAAG

AAAACCTTGGTTTCTGTATCTGCA TCAGCTTTGC

AAAAGCCTAGGCCTCCAAA-30

Note: ZFR target sites are underlined. Restriction sites are

italicized.

2. Purify the PCR product by gel electrophoresis using the QIAquick Gel

Extraction Kit, according to the manufacturer’s instructions.

3. Digest the purified PCR product and pGL3-Prm with the restriction

enzymes BglII and HindIII and purify both DNA fragments by gel

electrophoresis.

4. Ligate the purified SV40-ZFR insert into 25–50 ng of purified pGL3

vector for 1 h at 25 �C, creating pGL3-target.

5. Transform 10–20 ng of ligated plasmid into E. coli by electroporation.

Recover cells for 1 h in 1–2 mL of SOC, and spread 100 μL of cells

on LB agar plates containing 100 μg/mL of carbenicillin. Incubate plates

overnight at 37 �C.
6. The following day, inoculate 6 mL of SB medium containing

100 μg/mL of carbenicillin with one colony from the LB agar plate

and culture overnight at 37 �C with shaking at 250 rpm.

7. Purify pGL3-target plasmid by Miniprep and confirm reporter plasmid

identity by DNA sequencing using SV40-Mid-Prim-Fwd (50-
ACCATAGTCCCGCCCCTAACTCC-30) and SV40-Mid-Prim-

Rev (50-GGAGTTAGGGGCGGGACTATGGT-30).

4.2. Luciferase assay
8. Seed human embryonic kidney (HEK) 293 T cells in a 96-well plate at a

density of 4�104 cells per well in Dulbecco’s modified Eagle’s medium

(DMEM) containing 10% (v/v) fetal bovine serum (FBS; Gibco).
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9. Transfect cells 24 h after seeding. For best results, cells should be

80–90% confluent at time of transfection.

a. Use 25–50 ng of each pcDNA-ZFR monomer expression vector,

25 ng of pGL3-target reporter vector, and 1 ng of pRL-CMV

(Renilla luciferase transfection control; Promega), according to

the manufacturer’s instructions. We typically transfect each well

with 0.8 μL Lipofectamine 2000 (Invitrogen).

b. To accurately assess recombinase activity, include the following

samples:

i. Experimental: reporter construct with ZFR expression vectors.

ii. Background luciferase activity: reporter plasmid only.

iii. Negative control: mock transfected cells that receive no reporter

plasmid or ZFR expression vectors.

10. Evaluate the fold reduction in luminescence using a Microplate

luminometer and dual-luciferase reporter assay 48 h after transfection,

normalizing to cotransfected Renilla luciferase control.

11. Recombinases that induce a >20-fold decrease in luminescence are

considered sufficiently active for endogenous genomic targeting stud-

ies. In our experience, recombinases that lead to a >60-fold reduction

in luminescence yield the best results for downstream applications.

5. SITE-SPECIFIC INTEGRATION

Site-specific integration is one core application of ZFR technology.

We have developed a donor plasmid backbone (pDonor) based on the

pBABE vector system (Morgenstern & Land, 1990) that facilitates ZFR-

mediated transgene insertion into the human genome (Gaj, Sirk, Tingle,

et al., 2014; Gordley et al., 2009). This vector contains a constitutively

expressed puromycin-resistance gene for enrichment of ZFR-modified

cells, and a multiple-cloning site upstream of the cloned ZFR target site

for gene of interest (GOI) placement. The following protocol describes a

step-by-step procedure for constructing ZFR donor plasmids and achieving

site-specific integration with ZFRs.

5.1. Donor plasmid construction
1. PCR amplify the cDNA sequence of the GOI using primers that encode

a 50 PstI and 30 BamH1 restriction site. The 30 primer must also encode

the ZFR target site selected in Section 2 upstream of the BamH1 restric-

tion site. Note: pDonor does not contain a universal promoter or polyA
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region, and therefore these components should be amplified with

the GOI.

2. Gel purify the PCR product using QIAquick Gel Extraction Kit,

according to the manufacturer’s instructions.

3. Digest both the purified PCR product and pDonor (empty) with the

restriction enzymes PstI and BamH1. Purify both DNA fragments by

gel electrophoresis.

4. Ligate the purified GOI insert into 25–50 ng of purified pDonor vector

for 1 h at room temperature.

5. Transform 10–20 ng of ligated plasmid into any competent laboratory

strain of E. coli by electroporation. Recover cells for 1 h in 1–2 mL of

SOC, and spread 100 μL of cells on LB agar plates containing

100 μg/mL of carbenicillin. Incubate plates overnight at 37 �C.
6. Purify plasmid DNA by Miniprep and confirm pDonor plasmid identity

by DNA sequencing.

5.2. Cell culture methods
7. Seed HEK293 cells in a 24-well plate at a density of 2�105 cells per well

in DMEM containing 10% FBS. Note: we test the ability of our

recombinases to integrate donor plasmid in HEK293 cells; however,

these enzymes should demonstrate high activity in most cell types.

8. At 24 h after seeding, transfect cells with 80 ng of pDonor plasmid, 10 ng

each of pcDNA-ZFR-L and pcDNA-ZFR-R expression vectors and

(optionally) 10 ng of pCMV-EGFP for transfection control using any

desired transfection protocol. We note that the efficiency of ZFR-

mediated integration is dependent on the amount of plasmid transfected

and thus may require subsequent optimization, e.g., less specific

recombinases may require up to 100 ng of each L- and R-ZFR plasmids.

9. At 72 h after transfection, perform the following evaluations and expand

clonal populations.

5.2.1 PCR confirmation of integration
i. At 72 h after transfection, harvest cells, and isolate bulk genomic DNA

using Quick Extract DNA Extraction Reagent (Epicentre), according

to manufacturer’s instructions.

ii. Design primers complementary to the 50 and 30 junctions of the geno-
mic region targeted and PCR amplify this region by nested PCR. As an
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internal control, we recommend PCR amplifying the GAPDH gene

from all harvested cell types.

Note: ZFR-mediated integration can occur in both the forward and

reverse orientation. We thus recommend designing internal nested

primers for detecting both the forward and reverse integration of

the GOI.

iii. Gel purify the PCR product and confirm the identity of the donor vec-

tor by DNA sequencing.

5.2.2 Measurements of modification efficiency
iv. At 72 h after transfection, split cells into 6-well plates at a density of

1�104 cells per well and maintain in DMEM/FBS with or without

2 μg/mL puromycin.

v. At 14–18 days after seeding, stains cells with 0.2% crystal violet staining

solution and calculate genome-wide integration rates by dividing the

number of colonies in puromycin-containing media by the number

of colonies in the absence of puromycin.

5.2.3 Isolation and expansion of modified clones
vi. At 72 h after transfection, split 1�104 cells into a 100 mm dish

and maintain cells in DMEM/FBS with 2 μg/mL puromycin.

Individual colonies can be isolated with 10 mm�10 mm open-ended

cloning cylinders with sterile silicone grease and expanded in 96-well

plates in the presence of puromycin. Alternatively, modified cells

can be isolated and expanded by harvesting 72 h after transfection

and reseeding in 96-well plates at limiting dilution with 2 μg/mL puro-

mycin. Sample gel illustrating positive integration events among

expanded clones in the forward and reverse directions are shown in

Fig. 4.4.

Figure 4.4 ZFR-mediated integration into the human genome. Example clonal analysis
of puromycin-resistant cells transfected with a pair of ZFR expression vectors (left and
right) and pDonor plasmid.
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6. CONCLUSIONS

The protocol provided here details the generation of engineered

ZFRs capable of recognizing user-defined sites. The recombinases described

here have the capacity to catalyze a diverse range of genome modification

outcomes, including targeted gene integration, excision, and cassette

exchange. These chimeric enzymes can also be used in tandem with other

genome engineering technologies, including site-specific nucleases (Gaj,

Gersbach, et al., 2013) and transposases (Gersbach, Gaj, Gordley,

Mercer, & Barbas, 2011), for even more diverse editing outcomes. While

this protocol does not include guidance for the generation of recently

described custom TAL effector recombinases (Mercer et al., 2012), it should

be easily adapted for the creation of any type of hybrid recombinases.
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Abstract

Genome editing in human cells is of great value in research, medicine, and biotechnol-
ogy. Programmablenucleases including zinc-finger nucleases, transcription activator-like
effector nucleases, and RNA-guided engineered nucleases recognize a specific target
sequence and make a double-strand break at that site, which can result in gene disrup-
tion, gene insertion, gene correction, or chromosomal rearrangements. The target
sequence complexities of these programmable nucleases are higher than 3.2mega base
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pairs, the size of the haploid human genome. Here, we briefly introduce the structure of
the human genome and the characteristics of each programmable nuclease, and review
their applications in human cells including pluripotent stem cells. In addition, we discuss
various delivery methods for nucleases, programmable nickases, and enrichment of
gene-edited human cells, all of which facilitate efficient and precise genome editing
in human cells.

1. INTRODUCTION

Genome engineering in human cells is of great value in research, med-

icine, and biotechnology. In research, one of the best ways to determine the

function of a human gene or genetic element is to compare the phenotype of

human cells containing a mutation in the gene or element of interest with

that of isogenic normal human cells. This process is increasingly important

given that a growing number of researchers are using human pluripotent

stem cells as disease models to investigate disease pathophysiology and screen

therapeutic drugs in vitro (Colman &Dreesen, 2009; Saha & Jaenisch, 2009).

Furthermore, if reporter genes or peptide tags are inserted into endogenous

genes through genome engineering, it becomes possible to monitor or trace

those genes. In medicine, many genetic diseases could be prevented or

treated if the genetic mutations that cause the disease were corrected, as

has been done in cell or animal models (Li et al., 2011; Osborn et al.,

2013; Schwank et al., 2013; Voit, Hendel, Pruett-Miller, & Porteus,

2014; Yin et al., 2014). This targeted genetic modification can potentially

also be used to treat nongenetic diseases such as human immunodeficiency

virus (HIV) infection, which has been tested in human patients (Holt et al.,

2010; Tebas et al., 2014). In biotechnology, targeted genetic modification of

human cells can also contribute to technical developments. For example,

when human cells such as Chinese hamster ovary cells are used to produce

specific proteins, genome engineering can improve yields and enhance the

efficiency of this process.

Conventional gene targeting approaches based on homologous recom-

bination (HR), which occurs in nature when sperms and eggs are generated,

can be used to achieve targeted genetic modification in human cells

(Smithies, Gregg, Boggs, Koralewski, & Kucherlapati, 1985; Song,

Schwartz, Maeda, Smithies, & Kucherlapati, 1987). However, the efficiency

of HR is extremely low, necessitating elaborate positive and negative selec-

tion to obtain cells that contain the desired modification.
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Double-strand breaks (DSBs) at the target site can increase the efficiency

of HR by at least two orders of magnitude (Rouet, Smih, & Jasin, 1994).

Furthermore, error-prone repair of these DSBs through nonhomologous

end joining (NHEJ) can lead to targeted mutagenesis (Bibikova, Golic,

Golic, & Carroll, 2002). DSBs at specific genomic loci can be generated

by specific sequence-recognizing programmable nucleases, which include

zinc-finger nucleases (ZFNs), transcription activator-like effector nucleases

(TALENs), and RNA-guided engineered nucleases (RGENs) (Kim &

Kim, 2014).

In this chapter, we will first briefly review the structure of the human

genome. We will then describe the three programmable nucleases, i.e.,

ZFNs, TALENs, and RGENs, and their applications in human cells, includ-

ing their potential utilization for the treatment of both genetic and non-

genetic diseases. We will also review various methods for delivering

programmable nuclease into human cells as well as techniques for improving

the efficiency of the editing process by using nickases or surrogate reporters

in human cells.

2. STRUCTURE OF THE HUMAN GENOME

The Human Genome Project was initiated in 1990 and declared

complete in 2003. The sequence was determined using a combination of

high-throughput experiments and bioinformatics approaches (International

Human Genome Sequencing, 2004; Lander et al., 2001; She et al., 2004;

Venter et al., 2001). The genome in diploid (somatic) cells is composed

of 22 pairs of autosomal chromosomes and two sex chromosome (XX in

females, XY in males) (Fig. 5.1A and B). The haploid genome (contained

in egg and sperm cells) has a total length of 3.2 billion base pairs (bp); the

diploid genome is 6.4 billion bp in length. The genome includes approxi-

mately 20,000 protein-coding DNA genes, which represent about 1.5% of

the genome, and noncoding DNA, which occupies the remaining fraction

(approximately 98%) (International Human Genome Sequencing, 2004;

Lander et al., 2001; Pennisi, 2012). Although the human genome sequence

has been completely determined, the biological functions of the genes and

noncoding elements are not fully understood. Experiments aimed at eluci-

dating biological functions have been mainly conducted with coding

sequences (Harrow et al., 2009). Noncoding DNA is composed of gene-

related sequences [pseudogenes, gene fragments, introns, and untranslated

regions (UTRs)], long interspersed elements (LINEs), short interspersed
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Figure 5.1—See legend on opposite page.
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elements (SINEs), long terminal repeat (LTR) elements, DNA transposons,

microsatellites, and various other elements (Fig. 5.2).

3. SCOPE OF HUMAN GENE EDITING USING
PROGRAMMABLE NUCLEASES

DSBs generated by programmable nucleases can lead to various

genetic modifications including gene disruptions, gene insertions, gene cor-

rections, point mutations, and chromosomal rearrangements.

3.1. Gene disruption
Gene disruption is the simplest form of genome editing that can be achieved

using programmable nucleases. DSBs generated by programmable nucleases

Figure 5.1 Human chromosomes. Human somatic cells contain two sets of chromo-
somes, one set given by each parent. Each set has 23 single chromosomes—22 auto-
somes and an “X” or “Y” sex chromosome. (A) A normal female karyotype is composed of
22 pairs of autosomes and two X chromosomes. (B) A normal male karyotype is com-
posed of 22 pairs of autosomes, an X chromosome, and an Y chromosome.

Protein-coding genes 

Pseudogenes
Gene fragments
Introns, UTRs

LINEs 

SINEs 

LTR elements 

DNA transposons 

Microsatellites 

Various 

16 %

1.5 %

36 %

2.8 %

2.8 %

7.8 %

13 %
20 %

Figure 5.2 Human genome organization. The human genome is composed of protein-
coding genes and noncoding elements that include pseudogenes, gene fragments,
introns, and untranslated regions (UTRs), long interspersed elements (LINEs), short inter-
spersed elements (SINEs), long terminal repeats (LTRs), DNA transposons, micro-
satellites, and various elements of unknown function. The relative percentage of
each component is calculated from the previously reported genome sequence data
(Lander et al., 2001; Nussbaum, McInnes, & Willard, 2007).

97Genome Engineering in Human Cells



are predominantly repaired through error-prone NHEJ, which often leads

to small insertions and deletions (indels) at or near the cleavage site. This

indel formation can cause frameshift mutations, leading to gene disruptions.

Gene disruption can be used to determine the role of a specific gene or

genetic element in human cells by comparing the phenotypes of knockout

and isogenic control cells (Soldner et al., 2011). Such gene disruptions have

been used to investigate glycosylation pathways (Steentoft et al., 2011),

nuclear factor κB signaling (Kim, Kweon, et al., 2013), and protein meth-

ylation (Kernstock et al., 2012) in human cells.

3.2. Gene insertion
Gene insertion is the addition of one or more genes into a DNA sequence, a

technique that has been traditionally performed with plasmid DNA or inte-

grating viral vectors. In the conventional gene insertion method, the inser-

tion site cannot be controlled. Uncontrolled integration of a transgene or its

regulatory sequences into undesired sites can inactivate essential genes or

activate proto-oncogenes (Dave, Jenkins, & Copeland, 2004; Hacein-

Bey-Abina et al., 2003; McCormack & Rabbitts, 2004). Programmable

nuclease-induced DSB generation at or near the desired gene insertion site

drastically (by at least two orders of magnitude) enhances the efficiency of

gene insertion through homology-directed repair (HDR). Several sites in

the human genome have been proposed to be genomic safe harbors, where

transgenes can be inserted and expressed without causing significant alterna-

tions in the expression of other genetic elements (Lombardo et al., 2011).

3.3. Gene correction
Gene correction or point mutagenesis can be achieved by delivering both

programmable nucleases and correction/mutation templates such as target

vectors (Bibikova, Beumer, Trautman, & Carroll, 2003) or single-stranded

DNA oligonucleotides (ssODNs) (Chen et al., 2011). Both targeting vectors

and ssODNs have homology arms, the sequence of which are identical or

similar to that of regions neighboring the nuclease cleavage sites. Compared

to targeting vectors, ssODNs are relatively easy and simple to prepare.

ssODNs combined with ZFNs have been used to generate isogenic disease

models using human pluripotent stem cells (Soldner et al., 2011).

3.4. Chromosomal rearrangement
If two DSBs are generated, chromosomal rearrangements, including dele-

tions, duplications, inversions, and translocations, can be induced in human
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cells (Brunet et al., 2009; Lee, Kim, & Kim, 2010; Lee, Kweon, Kim,

Kim, & Kim, 2012). Rearrangements of chromosomal segments of up to

a few mega bp in size can be generated using ZFNs (Lee et al., 2010,

2012; Urnov, Rebar, Holmes, Zhang, & Gregory, 2010), TALENs

( Joung & Sander, 2013), or RGENs (Sander & Joung, 2014). RGENs have

an advantage over ZFNs and TALENs for inducing these rearrangements

because RGEN-based multiplex genome editing is relatively easily

achieved; a single protein (Cas9) is used in common by the RGEN targeting

each site and only the addition of one guide RNA is required to generate

cleavage at the additional site (Table 5.1).

4. PROGRAMMABLE NUCLEASES USED FOR GENOME
EDITING IN HUMAN CELLS

4.1. ZFNs
ZFNs are chimeric programmable nucleases composed of a DNA-binding

zinc-finger protein (ZFP) domain at the amino terminus and the FokI nucle-

ase cleavage domain at the carboxyl terminus. ZFNs work as heterodimers

because FokI must dimerize to cut the DNA (Bitinaite, Wah, Aggarwal, &

Schildkraut, 1998). ZFPs contain a tandem array of Cys2His2 zinc fingers,

each recognizing approximately 3 bp of DNA (Tupler, Perini, & Green,

2001; Wolfe, Nekludova, & Pabo, 2000). The binding specificity of the

designed zinc-finger domain directs the ZFN to a specific genomic site.

Compared with other programmable nucleases, the use of ZFNs is often

limited by poor targeting density and relatively high levels of off-target

effects, leading to cytotoxicity. However, ZFNs are also the smallest type

of programmable nuclease, making it possible to express them using delivery

vectors such as adeno-associated viral (AAV) vector (Li et al., 2011). Fur-

thermore, ZFNs are the only type of programmable nuclease that has been

tested in a completed clinical trial in human patients (Tebas et al., 2014).

4.2. TALENs
TALENs are composed of a FokI nuclease domain and a customizable

DNA-binding domain derived from transcription activator-like effectors

of Xanthomonas, a plant pathogen (Miller et al., 2011). Within the TALE

structure, the DNA sequence recognition domain is characterized by a

repeating unit of 33–35 conserved amino acids. Each repeat is almost iden-

tical except for two highly variable amino acids at positions 12 and 13, which

are called repeat variable diresidues (Boch et al., 2009; Moscou &
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Table 5.1 Examples of genome editing using programmable nucleases in human cells
Engineered
nucleases Genes Associated diseases Types of genetic modification References

ZFNs Inserted XIST into the

DYRK1A locus on

chromosome 21

Down’s syndrome Gene insertion by HDR Jiang, Jing, et al. (2013)

Inserted gp91phox

minigene into the AAS1

locus

X-linked chronic

granulomatous

Gene insertion by HDR Zou, Sweeney, et al. (2011)

HBB Sickle cell anemia Gene correction by HDR Zou, Mali, et al. (2011) and

Sebastiano et al. (2011)

α-Synuclein Parkinson disease Disease modeling by HDR Soldner et al. (2011)

PPP1R12C/p84 gene on

chromosome 19 and the

IL2Rγ gene on
X chromosome

Human tumors Translocation Brunet et al. (2009)

A1AT α1—Antitrypsin

deficiency

Gene correction by HDR Yusa et al. (2011)

CCR5 HIV infection Gene disruption by NHEJ Holt et al. (2010), Maier et al.

(2013), Perez et al. (2008), and

Tebas et al. (2014)

HBV cccDNA HBV infection Gene disruption Cradick et al. (2010)



TALENs HBB β-Thalassemia Gene correction by HDR Ma et al. (2013)

COL7A1 Epidermolysis bullosa Gene correction by HDR Osborn et al. (2013)

DMD Duchenne muscular

dystrophy

Gene disruption by NHEJ Ousterout et al. (2013)

APOB HCV infection Disease modeling by NHEJ Ding, Lee, et al. (2013)

SORT1 Dyslipidemia, Insulin

resistance, Motor-

neuron death

Disease modeling by NHEJ Ding, Lee, et al. (2013)

AKT2 Insulin resistance Disease modeling by NHEJ Ding, Lee, et al. (2013)

Hypoglycemia Disease modeling by NHEJ Ding, Lee, et al. (2013)

Hypoinsulinemia Disease modeling by NHEJ Ding, Lee, et al. (2013)

PLIN1 Lipodystrophy Disease modeling by NHEJ Ding, Lee, et al. (2013)

HPRT Lesch-Nyhan syndrome Disease modeling by NHEJ Frank et al. (2013)

HBV cccDNA HBV infection Gene disruption by NHEJ Bloom et al. (2013) and Chen

et al. (2014)

RGENs CFTR Cystic fibrosis Gene correction by HDR Schwank et al. (2013)

HTT Huntington’s disease Disease modeling by HDR An et al. (2014)

HDR, homology-directed repair; NHEJ, nonhomologous end joining.



Bogdanove, 2009). One repeat unit recognizes one base pair in the major

groove of DNA (Deng et al., 2012; Mak, Bradley, Cernadas,

Bogdanove, & Stoddard, 2012). Like ZFNs, TALENs work as heterodimers

because the Fok1 domain requires dimerization to function. Genome-wide

TALEN libraries, targeting 18,740 human protein-coding genes (Kim,

Kweon, et al., 2013) and 274 human miRNA-coding sequences (Kim,

Wee, et al., 2013), are available.

4.3. RGENs
RGENs are composedof a guideRNAand theCas9 nuclease.This program-

mable nuclease is derived from an adaptive immune system in bacteria and

archaea called the clustered, regularly interspaced, short palindromic repeat

(CRISPR) system (Barrangou et al., 2007; Makarova, Grishin, Shabalina,

Wolf, & Koonin, 2006). Bacteria and archaea capture small (�20 bp) foreign

DNA fragments from invading phages or viruses and insert these fragments

into the genomic CRISPR locus. In type II systems, the fragments of foreign

DNA, called protospacers, are transcribed as pre-CRISPR RNA (pre-

crRNA) and processed to crRNA in the presence of transactivating crRNA

(tracrRNA), which is also transcribed from the CRISPR locus (Deltcheva

et al., 2011). The crRNA and tracrRNA are then complexed with

CRISPR-associated protein 9 (Cas9) nuclease to construct an active

sequence-specific endonuclease. Among several Cas9 nucleases, Cas9

derived from Streptococcus pyogenes has been widely used (Cho, Kim,

Kim, & Kim, 2013; Cong et al., 2013; Hwang et al., 2013; Jiang, Bikard,

Cox, Zhang, & Marraffini, 2013; Jinek et al., 2013; Mali, Yang, et al.,

2013). The target sequence of anRGEN is 23 bp in length, which comprises

the 20 bpguide sequence in the crRNAand a3 bp (50-NGG-30) protospacer-
adjacent motif sequence that is directly recognized by Cas9 (Mojica, Diez-

Villasenor, Garcia-Martinez, & Almendros, 2009). The combination of

crRNA and tracrRNA can be replaced with a single-chain guide RNA

(sgRNA) ( Jinek et al., 2012), simplifying RGENs to only two components.

RGENs have several advantages over ZFNs and TALENs. First, their

design and preparation are easy and simple. Because the Cas9 protein is a

common component, new RGENs that target a given sequence can be pre-

pared by cloning a 20-bp guide sequence into a vector that expresses guide

RNA. Alternatively, the guide RNA can be transcribed in vitro before deliv-

ery (Cho et al., 2013; Kim, Kim, Cho, Kim, & Kim, 2014; Ramakrishna,

Kwaku Dad, et al., 2014), bypassing the cloning process. Second, multiplex
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genome editing is facilitated. To target one additional locus, one new pair of

ZFNs or TALENsmust be prepared, which requires an additional, relatively

complex cloning process, whereas adding one more guide RNA suffices in

the RGEN system. A more detailed comparison of the three programmable

nucleases has recently been published (Kim & Kim, 2014).

Very recently, catalytically inactive Cas9 protein has been combined

with the Fok1 nuclease domain to generate a highly specific programmable

nuclease, called an RNA-guided Fok1 nuclease (RFN) (Guilinger,

Thompson, & Liu, 2014; Tsai et al., 2014). Whereas RGENs function as

monomers, limiting their complexity to 422,RFNs function as heterodimers,

similar to ZFNs and TALENs; thus, RFN complexity is 444, making these

nucleases more specific.

5. CORRECTION OF HUMAN GENETIC DISEASES USING
PROGRAMMABLE NUCLEASES

Genetic diseases are primarily caused by genomic mutations and cor-

rection of these mutations using programmable nucleases can provide prom-

ising therapeutic modalities. Such corrections have been achieved ex vivo

using patient-derived cells ( Jiang, Jing, et al., 2013; Ma et al., 2013;

Ousterout et al., 2013; Schwank et al., 2013; Sebastiano et al., 2011;

Yusa et al., 2011; Zou, Mali, Huang, Dowey, & Cheng, 2011; Zou,

Sweeney, et al., 2011) or in vivo in mouse cells containing human genetic

sequences (Li et al., 2011). For ex vivo gene corrections, patient-derived

induced pluripotent stem cells (iPSCs) ( Jiang, Jing, et al., 2013; Ma et al.,

2013; Sebastiano et al., 2011; Yusa et al., 2011; Zou,Mali, et al., 2011), adult

stem cells (Schwank et al., 2013), somatic cells (Ousterout et al., 2013), and

cancer cells (Sun, Liang, Abil, & Zhao, 2012; Voit et al., 2014) have been

used. Transplantation of the genetically corrected human cells into animal

model has been shown to lead to amelioration of the disease (Yusa

et al., 2011).

ZFN-induced genome corrections have been mostly performed in

patient-derived iPSCs, involving diseases that include sickle cell disease

(Sebastiano et al., 2011; Zou, Mali, et al., 2011), X-linked chronic granu-

lomatous disease (X-CGD) (Zou, Sweeney, et al., 2011), α1-antitrypsin
deficiency (Yusa et al., 2011), and Down’s syndrome ( Jiang, Jing, et al.,

2013). In an initial stage of ZFN-induced genome correction study, ZFNs

were used to correct the single point mutation in the β-globin gene (HBB)

that is responsible for sickle cell disease (Sebastiano et al., 2011; Zou, Mali,
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et al., 2011). iPSCs containing two mutated β-globin alleles were derived

from a patient with sickle cell disease and the mutations were corrected with

ZFNs ex vivo. When the corrected iPSCs were differentiated, 25–40% of the

resulting cell population consisted of wild-type erythrocytes. ZFN-

mediated safe harbor targeting enabled genetic correction of X-CGD, a

defect of neutrophil microbicidal reactive oxygen species (ROS) production

(Zou, Sweeney, et al., 2011). Corrected iPSCs were differentiated into neu-

trophils, which displayed restored ROS production. In another study, ZFNs

were used to correct the point mutation in the α1-antitrypsin gene (A1AT)

that is responsible for α1-antitrypsin deficiency (Yusa et al., 2011). Human

iPSCs were differentiated into hepatocytes and engrafted into the mouse

liver, where they replaced endogenous mouse hepatocytes. Cellular struc-

tures and functions were restored both in vitro and in vivo. Recently,

ZFN-induced correction of Down’s syndrome (trisomy 21) was explored

( Jiang, Jing, et al., 2013). Human iPSCs from an individual with this con-

dition were genetically edited with ZFNs to express a gene involved with

dosage compensation, silencing one copy of chromosome 21. As a result,

impaired cell proliferation and neurogenesis were rapidly recovered.

TALEN-induced gene corrections relevant to human disease have been

performed in various cell types such as cancer cells for sickle cell disease and

β-thalassemia (Sun et al., 2012; Voit et al., 2014), myoblasts/fibroblasts for

Duchenne muscular dystrophy (DMD) (Ousterout et al., 2013), skin cells

for recessive dystrophic epidermolysis bullosa (RDEB) (Osborn et al.,

2013), and iPSCs for β-thalassemia (Ma et al., 2013). For sickle cell disease,

TALENs were constructed to target the mutated human β-globin gene

(HBB) locus and achieved high levels of targeted gene repair in HeLa

(Sun et al., 2012) and K562 cells (Voit et al., 2014). In skeletal myoblasts

and dermal fibroblasts from DMD patients, TALEN-induced genomic

editing restored the expression of a functional dystrophin protein

(Ousterout et al., 2013). Skin cells from an individual with RDEBwith type

VII collagen gene (COL7A1) defects showed normal protein expression

after TALEN-based gene correction (Osborn et al., 2013). TALENs were

also used in a study related to β-thalassemia, a life-threatening blood disorder

associated with a β-globin gene (HBB) mutation. Corrected iPSCs were

successfully differentiated into erythroblasts that expressed normal β-globin
(Ma et al., 2013).

Genome editing with RGENs has been explored for treating cystic

fibrosis (Schwank et al., 2013). This genome editing system was used to cor-

rect the cystic fibrosis transmembrane conductor receptor (CFTR) locus in
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intestinal stem cells from cystic fibrosis patients. Recently, the RGEN sys-

tem was also used to correct the phenotype in a humanized mouse model of

hereditary tyrosinemia, which is a fatal disease caused by mutation of the

fumarylacetoacetate hydrolase (FAH) gene (Yin et al., 2014). Appropriate

CRISPR/Cas9 components were directly delivered to the mice. As a result,

several Fah-positive hepatocytes were generated, which ultimately

expanded and rescued the body weight loss phenotype.

6. TREATMENT OF HUMAN NONGENETIC DISEASES
USING PROGRAMMABLE NUCLEASES

Programmable nucleases can be used as novel therapeutic modalities

for nongenetic diseases. So far, studies have focused on viral infectious

diseases; therapeutic effects have been achieved by targeting the human recep-

tor for the virus (Holt et al., 2010; Li et al., 2013;Maier et al., 2013; Perez et al.,

2008; Tebas et al., 2014) or the virus genome itself (Bloom, Ely, Mussolino,

Cathomen, & Arbuthnot, 2013; Chen et al., 2014; Cradick, Keck,

Bradshaw, Jamieson, & McCaffrey, 2010; Schiffer et al., 2012).

Representative studies have been performed for HIV infection. HIV

entry into human T cells is mediated by CD4 and CCR5 receptors.

Roughly, 1% of people in Northern Europe have biallelic mutations in

the CCR5 gene and these people are resistant to HIV infection (Duncan,

Scott, & Duncan, 2005). Furthermore, “cure” of HIV infection has been

achieved by bone marrow transplantation using a donor with biallelic muta-

tions in the CCR5 gene (Hutter et al., 2009). ZFN-mediated disruption of

the CCR5 gene in human T cells prevented HIV infection into the T cells

in vitro (Maier et al., 2013; Perez et al., 2008). Given that human T cells have

limited self-renewal capacity, ZFN-mediated CCR5 gene disruption has

been pursued in humanCD34+ hematopoietic stem/progenitor cells, which

significantly lowers HIV-1 levels upon transplantation into a humanized

mouse model (Holt et al., 2010). Currently, three clinical trials involving

ZFN-treated cells (identifier #: NCT00842634, NCT01044654,

NCT01543152) are ongoing. The first results from the clinical trials

(NCT00842634), which showed the safety and feasibility of CCR5-

modified autologous CD4+ T cell infusions in patients, were recently

published. After transfusion, these cells successfully engrafted and persisted,

leading to an increase in CD4+ T cells and a decrease in HIV DNA levels in

most patients (Tebas et al., 2014).
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The use of programmable nucleases has also been investigated in human

hepatitis B (HBV) infection. HBV is a DNA virus and targeting of HBV

genes using ZFNs (Cradick et al., 2010) and TALENs (Bloom et al.,

2013; Chen et al., 2014; Schiffer et al., 2012) resulted in decreases in

HBV titer in vitro and in vivo.

7. GENOME ENGINEERING IN HUMAN PLURIPOTENT
STEM CELLS

Genome engineering in human pluripotent stem cells is of special

value because once such cells are engineered, they can be used to generate

unlimited numbers of all types of cells, each genetically engineered. Such

cells can serve as disease models (Colman & Dreesen, 2009; Saha &

Jaenisch, 2009) and for transplantation (Yusa et al., 2011). These disease

models include Parkinson disease (Soldner et al., 2011), Huntington’s dis-

ease (An et al., 2014), Down’s syndrome ( Jiang, Jing, et al., 2013),

Lesch-Nyhan-Syndrome (Frank, Skryabin, & Greber, 2013), dyslipidemia,

insulin resistance, hypoglycemia, lipodystrophy, motor-neuron death, and

hepatitis C infection (Ding, Lee, et al., 2013). In another case, ZFNs were

used to induce chromosomal translocations in stem or precursor cells, which

could be applied in modeling various human tumors (Brunet et al., 2009).

In a different line of work, genetically corrected patient iPSCs were differ-

entiated into hepatocyte-like cells and transplanted onto an α1 antitrypsin
deficiency mouse model, where they successfully restored the structure

and function of liver cells (Yusa et al., 2011).

Targeted genetic modification is possible using traditional HR, but the

efficiency is extremely low (Zwaka & Thomson, 2003). Efficient targeted

genetic modification using programmable nuclease in human pluripotent

stem was achieved using ZFNs (Brunet et al., 2009; Hockemeyer et al.,

2009, 2011) and TALENs (Ding, Lee, et al., 2013). The efficiency of

genome engineering in pluripotent stem cells has been further improved

using RGENs (Ding, Regan, et al., 2013).

For useful disease modeling, patient-derived pluripotent stem cells need

to be coupled with a good control. Allogenic pluripotent stem cells derived

from normal subjects can be controls (Brennand et al., 2011; Ebert et al.,

2009; Itzhaki et al., 2011; Lee et al., 2009; Marchetto et al., 2010; Rashid

et al., 2010), but their different genetic background can be a compounding

factor for making comparisons. As a result, the investigation of disease path-

ophysiology and the screening of therapeutic small molecules are often
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inefficient unless the phenotypes of the control and patient-derived plurip-

otent stem cells are dramatically different (e.g., for early onset or metabolic

diseases). Alternatively, good isogenic controls can be obtained from the

patient-derived stem cells themselves if the pathogenic genes are corrected

using programmable nucleases (Soldner et al., 2011; Fig. 5.3). Furthermore,

in vitro disease models can be created by engineering the disease-linked

mutations in normal pluripotent stem cells using programmable nucleases

(Soldner et al., 2011). This generation of isogenic controls extends the

pluripotent stem cell-mediated investigation of disease pathophysiology

and/or drug screening to diseases that have subtle phenotypic changes, late

age onset, or are slow progressing.

Besides facilitating the creation of disease models, genome editing in plu-

ripotent stem cells has been used to obtain greater knowledge about stem cell

biology. For example, ZFNs enabled the introduction of reporter genes into

endogenous genomic loci, allowing pluripotency or cellular differentiation

to be monitored (Collin & Lako, 2011).

8. DELIVERY OF PROGRAMMABLE NUCLEASES TO
HUMAN CELLS

For efficient genome editing, the successful delivery of programmable

nuclease and/or homologous templates (e.g., targeting vectors or ssODNs)

into target cells is essential. Plasmids have been widely used to deliver the

genes encoding programmable nucleases into human cells (Kim et al.,

2014; Porteus & Baltimore, 2003; Urnov et al., 2010). However, using

plasmids requires the selection of optimized promoters and codons and is

complicated with uncontrolled integration of the plasmid DNA into the

host genome (Kim et al., 2014) and unwanted immune responses

(Hemmi et al., 2000; Wagner, 2001).

Nonintegrating viral vectors have been used to deliver programmable

nucleases both into human cells in vitro and into mouse cells that contain

human genes in vivo. Such vectors include integrase-defective lentiviral vec-

tors (IDLVs) (Lombardo et al., 2007, 2011), adenoviral vectors (Holkers

et al., 2013), and AAVs (Handel et al., 2012). Because AAVs require a rel-

atively small cargo size, only ZFNs, which are encoded by shorter sequences

than the other programmable nucleases, have been delivered via AAVs into

human cells in vitro (Handel et al., 2012) and into mice that contain human

genetic material in vivo (Li et al., 2011). IDLVs successfully delivered ZFNs

into various cells, including hard-to-transfect primary cells such as human
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A  Disease modeling with iPSCs

B  Facilitated disease modeling with iPSCs by genome editing

iPSCs from a normal subjectiPSCs from a patient

Differentiated cells from the normal 
subject

Programmable  
nucleases

Correction of pathogenic 
genes

Different genetic 
background

Same genetic 
background

Differentiated cells from the 
patient

iPSCs from a patient iPSCs with normal genes

Isogenic differentiated cells with 
normal genes

Differentiated cells from the 
patient with pathogenic genes

Figure 5.3 Improved diseasemodeling in human pluripotent stem cells by programma-
ble nuclease-mediated genome editing. (A) Conventional disease modeling using
induced pluripotent stem cells (iPSCs). iPSCs are derived from a patient and a control
normal individual. Both types of iPSCs are differentiated into the cell type of interest
(e.g., neurons) and the phenotypes are compared. The different genetic backgrounds
can be a compounding factor for such investigations. (B) Pathogenic genes in
patient-derived iPSCs are corrected by genome editing using programmable nucleases.
Both corrected and uncorrected iPSCs are differentiated into the cell type of interest
and the phenotypes are compared. In this case, both cell types have the same genetic
background, making the gene-corrected cells a good control for the study.
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hematopoietic progenitor cells and embryonic stem cells (Lombardo et al.,

2007). TALEN delivery is more challenging due to the large size and highly

repetitive nature of the sequences that encode these nucleases. Because of

size limitations, TALEN delivery with AAVs was unsuccessful (Asokan,

Schaffer, & Samulski, 2012;Wu, Asokan, & Samulski, 2006). IDLVs are also

incompatible with TALENs because of the highly homologous TALE

repeats (Holkers et al., 2013). Integrating vectors such as lentiviral vectors

have been used for continuous expression of Cas9 and sgRNAs in human

cells (Shalem et al., 2014), which results in more efficient genome editing

than transient delivery. However, this prolonged expression can aggravate

off-target cleavage effects. Other drawbacks of viral vectors include the time

required for their production, potential problematic immune responses, and

safety concerns (Thomas, Ehrhardt, & Kay, 2003).

In contrast, direct delivery of either protein or RNA, which cannot inte-

grate into the host genome, has relatively few safety concerns. ZFNs have a

net positive charge and can be directly delivered into human cells without

the need for cell-penetrating peptides (CPPs); when delivered in this man-

ner ZFNs can cause specific gene disruption (Gaj, Guo, Kato, Sirk, &

Barbas, 2012). CPP-conjugated TALENs can be directly delivered into

human cells, likewise causing gene editing (Liu, Gaj, Patterson, Sirk, &

Barbas, 2014). Direct RGEN delivery is slightly more complex because

two components, i.e., protein and RNA, should be delivered together.

When various human cells were treated with CPP-conjugated Cas9 and

CPP-complexed guide RNA, efficient gene disruption was achieved, with

reduced off-target mutations relative to plasmid delivery (Ramakrishna,

Kwaku Dad, et al., 2014). Furthermore, the ribonucleoprotein Cas9–

sgRNA complex can be directly delivered into human cells using electro-

poration, without the use of CPPs, causing highly efficient genome editing

with reduced off-target effects (Kim & Kim, 2014). The reduction in

off-target effects is attributable to the shorter working time available for

the nucleases; proteins and RNA are rapidly degraded, whereas transfected

plasmids continue to produce proteins and RNAs for longer periods (Gaj

et al., 2012; Kim & Kim, 2014).

9. NICKASES FOR MODIFYING THE HUMAN GENOME

Even in the presence of targeting vectors or ssODNs, DSBs can be

repaired through error-prone NHEJ, which often causes uncontrolled

and unwanted indels at both target and off-target sites. To avoid these
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undesirable mutations, nickases—enzymes that generate DNA single-strand

breaks (SSBs)—have been used as precise genome editing tools. SSBs can

simulate HDR without activating the error-prone NHEJ pathway, essen-

tially preventing unwanted indel formation (Davis & Maizels, 2011;

McConnell Smith et al., 2009; Metzger, McConnell-Smith, Stoddard, &

Miller, 2011). The first programmable nickases (termed ZFNickases) were

derived from ZFNs through the addition of a mutation in the Fok1 cleavage

domain; the resulting enzyme did not cause unwanted DSBs or indels at tar-

get or off-target sites in human cells (Kim et al., 2012; Ramirez et al., 2012;

Wang et al., 2012). A different approach used CRISPR system components.

Cas9 has two catalytic domains; inactivation of one by site-directed muta-

genesis (D10A or H840A) resulted in RGENickases (Sapranauskas et al.,

2011). Such enzymes produce site-specific nicks, leading to precise

HDR-mediated genome editing with negligible NHEJ-driven mutations

in human cells (Cong et al., 2013). Generation of two SSBs on different

strands using two nickases can lead to genome editing similar to that medi-

ated by nuclease-generated DSBs, but with much higher specificity (Cho

et al., 2014; Kim et al., 2012; Mali, Esvelt, & Church, 2013; Ran et al.,

2013). Increasing the specificity and precision of genomic engineering is

especially important in human applications because uncontrolled genetic

modifications can lead to adverse effects including tumor development.

10. ENRICHMENT OF GENE-EDITED HUMAN CELLS

Programmable nuclease activity and delivery are frequently limited,

resulting in only a minor fraction of nuclease-treated human cells gaining

the targeted genetic modification. For applications in research, medicine,

and biotechnology, a means of selecting or isolating gene-edited cells is

required. However, because genetically modified cells usually show indis-

tinguishable phenotypes compared to unmodified cells, the genomic

DNA must be evaluated, which is often a laborious and time-consuming

process. Thus, simple methods for enriching cells containing nuclease-

induced mutations would facilitate the application of this tool.

Gene-modified cells have been enriched by selecting cells transfected with

the nuclease-encoding vector; this technique has some effectiveness because

of the low delivery levels of programmable nucleases. For example, TALEN-

modified human cells can be enriched by selecting transfected cells via flow

cytometric sorting using vectors that express fluorescent proteins or through

antibiotic resistance factors (Ding, Lee, et al., 2013; Frank et al., 2013).
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Our group has described selection methods that overcome not only low

levels of programmable nuclease delivery but also low levels of activity. We

have developed various methods of selecting human cells containing muta-

tions induced by ZFNs, TALENs, and RGENs using surrogate reporters

(Kim & Kim, 2014; Kim, Kim, et al., 2013; Kim, Um, Cho, Jung, &

Kim, 2011; Ramakrishna, Cho, et al., 2014). The surrogate reporter plas-

mids include a gene for a marker protein that is constitutively expressed,

the nuclease target sequence, and gene(s) for other marker protein(s). These

latter genes are not expressed in the absence of nuclease activity because they

lack a dedicated promoter and are out of frame with the upstream marker.

Furthermore, a stop codon is present upstream. The reporter plasmids and

nuclease-encoding plasmids are codelivered into human cells. In cells with

sufficient nuclease activity, DSBs are generated in the target sequence of the

reporter plasmids (and, potentially, at the genomic site). NHEJ-mediated

DSB repair can cause frameshift mutations, which can render the marker

genes in frame with the upstream, expressed marker and inactivate the stop

codon. Cells expressing the markers (GFP, H-2Kk, and hygromycin resis-

tance) can be isolated using flow cytometry, magnetic separation, and

hygromycin selection, respectively. This surrogate reporter-based selection

can result in enrichment of cells containing nuclease-induced mutations in

the genome by up to 92-fold (Kim et al., 2011).

11. CONCLUSION

Technologies for genome editing with programmable nucleases in

human cells have been rapidly evolving. Four years ago, ZFNs were the

only practical option. Now, genome editing can be achieved using ZFNs,

TALENs, RGENs, RFNs, and nickases. Programmable nuclease efficiency

and specificity are also improving at enormous speed. These technological

improvements should render previously impossible tasks possible. They

will facilitate disease pathophysiology studies, drug screening, and the

development of next-generation gene therapy for genetic and nongenetic

human diseases, thereby opening a new era of biomedical research and

medicine.
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Abstract

The use of custom-engineered sequence-specific nucleases (including CRISPR/Cas9,
ZFN, and TALEN) allows genetic changes in human cells to be easily made with much
greater efficiency and precision than before. Engineered double-stranded DNA breaks
can efficiently disrupt genes, or, with the right donor vector, engineer point mutations
and gene insertions. However, a number of design considerations should be taken into
account to ensure maximum gene targeting efficiency and specificity. This is especially
true when engineering human embryonic stem or induced pluripotent stem cells
(iPSCs), which are more difficult to transfect and less resilient to DNA damage than
immortalized tumor cell lines. Here, we describe a protocol for easily engineering
genetic changes in human iPSCs, through which we typically achieve targeting efficien-
cies between 1% and 10% without any subsequent selection steps. Since this protocol
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only uses the simple transient transfection of plasmids and/or single-stranded oligonu-
cleotides, most labs will easily be able to perform it. We also describe strategies for iden-
tifying, cloning, and genotyping successfully edited cells, and how to design the optimal
sgRNA target sites and donor vectors. Finally, we discuss alternative methods for gene
editing including viral delivery vectors, Cas9 nickases, and orthogonal Cas9 systems.

1. INTRODUCTION

The development of sequence-specific nucleases such as zinc finger

nucleases, (ZFNs), transcription activator-like effector nucleases

(TALENs), or CRISPR/Cas9 nucleases have enormously expanded our

ability to engineer genetic changes in human cells ( Joung & Sander,

2012; Mali, Yang, et al., 2013; Urnov, Rebar, Holmes, Zhang, &

Gregory, 2010). These nucleases can be custom-engineered to create

double-strandedDNA (dsDNA) breaks at a desired sequence in the genome.

When these are repaired using the non-homologous end joining (NHEJ)

pathway, small insertion and deletion mutations (indels) are produced and

disrupt genes. Alternatively, the dsDNA break can be repaired by the

homologous recombination pathway—specific base pair changes or gene

insertions can be formed using a homologous donor targeting vector. Of

these systems, Cas9 nucleases have been favored due to their easy construc-

tion and lower toxicity in human cells (Ding et al., 2013).

Human induced pluripotent stem cells (iPSCs) have been another great

breakthrough for genetic studies in human cells. Their self-renewing capa-

bility allows them to be gene targeted, cloned, genotyped, and expanded.

Successfully targeted iPSC clones can then be differentiated into a variety

of other cell types to analyze the effects of the induced mutations. The ability

to easily genetically modify human iPSCs also holds tremendous clinical

promise for generating artificial organs and safer gene therapies. However,

while immortalized human tumor cell lines have been edited with almost

complete efficiency (Fu, Sander, Reyon, Cascio, & Joung, 2014), much

lower success rates have been achieved in human iPSCs (Mali, Yang,

et al., 2013; Yang et al., 2013). This difference may be due to the gross chro-

mosomal abnormalities and an unusually robust response to DNA damage in

tumor cell lines. In this chapter, we describe strategies to maximize the effi-

ciency of genome editing in human iPSCs. Using these design considerations

and the transient transfection protocol listed below, we typically achieve

gene disruption frequencies of 1–25% and homologous gene targeting fre-

quencies of 0.5–10% in human iPSCswithout any subsequent selection steps.
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2. GENE TARGETING STRATEGIES

For any gene targeting project, the structure of the gene must be con-

sidered and the nuclease targeting sites should be carefully chosen according

to the experimental goals. For simple gene disruption, a single cut site can

generate indel mutations using the NHEJ repair pathway. When within

coding exons, such indels can cause frameshifts and disrupt protein expres-

sion. Targeting coding exons towards the beginning of the gene may be

preferable, as mutations here may create more complete gene disruption

and be less likely to accidentally generate truncated protein artifacts with

residual biological activity. Areas possessing relatively unique genome

sequences should be chosen, rather than a common domain shared by several

homologous members of the same gene family (unless the goal is to target

multiple members of the gene family).

Alternatively, one can design two nuclease sites to excise the intervening

section of the genome. Regions from 100 bp to several kb can be excised

with biallelic frequencies of over 10% (Cong et al., 2013). These junctions

are often religated with perfect precision between the two dsDNA break

sites, although indels are also sometimes found. This strategy allows nuclease

sites within introns or outside genes to be used; this is particularly useful

when no satisfactory nuclease sites can be found within an exon. Again,

the organization of the gene must be carefully considered to avoid alterna-

tive exon splicing events or truncated products.

When specific mutations are desired, a donor targeting vector for homol-

ogous recombination is provided along with the nuclease elements. These

donors can be single-stranded DNA oligonucleotides (ssODNs) or plasmids

for engineering point mutations. Here, the nuclease site should be chosen as

close to the intended mutation as possible, since homologous recombination

targeting efficiencies drop precipitously as the dsDNAbreak becomes farther

from the mutation. For ssODN donors, having the desired mutation in the

center of the oligo showed the highest targeting efficiency. 90 bp ssODNs

worked best, although lengths from 70 to 130 bp were able to produce

targeting efficiencies >1%. The highest targeting frequencies occurred

when the mutation was within 10 bp of the nuclease site; when themutation

was more than 40 bp away, gene targeting was barely detectable (Chen et al.,

2011; Yang et al., 2013).

Alternatively, plasmid targeting vectors for homologous recombination

can be used to generate desired point mutations, as well as larger “knock-in”

gene insertions. Since the presence of a dsDNA break drastically increases
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the homologous recombination efficiency, shorter homology arms of

0.4–0.8 kb can be used (rather than the 2–14 kb arms used in conventional

gene targeting vectors without nucleases), although increased homology

may still improve targeting of difficult constructs (Beumer, Trautman,

Mukherjee, & Carroll, 2013; Hendel et al., 2014; Hockemeyer et al.,

2009; Orlando et al., 2010). Again, the dsDNA break must be positioned

within 200 bp of the mutation, and gene targeting efficiency decreases with

larger transgene insertions (Guye, Li, Wroblewska, Duportet, & Weiss,

2013; Moehle et al., 2007; Urnov et al., 2010).

3. CHOICE OF NUCLEASE TARGETING SITES

The S. pyogenes Cas9 nuclease (SpCas9) targets a 20 bp dsDNA

sequence specified by the single guide RNA (sgRNA) next to a 30-
protospacer adjacent motif (PAM) of NGG, although PAM sequences of

NAG can be targeted as well ( Jinek et al., 2012; Mali, Aach, et al., 2013;

Mali, Yang, et al., 2013). Upon binding to the sgRNA and complementary

DNA targeting site, the Cas9 nuclease generates a blunt-ended, dsDNA

break three base pairs upstream of the PAM. Cas9–sgRNA complexes

can potentially tolerate 1–6 bp mismatches between the sgRNA and the tar-

get sequence, creating off-target cuts in genomic DNA. Although a “seed”

sequence of the 8–13 nucleotides closest to the PAM appears to be more

important for Cas9 nuclease specificity, mismatches can sometimes be tol-

erated here as well ( Jinek et al., 2012; Mali, Aach, et al., 2013). Off-target

Cas9 nuclease activity can also occur with small indel mismatches (Lin

et al., 2014).

Several online tools and algorithms are available to identify specific

nuclease targeting sites, including: the CRISPR Design Tool (crispr.mit.

edu) (Hsu et al., 2013); ZiFiT targeter (zifit.partners.org/ZiFiT)

(Fu et al., 2014); CasFinder (arep.med.harvard.edu/CasFinder/) (Aach,

Mali, & Church, 2014); and E-Crisp (www.e-crisp.org/E-CRISP/)

(Heigwer, Kerr, & Boutros, 2014). In addition, specific Cas9 sgRNA targets

for disrupting human exons can be found from published sets of sgRNA

screening libraries (Aach et al., 2014; Shalem et al., 2014; Wang, Wei,

Sabatini, & Lander, 2014). These algorithms are constantly being refined

to incorporate further discoveries about Cas9 targeting specificity.

The nuclease activity among different sgRNAs can also vary widely.

Cas9 nuclease activity is positively correlated with areas of open chromatin

(Kuscu, Arslan, Singh, Thorpe, & Adli, 2014; Yang et al., 2013); however,
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substantial variations in activity can still be found among neighboring

sgRNAs in the same locus. Other characteristics associated with higher

levels of sgRNA activity are: targeting sequences with between 20% and

80% GC content, sgRNAs targeting the nontranscribed strand, and purines

in the last four bases of the spacer sequence (Wang et al., 2014). While these

criteria were statistically significant, they still could not account for all of the

observed variation in sgRNA activity.

Initial constructs used the human U6 polymerase III promoter to express

the sgRNA due to its specific initiation and termination sites and its ubiq-

uitous expression in human cells. Since the U6 promoter requires a G to

initiate transcription, this led to the early restriction that only sequences

fitting the formGN20GG could be targeted (Mali, Yang, et al., 2013). How-

ever, subsequent studies showed that up to 10 extra nucleotides could be

added to the 50-end of the sgRNA while retaining similar levels of nuclease

activity and that these sgRNA extensions were being processed off (Mali,

Aach, et al., 2013; Ran, Hsu, Lin, et al., 2013). Thus, any 20 bp sequence

next to a PAM can be targeted, although an extra G is still required in the

sgRNA expression construct to initiate transcription when the U6 promoter

is used. Truncated sgRNAs with up to three base pairs missing from the 50-
end have been shown to increase specificity without much loss in activity,

although truncations beyond 3 bp ablated activity (Fu et al., 2014).

Appending up to 40 extra bp at the 30-end of the sgRNA construct, after

the hairpin backbone, resulted in slightly higher sgRNA activity, possibly

due to increased half-life of the longer sgRNA (Mali, Aach, et al., 2013).

Other promoters besides U6, such as H1 or pol-II, may also be used to

express the sgRNA. The sgRNA constructs may also be transfected into

cells as linear PCR products rather than plasmids (Ran, Hsu, Wright,

et al., 2013).

Due to the ease of cloning sgRNAs, and the ongoing questions regarding

sgRNA specificity and activity, we recommend that users select a few

sgRNA target sites and test them empirically. While it is important to try

to select sgRNAs that are as specific as possible, a perfectly unique sequence

may not exist suitably close to your desired mutation. Alternative approaches

are further discussed below.

4. EXPERIMENTAL PROCEDURES

With this protocol, we can consistently introduce plasmid DNA into

human iPSCs with 60–70% transfection efficiency. While we have also had
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success using ZFNs and TALENs to edit iPSC genomes, the ease of cloning

sgRNAs has made CRISPR/Cas the preferred method in our lab. Without

any selection scheme, our overall gene disruption efficiencies using a single

sgRNA in human iPSCs ranges from 1% to 25%, depending on the partic-

ular sgRNA used. Once the plasmids and cells are ready, the nucleofection

process takes a few hours. After nucleofection, it takes 5–10 days of culture

for the transient Cas9 transfection to subside and protein expression to turn

over. Then, the potentially edited iPSCs can be cloned by single-cell FACS

sorting. Eight days after sorting, individual iPSC have formed stable colo-

nies, which can be further expanded and genotyped.

While this protocol focuses on human iPSC, it can be adapted for use

in other cell types, using culture conditions and nucleofection protocols

suitable for that cell type (although the amounts of plasmid/ssODN and pro-

moters for Cas9 expression may need adjustment). Overall gene disruption

efficiencies greater than 60% have thus been achieved in immortalized

tumor cell lines.

4.1. Human iPSC culture and passaging
A number of different human iPSC lines are available from cell line resources

such as Coriell (coriell.org), ATCC (atcc.org), and the Harvard Stem Cell

Institute (hsci.harvard.edu), among many others. Furthermore, numerous

academic and commercial facilities offer iPSC derivation services. Detailed

protocols for culturing and passaging human ES and iPSC lines are available

elsewhere (wicell.org, stembook.org). Here, we have used iPSC derived

from open-consented participants in the Personal Genome Project (Lee

et al., 2009), but this protocol is widely applicable to any human ES or

iPS cell line. Cells used for gene targeting should be of a low passage number

and free of karyotypic abnormalities. Cells should exhibit normal iPSCmor-

phology and express pluripotency markers such as Tra-1/60 and SSEA4.

Human iPSCs for genome engineering are cultured under feeder-free

conditions, in the defined mTesr-1 medium (StemCell Technologies) on

Matrigel-coated tissue culture plates (BD). We have found lower transfec-

tion efficiencies (40–60%) when transfecting iPSCs growing on irradiated

mouse embryonic fibroblasts (MEF), due to incomplete separation of the

iPSCs from the MEFs immediately before nucleofection.

4.2. Preparation of plasmids for transient transfection
An increasingly wide selection of plasmids for ZFN, TALEN, and

CRISPR/Cas9 genome editing, with instructions for cloning, are available
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from the Addgene plasmid repository (www.addgene.org/CRISPR/). This

protocol was specifically developed with the plasmids to express human-

codon optimized SpCas9 and sgRNAs from Mali, Yang, et al. (2013).

However, an EF1α promoter was used to express Cas9 instead of the

CMV promoter in iPSCs, as it produced a fivefold increase in gene

disruption efficiency.

Plasmid donor vectors containing homology arms can be easily cloned

using isothermal assembly or synthesized as gene fragments (Integrated

DNA Technologies). Homology arm sequences should ideally be cloned

from the cell line being targeted to obtain identical (isogenic) sequences.

Any polymorphic differences between the targeting vector and the genomic

locus can decrease gene targeting frequencies (Deyle, Li, Ren, & Russell,

2013). All plasmids for nucleofection into iPSCs should be endotoxin-free

(Qiagen Endo-free Plasmid Maxi Kit) and at a concentration greater than

2 mg/ml, so as not to dilute the nucleofection buffer. Oligo donors (ssODN)

should be HPLC-purified and resuspended in sterile distilled water.

4.3. Nucleofection protocol
This protocol uses the Amaxa 4D-Nucleofector X Unit (Lonza), but we

have also gotten good transfection efficiencies in human iPSCs from the

Neon Transfection system (Life Technologies). Traditional electroporation

methods will produce lower transfection efficiencies in iPSCs, which will

lower the overall gene targeting efficiency. The amounts listed below are

for the 20-μl Nucleocuvette strips; if using the 100-μl single

Nucleocuvettes, increase all quantities fivefold. A control reaction

transfecting a fluorescent protein-expressing plasmid can be used to verify

nucleofection efficiency.

Expand human iPSCs under feeder-free conditions in mTesr-1 medium

on tissue culture plates coated with ES-qualified Matrigel (BD) according to

the manufacturer’s instructions. Each nucleofection reaction will need

0.5�106 cells, although a range of 0.2 to 2�106 iPSCs per reaction

can be used. Depending on the number of reactions, 6-well plates or

10-cm dishes of cultured iPSC may be required.

Prepare Matrigel-coated 24-well tissue culture plates, one well per

nucleofection reaction. Additional Matrigel-coated 96-well flat-bottom

tissue culture plates may also be prepared to culture aliquots of transfected

cells for analysis.

Pretreat human iPSC cultures with 10 μM Rock inhibitor (Y-27632)

(R&D Systems, EMD Millipore, or other source) in mTesr-1 for at least
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30 min before nucleofection. Prepare additional mTesr with 10 μM Rock

inhibitor for use throughout the nucleofection procedure. Cells treated with

Rock inhibitor should display the characteristic change in morphology of

colonies with jagged edges.

Combine Nucleofector solution P3 with supplement according to man-

ufacturer’s instructions (Lonza). For each nucleofection reaction, dilute and

combine the DNAmixtures in Nucleofector solution P3 (with supplement)

to a final volume of 10 μl. Each nucleofection should contain 0.5 μg of

Cas9-expressing plasmid and 1–1.5 μg of sgRNA-expressing plasmids.

(When multiple sgRNA-expressing plasmids are used, mix them in equal

amounts for a total of 1–1.5 μg plasmid.) If a plasmid targeting vector is being

used, include 2 μg per nucleofection reaction. If an ssODN donor is being

used, include up to 200 pmol per nucleofection reaction. DNA stock solu-

tions must be concentrated enough such that the total volume of DNA does

not exceed 10% of the nucleofection reaction (2 μl for a 20-μl
Nucleocuvette). DNA amounts exceeding 4 μg per nucleofection may have

an adverse effect on iPSC viability.

Remove the mTesr with Rock inhibitor media from the cells and incu-

bate with Accutase dissociating enzyme (EMD Millipore, StemCell Tech-

nologies, or other source) for 5–10 min. Once iPSCs have detached, add an

equal volume of mTesr with Rock inhibitor and pipet to achieve a single-

cell suspension. Centrifuge the cells at 110� g for 3 min at room tempera-

ture. Resuspend cell pellet in mTesr with Rock inhibitor and count

live cells.

Centrifuge the required number of iPSCs at 110� g for 3 min. Aspirate

off the media. Resuspend cell pellet in 10-μl Nucleofector solution P3 (with

supplement) for each reaction.

For each reaction, promptly combine 10 μl of DNA mixture with 10 μl
of resuspended cells and transfer the whole 20 μl into a Nucleocuvette.

Ensure that the sample is at the bottom of the cuvette.

Place Nucleocuvette into the Nucleofector device and run program

CB-150.

Add 80 μl mTesr with Rock inhibitor medium into each Nucleocuvette

well and pipet once or twice to resuspend cells. Transfer each reaction into

one well of a Matrigel-coated 24-well plate containing 1 ml warm mTesr

with Rock inhibitor medium. Alternatively, the nucleofected cells may also

be distributed among one 24-well and one or two 96-wells, if analysis at

intermediate time points is desired. (If Matrigel-coated 96-well plates are

used, an optional centrifugation step (70� g, 3 min, room temperature)
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can help plate the cells.) A high plating density post nucleofection is impor-

tant for cell survival.

24 h post nucleofection, iPSCs transfected with a fluorescent protein-

expressing plasmid may be examined to assess the transfection efficiency.

Change the media to mTesr-1 without Rock inhibitor. Since the iPSCs

were plated at a high density, they may appear confluent. As most of the

Cas9-induced cell death occurs between 1 and 2 days post nucleofection,

we advise waiting until 2 days post nucleofection to passage the iPSCs.

Transfected iPSC can then be propagated using regular iPSC culture proto-

cols. After 4 or 5 days post nucleofection, the transient transfection will have

subsided, and the cell population can be assayed for gene editing efficiency.

4.4. Verification of successful cutting and gene targeting
As the isolation and genotyping of edited iPSC clones can be time consuming,

laborious, and expensive, it is desirable to have intermediate ways to verify

successful gene disruption and evaluate gene targeting efficiency. Examining

a portion of the targeted cell population will help estimate how many clones

should be genotyped and provide guidance for troubleshooting.

If the gene being disrupted or inserted is expressed by human iPSCs, the

most straightforward assay is to check for expression of that protein bymicros-

copy or flow cytometry. If the targeted gene is not expressed or lacks a con-

venient stain, then a control reaction using an sgRNA that does target an

easily detectable expressed gene can be used to troubleshoot the overall pro-

tocol and vectors, although individual sgRNA activities may still vary widely.

If a gene segment is being inserted into the genome, a dilution PCR for

the inserted segment can be done on genomic DNA from the edited cell

population; however, care must be taken to ensure that the PCR reaction

does not simply amplify residual amounts of the transfected donor fragment

itself (De Semir & Aran, 2003). PCR primers designed to anneal to genomic

DNA sequences outside of the targeted homology region may be used to

ensure that only integrated segments are detected. Alternatively, a control

targeting vector can be constructed with the same homology arms as the

insertion targeting vector, except that a constitutively expressed fluorescent

protein cassette is being inserted into the genome. This may provide a quick

estimate of knock-in insertion frequencies at that locus using the same

sgRNA and homology arms.

To directly measure the extent of gene disruption at a particular locus, a

mismatch-specific endonuclease assay—either T7 endonuclease I (New
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England Biolabs) or Cel-1 Surveyor nuclease (Transgenomic)—is com-

monly used (Kim, Lee, Kim, Cho, & Kim, 2009; Qiu et al., 2004). These

assays involve PCR-amplifying a short region (roughly 500 bp) around the

intended sgRNA targeting site from the genomic DNA of the population of

potentially edited cells. These PCR products are melted and reannealed.

Any mutations at the intended nuclease site will form a mismatch in the

dsDNA, which will be recognized and cleaved by the mismatch-specific

endonuclease. Cleaved PCR products can then be analyzed and quantitated

by gel electrophoresis. If a restriction enzyme site is inserted or removed at

the intended sgRNA targeting site, a restriction fragment length polymor-

phism assay may also assess Cas9 nuclease activity; here, PCR products

around the intended sgRNA site are digested with the restriction enzyme

to generate cleaved fragments (Chen et al., 2011).

While the endonuclease assays offer a rapid and cheap measure of gene

disruption activity, the endonuclease digestion reaction can be sensitive to

buffer and incubation conditions and the limit of detection is around 1–3%

of sequences. We prefer a next-generation sequencing-based assay that has a

much lower limit of detection (<0.1%) and provides additional sequence

information about the edited sgRNA site (Yang et al., 2013). Here, a

100–200 bp region around the edited sgRNA targeting site is PCR ampli-

fied and sequenced on aMiSeq system (Illumina). The initial set of genome-

specific PCR primers are designed with the requisite MiSeq adaptor

sequences appended to the 50-end. Then, a second round of nested PCR

with standard index primers incorporates the barcodes (ScriptSeq from Epi-

centre or Nextera from Illumina). A detailed protocol with primer

sequences has been published (Yang, Mali, Kim-Kiselak, & Church,

2014). While each MiSeq run (150 bp, paired-end) can be expensive, up

to �200 different samples can be barcoded, pooled, and sequenced in par-

allel to reduce costs (Yang et al., 2013). The resulting next-generation

sequencing data can be analyzed by the online CRISPR Genome Analyzer

platform, which accepts the sequencing reads, the genomic sequence being

targeted, and a donor sequence for homologous recombination (if applica-

ble), and calculates the rate of indels and successful homologous recombina-

tion (crispr-ga.net) (Guell, Yang, & Church, 2014).

4.5. Cloning by single cell FACS sorting
Several days post nucleofection, after the transiently transfected plasmids

have been lost and the Cas9 nuclease activity has subsided, targeted iPSCs
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may be selected and cloned to generate a culture of successfully targeted

cells. As was done for traditional gene targeting without nucleases, if a pos-

itive selection marker for antibiotic resistance has been integrated into the

genome (such as those for neomycin, hygromycin, or puromycin), that anti-

biotic may be added to the culture to remove unrecombined antibiotic-

sensitive cells. Emerging antibiotic-resistant stem cell clones can then be

individually picked by hand and cultured.

Alternatively, human iPSCs may be cloned by FACS sorting individual

cells into separate wells of a 96-well plate. To preserve the viability of the

dissociated single iPSC, a cocktail of small molecule inhibitors (termed

SMC4, from Biovision) is added to the culture (Valamehr et al., 2012).

We find that the viability of isolated iPSCs is further enhanced by sorting

the cells (previously cultured in feeder-free mTesr-1 media) onto a feeder

layer of irradiated MEFs in human ES cell medium. Eight days after FACS

sorting, colony formation should be apparent from the individually sorted

iPSC, and the SMC4 inhibitors can be removed from the ES cell medium.

Our detailed protocol for FACS sorting targeted human iPSCs has been

published (Yang et al., 2014). We usually achieve 20–60% iPSC survival

and colony formation post-sort. The gene targeting efficiency in the iPSC

population (measured as described in Section 4.4) can be used to estimate the

number of wells needed for sorting to obtain a successfully targeted viable

clone. The iPSC colonies may then be cultured and expanded as usual on

a MEF feeder layer for a few passages before being transitioned to feeder-

free iPSC conditions. A portion of each potentially targeted iPSC clone

may be taken for genomic DNA extraction and genotyping.

4.6. Genotyping of clones
Once potentially targeted iPSC clones have been expanded, they must then

be genotyped to identify successful gene targeting. While the use of custom-

engineered nucleases greatly increases the frequency of correctly targeted

events, incorrect mutations still sometimes occur, including partial integra-

tions, random integrations, homology arm duplications, and incorporation

of plasmid backbone sequences. In addition, since the use of nucleases allows

for potential targeting of both alleles, a genotyping scheme must be able to

detect whether the targeted mutation is homozygous or heterozygous.

Typically, genomic DNA is purified from a portion of each expanded

clone (while freezing or continuing to expand the remaining culture).

For simple gene disruptions or small bp changes, PCR amplification and
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Sanger sequencing of the targeted locus would suffice. Heterozygous base

pair changes will be apparent as a double peak on the Sanger sequencing

trace. Heterozygous indels can similarly be identified through programs that

deconvolute a biallelic Sanger sequencing trace (Mutation Surveyor by

Softgenetics). Alternatively, the biallelic PCR product can be subcloned

into a plasmid vector (TOPO from Life Technologies) for each allele to

be sequenced in a separate reaction. Any potential off-target nuclease sites

may also be genotyped in this manner to check for mutations.

To genotype larger gene deletions, a PCR reaction with primers that

span the two nuclease sites can be sequenced. A second PCR reaction

with primers located within the two nuclease sites can identify any

unexcised alleles and determine whether the gene deletion is homozygous

or heterozygous.

For targeted knock-in gene insertions, one must not only ensure that the

entire transgene has been incorporated into the genome, but also that both

homology arms have been recombined to the correct site, without recom-

bination into other areas or duplication of the homology arms. Southern blot

screening has traditionally been used to determine this, using probes specific

to the target locus outside of the homology arm regions. While non-

radioactive Southern blot protocols now exist, this screening still requires

a relatively large amount of genomic DNA, unique restriction enzyme pat-

terns, and probes verified beforehand. A faster alternative is to use a series of

PCR reactions to confirm complete and correct integration of the knock-in

construct into the targeted locus. One set of PCR primers that spans the

inserted gene can confirm complete insertion, while two other sets of

primers that span each of the homology arms (with one primer annealing

outside of the homology arm region) can confirm proper recombination

on each end.

New screening techniques have been developed to genotype very long

constructs or homology arms. Fluorescence in situ hybridization canmeasure

the copy number of long homology arms to distinguish between correct

targeting events (where copy number is maintained) and random gene inte-

gration (where an extra copy of the homology arm is added) (Yang & Seed,

2003). Single-molecule real-time DNA sequencing is capable of producing

longer read lengths than Sanger sequencing, and has been used for

genotyping nuclease-edited human cell lines with an average sequencing

read length approaching 3 kb and ability to detect mutations down to

0.01% (Hendel et al., 2014).
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4.7. Verify iPSC pluripotency and quality
Once successfully targeted iPSC clones have been identified through

genotyping, they should be examined to confirm that they have not lost

pluripotency or gained chromosomal abnormalities through the process.

These checks are standard practice for any iPSC culture, even without

nuclease-mediated gene targeting, as there is always a background level of

differentiation and chromosomal rearrangement (Martı́ et al., 2013). How-

ever, these checks are particularly important when gene-targeted clones

have been derived from a single iPS cell. Many academic stem cell core facil-

ities and commercial suppliers offer these iPSC characterization services.

First, human iPSC can be stained for the expression of pluripotency

markers both extracellular (Tra-1/60 or Tra-1/81, SSEA4) and intracellular

(Oct4, Nanog) by either immunohistochemistry or flow cytometry. Gene-

targeted iPSCs should also retain normal colony morphology. Second, cells

should be karyotyped to ensure a normal chromosome number and lack of

aberrant translocations. Finally, a teratoma assay is performed where iPSCs

are injected into immunocompromised mice. The resulting iPSC-derived

teratomas are histologically examined for generation of all three germ layers

(mesoderm, ectoderm, and endoderm).

5. ALTERNATIVE APPROACHES

5.1. Low transfection
Using the above protocol, we typically achieve transfection efficiencies

around 60–70% and gene targeting/disruption efficiencies around 1–25%.

However, several strategies can be used to enrich for targeted clones in cases

of low transfection or gene editing efficiencies. Positive selection markers

and antibiotic selection schemes may still be used to select for rare gene

insertions, although gene targeting frequencies around 1% are generally high

enough for genotypic screening without the use of a positive or negative

selection marker.

In case of low transfection efficiencies, the Cas9 nuclease and sgRNA

construct can be expressed from the same plasmid, such that both compo-

nents of the Crispr system are co-delivered into any transfected cells. Fur-

thermore, several constructs have been developed to express multiple

sgRNAs from the same plasmid rather than separate plasmids (Cong

et al., 2013; Tsai et al., 2014).
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Transiently transfected cells may be enriched using a fluorescent or anti-

biotic resistance selection marker that is either co-transfected or

co-expressed with the Cas9 nuclease. Human iPSCs electroporated with

a Cas9-T2A-GFP fusion protein can be FACS-sorted 24–48 h post-

transfection (Ding et al., 2013). Cas9-T2A-Puromycin resistance constructs

are also available, although the drug selection may need to be carefully opti-

mized to match the period of transient Cas9 and resistance marker expres-

sion (Ran, Hsu, Wright, et al., 2013). Alternatively, a reporter construct

plasmid could be co-transfected that possesses the sgRNA targeting

site upstream of a fluorescent protein such that Cas9 nuclease editing

brings the fluorescent protein in frame for expression. Cells with active

Cas9–sgRNA complexes can then be enriched by flow cytometry

(Ramakrishna et al., 2014).

5.2. Viral vectors
Viral vectors have also been used as alternatives to transient transfection.

Lentiviral vectors are commonly used to introduce Cas9 and sgRNA com-

ponents into a wide variety of cell types, both dividing and nondividing. As

these retroviruses integrate the genetic construct into the chromosome, they

are particularly useful when sustained nuclease activity is desired, including

CRISPR library screens that require almost complete gene disruption effi-

ciencies (Shalem et al., 2014;Wang et al., 2014). However, lentiviral vectors

are limited by the size of insert that can practically be packaged into the cap-

sid (roughly 7.5 kb) (Yacoub, Romanowska, Haritonova, & Foerster, 2007)

and tend to recombine out repetitive DNA sequences (Holkers et al., 2012;

Yang et al., 2013). Integrase-deficient lentiviral vectors (IDLV), that deliver

gene constructs which do not integrate into the genome and are gradually

lost through cell division, have also been used to deliver nucleases and

homologous donor templates to edit human stem cells ( Joglekar et al.,

2013; Lombardo et al., 2007).

Adenoviral vectors have been a popular approach for administering gene

therapies in vivo as well as gene editing human stem cells in vitro as they can

transduce a wide variety of dividing and nondividing cells. The helper-

dependent (or high-capacity) adenoviral vectors, where the viral genes have

been removed, can deliver constructs up to 37 kb (Gonçalves & de Vries,

2006). Their linear dsDNA genome is generally not integrated into the

chromosome, but maintained episomally until lost through cell division.

Adenoviral vectors were better than lentiviral vectors at introducing
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constructs with repetitive elements such as TALENs into cells (Holkers

et al., 2012). The higher packaging capacity of adenoviral vectors also

allowed the 4.1 kb S. pyogenes Cas9 nuclease gene to be efficiently delivered

into human cells (Maggio et al., 2014).

Recombinant Adeno-Associated viruses have also been used for gene

targeting a wide variety of cell types. Even without sequence-specific nucle-

ases, they can induce higher rates of homologous recombination than a

transfected plasmid (Russell & Hirata, 1998); however, like conventional

plasmid targeting vectors, gene targeting with AAV vectors can be further

enhanced by introducing a dsDNA break (Hirsch & Samulski, 2014).

AAV vectors possess a single-stranded DNA genome with a packaging

capacity limited to around 4.5 kb, although they may self-assemble or be

directed to form concatamers, thereby producing longer constructs

(Hirsch et al., 2013).

5.3. Off-targets
When targeting a particular human genomic locus, one can often not find a

perfectly specific sgRNA site that possesses a unique 13 bp “seed” sequence

not found alongside any other active PAM site. Even then, Cas9 nuclease

activity may still occur at off-target sites containing one to two mismatches

in the seed sequence. Of an initial set of 190,000 sgRNA sequences designed

to target human exons, 99.96% were later computationally found to have

off-target sites containing at least one mismatch in the seed sequence next

to a NGG or NAG PAM (Mali, Aach, et al., 2013).

However, the frequency of off-target nuclease activity is a dose-

dependent function of the on-target activity—one can titrate down the

on-target Cas9 nuclease activity to remove the off-target activity

(Fu et al., 2013). The initial reports studying off-target Cas9 nuclease activity

were done on human immortalized tumor cell lines, which were able to dis-

rupt genes with very high rates of on-target activity (40–80%) leading to

substantial rates of off-target activity at certain sites (Fu et al., 2013; Hsu

et al., 2013; Kuscu et al., 2014; Pattanayak et al., 2013). For cells with a

lower rate of on-target nuclease activity, the off-target sites may be less of

a concern. In mouse ES cells, a Cas9–sgRNA complex bound to hundreds

of off-target sites, but nuclease activity was only found at one similar off-

target site (Wu et al., 2014).With the above protocol transiently transfecting

Cas9 nuclease and sgRNA into human iPSC, we typically find low off-

target gene disruption frequencies around 0.1–0.2%, even with identical
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seed sequences. Robust tumor cell lines allow for very high on- and off-

target gene disruption frequencies, whereas off-target mutations may be less

of an issue for cells with a lower rate of on-target activity like human iPSCs.

Since neither the on-target nor off-target Cas9 nuclease activities can

currently be completely predicted through computational analysis, we rec-

ommend that any close off-target sgRNA sites also be checked when

assessing gene disruption frequency in the cell population and when

genotyping successfully targeted clones. Off-target gene disruption frequen-

cies can be lowered by titrating down Cas9 nuclease activity (by transfecting

a smaller quantity of plasmid, or expressing the Cas9 nuclease under a wea-

ker promoter), although this will also decrease the on-target nuclease

activity.

5.4. Cas9 nickases
When further specificity is required, two Cas9 nickases may be used to gen-

erate the dsDNA break instead of a single Cas9 nuclease. In the nickase ver-

sion of Cas9 (D10A), the RuvC endonuclease-like domain has been

mutated, such that only a single-stranded DNA break is made on the com-

plementary DNA strand ( Jinek et al., 2012). (Gene targeting with an alter-

nate Cas9 nickase where the HNH endonuclease-like domain has been

mutated so only the noncomplementary strand is cleaved (H840A) has been

less well characterized.) Two sgRNAs designed to target opposite strands at

the same locus can be combined to generate an offset dsDNA break. Any

off-target single-stranded DNA nicks will be unlikely to be repaired by

NHEJ and result in very low indel rates (Cong et al., 2013; Mali, Aach,

et al., 2013). A single-stranded DNA nick was sufficient to induce homol-

ogous recombination in a human tumor cell line, but not in a human ES cell

line (Hsu et al., 2013). Offset dsDNA breaks generated by Cas9 nickases may

be especially necessary for targeting genes that have many conserved family

members, or for therapeutic applications that require more than a single

accurately targeted cell clone.

For gene disruption using paired Cas9 nickases, the highest rate of indel

formation was achieved using two offset sgRNAs where the double nicks

resulted in a 50-DNA overhang. Indel formation was greatest with a

20–50 bp 50-overhang, although detectable up to 130 bp (Cho et al.,

2014; Mali, Aach, et al., 2013; Ran, Hsu, Lin, et al., 2013). Genomic

deletions could also be made with the Cas9 nickase and four sgRNAs that

generated two offset dsDNA breaks. A 50-DNA overhang produced by a
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double nick also showed a higher ratio of homologous recombination to

NHEJ compared to a blunt dsDNA break, although the overall rate of homol-

ogous recombination was still higher with the Cas9 nuclease. Recently, fur-

ther specificity has been achieved using catalytically-inactive nuclease-null

Cas9 proteins fused to a FokI homodimer nuclease domain—a pair of

sgRNAs can bring the attached FokI domains together at the target site to

dimerize and generate a dsDNA break provided that they have the appro-

priate orientation (PAM sites facing outward) and spacing (14–25 bp apart

depending on the fusion construct) (Guilinger, Thompson, & Liu, 2014;

Tsai et al., 2014).

5.5. Orthogonal Cas9 systems
While the Cas9 nuclease from S. pyogenes has been most commonly used,

Cas9 nucleases derived from other bacteria are also capable of editing human

genomes. Cas9 nucleases from S. thermophilus, N. meningitidis, and

T. denticola recognize different PAM sequences, thereby expanding the set

of potentially targetable sgRNA sites (Aach et al., 2014; Esvelt et al.,

2013; Hou et al., 2013). Specific unique sgRNA backbones have been

developed for S. pyogenes, S. thermophilus, and N. meningitidis, which allow

these three Cas9 systems to be used simultaneously in an orthogonal manner.

In addition to nuclease and nickase activity, the easily programmable

DNA binding ability of Cas9 has been adapted for many other functions.

A nuclease-null Cas9 can be used by itself to repress gene expression, or

be fused to transcriptional activator domains, repressor domains, epigenetic

regulators, or fluorescent proteins (Mali, Esvelt, & Church, 2013).

The technology for genetic engineering has progressed rapidly in the past

few years and will certainly continue to improve. The ability to easily and

efficiently edit human genomes using custom-engineered nucleases has

already greatly expanded studies of gene function and holds great potential

for constructing modified human iPSCs and safer gene therapies.
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Abstract

The programmable ZFN, TALEN, and Cas9 nucleases allow genome editing of any cell
line or organism. In this chapter, we describe methods to create gene fusions at endog-
enous loci in mammalian cells to express fluorescent fusions of proteins of interest at
endogenous levels. The donor DNA, which includes the sequence encoding a fluores-
cent protein, is provided to the cell to repair a double-strand break induced by a nucle-
ase. The engineered donor sequence is integrated by homology-directed repair into the
genome in frame with the coding region of the gene of interest, resulting in expression
of a fusion protein at physiological levels. We further describe techniques to study pro-
tein dynamics and numbers using the genome-edited cell lines. In contrast to cell lines
stably overexpressing fusion proteins from modified cDNAs, genes encoding fluores-
cent proteins are targeted to the endogenous genetic locus, avoiding perturbation
of alternative splicing and expression levels.
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1. INTRODUCTION

Zinc-finger nucleases (ZFN), transcription activator-like effector

nucleases (TALEN), and clustered regulatory interspaced short palindromic

repeat (CRISPR)/Cas9-based RNA-guided DNA endonucleases are pow-

erful tools that have revolutionized our ability to edit the genomes of essen-

tially any cell type (Gaj, Gersbach, & Barbas, 2013). The versatility and the

efficiency of these nucleases allow precise genome editing in human and in

other species with broad applications from personalized gene therapy to bio-

technology (Li, Liu, Spalding, Weeks, & Yang, 2012; Perez et al., 2008;

Santiago et al., 2008; Soldner et al., 2011).

These nucleases can be designed to bind to a specific target genomic

DNA sequence. Each contains a nonspecific DNA nuclease domain that will

generate DNA double-strand breaks at the specified site. The breaks are then

repaired either by error prone nonhomologous end joining system (NHEJ)

or by homology-directed repair (HDR) (Fig. 7.1). NHEJ generates a small

Figure 7.1 Nuclease-induced genome editing. ZFN, TALEN, and Cas9 induce a single
double-strand break in a gene locus. This break can be repaired either by the non-
homologous end joining (NHEJ, on the left) or by homology-directed repair (HDR, on
the right). NHEJ repair generates deletion or insertion mutations of variable length.
HDR uses homologous sequences on a donor template to repair the break while
inserting a specific sequence or point mutation.
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insertion or deletion, while HDR leads to sequence insertion or nucleotide

correction directed by the donor DNA ( Joung & Sander, 2013).

Spontaneous homologous recombination has been used to generate

knock-out or knock-in mice (Hall, Limaye, & Kulkarni, 2009;

Pucadyil & Schmid, 2008), but these events are rare, making more conve-

nient and rapid approaches such as plasmid transfection appealing.

It is now possible by combining designer nucleases and donor DNAs to

modify any genetic locus via sequence integration by HDR ( Janke et al.,

2004). Until very recently, such genomic gymnastics were largely restricted

to model organisms such as yeast and mice.

Largely due to the difficulty associated with modifying genomes, inves-

tigators have often settled for overexpression of a protein of interest carrying

a tag, such as green fluorescent protein (GFP). This approach has been used

for decades to study the localization and the behavior of specific proteins in

the cell, often under the control of a strong promoter. As a consequence,

proteins are often expressed at levels that may be many fold greater than

endogenous levels. Elevated levels of expression can lead to a host of prob-

lems, including protein misfolding, dominant effects, and disruption of the

balance of protein–protein interactions (Gibson, Seiler, & Veitia, 2013).

Overexpression is based on the transfection of a cDNA and is not compatible

with mRNA splicing and the tissue specificity of expression of some

isoforms. To minimize these effects, stable cell lines, in which a plasmid

or a viral vector is integrated into the genome, are sometimes created. How-

ever, as the integration is not controlled, levels of the transgene may vary

from one integration event to another, and expression of neighboring genes

can also be altered by the presence of a strongly expressed transgene. Even

more importantly, essential genes can be inactivated. Engineered ZFN,

TALEN, and Cas9 nucleases enhance the efficiency of homologous recom-

bination at a specific site, which may be so-called genomic safe harbors

(Hockemeyer et al., 2011) or at the normal genomic locus (Doyon et al.,

2011). Also ZFNs, TALENs, and Cas9 are able to generate double-strand

breaks in diverse organisms including Caenorhabditis elegans, Drosophila,

mouse, somatic human cells, and embryonic stem cells (Cui et al., 2011;

Gratz et al., 2013; Lo et al., 2013).

In this chapter, we describe a protocol to create gene fusions at the

endogenous genomic locus using one of three engineered nucleases: ZFNs,

TALENs, or Cas9 in mammalian cells. The focus of this chapter is not on

the design of the different types of nucleases, which is the subject of Chapters

2, 3, and 6. Instead, we describe how to prepare a donor template to improve
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efficient integration of the tag into human cancer cell lines and human-

induced pluripotent stem cells (hiPSC), and how to isolate and characterize

the cell lines. We also describe applications where the use of genome editing

for expression of fluorescent fusion proteins has improved live-cell analysis

of protein dynamics and has enabled protein counting.

2. METHODS

Genome editing of mammalian cells is based on the cell’s ability to use

an exogenous template, or a donor plasmid, to correct a double-strand break

via the homology-directed repair pathway. Although it has been shown that

homology of as little as 50 bp is sufficient to support homologous recombi-

nation in mammalian tissue culture cells (Orlando et al., 2010), we recom-

mend a conservative approach and use about 500–700 bp of homology in

each arm, centered around the nuclease cut site. Sequences up to 20 kb have

been inserted in this manner ( Jiang et al., 2013).

2.1. Donor plasmid design
In this section, we describe twomethods to construct a donor plasmid, based

on Gibson assembly and on conventional restriction enzyme-based cloning.

The donor plasmid sequence contains two homology areas (HAs) flanking

theXFP (green, red, or any fluorescent protein). TheHAs are amplified from

genomic DNA.We recommend the use of genomic DNA isolated from the

cell line to be edited to preserve single nucleotide polymorphisms from

the specific cell line. To ensure proper folding of both the protein of interest

and the fluorescent protein, and to avoid interference with protein function,

we use a linker of four to six amino acids between the protein and the XFP.

The linker should be composed of neutral amino acids such as glycine and

alanine, interspersed with serine residues to provide flexibility between the

XFP and the protein of interest (Miyawaki, Sawano, & Kogure, 2003). As

for construction of plasmids used for classical overexpression studies, some

caution must be taken. For N-terminal tagging, the XFP followed by a

linker should be inserted at the start codon (Fig. 7.2A, top). In such cases,

it is advisable to remove the start codon of the protein of interest to avoid

translation originating from the second ATG. For C-terminal tagging, the

linker and XFP should be inserted directly before the stop codon of the pro-

tein of interest (Fig. 7.2A, middle). In this case, the start codon of the XFP is

often removed. When generating an internally tagged protein, the XFP

should be flanked by two linkers that maintain the open reading frame
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(Fig. 7.2A, bottom). To avoid mutations and to optimize the integration of

the donor plasmid, the donor plasmid should be designed to introduce silent

mutations at the ZFN/TALEN/Cas9 recognition site. Up to five mis-

matches are sufficient to prevent plasmid cutting. The backbone for the

donor can be any vector that can be replicated in Escherichia coli. We intro-

duce pCR8-TOPO as an example.

Figure 7.2 Donor plasmid construction. (A) Possible organization of donor plasmids for
N-terminal tagging (top), C-terminal tagging (middle), and internal tagging (bottom).
(B) Gibson assembly of the donor plasmid. The schematic depicts a donor for
N-terminal tagging. (C) Traditional cloning of the donor plasmid.
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2.1.1 Required materials
Genomic DNA from appropriate cell lines

pCR8-TOPO vector or other pUC backbone

DNA encoding the XFP

Herculase II DNA high-fidelity polymerase (Agilent; Cat. No. 600675)

QIAquick gel purification kit (Qiagen; Cat. No. 28704)

MinElute PCR purification kit (Qiagen; Cat. No. 28004)

Option 1: Gibson assembly cloning kit (NEB E5510S) or Gibson

assembly master mix (NEB E2611S) (competent cells not provided)

Option 2: Fastdigest NdeI, SpeI, KpnI restriction enzymes (Thermo

Scientific; Cat. No. FD0583, FD1253, FD1704, respectively)

FastAP thermosensitive alkaline phosphatase (Thermo Scientific;

Cat. No. EF0654)

Rapid DNA ligation kit (Thermo Scientific; Cat. No. K1422)

DH5-alpha competent cells

2.1.2 Option 1: Gibson assembly
The Gibson assembly method combines a 50 exonuclease that will digest a 50

sequence and expose the complementary sequence for annealing (Gibson,

Smith,Hutchison,Venter, &Merryman, 2010;Gibson et al., 2009).The three

fragments, which are the twoHA sequences and theXFP sequence, are ampli-

fied by PCR using primers including a 20-bp overlap with the adjacent frag-

ment (Fig. 7.2C). Although the constructs could be designed manually, we

suggest the NEBuilder tool to design primers (http://nebuilder.neb.com/).

1. Extract genomic DNA using the DNeasy blood and tissue kit as per

manufacturer’s protocol.

2. Amplify by PCR the two HAs (upstream and downstream of the target

site) and the XFP sequence connected to a proper linker using a high-

fidelity polymerase such as Herculase II. Amount

Genomic DNA/backbone 200 ng/50 ng

Herculase buffer 5� 10 μL

Primer forward (10 μM) 1.25 μL

Primer reverse (10 μM) 1.25 μL

dNTP (100 mM) 0.5 μL

Herculase II 0.5 μL

ddH2O To 50 μL
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Place reaction on a PCR block preheated to 95 �C, and run the fol-

lowing protocol:
95 �C 2 min

95 �C 10 s 34 cycles

Ta�C 20 s

72 �C 1 min

72 �C 3 min

Note: 30 UTRs are rich inGC and are often difficult to amplify by PCR.

The denaturation temperature can in such cases be increased to 98 �C.
3. Linearize the backbone either by PCR or by restriction enzyme.

4. Purify amplified HAs, backbone, and XFP sequence using QIAquick gel

purification kit.

5. Use Gibson assembly cloning kit to assemble and transform the plasmid

according to the manufacturer’s instructions.

6. Pick four to eight colonies and identify positive clones by either colony

PCR or restriction analysis.

7. Confirm by sequencing with appropriate primers to cover the whole

sequence.

2.1.3 Option 2: Classical cloning method
1. Design donor plasmids and select three restriction enzymes that do not

have a restriction site within the HAs, the XFP sequence, or the back-

bone. In our example, NdeI, SpeI, and KpnI are available.

2. Amplify the backbone and 1–1.5 kb of HA with primers designed to

introduce the NdeI and SpeI restriction sites. Run the PCR product

on an agarose gel.

3. Purify amplified HAs and backbone using QIAquick PCR purification

kit. Elute with 20 μL EB with MinElute column.

4. Digest the backbone and the HA:
Amount

Backbone/HAs 15 μL

NdeI Fastdigest 1 μL

SpeI Fastdigest 1 μL

Fastdigest buffer 2 μL

ddH2O 1 μL
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Add 1 μL FastAP alkaline phosphatase to the backbone digestion

solution. Incubate 20 min at 37 �C
5. Purify digested HAs and backbone using QIAquick gel purification kit.

Elute with 20 μL EB with MinElute column.

6. Ligate the digestion products. Use at least threefold molar excess of

inserts.
Amount

Backbone 50 ng

HAs At least threefold molar excess

Quick T4 DNA ligase 1 μL

Quick Ligation buffer 2� 10 μL

ddH2O To 20 μL

Incubate for 15 min at room temperature.

7. Transform 2 μL ligation product into competent E. coli. Screen for the

positives by PCR and sequence the plasmids. If the pCR8-TOPO

backbone is used, M13FOR/Cel1REV or Cel1FOR/M13REV

primer pairs can be used for diagnostic PCR (Fig. 7.2D).

8. Insert KpnI restriction site by direct mutagenesis PCR. The KpnI site

should be located where the XFP and the linker sequences will be

inserted.

9. Amplify the XFP and linker(s) sequences including KpnI restriction

sites on both sides by PCR.

10. Digest and ligate the pCR8-HA-KpnI and XFP-linkers as

described above.

11. Carry out diagnostic PCR on DNA from four to eight colonies using

Cel1FOR/XFP-REV or XFP-FOR/Cel1REV primer pairs.

12. Sequence positive plasmids with M13FOR, M13REV, Cel1FOR, or

Cel1REV. Make sure that XFP and the protein of interest are in frame.

2.2. Generation of genome-edited cell lines using CRISPR,
TALENs, or ZFNs

2.2.1 Required materials
MDA/SK-MEL2 cells lines and hiPSC can be obtained from various

sources

hiPSC are cultivated in a feeder-free system
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StemPro® Accutase® Cell Dissociation Agent (Gibco; Cat. No.

A11105-01)

Matrigel hESC-qualified matrix (Corning; Cat. No. 354277)

mTESR™1 (STEMCELL Technologies; Cat. No. 05850)

ROCK inhibitor (Y27632) (Stemgent; Cat. No. 04-0012)

0.05% Trypsin–EDTA 1� (Gibco; Cat. No. 25300-054)

DMEM/F12, Glutamax supplement (Gibco; Cat. No. 10565042)

DMEM/F12 no phenol red (Gibco; Cat. No. 11039047)

Fetal bovine serum, regular (Corning; Cat. No. 35-010-CV)

DPBS 1� (Gibco; Cat. No. 14190-144)

Penicillin–streptomycin 100� solution (10,000 U/mL) (P/S) (Gibco;

Cat. No. 15140-122)

Nucleofector kit (see Table 7.1 for solution corresponding to the cell

line or http://bio.lonza.com/resources/product-instructions/protocols/)

and Supplement 1 (Lonza)

Amaxa™ certified 100 μL aluminum electrode cuvettes

Human stem cells Nucleofector kit 1 (Lonza)

Amaxa Nucleofector System (Lonza)

Tube, 5-mL with cell-strainer cap, round-bottom, polystyrene (Falcon;

Cat. No. 352235)

Tube, 5-mL round-bottom, polypropylene (Falcon; Cat. No. 352063)

BD influx FACS sorter

Cloning disks

Tweezers

2.2.2 Preparation of cells
A. Thawing and plating MDA cells

1. Quickly thaw the frozen MDA vials using a 37 �C water bath.

Table 7.1 Nucleofactor solutions and Amaxa programs used for different cell lines
Cell line Nucleofactor solution Amaxa program

U2OS V X-001

SK-MEL2 R T-020

HeLa R I-013

MDA-MB-231 V X-013

Details for additional cell lines can be found on: http://bio.lonza.com/resources/product-instructions/
protocols.
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2. Transfer cells into 15-mL conical tube and add 5-mL warmed

DMEM/F12 containing 10% FBS and 1� P/S (hereafter referred

to as “complete medium”).

3. Spin down cells at 1000 rpm for 5 min.

4. Aspirate the medium, and resuspend the cell pellet in 10 mL com-

plete medium.

5. Plate cells in a 10-cm culture dish.

6. Incubate cells at 37 �C, 5% CO2 incubator.

B. Passaging and maintaining MDA cells

1. Cells should be passaged when they have reached 80–90% con-

fluency. To ensure a good transfection rate, cells should not exceed

passage 6.

2. Aspirate the medium and wash cells with 10 mL DPBS.

3. Add 2 mL Trypsin and incubate at 37 �C for 5 min.

4. Add 8 mL complete medium and pipette up and down to collect

detached cells.

5. Transfer the detached cells to a 15-mL conical tube.

6. Spin down cells at 1000 rpm for 5 min.

7. Aspirate the medium, and resuspend cell pellets in 10 mL complete

medium.

8. Plate cells onto a 10-cm culture dish (1:10 or 1:20 split).

9. Incubate cells at 37 �C, 5% CO2 incubator.

C. Thawing and plating hiPSC cells

1. Prepare Matrigel-coated six-well plate: dilute 250 μL Matrigel into

25 mL DMEM/F12 without phenol red. Transfer 1 mL of diluted

Matrigel into each well. Incubate for 1 h at room temperature. Store

Matrigel-coated plates at 4 �C for up to 2 weeks.

2. Quickly thaw the frozen hiPSC vials using a 37 �C water bath.

3. Transfer cells into a 15-mL conical tube and add 5 mL warmed

mTESR1.

4. Spin down cells at 1000 rpm for 3 min.

5. Aspirate the medium, and resuspend cell pellets in 2 mL mTESR1

supplemented with 10 μM ROCK inhibitor (RI).

6. Plate cells in Matrigel-coated wells.

7. Incubate cells at 37 �C, 5% CO2 incubator.

8. Change the medium every day.

D. Passaging and maintaining hiPSC cells

1. When cells reach 80–90% confluency, passage the cells.

2. Aspirate the medium and wash with 2 mL DPBS.

3. Add 1 mL Accutase and incubate at 37 �C for 2 min.
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4. Add 5 mL mTESR1 and gently pipette up and down to collect

detached cells.

5. Transfer the detached cells to a 15-mL conical tube.

6. Spin down cells at 1000 rpm for 3 min.

7. Aspirate the medium, and resuspend cell pellets with 2 mL

mTESR1 supplemented with 10 μM RI.

8. Plate cells in the Matrigel-coated wells (1:6 or 1:8 split).

9. Incubate cells at 37 �C, 5% CO2 incubator.

10. Change the medium every day.

2.2.3 Electroporation
Trypsinize cells 1 day before transfection and seed at around 70% confluency.

A. MDA electroporation

1. Gently wash cells with 10 mL room temperature DPBS.

2. RemoveDPBS, add 2 mLTrypsin, and incubate at 37 �C for 5 min.

3. Resuspend cells with 10 mL complete medium.

4. Count cells to determine cell/mL (use Countess or a hemocytom-

eter) and calculate volume required for 2�106 cells (single trans-

fection, scale as needed).

5. Place desired volume of cells into 15 mL centrifuge tube.

6. Spin at 200� g for 5 min at room temperature and remove

supernatant.

7. Prepare the master mix:

a. 82 μL Nucleofector solution recommended for the cell type

b. 18 μL Supplement

8. Resuspend the cell pellet in the master mix and add 2.5 μg of each
ZFN/TALEN/Cas9n or 5 μg Cas9 DNA and 15 μg of donor

plasmid.

9. Transfer cells to a cuvette.

10. Place the cuvette into the Nucleofactor device.

11. Nucleofect cells using program recommended for the cells

according to manufactures’ specification or Table 7.1.

12. Quickly transfer cells into complete medium in a 10-cm dish.

13. Incubate cells at 37 �C, 5% CO2 incubator for 3–7 days.

14. Harvest cells and use desired method to isolate edited cells.

B. hiPSC electroporation

For the hiPSC, we recommend recovery for 1 week after thawing,

and supplementing the medium with 10 μM RI the day before the

electroporation.

1. Gently wash cells with 2 mL room temperature DPBS.
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2. Aspirate DPBS, add 1 mL Accutase, and incubate at 37 �C for 5 min.

3. Resuspend cells in 5 mL mTESR1.

4. Count cells to determine cell/mL (use Countess or a hemocytom-

eter) and calculate volume required for 2�106 cells (single trans-

fection, scale as needed).

5. Place desired volume of cells into 15-mL centrifuge tube.

6. Spin at 200� g for 5 min at room temperature and aspirate

supernatant.

7. Prepare the master mix:

a. 82 μL Human stem cells Nucleofector kit 1 solution

b. 18 μL Supplement 1

8. Incubate for 5 min at 37 �C.
9. Resuspend the cell pellet with the master mix and add 2.5 μg of

each ZFN/TALEN/Cas9n or 5 μg Cas9 DNA and 15 μg of donor
plasmid.

10. Transfer cells into a cuvette and incubate for 1–2 min on ice.

11. Place the cuvette in the Nucleofactor device.

12. Nucleofect cells using program T-020.

13. Quickly transfer cells into 4 mL mTESR1+10 μM RI and plate

the cells in two wells of a six-well plate coated with Matrigel.

14. Harvest cells 3–7 days after nucleofection and use desired method

to isolate edited cells.

2.2.4 Isolation of genome-edited cells
A. FACS sorting

FACS parameters depend on the instrument model and the cell line

used. We usually use a 100-μm nozzle with low pressure (20 psi). For

the model that we used, BD influx FACS sorter, cells are sorted in

“pure”mode, and the cytometer will sort one cell per drop. Appropriate

nontransfected cells should be prepared in parallel for reference

(Fig. 7.3A). As phenol red can interfere with fluorescence detection

and can increase fluorescence background, complete medium should

be replaced by DMEM/F12 phenol red free.

1. Detach the cells using Trypsin or Accutase.

2. Transfer the detached cells to a 15-mL conical tube.

3. Count cells.

4. Spin down cells at 1000 rpm for 5 min.

5. Resuspend the cells in 2 mL complete medium without phenol

red/mTESR1+RI. The concentration should not exceed

5–10�106 cells/mL.
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6. Put the cells through a 40 μm mesh to avoid cell aggregates.

7. Transfer the cells into a new 5-mL polypropylene tube.

8. Prepare 4–5 96-well plates with 100 μL complete medium and a

5 mL polypropylene tube containing 2 mL complete medium.

For the hiPSC, we recommend sorting multiple cells (see step

9b, below) into each well of a six-well plate coated with Matrigel

with 2 mL mTESR1+RI per well. This strategy is used for cells

that cannot survive as single cells.

9. Sorting RFP/GFP-positive cells (Fig. 7.3A):

a. Sort single MDA cells into 96-well plates. Cells can also be

sorted and collected in bulk in an additional tube and kept

for freezing or further clone isolation.

b. Sort 2000–4000 hiPSC per well.

10. Check single cells in the 96-well plates and change the medium

every 2 days

11. Identify positive clones:

a. For MDA cells: as the cells approach confluence, trypsinize the

cells and plate them on a 24-well plate. Passage the cells onto a

six-well plate and keep an aliquot of cells for genotyping.

b. For hiPSC: using tweezers, soak a cloning paper disk with

Accutase. Place it directly on a colony. To insure isolation of

a clonal population, it is important to isolate only one colony.

Quickly remove the cloning disk and transfer into a well of a

96-well plate. Remove the cloning disk from the well the next

day. Change the medium 2 days later and then every day.

Figure 7.3 Detection and collection of genome-edited cells. (A) FACS profiles of
unstained control cells for reference on the left and CLTA–RFP edited cells on the right.
The x-axis represents GFP fluorescence and the y-axis represents RFP fluorescence.
(B) Genotyping PCR for control, single-tag- and all-tag-edited cells. The lower band rep-
resents amplification of the wild-type locus, while the upper band reflects amplification
of locus containing XFP.
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12. Expand the clones (see 2.2.2 Preparation of the cells section).

13. Live-cell fluorescence microscopy can be used to eliminate false

positives that can be generated by the FACS when the fluorescence

signal is low.

B. Confirmation of genome-edited cells

In this section, we describe several methods to confirm proper

genome editing of the clones. This analysis can be performed first at

the genome level by determining the number of tagged alleles and

ensuring that the XFP is correctly integrated and that no mutations

have been generated. Second, at the protein level, immune blots

should be performed to confirm the expression and predicted size of

the fusion protein. Finally, proper localization of the XFP fused protein

can be assessed by immunostaining, and functional tests employed to

insure that the fusion protein has not interfered with the process being

investigated.

By sequencing

Genomic DNA extraction

1. Detach cells with Trypsin or Accutase.

2. Transfer the detached cells to a 15-mL conical tube.

3. Spin down cells at 1000 rpm for 5 min. Aspirate the medium

completely. At this step, pelleted cells can be stored at �20 �C for

at least 1 month.

4. Extract genomic DNA using the DNeasy blood and tissue kit as per

manufacturer’s protocol.

PCR and sequencing

PCR and sequencing can be performed using the primers used for the

surveyor assay used to confirm cutting by the designed nucleases.

1. Prepare PCR mix as follows:
Amount

Genomic DNA 200 ng

Herculase buffer 5� 10 μL

Primer forward (10 μM) 1.25 μL

Primer reverse (10 μM) 1.25 μL

dNTP (100 mM) 0.5 μL

Herculase II 0.5 μL

ddH2O To 50 μL
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2. Place reaction on PCR block preheated to 95 �C and run the fol-

lowing protocol:

95 �C 2 min

95 �C 10 s 34 cycles

Ta�C 20 s

72 �C 30 s

72 �C 3 min

3. Run PCR products on 1.0% TAE agarose gel and stain with

ethidium bromide.When all alleles are not tagged, two bands should

appear: the lower one corresponding to the wild-type and the upper

one to the tagged allele (Fig. 7.3B).

4. Gel purify both the wild-type and edited bands using Qiagen

MinElute gel extraction kit as per manufacturer’s protocol. Elute

in 10 μL H2O.

5. Sequence wild-type and tagged alleles with appropriate primers

(Note that it is crucial that the wild-type allele be sequenced to

detect mutations introduced by NHEJ).

By immune blot:

1. For the preparation of lysates: cells were briefly washed in DPBS

and incubated with 0.5 mM EDTA for 5 min.

2. Centrifuge 110 g for 2 min.

3. Remove supernatant and add warmed 2� protein sample buffer

(125 mM Tris–HCl at pH 6.8, 10% glycerol, 10% SDS, 130 mM

dithiothreitol, 0.05% bromophenol blue and 12.5%

β-mercaptoethanol).

4. Resuspend pellet by pipetting.

5. Heat samples to 95 �C, for 3 min.

6. Separate proteins by SDS-PAGE.

7. Transfer to Immobilon-FL PVDF transfer membrane (IPFL-

00010, Millipore) or nitrocellulose membrane in transfer buffer

(25 mM Trizma base, 200 mM glycine, 20% methanol, and

0.025% SDS) at 50 V and 4 �C for 1 h.

8. Rinse the membrane in TBS (Tris-buffered saline).

9. Incubate in Odyssey blocking buffer (diluted 1:1 in DPBS) at room

temperature for 1 h.
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10. Dilute appropriate primary antibodies in blockingbuffer and incubate

with themembrane at 4 �C overnight. The following antibodies can

be used for XFP fusion proteins: anti-GFP (B2; 1:2000; Santa Cruz

Biotechnology) or anti-tRFP (AB233; 1:500; Evrogen).

11. Blots were subsequently incubated in the dark for 1 h at room

temperature with secondary IRDye 680 or 800CW antibodies

(LI-COR Biosciences) diluted to 1:5000 in Odyssey blocking

buffer/DPBS solution containing 0.1% Tween 20.

12. After washing with TBST (Tris-buffered saline Tween 20), the

membrane was incubated in TBS and scanned using an Odyssey

infrared imager (LI-COR Biosciences). Quantification of protein

bands was performed using the Odyssey Infrared Imaging System

(version 3.0).

By immunofluorescence microscopy

1. Grow cells on glass coverslips in 24-well plates overnight.

2. Fix cells in 4% paraformaldehyde at room temperature for 20 min.

3. After three washes with DPBS, quench the coverslips with

1 mg/mL NaBH4 for 15 min twice.

4. Permeabilize cells in 0.1% saponin/DPBS or 0.1% Triton X-100/

DPBS. Wash briefly with DPBS.

5. Incubate coverslips with appropriate primary antibody overnight at

4 �C.
6. Wash with DPBS for 15 min.

7. Incubate coverslips with appropriate secondary antibody overnight

for 2 h at room temperature.

8. Perform three washes with DPBS.

9. Mount the coverslips on glass slides using ProLong Gold Antifade

Reagent (Invitrogen).

3. TAGGING/EDITING LIMITATIONS

Genome editing is a powerful tool that promises to facilitate more

faithful fluorescence microscopy analysis of in vivo dynamics. This approach

does, however, have limitations. Tagging a protein can impair the function

of a protein even when it is expressed at the endogenous level. Some classes

of proteins, such as Rab GTPases, can only be tagged at the N-terminus

(Chavrier et al., 1991), whereas others, such as dynamin2, for instance, must

be tagged on the C-terminus (Hinshaw & Schmid, 1995; Liu, Surka,

Schroeter, Lukiyanchuk, & Schmid, 2008). Function of the μ subunit of
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the adaptor protein AP2 can be preserved by inserting the fluorescent pro-

tein into an internal loop (Nesterov, Carter, Sorkina, Gill, & Sorkin, 1999).

We strongly recommend preliminary experiments to ensure that fusion pro-

tein function is preserved as much as possible. Since detection of function

impairment can be done more sensitively in some simple organisms, like

yeast, we have often modeled fusions for mammalian cells on fusions that

preserve function in yeast.

The three nucleases also have limitations. The ZFNs and TALENs are

highly sensitive to DNA methylation and thus are not optimal for

GC-rich regions, which can be found in the UTR regions of genes (Kim

et al., 2013). In the case of the Cas9/CRISPR system, off-target cutting

is more likely to happen as Cas9 can tolerate a number of mismatches,

although current efforts are addressing this issue (see below) (Cong et al.,

2013; Fu et al., 2013; Mali et al., 2013). With the tolerance of mismatches,

the short recognition site of CRISPR/Cas9—usually 20 nucleotides

followed by the PAM sequence, NGG—is rarely unique in the genome.

Multiple labs showed that the use of two pairs of guide-RNAs can avoid

the off-target cutting (Ran et al., 2013). They used a Cas9 nickase mutant

that will generate a single-strand break. These breaks can be easily repaired

by the high-fidelity base excision repair pathway without creating a deletion

or an insertion (Dianov & Hübscher, 2013). This group increased the spec-

ificity for the target site by using a pair of offset sgRNAs complementary to

opposite strands of the site.

In this chapter, we also provide a method to sort cells based on the

fluorescence by FACS. Fluorescence levels correlate directly with the

protein expression levels. Although FACS is highly sensitive, the expres-

sion level of the fusion protein might be barely higher than the fluores-

cence background. In such a case, positive cells will be indistinguishable

from the negative cells. A resistance cassette could be added in the donor

plasmid, followed/proceeded by a self-cleavage site, such as the 2A pep-

tide (Hockemeyer et al., 2011; Kim et al., 2011). This sequence is

thought to induce a “pause” and thus the release of the nascent peptide

(Doronina et al., 2008). The resistance cassette will be expressed by the

endogenous promoter. Another strategy is to integrate the resistance cas-

sette into the locus of interest with its own promoter and flanked by the

LoxP sequence. This strategy allows removal of the resistance cassette

after selection by transient expression of the Cre recombinase. After selec-

tion and isolation of the clone, only the LoxP sequence will remain at the

target site.
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4. PERSPECTIVES

This section explores applications in which the effort needed to pro-

duce genome-edited cell lines was shown to be justified. We also explore

some opportunities that this technique may provide

4.1. Efficiency of cellular processes: Example of
clathrin-mediated endocytosis

Wehave compared the dynamics and function of endocytic proteins fused to

fluorescent proteins in mammalian cells either overexpressing the proteins or

genome-edited to express the proteins at endogenous levels. We showed

that clathrin and dynamin have a more regular recruitment in the

genome-edited cells and that endocytosis in those cells is more rapid and effi-

cient (Fig. 7.4; Doyon et al., 2011). This example therefore highlights how

protein overexpression can affect the dynamics and function of cell pro-

cesses.We further note that genome editing can be used to express at endog-

enous levels proteins tagged with affinity tags, degron tags, etc., minimizing

perturbation of their stoichiometries and their functions.

4.2. Quantification of protein stoichiometry in specific
structures within genome-edited cells

Fluorescence live-cell imaging, which has transformed cell biology by

revealing the spatiotemporal organization and molecular assembly during

Figure 7.4 Illustration of improved clathrin and dynamin dynamics in genome-edited
cells. Three-dimensional kymographs from movies of a genome-edited cell line
expressing clathrin-RFP and dynamin2-GFP on the left, or overexpressing clathrin-
RFP and dynamin2-GFP on the right. x–y plane (2.5 μm2 grid), cell plasma membrane;
z-axis, time (240 s, 2 s per slice). Originally published in Doyon et al. (2011).
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biological processes, is going through another revolution with single-

molecule detection made possible by recent improvements in microscopy

and camera technologies. The quantitative approach described here opens

new avenues to count the number of molecules in specific structures. Such

measurements allow more faithful in vitro reconstitutions and promise to be

the basis for mathematical modeling. In yeast, fluorescence microscopy of

cells expressing fusions of GFP to proteins of interest at the native gene locus,

the number of molecules either globally or in particular structures of interest

has been evaluated (Coffman & Wu, 2014; Joglekar, Bouck, Molk,

Bloom, & Salmon, 2006; Wu & Pollard, 2005).

The use of ZFN, TALEN, and Cas9 nucleases to create fusions of endog-

enous and fluorescent proteins opened the door to the deployment of similar

approaches in mammalian cells. In contrast to other methodologies, which

require overexpression and complex statistical analysis (Cocucci, Aguet,

Boulant, & Kirchhausen, 2012), the use of genome-edited cell lines, in

which the protein of interest is expressed as GFP fusions at endogenous

levels, allows rapid and simple quantification of protein recruitment with

single-molecule sensitivity while preserving the stoichiometry of the pro-

teins studied (Grassart et al., 2014; Cocucci, Gaudin, & Kirchhausen,

2014). Recently, our group successfully employed this approach to deter-

mine that one or multiple quanta of�26 molecules of dynamin2 is recruited

during endocytosis. Interestingly, our results validate previous estimations

proposed by structural models and exemplify the benefits of such method-

ology. As genome editing can be readily implemented in any lab, it offers

great promise to foster a quantitative understanding of the molecular biology

of the cell.

4.3. Genome-edited stem cells: A new model for mammalian
cell biology studies

When combined with genome editing, hiPSC represent another step for-

ward in improvement of cell biological studies using fluorescent fusion pro-

teins. Several labs have elucidated the signals that regulate various hiPSC

differentiation pathways. As a consequence, it is now possible to differentiate

hiPSC into a variety of cell types including cardiomyocytes, hepatocytes,

and neurons (Chambers et al., 2009; Chambers, Mica, Studer, &

Tomishima, 2011; Lian et al., 2013). Using genome editing to fluorescently

label proteins that are specifically expressed in a certain tissue is also a good

strategy to isolate a specific differentiated cell type derived from stem cells.

Cells expressing the fluorescent protein can be FACS sorted. This strategy
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can then be used to study the fate of a cell population within a tissue during

specific differentiation stages (Forster et al., 2014). hiPSC have been gener-

ated from patients and have been used as disease models (Chung et al., 2013;

Li et al., 2013; Ryan et al., 2013). But differences in genetic background

make comparisons difficult. We feel that hiPSC offer advantages for cell

biology studies because they often are euploid, they are not cancer cells, they

can be differentiated, and they can be edited to express fluorescent fusion

proteins and to introduce human disease mutations. One promising avenue

is to endogenously tag a wild-type or mutated protein with a fluorescent

protein and study its behavior within different cell types to investigate

how the mutation leads to disease phenotypes (Ding et al., 2013).
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Abstract

The RNA-guided, sequence-specific endonuclease Cas9 has been widely adopted as
genome engineering tool due to its efficiency and ease of use. Derived from the micro-
bial CRISPR (clustered regularly interspaced short palindromic repeat) type II adaptive
immune system, Cas9 has now been successfully engineered for genome editing appli-
cations in a variety of animal and plant species. To reduce potential off-target mutagen-
esis by wild-type Cas9, homology- and structure-guided mutagenesis of Streptococcus
pyogenes Cas9 catalytic domains has produced “nicking” enzymes (Cas9n) capable of
inducing single-strand nicks rather than double-strand breaks. Since nicks are generally
repaired with high fidelity in eukaryotic cells, Cas9n can be leveraged to mediate highly
specific genome editing, either via nonhomologous end-joining or homology-directed
repair. Here we describe the preparation, testing, and application of Cas9n reagents for
precision mammalian genome engineering.
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1. INTRODUCTION

Targeted, rapid, and efficient genome editing using the RNA-guided

Cas9 system is enabling the systematic interrogation of genetic elements in a

variety of cells and organisms and holds enormous potential as a next-

generation gene therapy (Hsu, Lander, & Zhang, 2014). In contrast to other

DNA-targeting systems based on zinc-finger proteins (Klug, 2010) and tran-

scription activator-like effectors (Boch & Bonas, 2010), which rely on pro-

tein domains to confer DNA-binding specificity, Cas9 forms a complex

with a small-guide RNA that directs the enzyme to its DNA target via Wat-

son–Crick base pairing. Consequently, the system is simple and fast to design

and requires only the production of a short oligonucleotide to direct DNA

binding to any locus.

The type II microbial CRISPR (clustered regularly interspaced short

palindromic repeat) system (Chylinski, Makarova, Charpentier, &

Koonin, 2014), which is the simplest among the three known CRISPR

types (Barrangou & Marraffini, 2014; Gasiunas, Sinkunas, & Siksnys,

2014; Wiedenheft, Sternberg, & Doudna, 2012), consists of the

CRISPR-associated (Cas) genes and a series of noncoding repetitive ele-

ments (direct repeats) interspaced by short variable sequences (spacers).

These short�30-bp spacers are often derived from foreign genetic elements

such as phages and conjugating plasmids, and they constitute the basis for an

adaptive immune memory of those invading elements (Barrangou et al.,

2007). The corresponding sequences on the phage genomes and plasmids

are called protospacers, and each protospacer is flanked by a short

protospacer-adjacent motif (PAM), which plays a critical role in the target

search and recognition mechanism of Cas9. The CRISPR array is tran-

scribed and processed into short RNAmolecules known as CRISPRRNAs

(crRNA) that, together with a second short trans-activating RNA

(tracrRNA) (Deltcheva et al., 2011), complex with Cas9 to facilitate target

recognition and cleavage (Deltcheva et al., 2011; Garneau et al., 2010).

Additionally, the crRNA and tracrRNA can be fused into a single guide

RNA (sgRNA) to facilitate Cas9 targeting ( Jinek et al., 2012).

The Cas9 enzyme from Streptococcus pyogenes (SpCas9), which requires a

50-NGG PAM (Mojica, Diez-Villasenor, Garcia-Martinez, & Almendros,

2009), has been widely used for genome editing applications (Hsu et al.,

2014). In order to target any desired genomic locus of interest that fulfills

the PAM requirement, the enzyme can be “programmed” merely by
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altering the 20-bp guide sequence of the sgRNA. Additionally, the simplic-

ity of targeting lends itself to easy multiplexing, such as simultaneous editing

of several loci by including multiple sgRNAs (Cong et al., 2013; Wang

et al., 2013).

Like other designer nucleases, Cas9 facilitates genome editing by induc-

ing double-strand breaks (DSBs) at its target site, which in turn stimulates

endogenous DNA damage repair pathways that lead to edited DNA:

homology-directed repair (HDR), which requires a homologous template

for recombination but repairs DSBs with high fidelity, and nonhomologous

end-joining (NHEJ), which functions without a template and frequently

produces insertions or deletions (indels) as a consequence of repair. Exoge-

nous HDR templates can be designed and introduced along with Cas9 and

sgRNA to promote exact sequence alteration at a target locus; however, this

process typically occurs only in dividing cells and at low efficiency.

Certain applications—e.g., therapeutic genome editing in human stem

cells—demand editing that is not only efficient but also highly specific.

Nucleases with off-target DSB activity could induce undesirable mutations

with potentially deleterious effects, an unacceptable outcome in most clin-

ical settings. The remarkable ease of targeting Cas9 has enabled extensive

off-target binding and mutagenesis studies employing deep sequencing (Fu

et al., 2013; Hsu et al., 2013; Pattanayak et al., 2013) and chromatin immu-

noprecipitation in human cells (Kuscu, Arslan, Singh, Thorpe, & Adli,

2014; Wu et al., 2014). As a result, an increasingly complete picture of

the off-target activity of the enzyme is emerging. Cas9 will tolerate

some mismatches between its guide and a DNA substrate, a characteristic

that depends strongly on the number, position (PAM proximal or distal),

and identity of the mismatches. Off-target binding and cleavage may fur-

ther depend on the organism being edited, the cell type, and epigenetic

contexts.

These specificity studies, together with direct investigations of the cata-

lytic mechanism of Cas9, have stimulated homology- and structure-guided

engineering to improve its targeting specificity. The wild-type enzyme

makes use of two conserved nuclease domains, HNH and RuvC, to cleave

DNA by nicking the sgRNA-complementary and noncomplementary

strands, respectively. A “nickase” mutant (Cas9n) can be generated by ala-

nine substitution at key catalytic residues within these domains—SpCas9

D10A inactivates RuvC ( Jinek et al., 2012), while N863A has been found

to inactivate HNH (Nishimasu et al., 2014). Though an H840A mutation

was also reported to convert Cas9 into a nicking enzyme, this mutant has
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reduced levels of activity in mammalian cells compared with N863A

(Nishimasu et al., 2014) (Fig. 8.1).

Because single-stranded nicks are generally repaired via the non-

mutagenic base-excision repair pathway (Dianov &Hubscher, 2013), Cas9n

mutants can be leveraged to mediate highly specific genome engineering.

A single Cas9n-induced nick can stimulate HDR at low efficiency in some

cell types, while two nicking enzymes, appropriately spaced and oriented at

the same locus, effectively generate DSBs, creating 30 or 50 overhangs along
the target as opposed to a blunt DSB as in the wild-type case (Mali et al.,

2013; Ran et al., 2013). The on-target modification efficiency of the

double-nicking strategy is comparable to wild type, but indels at predicted

off-target sites are reduced below the threshold of detection by Illumina

deep sequencing (Ran et al., 2013).

The following protocol describes protocols and considerations for the

design and testing of nickase reagents for high-precision mammalian

genome editing, including target selection, sgRNA construction, transfec-

tion, detection of Cas9-induced indel mutations using the SURVEYOR

nuclease assay, and design and quantification of homology-directed

insertions.

2. TARGET SELECTION

SpCas9 targets can be any 20-bp DNA sequence followed at the 30 end
by 50-NGG-30. Our lab has developed an online tool that will accept a

Figure 8.1 Diagram of Cas9n enzymes in a double-nicking configuration. Offset nicking
with the D10A mutant, which retains only the catalytic activity of the HNH nuclease
domain, generates 50 overhang products in the target genome by nicking the
sgRNA-complementary DNA strand (nicks represented with red (dark gray in the print
version) triangles). Alternatively, Cas9n N863A selectively nicks the noncomplementary
strand (nicks represented with yellow (gray in the print version) triangles). sgRNA offset
is defined as the distance between the 50 (or PAM-distal) end of each sgRNA. The PAM
sequences, represented in green (light gray in the print version), are present in the tar-
get genome but not the sgRNA.
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region of interest as input and output a list of all potential sgRNA target sites

within that region. Each sgRNA target site is then associated with a list of

predicted genomic off-targets (http://tools.genome-engineering.org).

The tool also generates double-nicking sgRNA pairs automatically. The

most important consideration for double-nicking sgRNA design is the spac-

ing between the two targets (Ran et al., 2013). If the “offset” between two

guides is defined as the distance between the PAM-distal (50) ends of an
sgRNA pair, an offset of �4 to 20 bp is ideal, though offsets as large as

100 bp can induce DSB-mediated indels. sgRNA pairs for double nicking

should target opposite DNA strands.

3. PLASMID sgRNA CONSTRUCTION

sgRNA expression vectors can be constructed by cloning 20-bp target

sequences into a plasmid backbone encoding a human U6 promoter-driven

sgRNA expression cassette and a CBh-driven Cas9-D10A (pSpCas9n(BB),

Addgene #48873). The N863A nickase can be exchanged with D10A in all

cases. It is recommended to prepare this plasmid as an endotoxin-free

maxiprep. The generalized oligos needed to clone a new target into

pSpCas9n(BB) are described in Table 8.1 and can be purchased from Inte-

grated DNATechnologies (IDT). Note that the PAM sequence required for

target recognition by Cas9 is never present as part of the sgRNA itself.

1. To clone a target sequence into an sgRNA backbone vector, first

resuspend sgRNA-fwd and sgRNA-rev oligos to 100 μM. Note that

these oligos include an appended guanine (lowercase) not present in

the target site in order to increase transcription from the U6 promoter.

Table 8.1 General sgRNA cloning oligonucleotides
Primer Sequence (50 to 30) Description

sgRNA-

fwd

CACCGNNNNNNNNNNNNNNNNNNNN Sticky overhang

plus specific 20-bp

genomic target to

be cloned into

sgRNA backbones

sgRNA-

rev

AAACNNNNNNNNNNNNNNNNNNNNC Complementary

annealing oligo for

cloning new target

into sgRNA

backbones
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2. Combine 1 μL of each oligo with 1 μL T4 ligation buffer, 10� (New

England Biolabs (NEB) B0202S), 0.5 μL T4 PNK (NEB M0201S),

and 6.5 μL ddH2O for a 10 μL reaction total. Treat with polynucleotide

kinase to add 50 phosphate and anneal the oligos in a thermocycler with

the following protocol: 37 �C for 30 min, 95 �C for 5 min, ramp down

to 25 �C at 5 �C/min.

3. Dilute the annealed oligos (10 μL reaction) by adding 90 μL ddH2O.

4. Set up a Golden Gate digestion/ligation with pSpCas9n(BB) and the

annealedoligos as a cloning insert.Theplasmidcontains twinBsmBIrestric-

tion sites in place of the sgRNA target sequence such that digestion leaves

overhangs complementary to the annealed oligo overhangs. In a 25 μL
reaction, combine25 ng pSpCas9n(BB), 1 μLdiluted annealedoligos from
step 3, 12.5 μL Rapid Ligation Buffer, 2� (Enzymatics L6020L), 1 μL
FastDigest BsmBI (ThermoScientific FD1014), 2.5 μL 10� BSA (NEB

B9001), 0.125 μL T7 Ligase (Enzymatics L6020L), and 7 μL ddH2O.

5. A negative control should be performed using the same conditions as

above and substituting the insert oligos with ddH2O.

6. Incubate the ligation in a thermocycler for six cycles of 37 �C for 5 min,

20 �C for 5 min. The ligation is stable for storage at �20 �C.
7. Transform 2 μL of the ligation reaction into a competent E. coli strain

using the appropriate protocol—the Stbl3 strain is recommended—plate

onto ampicillin selection plates (100 μg/mL ampicillin), and incubate

overnight at 37 �C. Typically, transformation occurs at high efficiency;

no colonies form on the negative control plate, and hundreds formwhen

the sgRNA oligos have been successfully cloned into the backbone.

8. 14 h later, pick two or more colonies from the transformation with a

sterile pipette tip and use the bacteria to inoculate 3 mL LB or TB broth

with 100 μg/mL ampicillin. Shake the culture at 37 �C for 14 h.

9. Isolate plasmid DNA from the cultures using the Qiagen Spin Miniprep

Kit (27104) and determine the DNA concentration by spectrophotom-

etry. These constructs can be Sanger sequence-verified through the

sgRNA scaffold to confirm correct insertion of the target sequence.

For optimal transfection conditions downstream, endotoxin-free plas-

mid should be prepared.

4. VALIDATION OF sgRNAs IN CELL LINES

This protocol describes the functional validation of sgRNAs in

HEK293FT cells; culture and transfection conditions may vary for other cell

types.
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1. Maintain HEK293FT cells (Life Technologies R700-07) in sterile D10

media (DMEM, high glucose (Life Technologies 10313-039) sup-

plemented with 10% vol/vol fetal bovine serum (Seradigm 1500-500)

and 10 mM HEPES (Life Technologies 15630-080)). For optimal

health, cells should be passaged every day at a ratio of 1:2–2.5 and always

kept under 80% confluence.

2. Plate cells for transfection. Seed 120,000 cells per well of a 24-well tissue-

culture treated plate in a total volume of 500 μL. Cultures and transfec-

tions can be proportionally scaled up or down for different formats based

on growth surface area. For many adherent cell types, poly-D-lysine

coated plastic may improve adherence and viability.

3. Check the plates after 18 h to determine the confluence of the cells—

generally 90% is ideal. Lipofectamine 2000 (Life Technologies

11668109) reagent can be used to transfect DNA according to the man-

ufacturer’s protocol. For a 24-well plate, we do not transfect more than

500 ng/well DNA total.

4. To deliver one nicking pSpCas9n(sgRNA) plasmid, transfect 500 ng; for

multiple nicking constructs, e.g., delivering 2 sgRNAs for double nicking,

mixdifferent constructs up to 500 ng at equimolar ratios before transfection.

5. It is important to include transfection controls, such as untransfected

wells and GFP plasmid, as well as experimental controls, such as Cas9n

without guides or guides alone, in these experiments. Transfecting in

technical triplicates will facilitate analysis.

6. Within 6 hof transfection, change themedia to 2 mLof fresh, prewarmed

D10media per well. At 24 h, estimate transfection efficiency by examin-

ing GFP-transfected wells. >80% of cells should be GFP positive.

7. Harvest the cells for genomic DNA extraction and/or downstream anal-

ysis at 48–72 h. If harvesting a 72-h time point, change the media again at

48 h to maintain optimal cell health.

When working with different cell types, alternative transfection reagents

should be compared for efficiency and toxicity. It may also be informative

to titrate pSpCas9n(sgRNA) in order to find the optimal transfection con-

centration with highest efficacy.

5. CELL HARVEST AND DNA EXTRACTION

1. Harvest cells in 24-well plate format by aspirating the medium

completely and adding 100 μL of TrypLE Express reagent (Life Tech-

nologies 12604013) to facilitate dissociation.
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2. Collect the cell suspension in a 1.5-mL Eppendorf tube and spin for

5 min at 1500� g, aspirate the supernatant completely, and resuspend

the cell pellet in 200 μL DPBS (Life Technologies 14190-250) to wash.

3. Spin the cell suspension again for 5 min at 1500� g and resuspend in

50 μL QuickExtract (Epicentre QE09050).

4. Transfer theQuickExtract suspension to a 0.2-mL PCR tube and extract

genomic DNA according to the following thermocycler protocol

adapted from the manufacturer’s instructions: 65 �C for 15 min,

98 �C for 10 min.

5. Centrifuge the reaction product to pellet cell debris and transfer cleared

supernatant into a fresh tube for further analysis.

6. Determine the DNA concentration of the extraction by spectrophotom-

etry and normalize to 100–200 ng/μL with ddH2O.

6. SURVEYOR INDEL ANALYSIS

The SURVEYOR assay (Transgenomic 706025) is a method for

detecting polymorphisms and small indels. DNA samples are PCR-

amplified, and the products are heated to denature and cooled slowly

to form heteroduplexes. Mismatched duplexes are then cleaved by the

SURVEYOR nuclease, and cleavage products are analyzed by gel

electrophoresis.

1. Perform PCR on genomic DNA. The primers for SURVEYOR PCR

should ideally produce a clean �500 bp amplicon in untransfected cell

samples. Genomic PCR primers may be designed using software such

as Primer3. Set up a 50 μL reaction containing 1 μL of each 10 μM
SURVEYOR primer, 10 μL Herculase II Reaction Buffer 5�
(Agilent 600675), 0.5 μL of 100 mM dNTP, 0.5 μL Herculase II Fusion

Polymerase, 2 μL of 25 mM MgCl2, and 36 μL ddH2O. Denature for

20 s at 95 �C, anneal for 20 s at 60 �C, and extend for 20 s at 72 �C.
2. Note that, since SURVEYOR was designed to detect mutations, it is

crucial to use a high-fidelity polymerase to avoid false positives.

3. Run 2 μL of the PCR product on a 1% agarose gel to ensure that a single

product of expected size has formed.

4. Purify the PCR product using the QIAquick PCR Purification Kit

(28104) according to the instructions provided. Measure the DNA con-

centration of the eluate by spectrophotometry and normalize to 20 ng/μL
using ddH2O.
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5. Mix 18 μL of normalized PCR product with 2 μL Taq PCR buffer,

10�, for a 20 μL reaction total. Melt and rehybridize the products grad-

ually in a thermocycler: melt at 95 �C for 10 min, then ramp the tem-

perature down to 85 �C at a rate of�0.3 �C/s. Hold at 85 �C for 1 min,

then ramp to 75 �C at 0.3 �C/s. Hold at 75 �C for 1 min, then ramp to

65 �C and so on, until the temperature reaches 25 �C. From 25 �C, ramp

down to 4 �C at 0.3 �C/s and hold.

6. Mix 2.5 μL of 0.15M MgCl2, 0.5 μL ddH2O, 1 μL SURVEYOR

nuclease S, and 1 μL SURVEYOR enhancer S with all of the annealed

product from step (5) for a 25 μL total reaction volume. Perform the

Figure 8.2 Double nicking reduces off-target modification. (A) Diagram of a Cas9n
D10A double-nicking sgRNA pair designed for the human EMX1 locus. Guide sequences
are shown in blue, demonstrating a 23-bp offset. The PAM is shown in pink, and nicking
sites are represented by red triangles. Five known genomic off-target sites (Hsu et al.,
2013) for sgRNA 1 are listed. (B) Example SURVEYOR results showing modification of the
EMX1 locus by Cas9 WT and Cas9n along with sgRNA 1 and/or 2. (C) Deep sequencing
quantification of off-target modifications at five known off-target sites by Cas9 WT and
sgRNA 1 or Cas9n with sgRNAs 1 and 2. Adapted with permission from Ran et al. (2013).
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digestion by incubating the reaction at 42 �C for 30 min. Samples that

have mutations within the rehybridized PCR amplicons will be cleaved

by SURVEYOR.

7. The digestion products can be mixed with an appropriate loading dye

and visualized by electrophoresis on a 4–20% polyacrylamide TBE gel

(see example, Fig. 8.2B).

8. Genome modification rates can be estimated first by calculating the rel-

ative intensities of digestion products a and b and the undigested band c.

The frequency of cutting fcut is then given by (a+b)/(a+b+ c). The fol-

lowing formula, based on the binomial probability distribution of duplex

formation, estimates the percentage of indels in the sample.

% indel¼ 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� fcutð Þ

p� �
100

7. HDR AND NON-HDR INSERTION USING Cas9n

A single-stranded oligodeoxynucleotide (ssODN) has a high effi-

ciency as a template for homologous recombination, though linearized plas-

mid vectors can also be used. In some cell types, a single nickase may

stimulate a targeted homologous repair event in the presence of a donor

template. In others, such as human embryonic stem cells, a double-stranded

break mediated by double nicking may be required to promote efficient

HDR (Ran et al., 2013). The considerations for choosing double-nicking

sgRNA pairs for HDR are similar to those for gene knockdown by NHEJ,

with the additional requirement that one of the nicks must occur within

�20 bp of the HDR insertion site. In 293FT cells, double-nicking-mediated

HDR can be comparably efficient to wild-type Cas9-mediated HDR.

Nicking Cas9 enzymes are well suited to generating highly precise mod-

ifications. Since HDR typically occurs at low efficiency in the best cases, we

also provide pSpCas9n plasmids encoding the polycistronic 2A linker

followed by GFP and puromycin markers (Addgene #48140 and 48141)

in order to facilitate enrichment of modified cells.

HDR in mammalian cells proceeds via the generation of 30 overhangs
followed by strand invasion of a homologous locus by the 30 end. It is there-
fore possible that the generation of 30 overhang products by N863A-

mediated double nicking could increase HDR efficiency.
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1. ssODNhomology arms should be designed to be as long as possible, with

at least 40 nucleotides of homology on either side of the sequence to be

introduced. The Ultramer service provided by IDT allows the synthesis

of oligos up to 200 bp in length. Homology templates should be diluted

to 10 μM and stored at �20 �C (see design example, Fig. 8.3).

2. Delivery by nucleofection is optimal for ssODNs. The 4DNucleofector

X Kit S (Lonza V4XC-2032) can be used for HEK293FT cells seeded in

6-well tissue-culture-treated plates. The manufacturer provides an opti-

mal protocol for nucleofection of these and other cell types.

3. Mix 500 ng total pSpCas9n(sgRNA) plasmids with 1 μL of 10 μM
ssODN for nucleofection.

8. ANALYSIS OF HDR AND INSERTION EVENTS

HDRoutcomes can be assessed and utilized in a variety of ways. Here,

the FACS isolation of clonal pSpCas9n(sgRNA)-GFP 293FT cells is

described. It is important to note that FACS procedures can vary between

cell types.

1. Prepare FACS media (D10 without phenol red to facilitate fluores-

cence sorting): DMEM, high glucose, no phenol red (Life Technolo-

gies 31053-028) supplemented with 10% vol/vol fetal bovine serum

and 10 mM HEPES supplemented with 1% penicillin–streptomycin

(Life Technologies 15140122).

2. Prepare 96-well plates for clone sorting by adding 100 μL standard D10

media to each well.

3. 24 h after the transfection in Sections 7.2 and 7.3, aspirate the medium

completely and dissociate the cells using sufficient TrypLE Express to

cover the growth surface minimally.

Figure 8.3 General design of ssODN HDR templates. The ssODN consists of an insertion
sequence (red (dark gray in the print version)) flanked by homology arms on the left and
right sides (at least 40 bp each). The homology between the ssODN and its targeting
region is indicated by black dashes. Double-nicking Cas9 target sites are shown in blue
(light gray in the print version), and their corresponding PAM sequences are shown in
pink (light gray in the print version). Nicking sites are represented by red (dark gray in
the print version) triangles.
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4. Stop trypsinization by adding D10 medium, transfer the cells to a fresh

15-mL tube, and continue triturating gently 20 times. It is critical that

the cells are in a single-cell suspension before proceeding.

5. Spin the cells for 5 min at 200� g, aspirate the supernatant completely,

and resuspend the pellet thoroughly and carefully in 200 μL FACS

medium.

6. Filter the cells through a cell strainer (BD Falcon 352235) to filter out

cell aggregates and place the cells on ice.

7. Sort single cells in the plates prepared in (2). The FACSmachine can be

gated on GFP+ cells in order to enrich for transfected cells. Wells can

be visually inspected to check for the presence of one cell.

8. Incubate and expand the cells for 2–3 weeks, changing media to fresh

D10 as necessary.

9. When cells exceed 60% confluence, clonal populations can be passaged

into replica plates containing fresh D10 media. Dissociate cells, passage

20% of the cells into replica plates, and conserve 80% for DNA extrac-

tion as described in Section 5.

10. Genotyping can be performed by PCR amplification of the locus of

interest, PCR purification, and Sanger sequencing of the products.

9. TROUBLESHOOTING

1. Colonies form on the negative control plate while cloning targets into

pSpCas9n.

a. The presence of negative colonies generally indicates an incomplete

restriction digestion of the backbone plasmid. The Golden Gate

reaction can be extended for 20–25 cycles in order to increase the

efficiency of digestion. The amount of restriction enzyme used

can be increased, though the volume of enzyme should not exceed

20% of the total reaction volume.

b. Retransform the Cas9 backbone plasmid, isolate a new preparation

of plasmid DNA, and sequence-verify the restriction site.

2. The transfection efficiency of Cas9 reagents is low.

a. Low transfection efficiency may be the norm for some cell lines, and

especially primary cells or stem cell lines. Cell populations can be

enriched for transfected cells by using pSpCas9n(BB)-GFP or

pSpCas9n(BB)-Puro plasmids to FACS on GFP fluorescence or per-

form antibiotic selection.
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3. Double nicking does not produce indels.

a. The individual double-nicking sgRNAs should be tested with the

wild-type context to ensure that each of them functions separately

as a valid Cas9 guide.

b. Check the spacing of the sgRNA pair. Double nicking performs

optimally when the guides are spaced 20 bp apart or less, and the

guides should be oriented such that their respective 50 PAM

sequences face away from each other.

4. Efficiency of HDR is low.

a. Silent mutations may be introduced within the target site on the

ssODN to prevent cleavage of the successfully recombined

genomic site.
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Abstract

Thousands of DNA breaks occur daily in mammalian cells, including potentially tumor-
igenic double-strand breaks (DSBs) and less dangerous but vastly more abundant
single-strand breaks (SSBs). The majority of SSBs are quickly repaired, but some can
be converted to DSBs, posing a threat to the integrity of the genome. Although SSBs
are usually repaired by dedicated pathways, they can also trigger homologous recom-
bination (HR), an error-free pathway generally associated with DSB repair. While
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HR-mediated DSB repair has been extensively studied, the mechanisms of HR-mediated
SSB repair are less clear. This chapter describes a protocol to investigate SSB-induced HR
in mammalian cells employing the DR-GFP reporter, which has been widely used in DSB
repair studies, together with an adapted bacterial CRISPR/Cas system.

1. INTRODUCTION

Mammalian cells endure continuous assault on the integrity of their

genomes exerted by exogenous agents such as ionizing radiation, chemicals,

and UV light. Additionally, by-products of endogenous metabolic activities

(e.g., reactive-oxygen species and free radicals) and cellular processes that

directly involve DNA (e.g., replication and transcription) cause DNA dam-

age (Horton et al., 2008). Among the most dangerous, but least abundant (an

estimated ten per cell per day), are DNA double-strand breaks (DSBs). By

contrast, tens of thousands of less dangerous DNA single-strand breaks

(SSBs) occur daily in mammalian cells (Caldecott, 2008). SSBs frequently

arise as intermediates in excision repair of oxidatively damaged DNA bases

(Hegde, Hazra, & Mitra, 2008), but may also form due to failed reactions of

DNA maintenance enzymes, such as topoisomerase I (Pommier et al.,

2003). Although SSBs, as such, do not pose a serious threat to the integrity

of the genome, replication of nicked DNA can result in formation of a DSB

(Haber, 1999; Saleh-Gohari et al., 2005).

Unless repaired in an appropriate manner, DSBs can cause chromosome

loss or potentially cancer-causing chromosome rearrangements (Bunting &

Nussenzweig, 2013;Weinstock, Richardson, Elliott, & Jasin, 2006). Molec-

ular mechanisms of DSB repair have been investigated extensively in mam-

malian cells using rare-cutting endonucleases, primarily I-SceI, to introduce

DSBs into the genome (Liang, Han, Romanienko, & Jasin, 1998; Rouet,

Smih, & Jasin, 1994). These and other studies lead to the conclusion that

cells have two robust DSB repair pathways, homologous recombination

(HR) and nonhomologous end joining (NHEJ). NHEJ involves processing

of the broken DNA ends followed by ligation to seal the break (Deriano &

Roth, 2013; Lieber, 2010). Because end processing can lead to loss of DNA

sequences, NHEJ is often considered to be error-prone, although it is cer-

tainly capable of precise DSB rejoining (Bétermier, Bertrand &

Lopez, 2014).

HR involves a seemingly more complex set of enzymatic reactions that

uses an intact DNA strand, usually the sister chromatid, to faithfully restore

the original sequence at the break site ( Jasin &Rothstein, 2013; San Filippo,
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Sung, & Klein, 2008). Unlike NHEJ, which is functional throughout the

cell cycle, HR activity is limited to the S and G2 phases. HR is initiated

by resection of the 50 DNA ends to give rise to 30 single-stranded (ss)

DNA overhangs. In subsequent steps, the resected strand invades an intact,

homologous DNA template, and forming heteroduplex DNA. The invad-

ing strand then acts as a primer for repair synthesis from the template,

followed by the dissolution of the heteroduplex, reannealing of the newly

synthesized strand to the second end of the DNA, and sealing of

remaining gaps.

Like DSBs, endonuclease-induced SSBs also stimulate HR in mamma-

lian cells (Davis & Maizels, 2014; McConnell Smith et al., 2009; Metzger,

Stoddard, & Monnat, 2013). Interestingly, the mechanistic requirements of

SSB-induced HR vary depending on whether the available template DNA

is single or double stranded (Davis &Maizels, 2014). AlthoughDSB and SSB

repair pathways likely involve some mechanistically distinct but also over-

lapping steps, how nicks trigger HR is not well understood. For instance,

it is unclear whether SSB-induced HR involves formation of a DSB inter-

mediate or whether DNA replication influences the process.

One of the most common approaches to studying DSB-induced HR

involves the use of a GFP reporter, DR-GFP, which allows flow

cytometry-based detection of HR stimulated by I-SceI endonuclease-

induced DSBs (Pierce & Jasin, 2005; Pierce, Johnson, Thompson, &

Jasin, 1999; Fig. 9.1A). The recent adaptation of the bacterial adaptive

immunity system, CRISPR/Cas (clustered regularly interspaced short

palindromic repeats/CRISPR-associated), has enabled straightforward

induction of DSBs and SSBs at desired loci by the RNA-guided Cas9 endo-

nuclease (Gasiunas, Barrangou, Horvath, & Siksnys, 2012; Jinek et al., 2012;

Mali, Yang, et al., 2013; Hsu, Lander, & Zhang, 2014). Here, we adapt the

DR-GFP reporter for measuring both DSB- and SSB-induced HR, using

wild-type Cas9 endonuclease and Cas9 nickases, respectively.

2. CLONING THE NICKASE AND CATALYTICALLY DEAD
VARIANTS OF Cas9

2.1. The Cas9 endonuclease
Cas9 forms a nucleoprotein complex with a single guide RNA (sgRNA)

containing a 19 nt sequence that determines binding specificity based on

Watson–Crick base pairing (Cong et al., 2013; Jinek et al., 2012; Mali,

Yang, et al., 2013; Fig. 9.1B). With the commonly used Cas9 protein from
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Streptococcus pyogenes (SpCas9), the only sequence requirement in the geno-

mic target is an NGG (or, less optimally, an NAG) PAM motif (where

N signifies any nucleotide) directly downstream from the binding sequence

(Fig. 9.1B). Cas9 contains two catalytic domains, the modular RuvC-like

domain and the C-terminal HNH-like domain. Each domain cleaves one

of the DNA strands, resulting in a blunt-ended DSB or short overhang

3 bp upstream of the PAM motif (Fig. 9.1B). Mutation of the active site

in either catalytic domain turns wild-type Cas9 (Cas9WT) into a nicking

enzyme (nCas9), while mutating both active sites renders it catalytically dead

(dCas9), but still able to efficiently bind DNA, a feature that has been

exploited for dCas9-mediated transcription regulation and visualization of

DNA sequences in living cells (Chen et al., 2013; Mali, Aach, et al.,

2013). The Cas9D10A variant with a mutation in the active site of the

RuvC-like domain cleaves the DNA strand complementary to the sgRNA-

binding sequence, while Cas9H840A with a mutation in the HNH-like

domain cleaves the noncomplementary strand, and Cas9D10A/H840A is

catalytically dead ( Jinek et al., 2012).

PAM 

Cas9D10A

cleavage

Cas9H840A

cleavage

iGFP

DSB: I-SceI or Cas9
SSB: Cas9D10A or H840A

A B

HR

19 nt recognition site 
sgR

N
A

SceGFP

iGFPGFP+

DR-GFP

}

Figure 9.1 Overview of the DR-GFP reporter and the RNA-guided Cas9 endonuclease.
(A) The DR-GFP reporter consists of two copies of the GFP gene in tandem arrangement.
The first copy (SceGFP) is inactive due to the presence of a stop codon within the I-SceI
cleavage site (red bar (dark gray in the print version)), while the second copy (iGFP) is
truncated at both ends. After cleavage within SceGFP by I-SceI or a Cas9 nuclease, HR
uses iGFP as a template to restore the GFP open reading frame. (B) Cas9 nuclease has
two catalytic domains, with each domain cleaving a single DNA strand guided by a short
RNA (sgRNA, green (gray in the print version)) containing 19 nt complementary to the
target site. Mutation of either catalytic domain (D10A or H840A) turns Cas9 into a
nickase (as indicated), while mutation of both residues makes it catalytically dead
(not shown). Cas9 requires a PAM motif (NGG) immediately downstream of the recog-
nition site (red (gray in the print version)).
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There are two widely used sets of Cas9 expression vectors for mamma-

lian cells available from Addgene (www.addgene.com), both of which

include a codon-optimized Cas9 cDNA sequence. The set generated by

the Zhang laboratory (www.addgene.org/crispr/zhang) is a bicistronic sys-

tem wherein both Cas9 and sgRNA are expressed from a single plasmid.

The advantage of this system is that only one plasmid needs to be generated

and transfected if one type of Cas9 or sgRNA is to be used. However, this

can also be disadvantageous if the experimental design requires using differ-

ent Cas9 variants (e.g., for generating both DSBs and SSBs) or sgRNAs

because multiple plasmids will need to be generated. The second commonly

used set of Cas9 expression vectors, generated by the Church Laboratory

(http://www.addgene.org/crispr/church), has separate plasmids for Cas9

and sgRNA expression. We routinely use the Church plasmid set, given

our comparison of multiple Cas9 variants and sgRNAs, and the following

protocol is based on these reagents. To obtain Cas9H840A and catalytically

dead Cas9, we mutated the available wild-type and Cas9D10A variants,

respectively, as described below.

2.2. Generating Cas9H840A and Cas9D10A/H840A expression
vectors

Step 1 Obtain the wild-type (ID 41815) and D10A (ID 41816) variants of

Cas9 and empty sgRNA expression plasmid (ID 41824) from

Addgene. Prepare plasmid stocks using midi- or maxi-prep kit of

your choice. (We routinely use Life Technologies DNA purifica-

tion kits.)

Step 2 Order the following primers to sequence and generate mutant Cas9

nucleases:

Cas9mutF 50-GACGTGGATGCTATCGTGCCCCAGTCTTTT
CTCAA-30

Cas9mutR 50-AGCATCCACGTCGTAGTCGGAGAGCCGATT

GATGTCCAG-30

Cas9seqF1 50-GCTGTTTTGACCTCCATAGAAG-30

Cas9seqF2 50-TGATAAGGCTGACTTGCGG-30

Cas9seqF3 50-AGACGCCATTCTGCTGAGTG-30

Cas9seqF4 50-CGCAAATCAGAAGAGACCATC-30

Cas9seqF5 50-GAACGCTTGAAAACTTACGC-30
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Cas9seqF6 50-GCCCGAGAGAACCAAACTAC-30

Cas9seqF7 50-GGCTTCTCCAAGGAAAGTATC-30

Cas9seqF8 50-CGTGGAACAACACAAACACTAC-30

Cas9seqR1 50-ACTGTAAGCGACTGTAGGAG-30

Both mutagenesis primers (Cas9mutF and Cas9mutR) include 15 nt over-

lapping overhangs that are necessary for ligation-independent cloning using

In-Fusion method (see Step 2 in Section 2.3).

2.3. Cloning and verifying the constructs
Step 1 Setup the following two PCR reactions using a high-fidelity poly-

merase, such as in the iProof polymerase kit from Bio-Rad.

Cas9WT or Cas9D10A DNA (10 ng)

Cas9mutF primer (200 nM)

Cas9mutR primer (200 nM)

dNTPs (200 nM)

10� reaction buffer (5 μL)
H2O (fill up to 25 μL)
iProof polymerase (0.2 μL)

Run PCRs in a heated-lid PCR thermocycler using the follow-

ing program:

1. 98 �C for 30 s

2. 98 �C for 30 s

3. 55 �C for 30 s

4. 72 �C for 5 min

5. Repeat Steps 2–4 thirty times

6. 72 �C for 10 min

7. 12 �C 1.

Electrophorese the PCR products on a 0.8% agarose gel and

excise the 9.5-kb band. Purify the DNA using a gel extraction

kit (e.g., from Life Technologies).

Step 2 Circularize the purified PCR products using the In-Fusion HD

cloning kit (Clontech), following the manufacturer’s instructions.

Transform competent bacteria using the obtained circularized

DNA solution and streak on LB plates containing 100 μg/mL

ampicillin. Typically, 10–100 colonies can be found on the plate

after overnight incubation. Pick five colonies from each plate,
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inoculate 5 mL LB medium, incubate overnight at 37 �C, and iso-
late DNA using method of your choice. Verify the sequence of

DNA isolated from two clones by sequencing using the primers

shown in Section 2.2.

Step 3 After verifying the correctlymutatedCas9H840A andCas9D10A/H840A

sequences, prepare plasmid stocks. DNA obtained by using Life

Technologies midi- andmaxi-prep kits is suitable for direct transfec-

tion without further purification steps.

3. SELECTION OF THE TARGET SITE AND CLONING
OF sgRNA CONSTRUCTS

3.1. Selecting suitable target sequences
Obtain the DR-GFP reporter from Addgene (ID 26475). To confirm

proper functioning of the DR-GFP assay, we recommend also obtaining

the I-SceI expression vector (pCBASceI; ID 26477). The following

sequence in the SceGFP part of the DR-GFP reporter (Fig. 9.1A) contains

the cleavage site for I-SceI, which gives rise to 4 bp overhangs (demarcated

by gray arrowheads).

5’-...AGCGTGTCCGGCTAGGGATAACAGGGTAATACC...-3’
3’-...TCGCACAGGCCGATCCCTATTGTCCCATTATGG...-5’

Cas9 recognizes a 19 bp DNA sequence that binds the sgRNA followed

by the NGG PAM motif in the following format: 30-
NNNNNNNNNNNNNNNN.NNN-NCC-50, where the arrowhead

indicates the cleavage site. (See Jinek et al. (2012) for precise in vitromapping

of cleavage sites on both strands.) A PAM motif (underlined) is fortuitously

present next to the I-SceI cleavage site, such that SceGFP can be targeted for

cleavage by Cas9 using the 19 nt sequence (bold) adjacent to the PAMmotif

in the sgRNA. With this approach, Cas9 cleavage (open and filled arrow-

heads) results in a DSB at almost an identical position as I-SceI. Moreover,

SceGFP is specifically cleaved because the iGFP repair template has five mis-

matches with the sgRNA and in addition the AGG PAM motif is not pre-

sent. The Cas9D10A and Cas9H840A nick the DNA at the filled (black) and

open arrowheads, respectively.

An alternative target sequence located on the opposite DNA strand is

shown below. In this case, although the PAM motif (underlined) is present,

iGFP has ten mismatches with the sgRNA sequence.
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5’-...AGCGTGTCCGGCTAGGGATAACAGGGTAATACC...-3’
3’-...TCGCACAGGCCGATCCCTATTGTCCCATTATGG...-5’

In the following part of the protocol, we use the first target sequence.

3.2. Cloning the guide RNA constructs
The empty sgRNA expression vector generated by the Church Labora-

tory contains an U6 pol III promoter that drives the expression of the

sgRNA. A specific protocol for cloning the target sequence into the

sgRNA expression vector is provided using two specific 60 nt oligonucleo-

tides (oligos) (http://www.addgene.org/static/cms/files/hCRISPR_gRNA_

Synthesis.pdf ) and we have successfully used this protocol. Below we detail

an alternative protocol that requires one 57-nt oligo containing the specific

target sequence and three short-universal oligos that can be reused for

other target sequences. Cloning the new sgRNA expression construct

involves running two separate PCR reactions using the empty sgRNA

expression vector as a template. The first reaction with two universal

primers produces a universal 2-kb fragment (which hence can be repeti-

tively used). The second reaction with the specific forward primer and

a universal reverse primer produces a 2-kb fragment containing

the target 19-nt sequence. Both fragments, containing 15-nt overlaps,

are then combined together using the seamless In-Fusion method, giving

a circular final plasmid. (See also Zhang, Vanoli, LaRocque, Krawczyk, &

Jasin, 2014.)

Step 1 Order the following specific primer sgRNAF1 SceGFP containing

the sequence for targeting SceGFP. Bold font indicates the specific

target sequence, such that for each new sgRNA construct only this

sequence needs to be changed.

50-AAGGACGAAACACCGGTGTCCGGCTAGGGATAAC

GTTTTAGAGCTAGAAATAGCAAG-30

Step 2 Order the following universal primers:

sgRNAF2 50-CGTCAAGAAGGCGATAGAAG-30

sgRNAR1 50-CGGTGTTTCGTCCTTTCCAC-30

sgRNAR2 50-ATCGCCTTCTTGACGAGTTC-30

sgRNAseq 50-TGGACTATCATATGCTTACCGTAAC-30
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Step 3 Setup the following two PCR reactions using a high-fidelity poly-

merase (e.g., from the iProof polymerase kit from Bio-Rad).

PCR 1 (specific)

empty sgRNA vector (10 ng)

sgRNAF1SceGFP (specific) primer

(200 nM)

sgRNAR2 (universal) primer (200 nM)

dNTP (200 nM)

10� reaction buffer (5 μL)
H2O (fill up to 25 μL)
iProof polymerase (0.2 μL)

PCR 2 (universal)

empty sgRNA vector(10 ng)

sgRNAF2 (universal) primer

(200 nM)

sgRNAR1 (universal) primer (200 nM)

dNTP (200 nM)

10� reaction buffer (5 μL)
H2O (fill up to 25 μL)
iProof polymerase (0.2 μL)

Run PCRs in a heated-lid PCR thermocycler using the follow-

ing program:

1. 98 �C for 1 min

2. 98 �C for 30 s

3. 56 �C for 30 s

4. 72 �C for 1 min

5. Repeat Steps 2–4 thirty times

6. 72 �C for 5 min

7. 12 �C 1.

Electrophorese the PCR products on a 1% agarose gel and

excise the 2-kb bands. Purify the DNA using a gel extraction kit

(e.g., from Life Technologies).

Step 4 Combine the two purified PCR products using the In-Fusion HD

cloning kit (Clontech), as described in Step 2 of Section 2.3. The

sgRNA vector is kanamycin resistant, so use LB plates and media

containing 50 μg/mL kanamycin. Verify the sequence of the

sgRNA from two clones using the primer sgRNAseq.

Tip: The universal 2-kb fragment produced by PCR 2 can be

reused for subsequent cloning reactions, such that for each new

sgRNA vector only one (specific) PCR reaction needs to be run.

4. CELL TRANSFECTION AND FACS ANALYSIS

We describe the protocol for transfection of HEK293T cells using the

Nucleofector-2b (Lonza). Either the commercial (Lonza) or home-made

(Box 9.1) nucleofection solution can be used for transfections. In the case
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of HEK293T cells, we used program A-023 and the home-made

nucleofection solution. Other cells might require different programs that

can be found on the Lonza Website or in the program list of the

nucleofector. Table 9.1 shows optimized nucleofection conditions for addi-

tional cell lines that we tested.

BOX 9.1 Home-Made Nucleofection Solution
Prepare the following:
Solution I

2 g ATP-disodium salt

1.2 g MgCl2•6H2O

10 mL H2O
Sterilize the solution by passing it through a 0.22 μm filter and split into 80 μL
aliquots. Store at �20 �C.
Solution II

6.0 g KH2PO4

0.6 g NaHCO3

0.2 g glucose
300 mL H2O

Adjust the pH to 7.4 with NaOH and add water to a final volume of 500 mL. Filter
sterilize and split into aliquots of 4 mL. Store at �20 �C.
On the day of the experiment, thaw and mix one aliquot of Solution I with one
aliquot of Solution II. The final solution can be stored at 4 �C for up to 2 weeks.
Prewarm the final solution to 37 �C before transfection.

Table 9.1 Optimized nucleofection conditions for tested cell lines

Cell line
Nucleofector
program DNA quantity (μg) Cas9:sgRNA:DR-GFP

HEK293T A-023 1:1:2

U2OS X-001 1:1:1 or 1:1:2

AA8 (Chinese

hamster cells)

D-023 5:2.5:5

Mouse embryonic

stem cells

A-023 4:4:4 (maximum cell survival) or 15:5:5

(maximum transfection efficiency)
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4.1. Transfection
See Fig. 9.2A for an overview of the procedure.

Step 1 Subculturing cellsprior to transfection:Plate6–7millioncells intoa150-mm

tissue culture plate 24 h before transfection such that cells are 70–80%

confluent on the day of transfection. Subculturing cells 24 h before

transfection significantly improves reproducibility of results.

Step 2 Preparation of tissue culture plates and media: For each sample, prepare a

60-mm tissue culture plate containing 2.5 mL culture media at least

1 h before transfection. Incubate at 37 �C to warm up and to equil-

ibrate the pH of the culture medium. In addition, warm up extra

culture medium and nucleofection solution to 37 �C.
Step 3 Preparation of the plasmid mix: In the case of HEK293T cells, Cas9

endonuclease (either WT, D10A, H840A or D10A/H840A), and

sgRNA plasmids are used in a ratio of 1:1 (1 μg:1 μg). The amount

and ratio of plasmids may need to be adjusted depending on the cell

line used (e.g., Table 9.1). Unless cells harbor a genomically inte-

grated DR-GFP copy, the DR-GFP plasmid is also cotransfected

(2 μg). (Note: HEK293 DR-GFP cells have been developed,

Nakanishi et al., 2005). As controls, we use either Cas9WT with

an sgRNA expression vector containing no target sequence or

Cas9D10A/H840A with the specific sgRNA of interest. For every sam-

ple, prepare a separate sterile eppendorf tube with the plasmid mix

(Table 9.2), ideally starting with a mix of the common plasmids

(e.g., in Samples 2–5, a mix of DR-GFP and the SceGFP sgRNA

can be prepared and then aliquoted for each sample).

Tip: To confirm proper functioning of the DR-GFP assay, pre-

pare an extra sample with the I-SceI endonuclease expression vec-

tor (pCBASceI, 1 μg). To determine overall transfection efficiency,

prepare an extra sample with any GFP expression plasmid (e.g.,

NZE-GFP, 2 μg).
Tip: Do not exceed the total volume of �10 μL of the plasmid

mix. Larger volumeswill significantly dilute the nucleofection solution

which might lead to reduced or inconsistent transfection efficiencies.

Tip: Do not use very concentrated plasmid stocks to avoid

pipetting errors. Dilute the plasmid stocks if necessary.

Step 4 Preparation of cells for transfection: Trypsinize and count the cells. For

each sample, dispense two million cells into in a sterile conical

15-mL tube and spin down (3 min at 1000 rpm). Carefully aspirate
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Figure 9.2 Representative experiment testing different variants of Cas9 for HR in the
DR-GFP reporter in HEK293T cells. (A) Schematic overview of the experiment. HEK293T
cells were cotransfected with plasmid DNA (Table 9.2) using Nucleofector-2b (Lonza,
program A-023). After 48 h, the percent GFP+ cells, indicative of HR efficiency, was mea-
sured by flow cytometry. (B) FlowJo software was used to analyze the flow cytometry
data. (Left) SSC versus FSC was used to set the gate for live cells. (Middle and Right) FL1
versus FL2 was used to determine the percent GFP+ cells from a control sample (cells
above diagonal line are GFP+). (Middle) Note that there is a relatively high background
when using the plasmid DR-GFP reporter. (Right) The percentage of GFP+ cells is much
higher when DNA damage is induced. (C) Results from three independent experiments.
SSBs created by Cas9D10A and Cas9H840A are capable of inducing HR, albeit at reduced
frequency, as compared to Cas9WT. Error bars represent standard deviation from the
mean.
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Table 9.2 Plasmid mixes for the experiment described in Fig. 9.2 (DNA quantity in microgram in parentheses)
Sample 1 Sample 2 Sample 3 Sample 4 Sample 5 Sample 6 Sample 7

Cas9 WT

(1)

WT

(1)

D10A

(1)

H840A

(1)

D10A/

H840A

(1)

– –

sgRNA Empty

(1)

SceGFP

(1)

SceGFP

(1)

SceGFP

(1)

SceGFP

(1)

– –

DR-GFP (2) (2) (2) (2) (2) (2) –

Other pCBASceI

(1)

+pCAGGS

(1)

NZE-GFP

(2)

+pCAGGS

(2)

To equalize the total amount of DNA in each sample, an empty plasmid (pCAGGS) is added to Samples 6 and 7.



the supernatant, resuspend cells in 2 mL sterile PBS by vortexing at

low speed. Spin down cells and carefully aspirate PBS, leaving the

pellet as dry as possible. Residual PBS dilutes the transfection solu-

tion and might influence the transfection efficiency.

Step 5 Nucleofection: Select the appropriate program on the nucleofector.

Resuspend the prepared plasmid mix in 100 μL nucleofection solu-

tion and transfer to the 15-mL tube containing the cell pellet.

Resuspend the cells gently by pipetting up and down and transfer

to a 2-mm Gene pulser cuvette. Make sure no bubbles are formed

during the transfer as this may reduce transfection efficiency. Place

the cuvette in the nucleofector and press the start button. Remove

the cuvette, gently add 1 mL prewarmed media into the cuvette,

and transfer the cell suspension into the 60-mm culture dish pre-

pared in Step 1. Repeat this step for all experimental samples and

controls. Incubate the cells at 37 �C for 48 h.

Step 6 Flow cytometry: After 48 hmeasure the frequency of GFP+ cells using

a flow cytometer. Any instrument able to excite and detect GFP

fluorescence is suitable. Trypsinize cells and resuspend them in

0.5 mL culture media in a flow cytometer tube. Analyze the samples

using cell line-specific cytometer settings. Forward (FSC) versus

side (SSC) scatter plots are used to select the live cells (Fig. 9.2B).

Typically, 30,000 live cells per sample are analyzed.

4.2. Analysis and interpretation of the results
Data collected with the flow cytometer are analyzed with FlowJo software

(Tree Star). Typical results obtained with HEK293T cells are shown in

Fig. 9.2B. Gate the live cells based on the FSC and SSC (Fig. 9.2B, left

panel). Use the negative control Sample 1 to set the gate for GFP analysis

(Fig. 9.2B, middle panel) and apply the same gate to experimental samples

(Fig. 9.2B, right panel). DSBs induce relatively high levels of HR, either

created by Cas9WT (�17.5%) or I-SceI (�14%). Nicks on the transcribed

(Cas9D10A) or nontranscribed (Cas9H840A) DNA strand are also able to

induce HR in �9.5% and �4% of cells, respectively. These results were

obtained using transient transfection of the DR-GFP reporter, together with

Cas9 and sgRNA vectors, and so cells likely contain multiple copies of the

DR-GFP reporter. Therefore, lower HR frequencies are to be expected

when using cells harboring a single, genomically integrated copy of the

reporter. However, an advantage of cells with an integrated reporter is that
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the GFP+ background in the absence of nuclease expression is very low. It

should be noted that SSBs are usually repaired within minutes (Caldecott,

2008), but nCas9s have the potential to nick the DNA again, in a repetitive

breakage-repair cycle, until HR destroys the Cas9 recognition site while

restoring the GFP open reading frame. Consequently, the induction of

HR by SSBs measured using the DR-GFP reporter may be overestimated

relative to physiological SSBs, which may be rapidly restored by SSB-

specific repair pathways without the intervention of HR.

5. MATERIALS

5.1. Cloning
Primers

Plasmids (Addgene)

Mini and midi-/maxi-prep DNA extraction kit

iProof polymerase kit (Bio-Rad)

Gel extraction kit

In-Fusion HD cloning kit (Clontech)

LB plates and media containing 100 μg/mL ampicillin or 50 μg/mL

kanamycin

Competent bacteria

PCR thermocycler

Incubator for bacteria (37 �C)

5.2. Cell culture, transfections, data collection, and analysis
Plasmids

Sterile eppendorf tubes

Cell type specific culture media

Sterile Trypsin, 0.2%

Sterile PBS

Sterile 15-mL conical tubes

Cell culture dishes, 60- and 150-mm diameter

Commercial (Lonza) or home-made (Box 9.1) nucleofection solution

Gene pulser cuvettes, 2 mm (Bio-Rad)

FACS tubes (if necessary with cell strainer cap; BD falcon)

Nucleofector-2b (Lonza)

FACS analyzer

FlowJo software (Tree Star)
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6. SUMMARY

SSBs can induce HR but the underlying mechanisms are not well

understood. The DR-GFP reporter has been used widely to study factors

involved in DSB-induced HR. In this chapter, we have presented a straight-

forward protocol to assay SSB-induced HR using the Cas9 nicking endo-

nuclease and DR-GFP. This approach can be used to investigate

mechanisms of SSB-induced HR and may be also adaptable to explore other

applications requiring targeted induction of SSBs, such as genome editing.
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Abstract

The use of CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats/
CRISPR-associated protein) for targeted genome editing has been widely adopted
and is considered a “game changing” technology. The ease and rapidity by which this
approach can be used to modify endogenous loci in a wide spectrum of cell types and
organisms makes it a powerful tool for customizable genetic modifications as well as for
large-scale functional genomics. The development of retrovirus-based expression plat-
forms to simultaneously deliver the Cas9 nuclease and single guide (sg) RNAs provides
unique opportunities by which to ensure stable and reproducible expression of the
editing tools and a broad cell targeting spectrum, while remaining compatible with
in vivo genetic screens. Here, we describe methods and highlight considerations for
designing and generating sgRNA libraries in all-in-one retroviral vectors for such
applications.
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1. INTRODUCTION

The rise of functional genetic screens in mammalian cells and animal

models owes a considerable debt to RNA interference (RNAi) technology.

RNAi allows for broad, systemic, and unbiased inquiry into complex bio-

logical systems in a wide variety of contexts due in large part to development

of genome-wide multiplexed pooled short-hairpin RNA (shRNA) library-

based screening methods. Yet despite its proven track record, state-of-the-

art RNAi-based screens have their drawbacks: (1) targets are limited to the

exome; (2) a substantial portion of shRNAs often yield incomplete and

unpredictable knockdown efficiencies, which can be insufficient to elicit

the desired phenotype of interest; (3) many shRNAs have “off-target”

effects that increase the number of spurious hits and lead to erroneous inter-

pretations; and (4) although this can be partially mitigated by increasing the

diversity and gene coverage of shRNA targets, it comes at the expense of

increased library-pool size and assay complexity.

Applying modern genome editing tools to genetic screens aims to solve

many of these problems. While modular transcription factor-based genome

editing technologies such as zinc-finger and transcription activator-like

effector-based nucleases (ZFNs and TALENs, respectively) have been dem-

onstrated to be reliable and powerful on a one-by-one gene targeting basis,

they are all but impractical to implement at a genome-wide scale due to their

inherent bulky, pair-wise, and iterative design parameters. In contrast,

CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats/

CRISPR-associated protein)-based genome editing has shown tremendous

promise as a versatile and practical gene targeting technique that would be

amenable to genetic screening approaches. Based on a bacterial adaptive

immune response that targets invading foreign viral and plasmid DNA,

the type II CRISPR system uses an RNA-guided DNA endonuclease

(Cas9) to cleave DNA in a sequence-specific manner through a �20 nt

RNA–DNA base match ( Jinek et al., 2012). Thus, Cas9 can be readily

programmed to introduce double-stranded breaks in virtually any genomic

locus through simple alteration of a �20-bp cognate single guide RNA

(sgRNA) when coexpressed in a cell (Cong et al., 2013; Jinek et al.,

2013; Mali, Yang, et al., 2013). This inherent flexibility and design simplic-

ity makes CRISPR/Cas9 genome editing easily adaptable for mammalian

whole-genome screens and indeed we are beginning to see its application

in such settings (Koike-Yusa, Li, Tan, Velasco-Herrera, & Yusa, 2013;
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Shalem et al., 2014; Wang, Wei, Sabatini, & Lander, 2014; Zhou et al.,

2014). Here, we present methodology and discuss issues pertaining to the

use of CRISPR/Cas9 for positive-selection screens.

2. ALTERING THE VECTOR DESIGN FOR HIGH-
THROUGHPUT SCREENS

The first step in any successful CRISPR/Cas9-based genetic screen is

choosing the appropriate method of expression of the two key editing com-

ponents, Cas9 and its cognate sgRNA. Two approaches dominate the liter-

ature: either expressing Cas9 and sgRNA from separate vectors or expressing

both in an “all-in-one” vector design. While there are some advantages to

independently expressing each part (e.g. the ability to use two different

selection markers), we opt for simultaneous delivery given the convenience

of a linked single-vector format and, importantly, a more consistent level of

expression of either Cas9 and sgRNA not only in terms of selectability but

also in terms of stoichiometry, the latter of which has been shown to be

important for mitigating off-target cleavage events (Hsu et al., 2013;

Pattanayak et al., 2013). Retroviral plasmids provide a convenient way

for achieving this given their broad tropism, adjustable levels of infections

and expression, and the ability to enrich for permanent and successful inte-

gration with a selectable marker (either fluorescence or drug resistance).

While we have previously reported the construction and characterization

of “all-in-one” retroviral-based vectors coexpressing sgRNAs and Cas9

(from the murine U6 small nucleolar RNA promoter and from the SV40

or Spleen focus-forming virus (SFFV) promoters, respectively) (Malina

et al., 2013), we have since modified their design to better suit high-

throughput screening purposes by engineering unique restriction sites

17 nucleotides upstream of the U6 transcription start site and at the junction

of the crRNA/tracrRNA fusion, in order to facilitate the insertion of oli-

gonucleotides harboring guide sequences, streamlining the process for the

generation of sgRNA-based libraries (Fig. 10.1A and B). To distinguish

these vectors from our first generation pQCiG and pLC series, we refer

to them as pQCiG2 and pLCiG2. These vectors, like their predecessors,

express human codon-optimized Cas9 from Streptococcus pyogenes (SpCas9)

with a 3xFlag epitope tag and two NLS (nuclear localization signal) tags

at the N-terminus. Cas9 expression can be explicitly monitored given that

its transcription is linked to GFP via an EMCV IRES (Fig. 10.1A and B).We

made certain that these subtle changes in sequence would not interfere with
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Figure 10.1 Design of retrovirus vectors for codelivery of Cas9 and sgRNAs that are
compatible with large-scale guide library generation. (A) Schematic diagram of
pQCiG2-based vector driving expression of Cas9, GFP, and sgRNAs. The unique MfeI
and BamHI sites are indicated and are present within the murine U6 promoter and
sgRNA, respectively. Right-angled arrows denote the site of transcription initiation.
The expanded view illustrates the nucleotide sequence spanning a portion of the
mU6 promoter, the start of transcription (G at +1), the 19 nt guide sequence, and
the 50 end of the sgRNA. (B) Schematic diagram of pLCiG2-based lentivirus vector driv-
ing expression of Cas9, GFP, and sgRNAs. The unique SphI and AgeI sites are indicated
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Cas9-driven genome editing by assaying the relative cleavage efficiencies of

the new version compared to the old version using the “traffic light

reporter” (TLR) system, an assay that simultaneously measures the fre-

quency of NHEJ and HDR following a Cas9-induced DSB (Certo et al.,

2011). Both versions of the Cas9/sgRNA retroviral vectors stimulated

NHEJ to similar extents in 293T cells, indicating that the introduced

changes had not impaired editing activity (Figs. 10.1D and E).

Our original sgRNA design incorporated elements from published work

by Church and coworkers (Mali, Yang, et al., 2013; Fig. 10.2A, top design),

but more recent publications have used a significantly altered sgRNA layout.

Two new versions are notable: (1) a version termed sgRNA.2.1, which

extends the crRNA:tracrRNA scaffold by four nucleotides, has been

reported to improve cleavage efficiency but with concomitant decrease in

on-target versus off-target specificity (Pattanayak et al., 2013) and (2) a ver-

sion incorporating the aforementioned extension and which also mutates a

U-rich stretch immediately downstream of the guide sequence, which has

been suggested to function as an RNA Pol III transcription termination sig-

nal (Fig. 10.2A, sgRNA.3). This has been reported to reduce nucleolar

localization of Cas9 (Chen et al., 2013). We evaluated whether these

and cleave within the murine U6 promoter and sgRNA, respectively. (C) A schematic of
the traffic light reporter (TLR) assay (Certo et al., 2011). The sgRNA guide target sequence
is engineered in the GFP open reading frame (ORF) and shifts the reading frame leading
to premature translation termination. The GFP ORF (+1 frame) is fused out of frame to
the T2A ribosome “skipping” sequence (Szymczak-Workman, Vignali, & Vignali, 2012)
and the mCherry ORF (+3 frame). Induction of a DSB at the guide target sequence will
result in mutagenic repair by NHEJ which, in one of three cases, will place the disabled
GFP ORF in-frame with mCherry, yielding mCherry+ cells. Exogenously supplying a
truncated GFP donor plasmid in trans will result in GFP fluorescence as a result of
HDR of the TLR GFP ORF. Since our vectors express GFP as a reporter, we could not score
for HDR activity but rather used the percentage of GFP+ cells as an assessment of
transfection efficiency and mCherry fluorescence as a gauge of relative NHEJ repair
efficiency. Both vectors harbored a previously described guide sequence (TLR:
50GAGCAGCGTCTTCGAGAGTG30) that targets a unique site embedded within the GFP
ORF of the TLR (C) (Malina et al., 2013). (D) Assessment of pQCiG- and pQCiG2-mediated
NHEJ in a stably integrated TLR reporter 293T cell line with a stably integrated TLR
reporter locus. Cells were transfected with pQCiG or pQCiG2 (1.5–3 μg) and analyzed
by flow cytometry 6 days later. GFP fluorescence measures transfection efficiency
whereas mCherry fluorescence scores for NHEJ repair events. n¼3, error bars represent
SEM. (E) Assessment of pLCiG- and pLCiG2-mediated NHEJ in a stably integrated TLR
reporter 293T cell line. Cells were transfected with pLCiG or pLCiG2 and analyzed by
flow cytometry 6 days later. Shown is a representative histogram illustrating the percent
of mCherry+ cells and the mean percent fluorescence. n¼4, error is SEM.
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Figure 10.2 Assessment of NHEJ repair efficiencymediated by different sgRNA variants.
(A) Predicted secondary structure (http://rna.tbi.univie.ac.at/cgi-bin/RNAfold.cgi) of chi-
meric RNAs showing the first guanine arising from the transcription initiation site fol-
lowed by the guide region (N)19, for four different sgRNAs. The open box denotes
the crRNA/tracrRNA junction where a BamHI site was inserted to generate sgRNA.1 (AgeI
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changes would produce any significant functional differences, but could not

detect any differences in gene editing efficiencies among the three sgRNAs

(Fig. 10.2B). In light of this and given our preference to maintain a high ratio

of on-target to off-target specificity, our retroviral vectors retain the original

sgRNA.1 configuration.

3. CONSTRUCTION OF sgRNA LIBRARIES

3.1. Guide sequence prediction
Prediction of guide sequences can be accomplished by manually inspecting

annotated gene sequences (when only a small number of guides is required)

or by using one of several design tools available at the time of this writing

(Table 10.1). In either case, one first locates a sequence of interest bearing

a protospacer-adjacent motif (PAM), which is essential for recognition by

Cas9. Our vectors use a humanized version of Cas9 protein that originates

from S. pyogenes and is the one most frequently used in the literature, owing

to its short PAM target sequence (5
0
NGG30) and thus high prevalence in the

genome ( Jiang, Bikard, Cox, Zhang, &Marraffini, 2013; Jinek et al., 2012).

Although it has been reported that 5
0
NAG30 can also be used as a PAM by

S. pyogenes Cas9, it is much less efficiently recognized ( Jiang et al., 2013),

and probably very rarely so at limiting Cas9 cellular concentrations

(Wu et al., 2014), thus we generally do not consider it when designing guide

sequences. After locating a PAM sequence, the adjacent 20 upstream nucle-

otides to the PAM are chosen as the guide sequence. Should the 20th nucle-

otide not end with guanosine, we forcibly terminate the sequence with a 50

guanosine, which is a necessary requirement for U6 transcription initiation

but has little effect on the rate of target cleavage even when unmatched

(Fu, Sander, Reyon, Cascio, & Joung, 2014; see also Fig 10.1A). Mis-

matches between the PAM proximal region of the target and the sgRNA

are known to more adversely affect Cas9 endonuclease activity (Fu et al.,

2013; Hsu et al., 2013; Jinek et al., 2012; Mali, Aach, et al., 2013;

in the case of pLCiG2). The grey shaded areas denote sequence differences between
sgRNA.1, sgRNA2.1, and sgRNA.3. Note that our sgRNA.2.1 and sgRNA.3 designs differ
from the originals in harboring a BamHI site at the crRNA/tracrRNA junction.
(B) Assessment of normalized NHEJ repair efficiency in a stably integrated TLR reporter
293T cell line. Cells were transfected with pQCiG2 (1.5–3 μg) expressing the indicated
sgRNAs and analyzed by flow cytometry 6 days later. GFP fluorescence was used to track
transfection efficiency, whereas mCherry was used to monitor NHEJ. GFP values (trans-
fection efficiency) ranged from 32% to 51%. n¼3, error bars represent SEM.
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Pattanayak et al., 2013), which lends support to the notion that an 8–12 nts

“seed” sequence upstream of the PAM drives Cas9-mediated cleavage effi-

ciencies ( Jinek et al., 2012; Semenova et al., 2011). In order to minimize

potential off-target cleavage sites, and given the more stringent requirement

Table 10.1 CRISPR/Cas9 guide design tools

Tool name
Web
interface

Target
genomesa URL

Off-target
analysisb

CRISPR design Yes 15 http://crispr.mit.edu

http://www.broadinstitute.

org/mpg/crispr_design/

Yes

E-CRISP Yes 18 http://www.e-crisp.org/E-

CRISP/designcrispr.html

Yes

Cas9 design Yes 7 http://cas9.cbi.pku.edu.cn/

index.jsp

No

CasOT No Any http://eendb.zfgenetics.org/

casot/index.php

Yes

CRISPR sgRNA

design tool

Yes 3 https://www.dna20.com/

eCommerce/cas9/input

No

CasFinder No Any http://arep.med.harvard.

edu/CasFinder/

Yes

flyCRISPR Yes Fly http://flycrispr.molbio.wisc.

edu/tools

Yes

DRSC CRISPR

finder

Yes Fly http://www.flyrnai.org/

crispr/

Yes

ZiFiT Targeter Yes Any http://zifit.partners.org/

ZiFiT/ChoiceMenu.aspx

No

CRISPy Yes CHO http://staff.biosustain.dtu.dk/

laeb/crispy/

Yesc

GT-Scan Yes 32 http://gt-scan.braembl.org.

au/gt-scan/submit

Yes

CHOPCHOP Yes 9 https://chopchop.rc.fas.

harvard.edu/

Yesd,e

aRefers to the number or nature of species that the software allows one to analyze.
bRefers to whether the software is capable of predicting off-target sites based on sequence similarity and
location adjacent to a PAM.
cCan only scan for sites matching 13 nucleotides+NGG.
dCan scan alternate Cas9 PAM motifs.
eCan also output flanking primer sequences to, and identify restriction sites within, the target site.
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for homology between the “seed” region and the sgRNA, we typically heu-

ristically align only the first 12 nucleotides of the chosen sequence plus all

four iterations of the PAM to annotated online genome databases, with

sequences that result in the least number of perfect matches being preferred.

More recent genome-wide ChIP-seq-based analyses have suggested a far

greater tolerance for mismatches driving Cas9 DNA binding, with enriched

genomic regions being frequently characterized by “seed” sequences that

can be as short as five nucleotides, although most of these sites were only

rarely altered when sequenced directly (Kuscu, Arslan, Singh, Thorpe, &

Adli, 2014; Wu et al., 2014). Nevertheless, as a precaution, we recommend

designing at least three sgRNAs for each locus to control for potential off-

target effects. Further points in sgRNA design that should also be

considered:

1. When targeting genes encoding mRNAs, sgRNAs targeting the last

coding exon have been reported to be less effective than those targeting

earlier exons (Wang et al., 2014). As well, we would recommend that

users avoid targeting the region that harbors the first AUG codon since

genes may have in-frame downstream AUG (and even non-AUG) ini-

tiation codons that can be used and give rise to functional truncated

products (Ellison & Bishop, 1996). Rather it is probably a safer bet to

target somewhere in the middle of a gene when disruption of function

is desired.

2. It has been reported that sgRNAs that target the transcribed strand are

less effective than those targeting the nontranscribed strand (Wang

et al., 2014).

3. Be aware that the sgRNAs are transcribed by RNA Polymerase III,

whose termination signal is a stretch of four or more sequential Us

(Nielsen, Yuzenkova, & Zenkin, 2013; Orioli et al., 2011) and guide

sequences that are U-rich have been shown to decrease sgRNA abun-

dance (Wu et al., 2014). Therefore, avoid guides that have stretches of

three or more Us.

4. Recent crystal structure data of sgRNA-bound Cas9 have revealed pro-

tein:RNA interactions between residues Arg71-G18 and Arg447-U16,

which correspond to the 3rd and 5th residue upstream from the crRNA:

tracrRNA scaffold (Nishimasu et al., 2014). This is in line with other

recently reported data that high-performing sgRNAs displayed a prefer-

ence for four purines adjacent to the PAM (Wang et al., 2014), so it

might be worthwhile to prioritize guides with a G residue three nucle-

otides upstream of the PAM, if one has that option when choosing.
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5. sgRNAs with very high or very low-GC content should be avoided

(Wang et al., 2014).

6. Finally, ensure that your guide sequences are absent of restriction sites

used for cloning (MfeI/BamHI or SphI/AgeI).

3.2. Cloning of guide templates
The construction of guide libraries uses either pools of oligonucleotides

derived from small-scale synthesis or from highly parallel approaches

(Fig. 10.3).

3.2.1 Layout of the guide template
The template for cloning into pQCiG2 is: 50CAATTG-

GAGAAAAGCCTTGTTTG(N)19 GTTTTAGAGCTAGGATCCTAGC
30

(where the MfeI and BamHI sites are underlined and 19 nucleotide guide

region represented by N). For pLCiG2, the template is: 50GCATGC-

GAGAAAAGCCTTGTTTG(N)19 GTTTTAGAGCTAACCGGTTAGC
30

(where the SphI and AgeI sites are underlined).

Chip-based
oligonucleotide

synthesis

Single oligonucleotide
synthesis

caattggagaaaagccttgtttGNNNNNNNNNNNNNNNNNNNgttttagagctaggatcctagc
AAAATCTCGATCCTAGGATCGGCTATG

GTATCGCAATTGGAGAAAAGCCTTG

Murine U6 promoter
+1

sgRNA

caattg
CAATTG

ggatcc
TCCTAGG

PCR
amplify

Pool
& 

transduce

Positive
selection

Isolate 
genomic

DNA

Sequence
across guide

Confirm  mutation at the 
endogenous locus

Digest, clone
&

Sequence

mU6 sgRNA

mU6 sgRNA

pQCiG2

MfeI BamHI

Figure 10.3 Schematic representation of sgRNA library generation and pooled screen-
ing strategy. Oligonucleotides are individually synthesized or en masse on a microarray
chip. These are then PCR amplified to incorporate vector compatible restriction sites.
The sequence of the primers and template shown are compatible with cloning into
pQCiG2 (see text for details for cloning into pLCiG2). Library pools of guides are then
used for screening purposes. Following isolation of genomic DNA from positively
selected cells, amplification by PCR across the guide region is performed and the guide
identified by sequencing. Modification at the expected locus is then confirmed using
the T7 endonuclease I assay, SURVEYOR assay, or sequencing of PCR products.
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3.2.2 Initial guide library preparation
Depending on the size and complexity of the required sgRNA library, one

pools oligos ordered either individually prealiquoted in 96- or 384-well dis-

hes (e.g., IDT, Coralville, IA), or synthesized en masse on a chip as an array

and liberated following acid hydrolysis (e.g., Oligomix from LC Sciences

Inc., Houston, TX). In our experience, we get much lower rates of mutant

clones when derived from pools of individually synthesized oligonucleotides

than those from arrays (�80–90% vs. 30–50% produce error-free clones,

respectively).

3.2.3 PCR amplification of pooled oligonucleotide templates
If ordered on an individual basis, oligonucleotides should first be

pooled at an equimolar ratio and then amplified using Forward

(5
0
GTATCGCAATTGGAGAAAAGCCTTG30 for pQCiG2 and

50GTATCGGCATGCGAGAAAAGCCTTG30 for pLCiG2) and Reverse

(5
0
GTATCGGCTAGGATCCAGCTCTAAAA30 for pQCiG2 and

50GTATCGGCTAACCGGTTAGCTCTAAAA30 for pLCiG2) primers

(Fig. 10.3). PCR conditions are as follows:

Reagent amounts

5 μl 10� ThermoPol buffer with MgCl2
2.5 μl Forward Primer (10 μM)

2.5 μl Reverse Primer (10 μM)

1 μl of Oligonucleotide Template (100 ng/μl)
1 μl dNTPs (10 mM)

0.25 μl Vent DNA Polymerase (NEB) (2 U/μl)
37.75 μl dH2O

Thermocycler reaction conditions

94 �C for 3 min (Initial denaturation)

30 cycles of 94 �C for 30 s, 52 �C for 30 s, and 72 �C for 1 min

72 �C for 10 min (Final extension)

The PCR conditions and reagents are slightly different if amplifying oligos

from arrays, and are as follows:

Reagent amounts

10 μl 5� Phusion buffer

1 μl Forward Primer (20 μM)

1 μl Reverse Primer (20 μM)

1 μl Oligo Template (0.5 ng/μl)
1 μl dNTPs (10 mM)

0.5 μl Phusion High-Fidelity DNA polymerase (NEB) (2 U/μl)
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1 μl 30% DMSO

34.5 μl dH2O

Thermocycler reaction conditions

98 �C for 30 s (Initial denaturation)

30 cycles of 98 �C for 10 s, 54 �C for 30 s, and 72 �C for 25 s

72 �C for 5 min (Final extension)

Confirm amplification of the desired PCR products by analyzing an aliquot

(5 μl) on a 2% agarose gel to verify the presence of a single band (76 bp).

3.2.4 Digestion and ligation of the guides into vector backbone
The PCR product is purified using a PCR Purification Kit (e.g., QIAquick

kits [Qiagen] or EZ-10 Spin Column PCR Products Purification Kit [Bio

Basic Inc.]) following the manufacturer’s recommendations and the eluent

digested with MfeI/BamHI-HF or SphI/AgeI (NEB) depending on the

desired target vector. Ligations into the appropriate vector are performed

according to standard techniques (Green & Sambrook, 2012). Make sure

to include a “vector-only” ligation control. Following ligations, 2 μg of gly-
cogen is added to each ligation and the volume is increased to 100 μl with
ddH2O, followed by two consecutive ethanol precipitations and 70% eth-

anol washes. The precipitate is resuspended in 20 μl ddH2O and is ready for

transformation by electroporation.

3.2.5 Assessing ligation efficiency
An aliquot (1 μl) of the ligation is used for a test chemical transformation and

the ratio of colonies from the “vector+ insert” ligation reaction to “vector-

only” reaction is determined. We proceed with large-scale transformation if

we obtain at least a 10:1 ratio of colonies in the “vector+ insert” plate rel-

ative to the “vector-only” plate. We also process at least 24 minipreps and

have them sequenced to assess the quality of the clones and representation of

the library.

3.2.6 Large-scale transformation of the guide library
To generate the guideRNA-expressing retroviral plasmid library as bacterial

clones, we use Electromax-competent DH10B cells for pQCiG2 vectors or

Electromax-competent Stbl4 for pLCiG2 (Life Technologies) and a Bio-

Rad Gene Pulser using the following conditions of 2.0 kV, 200Ω, and

25 μF. We follow the manufacturer’s recommendation using 1 μl of liga-
tion/100 μl of competent cells. From 1 ml of culture following transforma-

tion, aliquots of 1, 2, and 10 μl are taken and plated onto LB+100 μg/ml
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carbenicillin plates to assess the efficiency of transformation. The remaining

culture is kept at 4 �C overnight. Once transformation efficiency has been

determined, the reserved culture material is plated onto large square LB

plates (245 mm�245 mm) containing 100 μg/ml carbenicillin to obtain

1000–2000 (if colonies are to be individually picked) or 10,000 (if colonies

are to be pooled) colonies/plate. We prefer the use of carbenicillin over

ampicillin since it is more stable than the latter and results in fewer satellite

colonies during library generation.

3.2.7 Checking the quality of the guide library
Ninety-six colonies are seeded into deep-well 96-well plates (VWR®

96-Well Deep Well Plates; cat. no.: 82006–448) containing 1.5 ml of

Terrific broth (TB)+100 μg/ml carbenicillin. The plates are sealed with

an air-pore sheet (Qiagen cat. no.: 19571). Following growth in a 37 �C
shaker for 24 h, we isolate plasmid DNA using a QIAprep 96 Turbo

Miniprep Kit (QIAgen), which is then submitted for sequencing.

3.2.8 Bulk harvesting of bacterial-transformed guide library
For some applications, it may be sufficient to harvest the plated colonies in

bulk and use the resulting pool directly in a screen. This is achieved by

pipetting 50 ml of TB+100 μg/ml carbenicillin directly onto each plate

and using a flat rubber policeman to gently scrape the colonies off the plate

into a sterile 2-l flask. The nature of the screen will determine the desired

library complexity, but we use 500 ml of TB+100 μg/ml carbenicillin

per pool aiming for complexities of 10,000–20,000 clones/pool. After

growth at 37 �C for �6 h, the plasmid DNA can be isolated using standard

procedures (Green & Sambrook, 2012) or a commercial maxiprep kit (e.g.,

Plasmid Maxi Kit; Qiagen).

3.2.9 Arraying individual bacterial guide library clones
Although significantly more expensive and labor intensive than a nonarrayed

library, our preference is to generate arrayed, sequence-verified libraries

since these are renewable resources with greater flexibility. Here, individual

colonies are picked into deep-well 96-well plates containing 1.5 ml of

TB+100 μg/ml carbenicillin and covered with an air-pore sheet (Qiagen

cat. no.: 19571). Following growth for 24 h at 37 �C, 50 μl aliquots are
transferred to two 96-well plates (Falcon cat. no.: 353910) containing

50 μl TB+100 μg/ml carbenicillin+50% glycerol, sealed and stored at

�70 �C as Master plates. The remainder of the culture is processed to
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prepare miniprep DNA that is then used for sequencing across the sgRNA

insert. Alternatively, colonies can be picked into 384-well plates containing

65 μl of TB+100 μg/ml carbenicillin. Following growth overnight at

37 �C, 2 μl of a 1/10th dilution of the culture is directly used in a PCR

as template for amplification across the guide sequence. The PCR product

is purified using Agencourt AMPure XP—PCR Purification (Beckman-

Coulter) and used directly for sequencing. The position and identity of each

clone in the Master Plates is recorded.

Once arrayed, the library pools are made by identifying the coordinates

of the clones of interest and then thawing the plates at room temperature.

The plates are then briefly centrifuged, a small hole is made by piercing

through the aluminium foil cover and 1 μl of the desired bacterial culture

corresponding to the clone of interest is removed. The puncture hole is

sealed using a small aluminium foil patch. This method avoids potential well

cross-contamination due to aerosol generation that could arise if the entire

cover was removed. The 1 μl aliquot is used to seed 1 ml of TB+100 μg/ml

carbenicillin and grown at 37 �C to saturation (�24 h). The following day,

the individual bacterial cultures are pooled into a 2-l flask containing 500 ml

TB+100 μg/ml carbenicillin, grown for 6 h and processed for plasmid

DNA isolation.

4. RETROVIRAL TRANSDUCTION OF THE GUIDE LIBRARY

The resulting library is then used for virus preparation using standard

techniques (Barde, Salmon, & Trono, 2001; Swift, Lorens, Achacoso, &

Nolan, 2001). Depending on the viral vector backbone, either helper-free

stable virus producing Phoenix cell line is used (in the case of pQCXiG2-

based libraries), or 293T/17 (ATCC) cells are cotransfected with packaging

and VSV-G envelope vectors (in the case of pLCiG2-based libraries). One

advantage of using pseudotyped lentivirus is the ability to generate large

quantities of library-pool transducing viral supernatant preps which can then

be concentrated, titered, aliquoted, and frozen for later use (for further

details, see Kutner, Zhang, & Reiser, 2009). The viral MOI (multiplicity

of infection) is determined by serial dilution of the preparation on 293T cells

and through measurement of the fraction of GFP expressing cells as deter-

mined by FACS (we aim to get to at least 5–10% GFP+ cells, which is in the

linear range of viral transduction). The amount of cells plated for viral prep-

aration will depend on the desired library complexity: generally speaking,

we want to make enough virus to infect cells at anMOI of�0.2–0.1 (which
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ensures that only one sgRNA is expressed per cell for the vast majority of the

population) with also at least 1000 infected cells/construct (which maintains

the library complexity—see notes below).

5. NOTES ON SCREENING DESIGN PARAMETERS

Each genetic screen will entail designs unique to the respective exper-

iment. Rather than present specifics about one particular screen, it is more

practical to consider general attributes that will impact on most screens:

1. The nature of the phenotype and the strength of the selective pressure. One of the

most important determinants of the success of a screen is how well the

desired phenotype can be distinguished from baseline. It should be

robust and with little variation. Positive-selection screens looking for

cooperating tumor suppressors or lesions that impart drug resistance

embody these features. The time to phenotype onset will dictate the

duration of the experiment and the strength of the selective pressure.

Greater selective pressure enhances the phenotypic shifts in sgRNA rep-

resentation under shorter periods of time, but can also lead to increased

variability among replicates and can lead to a loss of representation of

sgRNA species (especially those at the lower end of abundance) due

to a sudden population bottleneck. This can be partially mitigated by

increasing the number of infected cells per construct. While the optimal

amount of selective pressure will have to be determined empirically in

pilot screens (ideally with help of positive controls), we generally strive

for �25% loss of cell population following a given toxic treatment,

which balances good reproducibility, selective pressure, and mainte-

nance of sgRNA construct abundance.

2. Maintaining library complexity during propagation of cells. Many factors will

determine the appropriate pool size and consequent sgRNA library rep-

resentation in a cell population over the course of the screening process

(e.g., cell line infectability, number of replicates, rate of allele modifica-

tion, etc.). Following a successful screen, we generally will infer the rep-

resentation of sgRNAs through the use of next-generation sequencing.

The number of spurious reads (or baseline noise level) that arise from a

massive parallel sequencer is typically in the range of 50–100 counts, and

therefore as a rule of thumb we typically try to ensure that at least 1000

cells/construct are infected at the onset (which should result on average

in roughly a�10–20-fold increase in sgRNA read counts above baseline

noise). Moreover, if over the course of a screen the cells need to be split,
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it is critical to ensure that at each split the full library representation that

was initially used at the start of the experiment will be maintained. If too

many cells are removed during propagation, the representation of the

library becomes skewed.

3. The availability of positive and negative controls. Although one does not

always have access to positive controls when undertaking novel screens,

their availability will significantly facilitate assay development and opti-

mization. Pilot screens testing a series of serial dilutions of the positive

control can be used to tease out the limits of detection for a given sgRNA

and inform on the required library complexity. As well, we make sure to

include multiple negative controls, both “scrambled” sgRNAs that do

not match to any region in the genome as well sgRNAs that are known

to cleave genes or loci that when disrupted are neutral for most pheno-

types (e.g., AAVS1 for human cells or the ROSA26 locus for mouse).

These are vital to score for the relative increase or decrease in sgRNA

output following a successful screen.

4. Tracking each step. Our vectors harbor a GFP marker (which is neutral in

most settings) allowing us to document infection efficiencies throughout

the experiment.

5. Is monoallelic, biallelic, or multiallelic (in the case of pseudodiploid cells)

modification required for the phenotype of interest? The efficiency of

locus modification by CRISPR/Cas9 in high-throughput screens has

been reported to range from 13% to >90% (Koike-Yusa et al., 2013;

Shalem et al., 2014; Wang et al., 2014; Zhou et al., 2014). Although

the reasons for this variation are unclear, it could relate to differences

in guide targeting efficiency, MOI, cell line, the ratio of Cas9:sgRNA

cellular levels, and the methods of library delivery. Given these potential

issues, it is important to try to understand the phenotype(s) that is

expected and whether all alleles of the target need to be inactivated

and how the delivery system chosen for the screen will impact on this.

6. Different guides to the same target should yield the same phenotype.

If this is not the case, we recommend generating additional sgRNAs

to resolve the discrepancy. A recent publication has indicated that

guide sequences with 17 or 18 nucleotides complementarity (called

“tru-gRNAs”) show reduced mutagenesis at off-target sites without

sacrificing on-target editing efficiencies (Fu et al., 2014) and this feature

could easily be incorporated into guide library design.

7. Be aware that loss of a particular sgRNA can occur during virus gener-

ation, which can happen due to a given sgRNA-affecting viral
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replication and/or packaging, or may simply be due to the inactivation of

an essential host gene in the packaging cell line. Deep sequencing of the

library pool before and after virus production will shed information on

this and is recommended.

8. To date, four large-scale screens have been published using CRISPR/

Cas9 and nonarrayed sgRNA libraries (Koike-Yusa et al., 2013;

Shalem et al., 2014; Wang et al., 2014; Zhou et al., 2014) and there

are several lessons to be learnt from these:

A. Two screens engineered their cell lines to constitutively express

Cas9 (Koike-Yusa et al., 2013; Zhou et al., 2014), whereas a third

engineered a doxycycline-inducible Cas9 in the line of interest

(Wang et al., 2014). Zhang and colleagues performed negative

and positive-selection screens with a delivery system similar to the

one described above by us (Shalem et al., 2014). Developing cell

lines that express Cas9 is more labor intensive and requires pres-

creening of cell clones to identify the ones with highest editing effi-

ciency since this can vary between clones and may be a consequence

of variations in Cas9 expression levels (Zhou et al., 2014). Further-

more, the clonal nature of the cell might influence the phenotypic

outcome of particular screen rendering it less widely applicable.

B. Wei and colleagues (Zhou et al., 2014) also ectopically expressed

OCT1, a transcription factor shown to boost U6 promoter activity

(Lin & Natarajan, 2012) in their line of interest. This added feature

may increase sgRNA expression and should be piloted to assess

whether the gain in sgRNA levels obtained with higher OCT1

levels translates into higher mutation efficiency, which could also

influence the measured phenotype.

C. RNAi was not universally successful in validating the sgRNAs iden-

tified from the screens. The ability to phenocopy the results obtained

with sgRNAs tended to correlate with knockdown efficiency

(Koike-Yusa et al., 2013; Shalem et al., 2014).

D. In one screen, complementation with cDNAs was successful at rev-

erting the phenotype (Koike-Yusa et al., 2013) and may be a better

approach at validating “hits” than using shRNAs, assuming that the

mutant allele is not functioning in a dominant-negative or gain-of-

function manner.

9. The recent description of CRISPR/Cas9 gene editing in mice both

ex vivo (where CRISPR/Cas9 was expressed in cultured primary lym-

phoma cells via retroviral transduction and later reimplanted) and
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in vivo (in which the CRISPR/Cas9 system was delivered via hydrody-

namic injections to directly modify hepatocytes in situ), raises the excit-

ing possibility of performing CRISPR-based sgRNA screens in a live

mammalian model organism (Malina et al., 2013; Yin et al., 2014).

6. DECODING “HITS” FROM POSITIVE SELECTION
SCREENS INVOLVING sgRNA LIBRARY POOLS

Once cells are obtained following a positive selection screen, we iden-

tify the guide sequence responsible for the phenotype by amplifying across

the guide of the integrated retroviral-derived construct in the cells of inter-

est. Genomic DNA from the clone(s) of interest is isolated using standard

techniques (Green & Sambrook, 2012) and the guide region amplified by

PCR. In our experience, the guide region can be amplified quite

specifically.

Reagent amounts

5 μl 5� Phusion Buffer

1 μl Primer Mix (10 μM each; Trigger ID F:
50AGCCCTTTGTACACCCTAAGCCTC30

Trigger ID R: 5
0
CTAACTGACACACATTCCACAGGG30)

0.5 μl dNTPs (10 mM)

1 μl Genomic DNA from pQCiG2 infected cells (100 ng/μl)
0.15 μl of Phusion High-Fidelity DNA polymerase (NEB) (2 U/μl)
17.35 μl ddH2O

Thermocycler reaction conditions

98 �C for 30 s (Initial denaturation)

25 cycles of 98 �C for 10 s, 57 �C for 30 s, and 72 �C for 30 s

72 �C for 10 s (final extension)

The PCR product is then purified using a PCR Purification Kit (e.g.,

Qiaquick kits [Qiagen] or EZ-10 Spin Column PCR Products Purification

Kit [Bio Basic Inc.]) following the manufacturer’s recommendations and

directly sequenced using the sequencing primer Psi:
50AGCCCTTTGTACACCCTAAGC30. Once the guide sequence has

been successfully identified as a potential “hit,” we then confirm that the

endogenous locus has been mutated using the original genomic preps and

perform either a T7 endonuclease I assay (Reyon et al., 2012) or SUR-

VEYOR assay (Transgenomic), or, if a more thorough examination of

the kinds of sequence alterations is desired, through sequencing on an

Ion Torrent personal genome machine (Malina et al., 2013).
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7. CONCLUSION

CRISPR/Cas9 has much to offer in complementing RNAi-based

screens. The larger targeting range of CRISPR/Cas9 relative to RNAi

extends to the whole genome and offers the opportunity to probe struc-

ture/function relationships beyond the transcriptome. As well, the potential

exists for Cas9-driven cleavage events to yield not only loss-of-function but

also gain-of-function and dominant-negative, alleles—thus extending the

mutational “depth” beyond the straight suppression possible with RNAi.

Whereas somatic cell genetics provided stunning insights into gene organi-

zation and regulation in the 1970s and 1980s (Caskey, Robbins, North

Atlantic Treaty Organization, & Scientific Affairs Division, 1982), the

remarkable progress that has been made in applying CRISPR/Cas9 to

genome engineering since 2013 and the potential it holds for genetic analysis

of almost any cell type at an unprecedented scale would suggest an up-and-

coming rebirth of this discipline. It will be exciting to participate in this new

adventure as CRISPR/Cas9 is used to uncover novel genome

functionalities.
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Abstract

Human pluripotent stem cells (hPSCs) have the potential to generate all adult cell types,
including rare or inaccessible human cell populations, thus providing a unique platform
for disease studies. To realize this promise, it is essential to develop methods for efficient
genetic manipulations in hPSCs. Established using TALEN (transcription activator-like
effector nuclease) and CRISPR (clustered regularly interspaced short palindromic
repeats)/Cas (CRISPR-associated) systems, the iCRISPR platform supports a variety of
genome-engineering approaches with high efficiencies. Here, we first describe the
establishment of the iCRISPR platform through TALEN-mediated targeting of inducible
Cas9 expression cassettes into the AAVS1 locus. Next, we provide a series of technical
procedures for using iCRISPR to achieve one-step knockout of one or multiple
gene(s), “scarless” introduction of precise nucleotide alterations, as well as inducible
knockout during hPSC differentiation. We present an optimized workflow, as well as
guidelines for the selection of CRISPR targeting sequences and the design of single-
stranded DNA (ssDNA) homology-directed DNA repair templates for the introduction
of specific nucleotide alterations. We have successfully used these protocols in four dif-
ferent hPSC lines, including human embryonic stem cells and induced pluripotent stem
cells. Once the iCRISPR platform is established, clonal lines with desired genetic mod-
ifications can be established in as little as 1 month. The methods described here enable
a wide range of genome-engineering applications in hPSCs, thus providing a valuable
resource for the creation of diverse hPSC-based disease models with superior speed
and ease.

1. INTRODUCTION

Functional analysis of sequence variants affecting diverse human traits,

including disease susceptibility, is a key to understanding human biology and

disease mechanisms. With their unlimited self-renewal capacity and the

potential to generate all adult cell types, human pluripotent stem cells

(hPSCs), including human embryonic stem cells (hESCs) and human

induced pluripotent stem cells (hiPSCs), offer an ideal platform for biological

and disease studies (Zhu & Huangfu, 2013). To meet this goal, it is manda-

tory to develop efficient methods for genome engineering in hPSCs.

The development of programmable site-specific nucleases has significantly

facilitated targeted-genome editing in a wide range of organisms and cultured

cell types ( Joung & Sander, 2013; Ran et al., 2013; Urnov, Rebar, Holmes,

Zhang, & Gregory, 2010). These customized nucleases induce DNA double-

strand breaks (DSBs) at desired genomic loci, triggering the endogenous

DNA repair machinery through two competing pathways: error-prone
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nonhomologous end-joining (NHEJ), leading to insertion/deletion muta-

tions (Indels), or homology-directed repair (HDR), which can be co-opted

to introduce precise nucleotide alterations using a homologousDNA template

( Jasin, 1996; Rouet, Smih, & Jasin, 1994). Among various customized nucle-

ase systems developed so far, the transcription activator-like effector (TALE)

nuclease (TALEN) and the clustered, regularly interspaced, short palindromic

repeat (CRISPR) technologies have emerged as powerful and versatile tools

for genome editing in hPSCs.

The DNA target specificity of TALENs is guided by the TALE DNA-

binding domain. Originally discovered in the plant pathogenic bacteria

Xanthomonas, TALEs can bind to the promoter of various genes of the plant

host, hijacking the transcriptional machinery to promote bacterial infection

(Rossier, Wengelnik, Hahn, & Bonas, 1999; Szurek, Marois, Bonas, & Van

den Ackerveken, 2001). The DNA-binding domain of TALE is composed

of�34 amino acids repeats (TALE repeats) arranged in tandem. Each repeat

contains two variable adjacent amino acids called the “repeat variable

diresidue,” which determine the single base-recognition specificity. Thus,

each TALE repeat independently specifies one target base (Boch et al.,

2009; Moscou & Bogdanove, 2009). To introduce DSBs, TALENs are

designed as pairs, recognizing the genomic sequences flanking the target site.

Each TALEN consists of a programmable, sequence-specific TALE DNA-

binding domain fused to the cleavage domain of the bacterial endonuclease

FokI. The binding of a TALEN pair to DNA allows FokI dimerization and

DNA cleavage (Cermak et al., 2011; Miller et al., 2011).

Recently, the CRISPR technology has been developed for genome

engineering in mammalian systems (Cho, Kim, Kim, & Kim, 2013; Cong

et al., 2013; Jinek et al., 2013; Mali, Yang, et al., 2013; Wang et al.,

2013). The CRISPR/Cas system is derived from Streptococcus pyogeneswhere

it functions as part of an immune system to provide acquired resistance

against invading viruses (van der Oost, Westra, Jackson, & Wiedenheft,

2014). CRISPR/Cas-mediated genome engineering requires two compo-

nents: the constant RNA-guided DNA endonuclease Cas9 protein required

for DNA cleavage and a variable CRISPR RNA (crRNA) and trans-

activating crRNA (tracrRNA) duplex that specifies DNA target recognition

( Jinek et al., 2012). Most applications now replace the crRNA/tracrRNA

duplex with a single chimeric guide RNA (sgRNA), which works more

efficiently than the original duplex design (Hsu et al., 2013; Jinek

et al., 2012).

217Rapid and Efficient Genome Engineering in hPSCs



sgRNA directs Cas9 to its target genomic locus by recognizing a

20 nucleotide (nt) sequence (protospacer) followed by an NGG motif

(protospacer-associated motif or PAM, where N can be A, T, G, or C),

andDNA cleavage occurs 3 bp upstream of the PAM sequence. In our expe-

rience with hPSCs, the CRISPR/Cas system tends to outperformTALENs,

which has also been observed by others (Ding et al., 2013). Compared to

TALENs, the CRISPR/Cas system is easier to engineer and simplifies mul-

tiplexing. However, there have also been concerns regarding its off-target

effects (Cho et al., 2014; Fu et al., 2013; Hsu et al., 2013; Mali, Aach,

et al., 2013; Pattanayak et al., 2013), which will be discussed further in

Section 6.

A number of studies have now used CRISPR/Cas to establish modified

hPSC lines with variable efficiencies. Several studies use HDR-mediated

editing to target a selectable marker into the locus of interest, which allows

enrichment of correctly targeted cells after selection (An et al., 2014; Hou

et al., 2013; Ye et al., 2014). Although efficient, the construction of the

targeting construct could be time consuming, and it is often desirable to

remove the selectable marker to allow more precise modeling of the disease

conditions. Alternatively, the CRISPR/Cas system also supports efficient

NHEJ or HDR-mediated genome editing without the need for drug selec-

tion (Ding et al., 2013; Gonzalez et al., 2014; Horii, Tamura, Morita,

Kimura, & Hatada, 2013; Wang et al., 2014).

To further improve the efficiency, and to also achieve multiplexable and

inducible genome editing in hPSCs, we have developed a genome-

engineering platform called iCRISPR (Gonzalez et al., 2014). Through

TALEN-mediated gene targeting, hPSC lines are engineered for

doxycycline-inducible expression of Cas9 (referred to as iCas9 hPSCs).

Upon doxycycline treatment, these lines can then be transfected with

(a) a single or multiple sgRNA(s) to generate biallelic knockout hPSC lines

for individual or multiple genes; (b) a sgRNA together with a HDR tem-

plate to generate knockin alleles; and (c) a sgRNA at specific stages of hPSC

differentiation to achieve inducible gene knockout.

Below we describe an optimized protocol for the establishment of the

iCRISPR platform through TALEN-mediated targeting of inducible

Cas9 expression cassettes into the AAVS1 locus of hPSCs (Fig. 11.1). We

have successfully used this protocol on four different hPSC lines and

obtained similar results: �50% of the lines are correctly targeted with no

additional random integrations. Next, we provide detailed protocols for

using iCRISPR to achieve one-step knockout of one or multiple gene(s),
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Generation of iCas9 hPSCs

hPSCs

Southern blot Frozen stock

G418Puromycin

Day 2Day 10

∼Day 12

Day 0 Electroporation

Generation of iCas9 hPSCs

http://crispr.mit.edu/

Design

Synthesis

T7 (N)20

120 nt ssDNAT7 F

Tracr RPCR

(N)20

(N)20

120 bp dsDNA

T7 in vitro 
transcription 

100 nt sgRNA

sgRNA production

T7

T7

Replating

DOX sgRNA

Day 0 Day 1

iCas9 hPSCs

DOX DOX sgRNA

Day 2 Day 3

Change medium

T7EI, RFLP

Day 4∼Day 14

RFLP
Sanger sequencing

Expansion

Validation

Generation of hPSC knockouts by sgRNA transfection

Figure 11.1 The iCRISPR platform for rapid genome editing in hPSCs. Instead of tran-
sient expression of Cas9 and sgRNAs from electroporated plasmids in hPSCs, targeted
integration and inducible expression of Cas9 into the AAVS1 locus provides a precise
and reliable approach to express the invariable component of the CRISPR/Cas system
(Section 2). Then, sgRNAs targeting specific loci are designed and synthesized by
PCR amplification of in vitro transcription DNA templates (Sections 3.1 and 3.2). Due
to their small size (�100 nucleotides), transfection of iCas9 hPSCs with sgRNAs is highly
efficient, leading to reproducible and highly efficient gene knockout in hPSCs
(Section 3.3).
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“scarless” introduction of precise nucleotide alterations, as well as inducible

knockout during hPSC differentiation. We also provide guidelines for the

selection of CRISPR targeting sequence, and for the design of single-

stranded DNA (ssDNA) HDR templates for introduction of specific nucle-

otide modifications. Based on our successful experience using both hESCs

(including HUES8, HUES9, and MEL-1) and hiPSCs, we believe the

methods described here are generally applicable to most hPSC lines with

minor adjustment.

iCRISPR supports a wide range of genome-engineering applications,

and once established, our optimized workflow enables the generation of

clonal lines with desired genetic modifications in as little as 1 month.

Genome editing in hPSCs may finally become a routine laboratory proce-

dure instead of a difficult and time-consuming task.

2. GENERATION OF iCAS9 hPSCs

Compared with transient, plasmid-mediated expression, targeted

integration, and inducible expression of Cas9 from a “safe harbor” locus pro-

vides a precise and reliable approach to express the invariable component of

the CRISPR/Cas system. In this configuration, Cas9-expressing hPSCs can

be easily transfected with sgRNAs due to their small size (�100 nucleotides),

leading to reproducible and highly efficient genome editing in target loci.

We generate iCas9 hPSCs by TALEN-mediated gene targeting into the

AAVS1 (also known as PPP1R12C) locus (Fig. 11.2A). This site has been

shown to support robust and sustained transgene expression similar to the

Rosa26 locus in mice (Smith et al., 2008). A pair of TALENs (AAVS1-

TALEN-L and AAVS1-TALEN-R) is designed to generate a DSB in the

first intron of PPP1R12C in the human AAVS1 locus (Hockemeyer

et al., 2011) (Fig. 11.2B). Then two donor template plasmids are

coelectroporated with the AAVS1-TALEN constructs. The Puro-Cas9

donor plasmid contains a doxycycline-inducible Cas9 expression cassette

selectable with puromycin, and the Neo-M2rtTA donor carries a constitu-

tive reverse tetracycline transactivator (M2rtTA) expression cassette select-

able with G418 (Geneticin) (DeKelver et al., 2010) (Fig. 11.2C). HDR of

the DSBs allows simultaneous introduction of both Puro-Cas9 and Neo-

M2rtTA cassettes into both AAVS1 alleles in trans. Cas9 expression is then

induced trough doxycycline treatment in established clonal iCas9 lines

(Fig. 11.2A).
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TCCCCTCCACCCCACAGTGGGGCCACTAGGGACAGGATTGGTGACAGAAAA
AGGGGAGGTGGGGTGTCACCCCGGTGATCCCTGTCCTAACCACTGTCTTTTFokI

FokI
AAVS1-TALEN-L

AAVS1-TALEN-R

C

CoIE1 Ampr

HA-L HA-RSA 2A Puror TRECas9
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Puro-Cas9 donor

CoIE1 Ampr

HA-L HA-RSA 2A Neor M2rtTA
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CAG
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Figure 11.2 Generation of iCas9 hPSC through TALEN-mediated gene targeting into
the AAVS1 locus. (A) TALEN-mediated gene targeting of Puro-Cas9 and Neo-M2rtTA into
the AAVS1 locus. Homology-directed repair (HDR) of the DSBs introduced by a pair of
TALENs allows simultaneous introduction of both Puro-Cas9 and Neo-M2rtTA cassettes
into both AAVS1 alleles in trans. Cas9 expression is then induced through doxycycline
treatment in established clonal iCas9 lines. (B) The AAVS1-TALEN-L vector is designed to
target CCCCTCCACCCCACAGT, and the AAVS1-TALEN-R vector is designed to target
TTTCTGTCACCAATCCT. Dimerization of the FokI domain induces DSB in the spacer
between the TALEN binding sites. (C) Vector maps of Puro-Cas9 and Neo-M2rtTA vec-
tors. HA-L and HA-R, left and right homology arm; SA, splicing acceptor; 2A, self-cleaving
2A peptide; pA, polyadenylation signal sequence; attB1 and attB2, GATEWAY attB
sequence; TRE, tetracycline response element; Ampr, Ampicillin resistance gene; ColE1,
replication origin.
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2.1. Vector design
2.1.1 TALEN vectors
Two TALEN vectors are designed to target the AAVS1 locus based on

gene targeting studies by Jaenisch and colleagues (Hockemeyer et al.,

2011): the AAVS1-TALEN-L vector is designed to target

CCCCTCCACCCCACAGT, and the AAVS1-TALEN-R vector is

designed to target TTTCTGTCACCAATCCT (Addgene 59025 and

59026) (Fig. 11.2B). These TALEN vectors can be generated following a

PCR-based protocol (Sanjana et al., 2012). First, build a library of TALE

monomers with complementary overhangs by PCR using vector templates

from Addgene (32180, 32181, 32182, or 32183). Next, join monomers into

hexamers corresponding to the target DNA sequence. Finally, link the

hexamers together and clone into the full-length TALEN expression back-

bone (Addgene 32190). Amplify both TALEN vectors in recombination

deficient bacteria strain Stbl3 (Life Technologies, C7373-03) to avoid

potential recombination problems due to highly repetitive sequences in

the plasmid.

2.1.2 Donor vectors
The elements constituting the Puro-Cas9 (Addgene 58409) and the Neo-

M2rtTA donor vectors are described in Fig. 11.2C. The gene-trap

SA-P2A-Puro or Neo cassettes are in frame with the first exon of

PPP1R12C. In correctly targeted cells, puromycin or neomycin resistance

genes will be expressed from the endogenous promoter, thus reducing the

background of random integrations upon selection. Amplify both vectors

in Stbl3. In particular, amplify Neo-M2rtTA at a lower temperature

(30 �C) since it is prone to recombination.

2.2. hPSC electroporation
The electroporation protocol is optimized for hPSCs cultured on feeders.

We routinely culture hPSCs on irradiated mouse embryonic fibroblasts

(iMEFs, �0.3 M cells per well of a 6-well plate) in DMEM/F12 medium

(Life Technologies, 11320-082) supplemented with 20% KnockOut Serum

Replacement (Life Technologies, 10828-028), 1� nonessential amino acids

(Life Technologies, 11140076), 1� GlutaMAX (Life Technologies,

35050079), 100 U/ml Penicillin/100 μg/ml Streptomycin (Life Technolo-

gies, 15070063), 0.055 mM 2-mercaptoethanol (Life Technologies,

222 Zengrong Zhu et al.



21985023), and 10 ng/ml recombinant human basic FGF (Life Technolo-

gies, PHG0263). Cultures are generally passaged at 1:6 to 1:12 split ratios

every 4–6 days using TrypLE Select enzyme (Life Technologies, 12563-

011). Add 5 μM of Rho-associated protein kinase (ROCK) inhibitor

Y-27632 (R&D, 1254) into the culture mediumwhen passaging or thawing

cells. It may be necessary to adjust the following protocol for hPSCs cultured

under different conditions such as the feeder-free TeSR and Essential 8 cul-

ture conditions (Chen, Gulbranson, et al., 2011; Ludwig et al., 2006).

1. Day - 1: On the day before electroporation, change to hPSC medium

with 5 μM ROCK inhibitor. Typically, there are �1–2�107 hPSCs

in one 10-cm dish when it is confluent on Day 0, which is sufficient

for one targeting experiment (need �1�107 hPSCs).

Seed irradiated DR4-MEFs (ATCC, SCRC-1045) (DR4-iMEFs)

on gelatinized 10-cm culture dishes (2�106 cells/10-cm dish). The

number of dishes needed depends on the survival rate after electropo-

ration, which is line dependent. We generally prepare three 10-cm dis-

hes. DR4-MEFs are resistant to neomycin, hygromycin, puromycin,

and 6-thioguanine and thus can be used as feeders to support the

growth of hPSCs with multiple drug selections.

2. Day 0: On the day of electroporation, dissociate hPSCs using TrypLE

Select enzyme. Stop the reaction by adding double amount of hPSC

medium. Pipet gently to break cell aggregates into single-cell suspen-

sion and then pass cells through a 40 μm cell strainer to filter out cell

clumps.

3. Pellet cells at 200� g�5 min at room temperature (RT).

4. Gently resuspend cells in cold (4 �C) PBS and adjust cell density to

12.5�106 cells/ml.

5. Add the following plasmid mix into 800 μl cell suspension andmix well

but gently.

Plasmid Amount (μg)

AAVS1-TALEN-L 5

AAVS1-TALEN-R 5

Puro-Cas9 40

Neo-M2rtTA 40

hPSC (12.5�106 cells/ml) 800 μl
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We recommend including a negative control (without the Puro-

Cas9 and Neo-M2rtTA donor vectors) when performing this experi-

ment for the first time.

6. Transfer the DNA/cell mixture into a 0.4-cm electroporation cuvette

and keep on ice for 5 min.

7. Electroporate cells using Gene Pulser Xcell Electroporation System

(Bio-Rad, 165-2660) at 250 V and 500 μF (Costa et al., 2007). The

time constant observed after electroporation is typically �9–13.

8. After electroporation, transfer cells into a 15-ml conical tube with 5 ml

prewarmed hPSC medium. Handle cells gently when transfer,

resuspend, and plate cells after electroporation.

9. Pellet cells at 200� g�5 min RT. Make sure to remove all floating

dead cells and debris, which may impair the viability of the

surviving hPSCs.

10. Resuspend cells in 10 ml hPSC medium with ROCK inhibitor gently

and plate 5, 2.5, and 1�106 cells onto each of the three 10-cm dishes

preseeded with DR4-iMEFs. This ensures that at least one of the plates

would have sufficient colonies at clonal density for colony picking.

11. Day 1: Change hPSC medium. It is normal to observe significant

cell death.

2.3. Selection and expansion of clonal lines
1. Days 2–5: Perform G418 (Life Technologies, 10131-035) selection.

Change media daily with freshly made G418 (50 μg/ml) selection media

for 4 days. We expect to observe �200 colonies emerging from

2.5�106 hPSCs plated on Day 0, whereas no colonies should be present

in the negative control dish. The optimal concentration and duration of

G418 treatment may need to be adjusted depending on the G418 batch

and the hPSC line.

2. Day 6: Four days after G418 selection, change to hPSCmediumwithout

G418. Supplement with additional DR4-iMEFs (1�106 cells/10-cm

dish), as iMEFs typically support hPSC growth for up to 7 days. Rock

the plates gently to spread the feeder cells.

3. Days 7–9: Perform puromycin (Sigma, P8833) selection and change media

daily with freshly made puromycin (0.5 μg/ml) selection media for 3 days.

One may need to adjust the concentration and duration of puromycin

treatment depending on the puromycin batch and the hPSC line.

4. Day 10: Change to regular hPSCmediumwithout puromycin fromDay

10 onward. hPSC colonies can be picked around Day 11–14 when they
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reach �2 mm in diameter. We typically observe �50 colonies in the

10-cm dish with 2.5�106 hPSCs plated on Day 0.

5. Because AAVS1 targeting using this approach is highly efficient, we

typically pick only 12–24 colonies from each targeting experiment.

Using a stereomicroscope and a 23G needle (a 200 μl pipette tip is also

fine), mechanically disaggregate hPSC colonies into small pieces

(�10 pieces per colony) and transfer cells directly into a 24-well

plate preseeded with iMEFs. Pipet gently in the 24-well plate to further

break hPSC colonies. Generally, it takes �30 min or less to pick

24 colonies.

6. Change medium daily until cells become confluent. Passage cells in each

well of 24-well plates into two wells of a 6-well plate.

7. When cells become confluent in 6-well plates, use one well for a frozen

stock and the other well for genomic DNA extraction.

Freezing medium: 10% DMSO, 40% FBS, and 50% hPSC medium.

2.4. Genotyping by Southern blot
From our experience with four hPSC lines, the efficiencies of biallelic inte-

gration of the Puro-Cas9 and Neo-M2rtTA transgenes into the AAVS1

locus are usually close to 100%. It is therefore unnecessary to perform pres-

creening using PCR. We recommend amplifying the clones directly to

obtain enough DNA for Southern blot, which would not only identify

clones with correct biallelic transgene integrations in the AAVS1 locus

but also discriminate clones carrying random integrations (representing

approximately 50% of the clones).

1. Digoxigenin (DIG)-labeled probe synthesis: We routinely perform South-

ern blot using nonradioactive probes. Two DIG-labeled probes

are used for AAVS1 Southern blot genotyping. A 30-external
probe and a 50-internal probe (Fig. 11.3, EXT and INT). They are syn-

thesized using the PCR DIG Probe Synthesis Kit (Roche,

11636090910).

For 30-external probe, PCR amplify the probe template from

human genomic DNA with high-fidelity Herculase II Fusion DNA

Polymerase (Agilent, 600679) using 30F and 30R primers. Clone the

PCR product using Zero Blunt TOPO PCR Cloning Kit (Life Tech-

nologies, 450245) and use a sequence verified clone as template for

amplifying the DIG-labeled probe.

For 50 external probe, directly amplify the DIG-labeled probe using

Puro-Cas9 donor as the template using 50F and 50R primers.
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Primer Sequence

30F ACAGGTACCATGTGGGGTTC

30R CTTGCCTCACCTGGCGATAT

50F AGGTTCCGTCTTCCTCCACT

50R GTCCAGGCAAAGAAAGCAAG

PCR DIG-labeled probe synthesis mix

Full-labeled Half-labeled Unlabeled

ddH2O 33.25 33.25 33.25

10� PCR buffer 5 5 5

PCR DIG synthesis mix 5 2.5 0

dNTP stock 0 2.5 5

Primer mix (10 μM) 5 5 5

Enzyme mix 0.75 0.75 0.75

Plasmid DNA (50 pg/μl) 1 1 1

Total (μl) 50 50 50

Wild type
1 PPP1R12C locus Chr.19 

B B

S S
S S

INT EXT

6492 bp
12406 bp

HA-L HA-R

B: BglII S: SphI

2 3

1
S S

S

HA-L HA-R
2 3

B BS

INT EXT

B
7409 bp3492 bp

Neo CAG M2rtTA
Neo-M2rtTA

1
S S

S
S

HA-L HA-R
2 3

B B BS

INT EXT

B
4984 bp3781 bp

Puro Cas9 TRE

Puro-iCas9

S

1
S S

S S

HA-L HA-R
2 3

B B BS

INT EXT

B
4984 bp3781 bp

Puro Cas9 TRE

S

Puro-iCr
U6

Tracr

S

S
B

Figure 11.3 Southern blot genotyping of AAVS1-targeted hPSC iCas9 lines. DNA is
digested with either BglII (B), for 30 external probe hybridization, or SphI (S), for 50 internal
probe hybridization. BglII digestion and 30 external probe hybridization yield bands of
12,406, 7409, and 4984 bp for wild type, Neo-M2rtTA, Puro-iCas9 (or Puro-iCr); whereas
SphI digestion and 50 internal probe hybridization yields bands of 6492, 3492, and
3781 bp, respectively. HA-L, Left homology arm; HA-R, Right homology arm; INT, 50 inter-
nal probe; EXT, 30 external probe.
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PCR DIG-labeled probe cycling condition

Cycle number Denature Anneal Extend

1 95 �C, 2 min

2–31 95 �C, 30 s 60 �C, 30 s 72 �C, 1 min

32 72 �C, 7 min

Examine the PCR product on 2% agarose gel. Note: DIG-labeled

DNA probe migrates slower than nonlabeled DNA.

2. Extract genomic DNA from expanded iCas9 lines as well as non-

targeted control wild-type hPSCs using DNeasy Blood & Tissue Kit

(Qiagen, 69504). Typically, confluent hPSCs in one well of a 6-well

plate yield 25–50 μg genomic DNA.

3. Digest 10 μg genomic DNA in a 20 μl reaction at 37 �C over night

using 20 U of BglII (for 30 external probe hybridization) or 20 U of SphI

(for 50 internal probe hybridization) (Fig. 11.3).
4. Run digestion samples on a 1%TAE agarose gel (including a lane with a

DNA ladder). Migrate at 80 V for 8 h. Image the gel in parallel with a

ruler for scaling the image and determining band size upon film

development.

5. Incubate the gel in denaturation buffer (1.5MNaCl and 0.5MNaOH)

for 30 min at RT to denature DNA. If your loading buffer contains

bromophenol blue, it should turn green during this step.

6. Remove denaturation buffer, wash for 1 min with ddH2O before incu-

bating the gel in neutralization buffer (1.5M NaCl, 0.5M Tris, and

0.001 M EDTA; pH 6.9) for 30 min at RT, and incubate for another

15 min with fresh neutralization buffer.

7. Transfer

(1) Preincubate the Hybond-N membrane (GE healthcare,

RPN203N) in 10� SSC buffer for 5 min.

(2) Mount the gel as described before for capillarity transfer (Maniatis,

Fritsch, & Sambrook, 1982). Make sure there is no bubble

between the gel and membrane.

(3) Transfer overnight with 10� SSC buffer.

8. After transfer, wash the membrane in NaPi buffer (1MNa2HPO4, pH

7.2) for 5 min.

9. Fix DNA on the membrane by baking at 80 �C for 2 h.

10. Place themembrane in a hybridization tube (Fisher, K736500-3515). Add

20 ml NaPi buffer. Incubate for 5 min in a hybridization oven at RT.
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11. Prehybridize the membrane with 20 ml hybridization buffer for 1 h in a

hybridization oven at 65 �C.

Hybridization buffer (500 ml)

Component Amount (ml)

NaPi 1 M, pH 7.2 250

SDS 20% 175

EDTA 0.5 M, pH 8 1

ddH2O 74

12. Probe preparation: Denature 5 μl of the probe from Step 1 in 100 μl
hybridization buffer in boiling water for 10 min. Then dilute the

100 μl probe in 20 ml hybridization buffer (prewarmed at 65 �C).
Note: After use, the probe can be collected and stored at�20 �C and

reused for at least five additional times. For subsequent uses, thaw the

diluted probe and denature in boiling water for 10 min.

13. Remove prehybridization buffer and add 20 ml of the diluted probe to

the hybridization tube. Hybridize the membrane in a hybridization

oven at 65 �C overnight.

14. Wash the membrane twice with washing buffer at 65 �C for 5 min.

Washing buffer (2000 ml)

Component Amount (ml)

NaPi 1 M, pH 7.2 80

SDS 20% 100

ddH2O 1920

15. Wash the membrane in DIG buffer I (0.1 MMaleic Acid, 0.15MNaCl;

PH 7.5) with 0.3% Tween at RT under gentle agitation for 5 min.

16. Block the membrane in 20 ml DIG buffer I with 1% blocking reagent

(Roche, 11096176001) at RT for 30 min in a sealed plastic bag.

17. Centrifuge the anti-DIG-AP antibody (Roche, 11093274910) at 4 �C
for 5 min before use. Dilute 1 μl of the antibody in 20 ml DIG buffer

I with 1% blocking reagent.

18. Incubate the membrane with 20 ml of the diluted antibody at RT for

30 min in a sealed plastic bag.
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19. Wash the membrane twice in DIG buffer I with 0.3% Tween in a plas-

tic container for 30 min.

20. Wash the membrane with DIG buffer III (0.1 MNaCl, 0.1 M Tris, pH

9.5) for 5 min.

21. Chemiluminescent detection: Incubate the membrane with 12 μl CDP-star

(Roche, 11759051001) diluted in 2 ml DIG buffer III for 5 min.

22. Remove excess liquid without drying. Transfer the membrane to

a clean sealed bag. Expose with Amersham Hyperfilm (Fisher,

45-001-507) in Amersham Hypercassette (Fisher, 45-000-758).

Exposure time varies with probe concentration and quality but is typ-

ically 30 min.

2.5. Validation
Correctly targeted iCas9 lines are further validated through qRT-PCR

for inducible expression of Cas9, immunohistochemistry to assess proper

expression of the pluripotency markers (e.g., OCT4, SOX2, and NANOG)

and teratoma assay for functional assessment of pluripotency. We also rec-

ommend verifying that the newly established iCas9 cells have normal

karyotypes.

2.5.1 RT-PCR analysis
1. Treat iCas9 cells with or without doxycycline (2 μg/ml) (Fisher,

BP26535) for 2 days.

2. Isolate total RNA using RNeasy Plus Mini Kit (Qiagen, 74134).

3. Synthesize cDNA using High Capacity cDNA Reverse Transcription

Kit (Life Technologies, 4368814).

4. Perform quantitative PCR using SYBR Green low ROX mix (Fisher,

AB4322B) and 7500 Real-Time PCR System (Life Technologies,

4351104). The following primers are used. GAPDH is used as the inter-

nal control. Doxycycline treatment typically induces �1000-fold

increase in Cas9 mRNA level.

Primer Sequence

Cas9-F CCGAAGAGGTCGTGAAGAAG

Cas9-R GCCTTATCCAGTTCGCTCAG

GAPDH-F GGAGCCAAACGGGTCATCATCTC

GAPDH-R GAGGGGCCATCCACAGTCTTCT
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2.5.2 Immunohistochemical analysis of pluripotency marker expression
1. Rinse cells with PBS once and fix cells with 4% PFA (Fisher, 50980495)

in PBS for 10 min directly in the culture plate.

2. Permeabilize and wash cells three times with PBST (0.1% Triton X-100

in PBS) for 5 min.

3. Block cells with blocking buffer (5% serum in PBST) for 5 min.

Note: Serum should be from species different from primary antibody.

4. Incubate with primary antibody diluted in blocking solution at RT for

1 h (or at 4 �C overnight).

Antibody Company Dilution ratio

Goat anti-OCT4 Santa Cruz, sc-8628 1:100

Rabbit anti-NANOG Cosmobio Japan, REC-RCAB0004P-F 1:100

Goat anti-SOX2 Santa Cruz, sc-17320 1:100

5. Remove primary antibody and wash three times with PBST for 5 min.

6. Incubate with fluorescence conjugated secondary antibody diluted in

blocking solution at RT for 1 h (also add DAPI if nuclear staining is

desired).

7. Remove secondary antibody and wash cells three times with PBST for

5 min.

2.5.3 Teratoma assay
1. Expand iCas9 lines to 80–100% confluency on 10-cm dishes.

2. Add 7 ml collagenase type IV (Life Technologies, 17104-019) working

solution (1 mg/ml in DMEM) to each 10-cm dish and incubate at 37 �C
for 10 min.

3. Aspirate collagenase solution.

4. Add 5 ml hPSC medium.

5. Scrape cells with cell scraper (Fisher, 087711A) and collect cell suspen-

sion into 15-ml conical tube.

6. Pellet cells at 200� g for 5 min.

7. Resuspend cell pellet from each 10-cm dish in 400 μl PBS.
8. Inject subcutaneously, 100 μl cell suspension into the right hind leg of an

anesthetized immunocompromised mice. We routinely use severe com-

bined immunodeficient mice for this purpose.
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3. GENERATION OF KNOCKOUT hPSCs USING iCRISPR

3.1. sgRNA design
NHEJ-mediated repair of DNA DSBs leads to random Indel mutations,

which is useful for generating loss-of-function mutations or knockouts.

Thus, the design of the gene targeting strategy aims at generating premature

stop codons through the creation of frameshift Indel mutations, and the tar-

get sequence need to be strategically chosen to maximize the possibility of

disrupting the function of the corresponding protein. It is important to iden-

tify all possible splice variants of the gene of interest, and design sgRNAs to

target a functional region that is at least present in the isoform relevant for the

study. For well-annotated genes, we recommend targeting sequences

upstream of an essential functional domain of the corresponding protein.

Alternatively, one may target a region adjacent to and downstream of the

start codon of the major isoform. The second strategy may sometimes create

a hypomorphic allele instead of a null allele if an alternative start site is used to

produce a partially active protein.

Proceed to designing specific sgRNAs to target the genomic region of

interest after a targeting strategy is decided. We routinely use the CRISPR

design tool developed by the Feng Zhang group at MIT (http://crispr.mit.

edu/). The software not only identifies all possible CRISPR targets in an

input DNA sequence but also uncovers potential off-target sites, thus pre-

dicting sgRNAs with the highest targeting specificity. For each gene of

interest, we routinely design three sgRNAs and in most cases all of them

efficiently induce Indel mutations (>20% by T7EI assay) in target loci. Nev-

ertheless, it is still a good idea to at least verify efficient mutagenesis before

investing the time picking colonies.

3.2. sgRNA production
3.2.1 PCR amplification of in vitro transcription (IVT) DNA templates
Different from most commonly used approaches that start with the con-

struction of a sgRNA-expressing plasmid, we have found that it is faster

and more cost-effective to use an oligo template. This method also allows

easy scaling up for higher throughput knockout studies. Design a 120 nucle-

otide oligo including the T7 promoter sequence (blue and underlined) and

the variable 20 nt crRNA recognition sequence (N)20 followed by a con-

stant chimeric sgRNA sequence (Fig. 11.4A). PCR amplify the oligo using

the T7 F and Tracr R universal primers.
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Primer Sequence

T7 F TAATACGACTCACTATAGGG

Tracr R AAAAGCACCGACTCGGTGCC

PCR reaction mix (50 μl)

Component Amount (μl)

ddH2O 35.5

5� Herculase II reaction buffer 10

dNTP mix (25 mM) 0.5

T7 F (10 μM) 1.25

Tracr R (10 μM) 1.25

T7-sgRNA IVT template (25 nM) 1

Herculase II Fusion DNA Polymerase 0.5

PCR cycling conditions

Cycle number Denature Anneal Extend

1 94 �C, 2 min

2–31 94 �C, 20 s 60 �C, 20 s 72 �C, 1 min

32 72 �C, 2 min

120 nt ssDNA sgRNA production template

TAATACGACTCACTATAGGGNNNNNNNNNNNNNNNNNNNNGTTTTAGAGCTAGAAATAGC
AAGTTAAAATAAGGCTAGTCCGTTATCAACTTGAAAAAGTGGCACCGAGTCGGTGCTTTT 

T7 (N)20 sgRNA backbone

A

B

Ctrl
sgRNA 
transfected

a
b

c

Uncut

Cut

Indel percentage calculation:

100 × (1 − (1 − (b + c)/(a + b + c))1/2)

T7EI assay C

Ctrl

a
b

c

Uncut

Cut

Indel percentage calculation:

100 × a/(a+b+c)

RFLP assay

sgRNA 
transfected

Figure 11.4 sgRNA production, T7EI and RFLP assay. (A) The 120 nt ssDNA template for
sgRNA production. T7, T7 promoter sequence; (N)20, 20 nucleotide sgRNA target
sequence; (B) T7EI assay. Ctrl, none-transfection control; (C) RFLP assay.
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3.2.2 In vitro transcription and purification of sgRNAs
Use the MEGAshortscript T7 Transcription kit (Life Technologies,

AM1354) to generate sgRNAs.

In vitro transcription mix (20 μl)

Component Amount (μl)

T7 ATP 2

T7 CTP 2

T7 GTP 2

T7 UTP 2

T7 10� buffer 2

T7 enzyme mix 2

PCR-amplified T7-sgRNA IVT template 8

Incubate for 4 h to overnight at 37 �C.
Add 1 μl TURBO DNase and incubate for 15 min at 37 �C.

Proceed to RNA purification using the MEGAclear Transcription Clean-

Up Kit (Life Technologies, AM1908) following manufacturer’s instructions

and elute sgRNAs (typically �50–100 μg) in 100 μl RNase-free water.

When possible adjust concentration to 320 ng/μl (10 μM) and store

at �80 �C until use.

3.3. Single or multiplex sgRNA transfection in hPSCs
We routinely transfect hPSCs cultured in 24-well dishes in duplicating

wells: one well is used for T7EI and/or restriction fragment length poly-

morphism (RFLP) assays to confirm efficient mutagenesis, and the other

well is used for replating and colony picking for establishment of clonal

knockout lines. We also recommend using three different cell densities

for transfection to achieve an optimal balance between Indel efficiency

and cell survival.

Day 0: Plate iMEFs on a gelatin-coated 24-well plate and treat 60% con-

fluent iCas9 hPSCwith hPSCmedium containing 2 μg/ml doxycycline.

Day 1: Dissociate hPSCs using TrypLE and resuspend at 0.2, 0.4, and

1�106 cells/ml in hPSC media with 5 μM ROCK inhibitor and

2 μg/ml doxycycline. Replate on a 24-well plate with 0.5 ml cells per

well. For each dilution, plate an additional well to serve as nontransfected

control for T7EI and RFLP assays.
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1st transfection: For each 0.5 ml cell suspension, prepare separately:

Mix 1: 25 μl Opti-MEM+0.5 μl sgRNA (160 ng).

Mix 2: 25 μl Opti-MEM+1.5 μl Lipofectamine RNAiMAX

(Life Technologies, 13778-150).

Mix 1+2, incubate for 5 min at RT and add dropwise into

dissociated hPSCs.

The final concentration of the sgRNA is 10 nM.

Day 2: Change hPSC medium with 2 μg/ml doxycycline.

2nd transfection (optional): Same conditions as 1st transfection.

Days 3–4: Change media: 0.5 ml/well of hPSC medium.

For multiplexed sgRNA transfection, use the same strategy but mix and transfect

equal amounts of each sgRNA keeping the sum equal to 160 ng/well.

3.4. Assessment of Indel frequency
Two or three days after the last sgRNA transfection, extract genomic DNA

from transfected and nontransfected control cells using DNeasy Blood &

Tissue Kit. Adjust final concentration to 50 ng/μl.

3.4.1 PCR amplification of the CRISPR target region
PCR amplify a stretch of genomic region (�400 to 600 bp) flanking

the CRISPR target site using the high-fidelity Herculase II Fusion DNA

Polymerase to minimize potential PCR-induced mutations.

PCR reaction mix (20 μl)

Component Amount (μl)

ddH2O 13.6

5� Herculase II reaction buffer 4

dNTP mix (25 mM) 0.2

Primer-F (10 μM) 0.5

Primer-R (10 μM) 0.5

Genomic DNA (50 ng/μl) 1

Herculase II Fusion DNA Polymerase 0.2
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PCR cycling conditions

Cycle number Denature Anneal Extend

1 94 �C, 2 min

2–36 94 �C, 20 s N* �C, 20 s 72 �C, 30 s

37 72 �C, 2 min

*Annealing temperature of the T7EI primer pair, ideally between 55 and
65 �C.

3.4.2 Quantification of Indels through T7EI assay
For this step, we use the T7 Endonuclease I (New England Biolabs,

M0302S)

3.4.2.1 Hybridization

Mix (16 μl)

Component Amount (μl)

PCR product (do not purify) 8

NEB Buffer 2 10� 1.6

ddH2O 6.4

Conditions (use thermocycler).
95 �C, 5 min, 95–85 �C at�2 �C/s, 85–25 �C at�0.1 �C/s.
Hold at 4 �C.

3.4.2.2 Digestion

Mix (20 μl)

Component Amount (μl)

Hybridized PCR product 16

NEB Buffer 2 10� 0.4

T7EI (10 U/μl) 0.2

ddH2O 3.4

Incubate at 37 �C for 30 min, immediately proceed to
Section 3.4.2.3 or store at �20 �C to inhibit the
reaction.
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3.4.2.3 Quantification
Resolve samples by electrophoresis through a 2.5% ethidium bromide stained

agarosegel.UseXyleneOrange loadingdye to avoidoverlapwith theexpected

bands. Run the gel at 5 V/cm enough time to separate the digested bands.

The background decreases with migration time and bands resolve better.

UV illuminate the gel and image (avoid saturation) with a Gel Doc gel

imaging system (Bio-Rad). Indel frequency is calculated based on relative

band intensities quantified using ImageJ software (National Institutes of

Health, Bethesda, MD) (Fig. 11.3B).

Indel percentage is determined by the formula: 100� (1� (1� (b+ c)/

(a+b+ c))1/2), where a is the integrated intensity of the undigested PCR

product, and b and c are the integrated intensities of each cleavage product

(Hsu et al., 2013) (Fig. 11.3B).

3.4.3 Quantification of Indels through RFLP assay
One may also design CRISPRs so that the Cas9 cleavage site (3 bp upstream

of the PAM sequence) is in close proximity (�5 bp) to a restriction site, thus

a RFLP assay can be performed to quantify Indel frequency. The assay

requires the same PCR amplification of the CRISPR cutting region (see

Section 3.4.1). Since this assay directly measures the loss of a restriction site,

it is more sensitive at detecting Indels compared to the T7EI assay as long as

the restriction site is located within �5 bp of the Cas9 cleavage site.

3.4.3.1 Digestion

Mix (20 μl)

Component Amount (μl)

PCR product 8

Buffer 10� 2

Appropriate restriction enzyme (10 U/μl) 0.5

ddH2O 9.5

Incubate for at least 1 h, and proceed to Section 3.4.3.2 or store at �20 �C.

3.4.3.2 Quantification
Follow the same approach described in Section 3.4.2.3.

Indel percentage is determined by the formula: 100�a/(a+b+ c)

(Fig. 11.3C).
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3.5. Clonal expansion of knockout lines
After performing T7EI and/or RFLP assay using cells from one of the dupli-

cating wells, identify the best transfection conditions (with high Indel effi-

ciency and good cell survival) and use the corresponding well for clonal

expansion of mutant lines. We generally proceed to clonal expansion when

Indel frequencies>20% are observed, which is usually achieved with at least

one out of three sgRNAs tested.

3.5.1 Replating and colony picking
Two to three days after the last sgRNA transfection, hPSCs are dissociated into

single cells and replated at�2000 cells per 10-cm dish pre-seeded with iMEFs.

Cells are allowed to grow until colonies reach�2 mm in diameter (�10 days).

Single colonies are then picked and plated in an uncoated 96-well plate

containing 100 μl of hPSC medium with ROCK inhibitor. Each clone is

mechanically disaggregated by gently pipetting up and down five times

and replated in duplicated 96-well plates (50 μl each) preseeded with iMEFs

and containing 100 μl of hPSC medium with ROCK inhibitor. Alterna-

tively, colonies could first be cultured in one 96-well plate and then split

into two 96-well plates when becoming confluent (in �5 days).

Depending on the frequencies of Indel observed by T7EI and RFLP

assays, pick between 48 (>20% targeting efficiency for most genes, applica-

ble to making single-gene knockouts) and 288 clones (1–10% targeting effi-

ciency, applicable to making double- or triple-gene knockouts). Media

change and passaging using multichannel aspirator and dispenser pipettes

greatly facilitates this step.

3.5.2 Colony screening
Grow duplicated 96-well plates with daily change of fresh hPSCmedia. Use

one plate for analysis in 3 days and the other plate for maintenance. One may

use RFLP to identify clonal mutant lines when feasible. We routinely screen

for mutant clones through direct sequencing of PCR products using a sim-

plified procedure. This procedure involves first using a simple protocol

(without phenol/chloroform extraction) to extract genomic DNA, then

PCR amplifying the region of interest, and finally sequencing the unpurified

PCR product. Since the entire procedure can be accomplished using mul-

tichannel pipettes, it enables the screening of a large number of clones rap-

idly. In our experience, this procedure works well as long as the primers are

pretested before the targeting experiment, and it is feasible for a single person

to process up to 288 samples (three 96-well plates) at a time.
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3.5.2.1 Lysis
Remove media from the wells, wash once with PBS, and add 50 μl of lysis
buffer.

Lysis buffer (50 μl/well)

Component Amount (μl)

Proteinase K (10 mg/ml) 1.5

JumpStart PCR buffer 10� (Sigma) 5

ddH2O 43.5

To avoid excessive evaporation, seal the plate using a qPCR film
sticker and incubate overnight at 55 �C.

Thenext day,mix and transfer the cell lysates into a96-well PCRplate and

incubate for 10 min at 96 �C in a thermocycler to inactivate Proteinase K.

3.5.2.2 PCR and sequencing
PCR amplify using the same primers as for T7EI orRFLP assay and 1 μl of cell
lysate as template. Use 1 μl of the PCR product and perform Sanger sequenc-

ing using an internal primer to minimize sequencing issues caused by non-

specific PCR product. To generate knockout lines, amplifying clones with

frameshift Indel mutations for frozen stocks. We also recommend amplifying

and freezing a couple of wild-type and heterozygous clones from the same

targeting experiment to serve as control lines.

In the case of heterozygous and compound heterozygous mutants, the

traces can be complicated to interpret due to overlapping peaks. To further

characterize the mutations present in each allele, we amplify the sgRNA tar-

get region of these clones with high-fidelity Herculase II Fusion DNA Poly-

merase using T7EI PCR primers and clone the PCR product using Zero

Blunt TOPO PCR Cloning Kit (Life Technologies, 450245). Sanger

sequencing of 10 individual bacterial colonies allows monoallelic character-

ization of the mutations.

If the sequencing turnaround time is relatively short (e.g., within a day), it

is possible to directly amplify the desired mutant clones from the maintenance

plate before they become confluent. Alternatively, if the sequencing turn-

around time is longer, we recommend freezing down cells in the entire main-

tenance plate. Dissociate cells with 25 μl TrypLE Select enzyme in each well

of 96-well plates, stop the reaction by adding 50 μl hPSC medium per well.

Then add 75 μl of 2� freezing medium directly into the well and mix gently.
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Wrap the plate with plastic film, put into a Styrofoam box and transfer

to �80 �C. The frozen plate can be stored for at least 3 months at �80 �C.

3.5.3 Validation
3.5.3.1 Validation of the mutant alleles
It is important to realize that CRISPR-mediated Indel mutations may create

complete loss-of-function, partial loss-of-function, or occasionally gain-of-

function (e.g., dominant-negative or neomorphic) alleles. Therefore, it is

important to perform additional analysis to determine the exact nature of indi-

vidual mutant alleles. For instance, Western blot may be performed to verify

the absence of the wild-type protein in a mutant clone, as long as a good anti-

body is available for the protein of interest. One may also validate the absence

of a functional protein based on its known biological function. For instance,

based on the requirement of TET proteins for catalyzing the conversion of

5-methylcytosine to 5-hydroxymethylcytosine (5hmC) (Ito et al., 2010;

Tahiliani et al., 2009), quantification of the 5hmC levels can be used to verify

the TET1/2/3 triple-knockout hESC lines (Gonzalez et al., 2014).

3.5.3.2 Off-target analysis
Due to mismatch tolerance of CRISPR sgRNA paring (Hsu et al., 2013),

there are concerns about the off-target mutagenic effects of the CRISPR/Cas

system. Recently, whole-genome sequencing of CRISPR targeted hPSC

clonal lines has detected very rare off-target mutations attributable to

CRISPR (Veres et al., 2014). Thus off-target mutations may not be a signif-

icant concern for disease modeling and biological studies using hPSCs.

One may identify potential ectopic sgRNAs targets using the CRISPR

design tool (http://crispr.mit.edu/). The most likely off-targets falling in

gene coding sequences (4–5 sites per sgRNA-mediated targeting experi-

ment) can be analyzed through sequencing using the same approach

described for analyzing mutations at sgRNA target sites. PCR amplify a

stretch of genomic region (�500 bp) flanking a putative CRISPR off-target

site using Herculase II Fusion DNA Polymerase and analyze by Sanger

sequencing using a primer binding inside the PCR product.

4. GENERATION OF PRECISE NUCLEOTIDE ALTERATIONS
USING iCRISPR

Without a DNA repair template, NHEJ repair of DSBs introduces

random Indels. However, in the presence of a DNA repair template,

HDR of DSBs could lead to precise nucleotide alterations of the hPSC
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genome, which is important for either creating disease-specific variants in

wild-type cells or correcting disease-associated mutations in patient cells.

Compared with double-stranded DNAs, synthetic ssDNAs (�80–200 nt)

are easy to produce and can be used as DNA repair template without selec-

tion (Chen, Pruett-Miller, et al., 2011).

4.1. Design of ssDNA as HDR templates
To introduce specific nucleotide alterations, we cotransfect sgRNA with

ssDNA as HDR template.

1. Design 2–3 sgRNAs in close proximity to the genetic alteration locus.

2. Design ssDNA templates containing the genetic alternation flanked by

�40–80 nt of homology on each side of the space between the genetic

alternation site and the CRISPR cutting site (Fig. 11.5A). Because of the

close proximity of the sgRNAs designed, only one ssDNA template is

necessary in most cases.

3. We highly recommend introducing a silent mutation to eliminate the

PAM sequence in the ssDNA template. This would prevent further

ssDNA template

TTTCCTCGGTGGTGTCCGACGCCAGCTCTGCGGTATATTACTGCAACTATTarget locus

(N)20 PAM

TTTCCTCGGTGGTGTCCGACGCCAGATCTGCGGTATATTACTGCAACTAT

BglII

~40 – 80 nt ~40 – 80 nt

ssDNA template

TTTCCTCGGTGGTGTCCGACGCCAGCTCTGCGGTATATTACTGCAACTATTarget locus

(N)20 PAM

TTTCCTCGGTGGTGTCCGACGTCGGCTCCGCGGTATATTACTGCAACTAT

~40 – 80 nt ~40 – 80 nt

SacII

ssDNA template

TTTCCTCGGTGGTGTCCGACGCCAGCTCTGCGGTATATTACTGCAACTATTarget locus

(N)20 PAM

TTTCCTCGGTGGTGTCCGACGCCAGATCTGCAGTATATTACTGCAACTAT

BglII

~40 – 80 nt ~40 – 80 nt

A

B

C

Figure 11.5 Examples illustrating the design of homology-directed repair (HDR) ssDNA
templates. (A) sgRNAs are designed close to the genetic alteration locus. Arrow head
points to the Cas9 cutting site 3 nt upstream of the PAM sequence. The ssDNA HDR tem-
plate contains the required genetic alternation (C>A, labeled in red (dark gray in the print
version)) flanked by �40–80 nt of homology on each side of the space between the
genetic alternation site and the CRISPR cutting site. A new restriction site (BglII) introduced
by the genetic alteration allows assessment of HR efficiency through RFLP analysis.
(B) Introducing a silent mutation (G>A, labeled in green (dark gray in the print version))
in the PAM sequencewould prevent further editing of correctlymodified alleles. (C) When
the required genetic alternation does not generate a restriction site, introducing a silent
mutation (T>C, labeled in green (dark gray in the print version)) nearby that creates a
new restriction site (SacII) enables assessment of HR efficiency through RFLP.
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editing of correctly modified alleles (Fig. 11.5B, G>A in the PAM

sequence).

4. If the genetic alternation introduces or disrupts a restriction site, HR effi-

ciency can be assessed through RFLP analysis (Fig. 11.5A, C>A intro-

duces a BglII site).

5. If the genetic alternation does not introduce or disrupt a restriction site

(Fig. 11.5C, A>G) we recommend introducing a silent mutation that

creates a new restriction site (Fig. 11.5C, T>C generates a SacII site) to

enable assessment of HR efficiency through RFLP.

4.2. ssDNA/sgRNA cotransfection in hPSCs
1. Day 0: Pretreatment with doxycycline. Treat iCas9 cells with doxycy-

cline for 24 h before transfection when hPSCs are �60% confluent so

that on the day of transfection, Cas9 will already be expressed at a high

level. Seed iMEFs on a gelatin-coated 24-well plate.

2. Day 1: 1st transfection. On the day of transfection, dissociate and replate

cells as described in Section 3.3.

Perform cotransfection of sgRNA and ssDNA in one well of a

24-well plate as follows:

Component Amount (μl)

Opti-MEM 50

RNAiMAX reagent 1.5

320 ng/μl sgRNA 0.5

300 ng/μl ssDNA 2.5

3. Day 2: 2nd transfection (optional). Twenty-four hours after the 1st trans-

fection, change hPSCmediumwith doxycycline and repeat the transfec-

tion as Day 1.

4. Days 3–4: Change hPSC medium.

4.3. Establishment of clonal lines
HDR frequency will be assessed through RFLP assays as described in

Section 3.4.3, followed by procedures to establish clonal lines as described

in Section 3.5.
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5. INDUCIBLE GENE KNOCKOUT IN hPSCs USING iCRISPR

Inducible gene knockout during differentiation of hPSCs into specific

cell types is of great importance for studying genes with pleiotropic effects.

With the iCRISPR platform, inducible gene knockout could be achieved

by inducible Cas9 expression and temporally regulated delivery of sgRNA

due to the low toxicity of lipid-mediated sgRNA transfection (Fig. 11.6A).

Alternatively, inducible gene knockout could also be achieved through gen-

eration of iCr lines including a constitutive sgRNA expression module in

addition to the doxycycline-inducible Cas9 expression cassette (Puro-iCr)

Differentiation

+ DOX

M2rtTA

Cas9TRE

iCas9 hPSCs

M2rtTA

Cas9TRE

Differentiated
iCas9 hPSCs

M2rtTA

Cas9TRE

sgRNA

transfection

M2rtTA

Cas9TRE

+ DOX

iCr hPSCs

Differentiated
iCr hPSCs

M2rtTA

Cas9TRE
U6

sgRNA

M2rtTA

Cas9TRE
U6

sgRNA

M2rtTA

Cas9TRE
U6

sgRNA

A B

Differentiation

Figure 11.6 Inducible gene knockout in hPSCs using iCRISPR. (A) iCas9 hPSCs are first
differentiated into required cell types. Induced expression of Cas9 with doxycycline
treatment and sgRNA transfection in differentiated cells result in inducible gene knock-
out. (B) In iCr hPSCs, a constitutive sgRNA expression module is inserted 30 of the
Cas9 expression cassette. Treatment of differentiated iCr hPSCs with doxycycline
induces Cas9 expression thus inducing gene knockout.
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targeted into the AAVS1 locus (Fig. 11.6B). Compared with temporally

regulated delivery of sgRNA, generation of iCr lines allows inducible gene

targeting in all the cells upon doxycycline treatment.

5.1. Inducible gene knockout through sgRNA transfection
1. Differentiate iCas9 into target cell types following established protocol.

2. Treat cells with doxycycline 24 h before transfection.

3. FACS sort target cells when cell surface marker(s) is available and

replate cells.

4. Perform sgRNA transfection as described in Section 3.3.

5.2. Inducible gene knockout through using iCr hPSC lines
To generate iCr hPSC lines for inducible gene knockout, we use the same

cloning approach developed by Cong et al. (2013) to insert the CRISPR

target sequence ((N)19) into a single BbsI site found in the piCRg Entry

plasmid (Addgene 58904) (Fig. 11.7A and B).

Then through LR reaction using piCRg Entry and Puro-iDEST plas-

mids, the sgRNA expression module and Cas9 expression cassette are

Co1EI Ampr

HA-L HA-RSA 2A Puror TRE
attB1attB2pA

pA

Puro-iCr donor

U6sgRNA Cas9

pBR322Kanr

piCRg Entry

hPGK Cas9 U6 sgRNA

BbsI

BbsI

pAattL1 attL2

Co1EI Ampr

HA-L HA-RSA 2A Puror TRECmr

attR1attR2pA

pA

Puro-iDEST

ccdB

ACGAAACACCGGGTCTTCGAGAAGACCTGTTTTAGAGCTA
TGCTTTGTGGCCCAGAAGCTCTTCTGGACAAAATCTCGAT

U6 sgRNA backbone

BbsI

ACGAAA                      GTTTTAGAGCTA
TGCTTTGTGG                      ATCTCGAT

      CACCGNNNNNNNNNNNNNNNNNNN          
          CNNNNNNNNNNNNNNNNNNNCAAA      

+

Ligation

ACGAAACACCGNNNNNNNNNNNNNNNNNNNGTTTTAGAGCTA
TGCTTTGTGGCNNNNNNNNNNNNNNNNNNNCAAAATCTCGAT

A

B

C

Cas9U6sgRNA

pA attL1attL2

LR reaction

Figure 11.7 Generation of Puro-iCr donor plasmid. (A) The pEntr-Cr vector contains the
chimeric sgRNA expression module and Cas9 expression cassette. (B) Cloning of the tar-
get DNA sequence into the pEntr-Cr vector via digestion with BbsI and ligation. Note:
Due to the requirement of U6 promoter to have a “G” base at the transcription start
site, one base “G” followed by 19 Ns is cloned into the pEntr-Cr backbone.
(C) Through GATEWAY LR reaction, the chimeric sgRNA expression module and Cas9
expression cassette in the pEntr-cr is transferred to Puro-iDEST to generate Puro-iCr
donor plasmid.
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transferred from piCRg Entry: to Puro-iDEST, generating the Puro-iCr

donor (Fig. 11.7C).

1. piCRg Entry: piCRg Entry plasmid was constructed by introducing the

chimeric sgRNA expression module and Cas9 coding sequence, PCR

amplified frompX330(Congetal.,2013), intoapEntrplasmid(Fig.11.7A).

2. Puro-iDEST: Puro-iDEST plasmid was constructed by replacing the

Cas9 coding sequence in the Puro-Cas9 donor with a gateway destina-

tion cassette (Life Technologies, Gateway system) (Fig. 11.7C).

3. Puro-iCr: Donor CRISPR/Cas9 expression vectors targeting specific

genomic loci are generated through LR reaction between pEntr-Cr

and Puro-iDEST (Invitrogen, Gateway Technology) (Fig. 11.7C).

4. Generate iCr hPSCs as described in Section 2. Prescreen after Southern

blot to make sure there’s no Indel in the gene of interest.

6. CONCLUSIONS AND FUTURE DIRECTIONS

Belowwe discuss expected results, common issues and considerations,

and potential additional use and extension of the iCRISPR platform.

6.1. Anticipated results
Using iCRISPR, we have successfully mutated 20 genes so far. Although

the efficiencies vary depending on the genomic locus, in most single-gene

targeting experiments, we found 20–60% of the clones with both alleles

mutated (including in-frame and frameshift mutations). In cases where we

performed multiplexed gene targeting, we obtained triple biallelic mutant

clones with 5–10% efficiencies. We have also performed ssDNA-mediated

HDR of several genes with efficiencies of obtaining homozygous knockin

clones ranging from 1% to 10% of the lines examined. To inactivate genes in

a temporal or tissue-specific manner, we have observed up to �75% muta-

tion rate in doxycycline-induced iCr cells.

There is usually a good correlation between the T7EI/RFLP assays and

the number of mutant lines recovered upon clonal expansion. This highlights

the importance of performing these assays in parallel with clonal expansion.

One may also test several sgRNAs through performing T7EI/RFLP assays

beforehand, and pick the most efficient one(s) for establishing mutant lines.

6.2. In-frame mutations
Occasionally, we have encountered situations where the majority of mutant

alleles carry the same in-frame mutations. This appears to be caused by
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microhomology-mediated repair that utilizes short stretches of repeated

sequences flanking the DSB site. This issue can be overcome simply by

designing sgRNAs that target different sequences. One may also attempt

to predict the possibility of microhomology-associated Indels at CRISPR

target sites, and potentially make use of microhomology-mediated DNA

repair to maximize the frequency of frameshift mutations (Bae, Kweon,

Kim, & Kim, 2014).

Of note, a failure to recover frameshift mutant clones may also reflect a

requirement of the gene for the survival or self-renewal of hPSCs. One

should consider this possibility when multiple sgRNAs with high Indel effi-

ciencies have produced only in-frame biallelic mutations, and there is no

apparent association withmicrohomology-mediated DNA repair. In this sit-

uation one may perform inducible knockout (see Section 5) or knockdown

by RNA interference.

6.3. Cross contamination
While we have been able to routinely generate mutant lines that are homo-

geneous with respect to the mutated allele(s), it is occasionally possible that a

given mutant line has arisen frommore than one cell. Therefore, care should

be taken to pick only well-spaced colonies for line establishment, and to

avoid cross contamination when handling multiple clonal lines. After a

clonal line is established, we recommend confirming the presence of mutant

allele(s) through TA cloning. One may further ensure the establishment of

clonal lines through subcloning. Although not routinely used in our labo-

ratory, single-cell deposition flow cytometry can be used to assist this pro-

cedure (Davis et al., 2008).

6.4. Time and throughput considerations
Based on the generally high targeting efficiencies obtained with iCRISPR,

the analysis of �24–48 colonies should be sufficient to establish multiple

mono- and biallelic mutant lines for each gene, and the entire process takes

about 1–2 months. We have found that it is feasible for a trained individual

to pick around 288 colonies at a time, which takes approximately 3 h. With

this throughput, an experienced individual could also mutant several indi-

vidual genes in parallel.

6.5. Off-target considerations
iCRISPR offers an efficient platform to generate isogenic wild-type and

mutant hPSC clones allowing rapid functional studies of single and multiple
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genes. However, studies performed in pools of immortalized cell lines sug-

gest that both TALEN and CRISPR/Cas systems can induce unwanted

mutations at loci sharing high sequence similarity with the target site

(Cho et al., 2014; Fu et al., 2013; Hsu et al., 2013; Mali, Aach, et al.,

2013; Pattanayak et al., 2013). These studies raise concerns that off-target

effects could make it difficult to interpret findings from studies using

TALEN or CRISPR/Cas systems. Recent studies have identified only

low incidence of off-target mutations fromwhole-genome sequencing anal-

ysis in individual hPSC clones obtained through genome manipulation with

TALENs or CRISPR/Cas (Smith et al., 2014; Suzuki et al., 2014; Veres

et al., 2014). Therefore, although off-target mutations are still a risk for ther-

apeutic applications, they are not a significant concern for biological studies

and disease modeling.

Nevertheless, unintended off-target mutations could still obscure func-

tional studies in hPSCs. To minimize confounding phenotypes introduced

by off-target effects, we recommend generating independent mutant lines

using at least two different sgRNAs targeting different sequences in the

same gene. Wild-type clones identified from the same targeting experi-

ment can be used as control lines. One should also consider com-

plementing the loss-of-function approaches with rescue experiments

when feasible. To further demonstrate the generality of any experimental

finding, it may be desirable to generate mutant lines using more than one

hPSC iCas9 line.

6.6. Additional use and extension of the iCRISPR platform
The iCRISPR platform is likely to facilitate other types of genome editing

in hPSCs. Also, by replacing Cas9 with Cas9 variants such as dCas9, dCas9-

KRAB, or dCas9-VP16 (Gilbert et al., 2013; Qi et al., 2013), one may

repurpose iCRISPR for gene regulation. Among the many possible appli-

cations of CRISPR/Cas, we would like to highlight two areas that we feel

have not yet been widely discussed. First, CRISPR/Cas may be used to cre-

ate deletions in noncoding RNAs or gene regulatory regions such as pro-

moters and enhancers. To efficiently generate regulatory mutants using

iCRISPR, one may design sgRNAs to disrupt the binding site (usually a

short sequence) of a DNA-binding protein including but not restricted to

the basal transcription machinery or a tissue-specific transcription factor.

Alternatively, specific protein binding sites may be mutated through

ssDNA-mediated HDR.
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iCRISPR may also facilitate the generation of more complex genomic

modifications, such as the creation of reporter alleles through HDR-

mediated gene targeting using long donor DNA templates encoding protein

tags or fluorescent proteins. Conventional approaches to generate knockin

reporters require a drug-resistance cassette due to low targeting efficiencies.

An additional step is therefore often necessary to remove the drug-resistance

cassette, the presence of which may affect reporter gene expression.

Although similar targeting experiments have been performed with

CRISPR/Cas zygote injection in mice and rats (Ma et al., 2014; Yang

et al., 2013), this has not yet been achieved in mouse or human pluripotent

stem cells. With sufficiently high targeting efficiencies, it might be possible

to perform this type of targeting in hPSCs without drug selection, which

would be a significant technical advance in our opinion.
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Abstract

Recurrent chromosomal translocations are found in numerous tumor types, often lead-
ing to the formation and expression of fusion genes with oncogenic potential. Creating
chromosomal translocations at the relevant endogenous loci, rather than ectopically
expressing the fusion genes, opens new possibilities for better characterizing molecular
mechanisms driving tumor formation. In this chapter, we describe methods to create
cancer translocations in human cells. DSBs or paired nicks generated by either wild-type

Methods in Enzymology, Volume 546 # 2014 Elsevier Inc.
ISSN 0076-6879 All rights reserved.
http://dx.doi.org/10.1016/B978-0-12-801185-0.00012-X

251

http://dx.doi.org/10.1016/B978-0-12-801185-0.00012-X


Cas9 or the Cas9 nickase, respectively, are used to induce translocations at the relevant
loci. Using different PCR-based methods, we also explain how to quantify translocation
frequency and to analyze breakpoint junctions in the cells of interest. In addition, PCR
detection of translocations is used as a very sensitivemethod to detect off-target effects,
which has general utility.

1. INTRODUCTION

The discovery that a chromosomal translocation was associated with

oncogenesis was a watershed event in tumor biology research (Chandra

et al., 2011; Rowley, 1973). Hundreds of recurrent reciprocal translocations

have now been found in a variety of human cancers, including hematolog-

ical malignancies, sarcomas, and epithelial tumors (Mani & Chinnaiyan,

2010; Mitelman, Johansson, & Mertens, 2007). These translocations are

considered primary causes of many cancers and have been important for

the development of targeted therapies. A typical consequence of a chromo-

somal translocation is the formation of a gene fusion that leads to expression

of a novel protein with oncogenic potential; alternatively, translocations can

lead to a gene coming under the control of a strong promoter, such that

overexpression confers an oncogenic property. The cellular consequences

of fusion gene expression have been widely investigated using ectopic

expression in cells without the translocation or gene silencing in cells carry-

ing the translocation. However, these studies are not optimal for several rea-

sons. Ectopic expression does not recapitulate the genetics of the disease and

may lead to nonphysiological levels of fusion gene expression, and silencing

the fusion gene in tumor cells does not take into account the numerous other

mutations that the tumor cells have acquired. Thus, having methods to

induce translocations at will in a variety of cell types would provide a sig-

nificant advantage to cancer researchers.

Translocations involve chromosome breakage and aberrant joining of

DNA ends. Two concurrent DNA double-strand breaks (DSBs), one on

each chromosome, have been shown to induce translocations

(Richardson & Jasin, 2000). Joining of the DNA ends typically involves

some type of nonhomologous end-joining (NHEJ) repair (Weinstock,

Elliott, & Jasin, 2006). The simplest system for inducing concurrent DSBs

is the expression of a nuclease which cleaves specific sites. Initial studies per-

formed in model systems used the I-SceI endonuclease, a homing endonu-

clease from yeast, in which I-SceI sites were introduced at specific loci.
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However, the development of designer nucleases (ZFNs and TALENs) has

allowed DSBs to be introduced into genomes without prior modification

(Gaj, Sirk, & Barbas, 2014; Urnov, Rebar, Holmes, Zhang, & Gregory,

2010). As a result, chromosomal translocations could be readily induced

in human and mouse cells at endogenous loci (Brunet et al., 2009;

Piganeau et al., 2013; Simsek et al., 2011), including translocations associ-

ated with human tumors. EWS–FLI1 translocations associated with Ewing

sarcoma were induced by ZFNs directed to the EWS and FLI1 loci in mes-

enchymal cells (Piganeau et al., 2013). NPM–ALK translocations associated

with anaplastic large cell lymphoma (ALCL) were induced by TALENs

directed to the NPM and ALK loci in Jurkat cells (Piganeau et al., 2013).

Of note, the ALCL translocation could also be reversed in patient cell lines

carrying the translocation, by TALENs directed to the NPM–ALK and

ALK–NPM loci. The versatility of TALENs suggests that designer nucleases

could be used to induce translocations involving any loci.

The most recently developed designer nucleases are RNA-guided,

which as such are easiest to design. Currently, the most commonly used

nuclease is Cas9 from S. pyogenes (Cong et al., 2013; Hsu, Lander, &

Zhang, 2014; Mali, Yang, et al., 2013). The guide RNA (sgRNA) has

�20 nucleotides of sequence complementary to a target site, followed by

a Protospacer Adjacent Motif (PAM) sequence (NGG) which is critical

for binding to Cas9. When both Cas9 and the sgRNA are expressed in cells,

the target site is cleaved on both strands a few nucleotides away from the

PAM, creating a DSB ( Jinek et al., 2012). Because Cas9 has two active sites,

each cleaving a defined strand, Cas9 can be converted to a nickase by muta-

tion of one active site (nickase Cas9 or nCas9). For example, Cas9 D10A

only cleaves the DNA strand complementary to the sgRNA. When two

sgRNAs are provided which bind opposite DNA strands in close proxim-

ity, however, paired nicks can be introduced, also creating a DSB but with

a long overhang (Mali, Yang, et al., 2013; Ran et al., 2013). Paired nicks

are considered to have fewer potential off-target sites, since two distinct

sgRNAs are required for double-strand cleavage. Following the principles

established with TALENs and ZFNs (Piganeau et al., 2013), Cas9 has also

been used to induce NPM-ALK and other tumor-relevant translocations

(Choi & Meyerson, 2014; Ghezraoui et al., 2014; Torres et al., 2014).

More recently, nCas9-induced paired nicks have also been used to induce

translocations (Ghezraoui et al., 2014). In this chapter, we detail methods

for the induction of translocations by Cas9 and nCas9, using a PCR screen

for translocation junctions (Brunet et al., 2009).

253Cancer Translocations Induced by Cas9 and nCas9



2. MATERIALS

2.1. Cas9, nCas9, and sgRNA expression plasmid
preparation

1. Expression plasmids can be obtained from Addgene (https://www.

addgene.org/CRISPR/). We use pCas9_GFP (Addgene plasmid

44719) to induce DSBs and pCas9D10A_GFP to induce paired nicks

(nCAS9) (Addgene plasmid 44720), together with sgRNA expression

plasmids derived from MLM3636 (Addgene plasmid 43860).

2. Competent bacteria, e.g., DH5α.
3. LB agar plates with antibiotic (ampicillin for the plasmids above).

4. LB medium.

5. PureLink® HiPure Plasmid Filter Maxiprep Kit (Invitrogen).

6. NanoDrop 2000c (Thermo Scientific).

2.2. Cell culture and transfection
1. RPE1 (hTert-RPE1) cells or mesenchymal stem cells (MSC) are used

in this chapter, although the approach is applicable to any other cell

type that can be transfected.

2. Dulbecco’s Modified Eagle Medium: Nutrient Mixture F-12

(DMEM/F-12, Life Technologies) with 10% Fetal Bovine Serum

(FBS) for RPE1 cells; alpha-Minimum Essential Eagle Medium

(αMEM, Life Technologies), supplemented with 10% FBS and

2 ng/mL bFGF (Recombinant Human FGF basic (146 aa) 233-

FB-025 R&D systems) for MSC.

3. T150 flasks, 150 cm2.

4. Cas9, nCas9, and sgRNA expression plasmids, at concentrations

�2 μg/μL.
5. 6-well plates.

6. 48-well plates.

7. 96-well plates.

8. 0.05% Trypsin–EDTA (1�).

9. Dulbecco’s Phosphate-Buffered Saline (DPBS, Life Technologies).

10. Nucleofector II device (Lonza).

11. Cell Line Nucleofector Kit V with cuvettes (Lonza).
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2.3. T7 endonuclease I assay
1. QIAamp DNA Mini Kit (Qiagen).

2. Primers: Primers may be designed using a variety of programs such as

Primer3Plus (http://www.bioinformatics.nl/cgi-bin/primer3plus/

primer3plus.cgi/). Settings are chosen to yield 22 bp primers with melt-

ing temperatures �62 �C.
3. Phusion High-Fidelity DNA Polymerase (Thermo Scientific).

4. T7 endonuclease I (New England Biolabs).

5. NEBuffer 2.1 (New England Biolabs).

6. 2� T7 loading buffer: 50% sucrose, bromophenol blue, 260 μg/mL

proteinase K.

7. 2.4% agarose gel with Ethidium Bromide (EtBr).

8. 0.5� TBE running buffer (Life Technologies).

9. UV station.

2.4. PCR detection of translocations
1. Primers for nested PCR (two sets of primers). Settings are chosen to

yield 20 bp primers with melting temperatures �60 �C.
2. FastStart Taq DNA polymerase (Roche).

3. 1% agarose gel with EtBr.

4. 0.5� TBE running buffer.

5. UV station.

2.5. PCR quantification of translocations
1. 10� Lysis buffer: 100 mM Tris–HCl (pH 8), 4.5% NP40, 4.5%

Tween20.

2. Proteinase K (New England Biolabs).

3. 2� Master Mix 1:1� GC-RICH solution (Roche FastStart Taq), 2�
PCR Buffer with 20 mMMgCl2 (Roche FastStart Taq), 400 μM dNTP

mix (Roche FastStart Taq), 4% DMSO, 0.01% Tween20, 0.01% NP40.

Store at 4 �C for up to 2 weeks.

4. 2� Master Mix 2:1� GC-RICH solution (Roche FastStart Taq), 2�
PCR Buffer with 20 mMMgCl2 (Roche FastStart Taq), 400 μM dNTP

mix (Roche FastStart Taq), 4% DMSO, 0.01% Tween20, 0.01% NP40,

0.25 μL of SYBR® Green I (10,000� in DMSO, Sigma–Aldrich)

diluted in 2 mL of 20% DMSO and Rox (concentrations depend on
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the real-time PCRmachine; 30 nM of Rox is used withMX3005P from

Agilent). Store at 4 �C for up to 2 weeks.

5. Primers for nested PCR.

6. FastStart Taq DNA polymerase (Roche).

7. Real-time quantitative PCR machine (MX3005P, Agilent).

3. METHODS TO INDUCE AND DETECT CANCER
TRANSLOCATIONS IN HUMAN CELLS

Both Cas9 and nCas9 can be used to generate translocations. We have

found that Cas9 is somewhat more efficient (Ghezraoui et al., 2014), but

nCas9 has fewer off-target concerns. Two translocations are used to illustrate

the methods described in this chapter: NPM–ALK found in ALCL

(Elmberger, Lozano, Weisenburger, Sanger, & Chan, 1995; Kuefer et al.,

1997; Morris et al., 1994) (Fig. 12.1A) and EWS–FLI1 found in Ewing sar-

coma (May et al., 1993) (Fig. 12.2A).

3.1. sgRNA design and expression plasmid construction
1. For the translocation of interest, a good starting point for designing

sgRNA target sequences is close to reported breakpoint junctions in

patients, if available. If the translocationgenerates a fusiongene, target sites

within introns involved in the translocation are requisite. When using

wild-type Cas9, design two sgRNAs, one to each chromosome; when

using nCas9 to induce paired nicks, design two pairs of sgRNAs to each

chromosome. The �20 bp target sequence is located upstream of the

requisite NGG PAM sequence. For a 20 bp target sequence, follow

the simple rule N20NGG for Cas9 and CCNN20-spacer-N20NGG for

nCas9. The spacer can be a few bp or longer (Mali, Aach, et al.,

2013; Ran et al., 2013). Specific Websites can be used to minimize the

number of off-target sites of the sgRNAs (e.g., http://crispr.mit.edu/,

http://zifit.partners.org/ZiFiT/Disclaimer.aspx, https://chopchop.rc.fas.

harvard.edu/; see also Montague, Cruz, Gagnon, Church, & Valen,

2014; Xie, Shen, Zhang, Huang, & Zhang, 2014). The U6 promoter,

which prefers G as the transcription start site, drives sgRNA expression

in MLM3636; thus, either the target sequence should begin with G or a

G should be inserted before the target sequence.
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NPM–ALK
Cas9-generated DSBs with sgRNAs NPM1 and ALK1; nCas9-generated

paired nicks with sgRNAs NPM1+NPM2 and ALK1+ALK2

(Fig. 12.1B).

NPM genomic sequence followed by sgRNA sequences:

50-CCTCGAACTGCTACTGGGTTCACCTCAGCCTCTGGAA-
TAGCTAGAACTACAGG-30

sgRNA NPM1: 50-GTGAACCCAGTAGCAGTTCG-30

sgRNA NPM2: 50-GCCTCTGGAATAGCTAGAACTAC-30

ALK genomic sequence followed by sgRNA sequences:

50-CCTCAGGTAACCCTAATCTGATCACGGTCGGTCCATT-
GCATAGAGGAGG-30

sgRNA ALK1: 50-GATCAGATTAGGGTTACCTG-30

sgRNA ALK2: 50-GTCGGTCCATTGCATAGAGG-30

2. For each sgRNA, order the synthesis of two DNA oligonucleotides

(sense and antisense) that would anneal to BsmBI-linearized plasmid

MLM3636. (http://zifit.partners.org/ZiFiT/CSquare9GetOligos.aspx)

Resuspend at 100 μM in annealing buffer (10 mM Tris (pH 7.5),

1 mM EDTA, 50 mM NaCl).

sgRNA NPM1 oligonucleotides:

50-ACACCGTGAACCCAGTAGCAGTTCGG-30

50-AAAACCGAACTGCTACTGGGTTCACG-30

sgRNA ALK1 oligonucleotides:

50-ACACCGATCAGATTAGGGTTACCTGG-30

50-AAAACCAGGTAACCCTAATCTGATCG-30

3. Anneal the two oligonucleotides to generate a duplex. Add 10 μL each

of the sense and antisense oligonucleotides to 80 μL of annealing buffer.

Place tube in a standard heating block at 95 �C for 5 min. Remove the

heating block from the apparatus and allow to cool to room temperature

on the workbench. Slow cooling to room temperature should take

45–60 min. Store on ice or at 4 �C until ready to use.

4. Ligate the duplex into BsmBI-linearized sgRNA plasmid MLM3636 vector.

5. Transform into competent bacteria. Spread on a LB agar plate and incu-

bate overnight at 37 �C.
6. Proceed to plasmid isolation with PureLink® Quick Plasmid Miniprep

Kit (Invitrogen). Because the BsmBI overhangs are distinct (GTGT
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and TTTT), a single duplex oligonucleotide should ligate in the correct

orientation. Sequencing is recommended to confirm.

7. For a positive clone, proceed to plasmid isolation with PureLink®HiPure

Plasmid FilterMaxiprepKit (Invitrogen).Measure theDNA concentration

(e.g., using a NanoDrop 2000c spectrophotometer). The final DNA plas-

mid concentration should be >2 μg/μL.
8. Note: If the translocation rate is very low, sgRNAs can be cloned

directly in the same plasmid as Cas9 (pX330-U6-Chimeric_BB-CBh-

hSpCas9, Addgene plasmid 42230) or nCas9 (pX335-U6-Chimeric_BB-

CBh-hSpCas9n(D10A), Addgene plasmid 42335). Other sgRNA

plasmids contain markers such as GFP (Addgene plasmid PX458) for

FACS sorting or the puromycin resistance gene (Addgene plasmid

PX459) for selection to increase the recovery of transfected cells.

3.2. Cell transfections with sgRNA and Cas9 or nCas9
expression plasmids

The protocol has been optimized for RPE1 and MSC cells, but any other

cell line of interest can be used.

Transfection can induce high cell lethality, which can be explained by

(i) inappropriate cell culture conditions, (ii) inappropriate transfection pro-

gram, (iii) lack of sgRNA specificity, and (iv) induction of a lethal translo-

cation. Check these parameters to reduce mortality.

1. RPE1 andMSC cells are cultured in a T150 flask in 20 mL of DMEM/

F-12 medium and supplemented αMEM medium, respectively, at

37 �C and 5% CO2. Passage every 2–3 days at a split ratio of 1:5 to

1:10, keeping them at �80% confluency.

2. The day before transfection, pass the cells without antibiotics (to

decrease lethality during electroporation) to reach �70–80% con-

fluency on the day of transfection.

3. On the day of transfection, prepare Eppendorf tubes containing 3.5 μg of
each sgRNAplasmid and3.5 μg of theCas9 or nCas9 expression plasmid.

As controls, transfect one of the two sgRNAexpression plasmids for Cas9

or two of the four sgRNA expression plasmids for nCas9 and the same

quantity of the sgRNA expression plasmid in which no sgRNA was

cloned. For nCas9, you can transfect one sgRNA each targeting the

two chromosomes to exclude nick-induced translocations (Fig. 12.1C).

The total volume of transfected DNA should not exceed 10 μL.
4. Prefill 2–3 wells of a 6-well plate with 1 mL medium and prewarm

to 37 �C.
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5. Prefill three 96-well plates with 50 μL medium per well and prewarm

to 37 �C.
6. Trypsinize the RPE1 or MSC cells and resuspend in prewarm sup-

plemented medium DMEM/F-12 or αMEM, respectively (typically

10 mL). Do not use 4 �C media at any time.

7. Count the cells and for each transfection put 7.5�105 cells in a 15-mL

Falcon tube. The program and the number of cells must be adjusted for

each cell line (refer to Lonza Nucleofector Protocols). Conditions

described here are optimized for MSC and RPE1 cells.

8. Centrifuge 10 min at 90� g at room temperature.

9. Carefully remove the medium without aspirating the cells. FBS from

the mediummay inhibit transfection. A supplemental wash with DPBS

may increase the transfection efficiency.

10. Carefully resuspend cells in 100 μL of Cell Line Nucleofector Kit

V (Lonza) solution. To prevent cell lethality, avoid all unnecessary cell

agitation.

11. Transfer the cells into the tube containing DNA and then transfer the

cell/DNA mix into the Amaxa DNA cuvettes.

12. Electroporate using the Nucleofector II system (Lonza) on program

B-016 for MSCs and X-001 for RPE1 cells.

13. Transfer transfected cells to 5 mL of prewarmed medium.

14. Dilute the cells as follows to a final volume of 6 mL: 1.2 mL (1/5),

600 μL (1/10), and 300 μL (1/20). Plate 50 μL of each cell dilution into
each well of a prewarmed 96-well plate. In addition, transfer 1 mL of

the 5 mL of cells to a well of a 48-well plate for cell counts (see step

3.6.1).

15. Transfer the rest of the cells into wells of a 6-well plate (step 3.2.4) for

further DNA, protein, or chromosome analysis. If the translocation

frequency is high enough, translocations can be directly detected

by Western blotting using antibodies directed against the fusion

protein (frequency�10�3) or by microscopy using FISH probes

(frequency�10�2) (Piganeau et al., 2013). Prepare supplementary

wells during the transfection if you plan these additional analyses.

Induction of the NPM–ALK translocation is frequent enough that expres-

sion of the NPM–ALK fusion protein can be detected in the bulk popula-

tion of transfected cells (Fig. 12.1A).

16. Incubate cells at 37 �C, 5% CO2.
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17. Note: To estimate transfection efficiency, our experiments utilize

pCas9_GFP and pCasD10A9_GFP in which GFP is expressed as a

2A fusion. The percent GFP-positive cells is determined by flow

cytometry 48 h after transfection. Poor transfection can result in low

translocation efficiency. Test several programs to optimize the transfec-

tion efficiency for each cell line.

3.3. T7 endonuclease I assay to estimate cleavage efficiency
This assay estimates the efficiency of sgRNAs to direct cleavage by quanti-

fying insertions and deletions (indels) resulting from DSB repair via NHEJ

(Guschin et al., 2010). For nCas9 paired nicks, the estimate is done using

each of the sgRNAs separately with wild-type Cas9 as well as with the

two sgRNAs together with nCas9 (Fig. 12.1D).

Several sgRNAscanbedesigned to target the same locus, such that sgRNAs

that are found to efficiently induce indels canbeused to generate translocations.

1. Five days after transfection, trypsinize cells in the 6-well plate (from step

3.2.15).

2. Centrifuge at 200� g at 4 �C for 5 min.

3. Remove supernatant and wash the pellet with 1 mL of DPBS.

4. Repeat centrifugation.

5. Remove supernatant. Cell pellets can be stored at �80 �C.
6. Extract genomic DNA with the QIAamp DNA Mini Kit (Qiagen).

Genomic DNA can be stored at �20 �C.
7. Design a set of primers amplifying a 300–500 bp region encompassing

the target sites on nontranslocated chromosomes. Cleavage sites should

not be located in the middle of the amplicon, in order to obtain two

distinct bands after T7 endonuclease I cleavage.

ALK locus primers generate a 401-bp fragment from the wild-type locus

and smaller fragments from the modified locus (Fig. 12.1D):

ALK-F 50-AGATGGGCAGAGGCTTGAAAAG-30

ALK-R 50-TGAGGATGTTCTGGAAGGCAAA-30

8. Perform a 35-cycle PCR on 50 ng of genomic DNA in a total of 25 μL
to amplify regions encompassing the target sites. We typically use

Phusion High-Fidelity DNA Polymerase (Thermo Scientific).

9. Verify the quality of the amplification by running 5 μL of the PCR

reaction on a 1% agarose gel with EtBr in 0.5� TBE. Only one band

should be amplified.
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10. Mix 10 μL PCR reaction with 10 μL 2�NEBuffer 2.1 in two different

PCR tubes.

11. Melt and reanneal amplicons by incubating as follows: 95 �C for

5 min, 95 �C to 25 �C at �0.5 �C/s, and 15 min at 4 �C. This step
converts fragments with and without indels into mismatched het-

eroduplex DNA. Add 1.5 U of T7 endonuclease I in one of the

two tubes. Add the same volume of buffer in the second one as

a control.

12. Incubate at 37 �C for 20 min. This step allows T7 endonuclease I to

cleave mismatched DNA duplexes.

13. Add 10 μL of 2� T7 loading buffer containing Proteinase K to 10 μL
DNA. Incubate at room temperature for 5 min. In this step, T7 endo-

nuclease I is degraded by Proteinase K.

14. Load the PCR product on a 2.4% agarose gel with EtBr and run at

100 V for 20 min in 0.5� TBE buffer.

15. Capture the gel image with a UV imaging station (Fig. 12.1D). The

amount of cleaved DNA estimates the Cas9-induced mutation rate.

Each sgRNA should induce detectable levels of indels when tested with

Cas9. If the T7 endonuclease I assay reveals a low indel efficiency for a

chosen sgRNA, increase the amount of the sgRNA expression vector

or redesign the sgRNA. If using the nCas9 approach, the four sgRNAs

must induce indels separately.

3.4. PCR-based translocation detection
1. With a low translocation frequency, a nested PCR approach is typically

used. Design two sets of primers on each side of the translocation junc-

tion, the second set located within the first product (see Section 2.4). For

a frequency >10�4, however, translocations can be detected with a sin-

gle set of PCR primers. The amplified product should be 600–1000 bp

to recover potentially long deletions from the DNA ends during trans-

location formation.

Der5, corresponding to the NPM–ALK fusion:

External primers:

Der5-F 50-CAGTTGCTTGGTTCCCAGTT-30

Der5-R 50-AGGAATTGGCCTGCCTTAGT-30

Internal primers:

Der5-NF 50-GGGGAGAGGAAATCTTGCTG-30

Der5-NR 50-GCAGCTTCAGTGCAATCACA-30
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2. Perform a 23-cycle PCR on 100–150 ng genomic DNA (extracted in

step 3.3.6) with the external set of primers. We classically use FastStart

Taq DNA polymerase (Roche).

3. Perform a 40-cycle PCR on 0.5–1 μL of the first PCR reaction with the

internal set of primers.NestedPCRis a highly sensitivemethod, presenting

contamination risks.Work carefully in a dedicated place, wear gloves, take

care not to contaminate a tube with already amplified PCR products, and

clean up your bench and your material after each PCR.

4. Load the PCR product on a 1% agarose gel with EtBr in 0.5�
TBE buffer.

5. Capture the gel image with a UV imaging station (Fig. 12.1C).

6. Note: Translocations require DSBs or paired nicks on both chromo-

somes (Fig. 12.1C). PCR amplification of translocation junctions may

lead to larger or smaller products than expected due to indels generated

during translocations formation (see below Fig. 12.2C), which can be

confirmed by sequencing.

3.5. Quantification of potential off-target cleavage
When using Cas9, potential off-target sites should be determined during

sgRNA design, because mismatches to the �20 nt target sequence do not

necessary abrogate cleavage. Sequences containing up to five mismatches

compared to the target sequence, especially in the PAM-distal region

(Hsu et al., 2013), should be considered as potential sites for cleavage by

Cas9. Potential off-target effects from nCas9 and single sgRNAs are signif-

icantly reduced since nicks are generated. However, off-target paired nicks

are still possible with nCas9 if two sgRNAs bind by chance relatively close to

each other. Thus, all combinations of sgRNAs should be considered for

potential off-target binding.

EWS–FLI1
EWS genomic sequence followed by sgRNA sequence:

50-GGAATCCAGGACACATCTTTAGG-30

sgRNA EWS: 50-GGAATCCAGGACACATCTTT
Potential off-target site for the sgRNA EWS on Chr9 (two mismatches)

(Fig. 12.2A):

50-GGAT*TCCAGGACC*CATCTTTGGG-30

FLI1 genomic sequence followed by sgRNA sequence:

50-CCTCCCATGGCTGTCTCTAGACC-30

sgRNA FLI1: 50-GGTCTAGAGACAGCCATGGG
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1. After determining potential sgRNA off-target sites, design a set of

primers amplifying a 300–500 bp region encompassing the potential

off-target site. Then perform the T7 endonuclease I assay (Section 3.3).

EWS locus primers generate a 354-bp fragment from the wild-type locus

and smaller fragments from the modified locus (Fig. 12.2B):

EWS-F 50-CCTCAGCCACCCAGAGTGTT-30

EWS-R 50-TAGCTGCCTCCCCACTTTACAT-30

EWS off-target locus primers generate a 465-bp fragment from the

wild-type locus and smaller fragments from the modified locus

EWS-OFF-F 50-ACTCACCTGGTTGGGTTGTCTT-30

EWS-OFF-R 50-GTCCGTACTATGAAGGGGTCGT-30

2. Design primers for detection of translocations between one of the target

chromosomes and the potential off-target site. Then proceed to nested

PCR to detect translocations (Section 3.4)

Der22, corresponding to the EWS–FLI1 fusion (Fig. 12.2B):

External primers:

Der22-F 50-ATCCTACAGCCAAGCTCCAA-30

Der22-R 50-GGCCTCATTGTTTCTGGCTA-30

Internal primers:

Der22-NF 50-CTACGGGCAGCAGAGTGAGT-30

Der22-NR 50-TTCCTCAAGGCTCTGGAAAA-30

Der9, corresponding to the off-target-FLI1 fusion (Fig. 12.2B):

External primers:

Der9-F 50-TAGTGGGGGAAGGAGAGACA-30

Der9-B 50-GCCAGGTTTCTTAGGGCTTT-30

Internal primers:

Der9-NF 50-GAAAAGGCTCCATTTCATGC-30

Der9-NB 50-GGGCTGAGCTCCATAAATCA-30

A positive signal in one of these two assays (presence of indels after T7 assay

or translocation detection by PCR) will reveal off-target cleavage of the

tested sgRNA. However, the T7 assay is less sensitive than the translocation

assay. The T7 assay sensitivity is �1–2%, while translocations can be easily

detected at a frequency �10�5. For example, in Fig. 12.2B a translocation

between the target site and the off-target site can be amplified when no signal

can be detect in the T7 assay.
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Thus, PCR detection of translocation formation is a highly sensitive

assay to detect off-target cleavage and can be used as a general method in

other applications to evaluate off-target sites.

3.6. Quantification of translocation frequency using
a 96-well plate screen

Translocation frequencies can be accurately determined using a 96-well plate

format (Brunet et al., 2009; Piganeau et al., 2013). The basic strategy is that

small pools of cells are placed in each well, such that most wells on a plate

contain <1 translocation. The translocation frequency can be determined

from the number of negative and positive wells, with correction for the num-

ber of wells with two or more translocations. Having a single event in most

positive wells also means that unique translocation junctions can be scored.

1. 48-well plate (step 3.2.14): Trypsinize cells in the well �24 h after

transfection, before cells have had a chance to divide. Use a small vol-

ume of trypsin (typically 100 μL) and count the cells contained in this

well. This number represents 1/5th the transfected cells surviving

transfection in each of the 96-well plates. Do not exceed this time frame

to ensure an accurate cell number to calculate translocation frequency.

2. 96-well plates (step 3.2.14): Remove all of the culture medium 48 h to

5 days after transfection, depending on the growth of the cells. Plates

can be stored wrapped in Parafilm at �80 �C and thawed for later use.

3. Add Proteinase K to 2.5 mL of 1� lysis solution at final concentration

of 100 μg/mL. Place 25 μL Proteinase K solution into each well of the

thawed 96-well plate.

4. Incubate at 55 �C for 120 min in a humid chamber, such as a closed

plastic container with moist towels at the bottom.

5. Transfer the lysates into 96 tubes on PCR tube strips.

6. Incubate at 95 �C for 10 min to inactivate Proteinase K.

7. Add 200 nM of the external primers (same primers used in Section 3.4)

to 5 mL of 1� PCR Master Mix 1, and add 25 μL of FastStart Taq

polymerase. Perform the first round of PCR on 4–7 μL cell lysate in

a total volume of 50 μL.
8. Add 200 nM of the internal primers (same primers used in Section 3.4)

to 2 mL of 1� PCRMaster Mix 2 (containing the SYBR Green), and

add 10 μL of FastStart Taq polymerase. Perform the second round of

PCR on 0.5–1 μL of the first PCR in a total volume of 20 μL. The
PCR program has to contain a denaturation curve cycle.

9. Count the number of wells with a positive denaturation curve. Since

nested PCR fragments corresponding to translocation junctions are
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designed to amplify typically 600–900 bp, allwellswith aTm>85 �Care

considered to be positive, corresponding to fragments >100–150 bp.

10. �12–14 positive wells per 96-well plate: Each well is estimated to con-

tain no more than one translocation and the translocation frequency is

( p), the number positive wells divided by the number of plated cells

(determined in step 3.6.1).

11. >12–14 positive wells per 96-well plate: The translocation frequency is

determined using a correction following a beta cumulative distribution

function k(x,a,b), where k¼number of translocations per well, p¼ total

number of positive wells per number of plated cells, n¼number of cells

per well, and x¼1�p, a¼n�k, b¼k+1. If the number of wells with

twoormore translocations ishigh to interferewithprecise frequencymea-

surements, calculate from a plate with fewer cells per well (step 3.2.14).

PCR products from positive wells can be sent for sequencing to analyze

breakpoint junctions (e.g., Der5, Fig. 12.3 for Cas9 and Fig. 12.4 for nCas9).

A

B

−

Figure 12.3 Cas9 cleavage at the NPM and ALK loci and example of a translocation junc-
tion sequence. (A) Cas9 cleavage at the NPM and ALK loci using the NPM1 and ALK1
sgRNAs, respectively, leads to DSBs. Only the part of the sgRNA that binds DNA is shown.
PAM sequence, boxed; arrows, cleavage sites. (B) DNA ends from Cas9 cleavage that are
relevant to Der5 formation are shown. NHEJ leads to a variety of Der5 translocation junc-
tions, but a common junction (shown) is direct ligation of the DNA ends, presumably
involving fill-in of the 1-base 50 overhang. For additional junctions, see Ghezraoui
et al. (2014).
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At the local sequence level, very different junctions are obtained for Cas9

and nCas9 due to the different DNA end structures. The small pool

PCR means that with a unique translocation in a well, the reciprocal trans-

location junction can also be determined. Cells with a reciprocal transloca-

tion can be enriched by sib selection (Brunet et al., 2009).

3.7. Translocation frequency determination by serial dilution
The protocol described in Section 3.6 requires removal of medium from the

96-well plate. Thus, with nonadherent cells, cell loss is a potential problem.

Here, we suggest an alternative method for translocation frequency assess-

ment when frequencies are >10�4, which is not atypical in our experience.

�

� �

�

�
�

� �

�

�

��

�

�

��

−

A

B

Figure 12.4 nCas9 cleavage at the NPM and ALK loci and example of a translocation
junction sequence. (A) nCas9 cleavage at the NPM and ALK loci using the NPM1
+NPM2 and ALK1+ALK2 sgRNAs, respectively, leads to paired nicks. The relative posi-
tion of the two sgRNAs at each locus has been termed “PAMs out.” Only the part of
the sgRNA that binds DNA is shown. PAM sequence, boxed; arrows, cleavage sites.
(B) The two DNA ends from nCas9 cleavage that are relevant to Der5 formation are
shown. Long overhangs are predicted. NHEJ leads to a variety of Der5 translocation
junctions, an example of which is shown. In this typical junction, deletions occur primar-
ily in the overhangs at both DNA ends, although in other junctions deletions extend
well into the double-stranded region on one or both sides. For additional junctions,
see Ghezraoui et al. (2014) (µhom¼microhomology).
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1. Perform serial dilutions on genomic DNA in quadruplicates starting

from 100 to 1.56 ng DNA (extraction in step 3.3.6).

2. Perform PCR on each dilution as in step 3.4.3.

3. Load on a 1% agarose gel with EtBr.

4. Capture the gel image with a UV imaging station. Considering that one

human diploid cell contains 6 pg of DNA, 6.25 ng represent about 103

cells. Consider all the quadruplicates to determine the translocation fre-

quency (Fig. 12.2C for Der22).

4. CONCLUSIONS

In this chapter, we described a method to induce cancer translocations

using Cas9 DSBs or nCas9 paired nicks in human cells. The ease at which

potential target sites can be found at any locus of interest makes this approach

readily adaptable for expanding the repertoire of possible cancer transloca-

tions that can be induced in any cell type of interest. Concerns about off-

target effects are diminished by the use of nCas9. In addition, nCas9 will

better recapitulate some types of breakpoints junctions found in patient cells

(Ghezraoui et al., 2014). Cells carrying the chosen translocations provide a

more accurate model to understand mechanisms of tumor initiation than

standard ectopic expression of a fusion protein. Results from such studies

may assist the design of targeted therapies, for example, to avoid therapy-

induced secondary tumors with specific translocations (Cowell et al.,

2012). Our approach can also be used to decipher the repair mechanisms

that are involved in translocation formation, because PCR screening of

translocation junctions allows accurate frequency determination in parallel

with the precise determination of breakpoint junctions (Ghezraoui et al.,

2014). Finally, translocation assays provide a highly sensitive method to

detect off-target cleavage for any application, and so has general utility.
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Abstract

The rapid advancement of genome-editing techniques holds much promise for the
field of human gene therapy. From bacteria to model organisms and human cells,
genome editing tools such as zinc-finger nucleases (ZNFs), TALENs, and CRISPR/Cas9
have been successfully used to manipulate the respective genomes with unprece-
dented precision. With regard to human gene therapy, it is of great interest to test
the feasibility of genome editing in primary human hematopoietic cells that could
potentially be used to treat a variety of human genetic disorders such as hemoglobin-
opathies, primary immunodeficiencies, and cancer. In this chapter, we explore the use of
the CRISPR/Cas9 system for the efficient ablation of genes in two clinically relevant pri-
mary human cell types, CD4+ T cells and CD34+ hematopoietic stem and progenitor
cells. By using two guide RNAs directed at a single locus, we achieve highly efficient
and predictable deletions that ablate gene function. The use of a Cas9-2A-GFP fusion
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protein allows FACS-based enrichment of the transfected cells. The ease of designing,
constructing, and testing guide RNAs makes this dual guide strategy an attractive
approach for the efficient deletion of clinically relevant genes in primary human
hematopoietic stem and effector cells and enables the use of CRISPR/Cas9 for gene
therapy.

1. INTRODUCTION

The goal of gene therapy is the correction of a mutation or genetic

defect using recombinant DNA technologies. Historically, the manipulation

of genomes relied on homologous recombination (HR)-based strategies,

where a donor template with significant homology to the targeted region

was used to introduce the desired changes (Capecchi, 1989). While

HR-mediated gene targeting has proven extremely successful in certain ani-

mal models, it has only been met with moderate success in human cell lines,

mainly because of the low efficiency of HR in human cells.

The development of genome-editing tools such as zinc-finger nucleases

(ZFNs), transcription activator-like effector nucleases (TALENs), and clus-

tered, regularly interspaced, short palindromic repeat (CRISPR)/CRISPR-

associated (Cas) nucleases has changed this scenario dramatically (Hsu,

Lander, & Zhang, 2014). These programmable nucleases generate

double-strand breaks (DSBs) at high efficiency that are usually repaired by

nonhomologous end joining (NHEJ), an error-prone process, which fre-

quently results in the disruption of the targeted gene (Sander & Joung,

2014). Alternatively, genome editing tools can also be used for gene repair

by increasing the incorporation of HR templates, such as single-stranded oli-

gonucleotides or homology-based targeting vectors (Sander & Joung, 2014).

While there has been some success in gene repair using ZFNs and

TALENs in cells of hematopoietic origin and human pluripotent stem cells

(Ding, Lee, et al., 2013; Genovese et al., 2014; Kiskinis et al., 2014; Mali

et al., 2013), the more recently developed CRISPR/Cas9 system has

quickly become the tool of choice by virtue of its efficacy and ease of use

(Hsu et al., 2014). Within less than 2 years from its first application in human

cell lines (Cong et al., 2013; Jinek et al., 2013; Mali et al., 2013), CRISPR/

Cas9-mediated genome editing has been successfully employed in a variety

of model organisms, human embryonic and induced pluripotent stem cells,

as well as in human adult stem cells (Ding, Regan, et al., 2013; Sander &

Joung, 2014; Schwank et al., 2013).
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Recent proof-of-principle studies in small animal models suggest that

gene correction using CRISPR/Cas9 may even be possible in patients

(Ding et al., 2014; Yin et al., 2014). Changes introduced by genome editing

are permanent, which in certain cases can be superior over short-lived bio-

logics or small-molecule drug treatments. Together, these studies demon-

strate that genome editing has the potential for correction of human

genetic diseases and might translate into new clinical therapies.

In this section, we focus on the transient delivery of CRISPR/Cas9 to

human hematopoietic cells, which can readily be isolated from peripheral

blood, expanded ex vivo, and subsequently reinfused into the patient

(Bryder, Rossi, & Weissman, 2006). The ex vivo culture/expansion step

opens up a window of opportunity for the manipulation of the desired cell

type, such as human T cells or hematopoietic progenitor cells, by genome

editing.

The first protocol in this section describes the targeting of the beta-2-

microglobulin (B2M) gene in primary humanCD4+T cells. B2M-deficient

cells are devoid of major histocompatibility complex-I (MHC-I) surface

expression (Gussow et al., 1987), which normally represents the major bar-

rier in donor-derived (allogeneic) transplantation.

Antigen-specific T cells are already used in adoptive cell transfer (ACT)-

based therapies, and provide a promising treatment for a variety of malignan-

cies, including melanoma, and acute and chronic lymphoma ( June,

Rosenberg, Sadelain, &Weber, 2012). More recently, the design of chime-

ric antigen receptors has allowed the redirection of effector T cells to fight a

variety of hematological malignancies (Maus, Grupp, Porter, & June, 2014).

A major drawback of adoptive T cell therapies, however, is their current

limitation to an autologous setting, where tumor-specific T cells are isolated

from a patient, expanded and given back to the same patient. Moreover, the

derivation of antigen-specific T cells for ACT and their expansion can take

up to several weeks. It is thus desirable to generate universally transferable

donor T cells that are readily available and can be used in an allogeneic trans-

plantation setting and thus be administered to multiple recipients with

disparate MHC expression.

The second protocol describes a strategy to delete chemokine (C-C

motif ) receptor 5 (CCR5) in CD34+HSPCs using the CRISPR/Cas9 sys-

tem. As CCR5 is an essential co-receptor for entry of the human immuno-

deficiency virus-1 (HIV-1) (Trkola et al., 1996), targeting CCR5 in HSPCs

represents an attractive way of creating an HIV-1-resistant immune system.

Upon transplantation, CCR5-deficient HSPCs can engraft, expand and

275Genome Editing for Human Gene Therapy



ultimately give rise to CCR5-deficient CD4+ T cells that are resistant to

HIV-1 virus infection (Holt et al., 2010). Further studies will be required

to evaluate the safety and extent of off-target effects, particularly in vivo,

and strategies to reduce off-target effects, such as Cas9 nickase (Ran, Hsu,

Lin, et al., 2013) or the recently developed Cas9-FokI fusion protein

(Tsai et al., 2014), will help to translate these strategies more safely into

the clinic. Ultimately, combining both approaches described in this section,

deletion of B2M and CCR5, may extend adoptive cell therapy for HIV-1

infection beyond the autologous setting and make this form of treatment

more accessible to a larger number of patients.

2. GENOME EDITING OF B2M IN PRIMARY HUMAN
CD4+ T CELLS

Overcoming the MHC barrier in transplantation is one of the major

goals in regenerative medicine, and several strategies have been envisioned

to reduce the immunogenicity of transplanted cells by targeting either HLA

molecules directly or the accessory chain B2M (Lu et al., 2013; Riolobos

et al., 2013; Torikai et al., 2013). B2M is constitutively expressed on virtu-

ally all nucleated cells and required for the proper surface trafficking ofMHC

class I molecules (Gussow et al., 1987). Deletion of the B2M gene results in

loss of MHC-I surface expression (Koller, Marrack, Kappler, & Smithies,

1990; Zijlstra et al., 1990), and is a common strategy of tumors to evade

immune rejection (Challa-Malladi et al., 2011; D’Urso et al., 1991; Rosa

et al., 1983).

In this protocol, we focus on the delivery of B2M-specific CRISPR/

Cas9 to primary human CD4+ T cells obtained from peripheral blood.

CD4+ T cells are isolated by negative selection and are subsequently tran-

siently transfected by nucleofection. The use of a Cas9-2A-GFP construct

allows the identification and sorting of the transfected cells based on the

GFP fluorescence. In the case of B2M, which is expressed at the cell surface,

successful targeting can be confirmed by monitoring loss of B2M expression

by means of a simple surface staining with an anti-B2M antibody, followed

by fluorescence-activated cell sorting (FACS) analysis.

In this study, we chose to employ a dual guide strategy, which uses two

CRISPR guides directed against the B2M locus (see Fig. 13.1). We previ-

ously observed improved cutting efficiency for certain guide combinations

in primary human hematopoietic cells (P. Mandal & L. Ferreira,

unpublished) using this dual guide approach. Similar results have been
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observed in mice and deletion of the B2M gene was recently accomplished

using CRISPR/Cas9 multiplexing in mice and rats (Cong et al., 2013; Ma

et al., 2014; Zhou et al., 2014). Another advantage of the dual guide strategy

lies in the fact that a defined region is excised rather than the unpredictable

indels produced as a result of NHEJ.

A limitation of the proposed method is the high degree of cell death that

results from electroporation. Ultimately, the use of modified RNA or non-

integrating lentiviral vectors may reduce cell mortality and allow for more

efficacious CRISPR/Cas9 delivery (Banasik & McCray, 2010; Warren

et al., 2010). Whether the dual guide approach will result in an increase

in off-target effects will have to be determined empirically on a case-by-case

basis. Nevertheless, this strategy should be applicable to a wide variety of

target loci and allows the rapid assessment of the amenability of a locus to

genome editing in a variety of human primary cells that are most valuable

for adoptive cell therapy.

2.1. Required materials
• Citrate anticoagulated blood obtained from leukophoresis (leukopac)

from a healthy donor (MGH Blood bank, Boston, MA, USA)

• Rosette Sep™ human CD4+ T Cell Enrichment Cocktail (StemCell™

Technologies #15022)

• Hemocytometer or equivalent cell counter

• Trypan blue solution (Sigma #T8154)

• Ficoll-Paque™ (GE Healthcare #17-1440-03)

• Plastic transfer pipettes (BD Falcon #357575)

• Dulbecco’s Phosphate buffered saline (Corning #21-031-CV)

• Freshly isolated CD4+ T cells (see 2.2)

• Cas9-2A-GFP plasmid (Addgene #44719)

• Guide plasmid (Addgene #41824)

Figure 13.1 Dual guide strategy. Schematic representation of the B2M locus on
chromosome 15q21.1 indicating the binding sites of the CRISPRs used in this study
(red (light gray in the print version) bars). CRISPR#1 targets the first exon, while CRISPR#2
will introduce a double-strand break 2.2 kb downstream in the first intron of the B2M
gene. Cutting of the individual CRISPRs had been previously established in 293T cells.
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• Amaxa® human T cell Nucleofector kit (Lonza #VPA-1002)

• Nucleofector® II (Lonza)

• RPMI-1640, with L-glutamine and NaHCO3 (Sigma-Aldrich #R8758)

• HI FBS (Gibco #16140-063)

• Penicillin/Streptomycin Solution (VWR #45000-652)

• HEPES (Invitrogen #15630)

• GlutaMax™ (Gibco #35050061)

• Human IL-2, animal free (Peprotech #AF-200-02)

• FACS blocking buffer (4% FBS in PBS)

• FACS staining buffer (1% FBS in PBS)

• FACS tubes with cell-strainer cap (BD Falcon #352235)

• 7-AAD viability staining solution (BioLegend #420404)

• Zombie Aqua™ fixable viability kit (BioLegend #423101)

• Anti-CD4-PE, clone RPA-T4, IgG1, κ (BD Pharmingen #555347)

• Anti-B2M-APC, clone 2M2, IgG1, κ (BioLegend #316302)

• Anti-human HLA-A,B,C-Alexa647, cloneW6/32, IgG2a, κ (BioLegend
#311416)

• FACS Calibur™ or LSR II (BD Bioscience) for cell analysis

• FACS Aria™ (BD Bioscience) for cell sorting

• Genomic DNA isolation kit (Qiagen #69506)

• Phusion Green Hot Start II High-Fidelity DNA Polymerase (Thermo

Scientific F-537S)

• Gene-specific primers

• dNTPs (Thermo Scientific #R0192)

• Agarose (GeneMate #E-3120-500)

• TBE buffer (Thermo Scientific #B52)

• Gel running station (BioRad)

2.2. Isolation of CD4+ T cells from peripheral blood
A variety of kits are available to isolate primary human leukocytes. In

this protocol, we chose to carry out negative selection using Rosette

Sep™ (Stem Cell Technologies), which allows the isolation of untouched

CD4+ T lymphocytes. Purity can be assessed by flow cytometry after

staining with a fluorophore-conjugated anti-CD4 antibody, possibly in

combination with other T cell-specific markers if desired (see Fig. 13.2).

1. Pour blood from a leukopac into a 50-ml Falcon tube (see Note 1).

2. Add Rosette Sep™ human CD4+ T Cell Enrichment Cocktail at

50 μl/ml of blood.
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3. Incubate mixture for 20 min at room temperature (RT).

4. Dilute sample with an equal volume of PBS andmix gently by inverting.

5. Layer the diluted sample over an adequate volume of Ficoll-Paque™

(see Note 2).

6. Centrifuge for 25 min at 1800 rpm without break at RT.

7. Collect cells at interface with a plastic transfer pipette and transfer to a

fresh tube.

8. Dilute cells with 10 ml PBS and centrifuge for 5 min at 1800 rpm at RT.

9. Wash cells again with 10 ml PBS.

10. Resuspend cell pellet in 5 ml PBS and count cells using a

hemocytometer.

11. Keep at 4 �C until use.

Notes

1. We recommend the use of a leukocyte-enriched source for the isolation

of CD4+ T cells such as leukopacs or buffy coats. From a leukopac, the

yield is typically 10–20�106 CD4+ T cells/ml, which is about 10 times

higher than from freshly isolated peripheral blood (1–2�106 CD4+

T cells/ml).

2. Alternatively, layer the density medium underneath the diluted sample.

2.3. Delivery of CRISPR/Cas9 by nucleofection
In this protocol, both the Cas9 and the CRISPR guide plasmids are tran-

siently introduced into CD4+ T cells by nucleofection. Cas9 expression

is driven by the CAG promoter, followed by a 2A-linked GFP, which

Figure 13.2 Enrichment of human CD4+ T cells using Rosette Sep™. Human CD4+
T cells can be enriched to a purity >90% using the human CD4+ T Cell Enrichment
Cocktail. CD4+ T cells were isolated from leukopacs and purity was assessed before (left
panel) and after enrichment (right panel) using a phycoerythrin-labeled anti-CD4
antibody.
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allows the FACS-based enrichment of transfected cells based on the GFP

signal (see Fig. 13.3). There are several protocols and online tools available

that assist in the design and cloning of CRISPR single guide RNAs (Peters,

Cowan, & Musunuru, 2013; Ran, Hsu, Wright, et al., 2013). We recom-

mend verifying the cutting efficiency of the individual CRISPRs in cells that

are easy to transfect, e.g., 293T cells, before switching to a more difficult-to-

transfect cell type.

2.3.1 Nucleofection
1. Supplement the Nucleofector® solution according to the manufac-

turer’s instructions (Lonza) and keep at RT until use.

2. Count CD4+ T cells and determine live cell count (see Note 1).

3. Prepare tubes with the required amount of cells (5–10�106 cells per

sample).

4. Centrifuge tubes at 1800 rpm, aspirate supernatants and keep cell pellets

on ice (see Note 2).

5. Aliquot DNAs according to the table below (see Note 3).

6. Mix the CD4+ T cells in 100 μl of Nucleofector® solution and subse-

quently mix the cell suspension with the DNA aliquot. Immediately

proceed to the next step (see Note 4).
One Nucleofector® sample contains

5–10�106 CD4+ T cells

5 μg Cas9-2A-GFP plasmid

2.5 μg Guide plasmid#1

2.5 μg Guide plasmid#2

100 μl Human CD4+ T cell nucleofector solution

7. Transfer cell/DNA suspension to cuvettes provided by the kit and

insert cuvette into nucleofector.

8. Use program U-014 for nucleofection (see Note 5).

9. Immediately transfer cells to a 15-ml Falcon tube filled with 7 ml

prewarmed RPMI-10 using the provided plastic pipettes (see Note 6).

10. Pellet cells by centrifugation at 1800 rpm for 5 min.

11. Aspirate medium and resuspend in fresh RPMI-10.

12. Replate in 0.5 ml RPMI-10 in an appropriately sized well.
RPMI-10 medium

RPMI

10% FBS

10 mM HEPES

1� GlutaMax

1� Pen/Strep
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Figure 13.3 Optimization of Cas9 delivery to human CD4+ T cells via nucleofection. Successful transfection of human CD4+ T cells can be
analyzed based on the green fluorescent protein (GFP) signal when compared to an untransfected or a mock electroporated sample. pMax-
GFP was used as a positive control (A). Increasing the amount of the Cas9-2A-GFP plasmid per nucleofection results in a higher percentage of
GFP+ cells (B). However, it also induces an increase in cell death, thus reducing the overall number of live GFP+ cells (C).



2.3.2 Postnucleofection
1. Change mediumwithin the first 6–12 h posttransfection to improve via-

bility. Include 50 IU/ml human IL-2 in the medium at this step (see

Note 7).

2. Culture cells in an appropriate sized culture dish until analysis at 37 �C,
5% CO2 incubator.

Notes

1. In our hands, the viability of the CD4+ T cells is best when processed

the day of isolation. Moreover, the yield and viability postnucleofection

is highly donor-dependent. We recommend to always electroporate at

least two independent donors per experiment.

2. Residual medium can affect nucleofection efficiency.

3. All plasmids should be prepared using an endotoxin-free DNA isolation

kit and DNA should be dissolved in endotoxin-free water/TE buffer.

Try to have DNAs as concentrated as possible (in less than 10 μl total)
in order not to dilute the sample too much.

4. Only process one sample at a time. Prolonged exposure of samples in the

Nucleofector® solution will result in increased cell death.

5. The protocol U-014 has been optimized for the nucleofection of

unstimulated human T cells. For higher Cas9-2A-GFP expression,

use the protocol V-024, although we observed an increase in cell death

with this protocol.

6. We recommend to do a transfection with the Cas9-2A-GFP plasmid

alone, and to keep untransfected CD4+ T cells to ensure proper gating

during the FACS analysis (see 2.4.1).

7. Dissolve IL-2 in 100 mM acetic acid and further dilute to a stock

concentration of 100 IU/μl in RPMI-10. Store single use aliquots

at �80 �C.

2.4. Evaluation of targeting efficiency
The use of a surface antigen (B2M) allows the detection of successful

targeting with a simple FACS staining using a fluorescently labeled antibody

against the targeted protein (Section 2.4.1). Alternatively, the cells can be

sorted 48–72 h postnucleofection based on the GFP signal using a FACS

Aria or comparable cell sorter. Subsequently, targeting can be evaluated

by PCR on genomic DNA isolated from the pooled population

(Section 2.4.2).
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2.4.1 FACS-based analysis
FACS analysis is performed 48–72 h postnucleofection. Cells are harvested,

stained with the desired fluorophore-conjugated antibodies and analyzed

using a BD LSR II (BD Bioscience) or equivalent cell sorter. Because of

the high number of dead cells following electroporation, we strongly rec-

ommend to include a dead cell marker, such as 7-AAD or Zombie Aqua™,

in the staining protocol. The gating strategy used to detect successfully

targeted cells is depicted in Fig. 13.4.

1. Spin down cells at 1800 rpm for 5 min.

2. Resuspend pellets in 750 μl PBS and repeat centrifugation.

3. Resuspend pellet in 200 μl PBS including 2 μl Zombie Aqua™

(see Note 1).

4. Incubate at RT for 15–20 min. Protect from light! (see Note 2).

5. Pellet cells and wash once with staining buffer (1% FBS in PBS).

Figure 13.4 Loss of B2M surface staining as a measure of successful targeting.
(A) Gating strategy: dead cells are excluded by their distinctive smaller size (FSC-A)
and higher granularity (SSC-A). In addition, dead cells can be excluded by gating on
the Zombie Aqua™ negative population that stains positive for CD4-PE. (B) Based on
the Cas9-2A-GFP fluorescence, the CD4+ GFP+ population is further analyzed for loss
of B2M expression.
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6. Resuspend pellet in 100 μl blocking buffer (4% FBS in PBS) and incu-

bate for 30 min on ice.

7. Add 100 μl antibody staining mix and incubate for 30–45 min on ice

(see Note 3).
Antibody staining mix

1% FBS in PBS

Anti-CD4-PE (1:100)

Anti-B2M-APC (1:100) or

Anti-HLA-A,B,C-Alexa647 (1:100)

8. Wash cells twice with 700 μl staining buffer.

9. Resuspend pellets in 300 μl staining buffer.

10. Keep cells on ice until analysis.

11. FACS data can be recorded using a FACS Calibur (BD Bioscience) or

BD LSR II and analyzed with FlowJo software version 7.6 (TreeStar).

2.4.2 PCR-based screening assay
Verification of the CRISPR-induced deletion can be accomplished by stan-

dard PCR amplification with gene-specific primers across the targeted locus

(see Fig. 13.5).

1. Isolate GFP+ cells using a FACS Aria or equivalent cell sorter following

the gating strategy described in 2.4.1 (see Note 4).

2. Isolate genomic DNA using a commercially available kit according to

the manufacturer’s instructions (e.g., Qiagen).

Figure 13.5 PCR Confirmation of targeted deletion in the B2M gene locus. PCR strategy
to detect the targeted deletion in the B2M locus. (A) WT allele. (B) A product of 168 bp
can only be amplified when the 2.2 kb region separating the two primer binding sites
(black arrows) is deleted (C, and Lane 2, asterisk). Lane 1: Cas9-2A-GFP only. Lane 2: Cas9-
2A-GFP+CRISPR#1+2. The identity of the deletion was verified by Sanger sequencing.
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3. PCR amplification is accomplished using standard cycling conditions in

a conventional thermocycler (see Note 5).
1� PCR reaction mix

50–100 ng genomic DNA

1.0 μl forward primer (10 μM)

1.0 μl reverse primer (10 μM)

4 μl Fusion green GC-rich 5� buffer

1.0 μl dNTPs

0.2 μl Fusion HS polymerase

[fill up to 20 μl with ddH20]

Cycling conditions

95 �C 1 min

95 �C 10 s

58–62 �C 10 s

)
�40

72 �C 10 s

72 �C 1 min

16 �C 1

4. Following agarose gel electrophoresis, a band of the correct size can be

excised, gel purified using a commercially available kit, and sequenced

with either the forward or reverse primer to confirm the correct excision

on a sequence level.

Notes

1. Set some untransfected cells aside for single color and unstained controls,

which are required for proper gating and compensation. For the same

reason, the sample transfected with Cas9-2A-GFP alone should be split

up into two tubes and only one half will be stained. The other half can be

used as a single color control in the GFP channel.

2. Keep samples protected from light from here on!

3. Prepare single color controls separately for gating and compensation.

4. A sample transfected with Cas9-2A-GFP alone is required at this step

for setting the gates, and also as a negative control for the PCR

amplification.

5. Annealing temperature of the primers is best determined using a gradient

cycler by varying the annealing temperature.
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3. TARGETING OF CCR5 IN HUMAN CD34+ HSPCs USING
CRISPR/Cas9

Genetic disruption of chemokine (C-C motif ) receptor 5 (CCR5),

the major co-receptor of HIV-1 (Trkola et al., 1996), is a well-documented

strategy to protect against HIV infection (Catano et al., 2011; Martinson,

Chapman, Rees, Liu, & Clegg, 1997; Samson et al., 1996). Encouraged

by the naturally occurring delta32 mutation in CCR5, which confers resis-

tance to HIV-1 infection, CCR5 has quickly become an intensively studied

target of the first wave of genome editing using ZFNs (Holt et al., 2010;

Perez et al., 2008). Targeted ablation of CCR5 in human hematopoietic

stem and progenitor cells (HSPCs) gave rise to CD4+ T cells that are resis-

tant to HIV challenge and provided long lasting immunity in mouse models

(Holt et al., 2010). CCR5-deficient HSPCs and CD4+ T cells are currently

under evaluation in preliminary clinical trials (Tebas et al., 2014).

In this protocol, we explore the applicability of the most recently devel-

oped genome-editing tool, the CRISPR/Cas9 system, to target the CCR5

locus in CD34+ HSPCs. The advantage of CRISPR/Cas9 over ZNFs is

their ease of creation and the fact that multiple guides against the same target

can be delivered in a single transfection (Hsu et al., 2014). We exploit this

multiplexing capacity to introduce specific and predictable deletions, which

result in highly efficient homozygous null mutations in CCR5 (see

Fig. 13.6A). For this purpose, CD34+ HSPCs are isolated from either cord

Figure 13.6 CCR5 ablation in human cells using the CRISPR/Cas9 system. (A) Schematic
indicating the locations of guides targeting the human CCR5 locus. Guides are shown as
red (dark gray in the print version) bars. Arrows represent the primers pair used to
amplify the targeted region for analysis. (B) CEL assays demonstratingmutational events
(indels) introduced at the targeted sites in 293T (left panel), K562 (middle panel), and
CD34+ HSPCs isolated from cord blood (HSPC-CB).

286 Torsten B. Meissner et al.



blood or mobilized peripheral blood. Cas9-2A-GFP and guide plasmids

targeting CCR5, which have been validated by CEL assay in 293T and

K562 cells (see Fig. 13.6B), are introduced into CD34+ HSPCs by

nucleofection. Twenty-four hours posttransfection, GFP+ cells are isolated

via FACS sorting (see Fig. 13.7). FACS-sorted cells are either maintained in

liquid culture or plated onto methylcellulose. Twoweeks postplating, clonal

colonies are counted and can be scored for their contribution to myeloid

(granulocyte, macrophage) and erythroid lineages. Subsequently, individual

clones are picked and analyzed by a PCR strategy to determine the deletion

efficacy at one or bothCCR5 alleles (see Fig. 13.8A). Although we observed

significant variation in CCR5 ablation between individual HSPC donors,

Figure 13.7 Genome editing in CD34+ HSPCs. Schematic illustrating the workflow of
genome editing in CD34+ HSPCs. Mononuclear cells (MNCs) are isolated from cord
blood (CB) by Ficoll gradient centrifugation. Subsequently, CD34+ cells are isolated
by CD34+magnetic bead enrichment and are nucleofected with CRISPR/Cas9 plasmids.
24 h posttransfection, GFP-positive cells are sorted by FACS and cultivated in methyl-
cellulose for 2 weeks. Colonies grown in methylcellulose are counted and scored for
colony types. DNA isolated from individual colonies can be analyzed by either Sanger
sequencing or gel electrophoresis.

Figure 13.8 Clonal analysis of CCR5 deletion in CD34+ HSPCs. (A) Schematic showing
the “dual guide” approach for targeting the CCR5 locus. Arrows indicate the primer pair
used to amplify the targeted region. The deleted region (205 bp between the cutting
sites) is shown in gray. (B) Gel electrophoresis picture showing the genotype of various
clones analyzed by PCR. Wild-type, heterozygous, and null clones are indicated with
green (dark gray in the print version), orange (light gray in the print version), and
red (dark gray in the print version) asterisks, respectively. DNA isolated from individual
clones was analyzed by PCR.
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the dual guide approach led to efficacious monoallelic and biallelic deletions

in the CCR5 locus in most cases (see Fig. 13.8B). The exact nature of the

deletion can be determined by Sanger sequencing of the PCR product. In

conclusion, this protocol provides a straightforward way for efficacious and

predictable ablation of clinically relevant genes in primary CD34+ HSPCs

using a CRISPR/Cas9-based “dual guide strategy.”

3.1. Required materials
• Fresh cord blood

• CD34+ cells from mobilized peripheral blood (AllCells #mPB016F)

• Ficoll-Paque™ PLUS (GE Healthcare #17-1440-02)

• CD34+ MicroBead kit (Milteny #130-046-702)

• CD34-PE/Cy7 (BioLegend #343515)

• Cas9-2A-GFP plasmid (Addgene #44719)

• Guide plasmid (Addgene #41824)

• Human CD34+ Nucleofector kit® (Lonza #VPA-1003)

• Nucleofector II (Lonza)

• Aria II sorter (BD Bioscience)

• DMEM/F12 medium (Life technologies #11320-033)

• FBS (Hyclone #SH30070)

• EDTA (Sigma #E7889)

• PBS without Ca2+ and Mg2+ (Corning Cellgro #21-040-CV)

• β-Mercaptoethanol (Gibco® #21985-023)

• GlutaMax (Gibco® #35050-061)

• Penicillin–Streptomycin (Corning Cellgro #30-002-CI)

• GM-CSF (Peprotech #300-03; Stock: 100 μg/ml, 10,000�)

• SCF (Peprotech #300-07; Stock: 100 μg/ml, 1000�)

• TPO (Peprotech #300-18; Stock: 50 μg/ml, 1000�)

• Flt3 ligand (Peprotech #300-10; Stock: 50 μg/ml, 1000�)

• IL3 (Peprotech #200-03; Stock: 100 μg/ml, 10,000�)

• IL6 (Peprotech #200-06; Stock: 100 μg/ml, 5000�)

• MethoCult™ H4034 Optimum (Stem Cell Technologies #04034)

• Surveyor Mutation detection kit (Transgenomic #706020)

• Direct lysis buffer with detergent and Proteinase K (10 mM Tris–HCl,

pH 7.6, 50 mMNaCl, 6.25 mMMgCl2, 0.045% NP40, 0.45% Tween-

20. Add Proteinase K 50 μl/ml of lysis buffer)

• Proteinase K (Viagen #501-PK)

• RNase A (Invitrogen #12091-039)
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• GoTaq® Green Master Mix (Promega #M7122)

• Sample medium (2 mM EDTA, 2% FBS in PBS without Ca2+ andMg2+)

3.2. Transfection of CD34+ HSPCs
Fresh cord blood samples were obtained from Dana Farber Cancer Insti-

tute’s cell manipulation lab, and mononuclear cells were purified by the

Ficoll-density gradient method. CD34+ HSPCs were isolated by MACS

purification using the CD34+ MicroBeads isolation kit (Milteny) as per

manufacturer’s instructions. CD34+ cells fromG-CSFmobilized peripheral

blood were purchased from AllCells. CD34+ cells were cotransfected with

CRISPR/Cas9 expression plasmids using Amaxa Nucleofection.

3.2.1 Isolation of CD34+ HSPCs from cord blood
1. Dilute cord blood samples with three volumes of PBS without Ca2+ and

Mg2+ (see Note 1).

2. Carefully layer 35 ml of diluted cell suspension over 15 ml of Ficoll-

Paque in a 50-ml conical tube.

3. Centrifuge at 400� g for 35 min at 20 �C in a swinging-bucket rotor

without brake.

4. Aspirate the upper layer, leaving the buffy coat undisturbed.

5. Carefully transfer the buffy coat to a new 50-ml conical tube, fill the tube

with sample medium. Centrifuge at 200� g for 10 min at 20 �C. Low-
speed centrifugation removes platelets.

6. Repeat Step 5. Discard the supernatant. Resuspend the cell pellet in 3 ml

sample medium and count the cells.

7. Isolate CD34+ cells using CD34+MicroBead kit (Milteny) as per man-

ufacturer’s instructions (see Note 2). Alternatively, thaw frozen vials of

CD34+ cells from G-CSF mobilized peripheral blood (AllCells) as per

manufacturer’s instructions.

8. Cultivate CD34+ cells (either from cord blood or mobilized peripheral

blood) in complete HSPC culture medium for 6–8 h at 37 �C at 5%CO2

in incubator prior to transfection.
HSPC culture medium

DMEM/F12 medium

10% FBS

β-Mercaptoethanol

Penicillin–Streptomycin

Minimum nonessential amino acid

GM-CSF, SCF, TPO, Flt3 ligand, IL3, IL6

289Genome Editing for Human Gene Therapy



3.2.2 Nucleofection of CD34+ HSPCs
Here, we describe a protocol for delivering CRISPR and Cas9 expression

plasmids to CD34+ cells by nucleofection. Nucleofection is a method of

delivering nucleic acid to the cells by creating transient small pores in the cell

membrane by applying an electric pulse. Using nucleofection, plasmids can be

delivered efficiently to CD34+ HSPCs in a relatively nontoxic manner.

9. Collect the cells in a 15-ml conical tube. Rinse the wells with 2 ml sam-

ple medium.

10. Centrifuge cells at 400� g for 5 min at RT. Wash once with sample

medium.

11. Resuspend the cell pellet in 1 ml of sample medium. Count the cells.

12. Aliquot 1�106 cells per transfection condition in a 1.7-ml microfuge

tube and spin at 400� g for 5 min. Completely remove the sample

medium by aspiration (see Note 3).

13. Aliquot 10 μg Cas9-2A-GFP plasmid and 5 μg of each guide RNA in a

1.7-ml microfuge tube.

14. Resuspend the cell pellet in 100 μl of nucleofection buffer. Add plas-

mid DNA to the cell suspension and mix by pipetting.

15. Transfer the cells with DNA to a cuvette supplied with the

nucleofector kit. Proceed immediately to nucleofection (see Note 4).

16. Perform the nucleofection as per manufacturer’s instruction using an

Amaxa Nucleofector II device.

17. Keep the cells at RT for 10 min.

18. Transfer the cells to 1 ml of HSPC culture mediumwithout Penicillin/

Streptomycin in 48-well plate (see Note 5).

19. Transfer the cells to a 37 �C incubator and culture for 24 h.

3.2.3 Cell sorting
As the Cas9 protein is expressed from the CAG promoter and cotranscribed

together with a 2A-peptide coupled eGFP, Cas9 expressing cells can be iso-

lated based on GFP expression by FACS sorting. Co-staining the cells with

an anti-CD34 antibody, a very pure population of CRISPR/Cas9

expressing (GFP+) CD34+ cells can be obtained for analysis.

20. 24 h posttransfection, check the cells under a fluorescent microscope

for GFP expression.

21. Collect the cells in 1.7-ml microfuge centrifuge. Wash the wells with

500 μl of sample medium.

22. Centrifuge the cells at 400� g for 5 min at 4 �C. Wash once with 1 ml

of sample medium.
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23. Resuspend cell pellets in 100 μl of sample medium. Add 1 μl of

PE-Cy7 conjugated human anti-CD34 (BioLegend) antibody to the

cell suspension.

24. Incubate the cells on ice for 20 min in dark.

25. Add 500 μl of sample medium to the cells and centrifuge at 400� g for

5 min at 4 �C. Remove the supernatant.

26. Resuspend thecells in50 μl of samplemediumandkeepon ice in thedark.

27. Just before acquisition, add 250 μl of PBS-containing Propidium

Iodide (PI). Filter the cell suspension and acquire.

28. Sort live (PI-negative) GFP+ CD34+ cells using a FACS Aria II cell

sorter (BD Bioscience) or equivalent instrument.

Notes

1. Do not use cord blood older than 6 h for CD34+ cell isolation and

transfection.

2. Usually buffy coats are contaminated with erythroid cells but this does

not interfere with CD34+ cell enrichment by magnetic beads.

3. Reducing cell number below 500,000 per transfection is not

recommended.

4. Do not incubate CD34+ cells in Nucleofector® solution longer than

20 min as this reduces cell viability and transfection efficiency. If

handling multiple samples, it is advised to work in a batch of four to

five samples at a time. This will reduce the incubation time with

nucleofection buffer.

5. Do not cultivate the cells in antibiotics-containing cell culture medium

after nucleofection, as this may adversely affect cell viability. After cell

sorting, however, cells should be cultured in medium/methylcellulose-

containing antibiotics.

3.3. Colony-forming cell assay
29. For colony-forming cell (CFC) assay, aliquot 5 ml of methylcellulose

(MethoCult™ H4034 Optimum, Stem Cell Technologies) in a

15-ml conical tube (see Notes 1 and 2).

30. Add 5000 GFP+ CD34+ sorted cells.

31. Vortex to mix the cells with methylcellulose. Keep the conical tube in

upright position for 10–15 min at RT. This will allow the methylcel-

lulose to settle (see Note 3).

32. With the help of a 3-ml syringe equipped with a 18G needle, plate

1.5 ml of methylcellulose with cells on a 35-mm dish (see Note 4).

291Genome Editing for Human Gene Therapy



33. Tap the dish to disperse methylcellulose uniformly.

34. Incubate the dish in a humidified chamber in a 37 �C incubator.

Culture the cells for 2 weeks and count and score the colonies.

Notes

1. Methylcellulose should be thawed at 4 �C overnight. After it is thawed

completely, smaller aliquots should be made as needed in 15-ml conical

tubes and stored at �20 �C.
2. Avoid multiple freeze–thaw cycles. Do not use pipette tips to aliquot

methylcellulose.

3. Mix the cells with methylcellulose vigorously to get a uniform distribu-

tion of the cells.

4. Do not plate more than 1500 CD34+ cells into a 35-mm culture

plate. Higher cell numbers will interfere with picking individual

clones.

3.4. Clonal analysis
35. Pick colonies grown in MethoCult individually with the help of a p20

pipette.

36. Lyse in 50 μl of direct lysis buffer with detergent and Proteinase K (van

der Burg et al., 2011) (see Note 1).

37. Digest samples at 56 �C for 1 h (see Note 2).

38. Inactivate Proteinase K at 95 �C for 15 min.

39. Add 50 μl of water with RNase A to the samples.

40. Use 2 μl of samples for an analytical PCR reaction.

41. Set up PCR reaction (25 μl) using GoTaq® Green Master Mix

(Promega) as per manufacturer’s instructions.

42. Add 2 μl of DNA samples to PCR mix.

43. Run PCR as per conditions given below.

Cycling conditions

95 �C 1 min

95 �C 20 s

62 �C 20 s �35

72 �C 30 s

)

72 �C 2 min

16 �C 1
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44. For single guide experiments, analyze the PCR products by Sanger

sequencing.

45. For dual guide experiments, targeting can be assessed directly by

agarose gel electrophoresis.

Notes

1. Proteinase K should be added freshly to the lysis buffer before use.

2. Digestion with proteinase K should be carried out in a PCR machine.
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Abstract

The laboratory rat is a valuable model organism for basic biological studies and drug
development. However, due to the lack of genetic tools for site-specific genetic mod-
ification in the rat genome, more and more researchers chose the mouse as their
favored mammalian models due to the sophisticated embryonic stem cell-based
gene-targeting techniques available. Recently, engineered nucleases, including zinc fin-
ger nucleases, transcription activator-like effector nucleases, and CRISPR/Cas9 systems,
have been adapted to generate knockout rats efficiently. The purpose of this section is
to provide detailed procedures for the generation of site-specific mutations in the rat
genome through injection of Cas9/sgRNA into one-cell embryos.

1. THEORY

The laboratory rat is an important mammalian model organism widely

used by psychologists, pharmacologists, and neurobiologists due to its bio-

logical features that in some aspects are more similar to humans than those of

mice. Since the establishment of gene targeting by homologous recombina-

tion in mouse embryonic stem cells (ESCs), numerous human diseases have

been modeled by knockout mice for biomedical studies. The rat ESC cul-

ture system was not established until 2008, and the first knockout rat strain

was generated through ESC-based gene targeting in 2010 (Tong, Li, Wu,

Yan, & Ying, 2010). However, it is an expensive, time-consuming, and
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laborious technology demanding experienced skills in handling rat ESCs,

delaying the adaptation of this technology worldwide. The emergence of

engineered DNA nucleases (Gaj, Gersbach, & Barbas, 2013), including zinc

finger nucleases, transcription activator-like effector nucleases, engineered

meganucleases, and the microbial clustered regularly interspaced short

palindromic repeats (CRISPR)/Cas system, is greatly accelerating the

development of genetic engineering technologies in the rat and providing

benefits to the research community. In this section, we will focus on the

CRISPR/Cas system.

The CRISPR/Cas system was originally identified in bacteria and

archaea functioning as a RNA-mediated adaptive immune system against

the invasion of foreign DNA from viruses and plasmids (Garneau et al.,

2010). Typically, there are three major types of the CRISPR system based

on the structure of the genomic locus and the signature cas gene. Cas9 is the

key enzyme in the type II system that has been widely adapted for gene

editing ( Jinek et al., 2012). In this system, the CRISPR RNA (crRNA)

is composed of an array of direct repeats interspaced with variable elements

(protospacers) derived from the exogenous target genome. The indepen-

dently transcribed trans-activating crRNA (tracrRNA) forms a duplex with

crRNA that guides the Cas9 nuclease to the target DNA through the

50-most 20 bp of crRNA following the rules of Watson–Crick base pairing.

The Cas9 nuclease digests the target DNA to blunt-end double-strand

breaks (DSBs) at specific sites upstream of the protospacer adjacent motif

(PAM), which may be different depending on the origin of the host species.

To simplify Cas9-mediated gene editing, the crRNA/tracrRNA duplex is

linked together as a single chimeric RNA, termed a single guide RNA

(sgRNA). The most commonly used Cas9 system, derived from Streptococcus

pyogenes (SpCas9), requires a PAM sequence of NGG (N is any nucleotide).

The cleavage activity of Cas9 functions through two nuclease domains and a

single mutation in either domain results in a nick rather than a DSB at the

target site.

When a DSB is induced by Cas9/sgRNA at specific genomic site, the

cell initiates the DNA repair process through homologous recombination

(HR) when a donor DNA template is available, or else through error-prone

nonhomologous end joining (NHEJ). NHEJ directly ligates the DSB ends

and results in random indels, including small deletions, insertions, or substi-

tutions. When the indels are introduced into the coding region of a target

299Generation of Site-Specific Mutations in the Rat Genome Via CRISPR/Cas9



gene, frameshift mutations often lead to disruption of gene function. In addi-

tion, if two adjacent DSBs are produced, a deletion of the DNA sequence in

between will occur resulting in large fragment deletion. DSBs also stimulate

the high-fidelity HR pathway when a donor template (either double-strand

DNA or single-stranded oligodeoxynucleotides) is present.

We have successfully applied the CRISPR/Cas system for generation of

site-specific mutations in mouse and rat (Li et al., 2013; Shao et al., 2014).

To generate knockout rats, in vitro-transcribed sgRNAs are coinjected

with Cas9 mRNA into the cytoplasm of the embryos. For precise genome

editing, Cas9/sgRNA and the donor templateDNA are injected into the pro-

nucleus of one-cell rat embryos. Injected embryos are transplanted into

pseudopregnant females for pregnancy. The genotype of the individual pups

is determined for indels by sequencing. Multiple sgRNAs against different

genes can be delivered to generate compound genetic mutant rats spontane-

ously (Shao et al., 2014). To minimize the potential of off-target mutagenesis

in the rat genome, the pairing double-nicking strategy is used by injection of

Cas9 nickase and two sgRNAs recognizing opposite DNA strands flanking a

gap of 4–20 bp (Ran et al., 2013). By following the protocol, the founders of a

site-specific modified rat strain can be generated in less than 6 weeks.

2. EQUIPMENT

Water bath or metal bath

1.5-ml microcentrifuge tubes

200-μl microcentrifuge tubes

Agarose gel sets

Power supply

UV imaging system

Centrifuge

Shaker

Spectrophotometer

Thermocycler

Stereomicroscope

Flaming micropipette puller

Microforge

Micromanipulator

Microinjector
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Water-jacketed CO2 incubator

Glass needle

Sterilizer

Cauterizer

Bulldog clamp

Light source unit

Forceps

Microscope slides

Petri dishes

Mineral oil

Pipettes and pipette tips

3. MATERIALS

Restriction enzyme

Agarose

TAE buffer

Ethidium bromide

In vitro transcription SP6 kit (e.g., Invitrogen)

In vitro transcriptionT7 kit (e.g., TAKARA)

Nucleotide removal kit (e.g., QIAGEN)

RNase-free water

Ethanol

Phenol/chloroform

Isopropanol

Sodium acetate

DNA polymerase

T7 endonuclease I

Cloning vector

Competent cells

LB medium plate

M2 medium

KSOM medium or mR1ECM

Hyaluronidase

PMSG

hCG

Chloral hydrate
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3.1. Solutions and buffers
Step 3 Hyaluronidase solution

Dissolve 30 mg hyaluronidase in 10 ml M2 medium. Store at �20�C in 200 μl
aliquots.

PMSG solution

Prepare a stock solution of 500 IU ml�1 in DPBS. Store at �20 �C in 100 μl
aliquots.

hCG solution

Prepare a stock solution of 500 IU ml�1 in DPBS. Store at �20 �C in 100 μl
aliquots.

Step 4 TE microinjection buffer

Component Final concentration Stock Amount

Tris–HCl, pH 7.4 0.01 M 1 M 100 μl

EDTA 0.001 M 0.5 M 20 μl

Add ddH2O to a final volume of 10 ml

Step 5 Lysis buffer

Component Final concentration Stock Amount

Tris–HCl, pH 8.0 0.1 M 1 M 10 ml

EDTA 0.005 M 0.5 M 1 ml

NaCl 0.2 M 1.17 g

SDS 0.2% (wt/vol) 10% (wt/vol) 2 ml

Add ddH2O to a final volume of 100 ml

Proteinase K solution

Dissolve 20 mg proteinase K in 1 ml ddH2O. Store at �20 �C in 20 μl aliquots.
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4. PROTOCOL

4.1. Preparation
Order plasmids and oligonucleotides from the appropriate source. The plas-

midsused in this protocol canbe found inAddgeneor canbe requested fromus.

4.2. Duration

Preparation About 5–6 days

Protocol About 4 weeks

See Fig. 14.1 for the flowchart of the complete protocol.

Figure 14.1 Flowchart of the complete protocol.
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4.3. Caution
Prior approval for all experimental procedures must be obtained from rele-

vant committees for animal usage.

5. STEP 1: IN VITRO TRANSCRIPTION OF sgRNA TARGET
OLIGONUCLEOTIDES

5.1. Overview
Select target sites on the genomic sequence of the coding region of the gene.

Appropriate target sites can be found through online design tools (e.g.,

CRISPR Design Tool, http://tools.genome-engineering.org) or manually.

The target sequence is the consecutive 20 bp immediately 50 of the selected
PAM. Synthesize two complimentary oligonucleotides containing a T7

promoter, the target site (indicated as N), and the sgRNA scaffold sequence

(GATCACTAATACGACTCACTATAGGNNNNNNNNNNNNNN

NNNNNNGTTTTAGAGCTAGAAATAGCAAGTTAAAATAAGGC

TAGTCCGTTATCAACTTGAAAAAGTGGCACCGAGTCGGTGC

TTTT). Following annealing of the oligonucleotides, the sgRNA tem-

plate is transcribed using an in vitro transcription kit.

5.2. Duration
About 5 h

1.1 Resuspend the forward and reverse strands of oligonucleotides for

each sgRNA template to a final concentration of 100 μM. Add to a

1.5-ml tube:

Forward oligo 1 μl

Reverse oligo 1 μl

10� T4 ligation buffer 2 μl

ddH2O to 20 μl
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1.2 Anneal the oligos in a thermocycler using the following parameters:

95 �C for 5 min; ramp down to 25 �C at 5 �C min�1; or in a water

bath using the following parameters: 95 �C for 5 min; naturally cool

to room temperature.

1.3 Purify the annealed DNA using a nucleotide removal kit.

1.4 Transcribe 0.2–1 μg of annealed DNA using an in vitro transcription

kit (T7). Transfer into a 1.5-ml RNase-free tube:

Annealed DNA 0.2–1 μg

10� transcription buffer 2 μl

ATP 2 μl

GTP 2 μl

CTP 2 μl

UTP 2 μl

RNase inhibitor 0.5 μl

RNA polymerase 2 μl

RNase-free water to 20 μl

1.5 Incubate reaction at 42 �C for 2 h.

1.6 Add 2–4 μl of DNase to the reaction to digest the DNA template and

incubate the tube at 37 �C for another 30 min.

1.7 Add 100 μl RNase-free water to stop the reaction.

1.8 Purify the sgRNA with phenol:chloroform extraction and iso-

propanol/sodium acetate precipitation.

1.9 Wash the pellet with 1 ml of 75% RNase-free ethanol.

1.10 Dissolve the pellet with 10–20 μl RNase-free water, determine RNA

concentration, and store it at �80 �C.

5.3. Tip
All of the supplies used in the transcription reaction must be RNase free.

See Fig. 14.2 for the flowchart of Step 1.
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Figure 14.2 Flowchart of Step 1.
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6. STEP 2: IN VITRO TRANSCRIPTION OF Cas9 mRNA

6.1. Overview
The plasmid containing Cas9 cDNA sequence driven by an SP6 (or T7) pro-

moter is linearized with a proper restriction enzyme. The linearized plasmid

is transcribed in vitro using an in vitro mRNA transcription kit (SP6 or T7).

6.2. Duration
About 8 h

2.1 Digest 3 μg of Cas9 expression plasmid containing SP6 (or T7) pro-

moter with the appropriate restriction enzyme. Add to a 1.5-ml tube:

Plasmid X μl

10� enzyme buffer 5 μl

Restriction enzyme 2 μl

ddH2O to 50 μl

2.2 Incubate the tube at 37 �C or a proper temperature for 3 h.

2.3 Run 5 μl of the digested reaction on agarose gels with ethidium bro-

mide to confirm the linearization and purify the rest of the linearized

plasmid using a nucleotide removal kit (e.g., QIAGEN).

2.4 Transcribe0.2–1 μgofdigestedplasmidusingan in vitromRNAtranscrip-

tion SP6 (or T7) kit (e.g., Invitrogen). Add to a 1.5-mlRNase-free tube:

2� SP6 NTP/CAP 5 μl

10� transcription buffer 2 μl

SP6 enzyme 2 μl

Linearized plasmid X μl

RNase-free water to 20 μl

2.5 Incubate the tube at 37 �C for 2 h.

2.6 Add 1 μl of DNase to the reaction to digest DNA and incubate the

tube at 37 �C for another 30 min.

2.7 Add 30 μl RNase-free water and 30 μl 7.5M LiCl to the reaction and

incubate the tube at �20 �C for at least 30 min to precipitate RNA.

2.8 Centrifuge at 12,000 rpm for 10 min at 4 �C and carefully aspirate the

supernatant without disturbing the pellet.

2.9 Wash the pellet with 1 ml of 75% RNase-free ethanol.

307Generation of Site-Specific Mutations in the Rat Genome Via CRISPR/Cas9



2.10 Dissolve the pellet with 10–20 μl RNase-free water and store it

at �80 �C.

6.3. Tip
All of the supplies used in the reaction must be RNase free.

See Fig. 14.3 for the flowchart of Step 1.

Figure 14.3 Flowchart of Step 2.
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7. STEP 3: PREPARATION OF PSEUDOPREGNANT
FEMALE RATS AND ONE-CELL RAT EMBRYOS

7.1. Overview
The vasectomizedmale rats are prepared by removal of part of the vas deferens

through surgical procedures. Pseudopregnant adult female rats are obtained by

crossingwithvasectomizedmales.Adult female rats are treatedwithPMSGand

hCG for superovulation. Hormone-primed female rats are crossed with fertile

males and one-cell embryos are collected the next morning.

7.2. Duration
About 4 days

3.1 Treat adult female rats with 300 μl (30 IU) PMSG at 1–2 p.m. on the

first day.

3.2 Treat PMSG-treated females with 250 μl (25 IU) hCG at 3–5 p.m. on

the third day.

3.3 Mate the hormone-treated female rats with adult males overnight fol-

lowing the third day.

3.4 Mate adult female rats with vasectomized males overnight at the

same day.

3.5 Check for the copulatory plug of females mated with vasectomized

adult males before 9 a.m. on the fourth day to prepare pseudopregnant

female rats. Put the pseudopregnant females in newcageswith labeling.

3.6 Sacrifice the hormone-treated females with copulatory plugs by CO2

suffocation.

3.7 Dissect out and cut off the oviducts from each side of the females and

put them in a dish containing prewarmM2 medium. Repeat this step

to collect all oviducts.

3.8 Tear the ampulla with fine forceps and gently squeeze the embryos

out into a dish containing 2 ml prewarmed M2 medium with 40 μl
of hyaluronidase to remove the cumulus cells with the help of the

mouth pipette under a stereomicroscope.

3.9 Wash the embryos with fresh prewarmed M2 medium in a new dish.

3.10 Incubate the embryos in drops of KSOMmedium covered by mineral

oil at 37 �C with 5% CO2 until microinjection.

7.3. Tip
Checking the copulatory plug is usually the first job of the day, since it is easy

for it to drop out later in the morning.
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7.4. Tip
M2 medium is used for handling the embryos, and KSOM medium for

short-term (less than 24 h) embryo culture. For long-term culture, use

mR1ECM medium.

7.5. Tip
Do not incubate the embryos in M2 with hyaluronidase more than 5 min,

because it will potentially damage the embryos.

See Fig. 14.4 for the flowchart of Step 3.

Figure 14.4 Flowchart of Step 3.

310 Yuting Guan et al.



8. STEP 4: MICROINJECTION OF ONE-CELL EMBRYOS
AND TRANSPLANTING THE EMBRYOS INTO
PSEUDOPREGNANT RATS

8.1. Overview
Cas9 mRNA and sgRNA are mixed in TE microinjection buffer to prepare

the microinjection mix. The mixture is loaded into the injection pipette.

The embryos are then injected with the Cas9/sgRNA cytoplasmically

through the micromanipulator under the microscope. For precise genome

editing, Cas9/sgRNA and donor template DNA are coinjected into the

pronucleus of one-cell embryos. The injected embryos are transplanted

through the oviduct into the pseudopregnant females.

8.2. Duration
About 4–5 h

4.1 Mix Cas9 mRNA and sgRNA in TE microinjection buffer to a final

concentration of 50 and 25 ng/μl, respectively, in 40 μl for each tar-

get. For precise mutagenesis, mix donor template DNA with the

Cas9/sgRNA to a final concentration of 5 ng/μl in a clean RNase-

free 1.5-ml tube.

4.2 Make an injection needle with the flaming micropipette puller with

appropriate parameters.

4.3 Put the opening of the injection needle into the injectionmixture pre-

pared above. The buffer will load to the tip through capillary action.

4.4 Make a holding pipette through a microforge and insert the pipette

into the holder of the microinjector.

4.5 Insert the injection pipette into the holder of the microinjector.

4.6 Making an injection slide: Drop 100 μl M2 medium on a glass slide

and cover the medium with mineral oil.

4.7 Transfer 50 embryos onto the injection slide and arrange them in a

single vertical line.

4.8 Break the tip of the injection pipette by scratching it on the holding

pipette.

4.9 Suck an embryo on the holding pipette by applying negative pressure.

4.10 Penetrate the zona pellucida and the membrane of the embryo and

inject the Cas9/sgRNA mixture into the cytoplasm of the embryo,

and then withdraw the pipette quickly once a flow of injection solu-

tion is observed.

Option: For precise genome editing, penetrate the pronuclear mem-

brane of the embryo with the injection pipette. Quickly and carefully
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withdraw the pipette when a slight swelling of the pronucleus is

observed.

4.11 Release the injected embryo and repeat the above step.

4.12 Transfer the injected embryos into prewarmed KSOM medium and

put the dish into the incubator.

4.13 Anesthetize the pseudopregnant female rat with 10% chloral hydrate

by IP injection (3 ml/kg).

4.14 Shave the fur on the back skin (optional); make a skin incision on the

back above the ovary. Penetrate the body cavity and pull the fat pad of

the ovary out. Fix the ovary and oviduct by clamping the fat pad with

a bulldog clamp.

4.15 Find the oviduct infundibulum under the stereomicroscope with fine

forceps.

4.16 Transfer the injected embryos into prewarmed M2 medium, and

place two air bubbles into the transfer pipette and then load 10–15

embryos into the pipette. Seal the pipette with another air bubble.

4.17 Open theovarianbursausing fine forceps andexpose theoviductopen-

ing. Insert the transfer pipette and transfer the embryos into theoviduct.

4.18 Repeat Steps 4.13–4.17 to transfer all embryos.

8.3. Tip
Mix and place the injection solution on ice all the time to minimize RNA

degradation.

8.4. Tip
All surgical instruments should be sterilized.

8.5. Tip
The injection pipette should be made by fine capillary with filament which

will load the solution through capillary action.

8.6. Tip
Do no inject too much solution into the embryos or pronucleus.

8.7. Tip
If the oviduct opening is hard to find, a small incision on the oviduct ampulla

can be made by ophthalmic scissors. The embryos can be transferred in the

oviduct through the incision.
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Figure 14.5 Flowchart of Step 4.
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8.8. Tip
The injected embryos can be incubated overnight and transplanted on the

next day in KSOM medium. For longer culture, mR1ECM is optimal.

See Fig. 14.5 for the flowchart of Step 4.

9. STEP 5: IDENTIFICATION OF FOUNDER RATS

9.1. Overview
Genomic DNA is purified from F0 rats. The PCR primers spanning the tar-

get site are used to amplify the genomic sequence. The PCR products are

subjected to T7EI mismatch digestion and sequencing to determine the pre-

cise DNA sequence.

9.2. Duration
About 4 days

5.1 Cut a small piece (e.g., ear, toe, or tail) from F0 rats and put it in a

1.5-ml tube.

5.2 Add tissue lysis buffer with proteinase K to the 1.5-ml tube containing

the specimen.

5.3 Incubate the reaction at 55 �C for 6 h or overnight.

5.4 Purify genomic DNA from the digested specimen by phenol:chloro-

form extraction and ethanol/sodium acetate precipitation.

5.5 Subject 200 ng DNA to PCR with gene specific primers. Add to a

200-μl tube:

Genomic DNA (200 ng) X μl

Forward primer (10 μM) 2.5 μl

Reverse primer (10 μM) 2.5 μl

dNTP (2.5 mM each) 5 μl

10�DNA polymerase buffer 5 μl

DNA polymerase 0.5 μl

ddH2O to 50 μl
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5.6 Amplify the desired genomic DNA with a thermocycler using the

common parameters according to the instructions of the DNA

polymerase used.

5.7 Anneal the PCR products in a thermocycler using the following

parameters: 98 �C for 5 min, ramp down to 35 �C at 1 �C min�1.

5.8 Run 5 μl of each PCR product on a 1.5% (wt/vol) agarose gel and

check the PCR product with a UV imaging system.

5.9 Purify the PCR products using a nucleotide removal kit.

5.10 Digest 200 ng of purified PCR products with the T7 endonuclease I.

Add to a 200-μl tube:

Purified PCR product X μl

10� NEBuffer2 2 μl

T7 endonuclease I 0.5 μl

ddH2O to 20 μl

5.11 Incubate the tube at 37 �C for 1 h.

5.12 Run 20 μl of each digested PCR product on a 1.5% (wt/vol) agarose

gel and photograph the bands with a UV imaging system. The samples

that can be digested by T7EI suggest that mutations occurred in the

genome.

5.13 Ligate the PCR products containing mutations to cloning vectors.

5.14 Transform the ligated vector to competent cells.

5.15 Extract the plasmids from 5 to 10 clones. Sequence the plasmids to

determine the exact genotype of the founders.

9.3. Tip
Use a high-fidelity DNA polymerase to avoid introducing mutations during

amplification.

9.4. Tip
Sometimes the T7E1 digestion will produce false positive signals, and DNA

sequencing must therefore be used for genotyping.

See Fig. 14.6 for the flowchart of Step 5.
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Figure 14.6 Flowchart of Step 5.

316 Yuting Guan et al.



10. STEP 6: PRODUCTION OF F1 GENERATION RATS

10.1. Overview
Positive founder rats are mated with wild-type rats to produce F1 generation

rats. Next, identification of F1 generation rats proceeds as in Step 5.

10.2. Duration
About 5 weeks

The procedure is exactly the same as described in Step 5.

10.3. Tips
The founders are usually chimeras bearing several kinds of mutations. The

exact genomic sequence of the mutations in each F1 rat should be

sequenced.
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Abstract

CRISPR/Cas-mediated genomemodification has opened a new era for elucidating gene
function. Gene knockout mice can be generated by injecting humanized Cas9 (hCas9)
mRNA and guide RNA (sgRNA) into fertilized eggs. However, delivery of RNA instead of
DNA to the fertilized oocyte requires extra preparation and extra care with storage. To
simplify the method of delivery, we injected the circular pX330 plasmids expressing
both hCas9 and sgRNA and found that mutant mice were generated as efficiently as
with RNA injection. Different from the linearized plasmid, the circular plasmid decreased
the chance of integration into the host genome. We also developed the pCAG-EGxxFP
reporter plasmid for evaluating the sgRNA activity by observing EGFP fluorescence in
HEK293T cells. The combination of these techniques allowed us to develop a rapid, easy,
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and reproducible strategy for targetedmutagenesis in livingmice. This chapter provides
an experimental protocol for the design of sgRNAs, the construction of pX330-sgRNA
and pCAG-EGxxFP-target plasmids, the validation of cleavage efficiency in vitro, and the
generation of targeted gene mutant mice. These mice can be generated within
a month.

1. INTRODUCTION

Gene knockout (KO) mice are powerful tools for studying biological

science and genetic diseases of humans (Skarnes et al., 2011). Themost com-

monly used method consists of three major steps: (i) construction of the gene

targeting vector, (ii) homologous recombination (HR) in embryonic stem

(ES) cells, and (iii) generation of chimeric mice. The gene targeting vectors

contain the drug-resistant gene cassette in the center of an�10 kbp genomic

fragment encompassing the target locus. The negative selection cassette is

usually added at the outside of the homology arms in the targeting vector.

Then, the ES cells transfected with the targeting vector are selected with

drugs and screened to obtain HR clones. After the clonal expansion of

the HR clones with normal karyotypes, the ES cells are aggregated within

preimplantation embryos to generate chimeric mice. If the mutation is trans-

mitted into the next generation (F1), intercrosses between heterozygous F1

mutant mice generate homozygous gene KO mice. There are significant

advances in the techniques performed in each step, but overall this method

is still expensive, laborious, and time consuming to perform. Thus, well-

trained researchers are required to achieve all the techniques for successful

targeted mutation (Fujihara, Kaseda, Inoue, Ikawa, & Okabe, 2013). More-

over, this approach requires germ-line-competent ES cells that have only

been established so far in a limited number of organisms (such as mice

and rats).

Genome editing using customized nucleases, for instance, zinc-finger

nucleases (ZFNs) and transcription activator-like effector nucleases

(TALENs), provides a novel approach for targeted mutagenesis in a broad

range of cell lines and organisms (Gaj, Gersbach, & Barbas, 2013). ZFNs

and TALENs are artificially generated proteins made by fusing a FokI endo-

nuclease with a DNA-recognition domain. These enzymes recognize target

DNA sequences by protein–DNA interactions and the FokI endonuclease

component induces a DNA double-stranded break (DSB) at the target

genomic locus. Thus generated DSBs can be repaired by one of at least
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two different pathways, nonhomologous end-joining (NHEJ) or homology-

directed repair (HDR). NHEJ is error-prone and leads to insertion/deletion

mutations (indels) of various sizes. HDR requires a homologous reference

sequence to repair the DSB correctly, allowing introduction of designed

mutations into the targeted locus via an exogenously supplied reference

DNA (single-stranded DNA (ssDNA) or double-stranded DNA (dsDNA))

(Sander & Joung, 2014). Taking advantage of the high efficiency of DSB-

mediated gene mutation, gene-targeted mice and rats were generated by

injection of the mRNA coding ZFNs/TALENs into the zygote (Carbery

et al., 2010; Sung et al., 2013). However, the design and preparation of the

DNA-recognition domain of the ZFN/TALEN enzymes has proven highly

difficult, ultimately limiting the spread and use of this technique.

Recently, the type II CRISPR (clustered regularly interspaced short pal-

indromic repeat)-Cas (CRISPR-associated) system has been demonstrated

to cause DSB-mediatedmutation inmammalian cell lines (Cong et al., 2013;

Mali et al., 2013). The bacterial Cas protein 9 (Cas9) nuclease from Strepto-

coccus pyogenes (SpCas9) is unique and flexible owing to its dependence on

RNA as the moiety that targets the nuclease to a desired DNA sequence.

In contrast to ZFNs and TALENs, the CRISPR/Cas9 system depends

on a simple base-pairing rule between the synthetic guide RNA (sgRNA)

and the target DNA sequence, and the Cas9/sgRNA riboprotein complex

works as an RNA-guided nuclease (Sander & Joung, 2014). It is highly

advantageous that one can target any gene locus by just replacing 20 nucle-

otides (nts) within the sgRNA sequence.

In this chapter, we outline the use of the plasmid pX330 (Fig. 15.1A)

developed by Dr. F. Zhang (Cong et al., 2013) that expresses a humanized

Cas9 (hCas9) and sgRNA under the chicken hybrid promoter and human

U6 promoter, respectively, to generate gene-modified (GM) mice. We first

describe our simple validation system for gene-targeted DSB activity by

observing green fluorescence from the reconstituted enhanced green fluores-

cent protein (EGFP) expression cassette in the reporter plasmid, pCAG-

EGxxFP (http://www.addgene.org/50716/) (Fig. 15.1A) (Mashiko et al.,

2013).We next describe the one-step generation ofmutantmice by injecting

circular pX330 plasmids into zygotes (Mashiko et al., 2013, 2014). Whereas

mutantmice can be generated by injecting hCas9mRNAalongwith sgRNA

into zygotes (Fujii, Kawasaki, Sugiura, & Naito, 2013; Wang et al., 2013;

Yang et al., 2013), our method allows researchers to skip the technically

difficult procedure of RNA synthesis and storage and provides a simple

and reproducible method for targeted mutagenesis.
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2. DESIGN AND CONSTRUCTION OF CRISPR/Cas9
PLASMIDS WITH pX330

The sequence specificity of the SpCas9 nuclease is determined by

20 nts within the sgRNA. The Cas9/sgRNA complex recognizes 20 nts

preceding a protospacer-adjacent motif (PAM) sequence at its 30-end
(50-NNNNNNNNNNNNNNNNNNNN-NGG-30, N can be A, G, C,

or T) and digests between 3 and 4 nts upstream of the PAM sequence of

the target DNA. NAG may also function as PAM sequence with one fifth

of the targeting efficiency of NGG (Hsu et al., 2013).

2.1. Selection and off-target analysis of sgRNA in targeted gene
The human U6 RNA polymerase III promoter prefers a G (guanine) nucle-

otide at the 50-end of the sgRNA to initiate translation. However, when we

Figure 15.1 Scheme for CRISPR/Cas9-mediated genome editing. (A) pX330 plasmid and
pCAG-EGxxFP plasmid. pX330 plasmid contains two kinds of expression cassettes of both
sgRNA and humanized Cas9 (hCas9). The target sgRNA sequence can be cloned
directionally intotheBbsIsite.pCAG-EGxxFPplasmidcontains50 and30 regionsoverlapping
EGFP fragmentsunder theCAGpromoter. The500–1000 bpgenomic fragment containing
the target sgRNAsequence canbe inserted inmulticloning site (MCS,BamHI,NheI,PstI, SalI,
EcoRI, and EcoRV) between EGFP fragments. (B) Scheme of validation for DSB-mediated
EGFP expression cassette reconstitution. When the target sequence was digested
by sgRNA-guided Cas9 endonuclease, DSB can be repaired and reconstituted the EGFP
expression cassette. HR, homologous recombination; SSA, single-strand annealing.
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compared sgRNAs inserted into pX330 with or without G at the first posi-

tion, there was no significant differences in their cleavage activity (Mashiko

et al., 2014), and we therefore simply choose 20 nts preceding NGG. How-

ever, the addition of an extra G at the 50-end sometimes increased the activ-

ity. It should be noted that more than five continuous T nucleotides (poly-T

stretch) may act as a transcriptional termination signal for the U6 promoter.

2.1.1 Design of sgRNAs against the target gene: Protocol
1. Search for the nucleotide sequence NGG, appearing after a translational

start site (ATG) in both the sense and antisense strands. If there are any

in-frame ATGswithin approximately 100 nts, it is preferable to select the

NGG downstream of the last ATG.

2. Align 12, 13, and 14 nts at the 30-end of the target 20 nts plus NGG

against the mouse genome (mm9) using the free software Bowtie

(http://bowtie-bio.sourceforge.net/index.shtml).

NB: We usually analyze eight candidates with Bowtie and select four can-

didate sequences with the lowest number of off-target sequences (e.g., less

than 5 perfect matches within 13 nts plus NGG). The CRISPRDesign Tool

(http://crispr.mit.edu/) is also recommended for designing sgRNAs against

the target gene (Ran, Hsu, Wright, et al., 2013).

2.2. Construction of pX330 with designed sgRNA
For a listing of reagents and equipment required for this protocol refer to

Table 15.1. The Taq DNA polymerase for PCR and ligase buffer can be

purchased from suppliers other than those mentioned in Table 15.1.

2.2.1 Insertion of sgRNA into the pX330 plasmid: Protocol
1. Once the sgRNAs are designed, prepare a pair of oligos (forward oligo:

50-cacc+N20-30; reverse oligo: 50-aaac+N20-30) against each sgRNA.

Phosphorylation is not required.

2. Resuspend and dilute the oligos to a final concentration of 0.1 μM each

in TE buffer. Combine 0.1 μM of forward and reverse oligos in TE

buffer. Anneal the forward and reverse oligos in a thermal cycler as fol-

lows: one cycle of 95 �C—5 min; 60 �C—5 min; 25 �C—minimum

60 min.

3. Ligate the annealed sgRNA oligos with BbsI-digested pX330 plasmid

(alkaline phosphatase treatment is not required) according to the manu-

facturer’s instructions. In brief, set up the ligation reaction for 2 μL of

annealed oligos, 1 μL of BbsI-digested pX330 (50–100 ng/μL), and
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Table 15.1 Reagents and equipment for CRISPR/Cas9-mediated mutant mice by
plasmid injection
Reagents Source and catalog number

pX330 Addgene, Cambridge, MA, #42230

pX330-Cetn1/sgRNA#1 Addgene, Cambridge, MA, #50718

pCAG-EGxxFP Addgene, Cambridge, MA, #50716

pCAG-EGxxFP-Cetn1 Addgene, Cambridge, MA, #50717

BbsI New England Biolabs, Hitchin, UK, #R0539

BamHI New England Biolabs, Hitchin, UK, #R0136

NheI New England Biolabs, Hitchin, UK, #R0131

PstI New England Biolabs, Hitchin, UK, #R0140

SalI New England Biolabs, Hitchin, UK, #R0138

EcoRI New England Biolabs, Hitchin, UK, #R0101

EcoRV New England Biolabs, Hitchin, UK, #R0195

Ligation high Ver. 2 TOYOBO, Osaka, Japan, #LGK-201

Chemically competent cells

(DH5α, Stbl3)

Wizard Plus Minipreps DNA

Purification System

Promega, Tokyo, Japan, #A1465

LB plate MO BIO Laboratories, Carlsbad, CA, #12107

Ampicillin Sigma, St. Louis, MO, #A0166

2� YT medium Sigma, St. Louis, MO, #Y1003

KOD FX Neo TOYOBO, Osaka, Japan, #KFX-201

Wizard PCR Preps DNA

Purification System

Promega, Tokyo, Japan, #A7170

Cell culture dish AGC Techno Glass, Tokyo, Japan, #3020-

100, #3810-006

DMEM medium Life Technologies, Carlsbad, CA, #11995

FCS BioWest, Nuaillé, France

100� Penicillin–Streptomycin–

Glutamine solution

Life Technologies, Carlsbad, CA, #10378016

HEK293T cells

2.5% Trypsin (10�) Life Technologies, Carlsbad, CA, #15090046

2� BBS (pH 6.95) (280 mM

NaCl, 50 mM BES, 1.5 mM

Na2HPO4)



Table 15.1 Reagents and equipment for CRISPR/Cas9-mediated mutant mice by
plasmid injection—cont'd
Reagents Source and catalog number

2.5 M CaCl2

Mouse (sexually mature female

and male mice)

Pseudopregnant ICR mouse

Foster mother ICR mouse

PMSG (pregnant mare’s serum

gonadotropin)

ASKA Pharmaceutical, Tokyo, Japan

hCG (human chorionic

gonadotropin)

ASKA Pharmaceutical, Tokyo, Japan

Mouse embryo culture dish AGCTechnoGlass, Tokyo, Japan, #1010-060

KSOM medium Merck Millipore, Darmstadt, Germany,

#MR-020P-5 F

FHM medium Merck Millipore, Darmstadt, Germany,

#MR-024-D

Hyaluronidase Sigma, St. Louis, MO, #H4272

T10E0.1 (10 mM Tris–HCl (pH

7.4), 0.1 mM EDTA in ultrapure

distilled water)

Lysis buffer (20 mM Tris–HCl

(pH 8.0), 5 mM EDTA, 400 mM

NaCl, 0.3% SDS, and 200 μg/mL

Proteinase K solution)

Ampdirect Plus Shimadzu, Kyoto, Japan, #241-08890-92

Equipment

Thermal cycler Life Technologies, Carlsbad, CA, Verti Fast

100

Gel electrophoresis apparatus and

power supply

Digital gel imaging system

NanoDrop ND-1000 Thermo Scientific, Wilmington, DE

Fluorescence microscope

Incubator

Microinjection system



3 μL of Ligation high Ver. 2. buffer. Incubate the ligation reaction for a

total of 1 h at 16 �C.
4. Transform the pX330 with designed sgRNA into a competent E. coli

strain (e.g., DH5α and Stbl3). Briefly, add 3 μL of the ligation products

into 15 μL of ice-cold chemically competent cells, incubate the mixture

on ice for 20 min, heat-shock it at 42 �C for 30 s and return it immedi-

ately to ice for 2 min. Add 80 μL of SOC medium and plate it onto an

LB plate containing 50 μg/mL ampicillin. Incubate plate overnight at

37 �C.
5. Following a minimum of 12 h incubation observe the colonies on each

plate. From each plate, pick up several individual colonies to check for

the correct integration of the pX330 plasmid containing the designed

sgRNA. Inoculate 3 mL of 2� YT media containing 50 μg/mL ampi-

cillin with a single colony. Incubate the liquid culture and place on a

shaker at 37 �C overnight (approximately 14–16 h).

6. Purify the plasmid DNA from liquid cultures by the commercially avail-

able “Wizard Plus SV Minipreps DNA Purification System,” according

to the manufacturer’s instructions.

7. Confirm sgRNA sequence of each culture via sanger sequencing using

the sequencing primer (50-TGGACTATCATATGCTTACC-30).

3. VALIDATION OF pX330 IN VITRO

Validation of sgRNA cleavage activity was done by cotransfection of

HEK293T cells with the pX330-sgRNA and pCAG-EGxxFP-target plas-

mids as described in the below protocols. The reconstituted EGFP fluores-

cence was observed under a fluorescence microscope at 48 h after

transfection. We used the pCAG-EGxxFP-Cetn1 (http://www.addgene.

org/50717/) and pX330-Cetn1/sgRNA#1 (http://www.addgene.org/

50718/) as the positive control. These plasmids have been reported to work

well both in vitro and in vivo (Mashiko et al., 2013, 2014).

3.1. Construction of pCAG-EGxxFP with the targeted genomic
region

In a previous report (Mashiko et al., 2013), we constructed the pCAG-

EGxxFP plasmid containing 50 and 30 EGFP fragments that share 482 bp

under the ubiquitous CAG promoter (Fig. 15.1A). The 500–1000 bp region

of the target genome containing the sgRNA target sequence is inserted

between the EGFP fragments and this construct is used as a target plasmid.
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3.1.1 Insertion of the target genomic fragment into pCAG-EGxxFP
plasmid: Protocol

1. Design and prepare the primers for amplifying the target genomic

region. Amplify the genomic fragment in a thermal cycler by PCR using

the KOD FX Neo reagents. The pCAG-EGxxFP plasmid has several

multicloning sites (BamHI,NheI, PstI, SalI, EcoRI, and EcoRV) between

the EGFP fragments. Add the sequence for two of these restriction

enzyme sites (plus several nucleotides outside each restriction enzyme

site) to the 50 region of the primers, one for the forward primer and

one for the reverse primer (e.g., BamHI sequence is “ggatcc” therefore

the forward primer sequence would be 50-NNggatcc

NNNNNNNNNNNNNNNNN-30).
2. Check the amplified PCR fragments by gel electrophoresis. When the

band can be observed clearly and at the expected size, isolate the PCR

products by the commercial kit “Wizard PCR Preps DNA Purification

System” according to the manufacturer’s instructions.

3. Cut the purified PCR products with the inserted restriction enzymes for

1–2 h at 37 �C. Then purify again by the commercial kit “Wizard PCR

Preps DNA Purification System” according to the manufacturer’s

instructions.

4. Ligate the pCAG-EGxxFP with the PCR fragments. In brief, set up a

ligation reaction for 1 μL of digested pCAG-EGxxFP, 2 μL of purified

PCR products, and 3 μL of Ligation high Ver. 2. buffer. Incubate the

ligation reaction for a total of 1 h at 16 �C.
5. Transform the pCAG-EGxxFP containing the target genomic fragments

into a competent E. coli strain (e.g., DH5α and Stbl3). Briefly, add 3 μL
of the ligation products into 15 μL of ice-cold chemically competent

cells, incubate the mixture on ice for 20 min, heat-shock it at 42 �C
for 30 s and return it immediately to ice for 2 min. Add 80 μL of

SOC medium and plate it onto an LB plate containing 50 μg/mL ampi-

cillin. Incubate overnight at 37 �C.
6. Following a minimum of 12 h incubation at 37 �C, observe the colony

growth for each plate. Pick up several colonies to confirm correct inte-

gration of the target genomic sequence. Inoculate 3 mL of 2� YT

medium supplemented with 50 μg/mL ampicillin with a single colony.

Incubate the liquid culture on a shaker at 37 �C overnight.

7. After approximately 14–16 h of incubation, purify the plasmid DNA

from liquid cultures using the commercially available “Wizard Plus

SV Minipreps DNA Purification System” according to the manufac-

turer’s instructions.
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8. Confirm integration of the target genomic sequence via Sanger sequenc-

ing using the primers for amplifying the target genomic region or the

sequencing primers (50-GCCTTCTTCTTTTTCCTACAGC-30 for

sequencing from CAG promoter side, 50-GCCACACCAGCCACCA
CCTTCTG-30 for sequencing from polyA side). Do not use the EGFP

primers that anneal with both EGFP fragments in pCAG-EGxxFP.

3.2. Cotransfection of pX330-sgRNA and pCAG-EGxxFP-target
into HEK293T cells

To validate which sgRNA sequence works, we used a simple validation sys-

tem by the observation of green fluorescence reconstituted by DSB-

mediated HDR of cells transfected with an EGFP containing plasmid

(Fig. 15.1B) (Mashiko et al., 2013). In this chapter, we will outline the con-

ventional calcium phosphate transfection method using HEK293T cultured

cells.We recommend including both positive and negative transfection con-

trols (e.g., positive control: pCAG-EGxxFP-Cetn1 and pX330-Cetn1/

sgRNA#1; negative control: pCAG-EGxxFP-target and pX330). It should

be noted that pCAG-EGxxFP-Cetn1 and -target plasmids themselves may

have some background signals.

3.2.1 Cell culture and transfection in HEK293T cells: Protocol
1. Approximately 6 h before transfection prepare 100-mm plates con-

taining fairly confluent (80–90% or 2�107 cells) cell coverage. Seed

the well-dissociated cells onto six-well plates at a density of approxi-

mately 1�106 cells per well in a total volume of 2 mL cell culture

medium (culture medium; 10% (vol/vol) FCS, 1� Penicillin–Strepto-

mycin–Glutamine solution in DMEM medium). Cells are maintained

and cultured according to the medium manufacturer’s protocols.

2. 5–6 h after passaging, transfect cells using the calcium phosphate method

according to the manufacturer’s instructions. Briefly, prepare transfec-

tion reagents and plasmids as follows: 1 μg of pX330-sgRNA, 1 μg of

pCAG-EGxxFP-target, and 10 μL of 2.5 M CaCl2 in a total volume

of 100 μL.
3. Add 100 μL of 2� BBS (pH 6.95) to each tube, and mix by vortex

immediately.

4. Incubate tubes at room temperature for 10 min.

5. Add transfection mix to each well (one pX330 plasmid containing one

sgRNA per well). Ensure diffusion of transfection mix by gently shaking

and incubate at 37 �C with 5% CO2.
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6. Refresh media after 16–24 h transfection.

7. 48 h after transfection, the EGFP fluorescence can be observed under a

fluorescence microscope.

3.3. Observation of EGFP fluorescence in the transfected cells
pCAG-EGxxFP-Cetn1 and pX330-Cetn1/sgRNA#1 were used as the

positive control in this assay. We classified the observed fluorescence inten-

sity into four groups (score-4, brighter than control; score-3, same as control;

score-2, darker than control; score-1, very dark; Fig. 15.2A). The validated

pX330-sgRNA plasmids with a score of 3 or 4 can be used for the generation

of mutant mice by pronuclear injections. If all the validated pX330-sgRNA

plasmids have a score of 1 or 2, we recommend redesigning the target

sgRNA sequences.

Figure 15.2 In vitro validation system for cleavage activity of pX330-sgRNA plasmid and
pronuclear injection of circular pX330-sgRNA plasmid. (A) pCAG-EGxxFP-target plasmid
was cotransfected with pX330-sgRNA plasmids into HEK293T cells. The reconstituted
EGFP fluorescence was observed under a fluorescence microscope at 48 h after trans-
fection. The fluorescence intensity was classified into four groups (score-4, brighter than
control; score-3, same as control (pCAG-EGxxFP-Cetn1/pX330-Cetn1/sgRNA#1); score-2,
darker than control; score-1, very dark). (B) The validated pX330-sgRNA plasmids with a
score of 3 or 4 were injected into the pronuclei of fertilized eggs. The circular plasmid
injection can decrease the risk of integration of the plasmid into the host mouse
genome.
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4. ONE-STEP GENERATION OF MUTANT MICE VIA
CIRCULAR PLASMID INJECTION

Following the validation of individual sgRNA cleavage activity in

HEK293T cells, the selected pX330-sgRNA plasmid was injected at

5 ng/μL into the pronucleus of the zygote. To reduce the risk of integration

of the plasmid into the host mouse genome, we injected pX330-sgRNA

plasmids in their circular form.

4.1. Collecting the fertilized eggs
Wild-type female B6D2F1 mice are superovulated and mated with wild

type B6D2F1 males, and fertilized eggs are collected from the oviduct

according to the manual for manipulating the mouse embryo (Nagy,

Gertsenstein, Vintersten, & Behringer, 2003). KSOM medium is used for

the in vitro culture of preimplantation embryos, and FHM medium is used

for in vitro manipulation outside the incubator.

4.1.1 Superovulation treatment and collection of fertilized eggs:
Protocol

1. On an 8 a.m. to 8 p.m. light cycle, 5 IU of PMSG is administered by

intraperitoneal injection between 1 p.m. and 2 p.m. followed by 5 IU

of the human chorionic gonadotrophin (hCG) administered 48 h later.

After the hCG injection, one superovulated female is caged with one

adult male. Copulation is confirmed by presence of a vaginal plug in

the female next morning.

2. Approximately 20 h after hCG injection, the fertilized eggs are recov-

ered from the oviduct. The collected eggs are surrounded by cumulus

cells and are incubated in hyaluronidase solution (final concentration

of 300 μg/mL) for 5 min until the cumulus cells can be removed.

The fertilized eggs are then transferred to KSOMmedium and incubated

at 37 �C 5% CO2 until ready to perform microinjection.

NB: There is a 4–6 h window for microinjection to take place; beyond this

time the pronuclear stage eggs will develop into zygotes and can no longer

be used for this protocol. Injection at later stage may increase the occurrence

of mosaicism.

4.2. Preparing pX330-sgRNA plasmid for microinjection
To simplify procedures andminimize effort, we directly injected the circular

form of pX330-sgRNA plasmids into the pronuclei of fertilized eggs.
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The transgenic efficiency with the circular form of the plasmid DNA is

approximately 10 times lower than that of the linear form (Mashiko

et al., 2014).

4.2.1 Preparation of pX330-sgRNA plasmid for microinjection: Protocol
1. The validated pX330-sgRNA plasmids with a score of 3 or 4 are filtered

through spin columns (0.2 μm pore size) via centrifugation at 400� g for

1 min.

2. Dilute the filtered pX330-sgRNA plasmids to a final concentration of

5 ng/μL using T10E0.1 buffer. The plasmid DNA can be stored at room

temperature until microinjection.

4.3. Pronuclear microinjection of circular pX330-sgRNA
plasmid

Before experiment, the microinjection systems need to be correctly set up

(microscope, micromanipulators, holding, and injecting needles, etc.).

These systems are very expensive and must be maintained in optimum

conditions. Moreover, it takes practice to handle these systems and be able

to generate mutant mice by microinjection (Fig. 15.2B). If you do not have

the microinjection systems and/or have had little chance to deal with

handling mouse gametes, we recommend ordering this procedure to be

done in an animal facility or by companies that routinely generate

mutant mice.

4.3.1 Manipulating mouse embryos and microinjection system:
Protocol

1. Approximately 24 h after hCG injection the fertilized eggs are ready to

be injected with the circular pX330-sgRNA plasmids (5 ng/μL) into the
pronucleus. The eggs will remain in the pronuclear stage for 4–6 h.

2. Surviving eggs can be cultured in vitro to two-cell stage embryos in

KSOM medium at 37 �C 5% CO2 overnight (approximately 20 h).

3. Two-cell stage embryos are then transferred into the oviduct of 0.5 d.p.

c. pseudopregnant females.

NB: When mutant mice are generated with precise point mutations or

insertions by DSB-mediated HDR, the fertilized eggs are coinjected with

the mixture of 5 ng/μL pX330-sgRNA and 100 ng/μL ssODNs (single-

stranded oligodeoxynucleotide, HPLC grade) into the pronucleus.
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5. SCREENING FOR TARGETED MUTATION IN MICE

The pups developed from microinjected eggs are genotyped by PCR

and subsequent Sanger sequencing analysis of DNA collected from the tail

tips of the potential mutant pups (2–3-week old). The primers used for PCR

analysis are the same primers used for the amplification of the target genome

used in the construction of the pCAG-EGxxFP plasmid (see Section 3.1).

Of the 32 genes tested, approximately half (100/192) of the pups were

mutant mice (Mashiko et al., 2014).

5.1. Direct sequencing of PCR products: Protocol
1. Place the mouse tail tip into a 1.5-mL tube and add 0.2 mL of lysis buffer.

Incubate at 50 �C overnight (minimum 12 h).

2. Following incubation for at least 12 h centrifuge the samples at room

temperature for 1 min, 9000� g. Collect 0.5 μL of the supernatant

and perform PCR analysis using the Ampdirect Plus reagents according

to the manufacturer’s instruction.

NB: This protocol renders the phenol/chloroform purification of the tail

DNA unnecessary.

3. Check the size of the amplified PCR fragments by gel electrophoresis.

When the band can be observed clearly, purify the PCR products using

the commercially available “Wizard PCR Preps DNA Purification

System” according to the manufacturer’s instructions.

4. Confirm the sequence of purified pup tail DNA via Sanger sequencing

using the same primers used for the amplification of the target genome

used in the construction of the pCAG-EGxxFP plasmid. The primers for

sgRNA insertion into pX330 may also be used. Typically, the majority

(�80%) of the indel size in mutant mice were less than 100 bp (Mashiko

et al., 2014). If it is difficult to read the direct sequencing of PCR prod-

ucts, it is recommended to subclone the PCR products into a

plasmid vector.

6. CONCLUDING REMARKS

To examine the efficiency of pX330-mediated genome modification,

we developed a validation system in cultured HEK293T cells transfected

with pCAG-EGxxFP plasmid containing the target region of the mouse

genome (Mashiko et al., 2013). Following validation, the circular form of
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pX330-sgRNA plasmids weremicroinjected into the pronuclei of single cell

zygotes and mutant mice were obtained. If mice containing pX330 Tg are

obtained as well as the desired mutation, the Tg and the mutation are often

carried on separate alleles and can be separated by breeding of the F0 gen-

eration with wild type mice. This only occurs in very rare instances. There-

fore, microinjection of the circular pX330 plasmid into the pronucleus of

the single cell zygote is a simple, easy, fast, and viable method to make

GM mouse lines within 1 month (Fig. 15.3).

One of the characteristics of the CRISPR/Cas9 system is its ability to

induce DSBs at multiple sites in parallel (Wang et al., 2013; Yang et al.,

2013). Cointroduction of multiple sgRNAs and the Cas9 nuclease can

Figure 15.3 Timeline and generation of mutant mice by single plasmid injection. Con-
ventional embryonic stem (ES) cell-mediated gene targeting requires at least 6 months
to obtain homozygous mutant mice. CRISPR/Cas9-mediated gene modification utilizes
double-strand breaks (DSBs) and the host cells own DNA repair systems. Cas9
endonuclease-induced DSBs can be repaired by nonhomologous end-joining (NHEJ)
or homology-directed repair (HDR) pathway. NHEJ-mediated repair can often lead to
the production of small indels (less than 100 bp). HDR-mediated repair can introduce
precise point mutations or modification by coinjection of a reference single-stranded
oligodeoxynucleotide (ssODN) or double-stranded DNA donor template with pX330-
sgRNA plasmid. With this single plasmid injection system, heterozygous/homozygous
mutant mice can be generated in 1 month. GM, genetically modified.
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induce large deletions or inversions in a specific genomic region (Cong et al.,

2013; Fujii et al., 2013). With our protocol, we could also obtain pX330

plasmid injection-mediated mutant mice carrying the complete removal

of a region of the genome flanked by sites targeted by two sgRNAs, a dele-

tion of approximately 400 bps (Mashiko et al., 2013). Furthermore, single

plasmid injection with ssODN (approximately 120 nts in length) could

induce point mutations in the mice (in preparation).

As with the ZFNs and TALENs systems, off-target cleavage events are of

concern when using the CRISPR/Cas9 system. To analyze the off-target

effects, we performed PCR analysis for each of the off-target sequences that

matched the 13 nt seed sequence with an NGG PAM sequence. Only 3 off-

target events were found among 382 potential off-target binding sites in

63 mutant mouse lines (Mashiko et al., 2014). The transient expression of

the CRISPR/Cas9 system achieved by pronuclear injection into the mouse

zygote appears to result in fewer incidents of off-target cleavage. Since each

sgRNA has a different number of off-target sequences, the generation of

mutant mice with sgRNAs selected for their low number of nondesired

binding sites can reduce the risk of off-target cleavages. The generation

of mutant mice via different sgRNAs or transgenic rescue experiment can

also decrease the risk of misinterpreting the phenotype.

However, the risk of off-target cleavage is still a problem for gene therapy

(e.g., human ES/iPS cells). To reduce the off-target effects, one of two

nuclease domain-deficient Cas9 nickase (Cas9n; D10A or H840Amutation)

can cut one strand rather than both strands of the target DNA (Cong et al.,

2013; Mali et al., 2013). A pair of Cas9n (D10A)–sgRNA complexes can

nick both strands simultaneously (double nicking). Double nicking has been

shown to reduce off-target activity and introduce on-target mutations effi-

ciently (Ran, Hsu, Lin, et al., 2013). Also, catalytically inactive Cas9 (dCas9;

dead Cas9, both D10A and H840A mutations) can be guided by an sgRNA

without the cleavage of the target site. The dCas9–sgRNA complex specif-

ically binding to the target DNA can efficiently interfere with the expression

of the targeted gene (CRISPR interference; CRISPRi) by blocking the

binding of other proteins, such as RNA polymerase (Qi et al., 2013).

The dCas9 can also be fused to exogenous proteins (e.g., activator, repressor,

epigenetic regulator, and fluorescent proteins) to control the genetic and

epigenetic modification of target genes (Chen et al., 2013; Gilbert et al.,

2013; Maeder et al., 2013; Perez-Pinera et al., 2013). Recently, the human

disease HTI (hereditary tyrosinemia type I) was corrected in adult mice fol-

lowing delivery of the CRISPR/Cas9 system via hydrodynamic tail vein
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injection (Yin et al., 2014). CRISPR/Cas9-based genome editing has

emerged as a powerful and efficient method in the biological/biomedical

sciences and holds much promise for the future of genetic/mouse research.
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Abstract

In addition to their applications in genome editing and gene expression regulation, pro-
grammable DNA recognition systems, including both CRISPR and TALE, have been
recently engineered for the visualization of endogenous genomic elements in living
cells. This capability greatly helps the study of genome function regulation by its phys-
ical organization and interaction with other nuclear structures. This chapter first dis-
cusses the general considerations in designing and implementing the imaging
system. The subsequent sections provide detailed protocols to use the CRISPR/Cas9 sys-
tem to label and image specific genomic loci, including the establishment of expression
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systems for dCas9-GFP and sgRNA, the procedure to label repetitive sequences of telo-
meres and protein-coding genes, the simultaneous expression of many sgRNAs to label
a nonrepetitive locus, and the verification of signal specificity by FISH.

1. INTRODUCTION

With an enormous amount of information encoded, the total length of

genomic DNA in a human cell exceeds 2 m. How these extremely long

molecules are packaged into the cell nucleus with a diameter at around

10 μm is an intriguing question. Indeed, it is now widely understood that

the spatiotemporal organization of the genome is indispensable for the reg-

ulation of its functional output (Misteli, 2007, 2013). To study the physical

organization and interactions of genomic elements, a widely used approach

is the direct visualization of specific DNA sequences by fluorescent in situ

hybridization (FISH). However, the requirement of DNA denaturation

for probe hybridization makes live-cell FISH impractical in most cases, thus

losing the capability to track dynamic processes. On the other hand, live-cell

imaging of genomic elements have so far relied on fluorescently tagged

DNA-binding proteins. Due to the limited choices of such proteins, their

application has been restricted to either special genomic elements such as

the telomere (Wang et al., 2008) and centromere (Hellwig et al., 2008),

or artificially inserted sequences such as LacO and TetO as tandem arrays

(Robinett et al., 1996). It has been a major challenge to visualize arbitrary,

endogenous DNA sequences in living cells until the recent demonstration

that the genome editing tools of clustered regularly interspaced short palin-

dromic repeats (CRISPR) and transcription activator-like effector (TALE)

can be adapted for genome imaging (Anton, Bultmann, Leonhardt, &

Markaki, 2014; Chen et al., 2013; Ma, Reyes-Gutierrez, & Pederson,

2013; Miyanari, Ziegler-Birling, & Torres-Padilla, 2013; Thanisch et al.,

2014; Yuan, Shermoen, & O’Farrell, 2014).

1.1. Choice of target sites and DNA recognition methods
To fluorescently label arbitrary, endogenous genomic elements in a living

cell, the basic approach is to introduce a fluorescently tagged, programmable

DNA recognition protein. A Cas9 protein in the CRISPR system with

its nuclease activity removed (dCas9) (Gilbert et al., 2013; Qi et al.,
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2013), as well as the TALE protein without nuclease fusion, serve well for

this purpose. By forming a complex with a small guideRNA (sgRNA) com-

plimentary to the target sequence (for dCas9), or by combining the

matching base-recognition domains (for TALE), they can stably bind to

the target DNA in the nucleus. For live-cell fluorescence imaging, the most

straightforward way is to express a fluorescent protein (FP) fusion of either

dCas9 or TALE. Alternatively, FP or dye-labeled dCas9 or TALE can be

introduced into a living cell through microinjection or electroporation.

With either dCas9 or TALE, the signal level for the target locus is deter-

mined by the number of fluorophores at the site. Due to the intrinsic back-

ground from the cell autofluorescence and free dCas9-FP or TALE-FP in

the nucleoplasm, it has been very challenging to detect a single fluorophore

at the target. In order to generate a detectable signal, it is advantageous to

target tandem repeats in the genome so that multiple dCas9-FP or

TALE-FP can bind the target locus using a single recognition sequence.

Such tandem repeats exist throughout the genome of many organisms.

For example, the mammalian telomeres consist of large arrays of TTAGGG

repeat and have been successfully imaged using either CRISPR (Anton

et al., 2014; Chen et al., 2013) or TALE (Ma et al., 2013; Miyanari et al.,

2013; Thanisch et al., 2014). Simple tandem repeats are also available for

imaging in centromeres (Ma et al., 2013), satellite DNA (Anton et al.,

2014; Miyanari et al., 2013; Thanisch et al., 2014; Yuan et al., 2014), and

sometimes even in protein-coding regions (Chen et al., 2013).

Although tandem repetitive sequences are convenient to be visualized by

either CRISPR or TALE, it is not always possible to find suitable ones near

the locus of interest. For these nonrepetitive loci, it is essential to have many

targeting sequences simultaneously so that multiple fluorophores can be

brought in. In this case, the CRISPR system is much more practical than

the TALE system because it only needs to introduce a number of small

RNAs, whereas the other must express a different TALE protein for each

target sequences. When using the CRISPR/Cas9 system to label nonre-

petitive loci, more than 10 FPs should be able to create a reliably detectable

fluorescent puncta over the cellular background. In practice, however,

because different sgRNAs have highly variable targeting efficiency, it has

been reported that a group of at least 30 sgRNAs are necessary to generate

good labeling (Chen et al., 2013).

Because of its generality, the rest of this chapter will focus on the use of

the CRISPR/Cas9 system for the imaging of genomic elements.
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1.2. Sensitivity and specificity of genome imaging using
CRISPR/Cas9

Because the fluorescence signal level at a genomic locus is limited by the

availability of target sites, the fluorescence background from free dCas9-

FP in the nucleoplasm is a major practical consideration for imaging exper-

iment. When the binding of dCas9 to the target locus is nearly saturated,

increasing their expression level will only result in an increased background

but not the signal level, thus decreasing the signal-to-background ratio.

Therefore, a weak or inducible expression system is preferred for the expres-

sion of dCas9-FP to reduce the background, as long as there is sufficient

amount of dCas9-FP to cover the binding sites. Ideally, the nuclear concen-

tration of free dCas9-FP should be comparable to their binding constants,

which are yet to be fully characterized and may vary with the target

sequence. When a larger number of binding sites are in the nucleus, such

as when imaging telomeres, the optimal expression level is higher because

it needs more DNA-bound dCas9-FP.

The limited number of recognition sites also means that the fluorescence

signal level will not be very high (sometimes just a few copies of FP). Hence,

a practical consideration is to use a sensitive detection system. For example,

microscopes with high numerical aperture objectives and sensitive cameras

(such as the EMCCD or sCMOS cameras) are strongly preferred. In certain

cases, widefield microscopes may be more suitable than laser scan confocal

microscopes because of the higher detection efficiency. With a more sensi-

tive detection system, not only can photobleaching be minimized with a

lower excitation intensity and shorter exposure time, but the phototoxicity

associated with long-term imaging can also be reduced. In fact, imaging

induced artifacts can easily arise and remain unnoticed. As an example,

light-induced DNA damage is often undetected unless DNA damage

response reporters are used or cell cycle arrest is observed. On the other

hand, the dCas9-FP probes can be made brighter by fusing multiple FPs

to dCas9. Although this approach will not improve the signal-to-

background ratio because it equally increases the brightness of DNA-bound

and free dCas9-FP, it does allow a lower exposure to be used to generate the

same quality.

For genome editing, off-target effects, particularly for the CRISPR/

Cas9 system (Hsu et al., 2013), are often a major consideration because just

a single DNA cleavage event will trigger the DNA damage repair response.

In contrast, for genome imaging, multiple copies of fluorophores must be

present to constitute a fluorescent signal above the background. Therefore,
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it is inherently much less prone to off-target effects. Nevertheless, artificial

“puncta” which complicate image interpretation can still appear due to non-

specific binding of the DNA targeting protein to nuclear structures. For

example, when not forming a complex with sgRNA, dCas9 can be enriched

in nucleoli, presumably through nonspecific interactions with the ribosomal

RNA. In order to eliminate this nucleoli signal, high expression strength of

sgRNA, such as with a lentiviral vector, is required to ensure that all dCas9

are bound to sgRNA. A new version of sgRNA optimized for expression

efficiency and dCas9 binding has also been shown to critically improve

the efficiency of genome imaging by CRISPR (Chen et al., 2013). Given

these potential artifacts, it is always important to perform control experiment

using nontargeting sgRNA or two-color imaging with FISH (Section 5.1)

to ensure that the observed signal is specific.

In the following chapters, we will use the telomere and mucin gene loci

in live human cell lines as an example to illustrate how the CRISPR/Cas9

system can be practically applied to genome imaging. The general workflow

is outlined in Fig. 16.1.

2. GENERATION OF CELL LINES STABLY EXPRESSING
dCas9-GFP

2.1. Generation of dCas9-GFP constructs
To apply the CRISPR/Cas9 system for labeling endogenous genomic

sequences, a catalytically inactive form of Cas9 (dCas9 harboring D10A

and H840A substitutions), derived from Streptococcus pyogenes, is fused with

an enhanced green fluorescent protein (GFP). Two copies of a nuclear local-

ization signal (NLS) sequence are used to ensure nuclear localization of

dCas9-GFP proteins. To reduce the level of unbound dCas9-GFP which

contributes to the background signal, the Tet-On 3G inducible expression

system is selected as the expression vector.

1. Design In-Fusion polymerase chain reaction (PCR) primers following

the manufacturer’s instructions of In-Fusion HD cloning kit

(#638909, Clontech). Both dCas9 and GFP fragments will be cloned

into the vector in a single reaction. Put NLS sequence in the primers

to achieve its different positions within dCas9-GFP insert.

2. Amplify the coding sequences of dCas9 (human codon optimized)

and GFP via the PCR separately. Phusion High-Fidelity polymerase

DNA kit (#M0530S, NEB) should be used according to manufacturer’s

instructions.
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3. Generate a linearized response vector of Lenti-X Tet-On 3G inducible

expression system by restriction digestion (XmaI/NotI).

4. Purify the resulting PCR products of dCas9 and GFP. Ligate them into

the vector based on In-Fusion HD cloning protocols.

2.2. dCas9-GFP/Tet-On 3G lentiviral production
The CRISPR/Cas9 imaging system can be delivered into mammalian cells

via lentivirus which is efficient for infecting a broad variety of mammalian

cells. Because lentivirus integrates its genome into the genome of infected

cells, the lentiviral vector also facilitates the generation of stable cell lines.

It is imperative to fully understand the potential hazards of working with

lentivirus. Recombinant lentivirus is listed as a Biosafety Level 2 organism.

Any experiments involving this virus have to be performed in a lab with

dCas9-GFP

Tet-On 3G

pSFFV

pTRE3G

Lentivirus
Target cell line

Stable dCas9-GFP cell line

Clonal dCas9-GFP cell line

Single-cell clone selection

sgRNA

pU6

Target loci labeled

Lentivirus sgRNA expression

Figure 16.1 Schematic of the work flow for imaging genomic elements using the
CRISPR/Cas9 system.
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appropriate biosafety level. More biosafety considerations for research with

lentiviral vectors can be found at http://www.colorado.edu/ehs/training/

recom_dna_lenti.pdf. Here, we briefly describe our procedure to produce

lentivirus.

1. One day before transfection, seed 293T cells in the T25 flask containing

6 ml of growth medium, using 90% of Dulbecco’s Modified Eagle

Medium (DMEM) with high glucose plus 10% of Tet system approved

FBS (#631106, Clontech).

2. Maintain cells at 37 �C and 5% CO2 in a humidified incubator.

3. The cells should be around 80% confluent at the time of transfection.

Transfect 0.3 μg envelop plasmid pMD2.G, 2.6 μg packaging plasmid

pCMV-dR8.91, and 3 μg lentiviral vector (dCas9-GFP or Tet-On

3G) into 293T cells using FuGENE (#E2311, Promega) following

the manufacturer’s recommended protocol.

4. After 10–12 h, replace the transfection medium with 6 ml fresh growth

medium (containing Tet system approved FBS). Incubate the cells at

37 �C for an additional 36–48 h.

5. Harvest the lentiviral supernatants and centrifuge briefly (800� g for

8 min) or filter through a 0.45-μm filter to remove cellular debris.

6. Aliquot the virus (0.5–1 ml) and keep it at �80 �C. Each freeze–thaw

cycle may reduce the functional titers by up to two- to four-fold. Freshly

harvested virus is recommended for the first try of any new targets.

2.3. dCas9-GFP/Tet-On 3G lentiviral infection
This procedure describes the generation of RPE (human retinal pigment

epithelium) cells stably coexpressing dCas9-GFP and Tet-On 3G trans-

activator. To reduce the background fluorescence that comes from unbound

dCas9-GFP, we strongly recommend performing imaging experiments with

the basal level of dCas9-GFP expression without doxycycline (dox) induc-

tion (Fig. 16.2). As the transactivator might also contribute to the basal

expression of dCas9-GFP, the cells should still be coinfected with both

dCas9-GFP and Tet-On 3G lentiviruses. Any other cell type with flat mor-

phology, such as U2OS (human osteosarcoma) and HeLa cells, are also ideal

for CRISPR imaging. For the following protocol, we specify volumes for

RPE cells in a 24-well plate.

1. Plate RPE cells into 12 wells of 24-well plate with �20 to 30% conflu-

ence 12–18 h before transduction. Each well contains 0.5 ml complete

growth medium (DMEM with GlutaMAX1 plus 10% of Tet system

approved FBS).
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2. Use virus freshly prepared from packaging cells or thaw aliquots of dCas9-

GFP and Tet-On 3G lentiviral stocks. Combine the dCas9-GFP and Tet-

On 3G lentiviruses in an optimized ratio. If titer values are unknown, use

serial dilutions of the viruses mixed at a ratio of 1:1, 1:3, and 3:1. Total

volume in each well should be 0.5 ml (e.g., 30 μl dCas9-GFP lentivi-

ruses+10 μl Tet-On 3G lentiviruses+460 μl growth medium). Each

condition should have two wells. Dox will be added later to one of the

well for inducing high expression of dCas9-GFP.

3. Transduce the cells for overnight at 37 �C. Remove and discard the

virus-containing medium and replace it with fresh growth medium

without Dox.

4. After 36 h, replace the medium again with fresh growth medium with

Dox at a concentration of 100 ng/ml. Maintain another well of cells

without Dox.

5. Incubate the cells for 12–24 h to allow dCas9-GFP expression to be

induced by the presence of Dox.

6. Use fluorescence microscopy to determine if dCas9-GFP is properly

localized in the nucleus and the percentage of cells that have

dCas9-GFP signal in each condition (different ratio of dCas9-GFP

and Tet-On 3G lentiviruses). With the function of NLS, dCas9-GFP

is highly enriched in the nucleus, especially in the nucleolus. Because

the cells after induction have very strong fluorescence signal, a lower

magnification imaging system (10� or 20� objective) can be used so

that a large view field can be examined.

Figure 16.2 Expression of dCas9-GFP in RPE cells without sgRNA. Only weak cytoplas-
mic autofluorescence can be detected in cells not expressing dCas9-GFP. For cells car-
rying a Tet-On 3G inducible expression system for dCas9-GFP, nuclear GFP signal can be
observed at the basal expression level without doxycycline induction. At 12 h after
doxycycline induction, much stronger (�50-fold) GFP signal can be recorded, with
the nucleolar enrichment of dCas9-GFP clearly visible. The three panels are adjusted
to different contrasts so that the weak signals are visible.
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7. The condition with 60–70% of cells having dCas9-GFP expression is the

best for CRISPR imaging. When the lentiviral dosage is too high, the

basal dCas9-GFP expression might exceed the optimal level due to the

high multiplicity of infection. Passage the cells with selected condition

from the well without adding Dox. Plate the cells in 8-well of cham-

bered coverglass (#155409, Lab-Tek II, Thermo Scientific Nunc) for

further imaging and T25 flask for being frozen as stocks.

8. After 12–24 h, image the cells in 8-well chambered coverglass with a

high numerical aperture oil immersion objective to examine the basal

expression level of dCas9-GFP. Make sure the basal expression level

of dCas9-GFP can be visualized.

2.4. Selection of clonal cell lines stably expressing dCas9-GFP
Although the stable cell lines created by lentiviral infection can be directly

used for CRISPR imaging. The cell-to-cell variation of dCas9-GFP expres-

sion level complicates downstream data interpretation. This variation largely

results from the different copy number of inserted viral genomes and their

site of integration. Therefore, it is desirable to use cells derived from a single

cell clone. In addition, in the process of single cell clone selection, clones

with different basal expression levels can be identified to match the optimal

requirement for different targets. By screening clonal cell lines for a specific

repetitive genomic target, we are able to achieve best labeling efficiency and

lowest background signal. Here, we briefly describe the procedure to isolate

single cell clones of RPE cells stably expressing dCas9-GFP.

1. After allowing dCas9-GFP/Tet-On 3G infected cells to be maintained

for 2–3 passages in T25 flask, detach cells by digesting with 1 ml of 0.25%

trypsin/EDTA (Invitrogen) for approximately 5 min at 37 �C.
2. Add 6 ml growth medium to suspend the cells and dilute the cells by

1:10, 1:100, 1:1000, and 1:10,000 in the growth medium. Plate 50 μl
of each dilution ratio on a glass slide to count the cell number. Select

the dilution ratio with 0–1 cell/50 μl for the further experiment.

3. Add 100 μl complete growth medium in each well of 96-well plate.

Transfer 50 μl of appropriately diluted RPE cells into each well. Theo-

retically, there would be 0–1 cell distributed into each well.

4. After 10–14 days, the colonies will be clearly formed. Select the wells

with a single colony and detach the colony by digesting with 1 ml of

0.25% trypsin/EDTA (Invitrogen) for 5 min at 37 �C.
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5. Transfer the colonies into 24-well plate. Seed each colony in 2-wells.

One well of cells are maintained with Dox.

6. After the cells reach >50% confluence, select the colonies with 100% of

cells having dCas9-GFP expression.

7. Seed the selected colonies without Dox induction in 8-well chambered

coverglass and do sgRNA infection to identify a best clone for labeling a

specific target.

3. EXPRESSION OF sgRNAs USING LENTIVIRAL VECTOR

Previous work has indicated that sgRNA expression level limits

CRISPR/Cas9 function in human cells ( Jinek et al., 2013). An optimized

sgRNA sequence (Chen et al., 2013) has been created to improve its expres-

sion efficiency and assembly with dCas9-GFP. This optimized design

enables more efficient labeling of various genomic targets. The delivery

of sgRNA expression system using lentiviral vectors also dramatically

increased the efficiency. This procedure describes how we clone sgRNAs

into lentiviral vector and infect RPE cells with sgRNA lentiviruses.

3.1. sgRNA design and cloning
1. To target the template DNA strand, search for 50-GN(17–24)-NGG-30.

The sequence of GN(17–24) will be used directly as the base-paring region

(spacer) of the sgRNA. NGG is the PAM sequence recognized by

S. pyogenes Cas9 protein. To target the nontemplate DNA strand, search

for 50-CCN-N (17–24)C-3
0. The reverse complementary sequence of

N (17–24)C will be used as the spacer of the sgRNA. The design principle

is the same as that for genome editing (Ran et al., 2013) or gene regu-

lation (Larson et al., 2013).

2. Select 2–4 sequences for a target. The successful rate of sgRNAs design is

around 50%.

3. Design forward and reverse primers for a specific target. Forward primer:

50- ggagaaCCACCTTGTTGGNxGTTTAAGAGCTATGCTGG-

AAACAGCA-30. GNx (x¼17–28) is the base-pairing sequence

(spacer) which can be changed for labeling any target. Underlined

sequence is BstXI restriction site. Reverse primer: 50- ctagta

CTCGAGAAAAAAAGCACCGACTCGGTGCCAC-30. Underlined

sequence is XhoI restriction site.

4. Amplify the optimized sgRNA sequence by using the common reverse

primer but unique forward primers containing the specific spacer

346 Baohui Chen and Bo Huang



sequence. Use any plasmid containing the optimized sgRNA sequence

(e.g., Addgene ID: 51024) as the PCR template.

5. Purify the sgRNA PCR products and digest them by BstXI and XhoI.

6. Digest the lentiviral U6-based expression vector (Addgene ID: 51024)

by BstXI and XhoI.

7. Subclone the sgRNA fragment into the U6 vector according to manu-

facturer’s instructions of Quick T4 DNA ligase (#M2200S, NEB).

3.2. sgRNA lentiviral infection
The procedure for producing sgRNA lentivirus is the same as dCas9-GFP

lentivirus. RPE cells can be efficiently infected with unconcentrated virus

stock. Nevertheless, as the labeling efficiency is sgRNA dosage dependent,

concentrating viruses for some types of cells with low infection efficiency

should be considered.

1. 12 h prior to transduction, seed clonal cells stably expressing dCas9-GFP

in 8-well of chambered coverglass.

2. Infect the cells with sgRNA lentivirus (by 1:12, 1:6, or 1:3 dilution) sup-

plemented with 5 μg/ml polybrene (#TR-1003-G, Millipore) in each

well. The more target sites, the high sgRNA dosage should be trans-

duced. Incubate the cell with lentivirus for 12 h.

3. Remove the virus-containing medium and replace it with fresh growth

medium without phenol red.

4. 48 h posttransduction, the cells are ready for imaging.

4. LABELING OF NONREPETITIVE SEQUENCES

To label nonrepetitive sequences, at least 30 sgRNAs should be gen-

erated for loci. This is essential for enriching dCas9-GFP signal for detection

under conventional fluorescence microscopy. Here, we describe procedures

for cloning multiple sgRNAs in a high-throughput way and packaging

pooled sgRNA lentiviruses.

4.1. Target selection and sgRNA design
When labeling a nonrepetitive sequence, we recommend to design at least

30 sgRNAs. Distance between two adjacent target sequences is critical for

dCas9-GFP signal enrichment. Labeling of repetitive regions inmucin genes

indicates that 30–60-bp long distance is efficient for visualization. Thus, to

label the nonrepetitive region of MUC4 gene, the distance between two
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adjacent sgRNAs is kept at 30–50 bp. The sgRNAs are designed by

searching for GNxNGG (x¼17–28) in both template and nontemplate

DNA strands of the coding sequence of MUC4. NGG is the PAM for

the S. pyogenes Cas9. The GNx sequence is the base-pairing region of

the sgRNA.

4.2. High-throughput sgRNA cloning
This procedure describes cloning multiple sgRNAs into a same U6 vector in

a high-throughput way. The protocol is an adaption of published methods

to clone multiple sgRNAs for CRISPRi (Larson et al., 2013). Taking clon-

ing 96 sgRNAs simultaneously as an example:

1. Order the 96 forward primers in a 96-well plate for easy handling (e.g.,

from Integrated DNA Technologies).

2. Pool the forward primers into 12 groups using a multichannel pipet.

Thus, each group contains eight primers. Mix the pooled primers with

equal amount of the reverse primer to PCR amplify sgRNA fragments

using a plasmid (e.g., Addgene ID: 51024) as the template. Perform the

PCR reaction using the Phusion High-Fidelity DNA polymerase.

3. Run the PCR products (twelve groups) on a 1.5% agarose gel and purify

them by cutting the �150 bp DNA band.

4. Digest the purified PCR products by BstXI and XhoI for 4 h.

5. Purify the digestion reactions and ligate them into digested sgRNA vec-

tor (by BstXI/XhoI) using Quick T4 DNA ligase for 5 min.

6. Transform the eight groups of ligation reactions into Stellar™ compe-

tent cells (#636763, Clontech), respectively. Grow the Escherichia coli

on agar plates supplemented with 100 μg/ml ampicillin at 37 �C.
7. The second day, randomly pick 24 clones from each plate (a total of

24�12¼288 colonies) and culture them in 1 ml LB+ampicillin in

2 ml deep 96-well plates. Grow the cultures for 6 h. Send 50 μl of each
culture for sequencing. Grow the rest of the cultures overnight at 37 �C.

8. Amplify the sequencing-verified cultures (representing correct sgRNAs,

we hit 73 correct sgRNAs in our case for labelingMUC4 nonrepetitive

region) in 10 ml LB with ampicillin and grow them for 6 h.

9. Mix cultures of five or six sgRNAs to create a cocktail culture (the total

volume will be 50–60 ml). Extract plasmids using the Nucleo Bond

Xtra Midi kit (#740420.50, Clontech) for subsequent lentiviral

packaging.
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4.3. Production of pooled sgRNA lentiviruses
1. One day prior to transfection, plate 293T cells in the T25 flask (�40%

confluence) containing 6 ml of growth medium.

2. Maintain cells at 37� and 5% CO2 in a humidified incubator.

3. Transfect 0.3 μg envelop plasmid pMD2.G, 2.6 μg packaging plasmid

pCMV-dR8.91, and 3 μg pooled lentiviral vectors (including equal

amounts of five to six sgRNA plasmids) into 293T cells using FuGENE

following the manufacturer’s recommended protocol.

4. Replace the transfection medium with 6 ml fresh growth medium after

12 h. Incubate the cells at 37 �C for an additional 36–48 h.

5. Harvest the lentiviral supernatants and centrifuge briefly (800� g for

8 min) or filter through a 0.45-μm filter to remove cellular debris. To

label 73 targets in MUC4 nonrepetitive region, 15 lentiviral cocktails

were generated.

6. Concentrate the lentiviruses by using Lenti-X™ Concentrator

(#631231, Clontech) according to the manufacturer’s direction. For

labeling nonrepetitive sequences, this step is strongly recommended.

Further optimization is required for delivering more sgRNAs into

one cell.

5. IMAGING OF GENOMIC LOCI DETECTED BY CRISPR

5.1. Verify CRISPR signal by a modified FISH staining
protocol

Without sgRNA expression, dCas9-GFP is enriched in nucleolus-like

structures. Although such nucleolar signal diminishes and even disappears

when dCas9 forms complex with sgRNA, false fluorescent puncta may still

arise if sgRNA is not properly expressed or if the original instead of the opti-

mized sgRNA design is used. Therefore, it is important to always verify the

specificity of dCas9-GFP signal. A straightforward verification approach is to

fix and stain the cells with FISH, and then check the colocalization with the

dCas9-GFP signal.

Cas9–RNA complex initiates strand separation to enable base paring

between the sgRNA guide sequence and the target DNA strand

(Sternberg, Redding, Jinek, Greene, & Doudna, 2014). As the result,

oligo-DNA FISH probes are able to bind to the region where the two

DNA strands are separated by CRISPR without the DNA denaturation
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procedure (heating cells at 80 �C) required for regular FISH protocols.

Skipping the denaturation step allows the preservation of dCas9-GFP fluo-

rescence for multicolor colocalization imaging. Below is a simplified pro-

tocol of FISH to colabel genomic DNA sequence with CRISPR

(Fig. 16.3).

1. Select oligo-DNA FISH target sequence. For short repetitive sequence

(e.g., TTAGGG of telomere repeat), a similar target sequence with

CRISPR targets can be chosen. For long repetitive sequence (more than

40 bp), the sequence close to the CRISPR target can be used for FISH

target. Thus, dCas9/sgRNA and FISH probe can bind at regular inter-

vals along the target region (Fig. 16.3).

2. Order oligo-DNA FISH probes with one Cy5 dye attached at the 50 or
30 end.

3. Dilute the oligo-DNA FISH probe to 200 ng/μl (stock solution).

4. Fix CRISPR-labeled cells with 4% paraformaldehyde (PFA). Wash the

samples three times with PBS.

5. Permeabilize the cells with PBS+0.5% NP-40 for 10 min.

6. Wash the sample with PBS for 5 min.

7. Incubate the sample with 2 ng/μl oligo-DNA FISH probe in hybridiz-

ing solution (10% dextran sulfate, 50% formamide, 500 ng/ml Salmon

sperm DNA in 2� SSC buffer) for 12 h in a dark and humidified box

(Schmitt et al., 2010).

8. Wash the sample for three times with 2� SSC buffer (#S6639-1 l,

Sigma), each for 10 min. Stain nuclei with DAPI if necessary.

5.2. Live-cell imaging of genomic loci
We recommend performing the imaging 48 h post-infection of sgRNAs.

The low basal level expression of dCas9-GFP is sufficient for the detections

of telomeres and mucin genes. To achieve high sensitivity for widefield

epifluorescence microscopy, oil immersion objectives with a numerical

aperture of at least 1.3 (40� to 100�) should be used, with either an

EMCCD camera or a Scientific CMOS (sCMOS) camera. A low excita-

tion intensity (at about 0.1 W/cm2) should be used to avoid photo-

bleaching and phototoxicity, which should generate sufficient signal in

an exposure time of as short as 0.2 s. Short-term live imaging within

1 h can be done at room temperature for determining labeling efficiency

or nuclear localization; however, to track genomic dynamics, the samples

must be maintained at 37 �C using an environmental control chamber.
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After live-cell imaging, samples can be kept at 4 �C after being fixed with

4% PFA for 15 min if necessary. Figure 16.4 displays fluorescence images of

the telomeres and theMUC4 loci in three different human cell lines labeled

with dCas9-GFP.

Figure 16.3 Verification of CRISPR signal specificity by FISH. Four target loci in RPE cells
have been tested: telomere, the tandem repeats in exon 2 and intron 2 of the MUC4
gene, and the tandem repeats in exon 2 of the MUC1 gene. The recognition sequences
for the sgRNAs and oligo-DNA FISH probes are underlined. Complete colocalization of
the CRISPR and FISH signal is displayed with the nuclear DNA stained by DAPI. Scale
bars: 5 μm.
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6. SUMMARY

We have presented procedures to label both repetitive and nonre-

petitive genomic sequences in live cells by engineering a CRISPR/Cas9

system. Two key ways to achieve high labeling efficiency are screen clonal

cell lines for an appropriate expression level of dCas9-GFP for a specific tar-

get and express the sgRNA at a very high level. The protocol described here

uses telomeres and mucin genes as examples, and can be applied to many

human cell lines including RPE, HeLa, APRE-19, and U2OS cells. Mod-

ifications might be necessary for other organisms and cell types. In addition,

although CRISPR imaging is relatively robust, the labeling efficiency still

varies among different target sequences, making it necessary to screen a

number of sgRNAs for a given genomic locus. Further developments need

to be conducted to improve the labeling efficiency of nonrepetitive genomic

sequences, including strategies to enhance the delivery of multiple sgRNAs

into the cells, reduce the free dCas9-FP background, and promote the effi-

cient sgRNA–dCas9 complex formation.

Figure 16.4 Imaging telomeres and the MUC4 gene loci using CRISPR/Cas9 system in
three different human cell lines: HeLa, ARPE-19, and U2OS. The HeLa and U2OS cell lines
contain three copies of theMUC4 gene due to trisomy chromosome 3, which is reflected
in the CRISPR images. Scale bars: 5 μm.
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Abstract

Xenopus tropicalis has been developed as a model organism for developmental biology,
providing a system offering both modern genetics and classical embryology. Recently,
the Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR-associated
(CRISPR/Cas) system for genome modification has provided an additional tool for
Xenopus researchers to achieve simple and efficient targeted mutagenesis. Here, we
provide insights into experimental design and procedures permitting successful appli-
cation of this technique to Xenopus researchers, and offer a general strategy for per-
forming loss-of-function assays in F0 and subsequently F1 embryos.
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1. INTRODUCTION

Xenopus has long been a favored model organism for developmental

and cell biology due to its unique combination of advantageous features

including: the ability to acquire large numbers of eggs (or oocytes) and

embryos; the availability of relatively simple techniques for microinjection

of mRNA, DNA, protein, or antisense morpholino oligonucleotides for

gain-of-function or loss-of-function (LOF) experiments; ease of transgenesis

allowing modern molecular developmental and biochemical studies; and its

suitability for classical explant/transplantation embryology.

Although many studies use Xenopus laevis, an allotetraploid species with a

long generation time, for embryological and cell biological studies, recently

Xenopus tropicalis has emerged as a new model organism (Harland &

Grainger, 2011). Forward and reverse genetic approaches have identified

developmental mutants and their causative genes (Abu-Daya, Khokha, &

Zimmerman, 2012). However, the number of characterized mutants to date

is small. Mutational screens, including directed approaches such as Targeting

Induced Local Lesions In Genomes (e.g., Fish et al., 2014) are laborious, and

new approaches to efficiently edit the genome are urgently needed.

Recent technological advances have allowed researchers to readily per-

form targeted gene editing in many organisms. Two major methods that

have been used are zinc-finger nucleases (ZFNs) and transcription

activator-like effector nucleases (TALENs), both of which have been suc-

cessfully applied in Xenopus (Ishibashi, Cliffe, & Amaya, 2012; Lei et al.,

2012; Nakajima, Nakai, Okada, & Yaoita, 2013; Nakajima, Nakajima,

Takase, & Yaoita, 2012; Nakajima & Yaoita, 2013; Suzuki et al., 2013;

Young et al., 2011). Most recently, Type II CRISPR/Cas (Clustered Reg-

ularly Interspaced Short Palindromic Repeats/CRISPR-associated) tech-

nology has been developed for genome modification. This system was

first identified as part of the naturally occurring bacterial adaptive defense

mechanism (Fineran & Dy, 2014; Hsu, Lander, & Zhang, 2014; Terns &

Terns, 2014), and now has been successfully applied in numerous organisms

(Sander & Joung, 2014) including X. tropicalis to effect targeted genome

modification (Blitz, Biesinger, Xie, & Cho, 2013; Guo et al., 2014;

Nakayama et al., 2013), providing an additional tool for Xenopus researchers

to achieve simple and efficient targeted mutagenesis. The application of

newly available genome engineering tools in the X. tropicalis system, with

its sequenced diploid genome, high degree of synteny with the human
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genome, and conservation of key developmental processes, will make this an

outstanding model organism for studying human genetic disease and devel-

opmental pathologies.

Here, we present a general protocol for CRISPR/Cas9-mediated

targeted mutations in X. tropicalis including a strategy for performing LOF

experiments in F0 mutagenized animals and subsequently F1 animals.

2. PRINCIPLE

CRISPR/Cas9 creates genome modifications using a common bio-

logical mechanism across taxa, and is described briefly here. The Type II

CRISPR/Cas system uses Cas9 (an RNA-guided DNA endonuclease) for

genome editing. In bacteria, Cas9 cleaves target DNA by forming a complex

with two small RNAs, a CRISPR RNA (crRNA) that has complementary

sequence to the target DNA and the trans-activating CRISPR RNA

(tracrRNA) that base pairs with the crRNA. For efficient cleavage, the target

DNA must be followed by a sequence called the protospacer (a complemen-

tary sequence targeted by a specific crRNA) adjacent motif (PAM; Fig. 17.1),

which varies among bacterial species. Streptococcus pyogenesCas9 is most widely

used for genome editing in eukaryotic systems, and its PAM sequence is

NGG (where N can be any nucleotide), although NAG can also function

at lower efficiency (Anders, Niewoehner, Duerst, & Jinek 2014; Terns &

Figure 17.1 Schematic representation of CRISPR/Cas9-mediated target cleavage. Cas9
protein (oval) and sgRNA together recognize the target sequence. The PAM, NGG, while
recognized by Cas9, does not base pair with the sgRNA. Cleavage (indicated by light-
ning bolts) occurs within the target to create a double-stranded break, which is then
repaired by an error-prone NHEJ mechanism.
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Terns, 2014). For genome editing applications, a portion of the crRNA has

been fused to the tracrRNA to create a cassette for production of synthetic (or

single) guide RNAs (sgRNAs) (Hwang et al., 2013; Mali, Yang, et al., 2013).

A target sequence (�20 bp) is added to this cassette to create the final sgRNA,

which then directs Cas9 to specific sites in the genome for cleavage. In

Xenopus, sgRNAs are coinjected together with either Cas9 mRNA or protein

into fertilized eggs or early embryos (Blitz et al., 2013; Guo et al., 2014;

Nakayama et al., 2013) (Fig. 17.2). Following Cas9-mediated scission of

the target site, double-strand breaks are often imperfectly repaired by non-

homologous end-joining (NHEJ), which frequently leads to insertion and

deletion mutations (indels).

The resultant embryos are mosaic; cells bearing combinations of mutant

and wild-type (unsuccessfully targeted or repaired perfectly) alleles are

Figure 17.2 Strategy of CRISPR/Cas9-mediatedmutagenesis in Xenopus tropicalis. Sche-
matic representation of targetedmutagenesis of the tyrosinase (tyr) gene, as an example
of a generalized workflow to create mutants. Homozygous mutants at the tyr locus dis-
play oculocutaneous albinism. Cas9 mRNA or protein is coinjected with a tyr-specific
sgRNA into one-cell stage fertilized eggs (top, left). F0 embryos are mosaics: they are
comprised of populations of cells containing different mutant alleles and wild-type tis-
sue. In the case of tyr targeting, biallelic loss of gene function results in deficient melanin
synthesis, which is observed as a loss of pigmentation in the eyes and skin. Mosaic
F0 animals can be intercrossed to produce nonmosaic (compound heterozygous or
homozygous) mutants (tyr�/�), as well as carriers (tyr+/�), and homozygous wild-type
F1 progeny.
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present in various proportions. The relative amounts of mutant to wild type

are likely a function of both the timing of mutagenesis and efficacy of indi-

vidual sgRNAs to direct Cas9 to target sites. Mutant phenotypes may be

scorable in F0 mosaic animals. Intercrosses between F0 adults can be per-

formed to create nonmosaic F1s that are expected to be primarily compound

heterozygotes (containing two different mutant allelic variants). Alterna-

tively, in the F2 generation, homozygous mutants can be created that carry

a single allelic variant.

3. PROTOCOL

3.1. Background knowledge and experimental equipment
In this chapter, the authors assume that readers have sufficient experimental

knowledge, basic molecular biology skills, and experience handlingXenopus,

including general embryomanipulation andmicroinjection technique (Sive,

Grainger, & Harland, 2010). All necessary equipment is commonly available

in laboratories already equipped for Xenopus embryo research and no special

equipment is required for the CRISPR-mediated mutagenesis.

3.2. sgRNA design
The first step in designing a CRISPR/Cas mutagenesis strategy is to identify

possible target sites in the gene of interest. A target-adjacent PAM sequence

is an absolute requirement for efficient mutagenesis; it is important to note

that the PAM sequence is not included in the sgRNA itself. A further con-

straint on the target sequence is due to the use of in vitro transcription from

promoters such as T7, T3, or SP6 to produce sgRNAs, which function opti-

mally with an initiator guanine (G) residue (Fig. 17.3A). If one uses a plasmid

template for making sgRNA by in vitro transcription as originally described

(e.g., Hwang et al., 2013), the target must start with GG due to cohesive end

requirements of the cloning strategy. Alternatively, the template can be pre-

pared using a PCR-based method (e.g., Nakayama et al., 2013), which is

easier and faster, and allows more flexibility for target sequence selection

because it requires only a single 50 G (+1). The typical length of target

sequence included in the design of an sgRNA (i.e., the genomic target

sequence before the PAM) is 20 bp, but a recent report (Fu, Sander,

Reyon, Cascio, & Joung, 2014) suggests that shorter (i.e., as short as

17 bp) targets function as efficiently as 20 bp and have fewer potential

off-target sites. In summary, one needs to find G(N)16–19 target sequence
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(total length is 17–20 bp), followed by NGG in the genome. Any effects of

decreasing the target length have not been rigorously tested in Xenopus, and

therefore, it remains unknownwhether shorter target sequences will work as

efficiently in this system.

Potential CRISPR/Cas9 target sequences in the genome can be identi-

fied by manually locating PAM sequences within the region of interest.

Finding a guanine nucleotide 17–20 bp upstream of a PAM would identify

a potential CRISPR target. Recent publications, however, suggest that tar-

get sites do not necessarily need to start with G. Any sequence followed by a

PAM in the genomemay be targeted by simply adding an extra G or GG not

Figure 17.3 PCR-based template synthesis for sgRNA in vitro transcription. (A) Two long,
partially overlapping oligonucleotides are annealed and serve as primers for fill-in reac-
tions by a thermostable polymerase. The 50-oligo (primer) contains the T7 (or T3 or SP6)
promoter; the transcription start site (G) corresponds to the first base of the target
region (17–20 bp), followed by a portion of the sgRNA backbone. This region is comple-
mentary to the 30-end of the 30-oligo (primer) that contains the remainder of the sgRNA
backbone sequence required for proper RNA folding. (B) Agarose gel (2%) electropho-
resis of 2 μl of a PCR reaction (+) compared to no PCR (�) confirms successful sgRNA
template synthesis. M, 100-bp DNA ladder. (C) Agarose gel (2%) electrophoresis of
�200 ng sgRNA following in vitro transcription, using the DNA template shown in
(B). Example of heat-denatured (+) and nondenatured (�) sgRNA is shown. The RNA size
marker lane (M) shown here was loaded on the same gel and was digitally spliced to
place it adjacent to the sample lanes in this image.
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encoded in the genome sequence (Ansai & Kinoshita, 2014 and references

therein). This approach may be a workable strategy when no other suitable

option can be found. Once the target site is chosen, the next step is to deter-

mine whether the selected target sequence has similarity to other regions that

may lead to off-target mutagenesis. This can be done bioinformatically using

the raw genome sequence database (e.g., Blitz et al., 2013), or using a Web-

based homology search engine (http://gggenome.dbcls.jp/en/) (Nakayama

et al., 2013).

A number of other online tools are now available to search the X. tropicalis

genome to identify optimal target and putative off-target sites. These include

CHOPCHOP (https://chopchop.rc.fas.harvard.edu/index.php), CRISPR/

Cas9 target predictor (http://crispr.cos.uni-heidelberg.de), CRISPRdirect

(http://crispr.dbcls.jp/), E-CRISP (http://www.e-crisp.org/E-CRISP/

designcrispr.html), GT-Scan (http://gt-scan.braembl.org.au/gt-scan/), and

Cas-OFFinder (http://www.rgenome.net/cas-offinder/). Each tool offers a

variety of input and output options, and depending on the purpose and

knowledge of users different tools may be preferable. Notable features offered

by many of the tools include: options for PCR primer design to assay

CRISPR efficiency in target regions and to check for off-target mutagenesis

(along with the inclusion of genomic location information for putative off-

target regions); the ability to vary target length and 50 nucleotide identity;

the option to search for alternative PAM sequences; and the ability to target

50 or 30 regions of ORFs for the purpose of introducing N- or C-terminal

protein modifications by homologous recombination, among others.

3.2.1 Considerations in target site choice
The success of a gene targeting strategy will be influenced by location of the

mutation within the gene. While repair of double-strand breaks by NHEJ

results in indels, most are short deletions. By chance, approximately two-

thirds of indels will result in premature termination of protein translation

and hence more 50 target sites might be predicted to yield stronger effects.

The remaining indels may or may not result in loss of gene function

depending on their effects on protein structure. Therefore, choosing target

sites within sequence encoding folded domains may be more advantageous

for generating LOF mutations because even in-frame mutations may disrupt

proper domain folding, resulting in loss of protein activity or stability. Folded

domains are often recognizable as highly conserved sequences across species,

or protein families, and protein fold search tools such as Pfam (http://pfam.

xfam.org/search) can be used to assist in identification of these regions.
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Genes encoding multiple protein isoforms need careful examination to

ensure that site choice results in proper targeting of all possible isoforms.

However, there may be cases where it is desirable to target specific isoforms

while maintaining the function of others. A one-size-fits-all strategy is

impossible, and therefore application of these ideas will need to be tailored

to each gene’s unique characteristics. Since the efficiency of cleavage at dif-

ferent target sites is variable and unpredictable, multiple independent target

sites should be explored to identify the best sgRNA (see Section 4.1 for fur-

ther discussion).

3.3. sgRNA template construction
Two sources of template can be used for the in vitro synthesis of sgRNAs.

One is plasmid-based and requires subcloning (e.g., Guo et al., 2014;

Hwang et al., 2013) and the other uses a PCR-based strategy for making

linear DNA templates, shown schematically in Fig. 17.3.

3.3.1 Template assembly by PCR: Primers
The 50 primer is unique to each target site and has the form

50-TAATACGACTCACTATA G(N)16–19 GTTTTAGAGCTAGAA

ATAGCAAG-30,
where G(N)16–19 is the target sequence of interest, designed as described

above, and double underlined is the T7 promoter. T3 or SP6 promoters

could be substituted, for example, SP6 would work better for GA(N)15–18.

The 30 primer is common to all sgRNA templates and is as follows:

50-AAAAGCACCGACTCGGTGCCACTTTTTCAAGTTGATAA
CGGACTAGCCTTATTTTAACTTGCTATTTCTAGCTCTAAA

AC-30

Both primers above encode the original backbone published in Hwang et al.

(2013). To date, we have tested another backbone, sgRNA(F+E), which has a

modified hairpin reported to have stronger activity (Chen et al., 2013).

However, we have not observed significant enhancement of mutagenesis

activity using the sgRNA(F+E) backbone in Xenopus (our unpublished

observations).

3.3.2 Template assembly by PCR: Assembly conditions
High fidelity polymerase (e.g., Platinum Pfx DNA polymerase, Invitrogen)

is used to generate PCR-based templates. Assembly reactions are performed

in a final volume of 100 μl as follows:
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PCR assembly reaction

10� Buffer 10 μl

25 mM dNTP mixture 1.2 μl

50 mM Mg2SO4 2 μl

50 Primer (100 pmol/μl) 2 μl

30 Primer (100 pmol/μl) 2 μl

DNA polymerase 1 μl

H2O (DNAse/RNAse-free) To 100 μl

Cycling conditions are:

94 �C for 5 min.

10 cycles (up to 20 cycles) of 94 �C for 20 s, 58 �C for 20 s, 68 �C
for 15 s.

68 �C for 5 min.

A typical result is shown in Fig. 17.3B. After confirming that a single product

has been synthesized, templates are column-purified using, for example,

QIAquick® PCR Purification Kit (Qiagen) or DNA Clean &

Concentrator™-5 (Zymo Research) and DNA is eluted with 30–50 μl of
RNase-free water. The concentration should be between 30 and 80 ng/μl
or more, but, if lower, PCR may need to be repeated to increase yield.

3.3.3 In vitro transcription of sgRNA
We use theMEGAscript®T7 Transcription Kit (Life Technologies) follow-

ing the manufacturer’s recommended reaction mixture using up to 8 μl of
template (0.25–0.6 μg if PCR-generated and 1 μg if using linearized plas-

mid) in 20 μl final volume. Incubations are 4 h to overnight at 37 �C to

maximize yield, followed by DNAse digestion. Subsequent purification

of sgRNA can be performed using either the LiCl precipitation (which is

usually not recommended for small RNAs, but has been successful for

sgRNAs) or by the phenol–chloroform extraction/NH4OAc precipitation

method. sgRNA is dissolved in RNase-free water (5–30 μl depending on

pellet size). A minimal RNA concentration of 100 ng/μl is desired to create
“cocktails” for microinjection (see Section 3.4.1) and quality is further

assessed by gel electrophoresis (see Fig. 17.3C). Secondary structure of

sgRNAs can result in multiple bands that are readily resolved by denatur-

ation before electrophoresis. Heat-denaturation can be performed by
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incubating at 60 �C for 2 min in 60–80% formamide followed by quick

cooling on ice for 2 min. The yield of sgRNA is variable and template

dependent. Amounts as high as 100 μg of sgRNA have been achieved from

a single reaction. However, if yield is unacceptably low, longer incubation

times may improve the outcome. If this approach fails, adding an extra 50

sequence (50-GCAGC-30) to the end of the 50-oligo (Michinori Toriyama,

personal communication and our observations, see note added in proof 1)

has been shown to enhance T7 polymerase reactions (Baklanov,

Golikova, &Malygin, 1996). Other alternatives are to use the plasmid-based

strategy for template construction (see Section 3.3), or choose an alternative

target site.

Note added in proof 1: We now recommend the use of

an improved 50 primer which ensures higher efficiency of T7 polymerase-

mediated transcription under the same experimental conditions as

described: 50-GCAGCTAATACGACTCACTATAG(N)16-19GTTTTA-

GAGCTAGAAATA-30.

3.4. Procedure for microinjection
Optimal amounts of sgRNA and Cas9 used in embryo microinjections will

vary depending both on the target site and experimental goals. For example,

F0 analyses will require relatively high doses to observe LOF phenotypes in a

high proportion of animals. However, there are scenarios where F0 LOF is

either not possible (e.g., F0 knockouts cannot be achieved for maternal

RNAs) or insufficient (e.g., phenotypic variability between mosaic LOF

animals may not provide consistent results), and creation of lines carrying

mutant alleles might be preferable. High doses of sgRNA and Cas9 that

cause lethal phenotypes or are otherwise sterile would preclude the possibil-

ity of creating lines. Therefore, moderate doses may be needed to create fer-

tile adults for germline transmission. In short, empirical determination of

optimal doses will be required.

3.4.1 Doses of sgRNA and Cas9
To achieve mutations at a high efficiency, sgRNA doses ranging from 50 to

500 pg appear to be sufficient in many cases (Blitz et al., 2013; Guo et al.,

2014; Nakayama et al., 2013). We recommend testing a range from 50 to

200 pg as increased toxicity can be observed at high doses (Guo et al., 2014).

Cas9 can be microinjected as either mRNA or protein. Three Cas9 plas-

mid templates have been successfully used in X. tropicalis (Blitz et al., 2013;

Guo et al., 2014; Nakayama et al., 2013). Since native S. pyogenes Cas9
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mRNA has weak activity in Xenopus (Nakayama et al., 2013), successful

Cas9 constructs have incorporated two key modifications: a codon optimi-

zation more compatible with vertebrate systems and fusion to nuclear local-

ization signals (NLSs). We recommend using appropriate mMessage

mMachine Kits (Life Technologies) and following standard conditions to

make capped Cas9 mRNAs. These should be quality-tested by A260 quan-

tification and gel electrophoresis.

Table 17.1 summarizes effective mRNA doses that can be used as a

starting point for experimental design. Depending on the source, Cas9

mRNAs are generally effective in the dose range from �300 pg to

3–4 ng levels and researchers will need to empirically determine optimal

doses. Although increasing toxicity has been reported with moderate doses

of Cas9 prepared from pCS2+ 3xFLAG-NLS-SpCas9-NLS (Guo et al.,

2014), this mRNA showed no apparent toxicity at doses up to 2 ng/embryo

in our experiments (our unpublished observations).

Recently, a recombinant Cas9 protein (containing an NLS) has become

available (PNA Bio, Inc.). We have successfully targeted the tyrosinase (tyr)

gene using this protein with no toxic effects on embryogenesis. Cas9 protein

is reconstituted by dissolving 50 μg Cas9 protein in 40 μl of nuclease-free
water, creating a stock at 1.25 μg/μl in 20 mM HEPES (pH 7.5),

150 mMNaCl, and 1% sucrose. This Cas9 solution is stored in small aliquots

at �80 �C and diluted in nuclease-free water to create “cocktails” for

embryo injections. Cas9 protein is equally efficient in creating mutations

Table 17.1 Cas9 mRNA and sgRNA dosing for CRISPR/Cas9 mutagenesis in X. tropicalis

Plasmid/protein
Cas9 dose range
(per embryo)

sgRNA dose range
(per embryo) References

Cas9 (w/NLS) protein 900–1200 pg protein 50–200 pg This study

pXT7-Cas9 0.55–3.2 ng mRNA

(up to 6 nga)

25–200 pg

(200 pg eacha)

Nakayama

et al. (2013)

pCasX 3–4 ng mRNA 150 pg Blitz et al.

(2013)

pCS2+ 3xFLAG-

NLS-SpCas9-NLS

200–500 pg mRNA 1–2000 pg Guo et al.

(2014)

Our recommendations

for RNAs

300–2000 pg

mRNA

50–200 pg See text for

details

aCas9 mRNA and sgRNA doses for simultaneous targeting of two different sites.
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at the tyr locus as coinjected Cas9 mRNAs transcribed from available plas-

mids (Fig. 17.4A and B). We find that 900–1200 ng of Cas9 protein

coinjected with 200 pg of tyr sgRNA efficiently produces albino tadpoles

(whereas lower doses of Cas9 protein under this regimen are less effective),

at a mutation frequency comparable to 2 ng of Cas9 mRNA.

Figure 17.4 Cas9 protein-mediated mutagenesis and in vitro cleavage assays. sgRNA
targeting the tyr gene was coinjected with either Cas9 mRNA (A) or protein (B) and rep-
resentative embryos are shown. Inset is an uninjected control embryo. White arrow-
heads mark embryos displaying complete albinism. (C) The result of an in vitro Cas9
cleavage assay performed using a PCR product containing an asymmetrically located
tyr target site.
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An additional benefit of the availability of Cas9 protein is the opportu-

nity to test efficiency of newly designed sgRNAs in vitro prior to microin-

jection (see Section 3.4.2).

3.4.2 Sidebar: Cas9 protein in vitro cleavage assays
An advantage of using Cas9 protein is that one can assay for sgRNA function

using an in vitro cleavage assay prior to testing it in vivo. It seems reasonable to

presume that sgRNAs that fail to efficiently direct Cas9 cleavage in vitro

would probably also underperform in vivo. While success in vitro may not

forecast success in vivo, we anticipate that this assay can serve to help

researchers eliminate poor sgRNA candidates.

To assess a sgRNA’s function in vitro, we have tested the tyr sgRNA on a

DNA fragment amplified from the X. tropicalis genome (Fig. 17.4C). In vitro

assays are performed in a 10 μl final volume as follows:

Cas9 in vitro cleavage assay reaction

10� NEB buffer 3 1 μl

10� NEB BSA (diluted from 100�) 1 μl

Target DNA (PCR amplicon) �250 ng

Cas9 protein 0.5–1 ng

sgRNA 250 pg

H2O (DNAse/RNAse-free) To 10 μl

The reaction is incubated at 37 �C for 1 h. We recommend using the

manufacturer’s protocol for RNAse digestion and inactivation of the reac-

tion; samples are then analyzed by gel electrophoresis (Fig. 17.4C).

3.4.3 Procedure for embryo microinjection
Many factors are critical for successful Cas9-mediated mutagenesis in

X. tropicalis. In vitro fertilizations are preferable to natural matings because

they produce synchronous populations of embryos. It is recommended that

injections begin shortly after fertilization to maximize the number/extent of

animals displaying the strongest phenotypes. We begin de-jellying 10 min

postfertilization (mpf; fertilization is defined here as the time of flooding

of the eggs with medium after sperm addition; Ogino, McConnell, &

Grainger, 2006). We strive to complete de-jellying within 5–10 min and

after washing the one-cell embryos, injections can begin approximately
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20 mpf. In some batches of embryos, single-site injections produced the

strongest phenotypes during the earliest 10 min of injection (30 mpf) and

incrementally declined thereafter (our unpublished data). Injections at later

time points may have improved outcomes if multiple injection sites are used,

but this needs further investigation. Injection regimens can be applied to

later stage embryos, which may be useful for achieving a “poor man’s”

tissue-specific knockout—by taking advantage of the fate map to target

specific blastomeres for injection.

Detailed procedures for in vitro fertilization, microinjection, and culture

of X. tropicalis embryos are published in Ogino et al. (2006). We routinely

microinject sgRNA/Cas9 cocktails in a volume of 1–4 nl per embryo, with

the injection site located in the animal hemisphere. Some researchers prefer

to coinject a lineage tracer as a component of their cocktails to permit elim-

ination of embryos that were not properly injected. Inclusion of 5 ng fluo-

rescent dextran/nl (Life Technologies, fluorescein (D-1845) or rhodamine

dextrans (D-1818)) into sgRNA/Cas9 cocktails has no deleterious effects on

mutagenesis.

3.5. Assessment of mutagenesis: Genotyping
A number of methods have been employed for detecting induced indels;

examples include the T7 endonuclease I (Kim, Lee, Kim, Cho, & Kim,

2009) and Surveyor assays (Guschin et al., 2010). These detect mismatches

occurring between wild-type and mutant DNAs created after denaturation

and annealing of mixtures of PCR amplicons from target regions. Another

method, the high resolution melting assay, detects differences in melting

temperature between wild-type and mutant amplicons (Wittwer, Reed,

Gundry, Vandersteen, & Pryor, 2003). Here, we describe the DSP (direct

sequencing of PCR amplicons) assay (Nakayama et al., 2013): a rapid, initial

screening assay for targeting efficiency in which target regions are PCR

amplified from single mosaic F0 embryos and sequenced directly to detect

the presence of indels within the population of amplicons.

3.5.1 Embryo lysis and PCR
Individual embryos are transferred to 0.2-ml PCR tubes containing 100 μl
of lysis buffer (50 mM Tris [pH 8.8], 1 mM EDTA, 0.5% Tween 20) con-

taining freshly added proteinase K at a final concentration of 200 μg/ml.

Embryos are incubated at 56 �C for 2 h to overnight, followed by in-

cubation at 95 �C for 10 min to inactivate proteinase K. Lysates are cen-

trifuged for 10 min at 4 �C and 1 μl aliquots are used directly in 25 μl

368 Takuya Nakayama et al.



PCR reactions. Individual embryos from blastula stages to approximately

stage 40 (Nieuwkoop & Faber, 1967) lysed in this manner generally yield

sufficient DNA for many PCR reactions. Similarly prepared samples from

later stages typically require 10- to 20-fold dilution prior to use in PCR.

The PCR primers ideally should be designed to amplify 300–400 bp geno-

mic regions containing the target sequence. Successful PCR should be con-

firmed by gel electrophoresis, followed by column-purification of the PCR

reaction. Amplicons are then subjected to Sanger sequencing using either

primer used for the PCR.

3.5.2 Evaluation of sequencing results and subsequent identification
of specific indels

If indels have occurred, the PCR product will contain a mixture of hetero-

geneous fragments with different mutations. The profile will show sequence

heterogeneity in peaks in the mutated region (Fig. 17.5A). Subcloning PCR

products from the population and sequencing of individual clones confirms

the results of the DSP assay (Fig. 17.5B) that successful mutagenesis has

Figure 17.5 DSP assay. (A) Representative results of DSP assays. Single embryos (top,
uninjected; bottom, injected with indicated RNAs) were lysed and the targeted genomic
region was PCR amplified; amplicons were then directly sequenced. Perturbation of
peaks (double-headed arrow) on the 30 side of the PAM region (note that in this specific
case, the target is on the antisense strand) seen in the sample of the injected embryo
suggests indel events occurred between the target sequence (lightly shaded area where
multiple peaks overlap) and the PAM region (darkly shaded). (B) The PCR amplicon from
the injected embryo was recloned and sequenced to show the profile of individual
mutations found in mosaic individuals (bottom sequence alignments). Dashes (-) indi-
cate gaps. The numbers in parentheses indicate the frequency of eachmutation pattern
seen in the total number of sequenced clones, suggesting that a mutation frequency of
36% (i.e., 4/11) can be detected as a positive targeting event by the DSP assay. The figure
is adapted and modified from Nakayama et al. (2013).
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occurred. The advantages of the DSP assay include its ease of use and the

ability to visualize that the genomic region where sequence perturbations

are observed corresponds to the intended target site. We have detected

mutations by DSP assay in embryos with rates of mutagenesis of �25% or

higher, but generally cannot detect rates at lower levels (our unpublished

observations), demonstrating the moderate sensitivity of the assay. Notably,

a strength of this assay may be that it is not overly sensitive: since F0 mosaic

animals with low rates of germline transmission necessitate laborious screen-

ing of F1s, it may be a useful standard to only raise F0 animals for subsequent

mating that have mutagenesis levels detectable by DSP assay. This standard

would improve one’s chances of achieving adult F0 animals with germline

transmission rates of at least one in four, which is not too burdensome for

genotypic screening of F1s.

4. DISCUSSION

We have described basic and essential tips for CRISPR-mediated

mutagenesis in X. tropicalis. Here, we briefly discuss additional aspects of

CRISPR/Cas that may apply to Xenopus.

4.1. Multiple targeting strategy: Avoiding off-target problems
and simpler genotyping of F1 animals

A problem with all targeted nuclease mutagenesis strategies (ZFNs,

TALENs, and CRISPR/Cas9) is the possibility of creating mutations at

unintended sites located elsewhere in the genome. These off-target sites bear

sequence similarity to the intended target site and therefore sequence

similarity-based searches are one means of limiting off-target mutagenesis.

Studies on CRISPR/Cas9 performed both in vitro and in bacteria have

shown that a perfect match between sgRNA and the DNA target in an 8- to

12-base region of the target sequence proximal to the PAM, known as the

“seed sequence,” is crucial for Cas9-mediated cleavage (see Fineran & Dy,

2014; Hsu et al., 2014; Sander & Joung, 2014 and references therein). Mis-

matches are tolerated in the target nucleotides that are distal to the seed

sequence, which could lead to off-target cleavage. As discussed in

Section 3.2, a number of Web-based search tools have been developed that

predict both target and off-target sites for sgRNAs in X. tropicalis. When

choosing between potential sites to target, one should avoid sequences with

off-target mismatches that are largely located distal to the seed sequence.

Also, one should keep in mind that sequences followed by the NAG
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PAM can also be off-target sites, therefore off-target analysis should include

both NGG and NAG PAMs.

One possible avenue for reducing off-target mutagenesis is the use of

paired nickases (Mali, Aach, et al., 2013; Ran et al., 2013). The Cas9

D10Amutant is incapable of creating double-strand breaks, but instead nicks

one strand at the target site. Using a pair of sgRNAs with target sites of

appropriate orientation and spacing, in conjunction with Cas9 D10A, per-

mits mutagenesis at the paired site without creating double-strand breaks at

sgRNA single (off-target) sites across the genome. Another approach would

be to use FokI fusions to dCas9, a doubly mutated Cas9 with no nuclease

activity (Guilinger, Thompson, & Liu, 2014; Tsai et al., 2014). This

approach similarly involves choosing two nearby target sites to direct

Cas9–FokI to the genome, which only functions as a dimer to cleave

DNA. Both strategies are limited by the ability to find two nearby target

sequences with appropriate directionality and spacing. Neither approach

has been reported in Xenopus (see note added in proof 2).

Off-target mutagenesis may not be a major concern for LOF assays in

Xenopus. Studies by Blitz et al. (2013) and Guo et al. (2014) found no evi-

dence for off-target mutagenesis in X. tropicalis, similar to studies in mouse

embryos (Wang et al., 2013; Yang et al., 2013), but unlike reports using cul-

tured cells (Cradick, Fine, Antico, & Bao, 2013; Fu et al., 2013; Hsu et al.,

2013; Pattanayak et al., 2013). This suggests that in whole organisms off-

target cleavage may be negligible.

A strategy we recommend when performing F0 analyses to ensure that a

phenotype is due to mutagenesis of the targeted gene is to replicate the phe-

notype using multiple independent sgRNAs targeting the same gene

(Nakayama et al., 2013). It is unlikely that multiple sgRNAs would result

in mutation of the same off-target gene. An alternative would be to rescue

the phenotype by expressing a wild-type mRNA (Guo et al., 2014;

Nakayama et al., 2013). These approaches provide strong supporting evi-

dence for an on-target effect and refute the notion that a phenotype is

due to off-target mutagenesis.

If the study of F0 mosaic animals is not desirable, then various breeding

strategies for creating non-mosaic animals may be employed. Ideally, one

would construct a mutant that contains the same lesion at both alleles; how-

ever, since multiple generations are needed to achieve this, a time consum-

ing process, analysis of phenotypes may be significantly delayed. Matings

between F0 mosaic animals will produce non-mosaic F1s that are (primarily)

compound heterozygotes (Fig. 17.2). Because F0 mutagenesis results in a
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variety of indels in the same target site, F1 offspring will likely be difficult to

genotype. These problems can be overcome using two nonoverlapping

sgRNA target sites within a gene. A mating between F0 animals mutated

at different target sites will produce F1 offspring that can more readily be

genotyped. Thus, compound heterozygotes mutated at nonoverlapping

target sites permit more rapid phenotypic analyses.

Note added in proof 2: We have confirmed that the nickase version of

Cas9 (D10A) can mediate efficient mutagenesis using paired sgRNAs in

Xenopus.

4.2. Further applications of CRISPR-mediated mutagenesis
in Xenopus

As with morpholino antisense oligo-mediated knockdowns, it may be pos-

sible to study the effects of multigene knockouts using CRISPR/Cas.

Coinjection of multiple sgRNAs, each targeting a different site or gene, will

likely permit such analyses. This is especially useful in situations where

redundancy, possibly caused by gene duplications, makes phenotypic assays

of gene function problematic.

The use of multiple sgRNAs also permits examining the role of cis-

regulatory elements. Target sites flanking an element can be used to delete

the intervening sequence as has been shown by promoter deletion by

Nakayama et al. (2013). This approach in principle can be used to create

larger gene deletions though the frequency of successful mutagenesis by this

strategy needs to be determined.

Another application is homology-directed recombination (HDR)-

dependent gene targeting, i.e., introduction of point mutations, or knocking

in larger genetic elements such as sequence tags or transgenes into any site in

the genome (see Sander & Joung, 2014 and references therein). This is a

future challenge for Xenopus researchers.

The CRISPR-mediated mutagenesis strategy outlined herein may pro-

vide a means for LOF analysis in the F0 animal. However, the variable mosa-

icism of F0 embryos may ultimately interfere with some analyses and

therefore improvements to the efficiency of CRISPR/Cas in Xenopus

would be valuable. Major advantages of the Xenopus system include the ease

of manipulating oocytes and sperm and these techniques may offer new ave-

nues to reduce mosaicism. The host-transfer method (Olson, Hulstrand, &

Houston, 2012) allows for in vitro culturing and manipulation of oocytes,

which are then implanted back into the body cavity of a host female for

proper ovulation that is necessary for successful fertilization. Oocytes may
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be injected with Cas9 protein and sgRNA(s) leading to a mutant gamete

with only one gene copy. Fertilization of manipulated eggs with wild-type

sperm would result in nonmosaic heterozygotes. Sperm can be similarly

manipulated. It may be feasible to incubate decondensed sperm nuclei

(Hirsch et al., 2002; Kroll & Amaya, 1996) with Cas9 protein–sgRNA cock-

tails to create mutations, and to inject these into unfertilized eggs to create

nonmosaic heterozygotes. In both cases, further technology development is

desirable to achieve HDR. The host-transfer method may be especially use-

ful in this regard because oocytes have naturally high homologous recom-

bination activity (Carroll, Wright, Wolff, Grzesiuk, & Maryon, 1986).
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Abstract

Genome editing using the Cas9 endonuclease of Streptococcus pyogenes has demon-
strated unprecedented efficacy and facility in a wide variety of biological systems. In
zebrafish, specifically, studies have shown that Cas9 can be directed to user-defined
genomic target sites via synthetic guide RNAs, enabling random or homology-directed
sequence alterations, long-range chromosomal deletions, simultaneous disruption of
multiple genes, and targeted integration of several kilobases of DNA. Altogether, these
methods are opening new doors for the engineering of knock-outs, conditional alleles,
tagged proteins, reporter lines, and disease models. In addition, the ease and high
efficiency of generating Cas9-mediated gene knock-outs provides great promise for

Methods in Enzymology, Volume 546 # 2014 Elsevier Inc.
ISSN 0076-6879 All rights reserved.
http://dx.doi.org/10.1016/B978-0-12-801185-0.00018-0

377

http://dx.doi.org/10.1016/B978-0-12-801185-0.00018-0


high-throughput functional genomics studies in zebrafish. In this chapter, we briefly
review the origin of CRISPR/Cas technology and discuss current Cas9-based
genome-editing applications in zebrafish with particular emphasis on their designs
and implementations.

1. INTRODUCTION

1.1. CRISPR/Cas adaptive immunity
In order to persist and thrive within threatening virus-rich environments,

prokaryotes over the course of evolutionary history have developed various

kinds of defense mechanisms for fending off invading viral genetic elements

(Labrie, Samson, &Moineau, 2010), one of which being an immune mech-

anism mediated by clustered regularly interspaced short palindromic repeat

(CRISPR) loci (Barrangou et al., 2007; Ishino, Shinagawa, Makino,

Amemura, & Nakata, 1987; Jansen, Embden, Gaastra, & Schouls, 2002).

CRISPR loci are common among prokaryotes and have been estimated

to be in�40% and�90% of all genomically sequenced bacteria and archaea,

respectively (Grissa, Vergnaud, & Pourcel, 2007a; Kunin, Sorek, &

Hugenholtz, 2007; Sorek, Kunin, & Hugenholtz, 2008). These loci,

together with their neighboring CRISPR-associated (Cas) genetic ele-

ments, form an unique adaptive immune system called CRISPR/Cas,

which utilizes short RNA-guided endonucleases to target, cleave, and

degrade specific viral sequences during a recurring infection (Bhaya,

Davison, & Barrangou, 2011; Bolotin, Quinquis, Sorokin, & Ehrlich,

2005; Horvath & Barrangou, 2010; Marraffini & Sontheimer, 2010a).

CRISPR loci are characterized by arrays of conserved�20–50 base-pair

(bp) repeats with distinct “spacer” sequences of comparable length inter-

spaced between them (Grissa, Vergnaud, & Pourcel, 2007b; Rousseau,

Gonnet, Le Romancer, & Nicolas, 2009). These loci are flanked by a cluster

of cas genes which encode some of the enzymatic machinery utilized for nor-

mal CRISPR/Cas function (Makarova, Grishin, Shabalina, Wolf, &

Koonin, 2006). Within a given CRISPR locus, each spacer sequence is

unique and derived from fragments of invading viral nucleic acids acquired

from a previous pathogenic exposure, thus allowing the prokaryote to gen-

erate a genetically stored immunological memory of past infections (Bolotin

et al., 2005; Mojica, Diez-Villasenor, Garcia-Martinez, & Soria, 2005). All

CRISPR/Cas systems generate this immunological memory by following a

common three-step process (Wiedenheft, Sternberg, & Doudna, 2012).
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First, during preliminary exposure to a pathogen, invading foreign nucleic

acids must be cleaved into fragments called protospacers, which then

become integrated as spacers in the CRISPR locus (Barrangou et al.,

2007; Garneau et al., 2010). Second, during any subsequent infection, the

CRISPR locus is transcribed to produce a single long pre-CRISPR

RNA, which is then processed into an active genetic library of many

spacer-derived short CRISPR RNAs (crRNAs) (Brouns et al., 2008).

Third, crRNAs combined with one or more Cas proteins form RNA-

guided endoribonuclease surveillance complexes, which by base-pair inter-

actions between the crRNA spacer region and complementary viral

protospacer sequences, allow the complexes to target and cleave invading

foreign nucleic acids (Brouns et al., 2008).

1.2. The Type II CRISPR/Cas system
Three types of CRISPR/Cas systems are known to exist in nature, each of

which uses distinct mechanisms to carry out the aforementioned three-step

process to produce CRISPR-mediated adaptive immunity (Makarova,

Aravind, Wolf, & Koonin, 2011; Makarova, Haft, et al., 2011;

Wiedenheft et al., 2012). Among these three systems, the Type II

CRISPR/Cas system is the best characterized and the simplest in certain

key aspects. One important difference is that its surveillance complex

requires a single Cas9 endonuclease (Chylinski, Makarova,

Charpentier, & Koonin, 2014; Sapranauskas et al., 2011), while Type

I and Type III systems require several proteins (Makarova, Aravind,

Wolf, & Koonin, 2011; Makarova, Haft, et al., 2011).

In addition to the Cas9 protein, the Type II surveillance complex also

consists of two RNA components, a crRNA and a transactivating crRNA

(tracrRNA) (Deltcheva et al., 2011). The tracrRNA is required for normal

crRNA processing and Type II surveillance complex formation, and the

crRNAs contain 20-nucleotide (nt) spacer regions derived from the original

CRISPR locus (Deltcheva et al., 2011). By complementary base-pair inter-

actions, these crRNAs guide the surveillance complexes to target, bind, and

degrade foreign genetic elements that contain protospacer sequences com-

plementary to the spacer, as well as a Cas9-specific protospacer adjacent

motif (PAM) directly 30 to the target protospacer (Gasiunas, Barrangou,

Horvath, & Siksnys, 2012).

Having the correct PAM sequence directly adjacent to the protospacer is

necessary for DNA interrogation by the Type II surveillance complex and

for the triggering of Cas9 cleavage activity. Indeed, mismatches within or

379Targeted Mutagenesis in Zebrafish



nearby the first few nucleotides of the PAM have been shown to inhibit het-

eroduplex formation and unwinding of the dsDNA target (Sternberg,

Redding, Jinek, Greene, & Doudna, 2014). In this manner, the 30 PAM
sequences allow the Type II system to distinguish between sequences

belonging to “self” and those that are foreign in order to prevent the destruc-

tion of its own CRISPR loci (Horvath et al., 2008; Marraffini &

Sontheimer, 2010b). Among Type II Cas9 endonucleases found in various

prokaryotic species, PAM sequences vary in complexity, one of the simplest

being the 50-NGG PAM of Streptococcus pyogenes Cas9 ( Jinek et al., 2012).

The natural RNA-guided Cas9 endonuclease from S. pyogenes (SpCas9)

possesses the ability, in principle, to target any invading protospacer

sequence in the form of 50-N20-NGG-30. Thus, it is both the relatively small

number of components required by the Type II system, combined with the

flexibility of its required target sequence, which have allowed the recent

adaptation of the Type II CRISPR/Cas system as a novel, powerful, and

amendable genome-editing platform.

1.3. The development of CRISPR/Cas genome-editing
technology

Contemporary genome editing relies on the usage of programmable nucle-

ases to artificially produce gene disruptions, DNA insertions, targeted muta-

tions, or chromosomal rearrangements in a predictable and controlled

manner (Segal & Meckler, 2013). These engineered nucleases “edit” the

genome by introducing targeted double-strand DNA breaks (DSBs), which

in turn allow the cell’s natural repair mechanisms—e.g., nonhomologous

end-joining (NHEJ) mediated repair and homology-directed repair

(HDR)—to be co-opted for the purpose of site-specific DNAmanipulation

(Bibikova, Beumer, Trautman, & Carroll, 2003; Bibikova et al., 2001;

Bibikova, Golic, Golic, & Carroll, 2002). The potential applications of such

genome-editing technologies are far-reaching, including the bioengineering

of disease-resistant, nutrient-rich crops and livestock (Carlson et al., 2012;

Li, Liu, Spalding, Weeks, & Yang, 2012), the generation of various animal

models and human pluripotent stem cell models that can be used for preclin-

ical drug studies (Brunet et al., 2009; Carbery et al., 2010; Ding et al., 2013;

Yang et al., 2013), and even the development of therapies involving the

direct delivery of genetically corrected, patient-derived pluripotent stem

cells or somatic cells (Schwank et al., 2013; Sebastiano et al., 2011). In light

of the various potential benefits programmable nucleases present, the engi-

neering of more facile, precise, and efficient genome-editing platforms is
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highly sought after and have made the recent development of CRISPR/Cas

genome-editing systems all the more valuable.

The first published instance of an engineered CRISPR/Cas system for

the purpose of genome editing was in 2012, when researchers adapted

the Type II CRISPR/Cas system of S. pyogenes and demonstrated that

SpCas9 could be guided by a programmable chimeric dual-RNA to target

and cleave various DNA sites in vitro ( Jinek et al., 2012). In this study, the

authors simplified the system even further to create a genome-editing plat-

form that required only two components—SpCas9 and a synthetic single

guide RNA (sgRNA) consisting of a fusion of the essential features of Type

II crRNA and tracrRNA (Fig. 18.1). A few months after this CRISPR/Cas

platform’s initial debut, its utility quickly expanded to a variety of cellular

systems, exhibiting its efficacy in introducing targeted mutations within var-

ious species of bacteria ( Jiang, Bikard, Cox, Zhang, & Marraffini, 2013), as

well as, cultured human cancer cell lines and human pluripotent stem cells

(Cho, Kim, Kim, & Kim, 2013; Cong et al., 2013; Jinek et al., 2013; Mali,

Yang, et al., 2013). Around the same time, our group reported efficient

genome editing in zebrafish using CRISPR/Cas, demonstrating its potential

in a whole multicellular organism (Hwang, Fu, Reyon, Maeder, Tsai, et al.,

2013). Since then, the platform has proven its effectiveness and versatility in

editing the genes of various flora and fauna, only a sample of these being

Figure 18.1 A graphic representation of DNA targeting by sgRNA-guided Cas9. An
sgRNA, consisting of a 20-nt crRNA spacer and a tracrRNA tail, guides the
S. pyogenes-derived Cas9 endonuclease to bind to and unwind a specific 20-nt genomic
target site. The target site should be in the form of 50-N20-NGG, where NGG is the PAM
sequence (highlighted in yellow (light gray in the print version)). The top and bottom
strands of the genomic DNA are then cleaved by the RuvC-like nuclease domain and the
HNH nuclease domain of Cas9 (indicated by the “scissors”) to produce a DNA double-
strand break (DSB) approximately three base pairs proximal to the PAM.
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yeast, rice, wheat, C. elegans, silk worms, fruit flies, frogs, mice, and non-

human primates (DiCarlo et al., 2013; Friedland et al., 2013; Nakayama

et al., 2013; Niu et al., 2014; Shan et al., 2013; Wang, Yang, et al., 2013;

Wang, Li, et al., 2013; Yu et al., 2013). It is very rare in biology for a single

biotechnology to have the degree of versatility as CRISPR/Cas to work

with such effectiveness in the wide scope of organisms that it does, giving

this new technology the potential to fulfill many of the research, engineer-

ing, and therapeutic goals of the genetic engineering field.

Beyond the extraordinary applicability of CRISPR/Cas, this novel

genome-editing platform has also exhibited several key advantages for lab-

oratory use compared to other programmable nuclease systems, such as zinc-

finger nucleases (ZFNs) and transcription activator-like effector nucleases

(TALENs). The first advantage is the greater ease by which CRISPR/Cas

can be designed and implemented. Unlike ZFNs and TALENs which

require the complex design of zinc-finger and TALE DNA-binding arrays

for every new genomic target site, CRISPR/Cas simply requires changing

the 20-nt sgRNA spacer sequence so that it matches the target site (Sander &

Joung, 2014). The second advantage of CRISPR/Cas is its comparable or

greater genome-editing efficiencies than that of ZFNs or TALENs. In gen-

eral, CRISPR/Cas functions with greater consistency, efficacy, and less tox-

icity than lab-produced ZFNs (Cornu et al., 2008; Maeder et al., 2008;

Ramirez et al., 2008), and they are likely to be more effective at targeting

methylated genomic sites compared to TALENs (Hsu et al., 2013).

Although the success rate and mutation efficiency of CRISPR/Cas in

human cells and in zebrafish appear to be comparable to those of TALENs,

CRISPR/Cas is far superior than TALENs in its capability for multiplex

genome editing. It has been shown that high-efficiency multiplex genome

editing can be achieved using CRISPR/Cas by simply combining Cas9 with

multiple sgRNAs (Cong et al., 2013; Guo et al., 2014; Jao, Wente, & Chen,

2013; Ma, Chang, et al., 2014; Ma, Shen, et al., 2014; Mali, Yang, et al.,

2013). However, multiplex genome editing using several ZFN or TALEN

pairs carries the risk of exacerbating off-target effects by the cross reaction

between nuclease pairs (Sollu et al., 2010). In light of these various advan-

tages of the CRISPR/Cas system over previous programmable nuclease

platforms, CRISPR/Cas, also known as RNA-guided nucleases, have rap-

idly risen to become the flagship of contemporary genome-editing

technologies.
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1.4. The zebrafish animal model and CRISPR/Cas
The zebrafish is a powerful and tractable animal model for functional geno-

mics analysis, the study of human disease pathogenesis, as well as, for the dis-

covery and development of new drugs (Campbell, Hartjes, Nelson, Xu, &

Ekker, 2013; Helenius & Yeh, 2012; Lieschke & Currie, 2007). The key

strength of the zebrafish model lies in its intermediate evolutionary relation-

ship to humans, between mammalian model systems, such as mice, on one

hand, and invertebrate model systems, such as Drosophila and C. elegans, on

the other. The zebrafish has an upper hand over invertebrate models due to

its common vertebrate ancestry with humans. This closer ancestry gives the

zebrafish greater genetic and anatomical similarity to humans than inverte-

brates, meaning that orthologous genes carry similar functions as in humans,

and most of the organ systems and structures between zebrafish and humans

are homologous (Kettleborough et al., 2013; Lieschke & Currie, 2007;

Santoriello & Zon, 2012). Due to these genetic and anatomical similarities,

various zebrafish models have been developed to study the pathogenesis of

human diseases, ranging from genetic disorders such as Duchenne muscular

dystrophy and forms of cardiomyopathy (Bassett et al., 2003; Kawahara

et al., 2011; Xu et al., 2002), to acquired diseases, such as melanoma and

tuberculosis (Cambier et al., 2014; Ceol et al., 2011; Patton et al., 2005;

Swaim et al., 2006; White et al., 2011).

Conversely, though the mouse model exhibits greater molecular and

anatomical similarity with humans due to their shared mammalian ancestry,

the zebrafish carries many key advantages over mouse models due to its non-

mammalian features. Because zebrafish reproduce by external fertilization,

all stages of zebrafish embryogenesis are accessible to the researcher for study,

unlike mammals wherein embryogenesis occurs within the body. This ben-

efit combined with the natural optical transparency of the zebrafish allows

for real-time observation of studied processes by fluorescent reporters with

great ease (Ignatius & Langenau, 2011; Moro et al., 2013; Pantazis &

Supatto, 2014; Weber & Koster, 2013). These observational qualities, in

conjunction with the relative size, rapid development, and fecundity of

zebrafish compared to mice, enables low animal maintenance and husbandry

infrastructure expenses that allow the affordability of high-throughput,

whole-animal zebrafish drug screens and reverse-genetic experimentation

at a scale simply unfeasible with mouse models (Kari, Rodeck, & Dicker,

2007; Peal, Peterson, &Milan, 2010). Therefore, the zebrafish model serves
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as an especially prime candidate for the application of state-of-the-art

genome-editing technologies such as CRISPR/Cas.

As mentioned above, Hwang et al. was first to demonstrate that the

CRISPR/Cas genome-editing platform could be adapted in vivo in zebrafish

by using it to introduce site-specific insertion/deletion (indel) mutations

with mutation frequencies between 24% and 59% at 8 out of 10 tested genes

(Hwang, Fu, Reyon, Maeder, Tsai, et al., 2013). Interestingly, some of the

successfully mutated target sites were within genomic regions previously

untargetable by TALENs. Thus, this pioneer study displayed the robustness

and power of the CRISPR/Cas platform in zebrafish. Furthermore,

CRISPR/Cas-induced indel mutations were later shown to be heritable

with transmission rates up to �100%, opening the possibility for using

CRISPR/Cas to create genetic knock-out lines for specific genes

(Hwang, Fu, Reyon, Maeder, Kaini, et al., 2013). The goal of Section 2

of this chapter will be to discuss the methodologies that have been developed

since these initial studies for the generation of targeted indel mutations in

zebrafish using CRISPR/Cas.

It has recently been shown that the co-injection of several sgRNAs

targeting multiple genomic loci can result in the simultaneous generation

Figure 18.2 Cas9-mediated genome editing. The RNA-guided Cas9 endonuclease can
induce DSBs at its genomic target site. Subsequently, a DSB may be repaired by a non-
homologous end-joining (NHEJ) repairmechanism. Thismechanismmay cause random-
length insertion/deletion (indel) mutations (red asterisk) at the target site (A). Additional
approaches can be used to create predetermined sequence modifications. Linear donor
DNA fragments containing a desired functional cassette without any sequence homol-
ogy to the target locus may be inserted into the target site during DNA repair (B). More-
over, donor DNA containing homologous sequences of the target locus, in the form of
small single-stranded oligonucleotides (C) or plasmid DNA (D), may be recombined with
the genomic DNA and replace the target site sequence.
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of multigene mutations in zebrafish embryos, demonstrating even further

the power by which CRISPR/Cas can generate targeted indel mutations

( Jao et al., 2013; Ota, Hisano, Ikawa, & Kawahara, 2014). Nevertheless,

CRISPR/Cas can also be used in zebrafish for purposes beyond the gener-

ation of indels (Fig. 18.2). CRISPR/Cas has been used to create small but

precise sequence modifications such as point mutations, to integrate long

DNA fragments at target sites, and to facilitate long-range chromosomal

deletions and inversions (Fig. 18.2). As the genome-editing repertoire of

the CRISPR/Cas system in zebrafish continues to rapidly grow, it will

be the goal of Section 3 of this chapter to discuss the other available

genome-editing strategies beyond the introduction of indels.

2. TARGETED GENERATION OF INDEL MUTATIONS

2.1. Cas9 modification and delivery platforms
The most studied and commonly implemented version of Cas9 endonucle-

ase used for CRISPR/Cas genome editing is SpCas9. This is in part due to

its short PAM 50-NGG which is simpler than that of many other Type II

Cas9 nucleases (Westra et al., 2012). However, because of the innate differ-

ences in cellular contexts between prokaryotic and eukaryotic systems, this

bacterial Cas9 must be modified for in vivo eukaryotic experimentation.

In the preliminary studies implementing CRISPR/Cas in vivo in cul-

tured human cells, SpCas9 was human-codon optimized, allowing the pri-

mary structure of SpCas9 to be encoded by codons preferentially used by

human cells in order to boost SpCas9 translation efficiency (Cho et al.,

2013; Cong et al., 2013; Mali, Yang, et al., 2013). Also in these experiments,

one or more commonly used nuclear localization signals (NLS), such as the

SV40 NLS, were added to one or both sequence termini of the Cas9 protein

to facilitate endonuclease entrance into the eukaryotic nucleus. In our pub-

lished studies applying CRISPR/Cas to zebrafish, we used an SpCas9 vector

(pMLM3613) containing the natural noncodon optimized SpCas9 sequence

and an NLS attachment to our construct’s C-terminus (Hwang, Fu, Reyon,

Maeder, Kaini, et al., 2013; Hwang, Fu, Reyon, Maeder, Tsai, et al., 2013).

Though we did not use a codon-optimized version of SpCas9 in our initial

studies, our studies demonstrated that a simple NLS attachment to natural

SpCas9 suffices for CRISPR/Cas to efficiently generate indel mutation rates

up to �60% in zebrafish (Hwang, Fu, Reyon, Maeder, Tsai, et al., 2013).

Since the time of our initial publications, we have started using a version

of SpCas9 that has been optimized for human codon usage. Based upon our

385Targeted Mutagenesis in Zebrafish



experiences, we have consistently seen higher somatic mutation frequencies

in zebrafish with this codon-optimized SpCas9 version (pJDS246), and

therefore recommend using this version over natural SpCas9. In addition,

we have found that the activity of pJDS246 is comparable to a zebrafish

codon-optimized SpCas9 (pCS2-nCas9n) (Gonzales, unpublished results),

which was reported to produce indel mutagenesis rates up to �75–99%

at various loci ( Jao et al., 2013). Last, it is also worth considering the pos-

sibility that other modified Type II Cas9 orthologs besides SpCas9 may pro-

vide more potent Cas9 options in the future (Esvelt et al., 2013).

All of the Cas9 plasmids mentioned above can be ordered from Addgene

(http://www.addgene.org/CRISPR/). After receiving the Cas9-containing

plasmid, it should be linearized by the appropriate restriction enzyme and then

in vitro transcribed to produce Cas9 mRNA. Most Cas9 plasmids contain

either a T7 or SP6 promoter upstream of the Cas9 sequence to allow for

standard in vitro transcription. In order for in vitro-transcribed Cas9 mRNA

to be translated efficiently in zebrafish embryos, the mRNAs should have a

50-cap and a 30-poly(A) tail. Thoughmost published papers to-date implement

CRISPR/Cas in zebrafish by co-injecting Cas9 mRNA and sgRNA

together into zebrafish embryos, it has recently been argued that the direct

injection of preformed Cas9 protein–sgRNA complexes may be more

advantageous because it eliminates the need for Cas9 translation before

CRISPR/Cas can start functioning. However, results from these experi-

ments are conflicting as to whether this method can more consistently pro-

duce efficient site-directed mutagenesis than direct RNA injections

(Gagnon et al., 2014; Sung et al., 2014). Nonetheless, the study by Gagnon

et al. strongly suggests that the injection of such complexes can raise the

indel mutation rates of normally weak sgRNAs up to approximately

sixfold.

Protocol for preparation of SpCas9 mRNA for microinjection

1. Linearize the human-codon optimized SpCas9 vector, pJDS246

(Addgene, Cambridge, MA), with the PmeI restriction enzyme (New

England Biolabs, Ipswich, MA) by setting up the following reaction:

5 μg of pJDS246 vector DNA, 10 μL of 10� CutSmart™ Buffer

(New England Biolabs), 1 μL of PmeI (10 units/μL), and sterile

deionized water to a total volume of 100 μL. Add PmeI last to the reac-

tion mixture. Incubate the reaction at 37 �C for 3 h to overnight to

ensure complete linearization.

2. Purify the PmeI-cut vector using Qiagen’s QIAquick PCR Purification

kit and elute with 25 μL of EB Buffer. Measure the vector DNA
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concentration with a spectrometer. Run 100 ng of uncut and cut vector

DNA on a 1% wt/vol agarose gel to confirm complete digestion of the

vector sample. The purified vector sample can be stored at �20 �C.
3. In vitro transcribe capped and poly(A)-tailed SpCas9 mRNA using a

mMESSAGE mMACHINE® T7 Ultra kit (Life Technologies, Beverly,

MA). First, thaw the 2� NTP/ARCA and 10� T7 Reaction Buffer

solutions at room temperature while keeping the T7 Enzyme Mix on

ice at all times. Put the 2� NTP/ARCA solution on ice as soon as it

has thawed. Once the 10� T7 Reaction Buffer has thawed, vortex it

to redissolve any precipitate. Next, set up the transcription reaction

by mixing the listed reagents in a nuclease-free microfuge tube in the

following sequence: 5 μL of 2� NTP/ARCA, 1 μL of 10� T7 Reac-

tion Buffer, 1 μL of T7 EnzymeMix, and then 3 μL of linearized SpCas9
vector (from Step 2). Gently flick and briefly microfuge the tube to col-

lect the reaction mixture at the bottom of the tube. Incubate the tube at

37 �C for 3 h to overnight for in vitro transcription to proceed. After the

transcription step, add 1 μL of TURBODNase to the reaction mixture.

Gently flick and briefly microfuge the tube to mix. Incubate the tube at

37 �C for 30 min for DNA removal.

4. Prepare the poly(A) tailing reaction master mix by combining the fol-

lowing reagents supplied in the same kit in a nuclease-free microfuge

tube: 10 μL of 5� EPAP Buffer, 2.5 μL of 25 mM MnCl2, 5 μL of

ATP Solution, and 21.5 μL of nuclease-free water. After the TURBO

DNase incubation step is complete (end of Step 3), add the

poly(A) tailing reaction master mix to the reaction mixture. Gently flick

and briefly microfuge the tube to mix. Aliquot 2 μL of this new mixture

to a clean nuclease-free tube labeled “�poly(A)” and store this tube

at �20 �C for later gel analysis. Next, add 2 μL of E-PAP Enzyme to

the reaction mixture. Gently flick and briefly microfuge the tube to

mix. Incubate the reaction mixture at 37 �C for 1–2 h for

poly(A) tailing reaction to proceed.

5. After poly(A) tailing is complete, aliquot 2 μL of the reaction mixture to

another clean nuclease-free tube labeled “+poly(A)” and store this tube

at �20 �C for later gel analysis. Then, add 25 μL of Lithium Chloride

Precipitation Solution to the remaining reaction mixture. The volume

of LithiumChloride Precipitation Solution added should be half the vol-

ume of the reaction mixture. Thoroughly mix the solution and incubate

it at either 0.5–1 h on dry ice, or preferably overnight at �20 �C for a

greater overall mRNA yield.
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6. During the mRNA precipitation step, add 5 μL of the Formaldehyde

Loading Dye into the 2 μL “�poly(A)” and “+poly(A)” aliquots from

before and after the poly(A) tailing reaction (from Steps 4 and 5).

Run the samples on a 1% wt/vol agarose gel to check for successful

poly(A) tailing by looking for an upshift in the “+poly(A)” sample rel-

ative to the “�poly(A)” sample.

7. After the mRNA precipitation step, spin the sample in a microcentrifuge

at >10,000� g, 4 �C for 30 min. After the spin, check for an opaque

white mRNA pellet at the bottom of the tube. Carefully aspirate the

supernatant without dislodging the pellet. Next, add 1 mL of RNase-

free 70% ethanol to the tube and wash the pellet by inverting the tube

several times. Centrifuge the tube at >10,000� g, 4 �C for 15 min.

Again, check for the pellet at the bottom of the tube. Aspirate as much

of the supernatant as possible without dislodging the pellet so that the

pellet will air-dry quickly. Leave the tube with the lid open in a fume

hood until all of the supernatant has evaporated and the pellet becomes

dry and translucent.

8. Dissolve the SpCas9 mRNA pellet with 15 μL of non-

diethylpyrocarbonate (DEPC)-treated, nuclease-free water. As soon as

the mRNA pellet completely dissolves, put the tube on ice. Measure

the dissolved SpCas9 mRNA concentration using a spectrometer (the

yield is typically 1000–2000 ng/μL). Aliquot the SpCas9 mRNA into

multiple nuclease-free microfuge tubes (�1500 ng/tube) to prevent

freeze–thaw cycles. Store these tubes at �80 �C.

2.2. Single-guide RNA design considerations
The sgRNA design that we use is a �100-nt sequence in which the first

20 nucleotides interact with the complementary strand of the target site,

while the remaining portion interacts with SpCas9 (Hwang, Fu, Reyon,

Maeder, Kaini, et al., 2013; Hwang, Fu, Reyon, Maeder, Tsai, et al.,

2013). This �100-nt sgRNA has a longer tracrRNA region compared to

the sgRNA first described in the in vitro study done by Jinek et al. (2012),

and it appears to be more effective in vivo compared to sgRNAs that have

shorter tracrRNA regions ( Jinek et al., 2012, 2013). This sgRNA design

is the most common sgRNA design in use (Sander & Joung, 2014), with

the same or similar sgRNA design being used in other published zebrafish

studies (Auer, Duroure, De Cian, Concordet, & Del Bene, 2014; Chang

et al., 2013; Hruscha et al., 2013; Jao et al., 2013).
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To express sgRNAs in early stage zebrafish embryos, the sgRNA is usu-

ally in vitro transcribed and then microinjected. The sgRNA should not have

a 50-cap or a 30-poly(A) tail, and the sgRNA vectors used for sgRNA pro-

duction should have a T7 or SP6 promoter. The transcribed sgRNA can

recognize any DNA target in a 50-GG-N18-NGG-30 format, with the 50-
GG required for T7-driven transcription, and the “NGG” being the

S. pyogenes PAM. Thus, the theoretical targeting range is 1 site for every

128 bp of DNA (Hwang, Fu, Reyon, Maeder, Tsai, et al., 2013). However,

we have shown that sgRNA targeting can often tolerate 2-nt mismatches at

its 50-end, extending the theoretical targeting range to 1 site for every 32 bps
(Hwang, Fu, Reyon, Maeder, Kaini, et al., 2013). In addition, we had ini-

tially proposed to loosen the constraint of the T7 promoter, which would

enable targeting of sequences of the form 50-(G/A)(G/A)-N18-NGG-30.
Nonetheless, a recent report by Gagnon et al. suggests that any change to

the 50-GG can reduce sgRNA efficiency. This result is likely due to

T7-driven transcription errors because in all three cases tested, the 50-GA
sgRNAs transcribed by the SP6 promoter showed similar activities to their

50-GG sgRNA counterparts (Gagnon et al., 2014). Thus, the SP6 promoter

may be more flexible than the T7 promoter, tolerating a G!A change at

the second position from the transcription start site (Helm, Brule, Giege, &

Florentz, 1999; Imburgio, Rong, Ma, & McAllister, 2000; Kuzmine,

Gottlieb, & Martin, 2003).

At least two studies have proposed guidelines for choosing sgRNA

sequences that are more likely to be effective (Gagnon et al., 2014; Wang,

Wei, Sabatini, & Lander, 2014). Together, these studies suggest that the last

1–4 nucleotides of the spacer region should preferably be purines. In addition,

the GC content of the spacer region near the PAM should be>50%, but not

too high. Although these guidelines may be taken into consideration when

there are many sites to choose from, they do not necessarily guarantee success

or failure of a sgRNA as shown by the authors and our data (Gagnon et al.,

2014; Hwang, Fu, Reyon, Maeder, Tsai, et al., 2013; Wang et al., 2014).

In addition to the above sgRNA design considerations, the location of

the sgRNA target site within a gene must also be considered. When design-

ing a sgRNA to produce a gene knock-out, for example, a suitable genome

browser (e.g., http://useast.ensembl.org) in combination with free sgRNA

design programs (e.g., http://zifit.partners.org/ZiFiT/) should be used to

examine the regions of the gene that one wishes to target. Ideally, the

sgRNA target site should be as far upstream as possible within the gene’s

open reading frame to ensure that an introduced indel can disrupt almost
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the entire protein. However, in addition to this targeting principle, onemust

also search for alternative splice variants for a given gene, as well as annotated

alternative translational start sites. If there are any of these additional con-

founding factors, the same targeting principle can be applied by designing

a sgRNA target site after the most downstream annotated alternative start

site within the most upstream exon shared by all alternative transcripts.

Upon choosing a sgRNA target site, complementary oligonucleotides con-

taining the designed sgRNA spacer region can be ordered, annealed, and

inserted into plasmids for cloning, restriction linearization, and subsequent

T7 or SP6 in vitro transcription. The sgRNA expression vector used for our

previous publications (pDR274) was originally developed by the Joung lab

(Hwang, Fu, Reyon, Maeder, Kaini, et al., 2013; Hwang, Fu, Reyon,

Maeder, Tsai, et al., 2013). The pDR274 vector and those from other labs

are available at the non-profit Addgene (http://www.addgene.org/

CRISPR/). In addition, there are now published cloning-free methods

for sgRNA synthesis that may make sgRNA production quicker (Cho

et al., 2013; Gagnon et al., 2014; Hruscha et al., 2013).

Despite the remarkable success of CRISPR/Cas, a potential drawback of

the current platform is the possibility of off-target effects due to sgRNAmis-

targeting. In published studies within human cells, sgRNA mistargeting has

been demonstrated to cause indel frequencies at off-target sites at rates up to

�125% compared to its on-target sites (Fu et al., 2013) and has even been

shown to inadvertently induce large chromosomal deletions at several loci

(Cradick, Fine, Antico, & Bao, 2013). Although earlier CRISPR/Cas stud-

ies had proposed the theory of a seed sequence (Cong et al., 2013; Jiang et al.,

2013; Jinek et al., 2012), a �10–12-bp mismatch intolerant region directly

adjacent to the target loci’s PAM motif, more recent studies that intention-

ally investigated sgRNA off-target effects have shown the reality to be much

more complicated. Though sequence homology in the first �10–12 bps

directly adjacent to the PAM are relatively more important, all base pairs

at a target site, including those in the seed region, confer varying degrees

of sgRNA targeting specificity in an sgRNA-specific manner (Fu et al.,

2013; Hsu et al., 2013; Pattanayak et al., 2013). Clearly, increasing the num-

ber of mismatches reduces the efficiency of target cleavage at a given site,

especially as the mismatches become more proximal to the PAM (Fu

et al., 2013; Hsu et al., 2013). One study suggests that rC:dC base-pairing

causes the greatest destruction to sgRNA–Cas9 targeting activity (Hsu et al.,

2013). Another study suggests that shorter sgRNA designs may be less active

but more specific than longer sgRNAs (Pattanayak et al., 2013). A couple of
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studies have also shown that in addition to the 50-NGG PAM, Cas9 can

sometimes target sequences that have a 50-NAG or 50-NNGGN PAM

(Hsu et al., 2013; Jiang et al., 2013).

Nevertheless, in spite of this progress, exceptions have been demon-

strated to these principles. For example, recent zebrafish publications have

reported off-target cleavage by sgRNAs at multiple loci, with one study

exhibiting detectable cleavage by T7 endonuclease I (T7EI) mismatch assays

at an off-target site containing only two mismatches outside the seed region

( Jao et al., 2013), while in another study, next-generation sequencing iden-

tified indel rates �1.0–2.5% at off-target sites containing up to six base-pair

mismatches at their 50 most distal ends (Hruscha et al., 2013). On the other

hand, not all sgRNAs are promiscuous, and not all potential off-target sites

are mistargeted by sgRNAs (Fu et al., 2013; Hruscha et al., 2013; Hsu et al.,

2013; Jao et al., 2013; Pattanayak et al., 2013). In light of the complexity

regarding sgRNA off-target effects and the lack of in vivo genome-wide bio-

informatics studies done on this topic, sgRNA targeting zebrafish genomic

loci should be designed in conjunction with available software to minimize

potential specificity issues (Bae, Park, & Kim, 2014; Hsu et al., 2013;

O’Brien & Bailey, 2014; Xiao et al., 2014).

Other recently developed strategies to optimize or go beyond the stan-

dard Cas9–sgRNA platform should be considered. One strategy involves

simply lowering the concentrations of Cas9 and sgRNA injected into the

zebrafish embryo, since it has been shown in human cells that reduced con-

centrations lower off-target indel rates, although on-target indel rates will

also diminish to varying degrees (Fu et al., 2013; Hsu et al., 2013). Another

strategy uses truncated sgRNAs (tru-gRNAs) that contain shortened�17 to

18-nt spacer regions, which have been shown tomaintain on-target efficien-

cies while reducing indel frequencies at off-target sites up to �5000-fold

compared to standard sgRNAs (Fu, Sander, Reyon, Cascio, & Joung,

2014). The implementation of D10A Cas9 nickases guided by paired

sgRNAs targeting adjacent genomic sites have likewise been shown to

reduce the off-target effects of CRISPR/Cas up to �1500-fold in human

cells without sacrificing on-target activity. These work by doubling the

number of base pairs required for double-strand DNA cleavage and by rely-

ing on less erroneous DNA repair for any off-target DNA single-strand nicks

(Cho et al., 2014; Mali, Aach, et al., 2013; Ran et al., 2013). Recently, two

independent groups developed a crRNA-guided FokI nuclease platform,

fusing catalytically inactive Cas9 with a FokI nuclease domain. Taking

advantage of the RNA-guided capability of Cas9 and the dimerization
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requirement of the FokI nucleases, this platform recognizes extended target

sequences and has been shown to be more specific compared to wild-type

Cas9 and paired nickases (Guilinger, Thompson, & Liu, 2014; Tsai et al.,

2014). Due to differences in the availability of sgRNA target sites, regardless

of which of the options are chosen for generating targeted indels, the varied

strategies mentioned should be considered on a case-by-case basis.

Protocol for preparation of sgRNAs for microinjection:

1. Linearize the sgRNA vector, pDR274 (Addgene, Cambridge, MA),

with the BsaI restriction enzyme (New England Biolabs) by setting

up the following reaction: 5 μg of pDR274 vector DNA, 10 μL of

10� CutSmart™ Buffer (New England Biolabs), 1 μL of BsaI

(10 units/μL), and sterile deionized water to a total volume of

100 μL. Add BsaI last to the reaction mixture. Incubate the reaction

at 37 �C for at least 3 h to overnight to ensure complete digestion.

2. Purify the BsaI-cut vector using Qiagen’s QIAquick PCR Purification

kit and elute with 25 μL of EB Buffer. Measure the vector DNA con-

centration with a spectrometer. Run 100 ng of both uncut and cut vec-

tor DNA on a 1% wt/vol agarose gel to confirm complete digestion of

the vector DNA sample. Dilute the vector sample with EB Buffer to a

final concentration of 5–10 ng/μL. Keep a stock of this purified cut

vector sample at �20 �C for future use.

3. Design a pair of 22-nt DNA oligos that contain within them comple-

mentary sequences that correspond to the 18-bp sequence adjacent to

the PAM in a sgRNA target site. These oligos when annealed together

by these sequences can be inserted into the pDR274 vector for T7

promoter-driven transcription of a given sgRNA. For insertion into

the pDR274 vector, Oligo #1 also contains at its 50-end a TAGG,

which is a part of the T7 promoter sequence, and Oligo #2 contains

at its 50-end an AAAC. These short sequences are necessary to provide

the annealed oligo the sticky ends necessary for unidirectional insertion

into BsaI-cut pDR274. Investigators can also use free online software

ZiFiT Targeter (http://zifit.partners.org/ZiFiT/) to generate the oligo

sequences needed for any specified target site.

4. Obtain these DNA oligos from a reliable source. Anneal these DNA

oligos together by combining 45 μL of 100 μM Oligo #1, 45 μL of

100 μM Oligo #2, and 10 μL of 10� NEBuffer 2.1 (New England

Biolabs) in a microfuge tube. Place the tube in a removable heat block

at 95 �C for 5 min. Then, remove the heat block and allow it to
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gradually cool until it reaches below 37 �C. The annealed oligos can be
stored at �20 �C.

5. Ligate the annealed oligos (from Step 4) into the linearized pDR274

vector (from Step 2) by setting up the following reaction and

letting it incubate at room temperature for 1 h or at 4 �C overnight:

1 μL of the annealed oligos, 1 μL of purified BsaI-cut pDR274 vector,

2.5 μL of 2� Rapid Ligation Buffer (Promega, Madison, WI), and

0.5 μL of T4 DNA Ligase (Promega). If you use a different ligase

and ligation buffer, follow the ligation condition recommended by

the manufacturer. Transform chemically competent bacterial cells with

5 μL of the ligation product. After transformation is complete, spread

the cells on a LB/kanamycin plate and incubate it at 37 �C overnight.

6. Pick at least three colonies per transformation and inoculate each col-

ony in a culture tube containing 1.5 mL of LB/kanamycin. Incubate

the culture tubes in a shaker at 37 �C overnight. The next day, extract

the plasmid DNA using a plasmid DNA miniprep kit. Send the

extracted plasmid DNA samples for sequencing using a M13F primer.

Confirm whether the sequenced plasmid samples have the correct ele-

ments in the appropriate order: (from 50 to 30) a T7 promoter, the cus-

tomized target sequence, and the appropriate sgRNA backbone

sequence (Hwang, Fu, Reyon, Maeder, Tsai, et al., 2013).

7. Re-inoculate a bacteria sample (from Step 6) that contains the correct

sgRNA vector. Miniprep the sgRNA vector using a gravity-flow

column-based QIAGEN Plasmid Mini kit, and measure the vector

DNA concentration using a spectrometer. Linearize the sgRNA vector

with the DraI restriction enzyme (New England Biolabs) by setting up

the following reaction: 5 μg of customized sgRNA vector DNA, 10 μL
of 10� CutSmart™ Buffer (New England Biolabs), 1 μL of DraI

(10 units/μL), and sterile deionized water to a total volume of

100 μL. Add DraI last to the reaction mixture. Incubate the tube at

37 �C for at least 3 h to overnight to ensure complete digestion.

8. Purify the DraI-cut vector using Qiagen’s QIAquick PCR Purification

kit and elute with 25 μL of EB Buffer. Measure the vector DNA con-

centration with a spectrometer. Run 100 ng of both uncut and cut vec-

tor DNA on a 3% wt/vol agarose gel to confirm complete digestion of

the vector DNA sample. The digested sgRNA vector should exhibit

only two fragments at 1.9 kb and 282 bp. The smaller DNA fragment

contains the T7 promoter and the customized sgRNA sequence. Gel

purification is not necessary. The purifiedDNA can be stored at�20 �C.
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9. In vitro transcribe the sgRNA using the MAXIscript® T7 kit (Life

Technologies) by setting up the following reaction in a nuclease-free

microfuge tube: 1 μg of purified DraI-cut sgRNA vector DNA (from

Step 8), 2 μL of 10� Transcription Buffer, 1 μL of each of the ATP,

UTP, GTP, CTP 10 mM solutions, 2 μL of T7 Enzyme Mix, and

nuclease-free water to a total volume of 20 μL. Incubate the reaction
mixture at 37 �C for 2 h to overnight for sgRNA transcription. After

sgRNA transcription, add 2 μL of TURBO DNase to the reaction

mixture and incubate at 37 �C for 30 min to remove DNA from the

sample. Next, add 1 μL of 0.5M EDTA to the reaction mixture.

Gently flick and briefly microfuge the tube to stop the reaction. Sub-

sequently, add 30 μL of nuclease-free water and 5 μL of 5M ammo-

nium acetate to the reaction mixture and thoroughly mix. Last, add

150 μL of 100% RNase-free ethanol and thoroughly mix. Incubate

the sample on dry ice for 0.5–1 h, or preferably at �20 �C overnight

for a greater overall sgRNA yield.

10. After the sgRNA precipitation step, spin the sample in a microce-

ntrifuge at >10,000� g, 4 �C for 30 min. After the spin, check for

an opaque white sgRNA pellet at the bottom of the tube. Carefully

aspirate the supernatant without dislodging the pellet. Next, add

1 mL of RNase-free 70% ethanol to the tube and wash the pellet by

inverting the tube several times. Centrifuge the tube at >10,000� g,

4 �C for 15 min. Again, check for the pellet at the bottom of the tube.

Aspirate as much of the supernatant as possible without dislodging the

pellet so that the pellet will air-dry quickly. Leave the tube with the lid

open in a fume hood until all of the supernatant has evaporated and the

pellet becomes dry and translucent.

11. Dissolve the sgRNA pellet with 11 μL of non-DEPC-treated,

nuclease-free water. As soon as the sgRNA pellet completely dissolves,

put the tube on ice. Measure the dissolved sgRNA concentration using

a spectrometer (the yield is typically 100–200 ng/μL). Aliquot the

sgRNA into multiple nuclease-free microfuge tubes (�100 ng/tube)

to prevent freeze–thaw cycles. Store the tubes at �80 �C. Check the

sgRNA integrity by mixing 1 μL of the sgRNA with 5 μL of Formal-

dehyde Loading Dye and running it on a 3% wt/vol agarose gel con-

taining 0.2–0.5 μg/mL of ethidium bromide. There should be a distinct

sgRNA band without smearing.
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2.3. Introduction and identification of Cas9–sgRNA-induced
indels

After selecting and preparing the appropriate Cas9 and sgRNA(s) for a given

experiment, CRISPR/Cas genome editing can be implemented by

zebrafish embryo microinjections. Zebrafish embryos must be collected

and immediately injected at the one-cell stage before the first round of cel-

lular mitosis to facilitate homogenous distribution of CRISPR/Cas compo-

nents among all future daughter cells. As previously discussed, the most

common practice uses in vitro-prepared Cas9 mRNAs for injections, though

studies using Cas9 protein–sgRNA complexes have also been reported

(Gagnon et al., 2014). Various concentrations of Cas9 mRNA and sgRNAs

have been used in different studies. For sgRNAs that show a high on-target

mutation rate, reducing the concentration of Cas9 may reduce potential off-

target activities. On the other hand, the quality of in vitro-transcribed Cas9

mRNA and sgRNA have a direct influence on the observed on-target

activity.

Depending on the particular purpose of the study, indel mutation rates

may be determined by the T7EI mismatch assay, PCR subcloning and

sequencing, high resolution melt analysis (Dahlem et al., 2012), and/or

next-generation sequencing. Due to its speed and independence of any

sophisticated instrumentation, the T7EI assay is probably the most widely

used method. T7EI analysis relies upon the ability of T7EI to recognize

and cleave nonperfectly annealed DNA. In this method, PCR amplicons

of targeted genomic loci are denatured and gradually cooled to allow for

partial hybridization between differentially sized indel-containing single-

stranded DNA fragments. These partially hybridized PCR strands will

contain mismatched regions at the designed target sites that may be cleaved

by T7EI to produce two fragments of predictable lengths. Upon electropho-

resis, the percentage of cleaved PCR products can be measured, and the esti-

mated NHEJ percentage rates can be calculated using the calculations given

by Guschin et al.: % target site indel rate¼100� (1� (1� fraction

cleaved)1/2) (Guschin et al., 2010). Nonetheless, the estimated detection

limit of this assay is above �3% (Hwang, Peterson, & Yeh, 2014). In addi-

tion, genetic polymorphisms surrounding the target site may cause false pos-

itives and should be carefully controlled. Moreover, if a low amount of or no

cleaved product is detected, sequencing of the PCR products should be

considered.
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3. OTHER TARGETED GENOME-EDITING STRATEGIES

3.1. Precise sequence modifications mediated by
single-stranded oligonucleotides

Previously, it was found that in the presence of DSBs, single-stranded oli-

gonucleotides (ssODNs) flanked by two arms with tens of base pairs of

homology to the sequences surrounding the breaks may be co-opted to

introduce predesigned sequence modifications in human cells (Chen

et al., 2011). Later, a similar strategy was used to introduce small yet precise

targeted insertions in conjunction with TALENs (Bedell et al., 2012). We

and others have recently shown that small predetermined sequences may be

targetedly inserted in zebrafish using CRISPR/Cas and ssODNs containing

�20–50-nt homology arms (Chang et al., 2013; Hruscha et al., 2013;

Hwang, Fu, Reyon, Maeder, Kaini, et al., 2013).

Thus far, this ssODN-mediated CRISPR/Cas method has been used to

knock-in �30-nt mloxp sites (Chang et al., 2013), as well as, �30-nt HA

tags at two zebrafish loci (Hruscha et al., 2013). We have used ssODNs

to precisely insert up to �40 nucleotides at different zebrafish loci

(Gonzales, unpublished results) and to successfully generate precise point

mutations in one zebrafish gene (Hwang, Fu, Reyon, Maeder, Kaini,

et al., 2013). It should be noted that even though insertion rates can be as

high as �20%, it has been found in all of these studies, including the afore-

mentioned TALEN study, that only a small portion of the sequence changes

are free of additional mutations. These results are very different from the

results of studies in human cells and mice, wherein sequence modifications

introduced by ssODNs are almost always precise (Chen et al., 2011; Kayali,

Bury, Ballard, & Bertoni, 2010; Shen et al., 2013). The exact mechanism of

DNA repair in zebrafish that mediates the insertion under these conditions is

still unclear.

To implement this ssODN-mediated method, we have noticed that, in

some cases, sense or antisense ssODNs containing the sequences either

homologous or complementary to the sgRNA target site show varied effi-

ciencies (Hwang, Fu, Reyon, Maeder, Kaini, et al., 2013). Nonetheless, the

differences in their efficiencies are locus-dependent, and there is no consen-

sus as to which strand is better to use. Interestingly, a recent study shows that

ssODNs containing a stop cassette, which if inserted into a gene provides

stop codons at all possible reading frames, has allowed this ssODN-mediated

technique to serve as an alternative to producing genetic knock-outs by
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indel frameshift mutations (Gagnon et al., 2014). Moreover, this study dem-

onstrated the insertion and heritability of these stop cassettes in three

zebrafish genes. Therefore, the demonstrated ssODN-mediated insertion

strategy provides great versatility to CRISPR/Cas genome editing in

zebrafish.

3.2. Targeted integration of long DNA fragments
Targeted genome modifications involving insertions of long DNA

fragments can be achieved via homologous recombination (HR) or a

homology-independent mechanism such as NHEJ (Fig. 18.3). In zebrafish

embryos, NHEJ appears to be responsible for most DNA repair activities,

whereas HR is estimated to be at least 10-fold less active (Dai, Cui,

Zhu, & Hu, 2010; Hagmann et al., 1998; Liu et al., 2012). Zu et al. were

the first to successfully demonstrate HR-mediated insertion in zebrafish by

Figure 18.3 Engineered DNA nucleases can facilitate targeted integration of long DNA
fragments via homology-dependent and homology-independent mechanisms.
(A) Targeted integration mediated by homologous recombination. In this approach,
a plasmid donor DNA containing the DNA cassette (red (dark gray in the print version)
box) to be inserted, flanked by several hundred base pairs to a couple kilobase pairs of
sequences (gray boxes) upstream and downstream of the genomic target site, is
co-injected with the engineered DNA nucleases into zebrafish embryos. The DNA cas-
sette can be inserted into the nuclease target site via homologous recombination. The
sequence surrounding the cassette and the joining ends should be precise. (B) Targeted
integration mediated by a homology-independent mechanism. In this approach, the
donor DNA should be linearized in vitro or in vivo, and need not have sequence homol-
ogy to the genomic target locus. The linearized donor DNA can be inserted into the
nuclease target site, but the sequences at the joining ends will not be precise.
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the use of highly efficient TALEN pairs. In their study, the authors reported

targeted insertion of EGFP in three zebrafish genes; however, germline

transmission was found for only one gene at a low frequency of 1.5%

(Zu et al., 2013). Therefore, although HR-mediated gene targeting affords

the ability to generate precise sequence changes, this method may not

become a widely used approach unless its efficiency can be improved

(Beumer et al., 2008; Liu et al., 2012). To date, an example of Cas9-assisted

HR-mediated DNA integration has not been reported in zebrafish.

On the other hand, Auer et al. demonstrated efficient homology-

independent targeted integration of >5.7-kilobase (kb) DNA fragments

in zebrafish using CRISPR/Cas (Auer et al., 2014). In their study, a donor

DNA construct containing a modifiedGal4 gene was co-injected with Cas9

Figure 18.4 Designs of donor DNAs. A plasmid donor DNA may be linearized in vivo by
adding a CRISPR/Cas9 target site (blue (dark gray in the print version) vertical line) to it.
This target sequence can be the same as or different from the genomic target sequence
(yellow (light gray in the print version) vertical line). (A) In this design, Gal4 and a self-
processing peptide E2A will be expressed only if the integrated DNA cassette is in the
correct orientation and in the right coding frame. Thus, theoretically one-sixth of the
integration events will result in the expression of E2A–Gal4. This is the approach utilized
by Auer et al. (B) An alternative approach will be to insert a DNA cassette including a
splice acceptor site (SA) into an intronic region. In this approach, the reading frame
can be predicted because no indel mutation is introduced in the coding region.
Thus, approximately one-half of the integration events will result in the expression of
E2A–Gal4.
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mRNA and a GFP-targeting sgRNA into zebrafish embryos carrying a

tissue-specific GFP reporter and theUAS:RFP transgene (Fig. 18.4). In the-

ory, one-sixth of the targeted integration events would be in-frame,

resulting in Gal4 and subsequent RFP expression. Thus, this experimental

setup enabled visual detection of in-frame knock-in events by a green-to-

red switch. Detection of RFP+ cells in the expected expression domains,

which are the same as the GFP+ domains in the noninjected transgenic

embryos, would indicate successful integration at the target site. In contrast,

detection of RFP+ cells outside the expected expression domains would

suggest off-target or random integration. Moreover, the incorporation of

the Gal4–UAS system likely enhanced the sensitivity of this assay.

By using this approach, Auer et al. made a number of important findings

(Auer et al., 2014). First, they found that the knock-in efficiency by

homology-independent repair can be significantly improved if the donor

DNA is linearized in the injected embryos rather than in vitro (Fig. 18.4).

In vivo cleavage of the plasmid donor DNA was accomplished by adding

to the donor construct a sgRNA “bait” sequence that could be cleaved

by co-injection of a corresponding sgRNA. By co-injecting a sgRNA

with a 66% mutation efficiency and a plasmid donor containing the

corresponding bait sequence, they observed a near sevenfold increase of

knock-in efficiency compared to the use of an in vitro linearized

donor DNA.

Second, the authors demonstrated that the bait sequence could be made

either the same or different from the genomic target sequence. While the

former strategy simplifies experimental design due to the need for only

one sgRNA, the latter allows the flexibility to use the same donor construct

for any given target site (Fig. 18.4). Indeed, this latter strategy may be useful

because the Cas9-mediated knock-in efficiency is directly related to the

targeting efficiency of a given sgRNA. For example, in the study by Auer

et al., there were two cases wherein a single sgRNA was used for both the

bait and the target gene, and sgRNAs with 66% and 20% mutation rates

were able to induce the green-to-red switch in 75% and 15% of the injected

embryos, respectively. Therefore, as shown also by the authors, it may be

beneficial when using this knock-in strategy to reuse a sgRNA-bait

sequence pair that is known to have a high in vivo linearization efficiency

in order to increase the knock-in rates at a difficult target site.

Third, Auer et al. found that the germline transmission of the RFP

knock-in allele was quite high and that the observed frequencies of identi-

fied founder fish could be increased by screening only RFP+ F0 fish. For
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example, in a case wherein a single sgRNA with a 66% mutation rate was

used, Auer et al. observed founder fish frequencies of 10% and 33–40% by

screening all of the fish or only RFP+ F0 fish, respectively. Further exam-

ination of the F1 fish showed that both single-copy and multiple-copy inte-

grations of the RFP allele could be found. Moreover, despite some low level

off-target activities for a single sgRNA they used (probably under 3% at the

sites screened), off-target integration was not found in the F0 fish by PCR,

Southern blots, or fluorescence.

Overall, this pioneer study significantly extended the power of

CRISPR/Cas genome editing and opens the possibility of unprecedented

strategies for creating novel functional alleles in zebrafish. Conceivably,

one potential means of improving the current system will be to insert

DNA cassettes with splice acceptor sites into the intronic regions of target

genes (Fig. 18.4). This approach is likely to better guarantee in-frame inte-

grations irrespective of sequence alterations at the joining ends.

3.3. Chromosomal deletions and other rearrangements
Functional analysis of noncoding RNAs, transcriptional enhancers, regula-

tory elements in promoters, gene clusters, and tandem-duplicated genes

require methods that, in a targeted fashion, can delete genomic segments

ranging from hundreds of base pairs to several hundred kilobase pairs. Con-

sequently, genome-editing tools that can induce large segmental deletions

are of particular interest for zebrafish research due to the prevalence of gene

duplications in this model organism (Lu, Peatman, Tang, Lewis, &

Liu, 2012).

Using two customized pairs of ZFNs or TALENs to target two distant

sequences on the same chromosome, deletions of large DNA segments rang-

ing from several kilobase pairs to megabase pairs have been reported in

Figure 18.5 Cas9-mediated chromosomal rearrangements. (A) Chromosomal deletions,
inversions, and duplications may be induced by two sgRNA–Cas9 complexes that target
two distant sites on the same chromosome. (B) Chromosomal translocations may
be induced by two sgRNA–Cas9 complexes that target two different chromosomes.
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cultured mammalian cells (Carlson et al., 2012; Lee, Kim, & Kim, 2010),

silkworms (Ma et al., 2012), plants (Qi et al., 2013), and zebrafish (Gupta

et al., 2013; Xiao et al., 2013) (Fig. 18.5). Interestingly, re-insertions of

the DNA segments cleaved off by these programmable nucleases have also

been observed as inversions and duplications (Gupta et al., 2013; Lee,

Kweon, Kim, Kim, & Kim, 2012; Qi et al., 2013; Xiao et al., 2013)

(Fig. 18.5). Furthermore, targeted chromosomal translocations have also

been successfully created between two ZFN or TALEN sites located on

two different chromosomes (Brunet et al., 2009; Piganeau et al., 2013;

Simsek et al., 2011) (Fig. 18.5). In light of these studies, ZFN and

TALEN-mediated chromosomal rearrangements have been applied to cul-

tured cells for the development of human disease models involving genome

rearrangements (Piganeau et al., 2013). Consequently, it has become a very

attractive prospect to apply the more facile CRISPR/Cas platform for the

generation of such disease models (Choi & Meyerson, 2014).

To date, zebrafish chromosomal deletions and inversions mediated by

CRISPR/Cas have been shown by only two groups (Ota et al., 2014;

Xiao et al., 2013). In one study, Xiao et al. was able to perform chromosomal

deletions of two loci with CRISPR/Cas; however, lower deletion rates

were reported by CRISPR/Cas compared to those by TALENs for the

tested loci, though the reasons for this discrepancy are unclear (Xiao et al.,

2013). More recently, Ota et al. demonstrated germline transmission of a

7.1-kb CRISPR/Cas deletion that had been successfully identified in one

of eleven screened potential founder fish (Ota et al., 2014). Because of the

ease of use and general robustness of the CRISPR/Cas system, it is likely that

Cas9-based approaches will play a more prominent role in future studies in

zebrafish involving chromosomal deletions and other rearrangements.

4. FUTURE DIRECTIONS

Over the past year-and-a-half, the CRISPR/Cas system has proven

itself to be a powerful yet facile and efficient genome-editing platform in

zebrafish, demonstrating its broad adaptability by its ability to generate

targeted indels, exact point mutations, site-specific insertions of varying

lengths, and chromosomal rearrangements in a rapid and low-cost manner.

In spite of its quick rise to fame, the CRISPR/Cas platform still has several

hurdles to overcome, if it is to advance the field of genetic engineering even

further. The two most crucial obstacles that the CRISPR/Cas system faces
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relate to its targeting range and its specificity. Though the current

CRISPR/Cas platform has a relatively widespread targeting range of 1 site

in every 8 bps, this is still lower than that of previous programmable nucle-

ases such as TALENs, which has been engineered to theoretically target any

sequence in the genome ( Joung & Sander, 2013; Lamb, Mercer, & Barbas,

2013). The investigation of other Type II Cas9 orthologs besides that of

S. pyogenes, coupled with the application of continuous directed evolution-

ary efforts (Esvelt, Carlson, & Liu, 2011), will likely provide an avenue to

expand the CRISPR/Cas targeting range. With regard to the variable

targeting specificity of CRISPR/Cas, global genome-wide off-target studies

will be needed to accurately test the effectiveness of current tru-sgRNA,

paired Cas9 nickase, and other strategies. Off-target studies will also be

needed for the potential development of more reliable methods to increase

CRISPR/Cas specificity.

Finally, CRISPR/Cas possesses untapped potential for future zebrafish

research. From a genetic engineering standpoint, CRISPR/Cas shows great

promise to be used for conditional, tissue-specific genome editing. The

development of such a spatially and temporally controlled genome-editing

application has yet to be demonstrated by CRISPR/Cas, but its develop-

ment is certainly underway and will be of tremendous benefit to future dis-

ease and functional genomics research when applied to zebrafish. Beyond

genome editing, CRISPR/Cas has already been adapted in human cells

as a system for transcriptional regulation (Gilbert et al., 2013) and as a means

for dynamic imaging of genetic structures (Chen et al., 2013). These

adaptations are made possible by deactivating the nuclease activity of

Cas9 without removing its sgRNA-mediated targeting function, and in

principle, these methods can be extended to zebrafish. It is logical that such

engineering could allow CRISPR/Cas to be adapted for purposes of epige-

netic editing (Maeder et al., 2013) and modulation of genomic architectures

(Deng et al., 2012). Also, a recent publication has shown that orthogonal

Cas9 enzymes could be used in bacteria to allow for simultaneous indel

targeting and transcriptional repression at two different targets, thus opening

up the possibility of combining several CRISPR/Cas capabilities, in parallel,

within a single organism (Esvelt et al., 2013). Such a report points to the

enormous potential CRISPR/Cas has to one day become a universal,

all-purpose biomolecular engineering platform that can revolutionize not

only zebrafish research, but could influence all future biomedical pursuits

and medical treatments.
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Abstract

Our ability to modify the Drosophila genome has recently been revolutionized by the
development of the CRISPR system. The simplicity and high efficiency of this system
allows its widespread use for many different applications, greatly increasing the range
of genome modification experiments that can be performed. Here, we first discuss some
general design principles for genome engineering experiments in Drosophila and then
present detailed protocols for the production of CRISPR reagents and screening strategies
to detect successful genomemodification events in both tissue culture cells and animals.

1. INTRODUCTION

The development of genome engineering technologies such as zinc

finger nucleases (ZFNs), transcription activator-like effector nucleases
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(TALENs), and clustered regularly interspaced short palindromic repeats

(CRISPR) has revolutionized our ability to modify endogenous genomic

sequences in Drosophila both in cultured cells and in vivo (Bassett & Liu,

2014; Bassett, Tibbit, Ponting, & Liu, 2013, 2014; Beumer,

Bhattacharyya, Bibikova, Trautman, & Carroll, 2006; Beumer & Carroll,

2014; Bottcher et al., 2014; Gratz et al., 2013; Gratz, Wildonger,

Harrison, & O’Connor-Giles, 2013; Gratz et al., 2014; Kondo, 2014;

Kondo & Ueda, 2013; Ren et al., 2013; Sebo, Lee, Peng, & Guo, 2014;

Yu et al., 2013, 2014). ZFNs, TALENs, and CRISPR all function with

similar mechanisms whereby a nonspecific nuclease is combined with

a sequence-specific DNA binding element to generate a targeted double-

strand break (DSB). The DSB is then repaired using either the non-

homologous end joining (NHEJ) pathway or the homologous recombination

(HR) pathway (Bibikova, Golic, Golic, &Carroll, 2002; Chapman, Taylor, &

Boulton, 2012). The generation of a DSB in a coding region and repair by

NHEJ can lead to small insertions or deletions (indel mutations) and therefore

generate a knockout of a specific gene. In contrast to NHEJ, HR generally

uses the homologous chromosome as a template and repairs the DSB with

no sequence alterations. However, this mechanism can be exploited by

including a donor construct with “arms” homologous to the target region.

At some frequency, the donorwill be used by theHRmachinery as a template

instead of the homologous chromosome, leading to a precise modification of

the target site (Bottcher et al., 2014). Depending on the nature of the donor

construct, this could be an insertion of exogenous sequence (e.g., GFP), intro-

duction of a mutant allele, etc. Such insertions are generally referred to as

knock-ins.

Although all three genome engineering technologies have been used

successfully to produce genomic changes, CRISPR appears to function with

considerably higher efficiency than ZFNs or TALENs (Beumer, Trautman,

Christian, et al., 2013; Bibikova et al., 2002; Yu et al., 2013). Furthermore,

generation of the required reagents is considerably simpler, making

CRISPR the method of choice in most situations. The CRISPR system

requires two components. The first is Cas9, a nonspecific nuclease protein,

and the second is a single-guide RNA (sgRNA) molecule, which provides

sequence specificity by base pairing with the target genomic sequence (Cong

et al., 2013; Mali, Yang, et al., 2013). By altering the sequence of the

sgRNA, highly specific DSBs can be generated at defined loci.

In order to take advantage of the CRISPR system in Drosophila, several

factors must be considered and the approach taken must match the
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experimental goals. For example, depending on the desired genomic mod-

ification (gene knockout, precise sequence modification, gene tagging, etc.),

the sgRNA target site must be positioned differently. Furthermore, off-

target effects, mutation efficiency, use of a donor construct, and method

of reagent delivery must all be considered to achieve the intended result with

high specificity and efficiency.

2. APPLICATIONS AND DESIGN CONSIDERATIONS
FOR CRISPR-BASED GENOME EDITING

CRISPR can be used to generate a diverse range of genomic modi-

fications including small random changes, insertions, deletions, and substi-

tutions. In order to achieve the desired outcome, different approaches must

be taken and several aspects of sgRNA design should be considered. Here

we describe the most common applications and some general approaches

to achieve them.

1. Random mutations at a given target site: In the absence of a donor construct,

DSBs generated with CRISPR will be repaired primarily by NHEJ,

leading to small indel mutations at the target site (Chapman et al.,

2012). This approach is somewhat limited due to the lack of control over

the mutations produced and the small region of sequence affected.

Therefore, NHEJ is not the best approach for deletion of large regions

of sequence or disruption of poorly characterized elements such as reg-

ulatory sequences. NHEJ is however very effective at generating frame-

shift mutations in coding sequences (Bibikova et al., 2002) and so is the

approach of choice for gene disruption.

By targeting a sgRNA to the coding sequence of the gene of interest,

frameshifts can be produced with high efficiency (Bassett et al., 2013;

Cong et al., 2013; Gratz, Cummings, et al., 2013; Kondo & Ueda,

2013; Mali, Yang, et al., 2013; Ren et al., 2013; Sebo et al., 2014), lead-

ing to truncation of the encoded protein. An optimal sgRNA design for

this application would target a genomic site close to the 50 end of the

coding sequence and in an exon common to all transcripts in order to

maximize the chance of ablating protein function.

2. Insertion of exogenous sequences: In contrast to knockout of a gene via

frameshift-inducing indels, insertion of exogenous sequences, such as

for generation of GFP-tagged proteins, requires precise sequence alter-

ation. To achieve this, CRISPR must be used in combination with a

donor construct. Donor constructs consist of the sequence to be inserted,
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flanked on either side by “arms” with sequences homologous to the

target site. Once a DSB has been generated, a subset will be repaired

by HR using the donor construct as a template and therefore insert

the exogenous sequence into the target site (Auer, Duroure, De

Cian, Concordet, & Del Bene, 2014; Bassett et al., 2014; Dickinson,

Ward, Reiner, & Goldstein, 2013; Gratz et al., 2014; Xue et al.,

2014; Yang et al., 2013). For this application, it is unlikely that an

sgRNA target site will be available exactly at the point of insertion

so sequences should be selected as close to this as possible to maximize

efficiency.

Longer homology arms have been associated with higher efficiency

of HR but only to a certain extent and no further improvement is seen

past �1 kb (Beumer, Trautman, Mukherjee, & Carroll, 2013; Bottcher

et al., 2014; Urnov et al., 2005). We therefore design all homology arms

to be roughly 1 kb in length. In addition, knocking down the ligase4

gene, a component of the NHEJ repair pathway, biases repair toward

HR and can improve efficiency of insertion. This method has been

shown to be effective at increasing the rate of HR both in vivo and in

cultured cells (Beumer et al., 2008; Bottcher et al., 2014; Bozas,

Beumer, Trautman, & Carroll, 2009; Gratz et al., 2014).

Note that for some applications, such as generation of a point mutant

allele, it may be possible to use a single-strandedDNAoligo as the donor,

avoiding the need to generate a longer donor construct. However, this

approach is limited to very small insertions (Gratz, Cummings,

et al., 2013).

3. Specific deletions and substitutions: Similar to insertions, the generation of a

deletion or substitution requires precise sequence alteration and so a

donor construct should be used in combination with CRISPR. To gen-

erate a deletion, homology arms should be designed flanking the

sequence to be deleted with no additional sequences cloned in between.

In this case, the sgRNA target site can be anywhere within the sequence

to be deleted.

Substitutions are produced in a similar manner to insertions with a

donor containing the sequence to be inserted flanked by homology arms.

The difference in this case is that the homology arms induce recombi-

nation at sites that are not directly adjacent but separated by the sequence

to be deleted. Again, the sgRNA target should be within the sequence to

be replaced.
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2.1. Selection of sgRNA target sites
One of the advantages of the CRISPR system over other existing genome

editing technologies is the relative lack of sequence limitations in the

targeted sites. The only requirement is the presence of a PAM sequence

at the 30 end of the target site. For Cas9 derived from Streptococcus pyogenes

(SpCas9), the optimal PAM sequence is NGG (or NAG although this leads

to lower efficiency) (Jiang, Bikard, Cox, Zhang, &Marraffini, 2013), which

occurs often throughout the Drosophila genome (every 10.4 bp on average).

However, in some cases, such as modification of very precise regions, it may

be difficult to find an appropriate PAM sequence. In this case, a more distant

sgRNA target site can be used with an HR-based approach.

As described above, the target site of sgRNAs should be positioned based

on the type of modification desired. Common to all of these approaches, a

second consideration in the selection of a suitable sgRNA target site is the

possibility of DSB generation at off-target sites. In mammalian systems, sev-

eral reports suggest that off-target mutations may be a significant issue asso-

ciated with the use of the CRISPR system (Fu et al., 2013; Hsu et al., 2013;

Mali, Aach, et al., 2013; Pattanayak et al., 2013). Likely due in part to the

lower complexity of the Drosophila genome, off-target events appear to be

much less of a concern in this system (Ren et al., 2013). Indeed, no publi-

cations have yet reported detection of off-target effects. In addition, the

presence of off-target sites may not be a problem for some applications.

For example, when performing genome alterations in vivo, off-target muta-

tions on nontarget chromosomes can be tolerated because they can be

crossed out of the initial stock. In contrast, off-target events anywhere in

the genome may be of concern in cultured cells.

Although it is clear from several studies that sgRNAs have widely vary-

ing efficiencies, little is currently known about the factors affecting effi-

ciency. It is therefore difficult to predict how well a specific sgRNA

will function prior to testing. For this reason, it is often sensible to test

the efficiency of several sgRNAs targeting the region of interest in cell cul-

ture to determine which are the most likely to generate DSBs at high effi-

ciency before making the investment of time and effort involved with

in vivo genome engineering. Moreover, in some situations, it may be

advantageous to use an sgRNA with lower efficiency, such as when a

homozygous mutation is cell lethal. In such cases, sgRNAs with lower effi-

ciency may result in higher recovery of mutant lines due to an increase in

heterozygous compared to homozygous mutants.
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2.2. Tools facilitating sgRNA design
To aid the design of sgRNAs, we recently developed an online tool allowing

the user to browse all possible SpCas9 sgRNA targets in the Drosophila

genome (Ren et al., 2013) (http://www.flyrnai.org/crispr2). sgRNAs can

be filtered based on their genomic location (intron, CDS, UTR, intergenic,

etc.), predicted off-target annotation with customizable stringency, and

PAM sequence type (NGG or NAG). Individual target sites can then be

selected from the genome browser interface to access more detailed anno-

tation. This includes details of any potential off-target sites (genomic loca-

tion, number and position of mismatches, etc.), whether the sgRNA

sequence contains features that may prevent activity (such as a U6 terminator

sequence), restriction enzyme sites that could be used to screen for muta-

tions, and a score predicting the likely mutation efficiency at the intended

target site. Using these predictions, we estimate that 97% of Drosophila

protein-coding genes can be mutated with no predicted off-target

mutations.

Several other tools are also available to facilitate sgRNA design (Mohr,

Hu, Kim, Housden, & Perrimon, 2014) (Table 19.1). For example,

targetFinder (Gratz et al., 2014) (http://tools.flycrispr.molbio.wisc.edu/

targetFinder/) can be used to design sgRNAs for many different Drosophila

species. With e-CRISP (Heigwer et al., 2014) (http://www.e-crisp.org/E-

CRISP), a specific purpose such as gene knockout or protein tagging can be

indicated to aid selection of the most appropriate sgRNA target sites.

Table 19.1 Tools for sgRNA design
Lab Web site Reference

DRSC http://www.flyrnai.org/crispr/ Ren et al. (2013)

O’Connor-Giles http://tools.flycrispr.molbio.

wisc.edu/targetFinder/

Gratz et al. (2014)

DKFZ/Boutros http://www.e-crisp.org/E-

CRISP/designcrispr.html

Heigwer, Kerr, and

Boutros (2014)

NIG-FLY/Ueda www.shigen.nig.ac.jp/fly/nigfly/

cas9/index.jsp

Kondo and Ueda

(2013)

Center for

Bioinformatics, PKU

http://cas9.cbi.pku.edu.cn/ Ma, Ye, Zheng, and

Kong (2013)

Zhang http://crispr.mit.edu/ Hsu et al. (2013)

Joung http://zifit.partners.org/ZiFiT/ Hwang et al. (2013)
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3. DELIVERY OF CRISPR COMPONENTS

To generate a genomic modification using the CRISPR system, it is

vital that both Cas9 and one or more sgRNAs are delivered efficiently to the

cells of interest (usually the germ line). Various methods have been devel-

oped to deliver these components and each is associated with advantages and

disadvantages. One option is to generate RNA for both Cas9 and the

sgRNA and directly inject these into embryos (Bassett et al., 2013; Yu

et al., 2013). This approach is attractive because it does not require any clon-

ing steps. It is also possible to inject purified Cas9 protein (Lee et al., 2014).

However, compared to other delivery methods, injection of RNA or pro-

tein appears to lead to relatively low mutation rates (Bassett & Liu, 2014;

Beumer & Carroll, 2014; Gratz, Wildonger, Harrison, & O’Connor-

Giles, 2013; Lee et al., 2014).

An alternative approach is to use Drosophila stocks that express Cas9 in

the germ line (Table 19.2). Several such stocks have been generated using

either vasa or nanos regulatory sequences to drive SpCas9 expression specif-

ically in the germ cells (Kondo & Ueda, 2013; Ren et al., 2013; Sebo et al.,

2014; Xue et al., 2014). This offers the advantages of increased efficiency and

that viability effects due to somatic mutations in the injected flies are

unlikely, aiding the recovery of deleterious mutations through the germ line.

Using these lines means that Cas9 delivery is no longer a consideration,

significantly reducing the effort required to prepare CRISPR components.

Delivery of sgRNA into Cas9-expressing flies can be achieved using several

different methods. As discussed above, the sgRNA can be generated in vitro

and injected into Cas9-expressing embryos. Alternatively, the sgRNA can

be encoded into an expression vector, usually containing a constitutive pro-

moter such as U6, to drive expression of the RNA. While this requires the

greater effort of cloning the sequence into a vector, it generally produces

higher mutation efficiency than direct delivery of RNA (Kondo & Ueda,

2013; Ren et al., 2013). A final option is to generate fly lines expressing

sgRNA, which can then be crossed to Cas9-expressing flies to generate

mutant offspring (Kondo, 2014; Kondo & Ueda, 2013). This approach pro-

duces the highest efficiency but is a lengthy process due to the need to estab-

lish a new fly stock for every sgRNA.

We have found that the best compromise between mutation efficiency,

effort, and time required is achieved by injecting an sgRNA expression plas-

mid into embryos expressing Cas9 in the germ line.
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Table 19.2 CRISPR-related fly lines
Source Genotype Description Reference

BDSC

51323

y1 M{vas-Cas9}ZH-2A w1118/

FM7c

Expresses Cas9 from vasa

promoter

Gratz

et al.

(2014)

BDSC

51324

w1118; PBac{vas-Cas9}

VK00027

Expresses Cas9 from vasa

promoter

Gratz

et al.

(2014)

BDSC

55821

y1 M{vas-Cas9.RFP-}ZH-2A

w1118/FM7a, P{Tb1}FM7-A

Expresses Cas9 from vasa

promoter, marked with

RFP

Gratz

et al.

(2014)

BDSC

52669

y1 M{vas-Cas9.S}ZH-2A w1118 Expresses Cas9 from vasa

promoter

Sebo et al.

(2014)

BDSC

54590

y1 M{Act5C-Cas9.P}ZH-2A w* Expresses Cas9 from

Act5c promoter

CRISPR

fly design

project

BDSC

54591

y1 M{nos-Cas9.P}ZH-2A w* Expresses Cas9 from nanos

promoter

CRISPR

fly design

project

BDSC

54592

P{hsFLP}1, y1 w1118; P{UAS-

Cas9.P}attP2

Expresses Cas9 from UAS

promoter

CRISPR

fly design

project

BDSC

54593

P{hsFLP}1, y1 w1118; P{UAS-

Cas9.P}attP2 P{GAL4::VP16-

nos.UTR}CG6325MVD1

Expresses Cas9 from UAS

promoter and Gal4 from

nanos promoter

CRISPR

fly design

project

BDSC

54594

P{hsFLP}1, y1 w1118; P{UAS-

Cas9.P}attP40

Expresses Cas9 from UAS

promoter

CRISPR

fly design

project

BDSC

54595

w1118; P{UAS-Cas9.C}attP2 Expresses Cas9 from UAS

promoter

CRISPR

fly design

project

BDSC

54596

w1118; P{UAS-Cas9.D10A}

attP2

Expresses Cas9 (nickase)

from UAS promoter

CRISPR

fly design

project

NIG-

Fly

CAS-

0001

y2 cho2 v1; attP40{nos-Cas9}/

CyO

Expresses Cas9 from nanos

promoter

Kondo

and Ueda

(2013)
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For delivery of CRISPR components in cell culture, there are fewer

options. As for in vivo, the components can be delivered either as in vitro-

generated RNA or in expression plasmids. For example, an expression vec-

tor encoding SpCas9 and sgRNA that can be transfected into cultured cells

was recently reported (Bassett et al., 2014) and we have developed a similar

plasmid (pL018) (Housden et al., unpublished) (Table 19.3).

The major issue associated with genome engineering in cell lines is cur-

rently the inability to generate alterations with 100% efficiency. The rate of

alterations is limited by both sgRNA efficiency and transfection efficiency,

which is generally low in Drosophila cell lines (Bassett et al., 2014). A recent

report introduced a selection cassette with the CRISPR components, which

increased the mutation rate considerably (Bottcher et al., 2014). The persis-

tence of wild-type sequences, however, results in selection against any unfa-

vorable mutations (e.g., that slow growth) and, over time, reversion of the

population to wild type. Until methods are developed to overcome these

problems, the use of CRISPR in cell culture is limited to the generation

of unstable, mixed populations.

4. GENERATION OF CRISPR REAGENTS

As discussed above, there are several methods available to deliver

CRISPR components either in vivo or in cultured cells. Therefore, the proce-

dures involved ingenerationof the relevant reagentswill dependon theapproach

taken. Here we will focus on the generation of expression plasmids for delivery

of sgRNA into Cas9-expressing flies or for transfection into cultured cells.

Table 19.2 CRISPR-related fly lines—cont'd
Source Genotype Description Reference

NIG-

Fly

CAS-

0002

y2 cho2 v1 P{nos-Cas9, y+, v+}

1A/FM7c, KrGAL4 UAS-GFP

Expresses Cas9 from nanos

promoter

Kondo

and Ueda

(2013)

NIG-

Fly

CAS-

0003

y2 cho2 v1; P{nos-Cas9, y+, v+}

3A/TM6C, Sb Tb

Expresses Cas9 from nanos

promoter

Kondo

and Ueda

(2013)

NIG-

Fly

CAS-

0004

y2 cho2 v1; Sp/CyO, P{nos-Cas9,

y+, v+}2A

Expresses Cas9 from nanos

promoter

Kondo

and Ueda

(2013)

423Cas9-Based Genome Editing in Drosophila



4.1. Cloning of sgRNAs into expression vectors
Few vectors are currently available for expression of sgRNAs. However,

those that are available are generally compatible with similar cloning

protocols using type IIs restriction enzymes (Table 19.3). For example,

the procedure described below is based on one previously developed for

Table 19.3 Cas9 and sgRNA expression plasmids and donor vectors
Source Plasmid name Plasmid purpose Reference

Perrimon

lab

pL018 Expression of Cas9 (codon

optimized) under Act5c promoter

and sgRNA under fly U6 promoter

Unpublished

Addgene

#49330

pAc-sgRNA-

Cas9

Expression of sgRNA and Cas9-

Puro in cell culture

Bassett et al.

(2014)

Addgene

#49408

pCFD1-

dU6:1gRNA

Expression of sgRNA under control

of the Drosophila U6:1 promoter

CRISPR fly

design project

Addgene

#49409

pCFD2-

dU6:2gRNA

Expression of sgRNA under control

of the Drosophila U6:2 promoter

CRISPR fly

design project

Addgene

#49410

pCFD3-

U6:3gRNA

Expression of sgRNA under control

of the Drosophila U6:3 promoter

CRISPR fly

design project

Addgene

#49411

pCFD4-

U6:1_U6:3-

tandemgRNAs

Expression of two sgRNAs from

Drosophila U6:1 and U6:3 promoters

CRISPR fly

design project

Addgene

#45946

pU6-BbsI-

chiRNA

Plasmid for expression of chiRNA

under the control of the Drosophila

snRNA:U6:96Ab promoter

Gratz,

Cummings,

et al. (2013)

Addgene

#45945

pHsp70-Cas9 Expression of Cas9 (codon

optimized) under control of Hsp70

promoter

Gratz,

Cummings,

et al. (2013)

Addgene

#46294

pBS-Hsp70-

Cas9

Expression of Cas9 (codon

optimized) under control of Hsp70

promoter

Gratz,

Cummings,

et al. (2013)

NIG-Fly pBFv-nosP-

Cas9

Expression of Cas9 from the nanos

promoter

Kondo and

Ueda (2013)

NIG-Fly pBFv-U6.2 sgRNA expression vector with attB Kondo and

Ueda (2013)

Perrimon

lab

pBH-donor Vector for generation of donor

constructs

Unpublished
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mammalian CRISPR vectors (Ran et al., 2013) but can be used with pL018

(Housden et al., unpublished), pU6-BbsI-chiRNA (Gratz, Cummings,

et al., 2013), U6b-sgRNA-short (Ren et al., 2013), pAc-sgRNA-Cas9

(note that this plasmid is compatible with BspQI instead of BbsI) (Bassett

et al., 2014), and pBFv-U6.2 (Kondo & Ueda, 2013) Drosophila plasmids.

Here we will focus on pL018 but the procedure can be easily modified

for other plasmids. When designing sgRNA oligos, be sure to include the

relevant 4-bp overhangs to allow ligation into the digested vector and when

using a U6 expression plasmid, also include an additional G at the start of the

sgRNA sequence to initiate transcription.

Materials

• Complementary oligos carrying sgRNA target sequence (not

including PAM)

• Suitable plasmid for the desired application

• BbsI restriction enzyme (Thermo Scientific)

• T4 ligase buffer (NEB)

• T4 PNK enzyme (NEB)

• T7 ligase and buffer (Enzymatics)

• FastDigest Buffer (Thermo Scientific)

• FastAP enzyme (Thermo Scientific)

Protocol

1. Set up a restriction digest reaction as shown below and incubate at 37 �C
for 30 min:

1 μg pL018 (or other suitable plasmid)

2 μl 10� FastDigest Buffer

1 μl FastAP
1 μl BbsI or other suitable enzyme

Water to 20 μl total volume

2. Purify reaction products using a PCR purification kit and normalize

concentration to 10 ng/μl.
3. Resuspend sense and antisense sgRNA oligos to 100 μM and anneal

using the following reaction mixture:

1 μl 100 μM sense sgRNA oligo

1 μl 100 μM antisense sgRNA oligo

1 μl 10� T4 ligation buffer

0.5 μl T4 PNK (NEB)

6.5 μl water
Note: In this step, use T4 ligation buffer with the PNK enzyme as this

contains ATP required for phosphorylation of the annealed oligos.
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Use a thermocycler with the following program to phosphorylate

and anneal oligos:

• 37 �C—30 min

• 95 �C—5 min

• Ramp from 95 �C to 25 �C at 5 �C/min

4. Dilute the annealed oligos from step 3 by 200-fold using water (to

50 nM). If the concentration is too high, multiple copies may be inserted

into the vector.

5. Ligate annealed oligos into digested vector as follows:

1 μl digested plasmid (from step 2)

1 μl diluted annealed oligos (from step 4)

5 μl 2� Quick Ligase Buffer

0.5 μl T7 ligase

2.5 μl water
Incubate at room temperature for 5 min.

Note: While 5 min of ligation is generally sufficient, longer

incubation periods may be used to increase colony numbers if

necessary.

When using new vectors, we recommend performing negative con-

trols in parallel using the same conditions but omitting the annealed

oligos from the ligation reaction.

6. Transform 2 μl of ligation product into chemically competent E. coli

using standard procedures and spread on LB plates containing ampicillin.

Incubate the plates at 37 �C overnight.

7. Culture and miniprep single colonies and sequence to confirm successful

cloning. In general, we have very high success rates for screening single

colonies although more can be tested if necessary.

4.2. Cloning of donor constructs
As described above, single-stranded DNA oligos can be used as donors,

making the insertion of small sequences very simple. However, due to

the limit on the length of oligos that can be reliably generated, this approach

can only be used to make small changes to the genome.

Production of a double-stranded donor construct requires the ligation of

three or four components; two homology arms, an insert (for most but not

all applications), and a backbone vector. These constructs can be produced

using standard restriction digests followed by four-way ligation, although

this approach is generally in efficient and time consuming. Instead, more
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advanced cloning procedures can be used to generate the construct in a sin-

gle step. Here, as an example, we describe a detailed protocol to produce a

donor construct for insertion of an exogenous sequence using golden gate

cloning (Engler, Kandzia, & Marillonnet, 2008; Engler & Marillonnet,

2014). Note that other approaches are also possible to generate these con-

structs, including Gibson assembly (Gibson et al., 2009).

When designing homology arms for golden gate cloning, it is important

to ensure that the restriction enzymes used for construction of the donor

plasmid do not cut within these sequences. To facilitate this, the donor vec-

tor we use (pBH-donor) is compatible with three type IIs restriction

enzymes: BsaI, BbsI, and BsmBI (Housden et al., unpublished).

Type IIs restriction enzymes cut outside their recognition sequences.

A single enzyme can therefore be used to generate multiple different sticky

ends in a single digest reaction. Furthermore, the enzyme recognition

sequence is cleaved from the DNA molecule to be cloned during the digest

reaction. When the fragments are subsequently ligated together, the restric-

tion enzyme recognition sites will not be present and so the molecule cannot

be recut. If the small fragment cleaved from the end of the molecule

religates, however, the restriction site will be restored and the molecule

can therefore be redigested. Golden gate cloning works on the principle

of cycling between digest and ligation conditions in the presence of both

the restriction and ligation enzymes. Iterative rounds of digest and ligation

therefore drive the accumulation of correctly ligated products even when

multiple fragments are present. By including a backbone vector in the reac-

tion, it is possible to transform the products directly without the need for

additional cloning steps. Using this easily scalable approach, we generally

obtain greater than 80% of constructs from a single reaction by screening

only one resulting colony. Screening additional colonies increases the suc-

cess rate to above 95%.

Materials

• High-fidelity polymerase (e.g., Phusion high-fidelity polymerase

from NEB)

• Gel extraction kit (e.g., QIAGEN gel purification kit)

• 10� BSA

• 10 mM ATP

• NEB buffer 4

• T7 ligase (Enzymatics)

• Type IIs restriction enzyme (e.g., BsaI, BsmBI, or BbsI)

• Thermal cycler
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• Chemically competent bacteria

• Miniprep kit

• Restriction enzymes for test digest

• Oligos for sequencing

• pBH-donor or other suitable vector

Protocol

1. Design oligos for PCR amplification of two homology arms and insert

fragment. These oligos should add type IIs restriction enzyme cut sites

to the PCR products required for later cloning steps.

2. PCR amplify each of the homology arms using a high-fidelity

polymerase.

3. Run PCR products on a gel to check the sizes of the bands. We rec-

ommend using 1 kb for all homology arms.

4. Gel purify homology arms from the gel using standard kits according to

manufacturer’s instructions.

5. PCR amplify insert sequence and gel purify if necessary (if using a short

sequence, this can also be produced as complementary oligos annealed

together).

6. Set up a golden gate reaction using the gel-purified homology arms,

insert fragment and backbone vector:

10 ng each homology arm

10 ng donor vector

10 ng insert fragment

1 μl 10� BSA

1 μl 10 mM ATP

1 μl NEB buffer 4

0.5 μl T7 ligase

0.5 μl type IIs restriction enzyme

Water to 10 μl
7. Place samples in a thermal cycler and run the following program:

1. 37 �C—2 min

2. 20 �C—3 min

3. Repeat steps 1 and 2 a further nine times

4. 37 �C—2 min

5. 95 �C—5 min

8. Transform 5 μl of reaction product into chemically competent E. coli

using standard procedures and spread onto a kanamycin plate. Incubate

overnight at 37 �C.
9. Culture two of the resulting colonies overnight in selective media.
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10. Miniprep samples using a standard kit according to manufacturer’s

instructions.

11. Send samples for sequencing using suitable primers for the plasmid

used. For pBH-donor, sequence with the primer 50-
GAATCGCAGACCGATACCAG-30.

Using this cloning approach, we generally find that a high propor-

tion of clones carry the desired components, correctly assembled, and

so screening one or two clones is sufficient.

As an alternative approach, it is not necessary to include the backbone vector

in the golden gate reaction. The homology arms and insert can be assembled

by golden gate cloning and then reamplified by PCR using a high-fidelity

polymerase before cloning into a vector of choice using standard procedures.

This can be a useful alternative approach if none of the restriction enzymes

compatible with the donor vector are appropriate for the homology arms

being generated.

4.3. Isolation of in vivo genome modifications
Once the relevant reagents have been generated and injected into fly

embryos, the next stage is the identification and recovery of the desired

genome modification events. As described below, there are various methods

that can be used to detect modifications but the injected G0 flies must first be

crossed to obtain nonmosaic animals before screening can be performed

(Fig. 19.1). In order to do this, we generally cross G0 flies to a line with bal-

ancers on the chromosome of interest. The resulting F1 flies can then be

collected and screened with one of the methods described below before

recrossing to the same balancer line to isolate the stock.

5. DETECTION OF MUTATIONS

Several methods are available to detect genome alterations induced

using CRISPR. For most cases involving insertions, deletions or substitu-

tions, customized methods must be used to detect the change. One option

for insertions or substitutions is to include a visible marker such as miniwhite

or 3� P3-dsRed in the inserted sequence. This then allows simple selection

of flies carrying the desired modification (Gratz et al., 2014). However, in

some cases it may be undesirable to insert the additional sequences associated

with these markers, in which case PCR-based screening approaches may be

more appropriate.

429Cas9-Based Genome Editing in Drosophila



Detection of indels caused by NHEJ is more difficult due to the general

lack of visible phenotypes and unreliable effects on PCR-based assays.

Many mutations caused by NHEJ are very small (1-bp insertions or dele-

tions are relatively common) (Cong et al., 2013; Mali, Yang, et al., 2013;

Ren et al., 2013) and so will not necessarily affect amplification with an

overlapping PCR primer. Therefore, alternative screening methods must

be used.

Several methods are available, including restriction profiling, endonu-

clease assays and high-resolution melt assays (HRMAs) (Bassett et al., 2013;

Cong et al., 2013; Wang et al., 2013). Each of these methods has advan-

tages and disadvantages and should be chosen based on the number of

samples to screen and the availability of suitable reagents. Note that follow-

ing all of these screening methods, it is recommended to sequence the

target site to confirm sequence alteration and determine the nature of

the mutation.

5.1. Preparation of genomic DNA from fly wings
In order to screen flies prior to establishing stocks, it is possible to extract

genomic DNA from a single wing for screening without killing the flies

Screen ? / Cyo

? / + Sp / Cyo

Sp / Cyo

X

X F1

X * / Cyo* / Cyo

* / *

G0

OO +

Figure 19.1 Crossing scheme to generatemodifiedDrosophila lines. Following injection
of CRISPR components into embryos, themodified chromosomemust then be detected
and isolated. This can be done by first crossing the injected G0 flies to a suitable bal-
ancer stock (second chromosome balancers are used as an example: e.g., Sp/Cyo)
and isolating individual F1 flies for screening by restriction profiling, surveyor, HRMA,
or other suitable approach. Screening can be performed using nonlethal methods
and so flies carrying the desired modification (*) can then be recrossed to balancers
to isolate the chromosome in a stable stock.
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(Carvalho, Ja, & Benzer, 2009). This allows selection of the correct F1 adults

prior to crossing and therefore significantly reduces the workload compared

to whole fly screening, which requires all crosses to be established first. All

three of the screening methods detailed below require the preparation of

genomic DNA. Note that for preparation of genomic DNA from cells, a

similar protocol can be used in which the cells are resuspended in squishing

buffer and lysed in a thermocycler as described.

Materials

• Squishing buffer (10 mM Tris–HCl pH 8.2, 1 mM EDTA, 25 mM

NaCl, 400 μg/ml Proteinase K (add fresh from 50� stock stored

at �20 �C))
• Blender or homogenizer pestles

• Thermocycler

Protocol

1. Remove one wing from fly (tear the wing close to the hinge but

avoiding damage to the thorax) using forceps and place in a 1.5-ml

microcentrifuge tube. The exact position of the tear can vary as long

as the thorax is not damaged.

2. Add 20 μl of squishing buffer and homogenize well in the tube using a

pestle or blender.

3. Transfer to a PCR tube and run the following program in a

thermocycler:

• 50 �C—1 h

• 98 �C—10 min

• 10 �C—hold

5.1.1 Restriction profiling
This screening approach relies on the disruption of a genomic restriction

enzyme recognition sequence by an NHEJ-induced mutation. Particularly

when generating gene knockouts, there are often several possible sgRNA

targets that can be used, allowing selection of one that overlaps with such

a restriction site. Note that these restriction sites are annotated in the DRSC

sgRNA design tool described above. In order to detect mutations, a frag-

ment surrounding the target site must first be amplified by PCR from the

genomic DNA prepared as described above from F1 generation flies. Next,

the PCR product is digested with the relevant restriction enzyme and

visualized on a gel. Any alteration of wild-type sequence that disrupts the

restriction site will change the band pattern produced, therefore indicating

the presence of a mutation.
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5.1.2 Surveyor assay to detect indels
It will often be the case that no suitable restriction sites are present at the

sgRNA target locus for screening. One alternative possibility is to use endo-

nuclease assays. These work by first amplifying a fragment from genomic

DNA containing the sgRNA target site and then melting and reannealing

to form homoduplexes and heteroduplexes between wild-type and mutant

sequences. An endonuclease enzyme is then used that specifically cuts mis-

matches in the heteroduplexed molecules, resulting in a change in the band

pattern when the samples are visualized on a gel (Fig. 19.2).We generally use

SURVEYOR Mutation Detection Kit (Transgenomics) to detect indels

generated by NHEJ, although other enzymes can also be used (e.g., T7

nuclease).

Surveyor assay

1. Amplify
target locus

2. Melt and 
reanneal

3. Nuclease
treatment

4. Visualize
on a gel

3. Melt curve

F
lu

or
es

ce
nc

e

Temperature

HRMA

2. Nested
amplification

1. Amplify
target locus

M
ut

an
t

C
on

tr
ol

Figure 19.2 Surveyor and HRMA screening protocols. Surveyor assays rely on the ability
of the surveyor endonuclease to cleave mismatched DNA strands. Melting and
reannealing fragments amplified from a mixture of wild-type and mutant alleles lead
to the formation of heteroduplexes, which are then cleaved by the surveyor enzyme
to alter the band pattern when the products are visualized on a gel. HRMA measures
differences in the melt curves between amplified fragments. These differences may
be small depending on the sequence change and so specialized software may be
required to detect mutated samples.
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Materials

• Suitable primers for PCR amplification

• Standard PCR reagents including a high-fidelity polymerase enzyme

• PCR purification kit (e.g., QIAquick PCR purification kit from

QIAGEN)

• Thermocycler

• Taq PCR buffer

• Surveyor mutation detection kit (Transgenomic)

Protocol

1. Extract genomic DNA as described above, either from whole flies or

individual wings.

2. Design and optimize surveyor primers such that a single, strong band is

produced by PCR and amplify fragments from genomic DNA using

optimized PCR conditions and a high-fidelity polymerase. The optimal

fragment length is around 500 bp as this allows reliable amplification and

easy visualization of changes in band sizes following nuclease treatment.

It is important to use a high-fidelity polymerase for this step to pre-

vent the introduction of sequence differences due to PCR errors. These

would be detected by the surveyor nuclease and generate false-positive

results.

3. Purify PCR products using a PCR purification kit and normalize to

20 ng/μl with water.

Note that primer optimization is a key factor and generating a specific

PCR product is very important for surveyor success. Including a

negative control consisting of unmutated genomic DNA is also

recommended.

4. Melt and reanneal PCR products using the following conditions:

Reaction mixture:

2.5 μl 10� Taq PCR buffer

22.5 μl 20 ng/μl purified PCR product

Place samples in a thermocycler and run the following program:

95 �C—10 min

Ramp from 95 �C to 85 �C (�2.0 C/s)

85 �C—1 min

Ramp from 85 �C to 75 �C (�0.3 �C/s)
75 �C—1 min

Ramp from 75 �C to 65 �C (�0.3 �C/s)
65 �C—1 min

Ramp from 65 �C to 55 �C (�0.3 �C/s)
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55 �C—1 min

Ramp from 55 �C to 45 �C (�0.3 �C/s)
45 �C—1 min

Ramp from 45 �C to 35 �C (�0.3 �C/s)
35 �C—1 min

Ramp from 35 �C to 25 �C (�0.3 �C/s)
25 �C—1 min

4 �C—hold

5. Set up surveyor digest reactions as shown below and incubate for 30 min

at 42 �C:
25 μl annealed product from step 4

3 μl 0.15M MgCl2
1 μl SURVEYOR nuclease S

1 μl SURVEYOR enhancer S

6. Add 2 μl Stop Solution from the kit and visualize on an agarose gel to

detect mutations.

When screening cell-based samples, it can be useful to estimate the propor-

tion of mutated alleles in the population. This can be done as follows:

1. Measure the integrated intensity of the uncleaved band A and cleaved

bands B and C using ImageJ or other gel quantification software.

2. Calculate fcut as: fcut¼ (B+C)/(A+B+C).

3. Estimate the indel occurrence by: indel %ð Þ¼ 100� 1� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� fcutð Þp� �

5.1.3 Detection of mutations using HRMA
A cost-effective and scalable approach to mutation detection is to use

HRMAs (Bassett et al., 2013). Many companies sell RT-PCR machines

with built-in modules for HRMA analysis but the reactions can be per-

formed on almost any RT-PCRmachine as long as a melt curve can be per-

formed with fluorescence reads at intervals of 0.1 �C.
The principle of HRMA is that a small fragment is first amplified from

the genomic locus potentially containing a mutation. This is then slowly

melted and the amount of double-stranded DNA measured throughout

the melting process. This produces a melt curve similar to those produced

as quality controls in standard RT-PCR assays but with higher resolution.

Changes in the sequence of the DNA fragments will alter the shape of this

curve thereby allowing detection of samples containing mutations by com-

parison with curves generated from wild-type samples (Fig. 19.2). Such

changes are often very small, especially when using samples containing many
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different mutations, as is often the case in cell culture, so specialized software

is required to detect them.

This assay is also more sensitive than the other methods, meaning

that flies can be screened at the G0 generation and therefore reducing the

amount of work required to isolate mutant lines. To generate genomic

DNA from the G0 generation, it is recommended that crosses are set up

to produce the F1 generation for all G0s and whole flies are used for

DNA preps once it is clear that the crosses will produce progeny. Note that

wing DNA preps cannot be used in this case because mutations are likely to

be in the germ line.

Materials

• Standard PCR reagents including a high-fidelity polymerase enzyme

• Suitable primers for nested amplification

• Precision melt supermix (Bio-Rad) or other similar reaction mix

• RT-PCR machine with high-resolution melt ability

Protocol

1. Prepare genomic DNA as described above for wings or using 50–100 μl
squishing buffer for whole flies.

2. PCR amplify a fragment (300–600 bp) around the sgRNA target site

using the following reaction mixture and PCR program:

Reaction mixture:

2 μl DNA

10 μl buffer
1 μl dNTPs (25 mM each)

1 μl primers (10 μM each)

0.5 μl Phusion polymerase

1.25 μl MgCl2 (100 mM)

34.25 μl water
PCR program:

98 �C—3 min

98 �C—30 s

50 �C—30 s

72 �C—30 s

Goto step 2—34 times

10�C hold

3. Run 5 μl of reaction products on a gel to determine whether the correct

size fragment has been produced. It is not necessary to obtain a specific

product because nonspecific bands will not be reamplified in the

following steps.
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4. Dilute PCR product 1:10,000 using water.

5. Set up a nested PCR and melt assay in an RT-PCRmachine as follows:

Reaction mixture:

1 μl DNA template

5 μl precision melt supermix

0.3 μl left primer (10 μM)

0.3 μl right primer (10 μM)

3.4 μl water
HRMA program:

95 �C—3 min

95 �C—18 s

50 �C—30 s

Fluorescence read

Repeat 50 times

95 �C—2 min

25 �C—2 min

4 �C—2 min

Melt curve from 55 �C to 95 �C with fluorescence reads every

0.1 �C
Even small amounts of nonspecific product can affect the results of

the HRMA. The method described above uses nested PCR in order to

avoid the need to optimize the original PCR. However, it is possible to skip

the first PCR amplification step when highly specific primers can be

designed.

5.2. Analysis of HRMA data
Many RT-PCR machines come with commercial HRMA analysis soft-

ware, which can be used to identify samples carrying mutations following

the manufacturer’s instructions. However, if such software is not available,

an online tool can be used. For example, we recently developed

HRMAnalyzer (http://www.flyrnai.org/HRMA) (Housden, Flockhart, &

Perrimon, unpublished), which can be used to identify samples carrying

mutations either using a clustering-based approach or via statistical compar-

ison with control samples.
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Abstract

Genome modification by CRISPR/Cas offers its users the ability to target endogenous
sites in the genome for cleavage and for engineering precise genomic changes using
template-directed repair, all with unprecedented ease and flexibility of targeting. As
such, CRISPR/Cas is just part of a set of recently developed and rapidly improving tools
that offer great potential for researchers to functionally access the genomes of organ-
isms that have not previously been extensively used in a laboratory setting. We describe
in detail protocols for using CRISPR/Cas to target genes of experimental organisms, in a
manner that does not require transformation to obtain transgenic lines and that should
be readily applicable to a wide range of previously little-studied species.

1. THEORY, PHILOSOPHY, AND PRACTICAL
CONSIDERATIONS

1.1. Overview
CRISPR/Cas provides a method for the generation of double-strand DNA

breaks at sites that the user can select with great efficiency and a high degree

of freedom (Gaj, Gersbach, & Barbas, 2013; Kim & Kim, 2014; Mali,

Esvelt, & Church, 2013). It should not be necessary in this context to discuss

in detail the origins and nature of nucleases with engineered specificity, or of

CRISPR/Cas, in particular; many others have done this in great detail, and

anyone reading this chapter is likely familiar with what CRISPR/Cas can do

for them. Instead, we wish to explain the particular issues and potential

advantages associated with transgene-free delivery of CRISPR/Cas, and

to explain in detail how this can be performed, both in general and with spe-

cific application to the nematode worm Caenorhabditis elegans, or indeed to

other animals possessing a similarly accessible germline.

The first work toward the creation of modern standard laboratory model

organisms began a little more than a century ago in T. H. Morgan’s labora-

tory at Columbia University (Sturtevant, 2001). Since those beginnings,

worldwide communities of researchers have combined their efforts to build

the resources that havemade it highly rewarding to perform genetic and later

molecular studies in standard laboratorymodel organisms, including the fruit

fly Drosophila melanogaster, the roundworm C. elegans, the zebrafish Danio

rerio, the mouse Mus musculus, and the thale cress Arabidopsis thaliana. The

global communities focusing on each of these organisms shared their mutant

collections, developed and optimized specialized protocols for mutagenesis

and for transgenesis in each species, and eventually had access to completely
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sequenced genomes. Emerging technologies promise to make it feasible for

researchers interested in organisms not previously well studied and lacking

such a worldwide network of collaborators to establish these animals as pow-

erful molecular genetic experimental systems: an individual researcher with

limited resources can generate useable draft genome assemblies by means of

high-throughput sequencing (Schatz, Delcher, & Salzberg, 2010); the use of

molecular markers has made access to rich collections of visibly phenotypic

mutations unnecessary for mapping and for strain construction (Rounsley &

Last, 2010; Wicks, Yeh, Gish, Waterston, & Plasterk, 2001), and RNAi and

now engineered nucleases make it possible to study gene function

(Boutros & Ahringer, 2008; Frokjaer-Jensen, 2013; Gaj et al., 2013;

Selkirk, Huang, Knox, & Britton, 2012). Application of these technologies

has made it possible to engineer gene knock-outs in organisms that have only

been studied sufficiently to generate on the order of 100 published papers

listed in PubMed (Lo et al., 2013; Zantke, Bannister, Rajan, Raible, &

Tessmar-Raible, 2014). In particular, the transgene-free delivery of

CRISPR/Cas activity by direct injection of in vitro-synthesized RNAs

(Chiu, Schwartz, Antoshechkin, & Sternberg, 2013; Katic & Grosshans,

2013; Lo et al., 2013) makes it possible to engineer the genomes of new spe-

cies even without access to reliable protocols for DNA transformation in the

species of interest.

1.2. When to use or not to use transgenes for delivery
of CRISPR/Cas

When available protocols make the generation of transgenes straightforward

and efficient, as is the case forC. elegans, CRISPR/Cas using transformation

with DNA should be considered the strongly favored approach: it avoids the

need to generate or to store reagents for injection as relatively unstable

RNA, and the highest efficiencies reported using DNA transgenes to deliver

CRISPR/Cas activity are better than the highest efficiencies reported using

injection ofCas9mRNA or protein (Frokjaer-Jensen, 2013). This situation,

however, results from the advantages of C. elegans as an established research

organism; in other species there may be no reported efficient method of gen-

erating DNA transgenes, and experience suggests that some considerable

effort may be required to develop transgenesis for new species, even given

a similar anatomy and reproductive mechanism to that of C. elegans

(Schlager, Wang, Braach, & Sommer, 2009). The transgene-free nature

of the direct injection of CRISPR/Cas reagents is thus likely to offer a
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powerful tool in organisms in which transgenesis has not been attempted, or

is known to be challenging.

There have been recent developments in the application of CRISPR

technology that make use of the easily programmable DNA binding of

CRISPR but that use this binding to target the recruitment of transcrip-

tional modification machinery rather than to induce double-strand DNA

breaks (Gilbert et al., 2013). These methods are very exciting in their poten-

tial, but require for their use the persistent expression of the modified

CRISPR reagents involved. The transient delivery of CRISPR reagents

by direct injection of Cas9 mRNA is therefore unlikely to be well suited

to these new technologies, transformation with DNA transgenes will be

required.

1.3. Altered mutation profile from transgene-free treatment
with CRISPR/Cas

Many groups have now reported on their experience using various method-

ologies to achieve genome modification by CRISPR/Cas in C. elegans;

these approaches have included expressing the CRISPR/Cas reagents from

a transgene, typically for a full generation; delivering the reagents as mRNA

and guide RNA; or even direct injection of the guide RNA with Cas9 pro-

tein (Chiu et al., 2013; Cho, Lee, Carroll, & Kim, 2013; Dickinson, Ward,

Reiner, & Goldstein, 2013; Friedland et al., 2013; Katic & Grosshans, 2013;

Liu et al., 2014; Lo et al., 2013; Waaijers et al., 2013; Zhao, Zhang, Ke,

Yue, & Xue, 2014). From these reports, it has become apparent that there

are important differences between the use of transformation and transgene-

free approaches for performing CRISPR/Cas regarding the types of muta-

tions most frequently recovered.

Considering only those mutations recovered on the basis of a visible phe-

notype, rather than identified molecularly on the basis of altered sequence at

the targeted site, most of the mutations induced in C. elegans by

CRISPR/Cas cleavage using DNA transgenes were very small insertions

or deletions (Friedland et al., 2013; Liu et al., 2014; Waaijers et al.,

2013). By contrast, several groups have reported that the mutations induced

by transient application of CRISPR/Cas reagents, whether by direct injec-

tion of guide RNAs with Cas9 mRNA or by direct injection of Cas9

protein, showed a strong preference for very large deletions or even chro-

mosomal rearrangements (Chiu et al., 2013; Cho et al., 2013; Lo et al.,

2013); others reported mixed results or reported finding only small deletions

and insertions (Katic & Grosshans, 2013; Liu et al., 2014). These large
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alterations have the advantage of generating mutations that are extremely

likely to be molecular nulls, but these mutations are much more difficult

to detect molecularly, if they cannot be recovered on the basis of a predict-

able viable visible phenotype. Molecular approaches to detecting changes

induced by CRISPR/Cas rely on PCR amplification of the locus so that

alterations can be detected using mismatch detection, by altered restriction

digestion, or by a difference in amplicon size; large deletions of the sort pref-

erentially seen with transgene-free CRISPR/Cas in C. elegans usually lack

the primer-binding sites required for this amplification, and so such muta-

tions are likely to be missed (Fig. 20.1). When genes are being targeted

mutants of which cannot be screened for phenotypically, it may be helpful

to use available template-directed repair knock-in strategies (Chen, Fenk, &

sgRNA homology
250 bp

dpy-11

CCTTGCAAGCTGGGCACCATGGAGCATGGCTGWild type

CCTTGCAAGCTGGGCACC-------ATGGCTGMutant sy741

CCTTGCAAGCTGGGCACCAT-(546 bp Δ)-Mutant sy748

CCTTG-----------------------GCTGMutant sy740

PCR amplicon for genotyping

Deleted in sy748

( >3kb deletion )Mutant sy749

Figure 20.1 A schematic representation of the dpy-11 locus of C. elegans. The position
of the site selected for cleavage by targeted CRISPR/Cas activity is indicated. Note that
the targeted site was within an early exon of the gene, to make it more likely that any
resulting mutations would strongly disrupt gene function. Partial sequences of the wild
type and of selected mutants isolated after CRISPR/Cas treatment targeting this site are
shown (Chiu et al., 2013). In these sequences, the 20 nucleotides immediately prior to
the NGG motif that were incorporated into the sgRNA used to target this locus are
bolded. Although in this instance mutants were isolated on the basis of their mutant
phenotype, it would have been possible to screen for molecular changes at this site,
for example, by using PCR to amplify a small (600 nucleotide) region centered on
the targeted site and testing for cleavage using NcoI (recognition sequence CCATGG).
Note that this approach would only have recovered one of the four mutants shown,
sy740; sy748 and sy749mutant chromosomes would lack at least one of the primer bind-
ing sites used in the PCR amplification andwould not be represented in the PCR product
(compare the hypothetical PCR amplicon and the extent of the deletion sy748 in the
figure), and the seven nucleotide deletion in sy741 destroys the endogenous NcoI site
but the resulting sequence change generates a new NcoI site.
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de Bono, 2013; Dickinson et al., 2013; Tzur et al., 2013; Zhao et al., 2014)

in order to increase the likelihood of generating a lesion of predicable and

easily detected molecular structure.

1.4. A note on specificity of CRISPR/Cas cleavage
There is considerable controversy regarding the specificity of mutations gen-

erated using CRISPR/Cas. Several studies have suggested CRISPR/Cas

nuclease activity may frequently generate mutations at sites other than the

one targeted for cleavage (Fu et al., 2013; Hsu et al., 2013; Pattanayak

et al., 2013). Conversely, in our study we used whole-genome sequencing

to assess the specificity of CRISPR/Cas activity when delivered by injection

of in vitro synthesized RNAs in C. elegans, and did not observe frequent off-

site changes (Chiu et al., 2013). It is conceivable thatC. elegans for unknown

reasons displays high specificity for CRISPR/Cas, or that the induction of

mutations using transient delivery of CRISPR/Cas reagents inclines toward

high specificity; even if so, off-target cleavage events might easily be more

common in other species. If extremely high specificity is required, the

researcher may wish to look into cleaving with two CRISPR/Cas com-

plexes, each targeted very close to the other and targeting single-strand

nickase activity or dimerizing Fok1 activity, such that binding at both sites

is required to effect a double-strand break (Cho et al., 2014; Mali, Aach,

et al., 2013; Ran et al., 2013; Tsai et al., 2014).

2. EQUIPMENT

Oligonucleotide synthesis service

DNA sequencing service

Microcentrifuge

UV spectrophotometer (e.g., NanoDrop)

Water bath

37 �C Incubator

�20 �C Freezer

�80 �C Freezer

PCR machine

Dissecting microscope

Bunsen burner

Needle puller

Inverted microscope with microinjection equipment
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Agarose slab gel apparatus

Power supply

UV transilluminator

3. MATERIALS

Addgene plasmid 47911 SP6-hCas9-Ce-mRNA

Addgene plasmid 47912 SP6-sgRNA-scaffold

Restriction enzymes AflII and KpnI-HF, and accompanying incubation

buffers

Phusion DNA polymerase (NEB)

QIAquick PCR Purification Kit (Qiagen)

QIAquick Gel Extraction Kit (Qiagen)

Gibson cloning kit (NEB)

MAXIscript SP6 Transcription Kit (Life Technologies)

mMESSAGE mMACHINE SP6 Transcription Kit (Life Technologies)

PolyA Tailing Kit (Life Technologies)

TURBO DNase (Life Technologies)

Ampicillin-sensitive transformation-competent E. coli (e.g., CaCl2-

competent DH5α)
Deoxynucleotide triphosphates (dNTPs)

RNase-free water

NGM agar

LB broth, LB agar

Agarose

Ethidium bromide (or alternative DNA visualization reagent)

Micropipettors

Micropipette tips

0.5 and 1.5-ml microcentrifuge tubes

250-μl PCR tubes

6 and 10 cm diameter Petri plates

Microcapillaries for the preparation of microinjection needles

Cover glasses for microinjection (24�50 mm)

20-μl micropipettes with mouth pipettor

4. IDENTIFYING A TARGET SEQUENCE

Look in your gene for suitable candidate target sites; when using the

Streptococcus pyogenesCas9 enzyme, these should be a 23 nucleotide sequence
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ending withNGG. The site can be on either strand, so also seek out 23mer

sequences starting with CCN. Cleavage will happen close to the end of the

20mer that precedes theNGG (after position 17). To ensure that mutations

are likely to be strong loss-of-function alleles you should look within the

coding sequence, ideally near to the 50-end. The eventual sequence will

be transcribed in vitro using SP6 RNA polymerase, which requires that

the sequence start with a G (preferably with a GA or GG); however, this

is not a consideration in identifying a target side, as if the endogenous 50-
end of the 23 nucleotide sequence is not a G then it can be replaced with

a G or a G can be appended to the 50-end.
Having compiled a list of candidates, use BLAST homology searches to

identify target sites that do not have excessive homology to other, off-target

sites in the genome. Note that it may be necessary to adjust the settings of

your BLAST query for low stringency so that it will return results with

appropriately weak homology; if running BLAST from the command line,

include the argument “-word_size 7.” Even the targeted site will only have

an E-value on the order of e-05; any candidate off-target sites with an

E-value less than 1 should be examined according to the criteria below. Tar-

get recognition and cleavage by CRISPR/Cas is most strongly influenced

by sequences close to the 30-end of the 20 nucleotides preceding the

NGG, and the terminal GG sequence is required. Similar sequences else-

where in the genome are common, with perfect matches of 15 nucleotides

in a row being a common occurrence, but it should be readily feasible to

identify a site for which such extended stretches of homology do not include

nucleotides at or close to the 30-end of the 20 nucleotides preceding the

NGG, or that have high similarity but are not followed byNGG, indicating

that these are not strong candidates for off-target cleavage by CRISPR/Cas.

Note that there is another method tomaximize specificity, instead of seeking

sites with minimal sequence identity to other sites in the genome: as men-

tioned above, it is possible to modify the CRISPR/Cas cleavage protocol to

replace the double-strand DNA cleavage activity with single-strand nickases

or dimerizing FokI nuclease, such that two sites in close proximity must be

recognized for a double-strand break to occur.

Another consideration is your ability to screen molecularly for any

mutations you generate. If you can identify a cleavage site that is within or

extremely close to the recognition sequence for a restriction enzyme (and

one that does not also cleave again very close to the target site), PCR ampli-

fication of the target region followed by digestionwith that restriction enzyme

should readily detect lesions that destroy the recognition site.
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5. GENERATING YOUR sgRNA CONSTRUCT

5.1. Oligonucleotide design
You will be using Gibson cloning to insert the first 20 nucleotides of your

23 nucleotide target ending in NGG into the vector SP6-sgRNA-scaffold.

To do this, you will first order the synthesis of two oligos:

Forward oligo: Examine the first 20 nucleotides of your 23 nucleotide tar-

get site: this, or a modified version of this, will be incorporated into an oli-

gonucleotide and cloned into an sgRNA expression vector—the final three

nucleotides present in the genomic target site, the NGG, will not be

included in this oligonucleotide or in this construct. If the first two of these

20 nucleotides are not either GA or GG, either replace these two nucleo-

tides with GA or add a G or GA to the 50-end of this 20 nucleotide

sequence. Now, order the synthesis of an oligonucleotide that has this 20,

21, or 22 nucleotide sequence appended to the 30-end of the sequence pro-
vided immediately below:

GATCCCCCGGGCTGCAGGAATTCATTTAGGTGACACTATA

Reverse oligo: Determine the reverse-complement of the sequence you

appended to the 30-end of the sequence provided above. Order the synthesis

of an oligonucleotide that has this reverse-complement sequence appended

to the 30-end of the sequence immediately below:

GACTAGCCTTATTTTAACTTGCTATTTCTAGCTCTAAAAC

5.2. Insert generation
Mix the following in a 250-μl PCR tube:

10.0 μl of 5� Phusion buffer

15.0 μl of 1 mM dNTPs

2.5 μl of 10 μM forward primer

2.5 μl of 10 μM reverse primer

19.5 μl H2O

0.5 μl Phusion polymerase

Perform PCR according to the following program:

(1) 94.5 �C—30

(2) 94.5 �C—2000

(3) 47 �C—2500

(4) 72 �C—2500

(5) Goto step 2, four times
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(6) 94.5 �C—2000

(7) 50 �C—2500

(8) 72 �C—2500

(9) Goto step 6, four times

(10) 94.5 �C—2000

(11) 53 �C—2500

(12) 72 �C—2500

(13) Goto step 10, 19 times

(14) 72 �C—100

(15) 4 �C—400

(16) 15 �C—until stopped

Use QIAquick PCR Purification Kit to clean up the product according to

manufacturer’s protocol. At the end of the process, apply 10 μl ddH2O

heated to 70 �C to the column, centrifuge to collect eluate, and repeat once,

collecting the eluate in the same tube. Store at �20 �C until linearized vec-

tor is available.

5.3. Preparation of linearized vector for the sgRNA construct
Mix the following in a 1.5-ml microcentrifuge tube:

4 μl of 10� NEB CutSmart buffer

5 μl of 500 ng/μl SP6-sgRNA-scaffold

29 μl H2O

2 μl AflII restriction enzyme (20 units/μl)
Incubate in 37 �Cwater bath for 4 h. Run product on a 0.8% agarose gel and

purify using QIAquick Gel Extraction Kit according to manufacturer’s pro-

tocol. At the end of the process, apply 16 μl ddH2O heated to 70 �C to the

column, centrifuge to collect eluate, and repeat once, collecting the eluate in

the same tube. Store at �20 �C and use aliquots as needed.

5.4. Construction and identification of sgRNA synthesis
plasmid

Mix the following in a 250 μl PCR tube:

3 μl of 2� Gibson reaction mix

1 μl Purified AflII-digested SP6-sgRNA-scaffold (see Section 5.3)

2 μl Purified Phusion PCR product (see Section 5.2)

Incubate 1 h at 50 �C using a PCRmachine with heated lid. It may be desir-

able to do a control Gibson reaction with no insert. Use at least half of the

Gibson product to transform competent E. coli (for example, CaCl2-
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competent DH5α) according to standard methods (Seidman, Struhl,

Sheen, & Jessen, 2001). Plate transformants on LB plates containing ampi-

cillin or carbenicillin and grow overnight at 37 �C. Pick several (at least six)
individual colonies and grow in 2–5 ml LB broth containing ampicillin or

carbenicillin. Prep plasmid DNAminipreps by alkaline lysis and ethanol pre-

cipitation (Engebrecht, Brent, & Kaderbhai, 2001). Perform test digests

using AflII by mixing the following in a 1.5-ml microcentrifuge tube or a

250-μl PCR tube:

2.0 μl of 10� NEB CutSmart buffer

1.0 μl (�500 ng) Miniprep DNA

16.8 μl H2O

0.2 μl AflII restriction enzyme (20 units/μl)
Incubate in 37 �Cwater bath, heat block, or PCRmachine for 2 h. Run the

product on 0.8% agarose slab gel to identify colonies whose minipreps were

not linearized by AflII digest; these will be the colonies that have incorpo-

rated your insert and can be used to synthesize sgRNA. Errors are infre-

quently introduced in the amplification or cloning process; it may be

desirable to confirm the DNA sequence of the clone you use prior to per-

forming CRISPR/Cas treatment. Sequencing can be done using a T3

sequencing primer, keeping in mind that the minipreps produced by alkaline

lysis were pure enough for restriction digestion but that DNA should be fur-

ther purified for sequencing. Sequencing can wait until the end of

Section 6.1.

6. IN VITRO SYNTHESIS OF sgRNA

6.1. Linearization of sgRNA template plasmid
By the end of step 5, you will have generated and miniprepped plasmids for

in vitro transcription of your sgRNA. Before transcribing from these plasmids

you should linearize them. If you have not yet confirmed the DNA sequence

of your finished sgRNA template plasmid, you may wish to linearize more

than one clone. Youwill later require linearized SP6-hCas9-Ce-mRNAplas-

mid, which can be prepared identically and simultaneously (see Section 7.1).

Mix the following in a 1.5-ml microcentrifuge tube:

5 μl of 10� NEB CutSmart buffer

12 μl (�6 μg) Miniprep DNA (from clone that was not linearized by

AflII)

31 μl H2O

2 μl KpnI-HF restriction enzyme (20 units/μl)
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Incubate in 37 �C water bath for 4 h. Purify with QIAquick PCR Purifica-

tion Kit or run on a 0.8% agarose slab gel and purify with QIAquick Gel

Extraction Kit. At the end of the process, apply 9 μl RNase-free water

heated to 70 �C to the column, centrifuge to collect eluate, and repeat once,

collecting the eluate in the same tube. Product can be stored at �20 �C.
Determine DNA concentration using an UV spectrophotometer. If the

DNA sequence of the template plasmid has not been determined, submit

part of the purified sample(s) for sequence determination prior to the

next step.

6.2. In vitro transcription to generate sgRNA
Use MAXIscript SP6 Transcription Kit according to manufacturer’s proto-

col; briefly, combine the following in a 1.5-ml microcentrifuge tube:

250 ng linearized sgRNA template DNA, plus RNase-free water, total-

ing 8 μl
2 μl of 10� Reaction buffer

2 μl each ATP, CTP, GTP, and UTP solutions

2 μl Enzyme mix

Incubate in 37 �C water bath for 3 h. Optionally, treat reaction mix with

DNase according to manufacturer’s protocol. Proceed immediately to

next step.

6.3. Purification of in vitro-transcribed sgRNA
Use MEGAclear Transcription Clean-Up Kit according to manufacturer’s

protocol. Elute with 30 μl RNase-free water and repeat once, collecting

eluate in same tube. Determine RNA concentration using UV spectropho-

tometer. Store in aliquots in a �80 �C freezer.

7. IN VITRO SYNTHESIS OF hCas9 mRNA

7.1. Linearization of SP6-hCas9-Ce-mRNA plasmid
If you have not already linearized the SP6-hCas9-Ce-mRNA plasmid, do so

now, similarly to the procedure in Section 6.1. Mix the following in a 1.5-

ml microcentrifuge tube:

5 μl of 10� NEB CutSmart buffer

8 μl (500 ng/μl) SP6-hCas9-Ce-mRNA plasmid

35 μl H2O

2 μl KpnI-HF restriction enzyme (20 units/μl)
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Incubate in a 37 �C water bath for 4 h. Purify with QIAquick PCR Puri-

fication Kit or run on an 0.8% agarose slab gel and purify withQIAquick Gel

Extraction Kit. At the end of the process, apply 9 μl RNase-free water

heated to 70 �C to the column, centrifuge to collect the eluate, and repeat

once, collecting the eluate in the same tube. Product can be stored at -20 �C.

7.2. In vitro transcription of hCas9 mRNA
Use mMESSAGE mMACHINE SP6 Transcription Kit according to the

manufacturer’s protocol. Briefly, mix in a 1.5-ml microcentrifuge tube:

6 μl Purified linearized SP6-hCas9-Ce-mRNA plasmid

10 μl NTP/CAP solution

2 μl of 10� Buffer

2 μl Enzyme mix

Incubate in 37 �C water bath for 4 h. Add 1 μl TURBO DNase and incu-

bate in a 37 �Cwater bath for 15 min. Immediately proceed to the next step.

7.3. Polyadenylation of in vitro-transcribed hCas9 mRNA
Use the PolyA Tailing Kit according to the manufacturer’s protocol. Briefly,

mix in a 1.5-ml microcentrifuge tube:

20 μl DNase-treated reaction mix

36 μl RNase-free water

20 μl of 5� E-PAP buffer

10 μl of 25 mM MnCl2
10 μl of 10 mM ATP

4 μl E-PAP enzyme

Incubate in 37 �C water bath for 1 h. Proceed immediately to next step.

7.4. Purification of in vitro-transcribed, polyadenylated
hCas9 mRNA

Use MEGAclear Transcription Clean-Up Kit according to manufacturer’s

protocol. Elute with 30 μl RNase-free water and repeat once, collecting

eluate in the same tube. Determine the RNA concentration using a UV

spectrophotometer. Store in aliquots in a �80 �C freezer.

8. INJECTION OF sgRNA AND mRNA

You will prepare a mixture of hCas9 mRNA and sgRNA. Note

that in order to enhance your ability to molecularly identify any resulting
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mutation events, it may be desirable to include a template for homology-

directed repair of the double-strand breaks induced by CRISPR/Cas activ-

ity; several groups have published relevant methods (Chen et al., 2013;

Dickinson et al., 2013; Tzur et al., 2013; Zhao et al., 2014).

In preparing your mixture, we recommend a ratio of sgRNA concen-

tration to mRNA concentration of approximately 1:4 to 1:8, and have thus

far found the best results when injecting the highest concentration we could

readily achieve—concentrations on the order of 100 ng/μl sgRNA and

800 ng/μl mRNA. Some DNA microinjection protocols call for the use

of a microinjection buffer (Mello & Fire, 1995); we did not find this to

be necessary. Having prepared the mixture, spin at maximum speed in a

microcentrifuge (�13,000 rcf ) for at least five minutes to clear the superna-

tant of any particulate matter, then heat the mixture briefly to 95 �C and

place it on ice. Themixture should remain on ice until it is loaded into injec-

tion needles.

For C. elegans and similar nematodes, follow standard microinjection

procedures (Mello & Fire, 1995), injecting to flood the germline syncytia

of young adults as is done for DNA transformation.

9. RECOVERY OF MUTANTS GENERATED USING
CRISPR/Cas

9.1. Recovery and plating of injected animals
After being injected, animals can be floated in M9 buffer and transferred

using a 20 μl micropipette and a mouth pipettor to Petri plates containing

NGM that have been seeded with a bacterial food source. After the animals

have visibly recovered, individual injected animals or a small number per

Petri plate should be transferred to new seeded NGM Petri plates in prep-

aration for screening their progeny. Mutations induced by injection of

CRISPR/Cas mRNA and sgRNA inC. eleganswill be found at highest fre-

quency among the progeny produced between 8 and 16 h postinjection, and

essentially none will be recovered among the progeny produced more than

24 h postinjection (Katic & Grosshans, 2013; Liu et al., 2014). It is therefore

recommended that injected animals should be transferred from their recov-

ery plate up to 8 h after being injected, and they should be discarded

between 16 and 24 h postinjection, leaving behind the progeny they pro-

duced during their time on the plate.
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9.2. Identification of animals carrying mutations induced
by CRISPR/Cas

Induced visible mutants of C. elegans can be recovered by examining the F2
progeny of injected animals for expression of the expected phenotype. If no

visible phenotype can be predicted, or if homozygosity and expression of the

visible phenotype is expected to be associated with an inviable phenotype

such as sterility, it will be necessary to clone out individual F1 progeny of

injected animals, permit them to produce progeny, and to screen molecu-

larly for mutations at the targeted site. This protocol will not describe in

detail the methods involved in molecular detection of mutation events;

briefly, the options include targeting for mutation an endogenous restriction

site, such that any alteration will result in a PCR product that cannot be

cleaved by the corresponding restriction enzyme (Friedland et al., 2013);

mismatch detection methods such as the CEL-I Surveyor method

(Colbert et al., 2001); recombinant CRISPR/Cas targeting the wild-type

sequence (Kim, Kim, Kim, & Kim, 2014); or the inclusion of a template

for homology-directed repair of the induced double-strand DNA break,

such that repair events will produce a predictable and readily detectable

sequence change. The addition of a second sgRNA previously demonstrated

to reliably induce mutations in another gene that cause a visible phenotype,

and screening for mutations in your targeted site only among animals dis-

playing that visible phenotype, can enrich for the presence of mutations

in the targeted site (Kim, Ishidate, et al., 2014).

Regardless of howmutations are detected, care should be taken to track all

candidates back to the injected animal or small pool of injected animals that

gave rise to them. If twomutants are recovered derived from the same injected

animal or animals, these may not represent independent mutation events.
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Abstract

Targeted modification of plant genome is key to elucidating and manipulating gene
functions in plant research and biotechnology. The clustered regularly interspaced short
palindromic repeats (CRISPR)/CRISPR-associated protein (Cas) technology is emerging
as a powerful genome-editing method in diverse plants that traditionally lacked facile
and versatile tools for targeted genetic engineering. This technology utilizes easily
reprogrammable guide RNAs (sgRNAs) to direct Streptococcus pyogenes Cas9 endonu-
clease to generate DNA double-stranded breaks in targeted genome sequences, which
facilitates efficient mutagenesis by error-prone nonhomologous end-joining (NHEJ) or
sequence replacement by homology-directed repair (HDR). In this chapter, we describe
the procedure to design and evaluate dual sgRNAs for plant codon-optimized Cas9-
mediated genome editing using mesophyll protoplasts as model cell systems in
Arabidopsis thaliana and Nicotiana benthamiana. We also discuss future directions in
sgRNA/Cas9 applications for generating targeted genome modifications and gene reg-
ulations in plants.
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1. INTRODUCTION

The CRISPR/Cas9 technology is derived from the bacterial type-II

CRISPR/Cas adaptive immune system ( Jinek et al., 2012). The technology

uses a single chimeric guide RNA (sgRNA) containing a 20-nt guide

sequence to direct coexpressed Streptococcus pyogenes Cas9 endonuclease to

an intended genomic N20NGG sequence through base pairing. Two sepa-

rate nuclease domains of Cas9 each cleave one DNA strand to generate a

DSB in the targeted sequence. During the DSB repair, site-specific gene

mutagenesis or replacement can be obtained via the NHEJ pathway or

homologous recombination pathway, the later depending on the availability

of a DNA repair template (Cong et al., 2013; Li et al., 2013; Mali et al.,

2013). Among the designer nucleases for genome editing, the CRISPR/

Cas9 system exhibits unparalleled simplicity and multiplexibility in genome

editing because sgRNAs can be easily modified to achieve new DNA bind-

ing specificities and multiple sgRNAs can work simultaneously with the

same Cas9 nuclease on many different target sites (Gaj, Gersbach, &

Barbas, 2013; Li et al., 2013; Sander & Joung, 2014).

Effective delivery of genome-editing reagents, including Cas9 nucleases,

sgRNAs, and homologous recombination DNA donors, is key to the high

efficiency of targeted genome modification, which remains challenging for

most plant cells that are enclosed in cell walls. In this chapter, we describe the

detailed procedure for designing and evaluating constructs using the

CRISPR/Cas9 system for genome editing in Arabidopsis thaliana and

tobacco (Nicotiana benthamiana) mesophyll protoplasts (Fig. 21.1), which

support highly efficient DNA transfection and RNA and protein expression

(Li, Zhang, & Sheen, 2014; Yoo, Cho, & Sheen, 2007). The procedure is

potentially adaptable to diverse plant species that are amenable to protoplast

isolation and transfection (Li et al., 2014). Plant protoplasts offer a valuable

system for rapidly evaluating the performance of a given combination of

sgRNA and Cas9 at the genomic target site. To enhance the rate of gener-

ating null mutations, dual sgRNAs are designed and evaluated. We discuss

promising strategies to apply the CRISPR/Cas system for generating

targeted and inheritable genome modifications in plants. The CRISPR/Cas

system has the potential to generate loss-of-function mutations or desirable

modifications and regulations in virtually any plant genes and sequences to

elucidate their functions and regulatory mechanisms. The new technologies

also offer powerful genetic engineering tools to inactivate or modify desired

plant genes and traits for agricultural improvement.
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2. Cas9 AND sgRNA EXPRESSION

1. p35SPPDK-pcoCas9: a plant transient expression plasmid for expressing

the plant codon-optimized Streptococcus pyogenes Cas9 (pcoCas9) gene

(Li et al., 2013) under the constitutive and strong hybrid 35SPPDK pro-

moter (Fig. 21.2A). This hybrid plant promoter (Sheen, 1993) and

potentially the potato IV2 intron alleviated problems associated with

cloning of the pcoCas9 coding sequence in Escherichia coli. This plasmid

is available at Addgene (www.addgene.org; Plasmid #52254).

Figure 21.1 Unbiased sgRNA/Cas9-mediated genome editing in plant protoplasts. The
expression cassettes of Cas9 and sgRNA are shown. Plant codon-optimized Cas9
(pcoCas9) is fused to dual nuclear localization sequences (NLSs) and FLAG tags. The con-
stitutive 35SPPDK promoter and the Arabidopsis U6-1 promoter were used to express
pcoCas9 and sgRNA, respectively, in protoplasts. NGG, the protospacer adjacent motif
(PAM), in the target sequence is highlighted in red. The diagram illustrates the key pro-
cedure to generate and evaluate Cas9/sgRNA-mediated genome editing in Arabidopsis
and tobacco protoplasts. Yellow arrows indicate the leaves at optimal developmental
stage for protoplast isolation from 4-week-old plants. Scale bar¼2 cm. In the target
region, the target sequence of N20 and NGG (the PAM) are represented in cyan and
red, respectively. Genomic DNA from protoplasts was PCR amplified and cloned into
a sequencing vector. E. coli colonies were picked randomly for PCR amplification and
sequencing.
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Figure 21.2 Expression plasmid maps. (A) p35SPPDK-pcoCas9 plasmid for protoplast
transient expression. (B) Binary plasmid pFGC-pcoCas9 for Agrobacterium-mediated sta-
ble or transient expression analyses.
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2. pUC119-sgRNA: the plasmid serves as the PCR template to assemble

the expression cassette of a new sgRNA with desired DNA targeting

specificity. It harbors the Arabidopsis U6-1 promoter (Li et al., 2007;

Waibel & Filipowicz, 1990), an RNA polymerase III promoter required

for sgRNA expression, a sgRNA targeting to the Arabidopsis PDS3 gene

(target site: 50 GGACTTTTGCCAGCCATGGTCGG 30), and a

“TTTTTT” transcription terminator (Li et al., 2013). This plasmid is

available at Addgene (Plasmid #52255).

3. pFGC-pcoCas9: a binary plasmid expressing pcoCas9 under the

35SPPDK promoter and containing multiple cloning sites (MCSs) for

inserting single or multiple sgRNA expression cassettes (Fig. 21.2B).

This plasmid is designed for Agrobacterium-mediated DNA delivery to

the plant nuclei and available at Addgene (Plasmid #52256). Sequencing

primer (sequencing from EcoRI toward SmaI): 50 AATAAAAACTG
ACTCGGA 30.

3. DUAL sgRNA-GUIDED GENOME EDITING

3.1. Designing and constructing dual sgRNAs
1. Select a pair of closely located sgRNA targets in an Arabidopsis gene of

interest (see Note 1) by referring to a preexisting database of Arabidopsis

gene-specific sgRNA targets (Li et al., 2013) or a sgRNA target

list generated upon request via the CRISPR-Plant web server

(Xie, Zhang, & Yang, 2014, www.genome.arizona.edu/crispr/

CRISPRsearch.htmL; see Note 2).

2. Design PCR primers for PCR-based seamLess assembly of new

sgRNA expression cassettes (Li et al., 2013; see Notes 3 and 4).

3. Generate expression cassettes of sgRNAs, including the U6-1 pro-

moter, sgRNA, and the terminator, by an overlapping PCR strategy

(see Note 5) using Phusion high-fidelity DNA polymerase

(Li et al., 2013).

4. Insert one sgRNA expression cassette into any MCSs of a vector (e.g.,

pUC119-MCS, Addgene Plasmid #58807) to obtain the pUC119-

one-sgRNA plasmid by restriction digestion of both the vector and the

final PCR products with the same restriction enzyme(s) and subsequent

ligation. TheMCS are EcoRI, XhoI, BamHI, XbaI, AscI, EcoRV, SacI,

PacI, I-CeuI, PstI, KpnI, SmaI, SalI, StuI, HindIII, and AscI.

5. Transform E. coli and inoculate a few single colonies from ampicillin-

containing LB solid medium for plasmid miniprep.
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6. Verify sequence accuracy of the cloned sgRNA expression cassette by

Sanger sequencing.

7. Insert a second sgRNA expression cassette into the MCSs of the

pUC119-one-sgRNA plasmid to obtain the pUC119-dual-sgRNA plas-

mid by restriction digestion and subsequent ligation (see Note 6).

8. Transform E. coli and inoculate a few single colonies on ampicillin-

containing LB solid medium for plasmid miniprep.

9. Verify sequence accuracy of the second sgRNA expression cassettes in

the pUC119-dual-sgRNA plasmid by Sanger sequencing.

10. To obtain high plasmid DNA yield, retransform E. coli with the

pUC119-dual-sgRNA plasmid and the p35SPPDK-pcoCas9 plasmid

(Addgene plasmid #52254), respectively.

11. Scrape off overnight grown bacteria from the ampicillin-containing LB

plate into 200 mLof Terrific brothwith ampicillin using a sterile dispos-

able inoculating loop and shake the culture vigorously at 37 �C for 8 h.

12. Maxiprep the plasmid DNA of both constructs (see Note 7).

3.2. Transfecting and expressing Cas9/sgRNAs in protoplasts
1. Mix 10 μL of the p35PPDK-pcoCas9 plasmid (2 μg/μL) and 10 μL of

the pUC119-dual-sgRNA plasmid (2 μg/μL) in a 2-mL round-bottom

microcentrifuge tube (see Note 8).

2. Add 200 μL of protoplasts (40,000 cells) to the microcentrifuge tube

containing the DNA cocktail. Arabidopsis and tobacco mesophyll pro-

toplasts are isolated by the established protocol (Yoo et al., 2007).

3. Add 220 μL of PEG4000 solution (40% PEG4000, v/v, 0.2 M manni-

tol, 100 mM CaCl2; Yoo et al., 2007) and gently tap the bottom of the

tube a few times to completely mix DNA, protoplasts and PEG

solution.

4. Incubate the transfection mixture at room temperature for 5 min.

5. Stop transfection by gently adding 800 μL of W5 solution (154 mM

NaCl, 125 mM CaCl2, 5 mM KCl, 2 mM MES, pH 5.7; Yoo et al.,

2007) to the tube and inverting the tube twice.

6. Centrifuge the tubes at 100� g for 2 min using a CL2 clinical centrifuge

and remove the supernatant without disturbing the protoplast pellet

(see Note 9).

7. Add 100 μL of W5 solution to resuspend the protoplasts.

8. Coat a 6-well culture plate with 5% bovine calf serum, remove the

serum and add 1 mL of W5 or WI solution (0.5 M mannitol, 4 mM

MES, pH 5.7, 20 mM KCl; Yoo et al., 2007) to each well.
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9. Transfer transfected protoplasts to one well of the 6-well plate and mix

well with the W5 or WI solution.

10. Incubate transfected protoplasts in the dark at 23–25 �C up to 36 h by

covering the plate with aluminum foil.

3.3. Evaluating the frequency of targeted genome
modifications

1. Design and synthesize a pair of genomic PCR primers (PCR FP and

PCR RP, Fig. 21.1) for amplifying a �300-bp genomic region cover-

ing the two sgRNA target sites in the target gene and introduce restric-

tion sites into the forward primer and the reverse primer, respectively

(see Note 10).

2. Transfer protoplasts from the 6-well plate to a 1.5 mL microcentrifuge

tube and harvest protoplasts by centrifugation at 100� g for 2 min using

a CL2 clinical centrifuge and subsequent removal of the supernatant.

3. Freeze protoplasts immediately in liquid nitrogen.

4. Add 50 μL of sterile water to resuspend protoplasts by vortexing.

5. Heat resuspended protoplasts at 95 �C for 10 min.

6. Take 2 μL of heated protoplast suspension as the PCR template to

amplify the genomic target region in a 50 μL volume using Phusion

high-fidelity DNA polymerase.

7. Purify PCR products corresponding to the expected genomic

amplicons and digest the PCR products with restriction enzymes at

37 �C for 1–3 h before cloning into any sequencing vector.

8. Transform E. coli and the next day randomly select 20–30 single colo-

nies from ampicillin-containing LB solid medium for plasmid

miniprep.

9. Conduct Sanger sequencing for plasmids extracted from individual

colonies.

10. Visualize genome modifications in the target sequence by aligning

DNA sequencing results to the native genomic target sequence

(Fig. 21.3).

11. Calculate genomemodification frequency using the following formula:

genome modification frequency¼ (number of mutant colonies/num-

ber of total sequenced colonies)�100%.

12. After evaluation of the editing efficacy mediated by several different

pairs of sgRNAs for the target gene of interest in Arabidopsis and

tobacco protoplasts, the most efficient sgRNA pair can be further used

for generating targeted modifications in the desired genes in Arabidopsis

and tobacco plants to obtain inheritable mutations (Fauser, Schiml, &
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Puchta, 2014; Feng et al., 2014; Nekrasov, Staskawwicz, Weigel,

Jones, & Kamoun, 2013). A commonly used strategy is to clone the

Cas9 and sgRNA expression cassettes into a single binary vector and

then generate transgenic Arabidopsis plants stably expressing Cas9 and

two sgRNAs using the Agrobacterium-mediated floral-dip transforma-

tion method (Fauser et al., 2014; Feng et al., 2014). The T1 transgenic

Arabidopsis will express Cas9 and two sgRNAs to facilitate mutagenesis

in the target gene predominantly in somatic cells and occasionally in

shoot apical meristem cells and germ line cells, and the latter can even-

tually lead to heritable homozygous mutations in the target gene in

some of the T2 transgenic Arabidopsis (Fauser et al., 2014; Feng

et al., 2014). A DNA repair donor with homology to the target region

can also be codelivered into transgenic Arabidopsis via the same binary

plasmid (De Pater, Pinas, Hooykaas, & van der Zaal, 2013) to facilitate

homologous recombination-mediated genome modifications in trans-

genic Arabidopsis. Currently, the entire procedure to generate and

screen targeted homozygous mutatants is time and labor consuming.

Integration of Cas9 and sgRNA expression cassettes into theArabidopsis

Figure 21.3 Representative results of dual sgRNA/Cas9-mediated genome editing in
protoplasts. Dual sgRNA-induced mutagenesis in the AtBON1 and NbPDS genes in Ara-
bidopsis and tobacco protoplasts, respectively. A black line marks each target sequence
in the AtBON1 and NbPDS genes. The protospacer adjacent motif “NGG” is in red (gray in
the print version). Nucleotide deletions and substitution are shown in red (gray in the
print version) as dashes and lower case letter, respectively.
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genome and constant production of these genome-editing reagents,

even after the generation of intended site-specific mutagenesis, may

increase risk of off targets but could be genetically segregated.

4. PERSPECTIVES

Rapid advances in less than a year have demonstrated that the

CRISPR/Cas9 technology is applicable in protoplasts, callus tissues and

intact plants in diverse plant species (Baltes, Gil-Humanes, Cermak,

Atkins, & Voytas, 2014; Fauser et al., 2014; Feng et al., 2014; Li et al.,

2013; Miao et al., 2013; Nekrasov et al., 2013; Shan et al., 2013; Sugano

et al., 2014; Xie et al., 2014). It is conceivable that the new genetic engi-

neering tools could be established in all plant species amenable to transient

or stable gene expression manipulations. The available data suggest that

mutagenesis rates appear to be much higher in tobacco and rice protoplasts

with higher deletion events than in Arabidopsis protoplasts using similar

pcoCas9 and sgRNA designs (Li et al., 2013; Shan et al., 2013). Although

homozygous mutants have been obtained in transgenic Arabidopsis plants

(Fauser et al., 2014; Feng et al., 2014), it is possible to further enhance

the mutagenesis rates using dual sgRNAs demonstrated here (20% in

Arabidopsis and 63% in tobacco; Fig. 21.3; Li et al., 2013). Manipulation

of DNA repair pathways (Qi et al., 2013) and the introduction of

geminivirus-based DNA replicons expressing Cas9, sgRNAs, and donor

DNA templates offer promising strategies to further enhance mutagenesis

rates and HDR-based gene replacement (Baltes et al., 2014). Recent

improvement in tissue culture methods is promising in converting

Arabidopsis protoplasts harboring targeted genome modifications into plants

through regeneration (Chupeau et al., 2013). Coexpression of sgRNA and

Cas9 by DNA or RNA bombardment and agroinfiltration in regenerating

tissues, meristems, embryos or germ cells may potentially broaden the plant

range accessible to genome editing.

Several issues remain to be addressed to achieve robustness, versatility

and specificity in targeted genome editing and gene expression manipulation

using the sgRNA/Cas9 system and its derivatives as transcription activators

and repressors, chromosomal locators, and epigenome regulators. Although

off-target mutations do not appear to be prevailing based on the limited cases

examined in plant cells (Feng et al., 2014; Nekrasov et al., 2013; Shan et al.,

2013) and can potentially be outcrossed, genome-wide sequencing in

targeted mutants remains the most thorough and comprehensive option
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to precisely detect and critically evaluate off-target sites in each plant species.

To improve specificity, it is necessary to systematically evaluate the “seed”

sequences of sgRNAs and test truncated sgRNA designs and paired nickases

(Sander & Joung, 2014). The effects of sgRNA sequences and target sites,

paired sgRNA configurations (Fig. 21.3), protospacer adjacent motif

(PAM) numbers, distance and locations in the genome, alternative PAM

sequences, as well as chromatin structures and modifications may all contrib-

ute to the efficiency and specificity. It is unexplored regarding the nuclear

retention, stability and sgRNA/Cas9 efficacy in different cell-types, organs,

developmental stages, and plant species.

One of the most exciting applications of the sgRNA/Cas9-based

genome-editing tools is the realization of simple and efficient homologous

recombination-based gene or sequence replacement, or creation of novel

plant genome designs that was out of reach in most plant species in the past.

As shown in tobacco protoplasts, short homologous sequences flanking the

sgRNA target site enabled a relatively high rate of gene replacement specif-

ically in the presence of a DNA donor template (Li et al., 2013). Further

improvement and refinement of the sgRNA/Cas9 technology will promise

unprecedented opportunities and innovations in plant research, breeding

and agriculture.

5. NOTES

1. Although targeting an Arabidopsis gene with a single sgRNA may be

sufficient in triggering loss-of-function mutagenesis in some cases,

we generally recommend using two closely targeting sgRNAs for a sin-

gle gene to trigger genomic deletion to ensure the disruption of target

gene function. However, single sgRNA may generate different mis-

sense or dominant gain-of-function mutations. As different sgRNAs

targeting to the same gene may work with variable efficiency due to

unknown factors, it is most desirable to evaluate three to four pairs

of sgRNAs for targeting the same gene using the simple and rapid pro-

toplast transient expression system (Li et al., 2013; Yoo et al., 2007). An

optimal pair of sgRNAs can be rapidly identified within a week for the

target gene prior to the time- and labor-consuming endeavor of gen-

erating CRISPR/Cas-mediated mutagenesis in plants with inheritable

and homozygous mutations. For targeted homologous recombination,
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we recommend the use of a single sgRNA whose target sequence is

overlapping with or closest to the intended genomic modification site

to reduce mutagenesis via NHEJ DNA repair.

2. The priority in sgRNA target selection should be given to the 50 exons
of target gene because mutagenesis in 30 exons or all the introns may not

lead to null mutations. There is currently no database or web server to

aid the prediction for gene-specific sgRNA target sites in

N. benthamiana. Genomic N20NGG sequences can be manually iden-

tified from a tobacco gene of interest as the sgRNA target sites based on

the draft genome sequence forN. benthamiana (http://solgenomics.net/

organism/Nicotiana_benthamiana/genome).

3. The RNA polymerase III promoter (e.g., Arabidopsis U6-1 promoter;

Waibel & Filipowicz, 1990) is required to drive sgRNA transcription.

Optimal transcription by the Arabidopsis U6-1 promoter is initiated

with “G”. Therefore, if the selected sgRNA target sequence

(N20NGG) is not initiated with “G” (N1 as “C”, “A” or “T”), an addi-

tional “G” should be introduced behind theArabidopsis U6-1 promoter

through the primer R1 using a sequence of 50 the reverse complement

of N20+CAATCACTACTTCGTCTCT 30 (Fig. 21.3B). The Ara-

bidopsis U6-26 promoter has been used successfully in transgenic plants

to obtain inheritable homozygous mutations in T2 generation (Fauser

et al., 2014; Feng et al., 2014).

4. Restriction sites of SacI, PacI, PstI, KpnI, SmaI, or HindIII in the

pUC119-MCS vector as cloning sites for multiple sgRNAs flanked

by two AscI sites are highly recommended, as sgRNAs can be easily

subcloned into the binary plasmid pFGC-pcoCas9 through AscI diges-

tion and insertion (Fig. 21.2B). Avoid using StuI in sgRNA cloning

because the Arabidopsis U6-1 promoter contains an internal StuI site.

5. A sgRNA expression cassette from the Arabidopsis U6-1 promoter to

the TTTTTT terminator flanked by desired restriction sites can also

be synthesized as a gBlocks Gene Fragment at Integrated DNA Tech-

nologies (www.idtdna.com), despite with much increased time and

cost. A more convenient U6-26 promoter plasmid (pChimera) based

on type II restriction enzyme BbsI cloning is recently published

(Fauser et al., 2014).

6. One can also clone individual sgRNA expression cassettes into the

pUC119-MCS vector to obtain separate sgRNA expression plasmids

and then achieve sgRNA coexpression by protoplast cotransfection
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with two different sgRNA expression plasmids. However, cloning a

pair of sgRNA expression cassettes into the same pUC119-MCS vector

better ensures coexpression of two sgRNAs in transfected protoplasts.

7. High quality and concentrated (2 μg/μL) plasmid DNA is key for high

protoplast transfection efficiency. It is highly recommended to use

CsCl gradient ultracentrifugation method to purify plasmid DNA by

following the protocol on the Sheen laboratory website (http://

molbio.mgh.harvard.edu/sheenweb/protocols_reg.htmL). Plasmid

DNA purified by commercial DNA maxiprep kits is acceptable but

may lead to lower protoplast transfection efficiency.

8. In the case of obtaining targeted homologous recombination in proto-

plasts, 20 μL of DNA transfection cocktail is composed of 8 μL of the

p35SPPDK-pcoCas9 plasmid (2 μg/μL), 8 μL of the pU6-sgRNA plas-

mid (2 μg/μL) and 4 μL of DNA repair template (�2 μg/μL), which
can be double-stranded DNA (e.g., PCR products) containing a

desired mutation flanked by two homology arms, each with at least

100 bp identical to the genomic target region (Li et al., 2013). Longer

homology arms are likely to promote the efficiency of homologous

recombination.

9. After centrifugation, transfected tobacco protoplasts are not pelleted as

tightly as the Arabidopsis protoplasts, so removal of the supernatant

should be conducted with caution and�30 μL supernatant can be kept

in the tube so that the pellet will not be disturbed. Tobacco protoplasts

tend to aggregate during incubation.

10. Design of genomic PCRampliconswith sizes around 300 bp (Fig. 21.1)

allows efficient PCR amplification using crudely prepared genomic

DNA as template andmakes PCR products clearly distinguishable from

possible primer dimers. In addition, keeping the PCR amplicons short

minimizes the possibility of PCR-introduced DNA mutagenesis.
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Abstract

Global demand has driven the use of industrial strains of the yeast Saccharomyces
cerevisiae for large-scale production of biofuels and renewable chemicals. However,
the genetic basis of desired domestication traits is poorly understood because robust
genetic tools do not exist for industrial hosts. We present an efficient, marker-free, high-
throughput, and multiplexed genome editing platform for industrial strains of
S. cerevisiae that uses plasmid-based expression of the CRISPR/Cas9 endonuclease
and multiple ribozyme-protected single guide RNAs. With this multiplex CRISPR
(CRISPRm) system, it is possible to integrate DNA libraries into the chromosome for evo-
lution experiments, and to engineer multiple loci simultaneously. The CRISPRm tools
should therefore find use in many higher-order synthetic biology applications to accel-
erate improvements in industrial microorganisms.
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1. INTRODUCTION

For thousands of years, humans have domesticated Baker’s yeast Sac-

charomyces cerevisiae for the production of alcohol and bread. More recently,

global demand has driven the use of industrial strains of S. cerevisiae for large-

scale production of biofuels and renewable chemicals (Farrell et al., 2006;

Rubin, 2008). However, the genetic basis of desired domestication traits

is poorly understood because robust genetic tools do not exist for industrial

production hosts. Industrial S. cerevisiae strains are more stress tolerant and

produce much higher yields of desired biofuel or renewable chemical end

products than laboratory strains. However, linking genotypes of industrial

yeasts to their phenotypes remains difficult because these strains are often

polyploid with low-efficiency mating and sporulation. The standard genetic

tool of integrating linear DNA into the genome by homologous recombi-

nation (HR) is too inefficient for the creation of loss-of-function pheno-

types in these strains, and current technologies rely on dominant

selectable markers for chromosomal integrations or plasmid maintenance.

Since only a small number of markers exist, deciphering and improving

important complex multigenic phenotypes in industrial strains remains a

challenge.

Due to the lack of genetic tools, most industrially relevant phenotypes

must be tested in haploid derivatives of the industrial strains or in lab strains.

These haploid derivatives may not cosegregate the alleles required for the

relevant phenotype, particularly if the phenotype is complex, so in many

cases they are not ideal surrogates for industrial isolates. Phenotypes observed

in one segregant may not be similar to the others. Therefore, phenotypes are

best tested within the relevant industrial strain in the exact state to which it is

found in the industrial process. Further, lab strains do not act as good proxies

for strain-specific phenotypes, as even the most straightforward phenotypes

such as essentiality in rich medium can differ substantially between two lab-

oratory strains due to complex genetics with unpredictable allelic combina-

tions (Dowell et al., 2010).

Present technologies for heterologous gene expression by integrating

genes into yeast chromosomes require the recombination and cointegration

of the gene to be expressed and a dominant selectable marker to identify cells

with the integrated DNA. The efficiency of chromosomal integration is low

and homozygous integrations need to be made by iteratively incorporating

the gene with a different selectable marker. Further complicating matters,
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the gene integrated second may replace the first integration by recombina-

tion. Finally, at the end of the process, the selectable markers need to be

removed before the engineered yeast can be used in an industrial setting

(Solis-Escalante, Kuijpers, van der Linden, Pronk, & Daran-Lapujade,

2014). Therefore, it is difficult, time-consuming and labor-intensive to gen-

erate homozygous integrations in diploid (or higher ploidy) yeast strains.

Ideally, an experimenter needs a targeting method that does not require

an integrated marker and precisely cuts all chromosomes without the

requirement of any premade genetic modifications to the cell, such as auxo-

trophic markers. A system such as this would be ready for use in any indus-

trial, wild or unmodified isolate, including those with higher chromosome

copy number.

Bacterial type II CRISPR/Cas9 genome editing has been used

successfully in several eukaryotic organisms but has not been adapted for

genome-wide studies or for heterologous protein engineering in industrially

important eukaryotic microbes. CRISPR/Cas systems require a Cas9 endo-

nuclease that is targeted to specific DNA sequences by a noncoding single

guide RNA (sgRNA) ( Jinek et al., 2012). The Cas9–sgRNA ribonucleo-

protein complex precisely generates double-strand breaks (DSBs) in

eukaryotic genomes at sites specified by a twenty-nucleotide guide sequence

at the 50 end of the sgRNA that base pairs with the protospacer DNA

sequence preceding a genomic Protospacer adjacent motif (PAM)

(Sternberg, Redding, Jinek, Greene, & Doudna, 2014). Repair by non-

homologous end joining results in small deletions or insertions in the

genome 50 of the PAM motif (Cong et al., 2013; Mali, Esvelt, &

Church, 2013; Mali, Yang, et al., 2013). Alternatively, the presence of

the Cas9-produced DSB in genomic DNA can increase the rate of HRwith

linear DNA at the DSB locus by several thousand-fold (DiCarlo et al., 2013),

potentially enabling high-throughput genetic studies.

CRISPR gene targeting lends itself to the efficient targeting of yeast

genomes, for both loss-of-function analysis and heterologous gene expres-

sion. In the yeast system developed in our lab, the CRISPR/Cas9 endonu-

clease is coexpressed with multiple ribozyme-protected sgRNAs (Fig. 22.1).

This system enables efficient, marker-free, single step, and multiplexed

genome editing in industrial strains of S. cerevisiae. The power of multiplex

CRISPR (CRISPRm) can be used to accelerate discoveries of the genetic

and molecular determinants of improved industrial microorganisms. Fur-

ther, CRISPRm can be used in any prototrophic yeast isolate, making

the system plug-and-play ready. Unlike other systems, CRISPRm requires

475Multiplex Engineering of Industrial Yeast Genomes



no previous genetic modifications (Wingler & Cornish, 2011) and the drug-

resistant plasmid used to coexpress the Cas9 protein and sgRNA confers

dominant drug resistance. Because there is no fitness advantage in non-

selective conditions the Cas9 plasmid (pCAS) is readily lost in rich medium

shortly after the drug has been removed from the medium. CRISPRm

results in homozygous mutants of yeast cells with diploid (or higher) copy

number; to date we have not recovered heterozygous mutants. This is likely

the case because Cas9 protein will cut all of the targeted chromosomes. We

suggest that the linear DNA is used as a homology directed repair template to

correct one chromosome and then that repaired chromosome is then used as

DNA template to repair the other chromosomes byHR.With respect to the

genome, CRISPRm is marker-free and iterative, enablingmuchmore com-

plex genome editing practices in lab and industrial yeast.

2. PLASMID DESIGN

The first step in creating a coexpression system is to build a plasmid

that can be: (A) stably maintained in the expression host and

(B) propagated in bacteria. A plasmid that can be maintained in both bacteria

and yeast requires a species-specific origin of replication and a dual function

selection marker. Coexpressing the two components of the CRISPRm sys-

tem (Cas9, sgRNAs) from a single plasmid has the advantage of not needing

Cas9 sgRNA

pCAS

Figure 22.1 Cas9–sgRNA coexpression. Cas9 protein and the tRNA–HDV–sgRNA are
coexpressed from a single plasmid in yeast cells. Cas9 and the sgRNA form a ribonucleo-
protein complex within the nucleus. Cas9 is directed to cut genomic DNA by the 20 bp
target sequence encoded within the sgRNA.
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to be cotransformed, coinherited, or coexpressed and requires only one

marker selection in the medium. For stable propagation and inheritance

in bacteria and yeast, the plasmid contains a bacterial pUC origin of repli-

cation, a yeast 2 μ origin of replication and a dominant selectable marker that

works in both yeast and bacteria, such as G418 resistance in eukaryotes ver-

sus kanamycin in prokaryotes. The drugs nourseothricin and hygromycin

also work in both yeast and bacteria so they can be used as well as selection

markers. Cas9 is a large protein and there is a limit to the size of extra-

chomosomal DNA that can be correctly replicated and inherited by yeast

cells. Therefore, we made the smallest possible plasmid with minimal extra-

neous DNA sequences (Fig. 22.2).

CYC1 terminator
8xHis
SV40 NLS

Cas9 ORF

RNR2 promoter

KanMX

pUC origin

2 µm origin

sgRNA

Figure 22.2 The structure of pCAS. The pCAS plasmid contains a bacterial origin of rep-
lication (pUC), a yeast high copy origin of replication (2 μ), the tRNA–HDV–sgRNA
expression module, a dual-purpose dominant marker (KANMX cassette), and the
Cas9 expression module, which uses the RNR2 promoter used to drive the expression
of Cas9 and a CYC1 terminator.
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3. Cas9 EXPRESSION

Cas9 genome editing requires the coexpression of the Cas9 endonu-

clease and the guide RNA ( Jinek et al., 2012). Correctly expressed, the

guide RNA binds to Cas9 and forms a functional ribonucleoprotein,

equipped with a precise targeting sequence within the guide RNA ( Jinek

et al., 2014). In vivo, this means that both the protein and RNA components

need to be expressed at physiologically tolerable (nontoxic) levels by the cell,

colocalized and correctly folded. Overexpression of proteins can be toxic to

yeast (Sopko et al., 2006) and the heterologous expression of physiologically

active RNAs in yeast is relatively unexplored. The goal is to express

Streptococcus pyogenes Cas9 (SpCas9) in yeast with artificial sgRNA(s) and

have this expression system coinherited within a relatively large number

of competent cells.

We found that Cas9 expression is toxic in some contexts. We therefore

chose a moderate strength promoter, PRNR2, to express SpCas9 for genome

targeting experiments, because Cas9 expression from the PRNR2 promoter

resulted in yeast strains with near wild-type fitness whereas Cas9 expressed

using strong yeast promoters such as PTDH3 reduced yeast fitness relative to

wild-type cells. Cas9 mRNA transcript levels can be controlled by increas-

ing or decreasing the strength of the promoter expressing Cas9 or increasing

or decreasing plasmid copy number by altering the origin of replication from

2 μ to CEN (Parent, Fenimore, & Bostian, 1985). To avoid potential off-

target binding or cutting, we recommend expressing Cas9 using an

intermediate-strength promoter or at least one that does not confer a fitness

defect in rich medium. The fitness defect can be tested using simple growth

curves, comparing yeast transformed with plasmid expressing Cas9 to yeast

transformed with an empty vector control.

4. GUIDE RNA EXPRESSION

Ascomycete yeasts express all of their transfer RNAs (tRNAs), the U6

spliceosomal RNA SNR6, the snoRNA SNR52, the RNA component of

RNase P RPR1 and the RNA component of the signal recognition particle

SCR1 using RNA Polymerase III (RNA Pol III) promoters (Marck et al.,

2006). These RNA Pol III transcripts have varying architectures but all con-

tain the essential components for RNA Pol III transcription initiation. They

contain A Box and B Box binding domains and a TATA Box binding

478 Owen W. Ryan and Jamie H.D. Cate



domain. Only one transcript, SNR52, resembles a canonical RNA Poly-

merase II promoter with the polymerase binding motifs (A and B Boxes)

50 of the TATA box and SNR52 RNA coding sequence. Transfer RNAs,

by contrast, have the A and B Box motifs within the mature tRNA

sequence. All RNA Polymerase III transcription termination occurs by

the same mechanism, with RNA Pol III transcription terminated by a string

of poly-U nucleotides, six in yeast and five in higher eukaryotes (Marck

et al., 2006). This means that screening promoters for the expression of

the sgRNA is directly comparable and not confounded by promoter–

terminator effects found with RNA Pol II promoters (Curran, Karim,

Gupta, & Alper, 2013). The sgRNA expression systems developed in higher

eukaryotes use the promoter from the U6 snRNA gene as the RNA Pol III

promoter to express the sgRNA, an approach that has been used for RNA

interference experiments for several years (Mali, Esvelt, et al., 2013; Mali,

Yang, et al., 2013).

In mammalian cells, cellular levels of sgRNAs correlate with the effi-

ciency of Cas9-mediated genome targeting (Hsu et al., 2013), raising the

possibility that sgRNA abundance is rate limiting for in vivoCRISPRmedi-

ated genome targeting. It is therefore important to consider ways to increase

the transcript levels of the sgRNAs. One way to increase the cellular abun-

dance is to protect the sgRNA from the intracellular RNA degradation

machinery. This can be done by adding self-cleaving ribozymes (or any

RNA) that could be physically connected to the sgRNA to increase

in vivo stability and regulation of expression or processing. However, the

added RNA must not interfere with the structure or expression of the

sgRNA so that the sgRNA is in a conformational state that permits binding

to Cas9 within the cell. To increase sgRNA levels in yeast, we engineered a

new sgRNA architecture by fusing the sgRNA(+85) (Mali, Esvelt, et al.,

2013; Mali, Yang, et al., 2013) to the 30 end of the self-cleaving hepatitis

delta virus (HDV) ribozyme, to protect the sgRNA from 50-exonucleolytic
activities in the cell. Naturally occurring self-cleaving ribozymes are non-

coding RNAs widespread in nature (Webb, Riccitelli, Ruminski, &

Luptak, 2009), and HDV-like ribozymes have been identified in a multitude

of eukaryotes. We chose to use the HDV ribozyme, because its cleavage

leaves a clean 50-end on the RNA with no extraneous nucleotides 50 of
the HDV ribozyme (Ke, Ding, Batchelor, & Doudna, 2007). Furthermore,

the clean 50 end may also aid in nuclear retention of the RNA (Kohler &

Hurt, 2007). HDV-like ribozymes are highly conserved, forming a

double-pseudoknot secondary structure, and the nucleotides that are
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essential for its enzymatic activity have been mapped (Ke et al., 2007).

Although it should be possible to use an inactive HDV ribozyme or other

structured but noncatalytic “protection” RNAs, we selected the active form

of the HDV ribozyme because its cleavage would remove any structured or

unstructured RNA used as a promoter, leaving the HDV ribozyme cova-

lently fused 50 to the sgRNA (Fig. 22.3A).

We measured the relative cellular abundance of sgRNAs expressed by a

yeast RNA Pol III promoter with and without the 50 ribozyme, by reverse

transcription quantitative polymerase chain reaction (PCR) and found that

the presence of the ribozyme increases the intracellular abundance of the

sgRNAs by sixfold. This is consistent with our hypothesis that the structure

of the HDV ribozyme serves as protection at the 50 end of the sgRNA from

50 exonucleases (Houseley & Tollervey, 2009). Notably, in the absence of

the HDV ribozyme, we found that RNA Polymerase II promoters resulted

in highly expressed sgRNAmolecules in yeast but they were physiologically

1. 
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*
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tRNA 

HDV Target 
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tRNA 
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Figure 22.3 The RNA structure of the sgRNA expression module. (A) The sgRNA is
expressed using a tRNA as an RNA Pol III promoter. The HDV folds into its catalytically
active form and removes the 50 tRNA sequence from the mature sgRNA (cleavage site
marked by an asterisk). The target sequence is protected between the HDV and sgRNA.
RNA Pol III expression is terminated by a series of six or more uridine nucleotides.
(B) Engineering sgRNAs for improved coexpression. Future polycistronic sgRNAs could
be expressed using a single RNA PolIII promoter (tRNA) and processed internally by their
catalytically active HDV (cleavage sites are marked by *). This panel contains three
sgRNAs in tandem arrays.
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inactive, resulting in very low efficiency (�1%) Cas9-targeting. Although

we did not characterize these sgRNAs further, we propose that the lack of

sgRNA activity could be due to the failure of the RNA Pol II terminators to

cleanly terminate transcription, resulting in 30 RNA sequences that interfere

with the sgRNA folding, or sgRNA nuclear localization. Therefore, we

propose that the total abundance of sgRNA is not limiting but rather a total

abundance of correctly folded and localized sgRNAs. In summary, we have

shown that the sgRNA is readily engineered in a modular fashion that incor-

porates structured RNAs 50 to the sgRNA guide sequence. In the future, it

could be possible to incorporate several HDV-like ribozyme-sgRNA chi-

meras in series to produce multiple sgRNAs with increased genome editing

functionality. Expressing the sgRNA chimeras using a single promoter and

allowing them to be posttranscriptionally modified could control the

coexpression of multiple guides used in higher-order multiplex editing

(Fig. 22.3B). In addition, the ribozyme enables the modification of the 50

leader sequence (promoter) so future promoters may be engineered to adjust

the expression of the sgRNA. Further, it is possible to add 30 sequences to
the sgRNA to protect them from 30 exonucleases (Hsu et al., 2013; Jinek

et al., 2013). There remain many options for the engineering of the sgRNA

so that the expression level divide between Cas9 and the rate limiting

sgRNA may be bridged. We anticipate that by improving the coexpression

stoichiometry of the protein and RNA components of CRISPR/Cas9 sys-

tems will be of great value in more complex editing experiments such as

higher-order multiplexing.

5. SCREENING METHOD

For CRISPRm to become a common practice in nonspecialized lab-

oratories it is important that the protocol and reagent sets are simple, cost

efficient and rely on well-established protocols. The pCAS plasmid devel-

oped in our lab can be used in any S. cerevisiae strain, including prototrophic

isolates. Only one modification to pCAS is required for genome targeting.

The researcher only needs to clone the target (protospacer) 20-mer sequence

into the sgRNA encoded in the pCAS plasmid.

Screening consists of two steps: (1) cloning the desired guide into an

sgRNA expression system within a universal plasmid and (2) genome

targeting by cotransforming the plasmid with linear repair DNA in yeast

by chemical transformation.
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5.1. Cloning the target sequence into pCAS
Restriction-free (RF) cloning (van den Ent & Lowe, 2006) is efficient for

cloning the target 20-mer sequences into pCAS. Restriction free cloning

(ligation-independent cloning) uses PCR followed by treatment with the

enzyme DpnI to incorporate scarless clones into any DNA fragment. In

the case of cloning target sequences into pCAS, the primers are 60-mer oli-

gonucleotides. These (complementary) 60-mer sequences code for the tar-

get RNA sequence (20 bp) flanked by 20 bp of homology to the ribozyme

(50 of the target) and the sgRNA (30 of the target). The two homology

sequences used for cloning are never altered because in pCAS, the target

sequence is always preceded by the ribozyme and followed by the sgRNA,

which are termed Left and Right homology sequences, respectively. The

RF cloning reaction inserts the target sequence between the homology

regions, resulting in a functional sgRNA construct within pCAS.

Insert the target 20-mer in between the L and R homology sequences.

Order two oligonucleotides: (1) the 60-mer of [L+target+R] and (2) the

reverse complement of [L+target+R] to be used as the primers for the RF

reaction (Table 22.1).

Homology L (HDV)¼CGGGTGGCGAATGGGACTTT

Homology R (sgRNA)¼GTTTTAGAGCTAGAAATAGC

The cloned 60-mer sequence is:

50-CGGGTGGCGAATGGGACTTTXXXXXXXXXXXXXXXX

XXXXGTTTTAGAGCTAGAAATAGC-30

Perform a DpnI reaction to ensure that all methylated (plasmid, non-PCR

generated) DNA is degraded. It is most efficient to run the DpnI reaction

overnight at 37 �C and heat-inactivate DpnI at 65 �C for 15 min.

Transform the clone into E. coli using 5–10 μL of the DpnI-treated reac-

tion in 50 μL of competent bacterial cells by standard bacterial transforma-

tion. Pick 3–5 bacterial transformants to verify the sRNA sequence by using

the sgRNA sequencing primer.

The sgRNA sequencing primer¼50-CGGAATAGGAACTTCAAA
GCG-30

5.2. Double-stranded linear DNA repair oligos
To create a markerless yet traceable integration site in the yeast genome, we

developed a modified barcode system (Giaever, Chu, et al., 2002). This

barcoded DNA used for genome integration is assembled in a modular fash-

ion by PCR. Three 60-mer oligonucleotides are purchased and assembled
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into a single 140-mer double-stranded DNAmolecule (Fig. 22.4). There are

two reasons for assembling the repair DNA within the laboratory: (A) the

repair molecule is modular and can be assembled to fit the experiment

and (B) cost of the respective oligonucleotides.

5.3. CRISPRm screening consists of the cotransformation of
pCAS and the double-stranded linear DNA homologous
repair template

To create a stock of yeast competent cells, grow a preculture of yeast cells to

saturation. Subculture the saturated yeast culture in rich medium and grow

tomid-logarithmic phase with an optical density of 1.0 (OD600¼1.0). Pellet

and resuspend in 600 μL of equal parts 40% glycerol and PLATE

(Polyethyleneglycol 2000 (PEG 2000), 0.1 M Lithium acetate—0.05 M

Tris–HCl EDTA) in centrifuge tubes. Transfer cells to a �80 �C freezer.

Cells can be stored indefinitely.

TheCas9 transformationmix consisted of 90 μL yeast competent cell mix

(OD600¼1.0), 10.0 μL ssDNA (10 mM) 1.0 μg pCAS plasmid, 5.0 μg of

linear repair DNA and 900 μL Polyethyleneglycol 2000 (PEG 2000),

0.1 M Lithium acetate—0.05M Tris–HCl EDTA (Table 22.2). To measure

Table 22.1 RF cloning reaction

H2O¼ to 50 μL

5� buffer¼10 μL

dNTP¼1 μL

Insert (target DNA)¼0.1 μL+0.1 μL (rev. complement)

pCAS plasmid¼40 ng

Pfusion polymerase¼1 μL

In a thermal cycler, run the following reaction for 30 cycles:

98 �C—1:00

98 �C—0:30

58 �C—1:00

72 �C—10:00

72 �C—10:00

4 �C (end)
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Cas9 independent integration, the linear DNA can be cotransformed with a

plasmid lacking the Cas9 protein and sgRNA (i.e., plasmid pOR1.1). Cells

are incubated 30 min at 30 �C, and then subjected to heat shock at 42 �C
for 17 min. Following heat shock, cells are resuspended in 250 μL YPD at

30 �C for 2 h and then the entire contents were plated onto YPD+G418

Table 22.2 CRISPR/Cas9 screening protocol

Screening reagents:

1. 90 μL competent cells

2. 10.0 μL ssDNA (boil 5 min, ice 5 min)

3. 1.0 μg pCAS plasmid DNA+5.0 μg of linear barcode (BC) DNA

4. 0.25 μg of pOR1.1+5.0 μg of linear barcode (BC) DNA

5. 900 μL PLATE

Protocol:

1. Pipette mix for each sample:

a. pCAS+Barcode (any linear DNA with homology)

b. pOR1.1+Barcode (linear DNA)

c. Negative control (no DNA)

2. Incubate 30 min at 30 �C
3. Shake tubes using the tube holding block

4. Heat shock 42 �C for 17 min

5. Centrifuge 5 K for 2 min

6. Remove PLATE (dump, then pipette aspirate)

7. Resuspend cells in 250 μL YPD

8. Recover for 2.0 h at 30 �C
9. Plate entire contents onto YPD+G418

10. Grow 48 h at 37 �C
11. Replica plate to confirm mutant phenotype

12. Perform gDNA isolation

13. PCR to confirm barcode integration

14. Sequence PCR amplicon to confirm barcode sequence

TAA 5� 3�

Figure 22.4 The integrated barcode repair DNA. Each barcode contains a unique
20-mer sequence flanked by common primer sites and a 50 STOP codon (60-mer).
The barcode is amplified using two 60-mer primers with 10 bp of homology to the
barcode oligonucleotide and 50 bp homology to the genome. The resulting homology
directed repair dsDNA is 140 bp in length.
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plates (20 g/LPeptone, 10 g/LYeastExtract, 20 g/LAgar, 0.15 g/LAdenine

hemisulfate, 20 g/L Glucose, and G418 at 200 mg/L). Cells are grown for

48 h at 37 �C and replica plated onto phenotype-selective media. Genomic

DNA is isolated, PCRamplified and sequenced to confirm barcode sequence

in the amplicon. The experimenter can expect>95% efficiency of correctly

targeted repairDNAintegration in colonies transformedwithpCAS, i.e., that

are G418 resistant. All screens are performed using a linear DNAbackground

control with an empty vector, which we named pOR1.1. pOR1.1 lacks the

Cas9 and sgRNA of pCAS. pOR1.1 is used to measure the CRISPRm-

independent integration of linear DNA, which in our experience has always

equaled zero.

5.4. Industrial yeast
We have tested the barcode targeting efficiency in a polyploid industrial

strain, ATCC4124, which was isolated from a molasses distillery. We found

that the efficiency of homozygosis in these strains was nearly 100% using a

tRNA as a promoter to drive sgRNA expression, but was weak (�5%) when

using the non-tRNA promoter PSNR52 (Fig. 22.5A). Thus, there is a major

advantage to using tRNAs as sgRNA promoters for the efficient creation of

homozygous null mutants in industrial yeast isolates, and it may be necessary

to test different tRNA promoters to find the optimal ones for sgRNA

expression.

5.5. Markerless gene assembly in the yeast chromosome
To determine whether CRISPRm could be used for in vivo yeast gene

assembly for chromosomal integrations, we tested the efficiency of assembly

of a functional nourseothricin-resistance (NatR) gene from multiple PCR

products. The correct assembly and insertion of three overlapping PCR

products that encode a transcription promoter, protein open reading frame

(ORF) and transcription terminator, result in expression of the NatR gene

and confer nourseothricin resistance (Boeke, LaCroute, & Fink, 1984;

Krugel, Fiedler, Haut, Sarfert, & Simon, 1988) (Fig. 22.5B).

PCR amplification of DNA is used for in vivo assembly.We used PCR to

amplify genomic DNA containing 50 bp of overlapping DNA on the 50 end
of the primers.We cotransformed three separate, linear DNAmolecules that

overlap by 50 bp, including the TEF1 promoter and terminator of Ashbya

gossypii, and a nourseothricin-resistance (NatR) drug resistance ORF from

Streptomyces noursei and targeted these molecules to the URA3 locus.
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The efficiency of Cas9-mediated integration and assembly of three DNA

fragments to the correct locus was measured by a combination of

5-fluoroorotic acid resistance (5-FOAR) and NatR. As observed with inte-

grating barcoded oligos into the genomes of industrial isolates, the integra-

tion of functional expression modules was dependent on the tRNA

promoter. We found 85% efficiency of correct homozygous targeting and

assembly in diploid yeast S288C cells and 68% in yeast strain ATCC4124

using the tRNAPhe sequence as the sgRNA promoter (Ryan et al.,

2014). Thus, CRISPRm enables the one-step markerless assembly of func-

tional genes in the S. cerevisiae genome, including the genome of an indus-

trial isolate. As an example of an application, we have exploited the high

efficiency of gene assembly in the chromosome to evolve and select

improved variants of a cellobiose transporter for lignocellulosic biofuel

applications (Galazka et al., 2010).

Figure 22.5 Genome editing experiments. (A) Barcoding industrial yeast strains. The
efficiency of barcode insertion, as determined by the percentage of auxotrophy, is
shown by strain and RNA Pol III promoter tested. Barcode insertion was verified by
PCR amplification and Sanger sequencing of the target site from each colony.
(B) Assembling genes for chromosomal heterologous expression. CRISPRm creates a
double-stranded break in the genome. Three linear DNA molecules generated by
PCR contain 50 bp of homology to each other and 50 bp of homology to the genome
(at the ends of the distal fragments). The homologous repair machinery of S. cerevisiae
assembles the three fragments and integrates them into the CRISPRm-targeted
chromosome.
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6. CONCLUDING REMARKS

In this chapter, we describe methods for integrating linear DNA into

yeast chromosomes for: (A) loss of function studies and (B) heterologous

protein expression. Because CRISPRm does not require selectable markers

to be integrated with the DNA, this method is fully scalable. We propose

that by using iterations of CRISPRm, a synthetic chromosome (or genome)

in theory could be reduced from a wild-type organism. This is particularly

possible because of the multiplex function with minimal reduced efficiency

in haploid cells as identified in our lab (Ryan et al., 2014).

The CRISPRm method of expressing Cas9 and multiple sgRNAs

enables its broad utility for advanced genomic analysis and engineering of

any yeast, including industrial isolates. First, the engineered sgRNA con-

taining the HDV ribozyme enables the use of functional tRNAs as sgRNA

promoters, which can be easily identified in any genome (Marck et al.,

2006). Further, the HDV ribozyme significantly increases the cellular abun-

dance of the sgRNA, removes the 50 tRNA and leads to efficient multiplex

targeting in diploid cells. The ability to remove 50 sequences by HDV-like

ribozymes without interfering with sgRNA functionality opens many

sgRNA expression and multiplexing possibilities. For example, it should

be possible to express many sgRNAs in eukaryotes using single or multiple

tRNA promoters that can be posttranscriptionally converted into multiple

high fidelity sgRNAs, each with a specific target encoded within it. This

could be used to better regulate the coexpression and stoichiometry of

sgRNAs for multiplexed editing.

Because the only requirements for CRISPRm are moderate expression

of the Cas9 protein, an sgRNA expressed using a tRNA promoter, and

unique target sequences, we anticipate that CRISPRm should be portable

for genome engineering in nonmodel organisms, including fungal

extremophiles used in the biotechnology industry and for novel drug target

identification in fungal pathogens. The genetics of many of these organisms

have not been studied in any depth due to the technological limitations of

available genetic manipulation techniques. CRISPRm should serve as a

rapid and high-throughput protocol for connecting the genotypes of these

organisms to their phenotypes. For example, CRISPRm can be used to gen-

erate marker-free barcoded alleles for large-scale pooled fitness studies of

loss-of-function mutants in these organisms. CRISPRm also facilitates high

efficiency genome editing, synthetic biology, and protein engineering
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applications in industrial yeast strains and we have demonstrated that

CRISPRm can be used to quickly engineer proteins for vastly improved

metabolic activity. We anticipate that CRISPRm should be adaptable for

engineering uses in any industrial fungus and will be used to accelerate

advances in the production of commercially important chemicals and

biofuels.
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Abstract

CRISPR/Cas systems act to protect the cell from invading nucleic acids in many bacteria
and archaea. The bacterial immune protein Cas9 is a component of one of these
CRISPR/Cas systems and has recently been adapted as a tool for genome editing.
Cas9 is easily targeted to bind and cleave a DNA sequence via a complementary
RNA; this straightforward programmability has gained Cas9 rapid acceptance in the field
of genetic engineering. While this technology has developed quickly, a number of chal-
lenges regarding Cas9 specificity, efficiency, fusion protein function, and spatiotemporal
control within the cell remain. In this work, we develop a platform for constructing novel
proteins to address these open questions. We demonstrate methods to either screen or
select active Cas9 mutants and use the screening technique to isolate functional Cas9
variants with a heterologous PDZ domain inserted within the protein. As a proof of
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concept, these methods lay the groundwork for the future construction of diverse Cas9
proteins. Straightforward and accessible techniques for genetic editing are helping to
elucidate biology in new and exciting ways; a platform to engineer new functionalities
into Cas9 will help forge the next generation of genome-modifying tools.

1. INTRODUCTION

The manipulation of gene sequence and expression is fundamental

to unraveling the complexity of biological systems. However, our inability

to make such manipulations across different organisms and cell types has

limited the power of recombinant DNA technology to a handful of model

systems. Consequently, numerous strategies for genome engineering—the

ability to programmably disrupt or replace genomic loci—have emerged

in recent years, yet there remains no universal solution to the problem

(Carroll, 2014).

Investigation of bacterial adaptive immunity, known as the “clustered

regularly interspaced short palindromic repeats” (CRISPR) system, led to

the discovery of the RNA-guided DNA nuclease Cas9, which has proven

a particularly potent tool for genome engineering (Barrangou et al., 2007;

Deltcheva et al., 2011; Jinek et al., 2012; Wiedenheft, Sternberg, &

Doudna, 2012). In its biological context, Cas9 is part of a Type II CRISPR

interference system that functions to degrade pathogenic phage or plasmid

DNA. Targeting of Cas9 is enabled by host-encoded CRISPR-RNAs

(crRNAs), which recognize, through RNA:DNA hybridization, 20 bp

of complementary target DNA sequence (referred to as a protospacer)

(Fig. 23.1A). The Cas9 protein itself also plays a role in target recognition

by binding a short DNA sequence adjacent and opposite the protospacer,

called the protospacer adjacent motif (PAM). Although there is significant

variation in PAM specificity among Cas9 orthologs the commonly

employed Cas9 from Streptococcus pyogenes (SpCas9) recognizes the PAM

sequence 50-NGG-30. PAM binding is thought to prime Cas9 for target rec-

ognition by the crRNA sequence (Sternberg, Redding, Jinek, Greene, &

Doudna, 2014). Upon target recognition, two nuclease domains, termed

the RuvC and HNH domains because of their sequence similarity to other

endonucleases, engage and cleave the separated strands of DNA between 3

and 4 bp upstream of the PAM site ( Jinek et al., 2012). A second trans-

activating RNA (tracrRNA), with partial complementarity to crRNA, is

also required for crRNA maturation and activity. Doudna and colleagues
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have shown that the crRNA and tracrRNA can be fused together with a

tetraloop insertion to form a single guide RNA (sgRNA or “guide”)

( Jinek et al., 2012). Expression of Cas9 and this sgRNA is both necessary

and sufficient for targeting DNA. Therefore, the rapid success of Cas9-based

engineering has been driven by programmability—Cas9 can be targeted to

any DNA locus by simply changing the sgRNA sequence.
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Figure 23.1 Holo Cas9model and its potential uses. (A) Single guide RNA, target dsDNA,
and Cas9 are modeled. Domains of Cas9 are colored accordingly: RuvC-green, BH-pink,
RecI-gray, RecII- dark gray, HNH-yellow PI-red. (B) Common uses of Cas9 as a tool. Red x's
in Cas9 represent a nuclease dead variant.
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Intense interest in Cas9-based genetic engineering has already led to a

number of directed alterations which change or improve Cas9 functionality

(Fig. 23.1B). Based on sequence conservation of the RuvC and HNH

nuclease domains, a number of point mutants were constructed to transform

the normal endonuclease activity into either a nickase (for genome editing)

or a catalytically dead mutant (dCas9) that can function as a transcription

inhibitor (CRISPRi) (Cong et al., 2013; Jinek et al., 2012; Qi et al.,

2013). As PAM recognition is critical to functionality but encoded by the

protein, a number of efforts have identified Cas9 orthologs with minimal

PAM requirements for use in conjunction with, or in place of, SpCas9

(Esvelt et al., 2013). Finally, a number of N- and C-terminal fusions to

Cas9 have been used to recruit alternative factors to specific DNA loci,

including RNA polymerase subunits to activate transcription and additional

nuclease domains for improving the on-target specificity of genome editing

(Bikard et al., 2013; Guilinger, Thompson, & Liu, 2014; Tsai et al., 2014).

These advances show that, from an engineering perspective, Cas9 can be

thought of as a unifying factor able to recruit any protein, RNA, and

DNA together in the cell (Mali, Esvelt, & Church, 2013). However, even

with these recent improvements, there are a number of additional desirable

features that could be engineered into Cas9.

Enabling complex functions requires more elaborate protein engineering

efforts than previously attempted. Fortunately, high-resolution structures of

apo and holo Cas9 were recently solved and inform this process greatly

( Jinek et al., 2014; Nishimasu et al., 2014). Thus, we begin with a discussion

of structure, which frames the protein engineering effort. This is followed by

a discussion of potentially feasible and advantageous manipulations of Cas9.

Ultimately, the isolation of an enhanced Cas9 with new function will

require assaying the activity of large libraries (>106) of variants. Fortuitously,

the basic function of Cas9, disrupting gene sequence or gene expression,

facilitates the construction of a genetic screen and means that directed evo-

lution methods can be employed in the same conditions that functionality is

ultimately desired. To this end, we present a detailed set of methods,

employing either screening or selection, for the directed evolution of novel

Cas9 proteins.

1.1. The structure of Cas9
Recently published high-resolution structures of Cas9 serve as a useful

starting point to inform the protein engineering process. Doudna and
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colleagues reported the high-resolution structure of apoSpCas9 using X-ray

crystallography and a holo complex using electron microscopy ( Jinek et al.,

2014). Concurrently, Zhang and colleagues solved the X-ray structure of

SpCas9 bound to sgRNA and single-stranded target DNA (ssDNA)

(Nishimasu et al., 2014). Here, we summarize these structures in the context

of engineering novel Cas9 variants.

Cas9 possesses a hand-shaped structure of size 100 Å�100 Å�50 Å and

is composed of two major lobes, an N-terminal recognition (REC) lobe,

and a C-terminal lobe (NUC) possessing two endonuclease domains

(Fig. 23.2). The REC lobe is composed of three segments: a small portion

of the RuvC domain, an arginine-rich bridge helix (BH) which links

the REC to the NUC lobe, and an α-helical recognition segment with

two subdomains (RecI and II). The NUC lobe possesses three domains:

the RuvC endonuclease, the HNH endonuclease, and a PAM-interacting

(PI) C-terminal domain. The sgRNA–DNA complex lies at the interface

of the two lobes, with the BH and RecI domains making many of the

primary interactions. It should be noted that the sgRNA-target DNA het-

eroduplex generally makes nonspecific, sequence-independent interactions

with the protein, while the sgRNA repeat:antirepeat region makes

sequence-dependent interactions; this is consistent with the precise sgRNA

recognition yet broad target flexibility of Cas9. Interestingly, although

the sgRNA has extensive structural features—there are three stem loops
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Structure of SpCas9–sgRNA–ssDNA complex
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Figure 23.2 The structure of Cas9 in complex with sgRNA and a single-stranded target
DNA (ssDNA). The structure is shown in a surface representation and colored as in
Fig. 23.1. Note the inset is rotated 180� and display the location of the sgRNA stem
loops (SLs). Adapted from Nishimasu et al. (2014) (PDB code 4OO8).
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in the tracrRNA sequence—stem loops 2 and 3 exit out the “back” of the

structure and make few sequence-specific contacts with Cas9 (inset

Fig. 23.2).

The structures inform a number of rational protein engineering design

strategies. Many publications have employed N- and C-terminal fusions

to Cas9 as a means of recruiting specific factors to a genomic locus, such

as RNA polymerase for transcriptional activation (Bikard et al., 2013;

Mali, Aach, et al., 2013). The structures suggest the protein N-terminus

is adjacent to the 30-end of the target DNA exiting Cas9, while the

C-terminus is adjacent to the 50-end of the same DNA. The close proximity

of DNA to protein termini likely explains why many simple fusions have

been successful. Intriguingly, the N- and C-termini are in the same lobe

and roughly 50 Å apart, suggesting it might be possible to make circularly

permuted forms of Cas9 for more elaborate protein engineering uses. More-

over, the bi-lobed nature of the apo complex indicates it could be possible

to construct split variants of Cas9 that are only active under conditions

when both halves are recruited together. Such variants would be useful in

the construction of two-hybrid systems and for the engineering of alloste-

rically controlled Cas9 derivatives, such as with optogenetic domains.

The sequence conservation of Cas9 orthologs mapped onto the structure

also suggests domains that may prove malleable for engineering. Phyloge-

netic variation among Cas9 orthologs is significantly higher in the RecII

domain of the REC lobe and the PI domain in the NUC lobe

(Chylinski, Makarova, Charpentier, & Koonin, 2014; Nishimasu et al.,

2014). The RecII domain makes very few contacts with the sgRNA or tar-

get DNA in the holo complex structure and Nishimasu et al. demonstrated

that the domain (Δ175–307) can be completely eliminated yet still retain

roughly 50% of editing activity. Such domain deletions are intriguing

because Cas9 is very large; all known Cas9 proteins range from 984 to

1629 amino acids (Chylinski, Le Rhun, & Charpentier, 2013). Thus, a cur-

rent goal in the community is to find or engineer smaller, but equally effec-

tive, Cas9 proteins and this may be possible through multiple domain

deletions. Sequence diversity between PI domains also suggests a means

to alter PAM specificity. Cross-linking experiments and structural evidence

conclude that the C-terminal PI domain interacts directly with the PAM

( Jinek et al., 2014). However, this specificity may in fact be modular.

Domain swapping of the SpCas9 PI domain for that of the orthologous

sequence from S. thermophilus imbues a preference for the S. thermophilus

PAM sequence (TGGCG) (Nishimasu et al., 2014). Expanded domain
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swapping experiments, coupled with directed evolution, could therefore

provide a means for creating orthogonal Cas9 variants from a single,

well-characterized SpCas9 scaffold.

1.2. Current uses
Cas9 has rapidly established itself as a promising genome-engineering tech-

nology in widely used model organisms (Friedland et al., 2013; Gratz et al.,

2013; Guilinger et al., 2014; Hou et al., 2013; Hsu et al., 2013; Hwang et al.,

2013; Nishimasu et al., 2014; Niu et al., 2014; Shan et al., 2013; Tsai et al.,

2014;Wang et al., 2013). In these systems, Cas9 has been used to create both

small genomic insertions and deletions (indels) via nonhomologous end-

joining and to facilitate larger sequence manipulations with homologous

recombination. Cas9 also allows for multiplexed genome engineering,

and has been used to create large knock-out libraries in human cells, a feat

both surprising in its simplicity and impressive in its efficacy (Shalem et al.,

2014; Zhou et al., 2014). Decoupling the DNA-binding activity of Cas9

proteins from cleavage activity has lead to a broader set of uses such as repres-

sion and activation of transcription (Gilbert et al., 2013). Finally, recent evi-

dence suggests that Cas9 may be used to manipulate RNA (O’Connell et al.,

2014). Although still nascent, the simple programmability and effectiveness

of Cas9-based technology promises to democratize access to genome and

now potentially transcriptome manipulation.

1.3. Initial engineering questions
As previously mentioned, there are a number of clear initial questions per-

taining to Cas9 that are addressable using existing protein engineering tools.

Namely, we believe that designing novel Cas9s with domain insertions and

deletions will lead to the creation of a new family of synthetic orthologs

whose outputs are manifold. For example, domain insertions could act to

recruit additional protein partners with desired activity onto Cas9-associated

nucleic acids; domain deletions will reduce Cas9’s size and increase its

versatility.

Alternatively, improving N- or C-terminal fusions with engineered

linkers or creating Cas9s with newN- andC-termini altogether, may greatly

increase the efficacy of fusions. For example, to address issues of Cas9

targeting specificity dCas9 has been fused to FokI, an obligate dimeric

sequence-independent nuclease (Guilinger et al., 2014; Tsai et al., 2014).

This system requires the mutual on-target activity of two different

497Methods for Directed Evolution of Engineered Cas9 Proteins



FokI–dCas9 fusions to adjacent sites, a combined 40 bp of targeting, to cat-

alyze a DNA cleavage event. Unfortunately, these FokI–dCas9 fusions are

substantially less active than either WT Cas9 or the dual nickase strategy at

inducing indels, rendering them a less attractive tool. Nevertheless, it is

known that FokI protein fusions to other DNA-binding domains can

achieve cleavage efficiencies similar to that of WT Cas9 (Hwang et al.,

2013; Mali, Yang, et al., 2013). Therefore, lower activity of the current

FokI–dCas9 is likely due to imperfect positioning of the FokI nuclease

domain and further engineering the dCas9–FokI interface should yield an

increase in activity.

Last, split proteins are known to function as switches or response elements

in many different systems (Olson & Tabor, 2012). Splitting Cas9, as men-

tioned above, would be a simple method for engineering allosteric control

and open the door to a number of uses including optogenetics, small-molecule

dependence, or linking function to a cellular signal, such as a phosphorylation-

dependent signal transduction cascade. Nevertheless, all of the previous

engineered scenarios require that Cas9 is active despite the modifications

introduced. Therefore, it is imperative that any engineering attempt start with

an assay allowing for the separation of active mutant proteins.

2. METHODS

To advance some of the aforementioned goals related to Cas9 protein

engineering, we have developed a suite of protocols allowing for the rapid

isolation of functional Cas9 proteins. These techniques rely on the ability to

screen or select an active Cas9 from a large pool of variants. As such, the

methods may be applied equally to either rational or library-based

approaches for engineering Cas9.

2.1. A note on applications
Although we present here a general method for directed evolution of Cas9,

it is impossible to cover the myriad of nuances inherent to different appli-

cations. Instead, as a proof of concept, we demonstrate that Cas9 can be

manipulated by domain insertion, a common event found in eukaryotic

proteomes (Lander et al., 2001). Specifically, we created libraries of

Cas9 in which the α-syntrophin PDZ domain was randomly inserted

throughout the SpCas9 gene once per variant using in vitro transposition-

based methods (Edwards, Busse, Allemann, & Jones, 2008). PDZ domains

are small (�100 amino acids) proteins with adjacent N- and C-termini that
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mediate protein–protein interactions by specifically binding the C-terminal

peptide of a cognate partner in the cell (Nourry, Grant, & Borg, 2003).

These domains have been used extensively in synthetic biology applications

as a tool for scaffolding proteins (Dueber, Mirsky, & Lim, 2007; Dueber,

Yeh, Chak, & Lim, 2003). In the context of Cas9, PDZ insertion could

recruit additional factors to a DNA-bound Cas9 in the cell, such as florescent

tags, chromatin remodeling machinery, and nuclease domains.

2.2. Electrocompetent E. coli preparation for library
construction

Construction of libraries containing 106–109 diverse members is a basic step

for engineering new functions into Cas9. A simple method for the creation

of electrocompetent cells that consistently yields E. coli with transformation

efficiencies of �108 CFU per μg of plasmid is described. If necessary, cells

can be pretransformed with additional screening/selection plasmids to max-

imize library transformation efficiency.

1. Begin with the desired strain grown as single colonies on appropriate

plates. For example, we use plasmid 44251: pgRNA-bacteria (Addgene)

with the RFP sgRNA from Qi et al. (2013) transformed and grown on

carbenicillin plates (100 μg/mL) overnight at 37 �C to single colonies.

2. Pick a single colony and inoculate into 5 mL SOC (BD Difco 244310:

SuperOptimal Broth+0.4% glucose) plus carbenicillin. Grow overnight

at 37 �C.
3. Inoculate 1 L of SOC+carbenicillin with the 5 mL overnight culture.

Grow at 37 �C for 2–4 h to an OD600 between 0.55 and 0.65.

4. Rapidly cool the culture in an ice bath by swirling. Keep cells at 4 �C
during all subsequent steps.

5. Centrifuge cells at 4000� g for 10 min. Wash the cell culture with

500 mL of sterile ice-cold water by gentle resuspension. Centrifuge at

4000� g for 10 min. Repeat wash step.

6. Centrifuge at 4000� g for 10min andwash cells with 500 mL of ice-cold

10% glycerol. Repeat.

7. Perform a final spin and discard the supernatant. Resuspend the pellet in

2.75 mL of 10% glycerol and aliquot into cold microcentrifuge tubes,

75 μL each. Flash freeze.

8. Transforming cells: Thaw on ice, add plasmid to 75 μL cells and vortex.

Electroporate at 1800 V, 200 Ω, 25 μF in 0.1-cm cuvettes, resuspending

in warm SOC immediately afterward. Recover for 1 h at 37 �C before

adding antibiotics.
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2.3. Discovery of functional, engineered, variants of Cas9
proteins

After generating any library of Cas9 variants, it is necessary to have a platform

that can separate active variants with minimal effort. Two assays to probe this

functionality are the coupling of dCas9 activity to either RFP expression or

media-dependent cell growth. When devising these systems, it is important

to keep in mind the First Law of Directed Evolution (Schmidt-Dannert &

Arnold, 1999): “you get what you screen for.”

2.4. Screening Cas9
The catalytically dead version of Cas9 has a functional output that can be tied

directly to transcription in E. coli; namely, it can repress transcription of a

desired gene (Qi et al., 2013). Qi et al. previously demonstrated that dCas9

with a guide sequence of 50-AACUUUCAGUUUAGCGGUCU-30 can
target and repress a genome-encoded RFP while avoiding repression of a

genome-encoded upstream GFP (Qi et al., 2013). In a screening context,

this provides a simple output for assaying dCas9 functionality (i.e., RFP

knock-down) while correcting for extrinsic noise in the population bymon-

itoring GFP (Elowitz, Levine, Siggia, & Swain, 2002). The basic method of

screening is schematized in Fig. 23.3A. Briefly, cells containing functional

dCas9s will repress RFP and express GFP while those with nonfunctional

dCas9s will express both fluorescent proteins. This signal is easily distin-

guished using flow cytometry and florescence imaging (Fig. 23.3B and C).

2.5. Selecting Cas9
To complement the screening method and for use with larger libraries of Cas9

mutants, we have also developed a technique to select functional dCas9s using

cellular growth. We fashioned a derivative of the classic yeast counter-

selectionmethod, which takes advantage of the toxicity of 5-fluoroorotic acid

(5-FOA) in cells with the URA3 gene (Fig. 23.4A) (Boeke, Trueheart,

Natsoulis, & Fink, 1987). In yeast, URA3 encodes orotidine50-phosphate
decarboxylase, which catalyzes the conversion of 5-FOA into a highly toxic

compound (Boeke, LaCroute, & Fink, 1984). The E. coli homolog ofURA3,

pyrF, is thought to act in a similar manner, and pyrF and the upstream gene

pyrE are known to function as selectable markers in other Gram negative bac-

teria (Galvao & de Lorenzo, 2005; Yano, Sanders, Catalano, & Daldal, 2005).

Nevertheless, it was unclear whether dCas9-based repression would mimic

the effects of these full gene knockouts in an E. coli system. To this end,

500 Benjamin L. Oakes et al.



we tested whether repression of either of pyrF and pyrE by dCas9 was suffi-

cient to rescue a slow growth phenotype on 5-FOA. After creating a number

of different sgRNAs targeted to the start of pyrF and pyrE, we determined that

the guides 50-ACCUUCUUGAUGAUGGGCAC-30 for pyrF and 50-
UAAGCGCAAAUUCAAUAAAC-30 for pyrE each rescued growth in

5 mM of 5-FOA (Fig. 23.4B).

Ultimately, it is important to decide which approach, screening or selec-

tion, will be used to enrich for functional engineered Cas9mutants. A primary

determining factor is the theoretical library size. Screening systems can effec-

tively cover libraries of sizes up to �106, which is roughly equivalent to the

amount of E. coli that can be sorted 10� by a flow cytometer in one hour. On
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Figure 23.3 Screen for functional Cas9s. (A) Schematic representation of the screen.
(B) Flow cytometry data of the functional positive (WT dCas9) control in blue and neg-
ative “Inactive Truncation” Cas9 (IT dCas9) control in red. IT dCas9 contains only the
C-terminal 250 amino acids. Both controls contain the sgRNA plasmid which targets
RFP for repression. Samples were grown overnight in rich induction media.
(C) Colony fluorescence of the functional (WT dCas9) and “Broken” negative (IT dCas9)
controls.
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the other hand, selection systems, which rely on repression/activation of a

toxic/essential gene for growth, can screen libraries of randomprotein variants

of up to �109 in size (Persikov, Rowland, Oakes, Singh, & Noyes, 2014).

2.6. Screening for functional Cas9 variants
We have found that Fluorescence-Activated Cell Sorting (FACS) is a con-

venient method for isolating functional Cas9 variants. This approach is

somewhat more flexible than a selection—a gating strategy in FACS is easily

manipulated while the growth constraints of a selection are not—yet still
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Figure 23.4 Functional Cas9 selection overview. (A) Schematic representation of the
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gene (purple), pyrE gene (green), and a no guide sequence control (red). Samples were
grown in rich induction media+5 mM 5-fluoroorotic acid. All measurements represent
the average (line) and standard deviation (shading) of three biological replicates.
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provides reasonable throughput. As a proof of concept, we demonstrate the

FACS-based screening of functional dCas9 variants possessing the insertion

of an α-syntrophin PDZ domain.

1. Obtain a dCas9 library containing �106 variants on an expression plas-

mid of choice. Here we used a tetracycline-inducible expression plas-

mid, plasmid 44249: pdCas9-bacteria from Addgene (Qi et al., 2013)

to create a library which has a SNTA1 PDZ domain inserted across

the whole dCas9 protein (Dueber et al., 2003). Based on the possible

insertion sites and linkers, the size of this library is roughly equal to 106.

2. Transform electrocompetent E. coli expressing GFP and RFP with 1 μg
of the library plasmid and 1 μg of a sgRNA plasmid, if necessary. Here,

the E. coli strain and guide RNA plasmid come from Qi et al. (2013)

(plasmid is 44251: pgRNA-bacteria; Addgene).

3. To ensure adequate coverage of the library the transformation efficiency

should be at least 5–10� greater than the theoretical library size. To

determine this, plate 5 μL aliquots of serially diluted transformants,

and grow to colonies (overnight, 37 �C) on double-selection media

(chloramphenicol (50 μg/mL) to maintain the engineered dCas9 plas-

mids and carbenicillin (100 μg/mL) for maintenance of the guide

RNA plasmid). Store the remaining transformed cells at 4 �C overnight.

4. Determine the volume of the transformation mixture needed to cover

the theoretical library size 5–10� based on the results from step 3 and

inoculate into 5 mL of rich induction media: SOC, chloramphenicol,

carbenicillin and 2 μM anhydrotetracycline (aTC). Concurrently, inoc-

ulate tubes of rich induction media with controls WT dCas9 and IT

dCas9 with the RFP sgRNA. Grow at 37 �C; we have found shaking

�250 rpm is helpful for maximum RFP and GFP fluorescence.

5. After 8–12 h of growth, centrifuge 500 μL of each sample, wash 2�with

1 mL of PBS and resuspend 1:20 in PBS for flow cytometry.

6. Run the controls on a FACS instrument to establish correct positive and

negative gating (Fig 23.5).

7. Screen the library using FACS and collect the cell which fall within the

previously determined positive gate in rich, non-selective media

(Fig. 23.5). Screen at least 10� the library size as cellular viability

post-FACS is often substantially less than 100%.

8. Recover sorted cells for 2 h at 37 �C.
9. Depending on the library enrichment after a single round of sorting,

repeating steps 4–8 may be necessary to further enrich for functional,

engineered dCas9 clones.
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2.7. Determining screening enrichment of PDZ-dCas9 domain
insertions

A successful round of screening with the PDZ-dCas9 library should

enrich for functional PDZ-dCas9 insertion mutants (intercalations).

A straightforward method to check for enrichment is to PCR with a primer

specific to the inserted domain and one external to the engineered Cas9

(Fig 23.6A). An amplified smear indicates a relatively “naı̈ve” library while

specific bands indicate enriched library members. The following is a

representative protocol for checking screening success.

1. Plate approximately 1000–10,000 of the sorted and recovered cells on

rich induction plates with antibiotics and inducer. Add the remaining

cells to 6 mL of liquid media with appropriate antibiotics.

2. Grow the induction plate(s) overnight at 37 �C and then allow 12 h at

room temperature for RFP to fully mature. As described in Section 2.8

below, this plate will be used to pick colonies with functionally interca-

lated PDZ-dCas9s.

IT dCas9 + RFP sgRNA
WT dCas9 + RFP sgRNA
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Figure 23.5 Cell sorting data from the GFP-RFP screen. The first panel depicts the RFP
versus GFP measurements of WT dCas9 (blue; light gray in the print version) and IT
dCas9 (pink; dark gray in the print version) as run on a Sony SH800 cell sorter. The sep-
aration of these two controls into distinct populations is readily apparent. The second
panel portrays the spread of the PDZ-Cas9 intercalation library (green; dark gray in the
print version). The last panel shows the overlay of all three FACS plots. It is evident that
there are populations of functional and nonfunctional proteins within the single PDZ-
dCas9 library and the third panel also provides a demonstration of a gate for isolation of
functional PDZ-dCas9 intercalations.

504 Benjamin L. Oakes et al.



3. Grow the liquid culture from step 1 at 37 �C overnight and prepare a

glycerol stock of the sorted cells for future use by mixing 800 μL of cul-

ture with 400 μL of 50% glycerol in lysogeny broth (LB).

4. Centrifuge the remaining liquid culture and miniprep to recover plasmid

DNA (Qiagen).

5. Perform a PCR using plasmid DNA from the original and screened

libraries with the primers described above (Fig. 23.6A). The screened

library PCR should show enrichment bands (Fig. 23.6B). If bands are
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Figure 23.6 Checking success of a screen and picking final clones. (A) An overview of
primer design for the PDZ-dCas9 library. (B) Gel electrophoresis of PCRs run on the orig-
inal PDZ-dCas9 library and the first and second round of screening. The banding pat-
terns that appear after the first and second sorts are indicative of library enrichment,
representing the insertion sites of a PDZ domain. It is also evident that the N- and
C-termini fusions to PDZ are also enriched. Since these fusions are expected to be func-
tional this serves as an internal control. (C) Fluorescent image of the on-plate “finishing”
screen. Colonies that express only GFP are expected to have a functional PDZ-dCas9.
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not evident, the library may require further rounds of screening

(Section 2.6, step 4). Alternatively, deep sequencing may be used to rig-

orously characterize the library.

2.8. Identifying and testing PDZ-Cas9 clones from a screened
library

Next, it is necessary to isolate functional dCas9 clones with intercalated

PDZ domains. This is done via a final plate-based screen. Once identified

and isolated, it is then possible to collect, test, and verify unique PDZ-dCas9

clones in a secondary screening method, such as repression of an alternative

gene.

1. Set up a 96-well PCR plate of 50 μL reactions using the primers from

Section 2.7, step 5. In parallel, fill a 96-well plate with 100 μL of rich

media per well.

2. From the induction plates grown in Section 2.7, step 2, pick colonies

expressing only GFP (Fig. 23.6C), as assayed via fluorescence imaging

(Bio-Rad Chemidoc MP). Spot each colony into a well of the PCR

plate by pipetting up and down 5� and then, using the same tip, inoc-

ulate the corresponding well of the media plate.

3. Run the aforementioned PCR and sequence the amplicons. Store the

inoculated media plate at 4 �C.
4. Align sequences to the original plasmidmap using appropriate software.

Ensure variants are in-frame and determine unique clones.

5. Take 50 μL of the corresponding unique clones from the inoculated

media plate and grow overnight in 5 mL of rich media with antibiotics.

Miniprep DNA to obtain a mix of both the engineered PDZ-dCas9

plasmid and the RFP guide plasmid for each isolate.

6. Using a primer upstream of the dCas9 insertion site, sequence the plas-

mid to determine the insertion site and linkers (Fig. 23.7A).

7. Digest 5 μg of plasmid mixture with BsaI to remove the guide plasmid

and clean up DNA (Qiagen) to remove restriction enzyme. (Digestion

rxn occurs as follows: (1) 37 �C—60 min, (2) 50 �C—60 min, (3)

80 �C—10 min)

8. Transform the digested plasmid mixture with 200 ng of new guide

plasmid to examine the function of the intercalated PDZ-dCas9 on other

genes and endogenous loci. Specifically, we transformed one of our

PDZ-dCas9 intercalations with guides for GFP and FtsZ, an essential cell

division protein (sequences 50-AUCUAAUUCAACAAGAAUU-30,
50-UCGGCGUCGGCGGCGGCGG-30, respectively).
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9. Culture the bacteria with the PDZ-dCas9 intercalation isolates and the

new guides. Grow the original dCas9 controls with these new guides,

induce with 2 μM aTC and measure the phenotypes accordingly.

10. Validate that the qualitative and quantitative phenotypes are within

range of the WT Cas9 (Fig. 23.7B and C).

2.9. Expanding horizons
While the democratization of simple and multiplex genome engineering is

central to the story of Cas9, the question of reliable specificity is paramount

to its future use. Ideally, Cas9 would target and cleave one site in a complex

genome yet leave other, similar, sites unmarred. Scarring the genome

obscures the genotype–phenotype relationship, limiting basic science utility,

and Cas9 cannot translate into the therapeutic arena if it is known to induce

spurious mutations. Thus, how and when PAM and guide interactions inte-

grate to provide specificity and activate Cas9-mediated cleavage is essential.

Studies have shown that while the SpCas9 PAM 50-NGG-30 requirement is

strict, only poorly tolerating one other target site (50-NAG-30), sgRNA:
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Figure 23.7 Validating functionality of engineered dCas9. (A) Sequence validation of
the site 1188 PDZ intercalation. Sequence alignment via SnapGene. (B) Quantitative
repression of GFP by the PDZ-1188-dCas9 intercalation clone. Bulk florescence mea-
surements of GFP expression levels over 5 h. Double asterisks represent a p value of
<0.0001 in a one way ANOVA. Single asterisk represents p values of <0.0001 in an
unpaired Student's t-test. (C) Qualitative repression of ftsZ gene by PDZ-dCas9 and con-
trols. The scale bar is 5 μm.
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target-DNA hybridization may accept a number of mismatches, especially

toward the 50-end of the sgRNA (Hsu et al., 2013; Mali, Aach, et al.,

2013; Pattanayak et al., 2013). Accordingly, detrimental off-target binding

and cleavage activity of Cas9 is a pressing issue.

A number of reports have addressed this concern. Truncating the guide

sequence appears to lessen the accepted number of mismatches in a given

guide (Fu, Sander, Reyon, Cascio, & Joung, 2014). Alternatively, Cas9

nickases, which cleave only one strand, can be multiplexed to require

mutual on-target activity of two Cas9s in order for editing to occur

(Mali, Aach, et al., 2013; Ran et al., 2013). Finally, it has been shown that

lowering the expression of Cas9 can lessen off-target effects (Hsu et al.,

2013). Nevertheless, rigorous engineering may lead to superior solutions.

While the systems for isolating active Cas9 variants presented here are

not designed to directly address specificity concerns, we envisage that with

small changes our selection and screening platforms could separate mutant

Cas9s with less specificity from those with more. For example, it should

be possible to introduce high affinity off-target binding-sites in front of

the fluorescent reporter not actively targeted, such that any binding to these

mock sites would act as an internal counterscreen. We are motivated by the

likelihood that, in the future, screens and selections of this vein may be used

to engineer synthetic Cas9 proteins that can tolerate few, if any mismatches,

in the guide and/or PAM sequence.

3. CONCLUSION

Cas9 has fundamentally altered the genome-engineering landscape

due to its simple programmability and overall effectiveness. Here, for the first

time, we have delineated protein engineering-based methods for the

directed evolution of Cas9 proteins with novel functions. We believe that

such techniques will be critical for answering unresolved biochemical ques-

tions of protein structure and function. Moreover, directed evolution of

Cas9 will allow for more refined improvement of this singular protein

and the construction of next-generation tools for both interrogating the

genome and biomedical therapies.
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